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Preface

CALCO, the International Conference on Algebra and Coalgebra in Computer
Science, is a high-level, bi-annual event formed by joining CMCS (the Inter-
national Workshop on Coalgebraic Methods in Computer Science) and WADT
(the Workshop on Algebraic Development Techniques). CALCO aims to bring
together researchers and practitioners with interests in foundational aspects,
and both traditional and emerging uses of algebras and coalgebras in computer
science. The study of algebra and coalgebra relates to the data, process, and
structural aspects of software systems.

Previous CALCO editions took place in Swansea (UK, 2005), Bergen (Nor-
way, 2007), Udine (Italy, 2009) and Winchester (UK, 2011). CALCO 2013, the
fifth conference in the series, took place in Warsaw (Poland), September 3–6,
2013.

CALCO 2013 received 33 submissions, out of which 18 were selected for
presentation at the conference. The standard of submissions was generally very
high. The selection process was carried out by the Program Committee, taking
into account the originality, quality, and relevance of the material presented in
each submission, based on the opinions of three or four expert reviewers for each
submission. The selected and revised papers are included in this volume, together
with contributions by the invited speakers Andrej Bauer, Miko�laj Bojańczyk,
Neil Ghani, and Damien Pous.

CALCO 2013 was co-located with two workshops. The CALCO Early Ideas
Workshop, CALCO EI, was dedicated to presentation of work in progress and
original research proposals. PhD students and young researchers were partic-
ularly encouraged to contribute. CALCO EI was organized by Monika Seisen-
berger. The CALCO Tools Workshop, organized by Lutz Schröder, is dedicated
to tools based on algebraic and/or coalgebraic principles. These tool papers also
appear in this volume.

We wish to thank all the authors for submitting their papers to CALCO
2013, the Program Committee for its diligent work in the selection process, and
the external reviewers for their support in evaluating papers.

We are grateful to the University of Warsaw and the Polish Mathematical
Society for hosting CALCO 2013 and to the Organizing Committee, chaired by
Bartek Klin and Andrzej Tarlecki, for all the local arrangements. We also thank
the Warsaw Centre of Mathematics and Computer Science for their financial
support. At Springer, Alfred Hofmann and his team supported the publishing
process. We gratefully acknowledge the use of EasyChair, the conference man-
agement system by Andrei Voronkov.

June 2013 Reiko Heckel
Stefan Milius
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Jǐŕı Adámek Technical University of Braunschweig,
Germany

Michel Bidoit CNRS and ENS de Cachan, France
Corina Cı̂rstea University of Southampton, UK
Andrea Corradini University of Pisa, Italy
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An Effect System

for Algebraic Effects and Handlers

Andrej Bauer and Matija Pretnar

Faculty of Mathematics and Physics
University of Ljubljana

Abstract. We present an effect system for algebraic effects and han-
dlers. Because handlers may transform an effectful computation into a
pure one, the effect system is non-monotone in the sense that effects
do not just accumulate, but may also be deleted from types or gen-
erally transformed. We also provide denotational semantics for the ef-
fect system, based on a domain-theoretic model with partial equivalence
relations. The semantics validates equational reasoning about effectful
computations.

1 Introduction

An effect system supplements a traditional type system for a programming lan-
guage with information about which computational effects may, will, or will
not happen when a piece of code is executed. A well designed and solidly im-
plemented effect system helps the programmer understand the code and find
mistakes, but it can also be used to safely rearrange, optimize, and parallelize
code [1,2]. As many before us [1,3,4,5] we take on the task of striking just the
right balance between simplicity and expressivity by devising an effect system
for the programming language Eff [6]. The novelty here is that Eff has not only
first-class algebraic effects [7], but also effect handlers [8]. Therefore, an effect
system for Eff is by its nature non-monotone — an effectful computation may
become pure when enclosed by a handler — so effects do not just accumulate in
the types, but also get deleted and generally transformed. Another feature of our
effect system is that its denotational semantics validates equational reasoning,
which is traditionally thought to be in the dominion of pure languages, and can
be tricky once effects are included [9].

The paper is organized as follows. In §2 we describe the core Eff and an effect
system for it. In §3 we give a denotational semantics for core Eff, and use it to
validate program transformation rules that can be used for equational reasoning
about effectful computations.

2 Core Eff

Eff is a ML-style [10,11] programming language. Effects in ML are not visible in
the types. For example, inserting a print statement in the middle of code does

R. Heckel and S. Milius (Eds.): CALCO 2013, LNCS 8089, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 A. Bauer and M. Pretnar

not create any changes in the typing information. In contrast, in the monadic
style such a change would taint all enclosing types with the I/O monad [12]. It is
our intention to augment the types with information about computational effects
which is unobtrusive for programmers, i.e., in the implementation we envision
effect inference which serves primarily as a program analysis tool.

In ML-style languages effects are provided through built-in functions and
special-purpose constructs such as exceptions and references. Eff is based on
the algebraic approach in which effects are accessed uniformly and exclusively
through operations, which are a primitive concept. Examples of operations are
reading and writing on a communication channel, updating and looking up the
contents of a reference, and raising an exception. Thus, in Eff each terminating
computation results either in an (effect-free) value, or it triggers an operation.
Each operation has an associated (delimited) continuation, which is a suspended
computation expecting the result of the operation and doing whatever is to be
done after the operation is performed.

Operations by themselves do not actually perform effects. Instead their be-
havior is controlled by a second primitive notion, the effect handlers. These are
a direct generalization of exception handlers to other operations. The most sig-
nificant difference between exception handlers and effect handlers is that the
latter have access to the continuation of the handled operation. With handlers
we may implement a great variety of computational effects, such as transactional
memory, various non-deterministic execution strategies, stream redirection, co-
operative multi-threading, delimited continuations, and others.

The current implementation of Eff includes a number of features, such as
syntactic sugar, products, records, inductive types, type definitions, effect defi-
nitions, etc., which are inessential for a conceptual analysis. We therefore restrict
attention to core Eff whose syntax is shown below.

Types

Effect type E ::= effect (operation opi :Ai → Bi)i end

Expression type A,B ::= nat
∣∣ bool

∣∣ unit
∣∣ empty

∣∣ E{ι1,...,ιn} ∣∣
A → C

∣∣ C ⇒ D

Computation type C,D ::= A!{ι1 # op1, . . . , ιn # opn}

Terms

Expression e ::= x
∣∣ 0

∣∣ succ e
∣∣ true

∣∣ false
∣∣

()
∣∣ ι

∣∣ fun x �→ c
∣∣ e # op

∣∣ h

Handler h ::= handler val x �→ cv |(ei # opi xi ki �→ ci)i

Computation c ::= val e
∣∣ let x = c1 in c2

∣∣ let rec f x = c1 in c2
∣∣

iszero e
∣∣ if e then c1 else c2

∣∣ absurd e
∣∣ e1 e2

∣∣
with e handle c
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We describe informally what the various parts mean, and refer the readers
to [6] for a more thorough introduction. Eff uses a fine grain call-by-value evalu-
ation strategy [13], which means that it distinguishes effect-free expressions and
possibly effectful computations. There are corresponding expression and compu-
tation types.

2.1 Expressions

An expression is either a variable x, zero 0, a successor succ e, a boolean value
true or false, the unit (), an effect instance ι, a function abstraction of a
computation, an operation e # op, or a handler transforming computations to
computations. We briefly comment on the ones that are peculiar to Eff.

An effect type

effect (operation opi :Ai → Bi)i end

declares operations opi with given types of parameters Ai and results Bi. (Here
and elsewhere, (· · ·)i indicates that · · · may be repeated finitely many times.)
For example, the effect type of exceptions is

effect

operation abort : unit→ empty

end

and the effect type ref for a reference holding a natural number is

effect

operation lookup :unit→ nat

operation update :nat→ unit

end

(1)

Effect instances ι are a way of making several copies of the same computa-
tional effect. For example, there may be several communication channels, several
mutable references, etc. In this respect Eff differs from [5], where bare operations
are considered; in terms of Eff that is like having a single instance of each effect.

The expression type E{ι1,...,ιn} is inhabited by expressions which evaluate to
one of the instances ι1, . . . , ιn, whose effect type is E. We call {ι1, . . . , ιn} a
region and abbreviate it as ρ. A smaller region is more informative, so ideally
we would like all of them to be just singletons. But this is not possible because
instances are first-class values and so we can write

let x = (if b then ι1 else ι2) in · · ·

The best we can say about x is that its type is E{ι1,ι2}.
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2.2 Computations

A computation type A!{ι1 # op1, . . . , ιn # opn} means that the computation ei-
ther produces a (pure) value of type A, or triggers one of the listed operations
ι1 # op1, . . . , ιn # opn. We abbreviate such finite sets of operations with the letter
δ and call them dirt. A computation is either a pure value val e, a let binding,
a recursive function definition, a zero-test iszero e, a conditional statement, a
destructor for the empty type, an application, or a handle construct.

The computation val e is pure and indicates a “final” result e, while an oper-
ation applied to a parameter ι # op e is the principal way of triggering an effect.
By itself ι # op e is just a suspended computation with an associated continua-
tion. For an actual effect to take place it has to be handled by a handler, as
described below. The continuation associated with ι # op e is fun x �→ val x.
Such operations are known as generic effects [7].

A binding let x = c1 in c2 is evaluated as follows:

1. if c1 evaluates to val e then the binding evaluates to c2 with x bound to e,
2. if c1 evaluates to an operation ι # op e with continuation κ, then the binding

evaluates to ι # op e with continuation fun y �→ (let x = κ y in c2).

It may help to think of val and let as being similar to Haskell return and do,
respectively. In ML val is invisible, while let is essentially the same as ours.

The handling construct applies a handler to a computation. If h is the handler

handler val x �→ cv |(ei # opi xi ki �→ ci)i

and c is a computation then with h handle c first evaluates c and then evaluates
the clause of the handler that matches the result given by c. If no clause matches,
c evaluated to an operation which is propagated outwards. In all cases the handler
wraps itself around the continuation so that subsequent operations are handled
as well. More precisely:

1. if c evaluates to val e, then the handling construct evaluates to cv with x
bound to e,

2. if c evaluates to ei # opi e
′ with continuation κ, then the handling construct

evaluates to ci with xi and ki bound to e′ and fun y �→ with h handle κ y,
respectively.

3. if c evaluates to any other operation ι # op e′ with continuation κ, then the
handling construct acts as if h contained the clause

ι # opx k �→ (let y = ι # opx in k y).

Thus it evaluates to ι # op e′ with continuation fun y �→ with h handle (κ y).

We may wrap several handling constructs around c, in which case the inner
handler takes precedence. Note that let x = c1 in c2 is equivalent to

with (handler val x �→ c2) handle c1

so we could theoretically omit let.
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2.3 Typing Rules

The typing system of core Eff has two typing judgments,

Γ �e e : A and Γ �c c : C

stating that an expression e has expression type A, and that a computation c
has computation type C, respectively. As usual, Γ is a typing context

x1 : A1, . . . , xn : An

which assigns expression types Ai to distinct variables xi. We also have sub-
typing of expression types A ≤ A′ and computation types C ≤ C′. We fix an
assignment Ξ of effect types to instances, and assume implicitly that all dirts
and regions appearing in the rules are well formed, i.e., if ι # op appears then in
fact (ι : E) ∈ Ξ and op ∈ E, and that a region ρ in Eρ mentions only instances
whose effect type is E.

The typing rules for variables, primitive constants and functions are standard:

(x : A) ∈ Γ

Γ �e x : A
Γ �e 0 : nat

Γ �e e : nat

Γ �e succ e : nat
Γ �e () : unit

Γ �e true : bool Γ �e false : bool
Γ, x : A �c c : C

Γ �e (fun x �→ c) : A→ C

The typing rule for instances
ι ∈ ρ

Γ �e ι : Eρ

verifies that the instance ι is in the region ρ and consults Ξ to check that ρ
contains only instances whose effect type is E. An operation e # op has a function
type, where the dirt in the codomain must contain operations ι # op for ι ranging
over the region associated with e:

Γ �e e :Eρ (op :A → B) ∈ E ∀ι ∈ ρ . (ι # op) ∈ δ

Γ �e e # op : A→ B!δ

The handler type A!δ ⇒ C expresses the fact that a handler transforms compu-
tations of type A!δ to computations of type C. The typing rule for handlers

Γ, x :A �c cv : C
Γ �e ei : Eρi

i (opi :Ai → Bi) ∈ Ei Γ, xi :Ai, ki :Bi → C �c ci : C
∀(ι # op) ∈ δ . ∃i . ρi = {ι} ∧ opi = op

Γ �e (handler val x �→ cv |(ei # opi xi ki �→ ci)i) : A!δ ⇒ C

checks that the instances and operations are paired up correctly according to
their effect types, all clauses have computation type C under suitable assump-
tions on bound variables, and every operation in δ is handled by a clause. Note
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that an operation ι # op is taken to be handled by a clause ei # opi xi ki �→ ci only
if op = opi and ei is ascertained to have exactly the region {ι}. If the region
were {ι, ι′} we could not tell whether the clause handles ι # op or ι′ # op.

The typing rules for computations hold no suprises at all:

Γ �e e : A

Γ �c val e : A!δ

Γ �c c1 : A!δ Γ, x : A �c c2 : B!δ

Γ �c (let x = c1 in c2) : B!δ

Γ, f :A→ C, x : A �c c1 : C Γ, f :A → C �c c2 : D

Γ �c (let rec f x = c1 in c2) : D

Γ �e e : nat

Γ �c iszero e : bool!δ

Γ �e e : bool Γ �c c1 : C Γ �c c2 : C

Γ �c (if e then c1 else c2) : C

Γ �e e : empty

Γ �c (absurd e) : C

Γ �e e1 :A→ C Γ �e e2 : A

Γ �c e1 e2 : C

Γ �e e : C ⇒ D Γ �c c : C

Γ �c (with e handle c) : D

The structural subtyping rules are expected as well [14]:

Γ �e e :A A ≤ A′

Γ �e e :A′
Γ �c c :C C ≤ C′

Γ �c c :C′ A ≤ A

A ≤ A′ A′ ≤ A′′

A ≤ A′′
A′ ≤ A C ≤ C′

(A → C) ≤ (A′ → C′)
C′ ≤ C D ≤ D′

(C ⇒ D) ≤ (C ′ ⇒ D′)

ρ ⊆ ρ′

Eρ ≤ Eρ′
A ≤ A′ δ ⊆ δ′

A!δ ≤ A′!δ′

There are two subsumption rules, one for each typing judgment. The subtyping
relation is reflexive and transitive. Function and handler types are contravariant
in the domain and covariant in the codomain. Indeed, we may always pretend
that a handler handles fewer operations, and triggers more operations than it
actually does. An effect type is covariant in the region, while a computation type
is covariant in both its parts.

Subtyping buys us additional expressivity. For instance, assuming ι1 and ι2
are instances of E,

let a = ι1 in

let b = (if p then a else ι2) in

val (handler val x �→ val () | a # opx k �→ val ())
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we would like to give a the type E{ι1} so that the handler can have the more
specific type A!{ι1 # op} ⇒ unit!∅, but then without subtyping E{ι1} ≤ E{ι1,ι2}

we could not give b its type E{ι1,ι2}.

2.4 Example: State Handlers

We demonstrate the features of our type system by looking at a state handler
for the reference effect ref shown in (1). Define state to be the function

fun r �→ (handler val x �→ val (fun s �→ val x)

| r # lookupx k �→ val (fun s �→ k s s)

| r # updates′ k �→ val (fun s �→ k () s′))

In words, state accepts an instance r and returns a handler which handles
lookups and updates on r by using the standard functional encoding of the state
monad. For any instance ι, expression type A and dirt δ, the function state has
the type

ref{ι} → (A!({ι # lookup, ι # update} ∪ δ) ⇒ (nat→ A!δ)!δ).

Thus, if c is a computation of type

A!({ι # lookup, ι # update} ∪ δ)

then
let h = state ι in (with h handle c) (2)

has the type (nat→ A!δ)!δ. That is, we obtained a computation which possibly
triggers effects δ and returns a function. Upon application of the function to an
initial state effects δ may be triggered again, after which a final result of type A
is obtained. In particular, if δ = ∅ then (2) is a pure computation.

If we weakened the domain of state to ref{ι1,ι2} then we would not be able
to deduce that state handled anything, so we would only be able to assign to
state the less useful type

ref{ι1,ι2} → (A!δ ⇒ (nat→ A!δ)!δ).

We may handle several references by invoking several instantiations of state. For
example, let c be the computation which swaps the contents of two references:

let x1 = ι1 # lookup() in

let x2 = ι2 # lookup() in

let u = ι1 # update x2 in

let v = ι2 # update x1 in ()

By itself, c has the type

unit!{ι1 # lookup, ι1 # update, ι2 # lookup, ι2 # update},
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while
let h1 = state ι1 in (with h1 handle c)

has type (nat → unit!{ι2 # lookup, ι2 # update})!{ι2 # lookup, ι2 # update}. If
we handle both instances,

let h1 = state ι1 in

let h2 = state ι2 in

with h2 handle (with h1 handle c),

we get the pure type nat→ (nat→ unit!∅)!∅.

3 Denotational Semantics

An outline of a set-theoretic algebraic semantics of computational effects, as
developed by [6,15,16,7,8], is shown in the following table.

Programming language Algebra

effect type algebraic signature
expression type set
expression element
computation type free algebra
pure computation generator
effectful computation algebraic operation
handler homomorphism of algebras

To properly account for recursion and non-termination we adapt it to a domain-
theoretic semantics of algebraic effects under which expression and computation
types are domains. We first give Curry-style semantics in which terms are inter-
preted without being typed, and then, following John Reynolds [17], we provide
a Church-style semantics in which types receive meanings as well. It does not
matter much what kind of domains we use, they could be ω-cpos, Scott do-
mains, effective Scott domains, or any other kind of domains that model the
basic type-theoretic operations (product, function space, coalesced sum).

3.1 Semantics of Expressions and Computations

Expressions could be modeled with predomains, because they are inert pieces
of data, free from computational effects, including non-termination. However,
the bottom element is useful for denotation of ill-typed expressions and runtime
errors. In any case, the predomain nature of expressions will be captured later on
by the partial equivalence relations. The domains for computation types are free
in a suitable sense, i.e., they enjoy a recursion principle which acts as a substitute
for the universality of free algebras. We assume a given set of all instances I and
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a set of all operation symbols O, write + for a disjoint sum, and ⊕ for coalesced
sum.

To interpret expressions and computations we need suitable domains of val-
ues V and results R, respectively. These have to be large enough to contain all
possible denotations of expressions and computations, which is usually achieved
by solving suitable recursive domain equations, such as

V = N⊥ ⊕ {0, 1}⊥ ⊕ {
}⊥ ⊕ I⊥ ⊕RV ⊕RR,

R = (V + I×O× V ×RV )⊥.

The summands in the equation for V correspond to various expression types.
The recursive domain equation for R says that a non-bottom element of R is
either a value, or a quadruple (ι, op, v, κ) corresponding to the operation ι # op
applied to parameter v and with continuation κ. However, as in [17], we shall
assume only that V and R are large enough to contain the various components
needed for the semantics as retracts :

N⊥
snat ��

V
rnat

�� {0, 1}⊥
sbool ��

V
rbool
�� {
}⊥

sunit ��
V

runit
��

I⊥
seffect �� V
reffect
�� RV

s→ �� V
r→

�� RR
s⇒ �� V
r⇒

��

and

(V + I×O× V ×RV )⊥
sres �� R
rres

��

Thus, R and V could be solutions to the above domain equations, but they could
also both be a universal domain, or just a (non-trivial) reflexive domain.1 Note
that there are further canonical retractions

V
sval ��

(V + I×O× V ×RV )⊥
rval

��

(I×O× V ×RV )⊥
soper ��

(V + I×O× V ×RV )⊥
roper

��

which in combination with the section-retraction pair (sres, rres) convert elements
of R to pure values and operations, respectively.

The domain (V + I×O× V ×RV )⊥ has the following recursion principle.
Given a domain D and maps

hval : V −→ D and hoper : I×O× V ×RV −→ D,

there is a unique strict map h : (V + I×O× V ×RV )⊥ −→ D such that, for all
v ∈ V , ι ∈ I, op ∈ O, κ : V → R,

h(sval(v)) = hval (v),

h(soper(ι, op, v, κ)) = hoper(ι, op, v, h ◦ rres ◦ κ).

1 A domain D is reflexive if it contains its functions space DD as a retract, and is
therefore a model of the untyped λ-calculus.
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Moreover, h depends continuously on the data hval and hoper. For example, given
a map f : V → R, there is a unique strict map

f † : (V + I×O× V ×RV )⊥ −→ R,

called the lifting of f , which depends on f continuously and satisfies the recursive
equations

f †(sval(v)) = f(v),

f †(soper(ι, op, v, κ)) = soper(ι, op, v, f
† ◦ rres ◦ κ).

An environment η is a map from variable names to values. We denote by
η[x �→ v] the environment which assigns v to x and otherwise behaves as η. The
untyped denotational semantics of expressions assigns to each expression a map
from environments to V , as follows. First we have the standard constructs:

�x� η = η(x)

�()� η = sunit(
)

�0� η = snat(0)

�succ e� η =

{
snat(n + 1) if rnat(�e� η) = n ∈ N,

snat(⊥) if rnat(�e� η) = ⊥
�true� η = sbool(1)

�false� η = sbool(0)

�ι� η = seffect(ι)

�fun x �→ c� η = s→(λv :V. �c� (η[x �→ v]))

When e evaluates to an instance we interpret e # op as a generic effect:

�e # op� η =

{
s→(λv :V. sres(soper(ι, op, v, sres ◦ sval))) if reffect(�e� η) = ι ∈ I,

s→(λv :V. sres(⊥)) if reffect(�e� η) = ⊥.

The interpretation of a handler is

�handler val x �→ cv |(ei # opi xi ki �→ ci)i� η = s⇒(h ◦ rres)

where h : (V + I×O× V ×RV )⊥ → R is characterized using the recursion
principle for R as follows:

1. if one of the reffect(�ei� η) is ⊥ we set h = λx. sres(⊥), otherwise
2. if reffect(�ei� η) = ιi ∈ I for all i, then we define h by cases as

h(sval(v)) = �cv� (η[x �→ v])

h(soper(ιi, opi, v, κ)) = �ci� (η[xi �→ v, ki �→ h ◦ rres ◦ κ])

for all i,

h(soper(ι, op, v, κ)) = sres(soper(ι, op, v, h ◦ rres ◦ κ))

if (ι, op) �= (ιi, opi) for all i.
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There may be overlapping cases in the second clause, i.e., it could happen
that (ιi, opi) = (ιj , opj), in which case the clause that is listed first counts.

Computations are modeled as maps from environments to results. Promotion of
expressions to computations is just the inclusion of V into R,

�val e� η = sres(sval(�e� η)).

The let statement corresponds to monadic-style binding:

�let x = c1 in c2� η = (λv :V. �c2� (η[x �→ v]))†(rres(�c1� η)),

A recursive function definition is interpreted as

�let rec f x = c1 in c2� η = �c2� (η[f �→ s→(t)])

where t : V → R is the least fixed point of the map

t �→ (λv :V. �c1� (η[f �→ s→(t), x �→ v])).

The elimination forms are interpreted in the usual way as:

�iszero e� η =

⎧⎪⎨⎪⎩
sres(sval(sbool(1))) if 0 = rnat(�e� η)

sres(sval(sbool(0))) if 0 �= rnat(�e� η) ∈ N

sres(⊥) if ⊥ = rnat(�e� η)

�if e then c1 else c2� η =

⎧⎪⎨⎪⎩
�c1� η if rbool(�e� η) = 1

�c2� η if rbool(�e� η) = 0

sres(⊥) otherwise

�absurd e� η = sres(⊥)

�e1 e2� η = r→(�e1� η)(�e2� η)

Finally, the handling construct is just an application

�with e handle c� η = r⇒(�e� η)(�c� η).

The denotational semantics of expressions and computations is written in such a
way that it immediately suggests a big-step operational semantics. Indeed, in the
implementation of Eff the main evaluation function is essentially a transcription
of the above rules into OCaml [11].

3.2 Semantics of Types

According to John Reynolds, the untyped semantics of terms given in §3.1 is
related to a semantics of types by specifying, for all expression types A and
computation types C, section-retraction pairs

�A�
sA ��

V
rA

�� and �C�
sC ��

R
rC

�� ,
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A value v ∈ V and a result r ∈ R have types A and C, respectively, if they are
members of the corresponding retracts, which is expressed by fix-point equations

v = sA(rA(v)) and r = sC(rC(r)).

Such semantics works well for the structural part of types, i.e., everything ex-
cept the effect system. Therefore, for the effect system we are going to use a
second level of semantics by equipping the retracts with partial equivalence re-
lations (per).2 This way the semantics is neatly stratified: we may ignore the
effect system and use only the domain-theoretic part of semantics to get a more
traditional account of the language, or we also include the effect system and the
pers for a more refined meaning of types.

For the basic types, the effect types and the function type we set

�nat� = N⊥, �bool� = {0, 1}⊥,

�unit� = {
}⊥, �empty� = ∅⊥,

�Eρ� = I⊥, �A → C� = �C��A�,

The section-retraction pairs for the basic types and the effect types are the ones
given previously, and for the function type we set

sA→C(f) = s→(sC ◦ f ◦ rA) and rA→C(v) = rC ◦ r→(v) ◦ sA.

The pers for the basic types nat, bool, unit, and empty are identities on the
total elements, while the per for an effect type Eρ is identity restricted to ρ:

v ∼nat v′ ⇐⇒ v = v′ ∈ N, v ∼bool v′ ⇐⇒ v = v′ ∈ {0, 1},
v ∼unit v′ ⇐⇒ v = v′ = 
, v ∼empty v′ ⇐⇒ ⊥,

v ∼Eρ v′ ⇐⇒ v = v′ ∈ ρ.

The function type A → C has the standard per

f ∼A→C f ′ ⇐⇒ ∀v, v′ ∈ �A� . (v ∼A v′ =⇒ f(v) ∼C f ′(v′)).

Similarly, handler types C ⇒ D are treated as functions from computations to
computations. The underlying domain is the function space domain with the
section-retraction pair

�C ⇒ D� = �D��C� and �C ⇒ D�
sC⇒D �� V
rC⇒D

�� ,

defined in the expected way,

sC⇒D(h) = s⇒(sD ◦ h ◦ rC) and rC⇒D(v) = rD ◦ r⇒(v) ◦ sC .

Also the per is the one for function types,

h ∼C⇒D h′ ⇐⇒ ∀r, r′ ∈ �C� . (r ∼C r′ ⇒ h(r) ∼D h′(r′)).

2 Recall that a per is a symmetric and transitive relation.
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Semantics of computation types is a bit more involved. Let D be the set of
all pairs (ι, op) where ι is an instance whose associated effect type is E and
op : Aop → Bop is an operation declared by E. The domain associated with the
computation type A!δ is the solution of recursive domain equation

�A!δ� =
(
�A� +

∐
(ι,op)∈D

�Aop�× �A!δ��Bop�
)
⊥.

Because we want to keep the domain-theoretic part of semantics independent of
the effect system, we do not use the information provided by δ, and so we have
to sum over all operations in D. We shall encode information about δ in the
per ∼A!δ. There are canonical retractions

�A�
sA!δ
val ��

�A!δ�
rA!δ
val

�� and
(∐

(ι,op)∈D
�Aop�× �A!δ��Bop�

)
⊥

sA!δ
oper ��

�A!δ�
rA!δ
oper

��

Just like for R, we shall not use the domain equation for �A!δ�, but rather
only the above section-retraction pairs. The retraction rA!δ : R → �A!δ� is the
composition of rres and the map f : (V + I×O× V ×RV )⊥ −→ �A!δ� defined
by the recursion principle as

f(sval (v)) = sA!δ
val (rA(v)),

f(soper(ι, op, v, κ)) =

{
sA!δ
oper(ι, op, rAop

(v), f ◦ rres ◦ κ ◦ sBop
) for (ι, op) ∈ D,

⊥ for (ι, op) �∈ D.

The section sA!δ is defined similarly, using an analogous recursion principle for(
�A� +

∐
(ι,op)∈D

�Aop�× �A!δ��Bop�
)
⊥.

The per ∼A!δ is defined inductively as the least one satisfying:

1. ⊥ ∼A!δ ⊥,
2. for all v, v′ ∈ �A�, if v ∼A v′ then sA!δ

val (v) ∼A!δ s
A!δ
val (v′),

3. for all (ι # op) ∈ δ, all v, v′ ∈ �Aop�, and all κ, κ′ ∈ �Bop → A!δ�,

v ∼Aop
v′ ∧ κ ∼Bop→A!δ κ′ =⇒ sA!δ

oper(ι, op, v, κ) ∼A!δ s
A!δ
oper(ι, op, v

′, κ′).

The pers ∼A and ∼C are defined on the corresponding domains �A� and �C�.
We can transfer them along sections to pers ≈A and ≈C on V and R by

v ∼A v′ ⇐⇒ sA(v) ≈A sA(v′) and r ∼C r′ ⇐⇒ sC(r) ≈C sC(r′).

Note that v ≈A v implies sA(rA(v)) = v, and similarly for ≈C .

We connect the untyped semantics of terms and the semantics of types with
a soundness theorem.

Theorem 1 (Matching semantics of terms and types). Let Γ be a typing
context and η an environment such that, for every xi :Ai in Γ , η(xi) ≈Ai η(xi).
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1. If Γ � e : A then �e� η ≈A �e� η.

2. If Γ � c : C then �c� η ≈C �c� η.
3. If A ≤ A′ then �A� = �A′� and (∼A) ⊆ (∼A′).
4. If C ≤ C′ then �C� = �C ′� and (∼C) ⊆ (∼C′).

Proof. The proof proceeds by induction on the judgment derivations. The typing
rule for recursive function definitions works because all the pers for computation
types are admissible, i.e., they contain the least element and are closed under
suprema of chains. Likewise, the rule for elimination of the empty type works
because the pers for computation types contain the least element. ��

3.3 Equational Reasoning

We can use the denotational semantics to validate program transformations.
This is all very familiar, so we just review the main idea. Consider computations
c1 and c2 which have type C in the typing context Γ . Say that c1 and c2 are
(semantically) equivalent and write c1 ≡ c2 when, for any environment η such
that η(xi) ≈Ai η(xi) for all (xi : Ai) ∈ Γ , we have

�c1� η ≈C �c2� η.

A similar definition can be made for equivalence of expressions. Then ≡ is an
equivalence relation which satisfies the “substitution of equals” principle, i.e.,
for a well-typed evaluation context C[−], c1 ≡ c2 implies C[c1] ≡ C[c2], and
similarly for expressions. Therefore, we may safely replace a computation or an
expression with an equivalent one. In fact, since evaluation is a form of program
transformation, we have a criterion for correctness of implementation: an eval-
uation strategy is correct with respect to the semantics if it preserves semantic
equivalence.

We list the fundamental equivalences which form the basis of an evaluation
strategy, and they are also useful for equational reasoning about effectful compu-
tations. First, we have the equivalences governing handlers that were informally
explained in §2.2. If h is the handler handler val x �→ cv |(ιi # opi xi ki �→ ci)i
then

with h handle (val e) ≡ cv[x �→ e]

and

with h handle (let y = ιi # opi e in c) ≡
ci[xi �→ e, ki �→ (fun y �→ with h handle c)]

and, assuming ι �= ιi for all i,

with h handle (let y = ι # op e in c) ≡
let y = ι # op e in (with h handle c).
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These equations were identified before by [8]. A variety of other equivalences is
readily validated, such as βη-conversions for functions and the “associativity”
law [18] (y must not occur freely in c3)

let x = (let y = c1 in c2) in c3 ≡ let y = c1 in (let x = c2 in c3).

The proof of this law proceeds by induction, as it uses the inductive nature of
the per associated with the type of c1. The inductive nature of the argument is
similar to the one given by [19].

4 Discussion

We have presented a fairly simple effect system, which nevertheless allows us to
deduce non-trivial properties of computations. There are several aspects of the
system which we would like and plan to improve.

First, the per model is clearly suggesting that parametric polymorphism
should blend naturally with the effect system. Once this is done we may have to
pass to a parametric rather than the naive per model.

Second, in full Eff instances may be created dynamically with new E. To ac-
count for these in semantics, we would have to further complicate both the effect
system and the semantics so that they could account for freshness phenomena.
This would presumably follow the work of [20,21].

Third, we wrote the typing rules so that they are suitable for effect check-
ing, but we really want effect inference. Initial experiments and a prototype
implementation suggest that this should be not only doable, but quite likely
useful too.
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for Infinite Words and Trees
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Regular languages can be studied not just for finite words, but also for finite trees,
infinite words and infinite trees. Almost all of the theory of regular languages,
such as closure under boolean operations, works also for these extensions, but the
constructions are significantly more challenging and mathematically interesting.
For instance, automata for infinite words can be determinised under a suitable
choice of acceptance condition, but the proof requires an intricate combinatorial
construction.

In the first part of my talk, I will describe the now classical results on au-
tomata recognising regular languages of infinite words and infinite trees. I will
mention the connection of automata with monadic second-order logic, discov-
ered by Büchi and Rabin, which has been one of the main sources of inspi-
ration in the theory of automata for infinite objects. More on these topics
can be found in the general survey [4] or in the collection of more specialised
surveys [1].

The second part of my talk will be on the algebraic approach to regular
languages. For finite words, the algebraic approach is to use semigroups in-
stead of automata. The beauty of the algebraic approach is that it uncov-
ers connections between classical mathematical concepts and formal language
theory. For instance, a celebrated theorem of Schützenberger says that a reg-
ular language of finite words can be defined by a regular expression without
the star (but with complementation) if and only if the language can be recog-
nised by a semigroup that does not contain any nontrivial group. There is also
a well understood algebraic theory for infinite words, which uses variants of
semigroups. The algebraic theory for regular languages of finite words is de-
scribed in the book [3], and its extensions to infinite words are described in the
book [2].

However, the algebraic theory of infinite trees, or even finite trees, is currently
not well understood, and seems to be a very challenging problem. I will end my
talk by describing this problem, and why it might be interesting for people
studying algebra and coalgebra.
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Abstract. We introduce a new theory of data types which allows for the
definition of data types as initial algebras of certain functors FamC →
FamC. This theory, which we call positive inductive-recursive definitions,
is a generalisation of Dybjer and Setzer’s theory of inductive-recursive
definitions within which C had to be discrete – our work can therefore
be seen as lifting this restriction. This is a substantial endeavour as we
need to not only introduce a type of codes for such data types (as in
Dybjer and Setzer’s work), but also a type of morphisms between such
codes (which was not needed in Dybjer and Setzer’s development). We
show how these codes are interpreted as functors on FamC and how these
morphisms of codes are interpreted as natural transformations between
such functors. We then give an application of positive inductive-recursive
definitions to the theory of nested data types. Finally we justify the
existence of positive inductive-recursive definitions by adapting Dybjer
and Setzer’s set-theoretic model to our setting.

1 Introduction

Inductive types are the bricks of a dependently typed programming language:
they represent the building blocks on which any other type is built. The mortar
the dependently typed programmer has at her disposal for computation with
dependent types is recursion. Usually, a type A is defined inductively, and then
terms or types can be defined recursively over the structure of A. The theory
of inductive-recursive definitions [7,8] explores the simultaneous combination of
these two basic ingredients, pushing the limits of the theoretical foundations of
data types.

The key example of an inductive-recursive definition is Martin-Löf’s universe à
la Tarski [19]. A type U consisting of codes for small types is introduced, together
with a decoding function T , which maps codes to the types they denote. The
definition is both inductive and recursive; the type U is defined inductively, and
the decoding function T is defined recursively on the way the elements of U are
generated. The definition needs to be simultaneous, since the introduction rules
for U refer to T . We illustrate this by means of a concrete example: say we want
to define a data type representing a universe containing a name for the natural
numbers, closed under Σ-types. Such a universe will be the smallest family of
sets (U, T ) satisfying the following equations
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U = 1 + Σ u :U. Tu→ U
T (inl ∗) = N
T (inr (u, f)) = Σx :Tu. T (fx)

(1)

In this definition we see how ground types and the type constructor Σ are re-
flected in U . The left summand of the right hand side of the equation defining
U is a code for natural numbers, while the right summand is a code reflecting
Σ-types. Indeed the name of a Σ-type, Σ AB for A : Set, B : A → Set, in
the universe (U, T ) will consists of a name in U for the type A, i.e. an element
u : U , and a function f : Tu → U representing the A-indexed family of sets B.
The decoding function T maps elements of U according to the description above:
the code for natural numbers decodes to the set of natural numbers N while an
element (u, f) of the right summand decodes to the Σ-type it denotes. Other
examples of inductive-recursive definitions have also appeared in the literature,
such as e.g. Martin-Löf’s computability predicates [18] or Aczel’s Frege struc-
tures [3]. Lately the use of inductive-recursive definitions to encode invariants in
ordinary data structures has also been considered [11].

Dybjer’s [7] insight was that these examples are instances of a general notion,
which Dybjer and Setzer [8] later found a finite axiomatisation of. Their theory
of inductive-recursive definitions IR consists of: (i) a representation of types as
initial algebras of functors; (ii) a grammar for defining such functors. Elements
of the grammar are called IR codes, while functors associated to IR codes are
called IR functors. The theory naturally covers simpler inductive types such
as lists, trees, vectors, red-black trees etc. as well. Dybjer and Setzer [9] then
gave an initial algebra semantics for IR codes by showing that IR functors are
naturally defined on the category FamD of families of elements of a (possibly
large) type D and that these functors do indeed have initial algebras. More
generally, abstracting on the families construction and the underlying families
fibration π : FamD → Set, we have recently shown how to interpret IR functors
in an arbitrary fibration endowed with the appropriate structure [15]. In this
article, we will only consider the families fibration.

There is, however, a complication. When interpreting IR functors such as those
building universes closed under dependent products, the mixture of covariance
and contravariance intrinsic in the Π operator forces one to confine attention to
functors Fam |C| → Fam |C| or, equivalently, to work with only those morphisms
between families which are commuting triangles. As we have shown [15], more
abstractly, this corresponds to working in the split cartesian fragment of the
families fibration π : FamC → Set, i.e. to only consider those morphisms in
FamC which represent strict reindexing. In this paper we remove this constraint
and hence explore a further generalization of IR, orthogonal to the one proposed
in Ghani et al. [15]. We investigate the necessary changes of IR needed to provide
a class of codes which can be interpreted as functors FamC→ FamC. This leads
us to consider a new variation IR+ of inductive-recursive definitions which we
call positive inductive-recursive definitions. The most substantial aspect of this
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new theory is that in order to define these new codes, one needs also to define
the morphisms between those codes. This is no handle-turning exercise!

We first recall Dybjer and Setzer’s theory of inductive-recursive definitions
(Section 2). To develop the theory we then (i) introduce a syntax and semantics
consisting of IR+ codes and their morphisms, and an explanation how these codes
are interpreted as functors FamC → FamC, where C is an arbitrary category
(Section 3); (ii) use positive inductive-recursive definitions to shed new light on
nested data types (Section 4); (iii) give a detailed comparison with the existing
theory of IR (Section 5); (iv) adapt Dybjer and Setzer’s model construction to
our setting (Section 6).

The paper uses a mixture of categorical and type theoretic constructions.
However, the reader should bear in mind that the foundations of this paper
are type theoretic. In other words, all constructions should be understood to
take place in extensional Martin-Löf type theory with one universe Set. This
is entirely standard in the literature. The one exception is the use of a Mahlo
cardinal required to prove that positive inductive recursive functors have initial
algebras in Section 6. It should be emphasised that the Mahlo cardinal is only
used to justify the soundness of the theory, and does not play any computational
role. We refer the interested reader to Dybjer and Setzer [8] – they use a Mahlo
cardinal for the same purpose – for the technical details. We also use fibrational
terminology occasionally when we feel it adds insight, but those not familiar
with fibrations can simply ignore such comments.

2 Induction Recursion

The original presentation of induction recursion given by Dybjer [7] was as a
schema. Dybjer and Setzer [8] further developed the theory to internalize the
concept of an inductive-recursive definition. They developed a finite axiomati-
zation of the theory through the introduction of a special type of codes for
inductive-recursive definitions. The following axiomatization which closely fol-
lows Dybjer and Setzer [8] presents the syntax of IR as an inductive definition.

Definition 1 (IR codes). Let D : type. The type of IR(D) codes has the following
constructors:

d : D
ιd : IR(D)

A : Set f : A→ IR(D)

σAf : IR(D)

A : Set F : (A → D) → IR(D)

δAF : IR(D)

This is the syntax of induction recursion – it is quite remarkable in our opin-
ion that this most powerful of theories of data types can be presented in such a
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simple fashion. These rules have been written in natural-deduction style and we
may use the ambient type theory to define, for example, the function f in the
code σAf . An example of an IR code is given in Example 5 – this code represents
the universe containing the natural numbers and closed under Σ-types given in
Equation (1). We now turn to the semantics of induction recursion: we interpret
IR codes as functors, and to this end, we use the standard families construction
Fam from category theory. We start recalling the definition of the category FamC
of families of objects of a category C.

Definition 2. Given a category C, the category FamC has objects pairs (X,P )
where X is a set and P : X → C is a functor which we can think as an X-
indexed family of objects of C. A morphism from (X,P ) to (Y,Q) is a pair

(h, k) where h : X → Y is a function, and k : P
·→ Q ◦ h is a natural

transformation.

Of course, the naturality condition in the definition of a morphism of families is
vacuous as the domains of the functors in question are discrete.

Remark 3. For any category C, the category FamC always has rich structure:

– FamC is fibred over Set (see e.g. Jacobs [16]). We omit here the definitions,
but recall the standard splitting cleavage of the fibration π : FamC → Set
which is relevant later: a morphism (h, k) : (X,P ) → (Y,Q) is a split
cartesian morphism if k is a family of identity morphisms, i.e. if
Q = P ◦ h.

– FamC is the free set indexed coproduct completion of C; that is FamC has
all set indexed coproducts and there is an embedding C → FamC univer-
sal among functors F : C → D where D is a category with set indexed
coproducts. Given an A-indexed collection of objects (Xa, Pa)a :A in FamC,
its A-indexed coproduct is the family (

∑
a :AXa, [Pa]a :A).

– FamC is cocomplete if and only if C has all small connected colimits (Car-
boni and Johnstone [6, dual of Prop. 2.1]).

– Fam is a functor CAT → CAT; given F : C → D, we get a functor Fam(F ) :
FamC → FamD by composition: Fam(F )(X,P ) = (X,F ◦ P ). Here CAT is
the category of large categories.

When C is a discrete category every morphism between families (X,P ) and
(Y,Q) consists only of functions h : X → Y such that P x = Q (hx) for all x
in X . From a fibrational perspective, this amounts to the restriction to the split
cartesian fragment Fam |C| of the fibration π : FamC→ Set, for C an arbitrary
category. This observation is crucial for the interpretation of IR codes as functors.
Indeed, given a type D, which we think as the discrete (possibly large) set of its
terms, we interpret IR codes as functors FamD → FamD.

Theorem 4 (IR functors). Let D : type. Every code γ : IR(D) induces a functor

�γ� : FamD → FamD
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Proof. We define �γ� : FamD → FamD by induction on the structure of the
code. We first give the action on objects:

�ι c�(X,P ) = (1, λ . c)

�σA f�(X,P ) =
∑
a :A

�f a�(X,P )

�δA F �(X,P ) =
∑

g :A→X

�F (P ◦ g)�(X,P )

We now give the action on morphisms. Let (h, id) : (X,P ) → (Y,Q) be a mor-
phism in FamD, i.e. h : X → Y and Q ◦ h = P .

�ι c�(h, id) = (id1, id)

�σA f�(h, id) = [ina ◦ �f a�(h, id)]a :A

�δA F �(h, id) = [inh◦g ◦ �F (Q ◦ h ◦ g)�(h, id)]g :A→X

Here, the last line type checks since Q ◦ h = P , hence Q ◦ h ◦ g = P ◦ g and we
can apply the induction hypothesis. ��

Note how the interpretation of both σ and δ codes makes essential use of coprod-
ucts of families as defined in Remark 3. In particular, the interpretation of a
code δBF uses as index set of the coproduct the function space (B → X), which
is a set since both B and X are.

Ghani et al. [14] introduces morphisms between IR codes. This makes IR(D)
into a category, and the decoding �−� : IR(D) → [FamD,FamD] can be shown
to be a full and faithful functor. We will draw inspiration from this in Section 3
when we generalise the semantics to endofunctors on FamC for possibly non-
discrete categories C.

We call a data type inductive-recursive if it is the initial algebra of a functor
induced from an IR code. Let us look at some examples.

Example 5 (A universe closed under dependent sums). In the introduction, we
introduced a universe in Equation (1), containing the natural numbers and closed
under Σ-types, and claimed that this universe can be defined via an inductive-
recursive definition. Indeed, one can easily write down a code γN,Σ : IR(Set) for
a functor that will have such a universe as its initial algebra:

γN,Σ := ιN +IR δ1(X �→ δX∗(Y �→ ιΣ(X∗)Y )) : IR(Set)

Here we have used γ +IR γ′ := σ2 (0 �→ γ; 1 �→ γ′) to encode a binary coproduct
as a 2-indexed coproduct. Also, in the above, note that X : 1 → Set and so X∗
is simply the application of X to the canonical element of 1. If we decode γN,Σ,
we get a functor which satisfies

�γN,Σ�(U, T ) ∼= (1, λ .N) + (Σu :U . T (u) → U, λ(u, f).Σ x :T (u) . T (f(x)))

= (1 + Σu :U . T (u) → U, inl �→ N; inr(u, f) �→ Σ x :T (u) . T (f(x)))
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so that the initial algebra (U, T ) of �γN,Σ�, which satisfies (U, T ) ∼= �γN,Σ�(U, T )
by Lambek’s Lemma, indeed satisfies Equation (1).

Example 6 (A universe closed under dependent function spaces). In the same
way, we can easily write a down a code for a universe closed under Π-types:

γN,Π := ιN +IR δ1(X �→ δX∗(Y �→ ιΠ(X∗)Y )) : IR(Set)

Even though this looks extremely similar to the code in the previous example, we
will see in the next section that there is a big semantic difference between them.

3 Positive Inductive-Recursive Definitions

Theorem 4 tells us that IR codes can be interpreted as functors on families built
over a discrete category. What happens if we try to interpret IR codes on the
category FamC, and not just on the subcategory Fam |C|? The problem is that
if we allow for more general morphisms, we can not prove functoriality of the
semantics of a δ code as it stands anymore: it is essential to have an actual
equality on the second component of a morphism in FamC in order to have a
sound semantics (see Example 10 below).

In this section we propose a new axiomatization which enables us to solve this
problem. This new theory, which we dub positive inductive-recursive definitions,
abbreviated IR+, represents a generalization of IR which allows the interpretation
of codes as functors defined on FamC.

3.1 Syntax and Semantics of IR+(C)

The crucial insight which guides us when introducing the syntax of IR+ is to
deploy proper functors in the introduction rule of a δ code. This enables us
to remove the restriction on morphisms within inductive recursive definitions;
indeed, if we know that F : (A → C) → IR+(C) is a functor, and not just a
function, we do not have to rely on the equality P ◦g = Q◦h◦g between objects
in CA, but we can use the second component of a morphism (h, k) in FamC to
get a map P ◦ g → Q ◦ h ◦ g; then we can use the fact that F is a functor to get
a morphism between codes F (P ◦ g) → F (Q ◦ h ◦ g).

But, now we have to roll up our sleeves. For F : (A → C) → IR+(C) to be a
functor, we need both A→ C and IR+(C) to be categories. While it is clear how
to make A→ C a category, turning IR+(C) into a category entails defining both
codes and morphisms between codes simultaneously, in an inductive-inductive
fashion [21]. We give an axiomatic presentation of IR+ analogously to the one
given in Section 2 for the syntax of IR; however we now have mutual introduction
rules to build both the type of IR+(C) codes and the type of IR+(C) morphisms,
for C a given category. The semantics we give then explains how IR+(C) codes
can be interpreted as functors on FamC, while IR+(C) morphisms between such
codes can be interpreted as natural transformations.
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Definition 7. Given a category C we simultaneously define the type of positive
inductive-recursive codes on C, IR+(C) : type and the type of morphisms between
these codes IR+(C)( , ) : IR+(C) → IR+(C) → type as follows:

– IR+(C) codes:
c : C

ι c : IR+(C)

A : Set f : A→ IR+(C)

σAf : IR+(C)

A : Set F : (A→ C) → IR+(C)

δAF : IR+(C)

– IR+(C) morphisms:

• morphisms from ιc:

f : C(c, c′)

Γι,ι(f) : IR+(C)(ι c, ι c′)

a : A r : IR+(C)(ι c, fa)

Γι,σ(a, r) : IR+(C)(ι c, σAf)

g : A→ ∅ r : IR+(C)(ι c, F (! ◦ g))

Γι,δ(g, r) : IR+(C)(ι c, δAF )

• morphisms from σAf :

γ, : IR+(C) r : (a : A) → IR+(C)(fa, γ)

Γσ,γ(r) : IR+(C)(σAf, γ)

• morphisms from δAF

ρ : Nat(F, κιc)

Γδ,ι(ρ) : IR+(C)(δAF, ι c)

b : B ρ : Nat(F, κf b)

Γδ,σ(b, ρ) : IR+(C)(δAF, σAf)

g : B → A ρ : Nat(F,G(− ◦ g))

Γδ,δ(g, ρ) : IR+(C)(δAF, δBG)

In the last three clauses we have indicated with κγ : CA → IR+(C) the constant
functor with value γ.
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We now explain how each code γ : IR+(C) is interpreted as an endofunctor

�γ� : FamC→ FamC

A functor which is isomorphic to a functor induced by an IR+ code is called an
IR+ functor. The semantics of IR+ closely follows the one given in Section 2; as
before we make essential use of coproducts in FamC. Having said that, the crucial
feature which separates the semantics of IR+ from the semantics of IR is the
following: when explaining the semantics of IR we can first interpret IR codes as
functors and only later we define morphisms between codes which are interpreted
as natural transformations between the corresponding functors. In IR+ the type
of of codes and the type of morphisms between codes are simultaneously defined
in an inductive-inductive way, and therefore they are also decoded simultaneously
as functors and natural transformations respectively. This is exactly what the
elimination principle for an inductive-inductive definition gives.

In the following theorem, note that there is no restriction on the category C
– all structure that we need comes for free from the families construction Fam.

Theorem 8 (IR+ functors). Let C be an arbitrary category.

(i) Every code γ : IR+(C) induces a functor �γ� : FamC→ FamC.
(ii) Every morphism r : IR+(C)(γ, γ′) for codes γ, γ′ : IR+(C) gives rise to a

natural transformation �r� : �γ�
·−→ �γ′�.

Proof. While the action on objects is the same for both IR+ and IR functors,
the action on morphisms is different when interpreting a code of type δAF : in
the semantics of IR+ we exploit the fact that F : (A → C) → IR+(C) is now
a functor by using its action on morphism (which we, for the sake of clarity,
indicate with F→). We give the action of IR+ functors on morphisms only, and
refer to the semantics given in Theorem 4 for the action on objects of FamC.

The action on morphisms is given as follows. Let (h, k) : (X,P ) → (Y,Q) in
FamC. We define �γ�(h, k) : �γ�(X,P ) → �γ�(Y,Q) by recursion on γ:

�ι c�(h, k) = (id1, idc)

�σAf�(h, k) = [ina ◦ �f a�(h, k)]a :A

�δAF �(h, k) = [inh◦g ◦ �F (Q ◦ h ◦ g)�(h, k) ◦ �F→(g∗(k))�(X,P )]g :A→X

In the last clause g∗(k) : P ◦ g
·−→ Q ◦ h ◦ g is the natural transformation with

component g∗(k)a = kg a : P (g a) → Q(k(g a)); note that such a natural trans-
formation is nothing but the vertical morphism above A obtained by reindexing
(idX , k) along g in the families fibration π : FamC→ Set.

We now explain how a IR+ morphism r : γ → γ′ is interpreted as natural
transformation �r� : �γ�

·−→ �γ′� between IR+ functors by specifying the com-
ponent �r�(X,P ) at (X,P ) : FamC. Naturality of these transformations can be
proved by a routine diagram chasing.
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�Γι,ι(f)�(X,P ) = (id1, f)

�Γι,σ(a, r)�(X,P ) = ina ◦ �r�(X,P )

�Γι,δ(g, r)�(X,P ) = in!X◦g ◦ �r�(X,P )

�Γσ,γ(r)�(X,P ) = [�r a�(X,P )]a :A

�Γδ,ι(ρ)�(X,P ) = [�ρP◦g�(X,P )]g:A→X

�Γδ,σ(b, ρ)�(X,P ) = inb ◦ [�ρP◦g�(X,P )]g:A→X

�Γδ,δ(f, ρ)�(X,P ) = [ing◦f ◦ �ρP◦g�(X,P )]g:A→X

��

Example 9 (A universe closed under dependent sums in FamSetop). In Exam-
ple 5, we defined an ordinary IR code γN,Σ : IR(Set) for a universe closed under
sigma types. We can extend this code to an IR+ code

γN,Σ = ιN +IR δ1(X �→ δX∗(Y �→ ιΣ(X∗)Y )) : IR+(Setop)

where now G := Y �→ ιΣ(X∗)Y and F := X �→ δX∗ G needs to be functors.
Given f : Y → Y ′ in X → Setop, i.e. fx : Y (x) → Y ′(x) in Setop, we have
Σx : (X∗).fx : Σ(X∗)Y → ιΣ(X∗)Y ′ in Setop so that we can define

G(f) : ιΣ(X∗)Y → ιΣ(X∗)Y ′

by G(f) = Γι,ι(Σx : (X∗).fx).
We also need F to be a functor. Given f : X → X ′ in 1 → Setop, we

need to define F (f) : δX∗ G → δX′∗ G. According to Definition 7, it is enough
to give f∗ : X ′∗ → X∗ and [inf∗x]x:X′∗, a natural transformation from G to
G ◦ f∗∗ . Notice that working in Setop made sure that f∗ was going in the right
direction.

Example 10 (A universe closed under dependent function spaces in FamSet
∼=).

In Example 6, we saw how we could use induction-recursion to define a universe
closed under Π-types in Fam |Set|, using the following code:

γN,Π = ιN +IR δ1(X �→ δX∗(Y �→ ιΠ(X∗)Y )) : IR(Set)

If we try to extend this to an IR+ code in FamSet or FamSetop, we run into
problems. Basically, given a morphism f : X ′ → X , we need to construct a
morphism Π X ′ (Y ◦ f) → Π X Y , which of course is impossible if e.g. X ′ = 0,
X = 1, and Y ∗ = 0.
Hence the inherent contravariance in the Π-type means that γN,Π doesn’t ex-
tend to a IR+(Set) or IR+(Setop) code. However, if we move to the groupoid
Set

∼=, which is the subcategory of Set with only isomorphisms as morphisms,
we do get an IR+(Set

∼=) code describing the universe in question, which is still
living in a category beyond the strict category Fam |Set|. It would be interest-
ing to understand the relevance of positive induction recursion to homotopy
type theory.



28 N. Ghani, L. Malatesta, and F. Nordvall Forsberg

4 Application: A Concrete Representation of Nested
Types

Nested data types [2] have been used to implement a number of advanced data
types in languages which support higher-kinded types, such as the widely-used
functional programming language Haskell. Among these data types are those
with constraints, such as perfect trees [22]; types with variable binding, such
as untyped λ-terms [12]; cyclic data structures [13]; and certain dependent
types [20].

A canonical example of a nested data type is Lam : Set → Set defined in
Haskell as follows:

data Lam a = Var a | App (Lam a) (Lam a) | Abs (Lam (Maybe a))

The type Lam a is the type of untyped λ-terms over variables of type a up
to α-equivalence. Here, the constructor Abs models the bound variable in an
abstraction of type Lam a by the Nothing constructor of type Maybe a, and any
free variable x of type a in an abstraction of type Lam a by the term Just x of
type Maybe a; The key observation about the type Lam a is that elements of the
type Lam (Maybe a) are needed to build elements of Lam a so that, in effect, the
entire family of types determined by Lam has to be constructed simultaneously.
Thus, rather than defining a family of inductive types, the type constructor Lam
defines an type-indexed inductive family of types. The kind of recursion captured
by nested types is a special case of non-uniform recursion [5].

This section asks the question Are nested data types representable as con-
tainers? There would be benefits of a positive answer in that one could then
apply container technology to nested data types, e.g. one could classify the nat-
ural transformations between them and operate on them using, for example, the
derivative. While the latter has clear practical importance, note that the canon-
ical recursion operator fold associated to inductive types is, when analysed for
nested data types, a natural transformation.

We give a positive answer to the above question using IR+. We sketch our
overall development as follows:

– we define a grammar Nest for defining nested types and a decoding function
�−� : Nest→ [Set, Set] → [Set, Set].

– We show that �N� restricts to an endofunctor �N�Cont on the category Cont
of containers.

– We use IR+ to define �N�Cont. Hence by the results of this paper, �N�Cont has
an initial algebra μ�N�Cont. We finish by arguing that μ�N� = �μ�N�Cont�Cont
and hence that, indeed, nested types are containers.

A Grammar for Nested Types. We now present a grammar for defining
nested data types. It is not the most sophisticated grammar, since our point is
not to push the theory of nested data types, but rather to illustrate an application
of positive induction-recursion to nested data types. The grammar we use is

F = Id | K C | F + F | F × F | F � F
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where C is any container. The intention is that Id stands for the identity functor
mapping a functor to itself, KC stands for the constant functor mapping any
functor to the interpretation of the container C, + stands for the coproduct of
functors, × for the product of functors and � for the pointwise composition of
functors. These intentions are formalised by a semantics for the elements of our
grammar given as follows

�−� : Nest→ [Set, Set] → [Set, Set]
�Id� F = F
�K C� F = �C�Cont
�F + F1� F = �F� F + �F1� F
�F × F1� F = �F� F × �F1� F
�F � F1� F = �F� F ◦ �F1� F

For example, the functor

L F X = X + (FX × FX) + F (X + 1)

whose initial algebra is the type Lam is of the form �NL� where

NL = Kid + (Id× Id) + Id� (KM)

where id is the container with one shape and one position which represents
the identity functor on Set, and M is the container with two positions having
one shape above one position and no shapes above the other. M represents the
functor on Set mapping X to X + 1.

Nested Types as Functors on Containers. The next thing on our agenda
is to show that every element N of Nest has an interpretation as an operator on
containers �N�Cont : Cont→ Cont.

Cont
�−�Cont ��

�N�Cont

��

[Set, Set]

�N�

��
Cont

�−�Cont

�� [Set, Set]

This is done easily enough by recursion on N noting that containers are closed
under coproduct, product and under composition. Thus, for example, if we define
�NL�Cont(S, P ) to be the container (SL, PL) then

SL = 1 + (S × S) + Σs : S. Ps → 2
PL (in1 ∗) = 1
PL (in2 (s, s′)) = Ps + Ps′

PL (in3 (s, f)) = Σp : Ps. if fp then 1 else 0

Nested Types are Containers. We know that Cont = FamSetop. Now, we
want to show that for every code N : Nest, the functor �N�Cont is a IR+ functor:
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to see this one needs to carefully examine the constructions on families used
to build �N�Cont. The only sophisticated construction is the use of Σ-types to
model the composition operator used in the definition of nested types and seen
in the definition of SL and PL. But, as we have seen in Example 9, families
closed under Σ are canonical examples of a IR+ construction. Thus, by the
results in Section 6, for every N : Nest, the IR+ functor �N�Cont has an initial
algebra which is a container (SN , PN ). Finally, since �−�Cont preserves initial
objects and filtered colimits of cartesian morphisms ([1] Propositions 4.5.1 and
4.6.7) and we know from Lemma 14 in Section 6 that the initial algebra chain
of an IR+ functor is made from cartesian morphisms only, we can conclude that
�(SN , PN )�Cont = μ�N� showing that all nested types indeed are definable using
containers.

5 Comparison to Plain IR

We now investigate the relationship between IR+ and IR. Note that every type D
can be regarded as a discrete category, which we by abuse of notation denote |D|.
In the other direction, every category C gives rise to a type |C| whose elements
are the objects of C.

Proposition 11. There is a function ϕ : IR(D) → IR+(|D|) s.t.

�γ�IR(D)
∼= �ϕ(γ)�IR+(|D|)

Proof. The only interesting case is the δ code. Since |D| is a discrete category,
also A → |D| is discrete. Hence a mapping on objects (A → |D|) → IR(D) can
trivially be extended to a functor (A→ |D|) → IR+(|D|). ��

This proposition shows that the theory of IR can be embedded in the theory of
IR+. In the next proposition we slightly sharpen this result. We use the functo-
riality of the Fam construction (Remark 3) to show that forgetting about the
extra structure in IR+ simply gets us back to plain IR.

Proposition 12. Let |−| : CAT→ SET be the functor assigning to each category
the collection of its objects. There is a function ψ : IR+C→ IR |C| such that

Fam | − | ◦ �γ�IR+C = �ψ(γ)�IR |C| ◦ Fam | − |

for all γ : IR+C. Furthermore, ψ ◦ ϕ = id. ��

6 Existence of Initial Algebras

We briefly revisit the initial algebra argument used by Dybjer and Setzer [8].
Inspecting their proof, we see that it indeed is possible to adapt it also for the
more general setting of positive inductive-recursive definitions by making the
appropriate adjustments.
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Remember that we call a morphism (h, k) : (U, T ) → (U, T ′) in FamC a
splitting morphism if k = idT , i.e. T ′ ◦ h = T . We indicate by Fam |C| the
subcategory (subfibration) of FamC with the same objects, but with morphisms
the splitting ones only.

The proof of existence of initial algebras for IR functors as given by Dyb-
jer and Setzer [8] takes place in the category Fam |C|. The hard work of the
proof is split between two lemmas. First Dybjer and Setzer prove that an IR
functor �γ� preserves κ-filtered colimits if κ is an inaccessible cardinal which
suitably bounds the size of the index sets in the image of the filtered dia-
gram. Secondly they use the assumption of the existence of a large cardinal,
namely a Mahlo cardinal, to prove that such a cardinal bound for the index
sets can actually be found. The exact definition of when a cardinal is a Mahlo
cardinal will not be important for the current presentation; see Dybjer and
Setzer [8] for how this assumption is used. The existence of an initial algebra
then follows a standard argument: the initial algebra of a κ-continuous func-
tor can be constructed as the colimit of the initial chain up to κ iterations
(see e.g. Adámek et al. [4]).

Inspecting the proofs, we see that they crucially depend on morphisms being
splitting in several places. Luckily, the morphisms involved in the correspond-
ing proofs for IR+ actually are! As is well-known, a weaker condition than κ-
continuity is actually sufficient: it is enough that the functor in question preserve
the specific colimit of the initial κ-chain. We thus show that the initial chain of
a IR+ functor actually lives in Fam |C|, which will allow us to modify Dybjer and
Setzer’s proof accordingly.

Lemma 13. For every code γ : IR+ C the induced functor �γ� : FamC→ FamC
preserves splitting morphisms, i.e. if (f, g) is splitting, then so is �γ�(f, g).

Proof. By induction on the structure of the code. The interesting case is γ = δAF .
Let (h, id) : (X,P ◦ h) → (Y, P ) be a splitting morphism. We have

�δAF �(h, id) = [inh◦g ◦ �F (P ◦ h ◦ g)�(h, id) ◦ �F→(g∗(id))�(X,P )]g :A→X

= [inh◦g ◦ �F (P ◦ h ◦ g)�(h, id)]g :A→X

where �F (g∗id)�(X,P ) = id since both g∗, F and � � are functors. By the induction
hypothesis, each �F (P ◦ h ◦ g)�(h, id) is splitting. Furthermore injections are
splitting in FamC. Since composition of splitting morphisms is still splitting and
the cotuple of splitting morphisms is also splitting in FamC we conclude that
�δA F �(h, id) is a splitting morphism. ��

Lemma 14. For each γ : IR+ C, the initial chain

0→ �γ�(0) → �γ�2(0) → . . .

consists of splitting morphisms only.
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Proof. Recall that the connecting morphisms ωj,k : �γ�j(0) → �γ�k(0) are
uniquely determined as follows:

– ω0,1 = !�γ�(0) is unique.

– ωj+1,k+1 is �γ�(ωj,k) : �γ�(�γ�j(0)) → �γ�(�γ�k(0)).
– ωj,k is the colimit cocone for j a limit ordinal.

We prove the statement by induction on j. It is certainly true that !�γ�(0) :
(0, !) → �γ�(0) is an identity at each component – there are none. Thus ω0,1

is a splitting morphism. At successor stages, we can directly apply Lemma 13
and the induction hypothesis. Finally, at limit stages, we use the fact that the
colimit lives in Fam |C| and hence coincides with the colimit in that category on
splitting morphisms, so that the colimit cocone is splitting. ��

Inspecting Dybjer and Setzer’s original proof, we see that it now goes through
also for IR+ if we insert appeals to Lemma 14 where necessary. To finish the proof,
we also need to ensure that FamC has κ-filtered colimits; this is automatically
true if C has all small connected colimits (compare Remark 3), since FamC then
is cocomplete. Note that discrete categories have all small connected colimits for
trivial reasons.

Theorem 15. Assume that a Mahlo cardinal exists in the meta-theory. If C has
connected colimits, then every functor �γ� for γ : IR+ C has an initial algebra. ��

7 Conclusion

In this paper we have introduced the theory IR+ of positive inductive-recursive
definitions as a generalization of Dybjer and Setzer’s theory IR of inductive-
recursive definitions [8,9,10], different from the fibrational generalization ex-
plored in Ghani et al. [15]: by modifying both syntax and semantics of IR we
have been able to broaden the semantics to all of FamC and not just Fam |C|.
The theory of IR+, with IR as a subtheory, paves the way to the analysis of more
sophisticated data types which allow not only for the simultaneous definition of
an inductive type X and of a recursive function f : X → D, but also takes the
intrinsic structure between objects in the target type D into account. This is the
case for example when D is a setoid, the category Set or Setop, a groupoid or,
even more generally, an arbitrary category C.

In future work we aim to explore the theory of IR+ from a fibrational per-
spective: this will allow us to reconcile the theory of IR+ with the analysis of
IR as given in Ghani et al [15]. In particular this will amount to characterising
the semantics of δ codes as left Kan extensions. Another interesting direction
of research is to investigate to which extent the rich structure of the families
construction Fam will help shed light on the analysis of IR+ types: in particular
to exploit the monadic structure of Fam and then to investigate the relationship
between the theory of IR+ and the theory of familial 2-functors introduced by
Weber [17].
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Coalgebraic Up-to Techniques
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1 The Concrete Case of Finite Automata

A simple algorithm for checking language equivalence of finite automata con-
sists in trying to compute a bisimulation that relates them. This is possible
because language equivalence can be characterised coinductively, as the largest
bisimulation.

More precisely, consider an automaton 〈S, t, o〉, where S is a (finite) set of
states, t : S → P(S)A is a non-deterministic transition function, and o : S → 2
is the characteristic function of the set of accepting states. Such an automation
gives rise to a determinised automaton 〈P(S), t
, o
〉, where t
 : P(S) → P(S)A

and o
 : P(S) → 2 are the natural extensions of t and o to sets. A bisimulation
is a relation R between sets of states such that for all sets of states X,Y , X R Y
entails:

1. o
(X) = o
(Y ), and
2. for all letter a, t
a(X) R t
a(Y ).

The coinductive characterisation is the following one: two sets of states recognise
the same language if and only if they are related by some bisimulation.

Taking inspiration from concurrency theory [4,5], one can improve this proof
technique by weakening the second item in the definition of bisimulation: given
a function f on binary relations, a bisimulation up to f is a relation R between
states such that for all sets X,Y , X R Y entails:

1. o
(X) = o
(Y ), and
2. for all letter a, t
a(X) f(R) t
a(Y ).

For well-chosen functions f , bisimulations up to f are contained in a bisimula-
tion, so that the improvement is sound. So is the function mapping each relation
to its equivalence closure. In this particular case, one recover the standard al-
gorithm by Hopcroft and Karp [2]: two sets can be skipped whenever they can
already be related by a sequence of pairwise related states.

One can actually do more, by considering the function c mapping each relation
to its congruence closure: the smallest equivalence relation which contains the
argument, and which is compatible w.r.t. set union:

� Work partially funded by the PiCoq and PACE projects, ANR-10-BLAN-0305 and
ANR-12IS02001.
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X c(R) X

Y c(R) X

X c(R) Y

X c(R) Y Y c(R) Z

X c(R) Z

X R Y

X c(R) Y

X1 c(R) Y1 X2 c(R) Y2

X1 ∪X2 c(R) Y1 ∪ Y2
.

This is how we obtained HKC [1], an algorithm that can be exponentially faster
than Hopcroft and Karp’s algorithm or more recent antichain algorithms [7].

2 Generalisation to Coalgebra

The above ideas generalise nicely, using the notion of λ-bialgebras [3].
Let T be a monad, F an endofunctor, and λ a distributive law TF ⇒ FT ,

a λ-bialgebra is a triple 〈X,α, β〉, where 〈X,α〉 is a F -coalgebra, 〈X, β〉 a T -
algebra, and α ◦ β = Fβ ◦ λX ◦ Tα. Given such a λ-bialgebra, FT -algebra
generalise non-deterministic automata: take X �→ 2×XA for F , and X �→ PfX
for T . Determinisation through the powerset construction can be generalised as
follows [6], when the functor F has a final coalgebra 〈Ω,ω〉:

X

α

��

η
�� TX

α�
����
��
���

��
! �� Ω

ω

��

FTX
F ! �� FΩ

Bisimulations up-to can be expressed in a natural way in such a framework. One
can in particular consider bisimulations up to congruence, where the congruence
is taken w.r.t. the monad T : the fact that λ is a distributive law ensures that
this improvement is always sound.
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Abstract. In the field of structural operational semantics (SOS), there have been
several proposals both for syntactic rule formats guaranteeing the validity of al-
gebraic laws, and for algorithms for automatically generating ground-complete
axiomatizations. However, there has been no synergy between these two types of
results. This paper takes the first steps in marrying these two areas of research
in the meta-theory of SOS and shows that taking algebraic laws into account in
the mechanical generation of axiomatizations results in simpler axiomatizations.
The proposed theory is applied to a paradigmatic example from the literature,
showing that, in this case, the generated axiomatization coincides with a classic
hand-crafted one.

1 Introduction

Algebraic properties, such as commutativity, associativity and idempotence of binary
operators, specify some natural properties of programming and specification constructs.
These properties can either be validated using the semantics of the language with re-
spect to a suitable notion of program equivalence, or they can be guaranteed a priori
‘by design’. In particular, for languages equipped with a Structural Operational Se-
mantics (SOS) [19], there are two closely related lines of work to achieve this goal:
firstly, there is a rich body of syntactic rule formats that can guarantee the validity of
certain algebraic properties; see [5,17] for recent surveys. Secondly, there are numer-
ous results regarding the mechanical generation of ground-complete axiomatizations
of various behavioral equivalences and preorders for SOS language specifications in
certain formats—see, e.g., [1,7,20]. However, these two lines of research have evolved
separately and no link has been established between the two types of results so far. In
this paper, we take the first steps in marrying these two research areas and in using
rule formats for algebraic properties (specifically, for commutativity) to enhance the
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process of automatic generation of axiomatizations for strong bisimilarity from GSOS
language specifications [10]. In particular, we show that linking these two areas results
in axiomatizations that look like hand-crafted ones.

Contribution and Related Work. Many ground-completeness results have been pre-
sented in the literature on process calculi. (See, for instance, the survey paper [3]
for pointers to the literature.) A common proof strategy for establishing such ground-
completeness results is to reduce the problem of axiomatizing the notion of behavioural
equivalence under consideration over arbitrary closed terms to that of axiomatizing it
over ‘synchronization-tree terms’. This approach is also at the heart of the algorithm
proposed in [1] for the automatic generation of finite, equational, ground-complete ax-
iomatizations for bisimilarity over language specifications in the GSOS format. A vari-
ation on that algorithm for GSOS language specifications with termination has been
presented in [7]. In [20], Ulidowski has instead offered algorithms for the automatic
generation of finite axiom systems for the testing preorder over de Simone process lan-
guages. In Section 4 of this paper, we present a refinement of the algorithm from [1] that
uses a rule format guaranteeing commutativity of certain operators to obtain ground-
complete axiomatizations of bisimilarity that are closer to the hand-crafted ones than
those produced by existing algorithms. (See Section 5, where we apply the algorithm
to axiomatize the classic parallel composition operator and compare the generated
axiomatization to earlier ones.)

Our rule format for commutativity (presented in Section 3) is a generalization of the
rule format for commutativity from [16], which allows operators to have various sets
of commutative arguments. Apart from being natural, such a generalization is useful in
the automatic generation of ground-complete axiomatizations, as the developments in
this study show.

2 Preliminaries

In this section we review, for the sake of completeness, some standard definitions from
process theory and the meta-theory of SOS that will be used in the remainder of the
paper. We refer the interested reader to [4,17] for further details.

Transition System Specifications in GSOS Format. We let V denote an infinite set of
variables with typical members x, x′, xi, y, y′, yi, . . . . A signature Σ is a set of function
symbols, each with a fixed arity. We call these symbols operators and usually represent
them by f, g, . . . . An operator with arity zero is called a constant. We define the set
T(Σ) of terms over Σ (sometimes referred to as Σ-terms) as the smallest set satisfying
the following constraints: (1) A variable x ∈ V is a term. (2) If f ∈ Σ has arity
n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term. We use s, t, t′, ti, u, . . . to
range over terms. We write t1 ≡ t2 if t1 and t2 are syntactically equal. The function
vars : T(Σ) → 2V gives the set of variables appearing in a term. The set C(Σ) is the set
of closed terms, i.e., the set of all terms t such that vars(t) = ∅. We use p, p′, pi, q, r . . .
to range over closed terms. A substitution σ is a function of type V → T(Σ). We extend
the domain of substitutions to terms homomorphically. If the range of a substitution lies
in C(Σ), we say that it is a closed substitution.
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The GSOS format is a widely studied format of deduction rules in transition system
specifications proposed by Bloom, Istrail and Meyer [10]. Transition system specifica-
tions whose rules are in the GSOS format enjoy many desirable properties, and several
studies in the literature on the meta-theory of SOS have focused on them—see, e.g.,
the survey [4]. Following [1], in this study we shall also focus on transition system
specifications in the GSOS format, which we now proceed to define.

Definition 1 (GSOS Format [10]). A deduction rule for an operator f of arity n is in
the GSOS format if and only if it has the following form:

{xi
lij−→ yij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∪ {xi

lik� | 1 ≤ i ≤ n, 1 ≤ k ≤ ni}

f(−→x )
l−→C[−→x ,−→y ]

where the xi’s and the yij ’s (1 ≤ i ≤ n and 1 ≤ j ≤ mi) are all distinct variables, mi

and ni are natural numbers, C[−→x ,−→y ] is a Σ-term with variables including at most the
xi’s and the yij’s, and the lij’s and l are labels. If mi > 0, for some i, then we say that
the rule tests its i-th argument positively. The above rule is said to be f -defining and
l-emitting.

A transition system specification (TSS) in the GSOS format T is a triple (Σ,L,D)
where Σ is a finite signature, L is a finite set of labels, and D is a finite set of deduction
rules in the GSOS format. We shall sometimes refer to a TSS in the GSOS format as a
GSOS system.

In addition to the syntactic restrictions on deduction rules, the GSOS format, as pre-
sented in [10], requires the signature to include a constant 0, a collection of unary
operators a. (a ∈ L) and a binary operator + . Intuitively, 0 represents a process
that does not exhibit any behaviour, s + t is the nondeterministic choice between the
behaviours of s and t, while a.t is a process that first performs action a and behaves like
t afterwards. The standard deduction rules for these operations are given below:

a.x1
a−→x1

x1
a−→x′

1

x1 + x2
a−→x′

1

x2
a−→x′

2

x1 + x2
a−→x′

2

.

In the remainder of this paper, following [10], we shall tacitly assume that each TSS in
the GSOS format contains these operators with the rules given above. The import of this
assumption is that, as is well known, within each TSS in the GSOS format it is possible
to express each finite synchronization tree over L. Following [12], the TSS containing
the operators 0, a. (a ∈ L) and + , with the above-given rules, is denoted by BCCSP.

The transition relation associated with a TSS in the GSOS format is the one defined
by structural induction over closed terms using the rules. We refer the interested reader
to [10] for the precise definition and much more information on GSOS languages.

Definition 2 ([1]). A GSOS system T ′ is a disjoint extension of a GSOS system T , de-
noted by T � T ′, if the signature and rules of T ′ include those of T , and T ′ introduces
no new rules for operators in the signature of T .
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Bisimilarity and Axiom Systems. The notion of behavioural equivalence that we will
use in this paper is the following, classic notion of bisimilarity [15,18].

Definition 3. Let T be a GSOS system with signature Σ. A relation R ⊆ C(Σ)×C(Σ)
is a bisimulation if and only if R is symmetric and, for all p0, p1, p′0 ∈ C(Σ) and l ∈ L,

(p0 R p1 ∧ p0
l−→ p′0) ⇒ ∃p′1 ∈ C(Σ). (p1

l−→ p′1 ∧ p′0 R p′1).

Two terms p0, p1 ∈ C(Σ) are called bisimilar, denoted by T � p0 ↔ p1 (or simply by
p0 ↔ p1 when T is clear from the context), when there exists a bisimulation R such
that p0 R p1.

It is well known that ↔ is an equivalence relation over C(Σ). Any equivalence relation
∼ over closed terms in a TSS T is extended to open terms in the standard fashion, i.e.,
for all t, u ∈ T(Σ), the equation t = u holds over T modulo∼ (sometimes abbreviated
to t ∼ u) if, and only if, T � σ(t) ∼ σ(u) for each closed substitution σ.

Remark 1. If T ′ is a disjoint extension of T , then two closed terms over the signature
of T are bisimilar in T if and only if they are bisimilar in T ′.

Proposition 1 ([10]). ↔ is a congruence for any TSS in GSOS format—that is, for all
f ∈ Σ and terms t1, . . . , tn, u1, . . . , un, where n is the arity of f , if ti ↔ ui for each
i ∈ {1, . . . , n} then f(t1, . . . , tn) ↔ f(u1, . . . , un).

Definition 4 (Axiom System). An axiom system E over a signature Σ is a set of equal-
ities of the form t = t′, where t, t′ ∈ T(Σ). An equality t = t′, for some t, t′ ∈ T(Σ), is
derivable from E, denoted by E � t = t′, if and only if it is in the smallest congruence
relation over Σ-terms induced by the equalities in E.

In the context of a fixed TSS T , an axiom system E (over the same signature) is sound
with respect to a congruence relation∼ if and only if for all t, t′ ∈ T(Σ), if E � t = t′,
then it holds that T � t ∼ t′. The axiom system E is ground complete if the implication
holds in the opposite direction whenever t and t′ are closed terms.

3 Commutativity Format

Commutativity is an essential property specifying that the order of arguments of an op-
erator is immaterial. In the setting of process algebras, commutativity is defined with re-
spect to a notion of behavioural equivalence over terms. In this section, we first present
a generalized notion of commutativity that allows n-ary operators to have various sets
of commutative arguments and then slightly adapt the commutativity rule format pro-
posed in [16] to the extended setting. Moreover, we give some auxiliary definitions that
will be used in the axiomatization procedure proposed in the next section.

In order to motivate the generalized notion of commutativity we present below, con-
sider, by way of example, the ternary operator f defined by the rules below, where a
ranges over the collection of action labels L.

x
a−→x′

f(x, y, z)
a−→ f(x′, y, z)

y
a−→ y′

f(x, y, z)
a−→ f(x, y′, z)

x
a−→x′ z

a−→ z′

f(x, y, z)
a−→ f(x′, y, z′)

y
a−→ y′ z

a−→ z′

f(x, y, z)
a−→ f(x, y′, z′)

.
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It is not hard to show that the operator f is commutative in its first two arguments mod-
ulo bisimilarity, irrespective of the other operators in the TSS under consideration—that
is, f(p, q, r) ↔ f(q, p, r), for all closed terms p, q, r. On the other hand, the third ar-
gument does not commute with respect to the other two. For example, we have that
f(a.0,0,0) � f(0,0, a.0) because f(a.0,0,0)

a−→ f(0,0,0), but f(0,0, a.0) has
no outgoing transitions.

The commutativity format presented in [16] can only deal with operators that are
commutative for each pair of arguments and, unlike the format that we present below,
is therefore unable to detect that f is commutative in its first two arguments.

In what follows, we shall often use [n], n ≥ 0, to stand for the set {1, . . . , n}. Note
that [0] is just the empty set.

Definition 5 (Generalized Commutativity). Given a set I , a family
∏
I of non-empty,

pairwise disjoint subsets of I is called a partition of I when
⋃∏

I = I .
Let Σ be a signature. Assume that f ∈ Σ is an n-ary operator,

∏
[n] is a partition

of [n] and ∼ is an equivalence relation over C(Σ). The operator f is called
∏

[n]-
commutative with respect to ∼ when, for each K ∈

∏
[n] and each two j, k ∈ K such

that j < k, the following equation is sound with respect to ∼:

f(x1, . . . , xn) = f(x1, . . . , xj−1, xk, xj+1, . . . , xk−1, xj , xk+1, . . . , xn).

Note that the traditional notion of commutativity for binary operators can be recov-
ered using Definition 5 in terms of {{1, 2}}-commutativity. Moreover, the notion of
commutativity for n-ary operators from [16] corresponds to {[n]}-commutativity. Any
n-ary operator is 1[n]-commutative with respect to any equivalence relation ∼, where
1[n] = {{1}, . . . , {n}} is the discrete partition of [n].

From this point onward, whenever a signature Σ is provided, we also assume that
every function symbol f ∈ Σ of arity n has an associated fixed partition of its set
of arguments [n] denoted by

∏
f . We denote the indexed set of all these partitions by∏Σ

= {
∏
f}f∈Σ .

Definition 6. Assume Σ1 ⊆ Σ2. Let
∏Σ1 be a family of partitions. The extension of∏Σ1 to Σ2 is obtained by taking
∏
f to be the discrete partition over [n] for each

f ∈ Σ2 \Σ1, where n is the arity of f .

Our aim is to define a restriction of the GSOS rule format that guarantees the notion of
generalized commutativity defined above for any behavioural equivalence that is coarser
than bisimilarity. To this end, we begin by extending the notion of commutative con-
gruence introduced in [16] to the context of this generalized notion of commutativity.

Definition 7 (Commutative Congruence). Consider a signature Σ and a set of parti-
tions

∏Σ . The commutative congruence relation ∼cc (with respect to
∏Σ) is the least

congruence relation over T(Σ) satisfying the following requirement: for all f ∈ Σ (of
arity n), K ∈

∏
f , j, k ∈ K with j < k, and t1, . . . , tn ∈ T(Σ), it holds that

f(t1, . . . , tn) ∼cc f(t1, . . . , tj−1, tk, tj+1, . . . , tk−1, tj , tk+1, . . . , tn).
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We are now ready to present a syntactic restriction on the GSOS format that guarantees
commutativity with respect to a set of partitions

∏Σ modulo any notion of behavioural
equivalence that includes strong bisimilarity. Unlike the format for {[n]}-commutativity
given in [16], the format offered below applies to generalized commutativity, in the
sense of Definition 5, and is defined for TSSs whose rules can have negative premises.
On the other hand, unlike ours, the format introduced in [16] applies to rules whose pos-
itive premises need not have variables as their sources and targets. Extending our format
in order to accommodate this kind of premises in deduction rules is straightforward, but
is not relevant for the purpose of this paper.

Definition 8 (Comm-GSOS). A transition system specification over signature Σ is in
the comm-GSOS format with respect to a set of partitions

∏Σ if it is in the GSOS format

and for each f -defining deduction rule d =
H

f(x1, . . . , xn)
l−→ t

, each K ∈
∏
f and

for all j, k ∈ K with j < k, there exist a deduction rule d′ =
H ′

f(x′
1, . . . , x

′
n)

l−→ t′
and

a bijective mapping � over variables such that

– �(x′
i) = xi for each i ∈ [n] such that i �= j and i �= k,

– �(x′
j) = xk and �(x′

k) = xj ,
– �(t′) ∼cc t, and
– �(H ′) = H .

Deduction rule d′ is called a commutative mirror of d (with respect to j, k and
∏Σ).

The above format requires that, when f ∈ Σ, for each f -defining rule and for each pair
(j, k) of arguments for which f is supposed to be commutative, as specified by

∏
f ,

there exists a commutative mirror that enables the ‘same transitions up to the commu-
tative congruence ∼cc associated with

∏Σ’ when the jth and kth arguments of f are
swapped. This is the essence of the proof of the following theorem, which states the
correctness of the syntactic comm-GSOS format.

Theorem 1. If a transition system specification is in the comm-GSOS format with re-
spect to a set of partitions

∏Σ , then each operator f ∈ Σ is
∏
f -commutative with

respect to any notion of behavioural equivalence that includes bisimilarity.

Example 1. Consider the ternary operator f we used earlier to motivate the notion of
generalized commutativity. Any transition system specification including the operator
f is in the comm-GSOS format with respect to any set of partitions

∏Σ such that∏
f = {{1, 2}, {3}}. Indeed, the a-emitting rules in the first row are one the commu-

tative mirror of the other with respect to
∏Σ , and so are those in the second row. The

constraints in Definition 8 are vacuously satisfied when we take K = {3}. Therefore,
by Theorem 1, we recover the fact that f is commutative in its first two arguments.

Example 2 (Parallel Composition). A frequently occurring commutative operator is
parallel composition. It appears in, amongst others, ACP [9], CCS [15], and CSP [14].
Here we discuss parallel composition with communication in the style of ACP [9], of
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which the others are special cases. The rules for this operator are listed below. In those
rules, a, b, c range over L and γ : L× L ↪→ L is a partial communication function.

(p1)
x

a−→x′

x || y a−→x′ || y
(p2)

y
a−→ y′

x || y a−→x || y′
(p3)

x
a−→x′ y

b−→ y′

x || y c−→x′ || y′
γ(a, b) = c

If the partial communication function γ is commutative, then any GSOS system includ-
ing the operator || given by the above rules is in the comm-GSOS format with respect
to any set of partitions

∏Σ such that
∏

‖ = {{1, 2}}. Hence it follows from Theorem 1
that || is {{1, 2}}-commutative.

4 Mechanized Axiomatization

In this section, we present a technique for the automatic generation of ground-complete
axiomatizations of bisimilarity over TSSs in the comm-GSOS format, which is derived
from the one introduced in [1]. Our approach improves upon the one in [1] by making
use of the rule format for generalized commutativity we introduced in the previous sec-
tion. Our goal is to generate a disjoint extension of the original TSS and a finite axiom
system that is sound and ground complete for bisimilarity over it. This finite axiom sys-
tem may then also be used for equationally establishing bisimilarity over closed terms
from the original TSS. We start by axiomatizing a rather restrictive subset of ‘good’
operators in Section 4.1. Then we turn ‘bad’ operators into good ones by means of aux-
iliary operators. In both of these steps, we exploit commutativity information, where
possible, in order to reduce the number of generated axioms, as well as the number of
generated auxiliary operators.

4.1 Axiomatizing Good Operators

The approach offered in [1] relies on the fact that the signature includes the operators
from BCCSP. (Recall that, in keeping with [10], we assume that these operators are
present in any TSS in the GSOS format.) The aim of the axiomatization procedure is
then to generate an axiom system that can rewrite any closed term p into a term p′ in
head normal form such that p ↔ p′. (We call an axiom system with this property head
normalizing.) Recall that a term t is in head normal form if it has the form a1.t1 + · · ·+
an.tn for some n ≥ 0, some set of actions {ai | i ∈ [n]} and set of terms {ti | i ∈ [n]}.
If n = 0 then a1.t1 + · · ·+ an.tn stands for 0.

For ‘semantically well founded’ terms (see [1, Definition 5.1 on page 28]), rewrit-
ing into head normal form can be used to prove that each closed term is equal to a
closed term over the signature for BCCSP. This leads to a ground-complete axiomati-
zation of bisimilarity, since BCCSP is finitely axiomatized modulo bisimilarity by the
axiom system EBCCSP from [13] consisting of the axioms stating that ‘+’ is associative,
commutative, idempotent and has 0 as unit element.

To start with, we focus on the case of closed terms built using only good operators,
which we now proceed to define.

Definition 9 (Smooth and distinctive operator). Consider an n-ary operator f .
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1. A smooth GSOS deduction rule is of the form

{xi
ai−→ yi | i ∈ I} ∪ {xi

bij
� | i ∈ J, 1 ≤ j ≤ ni}

f(x1, . . . , xn)
c−→C[−→x ,−→y ]

where I and J are disjoint subsets of [n] such that I ∪ J = [n], and C[−→x ,−→y ] can
only include the variables xi (i ∈ [n] \ I) and yi (i ∈ I).
An operator f of a TSS in the GSOS format is smooth if all its rules are smooth.

2. An n-ary operator f of a TSS in the GSOS format is distinctive if it is smooth,
each f -defining rule tests the same set of arguments I positively, and for every two
distinct f -defining rules there is some argument tested positively by both rules, but
with a different action.

We refer the interested reader to [1, Section 4.1] for an in-depth discussion of the
constraints for smooth and distinctive operators.

Remark 2. The ternary operator f from Example 1 and the parallel composition opera-
tor from Example 2 are smooth but not distinctive. On the other hand, the classic com-

munication merge operator [6,8], given by the rules
x

a−→x′ y
b−→ y′

x | y c−→x′ || y′
(γ(a, b) = c),

is smooth and distinctive. Moreover, assuming that γ is commutative, any TSS whose
signature Σ includes || and | with the previously given rules is in the comm-GSOS
format with respect to any set of partitions

∏Σ such that
∏

| =
∏

|| = {{1, 2}}.

Definition 10 (Discarding and Good Operators). A smooth GSOS rule of the form
given in Definition 9 is discarding if none of the variables xi with i ∈ J and ni > 0
occurs in C[−→x ,−→y ]. A smooth operator is discarding if so are all the rules for it. A
smooth operator is good [11] if it is both distinctive and discarding.

In the remainder of this subsection, we assume that the GSOS system T has signature Σ
and is in the comm-GSOS format with respect to a set of partitions

∏Σ . Let f ∈ Σ be
a good operator that is not in the signature for BCCSP, and let n be its arity. Our goal is
to generate an axiom system that can be used to turn any term of the form f(t1, . . . , tn),
where the ti’s are in head normal form, into a head normal form. In the generation of
the axiom system, we will exploit the commutativity information that is provided by the
partition

∏
f and therefore we assume that n ≥ 2. (If f is either a constant or a unary

operator, then it will be axiomatized exactly as in [1], since commutativity information
is immaterial.) Let If ⊆ [n] be the set of arguments that are tested positively by f
and let Jf be the complement of If . Assume that

∏
f = {K1, . . . ,K�}. Since T is

in the comm-GSOS format with respect to
∏Σ , and f is smooth and distinctive, it is

not hard to see that Kh ⊆ If or Kh ⊆ Jf , for each h ∈ [�]. Indeed exactly one of
the above inclusions holds. Let

∏+
f = {K | K ∈

∏
f and K ⊆ If} and

∏−
f =

{K | K ∈
∏
f and K ⊆ Jf}. We use K+

f (respectively, K−
f ) to denote a subset of If

(respectively, Jf ) that results by choosing exactly one representative element for each
K ∈

∏+
f (respectively, K ∈

∏−
f ).
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Example 3. Consider the communication merge operator | from Remark 2. We already
remarked that, when the communication function γ is commutative, the rules for | are
in the comm-GSOS format with respect to any set of partitions

∏Σ such that
∏

| =∏
|| = {{1, 2}}. For the operator |, we may take K+

| = {1}. Since the rules for | have

no negative premises, K−
| is empty.

Definition 11. Let f be a good n-ary operator, and let K+
f and K−

f be defined as
above. We associate with f the finite axiom system Ef consisting of the following
equations.

1. Distributivity laws: For each i ∈ K+
f , we have the equation:

f(x1, . . . , xi + x′
i, . . . , xn) = f(x1, . . . , xi, . . . , xn) + f(x1, . . . , x

′
i, . . . , xn).

2. Peeling laws: For each rule for f of the form given in Definition 9, each k ∈ K−
f

with nk > 0 and each a �∈ {bkj | 1 ≤ j ≤ nk}, we have the equation:

f(P1, . . . , Pn) = f(Q1, . . . , Qn),

where Pi ≡

⎧⎨⎩ ai.yi i ∈ I
a.x′

k + x′′
k i = k
xi otherwise

and Qi ≡

⎧⎨⎩ai.yi i ∈ I
x′′
k i = k
xi otherwise.

3. Action laws: For each rule for f of the form given in Definition 9, we have the equa-

tion: f(P1, . . . , Pn) = c.C[
−→
P ,−→y ], where Pi ≡

⎧⎨⎩ai.yi i ∈ I
0 i ∈ J and ni > 0
xi otherwise.

4. Inaction laws: For each i ∈ K+
f , we have the equation

f(x1, . . . , xi−1,0, xi+1, . . . , xn) = 0.

Suppose that, for each i ∈ [n], term Pi is of the form a.zi when i ∈ If , and of the
form a.zi + z′i or zi when i ∈ Jf . Suppose further that, for each rule for f of the
form given in Definition 9, there exists some i ∈ [n] such that one of the following
holds:

– i ∈ If and (Pi ≡ a.zi, for some a �= ai),
– i ∈ Jf and (Pi ≡ bij .zi + z′i, for some 1 ≤ j ≤ ni).

Then we have the equation f(P1, . . . , Pn) = 0.
5. Commutativity laws: For each equivalence class K ∈

∏
f and each two i, j ∈ K

such that i < j, we have the equation:

f(x1, . . . , xi, . . . , xj , . . . , xn) = f(x1, . . . , xj , . . . , xi, . . . , xn).

Theorem 2. Consider a TSS T in GSOS format. Let Σg be a collection of good oper-
ators of T . Let EΣg be the finite axiom system that consists of the axioms in EBCCSP

and the axioms in Ef , for each f ∈ Σg. Then, for any GSOS system T ′ such that
T � T ′, the axiom system EΣg is sound and is ground complete for terms built using
the operations in the signature Σg and those in the signature of BCCSP.
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Example 4. For the communication merge operator |, takingK+
| = {1} as in Example 3,

Definition 11 yields the following axiom system E|:

distributivity: (x + y) | z = (x | z) + (y | z),
action: a.x | b.y = c.(x || y) if γ(a, b) = c,
inaction: 0 | y = 0,
inaction: a.x | b.y = 0 if γ(a, b) is undefined,
commutativity: x | y = y | x.

These are exactly the equations describing the interplay between the operator | and the
BCCSP operators given in Table 7.1 on page 204 of [6].

4.2 Turning Bad into Good

In order to handle arbitrary GSOS operators, one needs two additional procedures: one
for transforming non-smooth operators into smooth and discarding (but not necessarily
distinctive) operators, and one for expressing smooth, discarding and non-distinctive
operators in terms of good operators. We adopt the same approach for the first procedure
as the one presented in Lemma 4.13 in [1]. On the other hand, for the second procedure,
we improve on the algorithm derived from Lemma 4.10 in [1].

The step from smooth, discarding and non-distinctive operators to good ones in-
volves the synthesis of several new operators. We now show how to improve this trans-
formation, as presented in the aforementioned reference, by reducing the number of
the generated auxiliary operators, making use of the ideas underlying the generalized
commutativity format presented in Section 3.

Making Smooth and Discarding Operators Distinctive. Consider a TSS T with signa-
ture Σ in the comm-GSOS format with respect to a set of partitions

∏Σ . Let f ∈ Σ be
a smooth and discarding, but not distinctive operator, and let n be its arity. We will now
show how to express f in terms of good operators. We start with partitioning the set of
f -defining rules into sets R1, . . . , Rm, m > 1, such that f is distinctive when its rules
are restricted to those in Ri for each i ∈ [m]. Note that all the rules in each Ri test the
same arguments positively. If

∏
f is the discrete partition over [n] then one proceeds

by axiomatizing f as in the version of the original algorithm based on the so-called
peeling laws presented in [1]. Indeed, in that case, f has no pair of commutative argu-
ments. Suppose therefore that

∏
f is not the discrete partition, and take some K ∈

∏
f

of maximum cardinality. (Any non-singleton K would do in what follows. However,
picking a set K of maximum cardinality will reduce the number of auxiliary operators
that is generated by the procedure outlined below.) Our aim now is to define when two
sets of rules for f are ‘essentially the same up to the commutative arguments in K’ and
to use this information in order to synthesize enough good operators for expressing f
up to bisimilarity.

Definition 12.

– Let d and d′ be two f -defining and l-emitting rules. We say that d′ is a commutative
mirror of d with respect to K and

∏Σ if the constraints in Definition 8 are met for



46 L. Aceto et al.

some j, k ∈ K with j < k. We use
K
� to denote the reflexive and transitive closure

of the relation ‘is a commutative mirror with respect to K’.
– Let R and R′ be two sets of f -defining rules. We write R

K
� R′ if, and only if, (1)

for each d ∈ R there is some d′ ∈ R′ such that d
K
� d′, and (2) for each d′ ∈ R′

there is some d ∈ R such that d
K
� d′.

Example 5. Consider the ternary operator f defined by the rules on page 39. That op-
erator is smooth and discarding, but not distinctive. Collecting all the rules that test the
same arguments positively in the same set, we obtain the following four sets of rules:

– R1 contains all the rules of the form
x

a−→x′

f(x, y, z)
a−→ f(x′, y, z)

(a ∈ L).

– R2 contains all the rules of the form
y

a−→ y′

f(x, y, z)
a−→ f(x, y′, z)

(a ∈ L).

– R3 contains all the rules of the form
x

a−→x′, z
a−→ z′

f(x, y, z)
a−→ f(x′, y, z′)

(a ∈ L).

– R4 contains all the rules of the form
y

a−→ y′, z
a−→ z′

f(x, y, z)
a−→ f(x, y′, z′)

(a ∈ L).

We have already seen in Example 1 that any GSOS system including the operator f is
in the comm-GSOS format with respect to any set of partitions

∏Σ such that
∏
f =

{{1, 2}, {3}}. Take K = {1, 2}. It is not hard to see that R1
K
� R2 and R3

K
� R4 hold.

Indeed, as we observed in Example 1, each a-emitting rule in R1 (respectively, R3) is
the commutative mirror of the a-emitting rule in R2 (respectively, R4) with respect to
K , and vice versa.

Lemma 1. K
� is an equivalence relation over f -defining rules and over sets of f -

defining rules.

Recall that {R1, . . . , Rm}, m > 1, is a partition of the set of f -defining rules such that
f is distinctive when its rules are restricted to those in Ri for each i ∈ [m]. Consider

{R1, . . . , Rm}/ K
�, the quotient of the set {R1, . . . , Rm} with respect to the equiva-

lence relation K
�. Let ρ1, . . . , ρ� be representatives of its equivalence classes. For ex-

ample, in the case of the operator considered in Example 5 above, one could pick R1

and R4, say, as representatives of the two equivalence classes with respect to
{1,2}
� . We

proceed by adding to the signature Σ fresh n-ary operator symbols f1, . . . , f�. The rules
for the operator fi are obtained by simply turning those in ρi into fi-defining ones. Let
T ′ be the resulting disjoint extension of T . Following [1], we now need to generate an
axiom that expresses f in terms of f1, . . . , f�.

Definition 13. Let n > 0 and let K ⊆ [n]. A bijection π : [n] → [n] is a K-permutation
if it is the identity function over [n] \K .

The equation relating f to the fi’s, i ∈ [�], can now be stated as follows:

f(x1, . . . , xn) =

�∑
i=1

∑
{fi(xπ(1), . . . , xπ(n)) | π is a K-permutation}. (1)
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For our running example, namely the ternary operator f defined by the rules on page 39
and considered in Examples 1 and 5, with the choice of representatives mentioned

above, there are two auxiliary operators f1 and f2 with rules
x

a−→x′

f1(x, y, z)
a−→ f(x′, y, z)

y
a−→ y′, z

a−→ z′

f2(x, y, z)
a−→ f(x, y′, z′)

, where a ranges over L. Apart from the identity function

over [3], the only {1, 2}-permutation is the one that swaps 1 and 2. Therefore, instanti-
ating equation (1), we obtain that

f(x1, x2, x3) = f1(x1, x2, x3) + f1(x2, x1, x3) + f2(x1, x2, x3) + f2(x2, x1, x3).

Using Definition 6, the family of partitions
∏Σ can be extended to any signature that

includes the signature Σ ∪{fi | i ∈ [�]}. Note that any disjoint extension of T ′ is in the
comm-GSOS format with respect to this extension of

∏Σ .

Proposition 2. Equation (1) is sound in any disjoint extension of T ′.

Equation (1) can be simplified in case any of the auxiliary operators f1, . . . , f� is com-
mutative in the set of arguments K . Indeed, let N ⊆ [�], and assume that T ′ is in
the comm-GSOS format with respect to the family of partitions that associates with
each operator g the partition

∏Σ
g when g ∈ Σ, the partition {K} ∪ 1[n]\K when

g ∈ {fi | i ∈ N}, and the partition 1[n] otherwise. Then we have the following
result.

Proposition 3. The following equation is sound in any disjoint extension of T ′.

f(x1, . . . , xn) =
∑

i∈[�]\N

∑
{fi(xπ(1), . . . , xπ(n)) | π is a K-permutation} +

∑
i∈N

fi(x1, . . . , xn)
(2)

In the following section, we will see that the above simplification leads to an axiom-
atization of the classic parallel composition operator that is equal to an existing hand-
crafted one. Of course, if either N or [�] \N are empty, the corresponding 0 summand
can be omitted in equation (2).

Turning Non-Smooth Operators into Smooth Ones. The methods we have presented so
far yield an algorithm that, given a TSS T with signature Σ in the comm-GSOS format
with respect to a set of partitions

∏Σ , can be used to generate a disjoint extension T ′

of T over some signature Σ′ that includes Σ and a finite axiom system E such that E
is sound modulo bisimilarity over any disjoint extension of T ′ and is head normalizing
for all closed Σ′-terms. Ground-completeness of E with respect to bisimilarity over T ′

(and therefore over T ) follows using standard reasoning, by possibly using the well-
known Approximation Induction Principle [8] if T ′ is not semantically well founded.
See [1] for details.
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The algorithm has the following steps:

1. Start with the axiom system EBCCSP and consider next the operators that are not in
the signature for BCCSP.

2. For each non-smooth operator f ∈ Σ, generate a fresh smooth and discarding
operator f ′, and add to the axiom system the equation expressing f in terms of f ′

as in Lemma 4.13 in [1].
3. For each smooth and discarding, but not distinctive, operator f in the resulting

signature, generate a family of fresh good operators f1, . . . f�, as indicated in this
section, and add to the axiom system the instance of equation (1) or of equation (2),
as appropriate, expressing f in terms of f1, . . . f�.

4. For each good operator in the resulting signature, add to the axiom system the
equations mentioned in the statement of Theorem 2.

5 Axiomatizing Parallel Composition

Let us concretely analyze the axiomatization derived using the procedure described
above for the classic parallel composition operator || from Example 2. We assume
henceforth that the partial synchronization function γ is commutative, so that || is
{{1, 2}}-commutative. As we observed in Remark 2, the parallel composition oper-
ator is smooth but not distinctive. When we partition the set of rules for || into subsets
of rules that test the same arguments positively, we obtain three sets R1, R2 and R3,
where each Ri consists of all the instances of rule (pi) from Example 2. It is easy to see

that R1
{1,2}
� R2. Therefore, following the procedure described in Section 4.2, we can

generate two auxiliary binary operators, which are the classic left merge and communi-
cation operators, denoted by‖ and |, respectively. The rules for | are those in Remark 2

and those for the left merge operator are
x

a−→x′

x‖ y
a−→x′ || y

(a ∈ L). Since we know that

| is {{1, 2}}-commutative, the relationship between || and the two auxiliary operators
can be expressed using equation (2), whose relevant instance becomes

Standard

x || y = (x‖ y) + (x � y) + (x | y)
(a.x)‖ y = a.(x || y)
x � (a.y) = a.(x || y)

(a.x) | (b.y) = c.(x || y) if γ(a, b) = c
(x+ y)‖ z = (x‖ z) + (y‖ z)
x � (y + z) = (x � y) + (x � z)
(x+ y) | z = (x | z) + (y | z)
x | (y + z) = (x | y) + (x | z)
0‖ x = 0 x � 0 = 0
0 | x = 0 x | 0 = 0

(a.x) | (b.y) = 0 if γ(a, b) is undefined

Optimized

x || y = (x‖ y) + (y‖ x) + (x | y)
(a.x)‖ y = a.(x || y)

(a.x) | (b.y) = c.(x || y) if γ(a, b) = c
(x+ y)‖ z = (x‖ z) + (y‖ z)
(x+ y) | z = (x | z) + (y | z)

0‖ x = 0
0 | x = 0

(a.x) | (b.y) = 0 if γ(a, b) is undefined
x | y = y | x

Fig. 1. Axiomatizing ||
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x || y = (x‖ y) + (y‖ x) + (x | y).

This is exactly equation M in Table 7.1 on page 204 of [6]. The axioms for | produced
by our methods are those given in Example 4. On the other hand, the left merge operator
is axiomatized as in [1] since commutativity information is immaterial for it.

In Figure 1 we compare the axiomatization for the parallel composition operator || de-
rived using the algorithm from [1] and the ‘optimized axiomatization’ one obtains using
the algorithm mentioned above. (We omit the four equations in the axiom system EBCCSP

recalled in Section 4.) The axioms generated by the algorithm from [1] do resemble the
original axioms of [9] to a large extent. The auxiliary operator � is called right merge in
the literature.

6 Conclusions and Future Work

In this paper, we have taken a first step towards marrying two lines of development within
the field of the meta-theory of SOS, viz. the study of algorithms for the automatic gener-
ation of ground-complete axiomatizations for bisimilarity from SOS specifications (see,
for instance, [1,7,20]) and the development of rule formats guaranteeing the validity of
algebraic laws, such as those surveyed in [5]. More specifically, we have presented a
rule format for commutativity that refines the one offered in [16] in that it allows one to
consider various sets of commutative arguments, and we have used the information pro-
vided by that rule format to refine the algorithm for the automatic generation of ground-
complete axiomatizations for bisimilarity from [1]. The resulting procedure yields axiom
systems that use fewer auxiliary operators to axiomatize commutative operators than the
one from [1]. Moreover, in some important cases, the mechanically produced axioma-
tizations of some operators are identical to the hand-crafted ones from the literature.

The ideas we have presented in this paper have never been explored before, and
they enrich the toolbox one can use when reasoning about bisimilarity by means of ax-
iomatizations. Moreover, the combination of two closely related strands of research on
the meta-theory of SOS we have begun in this paper is of theoretical interest and may
lead to further improvements on algorithms for the automatic generation of axiomatic
characterizations of bisimilarity. As future work, we will implement the axiomatization
procedure presented in this paper in the PREG Axiomatizer tool [2]. We also intend
to explore the use of other rule formats for algebraic properties in improving mecha-
nized axiomatizations for bisimilarity. The ultimate goals of this research are to make
automatically generated axiomatizations comparable to the known ones from the liter-
ature and to make the first steps towards the automatic generation of axiomatizations
that are complete for open terms. The latter goal is a very ambitious one since obtain-
ing complete axiomatizations of bisimilarity is a very hard research problem even for
sufficiently rich fragments of specific process calculi; see, for instance, [3].
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3. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Luttik, B.: Finite equational bases in process alge-
bra: Results and open questions. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F.,
de Vrijer, R. (eds.) Processes... (Klop Festschrift). LNCS, vol. 3838, pp. 338–367. Springer,
Heidelberg (2005)

4. Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Bergstra, J.A.,
Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, ch. 3, pp. 197–292. Elsevier
Science, Dordrecht (2001)

5. Aceto, L., Ingolfsdottir, A., Mousavi, M., Reniers, M.A.: Algebraic properties for free! Bul-
letin of the European Association for Theoretical Computer Science 99, 81–104 (2009)

6. Baeten, J., Basten, T., Reniers, M.: Process Algebra: Equational Theories of Communicating
Processes. Cambridge Tracts in Theoretical Computer Science, vol. 50. Cambridge Univer-
sity Press (2009)

7. Baeten, J.J., de Vink, E.P.: Axiomatizing GSOS with termination. Journal of Logic and Al-
gebraic Programming 60-61, 323–351 (2004)

8. Bergstra, J.A., Klop, J.W.: Fixedpoint semantics in process algebra. Technical Report IW
206/82, Center for Mathematics, Amsterdam, The Netherlands (1982)

9. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and
Control 60(1-3), 109–137 (1984)

10. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journal of the ACM 42(1),
232–268 (1995)

11. Bosscher, D.: Term rewriting properties of SOS axiomatisations. In: Hagiya, M., Mitchell,
J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 425–439. Springer, Heidelberg (1994)

12. van Glabbeek, R.J.: The linear time - branching time spectrum I. In: Bergstra, J.A., Ponse,
A., Smolka, S.A. (eds.) Handbook of Process Algebra, ch. 1, pp. 3–100. Elsevier Science,
Dordrecht (2001)

13. Hennessy, M., Milner, A.R.: Algebraic laws for non-determinism and concurrency. Journal
of the ACM 32(1), 137–161 (1985)

14. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
15. Milner, A.R.: Communication and Concurrency. Prentice-Hall (1989)
16. Mousavi, M., Reniers, M., Groote, J.F.: A syntactic commutativity format for SOS. Informa-

tion Processing Letters 93, 217–223 (2005)
17. Mousavi, M., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20 years after.

Theoretical Computer Science 373, 238–272 (2007)
18. Park, D.M.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS

1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)
19. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic

Progamming 60, 17–139 (2004)
20. Ulidowski, I.: Finite axiom systems for testing preorder and De Simone process languages.

Theoretical Computer Science 239(1), 97–139 (2000)



Positive Fragments of Coalgebraic Logics

Adriana Balan1, Alexander Kurz2, and Jǐŕı Velebil3,�
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Abstract. Positive modal logic was introduced in an influential 1995
paper of Dunn as the positive fragment of standard modal logic. His
completeness result consists of an axiomatization that derives all modal
formulas that are valid on all Kripke frames and are built only from
atomic propositions, conjunction, disjunction, box and diamond.

In this paper, we provide a coalgebraic analysis of this theorem, which
not only gives a conceptual proof based on duality theory, but also gen-
eralizes Dunn’s result from Kripke frames to coalgebras of weak-pullback
preserving functors.

For possible application to fixed-point logics, it is note-worthy that the
positive coalgebraic logic of a functor is given not by all predicate-liftings
but by all monotone predicate liftings.

Keywords: coalgebraic logic, duality, positive modal logic.

1 Introduction

Consider modal logic as given by atomic propositions, Boolean operations, and
a unary box, together with its usual axiomatisation stating that box preserves
finite meets. In [10], Dunn answered the question of an axiomatisation of the
positive fragment of this logic, where the positive fragment is given by atomic
propositions, lattice operations, and unary box and diamond.

Here we seek to generalize this result from Kripke frames to coalgebras for
a weak pullback preserving functor. Whereas Dunn had no need to justify that
the positive fragment actually adds a modal operator (the diamond), the general
situation requires a conceptual clarification of this step. And, as it turns out,
what looks innocent enough in the familiar case is at the heart of the general
construction.

In the general case, we start with a functor T : Set → Set. From T we
can obtain by duality a functor L : BA → BA on the category BA of Boolean
algebras, so that the free L-algebras are exactly the Lindenbaum algebras of the
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modal logic. We are going to take the functor L itself as the category theoretic
counterpart of the corresponding modal logic. How should we construct the
positive T -logic? Dunn gives us a hint in that he notes that in the same way
as standard modal logic is given by algebras over BA, positive modal logic is
given by algebras over the category DL of (bounded) distributive lattices. It
follows that the positive fragment of (the logic corresponding to) L should be
a functor L′ : DL → DL which, in turn, by duality, should arise from a functor
T ′ : Pos→ Pos on the category Pos of posets and monotone maps.

The centre-piece of our construction is now the observation that any finitary-
functor T : Set → Set has a canonical extension to a functor T ′ : Pos → Pos.
Theorem 4.10 then shows that this construction T �→ T ′ �→ L′ indeed gives the
positive fragment of L and so generalizes Dunn’s theorem.

An important observation about the positive fragment is the following: given
any Boolean formula, we can rewrite it as a positive formula with negation only
appearing on atomic propositions. In other words, the translation β from positive
logic to Boolean logic given by

β(♦φ) = ¬�¬β(φ) (1)

β(�φ) = �β(φ) (2)

induces a bijection (on equivalence classes of formulas taken up to logical equiv-
alence). More algebraically, we can formulate this as follows.

Given a Boolean algebra B ∈ BA, let LB be the free Boolean algebra generated
by {�b | b ∈ B} modulo the axioms of modal logic. Given a distributive lattice
A, let L′A be the free distributive lattice generated by {�a : a ∈ A} ∪ {♦a |
a ∈ A} modulo the axioms of positive modal logic. Further, let us denote by
W : BA → DL the forgetful functor. Then the above observation that every
modal formula can be written, up to logical equivalence, as a positive modal
formula with negations pushed to atoms, can be condensed into the statement
that the (natural) distributive lattice homomorphism

βB : L′WB → WLB (3)

induced by (1), (2) is an isomorphism.
Our main results are the following. If T ′ is an extension of T and L,L′ are

the induced logics, then β : L′W → WL exists. If, moreover, T ′ is the induced
extension (posetification) of T and T preserves weak pullbacks, then β is an
isomorphism. Furthermore, in the same way as the induced logic L can be seen
as the logic of all predicate liftings of T , the induced logic L′ is the logic of all
monotone predicate liftings of T . These results depend crucially on the fact that
the posetification T ′ of T is defined as a completion with respect to Pos-enriched
colimits. On the algebraic side the move to Pos-enriched colimits guarantees that
the modal operators are monotone. Accordingly, and recalling [19, Theorem 4.7]
stating that a functor L′ : DL → DL preserves ordinary sifted colimits if and
only if it has a presentation by operations and equations, we show here that
L′ : DL→ DL preserves enriched sifted colimits if and only if it has a presentation
by monotone operations and equations. To see the relevance of a presentation
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result specific to monotone operations, observe that in the example of positive
modal logic it is indeed the case that both � and ♦ are monotone.

2 On Coalgebras and Coalgebraic Logic

I. Coalgebras. A Kripke model (W,R, v) with R ⊆ W×W and v : W → 2AtProp

can also be described as a coalgebra W → PW × 2AtProp, where PW stands for
the powerset of W . This point of view suggests to generalize modal logic from
Kripke frames to coalgebras

ξ : X → TX

where T may now be any functor T : Set→ Set. We get back Kripke models by
putting TX = PX × 2AtProp. We also get the so-called bounded morphisms or
p-morphisms as coalgebras morphisms, that is, as maps f : X → X ′ such that
Tf ◦ ξ = ξ′ ◦ f .

II. Coalgebras and Algebras. More generally, for any category C and functor
T : C → C, we have the category Coalg(T ) of T -coalgebras with objects and

morphisms as above. Dually, Alg(T ) is the category where the objects TX
α→ X

are arrows in C and where the morphisms f : (X,α) → (X ′, α′) are arrows
f : X → X ′ in C such that f ◦α = α′ ◦ Tf . It is worth noting that T -coalgebras
over C are dual to T op-algebras over Cop .

III. Duality of Boolean Algebras and Sets. The abstract duality between al-
gebras and coalgebras becomes particularly interesting if we put it on top of
a concrete duality, such as the dual adjunction between the category Set of
sets and functions and the category BA of Boolean algebras. We denote by
P : Setop → BA the functor taking powersets and by S : BA → Setop the func-
tor taking ultrafilters. Alternatively, we can describe these functors by PX =
Set(X, 2) and SA = BA(A,�), which also determines their action on arrows (here
� denotes the two-element Boolean algebra). P and S are adjoint, satisfying
Set(X,SA) ∼= BA(A,PX). Restricting P and S to finite Boolean algebras/sets,
this adjunction becomes a dual equivalence.

IV. Boolean Logics for Coalgebras, Syntax. What now are logics for coalge-
bras? We follow a well-established methodology in modal logic ([6]) and study
modal logics via the associated category of modal algebras. More formally, given
a modal logic L extending Boolean propositional logic and with associated cat-
egory A of modal algebras, we describe L by a functor

L : BA→ BA

so that the category Alg(L) of algebras for the functor L coincides with A. In
particular, the Lindenbaum algebra of L will be the initial L-algebra.
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Example 2.1. Let T = P be the powerset functor and L : BA → BA be the
functor mapping an algebra A to the algebra LA generated by �a, a ∈ A, and
quotiented by the relation stipulating that � preserves finite meets, that is,

�� = � �(a ∧ b) = �a ∧�b (4)

Alg(L) is the category of modal algebras (Boolean algebras with operators), a
result which appears to be explicitly stated first in [1].

V. Boolean Logics for Coalgebras, Semantics. The semantics of such a logic is
described by a natural transformation

δ : LP → PT op

Intuitively, each modal operator in LPX is assigned its meaning as a sub-
set of TX . More formally, δ allows us to lift P : Setop → BA to a functor
P 
 : Coalg(T ) → Alg(L), and if we take a formula φ to be an element of the
initial L-algebra (the Lindenbaum algebra of the logic), then the semantics of φ
as a subset of a coalgebra (X, ξ) is given by the unique arrow from that initial
algebra to P 
(X, ξ).

Example 2.2. We define the semantics δX : LPX → PPopX by, for a ∈ PX ,

�a �→ {b ∈ PX | b ⊆ a}. (5)

It is an old result in domain theory that δX is an isomorphism for finite X ([1]).
This implies completeness of the axioms (4) with respect to Kripke semantics.

VI. Functors having Presentations by Operations and Equations. One might
ask when a functor L : BA → BA can legitimately be considered to give rise
to a modal logic. For us, in this paper, a minimal requirement on L is that
Alg(L) is a variety in the sense of universal algebra, that is, that Alg(L) can
be described by operations and equations, the operations then corresponding to
modal operators and the equations to axioms. This happens if L is determined
by its action on finitely generated free algebras (see [19]). These functors are also
characterized as functors having presentations by operations and equations, or
as functors preserving sifted colimits. Most succinctly, they are precisely those
functors that arise as left Kan-extensions along the inclusion functor of the full
subcategory of BA consisting of free algebras on finitely many generators.

VII. The (finitary, Boolean) Coalgebraic Logic of a Set-Functor. The general
considerations laid out above suggest to define the finitary (Boolean) coalgebraic
logic associated to a given functor T : Set→ Set as

LFn = PT opSFn (6)

where Fn denotes the free Boolean algebra over n generators, for n ranging over
natural numbers. The semantics δ is given by observing that natural transfor-
mations δ : LP → PT are in bijection with natural transformations
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δ̂ : L→ PT opS (7)

so that we can define δ̂ to be the identity on finitely generated free algebras.
More explicitly, LA can be represented as the free BA over {σ(a1, . . . an) |

σ ∈ PT opSFn, ai ∈ A, n < ω} modulo appropriate axioms, with δX : LPX →
PT opX given by δσ(a1, . . . an) = PT op(â)(σ) where â : X → SFn is the adjoint
transpose of (a1, . . . an) : n → UPX , with the forgetful functor U : BA → Set
being right adjoint of F . 1 Of course, in concrete examples one is often able to
obtain much more succinct presentations:

Proposition 2.3. With T = P, the functor L defined by (6) is isomorphic to
the functor L of Example 2.1.

VIII. Positive Coalgebraic Logic. It is evident that, at least for some of the
developments above, not only the functor T , but also the categories Set and
BA can be considered parameters. Accordingly, one expects that positive coal-
gebraic logic takes place over the category DL of (bounded) distributive lattices
which in turn, is part of an adjunction P ′ : Posop → DL, taking upsets, and
S′ : DL → Posop , taking prime filters, or, equivalently, P ′X = Pos(X,�) and
S′A = DL(A,�) where � is, as before, the two-chain (possibly considered as a
distributive lattice). Consequently, the ‘natural semantics’ of positive logics is
‘ordered Kripke frames’. That is, we may define a logic for T ′-coalgebras, with
T ′ : Pos→ Pos, to be given by a natural transformation

δ′ : L′P ′ → P ′T ′op (8)

where
L′F ′n = P ′T ′opS′F ′n (9)

is a functor determined by its action on finitely generated free distributive lattices
and δ′ is given by its transpose in the same way as (7).

Example 2.4. Let T ′ be the convex powerset functor P ′ and L′ : DL→ DL be the
functor mapping a distributive lattice A to the distributive lattice L′A generated
by �a and ♦a for all a ∈ A, and quotiented by the relations stipulating that �
preserves finite meets, ♦ preserves finite joins, and

�a ∧ ♦b ≤ ♦(a ∧ b) �(a ∨ b) ≤ ♦a ∨�b (10)

The natural transformation δ′X : L′P ′X → P ′P ′opX is defined by, for a ∈ P ′X ,

♦a �→ {b ∈ PX | b ∩ a �= ∅}, (11)

the clause for �a being the same as in (5).

1 Since elements in PTSFn are in one-to-one correspondence with natural transfor-
mations Set(−, 2n) → Set(T−, 2), also known as predicate liftings [25], we see that
the logic L coincides with the logic of all predicate liftings of [27], with the difference
that L also incorporates axioms. The axioms are important to us as otherwise the
natural transformation β mentioned in the introduction might not exist.
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Remark 2.5. Alg(L′) is the category of positive modal algebras of Dunn [10] and
we will show that it is isomorphic to Alg(L′) in Corollary 3.6. Again we have
that for finite X , δ′X is an isomorphism, a representation first stated in [12,13],
the connection with modal logic being given by [30,26,1] and investigated from
a coalgebraic point of view in [24].

3 On Pos and Pos-Enriched Categories

I. The Category Pos of Posets and Monotone Maps. Pos is complete and co-
complete (even locally finitely presentable [3]), limits being computed as in Set,
while for colimits one has to quotient the corresponding colimits obtained in the
category of preordered sets and monotone maps (however, directed colimits are
computed as in Set, see [3]). Pos is also cartesian closed, with the internal hom
[X,Y ] being the poset of monotone maps from X to Y , ordered pointwise.

This paper will consider categories enriched in Pos because this automatically
takes care of the algebraic operations being monotone. Therefore when we say
category, functor, natural transformation in what follows, we always mean the
enriched concept. Thus a category has ordered homsets and functors are locally
monotone, that is, they preserve the order on the homsets.

When we want to deal with non-enriched concepts, we always call them ordi-
nary. Thus, for example, the category Pos has its underlying ordinary category
Poso. Everything below with the subscript o is the underlying ordinary thing of
the Pos-enriched thing.

In particular, we consider Set as discretely enriched over Pos. Then D : Set→
Pos, the discrete functor, is trivially Pos-enriched. There are two more Pos-
categories appearing in this paper, namely BA and DL. The first one is considered
discretely enriched, while in DL the enrichment is a consequence of the natural
order induced by operations.

II. Sifted Weights and Sifted (co)Limits. The theory of (locally monotone)
Pos-functors and their logics of monotone modal operators naturally leads to the
world of ordered varieties. Since the details are only needed for the proofs (which
had to be omitted for reasons of space) we note here only that our arguments
are based on [21,8,22,17].

In the non-enriched setting, a functor on a variety preserves ordinary sifted
colimits iff it preserves filtered colimits and reflexive coequalizers. In the Pos-
enriched setting, a functor on an ordered variety preserves (enriched) sifted col-
imits iff it preserves filtered colimits and reflexive coinserters. We recall that the

coinserter ([16]) of a parallel pair of arrows X
f

��

g
�� Y in a Pos-category con-

sists of an object coins(f, g) and of an arrow π : Y → coins(f, g) with πf ≤ πg,
with the following universal property: for any q : Y → Z with qf ≤ qg, there is
a unique h : coins(f, g) → Z with hπ = q. Moreover, this assignment is mono-
tone, in the sense that given q, q′ : Y → Z with q ≤ q′, qf ≤ qg and q′f ≤ q′g, the
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corresponding unique arrows h, h′ : coins(f, g) → Z satisfy h ≤ h′. The coinserter
is called reflexive if f and g have a common right inverse. By switching the
arrows, one obtain the dual notion of a (coreflexive) inserter.

III. Functors Preserving Sifted Colimits and their Equational Presentation.
Denote by Setf the category of finite sets and maps and by ι the composite

Setf ↪→ Set
D→ Pos. Then Pos is the free cocompletion of Setf under (enriched)

sifted colimits [21].
A functor T : Pos → Pos is called strongly finitary if one of the equivalent

conditions below holds: (i) T is isomorphic to the left Kan extension along ι of
its restriction, that is T ∼= Lanι(T ι); (ii) T preserves sifted colimits.

Recall that there are monadic (enriched) adjunctions F " U : BA → Set,
F ′ " U ′ : DL → Pos, where U and U ′ are the corresponding forgetful functors.
We denote by J : BAff → BA and J′ : DLff → DL the inclusion functors of
the full subcategories spanned by the algebras which are free on finite (discrete
po)sets.

Lemma 3.1. J and J′ exhibit BA, respectively DL, as the free cocompletions
under sifted colimits of BAff and DLff . In particular, these functors are dense.

Corollary 3.2. A functor L : BA→ BA has the form LanJ(LJ) iff it preserves
(ordinary) sifted colimits. A functor L′ : DL → DL has the form LanJ′(L′J′) iff
it preserves sifted colimits.

Theorem 3.3. Suppose L : BA→ BA and L′ : DL→ DL preserve sifted colimits.
Then they both have an equational presentation.

Remark 3.4. The (proof of the) above theorem actually shows that every functor
L′ : DLff → DL (i.e., every L′ preserving sifted colimits) has a presentation in
the form of a coequalizer

ĤΓ
��
�� ĤΣ

�� L′

for some strongly finitary signatures Γ and Σ, i.e. some locally monotone func-
tors Γ,Σ : |Setf | → Pos, where |Setf | is the skeleton of the category of finite

sets. Here, ĤΣ is defined as follows: given Σ : |Setf | → Pos, HΣ : Setf → Pos is
the polynomial strongly finitary functor

HΣn =
∐

k∈|Setf |
Setf (k, n) •Σk

and it extends to a strongly finitary HΣ : Pos → Pos by sifted colimits. In the
above formula,

∐
and • refers to the coproduct, respectively copower in the

category Pos. The resulting ĤΣ : DLff → DL is thus given, at a free distributive
lattice with finite discrete set of generators, by

ĤΣ(F ′Dn) = F ′HΣU ′(F ′Dn)

(see Remark 3.16 of [28]) and, again, it is extended to an endofunctor on DL by
means of sifted colimits.
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We say that a functor DL → DL has a presentation by monotone operations
and equations if it has a presentation by operations and equations in the sense
of [7], such that, moreover, all operations are monotone. We then obtain the
following enriched version of [19, Theorem 4.7], characterizing enriched sifted
colimits preserving functors in terms of presentations with monotone operations.

Corollary 3.5. A functor L′ : DL→ DL has a presentation by monotone oper-
ations and equations if and only if L′ is the Pos-enriched left Kan extension of
its restriction to finitely generated free distributive lattices.

As in Proposition 2.3, we now obtain that

Corollary 3.6. If T ′ is the the convex powerset functor, then the functor L′

of Example 2.4 is isomorphic to the sifted colimits preserving functor L′ whose
restriction to DLff is P ′T ′opS′ as in (8).

IV. The Pos-extension of a Set-functor. In order to relate Set and Pos-functors,
we recall from [4] the following

Definition 3.7. Let T be an endofunctor on Set. A Pos-endofunctor T ′ is said
to be a Pos-extension of T if it is locally monotone and if the square

Pos
T ′

�� Pos

Set
T

��

D

��

Set

D

��

↖α (12)

commutes up to an isomorphism α : DT → T ′D.
A Pos-extension T ′ is called the posetification of T if the above square exhibits

T ′ as LanDDT (in the Pos-enriched sense), having α as its unit.

If T is finitary, then its posetification does exist. This can be seen by expressing
LanD(DT ) as a coend

LanD(DT )X =

∫ S∈Set

[DS,X ] •DTS (13)

and taking into account that T is determined by its action on finite sets:
explicitly, the coend becomes

LanD(DT )X =

∫ n∈Setf

[Dn,X ] •DTn (14)

which in turn is the following Pos-coequalizer∐
m,n<ω

Set(m,n)× Tm× [Dn,X ] ��
�� ∐
n<ω

Tn× [Dn,X ]
π ��LanD(DT )X (15)

In formulae above, [−,−] denotes the internal hom in Pos and × refers to the
(cartesian) product of posets, ordered component-wise.
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Posetifications of (finitary) Set-functors are immediate examples of strongly
finitary Pos-functors. Briefly, one can say that a Pos-functor is a posetification
if it has a presentation by monotone operations and discrete arities. In fact, we
can be much more precise: a functor T ′ : Pos → Pos is the posetification of a
finitary Set-functor if it is strongly finitary and preserves discrete sets.

Example 3.8. 1. Let T = Id on Set. Then the discrete connected components
functor and the upper-sets-functor are both extensions of T , while
Id : Pos→ Pos is the posetification (recall that the discrete functor D is dense,
see [9]).

2. If we take T = Pf to be the (finite) power-set functor, then its posetification
is the (finitely generated) convex power-set functor, with the Egli-Milner
order ([4,28]).

3. The collection of (finitary) Kripke polynomial Set-functors is inductively
defined as follows: T ::= Id | TX0 | T0 + T1 | T0 × T1 | TA | Pf , where TX0

denotes the constant functor to the set X0; T0 +T1 is the coproduct functor
X �→ T0X +T1X ; T0×T1 the product functor; and TA denotes the exponent
functor X �→ (TX)A, with A finite.
We have just seen above that the posetification of the identity functor is
again the identity, while for the constant functor TX0 is an easy exercise
to check that the posetification is again a constant functor, this time to the
discrete poset DX0; the posetification of the coproduct functor T0+T1 maps
a poset X to the coproduct (in the category of posets) T ′

0X + T ′
1X , where

T ′
0 and T ′

1 denote the posetifications of T0, respectively T1; and similarly for
the product and exponent functors.

4. The finitary distribution functor is given by DX = {d : X → [0, 1] |∑
x∈X d(x) = 1, supp(d) < ∞}, where supp(d) = {x ∈ X | d(x) �= 0}.

For function f : X → Y , we have D(f)(d)(y) =
∑

y = f(x)d(x). Recall that
D preserves weak pulbacks ([29]), thus the posetification D′ can be described
using the relation lifting ([4]). Explicitly, for a poset (X,≤), D′(X,≤) has un-
derlying set DX , where for d, d′ ∈ D, the partial order reads d ≤ d′ iff there
is some ω ∈ D(X ×X) such that ω(x, y) > 0 ⇒ x ≤ y,

∑
y∈X ω(x, y) = d(x)

and
∑

x∈X ω(x, y) = d′(y).

V. Morphisms of Logical Connections. We recall the (enriched) logical con-
nections (dual adjunctions, see [20]) between sets and Boolean algebras, and
between posets and distributive lattices. Both should be seen as Pos-enriched,
where for the first logical connection the enrichment is discrete. They are related
as follows:

Setop ⊥
P

��

Dop

��

BA
S

��

W

��

Posop ⊥
P ′

�� DL
S′

��

(16)
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In the top row of the above diagram, recall again that P is the contravariant
powerset functor, while S maps a Boolean algebra to its set of ultrafilters. The
bottom row has P ′ mapping a poset to the distributive lattice of its upper-sets,
and S′ associating to each distributive lattice the poset of its prime filters. About
the pair of functors connecting the two logical connections: D was introduced
earlier as the discrete functor, while W is the functor associating to each Boolean
algebra its underlying distributive lattice.

It is easy to see that the pair (Dop ,W ) is a morphism of adjunctions in the
sense of [23]. This means that the equalities

P ′Dop = WP, DopS = S′W, ε′Dop = Dopε (17)

hold, where ε and ε′ are the counits of S " P and S′ " P ′, respectively.

4 Positive Coalgebraic Logic

We now expand the propositional logics BA and DL by modal operators. We start
with a Set-endofunctor T in the top left-hand corner of (16). We are mostly inter-
ested in the case where T ′ : Pos → Pos is the posetification of T (Definition 3.7)
and L : BA→ BA and L′ : DL→ DL are (the functors of) the associated logics as
in (6) and (9), in which case we denote the logics by boldface letters L and L′.

But some of the following holds under the weaker assumptions that T ′ is some
extension of T and that L and L′ are some logics for, respectively, T and T ′.
We therefore let T be a Set-endofunctor and T ′ be an extension of T to Pos as
in (12). Logics for T, T ′ are given by functors L : BA → BA and L′ : DL → DL
and natural transformations

δ : LP → PT op δ′ : L′P ′ → P ′T ′op .

Intuitively, δ and δ′ assign to the syntax given by (presentations of) L and L′

the corresponding semantics in subsets or upper sets. To compare L and L′ we
need the isomorphism α : DT → T ′D saying that T ′ extends T , and also the
relation WP = P ′D from (17) (which formalizes the trivial observation that
taking upsets of a discrete set is the same as taking all subsets). Referring back
to the introduction, we now make the following

Definition 4.1. We say that a logic (L′, δ′) for T ′ is a positive fragment of
the logic (L, δ) for T , if there is a natural transformation β : L′W → WL with
Wδ ◦ βP = P ′αop ◦ δ′Dop , or, in diagrams

Setop
P ��

T op

��

BA
W ��

L

��

↙δ

DL

L′

��

↙β =

Setop
Dop

��

T op

��

Posop
P ′

��

T ′op
��

↙αop

DL

L′

��

↙δ′

Setop
P

�� BA
W

�� DL Setop
Dop

�� Posop
P ′

�� DL

(18)

We call (L′, δ′) the (maximal) positive fragment of (L, δ) if β is an isomorphism.
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Recall that we defined the logics L,L′ induced by T and an extension T ′ as
L = PTS and L′ = P ′T ′opS′ on finitely generated free objects. Our desired
result is to prove that a certain canonically given β : L′W → WL is an iso-
morphism. The difficulty, as well as the need for the proviso that T preserves
weak pullbacks, stems from the fact that in DL (as opposed to BA) the class of
functors determined on finitely generated free algebras is strictly smaller than
the class of functors determined on finitely presentable (=finite) algebras. As
stepping stones, therefore, we first investigate what happens in the cases where
the functors L,L′ are determined on all algebras and on finitely presentable alge-
bras, before we turn to the situation of functors determined on strongly finitely
presentable (=finitely generated free) algebras.

I. The Case of L′ = P ′T ′opS′ on All Algebras. We shall associate to any exten-
sion α : DT → T ′D the pairs (L, δ) and (L′, δ′) corresponding to T and T ′ respec-
tively, with L = PT opS and δ = PT opε : PT opSP → PT op , L′ = P ′T ′opS′ and
δ′ being defined analogously. Now the following is a consequence of (Dop ,W )
being a morphism of adjunctions (see (17)). We then immediately obtain an
isomorphism β:

Proposition 4.2. Given an extension α : DT → T ′D, the isomorphism

BA
S ��

W

��

Setop

Dop

��

T op
�� Setop

Dop

��

P �� BA
�� ����

L

W

��

DL
S′

�� Posop
T ′op

�� Posop
P ′

��

↗αop

DL�� ���	
L′

exhibits L′ = P ′T ′opS′ as the maximal positive fragment of L = PT opS.

II. The Case of L̄′ = P ′T ′opS′ on Finitely Presentable Algebras. A similar
result holds if we define logics via PT opSA for finitely presentable A, as we
are going to show now. To this end, we use the subscript (−)f to denote the
restriction to finite2 objects as e. g. when writing the dense inclusions I : Setf →
Set, I ′ : Posf → Pos, J : BAf → BA and J ′ : DLf → DL. Note that we have the
following commuting diagram

Sf " Pf
(Dop

f ,Wf )
��

(Iop ,J)

��

S′
f " P ′

f

(I′op ,J′)
��

S " P
(Dop ,W )

�� S′ " P ′

(19)

2 As Pos is locally finitely presentable as closed category, and ordinary categories
Seto,DLo,BAo are also locally finitely presentable, it follows that the finitely pre-
sentable objects in all the above categories are precisely the same as in the ordinary
case, i.e. the ones for which the underlying set is finite.



62 A. Balan, A. Kurz, and J. Velebil

in the category of transformations of adjoints.
Define (L̄, δ̄) for T as L̄ = LanJ (PT opSJ) and δ̄ = L̄P → PT op as the adjoint

transpose of L̄ → PT opS arising from the universal property of the left Kan
extension L̄. By construction, L̄ is finitary and is given by PT opS on finite(ly
presentable) Boolean algebras. Similarly, obtain (L̄′, δ̄′) for T ′.

Since W is left adjoint,3 LanJ(PT opSJ) is preserved by W . Thus, to define
an (iso)morphism β̄ : L̄′W = LanJ′(P ′T ′opS′J ′)W → WL̄ = LanJ(PT opSJ)W ,
it suffices to take the restriction along J of the isomorphism of Proposition 4.2,
namely β̄f : L′J ′Wf = P ′T ′opS′J ′Wf

∼= WPT opSJ.
Recall the definition of L from (6). Since every finitely presentable non-trivial

Boolean algebra is a retract of a finitely generated free algebra, we can take
L = L̄ (see eg [19, Prop 3.4]. To summarize, we have

Proposition 4.3. The isomorphism β̄ exhibits L̄′ = P ′T ′opS′J ′ as the maximal
positive fragment of (L, δ).

The proposition does not yet give us the desired result, as L̄′ is not necessarily
determined by its action on finitely generated free algebras and, therefore, need
not give rise to a variety of modal algebras. Paragraph III. will investigate when
L̄′ does actually have this additional property.

III. The Case of L′ = P ′T ′opS′ on Finitely Generated Free Algebras. Recall
that we denoted by J : BAff → BA and J′ : DLff → DL the inclusion functors of
the full subcategories spanned by the algebras which are free on finite discrete
posets.

Definition 4.4. Let T ′ be a Pos-endofunctor. We define the logic for T ′ to be
the pair (L′, δ′), where:

– L′ : DL → DL is a Pos-functor preserving sifted colimits, whose restriction
to free finitely generated distributive lattices is P ′T ′opS′J′, that is, L′ =
LanJ′(P ′T ′opS′J′).

– δ′ : L′P ′ → P ′T ′op is the adjoint transpose of L′ → P ′T ′opS′ given by the
universal property of the left Kan extension L′.

Remark 4.5. By the above definition, L′ preserves sifted colimits. Thus, by
Corollary 3.5, L′ has an equational presentation by monotone operations, which
in turn gives rise to a positive modal logic concretely given in terms of modal
operators and axioms.

Recall that L̄′ = P ′T ′opS′ on finitely presentable (=finite) algebras and that
L′ = P ′T ′opS′ on finitely generated free algebras.

Theorem 4.6. Let T be a Set-endofunctor and T ′ a Pos-extension of T which
preserves coreflexive inserters. Then (L̄′, δ̄′) and (L′, δ′) coincide. In particular,
it follows that L′ is the maximal positive fragment of L.

3 The (enriched) right adjoint of W sends a distributive lattice A to the Boolean
algebra of complemented elements in A (also known as the center of A).
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Remark 4.7. The isomorphism (L̄, δ̄) ∼= (L, δ) of the corresponding Boolean logic
for Set-functors was established in [19]. (Recall that L was introduced in (6),
while L̄ appeared in Paragraph II. above.)

Proposition 4.8. If T ′ is a Pos-endofunctor (thus locally monotone) which
preserves exact squares, then it preserves embeddings and coreflexive inserters.

The reader should think of an exact square as being the Pos-enriched analogue
of a weak pullback (see [11], [5] or [4] for the precise definition).

Proposition 4.9 ([4]). Let T be any finitary Set-functor and T ′ its posetifica-
tion. Then T preserves weak pullbacks if and only if T ′ preserves exact squares.

As a consequence of all the results of this section, we obtain

Theorem 4.10. Let T : Set→ Set be a finitary weak-pullback preserving functor
and T ′ : Pos → Pos its posetification. Let (L, δ) and (L′, δ′) be the associated
logics of T and T ′, that is L = LanJ(PT opSJ) and L′ = LanJ′(P ′T ′opS′J′).
Then (L′, δ′) is the maximal positive fragment of (L, δ).

Example 4.11. For T = Id, the corresponding finitary logics is L = Id on BA,
with trivial semantics δ : LP → PT op. It allows the extension T ′ = DC,
the discrete connected components functor. Notice that T ′ does not preserve
embeddings, neither coreflexive inserters. The corresponding logic L′ is given by
the constant functor to the distributive lattice �. Thus β : L′W → WL fails to
be an isomorphism (it is just the unique morphism from the initial object).

Our introductory example of positive modal logic is now regained as an instance
of this theorem.4 It can also easily be adapted to Kripke polynomial functors.
More interesting is the case of the probability distribution functor. We know
from the theorem above that it has a maximal positive fragment, but an explicit
description still needs to be worked out.

5 Monotone Predicate Liftings

In this section we show that the logic of the posetification T ′ of T coincides with
the logic of all monotone predicate liftings of T .

Recall that a predicate lifting [25,27] of arity n for T is an ordinary natural
transformation ♥ : Seto(−, 2n) → Seto(T−, 2),5 or, using the ordinary adjunc-
tion Do " V : Poso → Set, an ordinary natural transformation

♥ : Poso(Do−, [n,�]) → Poso(DoT−,�)

4 A minor issue here is that modal logic usually takes as semantics coalgebras for the
(non-finitary) powerset, whereas for the posetification to exist we sofar assumed T
to be finitary. There are two solutions to this. One is to note that going from T
to its finitary coreflection Tω and then to its posetification T ′

ω does not change the
functors L,L′ on the algebraic side. The second is to prove that the posetification
exists despite the functor not being accessible.

5 Equivalently, it can be described as an element ♥ ∈ Set(T (2n), 2).
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It is called monotone if it lifts to a natural transformation

♥ : Pos(D−, [Dn,�]) → Pos(DT−,�)

By identifying a predicate lifting with an map ♥ : T (2n) → 2, the above says
that ♥ is monotone if for all a1 ≤ a2 : DoX → [Don,�], we have that ♥ ◦ Ta1 ≤
♥ ◦ Ta2, where f : DoX → Y denotes the adjoint transpose of f : X → V Y .

Consider now a Pos-functor T ′ (locally monotone!) and a finite poset p. By
mimicking the above, we define a predicate lifting for T ′ of arity p as being a
natural transformation6

♥ : Pos(−, [p,�]) → Pos(T ′−,�)

Proposition 5.1. Let T be a Set-functor and T ′ : Pos → Pos an extension.
Then:

1. There is an injection from the set of predicate liftings of T ′ of arity p into
the set of monotone predicate liftings of T of arity V p.
In particular, the set of predicate liftings of T ′ of discrete arity n embeds
into the monotone predicate liftings of T .

2. In case T ′ is the posetification of T , the above mapping is a bijection.

As a corollary, we obtain

Corollary 5.2. Let T be a finitary Set-functor. If the posetification T ′ of T
preserves embeddings, then the logic of all monotone predicate liftings of T is
expressive.

Remark 5.3. We know from [4] that if T preserves weak pullbacks then T ′ pre-
serves embeddings. So the above theorem applies to weak-pullback preserving
functors. This result was obtained in [18, Cor 6.9] already in a different way.
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Topol. Géom. Différ. Catég. 23, 3–42 (1982)

16. Kelly, G.M.: Elementary Observations on 2-Categorical Limits. Bull. Austral.
Math. Soc. 39, 301–317 (1989)

17. Kelly, G.M., Lack, S.: Finite Product-Preserving-Functors, Kan Extensions and
Strongly-Finitary 2-Monads. Appl. Categ. Struct. 1, 85–94 (1993)

18. Kurz, A., Leal, R.: Equational Coalgebraic Logic. ENTCS 249, 333–356 (2009)
19. Kurz, A., Rosický, J.: Strongly Complete Logics for Coalgebras, Logic. Meth. Com-

put. Sci. 8, 1–32 (2012)
20. Kurz, A., Velebil, J.: Enriched Logical Connections. Appl. Categ. Struct (2011)

(online first)
21. Kurz, A., Velebil, J.: Quasivarieties and Varieties of Ordered Algebras: Regularity

and exactness (February 2013),
http://www.cs.le.ac.uk/people/akurz/pos_ua.pdf (submitted)
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Abstract. The notion of relation lifting can be generalised to work with
many-valued relations while retaining many vital properties of the “clas-
sical” relation lifting. We show that polynomial endofunctors of the cat-
egory of sets and mappings admit V -relation lifting for relations taking
values from a commutative quantale V . Using the technique of functor
presentations, we then show that every finitary weak pullback preserving
functor admits a V -relation lifting for V being a complete Heyting alge-
bra. As an application of the many-valued lifting we inspect the notion of
many-valued bisimulation and we introduce an expressive many-valued
variant of Moss’ logic for T -coalgebras, parametric in the functor T .

Keywords: coalgebra, coalgebraic logic, relation lifting, many-valued
logic.

1 Introduction

Relation lifting [3], given a Set functor T , allows us to “lift” a relation R : A � B
to a relation T (R) : TA � TB in a functorial way. It is in particular useful
to introduce the notion of bisimulation, and to define semantics for the cover
modality ∇ in Moss’ coalgebraic logic [13], [11].

In this paper we generalise the notion of relation lifting to many-valued rela-
tions, taking values from a certain many-valued structure V . This generalisation
will allow us to define a many-valued variant of Moss’ coalgebraic logic.

Since the definition of relation lifting for polynomial functors is very intuitive,
it is not hard to see that there are ways to define a generalised version of rela-
tion lifting even for many-valued relations. Showing that the intuitive inductive
definition indeed works is the first result of this paper.
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Proving that there is a many-valued variant of relation lifting for a larger
class of finitary functors preserving weak pullbacks turns out to be harder: we
use presentations of Set functors known from [2], and show how they can be used
to define the standard, as well as the many-valued, relation lifting. To reach the
goal, one needs to put some restrictions on the algebra V . The final result is that
there is a well-behaved V -valued relation lifting for any weak pullback preserving
finitary functor, given an arbitrary complete Heyting algebra V .

The problem of many-valued relation lifting has already been discussed in the
papers [4] and [5]. However, we take a different approach. We are interested in
lifting endofunctors of the base category Set to the category V -mat of sets and
V -valued relations, whereas the base category in [4] is the category of posets, or
V -categories in [5], and they both work essentially in an enriched setting. Thus
the question we have asked ourselves at the beginning was: how far does one get
in defining many-valued relation lifting while staying in the category Set?

Having a working notion of V -valued relation lifting at hand, we turn our
attention to its applications. First we study a notion of V -bisimulation which is
a direct generalisation of the standard, two-valued notion of bisimulation, and
the resulting notion of V -bisimilarity, defined as existence of a V -bisimulation.
We conclude that, as expected, V -bisimilarity coincides with the two-valued
bisimilarity and therefore captures behavioural equivalence. Then we consider
Moss’ coalgebraic logic [13] and study its many-valued variant: given a functor T ,
for which the lifting exists, we introduce a many-valued cover modality ∇ of arity
T , and define its semantics using the V -lifting of the many-valued satisfaction
relation �.

The semantics of many-valued Moss’ logic, defined by the many-valued rela-
tion lifting, allows us to prove that the logic is adequate and expressive with
respect to bisimilarity. To be able to show this we need to restrict the algebra V
once more, namely we prove that the introduced logic is adequate and expressive
for V being a Gödel chain.

The preliminary Section 2 is meant mainly for fixing the notation and it intro-
duces the concepts we work with in a way which directly admits generalisations.
In Section 3 we define the notion of many-valued relation lifting and show how
it retains the properties of the classical relation lifting. Section 4 then deals with
the notions definable by relation lifting: the V -bisimulation and V -Moss’ logic
with many-valued semantics.

2 Preliminaries

The following definition introduces algebraic structures we use to model values
in the many-valued setting.

Definition 1. A commutative quantale V is a complete lattice (V,
∧
,
∨

) with
the structure of a commutative monoid (V,⊗, e) such that the tensor distributes
over arbitrary joins: (∨

i

xi

)
⊗ y =

∨
i

(xi ⊗ y). (1)
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A commutative quantale V with ⊗ = ∧ and e = � is called a complete Heyting
algebra. A complete Heyting algebra V is a Gödel chain if the ordering relation
≤ of the underlying lattice of V is a linear order.

Definition 2 (Many-valued Relations). For a given quantale V , a V -relation
R : A � B is a function R : A × B → V . The composition of two V -relations
R : A � B and S : B � C is a relation S ◦R : A � C such that

(S ◦R)(a, c) =
∨
b∈B

(R(a, b)⊗ S(b, c)) (2)

holds in V . We can form an opposite V -relation Rop : B � A and given subsets
A′ ⊆ A and B′ ⊆ B, we can restrict R to R �A′�B′ in the same way as with two-
valued relations. Given moreover a V -relation S : A � B, we say that R ≤ S if
and only if R(a, b) ≤ S(a, b) for all a ∈ A and b ∈ B.

Sets and V -relations together with V -relation composition form a category
V -mat, where V -mat stands for V -matrices. Observe that the composition for-
mula is a generalisation of matrix multiplication (which can be used to compute
the usual relation composition as well).

Example 3 (Various Functors). We will work with a plenitude of Set functors.
Recall that T : Rel→ Rel is a 2-functor if T (R) ≤ T (S) holds for R ≤ S, and it
is a lax functor provided the inequality T (S) ◦ T (R) ≤ T (S ◦ R) holds instead
of the full equality.

– Polynomial functors are defined by the following Backus-Naur form:

T ::= C | Id | T × T |
∐
i

Ti. (3)

– The powerset functor is denoted by P , and its finitary coreflection by Pω.
For any set X we have Pω(X) = {Y | Y ⊆ X,Y finite}.

– The graph functor gr : Set→ Rel is the inclusion of functions into relations.
– The relation inclusion functor I : Rel → V -mat maps a relation R : A � B

into a V -relation I(R) : A � B. We have I(R)(a, b) = e if R(a, b) holds,
otherwise I(R)(a, b) = ⊥.

– The V -graph functor Gr : Set→ V -mat is the composition I ◦ gr.
– Let v ∈ V be an element of a Gödel chain. The cut lax functor (−)≥v :

V -mat → Rel is defined as follows: R≥v(a, b) if and only if R(a, b) ≥ v.
Similarly, (−)>v : V -mat→ Rel is an honest functor.

As an important example we introduce another functor, which is a many-valued
generalisation of the powerset functor.

Example 4 (V -powerset Functor). Let V be a complete Heyting algebra. We
define PV on objects as PV(A) = V A. Given a function f : A → B the “direct
image” function PV(f) : V A → V B maps α : A→ V to the function β : B → V ,
where β(b) =

∨
{a∈A|f(a)=b}

α(a).
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This functor preserves weak pullbacks. We shall deal exclusively with the
finitary coreflection of this functor: this means that PV(A) will be only the
functions from V A which have finite support.

Remark 5 (Base). Given an element α ∈ TA, we define BaseTA(α) to be the
smallest finite set S ⊆ A such that α ∈ TS, see [11]. For a set A, we thus
obtain a mapping BaseTA : TA → PωA, giving rise to a natural transformation
BaseT : T → Pω, provided T is finitary, standard and preserves weak pullbacks
(for a functor to admit a transformation to the powerset monad, the finitarity
can be dropped and the preservation property can be weakened: it has been
shown in [10] that when T weakly preserves preimages and intersections, the
base exists and is natural).

Finitary functors can be presented by means of polynomial functors. We will
use this fact when defining many-valued relation lifting for finitary functors in
Section 3.

Theorem 6 (Functor Presentations [2]). Every finitary endofunctor of Set
is presentable by a canonical presentation. This means that there is a functor

HΣ =
∐
n∈N

Idn × T (n)

together with a natural epimorphism ε : HΣ → T .

Note 7. We denote the canonical presentation of T by (HΣ , ε). The elements of
HΣA are pairs (a : n → A, σ ∈ Tn). We denote this pair as a term σ(a), as σ
is an operation and a a vector of elements from A. If εA(σ(a)) = α, the term
σ(a) represents α. A generic term representing α is denoted by tα. In general,
we can replace the set T (n) in the definition with an arbitrary set for each n.
This gives a presentation which is in a sense a subpresentation of the canonical
presentation, see [12].

Example 8 (Some Presentations). In the canonical presentation for the functor
Pω, the n-ary operations are elements σ ∈ Pω(n), and for a set A and a vector
a : n → A the term σ(a) represents the subset {a(m) | m ∈ σ} ∈ Pω(A).

The canonical presentation for the functor PV has the elements σ ∈ PV(n)
as n-ary operations: these are functions σ : n → V . Together with a vector
a : n → A, the term σ(a) represents the function α : A → V such that α(a) =∨

a(m)=a σ(m).

Weak pullback preserving functors enjoy the property of having dominated pre-
sentations. This property will become crucial in the proof of functoriality of our
definition of the many-valued lifting (Definition 19), we will define dominated
presentations in the proof of Theorem 14.

In the rest of this section, we state some basic facts about relation lifting. The
following theorem of Trnková [14] characterizes functors admitting a functorial
lifting from the category of sets to the category of sets and relations. The result
can be also derived from Barr’s paper [3].
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Theorem 9 (Lifting Theorem — [14,3]). A
set functor T preserves weak pullbacks if and
only if there exists a 2-functor T : Rel → Rel
such that the square on the right commutes:

Rel Rel

Set Set

T

gr

T

gr

The relation lifting resulting from the theorem can be explicitely computed as
follows:

Definition 10 (Relation Lifting). Given a relation R : A � B and a functor
T , the relation lifting TR of the relation R is defined as follows:

TR = {(α, β) | (∃γ ∈ TR) : Tp1(γ) = α and Tp2(γ) = β}.

Example 11 ((Many-valued) Powerset Lifting). Two elements α ∈ Pω(A), β ∈
Pω(B) are in the lifted relation PωR if and only if the following conditions (the
Egli-Milner lifting) hold:

∀a ∈ α ∃b ∈ β : R(a, b), ∀b ∈ β ∃a ∈ α : R(a, b). (4)

In the case of the functor PV , we get that PV(R)(α, β) holds if and only if

∀a ∈ A :
∨

R(a,b)

β(b) = α(a), ∀b ∈ B :
∨

R(a,b)

α(a) = β(b). (5)

If V is a chain, this simplifies to

∀a ∈ A,α(a) > ⊥ : ∃b ∈ B : (R(a, b) ∧ (α(a) ≤ β(b))), (6)

∀b ∈ B, β(b) > ⊥ : ∃a ∈ A : (R(a, b) ∧ (β(b) ≤ α(a))). (7)

Relation lifting can also be computed using presentations of finitary functors.
The following definition of lifting using presentations coincides with the one
given above.

Lemma 12 (Relation Lifting via Presentations [12]). For a relation R :
A � B and a finitary Set endofunctor T with its presentation (HΣ , ε), the
following two properties are equivalent:

– T (R)(α, β) holds for α ∈ T (A), β ∈ T (B).
– There exist tα ∈ HA representing α and tβ ∈ HB representing β such that

H(R)(tα, tβ).

Remark 13. The standard, two-valued, relation lifting allows us to define bisim-
ulations in a succinct way: we say that for two given coalgebras c : A → TA,
d : B → TB, a relation R : A � B is a bisimulation if for any pair R(a, b)
it follows that T (B)(c(a), d(b)). We say that the states a and b related by R
are bisimilar. In the case that T preserves weak pullbacks, bisimilarity precisely
captures behavioural equivalence.
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3 Many-Valued Relation Lifting

In this section we introduce many-valued relation lifting. Subsequently, this lift-
ing will be used to define a many-valued variant of Moss’ coalgebraic logic.
We also study the notion of many-valued bisimulation which stems from this
approach. We will first introduce many-valued relation lifting for polynomial
functors via operations on many-valued relations. Then, using presentations of
functors, we will extend this notion of lifting to finitary weak pullback preserving
functors. This extension will force us to work with complete Heyting algebras
instead of general quantales.

Theorem 14 (Many-valued Relation Lift-
ing). For a finitary Set endofunctor T preserv-

ing weak pullbacks, there exists a 2-functor T̂ on
the category V -mat which makes the diagram on
the right commute:

V -mat V -mat

Set Set

T̂

Gr

T

Gr

We say that such a functor T̂ is a V -lifting of T . The rest of this section is
dedicated to finding a V -lifting generalising Definition 10 and showing that
V -lifting retains many of the properties of the “standard” relation lifting.

We will define V -lifting for polynomial functors as a straightforward gener-
alisation of the standard relation lifting using two operations on V -relations.

Definition 15. For two V -relations R1 : A1 � B1 and R2 : A2 � B2, we
define their sum to be a relation R1 � R2 : A1 + A2 � B1 + B2 defined as
follows:

R1 �R2(α, β) =

{
Ri(α, β) if α ∈ Ai and β ∈ Bi

⊥ otherwise.
(8)

The tensor of R1 and R2 is a relation R1 �R2 : A1 ×A2 � B1 ×B2 defined on
elements as follows:

R1 �R2((a1, a2), (b1, b2)) = R1(a1, b1)⊗R2(a2, b2). (9)

Definition 16 (V -lifting for Polynomial Functors). We define the V -lifting

T̂ : V -mat→ V -mat for a polynomial endofunctor T of Set inductively:

– For the constant functor T = C, we define T̂ as the constant functor C :
V -mat→ V -mat.

– For the identity functor T = Id, we define T̂ as the identity functor on
V -mat.

– For the sum T = T1 + T2 of functors T1 and T2, we define T̂ by its action
on morphisms as follows: T̂ (R) = T̂1(R) � T̂2(R).

– For the product T = T1×T2 of functors T1 and T2, we define T̂ by its action
on morphisms as follows: T̂ (R) = T̂1(R) � T̂2(R)

The following theorem shows that this definition is correct:

Theorem 17. Definition 16 yields a V -lifting in the sense of Theorem 14. It
satisfies the following requirements:
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– It constitutes a 2-functor T̂ .
– It is an extension of standard relation lifting: I ◦ T = T̂ ◦ I.
– Since T̂ extends the standard lifting, it commutes with the graph functor Gr.

Proof (Theorem 17). To prove that T̂ is a functor for a polynomial T is imme-
diate for the case of a constant functor C and identity functor Id. The other two
cases follow from the following distributive law for sums:

(M ◦N) � (O ◦ P ) = (M �O) ◦ (N � P ), (10)

and a similar one for products. Proving that T̂ is a 2-functor is a straightforward
computation. The fact that V -lifting extends standard lifting comes from the
observation that setting V = 2 yields the standard definition of relation lifting.
The proof that V -lifting commutes with the graph functor Gr then comes from
the fact that gr ◦ T = T ◦ gr and I ◦ T = T̂ ◦ I holds. ��
Example 18 (The Polynomial Functor Z × Id). Given a V -relation R : A � B

and a functor Z× Id, the lifted V -relation Ẑ × Id(R) : Z×A � Z×B is defined
by the following formula:

Ẑ × Id(R)((z1, a)(z2, b)) =

{
R(a, b) if z1 = z2

⊥ otherwise.
(11)

The property of standard relation lifting stated in Lemma 12 hints for a gener-
alisation to the V -valued case, suggesting a definition of lifting for all finitary
functors preserving weak pullbacks. From now on we restrict ourselves to work
with a complete Heyting algebra V .

Definition 19 (V -lifting of Finitary Functors). Given a V -relation R :
A � B and a finitary weak pullback preserving functor T , we define the lifted
V -relation T̂R : TA � TB by the following formula for α ∈ TA and β ∈ TB
using the canonical presentation (HΣ , ε):

T̂ (R)(α, β) =
∨
tα,tβ

ĤΣ(R)(tα, tβ).

The notation in the previous definition is slightly relaxed: we take the supremum
over all pairs (tα, tβ) such that they represent α and β respectively.

Remark 20. By the above definition we have not redefined V -lifting for polyno-
mial functors: even if the canonical presentation of a polynomial functor need
not be the functor itself, it is not hard to see that the two definitions coincide.

The following example for the powerset functor Pω shows that the restriction to
complete Heyting algebras is necessary.

Example 21. Consider a unit interval with multiplication V = ([0, 1], ·, 1) as a
quantale and A = {a}, B = {b}, C = {c1, c2}. Set two relations R : A � B,
S : B � C as follows: R(a, b) = 1

2 , S(b, c1) = 1
3 , S(b, c2) = 1

5 . These data

show that P̂ω is not a functor. We have P̂ω(S ◦ R)({a}, {c1, c2}) = 1
60 , but

P̂ω(S) ◦ P̂ω(R)({a}, {c1, c2}) = 1
30 .
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Now we are ready to prove Theorem 14 in its generality.

Proof (Proof of Theorem 14). We show the harder part of the proof only. For
any two V -relations R : A � B and S : B � C we need to prove the equality

T̂ (S ◦R) = T̂ (S) ◦ T̂ (R).

To prove that for any α ∈ TA and γ ∈ TC the inequality

T̂ (S ◦R)(α, γ) ≤ T̂ (S) ◦ T̂ (R)(α, γ) (12)

holds is easy: it suffices to find for for any triple tα, s, tγ a quadruple tα, tβ , t
′
β, tγ

witnessing the inequality (12). Denote by β the element represented by s. Then
we can set tβ = t′β = s, and this is a witness for the inequality.

For the other inequality it would be enough to find for every quadruple
tα, tβ , t

′
β, tγ a triple t′α, s, t′γ such that

ĤΣR(tα, tβ)⊗ ĤΣS(t′β , tγ) ≤ ĤΣR(t′α, s)⊗ ĤΣS(s, t′γ) (13)

Here we use the fact that weak pullback preserving functors have dominated
canonical presentations. A presentation (HΣ , ε) of a functor T is called dominated
(see [1]) if for any two terms σ(x), τ(y) representing α ∈ T (A) (where x : n → A,
y : m → A and σ ∈ T (n), τ ∈ T (m)) there is an operation ρ ∈ T (k) together
with two maps u : k → n and v : k → m such that T (u)(ρ) = σ, T (v)(ρ) = τ
and x ◦ u = y ◦ v.

Let tα = σ(a), tγ = τ(c) for some σ ∈ T (n), τ ∈ T (m). We can assume for
the other two terms tβ and t′β from the quadruple that they are of the form
tβ = σ(x) and t′β = τ(y)

Since both tβ and t′β represent β and since (HΣ , ε) is a dominated presen-
tation, there is an operation ρ ∈ T (k) together with two maps u : k → n and
v : k → m such that x◦u = y◦v and the operation ρ gets mapped to σ and τ by
T (u) and T (v). Therefore, ρ(x ◦ u) represents β. Set s = ρ(x ◦ u). We now just
have to find suitable terms t′α and t′γ which would witness the inequality (13).
The terms t′α and t′γ are now forced to have ρ as the operation, since s = ρ(x◦u).

Let t′α = ρ(a◦u) and t′γ = ρ(c◦v). These terms represent α and γ respectively.
A tedious but straightforward computation shows that these terms are indeed
the desired witnesses.

The functor T̂ is actually a 2-functor. For a finitary functor T we use its
canonical presentation (HΣ , ε), where HΣ is a polynomial functor. Given two
relations R : A � B and S : A � B with R ≤ S, we see that

T̂R(α, β) =
∨
tα,tβ

ĤΣR(tα, tβ) ≤
∨
tα,tβ

ĤΣS(tα, tβ) = T̂ S(α, β).

��

The V -lifting has some nice properties that can be proved easily.

Fact 22. V -lifting of finitary functors enjoys the following properties:
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– It commutes with opposites: T̂ (Rop) = T̂ (R)op .
– It can be computed by restricting to bases:

T̂ (R)(α, β) = T̂ (R �Base(α)�Base(β))(α, β). (14)

– It can be computed by cuts:

T̂ (R)(α, β) =
∨
v∈V

v ∧ I(T (R≥v))(α, β). (15)

Remark 23. The fact that V -lifting can be computed by cuts implies that V -
lifting does not depend on the choice of presentation, provided it is dominated.

To show examples V -liftings for more involved functors, we restrict ourselves to
a Gödel chain V .

Example 24 (Finitary Powerset). Let R : A � B be a V -relation and α ∈ PωA,
β ∈ PωB two finite subsets. Their V -lifting is given by the following equation

P̂ω(R)(α, β) =

⎛⎝∧
a∈α

∨
b∈β

R(a, b)

⎞⎠ ∧

⎛⎝∧
b∈β

∨
a∈α

R(a, b)

⎞⎠ , (16)

which is a direct generalisation of the Egli-Milner lifting.

Example 25 (Many-valued Powerset). Taking again a V -relation with α ∈ PVA,
β ∈ PVB two finite “fuzzy” subsets, their lifting is computed as follows

P̂V(R)(α, β) =

⎛⎜⎜⎝ ∧
a∈supp(α)

∨
b∈supp(β)
α(a)≤β(b)

R(a, b)

⎞⎟⎟⎠∧
⎛⎜⎜⎝ ∧
b∈supp(β)

∨
a∈supp(α)
β(b)≤α(a)

R(a, b)

⎞⎟⎟⎠ (17)

where supp(α) marks the support of α. Note that again the shape of the formula
resembles the Egli-Milner lifting.

4 A Many-Valued Coalgebraic Logic

Having a working notion of V -lifting at hand, we can use it to define the se-
mantics of a many-valued variant of finitary Moss’ coalgebraic logic, and show
examples of the logic for coalgebras of various Set functors. Moss’ coalgebraic
logic originated in Moss’ paper [13], and its finitary variant extending the boolean
logic has been explored by various authors, see e.g. [11] for an extensive exposure
of the logic, including an axiomatization and a completeness proof.

Using the notion of V -lifting, we can also define a notion of V -bisimulation.
We show that, in the case that V is a Gödel chain, the many-valued Moss’ logic
is expressive for the resulting notion of bisimilarity.
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4.1 Logic and Examples

Let us fix a finitary functor T and a complete Heyting algebra V with the
operations ∧, ∨ and → (the Heyting implication, i.e. the residuum of ∧). We
are going to introduce the syntax and semantics of Moss’ many-valued logic (V -
logic), which very much resembles the standard definition of Moss’ logic. For
the sake of expressivity, we include the elements of the Heyting algebra into the
syntax of our language as canonical constants. The modal part of the language
consists in the single operator ∇, which has the coalgebra functor T as its arity.
It is sometimes called the cover modality.

Definition 26 (Syntax of Moss’ V -logic). With a fixed set of atomic propo-
sitions At, we construct the language L of the coalgebraic logic inductively:

ϕ ::= v | s | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ∇α, (18)

where v ∈ V , s ∈ At and α ∈ TL.

The definition of semantics uses the operations of the Heyting algebra V .

Definition 27 (Semantics of Moss’ V -logic). For a coalgebra c : A → TA
together with the atomic evaluation function eva : At→ V for every state a ∈ A,
we define the satisfaction V -relation �c: A � L inductively as follows:

a �c v = v,
a �c s = eva(s),
a �c ϕ ∧ ψ = (a �c ϕ) ∧ (a �c ψ),
a �c ϕ ∨ ψ = (a �c ϕ) ∨ (a �c ψ),
a �c ϕ→ ψ = (a �c ϕ) → (a �c ψ),

a �c ∇α = c(a) T̂ (�c) α,

where again v ∈ V and s ∈ At.

Now we will show examples of V -logics for functors whose V -lifting we have
computed in Section 3.

Example 28 (Logic for Streams). For a coalgebra c : A → Z ×A for the stream
functor Z × Id and a state a ∈ A, we shall look at the meaning of the modal
formula ∇(z, ϕ). Let c(a) = (z′, a′). Then

a �c ∇(z, ϕ) =

{
a′ �c ϕ if z = z′

⊥ otherwise.

Example 29 (Logic for the Functor Pω). Given a coalgebra c : A→ PωA for the
powerset functor, a finite set α of formulas from L, and considering that V is
a Gödel chain, the semantics of the modal formula ∇(α) is defined as follows,
compare to Example 24:

a �c ∇α =

⎛⎝ ∧
a′∈c(a)

∨
ϕ∈α

a′ �c ϕ

⎞⎠ ∧

⎛⎝∧
ϕ∈α

∨
a′∈c(a)

a′ �c ϕ

⎞⎠ .
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Remark 30. Observe that Pω-coalgebras are crisp Kripke frames considered by
Bou et al. in [6] (and introduced by Fitting in [8,9]): we can understand such
a colagebra as a set of states equipped with a two-valued accessibility relation,
plus a many-valued valuation. We restrict ourselves to image-finite frames. The
many-valued box and diamond modalities used in [6] are interdefinable with the
∇ modality presented here.

�ϕ ≡ ∇{ϕ,�}, �ϕ ≡ ∇{ϕ} ∨ ∇∅.

Example 31 (Logic for the Functor PV). Coalgebras for the functor PV are again
the same structures as those introduced by Fitting in [8,9] as Heyting valued
frames, and considered by Bou et al. in [6] as many-valued Kripke frames: namely,
we can understand such a coalgebra as a set of states equipped with a many-
valued accessibility relation, plus a many-valued valuation. Consider a coalgebra
c : A → PVA and consider a Gödel chain V . Then the semantics of ∇ is given
by the following formula, compare to Example 25:

a �c ∇α =

⎛
⎜⎜⎝ ∧

a′∈supp(c(a))

∨
ϕ∈supp(α)

c(a)(a′)≤α(ϕ)

a′ �c ϕ

⎞
⎟⎟⎠ ∧

⎛
⎜⎜⎜⎝

∧
ϕ∈supp(α)

∨
a′∈supp(c(a))

α(ϕ)≤c(a)(a′)

a′ �c ϕ

⎞
⎟⎟⎟⎠ .

4.2 Bisimulation and Expressivity

In this section we will look at the notion of V -bisimulation which can be defined
using V -lifting, as a straightforward generalisation of the notion of standard
bisimulation mentioned in Remark 13.

Definition 32 (V -Bisimulation and V -Bisimilarity). A V -relation R :
A � B is a V -bisimulation for coalgebras c : A → TA and d : B → TB if
for every a ∈ A and b ∈ B

R(a, b) ≤ T̂ (R)(c(a), d(b)) (19)

holds. States a and b are called V -bisimilar if there exists a V -bisimulation R
such that R(a, b) > ⊥.

Given furthermore an atomic evaluation functions ev for the states, the rela-
tion M : A � B defined as

M(a, b) =

{
e if eva = evb

⊥ otherwise.
(20)

is called atomic harmony. A V -bisimulation R : A � B with the property R ≤M
is called V -bisimulation with atomic harmony.

Remark 33. From the properties of the V -relation lifting, namely that it com-
mutes with opposites and is functorial, it follows that V -bisimilarity is reflexive,
transitive and symmetric, i.e. it is an equivalence relation. While bisimulations
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are many-valued, the bisimilarity notion we adopt is two-valued. It doesn’t come
as a surprise that it in fact coincides with the standard notion of bisimilarity,
and consequently captures behavioural equivalence.

Fact 34 (Bisimilarity Coincides With V -bisimilarity). A standard bisim-
ulation can be interpreted as a V -bisimulation. Therefore, if two states are bisim-
ilar, they are V -bisimilar as well.

For any V -bisimulation R, its cut R>⊥ is a bisimulation. Therefore, if two
states are V -bisimilar, they are bisimilar as well.

Next we will prove that the many-valued Moss’ logic has the Hennessy-Milner
property — it is adequate and expressive with respect to the notion of bisimi-
larity introduced above, provided V is a Gödel chain.

Theorem 35 (Expressivity of V -logic). Let V be a Gödel chain and c : A →
TA and d : B → TB coalgebras.

1. (Adequacy.) Let R : A � B be a V -bisimulation with atomic harmony. Then
for all ϕ ∈ L the following inequality holds:

(R(a, b) ∧ a �c ϕ) ≤ b �d ϕ.

2. (Expressivity.) The relation R : A � B defined as

R(a, b) iff for all ϕ ∈ L : a �c ϕ = b �d ϕ

is a bisimulation with atomic harmony.

Proof. We only sketch the proof of expressivity. We show, that R(a, b) entails

T̂ (R)(c(a), d(b)) = e, proving that R is a bisimulation. For each ai ∈ Base(c(a))
and bj ∈ Base(d(b)), such that R(ai, bj) �= e, we fix a single formula φij such
that a �c φij �= b �d φij . Then we define a function f : Base(a) → L as follows
(using the presence of the canonical constants in the language):

f(a) =
∧

{bj |R(ai,bj) �=e}
(φij ↔ (a �c φij)).

Then ai �c f(ai) = e, and bj �d f(ai) = e entails R(ai, bj) = e. The former

means that Gr(f) ≤ �c, therefore Gr(Tf) ≤ T̂ (�c). Putting α = (Tf)c(a) we

know that c(a) T̂ (�c) α = e and therefore a �c ∇α = e. From the latter we
obtain the following lax commutative diagram in V -mat, and, using moreover
the properties of the lifting, its lax commutative lifting:

Base(c(a))
���

� R
�����

�Gr(f)

��

Base(d(b))↗

L
������

(I�≥e
d )op

�������

�→ TBase(c(a))
���

�T̂ (R)
		���

�Gr(Tf)

��

TBase(d(b))↗

TL
�					

(T̂ (I�≥e
d ))op

��					
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Since a �c ∇α = e and R(a, b), also b �d ∇α = e and d(b) T̂ (�d) α =

e. It suffices to show that then d(b) T̂ (I(�≥e
d )) α = e, to conclude that

T̂ (R)(c(a), d(b)) = e using the second diagram. To that end we use the assump-

tion that V is a Gödel chain, since then (T̂ (S))≥e ≤ T̂ (I(S≥e)) holds for any V -

relation S: suppose that T̂ (S)(α, β) ≥ e. This means that
∨
tα,tβ

ĤΣS(tα, tβ) ≥ e.

Since there is only finitely many terms representing α and β, and sice V is a
chain, this entails that there are terms tα, tβ with ĤΣS(tα, tβ) ≥ e, proving that

T̂ (I(S≥e))(α, β).
We have explicitly used that the relation lifting is 2-functorial, restricts to

bases, commutes with graphs and opposites of relations, and the fact that the
base is finite and c(a) ∈ TBase(c(a)) and d(b) ∈ TBase(d(b)).

Part 2 of Theorem 35 indeed entails expressivity: if a and b are not V -bisimilar,
then they are not bisimilar, therefore R(a, b) does not hold and there exists a
formula ϕ ∈ L such that (a �c ϕ) �= (b �d ϕ). ��

5 Conclusion and Further Work

We have shown that one can successfully work with many-valued relations, their
lifting, and resulting notions of bisimilarity and Moss’ coalgebraic language,
while in the category of sets. In this sense our results are counterpart to those
obtained in [5] in the enriched setting of V -categories.

We can perceive our definition of Moss’ V -logic as a definition of a minimal
coalgebraic modal logic over the logic of the algebra V , a task closely related to
the motivation behind the work of Bou et. al in [6].

There are several obvious directions of further research of the Moss’ V -logic,
namely to find an axiomatization of the logic, and to prove a completeness result.
Although so far the material has been (up to the technicalities) quite similar
to the case of the standard two-valued setting, with the axiomatization it will
obviously not be so. The main reason we see for that is that we have significantly
complicated the propositional part of the logic, which in general is the logic of V ,
for which the problem of axiomatization could already be hard. The task proved
difficult already in a more standard setting of many-valued modal logics of [6].
The first step therefore would be to axiomatize the modal part only, relatively
over an assumed axiomatization of the logic of V , for some particular examples
of Heyting algebras, namely the finite ones.

We expect it is possible to extend our results to all functors preserving weak
pullbacks (dropping the finitarity requirement) using the “cut” approach. Also
the respective notion of distributive laws should be studied in our setting.

The nabla modality in the boolean context can be used to produce a disjunc-
tive normal form for standard modal logic, the generalisation we introduced may
give rise to certain normal forms in the logic of Fitting [8,9]. This connection is
yet to be understood.
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Saturated Semantics for Coalgebraic

Logic Programming

Filippo Bonchi and Fabio Zanasi

ENS Lyon, U. de Lyon, CNRS, INRIA, UCBL, France

Abstract. A series of recent papers introduces a coalgebraic semantics
for logic programming, where the behavior of a goal is represented by
a parallel model of computation called coinductive tree. This semantics
fails to be compositional, in the sense that the coalgebra formalizing such
behavior does not commute with the substitutions that may apply to a
goal. We suggest that this is an instance of a more general phenomenon,
occurring in the setting of interactive systems (in particular, nominal
process calculi), when one tries to model their semantics with coalgebrae
on presheaves. In those cases, compositionality can be obtained through
saturation. We apply the same approach to logic programming: the re-
sulting semantics is compositional and enjoys an elegant formulation in
terms of coalgebrae on presheaves and their right Kan extensions.

1 Introduction

Coalgebrae on presheaves have been successfully employed to provide semantics
to nominal calculi: sophisticated process calculi with complex mechanisms for
variable binding, like the π-calculus [11,12]. The idea is to have an index category
C of interfaces (or names), and encode as a presheaf F : C→ Set the mapping of
any object i of C to the set of states having i as interface, and any arrow f : i →
j to a function switching the interface of states from i to j. The operational
semantics of the calculus will arise as a notion of transition between states,
that is, as a coalgebra α : F → B(F), where B : SetC → SetC is a functor on
presheaves encoding the kind of behavior that we want to express.

As an arrow in a presheaf category, α has to be a natural transformation, i.e.
it should commute with arrows f : i → j in the index category C. Unfortunately,
this naturality requirement may fail when the structure of C is rich enough, as
for instance when non-injective substitutions [21,24] or name fusions [20,3] occur.
As a concrete example, consider the π-calculus term t = ā〈x〉|b(y) consisting of
a process ā〈x〉 sending a message x on a channel named a, in parallel with b(y)
receiving a message on a channel named b. Since the names a and b are different,
the two processes cannot synchronize. Conversely the term tθ = ā〈x〉|a(y), that
is obtained by applying the substitution θ mapping b to a, can synchronize.
If θ is an arrow of the index category C, then the operational semantics α
is not natural since α(tθ) �= α(t)θ, where θ denotes the application of θ to
the transitions of t. As a direct consequence, also the unique morphism to the

R. Heckel and S. Milius (Eds.): CALCO 2013, LNCS 8089, pp. 80–94, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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terminal coalgebra is not natural: this means that the abstract semantics of π-
calculus is not compositional - in other words, bisimilarity is not a congruence
w.r.t. name substitutions. In order to make bisimilarity a congruence, Sangiorgi
introduced in [23] open bisimilarity, that is defined by considering the transitions
of processes under all possible name substitutions θ.

The approach of saturated semantics [5] can be seen as a generalization of
open bisimilarity, relying on analogous principles: the operational semantics α
is “saturated” w.r.t. the arrows of the index category C, resulting in a natural
transformation α
 in SetC. In [3,22], this is achieved by first shifting the defini-

tion of α to the category Set|C| of presheaves indexed by the discretization |C|
of C. Since |C| does not have other arrow than the identities, α is trivially a

natural transformation in this setting. The source of α is U(F) ∈ Set|C|, where

U : SetC → Set|C| is a forgetful functor defined by composition with the inclu-
sion ι : |C| → C. The functor U has a right adjoint K : Set|C| → SetC sending
a presheaf to its right Kan extension along ι. The adjoint pair U " K induces
an isomorphism (−)
X,Y : Set|C|[U(X), Y ] → SetC[X,K(Y )] mapping α to α
.

The latter is a natural transformation in SetC and, consequently, the abstract
semantics results to be compositional.

In this paper, we show that the saturated approach can be fruitfully instan-
tiated to coalgebraic logic programming [16,18,17], which consists of a novel se-
mantics for logic programming and a parallel resolution algorithm based on
coinductive trees. These are a variant of and-or trees [14] modeling parallel im-
plementations of logic programming, where the soundness of the derivations
represented by a tree is guaranteed by the restriction to term-matching (whose
algorithm, differently from unification, is parallelizable [10]).

There are two analogies with the π-calculus: (a) the state space is modeled
by a presheaf on the index category Lop

Σ , that is the (opposite) Lawvere Theory
associated with some signature Σ; (b) the operational semantics given in [18] fails

to be a natural transformation in SetL
op
Σ : Example 2 provides a counter-example

which is similar to the π-calculus term t discussed above.
The authors of [18] obviate to (b) by relaxing naturality to lax naturality: the

operational semantics p of a logic program is given as an arrow in the category
Lax (Lop

Σ ,Poset) of locally ordered functors F : Lop
Σ → Poset and lax natural

transformations between them. They show the existence of a cofree comonad
that induces a morphism [[−]]p mapping atoms (i.e., atomic formulae) to coin-
ductive trees. Since [[−]]p is not natural but lax natural, the semantics provided
by coinductive trees is not compositional, in the sense that, for some atoms A
and substitution θ,

[[Aθ]]p �= [[A]]pθ

where [[Aθ]]p is the coinductive tree associated with Aθ and [[A]]pθ denotes the
result of applying θ to each atom occurring in the tree [[A]]p.

Instead of introducing laxness, we propose to tackle the non-naturality of p
with a saturated approach. It turns out that, in the context of logic program-
ming, the saturation map (−)
 has a neat description in terms of substitution
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mechanisms: while p performs term-matching between the atoms and the heads
of clauses of a given logic program, its saturation p
 (given as a morphism in

SetL
op
Σ ) performs unification. It is worth to remark here that not only most

general unifiers are considered but all possible unifiers.
A cofree construction leading to a map [[−]]p� can be obtained by very stan-

dard categorical tools, such as terminal sequences [1]. This is possible because,

as Set, both SetL
op
Σ and Set|L

op
Σ | are (co)complete categories, whereas in the lax

approach, Lax (Lop
Σ ,Poset) not being (co)complete, more indirect and more so-

phisticated categorical constructions are needed [17, Sec. 4]. By naturality of p
,
the semantics given by [[−]]p� turns out to be compositional, as in the desiderata.
Analogously to [[−]]p, also [[−]]p� maps atoms to tree structures, which we call
saturated trees. They generalize coinductive trees, in the sense that the latter can
be seen as a “desaturation” of saturated trees, where all unifiers that are not
term-matchers have been discarded. This observation leads to a translation from
saturated to coinductive trees, based on the counit ε of the adjunction U " K.
It follows that our framework encompasses the semantics in [18,17].

Analogously to what is done in [17], we propose a notion of refutation sub-
tree of a given saturated tree, intuitively corresponding to an SLD-refutation
of an atomic goal in a program. This leads to a result of soundness and com-
pleteness of our semantics with respect to SLD-resolution, crucially using both
compositionality and the translation into coinductive trees.

Related works. Apart from [16,18,17], there exist other categorical perspectives
on (extensions of) logic programming, such as [9,15,2]. Amongst these, the most
relevant for us is [5] since it exploits a form of saturation: states representing
formulae are both instantiated by substitution and contextualized by other for-
mulae in “and”. Beyond logic programming, the idea of exploiting saturation to
achieve compositionality is even older than [23]. As far as we know, [8] is the
first work where saturation is explored in terms of coalgebrae. It is interesting to
note that, in [7], a subset of the same authors also proposed laxness as a solution
for the lack of compositionality of Petri nets.

A third approach, alternative to laxness and saturation, may be possible by
taking a special kind of “powerobject” functor as done in [20,24] for giving a
coalgebraic semantics to fusion and open π-calculus. We have chosen saturated
semantics for its generality: it works for any behavioral functor B and it models
a phenomenon that occurs in many different computational models (see e.g. [4]).

Acknowledgements. We thank E. Komendantskaya, T. Hirschowitz, D. Petrisan,
J. Power, M. Sammartino, the Plume team and the anonymous referees for the
helpful comments. Our work is supported by project ANR 12IS02001 PACE.

2 Coalgebraic Logic Programming

In this section we recall the framework of coalgebraic logic programming, as
introduced in [16,18,17]. For this purpose, we first fix some terminology and
notation, mainly concerning category theory and logic programming.
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Given a (small) category C, |C| denotes the category with the same objects
as C but no other arrow than the identities. With a little abuse of notation,
o ∈ |C| indicates that o is an object of C and C[o1, o2] the set of arrows from o1
to o2. A C-indexed presheaf is any functor G : C→ Set. We write SetC for the
category of C-indexed presheaves and natural transformations between them.
Given a functor B : C→ C, a B-coalgebra on o ∈ |C| is an arrow p : o → B(o).

We fix a signature Σ of function symbols, each equipped with a fixed arity,
and a countably infinite set Var = {x1, x2, x3, . . . } of variables. We model sub-
stitutions and unification of terms over Σ and Var according to the categorical
perspective of [13,6]. To this aim, let the (opposite) Lawvere Theory of Σ be
a category Lop

Σ where objects are natural numbers, with n ∈ |Lop
Σ | intuitively

representing variables x1, x2, . . . , xn from Var . For any two n,m ∈ |Lop
Σ |, the set

Lop
Σ [n,m] consists of all n-tuples 〈t1, . . . , tn〉 of terms where only variables among

x1, . . . , xm occur. The identity on n ∈ |Lop
Σ |, denoted by idn, is given by the tuple

〈x1, . . . , xn〉. The composition of 〈t11, . . . , t1n〉 : n → m and 〈t21, . . . , t2m〉 : m → m′

is the tuple 〈t1, . . . , tn〉 : n → m′, where ti is the term t1i in which every variable
xj has been replaced with t2j , for 1 ≤ j ≤ m and 1 ≤ i ≤ n.

We call substitutions the arrows of Lop
Σ and use Greek letters θ, σ and τ to

denote them. Given θ1 : n → m1 and θ2 : n → m2, a unifier of θ1 and θ2 is a pair
of substitutions σ : m1 → m and τ : m2 → m, where m is some object of Lop

Σ ,
such that σ ◦ θ1 = τ ◦ θ2. The most general unifier of θ1 and θ2 is a unifier with

a universal property, i.e. a pushout of the diagram m1
θ1←− n

θ2−→ m2.
An alphabet A consists of a signature Σ, a set of variables Var and a set

of predicate symbols P, P1, P2, . . . each assigned an arity. Given P of arity n
and Σ-terms t1, . . . , tn, P (t1, . . . , tn) is called an atom. We use Latin capital
letters A,B, . . . for atoms. Given a substitution θ = 〈t1, . . . , tn〉 : n → m and
an atom A with variables among x1, . . . , xn, we adopt the standard notation
of logic programming in denoting with Aθ the atom obtained by replacing xi
with ti in A, for 1 ≤ i ≤ n. The atom Aθ is called a substitution instance of A.
The notation {A1, . . . , Am}θ is a shorthand for {A1θ, . . . , Amθ}. Given atoms
A1 and A2, we say that A1 unifies with A2 (equivalently, they are unifiable)
if they are of the form A1 = P (t1, . . . , tn), A2 = P (t′1, . . . , t

′
n) and a unifier

〈σ, τ〉 of 〈t1, . . . , tn〉 and 〈t′1, . . . , t′n〉 exists. Observe that, by definition of unifier,
this amounts to saying that A1σ = A2τ . Term matching is a particular case of
unification, where σ is the identity substitution. In this case we say that 〈σ, τ〉
is a term-matcher of A1 and A2, meaning that A1 = A2τ .

A logic program P consists of a finite set of clauses C written asH ← B1, . . . , Bk.
The components H and B1, . . . , Bk are atoms, where H is called the head of C
and B1, . . . , Bk form the body of C. One can think of H ← B1, . . . , Bk as repre-
senting the first-order formula (B1 ∧ · · · ∧ Bk) → H . We say that P is ground
if only ground atoms (i.e. without variables) occur in its clauses. The central al-
gorithm of logic programming is SLD-resolution, checking whether a finite set of
atoms (called a goal) is refutable in P and giving a substitution called computed an-
swer as output. Relevant for our exposition are and-or trees [14], which represent
executions of SLD-resolution exploiting two forms of parallelism: and-parallelism,
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corresponding to simultaneous refutation-search of multiple atoms in a goal, and
or-parallelism, exploring multiple attempts to refute the same goal.

Definition 1. Given a logic program P and an atom A, the (parallel) and-or
tree for A in P is the possibly infinite tree T satisfying the following properties:

1. Each node in T is either an and-node or an or-node.
2. Each and-node is labeled with one atom and its children are or-nodes.
3. The root of T is an and-node labeled with A.
4. Each or-node is labeled with • and its children are and-nodes.
5. For every and-node s in T , let A′ be its label. For every clause H ← B1, . . . , Bk

of P and most general unifier 〈σ, τ〉 of A′ and H, s has exactly one child t, and
viceversa. For each atom B in {B1, . . . , Bk}τ , t has exactly one child labeled
with B, and viceversa.

As standard for any tree, we have a notion of depth: the root is at depth 0 and
depth i + 1 is given by the children of nodes at depth i.

2.1 The Ground Case

We recall the coalgebraic semantics of ground logic programs introduced in [16].
For the sequel we fix an alphabet A, a set At of ground atoms and a ground logic
program P. The behavior of P is represented by a coalgebra p : At → PfPf (At)
on Set, where Pf is the finite powerset functor and p is defined as follows:

p : A �→ {{B1, . . . , Bk} | H ← B1, . . . , Bk is a clause of P and A = H}.

The idea is that p maps an atom A ∈ At to the set of bodies of clauses of P
whose head H unifies with A, i.e. (in the ground case) A = H . Therefore p(A) ∈
PfPf (At) can be seen as representing the and-or tree of A in P up to depth 2,
according to Definition 1: each element {B1, . . . , Bk} of p(A) corresponds to a
child of the root, whose children are labeled with B1, . . . , Bk. The full tree is
recovered as an element of C(PfPf )(At), where C(PfPf ) is the cofree comonad
on PfPf , standardly provided by the following construction [1,25].

Construction 1. The terminal sequence for the functor At ×PfPf (−) : Set→
Set consists of sequences of objects Xα and arrows δα : Xα+1 → Xα, defined by
induction on α as follows.

Xα : =

{
At α = 0
At × PfPf (Xβ) α = β + 1

δα : =

{
π1 α = 0
idAt × PfPf (δβ) α = β + 1

For α a limit ordinal, Xα is given as a limit of the sequence and a function
δα : Xα → Xβ is given for each β < α by the limiting property of Xα.

By [25] it follows that the sequence given above converges to a limit Xγ such
that Xγ

∼= Xγ+1. Since Xγ+1 is defined as At ×PfPf (Xγ), there is a projection
function π2 : Xγ+1 → PfPf (Xγ) which makes π2 ◦ δ−1

γ : Xγ → PfPf (Xγ) the
cofree PfPf -coalgebra on At. This induces the cofree comonad C(PfPf) : Set→
Set on PfPf as a functor mapping At to Xγ .
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As the elements of the cofree comonad on Pf are standardly presented as finitely
branching trees [25], those for PfPf can be seen as finitely branching trees with
two sorts of nodes occurring at alternating depth. We now define a C(PfPf )-
coalgebra [[−]]p : At → C(PfPf )(At).

Construction 2. Given a ground program P, let p : At → PfPf (At) be the coal-
gebra associated with P. We define a cone {pα : At → Xα}α<γ on the terminal
sequence of Construction 1 as follows:

pα : =

{
idAt α = 0
〈idAt , (PfPf (pβ) ◦ p)〉 α = β + 1.

For α a limit ordinal, pα : At → Xα is provided by the limiting property of Xα. Then
in particular Xγ = C(PfPf )(At) yields a function [[−]]p : At → C(PfPf )(At).

Given an atom A ∈ At , the tree [[A]]p ∈ C(PfPf )(At) is built by iteratively
applying the map p, first to A, then to each atom in p(A), and so on. For each
natural number m, pm maps A to its and-or tree up to depth m. As shown in
[16], the limit [[−]]p of all such approximations provides the full and-or tree of A.

Example 1. Consider the ground logic program on the left-hand side, based on
an alphabet consisting of a signature {a0, b0, c0} and predicates p(−,−), q(−).
The and-or tree [[p(b, b)]]p ∈ C(PfPf )(At) is depicted on the right-hand side.

p(b, c) ← q(a), q(b), q(c)
p(b, b) ← p(b, a), p(b, c)
p(b, b) ← q(c)
q(c) ←

p(b, b)




 ���
• •




 ���

q(c) p(b, a) p(b, c)

• •



 ���

q(a) q(b) q(c)

•

2.2 The General Case

We recall the extension of the coalgebraic semantics to arbitrary (i.e. possibly
non-ground) logic programs presented in [18,17]. In presence of variables, and-or
trees are not guaranteed to represent sound derivations, whence coinductive trees
are introduced as a sound variant of and-or trees, where unification is restricted
to term-matching. We refer to [18,17] for more details.

Before formally defining coinductive trees, it is worth recalling that, in [18], the
collection of atoms (based on an alphabet A) is modeled as a presheaf At : Lop

Σ →
Set. The index category is the (opposite) Lawvere Theory Lop

Σ of Σ, as defined
above. For each natural number n ∈ |Lop

Σ |, At(n) is defined as the set of atoms
with variables among x1, . . . , xn. Given an arrow θ ∈ Lop

Σ [n,m], the function
At(θ) : At(n) → At(m) is defined by substitution, i.e. At(θ)(A) : = Aθ. By
definition, whenever an atom A belongs to At(n), then it also belongs to At(n′),
for all n′ ≥ n. However, the occurrences of the same atom in At(n) and At(n′)
(for n �= n′) are considered distinct: the atoms A ∈ At(n) and A ∈ At(n′) can be
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thought of as two states x1, . . . , xn � A and x1, . . . , xn′ � A with two different
interfaces x1, . . . , xn and x1, . . . , xn′ . For this reason, when referring to an atom
A, it is important to always specify the set At(n) to which it belongs.

Definition 2. Given a logic program P, a natural number n and an atom A ∈
At(n), the n-coinductive tree for A in P is the possibly infinite tree T satisfying
properties 1-4 of Definition 1 and property 5 replaced by the following1:

5. For every and-node s in T , let A′ ∈ At(n) be its label. For every clause H ←
B1, . . . , Bk of P and term-matcher 〈idn, τ〉 of A′ and H, with B1τ, . . . , Bkτ ∈
At(n), s has exactly one child t, and viceversa. For each atom B in
{B1, . . . , Bk}τ , t has exactly one child labeled with B, and viceversa.

We recall from [18] the categorical formalization of this class of trees. The first
step is to generalize the definition of the coalgebra p associated with a program
P. Definition 2 suggests how p should act on an atom A ∈ At(n), for a fixed n:

A �→ {{B1, . . . , Bk}τ | H ← B1, . . . , Bk is a clause of P,

A = Hτ and B1τ, . . . , Bkτ ∈ At(n)}. (1)

For each clause H ← B1, . . . , Bk, there might be infinitely (but countably) many
substitutions τ such that A = Hτ (see e.g. [18]). Thus the object on the right-
hand side of (1) will be associated with the functor PcPf : Set→ Set, where Pc
and Pf are respectively the countable powerset functor and the finite powerset
functor. In order to formalize this as a coalgebra on At : Lop

Σ → Set, consider

liftings P̃c : SetL
op
Σ → SetL

op
Σ and P̃f : SetL

op
Σ → SetL

op
Σ , standardly defined on

presheaves F : Lop
Σ → Set by postcomposition respectively with Pc and Pf .

Then one would like to fix (1) as the definition of the n-component of a natural

transformation p : At → P̃cP̃f (At). The key problem with this formulation is
that p would not be a natural transformation, as shown by the following example.

Example 2. Consider the signature Σ = {cons2, succ1, zero0, nil0} and the pred-
icates List(−), Nat(−). The program NatList, encoding the definition of lists
of natural numbers, will be our running example of a non-ground logic program.

List(cons(x1, x2)) ← Nat(x1), List(x2) List(nil) ←
Nat(succ(x1)) ← Nat(x1) Nat(zero) ←

Fix a substitution θ = 〈nil〉 : 1 → 0 and, for each n ∈ |Lop
Σ |, suppose that

p(n) : At(n) → P̃cP̃f (At)(n) is defined according to (1). Then the square

At(1)

At(θ)

��

p(1) �� P̃cP̃f (At)(1)

P̃cP̃f (At)(θ)
��

At(0)
p(0)

�� P̃cP̃f (At)(0)

1 Our notion of coinductive tree corresponds to the notion of coinductive forest of
breadth n as in [17, Def.4.4], the only difference being that we “glue” together all
trees of the forest into a single tree.
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does not commute. A counterexample is provided by the atom List(x1) ∈ At(1).
Passing through the bottom-left corner of the square, List(x1) is mapped first

to List(nil) ∈ At(0) and then to {∅} ∈ P̃cP̃f (At)(0) - intuitively, this yields
a refutation of the goal {List(x1)} with substitution of x1 with nil. Passing

through the top-right corner, List(x1) is mapped first to ∅ ∈ P̃cP̃f (At)(1) and

then to ∅ ∈ P̃cP̃f (At)(0), i.e. the computation ends up in a failure.

In [18, Sec.4] the authors overcome this difficulty by relaxing the naturality

requirement. The morphism p is defined as a P̆cP̆f -coalgebra in the category
Lax (Lop

Σ ,Poset) of locally ordered functors F : Lop
Σ → Poset and lax natural

transformations, with each component p(n) given according to (1) and P̆cP̆f the

extension of P̃cP̃f to an endofunctor on Lax (Lop
Σ ,Poset).

The lax approach fixes the problem, but presents also some drawbacks. Unlike
the categories Set and SetL

op
Σ , Lax (Lop

Σ ,Poset) is neither complete nor cocom-

plete, meaning that a cofree comonad on P̆cP̆f cannot be retrieved through the
standard Constructions 1 and 2 that were used in the ground case. Moreover,
the category of P̆cP̆f -coalgebrae becomes problematic, because coalgebra maps
are subject to a commutativity property stricter than the one of lax natural
transformations. These two issues force the formalization of non-ground logic
program to use quite different (and more sophisticated) categorical tools than
the ones employed for the ground case. Finally, as stressed in the Introduction,
the laxness of p makes the resulting semantics not compositional.

3 Saturated Semantics

Motivated by the observations of the previous section, we propose a saturated
approach to the semantics of logic programs. For this purpose, we consider an
adjunction between presheaf categories as depicted on the left.

SetL
op
Σ

U

��
⊥ Set|L

op
Σ |

K

��

|Lop
Σ | �

� ι ��

F

��

Lop
Σ

K(F)����
��
��
��

Set

The left adjoint U is the forgetful functor, given by precomposition with the
inclusion functor ι : |Lop

Σ | ↪→ Lop
Σ . As shown in [19, Th.X.1], U has a right adjoint

K : Set|L
op
Σ | → SetL

op
Σ sending F : |Lop

Σ | → Set to its right Kan extension along ι.
This is a presheaf K(F) : Lop

Σ → Set mapping an object n of Lop
Σ to

K(F)(n) : =
∏

θ∈Lop
Σ [n,m]

F(m)

where m is any object of Lop
Σ . Intuitively, K(F)(n) is a set of tuples indexed by

arrows with source n and such that, at index θ : n → m, there are elements of
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F(m). We use ẋ ẏ, . . . to denote such tuples and we write ẋ(θ) to denote the
element at index θ of the tuple ẋ. Alternatively, when it is important to show
how the elements depend from the indexes, we use 〈x〉θ:n→m (or simply 〈x〉θ) to
denote the tuple having at index θ the element x. With this notation, we can
express the behavior of K(F) : Lop

Σ → Set on an arrow θ : n → m as

K(F)(θ) : ẋ �→ 〈ẋ(σ ◦ θ)〉σ:m→m′ . (2)

The tuple 〈ẋ(σ ◦ θ)〉σ in K(F)(m) can be intuitively read as follows: for each
σ ∈ Lop

Σ [m,m′], we let the element indexed by σ be the one which was indexed
by σ ◦ θ ∈ Lop

Σ [n,m′] in the input tuple ẋ.

All this concerns the behavior of K on the objects of Set|L
op
Σ |. For an arrow

f : F → G in Set|L
op
Σ |, the natural transformation K(f) is defined as an indexwise

application of f on tuples from K(F). For all n ∈ |Lop
Σ |, ẋ ∈ K(F)(n),

K(f)(n) : ẋ �→ 〈f(m)(ẋ(θ))〉θ:n→m.

For any presheaf F : Lop
Σ → Set, the unit η of the adjunction is instantiated to

a morphism ηF : F → KU(F) given as follows: for all n ∈ |Lop
Σ |, X ∈ F(n),

ηF(n) : X �→ 〈F(θ)(X)〉θ:n→m.

When taking F to be At , ηAt : At → KU(At) maps an atom to its saturation:
for each A ∈ At(n), the tuple ηAt (n)(A) consists of all substitution instances
At(θ)(A) = Aθ of A, each indexed by the corresponding θ ∈ Lop

Σ [n,m].

As shown in Example 2, given a program P, the family of functions p defined
by (1) fails to be a morphism in SetL

op
Σ . However, it forms a morphism in Set|L

op
Σ |

p : UAt → P̂cP̂f (UAt)

where P̂c and P̂f denote the liftings of Pc and Pf to Set|L
op
Σ |. The naturality re-

quirement is trivially satisfied in Set|L
op
Σ |, since |Lop

Σ | is discrete. The adjunction

induces a morphism p
 : At → KP̂cP̂fU(At) in SetL
op
Σ , defined as

At
ηAt−−→ KU(At)

K(p)−−−→ KP̂cP̂fU(At). (3)

In the sequel, we write S for KP̂cP̂fU. The idea is to let S play the same role
as PfPf in the ground case, with the coalgebra p
 : At → S(At) encoding the
program P. An atom A ∈ At(n) is mapped to 〈p(m)(Aσ)〉σ:n→m , that is:

p
(n) : A �→ 〈{{B1, . . . , Bk}τ | H ← B1, . . . , Bk is a clause of P,

Aσ = Hτ and B1τ, . . . , Bkτ ∈ At(m)}〉σ:n→m. (4)

Intuitively, p
(n) retrieves all unifiers 〈σ, τ〉 of A and heads of P: first, Aσ ∈
At(m) arises as a component of the saturation of A, according to ηAt (n); then,
the substitution τ is given by term-matching on Aσ, according to K(p)(m).

By naturality of p
, we achieve the property of “commuting with substitu-
tions” that was precluded by the term-matching approach, as shown by the
following rephrasing of Example 2.
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Example 3. Consider the same square of Example 2, with p
 in place of p and S

in place of P̃cP̃f . The atom List(x1) ∈ At(1) together with the substitution θ =
〈nil〉 : 1 → 0 does not constitute a counterexample to commutativity anymore.
Indeed p
(1) maps List(x1) to the tuple 〈p(n)(List(x1)σ)〉σ : 1→n, which is then
mapped by S(At)(θ) to 〈p(n)(List(x1)σ′ ◦ θ)〉σ′ : 0→n according to (2). Observe
that the latter is just the tuple 〈p(n)(List(nil)σ′)〉σ′ : 0→n obtained by applying
first At(θ) and then p
(0) to the atom List(x1).

Another benefit of saturated semantics is that p
 : At → S(At) lives in a (co)com-
plete category which behaves (pointwise) as Set. This allows us to follow the
same steps as in the ground case, constructing a coalgebra for the cofree comonad
C(S) as a straightforward generalization of Constructions 1 and 2.

Construction 3. The terminal sequence for the functor At × S(−) : SetL
op
Σ →

SetL
op
Σ consists of a sequence of objects Xα and arrows δα : Xα+1 → Xα, which

are defined just as in Construction 1, with S replacing PfPf . By using [25, Th.7],
it can be checked that this sequence converges to a limit Xγ such that Xγ

∼= Xγ+1

and Xγ is the carrier of the cofree S-coalgebra on At.

Since S is accessible, the cofree comonad C(S) exists and maps At to Xγ given
as in Construction 3. A C(S)-coalgebra [[−]]p� : At → C(S)(At) is given below.

Construction 4. The terminal sequence for At×S(−) induces a cone {p
α : At →
Xα}α<γ as in Construction 2 with p
 and S replacing p and PfPf . This yields
a natural transformation [[−]]p� : At → Xγ , where Xγ = C(S)(At).

As in the ground case, the coalgebra [[−]]p� is constructed as an iterative appli-

cation of p
: we call saturated tree the associated tree structure.

Definition 3. Given a logic program P, a natural number n and an atom A ∈
At(n), the saturated tree for A in P is the possibly infinite tree T satisfying
properties 1-3 of Definition 1 and properties 4 and 5 replaced by the following:

4. Each or-node is labeled with a substitution σ and its children are and-nodes.
5. For every and-node s in T , let A′ ∈ At(n′) be its label. For every clause

H ← B1, . . . , Bk of P and unifier 〈σ, τ〉 of A′ and H, with σ : n′ → m′

and B1τ, . . . , Bkτ ∈ At(m′), s has exactly one child t labeled with σ, and
viceversa. For each atom B in {B1, . . . , Bk}τ , t has exactly one child labeled
with B, and viceversa.

We have now seen three kinds of tree, exhibiting different substitution mecha-
nisms. In saturated trees one considers all the unifiers, whereas in and-or trees
and coinductive trees one restricts to most general unifiers and term-matchers
respectively. Moreover, in a coinductive tree each and-node is labeled with an
atom in At(n) for a fixed n, while in a saturated tree n can dynamically change.

Example 4. Part of the infinite saturated tree of List(x1) ∈ At(1) in NatList is
depicted below. Note that not all labels of and-nodes belong to At(1), as it would
be the case for a coinductive tree: such information is inherited from the label of
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the parent or-node, which is now a substitution. For instance, both Nat(x1) and
List(x2) belong to At(2), since their parent is labeled with 〈cons(x1, x2)〉 : 1 →
2 (using the convention that the target of a substitution is the largest index
appearing among its variables).

List(x1)


� ��� ��〈nil〉 
� ��� ��〈cons(x1, x2)〉



� ��� ��〈cons(x1, cons(x1, x2))〉
������

. . .

Nat(x1)

���
List(x2)

���
��

Nat(x1)

����
���

List(cons(x1, x2))


� ��� ��〈zero, x2〉 . . .

� ��� ��〈x1, nil〉 . . . . . .


� ��� ��〈zero, x2〉 . . .

We can generalize these observations to the following adequacy theorem.

Theorem 1. Let [[−]]p� be defined from a program P according to Construction
4. Then, for all n and A ∈ At(n), the saturated tree of A in P is [[A]]p� .

In the above theorem and in the rest of the paper, with an abuse of nota-
tion we use [[A]]p� to denote the application of [[−]]p�(n) to A ∈ At(n) without

mentioning the object n ∈ |Lop
Σ |. For an arrow θ ∈ Lop

Σ [n,m], we write θ for
C(S)(At)(θ) : C(S)(At)(n) → C(S)(At)(m). With this notation, we can state the
following theorem that is an immediate consequence of the naturality of [[−]]p� .

Theorem 2 (Compositionality). For all atoms A ∈ At(n) and substitutions
θ ∈ Lop

Σ [n,m],
[[Aθ]]p� = [[A]]p�θ.

We conclude this section with a concrete description of the behavior of the
operator θ, for a given substitution θ ∈ Lop

Σ [n,m]. Let r be the root of a tree
T ∈ C(S)(At)(n) and r′ the root of Tθ. Then

1. the node r has label A iff r′ has label Aθ;
2. the node r has a child t with label σ ◦ θ and children t1, . . . , tn iff r′ has a

child t′ with label σ and children t1 . . . tn.

Note that the children t1, . . . , tn are exactly the same in both trees: θ only
modifies the root and the or-nodes at depth 1 of T , while it leaves untouched all
the others. This peculiar behavior can be better understood by observing that
the definition of K(F)(θ), as in (2), is independent of the presheaf F. As a result,
θ = Xγ(θ) is independent of all the Xαs built in Construction 3.

Example 5. Recall from Example 4 the saturated tree [[List(x1)]]p� . For θ =

〈cons(x1, x2)〉, the tree [[List(x1)]]p�θ is depicted below.

List(cons(x1, x2))


� ��� ��id2

���
�


� ��� ��〈x1, cons(x1, x2)〉
�����

. . .

Nat(x1)

���
List(x2)

����
���

Nat(x1)




List(cons(x1, x2))


� ��� ��〈zero, x2〉 . . .

� ��� ��〈x1, nil〉 . . . . . .


� ��� ��〈zero, x2〉 . . .
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4 Desaturation

One of the main features of coinductive trees is to represent (sound) and-or par-
allel derivations of goals. This leads the authors of [17] to a resolution algorithm
exploiting the two forms of parallelism. Motivated by these developments, we
include coinductive trees in our framework, showing how they can be obtained
as a “desaturation” of saturated trees.

For this purpose, the key ingredient is given by the counit ε of the adjunction
U " K. Given a presheaf F : |Lop

Σ | → Set, the morphism εF : UK(F) → F is
defined as follows: for all n ∈ |Lop

Σ | and ẋ ∈ UK(F)(n),

εF(n) : ẋ �→ ẋ(idn) (5)

where ẋ(idn) is the element of the input tuple ẋ which is indexed by the identity
substitution idn ∈ Lop

Σ [n, n]. In the logic programming perspective, the intuition
is that, while the unit of the adjunction provides the saturation of an atom, the
counit reverses the process. It takes the saturation of an atom and gives back
the substitution instance given by the identity, that is, the atom itself.

The next construction defines a morphism d : U
(
C(S)(At)

)
→ C(P̂cP̂f )(UAt)

where C(P̂cP̂f ) : Set|L
op
Σ | → Set|L

op
Σ | is the cofree comonad on P̂cP̂f , obtained

through a terminal sequence analogously to Construction 3. The idea is that d
acts on saturated trees as the depthwise application of εUAt .

Construction 5. For α an ordinal, let us note by Yα the objects occurring in

the construction of C(P̂cP̂f )(UAt) and with Xα the ones in the construction of
C(S)(At), converging to Xγ = C(S)(At). We define a sequence {dα : U(Xα) →
Yα}α<γ in Set|L

op
Σ | as follows:

dα : =

{
idUAt α = 0

idUAt ×
(
P̂cP̂f (dβ) ◦ ε

P̂cP̂fU(Xβ)

)
α = β + 1.

For α < γ a limit ordinal, dα : U(Xα) → Yα is provided by the limiting property

of Yα. This sequence induces a morphism d : U
(
C(S)(At)

)
→ C(P̂cP̂f)(UAt).

The next theorem shows that d is a translation from saturated to coinductive
trees: given an atom A ∈ At(n), it maps [[A]]p� to the n-coinductive tree of
A. The key intuition is that n-coinductive trees can be seen as saturated trees
where the labeling of or-nodes has been restricted to the identity substitution
idn, represented as • (see Definition 2). The operation of pruning all or-nodes
(and their descendants) in [[A]]p� which are not labeled with idn is precisely what
is provided by Construction 5, in virtue of the definition of the counit ε given
in (5).

Theorem 3 (Desaturation). Let [[−]]p� : At → C(S)(At) be defined for a logic

program P according to Construction 4 and d : U
(
C(S)(At)

)
→ C(P̂cP̂f )(UAt) be

defined according to Construction 5. Then for all n ∈ |Lop
Σ | and A ∈ UAt(n),

the n-coinductive tree of A in P is
(
d ◦ U([[−]]p�)

)
(n)(A).
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Theorem 3 also provides an alternative formalization for the coinductive tree se-
mantics [18], given by composition of the saturated semantics with desaturation.
In fact it represents a different approach to the non-compositionality problem:
instead of relaxing naturality to lax naturality, we simply forget about all the ar-
rows of the index category Lop

Σ , shifting the framework from SetL
op
Σ to Set|L

op
Σ |.

The substitutions on trees (that are essential, for instance, for the resolution
algorithm given in [17]) exist at the saturated level, i.e. in C(S)(At), and they
are given precisely as the operator θ described at the end of Section 3.

Example 6. The coinductive tree for
List(cons(x1, x2)) in NatList is depicted on
the right. It is constructed by desaturating the tree
[[List(cons(x1, x2))]]p� in Example 5, i.e., by pruning
all the or-nodes (and their descendants) that are not
labeled with id2.

List(cons(x1, x2))


� ��� ��id2
����

���

Nat(x1) List(x2)

5 Soundness and Completeness

The notion of coinductive tree leads to a semantics that is sound and complete
with respect to SLD-resolution [17, Th.4.8]. To this aim, a key role is played by
derivation subtrees of a given coinductive tree.

Definition 4. Let T be the n-coinductive tree for an atom A in a program P.
A subtree T ′ of T is a derivation subtree if it satisfies the following conditions:

1. the root of T ′ is the root of T ;
2. if an and-node of T belongs to T ′, then just one of its children belongs to T ′;
3. if an or-node of T belongs to T ′, then all its children belong to T ′.

A refutation subtree (called success subtree in [17]) is a finite derivation subtree
with only or-nodes as leaves.

In analogy with coinductive trees, we want to define a notion of subtree for
saturated semantics. This requires care: saturated trees are associated with uni-
fication, which is more liberal than term-matching. In particular, similarly to
and-or trees, they may represent unsound derivation strategies. However, in sat-
urated trees all unifiers, and not just the most general ones, are taken into
account. This gives enough flexibility to shape a sound notion of subtree, based
on an implicit synchronization of the substitutions used in different branches.

Definition 5. Let T be the saturated tree for an atom A in a program P. A
subtree T ′ of T is called a synched derivation subtree if it satisfies properties
1-3 of Definition 4 and the following condition:

4. all or-nodes of T ′ at the same depth are labeled with the same substitution.

A synched refutation subtree is a finite synched derivation subtree with only or-
nodes as leaves. Its answer is the substitution θ2k+1 ◦ . . . θ3 ◦ θ1, where θi is the
(unique) substitution labeling the or-nodes of depth i and 2k + 1 is its maximal
depth.



Saturated Semantics for Coalgebraic Logic Programming 93

List(c(x1, (c(x1, x2))))


� ��� ��〈x1, x2〉
����

���

Nat(x1) List(c(x1, x2))


� ��� ��〈s(x1), n〉

� ��� ��〈s(x1), n〉

�����
�

Nat(x1) Nat(s(x1)) List(n)


� ��� ��〈z〉 
� ��� ��〈z〉 
� ��� ��〈z〉

Nat(z)


� ��� ��id0

List(c(s(z), (c(s(z), n))))


� ��� ��id0

					
				

Nat(s(z)) List(c(s(z), n))


� ��� ��id0

� ��� ��id0

�����
����

Nat(z) Nat(s(z)) List(n)


� ��� ��id0

� ��� ��id0


� ��� ��id0

Nat(z)


� ��� ��id0

Fig. 1. Successful synched derivation subtrees for List(cons(x1, (cons(x1, x2)))) (left)
and List(cons(succ(zero), (cons(succ(zero), nil)))) (right) in NatList. The symbols
cons, nil, succ and zero are abbreviated to c, n, s and z respectively.

The prefix “synched” emphasizes the restriction to and-parallelism which is en-
coded in Definition 5. Intuitively, we force all subgoals at the same depth to
proceed with the same substitution. For instance, this rules out the unsound
derivation of [17, Ex.5.2].

Note that derivation subtrees can be seen as special instances of synched
derivation subtrees where all the substitutions are forced to be identities.

Theorem 4 (Soundness and Completeness). Let P be a logic program and
A ∈ At(n) an atom. The following are equivalent.

1. The saturated tree for A in P has a synched refutation subtree with answer θ.
2. There is some natural number m such that the m-coinductive tree for Aθ in

P has a refutation subtree.
3. There is an SLD-refutation for {A} in P with computed answer τ such that

there exists a substitution σ with σ ◦ τ = θ.

The statement (2 ⇔ 3) is a rephrasing of [17, Th.4.8], while (1 ⇔ 2) follows by
compositionality and desaturation (Theorems 2 and 3).

Figure 1 provides an example of the argument for direction (1 ⇒ 2). Note that
the root of the rightmost tree is labeled with an atom of the form Aθ, where
θ and A are respectively the answer and the label of the root of the leftmost
tree. The key observation is that the rightmost tree is a refutation subtree of
the 0-coinductive tree for Aθ and can be obtained from the leftmost tree by a
procedure involving the operator θ discussed at the end of Section 3.
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Abstract. Distributive laws of a monad T over a functor F are categor-
ical tools for specifying algebra-coalgebra interaction. They proved to be
important for solving systems of corecursive equations, for the specifica-
tion of well-behaved structural operational semantics and, more recently,
also for enhancements of the bisimulation proof method. If T is a free
monad, then such distributive laws correspond to simple natural trans-
formations. However, when T is not free it can be rather difficult to prove
the defining axioms of a distributive law. In this paper we describe how
to obtain a distributive law for a monad with an equational presentation
from a distributive law for the underlying free monad. We apply this
result to show the equivalence between two different representations of
context-free languages.

1 Introduction

The combination of algebraic structure and observable behaviour is fundamen-
tal in computer science. Examples include the operational models of structural
operational semantics [1], denotational models of programming languages [21],
finite stream circuits [12], linear and context-free systems of behavioural differ-
ential equations [16,22], and many types of automata such as nondeterministic
and weighted automata [18].

In the categorical treatment of these examples, the algebraic structure is en-
coded by a monad T = 〈T, η, μ〉, and the system behaviour by coalgebras for a
functor F . Often it is desirable that the algebraic and coalgebraic structure is
compatible in some way. A general approach to specifying such algebra-coalgebra
interaction is via a distributive law. There are several advantages of this struc-
tured approach. A distributive law λ of the monad T over F induces a T -algebra
on the final F -coalgebra of behaviours, yields solutions to corecursive equations
φ : X → FTX [2], and ensures that bisimulation is a congruence. Moreover
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it yields the soundness of techniques such as bisimulation-up-to-context [2] and
extensions thereof [14,15].

Describing a distributive law explicitly and proving that it is one can, however,
be rather complicated. Therefore, general methods for constructing distributive
laws from simpler ingredients are very useful. An important example of this is
given by abstract GSOS [19,2,10] where distributive laws of a free monad T over a
(copointed) functor F are shown to correspond to plain natural transformations,
called abstract GSOS-rules as they can be seen as specification formats. In [3] it
was shown how an abstract GSOS-rule for a free monad T and functor F can be
lifted to one for the functor F (−)A which describes F -systems with input in A.
Another method which works for all monads T , but only for certain polynomial
behaviour functors F , produces a distributive law inducing a “pointwise lifting”
of T -algebra structure to F -behaviours, cf. [4,6,18].

But many examples do not fit into the abovementioned settings. An impor-
tant motivating example for this paper is that of context-free grammars, where
sequential composition is not a pointwise operation and whose formal semantics
satisfies the axioms of idempotent semirings, i.e., the algebraic structure is not
free. More generally, one may be interested in a monad arising from a free one
by adding equations which one knows to hold in the final coalgebra, without
having a particular concrete monad in mind.

The main contribution of this paper is to give a general approach for con-
structing a distributive law λ′ for a monad T ′ with an equational presentation,
from a distributive law λ for the underlying free monad T . We have no con-
straints on the behaviour functor F . This λ′ is obtained as a certain quotient
of λ by the equations E of T ′, hence we say that λ′ is presented by a λ for the
free monad and the equations E. We show that such quotients exist precisely
when the distributive law preserves the equations E, which roughly means that
congruences generated by the equations are bisimulations. We also discuss how
these quotients of distributive laws give rise to quotients of bialgebras, thereby
giving a concrete operational interpretation, and a correspondence between solu-
tions to corecursive equations with and without equations. As an illustration and
application of our theory, we will show the existence of a distributive law of the
monad for idempotent semirings over the deterministic automata functor. This
result yields the equivalence betweeen the Greibach normal form representation
of context-free languages and the coalgebraic representation via context-free ex-
pressions given in[22].

Outline. In Section 2 we recall the notions of monads and algebras, and give
a concrete description of monad quotients. In Section 3 we recall distributive
laws and their application to solving systems of equations. Then in Section 4 we
prove our main results on quotients of distributive laws. In Section 5 we show
that such quotients give rise to quotients of bialgebras. Finally in Section 6 we
discuss related work, and provide some directions for future work. All proofs
have been placed in the Appendix.
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2 Monads, Algebras and Equations

We start by recalling some basic definitions on monads, algebras, term equations
and congruences. We will then proceed to give a concrete description of the
quotient monad arising from a free monad and a set of equations. We consider
only monads on Set.

A monad is a triple T = 〈T, η, μ〉 where T is a Set-endofunctor, and η : Id ⇒ T
and μ : TT ⇒ T are natural transformations such that μ ◦ Tη = 1 = μ ◦ ηT and
μ◦μT = μ◦Tμ. A T -algebra is a pair 〈A,α〉 where A is a set and α : TA→ A is a
function such that α◦ηA = 1 and α◦μA = α◦Tα. A (T -algebra) homomorphism
from 〈A,α〉 to 〈B, β〉 is a function f : A → B such that f ◦ α = β ◦ Tf . The
free T -algebra over a set X is 〈TX, μX〉. Given any T -algebra 〈A,α〉 and any
function f : X → A, there is a unique algebra homomorphism f 
 : TX → A such
that f 
(x) = f(x) for all x ∈ X , given by α ◦ Tf .

Let 〈T, η, μ〉 and 〈K, θ, ν〉 be monads. A monad map is a natural transformation
σ : T ⇒ K such that the following diagram commutes:

Id
η ��

θ ���
��

��
��

� T

σ

��

TT
μ��

σσ

��
K KK

ν��

(1)

where σσ = Kσ ◦ σT = σK ◦ Tσ.
We fix a monad 〈T, η, μ〉, a set of variables V , and a set of T -equations (over

V ) E ⊆ TV ×TV . Let A = 〈A,α〉 be a T -algebra. We denote by EA the relation
on A induced by E when quantifying over all valuations v : V → A:

EA =
⋃

v : V→A

{〈v
(s), v
(t)〉 | 〈s, t〉 ∈ E} (2)

By qA we denote the coequalizer

TEA

π�
1 ��

π�
2

�� A
qA �� A/≡A

and we write ≡A for the kernel of qA, i.e.,

s ≡A t iff qA(s) = qA(t)

which is the least congruence on A containing EA. Indeed qA is the quotient
map of ≡A. For a free algebra A = 〈TX, μX〉 we write EX , ≡X and qX for the
corresponding equations, congruence and quotient map, respectively. Moreover
we let T ′X = TX/≡X. Note that if T is finitary, the quotient is a T -algebra and
q is a T -algebra homomorphism.

We will use that all epis in Set are split, so every quotient map qX has a section
rX : T ′X 	 TX (which picks representatives) such that qX ◦ rX = 1TX/≡. The
following basic result will be useful.
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Lemma 1. Let f : A → B be an algebra homomorphism from A = 〈A,α〉 to
B = 〈B, β〉. Then for all x, y ∈ A: x ≡A y implies f(x) ≡B f(y).

Let f : X → Y be any map. Then Tf is an algebra homomorphism from
〈TX, μX〉 to 〈TY, μY 〉, so Lemma 1 implies that for any x, y such that x ≡X y
we have qY (Tf(x)) = qY (Tf(y)). Consequently by the universal property of the
coequalizer qX there is a unique map T ′X → T ′Y in the following square:

TX

Tf

��

qX �� T ′X

∃!
��

TY
qY �� T ′Y

(3)

We define T ′f to be this uniquely induced map. Since qX ◦ rX = 1T ′X , it follows
that we may describe T ′f concretely as T ′f = qY ◦T (f)◦ rX . The uniqueness of
T ′f means that the definition of T ′f does not depend on (the particular choice
of representatives made by) rX .

Definition 1 (Quotient monad). Given a monad 〈T, η, μ〉 and equations
E ⊆ TV × TV , we define the “quotient monad” 〈T ′, η′, μ′〉 as follows.

T ′X = TX/≡X,
T ′(f : X → Y ) = qY ◦ T (f) ◦ rX ,

η′X = qX ◦ ηX ,
μ′
X = qX ◦ μX ◦ rTX ◦ T ′(rX)

Proposition 1. Given any monad 〈T, η, μ〉, the quotient monad T ′ = 〈T ′, η′, μ′〉
is indeed a monad, and q : T ⇒ T ′ is a monad map.

The above construction yields a concrete monad T ′ given a set of operations
and equations. Intuitively, any monad which is isomorphic to T ′ is presented by
these same operations and equations; this is captured by the following definition.

Definition 2. Let Σ be an endofunctor, T the corresponding free monad, E ⊆
TV × TV a set of equations and T ′ the quotient monad. We say that a monad
K = 〈K, θ, ν〉 is presented by Σ and E if there is a monad map i : T ′ ⇒ K which
is a natural isomorphism.

Example 1. The idempotent semiring monad is defined by the functor mapping a
set X to the set Pω(X∗) of finite languages over X and, for morphisms f : X →
Y in Set we define Pω(f∗)(L) =

⋃
{f(x1) · · · f(xn) | x1 · · ·xn ∈ L}. Further,

ηX : X → Pω(X∗) is given by ηX(x) = {x} and μX : Pω(Pω(X∗)∗) → Pω(X∗)
by μX(L) =

⋃
L1···Ln∈L{w1 · · ·wn | wi ∈ Li}. It is presented by two constants 0

and 1, two binary operations + and ·, and the idempotent semiring axioms. The
witnessing isomorphism can easily be given based on the observation that every
semiring term is equivalent with respect to the idempotent semiring equations
to a sum of products of variables.
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3 Distributive Laws and Bialgebras

We briefly recall the basic definitions of distributive laws and bialgebras; for a
more thorough introduction we refer to [8,2,19].

3.1 Basic Definitions

Let T = 〈T, η, μ〉 be a finitary Set-monad, and F a Set-functor. A distributive law
λ of the monad T over the functor F is a natural transformation λ : TF ⇒ FT
which is compatible with the monad structure, meaning that λ ◦ ηF = Fη and
λ ◦ μF = Fμ ◦ λT ◦ Tλ, i.e., for all X the following diagrams commute:

FX
ηFX ��

FηX

		�
��

��
��

��
��

� TFX

λX

��

(unit.)λ

FTX

T 2FX

μFX

��

TλX ��

(mult.)λ

TFTX
λTX �� FT 2X

FμX

��
TFX

λX �� FTX

We recall that every distributive law λ : TF ⇒ FT corresponds to a lifting Fλ
of F to the category of T -algebras (see, e.g., [7,8]), defined as

Fλ〈A,α〉 = 〈FA,Fα ◦ λA〉 Fλ(f) = Ff (4)

Note that the compatibility of λX with μX means precisely that λX is a T -
algebra homomorphism from 〈TFX, μFX〉 to Fλ〈TX, μX〉.

An F -coalgebra is a pair 〈X, c〉 where X is a set and c : X → FX is a map.
An F -coalgebra morphism from 〈X, c〉 to 〈Y, d〉 is a map f : X → Y such that
d◦f = Tf ◦c. A λ-bialgebra is a triple 〈X,α, β〉 where α : TX → X is a T -algebra
and β : X → FX is an F -coalgebra such that β ◦α = Fα◦λX ◦Tβ. A morphism
of λ-bialgebras from 〈X1, α1, β1〉 to 〈X2, α2, β2〉 is a function f : X1 → X2 which
is both a T -algebra morphism and an F -coalgebra morphism.

The following results are well known (e.g., [2,8]). If 〈Z, ζ〉 is a final F -coalgebra,
then a distributive law λ : TF ⇒ FT yields a final λ-bialgebra 〈Z, α, ζ〉 where
α : TZ → Z is defined by coinduction from the F -coalgebra 〈TZ, λZ ◦ Tζ〉.

We will need the notion of distributive laws of monads over copointed functors.
A copointed functor is a pair 〈F, ε〉 where F is an endofunctor and ε : F ⇒ Id a
natural transformation. A distributive law of T over 〈F, ε〉 is a distributive law
of T over F additionally satisfying εT ◦λ = T ε. For any Set-functor F , the cofree
copointed functor generated by F is the pair 〈Id× F, π1 : Id× F → Id〉 where π1

is the natural left-projection.
When T is the free monad generated by a signature functor Σ, then dis-

tributive laws involving T can be reduced to “plain” natural transformations
using recursion, namely, there is a 1-1 correspondence between distributive laws
λ : TF ⇒ FT of T over F and natural transformations ρ : ΣF ⇒ FT (cf. [2]).
Such a ρ corresponds to a specification format of operational rules, and is some-
times referred to as a simple SOS rule. Similarly, for cofree copointed functors,



100 M.M. Bonsangue et al.

if T is freely generated by Σ, then there is a 1-1 correspondence between dis-
tributive laws λ : T (Id × F ) ⇒ (Id × F )T of T over 〈Id × F, π1〉 and natural
transformations ρ : Σ(Id× F ) ⇒ FT (cf. [10,4]). Such a natural transformation
ρ is also referred to as an abstract GSOS-rule since it generalises the GSOS-
format for labelled transition systems where F = Pω(−)A, cf. [2,19].

3.2 Solutions to Corecursive Equations

An important application of distributive laws is in solving corecursive equations
which are maps of the type φ : X → FTX where F is a functor and T is
(the functor component of) a monad. These include many interesting and useful
structures such as linear and context-free systems of behavioural differential
equations [16,22], as well as linear, nondeterministic and weighted automata
cf. [4,18]. These are all instances of T -automata [4] which have the type X →
B × (TX)A where A is a set and B carries a T -algebra β : TB → B, i.e., in
particular, F = B × (−)A whose final coalgebra carrier is BA∗

.
In the presence of a distributive law λ : TF ⇒ FT one obtains a λ-coinduction

principle [2] which provides unique solutions in the final λ-bialgebra 〈Z, α, ζ〉 to
corecursive equations of the form φ : X → FTX . Ordinary coinduction is the
special case where T is the identity monad. Formally, a solution to φ : X → FTX
in a λ-bialgebra 〈A,α, β〉 is a map f : X → A such that

X

φ

��

f �� A

β

��
FTX

FTf �� FTA
Fα �� FA

(5)

commutes. More precisely, λ-coinduction is coinduction in the category of λ-
bialgebras, and we have the following fact.

Proposition 2 (Lemmas 4.3.3 and 4.3.4 of [2]). Let φ : X → FTX be a
corecursive equation. Taking φλ = FμX ◦ λTX ◦ Tφ then 〈TX, μX , φλ〉 is a λ-
bialgebra, and ηX : X → TX is a solution of φ. Moreover, for any λ-bialgebra
〈A,α, β〉, there is a 1-1 correspondence between solutions of φ in 〈A,α, β〉 and
λ-bialgebra morphisms from 〈TX, μX , φλ〉 to 〈A,α, β〉.
A “pointwise distributive law” λ for T -automata can be obtained (cf. [4,6]) by
taking λX = (β× st) ◦ 〈Tπ1, T π2〉 where st : T ◦ (−)A ⇒ (−)A ◦T is the strength
natural transformation. This λ is named so, since it induces the pointwise ex-
tension of β : TB → B on BA∗

. In the context-free and streams examples below,
however, the desired algebraic structure on BA∗

uses the convolution product
which is not the pointwise extension of the semiring product of B. So for these
examples a different λ must be given.

4 Quotients of Distributive Laws

In Section 2 we saw how term equations give rise to quotients of algebras, and
we gave an explicit construction of the resulting quotient monad. In this section,
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we investigate conditions under which distributive laws and equations give rise
to quotients of distributive laws.

As before, let Σ be a finitary signature functor generating the free monad
T = 〈T, η, μ〉, and let E be a set of T -equations with associated T -congruence
≡X on terms, and quotient monad T ′ = 〈T ′, η′, μ′〉.

4.1 Distributive Laws over Plain Behaviour Functors

In this subsection, we assume that λ : TF ⇒ FT is a distributive law of T
over a plain behaviour functor F . We will provide a condition on λ and the
equations E that ensures that we get a distributive law λ′ : T ′F ⇒ FT ′ for the
quotient monad. To this end, it is convenient to use the notion of a morphism
of distributive laws from [20].

Definition 3. Let 〈T, η, μ〉 and 〈K, θ, ν〉 be monads, and let λ : TF ⇒ FT and
κ : KF ⇒ FK be distributive laws. A natural transformation τ : T ⇒ K is a
morphism from λ to κ (notation τ : λ ⇒ κ) if τ is a monad morphism and the
following square commutes:

TF

λ

��

τF �� KF

κ

��
FT

Fτ �� FK

(6)

We note that there are generalisations of the above definition that allow natural
transformations between behaviour functors, cf. [20]. For our purposes, we do
not need to change the behaviour type.

Definition 4. We say that λ : TF ⇒ FT preserves (equations in) E if for all
g : V → FX, and for all s, t ∈ TV :

s E t ⇒ FqX(λX(Tg(s))) = FqX(λX(Tg(t))). (7)

Equation (7) can be conveniently formulated in terms of relation lifting as

s E t ⇒ λX(Tg(s)) F (≡X) λX(Tg(t)). (8)

where the F -lifting of a relation R ⊆ Y × Y is defined as

F (R) = {〈Fπ1(u), Fπ2(u)〉 ∈ FY × FY | u ∈ F (R)}

and noticing that u F (≡X) v iff FqX(u) = FqX(v).
We can now state our main result.

Theorem 1. The following are equivalent.

1. λ : TF ⇒ FT preserves equations E.
2. there is a (unique) distributive law λ′ : T ′F ⇒ FT ′ such that the quotient

map q : T ⇒ T ′ is a morphism of distributive laws from λ to λ′.
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Remark 1. Using that distributive laws correspond to functor liftings on T -
algebras (cf. (4)), the distributive law λ′ in Theorem 1 exists if and only if
the functor Fλ restricts to T ′-algebras. A similar statement for the case when F
is a monad is made in [11, Corollary 3.4.2].

As a corollary we obtain the analogue of Theorem 1 for monads presented by
operations and equations.

Corollary 1. Suppose K = 〈K, θ, ν〉 is presented by operations Σ and equations
E with natural isomorphism i : T ′ ⇒ K, and suppose we have a distributive law
λ : TF ⇒ FT of T over F . Then there exists a unique distributive law κ : KF →
FK of K over F such that i ◦ q : λ⇒ κ is a morphism of distributive laws.

Theorem 1 says that if λ preserves the equations in E, then we can present λ′

as “λ modulo equations”. We illustrate this with an example.

Example 2 (Stream calculus). Behavioural differential equations are used exten-
sively in [16,17] to define streams and stream operations. Here, the behaviour
functor is F (X) = R×X whose final coalgebra 〈Rω , ζ〉 consists of streams over
the real numbers together with the map ζ(σ) = 〈σ(0), σ′〉 which maps a stream
σ to its initial value σ(0) and derivative σ′.

The following behavioural specification defines the constant streams [a] =
(a, 0, 0, . . .) for all a ∈ R, X = (0, 1, 0, 0, . . .), pointwise addition and convolution
product of streams. We point out that the convolution product is defined here
by a simple stream SOS-rule rather than a stream GSOS-rule, which is used in
[16,17]. We explain this choice at the end of the example.

[a](0) = a, [a]′ = [0], ∀a ∈ R
X(0) = 0, X′ = [1],

(σ + τ )(0) = σ(0) + τ (0), (σ + τ )′ = σ′ + τ ′,
(σ × τ )(0) = σ(0) · τ (0), (σ × τ )′ = (σ′ × [τ (0)]) + (σ′ × X× τ ′) + ([σ(0)]× τ ′)

The signature functor is thus Σ(X) = R+1+(X×X)+(X×X), and the above
specification induces a distributive law λ : TF ⇒ FT . We would like to apply
Theorem 1 to obtain a distributive law λ′ for the quotient monad T ′ arising
from T and E. Let E consist of the following axioms where V = {v, u, w} and
a, b ∈ R:

(v + u) + w = v + (u + w) [0] + v = v v + u = u + v
(v × u)× w = v × (u× w) [1]× v = v v × u = u× v
v × (u + w) = (v × u) + (v × w) [0]× v = [0]
[a + b] = [a] + [b] [a · b] = [a]× [b]

(9)

E consists of the commutative semiring axioms together with axioms stating the
inclusion of the underlying semiring of the reals. We show that λ preserves E. Let
g : V → FX be arbitrary and suppose g(v) = 〈a, x〉, g(u) = 〈b, y〉, g(z) = 〈c, z〉.
First note that for F = R× Id, 〈r1, t1〉 F (≡X) 〈r2, t2〉 iff r1 = r2 and t1 ≡X t2. It
is straightforward to check preservation of the axioms that only concern addition,
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as well as of [1]×v = v, [0]×v = [0] and v×u = u×v. We show that [a·b] = [a]×[b]
is preserved:

λX([a]× [b]) = 〈a · b, [0]× [b] + [0]× X× [0] + [a]× [0]〉
F (≡X) 〈a · b, [0]〉 = λX([a · b])

We check that λ preserves the distribution axiom:

λX(〈a, x〉 × (〈b, y〉+ 〈c, z〉))
= 〈a · (b + c), (x× [b + c]) + (x×X × (y + z)) + [a]× (y + z)〉

F (≡X) 〈a · (b + c), (x× [b + c]) + (x×X × y) + (x ×X × z)+
([a]× y) + ([a]× z)〉

F (≡X) 〈(a · c) + (b · c), (x× [b]) + (x×X × y) + ([a]× y)+
(x × [c]) + (x×X × z) + ([a]× z)〉

=
λX((〈a, x〉 × 〈b, y〉) + (〈a, x〉 × 〈c, z〉))

Note that we used [a + b] = [a] + [b]. Similarly, preservation of ×-associativity
can be verified, and it uses the axiom [a ·b] = [a]× [b]. We have thus shown that λ
preserves E, and it follows, in particular, that 〈Rω,+,×, [0], [1]〉 is a commutative
semiring. This was shown directly in [17], but the proof uses bisimulation-up-to
as well as the fundamental theorem of stream calculus, which cannot be added
as an equation. In our approach we construct a distributive law, and obtain not
only this result but also the soundness of the bisimulation-up-to technique [15],
and the existence of unique solutions to corecursive equations φ : X → FT ′X
(see Section 3.2).

The derivative of the convolution product is usually (cf. [16,17]) specified as:

(σ × τ)′ = (σ′ × τ) + ([σ(0)]× τ ′) (10)

which corresponds to a stream GSOS-rule Σ(Id × R × Id) ⇒ R × T (−), and
thus to a distributive law over the cofree copointed functor. However, with this
definition, we could not show that the commutativity of × is preserved although
all other axioms remain preserved. Hence a given λ does not necessarily satisfy
all equations that are valid on the final F -coalgebra.

In the above example, we did not have a concrete monad in mind; we simply
considered a free monad and a set of equations. In Example 4 below we give an
example for the concrete idempotent semirings monad.

Remark 2. The concrete proof method for preservation of equations bears a close
resemblance to bisimulation up to congruence [15], in that one must show that
for every pair in EFX its derivatives are related by the least congruence ≡X
instead of EX .

Example 3. We have seen in the discussion of (10) that equations that hold
in the final coalgebra are not necessarily preserved by λ. Now we give another
concrete example of this fact. This example again concerns stream systems, i.e.,
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coalgebras for the functor FX = R × X . We define the constant stream of
zeros by three different constants n1, n2 and n3 by the following behavioural
differential equations:

n1(0) = 0, n′
1 = n1 n2(0) = 0, n′

2 = n3 n3(0) = 0, n′
3 = n3

The corresponding signature functor is thus ΣX = 1+1+1, and the above spec-
ification gives rise to a distributive law λ : TF ⇒ FT where T is (the functorial
component of) the free monad over Σ. Now consider the equation n1 = n2; this
clearly holds when interpreted in the final coalgebra. However, this equation is
not preserved by λ. To see this, notice that λ(n1) = 〈0, n1〉 and λ(n2) = 〈0, n3〉,
but n1 �≡X n3, so λ(n1) and λ(n2) are not related by F (≡X).

4.2 Distributive Laws over Copointed Functors

We now show that our main results hold as well for distributive laws of mon-
ads over copointed functors. This extends our method to deal with operations
specified in abstract GSOS format, such as language concatenation.

Proposition 3. Theorem 1 and Corollary 1 hold as well for any distributive
law of a monad over a copointed functor.

Example 4 (Context-free languages). A context free grammar (in Greibach nor-
mal form) consists of a finite set A of terminal symbols, a (finite) set X of
non-terminal symbols, and a map 〈o, t〉 : X → 2 × Pω(X∗)A, i.e., it is a coalge-
bra for the behavior functor F = 2×IdA composed with the idempotent semiring
monad Pω(Id∗) from Example 1. Intuitively, o(x) = 1 means that the variable x
can generate the empty word, whereas w ∈ t(x)(a) if and only if x can generate
aw, cf. [22].

It is a rather difficult task to describe concretely a distributive law of Pω(Id∗)
over F (or Id× F ) defining the sum + and sequential composition · of context-
free grammars. More conveniently, since we have seen in Example 1 that the
monad Pω(Id∗) can be presented by the operations and axioms of idempotent
semirings, we proceed by defining a distributive law λ of the free monad T
generated by the semiring signature functor Σ(X) = 1 + 1 + (X×X) + (X×X)
over the cofree copointed functor 〈Id × F, π1〉, and show that λ preserves the
semiring axioms. We define λ as the distributive law that corresponds to the
natural transformation ρ : Σ(Id× F ) ⇒ FT whose components are given by:

ρ0X = 〈0, a �→ ∅〉
ρ1X = 〈1, a �→ ∅〉

ρ+X(〈x, o, f〉, 〈y, p, g〉) = 〈max{o, p}, a �→ f(a) + g(a)〉

ρ·X(〈x, o, f〉, 〈y, p, g〉) =

〈
min{o, p}, a �→

{
f(a) · y if p = 0

f(a) · y + g(a) if p = 1

〉 (11)

We proceed to show that λ preserves the defining equations of idempotent semir-
ings. We treat here only the case of distributivity, i.e., u ·(v+w) = u ·v+u ·w. To
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this end let g : V → X × FX be arbitrary and suppose g(v) = 〈x, o, d〉, g(u) =
〈y, p, e〉 and g(z) = 〈z, q, f〉. Notice that either o = 0 or o = 1; we treat both
cases separately:

λ(〈x, 0, d〉 · (〈y, p, e〉+ 〈z, q, f〉))
= (x · (y + z), 0, a �→ d(a) · (y + z))

F (≡X) (x · y + x · z, 0, a �→ d(a) · y + d(a) · z)
= λ(〈x, 0, d〉 · 〈y, p, e〉+ 〈x, 0, d〉 · 〈z, q, f〉)

λ(〈x, 1, d〉 · (〈y, p, e〉+ 〈z, q, f〉))
= (x · (y + z), p + q, a �→ d(a) · (y + z) + (e(a) + f(a)))

F (≡X) (x · y + x · z, p + q, a �→ (d(a) · y + d(a) · z) + (e(a) + f(a)))
F (≡X) (x · y + x · z, p + q, a �→ (d(a) · y + e(a)) + (d(a) · z + f(a)))

= λ(〈x, 1, d〉 · 〈y, p, e〉+ 〈x, 1, d〉 · 〈z, q, f〉) .

In a similar way one can show that λ preserves the other idempotent semiring
equations. Thus, from Proposition 3 and Corollary 1 we obtain a distributive law
κ of Pω(Id∗) over 2 × IdA such that i ◦ q : λ ⇒ κ is a morphism of distributive
laws, i.e., κ is presented by λ and the equations of idempotent semirings.

5 Morphisms and Solutions

In this section, we show that morphisms of distributive laws commute with
solving corecursive equations. In the case of monads with equations, this means
that first solving equations φ with respect to T and then quotienting the solution
bialgebra is the same as first quotienting T and solving with respect to the
quotient monad T ′.

We first describe some functors that link the relevant categories of bialgebras
and corecursive equations. Throughout this Section, we let T = 〈T, η, μ〉 and
K = 〈K, θ, ν〉 be monads; and λ : TF ⇒ FT and κ : KF ⇒ FK be distributive
laws of T and K over F , respectively.

If τ : λ ⇒ κ is a morphism of distributive laws, then precomposing with τ
yields a functor:

I : Bialg(κ) → Bialg(λ)

KX
α ��X

β ��FX �→ TX
α◦τX ��X

β ��FX
(12)

I takes a κ-bialgebra to a λ-bialgebra follows from the naturality of τ and
Fτ ◦ λ = κ ◦ τF . Similarly, postcomposing with Fτ yields a functor between
corecursive equations:

Q : Coalg(FT ) → Coalg(FK)

φ : X → FTX �→ FτX ◦ φ : X → FKX
(13)

Recall from Section 3.2, that given a distributive law λ : TF ⇒ FT , the solutions
of a corecursive equation φ : X → FTX are characterised by morphisms from
the λ-bialgebra 〈TX, μX , φλ〉 whose F -coalgebra structure given by
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φλ = FμX ◦ λTX ◦ Tφ (14)

This yields a functor (see e.g. [5, Lem. 5.4.11]):

Gλ : Coalg(FT ) → Bialg(λ)

〈X,φ〉 �→ 〈TX, μX , φλ〉 (15)

We can go in the opposite direction by using the monad unit,

Vη : Bialg(λ) → Coalg(FT )

〈X,α, β〉 �→ 〈X,FηX ◦ β〉 (16)

which decomposes into the functor U : Bialg(λ) → Coalg(F ) that forgets algebra
structure, and

Jη : Coalg(F ) → Coalg(FT )

〈X, β〉 �→ 〈X,FηX ◦ β〉 (17)

The following diagram summarises the situation:

Bialg(λ)

Vη





U

��

Coalg(FT )

Gλ

��

Q

��

Coalg(F )

Jη
��������

Jθ��




Bialg(κ)

Vθ

��

I

��

U

��

Coalg(FK)

Gκ

��

(18)

We mention that QVηI = Vθ since τ is compatible with the units of T and K.
Morphisms of distributive laws are defined to be monad maps, and hence

respect the algebraic structure. The next proposition shows that, as one might
expect, they also respect the coalgebraic structure, and hence morphisms of
distributive laws induce morphisms between bialgebras.

Proposition 4. If τ : λ ⇒ κ is a morphism of distributive laws, then for all φ :
X → FTX we have that τX is a λ-bialgebra morphism τX : Gλ(φ) → IGκQ(φ)
or, equivalently, an F -coalgebra morphism τX : 〈TX, φλ〉 → 〈KX, (Qφ)κ〉.

It follows that the unique λ-bialgebra morphism g : 〈TX, μX , φλ〉 → 〈Z, α, ζ〉
into the final λ-bialgebra 〈Z, α, ζ〉 factors as g = g′ ◦ τX , where g′ is the final
λ-bialgebra morphism from IGκQ(φ), as shown here:
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T 2X
TτX ��

μX

��

TKX
Tg′ ��

νX◦τKX

��

TZ

α

��
X

ηX ��

φ ���
��

��
��

TX
τX ��

φλ

��

KX
g′ ��

(Qφ)κ

��

Z

ζ

��
FTX

FτX �� FKX
Fg′ �� FZ

(19)

Hence by Proposition 2, every solution of φ in the final λ-bialgebra yields a
solution of Qφ, and vice versa.

When τ : λ ⇒ κ arises from a set of preserved equations E as in Section 4
(with κ = λ′), then Proposition 4 says that IGκQ(φ) is a quotient of the
“free” λ-bialgebra 〈TX, μX , φλ〉, and in particular, the congruence ≡X is an
F -behavioural equivalence. In this case, Qφ is the corecursive equation obtained
by reading the right-hand side of φ modulo equations in E. In other words,
quotienting the solution of the equation φ is the same as solving the quotiented
equation Qφ.

Example 5. Recall from Example 4 that i ◦ q : T ⇒ Pω(X∗) is a morphism of
distributive laws. By Proposition 4 we have the following commuting diagram
for any corecursive equation φ : X → 2× (TX)A:

X
ηX ��

φ 		�
��

��
��

��
TX

i◦qX ��

φλ

��

Pω(X∗) ��

(Qφ)κ

��

P(A∗)

ζ

��
2× (TX)A

1×(i◦qX )A�� 2× (Pω(X∗))A �� 2× P(A∗)A

(20)

Notice that a context-free grammar 〈o, t〉 : X → 2×Pω(X∗)A can be represented
by a φ : X → 2 × (TX)A such that Qφ = 〈o, t〉, since i ◦ q is surjective. This
gives the expected correspondence between two of the three different coalgebraic
approaches to context-free languages introduced in [22] (the third approach is
about fixed-point expressions and as such is outside the scope of this paper).

Similarly, the algebraic structure induced by λ on the final F -coalgebra factors
uniquely through the algebraic structure induced by κ.

Proposition 5. Let τ : λ ⇒ κ be a morphism of distributive laws, and let
α : TZ → Z and α′ : KZ → Z be the algebras induced by λ and κ respectively on
the final coalgebra 〈Z, ζ〉. Then α = α′ ◦ τZ .

Example 6. Continuing Example 5, it follows from Proposition 5 that the algebra
α : TP(A∗) → P(A∗) induced by the distributive law for T can be decomposed
as i ◦ q ◦ α′, where α′ is the algebra on P(A∗) induced by the distributive law
for Pω(Id∗). It can be shown by induction that α is the algebra on languages
given by union and concatenation product. Now α′ : Pω(P(A∗)∗) → P(A∗) can
be given by selecting a representative term and applying α, and it follows that
α′(L) =

⋃
L1···Ln∈L{w1 · · ·wn | wi ∈ Li}.
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6 Discussion and Conclusion

We have presented a preservation condition that is necessary and sufficient for
the existence of a distributive law λ′ for a monad with equations given a dis-
tributive law λ for the underlying free monad. This condition consists of check-
ing that the base equations are preserved by λ. For concrete monads, checking
preservation is often much easier than describing and verifying the distributive
law requirements directly. We demonstrated our method by applying it to ob-
tain distributive laws for stream calculus over commutative semirings, and for
context-free grammars which use the monad of idempotent semirings.

In [20] the notion of morphisms of distributive laws is studied as a general
approach to translations between operational semantics. In this paper we in-
vestigate in detail the case of quotients of distributive laws. Distributive laws
for monad quotients and equations are also studied in [10,11]. The setting and
motivation of [11] is different as they study distributive laws of one monad over
another with the aim to compose these monads. We study distributive laws of a
monad over a plain or copointed functor. The approach in [10] is more general
as they consider monads on arbitrary categories, but it also differs from ours in
that the desired distributive law is contingent on two given distributive laws and
the existence of the coequaliser (in the category of monads) which encodes equa-
tions. We have given a more direct analysis for monads in Set and a practical
proof principle, which covers many known examples. We leave as future work to
find out precisely how their Theorem 31 relates to our Theorem 1.

While in this work we have focused on adding equations which already hold in
the final bialgebra, it is often useful to use equations to induce behaviour, next
to a behavioural specification in terms of a distributive law. In process theory
this idea is captured by the notion of structural congruences [13]; at the more
general level of distributive laws there is work on adding recursive equations [9].
We leave a general study of structural congruences for distributive laws, and the
precise relation to the present results, as future work.

More technically, it remains an open problem whether a converse of Proposi-
tion 4 holds. Finally, as mentioned by one of the referees, it would be desirable to
be able construct the quotient monad without the assumption of right-inverses
by using a more categorical treatment of congruences as spans. Another ab-
stract formulation of our results in terms of right Kan extensions has also been
suggested. We intend to investigate these matters in future work.

Acknowledgements. We thank Neil Ghani, Bart Jacobs, Jan Rutten and Joost
Winter for helpful discussions and suggestions.
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Abstract. We use dialgebras, generalising both algebras and coalge-
bras, as a complement of the standard coalgebraic framework, aimed at
describing the semantics of an interactive system by the means of reac-
tion rules. In this model, interaction is built-in, and semantic equivalence
arises from it, instead of being determined by a (possibly difficult) un-
derstanding of the side effects of a component in isolation. Behavioural
equivalence in dialgebras is determined by how a given process inter-
acts with the others, and the obtained observations. We develop a tech-
nique to inter-define categories of dialgebras of different functors, that in
particular permits us to compare a standard coalgebraic semantics and
its dialgebraic counterpart. We exemplify the framework using the CCS
and the π-calculus. Remarkably, the dialgebra giving semantics to the
π-calculus does not require the use of presheaf categories.

1 Introduction

A system is called interactive when its semantics depends upon interaction with
a surrounding environment. The semantics does not just yield a value (or not
at all), but rather it consists in the denotation of the behaviour of the system
itself, usually described either by reaction rules or by a labelled transition system
(LTS). The difference is illustrated by the following example, defining a reaction
rule for the synchronisation of two parallel processes in a process calculus (the
rule on the left) or the LTS variant (the three rules on the right):

a.P ‖ ā.Q → P ‖ Q a.P
a−→ P ā.P

ā−→ P
P

a−→ P ′ Q
ā−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

Here a.P is a process waiting for a signal on channel a, whose continuation is
P . Similarly, ā.P sends a signal on a, while P ‖ Q is the parallel composition of
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two processes. The reaction rule may be read as “whenever two processes can
synchronise, they do, and evolve into the parallel composition of their continua-
tions”. The LTS rules may be read as: “whenever a process can send or receive a
signal, it evolves into its continuation, and has a side effect on the environment”.
Two processes with complementing side effects interact by the last rule.

LTSs are widely used for modelling the semantics of interactive systems, since
they come equipped with bisimilarity, a form of behavioural equivalence that
specifies when the semantics of two processes is the same. Coalgebras gener-
alise LTSs and have a standard definition of bisimilarity, coinciding with kernel
equivalence of morphisms under mild assumptions. Many formalisms received a
coalgebraic treatment. This becomes increasingly harder as the complexity of
the calculus grows, depending on the general question of what are side effects in
a specific calculus. For example, dealing with name allocation in the π-calculus
requires the use of presheaf categories (see e.g. [1]).

In this work, we seek for a setting where reaction rules are the main object of
study, and side effects or labels are not needed at all to define behavioural equiv-
alence. We use a generalisation of coalgebras, namely dialgebras, to represent a
rule system as an object in a category, so that kernel equivalence can be used
as a notion of behavioural equivalence. To appreciate the difference, consider a
function f : X → P(L×X). It specifies an LTS with states in X describing, for
each state x, the non-deterministic choices at x, the side effects of each choice,
and the resulting state. In LTSs, and coalgebras, elements are observed in iso-
lation. In contrast, an example of a dialgebra is f : X ×X → P(X). The value
of f(x, y) is meant to describe the possible (non-deterministic) outcomes of an
interaction between x and y. Elements are not observed in isolation, but rather
their mutual interactions define the semantics.

Categories of dialgebras were first studied under the name of generalised al-
gebraic categories (see e.g. [2,3]). These structures have been used in computer
science for the specification of data types [4,5]. A systematic study of dialgebras,
patterned after [6], was done in [7]. Applications to a compositional calculus
for software components were proposed in [8]. In [9], we modelled asynchronous
process calculi as isolated machines that can be fed with input tokens by an
external observer, using dialgebras to generalise Mealy machines. In this paper
we aim at a more intensional characterisation, tailored to reaction rules, ob-
tained by studying interaction between pairs of systems rather than the relation
between their input and output. Our work diverts from previous research, as
we take a “local” approach. Instead of studying a whole category of dialgebras,
one just considers objects that are reachable by morphisms from the particular
dialgebra being studied. This approach addresses the issue, previously unsolved,
that a final dialgebra fails to exist, so there is no universal semantic domain for
the whole class of considered objects. To obviate to this, in §2, we study the
bisimilarity quotient of a specific system, showing that it exists under mild con-
ditions. The bisimilarity quotient is sufficient to provide a canonical semantics
to an interactive system up-to behavioural equivalence, by the means of a canon-
ical epimorphism. Indeed, a universal model is also useful to compare different
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systems of the same type. However, this is not typical in coalgebraic program
semantics, as different systems have different types, representing different kinds
of side effects. In dialgebraic program semantics, just like in the coalgebraic case,
working with different systems requires the use of categorical comparisons. In
§4, we develop techniques to do so in the local perspective.

In §5 we provide two examples: the Calculus of Communicating Systems and
the π-calculus. The simplicity of the former allows us to cleanly illustrate our
framework, including the comparisons of §4, used to prove the equivalence of
the coalgebraic and dialgebraic semantics. On the other hand, the dialgebraic
semantics of the π-calculus provides an important insight: using reaction rules,
one does not need to understand what are the side effects of programs, as in-
teraction is sufficient to characterise their behaviour. Thus, the semantics of the
calculus is given as a dialgebra in Set, without the need to resort to presheaf
categories to describe bisimilarity; but nevertheless, we are able to prove that
standard dialgebraic bisimilarity coincides with early bisimilarity. It is also worth
notice that the close relationship between the two calculi permits us to define
the dialgebra for the π-calculus by just changing one rule from the dialgebra
for the CCS. This is possible since both systems can be described by the means
of binary interactions and non-deterministic observations ; that is, they use the
same functors. We introduce these two simple functors in §3, together with a
characterisation theorem for the associated behavioural equivalence.

Related Work. The most widely known framework for the categorical seman-
tics of reactive systems is the so-called “contexts as labels” approach [10,11,12].
Roughly, an LTS is derived from reaction rules adopting unary contexts as labels;
bisimilarity of such LTS serves as behavioural equivalence. Nevertheless, minimal
contexts need to be carefully selected in order to obtain a sensible equivalence
relation; the obtained semantics depends on this choice, and is not directly spec-
ified by the reaction rules themselves. The resulting categorical framework is
highly non-trivial. Dialgebras, in contrast, provide a simple setting in which to
study reactive systems. However, compositionality, which is a foundational rea-
son to use contexts as labels, and certainly a desired feature, has not yet been
investigated for dialgebras (more on this in the conclusions). For the time being,
dialgebras complement algebras and coalgebras, rather than bialgebras.

2 Dialgebras

A coalgebraic semantics can be interpreted as the discerning power of an observer
that can see all the actions done by a process. In contrast, dialgebras endow
the observer with the ability to interact with the system. The passive observer
becomes an entity which runs experiments and observes the results. By this
change of point of view, we can represent e.g. input as an experiment in which
the observer feeds a system with a value [9], or we can represent interaction as
a binary experiment involving two processes as we do in the current paper.

We restrict all our definitions to the category Set, but indeed the theory of
dialgebras can be developed in any category.
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Fig. 1. A dialgebra homomorphism

Definition 1. Given two functors F, B : Set→ Set, a (F, B)-dialgebra is a pair
(X, f) where X is the carrier set or underlying set and f : FX → BX is a
function. A (F, B)-dialgebra homomorphism from (X, f) to (Y, g) is a function
h : X → Y such that g ◦ Fh = Bh ◦ f , as depicted in Figure 1. Dialgebras and
their homomorphisms form the category Dialg(F, B).

Roughly, F is the syntax of experiments, of which the function f is the se-
mantics, yielding a set of elements in a type of observed results B. The crucial
feature of dialgebras is that, since they form a category, they have a standard
notion of equivalence coming from kernels of morphisms. Notice that dialgebras
conservatively extend algebras (Dialg(F, Id)) and coalgebras (Dialg(Id, T)).

Definition 2. Given a (F, B)-dialgebra (X, f), dialgebraic bisimilarity ∼f⊆ X×
X is defined by x ∼f y ⇐⇒ ∃(Y, g).∃h : (X, f) → (Y, g).h(x) = h(y).

Notice that in Definition 2 we use the kernel of h as a function. Thus, we do not
require kernels (pullbacks of a function with itself) in Dialg(F, B). The “exten-
sional” definition that we provide is applicable to any kind of dialgebra (inde-
pendently from F and B), and it avoids the machinery of relation liftings (which
are used in [5]). We now study epi-mono factorisations of dialgebras.

Proposition 1. If F and B preserve monos whose domain is empty, the cate-
gory Dialg(F, B) has unique epi-mono factorisations. Otherwise, it has epi-mono
factorisations of morphisms whose domain does not have an empty carrier.

Proposition 1 guarantees that bisimilarity is determined by the epimorphisms.
In coalgebras, the kernel of the unique morphism into the final object (if any)
coincides with bisimilarity. For simple functors F, e.g., F(X) = X×X , even when
B is bounded, a final dialgebra does not exist1.

Example 1. Let F(X) = X×X and B(X) = Pfin(X) (the finite power set of X).
Suppose there is a final dialgebra (Z, z). Consider the dialgebra (Z + 1, f) where
f(x, y) = z(x, y) if x, y ∈ Z, f(x, ∗) = f(∗, x) = {∗} if x ∈ Z, and f(∗, ∗) = ∅.
Consider the final map h : (Z + 1, f) → (Z, f). Here we get to a contradiction:

1 A final dialgebra still exists when B preserves the terminal object [7]. However, this
makes the category of dialgebras not very interesting, as the final dialgebra has just
one element, thus all the elements of any system are bisimilar.
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h restricted to Z must be the identity, therefore injective and surjective. To see
this, consider that (Z, z) embeds into (Z + 1, f) by the identity function, and
that the identity of (Z, z) must factor through such embedding and h, by finality.
Thus, there is x ∈ Z such that h(x) = h(∗). Then h is not a dialgebra homo-
morphism: we have z(Fh(∗, x)) = z(h(∗), h(x)) = z(h(∗), h(∗)) = z(Fh(∗, ∗)),
while Bh(f(∗, x)) = {h(∗)} �= ∅ = Bh(f(∗, ∗)). Intuitively, the element ∗ behaves
differently from every other element of Z, but Z ought to encompass all the
possible behaviours, which is a contradiction. Similarly, for any X , define the di-
algebra g(x, x) = {x}, g(x, y) = ∅ if x �= y. Since X is arbitrary, and no different
elements are bisimilar, the cardinality of a final dialgebra is unbounded.

Final semantics is a well-established way to define behavioural equivalence of
systems. In the absence of a final object in Dialg(F, B), we can still define be-
havioural equivalence by reasoning in terms of quotients of a system. Recall
that a quotient of an object X in a category is the canonical representative of
an equivalence class of epimorphisms from X , under the equivalence relation
f : X → Y ≡ g : X → Z if and only if there is an isomorphism i : Y → Z such
that i ◦ f = g. In Set, the quotients of an object form a set.

Definition 3. The bisimilarity quotient of a dialgebra (X, f) is the wide pushout
(Q, q) (if it exists) of the cone of quotients of (X, f) in Dialg(F, B). We call the
diagonal z : (X, f) → (Q, q) the canonical map of (X, f).

Proposition 2. Let (Q, q) be the bisimilarity quotient of (X, f) and z the canon-
ical map. For all x, y ∈ X, x is bisimilar to y if and only if z(x) = z(y). There-
fore, when the bisimilarity quotient exists, bisimilarity is an equivalence relation.

When the bisimilarity quotient exists, the canonical map can be considered the
semantics of a system. Although z is canonical, it is not necessarily the unique
z : (X, f) → (Q, q): bisimilarity classes may be interchangeable in dialgebras.

Example 2. Consider the dialgebra g defined in Example 1; the dialgebra has no
non-trivial quotients, so it coincides with its bisimilarity quotient. However all
the isomorphisms of the carrier set are dialgebra homomorphisms. The bisimi-
larity classes are the same, but for the identity of the sole element of each class.

For a different example, in the semantics of a symmetric process calculus such
as the pure variant of CCS, the bisimilarity classes of an element, and of the
element obtained by replacing all the input or output actions in it with the
complementary ones, can be interchanged.

Clearly, when a final object exists, the epi-mono factorisation of the final
morphism yields the bisimilarity quotient. A bisimilarity quotient may exist also
in the absence of a final object. Here is a sufficient condition.

Proposition 3. When F preserves wide (small) pushouts of epimorphisms, that
is, colimits of an arbitrary small cone of epis, the bisimilarity quotient exists.

The dialgebraic semantics of CCS in §5.2 is an example where the bisimilarity
quotient exists, but there is no final dialgebra (by Example 1).



Interaction and Observation: Categorical Semantics of Reactive Systems 115

3 Interaction and Observation

In this section we introduce two functors F and B that can be used to give
dialgebraic semantics to interactive, non-deterministic calculi.

Definition 4. The interaction and observation functors are defined as F(X) =
X + (X ×X) and B(X) = P(X), respectively.

As elements of X and X ×X are syntactically disjoint, we use them to denote
elements of F(X), avoiding labels for the coproduct. An element of FX is either
x ∈ X , representing an experiment about a process in isolation, or (x, y) ∈ X×X ,
an experiment where two processes are allowed to interact. Elements of B are sets
of processes, that are the possible non-deterministic outcomes of an experiment.
We write x → z and (x, y) → z for z ∈ f(x) and z ∈ f(x, y), respectively.

Proposition 4. The functors F and B preserve monos from the empty set. F pre-
serves wide pushouts of epis. Therefore Dialg(F, B) has epi-mono factorisations,
and each dialgebra in the category has a bisimilarity quotient.

Theorem 1 provides a characterisation of bisimilarity in Dialg(F, B).

Theorem 1. Let (X, f) be an (F, B)-dialgebra. An equivalence relation R ⊆
X × X is the kernel of h : (X, f) → (Y, g) for some h, Y , g, if and only if,
for all (x1, x2), (y1, y2) ∈ R and z1 ∈ X, we have: x1 → z1 =⇒ ∃z2.x2 →
z2 ∧ (z1, z2) ∈ R, and, (x1, y1) → z1 =⇒ ∃z2.(x2, y2) → z2 ∧ (z1, z2) ∈ R. As a
corollary, the bisimilarity quotient of (X, f) is the largest such relation.

4 Comparing Dialgebras

Categories of algebras or coalgebras of different functors may be compared by
mapping one category into the other by composition with an appropriate natural
transformation [6]. In §4.1 we generalise this technique to dialgebras (of which
algebras and coalgebras are special cases). The problem has first been studied
in [7]. Here we improve on it by adding an intermediate “container” functor G,
whose role is crucial, e.g., for §5.3. In §4.2 we discuss the limitations of this
method in the setting of dialgebras, and refine the construction.

4.1 Comparing Categories of Dialgebras

Consider Set endofunctors F, B, F′, B′. One can specify functor K : Dialg(F, B) →
Dialg(F′, B′) using G : Set → Set and two natural transformations λ : F′ → GF

and μ : GB→ B′, as illustrated by the diagram in Figure 2.
Notice that dialgebras come equipped with the “underlying set” or “forgetful”

functor UF,B : Dialg(F, B) → Set defined as UF,B(X, f) = X , UF,B(h : (X, f) →
(Y, g)) = h; this allows us to state that K is concrete.



116 V. Ciancia

F′X

F′Y

GFX

GFY

GBX

GBY

B′X

B′Y

F′h GFh GBh B′h

λX

λY

μX

μY

Gf

Gg

FX

FY

BX

BY

Fh Bh

f

g

X

Y

h

Fig. 2. Comparing categories of dialgebras using natural transformations

Theorem 2. Two natural transformations λ : F′ → GF and μ : GB → B′ deter-
mine a functor K : Dialg(F, B) → Dialg(F′, B′) as K(X, f) = (X,μX ◦ Gf ◦ λX),
K(h : (X, f) → (Y, g)) = h. K is concrete, that is: UF′,B′ ◦ K = UF,B.

As a consequence of K being concrete, we have the following corollary.

Corollary 1. If x, y ∈ X are bisimilar in (X, f) then they are so in K(X, f).

4.2 Comparing Dialgebras

The framework of §4.1 is more restrictive than necessary. Observe that λ and
μ have to be defined for each set X . But when comparing say, two different
semantics of a language, we are only interested in the two dialgebras, and in the
objects that may be reached from them by an epimorphism. Considering this
subclass of objects, in the definition of λ and μ, we could use specific features of
a given dialgebra (e.g. exploit the fact that the underlying set X is the carrier
of an algebra, or refer to specific elements of X). In this light, we now restrict
our attention to natural transformations between functors whose codomain is
Set, but whose domain is not. The framework appears complicated at first;
however, Theorem 3 allows us to specify such natural transformations by single
functions, called bisimulation invariants, that serve as an “adaptation layer”
between dialgebras of different type. Although proofs in this section require
quite a bit of categorical reasoning, defining a bisimulation invariant is not a
difficult task by itself and encapsulates the complexity of the framework in a
simple definition. We shall support this claim in §5.3, which proves equivalence
of the dialgebraic and coalgebraic semantics of CCS.

Let E be the subcategory of epimorphisms of Dialg(F, B). Given a dialgebra
(X, f), consider the coslice category (X, f)/E. Its objects are arrows in E whose
domain is (X, f). Its arrows are commuting morphisms of E. Our framework is
parametrised by a full subcategory of (X, f)/E having the following properties.

Definition 5. Let R(X,f) be a full subcategory of (X, f)/E, such that: for each
object h of (X, f)/E there is at least one object h′ of R(X,f) with a commuting
arrow k : h → h′; the identity id (X,f) is an object.

By the first condition, R(X,f) contains enough epimorphisms to characterise
bisimilarity: whenever x and y are identified by a morphism h, there is h′ in the
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category that identifies them. The second condition embeds the object (X, f)
into R(X,f). The purpose of R(X,f) is to serve as a domain for functors into Set, so
that natural transformations between them may be more specific, while preserv-
ing bisimilarity of the object (X, f). A natural transformation in this setting may
make explicit reference to (X, f). Notice that the maps composing such a natu-
ral transformation depend on dialgebra morphisms, not objects, by definition of
R(X,f). Using a subcategory of (X, f)/E further relaxes proof obligations; e.g., in
Proposition 5 we only consider morphisms whose kernels are congruences with
respect to the parallel operator. The following definition casts Set endofunctors
into functors from R(X,f) to Set.

Definition 6. For each F : Set → Set, define its lifting F̄ : R(X,f) → Set as
F̄ = F ◦ UF,B ◦ cod, where cod : (X, f)/E → E is the codomain functor, mapping
objects (arrows in Dialg(F, B)) to their codomains, and arrows to themselves.

Spelling out the definition, F̄ acts on objects as F̄(p : (X, f) → (Y, g)) = F (Y )
and on arrows as F̄ (k) = k. Next, we prove that natural transformations indexed
by R(X,f) may be specified by single functions, obeying to a condition that we call
bisimulation invariance. Notice that, since R(X,f) is a full subcategory containing
the identity of a coslice category, each arrow h : (X, f) → (Y, g) can be regarded
as both an object of R(X,f) and an arrow in the same category from id (X,f) to h

itself. In the following, we refer to the arrow as ĥ to avoid confusion.

Definition 7. Given two functors F, G : R(X,f) → Set, consider a function k :
F(id (X,f)) → G(id (X,f)). Call k bisimulation invariant with respect to (X, f)
and R(X,f) from F to G if and only if, for all x1, x2 ∈ X, and for each arrow

ĥ : id (X,f) → h in R(X,f), we have Fĥ(x1) = Fĥ(x2) =⇒ Gĥ(k(x1)) = Gĥ(k(x2)).

In the following we call k simply invariant when (X, f), R(X,f), F and G are clear
from the context. Such a property of a function may seem difficult to prove.
However, it is actually easier to show invariance of a given function with respect
to the lifted versions of two functors, than naturality of a transformation in Set

between the same functors. One needs to prove commutativity just for a given
class of morphisms (those in R(X,f)), which are also guaranteed to preserve and
reflect bisimilarity. The fundamental property of invariants is Theorem 3, that
depends on F preserving epis. This holds for the lifting F̄ of a Set endofunctor,
as all Set endofunctors preserve epis, and so do cod and U used in Definition 6.

Theorem 3. Consider two functors F, G : R(X,f) → Set, with F preserving epis.
There is a one-to-one correspondence between natural transformations δ : F→ G

and invariants from F to G. Each natural transformation δ is uniquely determined
by δid(X,f), which is invariant; conversely, for each invariant k there is a unique
natural transformation δ such that δid(X,f) = k.

We can restate Theorem 2 in terms of natural transformations λ, μ between
functors from R(X,f) to Set; this is described by the diagram in Figure 3.
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F̄′(id) = F′X

F̄′(h) = F′Y

GF̄(id) = GFX

GF̄(h) = GFY

GB̄(id) = GBX
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B̄′(h) = B′Y

F̄′h = F′h GF̄h = GFh GB̄h = GBh B̄′h = B′h

λid

λh

μid

μh

Gf
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Fig. 3. Comparing dialgebras using functors from R(X,f) to Set. Here id is id(X,f).

Theorem 4. Given an (F, B)-dialgebra (X, f), a category R(X,f) as in Definition
7, a functor G, and two invariants λ from F̄′ to GF̄, μ from GB̄ to B̄′, consider the
(F′, B′)-dialgebra (X, fλ,μ) where fλ,μ = μ ◦ Gf ◦ λ. Whenever two elements are
bisimilar in (X, f), then they are bisimilar in (X, fλ,μ).

5 Examples

5.1 The Coalgebraic Semantics of CCS

The Calculus of Communicating Systems (CCS) is a simple process calculus,
formalising a fundamental aspect of computation: communication between par-
allel processes. In the pure variant only synchronisation is considered, that is,
the exchanged data is not taken into account. We briefly recall the LTS (thus,
coalgebraic) semantics of CCS here. The interested reader may refer to [13] for
more details. The syntax is described by the grammar:

P ::=
∑
i∈I

αi.Pi | P1 ‖ P2 | (νa)P α ::= τ | a | ā

where I is a finite set, and a ranges over a countable set of channels C. Elements
of P are processes, or agents. Elements of α are atomic actions, or prefixes, or
guards. CCS features operators for denoting: parallel composition (P1 ‖ P2); re-
striction of a channel x which becomes private to P ((νa)P ); non-deterministic
guarded choice among a finite set of action-prefixed processes (

∑
i∈I αi.Pi), usu-

ally written as a1.P1 + . . . + an.Pn. Special cases of the choice construct are the
empty process ∅ which is the sum of zero processes, and the action prefix α.P ,
which is the sum of one process. Notice that choice is commutative by construc-
tion. The actions α are: the internal step (τ); the act of receiving a signal on
channel a (the action a); sending a signal on a channel (ā). We omit recursion for
simplicity; including it does not change the presented results. Channels are also
called names. Free names fn(−) are defined by induction, as usual, for processes
and labels. The only binding construct is (νa)P , in which name a is bound. In
the following, let X be the set of CCS processes.
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Definition 8. Structural congruence is the minimal congruence ≡⊆ X ×X in-
cluding α-conversion of a in (νa)P ; commutative monoid axioms for the parallel
operator with respect to 0; the equations (νa)(P ‖ Q) ≡ ((νa)P ) ‖ Q, (νa)∅ ≡ ∅,
(νa)(νb)P ≡ (νb)(νa)P for all P , Q, a /∈ fn(Q) and b.

The labelled transition system for CCS is presented in Figure 4. The set L
of labels is just the set of prefixes α. We write x

α−→ y as a shorthand for
(α, y) ∈ g(x). An LTS with labels from L can be represented as a pair (X, f)
where f is a function2 from X to P(L×X). Let (X, g) be the LTS for CCS.

α.P +Q
α−→ P (pre)

a /∈ fn(α) P
α−→ P ′

(νa)P
α−→ (νa)P ′ (res)

P
α−→ P ′

P ‖ Q
α−→ P ′ ‖ Q

(par)

P
c̄−→ P ′ Q

c−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

(syn)
P ≡ Q P ′ ≡ Q′ P

α−→ P ′

Q
α−→ Q′

(str)

Fig. 4. The LTS describing the operational semantics of CCS

Definition 9. CCS bisimilarity is the greatest symmetric relation ∼g⊆ X ×X

such that, if x ∼g y and x
α−→ x′, there is y′ such that y

α−→ y′ and x′ ∼g y′.

Notice that we are defining bisimilarity in one specific system (e.g. CCS), not
between states of different systems. This corresponds to a standard categorical
notion once recognised that LTSs are P(L×−)-coalgebras.

Definition 10. Given a functor T : Set → Set, a T-coalgebra is a pair (X, f :
X → TX) where X is a set. A homomorphism of coalgebras from (X, f) to
(Y, g) is a function h : X → Y such that g ◦ h = Th ◦ f . T-coalgebras and their
morphisms form the category Coalg(T).

Definition 11. Given a T-coalgebra (X, f), coalgebraic bisimilarity ∼f⊆ X×X
is defined by x ∼f y ⇐⇒ ∃(Y, g).∃h : (X, f) → (Y, g).h(x) = h(y).

It is well-known that under suitable conditions on T (that the functor for LTSs
respects) bisimilarity as in Definition 11 coincides with other coalgebraic notions
(see e.g. [14]). We do not discuss the details, but we note that for LTSs and the
one for CCS in particular, the relations from Definition 9 and 11 coincide.

5.2 A Dialgebraic Semantics of CCS

In §5.1, we have seen the coalgebraic semantics of CCS. Now we describe it as
an (F, B)-dialgebra for the functors of Definition 4.

2 Here P(X) is the (co-variant) power set of X. In coalgebras it is typical to assume
a cardinality bound on the size of the subsets, as the functor P does not have a final
coalgebra. Indeed, in all the systems we define, P can be replaced by a bounded
variant, as all our transition sets are finite or countable. Since we do not use the
final coalgebra in this paper, the distinction is immaterial here.
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Definition 12. Let X be the set of CCS processes. The dialgebra (X, f) for
CCS is the least function obeying to the rules in Figure 5.

τ.P +Q → P (tau)
P → P ′

(νa)P → (νa)P ′ (res)
P → P ′

P ‖ Q → P ′ ‖ Q (par1)
(P,Q) → R

P ‖ Q → R
(int)

(P,Q) → R a /∈ fn(Q)

((νa)P,Q) → (νa)R
(hid)

(P,Q) → R

(P ‖ S,Q) → S ‖ R (par2) (ā.P + S, a.Q+ T ) → P ‖ Q (syn)

(P,Q) → R

(Q, P ) → R
(sym)

P → R P ≡ Q,R ≡ S

Q → S
(str1)

(P,Q) → R P ≡ S,Q ≡ T, R ≡ U

(S, T ) → U
(str2)

Fig. 5. The dialgebra for CCS

We briefly comment on the rules. The first group deals with processes in isola-
tion: rule (tau) permits internal computation actions to be executed; Rule (res)
allows a process in the scope of a restriction to progress; Rule (par1) allows one
component in a parallel composition to progress independently from the others;
Rule (int) allows any possible interaction between two processes to also happen
between internal components of a process in isolation.

The second group of rules defines the semantics of interaction. Rule (hid)
permits interaction between a process P in the scope of a restriction, and any
other process Q, provided that a is not known by Q. Recall that the restricted
name a can always be α-converted to one which is fresh in Q. Rule (par2) allows
parallel components of a process P to interact with Q independently from each
other. Rule (syn) implements synchronisation between two processes.

Rules (sym), (str1), (str2) simplify the definition; alternatively, one can add
variants of the other rules taking into account the effects of these three schemes.

5.3 Comparing the Coalgebraic and Dialgebraic Semantics of CCS

In this section, we use Theorem 4 to compare the semantics for CCS from
Definition 12 to bisimilarity in the well-known labelled transition system.

First, we attempt to give some intuition on the constructions of §4. Consider
defining a coalgebra (X, f ′) for the functor of §5.1 out of the dialgebra for CCS
of §5.2. We can employ “witness processes” such as a.0 in experiments such
as (x, a.0). For each x′ ∈ f(x, a.0), we let f ′(x) contain the labelled transition
(ā, x′). The idea sounds promising, but in the process we need to refer to spe-
cific elements of X , namely the witness processes, thus to the specific set X of
elements. Natural transformations are not allowed to depend upon an object in
this way; therefore, we need the the theory of §4.

The dialgebra of §5.2 describes processes as they interact, with no explicit
notion of side effect. The coalgebra of §5.1 describes processes in isolation, and
their side effects. It is not difficult to imagine how the two kinds of semantics
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can be compared. In one direction, starting from the coalgebra, we may define a
(F, B)-dialgebra on the same carrier; for processes in isolation, we run one step of
the LTS, and then turn all the τ transitions into observed results; for interaction
between pairs of elements, we run one step of the LTS on each element, and
let interaction happen whenever an input (or an output) is matched by the
complementing action. In the other direction, starting from the dialgebra, we
may define a T-coalgebra, by letting τ transitions correspond to the observations
that are made on a process in isolation, and by running experiments in which
we let a process and a “witness process” such as a.∅ interact. The resulting
transitions are labelled with a corresponding action, e.g., ā in our case.

In the rest of the section we closely implement the above plan. From now on,
we let (X, f), (X, g), and the functors F, B be the dialgebra and the coalgebra
for CCS, and the functors from §3; we let T(X) = P(L ×X). Below, we define
three invariants λ, μ, δ, that we shall use to instantiate Theorem 4 twice. In one
direction, we will define the coalgebra μ ◦ Tf ◦ λ out of the dialgebra f . In the
other direction, we will get the dialgebra δ ◦ Fg ◦ idFX from g.

Definition 13. We define δ : FTX → BX, λ : X → TFX, μ : TBX → TX as:

δ(e) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{x | (τ, x) ∈ p} if e = p ∈ TX

{x ‖ y | ∃a ∈ C. ((a, x) ∈ p1 ∧ (ā, y) ∈ p2)∨ if e = (p1, p2) ∈ TX × TX

∨ ((ā, x) ∈ p1 ∧ (a, y) ∈ p2)}

λ(x) = {(τ, x)} ∪ {(a, (x, ā.∅)) | a ∈ C} ∪ {(ā, (x, a.∅)) | a ∈ C}

μ(q) = {(l, x) | ∃q′.(l, q′) ∈ q ∧ x ∈ q′}

Notice how the definition of δ uses the fact that X is also the carrier of the initial
algebra, therefore the parallel composition x ‖ y is defined. An appropriate choice
of R(X,g) makes δ an invariant. Also, the definition of λ uses specific elements
of X , such as ā.∅. On the other hand, μ is independent of X and extends to a
natural transformation from TB to T.

Proposition 5. Let E be the subcategory of Dialg(F, B) of epis whose domain
is (X, f), and E′ the subcategory of Dialg(Id, T) of epis whose domain is (X, g).
Let R(X,f) be the coslice (X, f)/E, and R(X,g) be the full subcategory of (X, g)/E′

whose objects h commute with the parallel operator, that is, h(x) = h(x′)∧h(y) =
h(y′) =⇒ h(x ‖ y) = h(x′ ‖ y′). Then:

– R(X,g) obeys to Definition 5;
– idFX is invariant for (X, g) and R(X,g) from F̄ to F Īd = F̄;
– δ is invariant for (X, g) and R(X,g) from FT̄ to B;
– λ is invariant for (X, f) and R(X,f) from Īd to TF̄;
– μ is invariant for (X, f) and R(X,f) from TB̄ to T̄.

In Proposition 5, R(X,g) contains only homomorphisms that commute with the
parallel operator, strengthening the hypothesis for invariance, which facilitates
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the proof. We can now use Theorem 4, twice. Let G = F; we obtain the (F, B)-
dialgebra (X, gidFX ,δ) where f idFX ,δ = δ ◦ Fg. Similarly, let G = T; then we derive
the (Id, T)-dialgebra, that is, T-coalgebra, (X, fλ,μ) with fλ,μ = μ ◦ Tf ◦ λ.

So far, we have mapped the dialgebra of CCS into a coalgebra, and the coal-
gebra into an (F, B)-dialgebra. However, no link is established between f and
gid,δ, or g and fλ,μ. We conclude the paper by proving coincidence of the two
semantics. For this, we need the following lemma.

Lemma 1. For all channels a and elements x, y, z, the following holds: x
τ−→

y ⇐⇒ x → y; x
a−→ y ⇐⇒ (x, ā.∅) → y; x

ā−→ y ⇐⇒ (x, a.∅) → y; (x, y) →
z ⇐⇒ ∃b, x′, y′.z ≡ x′ ‖ y′ ∧ ((x

b−→ x′ ∧ y
b̄−→ y′) ∨ (x

b̄−→ x′ ∧ y
b−→ y′)).

Proposition 6. Let (X, f) and (Y, g) be the dialgebra and the coalgebra for
CCS. We have that f = gidFX ,δ and g = fλ,μ. Therefore, bisimilarity in (X, f)
and in (X, g) is the same.

5.4 The π-Calculus

The π-calculus [15] is a very well known extension of CCS. The calculus takes
network mobility into account by the means of fresh name generation and com-
munication. Bisimilarity in the π-calculus is non-standard, since it requires side
conditions on freshness of names that do not permit one to compare labels just
syntactically. A coalgebraic semantics is possible by switching from the category
Set to presheaves (see e.g. [1]). In this section we provide a dialgebraic semantics
to the calculus. Remarkably, the dialgebra we define lives in Set; the difference
from the semantics of CCS is just to add data passing in the rule for synchro-
nisation. We give a very brief summary of the calculus here. The reader may
consult e.g., [16] for further information. The π-calculus features data passing,
and fresh name creation. Channels and data coincide, giving to the calculus its
expressive power. The syntax is as follows.

P ::=
∑
i∈I

αi.Pi | P1 ‖ P2 | (νa)P α ::= τ | a(x) | āx

Again, we do not introduce recursion, as it does not add to the presentation and
complicates proofs. In the syntax, a, x, y range over a countable set of channel
names. The prefix a(x) reads x from channel a. Therefore, x is bound in a(x).P .
The prefix āx sends x on channel a. The other constructs have the same informal
meaning as in the CCS, and share the same syntax. We adopt the early semantics
of the calculus. For space reasons, we omit the definition of the corresponding
transition system, which is widely available (see e.g. [16], Definition 1.3.2). We
just mention that the transitions may have four kinds of labels: τ , āb, ab, ā(x),
corresponding to silent actions, output of b on channel a, input of b on a, and
bound output, where b is a fresh name. Synchronization with a process doing
bound output may only take place when b is fresh in the receiving process,
which is obtained by α-conversion of b.
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The close syntactic resemblance between CCS and the π-calculus is reflected
in the dialgebraic semantics we propose, as we only need to change one rule to
switch from one semantics to the other. The formal definition uses structural
congruence, which is the same as Definition 8, with the addition of α-conversion
of variable x for processes under the scope of an input a(x).

Definition 14. Let X be the set of π-calculus terms. Define the (F, B)-dialgebra
(X, f) importing the rules of Definition 12, where Rule (syn) is replaced by

(āb.P + S, a(y).Q + T ) → P ‖ Q[b/y] (com)

Rule (com) models data passing in the usual way. Combined with Rule (hid), it
implicitly handles scope extrusion, which is one of the most difficult bits of the π-
calculus semantics. For example, for x fresh in Q, we have ((νx)āx.P, a(y).Q) →
(νx)(P ‖ Q[x/y]), by first applying (hid) and then (com). Such a simple treat-
ment of scope extrusion is inherited from the reactive system for the π-calculus
that we are mimicking (see [16], Definition 1.2.12). The dialgebraic definition
adds to it a non-trivial notion of bisimilarity, that we ought to relate to the
standard definition. A direct comparison, as in §5.3, is not obvious, as the coal-
gebraic semantics lives in a presheaf category, whereas the dialgebraic semantics
is defined in Set. However, we are able to reuse well known results for the π-
calculus to obtain a characterisation theorem. Dialgebraic semantics is easier to
compare to strong barbed equivalence, defined below, than to bisimilarity. We use
the observability predicate P ↓μ, for μ in the form a or ā, that holds whenever
P can perform a communication action a(x) or āx, respectively. In turn, strong
barbed equivalence is defined in terms of strong barbed bisimilarity.

Definition 15. Strong barbed bisimilarity is the largest symmetric relation
.∼

such that whenever P
.∼ Q, P ↓μ =⇒ Q ↓μ, and P

τ−→ P ′ =⇒ ∃Q′.Q τ−→ Q′

with P ′ .∼ Q′. We say that processes P and Q are strong barbed equivalent,
written P * Q, if for all R, P ‖ R

.∼ Q ‖ R.

Theorem 5. Dialgebraic bisimilarity coincides with strong barbed equivalence.

Finally, Theorem 2.2.9 in [16] proves that strong barbed equivalence coincides
with strong early bisimilarity3. Thus, as a corollary, we get that dialgebraic
bisimilarity coincides with early bisimilarity.

6 Conclusions and Future Work

The most important difference between coalgebras and dialgebras is that there
is no final dialgebra, therefore no universal model. This forces one to reason in
terms of quotients. The locality which is intrinsic to the definition of a dialgebra
deserves in our opinion a more thorough investigation in various directions.

3 Therein, it is shown that the matching prefix of the π-calculus is not required for
this result to hold, thus we omit it for simplicity.



124 V. Ciancia

A fundamental problem is to spell out an inductive definition principle, in
order to obtain simpler definitions, and compositionality. A conjecture on how
to generalise the use of distributive laws [17] from bialgebras to dialgebras has
been formulated in [18], and will be developed in future work.

Logical aspects should also be considered. The interplay between adequate
logics for dialgebras, and equational logic on terms, may lead to new insights on
algebraic and coalgebraic specifications.

Another matter is the implementation and verification of dialgebras. Coal-
gebras have an associated partition refinement procedure that computes the
bisimilarity quotient of a system, by the means of iteration along the termi-
nal sequence of the functor T. A generalisation of this procedure to dialgebras
appears in [18], and will be explained and enhanced in future work.

Finally, an open question is the definition of a proof principle for dialgebras,
generalising induction and coinduction.
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Abstract. This paper assumes the concept of a predicate lifting from
coalgebraic modal logic, and associates with every set Λ of predicate
liftings for a set functor T a category CΛ

T of T -coalgebras and socalled
Λ-homomorphisms. From this construction, some natural constructions
on models such as products of models and submodels can be defined. A
relationship with simulations of coalgebras arising from lax extensions is
established, and the main technical result gives a condition under which
the category CΛ

T is both complete and cocomplete.

1 Technical Preliminaries

1.1 Coalgebras

The basic definitions of coalgebras and coalgebra morphisms are as follows:

Definition 1. Given an endofunctor T on Set (the category of sets and func-
tions), a T -coalgebra is defined to be a pair (X, f) where X is a set and f is
a mapping X → TX. The category CT of T -coalgebras is then constructed by
letting a morphism h : A → B, where A = (X, f) and B = (Y, g), be defined as
a mapping X → Y such that g ◦ h = Th ◦ f .

Here, we shall be working with two simple examples that are familiar from modal
logic: Kripke models and neighborhood models (for simplicity, both with just a
single modality and without propositional variables).

Definition 2. A Kripke model is a pair (X,R) where X is a set and R is a
binary relation over X, called an accessibility relation.

Kripke models can be naturally represented as coalgebras, as follows:

Definition 3. The covariant powerset functor P takes any set X to its powerset,
and any function f : X → Y to the function Pf : PX → PY defined by
Pf(Z) = f [Z] = {v ∈ Y | v = f(u) for some u ∈ Z}.

A coalgebra (X, f) for P then naturally corresponds to a Kripke model, if we
think of the members of f(u) for a given u ∈ X as the successors of u under the
accessibility relation. More formally, we introduce the following notation:

R. Heckel and S. Milius (Eds.): CALCO 2013, LNCS 8089, pp. 126–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Definition 4. Let (X, f) be a P-coalgebra. Then the corresponding accessibility
relation over X is denoted by Rf , i.e. we have uRfv iff v ∈ f(u).

Morphisms of P-coalgebras also have a natural interpretation, shown by the
following well known proposition:

Proposition 1. Given P-coalgebras A = (X, f) and B = (Y, g), a mapping
h : X → Y is a coalgebra morphism iff it is a bounded morphism from (X,Rf)
to (Y,Rg), i.e. we have

Forth uRfv implies h(u)Rgh(v), and
Back if h(u)Rgw then there is some v with uRfv and h(v) = w

Bounded morphisms are important in model theory of modal logic, and they are
the functional version of bisimulations. If we drop the “Back” condition from
the definition of a bounded morphism, we get the socalled relation homomor-
phisms, which are the functional equivalents of simulations. That is, a relation
homomorphism from (X,R) to (X ′, R′) is a mapping h : X → Y such that uRv
implies h(u)R′h(v).

We turn now to our second example, which generalizes Kripke models:

Definition 5. A neighborhood model is a pair (X, f) where X is a set and f is
a function that assigns, to each member u of X, a family of subsets of X, called
the neighborhoods of u.

The representation of neighborhood models as coalgebras is even more direct - a
neighborhood model simply is a coalgebra. However, rather than working with
the covariant powerset functor, we now use the contravariant powerset functor
P̆ defined as follows:

Definition 6. The contravariant powerset functor P̆ takes any set X to its
powerset, and any function f : X → Y to the function P̆f : P̆Y → P̆X defined
by P̆f(Z) = f−1[Z] = {u ∈ X | f(u) ∈ Z}.

A neighborhood model can then be thought of as a coalgebra for the neighborhood
functor N defined as P̆ ◦ P̆ .

Proposition 2. Given N -coalgebras (X, f) and (Y, g), a mapping h : X → Y
is a coalgebra morphism iff, for each u ∈ X, we have

g(h(u)) = {Z ⊆ Y | h−1[Z] ∈ f(u)} (1)

There is a natural way to relax this condition as well: say that a function h : X →
Y is a continuous mapping from (X, f) to (Y, g) if, for all u ∈ X , Z ∈ g(h(u))
implies that h−1[Z] in f(u). The term “continous” seems appropriate here: the
inverse image of a neighborhood of h(u) is a neighborhood of u. Indeed, later
on we shall consider the special case of topological coalgebras, for which the
continuous mappings are exactly continuous mappings of topological spaces.
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A variant of neighborhood models that sometimes appear in the literature are
coalgebras for the monotone neighborhood functor:

Definition 7. The monotone neighborhood functor M takes a set X to the set
of families N ∈ NX such that A ⊆ B and A ∈ N implies B ∈ N . For a
mapping h : X → Y we define Mh as the mapping (Nh) � MX, with the
codomain changed to MY .

The main examples in this paper will be based on coalgebras for P , N and M.
“Continuous mappings” for M-coalgebras are defined in the same way as for
N -coalgebras.

1.2 Predicate Liftings

Modal logics have been used as languages for coalgebras since the seminal paper
by L. Moss [5]. A more recent approach uses the auxiliary notion of a predicate
lifting [7]:

Definition 8. Let T be any endofunctor on Set. A predicate lifting for T is
a natural transformation λ : P̆ → P̆ ◦ T . A predicate lifting λ is said to be
monotone if Z ⊆ Z ′ implies λX(Z) ⊆ λX(Z ′) for all X,Z,Z ′.

Given a set of predicate liftings Λ, we can define a corresponding modal language
ML(Λ) as follows:

ML(Λ) := ⊥ | ¬α | α ∨ α | [λ]α (2)

where λ ∈ Λ. Conjunction and implication are defined as usual, and the dual
〈λ〉 of the operator [λ] is defined as ¬[λ]¬. Semantics is given as follows: for any
T -coalgebra A = (X, f) and formula α, the truth set ‖α‖A ⊆ X is defined by

– ‖ ⊥ ‖A = ∅
– ‖¬α‖A = X \ ‖α‖A
– ‖α ∨ β‖A = ‖α‖A ∪ ‖β‖A
– ‖[λ]α‖A = {v ∈ X | f(v) ∈ λX(‖α‖A)}

To get the standard box modality for Kripke semantics, we take the predicate
lifting κ : P̆ → P̆ ◦ P given by

κX(Z) = {Z ′ ∈ PX | Z ′ ⊆ Z}

To get the box modality for neighborhood semantics, take the predicate lifting
ν : P̆ → P̆ ◦ N given by

νX(Z) = {N ∈ NX | Z ∈ N}

For M-coalgebras, we use essentially the same predicate lifting, which we denote
by μ : M→ P̆ ◦M.
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2 Homomorphisms of Coalgebras

2.1 Λ-Homomorphisms

Any set of predicate liftings comes with a simple and natural notion of coalgebra
homomorphism, defined as follows:

Definition 9. Let Λ be a set of predicate liftings for a set functor T , and let
A = (X, f) and B = (Y, g) be T -coalgebras. A Λ-homomorphism from A to B is
a function h : X → Y such that, for each u ∈ X, Z ⊆ Y and λ ∈ Λ:

(†) g(h(u)) ∈ λY (Z) ⇒ f(u) ∈ λX(h−1[Z]) (3)

If Λ is a singleton set {λ}, we speak about λ-homomorphisms rather than {λ}-
homomorphisms. Any identity function is clearly a Λ-homomorphism from a
coalgebra to itself, and it is easy to check that the composition of a pair of
Λ-homomorphisms is always a Λ-homomorphism. The category of T -coalgebras
and Λ-homomorphisms will be denoted by CΛT . For any set functor T and any
set of predicate liftings Λ, we shall denote the obvious forgetful functor from
the category CΛT by the same letter U , so that U : CΛT → Set, and rely on
context to disambiguate. We can immediately check that coalgebra morphisms
are Λ-homomorphisms, so that CT is a subcategory of CΛT :

Proposition 3. Suppose T is an endofunctor on Set and Λ a set of predicate
liftings for T . Then any T -coalgebra morphism is a Λ-homomorphism.

Example 1. Suppose (X, f) and (Y, g) are P-coalgebras and h a mapping X →
Y . Then h is a κ-homomorphism iff it is a relation homomorphism from (X,Rf)
to (Y,Rg).

Example 2. Suppose (X, f) and (Y, g) are N -coalgebras (M-coalgebras) and h
a mapping X → Y . Then h is a ν-homomorphism (μ-homomorphism) iff it is a
continuous mapping.

In the case of monotone predicate liftings it is simple to establish an elemen-
tary connection between Λ-homomorphisms and special formulas of the language
ML(Λ). Here, let T denote ¬ ⊥.

Definition 10. A formula φ is said to be ∀1 if it is built up from ⊥ and T by
conjunctions, disjunctions and [λ]. Similarly, a formula φ is said to be ∃1 if it
is built up from ⊥ and T by conjunctions, disjunctions and 〈λ〉.

Note that the negation of an ∃1 formula is ∀1, and vice versa. This can be proved
by a straightforward induction.

Proposition 4. Suppose A = (X, f) and B = (Y, f) are two T -coalgebras and
h : X → Y is a Λ-homomorphism with h(u) = v, where Λ is a set of monotone
predicate liftings. If φ is an ∀1-formula and v ∈ ‖φ‖B, then u ∈ ‖φ‖A. Dually,
if φ is an ∃1-formula then u ∈ ‖φ‖A implies v ∈ ‖φ‖B.



130 S. Enqvist

2.2 Products and Substructures

Given a set Λ of predicate liftings, we can give a natural definition of products
of coalgebras:

Definition 11. Relative to a set of predicate liftings Λ, we define a product of
T -coalgebras A and B as a product of A and B in the category CΛT .

Example 3. Given two Kripke models M1 = (X1, R1) and M2 = (X2, R2), the
product M1 ×M2 = (X1 ×X2, R1 × R2) is defined by letting X1 ×X2 be the
usual cartesian product of sets, and we define R1 ×R2 by setting

(u, v)(R1 ×R2)(u′, v′) iff uR1u
′ and vR2v

′ (4)

The reader can check that this corresponds to a product in the category CκP .

Example 4. Given two neighborhood models, i.e. two N -coalgebras A = (X, f)
and B = (Y, g), define the product A×B = (X × Y, f × g) by letting X × Y be
the cartesian product and defining f × g by setting, for each u ∈ X × Y :

(f × g)(u) := {π−1
X [Z] | Z ∈ f(πX(u))} ∪ {π−1

Y [Z] | Z ∈ g(πY (u))} (5)

where πX and πY are the projections from X × Y to X and Y respectively. It
is easy to check that this defines a product of A and B in the category CνN of
N -coalgebras and ν-homomorphisms.

We can also define a natural notion of substructure, using the realization that
the category C together with forgetful functor U defines a construct, and so we
can talk about initial morphisms (see [1] for an introduction to these concepts):

Definition 12. Let (C, U) be a construct, so that U is a forgetful functor from
C to Set. Then a morphism f : A→ B in C is called an initial morphism if, for
any object C and any mapping g : UC → UA: if there is a morphism h : C → B
with Uh = Uf ◦ g, then there is a morphism g′ : C → A with Ug′ = g.

Given a functor T and predicate liftings Λ, we then say that a T -coalgebra
(X, f) is a substructure of (Y, g) in CΛT if X ⊆ Y and the inclusion is an initial
morphism from (X, f) to (Y, g).

Example 5. A Kripke model (X,R) is said to be a submodel of (X ′, R′) if X ⊆ X ′

and, for all u, v ∈ X , we have uRv iff uR′v. Submodels of Kripke models then
correspond to substructures in CκP .

Example 6. A neighborhood model (X, f) is said to be a submodel of (Y, g) if
X ⊆ Y and for all u ∈ X , f(u) = {Z∩X | Z ∈ g(u)}. Submodels of neighborhood
models then correspond to substructures in CνN .
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2.3 Simulations

Simulations of coalgebras have been studied in depth by A. Thijs [10], and later
from a modal logic perspective by A. Baltag [2]. These authors define simulations
of coalgebras from socalled relators. Later, B. Jacobs and J. Hughes [4] have
approached simulations using instead the notion of a lax extension of a functor
(see [9] for a recent study of this concept).

Definition 13. Let T be any set functor. A lax extension for T is a mapping L
that assigns to each relation R ⊆ X×Y a relation LR ⊆ TX×TY , and satisfies
the conditions

1. R ⊆ S implies LR ⊆ LS
2. LR;LS ⊆ L(R;S)
3. for a mapping h : X → Y , Th ⊆ Lh

Here R;S means the relation composition of R and S.

Definition 14. Given a lax extension L for functor T , an L-simulation from
T -coalgebra (X, f) to (Y, g) is a relation R ⊆ X × Y such that uRv implies
f(u)(LR)g(v).

Given a set of predicate liftings Λ for T , define a mapping LΛ as follows: for a
set X , LΛX = TX , and for a relation R ⊆ X × Y , define the relation LΛR as

{(a, b) ∈ TX × TY | ∀Z ⊆ Y ∀λ ∈ Λ : b ∈ λY (Z) ⇒ a ∈ λX(R−1[Z])} (6)

where R−1[Z] is the set of u ∈ X such that uRv for some v ∈ Z.

Proposition 5. Whenever Λ is a monotone set of predicate liftings, the map-
ping LΛ is a lax extension for T .

Example 7. Let (X, f) and (Y, g) be P-coalgebras. Then a relation S is an Lκ-
simulation from (X, f) to (Y, g) iff it is a simulation from (X,Rf ) to (Y,Rg) in
the usual sense that, if uSv and uRfu

′, then there is v′ with vRgv
′ and u′Sv′.

3 Structure of the Category CΛ
T

3.1 More on Neighborhood Models

The main purpose of this section is to establish a condition on predicate liftings
Λ under which the category CΛT is guaranteed to be bicomplete, i.e. have all
(small) limits and colimits. It turns out that coalgebras for the neighborhood
functor play an important role here. We generalize the neighborhood functor
to represent multi-modal neighborhood models in the following straightforward
manner (here, and from now on, we use " as a special symbol for function
application, so that f " x is synonymous with f(x)):
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Definition 15. Let A be any set. Then the neighborhood functor NA indexed
by A is defined by setting NAX = (NX)A, i.e. the set of mappings from A to
NX. Given a mapping h : X → Y , the mapping NAh : (NX)A → (NY )A is
defined by the following equation for n ∈ (NX)A and a ∈ A :

NAh(n) " a = Nh(n(a)) (7)

Given a set X , an element of (NX)A will be referred to as a neighborhood
structure for A in X . Neighborhood structures come with a natural order of
“pointwise inclusion”:

Definition 16. Let n, n′ be two neighborhood structures for A in a set X. We
write n + n′ to say that, for each a ∈ A, we have n(a) ⊆ n′(a).

Proposition 6. The collection of neighborhood structures for A in X forms a
complete lattice under the order +, in which we write meet and join as

∧
and
∨

respectively, and for each collection C of neighborhoods and each a ∈ A we have

(
∨

C) " a =
⋃
n∈C

n(a) (8)

and
(
∧

C) " a =
⋂
n∈C

n(a) (9)

Now that we have defined the indexed version NA of the neighborhood functor,
it is easy to modify the predicate lifting ν to give predicate liftings for NA:

Definition 17. Let A be any set. Then for any a ∈ A, let νa be the predicate
lifting for NA defined by νaX(Z) = {n ∈ NA | Z ∈ n(a)}. Let νA denote the set
of predicate liftings νa for a ∈ A.

We get the following result, which shows that from a categorical perspective,
neighborhood models are very well behaved:

Theorem 1. For any set A, the forgetful functor U : Cν
A

NA → Set creates limits
and colimits.

Corollary 1. The category Cν
A

NA is bicomplete.

3.2 Mapping T -coalgebras to Neighborhood Models

The following result was observed in [6] and shows how a natural transformation
from functor T to S generally allows us to define a predicate lifting for T given
that a predicate lifting for S is known:

Proposition 7. Let T, S be functors and α : T → S a natural transformation.
Then, for any predicate lifting λ for S, the components P̆αX ◦ λX define a
predicate lifting for T .
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Given a set of predicate liftings Λ for S and a natural transformation α : T → S,
write λ 
 α for the induced predicate lifting for each λ ∈ Λ and write Λ 
 α =
{λ 
 α | λ ∈ Λ}.

Given a natural transformation α : T → S, let the mapping Fα send a T
-coalgebra f : X → TX to the S-coalgebra αX ◦ f : X → SX , and let Fα send a
Λ-homomorphism h : A→ B of T -coalgebras A,B to the mapping h itself (but
with domain and codomain changed to FαA and FαB respectively).

Proposition 8. The mapping Fα defines a covariant functor from the category
of T -coalgebras and Λ 
 α-homomorphisms to the category of S-coalgebras and
Λ-homomorphisms.

This proposition has an important special case.

Definition 18. The transposite of a predicate lifting λ : P̆ → P̆ ◦ T is the nat-
ural transformation λ� : T → N defined by λ�X(a) = {Z ⊆ X | a ∈ λX(Z)} (see
[9]). Similarly, the transposite of a set of predicate liftings Λ is the natural trans-
formation Λ� : T → NΛ defined by letting Λ�X(a) be the neighborhood structure
n for the set Λ sending each λ ∈ Λ to λ�X(a).

Proposition 9. For any set of predicate liftings Λ for T and any λ ∈ Λ, we
have

νλ 
 Λ� = λ (10)

Hence, given a set of predicate liftings Λ for T , the functor FΛ� can be regarded

as a functor from CΛT to Cν
Λ

NΛ . This functor sends a T -coalgebra (X, f) to the
NΛ-coalgebra (X, f ′) defined by

f ′(u) " λ = λ�X(f(u)) (11)

and its action on a mapping h : A→ B is defined by taking the same mapping on
the underlying sets of the coalgebras and changing the domain to FΛ�(A) and the
codomain to FΛ�(B). This functor will be called the neighborhood representation
functor associated with the category CΛT .

3.3 Limits and Colimits in CΛ
T

We now turn to the main task of the section, to establish a condition that
guarantees that the category CΛT is bicomplete.

Definition 19. Let Λ be a set of predicate liftings for functor T and let a ∈ TX
for some set X. A neighborhood structure n : Λ → NX is said to be a basis for
a if

– n + Λ�X(a)
– for any b ∈ TX, if n + Λ�X(b) then Λ�X(a) + Λ�X(b)

Definition 20. A set Λ of predicate liftings for a functor T is said to be strongly
separating if, for any set X and any neighborhood structure n : Λ → NX, there
is a unique a ∈ TX such that n is a basis for a.
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We also say that a basis for a generates a. Note that every strongly separating
set of predicate liftings Λ gives rise to a mapping βX : (NX)Λ → (NX)Λ for
each set X , by letting βX send a neighborhood structure n to the neighborhood
structure Λ�X(a), where a is the member of FX generated by n. We call the
assignment β of the mapping βX to each set X the closure operator associated
with Λ.

In the case where Λ is a singleton set {λ}, we can simplify matters a bit:
a neighborhood structure in X is then simply taken to be a member of NX ,
and the definition of strong separation is given as before but with the order +
replaced by the subsethood relation. In the case that λ is strongly separating, we
can then consider the mapping βX for a given set X to have the type NX → NX
instead of (NX){λ} → (NX){λ}.

In order to establish bicompleteness of the category CΛT , we shall need one
extra restriction on the set of predicate liftings Λ, which is essentially a sort of
weak “naturality” condition on the closure operator β. For this definition we
introduce the following notation:

Definition 21. Let h : X → Y be any mapping. Then the mapping

h† : (NY )Λ → (NX)Λ (12)

is defined by taking a neighborhood structure n : Λ → NY to n′ : Λ → NX
defined by

n′(λ) := {h−1[Z] | Z ∈ n(λ)} (13)

Proposition 10. Let n, n′ be any neighborhood structures in Y and let h : X →
Y be any mapping. Then h† is monotone in the sense that

n + n′ ⇒ h†(n) + h†(n′) (14)

Definition 22. Let Λ be a strongly separating set of predicate liftings for T .
We say that the closure operator associated with Λ reflects inverse images if, for
every mapping h : X → Y and any neighborhood structure n in Y we have

h†(βY (n)) + βX(h†(n)) (15)

If Λ is a singleton set, this amounts to saying that, for every set N ∈ NY , we
have

P̆h[βY (N)] ⊆ βX(P̆h[N ]) (16)

A less compact but more transparent way of saying that the closure operator
corresponding to Λ reflects inverse images in this case is that, for every neigh-
borhood structure N in Y and all Z ⊆ Y ,

Z ∈ βY (N) ⇒ h−1[Z] ∈ βX({h−1[Z ′] | Z ′ ∈ N}) (17)

This should also make the choice of terminology more apparent.

Example 8. The predicate lifting ν is strongly separating and since its closure
operator just assigns the identity mapping on NX to any set X , it clearly reflects
inverse images.
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Example 9. The predicate lifting μ for M is strongly separating, and its closure
operator β assigns to a set X the mapping βX defined by

βX(N) :=↑N = {Z ∈ NX | Z ′ ⊆ Z for some Z ′ ∈ N} (18)

It is easily checked that this closure operator reflects inverse images.

Example 10. The predicate lifting κ is strongly separating and its closure oper-
ator is given by

N �→ ↑{
⋂

N} (19)

This closure operator reflects inverse images.

In the rest of this section, let Λ be a strongly separating set of predicate liftings
for functor T such that its associated closure operator reflects inverse images, and

denote the neighborhood representation functor simply by F : CΛT → Cν
Λ

NΛ . We

define a functor G : Cν
Λ

NΛ → CΛT as follows: given an NΛ-coalgebra A = (X, f),
define G(A) = (X, f ′) by letting f ′ send each u ∈ X to the unique a ∈ TX
generated by f(u). The action by G on morphisms is defined in the obvious
way, by just changing the domain and codomain of a mapping h : A → B
to G(A) and G(B) respectively. That this indeed defines a covariant functor is
immediate from the assumption that the closure operator reflects inverse images.
Furthermore, it is easy to check the following:

Lemma 1. The following facts hold:

1. U ◦ F = U and U ◦G = U
2. G is right adjoint to F , and furthermore
3. G ◦ F is the identity functor on CΛT

We can now prove the following:

Theorem 2. The category CΛT is bicomplete.

This result guarantees that, for any strongly separating set Λ of predicate liftings,
we can find products of models in the category CΛT , and indeed any other model
theoretic construction that may be represented as a limit or colimit of a suitable
diagram.

Although this result subsumes some interesting special cases, the premises
of the theorem are quite restrictive and an important task for future research
is to look for milder conditions than the strong separation condition used here
to guarantee existence of useful model theoretic constructions in the category
CΛT . For example, in the case of probabilistic coalgebras (i.e. coalgebras for the
functor that sends each set X to the set of probability distrubitions over X with
finite support), predicate liftings are in the simplest case of the form L(p) for
p ∈ [0, 1]∩Q with L(p)X(Z) defined as the set of probability distributions d with
d(Z) ≥ p. Clearly this set of predicate liftings cannot be strongly separating; just
take a neighborhood structure that assigns ∅ to the predicate lifting L(1), and
we see that this cannot be a basis for any probability distribution over X . So in
this case, we cannot derive any information about the structure of the category
of Λ-homomorphisms from the results in this paper.
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4 A Different Approach

A different definition of coalgebra homomorphisms, which is also parametric in a
set of predicate liftings, has been suggested along with a notion of simulation by
Daniel Goŕın and Lutz Schröder. In this section we compare these two approaches
formally, and it turns out that in the case of monotone predicate liftings the
two notions are in a sense each other’s duals. To distinguish the approach of
Goŕın and Schröder from the one presented here, their homomorphisms will
be called “forward-directed Λ-homomorphisms” (while they are simply called
Λ-homomorphisms in [8]).

Definition 23. A forward-directed Λ-homomorphism is a mapping h : X → Y
such that, for all u ∈ X, all λ ∈ Λ and all Z ⊆ X,

f(u) ∈ λX(Z) ⇒ g(h(u)) ∈ λY (h[Z]) (20)

In the case of the predicate lifting κ for P , it is clear that κ-homomorphisms
are different from forward-directed κ-homomorphisms, and so they do not cor-
respond to relational homomorphisms. However, in this case, we can remedy the
situation by passing to the dual of the predicate lifting κ:

Definition 24. The dual of a predicate lifting λ, denoted λd : P̆ → P̆ ◦ T , is
defined by

λdX(Z) = TX \ (λX(X \ Z)) (21)

The set {λd | λ ∈ Λ} will be denoted by Λd.

Note that the dual of a monotone predicate lifting is again a monotone predicate
lifting. It is simple to check that, given P-coalgebras (X, f) and (Y, g), a mapping
h : X → Y is a relational homomorphism from (X,Rf ) to (Y,Rg) iff it is a
forward-directed κd-homomorphism. More generally, whenever Λ is a monotone
set of predicate liftings we can establish the following connection between the
two notions of homomorphism:

Proposition 11. Suppose Λ is a monotone set of predicate liftings, let (X, f)
and (Y, g) be T -coalgebras and let h : X → Y be any mapping. Then h is a
Λ-homomorphism iff it is a forward-directed Λd-homomorphism.

The constraint that Λ should be a set of monotone predicate liftings is not redun-
dant, and generally not every Λ-homomorphism is representable as a forward-
directed Λd-homomorphism. For the purpose of demonstrating this with an ex-
ample of independent interest, we consider topological coalgebras (see [3]):

Definition 25. Let T be a topology over a set X. Then the N -coalgebra induced
by T is given by the transition structure f : X → NX defined by

u �→ {Z ∈ T | u ∈ X} (22)

An N -coalgebra is said to be a topological coalgebra if it is the coalgebra induced
by some topology on its domain.
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It is simple to check that, given topological coalgebras (X, f) and (Y, g) in-
duced by topologies TX and TY respectively, a mapping h : X → Y is a ν-
homomorphism iff it is a continuous map from TX to TY .

Consider the following example: let X be the set {u, v, w} and let Y = {u, v}.
Let TX be the topology on X given by

{∅, {w}, {u, v, w}} (23)

Let TY be the topology on Y given by

{∅, {v}, {u, v}} (24)

Let f : X → NX be the N -coalgebra on X induced by TX and g : Y → NY be
the coalgebra on Y induced by TY . Consider the mapping h : X → Y defined
by u �→ u, v �→ u and w �→ v. This is clearly a continuous map from TX to
TY , but it is not a forward-directed νd-homomorphism. To see this, we have
f(w) ∈ νdX({u}), but

g(h(w)) = g(v) /∈ νdY ({u}) = νdY (h[{u}]) (25)

Indeed, there doesn’t seem to be any way of representing continuous maps using
forward-directed homomorphisms. On the other hand, forward-directed homo-
morphisms for ν (rather than its dual νd) have a natural interpretation in this
context too: the reader can check that, given topological coalgebras (X, f) and
(Y, g) induced by topologies TX and TY respectively, a mapping h : X → Y is a
forward-directed ν-homomorphism iff it is an open map from TX to TY .
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A Proofs

Proof of Theorem 1: Let D : D → Cν
A

NA be a diagram in Cν
A

NA and index
the objects D(x) with x ∈ D as {Ai}i∈I with each Ai written as (Xi, fi). Let
(L, {pi}i∈I) be a limit of U ◦D in Set, where U is the forgetful functor CΛF → Set
such that for each i ∈ I we have pi : L→ U(Ai). Now, for each u ∈ L, let nu be
the neighborhood structure ∨

i∈I
p†i (fi(pi(u))) (26)

For each u ∈ L, let fL(u) = nu. This defines a coalgebra fL : L → NL, and it is
straightforward to show that ((L, fL), {pi}i∈I) defines a limit of D.

We now show that U creates colimits: let D : D → Cν
A

NA be a diagram in

Cν
A

NA and index the objects D(x) with x ∈ D as {Ai}i∈I with each Ai written as
(Xi, fi). Let (L, {pi}i∈I) be a colimit of U ◦D in Set with pi : U(Ai) → L for
each i ∈ I. For each u ∈ L and i ∈ I, let nu be the neighborhood structure∧

i∈I

∧
pi(v)=u

NApi(fi(v)) (27)

Define fL : L → NL by setting each fL(u) = nu for each u ∈ L. This defines
an NA-coalgebra with domain L, and routine calculations will show that (L, fL)
together with the mappings {pi}i∈I defines a colimit of D.

Proof of Proposition 8: Let f : X → TX and g : Y → TY be T -coalgebras
and h : X → Y a Λ 
 α-homomorphism. Let u ∈ X , Z ⊆ Y and λ ∈ Λ. Then we
have

αY ◦ g(h(u)) ∈ λY (Z) ⇔ g(h(u)) ∈ P̆αY ◦ λY (Z)
⇔ g(h(u)) ∈ (λ 
 α)Y (Z)
⇒ f(u) ∈ (λ 
 α)X(h−1[Z])

⇔ f(u) ∈ P̆αX ◦ λX(h−1[Z])
⇔ αX ◦ f(u) ∈ λX(h−1[Z])

and this shows that h is a Λ-homomorphism from αX ◦ f : X → SX to αY ◦ g :
Y → SY as well.

Proof of Proposition 9: We need to show that, for any set X , we have

P̆Λ�X ◦ νλX = λX (28)

Given Z ⊆ X , we have

P̆Λ�X ◦ νλX(Z) = {a ∈ TX | Λ�X(a) ∈ νλX(Z)}
= {a ∈ TX | Z ∈ λ�X(a)}
= {a ∈ TX | a ∈ λX(Z)}
= λX(Z)
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Proof of Theorem 2: Completeness is a simple consequence of preservation of
limits by right adjoints, together with the fact that G ◦F is the identity functor
on CΛT .

We now show that CΛT has all small colimits. Let D : D → CΛT be a small
diagram in CΛT , and index the objects Dx whith x ∈ obj(D) as {Ai}i∈I . Then we

get a diagram F ◦D : D→ Cν
Λ

NΛ , and since the forgetful functor U : Cν
Λ

NΛ → Set
creates colimits we find a colimit (L, {hi}i∈I) of F ◦D, hi : Ai → L, such that
(UL, {Uhi}i∈I) is a colimit of U ◦ F ◦D = U ◦D in Set. Then (GL, {Ghi}i∈I)
is a cocone for the diagram G ◦F ◦D = D in CΛT , and we are going to show that
it is in fact a colimit.

Let (B, {pi}i∈I) be a cocone for D in CΛT . We need to find a unique connecting
map cB : GL → B such that pi = cB ◦Ghi for each i ∈ I. Now, first note that
(FB, {F (pi)}i∈I) is a cocone for F ◦D, and so there is a unique connecting map
cFB : L→ F (B) with Fpi = cF (B) ◦ hi for each i ∈ I. Then we get a morphism

G(cF (B)) : GL→ GFB = B (29)

and it is a connecting map since for each i ∈ I we have

Fpi = cF (B) ◦ hi (30)

and so

pi = GFpi) = G(cF (B)) ◦Ghi (31)

It now suffices to show uniqueness of this connecting map. Suppose c and c′ are
both connecting maps. First, note that since

(UGL, {UGhi}i∈I) = (UL, {Uhi}i∈I) (32)

we get that (UGL, {UGhi}i∈I) is a colimit of U ◦ D = U ◦ F ◦ D in Set.
Furthermore, Uc and Uc′ are both connecting maps from the colimit
(UGL, {UGhi}i∈I) to the cocone (UB, {Upi}i∈I) for U ◦D. So Uc = Uc′, and
since the forgetful functor U : CΛT → Set is clearly faithful we get c = c′ as
required.

Proof of Proposition 11: Suppose that h is a Λ-homomorphism. Let Z ⊆ X ,
u ∈ X and λd ∈ Λd be such that f(u) ∈ λdX(Z). We have

g(h(u)) /∈ λdY (h[Z]) ⇔ g(h(u)) ∈ λY (Y \ h[Z])
⇒ f(u) ∈ λX(h−1[Y \ h[Z]])
⇒ f(u) ∈ λX(X \ Z)
⇔ f(u) /∈ λdX(Z)

so we must have g(h(u)) ∈ λdY (h[Z]), and we see that h is a forward-directed
Λd-homomorphism. We have tacitly used the fact that h−1[Y \ h[Z]] ⊆ X \ Z.
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Conversely, suppose h is a forward-directed Λd-homomorphism. Let Z ⊆ Y ,
u ∈ X and λ ∈ Λ be such that g(h(u)) ∈ λY (Z). We have

f(u) /∈ λX(h−1[Z]) ⇔ f(u) ∈ λdX(X \ h−1[Z])
⇔ f(u) ∈ λdX(h−1[Y \ Z])
⇒ g(h(u)) ∈ λdY (h[h−1[Y \ Z]])
⇒ g(h(u)) ∈ λdY (Y \ Z)
⇔ g(h(u)) /∈ λY (Z)

and so we must have f(u) ∈ λX(h−1[Z]), so h is a Λ-homomorphism. We have
used here the fact that h[h−1[Y \ Z]] ⊆ Y \ Z and that each λd is monotone.
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Abstract. C∗-algebras form rather general and rich mathematical structures that
can be studied with different morphisms (preserving multiplication, or not), and
with different properties (commutative, or not). These various options can be used
to incorporate various styles of computation (set-theoretic, probabilistic, quan-
tum) inside categories of C∗-algebras. This paper concentrates on the commu-
tative case and shows that there are functors from several Kleisli categories, of
monads that are relevant to model probabilistic computations, to categories of
C∗-algebras. This yields a new probabilistic version of Gelfand duality, involv-
ing the “Radon” monad on the category of compact Hausdorff spaces. We also
show that a commutative C∗-algebra is isomorphic to the space of convex con-
tinuous functionals from its state space to the complex numbers. This allows us
to obtain an appropriately commuting state-and-effect triangle for commutative
C∗-algebras.

1 Introduction

There are several notions of computation. We have the classical notion of computation,
probabilistic computation, where a computer may make random choices, and quantum
computation, which uses quantum mechanical interference and measurement. Normally
we would consider classical computation to be done on sets, probabilistic computation
on spaces with a measure, and quantum computation on Hilbert spaces. We can instead
use categories with C∗-algebras as objects and a choice of either *-homomorphisms
(called MIU-map below) or positive unital maps as the morphisms. The general outline
is represented in this table.

set-theoretic probabilistic quantum

C∗-algebras commutative commutative non-commutative

maps preserve
multiplication

involution
unit

positivity
unit

positivity
unit

maps abbreviation MIU PU PU
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While the quantum case is an important source of motivation, we will be concerned
with the classical and probabilistic cases in this article. In particular, we will relate
the alternative method of representing probabilistic computation, using monads, to the
C∗-algebraic approach.

In recent years the methods and tools of category theory have been applied to Hilbert
spaces — see e.g. [1] and the references there — and also to C∗-algebras, see for
instance [23,21]. In this paper we show that clearly distinguishing different types of ho-
momorphisms of C∗-algebras already brings quite some clarity. Moreover, we demon-
strate the relevance of monads (and their Kleisli and Eilenberg-Moore categories) in this
field. The aforementioned paper [23] concerns itself with only the *-homomorphisms
(i.e. with the MIU-maps in our terminology).

Giry [10, I.4] described how we can consider a stochastic process as being a dia-
gram in the Kleisli category of the Giry monad on measure spaces. By using the Radon
monad on compact spaces instead, we can get a different category of stochastic pro-
cesses on compact spaces as diagrams in the (opposite of the) category of commutative
C∗-algebras with PU-maps. This allows the quantum generalization to taking diagrams
in the category of non-commutative C∗-algebras. The relationship to quantum com-
putation is that B(H), the algebra of all bounded operators on a Hilbert space is a
C∗-algebra, and for every C∗-algebra A, there is a Hilbert space H such that A is iso-
morphic to a norm-closed *-subalgebra of B(H). The category of C∗-algebras allows
us to represent measurement with maps from a commutative C∗-algebra to B(H). We
can also represent composite systems that are partly quantum and partly classical. Gi-
rard also used certain special C∗-algebras, von Neumann algebras, for his Geometry of
Interaction [9].

2 Preliminaries on C∗-Algebras

We write Vect = VectC for the category of vector spaces over the complex numbers
C. This category has direct product V ⊕W , forming a biproduct (both a product and a
coproduct) and tensors V ⊗W , which distribute over⊕. The tensor unit is the space C
of complex numbers. The unit for ⊕ is the singleton (null) space 0. We write V for the
vector space with the same vectors/elements as V , but with conjugate scalar product:
z •V v = z •V v. This makes Vect an involutive category, see [14].

A *-algebra is an involutive monoid A in the category Vect. Thus, A is itself a vector
space, carries a multiplication · : A ⊗ A → A, linear in each argument, and has a unit
1 ∈ A. Moreover, there is an involution map (−)∗ : A → A, preserving 0 and + and
satisfying:

1∗ = 1 (x · y)∗ = y∗ · x∗ x∗∗ = x (z • x)∗ = z • x∗.

Here we have written a fat dot • for scalar multiplication, to distinguish it from the
algebra’s multiplication ·. For z = a + bi ∈ C we have the conjugate z = a− bi. Often
we omit the multiplication dot · and simply write xy for x · y. Similarly, the scalar
multiplication • is often omitted. We then rely on the context to distinguish the two
multiplications.
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A C∗-algebra is a *-algebra A with a norm ‖−‖ : A→ R≥0 in which it is complete.
This norm satisfies ‖x‖ = 0 iff x = 0 and:

‖x + y‖ ≤ ‖x‖+ ‖y‖ ‖z • x‖ = |z| · ‖x‖
‖x · y‖ ≤ ‖x‖ · ‖y‖ ‖x∗ · x‖ = ‖x‖2.

Especially this last equation ‖x∗ ·x‖ = ‖x‖2 is vital for C∗-algebras, as it distinguishes
them from Banach *-algebras. In the current setting, each C∗-algebra is unital, i.e. has
a (multiplicative) unit 1. A C∗-algebra is called commutative if its multiplication is
commutative, and finite-dimensional is it has finite dimension when considered as a
vector space.

An element x in a C∗-algebra A is called positive if it can be written in the form
x = y∗ · y. We write A+ ⊆ A for the subset of positive elements in A. This subset is a
cone, which is to say it is closed under addition and scalar multiplication with positive
real numbers. The multiplication x · y of two positive elements need not be positive in
general (think of matrices). The square x2 = x · x of a self-adjoint element x = x∗,
however, is obviously positive. In a commutative C∗-algebra the positive elements are
closed under multiplication. A cone A+ in a vector space defines a partial order as
follows.

x ≤ y ⇔ y − x ∈ P (1)

This is defines an order on every C∗-algebra.
There are mainly two options when it comes to maps between C∗-algebras. The

difference between them plays an important role in this paper.

Definition 1. We define two categories CstarMIU and CstarPU with C∗-algebras as ob-
jects, but with different morphisms.

1. A morphism f : A → B in CstarMIU is a linear map preserving multiplication (M),
involution (I), and unit (U). Explicitly, this means for all x, y ∈ A,

f(x · y) = f(x) · f(y) f(x∗) = f(x)∗ f(1) = 1.

Often such “MIU” maps are called *-homomorphisms.
2. A morphism f : A → B in CstarPU is a linear map that preserves positive elements

and the unit. This means that f restricts to a function A+ → B+. Alternatively, for
each x ∈ A there is an y ∈ B with f(x∗x) = y∗y.

For both X = MIU and X = PU there are obvious full subcategories of commutative
and/or finite-dimensional C∗-algebras, as described in:

CCstarX � �

�����
����

�

FdCCstarX
� �

��								
� 	

������
����

CstarX

FdCstarX

 �

����������
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Clearly, each “MIU” map is also a “PU” map, so that we have inclusions CstarMIU ↪→
CstarPU, also for the various subcategories. A map that preserves positive elements is
called positive itself; and a unit preserving map is called unital.

For a category B one often writes B(X,Y ) or Hom(X,Y ) for the “homset”
of morphisms X → Y in B. For C∗-algebras A,B we write HomMIU(A,B) =
CstarMIU(A,B) and HomPU(A,B) = CstarPU(A,B) for the homsets of MIU- and
PU-maps. There is also the commonly used notion of completely positive maps, which
is a stronger condition than positivity but weaker than being MIU. These maps are im-
portant when defining the tensor of C∗-algebras as a functor, as the tensor of positive
maps need not be positive. They are also widely considered to represent the physically
realizable transformations. Positive, but non-completely positive maps of C∗-algebras
also have their uses, as entanglement witnesses for example[12, theorem2]. Since we
mainly consider the commutative case, where positive and completely positive coin-
cide, we do not consider the category of C∗-algebras with completely positive maps
any further in this paper.

We collect some basic (standard) properties of PU-morphisms between C∗-algebras
(see e.g. [25,3]).

Lemma 1. A PU-map, i.e. a morphism in the category CstarPU, commutes with involu-
tion (−)∗, and preserves the partial order ≤ on self-adjoint elements given by (1).

Moreover, a PU-map f satisfies ‖f(x)‖ ≤ 4‖x‖, so that ‖f(x)−f(y)‖ ≤ 4‖x−y‖,
making f continuous.

Proof. An element x is called self-adjoint if x∗ = x. Each self-adjoint x can be written
as difference x = xp − xn of positive elements xp, xn, with ‖xp‖, ‖xn‖ ≤ ‖x‖, see [5,
1.5.7]; as a result f(x∗) = f(x) = f(x)∗, for a PU-map f . Next, an arbitrary element y
can be written as y = yr+iyi for self-adjoint elements yr = 1

2 (y+y∗), yi = 1
2i (y−y∗),

so that ‖yr‖, ‖yi‖ ≤ ‖y‖. Then f(y∗) = f(y)∗. Preservation of the order is trivial.
For positive x we have x ≤ ‖x‖ • 1, and thus f(x) ≤ ‖x‖ • 1, which gives

‖f(x)‖ ≤ ‖x‖. An arbitrary element x can be written as linear combination of four
positive elements xi, as in x = x1 − x2 + ix3 − ix4, with ‖xi‖ ≤ ‖x‖. Finally,
‖f(x)‖ = ‖f(x1)− f(x2) + if(x3)− if(x4)‖ ≤

∑
i ‖f(xi)‖ ≤

∑
i ‖xi‖ ≤ 4‖x‖. �

The following famous result is known as Gelfand duality, relating compact Hausdorff
spaces and commutative C∗-algebras. Notice that this result involves the “MIU” maps.

Theorem 1. Let CH be the category of compact Hausdorff spaces, with continuous
maps between them. Sending X ∈ CH to the algebra of continuous functions X → C
yields an equivalence of categories C(−) = Cont(−,C) : CH �−→ (CCstarMIU)op. �

The inverse to the functor C(−) sends a commutative C∗-algebra A to its spectrum
Spec(A), given by the MIU-maps A → C, or equivalently, by the so-called pure states
(see below).

Corollary 1. For each finite-dimensional commutative C∗-algebra A there is an n ∈ N
with A ∼= Cn in FdCCstarMIU.

Proof. By the previous theorem there is a compact Hausdorff space X such that A is
MIU-isomorphic to the algebra of continuous maps X → C. This X must be finite, and
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since a finite Hausdorff space is discrete, all maps X → C are continuous. Let n ∈ N
be the number of elements in X ; then we have an isomorphism A ∼= Cn. �

As we can already see in the above theorem, it is the opposite of a category of C∗-
algebras that provides the most natural setting for computations. This is in line with
what is often called Heisenberg’s picture. In a logical setting it corresponds to compu-
tation of weakest preconditions, going backwards. The situation may be compared to
the category of complete Heyting algebras, which is most usefully known in opposite
form, as the category of locales, see [18].

For a C∗-algebra A a state is positive unital map A → C. The set HomPU(A,C) of
such states can be equipped with the weak *-topology, which is the coarsest (smallest)
topology in which all maps evx = λs. s(x) : HomPU(A,C) → C, for x ∈ A, are
continuous.

Proposition 1. For each C∗-algebra A, the set of states HomPU(A,C) is convex, and
compact Hausdorff in the weak-* topology. Each PU-map f : A → B yields an affine
continuous function (−) ◦ f : HomPU(B,C) → HomPU(A,C).

We recall that a function (between convex sets) is called affine if it preserves convex
sums. We will see shortly that such affine maps are homomorphisms of Eilenberg-
Moore algebras for the distribution monad D.

Proof. For each finite set hi ∈ HomPU(A,C) with ri ∈ [0, 1] satisfying
∑
i ri = 1, the

function h =
∑

i rihi is again a state. Moreover, such convex sums are preserved by
precomposition, making the maps (−) ◦ f affine.

If states h, k ∈ HomPU(A,C) are not equal, say h(x) �= k(x), then either the real or
imaginary parts of h(x) and k(x) differ. Let’s consider the former. Then there is a real
number r with re(h(x)) < r < re(k(x)). The two open subsets ev−1

x ({z ∈ C | re(z) <
r}) and ev−1

x ({z ∈ C | re(z) > r}) then separate h, k. Hence HomPU(A,C) is Haus-
dorff. It is compact by Alaoglu’s Theorem.

Precomposition (−) ◦ f is continuous, since for x ∈ A and U ⊆ C open we get an

open subset
(
(−) ◦ f

)−1
(ev−1

x (U)) = {h | evx(h ◦ f) ∈ U} = ev−1
f(x)(U). �

2.1 Effect Modules

Effect algebras have been introduced in mathematical physics [7], in the investigation of
quantum probability, see [6] for an overview. An effect algebra is a partial commutative
monoid (M, 0,�) with an orthocomplement (−)⊥. One writes x ⊥ y if x�y is defined.
The formulation of the commutativity and associativity requirements is a bit involved,
but essentially straightforward. The orthocomplement satisfies x⊥⊥ = x and x�x⊥ =
1, where 1 = 0⊥. There is always a partial order, given by x ≤ y iff x � z = y, for
some z. The main example is the unit interval [0, 1] ⊆ R, where addition + is obviously
partial, commutative, associative, and has 0 as unit; moreover, the orthocomplement is
r⊥ = 1−r. We write EA for the category of effect algebras, with morphism preserving
� and 1 — and thus all other structure.

For each set X , the set [0, 1]X of fuzzy predicates on X is an effect algebra, via point-
wise operations. Each Boolean algebra B is an effect algebra with x ⊥ y iff x∧ y = ⊥;
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then x � y = x ∨ y. In a quantum setting, the main example is the set of effects
Ef(H) = {E : H → H | 0 ≤ E ≤ I} on a Hilbert space H , see e.g. [6,11].

An effect module is an “effect” version of a vector space. It involves an effect algebra
M with a scalar multiplication s • x ∈ M , where s ∈ [0, 1] and x ∈ M . This scalar
multiplication is required to be a suitable homomorphism in each variable separately.
The algebras [0, 1]X and Ef(H) are clearly such effect modules. In the subcategory
EMod ↪→ EA maps additionally commute with scalar multiplication.

For a C∗-algebra A the subset A+ ↪→ A of positive elements carries a partial order
≤ defined on self-adjoint elements in (1). We write [0, 1]A ⊆ A+ ⊆ A for the subset
of positive elements below the unit. The elements in [0, 1]A will be called effects (or
sometimes also: predicates). For instance, for the C∗-algebra B(H) of bounded oper-
ators on a Hilbert space H the unit interval [0, 1]B(H) ⊆ B(H) contains the effects
Ef(H) = {A ∈ B(H) | 0 ≤ A ≤ id} on H.

We claim that [0, 1]A is an effect algebra and carries a [0, 1] ⊆ R scalar multiplica-
tion, thus making it an effect module.

– Since A with 0,+ is a partially ordered Abelian group, [0, 1]A is a so-called interval
effect algebra, with x ⊥ y iff x + y ≤ 1, and in that case x � y = x + y. The
ortocomplement x⊥ is given by 1− x.

– For r ∈ [0, 1] and x ∈ [0, 1]A the scalar multiplications rx and (1−r)x are positive,
and their sum is x ≤ 1. Hence rx ≤ 1 and thus rx ∈ [0, 1]A.

Each map of C∗-algebras f : A → B preserves ≤ and thus restricts to [0, 1]A →
[0, 1]B. This restriction is a map of effect modules. Hence we get a “predicate” functor
CstarPU → EMod.

Lemma 2. The functor [0, 1](−) : CstarPU → EMod is full and faithful.

Proof. Any PU-map f : A → B is completely determined (and defined by) its action
on [0, 1]A: for a non-zero positive element x ∈ A we use x ≤ ‖x‖ 1 and thus 1

‖x‖ x ∈
[0, 1]A to see that f(x) = ‖x‖ f( 1

‖x‖ x). An arbitrary element y ∈ A can be written as
linear sum of four positive elements (see Lemma 1), determining f(y). �

The (finite, discrete probability) distribution monad D : Sets → Sets sends a set X
to the set D(X) = {ϕ : X → [0, 1] | supp(ϕ) is finite, and

∑
x ϕ(x) = 1}, where

supp(ϕ) = {x | ϕ(x) �= 0}. Such an element ϕ ∈ D(X) may be identified with a
finite, formal convex sum

∑
i rixi with xi ∈ X and ri ∈ [0, 1] satisfying

∑
i ri = 1.

The unit η : X → D(X) and multiplication μ : D2(X) → D(X) of this monad are
given by singleton/Dirac convex sum and by matrix multiplication:

η(x) = 1x μ(Φ)(x) =
∑

ϕ Φ(ϕ) · ϕ(x).

A convex set is an Eilenberg-Moore algebra of this monad: it consists of a carrier set
X in which actual sums

∑
i rixi ∈ X exist for all convex combinations. We write

Conv = EM(D) for the category of convex sets, with “affine” functions preserving
convex sums.
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Effect modules and convex sets are related via a basic adjunction [17], obtained by
“homming into [0, 1]”, as in:

EModop
EMod(−,[0,1])

��� Conv
Conv(−,[0,1])

�� (2)

3 Set-Theoretic Computations in C∗-Algebras

For a set X , a function f : X → C is called bounded if |f(x)| ≤ s, for some s ∈ R≥0.
We write �∞(X) for the set of such bounded functions. Notice that if X is finite, any
function X → C is bounded, so that �∞(X) = CX .

Each �∞(X) is a commutative C∗-algebra, with pointwise addition, multiplication
and involution, and with the supremum norm ‖f‖ = inf{s ∈ R≥0 | ∀x. |f(x)| ≤ s}.
In fact it is a typical example of a commutative W ∗-algebra, but we do not require
this fact. This yields a functor �∞ : Sets → (CCstarMIU)op, where for h : X → Y we
have �∞(h) = (−) ◦ h : �∞(Y ) → �∞(X); it preserves the (pointwise) operations.
When we restrict to the full subcategory FinSets ↪→ Sets we obtain a functor �∞ =
C(−) : FinSets → (FdCCstarMIU)op. The next result is then a well-known special case
of Gelfand duality (Theorem 1). We elaborate the proof in some detail because it is
important to see where the preservation of multiplication plays a role.

Proposition 2. The functor C(−) : FinSets → (FdCCstarMIU)op is an equivalence of
categories.

Proof. It is easy to see that the functor C(−) is faithful. The crucial part is to see that
it is full. So assume we have two finite sets, seen as natural numbers n,m, and a MIU-
homomorphism h : Cm → Cn. For j ∈ m, let |j 〉 ∈ Cm be the standard base vector
with 1 at the j-th position and 0 elsewhere. Since this |j 〉 is positive, so is h(|j 〉), and
thus we may write it as h(|j 〉) = (r1j , . . . , rnj), with rij ∈ R≥0. Because |j 〉 · |j 〉 =
|j 〉, and h preserves multiplication, we get h(|j 〉)·h(|j 〉) = h(|j 〉), and thus r2ij = rij .
This means rij ∈ {0, 1}, so that h is a (binary) Boolean matrix. But h is also unital,
and so:

1 = h(1) = h(|1〉+ · · ·+ |m〉) = h(|1〉) + · · ·+ h(|m〉). (3)

For each i ∈ n there is thus precisely one j ∈ m with rij = 1 — so that h is a
“functional” Boolean matrix. This yields the required function f : n → m with Cf = h.

Corollary 1 says that the functor C(−) : FinSets → (FdCCstarMIU)op is essentially
surjective on objects, and thus an equivalence. �

This proof demonstrates that preservation of multiplication, as required for “MIU”
maps, is a rather strong condition. We make this more explicit.

Corollary 2. For n ∈ N we have HomMIU(Cn,C) ∼= n.

Proof. When we identify n ∈ N with the n-element set n = {0, 1, . . . , n − 1} ∈
FinSets, we get by Proposition 2, HomMIU(Cn,C) ∼= FinSets(1, n) ∼= n. �
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4 Discrete Probabilistic Computations in C∗-Algebras

We turn to probabilistic computations and will see that we remain in the world of com-
mutative C∗-algebras, but with PU-maps (positive unital) instead of MIU-maps. Recall
that states of a C∗-algebra A are the PU-maps A → C.

Lemma 3. Sending a set X to the set of states of the C∗-algebra �∞(X) yields the
expectation monad E from [16]: the mapping X �→ HomPU(�∞(X),C) is isomorphic
to the expectation monad E : Sets → Sets, defined in [16] via effect module homomor-
phisms: E(X) = EMod

(
[0, 1]X , [0, 1]

)
.

As a result, HomPU(Cn,C) ∼= D(n), for n ∈ N, where D(n) is the standard n-
simplex.

Proof. The predicate/effect functor [0, 1](−) : CstarPU → EMod is full and faithful by
Lemma 2, and so:

HomPU
(
�∞(X),C

) ∼= EMod
(
[0, 1]�∞(X), [0, 1]C

)
= EMod

(
[0, 1]X , [0, 1]

)
.

The isomorphism α : HomPU(Cn,C)
∼=−→ D(n) follows because the expectation and

distribution monad coincide on finite sets, see [16]. Explicitly, it is given by α(h) =
λi ∈ n. h(|i〉) and α−1(ϕ)(v) =

∑
i ϕ(i) · v(i). �

The unit η and multiplication μ structure on E(X) ∼= HomPU(�∞(X),C) is very much
like for “continuation” or “double dual” monads, see [19,22,13], with:

X
η �� HomPU(�∞(X),C) HomPU

(
�∞
(
HomPU(CX ,C)

)
,C
)
μ �� HomPU(�∞(X),C)

x � �� λv. v(x) g � �� λv. g
(
λh. h(v)

)
.

For an arbitrary monad T = (T, η, μ) on a category B we write K�(T ) for the Kleisli
category of T . Its objects are the same as those of B, but its maps X → Y are the maps
X → T (Y ) in B. The unit η : X → T (X) is the identity map X → X in K�(T ); and
composition of f : X → Y and g : Y → Z inK�(T ) is given by g � f = μ ◦ T (g) ◦ f .
Maps in such a Kleisli category are understood as computations with outcomes of type
T , see [22]. For a monad T : Sets → Sets we write K�N(T ) ↪→ K�(T ) for the full
subcategory with numbers n ∈ N as objects, considered as n-element sets.

Proposition 3. The expectation monad E(X) ∼= HomPU(�∞(X),C) gives rise to a full
and faithful functor:

K�(E)
CE �� (CCstarPU)op

X � �� �∞(X)(
X

f→ E(Y )
) � �� λv ∈ �∞(Y ). λx ∈ X. f(x)(v).

(4)

Proof. First we need to see that CE(f) is well-defined: the function CE(f)(v) : X → C
must be bounded. We can apply Lemma 1 to the function f(x) ∈ HomPU(�∞(Y ),C);
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it yields ‖f(x)(v)‖ ≤ 4‖v‖. This holds for each x ∈ X , so that |CE(f)(v)(x)| =
|f(x)(v)| is bounded by 4‖v‖. Next, the map CE(f) is a PU-map of C∗-algebras via the
pointwise definitions of the relevant constructions.

We check that CE preserves (Kleisli) identities and composition:

CE(id)(v)(x) = CE(η)(v)(x)

= η(x)(v)

= v(x)

CE(g � f)(v)(x) = (g � f)(x)(v)

= μ
(
E(g)(f(x))

)
(v)

= E(g)(f(x))
(
λw.w(v)

)
= f(x)

(
(λw.w(v)) ◦ g

)
= f(x)

(
λy. g(y)(v)

)
= f(x)

(
CE(g)(v)

)
= CE(f)

(
CE(g)(v)

)
(x)

=
(
CE(f) ◦ CE(g)

)
(v)(x).

Further, CE is obviously faithful, and it is full since for h : �∞(Y ) → �∞(X) in
CCstarPU we can define f : X → HomPU(�∞(Y ),C) by f(x)(v) = h(v)(x). Then
each f(x) is a PU-map of C∗-algebras. �

We turn to the finite case, like in the previous section. We do so by considering the
Kleisli category K�N(E) obtained by restricting to objects n ∈ N. Since the expecta-
tion monad E and the distribution monad D coincide on finite sets, we have K�N(E) ∼=
K�N(D). Maps n → m in this category are probabilistic transition matrices n → D(m).
The following equivalence is known, see e.g. [20], although possibly not in this cate-
gorical form.

Proposition 4. The functor CE from (4) restricts in the finite case to an equivalence of
categories:

K�N(D)
CD
�

�� (FdCCstarPU)op (5)

It is given by CD(n) = Cn and CD
(
n

f→ D(m)
)

= λv ∈ Cm. λi ∈ n.
∑
j∈m

f(i)(j) · v(j).

This equivalence (5) may be read as: the category FdCCstarPU of finite-dimensional
commutative C∗-algebras, with positive unital maps, is the Lawvere theory of the dis-
tribution monad D.

Proof. Fullness and faithfulness of the functor CD follow from Proposition 3, using the
isomorphism HomPU(Cn,C) ∼= D(n) from Lemma 3. This functor CD is essentially
surjective on objects by Corollary 1, using the fact that a MIU-map is a PU-map. �
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5 Continuous Probabilistic Computations

The question arises if the full and faithful functor K�(E) → (CCstarPU)op from Propo-
sition 3 can be turned into an equivalence of categories, but not just for the finite case
like in Proposition 4. In order to make this work we have to lift the expectation monad
E on Sets to the category CH of compact Hausdorff spaces. As lifting we use what we
call the Radon monad R, defined on X ∈ CH as:

R(X) = HomPU
(
C(X), C

)
, (6)

where, as usual, C(X) = {f : X → C | f is continuous}; notice that the func-
tions f ∈ C(X) are automatically bounded, since X is compact. These are related
to measures in the following way. If μ is a probability measure on the Borel sets of
X , integration of continuous functions with respect to μ gives

∫
X

-dμ ∈ R(X). A
Radon probability measure, or an inner regular probability measure, is one such that
μ(S) = supK⊆S μ(K) where K ranges over compact sets. The map from measures
to elements of R(X) is a bijection[24, Thm. 2.14], and accordinly we shall sometimes
refer to elements of R(X) as measures. Therefore the Radon monad can be considered
as a variant of the Giry monad. It differs in that it uses the topology of a space, and that
in the case of a non-Polish space there can be non-Radon measures[8, 434K (d), page
192].

This Radon monad R is known, it first occurs implicitly in [27] as the monad of an
adjunction (“probability measure” is used to mean “Radon probability measure” in that
article).

From Proposition 1 it is immediate that R(X) is again a compact Hausdorff space.
The unit η : X → R(X) and multiplication μ : R2(X) →R(X) are defined as for the
expectation monad, namely as η(x)(v) = v(x) and μ(g)(v) = g

(
λh. h(v)

)
. We check

that η is continuous. Recall from the proof of Proposition 1 that a basic open in R(X)
is of the form ev−1

s (U) = {h ∈ R(X) | h(s) ∈ U}, where s ∈ C(X) and U ⊆ C is
open. Then:

η−1
(
ev−1
s (U)

)
= {x ∈ X | η(x)(s) ∈ U} = {x ∈ X | s(x) ∈ U} = s−1(U).

The latter is an open subset of X since s : X → C is a continuous function.
We are now ready to state our main, new duality result. It is may be understood as a

probabilistic version of Gelfand duality.

Theorem 2. The Radon monad (6) yields an equivalence of categories:

K�(R) * (CCstarPU)op.

Proof. We define a functor CR : K�(R) → (CCstarPU)op like in (4), namely by:

CR(X) = C(X) CR(f) = λv. λx. f(x)(v).

Since f : X →R(Y ) is itself continuous, so is f(−)(v) : X → C.
The fact that CR is a full and faithful functor follows as in the proof of Proposi-

tion 3. This functor is essentially surjective on objects by ordinary Gelfand duality
(Theorem 1). �
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We investigate the Radon monad R a bit further, in particular its relation to the distri-
bution monad D on Sets.

Lemma 4. There is a map of monads (U, τ) : R→ D in:

CH

R
��

U �� Sets

D
�� DU

τ �� UR

where U is the forgetful functor and τ commutes appropriately with the units and
multiplications of the monads D and R. (Such a map is called a “monad functor”
in [26, §1].)

As a result the forgetful functor lifts to the associated categories of Eilenberg-Moore
algebras:

EM(R) �� EM(D) = Conv(
R(X)

α→ X
) � ��

(
D(UX)

τ→ UR(X)
Uα→ UX

)
Hence the carrier of a R-algebra is a convex compact Hausdorff space, and every
algebra map is an affine function.

Proof. For X ∈ CH and ϕ ∈ D(UX), that is for ϕ : UX → [0, 1] with finite support
and
∑
x ϕ(x) = 1, we define τ(ϕ) ∈ UR(X) on h ∈ C(X) as:

τ(ϕ)(h) =
∑
x ϕ(x) · h(x) ∈ C. (7)

It is easy to see that τ is a linear map C(X) → C that preserves positive elements and
the unit. Moreover, it commutes appropriately with the units and multiplications. For
instance: (

τX ◦ ηDUX
)
(x)(h) = τX(1x)(h) = h(x) = U(ηRX)(x)(h). �

The dual space of C(X) can be ordered using (1), by taking the positive cone to be
those linear functionals that map positive functions to positive numbers.

Definition 2. A state φ ∈ R(X) = HomPU(C(X),C) is a pure state if for for each
positive linear functional ψ ≤ φ there exists an α ∈ [0, 1] such that ψ = αφ.

Lemma 5. For a compact Hausdorff space X , the subset of unit (or Dirac) measures
{η(x) | x ∈ X} ⊆ R(X) is the set of extreme points of the set of Radon measures
R(X) — where η(x) = ηR(x) = evx = λh. h(x) is the unit of the monad R.

Proof. We rely on the basic fact, see [5, 2.5.2, page 43], that Dirac measures η(x) ∈
R(X) are “pure” states. We prove the above lemma by showing that the pure states are
precisely the extreme points of the convex set R(X).

– If φ ∈ R(X) is a pure state, suppose φ = α1φ1 + α2φ2, a convex combination
of two states φi ∈ R(X) with αi ∈ [0, 1] satisfying α1 + α2 = 1, where no two
elements of {φ, φ1, φ2} are the same. Then φ ≥ α1φ1, since for a positive function
f ∈ C(X) one has (φ − α1φ1)(f) = α2φ2(f) ≥ 0. Thus α1φ1 = αφ, for some
α ∈ [0, 1], since φ is pure. Then α1 = α1φ1(1) = αφ(1) = α. If α1 = 0, then
α2 = 1 and so φ = φ2. If α1 > 0, then φ = φ1. Hence φ is an extreme point.
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– Suppose φ is an extreme point of R(X), i.e. that φ = α1φ1 + α2φ2 implies φ1

or φ2 = φ. Then if there is a positive linear functional ψ ≤ φ, we may take
α1 = ψ(1) ≥ 0; since α1 = ψ(1) ≤ φ(1) = 1, we get α1 ∈ [0, 1]. If α1 = 0,
then since ‖ψ‖ = ψ(1) = 0 we get ψ = 0 and ψ = 0 · φ. If α1 = 1, then
(φ−ψ)(1) = 0, which since φ− ψ was assumed to be positive implies φ−ψ = 0
and hence ψ = 1 · φ. Having dealt with those cases, we have that α1 ∈ (0, 1), and
so we have a state φ1 = 1

α1
ψ. We may take α2 = 1 − α1 ∈ (0, 1) and obtain a

second state φ2 = 1
α2

(φ−ψ). By construction we have a convex decomposition of
φ = α1φ1 + α2φ2. Therefore either φ = φ1 = 1

α1
ψ or φ = φ2 = 1

α2
(φ − ψ). In

the first case, ψ = α1φ, making φ pure. But also in the second case φ is pure, since
we have α2φ = φ− ψ and thus ψ = (1− α2)φ. �

Lemma 6. Let X be a compact Hausdorff space.

1. The maps τX : D(UX) → UR(X) from (7) are injective; as a result, the unit/Dirac
maps η : X →R(X) are also injective.

2. The maps τX : D(UX) 	 UR(X) are dense.

Proof. For the first point, assume ϕ, ψ ∈ D(UX) satisfying τ(ϕ) = τ(ψ). We first
show that the finite support sets are equal: supp(ϕ) = supp(ψ). Since X is Hausdorff,
singletons are closed, and hence finite subsets too. Suppose supp(ϕ) �⊆ supp(ψ), so that
S = supp(ϕ)− supp(ψ) is non-empty. Since S and supp(ψ) are disjoint closed subsets,
there is by Urysohn’s lemma a continuous function f : X → [0, 1] with f(x) = 1 for
x ∈ S and f(x) = 0 for x ∈ supp(ψ). But then τ(ψ)(f) = 0, whereas τ(ϕ)(f) �= 0.

Now that we know supp(ϕ) = supp(ψ), assume ϕ(x) �= ψ(x), for some x ∈
supp(ϕ). The closed subsets {x} and supp(ϕ) − {x} are disjoint, so there is, again by
Urysohn’s lemma a continuous function f : X → [0, 1] with f(x) = 1 and f(y) = 0
for all y ∈ supp(ϕ). But then ϕ(x) = τ(ϕ)(f) = τ(ψ)(f) = ψ(x), contradicting the
assumption.

We can conclude that the unit X → R(X) is also injective, since its underlying
function can be written as composite U(η) = τ ◦ η : UX 	 D(UX) 	 UR(X),
because τ is a map of monads.

To show that the image of τX is dense, we proceed as follows. By Lemmas 5 and 4,
the extreme points of R(X) are

{ηR(x) | x ∈ X} = {τ
(
ηD(x)) | x ∈ X}

and are thus in the image of τ : D(UX) 	 UR(X). Since every convex combination
of ηR(x) comes from a formal convex sum ϕ ∈ D(UX), all convex combinations of
extreme points are in the image of τX . AsR(X) is a compact convex subset of C(X)w∗

(i.e. with the weak-* topology), a locally convex space, we may apply the Krein-Milman
theorem [4, Proposition 7.4, page 142] to conclude the set of convex combinations of
extreme points is dense. �

Lemma 7. Let X,Y be compact Hausdorff spaces. Each Eilenberg-Moore algebra
α : R(X) → X is an affine function. For each continuous map f : X → Y , the function
R(f) : R(X) →R(Y ) is affine.
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Proof. This follows from naturality of τ : DU ⇒ UR. �

Proposition 5. Let α : R(X) → X and β : R(Y ) → Y be two Eilenberg-Moore al-
gebras of the Radon monad R. A function f : X → Y is an algebra homomorphism if
and only f is both continuous and affine.

As a result, the functor EM(R) → EM(D) = Conv from Lemma 4 is full and
faithful.

We shall follow the convention of writing A(X,Y ) for the homset of continuous and
affine functions X → Y .

Proof. Clearly, each algebra map is both continuous and affine. For the converse, if
f : X → Y is continuous, it is a map in the category CH of compact Hausdorff spaces.
Since it is affine, both triangles commute in:

D(UX) �� τ

dense
��

����
���

���
���

���
R(X)

β◦R(f)

��
f◦α

��
Y

Since Y is Hausdorff, there is at most one such map. �

The category EM(R) of Eilenberg-Moore algebras of the Radon monad may thus be
understood as a suitable category of convex compact Hausdorff spaces, with affine con-
tinuous maps between them. We side-step its precise characterisation — in order to
avoid “observability” issues like in [16] — and will proceed with EM(R) as such.
Details will be elaborated in an extended version of this paper.

6 States and Effects

We start with a simple observation.

Lemma 8. The unit interval [0, 1] is obviously compact and Hausdorff. It carries a
R-algebra structure R([0, 1]) → [0, 1], given by h �→ h

(
[0, 1] ↪→ C

)
.

For an arbitrary R-algebra X , the homset of algebra maps:

EM(R)
(
X, [0, 1]

)
= A(X, [0, 1])

is an effect module, via pointwise constructions. Recall from Proposition 5 that this
homset contains the affine and continuous functions X → [0, 1]. In this way we get a
functorA(−, [0, 1]) : EM(R) → EModop. �

In [16] it is shown that for an effect module M , the homset EMod(M, [0, 1]) is a convex
compact Hausdorff space. In fact, it carries an R-algebra structure:

R
(
EMod(M, [0, 1])

) αM �� EMod(M, [0, 1])

h � �� λx ∈ M.h(evx)
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where evx = λv. v(x) : C
(
EMod(M, [0, 1])

)
→ C. For each map of effect mod-

ules f : M → M ′ one obtains a map of R-algebras (−) ◦ f : EMod(M ′, [0, 1]) →
EMod(M, [0, 1]). We thus obtain the following situation:

EModop
EMod(−,[0,1])

��� EM(R)

A(−,[0,1])
��

K�(R)

Cont(−,[0,1])

������������

�����������

(8)

Such diagrams appear in [13] as a categorical representation of the duality between
states and effects, with Schrödinger’s picture on the right, and Heisenberg’s picture on
the left (see also [15]). In this diagram:

– The map K�(R) → EModop on the left is the “predicate” functor, sending a space
X to the predicates on X , given by the effect module Cont(X, [0, 1]) of continuous
functions X → [0, 1], or equivalently by the effects [0, 1]C(X) on the C∗-algebra
C(X). This functor is full and faithful by Lemma 2 and Theorem 2:

EMod
(
Cont(Y, [0, 1]),Cont(X, [0, 1])

)
= EMod

(
[0, 1]C(Y ), [0, 1]C(X)

)
∼= HomPU

(
C(Y ), C(X)

)
∼= K�(R)

(
X,Y

)
.

– The “state” functor K�(R) → EM(R) is the standard full and faithful “compari-
son” functor from a Kleisli category to a category of Eilenberg-Moore algebras.

– The diagram (8) commutes in one direction:

EMod
(
Cont(X, [0, 1]), [0, 1]

)
= EMod

(
[0, 1]C(X), [0, 1]C

)
∼= HomPU

(
C(X),C) = R(X).

– The remainder of this section will be devoted to proving that the diagram also
commutes in the other direction, i.e. A(R(X), [0, 1]) ∼= Cont(X, [0, 1]).

There is an evaluation map ζ from C(X) to R(X) → C defined as follows:

ζ(f) = evf = λφ. φ(f).

Lemma 9. For f ∈ C(X), this ζ(f) is affine and continuous, so ζ(f) ∈ A(R(X),C).

Proof. The map ζ(f) is continuous because for an open U ⊆ C the inverse image
ζ(f)−1(U) = ev−1

f (U) is by definition a basic open of the weak-* topology on R(X).
It is also affine, since it sends convex sums in R(X) to convex sums in C:

ζ(f)
(∑

i riφi
)

= ζ(f)
(
λg.
∑
i riφi(g)

)
=
∑

i riφi(f) =
∑
i riζ(f)(φi). �

The following lemma is a special case of the complexification of [2, proposition 2.2].
However, a simpler proof is possible in this special case by applying Gelfand duality,
which we include here.
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Lemma 10. The set A(R(X),C) can be given (pointwise) the structure of an ordered
vector space with unit.

Moreover, this space is isomorphic to C(X), with one direction given by ζ.

Proof. The complex numbers are an ordered vector space with positive cone [0,∞) ⊆
C and unit 1 ∈ C. By treating U(R(X)) as a set, we obtain an ordered unital vector
space structure on CU(R(X)) as an infinite product. Therefore we need only show that
the affine and continuous maps are closed under linear combinations. The latter holds
because addition and scalar multiplication are continuous on C, so we reduce to the
former. If we consider a finite linear combination of maps f =

∑
i αifi with each

fi ∈ A(R(X),C), we may use the fact that all summations involved are finite and the
associativity of addition to get that f is affine from the fact that each fi is.

We proceed to the second part of the statement. By lemma 9 we have that ζ maps
into A(R(X),C). We need to show that it is a linear map preserving the positive cone
and unit. To do this we use the fact that ζ is an evaluation map and that each φ is linear
and preserves the positive cone and unit, being a state.

At this point we note that if ζ(f)(φ) ∈ [0,∞) for all φ ∈ R(X) then f is positive.
To see this, assume f has this property. Then in particular ζ(f)(φ) ≥ 0 for all pure
states φ in the spectrum of C(X). Since ζ is evalution, f(x) ≥ 0 at each point.

This shows that if ζ has an inverse, it is a positive map. We also have that if ζ has
an inverse, it would preserve the unit, so to show that ζ is an isomorphism of ordered
vector spaces with unit we only have to show that it is a bijection.

To show ζ is injective, assume that there are f, g ∈ C(X) such that ζ(f) = ζ(g).
Then ζ(f) agrees with ζ(g) at each pure state in the spectrum of C(X), i.e. f agrees
with g at each point x ∈ X , and so f = g.

To show ζ is surjective, let f ∈ A(R(X),C). By restriction we obtain a continuous
function Spec(C(X)) ↪→ R(X) → C; it corresponds to a unique element g ∈ C(X),
i.e. to a map g : X → C, by Gelfand’s isomorphism. We need to show that ζ(g) = f .
We know ζ(g) agrees with f on the spectrum, and by affineness they must agree on all
convex combinations of these. Using Lemma 6 (2) we see that they agree on a dense
set, so ζ(g) = f by continuity. �

Corollary 3. For each commutative C∗-algebra A there is an isomorphism of ordered
vector spaces with unit: A ∼= A

(
HomPU(A,C),C

)
. �

Proof. Using Gelfand duality, we extend the above to all commutative C∗-algebras, via
A ∼= C(Spec(A)). �

Proposition 6. The R-algebra mapsA(R(X), [0, 1]), with their pointwise effect mod-
ule structure, are isomorphic to predicates Cont(X, [0, 1]) on X , i.e. to the effects
[0, 1]C(X) on C(X).

Proof. By Lemma 10, there is an isomorphism C(X) ∼= A(R(X)),C) of unital or-
dered vector spaces. Restriction to their intervals from zero to the unit then yields an
isomorphism [0, 1]C(X)

∼= A(R(X)), [0, 1]). Recalling Proposition 5, we see the latter
maps are exactly the R-algebra maps. �
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Theorem 3. There are commuting “state-and-effect” triangles:

EModop
EMod(−,[0,1])

��� EM(R)
A(−,[0,1])

�� EModop
EMod(−,[0,1])

��� EM(R)
A(−,[0,1])

��

K�(R)

Cont(−,[0,1])

�����������

�����������
(CCstarPU)op

[0,1](−)

������������� HomPU(−,C)

            

Proof. The triangle on the left is the diagram (8), in which the missing commutation
result is given by Proposition 6. The diagram on the right follows from the equivalence
K�(R) * (CCstarPU)op from Theorem 2. �

Final Remarks

The main contribution of this article lies in establishing a connection between two
different worlds, namely the world of theoretical computer scientists using program
language semantics (and logic) via monads, and the world of mathematicians and the-
oretical physicists using C∗-algebras. This connection involves the distribution monad
D on Sets, which is heavily used for modeling discrete probabilistic systems (Markov
chains), in the finite-dimensional case (see Proposition 4) and the less familiar Radon
monadR on compact Hausdorff spaces (see Theorem 2). These results apply to commu-
tative C∗-algebras. Follow-up research will concentrate on the non-commutative case.

Acknowledgements. The authors wish to thank Hans Maassen and Jorik Mandemaker
for helpful discussions.
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Trace Semantics via Generic Observations
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Abstract. Recent progress on defining abstract trace semantics for
coalgebras rests upon two observations: (i) coalgebraic bisimulation for
deterministic automata coincides with trace equivalence, and (ii) the clas-
sical powerset construction for automata determinization instantiates the
generic idea of lifting a functor to the Eilenberg-Moore category of an
appropriate monad T. We take this approach one step further by rebas-
ing the latter kind of trace semantics on the novel notion of T-observer,
which is just a certain natural transformation of the form F → GT , and
thus allowing for elimination of assumptions about the structure of the
coalgebra functor. As a specific application of this idea we demonstrate
how it can be used for capturing trace semantics of push-down automata.
Furthermore, we show how specific forms of observers can be used for
coalgebra-based treatment of internal automata transitions as well as
weak bisimilarity of processes.

1 Introduction

Perhaps the most impressive and productive category-theoretic archetypes adap-
ted by theoretical computer science are the notions of coalgebra and compu-
tational monad. Whereas computational monads are typically used for sakes
of denotational semantics in order to encapsulate, i.e. internalize a computa-
tional effect, and thus make it invisible, coalgebras are better known for their
extroverted character, exhibited by their tendency to actively interact with the
outside.

As is usually the case, except oversimplified, one needs both kinds of features:
a way to hide some information, but also a possibility to stay reactive. Generic
trace semantics for coalgebras, originated in [11], can be viewed as an attempt
to resolve the mismatch between internal and external behaviours of coalgebras
by means of the generic notion of a trace, provided one treats nondeterminism
as a sort of intrinsic effect to be abstracted away from. More recently in [13],
it has been ascertained that generic traces naturally appear in a generalization
of the powerset construction for nondeterministic automata by identifying the
powerset functor as a monad and abstracting away from it. In view of the latter
work, the distinction between coalgebraic behaviours and traces can be explained
most easily by the core example of nondeterministic automata as follows. A
nondeterministic automaton is presented by a coalgebra of the functor FPω
where Pω stands for finite powersets and F is the deterministic automata functor
2× --A. The universal arrow from such a coalgebra to the final coalgebra νFPω
captures behaviours, while traces are obtained as behaviours of the determinized

R. Heckel and S. Milius (Eds.): CALCO 2013, LNCS 8089, pp. 158–174, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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version of the original automaton. The underlying property involved here is a
fact, known from experience: for deterministic automata, trace equivalence and
behavioural equivalence coincide. Notably, the theory does not explain why this
is the case. Moreover, the obtained trace semantic becomes rigidly bound to
the syntactic form of the functor, which limits the application power of the
construction drastically.

In this work, which is heavily based on [13] as well as on the more recent [28],
we attempt to push the existing development forward in two respects. First, we
generalise the framework by introducing the concept of a T-observer, which is a
natural transformation of the form

F → GT

with G subject to a distributive law π : TG → GT. This will allow us to detach
from any assumptions about the shape of the coalgebra functor; Therefore, we
shall see how this helps to naturally define trace semantics of push-down au-
tomata (and thus refine the earlier attempt from [28]). Second, we establish the
notion of T-observer as a generic phenomenon, arising from a natural adjoint
construction. The latter, somewhat surprisingly, suggests a distinction between
real-time observers, viewing only the current transition of the system, and looka-
head observers, viewing potentially infinite sequence of transitions starting from
the current one on.

Paper Organization. In Sections 2 and 3 we give the necessary preliminaries
on coalgebras and (computational) monads; Moreover, in the latter we intro-
duce a stack monad and its nondeterministic counterpart and give operational
characterizations for them. In Section 4 we introduce the crucial notion of a T-
observer and then, in Section 5, reesteblish it by a category-theoretic argument.
Sections 6, 7 and 8 contain the main corpus of examples: internal actions of
automata, weak bisimilarity, pushdown automata, and reactive programs with
side-effects.

2 Systems and (Final) Coalgebras

In general, one can sensibly speak about a system as of something sequentially
evolving in time while changing its internal state and possibly interacting with
the outer world. The notion of coalgebra is known to provide a suitable mathe-
matical abstraction, basically, as general as that.

Given a category C (typically the category Set of sets and functions) and an
endofunctor F : C → C, an F -coalgebra is any morphism of the form f : X →
FX . The object X it often referred to as the state space of f . For a fixed F ,
F -coalgebras form a category, which we denote as coalgF (C), with morphisms
being the morphisms of the state spaces, subject to coherence with the coalgebra
structure as follows: for f : X → FX and g : Y → FY , h : X → Y is an F -
morphism iff gh = (Fh)f . A terminal object in the category of F -coalgebras,
called a final coalgebra, (whose state space is) often denoted as νF , if it exists,
plays a critical role in the theory of systems: given an F -coalgebra f : X →
FX , the terminal morphism f̂ : X → νF produces behaviours of the system,
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i.e. the complete characterization of its evolution for every chosen initial state
s : 1 → X . States with the same behaviour are called behaviourally equivalent.
For weak pullback preserving functors on Set, behavioural equivalence is known
to capture the core notion of strong bisimilarity, stemming from the realm of
process algebra [26]

We now recap two quite representative examples (see e.g. [13]): deterministic
(DA) and nondeterministic (NA) automata.

Example 1 (DA). Let FX = 2×XA be an endofunctor over Set with finite A,
understood as an alphabet of atomic symbols. A coalgebra of this functor has the
form 〈o, t〉 : X → 2 ×XA. With X being finite 〈o, t〉 represents a deterministic
automaton: o : X → 2 models the acceptance condition, equivalently a subset of
final states; and t : X → XA, whose uncurried version has the profile X×A→ X ,
models the transition function.

The final coalgebra has as the state space the set of all formal languages
over A, i.e. νF = 2A

∗
. This can be equipped with the F -coalgebra structure by

the isomorphism:
ι : 2A

∗
* 21+A×A∗

* 2× (2A
∗
)A.

Now the final map f̂ generated by f = 〈o, t〉 sends every state x of the automaton
to the language accepted by f at this state.

The functor 2 × --A plays a particular role in trace semantics. We denote it by
LA and call (formal) language functor, which name is suggested by the form of
the final coalgebra νLA. We shall, when appropriate, treat the elements 0, 1 of
2 as truth values ⊥ and � correspondingly.

Example 2 (NA). In order to switch to the nondeterministic case it suffices
to take the functor by FX = 2 × Pω(X)A. The transition function of an NA
〈c, t〉 : X → 2 × Pω(X)A now becomes equivalent to a finitary relation over
X × A × X . The state space of the final F -coalgebra consists of all finitely-
branching trees whose nodes are labelled either by ⊥ or by � and whose edges
are labelled by action names from A, modulo a suitable bisimilarity relation.

As indicated above, although DA and NA recognize the same languages,
coalgebra-driven behavioural equivalences diverge for them.

3 Monads, Theories, and Effects

Monads play a crucial role in denotational semantics, for they capture the very
essence of various side-effects, most prominently their composability [19, 18].
Monads are also known to be successfully applied in coalgebra-based formalisa-
tions of systems, although in a somewhat restricted way. The underlying phi-
losophy of this paper is to identify monads with computational effects in spirit
of [19]. In accordance to this we view e.g. nondeterministic automata as those
featuring nondeterminism as a side-effect, etc.

Given a Cartesian categoryC, i.e. a category with finite Cartesian products (in-
cluding the empty one, which is the terminal object), a monad T can be given by
a so-called Kleisli triple (T, η, --†) consisting of an endomap T : Ob (C) → Ob (C);
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a family of morphisms ηA : A→ TA; and an operator sending any f : A→ TB to
f † : TA→ TB, called Kleisli lifting. These data are subject to the equations

η†A = id, f †ηA = f, (f †g)† = f †g†.

Intuitively, T is used to form a type of computations TA with outcomes of type
A; Therefore ηA injects a value into a trivial computation returning that value
and --† lifts a morphism f : A → TB over values to a morphism f † : TA → TB
over computations.

It can be shown that T from the definition of the Kleisli triple can be lifted
to an endofunctor and ηA is natural in A, which leads us to an equivalent def-
inition of a monad, customary in the category theory: A monad T is given by
an endofunctor T and two natural transformations η : Id → T and μ : T 2 → T
called unit and multiplication respectively, subject to standard commutativity
diagrams (see e.g. [16]). A monad T is strong if it has strength, a natural trans-
formation τA,B : A× TB → T (A×B), which is well-behaved w.r.t. the monad
structure [19]. Strength is a natural technical condition ensuring that the monad
is suitable for multivariable computations. If strength exists then it is unique up
to natural isomorphism. Moreover, for Cartesian closed categories strength is
equivalent to enrichment [15]; Therefore, every monad over Set is strong. We
agree that all the monads in remainder of this paper are strong.

The definition of a monad by a Kleisli triple naturally suggests the idea of the
Kleisli category CT, the category whose objects are the same as those of C and
whose morphisms from CT(A,B) are those from C(A, TB); The identity mor-
phisms of CT are thus given by ηA : A→ TA and the composition of f : B → TC
with g : A→ TB is the so-called Kleisli composition: f - g = f †g. Morphisms of
CT are sometimes called Kleisli morphisms. In terms of computational effects,
the Kleisli category is precisely the category of side-effecting morphisms w.r.t.
C. In particular, one can “include” C in CT by postcomposing every morphism
f : A → B with ηB . The obtained functor has a right adjoint and as such gives
rise to a monad, which happens to be the original monad T. This provides one
of the two extremal solutions to the question, if any monad is generated by an
adjunction. The other solution, known as Eilenberg-Moore construction, is ob-
tained by involving the so-called Eilenberg-Moore category CT, i.e. the category
of algebras of the monad T. Such algebras are simply morphisms f : TA → A
satisfying certain coherence conditions [16]. The Kleisli category CT can be faith-
fully embedded into CT as the subcategory of free algebras, which gives rise to
a functor F T

em : C → CT that has a right adjoint GT
em : CT → C and therewith

again yields the original monad T.
Plain dualization of the monadic universe brings about comonads and a whole

bunch of associated concepts, which we do not elaborate here (but see [30]). We
note, however, that the Eilenberg-Moore category CoalgK(C) of a comonad K
consists of Eilenberg-Moore K-coalgebras. The latter category is not the same
as coalgK(C) with K being the functorial part of K, but closely related to it. In
particular, CoalgK(C) is a full subcategory of coalgK(C).

Examples of computationally relevant monads include the following.

Example 3 (Computational monads). We assume that the category C pos-
sesses sufficient structure to makes sense of what follows.
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– Exception monad: TX = X + E where E is an object of exceptions. One
obtains the partiality monad by taking E = 1.

– Powerset monad: TX = PX where P is a covariant powerset functor. Some
variants of it are P� for non-empty subsets; Pκ for subsets of cardinality
strictly less then κ with a regular cardinal κ (e.g. finite powerset Pω); etc.

– Multiset monad: TX = {m : X → N | |supp(m)| < ω} where N stands for
the set of natural numbers including 0.

– Subdistribution monad: TA =
�
d : A → [0, 1] |

�
x∈A d(x) ≤ 1

�
where d

ranges over subprobability distributions, deviating from probability distribu-
tions in that they might sum up to less than 1.

– Store monad:1 TX = (X × S)S where S is a global store often identified
with V L, a space of maps from locations L to values V .

Often, different effects can be combined, e.g. the nondeterministic store monad
TX = P(X × S)S , the Java monad [12] TA = S ⇀ S ×A + E ×A, etc.

For certain monads, especially those involved in coalgebraic trace semantics, it
is customary to consider their presentation, based on algebraic theories. For
example, the finite powerset monad Pω can be considered as generated by the
algebraic theory featuring two operations /0 and +, subject to the axioms of
bounded semi-latices (i.e. semi-lattices with a bottom element). The object PωX
is then identified with the free bounded semi-lattice over X . More recently, it
has been shown how the store monad can be presented by an algebraic theory,
which example we consider in more detail.

Consider the store S of the form V n with natural n. This corresponds to a
computational model of n locations that can be filled with the elements of V .
Let the underlying category be Set and assume, for simplicity, V to be finite.
We consider the family of operations:

lookupi : XV → X updatei,v : X → X

parametrized by i ∈ n and v ∈ V . The intuitive meaning of them is as follows:
lookupi(x1, . . . , xV ) reads the location i and depending on the value discovered,
returns the corresponding argument; updatei,v(x) updates the location i with v
and returns x. These two operations can be viewed as elementary commands,
while the terms composed from them can be viewed as programs over these
commands. A complete set of axioms for lookup and update is provided in [24];
Moreover the following result is proven.

Proposition 4. [24] The axioms for lookup and update from [24] identify an
equational theory generating the store monad over V n.

The approach to computational effects sketched above is developed mainly in a
series of work by Plotkin and Power [21, 22, 23] and scales rather well as far as
to any strong monad over a complete and cocomplete Cartesian closed C [5].

1 We avoid the term “state monad” to prevent confusion with coalgebraic states.
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Various forms of memory organization naturally call for various algebraic
theories. We conclude this section by giving two novel characterisation results in
spirit of Proposition 4 for stack-like stores. Analogously to lookup and update we
introduce pop : XS+1 → X and pushi : X → X , with S = {s1, . . . , sn} denoting
a finite alphabet of stack elements. The idea is as follows:

– pop(x1, . . . , xn, y) results in y if the stack is empty; Otherwise it removes the
top element of it and results in xi where si ∈ S is the removed stack element.

– pushi(x) pushes si ∈ S onto the stack and returns x.

We postulate the following axioms:

pushi(pop(x1, . . . , xn, y)) = xi (1)

pop(push1(x), . . . , pushn(x), x) = x (2)

pop(x1, . . . , xn, pop(y1, . . . , yn, z)) = pop(x1, . . . , xn, z) (3)

The stack monad is the submonad of the store monad (--×S∗)S
∗

with every TX
consisting of those 〈r, t〉 : S∗ → X × S∗ for which there is a natural n ≥ 0 such
that whenever w, u ∈ S∗ with |u| > n,

t(u · w) = t(u) · w r(u · w) = t(u)

In other words, TX captures exactly those operations 〈r, t〉, which may only
access the stack up to a certain depth n where n is associated with 〈r, t〉 and
independent from the stack content.

Proposition 5. The algebraic theory of pushi and pop with the axioms (1)–(3)
is equivalent to the stack monad over Set.

A more advanced theory accommodating stacks together with finite nondeter-
minism will be needed in Section 7 in order to give a coalgebraic account of
push-down automata. It is obtained by adding binary + and nullary ∅, to the
signature of operations {pushi | i ≤ n} ∪ {pop} used above and by completing
the axioms (1)–(3) with the following new identities:

(x + y) + z = x + (y + z) x + y = y + x x + ∅ = x + x = x (4)

pop(∅) = ∅ (5)

push(∅, . . . ,∅,∅) = ∅ (6)

pop(x + x′) = pop(x) + pop(x′) (7)

push(x1 + x′
1, . . . , xn + x′

n, y + y′) = push(x1, . . . , xn, y) +

push(x′
1, . . . , x

′
n, y

′) (8)

Here (4) are the obvious axioms of bounded semi-lattices whereas the laws (5)–
(8) express commutativity of stack operations and nondeterminism over each
other as computational effects. In other words, the theory for (1)–(8) is the
tensor product of the theory for stacks (1)–(3) and the theory for finite nonde-
terminism (4) (see [10] for more details). The corresponding nondeterministic



164 S. Goncharov

stack monad is the submonad of the nondeterministic store monad Pω(--×S∗)S
∗

so that every TX consists of those f : S∗ → Pω(X × S∗) for which there is a
natural n ≥ 0 such that for all w, u ∈ S∗ whenever |u| > n,

f(u · w) = {〈x, v · w〉 | 〈x, v〉 ∈ f(u)}.

Proposition 6. The algebraic theory of push, pop, ∅ and + with the axioms (1)–
(8) is equivalent to the nondeterministic stack monad over Set.

The latter proposition is essentially a consequence of the analysis of the structure
of powermonads given in [8], which are tensor products of monads with variants
of the powerset monad.

4 Trace Semantics via Observation

We consider here a monad T and a pair of endofunctors F , G over a category C
having sufficient structure to interpret the constructions being discussed.

As indicated previously, process-like bisimilarity is rather well captured by
coalgebraic behavioural equivalence. Proper treatment of trace equivalence, how-
ever, turns out to be a rather more delicate issue and a seemingly prevailing
approach to tackle it, originated in [11], is to assume F to be a composite func-
tor and capture trace equivalence using the same finality argument in another
category with a functor obtained as a syntactic component of F . One concrete
implementation of this idea is to assume F to be of the form TG and obtain
the trace semantics in the Kleisli category CT for a lifting GT of G, equivalently
given by a distributivity law π : GT→ TG [9]. A more recent approach, pursued
in [13], follows similar lines with TG replaced by GT , the Kleisli category CT

by the Eilenberg-Moore category CT and the distributive law GT → TG by a
distributive law TG → GT. We stick to this latter style of semantics further on.

Definition 7 (T-distributivity). We call G T-distributive if there is a distribu-
tive law π : TG→ GT, in which case we call π a T-distributivity of G.

It is well-known that T-distributivities of G bijectively correspond to liftings GT

of G to CT, which can be expressed by the following commutative diagram

CT GT

��

GT

em

��

CT

GT

em

��
C

G �� C

(9)

Moreover, as shown in [13], a GT -coalgebra in C gives rise to a GT-coalgebra
in CT and thus traces of the original coalgebra can be identified as behaviours
of the lifted GT-coalgebra in CT. Finally, application of the forgetful functor
GT
em : CT → C yields a trace semantics in the original category for, as turns out,

GT
em it sends the final GT-coalgebra exactly to a final G-coalgebra.
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Example 8. [13] A standard example of the presented scenario is given by NA.
The language functor LA is Pω-distributive with π : PωLA → LAPω, for every
p ∈ PωLA given by

pr1(π(p)) = ∃m. 〈�,m〉 ∈ p, pr2(π(p)) = λa. {m(a) | 〈b,m〉 ∈ p}.

It can now be seen by coinduction that the induced transformation of LAPω-
coalgebras to LA-coalgebras implements automata determinization.

As shown in [13], involving more sophisticated forms of nondeterminism, such as
captured by multisets and subdistributions, allows for a treatment of somewhat
less standard kinds of machines, such as generative probabilistic systems and
weighted automata.

We extend the outlined framework just one step further by introducing the
core concept of this paper.

Definition 9 (Real-time T-observer). Given a T-distributive functor G and
an endofunctor F , a real-time T-observer for F , F → GT is given by a natural
transformation δ : F → GT . Disregarding the reference to the original functor
F , we call any natural transformations in this format a generic T-observer.

The term “real-time” here refers to the fact that the observer depends only on the
coalgebra functor, and hence the observation is always performed stepwise with
no way to delay until the next step. We elaborate on this further in Section 5.

Essentially, given an observer F → GT we can transform any F -coalgebra to
a GT-coalgebra and then simply apply the generalised powerset construction to
the result. However, we prefer to spell the details as they will be relevant for the
remaining presentation.

Note that an observer δ : F → GT gives rise to a natural transformation
δ∗ : TF → GT by the following composition:

δ∗ : TF
Tδ−−−−→ TGT

πT−−−−→ GT 2 Gμ−−−−→ GT (10)

where π is the T-distributivity of G. The intended use of T-observers is to provide
trace semantics for a coalgebra f : X → FX according to diagram

X

η
��

f �� FX

η
��

TX
Tf ��

ŝ
��

s

��TFX
δ∗ �� GTX

Gŝ
��

νG
ι �� GνG

(11)

Here, ι is the final coalgebra structure, s = δ∗(Tf) and ŝ is the universal arrow
induced by s. Given some a : 1 → X we call ŝηa the δ-trace of f at a. This
naturally generalizes the construction from [13] by taking F := GT and δ :=
(Gμ)π. The DA and NA examples can now be treated on the same footing.
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Example 10. Let FX = 2× (PωX)A be the NA-functor as in Example 8. The
generalised powerset construction from [13] amounts to the identity Pω-observer
F * LAPω and therefore yields the expected trace semantics w.r.t. LA.

In case of the DA-functor FX = 2×XA we take as the Pω-observer LA(ηX) :
2 × XA → LAPωX where ηX is the unit of Pω and obtain the conventional
trace semantics, which does, of course, coincide with the canonical behavioural
equivalence.

Proposition 11. To give an observer δ : F → GT is the same as to give a
natural transformation for the following pasting diagram:

C
F ��

F T

em
��

C

F T

em
��

⇒

CT GT

�� CT

(12)

5 Lookahead Observers

We introduced the notion of a T-observer as a fairly modest generalization of an
existing device. Here, we would like to argue that this notion is in fact derivable
from some rather general category-theoretic considerations.

Let us consider a pair of categories C, D, a pair of endofunctors F , G over
them and the corresponding categories of coalgebras coalgF (C), coalgH(D). The
idea is: objects of coalgF (C) represent original systems of interest, while objects
of coalgH(D) represent systems of observable behaviours of the latter. It appears
reasonable to capture such kind of an observation scenario by a pair of functors

V : C → D and �V : coalgF (C) → coalgH(D) such that �V is a lifting of V , in
other words the diagram

coalgF (C)

UF

��

�V �� coalgH(D)

UG

��
C

V �� D

(13)

with UF , UG being the evident forgetful functors, commutes.
Suppose UF has a right adjoint RF . This gives rise to a cofree comonad F∞ on

F , explicitly, F∞X = νγ.(Fγ×X) (see e.g. [30]). Since coalgF (C) is isomorphic

to the Eilenberg-Moore category CoalgF∞(C), an endofunctor �V on coalgF (C)
is equivalently an endofunctor on CoalgF∞(C). Furthermore, we have

Lemma 12. Provided F∞ exists, to give a lifting �V for V is the same as to
give a natural transformation

V F∞ → HV. (14)

Let us assume that the functor V : C→ D in (13) has a right adjoint R : D→ C
and let us therefore obtain a monad T = RV on C. Let K T

em : D → CT be the
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induced comparison functor. Suppose moreover that K T
em has a left adjoint L so

that, in summary, we have the following picture:

C
V

!!

�
F T

em

""
�

D

R

##

K T

em �� CT

GT

em

$$

L

%% �

where F T
em = K T

emV and R = GT
emK T

em. Since a composition of left (right) adjoints
is again a left (right) adjoint and a left (right) adjoint to a functor is uniquely
defined, also V = LF T

em and GT
em = RL.

Theorem 13. In the situation (13), suppose (i) UF has a right adjoint RF , (ii)
V has a right adjoint R and (iii) the comparison functor K T

em a has a left adjoint
L. Let H be an endofunctor D→ D such that GR * RH with some G : C→ C.
Then

1. K T
emHL : CT → CT is a lifting of G to CT and thus G is T-distributive;

2. the rule sending any α : F∞ → GT to

V F∞ V α−−−−−→ V GRV
V ρV−−−−−→ V RHV

εHV−−−−−−→ HV

where ρ is the isomorphism HV * V G and ε is the counit of the adjunction,
determines a one-to-one correspondence between T-observers F∞ → GT and
natural transformations (14).

Remark 14. While the conditions (i) and (iii) of Theorem 13 seem to be rela-
tively mild (e.g. (i) is fulfilled when F is accessible, (iii) is fulfilled when D has
coequalizers [1]), condition (ii) is essential. A somewhat unexpected source of sit-
uations (13) satisfying (ii) are logical connections [20] used in coalgebraic modal
logic. These can be related to our view by instantiating D with Eop for some
E; Coalgebras over D would then be algebras over E. A detailed analysis of the
relation between observers and logical connections is subject to further work.

Theorem 13 inspires the following definition.

Definition 15 (Lookahead T-observer). A lookahead T-observer for F is a
real-time T-observer for F∞.

For every F -coalgebra f : X → FX we can form a F∞-coalgebra f ′ : X → F∞X
as the final arrow from 〈f, id〉 : X → FX × X to F∞X . In order to obtain a
δ-trace for f by means of a lookahead observer δ : F∞ → GT we just apply the
construction (11) to f ′ instead of f .

We clarify the distinction between real-time and lookahead observers by a
small example inspired by [14].
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Example 16 (Infinite streams). Consider the following, perhaps slightly ar-
tificial, problem: Given an infinite stream over a set L, calculate the stream
obtained by missing out all those maximal finite segments of it, which consist
of a specified element a ∈ L, e.g. if the whole stream is an infinite repetition of
a then the original stream is returned. The functor FX = L × X is known to
generate infinite streams exactly as we need. A real-time observer would then
have the format L × Id → L × T , which is not suitable for it would not give a
way to access the next element of the stream as required unless the front one
is a.

By comparison, consider a lookahead observer skipa : F∞ → F w.r.t. the
identity monad. Note that F∞X * νγ. (Fγ×X) * (L×X)∞, i.e. F∞X consists
of infinite streams over L×X . Hence we define

skipa[〈a, x1〉, 〈a, x2〉, . . . , 〈a, xn〉, 〈b, xn+1〉, . . .] = 〈b, xn+1〉,
skipa[〈a, x1〉, 〈a, x2〉, . . . , 〈a, xn〉, 〈a, xn+1〉, . . .] = 〈a, x2〉.

A coalgebra f : X → FX gives rise to a coalgebra f ′ : X → F∞X so that a
behaviour [a1, a2, . . .] of the original system carried out by a state x1 maps to
a behaviour [〈a1, x1〉, 〈a2, x2〉, . . .] of the transformed system where the second
components of the tuples protocol the intermediate states visited. It is now easy
to see that a skipa-trace of f at x : 1 → X is obtained from the corresponding
stream of behaviours as expected.

As noted in [14], examples like skipa, considered as such, carry a little of oper-
ational meaning, which fact indicates that restricting to real-time observers can
well be a reasonable idea. However, as we shall see, allowing for a lookahead pays
off as it immediately enables useful coalgebraic meta-constructions for a small
added price.

6 Internal Actions

Consider the language functor LA+EX = 2 ×XA+E where the actions are par-
titioned into visible A and internal ones E. Applying the standard finality argu-
ment produces traces over the whole set A+E, which can be undesirable because
of the presence of internal actions. A real-time observer can not be helpful to
tackle this issue precisely because if we run into an internal action we must drop
it and hold up the output until a non-internal one occurs. As one would expect,
a suitable lookahead observer carries the necessary effect.

Let us note first that L∞
A+EX * νγ. (2×X × γA+E) * (2 ×X)(A+E)∗ . Then

we define a lookahead observer δX : L∞
A+EX → Pω1LAX by the expression

δ〈o, t〉 = {〈o(w), λa. t(w · a)〉 | w ∈ E∗}

Intuitively, we form partial runs of the original automaton over A + E corre-
sponding to the trace prefixes of the form τ1, τ2, . . . , τn, a with τi ∈ E, a ∈ A
and for every such run construct a one-step a-transition of the target automaton.
As it must, the target automaton becomes highly nondeterministic, hence the
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use of the countable powerset functor Pω1. Determinization is ensured on the
spot by defining a Pω1-distributivity for LA as in Example 8.

It is not difficult to instantiate the presented idea to capture weak bisimilarity
of processes by reduction to strong bisimilarity [17]. Unfortunately, unlike the
case of linear traces, considered above, it appears to be impossible to eliminate
the internal action. This seems to be a consequence of the standard fact that
weak bisimilarity fails to be a congruence. However, we can make use of the
fact that two processes are weakly bisimilar iff they become strongly bisimilar
after saturating their state transitions by adjoining pre- and postfixes of chained
internal actions [6, 17]. Informally, this amounts to creating one a-transition in
the target system corresponding to a chain of transitions of the original system
labelled by τn, a, τm if a �= τ , and one internal transition corresponding to
a chain of transitions labelled by τn. Here, τn and τm denote finite, possibly
empty, chains of the internal action τ .

Let FX = Pω(X)Aτ be the functor of finitely-branching labelled transition
systems over finite Aτ = A∪{τ} [26]. Note that F∞X * νγ. (Pω(γ)Aτ ×X). We
define a lookahead observer πX : νγ. (Pω(γ)Aτ × X) → Pω1(X)Aτ for F w.r.t.
the identity monad by expression:

π(t0)(a) =
�
{pr2(tn)(an) | t1 ∈ pr1(t0)(a0), . . . , tn ∈ pr1(tn−1)(an−1)}

where the union is taken over all sequences a1, . . . , an of the form τ, . . . , τ, a, τ,
. . . , τ if a �= τ and τ, . . . , τ is a = τ .

The presented construction is the most straightforward one. As a result, the
obtained transition system receives an enormous number of junk τ -transitions.
A further optimisation for practical purposes should not be difficult, but would
demand for involving more sophisticated versions of the observer.

7 Push-Down Automata

We treat push-down automata analogously to NA by using the functor FX =
Pω(S∗)× Pω(X × S∗)A×S where A stands for the input alphabet and S stands
for the set of stack symbols. Given a finite set X , a coalgebra 〈o, t〉 : X → FX
captures the automaton carrying the following data:

Finite Set of Accepting Configurations Acc ⊆ X × S∗ consisting of all
such pairs 〈x,w〉 ∈ X × S∗ that o(x)(w) = 1; Common possible choices for Acc
include [25]: {〈x,w〉 | x ∈ Fin}, {〈x,w〉 | w = ε}, {〈x,w〉 | x ∈ Fin,w = ε}, and
{〈x,w〉 | w = sw′, s ∈ S′} where Fin ⊆ X is a distinguished set of final states,
S′ ⊆ S is a distinguished set of stack symbols, and ε denotes the empty stack.

Transition Function X × A × S → Pω(X × S∗) obtained by uncurrying t;
Here, the elements of an input triple 〈x, a, s〉 refer to a current state x, an input
alphabet symbol a and the current top stack symbol s, subject to removal. The
outcome of the transition function is a finite set of pairs 〈x′, w〉 where x′ is the
new state and w is a string of elements to be pushed onto the stack.

As already noticed in [28], transitions of a push-down automaton can be con-
sidered as a nondeterministic side-effecting function w.r.t. the set of stacks S∗
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as underlying store, which suggests using the monad Pω(X × S∗)S
∗
. Here, we

propose a nondeterministic version of the stack monad from Section 3 as a better
choice, for—as we have shown in Proposition 5—it is directly generated by the
stack operations. Let T be that monad henceforth.

Note that T does not appear as a subexpression of the expression defining F .
More importantly, operations encoded by F are only commands to be applied
to a stack and not ready stack transformers.

Due to an isomorphism FX * Pω(S∗) × Pω(X × (S × A × S∗)), behaviours
of F can be understood as finitely-branching trees, modulo bisimilarity, whose
nodes are annotated by finite sets of stacks and whose branches are labelled with
commands of either of two forms: (a; s/s1 . . . sn), (s/s1 . . . sn).

Let αX : Pω(X × S∗)S → TX be the natural transformation defined by the
clauses

α(f)(ε) = /0, α(f)(s · w) = {〈x, u · w〉 | 〈x, u〉 ∈ f(s)}.

This gives rise, in an obvious way, to a real-time T-observer δX : FX →
P(S∗) × (TX)A for F . Finally, we endow P(S∗) × --A with a T-distributivity
πX : T (P(S∗)×XA) → P(S∗)× (TX)A by the equations:

pr1(π(p)) = {w ∈ S∗ | 〈w′′,m,w′〉 ∈ p(w), w′′ ∩w′ �= /0},
pr2(π(p)) =λa. λw. {m(a) | 〈b,m〉 ∈ p(w)},

which is in a perfect correspondence with [28]. The resulting traces are the
elements of the final coalgebra νγ. (P(S∗) × XA) * P(A∗)S

∗
and are indeed

maps from the set of initial stack values to languages over A.
According to the standard definition (e.g. [25]), A has form A′ + 1 where

the adjoined element can be viewed as a special symbol for internal transitions
(otherwise the automaton is called real-time and captures precisely non-empty
context-free languages over A [25]), which results in the undesirable effect of
having the internal symbol in the traces. A solution to that would be to involve
a lookahead observer as in Section 6, which we do not spell out here.

8 Reactive Programs with Generic Side-Effects

Reactive coalgebra-based systems over generic side-effects encapsulated by a
monad appear in the literature in the form of coalgebraic component-based
frameworks [3] or as generic calculi for side-effecting processes [7]. Here, we
sketch the perspectives of defining observation-based semantics for systems of
this kind.

Let (for simplicity) C = Set and consider coalgebras of the form

f : X → T (O ×X)I (15)

where T is a functorial part of a monad T, capturing some generic side-effect,
I is an input type, O is an output type. One way to look at a system of this
kind is as a generalized Mealy machine [28]—the latter would be obtained by
instantiating T with the identity monad.
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Note that νγ. (O × γ)I * νγ. (OI × γI) * (OI)I
∗

= OI+ where I+ stands
for nonempty lists over I. It is easy to see by induction that the function space
I+ → O can be considered as a subspace of stream transformers Iω → Oω formed
by so-called causal maps [27]: a map t : Iω → Oω is causal if t(s)(n) = t(s′)(n)
whenever s(i) = s′(i) for all i ≤ n; In other words, the n-th element of the output
stream t(s) depends only on the elements of s in the positions from the first one
up to the n-th. The latter definition of causality is the standard one, however,
the former one is more suitable for our generalization, which is as follows.

Definition 17 (T-causality). Given a strong monad T over a category C with
finite products and coproducts such that any initial algebra X∗ = μγ. (1+X×γ)
exists, we call a morphism t : I∗ → TO∗ T-causal if the diagram

I∗ t ��

ιI ��

TO∗

TιO��
1 + I × I∗

id+ pr2 ��

T (1 + O ×O∗)

T (id+ pr2)��
1 + I∗

[η inl,(T inr)t] �� T (1 + O∗)

commutes where ιX : X∗ → 1 + X ×X∗ is the initial algebra structure on X∗.

It can be readily verified by induction that for C = Set with T being the identity
monad T-causality agrees with the standard definition.

We now proceed with defining a trace semantics for coalgebras of type (15).
Let R be the monad with the functorial part RX = T (O∗ × X) and monadic
operations induced by the obvious monoidal structure on O∗. Then we define
a real-time R-observer δX : T (O ×X)I → TO∗ × RXI and an R-distributivity
πX : R(TO∗ ×XI) → TO∗ ×RXI by the expressions

δ(t) = 〈ηα, λx. T (β × id)(t(x))〉, (16)

π(t) =
�
let r = T (γ × id)μ(Tτ)t in 〈(T pr1)r, λx. T (id×at(x))r〉

�
(17)

where α : 1 → O∗, β : O → O∗, γ : O∗×O∗ → O∗ are the obvious operations for
creating the empty list, forming a single-element list from a given element and
for list concatenation correspondingly; τ is the strength of T; at(x) = λf. f(x);
the intermediate value r has T (O∗×XI) as the output type. This induces traces
for (15) as elements of νγ. (TO∗ × γI) * (TO∗)I

∗
.

The idea behind the monad R is to collect the outputs from O while compos-
ing the computational effects between iterations. The strength τ of the monad
T plays a crucial role in this process, as it allows for propagating the output
values downwards through the layers of T-computations. We can now relate to
T-causality as follows.

Proposition 18. Traces induced by (16)–(17) are T-causal.

9 Conclusions

We have laid down the foundations of a generic monad-based notion of obser-
vation for systems represented by coalgebras. This notion establishes a bridge
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between an implementation of a system and its observable behaviour, and there-
fore provides a basic abstraction idiom for studying systems from the most gen-
eral perspective. Whereas, from the technical point of view, our development is
only a mild modification of the existing machinery, as we have shown, our notion
of observation has a universal character—under reasonable assumptions, it arises
from a fairly basic observation scenario. Every observer in our framework comes
with an associated generalized notion of trace, which can vary over a large spec-
trum of equivalences refining the canonical notion of bisimilarity of the original
system. We have shown how the introduced notion of observation allows for a
smooth and concise treatment of such traditionally delicate examples as internal
actions, weak bisimilarity and pushdown automata. As a further improvement of
the latter case we have presented two versions of a stack monad and operational
characterizations for them in the spirit of Plotkin and Power.

Related Work. This work descends from [13] as well as from the more re-
cent [28] where the generalized powerset construction was introduced. Natural
transformations of the form TF → GT , which one can treat as a form of a
T-observer occasionally appear in [13] for sakes of relating Kleisli and Eilenberg-
Moore styles of semantics. Insufficient expressivity of the standard distributive
law argument has been acknowledged in [29] in the specific case of the finitary
subdistribution monad Dω combined with the functor 1 +A× --: Dω(1 +A×X)
only embeds into [0, 1]× (DωX)A (and thus can be naturally regarded as an ob-
server), unlike the analogous case with Pω instead of Dω when an isomorphism
would take place.

Future Work. Format constraints applied to this note do not give a chance to
develop the presented theory to a sufficient extent. We would like to develop this
further along the following lines.

− Formal languages and machines. One objective of this paper was to improve
the coalgebraic treatment of push-down automata. We believe that an analogous
treatment of Turing machines should not be difficult, except that instead of
classical Turing machines one should involve reactive Turing machines presented
in [2] as a more coalgebra-friendly concept.
− Coalgebraic modal logic. As indicated in Remark 14, there is a technical

relation between observation scenarios (13) and logical connections. In view of
the classical relation between testing and observational semantics this may be not
a coincidence and should be studied in detail; The notion of a lookahead observer
may also suggest a way for a logical characterisation of the weak bisimulation,
by involving F∞-coalgebras derived from F -coalgebras.
− Rational fixpoints of functors. The notion of a regular language is known

to be nicely captured coalgebraically by a rational fixpoint ρLA of the language
functor LA by Milius and collaborators (see e.g. [4]). As expected, ρLA sits inside
the greatest fixpoint νLA of all formal languages. The question is, if the theory of
rational fixpoints can be extended (somehow) to other kinds of machines under
the presented observational treatment, e.g. to push-down automata.
− Notion of observation. We intend to study compositions of observation sce-

narios (13), such as sequential and parallel ones, and their impact on the monads
underlying the corresponding observers. As we have seen, the notion of trace
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equivalence, induced by an observer can be as fine as the usual bisimilarity. We
anticipate the introduction of a class of observers capturing linearity of traces
and a construction for generating such observers from a functor and a monad in
a universal manner analogously to forming tensors of monads with powersets [8].
Theorem 13 indicates that it might be reasonable to relax the definition of an
observer by rebasing it on pairs of adjoint functors and dropping T-distributivity.

Acknowledgements. The author wishes to thank Stefan Milius for a brief but
definite update on distributive laws for comonads. Thanks to Alexandra Silva,
Daniel Hausmann and anonymous referees for their valuable feedback.
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[7] Goncharov, S., Schröder, L.: A coinductive calculus for asynchronous side-effecting

processes. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914,
pp. 276–287. Springer, Heidelberg (2011)
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Full Abstraction for Fair Testing in CCS

Tom HirschowitzÆ

CNRS and Université de Savoie

Abstract. In previous work with Pous, we defined a semantics for CCS
which may both be viewed as an innocent presheaf semantics and as a
concurrent game semantics. It is here proved that a behavioural equiv-
alence induced by this semantics on CCS processes is fully abstract for
fair testing equivalence.

The proof relies on a new algebraic notion called playground, which
represents the ‘rule of the game’. From any playground, two languages,
equipped with labelled transition systems, are derived, as well as a strong,
functional bisimulation between them.

Keywords: Programming languages, categorical semantics, presheaf
semantics, game semantics, concurrency, process algebra.

1 Introduction

Motivation and Previous Work. Innocent game semantics, invented by
Hyland and Ong [20], led to fully abstract models for a variety of functional
languages, where programs are interpreted as strategies in a game. Presheaf
models [22, 6] were introduced by Joyal et al. as a semantics for process algebras,
in particular Milner’s CCS [28]. Previous work with Pous [19] (HP) proposes a
semantics for CCS, which reconciles these apparently very different approaches.
Briefly, (1) on the one hand, we generalise innocent game semantics to both
take seriously the possibility of games with more than two players and consider
strategies which may accept plays in more than one way; (2) on the other hand,
we refine presheaf models to take parallel composition more seriously. This leads
to a model of CCS which may both be seen as a concurrent game semantics, and
as an innocent presheaf model, as we now briefly recall.

To see that presheaf models are a concurrent, non-innocent variant of game
semantics, recall that the base category, say C, for such a presheaf model typ-
ically has as objects sequences of labels, or configurations in event structures,
morphisms being given by prefix inclusion. Such objects may be understood as
plays in some game. Now, in standard game semantics, a strategy is a prefix-
closed (non-empty) set of plays. Unfolding the definition, this is the same as a
functor Cop � 2, where 2 is the poset category 0 � 1: the functor maps a play
to 1 when it is accepted by the strategy, and to 0 otherwise. It is known since
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Harmer and McCusker [15] that this notion of strategy does not easily adapt
to non-determinism or concurrency. Presheaf semantics only slightly generalises
it by allowing strategies to accept a play in several ways. A strategy S now
maps each play p to a set S�p�. The play is accepted when S�p� is non-empty,
and, because there are then no functions S�p� � �, being accepted remains a
prefix-closed property of plays. The passage from 2 to more general sets allows
to express branching-time semantics.

This links presheaf models with game models, but would be of little interest
without the issue of innocence. Game models, indeed, do not always accept any
prefix-closed set of plays S as a strategy: they demand that any choice of move
in S depends only on its view. E.g., consider the CCS process P � �a��b � c��,
where � denotes internal choice, and a candidate strategy accepting the plays
ε, �a�, �b�, �c�, �ab�, but not �ac�. This strategy refuses to choose c after a has
been played. Informally, there are two players here, one playing a and the other
playing b�c; the latter should have no means to know whether a has been played
or not. We want to rule out this strategy on the grounds that it is not innocent.

Our technical solution for doing so is to refine the notion of play, making
the number of involved players more explicit. Plays still form a category, but
they admit a subcategory of views, which represent a single player’s possible
perceptions of the game. This leads us to two equivalent categories of strategies.
In the first, strategies are presheaves on views. In the second category, strate-
gies are certain presheaves on arbitrary plays, satisfying an innocence condition.
Parallel composition, in the game semantical sense, is best understood in the for-
mer category: it merely amounts to copairing. Parallel composition, in the CCS
sense, which in standard presheaf models is a complex operation based on some
labelling of transitions or events, is here just a move in the game. The full cate-
gory of plays is necessary for understanding the global behaviour of strategies. It
is in particular needed to define our semantic variant of fair testing equivalence,
described below. One may think of presheaves on views as a syntax, and of in-
nocent presheaves on plays as a semantics. The combinatorics of passing from
local (views) to global (arbitrary plays) are dealt with by right Kan extension.

Discussion of Main Results. In this paper, we further study the semantics
of HP, to demonstrate how close it is to operational semantics. For this, we
provide two results. The most important, in the author’s view, is full abstraction
w.r.t. fair testing semantics. But the second result might be considered more
convincing by many: it establishes that our semantics is fully abstract w.r.t.
weak bisimilarity. The reason why it is here considered less important is that it
relies on something external to the model itself, namely an lts for strategies,
constructed in an ad hoc way. Considering that a process calculus is defined
by its reduction semantics, rather than by its possibly numerous ltss, testing
equivalences, which rely on the former, are more intrinsic than various forms of
bisimilarity.

Now, why consider fair testing among the many testing equivalences? First of
all, let us mention that we could probably generalise our result to any reasonable
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testing equivalence. Any testing equivalence relies on a ‘testing predicate’ 	.
E.g., for fair testing, it is the set of processes from which any unsuccessful,
finite reduction sequence extends to a successful one. We conjecture that for
any other predicate 	�, if 	� is stable under weak bisimilarity, i.e, P 
 Q � 	�

implies P � 	�, then we may interpret the resulting equivalence in terms of
strategies, and get a fully abstract semantics. However, this paper is already quite
complicated, and pushes generalisation rather far in other respects (see below).
We thus chose to remain concrete about the considered equivalence. It was then
natural to consider fair testing, as it is both one of the most prominent testing
equivalences, and one of the finest. It was introduced independently by Natarajan
and Cleaveland [30], and by Brinksma et al. [3, 33] (under the name of should
testing in the latter paper), with the aim of reconciling the good properties of
observation congruence [29] w.r.t. divergence, and the good properties of previous
testing equivalences [7] w.r.t. choice. Typically, a.b � a.c and a.�b � c� (where
� denotes guarded choice and � denotes internal choice) are not observation
congruent, which is perceived as excessive discriminating power of observation
congruence. Conversely, �!τ� � a and a are not must testing equivalent, which
is perceived as excessive discriminating power of must testing equivalence. Fair
testing rectifies both defects, and has been the subject of further investigation,
as summarised, e.g., in Cacciagrano et al. [5].

Overview. We now give a bit more detail on the contents, warning the reader
that this paper is only an extended abstract, and that more technical details may
be found in a (submitted) long version [18]. After recalling the game from HP in
Section 2, as well as strategies and our semantic fair testing equivalence f in
Section 3, we prove that the translation ��� of HP from CCS to strategies is such
that P f,s Q iff �P � f �Q�, where f,s is standard fair testing equivalence
(Theorem 4.6).

Our first attempts at proving this where obscured by easy, yet lengthy case
analyses over moves. This prompted the search for a way of factoring out what
holds ‘for all moves’. The result is the notion of playground, surveyed in Sec-
tion 4.1. It is probably not yet in a mature state, and hopefully the axioms will
simplify in the future. We show how the game recalled above organises into such
a playground DCCS . We then develop the theory in Section 4.2, defining, for any
playground D, two ltss, TD and SD, of process terms and strategies, respectively,
over an alphabet FD. We then define a map ��� : TD � SD between them, which
we prove is a strong bisimulation.

Returning to the case of CCS in Section 4.3, we obtain that SDCCS indeed has
strategies as states, and that f may be characterised in terms of this lts. Further-
more, unfolding the definition of TDCCS , we find that its states are terms in a lan-

guage containing CCS. So, we have maps ob�CCS �
θ
��� ob�TDCCS �

���
��� ob�SDCCS �,

where ob takes the set of vertices, and with ��� � θ � ���. Now, a problem is that
CCS and the other two are ltss on different alphabets, respectively A and FDCCS .

We thus define morphisms A
ξ
�� L

χ
�� FDCCS and obtain by successive change of

base (pullback when rewinding an arrow, postcomposition when following one) a



178 T. Hirschowitz

strong bisimulation ��� : TA

DCCS � SA
DCCS over A. We then prove that θ, viewed as

a map ob�CCS � �� ob�TA

DCCS �, is included in weak bisimilarity, which yields for all
P , P 
A �P � (Corollary 4.5). Finally, drawing inspiration from Rensink et al. [33],
we prove that CCS and SA

DCCS both have enough A-trees, in a suitable sense, and
that this, together with Corollary 4.5, entails the main result.

Related Work. Trying to reconcile two mainstream approaches to denotational
semantics, we have designed a (first version of a) general framework aiming at
an effective theory of programming languages. Other such frameworks exist [31,
32, 36, 10, 4, 2, 17, 1], but most of them, with the notable exception of Kleene
coalgebra, attempt to organise the traditional techniques of syntax with variable
binding and reduction rules into some algebraic structure. Here, as in Kleene
coalgebra, syntax and its associated lts are derived notions. Our approach may
thus be seen as an extension of Kleene coalgebra to an innocent/multi-player
setting, yet ignoring quantitative aspects.

In another sense of the word ‘framework’, recent work of Winskel and col-
leagues [34] investigates a general notion of concurrent game, based on earlier
work by Melliès [26]. In our approach, the idea is that each programming lan-
guage is interpreted as a playground, and that morphisms of playgrounds denote
translations between languages. Winskel et al., instead, construct a (large) bicat-
egory, into which each programming language should embed. Beyond this crucial
difference, both approaches use presheaves and factorisation systems, and con-
tain a notion of innocent, concurrent strategy. The precise links between the
original notion of innocence, theirs, and ours remain to be better investigated.

Melliès’s work [27], although in a deterministic and linear setting, incorpo-
rates some ‘concurrency’ into plays by presenting them as string diagrams. Our
innocentisation procedure further bears some similarity with Harmer et al.’s [14]
presentation of innocence based on a distributive law. Hildebrandt’s approach to
fair testing equivalence [16] uses closely related techniques, e.g., presheaves and
sheaves — indeed, our innocence condition may be viewed as a sheaf condition.
However, (1) his model falls in the aforementioned category of presheaf models
for which parallel composition is a complex operation; and (2) he uses sheaves
to correctly incorporate infinite behaviour in the model, which is different from
our notion of innocence. Finally, direct inspiration is drawn from Girard [12],
one of whose aims is to bridge the gap between syntax and semantics.

Perspectives. We plan to adapt our semantics to more complicated calculi
like π, the Join and Ambients calculi, functional calculi, possibly with extra
features (e.g., references, data abstraction, encryption), with a view to eventu-
ally generalising it. Preliminary investigations already led to a playground for π,
whose adequacy remains to be established. More speculative directions include
(1) defining a notion of morphisms for playgrounds, which should induce trans-
lations between strategies, and find sufficient conditions for such morphisms to
preserve, resp. reflect testing equivalences; (2) generalising playgrounds to apply
them beyond programming language semantics; in particular, preliminary work
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shows that playgrounds easily account for cellular automata; this raises the ques-
tion of how morphisms of playgrounds would compare with existing notions of
simulations between cellular automata [8]; (3) trying and recast the issue of
deriving transition systems (ltss) from reductions [35] in terms of playgrounds.

Notation. Set is the category of sets; set is a skeleton of the category of finite
sets, namely the category of finite ordinals and arbitrary maps between them;
ford is the category of finite ordinals and monotone maps between them. For any
category C, �C � �Cop , Set� denotes the category of presheaves on C, while �Cf �
�Cop , set� and �C � �Cop , ford� respectively denote the categories of presheaves of
finite sets and of finite ordinals. One should distinguish, e.g., ‘presheaf of finite
sets’ Cop � set from ‘finite presheaf of sets’ F : Cop � Set. The latter means
that the disjoint union

�
c�ob�C� F �c� is finite. Throughout the paper, any finite

ordinal n is seen as �1, . . . , n� (rather than �0, . . . , n � 1�).
The notion of lts that we’ll use here is a little more general than the usual

one, but this does not change much. We thus refer to the long version for details.
Let us just mention that we work in the category Gph of reflexive graphs, and
that the category of ltss over A is for us the slice category Gph�A. Ltss admit
a standard change of base functor given by pullback, and its left adjoint given
by postcomposition. Given any lts p : G � A, an edge in G is silent when it is
mapped by p to an identity edge. This straightforwardly yields a notion of weak
bisimilarity over A, which is denoted by 
A.

Our (infinite) CCS terms are coinductively generated by the typed grammar

Γ � P Γ � Q

Γ � P �Q

Γ, a � P

Γ � νa.P

. . . Γ � Pi . . .

Γ �
�
i�nαi.Pi

�n � N� ,

where αi is either a, a, for a � Γ , or ♥. The latter is a ‘tick’ move used in the
definition of fair testing equivalence. As a syntactic facility, we here understand
Γ as ranging over N, i.e., the free names of a process always are 1 . . . n for some
n. E.g., Γ, a denotes just n � 1, and a � Γ means a � �1, . . . , Γ �.

Definition 1.1. Let A be the reflexive graph with vertices given by finite ordi-
nals, edges Γ � Γ � given by � if Γ � Γ �, and by Γ � Γ � �id ,♥� otherwise,
id : Γ � Γ being the identity edge on Γ . Elements of the first summand are
denoted by a � Γ , while elements of the second summand are denoted by a.

We view terms as a graph CCS over A with the usual transition rules. The graph
A only has ‘endo’-edges; some ltss below do use more general graphs.

2 Recalling the Game

2.1 Positions, Moves, and Plays

In this section, we define plays in our game. For lack of space, we cannot be
completely formal. A formal definition, with a gentle introduction to the required
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techniques, may be found in HP (Section 3). Here is a condensed account. We
start by defining a category C. Then, positions in our game are defined to be
particular finite presheaves in �Cf . Moves in our game are defined as certain

cospans X
s
�� M

t
�� Y in �Cf , where t indicates that Y is the initial position of

the move, while s indicates that X is the final position. Plays are then defined
as finite composites of moves in the bicategory Cospan��Cf � of cospans in �Cf . By
construction, positions and plays form a subbicategory, called DCCS

v .
In order to motivate the definition of our base category C, recall that (directed,

multi) graphs may be seen as presheaves over the category freely generated by
the graph with two objects Æ and �1�, and two edges s, t : Æ � �1�. Any presheaf
G represents the graph with vertices in G�Æ� and edges in G�1�, the source
and target of any e � G�1� being respectively G�s��e� and G�t��e�. A way to
visualise how such presheaves represent graphs is to compute their categories of
elements [25]. Recall that the category of elements

�
G for a presheaf G over C has

as objects pairs �c, x� with c � C and x � F �c�, and as morphisms �c, x� � �d, y�
all morphisms f : c � d in C such that F �f��y� � x. This category admits a

canonical functor πF to C, and F is the colimit of the composite
�
F

πF��� C
y
��

�C with the Yoneda embedding. Hence, e.g., the category of elements for the
representable presheaf over �1� is the poset �Æ, s� � ��1�, id �1�� � �Æ, t�, which
could be pictured as , thus recovering some graphical intuition.

We now define our base category C. Let us first give the raw definition, and
then explain. C is freely generated from the graph G, defined as follows, plus
some equations. As objects, G has (1) an object Æ, (2) an object �n� for all n � N,
(3) objects on,i (output), ιn,i (input), νn (channel creation), πln (left fork), πrn
(right fork), πn (fork), ♥n (tick), τn,i,m,j (synchronisation), for all i � n, j �
m,n,m � N. G has edges, for all n, (1) sn1 , . . . , s

n
n : Æ � �n�, (2) sc, tc : �n� � c,

for all c � �πln, π
r
n,♥n� � ��i�n�on,i, ιn,i��, (3) �n � 1�

sνn
��� νn

tνn
��� �n�, (4)

πln
ln
�� πn

rn
�� πrn, on,i

εn,i,m,j

������ τn,i,m,j
ρn,i,m,j

������ ιm,j , for all i � n, j � m. In
the following, we omit superscripts when clear from context. As equations, we
require, for all n, m, i � n, and j � m, (1) sc�sni � tc�sni , (2) sνn �sn	1

i � tνn �sni ,
(3) l � t � r � t, (4) ε � t � si � ρ � t � sj .

�Æ, s1� �Æ, s2� �Æ, s3�

��3�, id �3��

In order to explain this seemingly arbitrary defini-
tion, let us compute a few categories of elements for
representable presheaves. Let us start with an easy
one, that of �3� (we implicitly identify any c � C
with yc). An easy computation shows that it is the
poset pictured above. We will think of it as a posi-
tion with one player ��3�, id �3�� connected to three
channels, and draw it as above, where the bullet represents the player, and cir-
cles represent channels. (The graphical representation is slightly ambiguous, but
nevermind.) In particular, elements over �3� represent ternary players, while el-
ements over Æ represent channels. Positions are finite presheaves empty except
perhaps on Æ and �n�’s. Let DCCS

h be the subcategory of �Cf consisting of positions
and monic arrows between them.
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A more difficult category of elements is that of π2. It is the poset generated
by the graph on the left:

lss1 � rss1 ls rs lss2 � rss2

l idπ2 r

lts1 � rts1 lt � rt lts2 � rts2
.

We think of it as a binary player (lt) forking into two players (ls and rs), and
draw it as on the right. The vertical edges on the outside are actually identities:
the reason we draw separate vertices is to identify the top and bottom parts of
the picture as the respective images of both legs of the following cospan. First,
consider the inclusion �2� � �2� �� π2: its domain is any pushout of �s1, s2� : �Æ �
Æ� � �2� with itself, i.e., the position consisting of two binary players sharing
their channels; and the inclusion maps it to the top part of the picture. Similarly,
we have a map �2� �� π2 given by the player lt and its channels (the bottom
part). The cospan �2� � �2� � π2 � �2� is called the local fork move of arity 2.

For lack of space, we cannot spell out all such cat-
egories of elements and cospans. We give pictorial de-
scriptions for �m, j, n, i� � �3, 3, 2, 1� of τm,j,n,i on the
right and of πln, πrn, om,j , ιn,i, ♥n, and νn below:

♥
.

In each case, the representable is the middle object of a cospan determined
by the top and bottom parts of the picture. E.g., for synchronisation we have

�m� j�i �n�
s
�� τm,j,n,i

t
�� �m� j�i �n�, where �m� j�i �n� denotes the position X with

one m-ary player x, one n-ary player y, such that X�sj��x� � X�si��y�. Note
that there is a crucial design choice in defining the legs of these cospans, which
amounts to choosing initial and final positions for our moves.

I

X M Y

(1)
These cospans altogether form the set of local

moves, and are the ‘seeds’ for (global) moves, in the
following sense. Calling an interface any presheaf
consisting only of channels, local moves may be equipped with a canonical in-

terface, consisting of the channels of their initial position. If X
s
�� M

t
�� Y is a

local move (with final position X), and I is its canonical interface, we obtain a

commuting diagram (1) in �Cf (with all arrows monic). For any morphism I � Z
to some position Z, pushing I � X , I � M , and I � Y along I � Z yields,
by universal property of pushout, a new cospan, say X � � M � � Y �. Letting
(global) moves be all cospans obtained in this way, and plays be all composites

of moves in Cospan��Cf �, we obtain, as promised a subbicategory DCCS
v .
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� � (2)

Passing from local to global moves
allows moves to occur in larger po-
sitions. Furthermore, we observe that
plays feature some concurrency. For in-
stance, composing two global moves as
on the right, we obtain a play in which the order of appearance of moves is no
longer visible. In passing, this play embeds into a synchronisation, but is not one,
since the input and output moves are not related. This play may be understood
as each player communicating with the outside world. We conclude with a useful
classification of moves.

Definition 2.1. A move is full iff it is neither a left nor a right fork. We call
F the graph of global, full moves.

Intuitively, a move is full when its final position contains all possible avatars of
involved players.

3 Behaviours, Strategies, and Fair Testing

3.1 Behaviours

U U �

X X �

Recall from HP the category E whose objects are maps
U � X in �C, such that there exists a play Y � U � X ,
i.e., objects are plays, where we forget the final position.
Its morphisms �U � X� � �U � � X �� are commuting
diagrams as on the right with all arrows monic. Morphisms
U � U � in E represent extensions of U , both spatially (i.e., embedding into a
larger position) and dynamically (i.e., adding more moves).

We may relativise this category E to a particular position X , yielding a cat-
egory E�X� of plays on X : take the fibre over X of the functor cod: E � DCCS

h

mapping any play U � X to its initial position X . The objects of E�X� are
just plays �U � X� on X , and morphisms are morphisms of plays whose lower
border is idX . This leads to a category of ‘naive’ strategies, called behaviours.

Definition 3.1. The category BX of behaviours on X is the category �E�X�
f

of
presheaves of finite sets on E�X�.

Behaviours suffer from the deficiency of allowing unwanted cooperation between
players. HP (Example 12) exhibits a behaviour where players choose with whom
they synchronise, which clearly is not allowed in CCS.

3.2 Strategies

To rectify this, we consider the full subcategory V of E consisting of views,
i.e., compositions of basic local moves. We relativise views to a position X , as
follows. Let, for any n � N, �n� denote the single n-ary player, i.e., a single player
connected to n distinct channels. Players of X are in 1-1 correspondence with
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pairs �n, x�, with x : �n� � X in DCCS

h . Relativisation of V to X is given by the
category VX with as objects all pairs �V, x�, where x : �n� � X , and V is a view
with initial position �n�. Morphisms are induced by those of E.

Definition 3.2. The category SX of strategies on X is the category �VX of
presheaves of finite ordinals on VX .

Vop
X Eop

X E�X�op

ford set,

S

i

S�

j

S

This rules out undesired behaviours.
Recall from HP how to map strategies
to behaviours: let first EX be the cat-
egory obtained as VX from all plays
instead of just views. Then, starting from a strategy S, let S� be obtained
by right Kan extension of i � S (by Vop

X �� Eop
X being full and faithful), and

let S � S� � j. The assignment S �� S extends to a full and faithful functor
��� : SX � BX . Furthermore, ��� admits a left adjoint, which we call inno-
centisation, maping naive strategies (behaviours) to innocent ones. By standard
results [24], we have for any S: S�U� �

�
v�VX

S�v�EX�v,U�. Equivalently, S�U� is

a limit of �VX�U�op
dom
���� Vop

X
S
�� ford �� set.

3.3 Decomposition: A Syntax for Strategies

Our definition of strategies is rather semantic in flavour. Indeed, presheaves are
akin to domain theory. However, they also lend themselves well to a syntactic
description. First, it is shown in HP that strategies on an arbitrary position X
are in 1-1 correspondence with families of strategies indexed by the players of X .
Recall that �n� is the position consisting of one n-ary player, and that players of
X may be defined as elements of Pl�X� �

�
n�ND

CCS

h ��n�, X�.

Proposition 3.3. We have SX �
�

�n,x��Pl�X� S�n�. For any S � SX , we denote

by S�n,x� the component corresponding to �n, x� � Pl�X� under this isomorphism.

This result yields a construction letting two strategies interact along an interface,
i.e., a position consisting only of channels. This will be the basis of our semantic
definition of fair testing equivalence. Consider any pushout Z of X � I � Y
where I is an interface. We have

Corollary 3.4. SZ � SX � SY .

Proof. We have VZ � VX�VY , and conclude by universal property of coproduct.

We denote by �S, T � the image of �S, T � � SX � SY under this isomorphism.
So, strategies over arbitrary positions may be decomposed into strategies over

‘typical’ players �n�. Let us now explain that strategies over such players may
be further decomposed. For any strategy S on �n� and basic move b : �n�� � �n�,
let the residual S � b of S after b be the strategy playing like S after b, i.e., for
all v � V�n��, �S � b��v� � S�b 
 v�, where 
 denotes composition in DCCS

v . S is
almost determined by its residuals. The only information missing from the S �b’s
to reconstruct S is the set of initial states and how they relate to the initial



184 T. Hirschowitz

states of each �S � b�. Thus, for any position X , let idvX denote the identity play
on X (i.e., nothing happens). For any initial state σ � S�id �n��, let S�σ be the
restriction of S to states derived from σ, i.e., for all v, those σ� � S�v� which are
mapped to σ under the restriction S�!� : S�v� � S�id �n��. S is determined by its
set S�id �n�� of initial states, plus the function �σ, b� �� �S�σ � b�. Since S�id �n�� is
a finite ordinal m, we have for all n:

Theorem 3.5. S�n� �
�
m�N�

�
b : �n����n� S�n���

m � �
�
b : �n����n� S�n���

Æ.

This result may be understood as saying that strategies form a fixpoint of a cer-
tain (polynomial [23]) endofunctor of Set�I, where I is the set of ‘typical’ players
�n�. This may be strengthened to show that they form a terminal coalgebra, i.e,
that they are in bijection with infinite terms in the following typed grammar,
with judgements n �D D and n � S, where D is called a definite prestrategy
and S is a strategy:

. . . nb � Sb . . . ��b : �nb� � �n� � �B�n�

n �D ��Sb�b��B�n 

. . . n �D Di . . . ��i � m�

n � �i�mDi

�m � N�,

where �B�n denotes the set of all isomorphism classes of basic moves from �n�.
We need to use isomorphism classes here, because strategies may not distinguish
between different, yet isomorphic basic moves. This achieves the promised syn-
tactic description of strategies. We may readily define the translation of CCS
processes, coinductively, as follows. For processes with channels in Γ , we define

�
�
i�n αi.Pi� � �b �� �i�n�b��αi���Pi� 

�νa.P � � �νΓ �� �P �, �� � 
�P � Q� � �πlΓ �� �P �, πrΓ �� �Q�, �� � 

�a� � ιΓ,a
�a� � oΓ,a
�♥� � ♥Γ .

E.g., a.P � a.Q � b̄.R is mapped to �ιΓ,a �� ��P � � �Q��, oΓ,b �� �R�, �� � .

3.4 Semantic Fair Testing

We may now recall our semantic analogue of fair testing equivalence.

Definition 3.6. Closed-world moves are (the global variants of) ν,♥,πn, and
τn,i,m,j. A play is closed-world when it is a composite of closed-world moves.

Let a closed-world play be successful when it contains a ♥ move. Let then 		Z
denote the set of behaviours B such that for any unsuccessful, closed-world play
U � Z and σ � B�U�, there exists f : U � U �, with U � closed-world and
successful, and σ� � B�U �� such that B�f��σ�� � σ. Finally, let us say that a
triple �I, h, S�, for any h : I � X and strategy S � SX , passes the test consisting
of a morphism k : I � Y of positions and a strategy T � SY iff �S, T � � 		Z ,
where Z is the pushout of h and k. Let S�� denote the set of all such �k, T �.

Definition 3.7. For any h : I � X, h� : I � X �, S � SX , and S� � SX� ,
�I, h, S� f �I, h�, S�� iff �I, h, S��� � �I, h�, S����.
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This yields an equivalence relation, analogous to standard fair testing equiva-
lence, which we hence also call fair testing equivalence.

We have defined a translation ��� of CCS processes to strategies, which raises
the question of whether it preserves or reflects fair testing equivalence. The rest
of the paper is devoted to proving that it does both.

4 Playgrounds and Main Result

4.1 Playgrounds: A Theory of Individuality and Atomicity

X X � X�

Y Y � Y �

Z Z � Z�,

h

u

h�
u�

k

k�
u�

v

h�

v�

k�

v�

α α�

β β�

We start by trying to give an idea of the
notion of playground. To start with, we or-
ganise the game into a (pseudo) double cat-
egory [13, 11]. This is a weakening of Ehres-
mann’s double categories [9], where one direc-
tion has non strictly associative composition.
Although we consider proper pseudo double
categories, we often may treat them safely as double categories. A pseudo dou-
ble category D consists of a set ob�D� of objects, shared by two categories Dh
and Dv. Dh is called the horizontal category of D, and Dv is the vertical cat-
egory. Composition in Dh is denoted by �, while we use 
 for Dv. D is fur-
thermore equipped with a set of double cells α, which have vertical, resp. hor-
izontal, domain and codomain, denoted by domv �α�, codv �α�, domh�α�, and
codh�α�. We picture this as, e.g., α above, where u � domh�α�, u� � codh�α�,
h � domv �α�, and h� � codv �α�. D is furthermore equipped with operations for
composing double cells: � composes them along a common vertical morphism,

 composes along horizontal morphisms. Both vertical compositions (of mor-
phisms and double cells) may only be associative up to coherent isomorphism.
The full axiomatisation is given by Garner [11], and we here only mention the
interchange law, which says that the two ways of parsing the above diagram
coincide: �β� � β� 
 �α� � α� � �β� 
 α�� � �β 
 α�.

Example 4.1. Returning to the game, we have seen that positions are the ob-
jects of the category DCCS

h , whose morphisms are embeddings of positions. But
positions are also the objects of the bicategory DCCS

v , whose morphisms are plays.

X X �

U V

Y Y �

h

k

l

s s�

t t�

It should seem natural to define a pseudo double category
structure with double cells given by commuting diagrams as on
the right in �C. Here, Y is the initial position and X is the final
one; all arrows are mono. This indeed forms a pseudo double
category DCCS . Furthermore, for any double category D, let DH
be the category with objects all morphisms of Dv, and with
morphisms u � u� all double cells α such that domh�α� � u and codh�α� � u�.
A crucial feature of DCCS is that the canonical functor codv : DH � Dh mapping
any such α to codv �α� is a Grothendieck fibration [21]. This means that one
may canonically ‘restrict’ a play, say u� : X � � Y �, along a horizontal morphism
h� : Y � Y �, and obtain a universal cell as α above, in a suitable sense.
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d Y

dy,M X

y

vy,M M

yM

αy,M

Playgrounds are pseudo double categories with extra
data and axioms, the first of which is that codv should
be a fibration. To give a brief idea of further axioms,
a playground D is equipped with a set of objects I,
called individuals, which correspond to our ‘typical’ players above. Let Pl�X� ��
d�IDh�d,X� denote the set of players of X . It also comes with classes F and B

of full, resp. basic moves; and every play (i.e., vertical morphism) is assumed to
admit a decomposition into moves in F� B (hence atomicity). Basic moves are
assumed to have individuals as both domain and codomain, and views are de-
fined to be composites of basic moves. The crucial axiom for innocence to behave
well assumes that, for any position Y and player y : d � Y , there exists a cell
αy,M as above, with vy,M a view, which is unique up to canonical isomorphism
of such. Intuitively: any player in the final position of a play has an essentially
unique view of the play. A last, sample axiom shows how some sequentiality is
enforced, which is useful to tame the concurrency observed in (2). It says that
any double cell as in the center below, where b is a basic move and M is any
move, decomposes in exactly one of the forms on the left and right:

A X

B Y

C Z

α1

α2

�

A X

B Y

C Z

h

w

b

u

M

k

α

�

A X

B Y

C Z.

α1

α2

The idea is that, C being an individual, if M has a non-trivial restriction to C,
then b must be one of its views. Again, for the formal definition, see [18].

Proposition 4.2. DCCS forms a playground (basic moves being the local ones).

4.2 Syntaxes and Labelled Transition Systems

Notions of residuals and restrictions defined above for CCS are easily generalised
to arbitrary playgrounds. They lead to the exact same syntax as in the concrete
case (below Theorem 3.5). They further yield a first, naive lts over full moves

for strategies. The intuition is that there is a transition S
M
�� S�, for any full

move M , when S � M � S�. (Residuals S � M are here defined analogously
to the case of basic moves S � b above.) An issue with this lts is that S � M
may have several possible initial states, and we have seen that it makes more
sense to restrict to a single state before taking residuals. We thus define our lts
SD to have as vertices pairs �X,S� of a position X and a definite strategy S,
i.e., a strategy with exactly one initial state (formally, S�d,x��idd� � 1 for all
�d, x� � Pl�X� — recalling that idd is an (initial) object in Vd). We then say

that there is a transition �X,S�
M
�� �X �, S�� for any full move M : X � � X ,

when S� � �S � M��σ� , for some initial state σ� of S � M .
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Example 4.3. Consider a strategy of the shape S � �πrn �� S1, π
l
n �� S2, �� � 

on �n�, with definite S1 and S2. There is a πn transition to the position with
two n-ary players x1 and x2, equipped with S1 and S2, respectively. If now S1

and S2 are not definite, any πn transition has to pick initial states σ1 � S1�id �n��

and σ2 � S2�id �n��, i.e., S
πn��� ��S1��σ1

� � ��S2��σ2
�. Here, we use a shorthand

notation for pairs �X,S�, defined as follows. First, for any strategy S over �n�
and position X with exactly one n-ary player x and names in Γ , we denote by
Γ � �x : S��a1, . . . , an� the pair �X,S�, where ai � X�si��x�, for all i � n. If
now X has several players, say x1, . . . , xp, of respective arities n1, . . . , np, and
S1, . . . , Sp are strategies of such arities, we denote by Γ � �x1 : S1��a

1
1, . . . , a

1
n1

� �
. . . � �xp : Sp��a

p
1, . . . , a

p
np

� the pair �X, �S1, . . . , Sp��. When they are irrelevant,

we often omit Γ , the xj ’s, and the aji ’s, as in our example.

. . . dx � Tx . . .

d � M��Tx�x�Pl�M� 

. . . di � Ti . . . ��i � n�

d �
�
i�nMi.Ti

Beyond the one for strategies, there is another syntax
one can derive from any playground. Instead of rely-
ing on basic moves as before, one now relies on full
moves. Thinking of full moves as inference rules (e.g.,
in natural deduction), the premises of the rule for any
full M : X � Y should be those players �dx, x� of X whose view through M is
non-trivial, i.e., is a basic move. We call this set of players Pl�M�. The natural
syntax rule is thus the first one above (glossing over some details), which defines
process terms T . We add a further rule for guarded sum allowing to choose be-
tween several moves. One has to be a little careful here, and only allow moves
M : X � Y such that Pl�M� is a singleton. This yields the second rule above,
where n � N, and �i � n, Mi is such a move and di is the arity of the unique
element of Pl�Mi�. Calling Td the set of infinite terms for this syntax, there is
a natural translation map ��� : Td � Sd to strategies, for all d � I, which looks
a lot like ���, and an lts TD, whose vertices are pairs �X,T � of a position X ,
with T �

�
d,x�Pl�X� Td. The main result on playgrounds is

Theorem 4.4. The map ��� : TD � SD is a functional, strong bisimulation.

4.3 Change of Base and Main Result

The lts SDCCS obtained for DCCS is much too fine to be relevant for bisimilarity
to make behavioural sense. E.g., the translations of a�b and b�a are not bisimilar.
Indeed, labels, i.e., full moves in FDCCS , bear the information of which player is
involved in the transition. So both strategies have a πΓ translation to a position
with two Γ -ary players, say x1 and x2. But then, a � b has a transition where x1

plays an input on a, which b � a cannot match. Refining the above notation, and

omitting ���, we may write the former transitions as �a � b�
πΓ��� �a� � �b�

x1,ιΓ,a
�����

�0� � �b�. There is another problem with this lts, namely that there are undue

transitions. E.g., we have �νa.a�
ν0�� �a�

ι�a�,a
���� 0. The transition system does not

yet take privacy of channels into account.
Let us first rectify the latter deficiency. To this end, we pull back our lts

SDCCS � FDCCS along a morphism of graphs L � FDCCS defined as follows. Let L
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have interfaced positions as vertices, i.e., morphisms h : I � X from an interface
to a position. I specifies the public channels, and hence we let edges h � h� be
commuting diagrams of the shape (1), where M may be any full move (X being
the final position), except inputs and outputs on a channel outside the image
of I. We then straightforwardly define χ : L � FDCCS to map h to X and any
diagram above to M . The pullback SL

DCCS � L of SDCCS along χ is rid of undue
communications on private channels.

To rectify the other deficiency mentioned above, recalling from Definition 1.1
that A is the alphabet for CCS, we define a morphism ξ : L � A by mapping
�I � X� to its set I�Æ� of channels, and any M to (1) ♥ if M is a tick move, (2)
id if M is a synchronisation, a fork, or a channel creation, (3) a if M is an input
on a � I�Æ�, (4) a if M is an output on a � I�Æ�. (Positions are formally defined
as presheaves to set, hence channels directly form a finite ordinal number.) It is
here crucial to have restricted attention to L beforehand, otherwise we would not
know what to do with communications on private channels. Let SA

DCCS � ξ!�S
L
DCCS �

be the post-composition of SL
DCCS � L with ξ.

The obtained lts SA
DCCS � A is now ready for our purposes. Proceeding sim-

ilarly for the lts TDCCS of process terms, we obtain a strong, functional bisimu-
lation ��� : ob�TA

DCCS � � ob�SA
DCCS � over A. We then prove that θ : ob�CCS � ��

ob�TA

DCCS � is included in weak bisimilarity over A, and, easily, that ��� � ����θ.

Corollary 4.5. For all P , P 
A �P �.

Furthermore, we prove that f coincides with the standard, lts-based definition
of fair testing, i.e., P f,s Q iff for all sensible T , �P � T � 	s� ! �Q � T � 	s�,
where P � 	s iff any ♥-free reduction sequence P " P � extends to one with
♥. To obtain our main result, we finally generalise an observation of Rensink
and Vogler [33], which essentially says that for fair testing equivalence in CCS,
it is sufficient to consider a certain class of tree-like tests, called failures. We
first slightly generalise the abstract setting of De Nicola and Hennessy [7] for
testing equivalences, e.g., to accomodate the fact that strategies are indexed
over interfaces. This yields a notion of effective graph. We then show that, for
any effective graph G over an alphabet A, the result on failures goes through,
provided G has enough A-trees, in the sense that, up to mild conditions, for
any tree t over A, there exists x � G such that x 
A t. Consequently, for any
relation R : G G� between two such effective graphs with enough A-trees, if R
is included in weak bisimilarity over A, then R preserves and reflects fair testing
equivalence. We thus obtain our main result:

Theorem 4.6. For any Γ � N, let IΓ be the interface consisting of Γ channels,
and hΓ : IΓ � �Γ � be the canonical inclusion. For any CCS processes P and Q
over Γ , we have P f,s Q iff �IΓ , hΓ , �P �� f �IΓ , hΓ , �Q��.

Remark 4.7. Until now, we have considered arbitrary, infinite CCS processes.
Let us now restrict ourselves to recursive processes (e.g., in the sense of HP).
We obviously still have that �P � f �Q� implies P f,s Q. The converse is
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less obvious and may be stated in very simple terms: suppose you have two
recursive CCS processes P and Q and a test process T , possibly non-recursive,
distinguishing P from Q; is there any recursive T � also distinguishing P from Q?
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ICALP 1995. LNCS, vol. 944, pp. 648–659. Springer, Heidelberg (1995)
[31] Nipkow, T.: Higher-order critical pairs. In: LICS. IEEE Computer Society (1991)
[32] Plotkin, G.D.: A structural approach to operational semantics. DAIMI Report

FN-19, Computer Science Department, Aarhus University (1981)
[33] Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2) (2007)
[34] Rideau, S., Winskel, G.: Concurrent strategies. In: LICS. IEEE Computer Society

(2011)
[35] Sewell, P.: From rewrite rules to bisimulation congruences. In: Sangiorgi, D.,

de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 269–284. Springer,
Heidelberg (1998)

[36] Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: LICS.
IEEE Computer Society (1997)



A Simple Case of Rationality of Escalation

Pierre Lescanne

University of Lyon, École normale supérieure de Lyon, CNRS (LIP),
46 allée d’Italie, 69364 Lyon, France

Abstract. Escalation is the fact that in a game (for instance an auc-
tion), the agents play forever. It is not necessary to consider complex
examples to establish its rationality. In particular, the 0, 1-game is an
extremely simple infinite game in which escalation arises naturally and
rationally. In some sense, it can be considered as the paradigm of es-
calation. Through an example of economic games, we show the benefit
economics can take of coinduction.

Keywords: economic game, infinite game, sequential game, crash,
escalation, speculative bubble, coinduction, auction.

[T]he future of economics is increasingly technical
work that is founded on the vision that the economy
is a complex system.

David Collander [6]

Sequential games are the natural framework for decision processes. In this
paper we study a decision phenomenon called escalation. Finite sequential games
(also known as extensive games) have been introduced by Kuhn [9] and subgame
perfect equilibria have been introduced by Selten [19] whereas escalation has been
introduced by Shubik [20]. Sequential games are games in which each player plays
one after the other (or possibly after herself). In some specific infinite games,
it has been showed that escalation cannot occur among rational players. Here
we show on a simple example, the 0,1 game, that this is not the case if one
uses coinduction. In addition the 0,1 game has nice properties which make it an
excellent paradigm of escalation and a good domain of application for coalgebras
and coinduction.

1 The Problem of Escalation

That “rational agents” should not engage in such [es-
calation] behavior seems obvious.

Wolfgang Leininger [11]

Escalation in sequential games is a classic of game theory and it is admitted
that escalation is irrational. The rationality which we consider is that given
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c© Springer-Verlag Berlin Heidelberg 2013



192 P. Lescanne

by equilibria. It has been proved that in finite sequential games, rationality is
obtained by a specific equilibrium called backward induction (see Appendix).
More precisely a consequence of Aumann’s theorem [2] says that an agent takes
a rational decision in a finite sequential game if she makes her choice according
to backward induction. In this paper we generalize backward induction into
subgame perfect equilibria and we consider naturally that rationality is reached
by subgame perfect equilibria (SPE in short) relying on Capretta’s [5] extension
of Aumann’s theorem.

What is Escalation? In a sequential game, escalation is the possibility that
agents take rational decisions forever without stopping. This phenomenon has
been evidenced by Shubik [20] in a game called the dollar auction. Without being
very difficult, its analysis is relatively involved, because it requires infinitely many
strategy profiles indexed by n ∈ N [12]. Moreover in each step there are two and
only two equilibria. By an observation of the past decisions of her opponent
an agent could get a clue of her strategy and might this way avoid escalation.
This blindness of the agents is perhaps not completely realistic and was criticized
(see [14] Section 4.2). In this paper, we propose an example which is much simpler
theoretically and which offers infinitely many equilibria at each step. Due to the
form of the equilibria, the agent has no clue on which strategy is taken by her
opponent.

Escalation and Infinite Games. Books and articles [7,8,17,11,16] which cover
escalation take for granted that escalation is irrational. Following Shubik, all
accept that escalation takes place and can only take place in an infinite game,
but their argument uses a reasoning on finite games. Indeed, if one cuts the infi-
nite game in which escalation is supposed to take place at a finite position, one
gets a finite game, in which the only right and rational decision is to never start
the game, because the only backward induction equilibrium corresponds to not
start playing. Then the result is extrapolated by the authors to infinite games by
making the size of the game to grow to infinity. However, it has been known for a
long time at least since Weierstraß [24], that the “cut and extrapolate” method
is wrong (see Appendix). For Weierstraß this would lead to the conclusion that
the infinite sum of differentiable functions would be differentiable whereas he
has exhibited a famous counterexample. In the case of infinite structures like in-
finite games, the right reasoning is coinduction. With coinduction we were able
to show that the dollar auction has a rational escalation [15,14]. Currently, since
the tools used generally in economics are pre-coinduction based, they conclude
that bubbles and crises are impossible and everybody’s experience has witnessed
the opposite. Careful analysis done by quantitative economists, like for instance
Bouchaud [3,4], have shown that bursts, which share much similarities with esca-
lation, actually take place at any time scale. Escalation is therefore an intrinsic
feature of economics. Consequently, coinduction is the tool that economists who
call for a refoundation of economics [6,3] are waiting for [25].
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Structure of the Paper. This paper is structured as follows. In Section 2 we
present infinite games, infinite strategy profiles and infinite strategies, then we
describe the 0,1-game in Section 3. Last, we introduce the concept of equilibrium
(Sections 4 and 5) and we discuss escalation (Section 6). In an appendix, we talk
about finite games and finite strategy profiles.

2 Two Choice Sequential Games

Our aim is not to present a general theory. For this the reader is invited to look
at [1,14,15]. But we want to give a taste of infinite sequential games through
a very simple one. This game has two agents and two choices. To support our
claim about the rationality of escalation, we do not need more features. In [14],
we have shown the existence of a big conceptual gap between finite games and
infinite games.

Assume that the set P of agents is made of two agents called A and B. In this
framework, an infinite sequential two choice game has two shapes. In the first
shape, it is an ending position in which case it boils down to the distribution
of the payoffs to the agents. In other words the game is reduced to a function
f : A �→ fA, B �→ fB and we write it 〈f〉. In the second shape, it is a generic
game with a set C made of two potential choices: d or r (d for down and r
for right). Since the game is potentially infinite, it may continue forever. Thus
formally in this most general configuration a game can be seen as a triple:

g = 〈p, gd, gr〉.

where p is an agent and gd and gr are themselves games. The subgame gd cor-
responds to the down choice, i.e., the choice corresponding to go down and the
subgame gr corresponds to the right choice, i.e., the choices corresponding to go
to the right. In other words, we define a functor:

〈 〉 : X → Payoff + P× X× X.

of which Game is the final coalgebra and where P = {A,B} and Payoff = RP.

2.1 Strategy Profiles

From a game, one can deduce strategy profiles (later we will also say simply
profiles), which is obtained by adding a label, at each node, which is a choice
made by the agent. A choice belong to the set {d, r}. In other words, a strategy
profile is obtained from a game by adding, at each node, a new label, namely
a choice. Therefore a strategy profile which does not correspond to an ending
game is a quadruple:

s = 〈〈p, c, sd, sr〉〉,

where p is an agent (A or B), c is choice (d or r), and, sd and sr are two strategy
profiles. The strategy profile which corresponds to an ending position has no
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choice, namely it is reduced to a function 〈〈f〉〉 = 〈〈A �→ fA, B �→ fB〉〉. From a
strategy profile, one can build a game by removing the choices:

game(〈〈f〉〉) = 〈f〉
game(〈〈p, c, sd, sr〉〉) = 〈p, game(sd), game(sr)〉

game(s) is the underlying game of the strategy profile s.
Given a strategy profile s, one can associate, by induction, a (partial) payoff

function ŝ, as follows:

when s = 〈〈f〉〉 ŝ = f
when s = 〈〈p, d, sd, sr〉〉 ŝ = ŝd
when s = 〈〈p, r, sd, sr〉〉 ŝ = ŝr

ŝ is not defined if its definition runs in an infinite process. For instance, if sA,∞ is

the strategy profile defined in Section 6, ŝA,∞ is not defined. To ensure that we
consider only strategy profiles where the payoff function is defined we restrict to
strategy profiles that are called convergent, written s ↓ (or sometimes prefixed
↓ (s)) and defined as the least predicate satisfying

s = 〈〈f〉〉 ∨ s = 〈〈p, d, sd, sr〉〉 ⇒ sd ↓ ∧ 〈〈p, r, sd, sr〉〉 ⇒ sr ↓ .

Proposition 1. If s ↓, then ŝ is defined.

Proof. By induction. If s = 〈〈f〉〉, then since ŝ = f and f is defined, ŝ is defined.
If s = 〈〈p, c, sd, sr〉〉, there are two cases: c = d or c = r. Let us look at c = d. If

c = d, ŝd is defined by induction and since ŝ = ŝd, we conclude that ŝ is defined.
The case c = r is similar.

As we will consider the payoff function also for subprofiles, we want the pay-
off function to be defined on subprofiles as well. Therefore we define a property
stronger than convergence which we call strong convergence. We say that a strat-
egy profile s is strongly convergent and we write it s ⇓ if it is the largest predicate
fulfilling the following conditions.

– 〈〈p, c, sd, sr〉〉 ⇓ if
• 〈〈p, c, sd, sr〉〉 is convergent,
• sd is strongly convergent,
• sr is strongly convergent.

– 〈〈f〉〉 is always strongly convergent

More formally:

s ⇓ && c� �� s = 〈〈f〉〉 ∨ (s = 〈〈p, c, sd, sr〉〉 ∧ s ↓ ∧sd ⇓ ∧sr ⇓).
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There is however a difference between the definitions of ↓ and ⇓. Wherever
s ↓ is defined by induction1, from the ending games to the game, s ⇓ is defined
by coinduction2.

Both concepts are based on the fixed-point theorem established by Tarski [21].
The definition of ⇓ is typical of infinite games and means that ⇓ is invariant along
the infinite game. To make the difference clear between the definitions, we use
the symbol && i� �� for inductive definitions and the symbol && c� �� for coinductive
definitions. By the way, the definition of the function game is also coinductive.

We can define the notion of subprofile, written 
:

s′ 
 s && i� �� s′ ∼s s ∨ s = 〈〈p, c, sd, sr〉〉 ∧ (s′ 
 sd ∨ s′ 
 sr),

where∼s is the bisimilarity among profiles defined as the largest binary predicate
s′ ∼s s such that

s′ = 〈〈f〉〉 = s ∨ (s′ = 〈〈p, c, s′d, s′r〉〉 ∧ s = 〈〈p, c, sd, sr〉〉 ∧ s′d ∼s sd ∧ s′r ∼s sr).

Notice that since we work with infinite objects, we may have s �∼s s′ and
s 
 s′ 
 s. In other words, an infinite profile can be a strict subprofile of it-
self. This is the case for s1,0,a and s1,0,b in Section 4. If a profile is strongly
convergent, then the payoffs associated with all its subprofiles are defined.

Proposition 2. If s1 ⇓ and if s2 
 s1, then ŝ2 is defined.

2.2 The Always Modality

We notice that ↓ characterizes a profile by a property of the head node, we would
say that this property is local. ⇓ is obtained by distributing the property along
the game. In other words we transform the predicate ↓ and such a predicate
transformer is called a modality. Here we are interested by the modality always,
also written �.

Given a predicate Φ on strategy profiles, the predicate �P is defined coin-
ductively as follows:

�Φ(s) && c� �� Φ(s) ∧ s = 〈〈p, c, sd, sr〉〉 ⇒ (�Φ(sd) ∧�Φ(sr)).

The predicate “is strongly convergent” is the same as the predicate “is always
convergent”.

Proposition 3. s ⇓ ⇔ � ↓ (s).

1 Roughly speaking a definition by induction works from the basic elements, here the
ending games, to constructed elements.

2 Roughly speaking a definition by coinduction works on infinite objects, like an in-
variant.
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2.3 Strategies

The coalgebra of strategies3 is defined by the functor

� � : X → RP + (P + Choice)×X ×X

where Choice = {d, r}. A strategy of agent p is a game in which some occurrences
of p are replaced by choices. A strategy is written �f� or �x, s1, s2�. By replacing
the choice made by agent p by the agent p herself, we can associate a game with
a pair consisting of a strategy and an agent:

st2g(�f�, p) = 〈f〉
st2g(�x, st1, st2�, p) = if x ∈ P then 〈x, st2g(st1, p), st2g(st2, p)〉

else 〈p, st2g(st1, p), st2g(st2, p)〉.

If a strategy st is really the strategy of agent p it should contain nowhere p
and should contain a choice c instead. In this case we say that st is full for p
and we write it st 	

p
.

�f� 	
p

�x, st1, st2� 	
p && c� �� (x /∈ Choice⇒ x �= p) ∧ st1 	

p ∧ st2 	
p
.

We can sum strategies to make a strategy profile. But for that we have to assume
that all strategies are full and underlie the same game. In other words, (stp)p∈P
is a family of strategies such that:

– ∀p ∈ P, stp 	
p
,

– there exists a game g such that ∀p ∈ P, st2g(stp) = g.

We define
⊕
p∈P

stp as follows:

⊕
p∈P

�f� = 〈〈f〉〉

�c, stp′,1, stp′,2�⊕
⊕

p∈P\p′
�p′, stp,1, stp,2� = 〈〈p′, c,

⊕
p∈P

stp,1,
⊕
p∈P

stp,2〉〉.

We can show that the game underlying all the strategies is the game underlying
the strategy profile which is the sum of the strategies.

Proposition 4. st2g(stp′ , p
′) = game(

⊕
p∈P

stp).

3 A strategy is not the same as a strategy profile, which is obtained as the sum of
strategies.
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3 Comb Games and the 0,1-Game

We will restrict to simple games which have the shape of combs,
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At each step the agents have only two choices, namely to stop or to continue.
Let us call such a game, a comb game.

We introduce infinite games by means of equations. Let us see how this applies
to define the 0, 1-game. First consider two payoff functions:

f0,1 = A �→ 0,B �→ 1

f1,0 = A �→ 1,B �→ 0

we define two games

G0,1 = 〈A, 〈f0,1〉, G1,0〉
G1,0 = 〈B, 〈f1,0〉, G0,1〉

This means that we define an infinite sequential game G0,1 in which agent A is
the first player and which has two subgames: the trivial game 〈f1,0〉 and the game
G1,0 defined in the other equation. The game G0,1 can be pictured as follows:
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or more simply in Figure 1.a.
From now on, we assume that we consider only strategy profiles whose under-

lying game is the 0,1-game. They are characterized by the following predicates

S0(s) && c� �� s = 〈〈A, c, f0,1, s′〉〉 ∧ S1(s
′)

S1(s) && c� �� s = 〈〈B, c, f1,0, s′〉〉 ∧ S0(s
′).

Notice that the 0, 1-game we consider is somewhat a zero-sum game, but we
are not interested in this aspect. Moreover, a very specific instance of a 0, 1 game
has been considered (by Ummels [22] for instance), but these authors are not
interested in the general structure of the game, but in a specific model on a finite
graph, which is not general enough for our taste. Therefore this is not a direct
generalization of finite sequential games (replacing induction by coinduction)
and this not a framework to study escalation.
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Fig. 1. The 0, 1-game and two equilibria seen compactly

4 Subgame Perfect Equilibria

Among the strategy profiles, one can select specific ones that are called subgame
perfect equilibria. Subgame perfect equilibria are specific strategy profiles that
fulfill a predicate SPE. This predicate relies on another predicate PE which checks
a local property.

PE(s) ⇔ s ⇓ ∧ s = 〈〈p, d, sd, sr〉〉 ⇒ ŝd(p) ≥ ŝr(p)
∧ s = 〈〈p, r, sd, sr〉〉 ⇒ ŝr(p) ≥ ŝd(p)

A strategy profile is a subgame perfect equilibrium if the property PE holds
always:

SPE = �PE.

We may now wonder what the subgame perfect equilibria of the 0,1-game are.
We present two of them in Figure 1.b and 1.c. But there are others. To present
them, let us define a predicate “A continues and B eventually stops”

AcBes(s) && i� �� s = 〈〈p, c, 〈〈f〉〉, s′〉〉 ⇒ (p = A ∧ f = f0,1 ∧ c = r ∧ AcBes(s′)) ∨
(p = B ∧ f = f1,0 ∧ (c = d ∨ AcBes(s′))

Proposition 5. (S1(s) ∨ S0(s)) ⇒ AcBes(s) ⇒ ŝ = f1,0

Proof. If s = 〈〈p, c, 〈〈f〉〉, s′〉〉, then S0(s
′) ∨ S1(s

′). Therefore if AcBes(s′), by

induction, ŝ′ = f0,1. By case:

– If p = A∧ c = r, then AcBes(s′) and by definition of ŝ, we have ŝ = ŝ′ = f0,1

– if p = B ∧ c = d, the ŝ = 〈̂〈f0,1〉〉 = f0,1.

– if p = B ∧ c = r, , then AcBes(s′) and by definition of ŝ, ŝ = ŝ′ = f0,1.

Like we generalize PE to SPE by applying the modality �, we generalize AcBes
into SAcBes by stating:

SAcBes = �AcBes.
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There are at least two profiles which satisfies SAcBes namely s1,0,a and s1,0,b
which have been studied in [14] and pictured in Figure 1:

s1,0,a && c� �� 〈〈A, r, f0,1, s1,0,b〉〉
s0,1,a && c� �� 〈〈A, d, f0,1, s0,1,b〉〉

s1,0,b && c� �� 〈〈B, d, f1,0, s1,0,a〉〉
s0,1,b && c� �� 〈〈B, r, f1,0, s0,1,a〉〉

Proposition 6. SAcBes(s) ⇒ s ⇓ .

We may state the following proposition.

Proposition 7. ∀s, (S0(s) ∨ S1(s)) ⇒ (SAcBes(s) ⇒ SPE(s)).

Proof. Since SPE is a coinductively defined predicate, the proof is by coinduction.
Given an s, we have to prove ∀s,�AcBes(s) ∧ (S0(s) ∨ S1(s)) ⇒ �PE(s).
For that we assume �AcBes(s)∧ (S0(s) ∨ S1(s)) and in addition (coinduction

principle) �PE(s′) for all strict subprofiles s′ of s and we prove PE(s). In other
words, s ⇓ ∧〈〈p, d, sd, sr〉〉 ⇒ ŝd(p) ≥ ŝr(p) ∧ 〈〈p, r, sd, sr〉〉 ⇒ ŝr(p) ≥ ŝd(p).

By Proposition 6, we have s ⇓.
By Proposition 5, we know that for every subprofile s′ of a profile s that

satisfies S1(s) ∨ S0(s) we have ŝ′ = f1,0 except when s′ = 〈〈f0,1〉〉. Let us prove
〈〈p, d, sd, sr〉〉 ⇒ ŝd(p) ≥ ŝr(p) ∧ 〈〈p, r, sd, sr〉〉 ⇒ ŝr(p) ≥ ŝd(p). Let us proceed
by case:

– s = 〈〈A, r, 〈〈f0,1〉〉, s′〉〉. Then S0(s) and S1(s
′). Since �AcBes(s), we have

AcBes(s′), therefore ŝ′ = f1,0 hence ŝ′(A) = 1 and f0,1(A) = 0, henceforth

ŝ′(A) ≥ f0,1(A).
– s = 〈〈B, r, 〈〈f1,0〉〉, s′〉〉. Then S1(s) and S0(s

′). Since �AcBes(s), we have

AcBes(s′), therefore ŝ′ = f1,0 hence ŝ′(B) = 0 and f1,0(B) = 0, henceforth

ŝ′(B) ≥ f1,0(B).

Symmetrically we can define a predicate BcAes for “B continues and A eventually
stops” and a predicate SBcAes which is SBcAes = � BcAes which means that
B continues always and A stops infinitely often. With the same argument as for
SAcBes one can conclude that

∀s, (S0(s) ∨ S1(s)) ⇒ SBcAes(s) ⇒ SPE(s).

We claim that SAcBes ∨ SBcAes fully characterizes SPE of 0,1-games, in other
words.

Conjecture 1. ∀s, (S0(s) ∨ S1(s)) ⇒ (SAcBes(s) ∨ SBcAes⇔ SPE(s)).

5 Nash Equilibria

Before talking about escalation, let us see the connection between subgame per-
fect equilibrium and Nash equilibrium in a sequential game. In [17], the definition
of a Nash equilibrium is as follows: A Nash equilibrium is a“pattern[s] of behavior
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with the property that if every player knows every other player’s behavior she has
not reason to change her own behavior” in other words, “a Nash equilibrium [is]
a strategy profile from which no player wishes to deviate, given the other player’s
strategies.” . The concept of deviation of agent p is expressed by a binary relation
we call convertibility4 and we write �p". It is defined inductively as follows:

s ∼s s′

s�p" s′

s1 �p" s′1 s2 �p" s′2
〈〈p, c, s1, s2〉〉 �p" 〈〈p, c′, s′1, s′2〉〉

s1 �p" s′1 s2 �p" s′2
〈〈p′, c, s1, s2〉〉 �p" 〈〈p′, c, s′1, s′2〉〉

We define the predicate Nash as follows:

Nash(s) ⇔ ∀p, ∀s′, s�p" s′ ⇒ ŝ(p) ≥ ŝ′(p′).

The concept of Nash equilibrium is more general than that of subgame perfect
equilibrium and we have the following result:

Proposition 8. SPE(s) ⇒ Nash(s).

The result has been proven in COQ and we refer to the script (see[15]):
http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRatAI/

http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRatAI/SCRIPTS/

Notice that we defined the convertibility inductively, but a coinductive def-
inition is possible. But this would give a more restrictive definition of Nash
equilibrium.

6 Escalation

Escalation in a game with a set P of agents occurs when there is a tuple of strate-

gies (stp)p∈P such that its sum is not convergent, in other words, ¬ (
⊕
p∈P

stp) ↓.

Said differently, it is possible that the agents have all a private strategy which
combined with those of the others makes a strategy profile which is not con-
vergent, which means that the strategy profile goes to infinity when following
the choices. Notice the two uses of a strategy profile: first, as a subgame perfect
equilibrium, second as a combination of the strategies of the agents.

Consider the strategy:

stA,∞ = �r, �f0,1�, st
′
A,∞�

st′A,∞ = �B, �f1,0�, stA,∞�

4 This should be called perhaps feasibility following [18] and [13].

http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRatAI/
http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRatAI/SCRIPTS/


A Simple Case of Rationality of Escalation 201

and its twin

stB,∞ = �A, �f0,1�, st
′
B,∞�

st′B,∞ = �r, �f1,0�, stB,∞�.

Moreover, consider the strategy profile:

sA,∞ = 〈〈A, r, 〈〈f0,1〉〉, sB,∞〉〉
sB,∞ = 〈〈B, r, 〈〈f1,0〉〉, sA,∞〉〉.

Proposition 9.

– stA,∞ 	
A
,

– stB,∞ 	
B
,

– st2g(stA,∞,A) = st2g(stB,∞,B) = G0,1,
– game(sA,∞) = G0,1,
– stA,∞ ⊕ stB,∞ = sA,∞,
– ¬ sA,∞ ↓.

Proof. By coinduction.

stA,∞ and stB,∞ are both rational since they are built using choices, namely r,

dictated by subgame perfect equilibria5 which start with r. Another feature of
this example is that no agent has a clue for what strategy the other agent is
using. Indeed after k steps, A does not know if B has used a strategy derived of
equilibria in SAcBes or in SBcAes. In other words, A does know if B will stop
eventually or not and vice versa. The agents can draw no conclusion of what
they observe. If each agent does not believe in the threat of the other she is
naturally led to escalation.

7 Conclusion

In this paper, we have shown how to use coinduction in a field, namely economics,
where it has not been used yet, or perhaps in a really hidden form, which has
to be unearthed. We foresee a future for this tool and a possible way for a
refoundation of economics.

Acknowledgements. The author thanks Samson Abramsky, Franck Delaplace,
Stephane Leroux, Matthieu Perrinel, René Vestergaard, Viktor Winschel for
their help, encouragements and discussions during this research.

5 Our choice of rationality is this of a subgame perfect equilibrium, as it generalizes
backward induction, which is usually accepted as the criterion of rationality for finite
game.
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A Finite 0,1 Games and the “Cut and Extrapolate”
Method

We spoke about the “cut and extrapolate” method, applied in particular to the
dollar auction. Let us see how it would work on the 0,1-game. Finite games, finite
strategy profiles and payoff functions of finite strategy profiles are the inductive
equivalent of infinite games, infinite strategy profiles and infinite payoff functions
which we presented. Notice that payoff functions of finite strategy profiles are
always defined. Despite we do not speak of the same types of objects, we use the
same notations, but this does not lead to confusion. Consider two finite families
of finite games, that could be seen as approximations of the 0,1-game:

F0,1 = 〈A, 〈f0,1〉, 〈B, 〈f1,0〉, F0,1〉〉 ∪ {〈f0,1〉}
K0,1 = 〈A, 〈f0,1〉,K ′

0,1〉
K ′

0,1 = 〈B, 〈f1,0〉,K0,1〉 ∪ {〈f1,0〉}

In F0,1 we cut after B and replace the tail by 〈f0,1〉. In K0,1 we cut after A and
replace the tail by 〈f1,0〉. Recall [23] the predicate BI, which is the finite version
of PE.

BI(〈f〉)
BI(〈p, c, sd, sr〉) = BI(sl) ∧ BI(sr) ∧

〈〈p, d, sd, sr〉〉 ⇒ ŝd(p) ≥ ŝr(p) ∧
〈〈p, r, sd, sr〉〉 ⇒ ŝr(p) ≥ ŝd(p)

We consider the two families of strategy profiles:

SF0,1(s) && i� �� (s = 〈〈A, d ∨ r, 〈〈f0,1〉〉, 〈〈B, r, 〈〈f1,0〉〉, s′〉〉〉〉 ∧ SF0,1(s′) ∨
s = 〈〈f0,1〉〉

SK0,1(s) && i� �� s = 〈〈A, r, 〈〈f0,1〉〉, s′〉〉 ∧ SK′
0,1(s′)

SK′
0,1(s) && i� �� (s = 〈〈B, d, 〈〈f1,0〉〉, s′〉〉 ∨ s = 〈〈B, r, 〈〈f1,0〉〉, s′〉〉) ∧ SK0,1(s′) ∨

s = 〈〈f1,0〉〉

In SF0,1, B continues and A does whatever she likes and in SK0,1, A continues and
B does whatever she likes. The following proposition characterizes the backward
induction equilibria for games in F0,1 and K0,1 respectively and is easily proved
by induction:



204 P. Lescanne

Proposition 10.

– game(s) ∈ F0,1 ∧ SF0,1(s) ⇔ BI(s),
– game(s) ∈ K0,1 ∧ SK0,1(s) ⇔ BI(s).

This shows that cutting at an even or an odd position does not give the same
strategy profile by extrapolation. Consequently the “cut and extrapolate” method
does not anticipate all the subgame perfect equilibria. Let us add that when
cutting we decide which leaf to insert, namely 〈f0,1〉 or 〈f1,0〉, but we could do
another way around obtaining different results.

0,1 game and limited payroll. To avoid escalation in the dollar auctions, some
require a limited payroll, i.e., a bound on the amount of money handled by
the agents, but this is inconsistent with the fact that the game is infinite. Said
otherwise, to avoid escalation, they forbid escalation. One can notice that, in
the 0,1-game, a limited payroll would not prevent escalation, since the payoffs
are anyway limited by 1.
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Abstract. This paper describes a generalization of the usual category in
which coalgebras are considered, and its application to modelling quan-
tum systems and their physical symmetries. Following the programme
of work initiated in [1], [2], we aim to model systems described by the
laws of quantum physics using coalgebraic techniques. A broader notion
of the morphisms of coalgebras is given, in which diagrams are allowed
to commute only up to appropriate natural isomorphism. This relaxed
setting is then shown to have analogues of coalgebraic notions such as
bisimulations, with properties that parallel the usual coalgebraic ones
closely. This new setting is then exploited to give coalgebraic models of
quantum systems in which the conceptually important physical symme-
tries are given as automorphisms of a suitable coalgebra.

Finally, we investigate coalgebraic logic in this setting, showing that
there is a natural notion of “symmetry modality” that can be exploited.
The notions of Schrödinger and Heisenberg evolution are discussed, and
it is argued that Heisenberg evolution is more natural in the coalgebraic
setting. It is then shown that these additional modalities can be used to
give an adequate and expressive coalgebraic logic for quantum system in
which state evolution and measurement outcomes can be described by
suitable modal operators. An appropriate model of this logic then gives
predictions consistent with the laws of quantum mechanics.

1 Introduction

When describing the behaviour of a quantum system, interactions with the sys-
tem can be divided into two types:

– Measurements
– Reversible evolution of the system state

Measurement outcomes are probabilistic, and their properties are governed by
the important Born rule of quantum mechanics. The reversible evolution of the
system state is clearly related to group actions on the underlying mathematical
model. This suggests when we model a quantum system coalgebraically we should
hope to find the appropriate symmetries as automorphisms of our “quantum”
coalgebra.

In categories of coalgebras, morphisms are functional bisimulations, in par-
ticular, for a strongly extensional coalgebra in which bisimilarity reduces to

R. Heckel and S. Milius (Eds.): CALCO 2013, LNCS 8089, pp. 205–219, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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equality, there can only be one automorphism. This leads to a tension between
the nature of coalgebra homomorphisms and the desire to model symmetries
effectively.

To resolve this tension, [2] introduced a novel fibrational structure, in which
a representation of the physical symmetries of a quantum system could be
found as automorphisms of a particular coalgebra. A similar construction was
used in [3] to model parameterization of coalgebras, and logical aspects devel-
oped in [4]. In this paper we aim for a technically simpler approach, empha-
sising the importance of automorphisms of the signature functor as a uniform
method of reversibly adapting the dynamics of a given coalgebra. A suitable
choice of group of automorphisms can then be chosen to weaken the notion
of coalgebra morphism in order provide the flexibility to model symmetries
successfully.

Section 2 introduces this weakened category of coalgebras, and shows that no-
tions from conventional coalgebra theory generalize smoothly to this broader cat-
egory. We then exploit our new setting to provide full and faithful representations
of physically relevant groups of symmetries of quantum systems.

In section 3, we continue to exploit automorphisms of the signature functor
to extend the predicate lifting style of coalgebraic logic [5], [6] with suitable
symmetry modalities. These symmetry modalities are then used to give a coal-
gebraic logic for quantum systems capturing both evolution of the system state
and probabilistic measurement outcomes in a manner consistent with quantum
mechanics.

2 Coalgebras with Symmetries

We now introduce a generalization of the notion of morphism between coalge-
bras, in which the usual diagram for coalgebra homomorphisms is only required
to commute up to appropriate isomorphism. Our general programme is then to
extend coalgebraic notions such as bisimulation to this new setting in an ap-
propriate manner. These generalized notions will be given the prefix “pseudo”
to distinguish them from the usual terminology. To avoid an excessively tech-
nical presentation, we shall often restrict our attention to coalgebras over the
category Set.

Definition 1. For category C, endofunctor T : C → C and G a subgroup of
of the automorphisms of T (natural isomorphims of type T ⇒ T ), define the
category T-PseudoCoalg(G) as follows:

– Objects: T -coalgebras
– Morphisms: A morphism (X, γ1 : X → TX) → (Y, γ2 : Y → TY ) is a C

morphism h : X → Y such that equivalently either there exists α ∈ G making
the left hand diagram below commute, or there exists β ∈ G such that the
right hand diagram commutes:
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X

TX

TX

Y

TY

h

γ1

αX

Th

γ2

X Y

TY

TYTX

γ1

γ2

h

βY

Th

The equivalence of the two conditions can seen by pasting an appropriate
naturality square using the inverse natural isomorphisms, on the bottom of
each diagram. Identities and composition are as in the base category.

Definition 2. In T-PseudoCoalg(G):

– A morphism where the usual coalgebra homomorphism condition holds strictly
will be referred to as a functional bisimulation

– A morphism of the form 1X : (X, γ) → (X,αX ◦ γ) will be referred to as an
adaptation

Lemma 1. Let C be a category, T : C → C an endofunctor, and G a subgroup
of the automorphisms of T :

1. Every morphism in T-PseudoCoalg(G) factors as an adaption followed by
a functional bisimulation

2. Every morphism in T-PseudoCoalg(G) factors as a functional bisimulation
followed by an adaptation

Proof. Consider T-PseudoCoalg(G) morphism:

(X, γ1) (Y, γ2)
h

Then there exists α ∈ G such that h is a coalgebra homomorphism (X,αX◦γ1) →
(Y, γ2). For part 1 we take the factorization:

(X, γ1) (X,αX ◦ γ1) (Y, γ2)
1 h

Also there must exists β ∈ G such that h is a coalgebra homomorphism (X, γ1) →
(Y, βY ◦ γ2). For part 2 we take the factorization:

(X, γ1) (X, βY ◦ γ2) (Y, γ2)
h 1

Definition 3 (Pseudo-bisimulation). For endofunctor T : Set→ Set and G
a subgroup of the automorphisms of T , a pseudo-bisimulation between coal-
gebras (X, γ1 : X → TX) and (Y, γ2 : Y → TY ) is a relation R ⊆ X × Y such
that the span given by the projection morphisms in Set:
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X R Y
π1 π2

lifts to a span between (X, γ1) and (Y, γ2) in T-PseudoCoalg(G).

We now outline some simple properties of pseudo-bisimulations, in analogy to
[7]. The proofs either follow from the corresponding property of bisimulations,
or from a slight modification of the associated proof.

Lemma 2. For endofunctor T : Set → Set and G a subgroup of the automor-
phisms of T , if h : (X, γ1) → (Y, γ2) is a morphism in T-PseudoCoalg(G),
then the graph of h is a pseudo-bisimulation.

Proof. Assume h : (X, γ1) → (Y, γ2) is a morphism in T-PseudoCoalg(G), then
there exists α ∈ G such that we have coalgebra morphism h : (X,αX ◦ γ1) →
(Y, γ2), and so the graph of h gives a bisimulation between these coalgebras, and
so a pseudo-bisimulation between (X, γ1) and (Y, γ2).

Lemma 3. For endofunctor T : Set → Set and G a subgroup of the automor-
phisms of T :

1. Every bisimulation is a pseudo-bisimulation
2. The inverse of a pseudo-bisimulation is a pseudo-bisimulation
3. For morphisms f : (X, γ1) → (Y, γ2) and g : (X, γ1) → (Z, γ3), im(〈f, g〉) is

a pseudo-bisimulation between (Y, γ2) and (Z, γ3)
4. If T preserves weak pullbacks then pseudo-bisimulations compose as relations
5. If T preserves weak pullbacks then the kernel of a morphism is a pseudo-

bisimulation

Proof. Parts 1 and 2 are obvious.
For part 3 there must exist α, β ∈ G such that f is a coalgebra morphism f :

(X, γ1) → (Y, αY ◦ γ2) and g is a coalgebra morphism g : (X, γ1) → (Z, βZ ◦ γ3).
Therefore im(〈f, g〉) is a bisimulation between (Y, αY ◦γ2) and (Z, βZ ◦γ3), which
is then a pseudo-bisimulation between (Y, γ2) and (Z, γ3).

For part 4 assume (R1, γR1) is a pseudo-bisimulation between (X, γ1) and
(Y, γ2), then there exist α, α′ ∈ G such that the following diagram commutes:

R1X Y

TX TY

TX TR1 TY

π1 π2

Tπ1 Tπ2

γ1 γ2

γR1

αX α′
Y

Also assume (R2, γR2) is a pseudo-bisimulation between (Y, γ2) and (Z, γ3), then
there exist α′′, α′′′ ∈ G such that the following diagram commutes:
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R2Y Z

TY TZ

TY TR2 TZ

TY TR2 TZ

π′
1 π′

2

Tπ′
1

Tπ′
2

γ2 γ3

γR2

α′′
Y α′′′

Z

(α′ ◦ α′′−1)Y (α′ ◦ α′′−1)Z(α′ ◦ α′′−1)R2

Tπ′
1 Tπ′

2

Therefore R1 is a bisimulation between (X,αX ◦ γ1) and (Y, α′
Y ◦ γ2), and R2

is a bisimulation between (Y, α′
Y ◦ γ2) and (Z, (α′ ◦ α′′−1 ◦ α′′′)X ◦ γ3). We then

have a bisimulation between (X,αX ◦ γ1) and (Z, (α′ ◦ α′′−1 ◦ α′′′)Z ◦ γ3), and
so a pseudo-bisimulation between (X, γ1) and (Z, γ3).

Part 5 then follows from parts 2, 4 and lemma 2, as the kernel of a function
can be formed as the relational composition of its graph and its converse.

We now note a significant difference between conventional bisimulations and
pseudo-bisimulations, essentially caused by the need to choose compatible natural
automorphisms of the signature functor, when combining pseudo-bisimulations
under union.

Lemma 4. In general pseudo-bisimulations are not closed under even finite
unions.

Now we will exploit the extra freedom given by the more general class of mor-
phism to capture the physical symmetries of a quantum systems as automor-
phisms of a suitable coalgebra. Suitable background on quantum computation
can be found in [8] or [9].

Definition 4. Let H be some Hilbert space. L(H) will denote the lattice of pro-
jection operators on H. Following [2] we define a signature functor for modelling
quantum systems as follows:

Q : Set→ Set (1)

Q := (1 + (0, 1]× 1Set)
L(H) (2)

The idea of this signature is that L(H) describes propositions we can probabilis-
tically test on our system. If a measurement outcome is impossible, this will be
modelled by an outcome in the one element set, otherwise we give the probability
of the measurement outcome, and the state of the system after the measurement,
as in general, in quantum mechanics, this will differ from the initial state.

We note that Q is a polynomial functor, and so will preserve weak pullbacks.

In quantum mechanics, the pure states of a quantum system are described by
rays (lines through the origin) in Hilbert space. This leads us to consider a
coalgebra over a quotient of the vectors in Hilbert space.
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Definition 5 (The Quantum Coalgebra). For a fixed Hilbert space H, de-
fine H0 as the set of all vectors in H with the origin removed. We define the
equivalence relation on H0:

|ϕ〉 ∼ |ψ〉 iff ∃c ∈ C.|ϕ〉 = c|ψ〉 (3)

We then define projective Hilbert space P(H) as the quotient H0/ ∼. Two
equivalence classes [|ϕ〉] and [|ψ〉] are said to be orthogonal if |ϕ〉 and |ψ〉 are
orthogonal in Hilbert space. In this case we write:

[|ϕ〉]⊥ [|ψ〉] (4)

The quantum coalgebra is then defined as the Q-coalgebra (P(H), γq) describ-
ing the measurement behaviour governed by the Born rule of quantum mechanics
as follows:

γq([|ϕ〉])(P̂ ) :=

{
( 〈ϕ|P̂ |ϕ〉

〈ϕ|ϕ〉 , [P̂ |ϕ〉]) if 〈ϕ | P̂ | ϕ〉 �= 0


 otherwise
(5)

This coalgebra is strongly extensional [2].

Having modelled measurement behaviour in the dynamics of a suitable coalge-
bra, we now move to state evolution of our quantum system. This is described
mathematically by unitary and (the possibly slightly less well known) antiunitary
transformations of our Hilbert space. In fact, physical predictions are unaffected
by multiplication by an arbitrary phase, so we shall be interested in groups with
this phase quotiented out.

Definition 6. For Hilbert space H we will refer to the group of unitary and an-
tiunitary operators as the semiunitary group. Define the projective semiu-
nitary group PS as the quotient of the semiunitary group identifying elements
that are equal up to a phase. Similarly we define the projective unitary group
PU as the same quotient restricted to the unitaries.

Definition 7. For object A in some category C, the group of automorphisms of
A will be denoted auto(A).

Lemma 5. For Hilbert space H, every semiunitary Û induces an automorphism
aU of L(H). If two semiunitaries only differ by a phase, they induce the same
automorphism. Also a1 = 1 and aU◦V = aU ◦ aV .

Proof. Take the function: P̂ �→ Û P̂ Û † with inverse P̂ �→ Û †P̂ Û

Corollary 1. For Hilbert space H, we have a group homomorphism α(−) : PS →
auto(Q).

Proof. For [U ] ∈ PS take αU as the natural isomorphism given by precomposing
aU , i.e.

αUX(f)(P̂ ) = f(Û P̂ Û †) (6)
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Definition 8. We will denote the image of PS under α(−) in auto(Q) as AS,
and the image of PU under α as AU .

We state the following version of Wigner’s theorem, in the form given in [1],
as it will used required for the subsequent lemma. Further details of modern
projective geometry can be found in [10], for example.

Theorem 1 (Wigner’s Theorem). For Hilbert spaces H, H′ with H of dimen-
sional at least 3, let f : P(H) → P(H′) be a total map of projective geometries.
If f satisfies:

[|ϕ〉] ⊥ [|ψ〉] ⇒ f([|ϕ〉]) ⊥ f([|ψ〉]) (7)

then there is a semilinear map V : H → H′, with associated homomorphism
σ : C→ C, such that:

f([|ϕ〉]) = [V |ϕ〉] (8)

and
〈V ϕ | V ψ〉 = σ(〈ϕ | ψ〉) (9)

Further, V is unique up to a phase, and σ is either the identity of complex
conjugation, so V is either linear or antilinear.

Lemma 6. For Hilbert space H, we have group homomorphism h(−) : PS →
auto(P(H)) given as follows:

hU ([|ψ〉]) := [U |ψ〉] (10)

Furthermore, if H is of dimension greater than 2, h(−) is injective.

Proof. That this is a well defined group homomorphism is straightforward to
check. The last part follows from Wigner’s theorem as stated in theorem 1, as the
maps hU induced by unitaries and antiunitaries satisfy the required conditions.

We now show that these induced automorphisms of P(H) lift to coalgebra
homomorphisms.

Proposition 1. For [U ] ∈ PS, with definitions as in lemma 6 and corollary 1
αU is a bijection, and the following diagram commutes.

P(H) P(H)

Q(P(H))

Q(P(H))Q(P(H))

hU

Q(hU )

γq

γq

αU
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Proof. A straightforward diagram chase expanding the definitions as needed.

Remark 1. The automorphism described in proposition 1 can be seen as encod-
ing the physicsts notion of covariance, if both the state and physical quantities are
evolved by the same unitary our physical predictions remain as before, as captured
by bisimilarity in this setting. We can also view these pseudo-coalgebra automor-
phisms as capturing Schrödinger evolution of the quantum system, in which states
change, but physical quantities (as encoded by the coalgebra) remain fixed.

We are now in a position to give our representation results for the physically
significant symmetries of a quantum system. We see that by varying the group of
automorphisms of the signature functor, we can “fine tune” the automorphisms
of our coalgebraic model. Our weaker notion of morphism makes the coalgebra
morphisms in proposition 1 into automorphisms in the pseudo setting.

Proposition 2. For a Hilbert space H with dimension greater than 2:

– In T-PseudoCoalg(AS) PS is fully and faithfully represented as the auto-
morphisms of γq

– In T-PseudoCoalg(AU ) PU is fully and faithfully represented as the auto-
morphisms of γq

Proof. That we have an injective group homomorphism PS → auto(γq) in
T-PseudoCoalg(AS) follows from lemma 6 and proposition 1. For fullness,
as γq is strongly extensional there can be at most one morphism αP(H) ◦γq → γq
for each α ∈ AS . The case for the restriction to unitaries follows similarly.

3 Coalgebraic Logic

In the literature on coalgebraic logic, for example [5] or [6], it is usual to consider
behavioural equivalence [11] rather than bisimilarity. We will now generalize that
notion to the pseudo-coalgebraic setting.

Definition 9 (Pseudo-behavioural equivalence). Let T : Set→ Set be an
endofunctor, G a subgroup of the automorphisms of T , and (X1, γ1), (X2, γ2) T -
coalgebras. For x1 ∈ X1 and x2 ∈ X2, x1 is said to be pseudo-behaviourally
equivalent to x2 if there exists coalgebra (Y, γ) and T-PseudoCoalg(G) mor-
phisms f : (X1, γ1) → (Y, γ) and g : (X2, γ2) → (Y, γ) such that f(x1) = g(x2).

Lemma 7. Let T : Set → Set be an endofunctor such that bisimilarity is
equivalent to behavioural equivalence, G a subgroup of the automorphisms of T ,
and (X1, γ1), (X2, γ2) T -coalgebras. For x1 ∈ X1 and x2 ∈ X2, x1 is pseudo-
bisimilar to x2 if and only if x1 is pseudo-behaviourally equivalent to x2.

Proof. To show pseudo-bisimilarity implies pseudo-behavioural equivalence, if x1

and x2 are pseudo-bisimilar then there exist natural transformations α, β ∈ G
such that there is a bisimulation between αX1 ◦ γ1 and βX2 ◦ γ2 relating x1 and
x2. By assumption there is then a behavioural equivalence between αX1 ◦γ1 and
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βX2 ◦ γ2 relating x1 and x2 and so there is a pseudo-behavioural equivalence
relating x1 and x2.

The other direction follows similarly.

Corollary 2. If T preserves weak pullbacks then pseudo-bisimilarity is equivalent
to pseudo-behavioural equivalence.

Throughout this section we shall be considering modalities provided by predi-
cate liftings, and to avoid excessive notation we shall restrict our attention to
unary modalities, although it is straightforward to extend the ideas discussed
to support general arities of operators. As we only consider unary modalities, a
modal signature Λ is simply a set of (unary) modality symbols. We begin by
investigating some basic properties of formulae whose validity is preserved under
adaptions.

Definition 10. For modal signature Λ, and regular cardinal κ, the language
Lκ(Λ) is defined by the grammar:

Lκ =
∧

Φ for Φ ⊆ Lκ and card(Φ) < κ | ¬Lκ | �λLκ for �λ ∈ Λ (11)

For the language Lκ(Λ) we will use the usual semantics for coalgebraic modal
logic based on predicate liftings.

Definition 11 (Symmetric formulae). Let T : Set→ Set be an endofunctor
and G a subgroup of the automorphisms of T . For a given modal signature Λ and
choice of predicate liftings, a formula ϕ ∈ Lκ(Λ) will be said to be symmetric
if for each T -coalgebra (X, γ):

∀x ∈ X, ∀α, β ∈ G.(X,αX ◦ γ), x |= ϕ iff (X, βX ◦ γ), x |= ϕ (12)

Lemma 8. Let T : Set → Set be an endofunctor and G a subgroup of the
automorphisms of T . For a given modal signature and choice of predicate liftings:

1. � and ⊥ are symmetric
2. If ϕ is symmetric then ¬ϕ is symmetric
3. If ϕ and ψ are symmetric then ϕ ∧ ψ is symmetric
4. If ϕ and ψ are symmetric then ϕ ∨ ψ is symmetric

Proposition 3. Let T : Set→ Set be an endofunctor, and G a subgroup of the
automorphisms of T . For a given modal signature and choice of predicate liftings,
pseudo-behaviourally equivalent states satisfy the same symmetric formulae.

Proof. Let (X1, γ1), (X2, γ2) be two coalgebras, and assume x1 ∈ X1 and x2 ∈
X2 are pseudo-behaviourally equivalent, and that ϕ is a symmetric formula.
Then there exist α, β ∈ G such that there is a behavioural equivalence between
αX ◦ γ1 and βY ◦ γ2 relating x1 and x2. Now if γ1, x1 |= ϕ then by symmetry
of ϕ, αX ◦ γ1 |= ϕ. Then as behaviourally equivalent element satisfy the same
formulae, βY ◦ γ2, y |= ϕ, and applying symmetry of ϕ again γ2, y |= ϕ.
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We now adopt a slightly different perspective, and aim to exploit the natural
isomorphisms that have been central to our work so far, in order to provide
additional modalities in our logic. We define an extension of coalgebraic logic
based on predicate liftings with additional symmetry operators.

Definition 12. For group G, modal signature Λ and regular cardinal κ, the
language Lκsym(Λ) of coalgebraic logic with symmetry modalities is defined
by the grammar:

Lκsym =
∧

Φ for Φ ⊆ Lκsym and card(Φ) < κ | ¬Lκsym (13)

| �λLκsym for �λ ∈ Λ (14)

| [g]Lκsym for g ∈ G (15)

Definition 13 (Semantics of Coalgebraic Logic with Symmetry Modal-
ities). Let T : Set→ Set be an endofunctor, G a group together with a group ho-
momorphism �−� : G→ auto(T ) and (X, γ) a T -coalgebra. We consider a modal
signature Λ = {�λ} with semantics given by predicate liftings ��λ� : 2 ⇒ 2 ◦ T .
We define the semantics for Lκsym(Λ) as follows:

�
∧

Φ�X,γ :=
⋂
ϕ∈Φ

�ϕ�X,γ (16)

�¬ϕ�X,γ := X \ �ϕ�X,γ (17)

��λϕ�X,γ := γ−1 ◦ ��λ�X(�ϕ�X,γ) (18)

�[g]ϕ�X,γ := �ϕ�X,�g�X◦γ (19)

The semantics given above are identical to the standard formulation, with the
exception of the new symmetry modalities.

Remark 2. In proposition 1 we described automorphisms corresponding to semi-
unitary evolution of the quantum coalgebra and how these corresponded to
Schrödinger evolution in physics. When extending coalgebraic logic with sym-
metry modalities, we wish to be able to interpret these modalities on every
coalgebra of the given signature, whereas the existence of automorphisms such
as those in proposition 1 is specific to the coalgebra in question. This leads us to
the semantics of symmetry modalities given above, where we instead adapt the
dynamics of the coalgebra using the appropriate natural isomorphism, leaving
the underlying states fixed. In the quantum case, we can see this as a Heisen-
berg type evolution, in which states remain fixed and physical quantities evolve
with time. So it seems Heisenberg evolution is more natural than Schrödinger
evolution in the coalgebraic setting.

Lemma 9. For definitions as in definition 13, symmetry operators have the
following properties for arbitrary formula ϕ:

– For 1 the unit element of G, [1]ϕ is logically equivalent to ϕ
– For all g, g′ ∈ G, [g][g′]ϕ is logically equivalent to [g′ ◦ g]ϕ
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Proof. Immediate from the definitions.

Lemma 10. For definitions as in definition 13 and symmetric formula ϕ, for
all g, g′ ∈ G, [g]ϕ is logically equivalent to [g′]ϕ.

Proof. Immediate from the definitions.

Definition 14. Let 2 : Setop → Set be the contravariant powerset functor. For
predicate lifting λ : 2 ⇒ 2 ◦ T op, and α a natural isomorphism of T we define
predicate lifting λα as the pasting:

Setop

Setop

Set

T op

2

T op

2

λ

α

We now introduce some additional modalities that will be exploited to relate
our modal logic with symmetry modalities to standard coalgebraic modal logic
with predicate liftings.

Definition 15. For a modal signature Λ, and group G together with group ho-
momorphism �−� : G → auto(T ), we define the extended modal signature:

ΛG := {�gλ | g ∈ G,�λ ∈ Λ} (20)

Given a corresponding predicate liftings ��λ� : 2 ⇒ 2 ◦ T op, the extended
liftings for the modalities above are given by ��gλ� = ��λ��g� using the pastings
in definition 14.

We now show that given symmetry modalities, the modalities given by the extended
predicate liftings of definition 15 can be defined syntactically.

Lemma 11. Let T : Set → Set be an endofunctor, G a subgroup of natural
isomorphisms of T and modal signature Λ. For modality �λ ∈ Λ with predicate
lifting ��λ� and modality �gλ ∈ ΛG with semantics given as in definition 15, for
arbitrary formula ϕ ∈ Lκsym(ΛG):

��gλϕ�X,γ = �[g]�λ[g−1]ϕ�X,γ (21)

Proof.

�[g]�λ[g−1]ϕ�X,γ = ��λ[g−1]ϕ�X,�g�X◦γ (22)

= (�g�X ◦ γ)−1 ◦ ��λ�(�[g−1]ϕ�X,�g�X◦γ) (23)

= (�g�X ◦ γ)−1 ◦ ��λ�(�ϕ�X,γ ) (24)

= γ−1 ◦ ��λ��g�(�ϕ�X,γ) (25)

= γ−1 ◦ ��gλ�(�ϕ�X,γ ) (26)

= ��gλϕ�X,γ (27)
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Now we proceed in the opposite direction, showing how the symmetry operators
can be replaced by appropriate use of the modalities in the extended signature.

Definition 16. For modal signature Λ, group G and g ∈ G we define syntactic
transformation τg from Lκsym(Λ) to Lκ(ΛG) inductively:

τg(
∧

Φ) :=
∧
{τg(ϕ) | ϕ ∈ Φ} (28)

τg(¬ϕ) := ¬τg(ϕ) (29)

τg(�λϕ) := �gλτg(ϕ) (30)

τg([g
′]ϕ) := τg′◦g(ϕ) (31)

We now relate the semantics of Lκsym(Λ) given in definition 13 to the usual

coalgebraic logic semantics of Lκ(ΛG), via the translation τg.

Theorem 2. Let T : Set → Set be an endofunctor, G a group together with
a group homomorphism �−� : G → auto(T ) and (X, γ) a T -coalgebra. Let Λ =
{�λ} be a modal signature with the semantics for each modality denoted ��λ� :
2 ⇒ 2 ◦ T . We have for formula ϕ ∈ Lκsym and g ∈ G:

�ϕ�X,gX◦γ = �τg(ϕ)�X,γ (32)

Proof. The proof is by induction on the structure of formulae, the cases for the
Boolean connectives are straightforward. We will explicitly show the cases for
the two types of modalities.

Firstly, for symmetry modalities we have:

�τg([g′]ϕ)�X,γ = �τg′◦g(ϕ)�X,γ (33)

= �ϕ�X,�g�′X◦�g�X◦γ (34)

= �[g′]ϕ�X,gX◦γ (35)

where the second equality follows by the induction hypothesis.
For the usual modalities we have the following sequence of equalities:

��λϕ�X,gX◦γ = γ−1 ◦ �g�−1
X ◦ ��λ�X(�ϕ��g�X◦γ) (36)

= γ−1 ◦ ��gλ�X(�ϕ�X,�g�X◦γ) (37)

= γ−1 ◦ ��gλ�X(�τg(ϕ)�X,γ) (38)

= ��gλτg(ϕ)�X,γ (39)

= �τg(�λϕ)�X,γ (40)

where the third equality follows from the induction hypothesis.

Corollary 3. In coalgebraic logic with symmetry operators, behavioural equiva-
lence implies logical equivalence.

Proof. Immediate as every formulae in coalgebraic logic with symmetry opera-
tors is equivalent to a formula in standard coalgebraic logic without symmetry
operators, and this respects behavioural equivalence. (See for example [5]).
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Lemma 12. For Hilbert space H, the functor Q given in definition 4 is κ-
accessible where κ is the successor cardinal of card(L(H)).

Proposition 4. For the functor Q given in definition 4, we have:

– For each P̂ ∈ L(H) a predicate lifting ��P̂ � defined by:

��P̂ �X(U) := {f ∈ Q(X) | ∃r ∈ R, u ∈ U.f(P̂ ) = (r, u)} (41)

– For each P̂ ∈ L(H) and r ∈ R a predicate lifting ��P̂ ,r� defined by:

��P̂ ,r�X(U) := {f ∈ Q(X) | ∃u ∈ U.f(P̂ ) = (r, u)} (42)

Furthermore these predicate liftings:

– Are monotone.
– Are continuous.
– Give a separating set of liftings for Q.

Proof. The naturality of the predicate liftings, monotonicity and continuity are
straightforward to check. That these lifings are separating follows from a case
analysis on the structure of Q(X) for an arbitrary set X .

Finally we can give an adequate and expressive (infinitary) logic for coalgebras
of the quantum signature functor with modalities capturing both probabilistic
measurement behaviour and state evolution. In the case of the quantum coalge-
bra γq the semantics will agree with the predictions of quantum mechanics by
construction.

Theorem 3. Let H be some Hilbert space, Q be the functor in definition 4, and
G the subgroup of automorphisms of Q induced by semiunitary transformations.
For modal signature Λ corresponding to the predicate liftings in proposition 4,
the language Lκsym(Λ) gives an adequate, expressive monotone and normal logic,
where κ is the successor cardinal of card(L(H)).

Proof. Adequacy comes from theorem 2. For expressiveness, by lemma 12 and
proposition 4 we can apply theorem 14 of [6]. Also by proposition 4, theorems
27 and 30 of [6] give monotonicity and normality.

4 Conclusion and Future Work

We have shown that introducing a more relaxed notion of homomorphism of
coalgebras provides the freedom to model symmetries in a flexible manner. This
was demonstrated in the case of quantum systems where either the projective
unitary group or the projective semiunitary group could be represented fully and
faithfully as automorphisms of a suitable coalgebra.

If we pursue this line of thinking further, we could consider “lax” morphisms
of coalgebras in which we permit a suitable choice of general natural transfor-
mations rather than just isomorphisms, potentially between varying signature
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functors. This would move us closer to the fibred setting of [2]. In the case of
quantum systems, such a setting would allow convenient handling of composite
systems, the importance of which is heavily emphasised in categorical quantum
mechanics [12].

The work described here extended the predicate lifting approach to coalge-
braic logic with symmetry modalities, enabling the construction of a logic for
quantum systems describing both state evolution and probabilistic measurement
behaviour. This work should be expanded to cover other formulations such as
Moss style coalgebraic logic [13] and duality based approaches [14], [15], [16]. As
the introduction of symmetry modalities was a relatively lightweight extension
to the semantics of the logic, exploiting further extensions such as fixed point
operators [17] should be explored, particularly in the quantum setting. Once
we further loosen the notion of coalgebra morphism to a “lax” setting, more
possibilities arise in the logical aspects of coalgebra. A suitable form of “fibred
coalgebraic logic” is currently being investigated by the author. Finally, these
generalized coalgebraic logics should be exploited to analyze standard quantum
protocols such as teleporation [18], logic gate teleporation [19], entanglement
swapping [20] and key exchange [21], strengthening the connections between
quantum computation and the coalgebraic techniques of computer science.
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From Operational Chu Duality to Coalgebraic

Quantum Symmetry

Yoshihiro Maruyama�

Quantum Group, Dept. of Computer Science, University of Oxford

Abstract. We pursue the principles of duality and symmetry building
upon Pratt’s idea of the Stone Gamut and Abramsky’s representations of
quantum systems. In the first part of the paper, we first observe that the
Chu space representation of quantum systems leads us to an operational
form of state-observable duality, and then show via the Chu space formal-
ism enriched with a generic concept of closure conditions that such op-
erational dualities (which we call “T1-type” as opposed to “sober-type”)
actually exist in fairly diverse contexts (topology, measurable spaces, and
domain theory, to name but a few). The universal form of T1-type du-
alities between point-set and point-free spaces is described in terms of
Chu spaces and closure conditions. From the duality-theoretical perspec-
tive, in the second part, we improve upon Abramsky’s “fibred” coalge-
braic representation of quantum symmetries, thereby obtaining a finer,
“purely” coalgebraic representation: our representing category is prop-
erly smaller than Abramsky’s, but still large enough to accommodate
the quantum symmetry groupoid. Among several features, our represen-
tation reduces Abramsky’s two-step construction of his representing cat-
egory into a simpler one-step one, thus rendering the Grothendieck con-
struction redundant. Our purely coalgebraic representation stems from
replacing the category of sets in Abramsky’s representation with the cat-
egory of closure spaces in the light of the state-observable duality telling
us that closure is a right perspective on quantum state spaces.

1 Introduction

It is not uncommon these days to hear of applications of (the methods of) the-
oretical computer science to foundations of quantum physics; broadly speaking,
theoretical computer science seems to be taking steps towards a new kind of “plu-
ralistic unified science” (not monistic one in logical positivism) via the language
and methodology of category theory. Among them, Abramsky [1,2] represents
quantum systems as Chu spaces and as coalgebras, giving striking characterisa-
tions of quantum symmetries based upon the classic Wigner Theorem. Revisiting
his work, in the present paper, we develop a Chu-space-based theory of dualities
encompassing a form of state-observable duality in quantum physics, and there-
after improve upon his coalgebraic characterisation of quantum symmetries from
our duality-theoretical perspective, in order to exhibit the meaning of duality.

� I am grateful to Samson Abramsky and Bob Coecke for discussions and hospitalities.
This work was supported by the Nakajima Foundation.

R. Heckel and S. Milius (Eds.): CALCO 2013, LNCS 8089, pp. 220–235, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



From Operational Chu Duality to Coalgebraic Quantum Symmetry 221

In Pratt’s Stone Gamut paper [16], he analyses Stone-type dualities in the
language of Chu spaces, saying boldly, but with good reasons, “the notoriously
difficult notion of Stone duality reduces simply to matrix transposition.” The
concept of Chu spaces has played significant roles in fairly broad contexts, includ-
ing concurrency and semantics of linear logic; similar concepts have been used in
even more diverse disciplines, like Barwise-Seligman’s classifications, Sambin’s
formal topology and basic pairs, Scott’s information systems, and state-property
systems in quantum foundations. This work is inspired by Pratt’s perspective
on Chu spaces, extending the realm of duality theory built upon the language
of Chu spaces by enriching it with a generic concept of closure conditions.

In general, we have two types of dualities, namely sober-type and T1-type
ones, between set-theoretical concepts of space and their point-free, algebraic
abstractions, which shall be called point-set spaces and point-free spaces re-
spectively. The difference between the two types of dualities in fact lies in the
difference between maximal and primal spectra. Our duality theory in this paper
focuses upon T1-type dualities between point-set and point-free spaces. The logi-
cal concept of closure conditions is contrived to the end of treating different sorts
of point-set and point-free spaces in a unified manner, allowing us to discuss at
once topological spaces, measurable spaces, closure spaces, convexity spaces, and
so fourth. In a nutshell, the concept of closure conditions prescribes the notion of
space. Whilst a typical example of sober-type duality is the well-known duality
between sober spaces and spatial frames, an example of T1-type duality is a du-
ality between T1 closure spaces and atomistic meet-complete lattices, including
as particular instances state-observable dualities between quantum state spaces
(with double negation closures) and projection operator lattices in the style of
operational quantum mechanics (see Coecke and Moore [5] or Moore [14]).

Our theory of T1-type dualities enables us to derive a number of concrete
T1-type dualities in various contexts, which include T1-type dualities between
Scott’s continuous lattices and convexity spaces, between σ-complete boolean
algebras and measurable spaces, and between topological spaces and frames, to
name but a few. Let us illustrate by a topological example a striking difference
between sober-type and T1-type dualities. The T1-type duality in topology is a
duality between T1 spaces and coatomistic frames in which continuous maps cor-
respond not to frame homomorphisms but to maximal homomorphisms, which
are frame homomorphisms f : L → L′ such that, given a maximal join-complete
ideal M ⊂ L′, f−1(M) is again a maximal join-complete ideal. Although the
duality for T1 spaces is not mentioned in standard references such as Johnstone
[9], nevertheless, we consider it important for the reason that some spaces of
interest are not sober but T1: e.g., affine varieties in kn with k an ACF (i.e.,
algebraically closed field) are non-sober T1 spaces (if they are not singletons).
Note that Bonsangue et al. [4] shows a duality for T1 spaces via what they call
observation frames, which are frames with additional structures, yet the T1-type
duality above only relies upon plain frame structures.
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Whilst sober-type dualities are based upon prime spectrum “Spec”, T1-type
dualities are based upon maximal spectrum “Spm”. Different choices of spectrum
lead to different Chu representations of algebras A concerned: maximal spectrum
gives (A, Spec(A), e) and prime spectrum gives (A, Spm(A), e) where e is two-
valued and defined in both cases by: e(a,M) = 1 iff a ∈ M . Accordingly, the
corresponding classes of Chu morphisms are distinctively different: e.g., in locale
theory, the Spec-based representation characterises frame homomorphisms as
Chu morphisms (as shown in Pratt [16]), and the Spm-based representation
characterises maximal homomorphisms as Chu morphisms (as shown in this
paper for general point-free spaces encompassing frames as just a particular
instance). In this way, the Chu space formalism yields a natural account of why
different concepts of homomorphisms appear in sober-type and T1-type dualities.

As in the case above, Chu morphisms can capture different sorts of homo-
morphisms by choosing different Chu representations. This is true even in quan-
tum contexts, and in particular we can represent quantum symmetries as Chu
morphisms by a suitable Chu representation. Coalgebras are Chu spaces with
dynamics, and we have a coalgebraic representation of quantum symmetries as
well. To be precise, in moving from Chu space to coalgebras, Abramsky [2] re-
lies upon a fibred category

∫
F obtained by gluing categories Coalg(FQ)’s for

every Q ∈ Set where FQ is an endofunctor on Set. He uses the Grothendieck
construction to “accommodate contravariance” within a coalgebraic framework,
fully embedding the groupoid of symmetries into the fibred category

∫
F.

Looking at the
∫
F representation from a duality-theoretical perspective, we

consider it odd that there is no structural relationship taken into account between
quantum state spaces and projection operator lattices: both are seen as mere
sets. For the very reason, Q (which is a projection lattice in a quantum context)
first have to be fixed in the endofunctor FQ on Set (objects of which are state
spaces in a quantum context), and thereafter Coalg(FQ)’s are glued together
to accommodate contravariance regarding Q ∈ Set. This two-step construction
is reduced in the present paper into a simpler, one-step one as follows.

First of all, there is actually a dual, structural relationship between quantum
state spaces and projection lattices with the latter re-emerging as the fixpoints
(or algebras) of double negation closures (or monads) on the former. This means
that Q above can be derived, rather than independently assumed, from a clo-
sure structure, if one works on the base category of closure spaces, rather than
mere sets. The closure-based reformulation of the

∫
F representation leads us

to a “Born” endofunctor B on closure spaces, and to its coalgebra category
Coalg(B), which turns out to be strictly smaller than fairly huge

∫
F, but

still large enough to represent the quantum symmetry groupoid, thus yielding a
purely coalgebraic representation and enabling to accommodate contravariance
within the single colagebra category Coalg(B) rather than the fibred

∫
F glueing

different Coalg(FQ)’s for all sets Q; notice that contravariance is incorporated
into the dualisation process of taking the fixpoints (or algebras) of closures.
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2 Duality and Chu Space Representation

We first review basic concepts and notations on Chu spaces and closure spaces.

Chu Spaces. Let us fix a set Ω. A Chu space over Ω is a triple (S,A, e) where S
and A are sets, and e is a map from S×A to Ω. Ω is called the value set, and e the
evaluation map. A Chu morphism from (S,A, e) to (S′, A′, e′) is a tuple (f∗, f∗)
of two maps f∗ : S → S′ and f∗ : A′ → A such that e(x, f∗(a′)) = e′(f∗(x), a′).
The category of Chu spaces and Chu morphisms is self-dual, and forms a ∗-
autonomous category, giving a fully complete model of linear logic.

For a Chu space (S,A, e : S × A → Ω) and a ∈ A, e(-, a) : S → Ω is called a
column of (S,A, e). We denote the set of all columns of (S,A, e) by Col(S,A, e).
On the other hand, e(x, -) : A→ Ω is called a row of (S,A, e). We denote the set
of all rows of (S,A, e) by Row(S,A, e). If Ω is ordered, then we equip Col(S,A, e)
and Row(S,A, e) with the pointwise orderings: e.g., in the case of Col(S,A, e),
this means that, for a, b ∈ A, e(-, a) ≤ e(-, b) iff e(x, a) ≤ e(x, b) for any x ∈ S.

A Chu space (S,A, e) is called extensional iff all the columns are mutually
different, i.e., if e(x, a) = e(x, b) for any x ∈ S then a = b. On the other hand,
a Chu space (S,A, e) is called separated iff all the rows are mutually different,
i.e., if e(x, a) = e(y, a) for any a ∈ A then x = y.

Closure Spaces. Closure spaces may be seen as either a set with a closure
operator or a set with a family of subsets that is closed under arbitrary inter-
sections. We denote by C(S) the set of closed subsets of a closure space S, and
by cl(-) the closure operator of S. In this paper we always assume ∅ ∈ C(S) or
equivalently cl(∅) = ∅. Note then that there is a unique closure structure on
a singleton. A map f : S → S′ is called closure-preserving iff f−1(C) ∈ C(S)
for any C ∈ C(S′) iff f(cl(A)) ⊂ cl(f(A)). We denote by Clos the category of
closure spaces and closure-preserving maps, which has products and coproducts.
A closure space is called T1 iff any singleton is closed.

2.1 Chu Representation of Quantum Systems

Abramsky [2] represents a quantum system as a Chu space defined via the
Born rule, which provides the predictive content of quantum mechanics. Given
a Hilbert space H , he constructs the following Chu space over the unit interval
[0, 1]: (P(H),L(H), eH : P(H) × L(H) → [0, 1]) where P(H) denotes the set of
quantum states as rays (i.e., one-dimesional subspaces) in H , L(H) denotes the
the set of projection operators (or projectors) on H , and finally the evaluation

map eH is defined as follows (let [ϕ] = {αϕ | α ∈ C}): eH([ϕ], P ) = 〈ϕ|Pϕ〉
〈ϕ|ϕ〉 .

We consider that Chu spaces have built-in dualities, or they are dualities
without structures: whilst S and A have no structure, e still specifies duality.
The category of Chu spaces has duals in terms of monoidal categories; this is
internal duality. Can we externalise internal duality in Chu spaces by restoring
structures on S and A through e? It is an inverse problem as it were. In the
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quantum context, it amounts to explicating the structures of P(H) and L(H)
that give (external) duality.

The first observation is the bijective correspondences: P(H) * {e(ϕ, -) | ϕ ∈
P(H)} * {c ∈ Col(P(H),L(H), eH) | the precisely one 1 appears in c}. So, the
states are the atoms of L(H): in this way we can recover P(H) from L(H). This
means L(H) should be equipped with the lattice structure as in Birkhoff-von-
Neumann’s quantum logic. Although we have L(H) * {e(-, P ) | P ∈ L(H)}, it is
not clear at this stage what intrinsic structure of P(H) enables to recover L(H)
from P(H). Let us see that a double negation operator on P(H) does the job.

Define (-)⊥ : P(P(H)) → P(P(H)) as follows: for X ⊂ P(H), let X⊥ =
{[ϕ] ∈ P(H) | ∀[ψ] ∈ P(H) 〈ϕ|ψ〉 = 0}. It is straightforward to see that (-)⊥⊥

is a closure operator on P(H). Categorically, (-)⊥⊥ is a sort of double negation
monad. Taking the closed sets or algebras of (-)⊥⊥ enables us to recover L(H):

Proposition 1. The lattice of closed subsets of P(H), i.e., {X ⊂ P(H) | X⊥⊥ =
X}, is isomorphic to L(H). Schematically, C(P(H)) * L(H).

We thus have a duality between P(H) qua closure space and L(H) qua lattice.
We can reconstruct P(H) from L(H) by taking the atoms on the one hand, and
L(H) from P(H) by taking the closed sets (or algebras) of (-)⊥⊥ on the other.
This dualising construction generally works for T1 closure spaces and atomistic
meet-complete lattices, in particular including P(H) and L(H) respectively; or-
thocomplements can be added to this duality.

Categorically, we have a dual equivalence between the category of T1 closure
spaces with closure-preserving maps and the category of atomistic meet-complete
lattices with maximal homomorphisms (defined below). This duality is basically
known at the object level in operational quantum mechanics (see Moore [14] or
Coecke and Moore [5]); nevertheless, our dualisation of arrows, i.e., the concept
of maximality, may be new. In this section we aim at developing a theory of such
T1-type dualities in full generality, thereby deriving T1-type dualities in various
concrete contexts as immediate corollaries (which include the state-projector
duality). We embark upon this enterprise in the next subsection.

2.2 Chu Theory of T1-Type Dualities via Closure Conditions

In the following part of this section, we consider two-valued Chu spaces (S,A, e :
S ×A → 2) only, where 2 denotes {0, 1} (with ordering 0 < 1). This is because
in the duality between states P(H) and property observables L(H) we do not
need other intermediate values in [0, 1]; when considering duality, it suffices to
take into account whether a value equals 1 or not. On the other hand, interme-
diate values in [0, 1] play an essential role in characterising quantum symmetries
coalgebraically; we need at least three values (i.e., 1, 0, and “neither 0 nor 1”).
In a nutshell, duality is possibilistic, whilst symmetry is probabilistic.

In this subsection, we think of (Chu representations of) “point-set” spaces
(S,F) where F ⊂ P(S), and of their “point-free” abstractions L which do not
have an underlying set S whilst keeping algebraic structures corresponding to
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closure properties of F . Especially, we discuss Top, Set, Clos, Conv, and Meas
where Conv denotes the category of convexity spaces, which are sets S with
C ⊂ P(S) closed under arbitrary intersections and directed unions (quite some
convex geometry can be developed based upon such abstract structures; see, e.g.,
van de Vel [18]); Meas denotes the category of measurable spaces, which are
sets with B ⊂ P(S) closed under complements and countable intersections.

Morphisms in all of these categories of point-set spaces are defined in the same
way as continuous maps, closure-preserving maps, and measurable maps (a.k.a.
Borel functions): i.e., they are f : (S,F) → (S′,F ′) such that f−1(X) ∈ F for
any X ∈ F ′. Note that Set may be seen as the category of (S,F) such that F
is maximally closed, i.e., F = P(S), with “continuous” maps as morphisms; in
such a situation, any map satisfies the condition that f−1(X) ∈ F for X ∈ F ′.

Their point-free counterparts are respectively: Frm (frames), CABA (com-
plete atomic boolean algebras), MCLat (meet-complete lattices), ContLat
(Scott’s continuous lattices), and σBA (σ-complete boolean algebras). Con-
tinuous lattices may be defined as meet-complete lattices with directed joins
distributing over arbitrary meets (this is equivalent to the standard definition
via way-below relations; see [6, Theorem I-2.7]); in the light of this, we see con-
tinuous lattices as point-free convexity spaces; later, duality justifies this view.

We emphasise that closure conditions on each type of point-set structures
correspond to (possibly infinitary) algebraic operations on each type of point-
free structures. An insight from our theory is that such a relationship between
point-set and point-free spaces always leads us to duality; indeed, we shall show
T1-type dualities between Top and Frm; Set and CABA; Clos and MCLat;
Conv and ContLat; Meas and σBA; and even more (e.g., dcpos).

In order to treat different sorts of point-set spaces in a unified manner, we
introduce a concept of closure conditions. A closure condition on F ⊂ P(S) is a
formula of the following form:

∀X ⊂ F (ϕ(X ) ⇒ BC(X ) ∈ F)

where BC(X ) is a (possibly infinitary) boolean combination of elements of X and
ϕ(X ) is a closed formula in the language of propositional connectives, quantifiers,
equality, a binary, inclusion predicate ⊂, and nullary, cardinality predicates1,
card≤κ(X ) and card≥κ(X ), for each countable cardinal κ; you may include arbi-
trary cardinals, though the language becomes uncountable. The domain of the
intended interpretation of this language is X , and predicates are to be inter-
preted in the obvious way: X ⊂ Y with X,Y ∈ X is interpreted as saying that
X is a subset of Y , card≤κ(X ) as saying that the cardinality of X is less than
or equal to κ, and so fourth. Note that predicates card=κ(X ), card<κ(X ), and
card>κ(X ) are definable in the above language.

1 First-order logic allows us to express “there are n many elements” for each positive
integer n, but cannot express certain cardinality statements (e.g., “there are at most
countably many elements”; we need this when defining measurable spaces). For the
very reason, we expand the language with the afore-mentioned cardinality predicates.
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In this setting, for example, measurable spaces are (S,F) such that F ⊂ P(S)
satisfies the following closure conditions: ∀X ⊂ F (card≤ω(X ) ⇒

⋂
X ∈ F) and

∀X ⊂ F (card(X ) = 1 ⇒ X c ∈ F) where X c denotes the complement of the
unique element of X . and notice that by letting X = ∅ we have

⋂
∅ = S ∈ F .

Likewise, convexity spaces are (S,F) with F satisfying the following: ∀X ⊂
F (� ⇒

⋂
X ∈ F) and ∀X ⊂ F (“X is directed w.r.t. ⊂ ” ⇒

⋃
X ∈ F) where

� is any tautology and “X is directed w.r.t. ⊂” is expressed as “∀X ∀Y ∃Z (X ⊂
Z ∧ Y ⊂ Z)”. It is straightforward to find closure conditions for other sorts of
point-set spaces. We denote by Xtop the closure conditions for Top, by Xmeas

those for Meas, by Xclos those for Clos, and by Xconv those for Conv.
Let us denote by X a class of closure conditions, and (S,F) with F ⊂ P(S)

satisfying X is called a point-set X-space. We always assume that X contains:
∀X ⊂ F (card=0(X ) ⇒

⋃
X ∈ F). This ensures that ∅ is in F . We denote by

PtSpX the category of point-set X-spaces with X-preserving maps (i.e., maps
f : (S,F) → (S′,F ′) such that f−1(X) ∈ F for any X ∈ F ′). If this setting
looks too abstract, PtSpX in the following discussion may be thought of as any
of our primary examples: Top, Clos, Conv, and Meas.

It plays a crucial role in our duality theory that ϕ in a closure condition can be
interpreted in a point-free setting: in other words, it only talks about the mutual
relationships between elements of X , and does not mention elements of elements
of X or any point of an observable region X ∈ X (which may be an open set,
convex set, measurable set, or the like), thus allowing us to interpret it in any
abstract poset (L,≤) by interpreting the subset symbol ⊂ as a partial order ≤,
and lead to the concept of point-free X-spaces as opposed to point-set ones. We
call this interpretation of ϕ in a poset (L,≤) the point-free interpretation of ϕ.
Note that the above language for ϕ is actually nothing but the language of the
first-order theory of posets enriched with the cardinality predicates.

A point-set X-space (S,F) can be regarded as a Chu space (S,F , e(S,F) :
S ×F → 2) where e is defined by: e(S,F)(x,X) = 1 iff x ∈ X.

A special focus of the paper is on T1 point-set spaces: a point-set X-space
(S,F) is T1 iff any singleton is in F . When applying this definition to topology,
we see a topological space as a set with a family of closed sets rather than open
sets. The T1 property of a Chu space is defined as follows.

Definition 2. A Chu space (S,A, e) is called T1 iff for any x ∈ S, there is
a ∈ A such that e(x, a) = 1 and e(y, a) = 0 for any y �= x.

Intuitively, a above may be thought of as a region in which there is only one
point, namely x, or a property that x does satisfy and any other y ∈ S does not.

Lemma 3. A point-set X-space (S,F) is T1 iff the corresponding Chu space
(S,F , e(S,F)) defined above is a T1 Chu space.

Lemma 4. For point-set X-spaces (S,F) and (S′,F ′), a tuple of maps (f, g) :
(S,F , e(S,F)) → (S′,F ′, e(S′,F ′)) is a Chu morphism iff g = f−1 : F ′ → F iff
f : (S,F) → (S′,F ′) is X-preserving.
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Lemma 5. If a Chu space (S,A, e) is T1 and extensional, then for any x ∈ S
there is a unique a ∈ A such that e(x, a) = 1 and e(y, a) = 0 for any y �= x.

Each column e(-, a) of a Chu space (S,A, e) can be regarded as a subset of S,
i.e., as {x ∈ S | e(x, a) = 1}. We say that Col(S,A, e) satisfies closure conditions
iff the corresponding family of subsets of S satisfies them. The same property
can be defined for Row(S,A, e) as well. The following proposition shows that a
broad variety of point-set spaces can be represented as Chu spaces.

Proposition 6. The category PtSpX is equivalent to the category of extensional
Chu spaces (S,A, e) such that Col(S,A, e) satisfies the closure conditions X,
denoted by ExtChuX. In particular, this can be instantiated for Xtop, Xmeas,
Xclos, and Xconv.

In the following, we focus on a more specific class of closure conditions. A closure
condition ∀X ⊂ F (ϕ(X ) → BC(X ) ∈ F) is called pure iff BC(X ) contains
precisely one of unions, intersections, and complements. A pure closure condition
is monolithic, and does not blend different operations; this is true in any major
example mentioned above.

In order to define point-free X-spaces, we let X be a class of pure closure
conditions satisfying the following: if a closure condition in X contains comple-
mentation in its boolean combination part, then the following two closure con-
ditions are in X: ∀X ⊂ F (card<ω(X ) →

⋂
X ∈ F) and ∀X ⊂ F (card<ω(X ) →⋃

X ∈ F). These additional conditions ensure that once we have complementa-
tion on the point-set side we can define boolean negation on the point-free side.
Note that, although complementation on sets is, and should be, interpreted as
boolean negation on posets of subsets, nevertheless, we are not excluding intu-
itionistic negation (or interiors of complements of opens), which does not arise
from complements in closure conditions (i.e., complements without interiors are
boolean), but from unions and finite intersections in them, by which we can
define intuitionistic implication, and so intuitionistic negation.

We then define a point-free X-space as a bounded poset (L,≤, 0, 1) satisfying
the following. If a closure condition in X have unions (intersections, comple-
ments) in its BC(X ) under the condition ϕ, then we require L to have joins
(meets, boolean negation) under the point-free interpretation of ϕ (i.e., the sub-
set symbol ⊂ is interpreted as ≤). If one closure condition in X contains unions
and another contains intersections under the conditions ϕ(X ) and ψ(X ) respec-
tively, then we require L to satisfy the following (possibly infinitary) distributive
law: for any doubly indexed family {xi,j | i ∈ I, j ∈ Ji} ⊂ L with F :=

∏
i∈I Ji,

if {xi,j | j ∈ Ji} denoted by L1 and {
∧
i∈I xi,f(i) | f ∈ F} denoted by L2 sat-

isfy ϕ(L1) and ϕ(L2) respectively, and if {xi,f(i) | i ∈ I} denoted by L3 and
{
∨
j∈Ji

xi,j | i ∈ I} denoted by L4 satisfy ψ(L3) and ψ(L4) respectively, then∧
i∈I
∨
j∈Ji

xi,j =
∨
f∈F
∧
i∈I xi,f(i). Note that this reduces to the ordinary infi-

nite distributive law in the case of frames, and to distributivity between meets
and directed joins in the case of continuous lattices.

There is a subtlety in defining maps f preserving possibly partial operations:
e.g., even if

∧
X is defined,

∧
f(X) is not necessarily defined. In the case of
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directed joins of continuous lattices, however, this causes no problem, since di-
rectedness is preserved under monotone maps, i.e., if X is directed then

∧
f(X)

is directed as well. This is also true in the case of σ-complete boolean algebras,
since card≤ω(-) is always preserved. With these in mind, we assume: ϕ in each
closure condition in X is preserved under monotone maps, i.e., for a monotone
map f : L → L′ between point-free X-spaces L and L′, if ϕ(X) holds for X ⊂ L
then ϕ(f(X)) holds as well. Homomorphisms of point-free X-spaces are defined
as monotone maps preserving (in general partial) operations induced from the
closure conditions in X. The category of point-free X-spaces and homomorphisms
is denoted by PfSpX.

For a point-free X-space L, we denote the set of atoms in L by Spm(L), which
is called the maximal spectrum of L for the following reason. In the cases of Frm,
ContLat, and MCLat, Spm(L) is actually isomorphic to the maximal filters or
ideals with suitable completeness conditions; furthermore, the maximal spectrum
of the coordinate ring of an affine variety V in kn with k an ACF is homeomorphic
to Spm(L) by taking L to be the closed set lattice of V . To exemplify the
meaning of “completeness conditions”, let us consider MCLat. A meet-complete
filter is defined as a filter that is closed under arbitrary meets. Since the meet-
complete filters of L ∈MCLat bijectively correspond to the principal filters of
L, we have an isomorphism between Spm(L) and the maximal meet-complete
filters of L, which holds even in the presence of natural closure structures on
them. Alternatively, we may also define Spm(L) = {↑ a | a is an atom} where
↑ a = {x ∈ L | a ≤ x}. This definition is sometimes more useful than the former.

The continuous maps between T1 spaces (e.g., affine varieties in Cn) do not
correspond to the frame homomorphisms between their open set frames, but to
a more restricted class of frame homomorphisms; this exhibits a sharp difference
from the case of sober spaces. A maximal homomorphism of point-free X-spaces
is a homomorphism f : L → L′ of them satisfying the maximality condition:
for any b ∈ Spm(L′) there is a ∈ Spm(L) such that ↑ a = f−1(↑ b), where
note that such an a ∈ Spm(L) is necessarily unique. If Spm(L) is defined as
{↑ a | a is an atom}, then we may state maximality in a more familiar manner:
f−1(M) ∈ Spm(L) for any M ∈ Spm(L′). The category of atomistic point-free
X-spaces and maximal homomorphisms is denoted by AtmsPfSpX where recall
that a poset with the least element is called atomistic iff any element can be
described as the join of a set of atoms. Note that atomic posets and atomistic
posets are different in general.

The atomisticity of a Chu space is defined in the following way.

Definition 7. A Chu space (A,S, e) is called atomistic iff there are A′ ⊂ A and
a bijection η : S → A′ such that

1. any two elements of Row(A′, S, e′) are incomparable (with respect to its point-
wise ordering) where e′ is defined by e′(a, x) = e(a, x);

2. for any x ∈ S and a ∈ A, e(a, x) = 1 iff e(η(x), -) ≤ e(a, -).

The intended meaning of A′ above is Spm(A), or the set of atoms of A. In
the context of quantum mechanics, item 1 above means that any two quantum
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states, when seen as one-dimensional subspaces or projectors onto them, are in-
comparable, and item 2 means that there is a canonical correspondence between
the quantum state space P(H) and the projection lattice L(H), by mapping the
quantum states to the atoms of the lattice.

Proposition 8. A Chu space (S,A, e) is T1 and extensional iff its dual (A,S, ê)
is atomistic and separated where we define ê(a, x) = e(x, a).

It does not necessarily hold that (S,A, e) is T1 iff (A,S, ê) is atomistic. As a
corollary of the above proposition, we obtain:

Corollary 9. If a Chu space (A,S, e) is atomistic and separated, and Row(A,S, e)
has a least element, then Row(A,S, e) is an atomistic poset with its atoms given
by {e(η(x), -) | x ∈ S}.

Given a point-free X-space L, we can construct a Chu space (L, Spm(L), eL)
where eL is defined by: eL(b, a) = 1 iff a ≤ b. If we define Spm(L) = {↑
a | a is an atom}, the corresponding eL is specified by: eL(a,M) = 1 iff a ∈M.

Lemma 10. A point-free X-space L is atomistic iff (L, Spm(L), eL) is an atom-
istic Chu space.

If we define Spm(L) = {↑ a | a is an atom}, we can take f̃ in the following
lemma to be f−1; in this case, the alternative definition of Spm(L) seems more
transparent than the definition of it as the set of atoms themselves.

Lemma 11. Let L and L′ be atomistic point-free X-spaces. A pair of maps,
(f, g) : (L, Spm(L), eL) → (L′, Spm(L′), eL′), is a Chu morphism iff f is a max-
imal homomorphism and g = f̃ where f̃ : Spm(L′) → Spm(L) is such that, for
any b ∈ Spm(L′), f−1(↑ b) =↑ f̃(b) (note f̃ is well defined because f is maximal).

Proposition 12. The category AtmsPfSpX is equivalent to the category of
atomistic separated Chu spaces (A,S, e) such that Row(A,S, e) satisfies the clo-
sure conditions X, denoted by AtmsSepChuX.

We finally lead to the main duality theorem, exposing and unifying T1-type
dualities in diverse contexts, including sets, topology, measurable spaces, closure
spaces, domain theory, and convex geometry.

Theorem 13. T1ExtChuX is dually equivalent to AtmsSepChuX; therefore,
T1PsSpX is dually equivalent to AtmsPfSpX. In particular, this universal du-
ality can be instantiated for Xtop, Xmeas, Xclos, and Xconv.

Although many sorts of point-free spaces are complete, nevertheless, the case of
Xmeas is different, and only requires σ-completeness. In this case, the universal
duality above yields a duality between atomistic σ-complete boolean algebras
and T1 measurable spaces. As noted above, Set may be seen as the category of
(S,P(S))’s with measurable maps (note any map is measurable on (S,P(S))), so
that the duality for measurable spaces turns out to restrict to the classic Stone
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duality between Set and CABA (note “atomic” and “atomistic” are equivalent
in boolean algebras). It is thus a vast globalisation of the classic Stone duality.

Furthermore, we can apply the theorem above to dcpos (with 0), which is not
complete in general, by considering closure under directed unions, which yields
point-set spaces (S,F) with F closed under directed unions; dcpos are their
duals. Likewise, preframes fall into the picture as well. We are able to derive
even more dualities in the same, simple way; although some general theories
of dualities require much labour in deriving concrete dualities (this is a typical
complaint on abstract duality theory from the practicing duality theorist), the
universal duality above immediately gives us concrete dualities of T1-type.

The duality obtained in the case of Xtop is not subsumed by the orthodox
duality between sober spaces and spatial frames, since “sober” does not imply
“T1”; there are important examples of non-sober T1 spaces, including affine
varieties in kn with the Zariski topologies where k is an ACF. As discussed
in the Introduction, furthermore, the morphism part of the T1-type duality is
distinctively different from that of the sober-type one.

In the case of Xconv, we obtain a duality between atomistic continuous lattices
and T1 convexity spaces, exposing a new connection between domains and con-
vex structures. Maruyama [12] also gives closely related dualities for convexity
spaces. Jacobs [8] shows a dual adjunction between preframes and algebras of the
distribution monad, which are abstract convex structures as well as convexity
spaces. We can actually relate the two sorts of abstract convex structures, and
thus dualities for them, by several adjunctions and equivalences, though here we
do not have space to work out the details.

In the case of sober-type dualities, we first have dual adjunctions for general
point-free spaces, which then restrict to dualities (i.e., dual equivalences). In the
case of T1-type dualities, however, we do not have dual adjunctions behind them
because we use maximal spectrum Spm rather than prime spectrum Spec. This
is the reason why in this paper we have concentrated on the Chu representation
of atomistic point-free spaces, rather than point-free spaces in general. We leave
it for future work to work out the dual adjunction between PsSpX and PfSpX

which restricts to the corresponding sober-type duality.

3 Quantum Symmetries and Closure-Based Coalgebras

We first review the Grothendieck construction for later discussion.

Grothendieck Construction. The Grothendieck construction enables us to
glue different categories together into a single category, or turn an indexed cat-
egory into a fibration. Given a functor I : Cop → CAT, we define a category∫

I : Cop → CAT

as follows (CAT denotes the category of (small) categories and functors). The
objects of

∫
I consist of tuples (C,X) where C ∈ C and X ∈ I(C). An arrow
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from (C,X) to (D,Y ) in
∫
I is defined as a pair (f, g) where f : D → C and

g : I(f)(X) → Y . Finally, composition of (f : D → C, g : I(f)(X) → Y ) :
(C,X) → (D,Y ) and (p : E → D, q : I(p)(Y ) → Z) : (D,Y ) → (E,Z) is
defined as:

(f ◦ p, q ◦ I(p)(g)) : (C,X) → (E,Z).

Note that the type of I(p)(g) is I(p)(I(f)(X)) → I(p)(Y ), which in turn equals
I(f ◦ p)(X) → I(p)(Y ). We call

∫
I the fibred category constructed from the

indexed category I. The obvious forgetful functor from the fibred category
∫
I

to the base category C which maps (C,X) to C gives a fibration.

3.1 Born Coalgebras on Closure Spaces

Now, we define an endofunctor B : Clos → Clos on the category of closure
spaces. For a closure space X , let

B(X) := ({0}+ (0, 1]×X)C(X)

where ({0}+(0, 1]×X)C(X) is the product of C(X)-many copies of {0}+(0, 1]×X .
For a closure-preserving map f : X → Y , we define a map

B(f) : ({0}+ (0, 1]×X)C(X) → ({0}+ (0, 1]× Y )C(Y )

by

B(f)(h)(C) = (id{0} + id(0,1] × f) ◦ h ◦ f−1(C)

where h ∈ ({0}+ (0, 1]×X)C(X) and C ∈ C(Y ).

Lemma 14. For a closure-preserving map f : X → Y ,B(f) is closure-preserving.

Lemma 15. Let X,Y, Z be closure spaces. (i) B(idX) = idB(X). (ii) B(g ◦f) =
B(g) ◦B(f) for closure-preserving maps f : X → Y and g : Y → Z.

Now, we describe primary examples of B-coalgebras, which are of central im-
portance in our investigation.

Example 16 Given a Hilbert space H, we define a B-coalgebra

(P(H), αH : P(H) → B(P(H)))

as follows. Let us define αH : P(H) → ({0}+ (0, 1]× P(H))C(P(H)) by

αH([ϕ])(S) =

{
0 if 〈ϕ|PSϕ〉 = 0

( 〈ϕ|PSϕ〉
〈ϕ|ϕ〉 , [PSϕ]) otherwise

where [ϕ] ∈ P(H), S ∈ L(H) (* C(P(H))), and PS is the projection operator
corresponding to S.
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The coalgebra (P(H), αH) expresses the dynamics of repeated Born-rule-based
measurements of a quantum system represented by a Hilbert space H .

As in Abramsky [2], we define the groupoid of quantum symmetries as follows.

Definition 17. QSym is the category whose objects are projective spaces of
Hilbert spaces of dimension greater than 2 and whose arrows are semi-unitary
maps identified up to a phase factor eiθ.

Wigner’s theorem (or Wigner-Bargmann’s theorem) clarifies the physical mean-
ing of QSym as follows. Note that “surjections” below are actually bijections,
since injectivity follows by the other properties.

Theorem 18. QSym is equivalent to the category whose objects are projec-
tive spaces of Hilbert spaces (i.e., quantum state spaces) and whose arrows are
symmetry transformations (i.e., those surjections between projective spaces that

preserve transition probabilities |〈ϕ|ψ〉|2
|ϕ|2|ψ|2 between quantum states [ϕ] and [ψ]).

Our aim is to establish a purely coalgebraic understanding of QSym. We re-
mark that symmetries are of central importance in physics: they are higher
laws of conservation of various physical quantities (Nöther’s theorem); in quan-
tum mechanics in particular, we can even derive the Schrödinger-equation-based
dynamics of quantum systems from a continuous one-parameter group of sym-
metries (Stone’s theorem).

3.2 Quantum Symmetries Are Purely Coalgebraic

For an endofunctor G : C → C on a category C, let Coalg(G) denote the
category of G-coalgebras.

Let us briefly review Abramsky’s fibred category
∫
F of coalgebras in the

following. For a fixed set Q, we define a functor FQ : Set → Set. Given a set
X , let FQ(X) = ({0}+ (0, 1]×X)Q. The arrow part is then defined canonically.

An indexed category
F : Setop → CAT

is then defined as follows. Given Q ∈ Set, let F(Q) = Coalg(FQ). For a map
f : Q′ → Q, we define a functor F(f) : Coalg(FQ) → Coalg(FQ′

) in the
following way. Given an object (X,α : X → FQ(X)) in Coalg(FQ), let

F(f)(X,α) = (X, tfX ◦ α)

where tfX : FQ(X) → FQ′
(X) is defined by tfX(g) = g ◦ f. Given an arrow

g : (X,α) → (Y, β), let F(f)(g) = g : (X, tfX ◦ α) → (Y, tfY ◦ β).
As Wigner’s theorem above has the assumption of surjectivity, Abramsky [2]

requires surjectivity on the first components f of morphisms (f, g) in
∫
F. Let us

denote by
∫
Fs the resulting category with the restricted class of morphisms. On

the other hand, we require injectivity on the morphisms f : (X,α) → (Y, β) of
Coalg(B), and denote by Coalgi(B) the resulting category with the restricted
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class of morphisms. The surjectivity/injectivity conditions ensure that QSym is
not only faithfully but also fully represented in

∫
Fs and in Coalgi(B).

In the following we observe that Coalg(B) is much smaller than
∫
F, but

still large enough to encompass the quantum symmetry groupoid QSym. To be
precise, it shall be shown that Coalg(B) is a non-full proper subcategory of

∫
F,

and that QSym is a full subcategory of Coalgi(B).
We then introduce a functor BF from Coalg(B) to

∫
F, which will turn out

to be a non-full embedding of categories.

Definition 19. The object part of BF : Coalg(B) →
∫
F is defined by

BF(X,α : X → B(X)) = (C(X), (X,α) ∈ Coalg(F C(X))).

The arrow part of BF : Coalg(B) →
∫
F is defined by

BF(f : (X,α) → (Y, β)) = (f−1 : C(Y ) → C(X), f̃ : F(f−1)(X,α) → (Y, β))

where f̃ has the same underlying function as f (i.e., f̃(x) = f(x) for any x ∈ X;
thus, the difference only lies in their types).

In order to justify the definition above, we have to verify that f̃ is actually a
morphism in Colag(F C(Y )).

The commutative diagram below would be useful to understand what is going
on in the definition above and the two lemmata below.

X F C(X)(X) F C(Y )(X)

Y F C(Y )(Y ) F C(Z)(Y )

Z F C(Z)(Z) F C(Z)(X)

�α

�

f

�
B(f)

�tf
−1

X

�
�
�
�
�
�
�
���

tg
−1

X

�
�

�
���

FC(Y )(f)

�β

�

g

�
B(g)

�
tg

−1

Y �
�

�
���

FC(Z)(g)

�
γ

�
FC(Z)(g◦f)

where α, β, γ are B-coalgebras, and f, g are morphisms of B-coalgebras.

Lemma 20. f̃ : F(f−1)(X,α) → (Y, β) is an arrow in Colag(F C(Y )).

Lemma 21. (i) BF(id(X,α)) = idBF(X,α). (ii) For f : (X,α) → (Y, β) and
g : (Y, β) → (Z, γ) in Coalg(B), BF(g ◦ f) = BF(g) ◦ BF(f) where the latter
composition is that in

∫
F.

Proposition 22. Coalg(B) can be embedded into
∫
F via the functor BF. This

is not a full embedding (i.e., BF is not full).

The non-fullness of BF implies that Coalg(B) is a smaller category than
∫
F

with respect to arrows as well as objects.
We now introduce a functor SC from QSym to Coalgi(B), which will turn

out to be a full embedding of categories.



234 Y. Maruyama

Definition 23. The object part of SC : QSym→ Coalgi(B) is defined by

SC(P(H)) = (P(H), αH).

The arrow part of SC : QSym→ Coalgi(B) is defined by

SC(U) = U : (P(H), αH) → (P(H ′), αH′)

where U : P(H) → P(H ′) is a semi-unitary map from H to H ′ (up to a phase).

Lemma 24. SC(U) is a morphism of B-coalgebras.

W finally obtain the purely coalgebraic representation of quantum symmetries
QSym via the non-fibred, single sort of coalgebra category Coalgi(B) based
upon closure spaces.

Theorem 25. The quantum symmetry groupoid QSym can be fully embedded
into the purely coalgebraic category Coalgi(B : Clos→ Clos).

Our closure-based coalgebraic approach to representation of quantum systems
would allow us to develop “coalgebraic quantum logic” utilising existing work
on coalgebraic logic over (duality between) general concrete categories (see, e.g.,
Kurz [11] or Klin [10]); this is left for future work.
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Noninterfering Schedulers
When Possibilistic Noninterference Implies Probabilistic Noninterference

Andrei Popescu, Johannes Hölzl, and Tobias Nipkow
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Abstract. We develop a framework for expressing and analyzing the behavior
of probabilistic schedulers. There, we define noninterfering schedulers by a
probabilistic interpretation of Goguen and Meseguer’s seminal notion of non-
interference. Noninterfering schedulers are proved to be safe in the following
sense: if a multi-threaded program is possibilistically noninterfering, then it is
also probabilistically noninterfering when run under this scheduler.

1 Introduction

Noninterference is an important and well-studied formal property modeling confiden-
tiality. It was introduced by Goguen and Meseguer (henceforth abbreviated G&M) in
the context of deterministic multi-user systems having essentially the following mean-
ing [5, p.11]: “One group of users is noninterfering with another group of users if what
the first group does has no effect on what the second group of users can see."

In the context of confidentiality in a language-based setting [16], a quite different no-
tion, usually also termed as noninterference, emerged in work by Volpano et. al. [23]:
Assuming the program memory is separated into a low, or public, part, which an at-
tacker is able to observe, and a high, or private, part, hidden to the attacker, a sequential
program satisfies noninterference if, upon running it, the high part of the initial memory
does not affect the low part of the resulting memory.

Of course, many systems for which confidentiality is important are concurrent, such
as Internet servers or operating systems. To cope with concurrency, the above language-
based notion of noninterference has been generalized in various ways. A major line of
work focuses on possibilistic noninterference, which roughly states that if an execu-
tion allowing certain observations by the attacker is possible, then another execution
for which these observations are infirmed is also possible. For this notion, powerful
and/or compositional analysis methods have been devised [1,3,8,20]. The downside of
possibilistic noninterference is vulnerability under probabilistic attacks by running the
program multiple times and gathering statistical information and refinement attacks via
knowledge of the thread scheduling. For example, consider the following program con-
sisting of two threads running in parallel under a uniform probabilistic scheduler [18]:

– while h > 0 do {h := h−1} ; l := 2
– l := 1

Then, probability to execute l := 2 after l := 1, i.e., to obtain 2 for the final l, depends
on the initial value of h, making the latter inferable from the distribution of the final l.

R. Heckel and S. Milius (Eds.): CALCO 2013, LNCS 8089, pp. 236–252, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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These problems have been addressed by introducing several (overlapping) notions of
probabilistic [9,18,19] and scheduler-independent [9,17,24] noninterference and means
to enforce them. Proposed scheduler-independent solutions (probabilistic or not) insure
confidentiality in the presence of any scheduler [16, 17, 20] or a large class of sched-
ulers [4, 9, 13], but suffer from various limitations: lack of coping with dynamic thread
creation [4], too harsh requirements on individual threads (strong security) [17,20], too
weak confidentiality guarantees on the overall concurrent system [9], the reliance on ex-
pensive or not always feasible conditions such as race freedom [24] or termination [9],
or non-standard thread-level security primitives [13].

This paper presents a way to alleviate these limitations in a scheduler-dedicated
framework. Its main contributions are:

– A framework for analyzing schedulers independently from the concrete operational
semantics of threads.

– A notion of noninterfering scheduler obtained by a novel reading, in a probabilistic
key, of G&M’s seminal notion.

– A result inferring probabilistic noninterference from possibilistic noninterference
under the assumption of a noninterfering scheduler (for suitable notions of possi-
bilistic and probabilistic noninterference).

This result captures a large class of schedulers, covers dynamic thread creation, allows
timing of thread execution to depend on high data, guarantees a strong security property
on the thread system, and does not rely on undecidable properties of the multi-threaded
program or special security primitives. Our scheduler noninterference, importing in-
sights from system-based noninterference to language-based noninterference, is a step
toward better understanding the complex relationship between these two worlds [7].

We start by introducing the framework for schedulers (§2), carefully factoring in all
and only the information relevant to scheduling. Thus, in order to have fine control over
the scheduling policy including dynamic thread creation, we keep an order on thread
IDs that indicate who spawned who. On the other hand, for studying the behavior of
a scheduler we do not employ concrete thread pools with state-based semantics for
threads—instead, we consider execution scenarios, i.e., possibilistic interleavings of
threads IDs to which the scheduler casts probabilities.

Operational semantics of multi-threaded programs (§3) is separated in two: The pos-
sibilistic semantics is the usual nondeterministic interleaving semantics; in particular,
it yields an execution scenario for each pair (program, initial state). A probabilistic
semantics is obtained by blending in a scheduler with the execution scenario.

Then we move to discussing noninterference (§4). For defining scheduler noninter-
ference, we identify two groups of users à la G&M: the threads that are visible, i.e.,
will eventually affect the observable part of the system during their execution, and the
others, the invisible ones. The user’s actions are, as expected, the very steps taken by
the threads. The observations, however, require a nonstandard interpretation: Given a
visible thread v and letting I denote the collection of invisible threads, the observation
of v is the “exit probability" of v through I, i.e., the probability of the system taking zero
or more I-steps followed by a v-step. We call the scheduler noninterfering if the obser-
vation of each visible thread v is independent of the actions of the invisible threads I,
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i.e., the exit probability of v through I is the same as the probability of taking v provided
I were completely inexistent (including from the execution history).

For possibilistic noninterference of programs, we adopt a compositional notion intro-
duced in [9], a weakening of strong security [17] allowing the execution time to depend
on secrets. In fact, our approach as a whole disregards execution time. We take proba-
bilistic noninterference to be the notion introduced by Smith [18]: Any two executions
that differ only on secret information traverse the same sequence of attacker observa-
tions with the same probability—this seems to be the strongest notion of probabilistic
noninterference that ignores timing channels.

Further details on the constructions and results from this paper, including more sub-
stantial proof sketches, can be found in the technical report [10], which is an identical
copy of the paper save for an appendix with additional material.

2 Framework for Schedulers

This section introduces the key component of our approach: a framework for studying
schedulers in isolation from the concrete (state-based) operational semantics.

In the noninterference literature (e.g., [9, 17, 18]), the thread IDs manipulated by
schedulers are typically handled implicitly, as the numeric indexes (positions) of the
threads in the pool represented as a list. However, here we endow thread IDs with more
structure, able to store information about the parent thread and the order in which the
current threads have been spawned (§2.1). We introduce histories, i.e., sequences of
thread IDs taken so far during the execution, and rich histories obtained from augment-
ing the histories with information about the threads that were available at each point in
history—these enriched structures offer useful information concerning the thread wait-
ing time (§2.2). Schedulers are defined as operating on rich histories (§2.3). In order
to study scheduler noninterfernce in isolation from a concrete operational semantics,
we single out the aspect of thread semantics relevant for the scheduler’s behavior: ex-
ecution scenarios, as trees of thread ID interleavings (§2.4). Given an execution sce-
nario, a scheduler induces a Markov chain structure on histories, offering a quantitative
interpretation of temporal logic formulas (§2.5) useful later for defining noninterference.

2.1 Thread IDs

We let i, j,k, l range over natural numbers. The thread IDs, ranged over by m,n, p,q,
will be elements of the set threadID = nat∗, of words (i.e., finite sequences) of natu-
ral numbers. The empty sequence ε will represent the main thread’s ID. We write m·n
for the concatenation of m and n. As usual, we identify single numbers k with single-
ton words, and thus k·m and m·k represent the words obtained by pre-appending and
post-appending k to m, respectively.

For all m ∈ threadID, we define the set of IDs that m may spawn, maySp m, as
{m·k | k ∈ nat}. The full reading of “n ∈ maySp m" is the following: “if m is the ID of
a given thread, then n is valid as ID for a thread the given thread may spawn (in the
future)". Note that ∀n. ε �∈ maySp n, i.e., no thread may spawn the main thread.

We also define, for each m ∈ threadID, the following order <m on maySp m, called
the m-issuing order : m·k <m m· j iff k < j. The reading of “p <m q" is “the thread ID p
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should be generated before q is (in any potential execution)". For example, it holds that
2·1 ∈ maySp 2 and 2·1·1 <2·1 2·1·2.

The “may spawn" operator and the issuing orders will be means to inform the sched-
uler about who spawned who and about the order in which spawning happened. In our
informal explanations, we shall loosely identify threads with thread IDs.

2.2 Histories

Our schedulers will depend on execution histories indicated as lists of thread IDs. Since
on the other hand thread IDs are themselves modeled as lists (sequences), to avoid
confusion we use a different notation for lists of threads.

Namely, we let hist, the set of (execution) histories, ranged over ml,nl,pl,ql, consist
of thread ID lists. [m0, . . . ,mk−1] denotes the history consisting of the indicated thread
IDs in the indicated order. [] is the empty history and [m] is a singleton history. ml # nl
denotes the concatenation of histories ml and nl, and we write ml # n and n # ml instead
of ml # [n] and [n] # ml, respectively. If ml = [m0, . . . ,mk−1], ml〈..i〉 is the subhistory of
ml containing the first i elements, [m0, . . . ,mi−1]; thus, ml〈..0〉= [] and ml〈..k〉= ml.

Given n∈ threadID, N ⊆maySp n and M⊆ threadID, M is called an initial fragment
of N w.r.t. <n if M ⊆ N and ∀m ∈M. ∀m′ ∈ N \M. m <n m′.

We shall be interested in the relationship between execution histories and the sets of
available threads at each point in such histories. We let Ml range over lists of finite sets
of thread IDs. A pair (ml,Ml) where ml = [m0, . . . ,mk−1] and Ml = [M0, . . . ,Mk] (thus
having length Ml = length ml + 1) is said to be:

– start-consistent, if M0 = {ε};
– step-consistent, if ∀i < k. mi ∈Mi;
– termination-consistent, if ∀i < k. Mi \Mi+1 ⊆ {mi};
– spawn-consistent, if ∀i < k. Mi+1 \Mi is an initial fragment of maySp mi \ (M0 ∪

. . . ∪ Mi) w.r.t. <mi .

The above conditions describe the correct interplay between the threads available in
the pool at each moment (represented by Ml) and single execution steps taken by the
threads (represented by ml). More precisely, we assume that, at moment i, Mi are the
available threads and mi takes a step, yielding the available threads Mi+1.

Start consistency: Execution starts with the main thread alone in the thread pool.
Step consistency: Only an available thread can take a step.
Termination consistency: Upon a step taken by thread mi, the resulted thread pool

contains all threads except perhaps mi (if terminated).
Spawn consistency: Upon a step taken by thread mi, all newly appearing threads in

the pool get IDs that mi may spawn and, moreover, they get the smallest such IDs that
are fresh, in the sense of not having been assigned before.

Note that start consistency and step consistency imply that m0 = ε . A pair (ml,Ml)
is called a rich history if it is start-, step-, termination-, and spawn- consistent. We let
rhist denote the set of rich histories.
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Rich histories (ml = [m0, . . . ,mk−1],Ml = [M0, . . . ,Mk]) contain enough information
to determine various moments in the life span of threads:

– The set of current threads, Cur Ml, is the last element in this list, Mk.
– Given n∈ Cur Ml\{ε}, the moment when n appeared, appMl n, is the smallest i such

that n ∈Mi+1.
– Given n∈ {m0, . . . ,mk−1}, the moment when n was last taken (executed), ltakenml n,

is the greatest i < k such that n = mi.
– Given n ∈ Cur Ml, the moment when n was last touched, ltouchedml,Ml n, is: either

ltakenml n, if n ∈ {m0, . . . ,mk−1}; or appMl n, otherwise.
– Given n ∈ Cur Ml, the waiting time for n, waitml,Ml n, is k− 1− ltouchedml n.

Note that, if both appMl n and ltakenml n are defined, i.e., if n ∈ Cur Ml \ {ε} ∩
{m0, . . . ,mk−1}, then, by step-consistency, appMl n < ltakenml n—this justifies our
definition for ltouchedml,Ml n.

2.3 Schedulers

A scheduler is a family of functions (schml,Ml : Cur Ml→R)ml,Ml , where (ml,Ml) ranges
over rich histories, such that ∀m ∈ Cur Ml. schml,Ml m ≥ 0 and ∑m∈Cur Ml schml,Ml m =
1. Thus, given a rich history (ml,Ml), a scheduler defines a probability distribution
schml,Ml on the currently available threads Cur Ml. Next we give two standard examples.
(See [10, §A] for several others.)

Uniform Scheduler. usch assigns all currently available threads equal (history oblivi-
ous) probability: uschml,Ml m = 1/|Cur Ml|. Uniform scheduling is the underlying
assumption in work by Smith and Volpano on probabilistic noninterference [18,19,22].

Round Robin Scheduler. Given a number j, the round robin scheduler with j step
quotas, rsch j, always schedules with probability 1 the first thread in the queue for j
consecutive steps, where threads are ordered in a queue according to their waiting time.

Given (ml,Ml), we define the following queuing order on M: n <ml,Ml n′ iff

– either waitml,Ml n < waitml,Ml n′,
– or waitml,Ml n = waitml,Ml n′ and n′ ∈ maySp n,
– or else n,n′ ∈ maySp p and n′ <p n for some p.

<ml,Ml organizes the current thread pool M as a queue based on waiting times, resolving
same-waiting-time conflicts as follows: a spawned thread has priority over its parent,
two threads spawned at the same time are discriminated by the issuing order. The first
(maximum) in this waiting queue, maxml,Ml M, is in the set of threads with highest
waiting time and, among these, is the smallest w.r.t. the “may spawn" and issuing orders.

For any history ml, we let $(ml) be the number of trailing occurrences of its last
thread, i.e., the largest number k such that ml has the form nl # mk, where mk consists
of k repetitions of m. We define rsch j, the j-step round robin scheduler, as follows, for
all (ml,Ml) ∈ rhist and p ∈M = Cur Ml:
− If ml = [], then necessarily Ml = {ε}, M = {ε} and p = ε . We put rsch

j
ml,Ml p = 1.
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− If ml has the form nl # m, then we define

rsch
j
ml,Ml p =

⎧⎪⎪⎨⎪⎪⎩
1, if $(ml) < j ∧ p = m, (last scheduled thread m still has quota)
1, if $(ml)≥ j ∧ p = maxml,Ml M, (m finished its quota, p comes next)
1, if m �∈M ∧ p = maxml,Ml M, (m has terminated, p comes next)
0, otherwise. (p neither current, nor next to be scheduled)

Previous work on concurrent noninterference [9, 12, 14, 15, 17] considers round robin
schedulers almost equivalent to our rsch j, except for the policy of placing in the pool
the newly spawned threads. Namely, while defining the operational semantics of the
thread pools modeled as lists of threads, the newly spawned threads are inserted in the
list after the parent thread. This, together with the policy of the scheduler tape travers-
ing the thread pool from left to right, makes the scheduler non-starvation-free—e.g.,
if m spawns in one step an identical copy of itself, that copy would be scheduled im-
mediately after m, and thus m and its clones would monopolize execution. Our defi-
nition based on the waiting time avoids this problem. Of course, the problem is also
solvable by changing the operational semantics to traverse the thread list from right to
left instead. However, this solution reveals a limitation of approaches that hardwire in
the thread-pool operational semantics the policy for placing new threads: the need for
global changes in order to accommodate desired scheduler properties. By contrast, our
approach packs up the whole scheduler behavior in the definition of the scheduler alone.

2.4 Execution Scenarios

Although a scheduler depends on rich histories which are essentially linear structures,
its behavior is better comprehended through what we call execution scenarios, tree-like
structures that capture the branching of thread interleaving. Given any set H of histories
and given ml = [m0, . . . ,mk−1] ∈ H such that all its prefixes are also in H:

– Let AvailH ml, the set of thread IDs available in H at point ml, be {m ∈ threadID |
ml # m ∈ H};

– Let HavailH ml, the list of sets of thread IDs available in H all throughout history
ml, be [AvailH ml〈..0〉, . . . ,AvailH ml〈..k〉].

– Given m ∈ AvailH ml, let spawnsH
ml m, the set of threads spawned by one m-step at

history ml, be AvailH (ml # m)\AvailH ml.

An (execution) scenario is a set Sc of histories such that the following properties hold,
where + is the prefix order on lists:

– Prefix Closure: ∀ml nl. nl ∈ Sc ∧ ml+ nl =⇒ ml ∈ Sc.
– Finite Branching: ∀ml ∈ Sc. AvailSc ml is finite.
– Consistency: ∀ml ∈ Sc. (ml,HavailSc ml) ∈ rhist.
– Boundedness: ∃k. ∀ml ∈ Sc. ∀m ∈ AvailSc ml. |spawnsSc

ml m| ≤ k.

Thus, a scenario is required to form a finitely branching tree for which all finite paths are
rich histories and there exists a bound on the number of threads spawned concurrently in
one single step. The best way to picture a scenario is as a labeled tree, where the nodes
are histories ml (with [] as the root), and the edges coming out of each ml are labeled
with the elements of AvailSc ml. For example, if we ignore the circled numbers for now,
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Fig. 1. A scenario with probabilities attached

Fig. 1 shows the finite scenario Sc = {[], [ε], [ε,0], [ε,1], [ε,0,1], [ε,1,0], [ε,1,1·0],
[ε,0,1,1], [ε,1,0,1·0], [ε,1,1·0,0], [ε,1,0,1·0,1·0]}. In this scenario, the following
happen (among other things): at history [], ε takes one step and terminates, with spawn-
ing two threads, 0 and 1 (hence spawnsSc

[] ε = {0,1})—this can be seen from the branch-

ings of [] and [ε]: ε is available at history [], while 0 and 1 are available at the successor
history [ε]; at history [ε], after taking one step, 1 terminates, spawning a new thread 1·0;
at history [ε,0], 1 takes two steps and terminates, without spawning any threads.

Note that, in accordance with termination consistency, the described scenario never
abandons execution, but proceeds until termination is plausible. E.g., from its appearance
(at history [ε]), on any path thread 0 is continuously available before it is taken.

2.5 Scheduler-Induced Probabilities on Scenarios

Given a scenario Sc, a scheduler sch assigns probabilities to branches in Sc—at history
ml, the branch m ∈ AvailSc ml receives probability schml, HavailSc ml m—and then to finite
paths in Sc as the product of probabilities of the branches taken along the path. Fig. 1
shows in circles a possible such assignment of probabilities to a scenario, where, e.g.,
the history path [ε,1,1·0] has probability 1 ∗ 0.5 ∗ 0.75 = 0.375.

More generally, let pl ∈ Sc. We let TraceSc
pl be the set of (Sc,pl)-traces, which are

maximal (finite or infinite) sequences mt such that pl # ml ∈ Sc for all finite prefixes
ml of mt. Then we can identify each ml such that pl # ml ∈ Sc with a “basic event"
BevSc

pl,ml consisting of all (Sc,pl)-traces that start with ml, i.e., have ml as a prefix; we
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thus postulate that BevSc
pl,ml has the probability of ml when taken in history pl. E.g., in

Fig. 1, BevSc
[ε],[1] consists of {[1,0,1·0,1·0], [1,1·0,0]} and has probability 0.5.

By standard probability theory [6], one can now assign probabilities P
Sc,sch
pl Mt to

certain measurable sets Mt of (Sc,pl)-traces, namely, to those in the smallest collection
of subsets of TraceSc

pl that is closed under countable union and complement and contains
every BevSc

pl,ml for which pl # ml ∈ Sc. The Markov chain induced by sch on Sc, Mcsch
Sc , is

the family (TraceSc
pl ,P

Sc,sch
pl )pl∈Sc.

The sets of traces describable in linear temporal logic (LTL) are measurable [21].
Thus, to each LTL formula ϕ , for each history point pl ∈ Sc, we can speak of the
(Sc,sch)-probability of ϕ , written P

Sc,sch
pl ϕ and defined as the probability of the set of

(Sc,pl)-traces satisfying ϕ . Of particular importance for us will be the following LTL
formulas and connectives, where U : hist → threadID → bool, n ∈ threadID and ϕ
and χ are any LTL formulas:

Takes U , satisfied by a (Sc,pl)-trace iff that trace takes as first step an element m such
that of U pl m holds.

Ev ϕ , satisfied by a trace iff ϕ eventually holds on some point on that trace.
Alw ϕ , satisfied by a trace iff ϕ always holds (on every point) on that trace.
ϕ Until χ , satisfied by a trace iff ϕ holds on every point on some finite initial fragment

of that trace, and χ holds immediately after. (This is the LTL “strong until".)
If U simply tests for equality to a fixed thread n, i.e., ∀ml m. U ml m ⇐⇒ m = n,

we write Takes n instead of Takes U . Note that Ev (Takes n) is satisfied by a trace iff that
trace contains n, and (Takes U) Until (Takes n) is satisfied by a trace iff that trace takes
for a while steps for which U holds, and eventually it takes n.

3 Operational Semantics of Programs

Next we introduce the state-based small-step semantics, both possibilistic and proba-
bilistic, for shared-memory multi-threaded programs featuring dynamic thread creation.

3.1 Possibilistic Semantics

Let state, ranged over by s, t, be an unspecified set of memory states. We assume that
the individual threads are commands c,d ∈ cmd with a semantics given by a transition
relation c

s→ (γ, [c1, . . . ,cl ],s′), where γ is either⊥ or a command c′, having the follow-
ing interpretation: in state s, c takes one step, spawning threads c1, . . . ,cl , changing the
state to s′, and: terminating, provided γ =⊥, or yielding the continuation c′, provided γ
is a command c′. We assume the transition relation to be total and deterministic, i.e., for
all c and s there exists a unique pair (γ, [c1, . . . ,cl ]) such that c

s→ (γ, [c1, . . . ,cl ]). Also,
we assume that each command c is spawn-bounded, in that there exists k (depending on
c) such that the number of threads spawned in one single step by c or any of its continu-
ations or spawned threads during execution is ≤ k—this is a reasonable assumption for
programs written in a concurrent language, where k can be determined by inspecting
the syntax. (Spawn-boundedness has an obvious coinductive definition that we omit.)
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A (runtime) configuration is a tuple cf = (ml,Ml, thr,s) such that (ml,Ml) is a rich
history and thr : Cur Ml → cmd. (ml,Ml) indicates the execution so far, thr the as-
signment of commands to thread IDs, s the current memory state. We define a labeled
transition relation on configurations: (ml,Ml = [M0, . . . ,Mk], thr,s)

m→ (ml′,Ml′, thr′,s′)
iff m ∈ Mk and the following hold, assuming thr m

s→ (γ, [c1, . . . ,cl ],s′) and letting
p1 <m . . . <m pl be the first l smallest thread IDs in maySp m\(M0 ∪ . . . ∪Mk) w.r.t. <m:

– ml′ = ml # m.

– Ml′ = Ml # M′, where M′ =

{
Mk \ {m}∪{p1, . . . , pl}, if γ =⊥,
Mk ∪{p1, . . . , pl}, otherwise.

– thr′ behaves like thr on elements of M′ ∩Mk and additionally sends each pi to ci.

The above is the expected one-step semantics of configurations: any currently available
thread may take a (possibly terminating) step, spawning 0 or more new threads that are
assigned the smallest available thread IDs, and affecting the state; in case of termination,
the thread is removed from the pool.

We define cf
[m1,...,mk ]→ cf ′ to mean that there exist cf 0, . . . ,cf k−1 such that cf 0 = cf ,

cf k−1 = cf ′, and cf i
mi+1→ cf i+1 for all i < k.

3.2 From Possibilistic to Probabilistic Semantics, via Schedulers

Given c and s, let the initial configuration of (c,s), init (c,s), be ([], [{ε}],ε �→ c,s). Thus,
in init (c,s), c is the single (main) thread and s the current state; during execution, c may
of course spawn other threads that will populate the configuration. We define Scc,s, the

scenario of (c,s), to be {ml. ∃cf . init (c,s)
ml→ cf ′}—that Sc is indeed a scenario follows

immediately from the definition of configuration transitions.
Note that, for each ml ∈ Scc,s, there exists precisely one cf = (ml,Ml, thr,s) such

that init (c,s)
ml→ cf —we write configc,s ml for this cf . Thus, the pair (Scc,s,configc,s)

constitutes an alternative description of the possibilistic semantics of (c,s) (including
complete information about thread spawning and termination). If we also factor in the
Markov chain induced by sch on Scc,s, we obtain a proper notion of probabilistic seman-
tics of (c,s) as the triple (Scc,s,configc,s,Mcsch

c,s ), where we write Mcsch
c,s instead of Mcsch

Scc,s
.

We shall also write Tracec,s and Psch,c,s instead of TraceScc,s and PScc,s,sch.

4 Noninterference

Here we present our main security result: a notion of noninterfering scheduler that ensures
lifting of possibilistic noninterference to probabilistic noninterference. All throughout
this section, we fix a scheduler sch and a domain odom of observables.

4.1 Noninterfering Schedulers

An observation-augmented scenario (OA-scenario) is a pair (Sc,obs), where obs : Sc→
odom. Let (Sc,obs) be an OA-scenario. A thread n is called visible at a certain history
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if it is available and, at some point in the future, n will affect the observables, either
directly or indirectly via a spawned thread n′, or via a thread spawned by n′, etc. For-
mally, we define inductively the sets visAvailSc,obs ml of visible threads available at ml:

n ∈ AvailSc ml obs (ml # n) �= obs ml
n ∈ visAvailSc,obs ml

m,n ∈ AvailSc ml n ∈ visAvailSc,obs (ml#m)

n ∈ visAvailSc,obs ml

n ∈ AvailSc,obs ml n′ ∈ spawnsSc
ml n n′ ∈ visAvailSc,obs (ml # n)

n ∈ visAvailSc,obs ml

An available thread m is called invisible if it is not visible—formally, the predicate
inv

Sc,obs
ml m is defined to mean m ∈ AvailSc,obs ml\ visAvailSc,obs ml.
A scheduler shall be declared noninterfering if the effect of removing invisible threads

is the same as that of hiding them. This property can be formulated in a manner rather
faithful to the style of G&M [5] (recalled in the introduction). Our “users" of the sys-
tem managed by sch are the threads (thread IDs), and at each history point there are
two groups of users, visible and invisible, and thus we require that the observations of
the visible threads do not depend on the actions of the invisible ones. Clearly, the ac-
tions should be steps taken by the threads. Moreover, we choose the observation of a
visible user n at history ml to be the probability that n will be scheduled first among
all the visible threads, i.e., the “exit probability" of n after zero or more invisible steps,
P

Sc,sch
ml (Takes invSc,obs Until Takes n). Note that here, unlike in [5], current users may dis-

appear (by termination) and new users may appear (by spawning), and therefore invSc,obs

is not a fixed set, but a set evolving over time; this is properly handled by the history-
dependent interpretation of temporal formulas.

Having the observations and the actions in place, it is time to zoom in the definition
of noninterference from [5] in more technical detail: For all users n of the second group
(here, the visible threads), the observation of n based on the history (where “history"
means, in [5] as well as here, “the sequence of actions the users have taken in the
past") is required to be the same as the observation of n on the restriction of the history
by removing all actions of users from the first group (here, the invisible threads). In
order to formally perform this removal, i.e., filter out the (Sc,obs)-invisible actions from
histories, we first define recursively visHistSc,obs ml, the visible restriction of a history ml:

visHistSc,obs[]=[] visHistSc,obs(ml # m) =

{
(visHistSc,obs ml) # m, if m ∈ visAvailSc,obs ml,
visHistSc,obs ml, otherwise.

Moreover, we collect the available visible threads throughout history ml in the set
visHavailSc,obs ml also defined recursively:
visHavailSc,obs [] = [{ε}]

visHavailSc,obs (ml # m) =

{
(visHavailSc,obs ml) # (visAvailSc,obs ml), if m ∈ visAvailSc,obs ml,
visHavailSc,obs ml, otherwise.

The scheduler sch is called noninterfering if the following holds for all OA-scenarios
(Sc,obs), all ml ∈ Sc, and all n ∈ visAvailSc,obs ml:

P
Sc,sch
ml (Takes invobs,Sc Until Takes n) = schml′,Ml′ n,

where (ml′,Ml′) = (visHistSc,obs ml,visHavailSc,obs ml).
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In the above equality, the lefthand side expresses the observation made by n at history
ml, and the righthand side the observation that n would make if any trace of invisible
threads were removed (from both the history and the available threads). Since our notion
of observation effectively hides invisible threads (in the style of τ-actions form process
algebra), the meaning of the above equality can be summarized as

Removal = Hiding (of invisible threads)

Note that the notion of scheduler noninterference is independent of the concrete notion
of command at the expense of quantifying universally over all scenarios.

An important question is whether a reasonable class of schedulers are noninterfer-
ing. Roughly speaking, any scheduler that is “politically correct", treating its threads
uniformly, is noninterfering.

Proposition 1. The uniform and round-robin schedulers from §2.3 are noninterfering.

Proof idea. We fix (Sc,obs) and ml ∈ Sc. We need to show the equality of two functions
defined on n ∈ visAvail ml, say F = G, where F n = P

Sc,sch
ml (Takes invobs,Sc Until Takes n)

and G n = schml′,Ml′ n.
For usch, noninterference follows immediately from its symmetry, since both F and

G are constant on visAvail ml. For rsch j, let m be the last thread in ml and k = $(ml). If
m is visible and k < j, then both F n and G n are either 1, if n = m, or 0, otherwise. If
m is invisible or k ≥ j, then both F n and G n are either 1, if n is the next visible thread
in the queue, or 0, otherwise. ��
Several other noninterfering schedulers are presented in [10, §A]. It is also instructive
to see an interfering one: Consider a modification of the round robin that increments
the quota at each shift to a new thread. Then consider the history ml = [n1,m,m,n2,n2]
with n1,n2 visible and m invisible. Since n2 still has one step in its quota, F n2 = 1. On
the other hand, ml′ = [n1,n2,n2], meaning that, at ml′, n2 yields to n1, hence G n2 = 0.

4.2 Possibilistic Noninterference

To discuss noninterference of commands, we fix an attacker-observation function aobs :
state→ odom. A typical choice of aobs [23] assumes the state consists of values stored
in variables classified as high-security or low-security and defines aobs to return the
low-variable part of the state (see [10, §D]). We define possibilistic noninterference by
a form of bisimilarity up to invisibility.

Invisibility of a command is defined as “never change the observation on the state",
technically, coinductively as the weakest predicate invis satisfying the following prop-
erty: for all c,s,γ,c1, . . . ,cl ,s′ such that invis c and c

s→ (γ, [c1, . . . ,cl ],s′), we have that:
(1) aobs s′ = aobs s, (2) invis ci for all i ∈ {1, . . . ,k}; (3) γ ∈ cmd implies invis γ .

Possibilistic bisimilarity of two commands is now defined coinductively as the
weakest relation ≈ satisfying the following property: for all c,d, if c≈ d, then either
invis c and invis d or, for all s, t,γ,c1, . . . ,cl ,s′,δ ,d1, . . . ,dk, t ′ such that aobs s = aobs t,
c

s→ (γ, [c1, . . . ,cl ],s′) and d
t→ (δ , [d1, . . . ,dk], t ′), we have that: (1) aobs s′ = aobs t ′;

(2) l = k and ci ≈ di for all i ∈ {1, . . . , l}; (3) if γ =⊥, then either δ =⊥ or invis δ ; (4)
if δ =⊥, then either γ =⊥ or invis γ; (5) if γ,δ ∈ cmd, then γ ≈ δ .
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A command c is called possibilistically noninterfering if c≈ c. Thus, possibilistic
noninterference of c means that alternative executions starting in states indistinguisha-
ble by the attacker proceed in a synchronized manner for as long as one of them does
not reach an invisible status, moment at which the other is required to also reach such a
status; moreover, termination should be matched by either termination or invisibility.

The componentwise extension of this notion to thread pools coincides with the flex-
ible scheduler-independent security introduced by Mantel and Sudbrock in [9]. As ar-
gued in [9], this notion is both compositional and flexible enough to allow the execution
time of programs to depend on secrets. However, it does share the common limitation
of PER approaches [15] aimed at scheduler independence: its rather strong lock-step
synchronization nature (albeit only on visible executions).

Note that the example from the introduction does not satisfy possibilistic noninter-
ference since, depending on the initial value of h, one alternative execution may enable
the visible action l := 2 earlier than another alternative execution. And indeed, our in-
tention with possibilistic noninterference is to guard (in the presence of noninterfering
schedulers) against probabilistic attacks of the kind allowed by this program—this will
be our main result, Th. 2.

4.3 Probabilistic Noninterference

We define probabilistic noninterference following the weak bisimulation approach taken
by Smith [18], using an adaptation of a corresponding notion from probabilistic pro-
cess algebra due to Baier and Hermanns [2]: Roughly, a command shall be deemed
probabilistically noninterfering if any two executions of it starting in states that differ
only on secret information traverse the same sequence of attacker observations with the
same probabilities. As argued in [18, p.11], this notion is suitable for protecting against
internal leaks, but not external leaks such as timing.

In our formalism, we can define everything in terms of scenarios and their scheduler-
induced Markov chains. Indeed, the function configc,s introduced in §3.2 “observes",
at each execution history ml, the whole thread pool configuration. The attacker’s ob-
servations on execution histories shall be much more restricted: only the state can be
observed, and only through aobs. Namely, assuming configc,s ml = (ml,Ml, thr, t), we
define obsc,s ml = aobs t. Thus, the OA-scenario (Scc,s,obsc,s) is a description of the
executions of command c starting in state s, as observed by the attacker.

Given H,H ′ ⊆ Sc and ml ∈ Scc,s, we define ml⇒H H ′ to be the set of all traces that
go through elements of H only and eventually reach an element of H ′, namely,

{mt ∈ Tracec,s. ∃nl′. [] �= nl′ + mt ∧ (∀nl≺ nl′. ml # nl ∈ H) ∧ ml # nl′ ∈ H ′},

where ≺ and + denote the strict and nonstrict prefix orderings on finite or infinite
sequences. Note that ml⇒H H ′ is empty unless ml ∈ H.

Given an equivalence relation E , ClsE denotes its set of equivalence classes, which we
simply call E-classes. Let (Sc,obs) be an OA-scenario. A relation E : Scc,s → Scc,s →
bool is called a sch-probabilistic bisimulation for (c,s) if the following hold:

(I1) E is an equivalence relation on Scc,s with countable set of equivalence classes.
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(I2) For ml,nl ∈ Scc,s, E ml nl implies obsc,s ml = obsc,s nl.
(I3) For distinct E-classes H,H ′ and ml,nl ∈H, P

sch,c,s
ml (ml⇒H H ′)=P

sch,c,s
nl (nl⇒H H ′).

Thanks to condition (I3), we can define, for any two distinct E-classes H and H ′,
Psch,c,s (H ⇒ H ′), the probability of moving from H directly to H ′ (without visiting any
other E-class), to be P

sch,c,s
ml (ml ⇒H H ′) for some (any) ml ∈ H. Thus, a probabilistic

bisimulation E provides a class partition of the scenario (I1) so that elements of the
same class are indistinguishable both w.r.t. observations (I2) and probabilistic behavior
(I3). By (I2), an attacker is only able to observe the sequence of E-classes induced by an
execution; by (I3), this sequence is statistically the same (modulo repetition) regardless
of the concrete E-class representatives.

We also define a binary version of this indistinguishability relation. (c,s) and (c′,s′)
are called sch-probabilistically bisimilar if there exist E,E ′,F such that:

(1) E and E ′ are sch-probabilistic bisimulations for (c,s) and (c′,s′), respectively.
(2) F : ClsE → ClsE ′ is a bijection such that

(a) obsc,s ml = obsc′,s′ ml′ for all ml,ml′,H with ml ∈ H ∈ ClsE and ml′ ∈ F H,

(b) Psch,c,s (H ⇒H1) = Psch,c′,s′ (F H ⇒ F H1) for all H,H1 ∈ ClsE ,
(c) F H0 = H ′

0, where H0 and H ′
0 are the equivalence classes of [] in ClsE and ClsE ′ .

Finally, c is called sch-probabilistically noninterfering if (c,s) and (c,s′) are sch-
probabilistically bisimilar for all s,s′ such that aobs s = aobs s′.

4.4 Noninterference Criterion

We can now state our main result connecting three concepts that were defined mutually
independently: possibilistic and probabilistic noninterference of commands and nonin-
terference of schedulers.

Theorem 2. If sch is noninterfering and c is possibilistically noninterfering, then c is
sch-probabilistically noninterfering.

Proof idea. The key of the proof consists of the definition, for any OA-scenario, of its
visible sub-OA-scenario obtained from removing, at each history, the currently invisible
threads. The latter can be proven probablistically bisimilar to the original OA-scenario,
the bisimilarity step being handled using the noninterference of sch. Moreover, from
the noninterference of c, it follows that Scc,s and Scc,s′ have the same visible sub-OA-
scenario Sc′, which makes them probabilistically bisimilar. (See [10, §E].) ��
Next we discuss the security requirements and guarantees of this theorem.

Requirement 1 (R1): Scheduler noninterference. This is a background condition that
needs to be verified for the scheduler once and for all. Its verification involves quan-
titative computation with probabilities. However, it is a natural condition expressing a
certain symmetry of the scheduler, and its verification tends to be easy for the examples
considered in §2.3 (as well as for other examples described in [10, §A]).

Requirement 2 (R2): Possibilistic noninterference. Unlike R2, this condition needs
to be verified for each individual program. Fortunately, this style of PER properties is
amenable for compositional verification [8, 15, 17, 18]. In particular, the type systems



Noninterfering Schedulers 249

from [3, 4, 9, 18], as well as the harsher ones from [17, 20], are static criteria on multi-
threaded programs enforcing this property.

Guarantee (G): Probabilistic noninterference. This appears to be the strongest se-
curity guarantee of a probabilistic system provided we ignore timing channels [18]:
An attacker making observations of the low part of the memory while the program by
multiple running cannot infer any secret, not even by statistically from multiple runs.

In order to further comprehend (G), let us have a look at a consequence in terms of
end-to-end security. Given c,s and S ∈ odom, we define endUpInc,s S⊆ Trace

sch,c,s
[]

as the
set of traces that eventually “end up in S", i.e., that eventually reach a point where the
attacker observation becomes S and stays constantly S—in LTL, this set is described by
the formula Ev (Alw obs−1

c,s ). Note that the traces in endUpInc,s S need not be terminating.

Proposition 3. If c is sch-probabilistically noninterfering, then, for all c,s,s′,S,

aobs s = aobs s′ implies P
sch,c,s
[]

(endUpInc,s S) = P
sch,c,s′

[]
(endUpInc,s′ S).

The guarantee of Prop. 3 is that executions starting in indistinguishable states stabi-
lize in any given attacker-indistinguishable class S with the same probabilities. Note
that termination implies stabilization (but not vice versa), so in particular Prop. 3 says
that if the two executions terminate, then the resulted states have the same probability
distribution w.r.t. what the attacker can see.

Example. We assume that programs are specified in a simple while language with
thread-spawning facilities, states are assignments of values to variables, variables are
classified into low and high, and the attacker observation is the low part of the state.
Consider the following multi-threaded program adapted from [9, §5.2]:

while True do {l1 := inp1 ; l2 := inp2 ; spawn T ; spawn T1 ; spawn T2}

where T is h := addH(l1,h), T1 is l := addL(l1, l), and T2 is l := addL(l2, l).
The program repeatedly performs the following actions: It receives two public values

(through input channels modeled here as low variables inp1 and inp2 assumed to be
volatile) and stores them in the low variables l1 and l2. Then it spawns three threads,
T,T1,T2. T applies the non-atomic operation addH for updating a private database h with
l1, whose timing depends on the value of h. T1 and T2 apply the atomic operation addL

for updating a public database l with l1 and l2, respectively.
This is an intuitively secure program w.r.t. time-insensitive attacks: regardless of

the values of the low variables, the execution of the main thread takes the same path,
repetitively spawning copies of T1,T2 (that assign low to low) and T (that assigns low
to high); the execution of T does depend on h, but this is harmless, since T does not
affect the low part of the state or the behavior of the other threads. The program is
automatically checked to be possibilistically noninterfering by existing type systems
[9, 18] (see also [10, §D]). Our Th. 2 ensures that it is also noninterfering if run under
any noninterfering scheduler, in particular, the uniform and round robin ones.

This was a simple example of a kind widely encountered in web computing and op-
erating systems: nonterminating multi-threaded programs providing a form of service.
However, it is not proved noninterfering by previous scheduler-independent criteria. In
particular, it does not satisfy strong security [17] (since the running time T may depend
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on secrets) or observational determinism [24] (since T1 and T2 are in a data race). Due
to nontermination, it also falls outside the scope of the criterion from [9].

5 Conclusions and Related Work

In this paper, we proposed a novel notion of scheduler noninterference, which was
proved to behave securely w.r.t. refinement of nondeterminsim: possibilistic noninter-
ference of the multi-threaded program implies probabilistic noninterference when run
under the given scheduler. We have not introduced novel notions of possibilistic or prob-
abilistic noninterference, but used (minor adaptations of) existing ones [9, 18]. Conse-
quently, we can employ existing syntactic methods for verifying that programs satisfy
the hypothesis of our main result, Th. 2.

Mantel and Sudbrock [9] define flexible scheduler-independent (FSI) security, which
we use as our possibilistic noninterference. They also introduce the class of robust
schedulers and they prove an end-to-end security property, in the style of our Prop. 3, but
conditioned by termination of the program. As already discussed, a major improvement
of our Th. 2 is freeness from the termination assumption which is both hard to check
and often not true. Even ignoring termination, the security guarantee of Th. 2 is signifi-
cantly stronger than that of [9], as it takes into account the whole sequence of attacker
observations throughout execution, and not only at the end of it. Another difference be-
tween our setting and [9] is the considered class of schedulers. Like our noninterfering
schedulers, the robust schedulers were shown to include the round robin and uniform
ones. However, robust schedulers are introduced via a probabilistic simulation relation
involving both the scheduler and FSI-secure thread pools. Our noninterference condi-
tion for schedulers has a more natural justification in terms of G&M noninterference
and is stated in isolation from the concrete operational semantics of threads (although it
does employ thread ID interleavings); arguably, it is also easier to check. On the other
hand, the notion of scheduler from [9] allows the flexibility of an arbitrary scheduler
state—we could not have employed the history-based G&M noninterference had we
worked with such general schedulers.

Smith [18] defines probabilistic noninterference via weak probabilistic bisimulation
and provides a type system criterion for it, assuming the uniform scheduler. Since the
guarantee of Th. 2 is precisely Smith’s probabilistic noninterference, our result is in
effect a generalization of his results to a wide class of schedulers.

Sabelfeld and Sands [17] introduce strong security for thread pools (a PER notion
requiring complete lock-step synchronization of alternative executions) and prove se-
curity w.r.t. all schedulers; moreover, Sabelfeld [15] proves that strong security can-
not be weakened if we are after a compositional notion covering the whole class of
schedulers. Zdancewic and Myers [24] take a whole different approach to scheduler
independence, focusing on concurrent programs that are a priori safe under refinement
attacks, in that the attacker’s sequence of observations is the same in any execution (ob-
servational determinism). This is achieved practically by a data race freedom analysis
in conjunction with a type system. Boudol and Castellani [4] describe yet another ap-
proach, based on an operational semantics for the scheduler, run in parallel with a thread
pool that it controls. They do not cover probabilistic schedulers or dynamic thread cre-
ation. Finally, Russo and Sabelfeld [13] achieve scheduler independence by allowing
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the threads to explicitly change their security levels and the scheduler to discriminate
between threads according to their levels. [13, §2] and [9, §6] survey more work on
scheduler-independent security. Unlike here, previous work [9, 17] allows schedulers
to depend on the low part of the state. This is also possible in our framework and is
pursued in [10, §A], but here it has been omitted as it brings no further insight into
our method.

This paper was concerned with lifting possibilistic noninterference to probabilistic
noninterference. Somewhat complementary, our previous work [11] studies and clas-
sifies various notions of possibilistic noninterference and their compositionality w.r.t.
language constructs.

Acknowledgment. We thank Jasmin Blanchette and the referees for useful comments
and suggestions. This work was supported by the DFG project Ni 491/13–2, part of the
DFG priority program Reliably Secure Software Systems (RS3).
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Simulations and Bisimulations
for Coalgebraic Modal Logics

Daniel Gorı́n and Lutz Schröder

Department of Computer Science, Universität Erlangen-Nürnberg

Abstract. Simulations serve as a proof tool to compare the behaviour of reac-
tive systems. We define a notion of Λ-simulation for coalgebraic modal logics,
parametric in the choice of a set Λ of monotone predicate liftings for a functor T .
That is, we obtain a generic notion of simulation that can be flexibly instantiated
to a large variety of systems and logics, in particular in settings that semanti-
cally go beyond the classical relational setup, such as probabilistic, game-based,
or neighbourhood-based systems. We show that this notion is adequate in several
ways: i) Λ-simulations preserve truth of positive formulas, ii) for Λ a separating
set of monotone predicate liftings, the associated notion of Λ-bisimulation cor-
responds to T -behavioural equivalence (moreover, this correspondence extends
to the respective finite-lookahead counterparts), and iii) Λ-bisimulations remain
sound when taken up to difunctional closure. In essence, we arrive at a modular
notion of equivalence that, when used with a separating set of monotone predicate
liftings, coincides with T -behavioural equivalence regardless of whether T pre-
serves weak pullbacks. That is, for finitary set-based coalgebras, Λ-bisimulation
works under strictly more general assumptions than T -bisimulation in the sense
of Aczel and Mendler.

1 Introduction

Coalgebra provides an abstract framework for the unified study of a wide variety of re-
active systems beyond the classical relational setup, including probabilistic, weighted,
neighbourhood-based, game-based, and preferential systems. As the basic notion of
equivalence in coalgebra, T -behavioural equivalence has emerged, which declares two
states to be equivalent if they are identified by some pair of coalgebra morphisms; in
case the type functor T admits a final coalgebra, T -behavioural equivalence is just
identification in the final T -coalgebra. As a proof principle, however, T -behavioural
equivalence is comparatively unwieldy, thus motivating the search for bisimulation-
type proof principles whereby two states can be shown to be behaviourally equivalent
by exhibiting a bisimulation relation between them. The advantage of such approaches
is that bisimulation relations may be comparatively small, making equivalence proofs
by bisimulation more manageable than direct proofs of behavioural equivalence.

The downside is that while behavioural equivalence is a canonical notion that works
for any type of coalgebras, it is rather less clear what a bisimulation is in general. In
case the type functor preserves weak pullbacks, the standard notion of T -bisimulation
gives a satisfactory answer: it can be uniformly defined for any T , it is always sound for
T -behavioural equivalence, given that T preserves weak pullbacks it is complete for T -
behavioural equivalence, and it coincides with standard notions in the main examples.

R. Heckel and S. Milius (Eds.): CALCO 2013, LNCS 8089, pp. 253–266, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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For functors that fail to preserve weak pullbacks, however, the search for a good generic
notion of bisimilarity remains largely open.

Here, we present a modally inspired notion of bisimulation that partly solves these
problems; specifically it does so for functors that admit a separating set of monotone
predicate liftings. This includes, but is not limited to, all finitary functors that pre-
serve weak pullbacks [5], thus properly extending the family of functors covered by
T -bisimulations in the finitary case (a separating example being the finitary part of
the monotone neighbourhood functor). Our notion of Λ-bisimilarity depends on distin-
guishing a modal signature Λ that we assume to consist of monotone operators. Key
features of Λ-bisimilarity are

– It is related to a corresponding notion of Λ-simulation, which bears a clear relation
to modal logic: all positive modal formulas over Λ are preserved by Λ-simulations.

– If Λ is separating, then Λ-bisimulation is sound and complete for behavioural
equivalence.

– We have a finite-lookahead version of Λ-bisimilarity. This Λ-n-bisimilarity is sound
and complete for the standard notion of n-behavioural equivalence defined via the
terminal sequence.

– Λ-bisimulation allows bisimulation proofs up to difunctionality (i.e. closure under
zig-zags).

– Λ-bisimulations are more general than T -bisimulations, i.e. every T -bisimulation
is a Λ-bisimulation (the converse holds for difunctional relations when T preserves
weak pullbacks and Λ is separating).

2 Preliminaries

The framework of coalgebraic modal logic [9] covers a broad range of modalities
including modal operators with non-relational semantics, such as probabilistic and
game-theoretic phenomena as well as neighbourhood semantics and non-material con-
ditionals [13]. This framework is parametric in syntax and semantics. The syntax is
given by a similarity type Λ, i.e. a set of modal operators with finite arities ≥ 0 (hence
possibly including propositional atoms). To simplify notation, we will pretend that all
operators are unary.

Definition 1. The set L(Λ) of Λ-formulas is given by the grammar:

φ, ψ ::= � | ¬φ | φ ∧ ψ | ♥φ (♥ ∈ Λ).

We use the standard derived Boolean operators ∨, →, etc. We use rank(φ) to denote
the maximum number of nested occurrences of ♥ ∈ Λ in φ.

The semantics is parametrized by associating a Λ-structure 〈T, {�♥λ�}λ∈Λ〉 to a
similarity type Λ. Here T is an endofunctor on the category Set and each �♥λ� is a
predicate lifting, that is, a natural transformation �♥� : Q→̇Q ◦ T op , where Q is the
contravariant powerset functor Setop → Set (that is, QX = 2X for every set X , and
given f : X → Y , Qf : 2X → 2Y is given by Qf(A) = f−1[A]). For the extension of
predicate liftings to the higher-arity case see [14].
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Assumption 2. We can assume w.l.o.g. that T preserves injective maps [1]. For con-
venience of notation, we will in fact sometimes assume that subset inclusions X ↪→ Y
are mapped to subset inclusions TX ↪→ TY . Moreover, we assume w.l.o.g. that T is
non-trivial, i.e. TX = ∅ =⇒ X = ∅ (otherwise, TX = ∅ for all X).

We typically identify a similarity type Λ and its associated Λ-structure, and refer to
both as Λ. Unless otherwise stated, T stands for the underlying functor of the given
Λ-structure.

For a given choice of Λ, a model for L(Λ) is just a T -coalgebra 〈X, ξ〉, i.e. a non-
empty set X (the set of states) and a transition function ξ : X → TX . Given x ∈ X ,
the truth value of L(Λ)-formulas is defined as:

x |=ξ � always (1)

x |=ξ ¬φ ⇐⇒ x �|=ξ φ (2)

x |=ξ φ ∧ ψ ⇐⇒ x |=ξ φ and x |=ξ ψ (3)

x |=ξ ♥φ ⇐⇒ ξ(x) |= ♥�φ�ξ (4)

where �φ�ξ , the extension of φ in ξ, is given by �φ�ξ = {x ∈ X | x |=ξ φ}, and for
t ∈ TX and A ⊆ X , t |= ♥A is a more suggestive notation for t ∈ �♥�XA. When
clear from the context, we shall write simply x |= φ and �φ�.

Example 3. Coalgebras for the (covariant) finite powerset functor Pω are finitely
branching directed graphs. For a similarity type Λ = {�,♦} consider the associated
predicate liftings:

���X(A) := {B | B ⊆ A} (5)

�♦�X(A) := {B | B ∩ A �= ∅} (6)

They correspond to the classical modal operators of relational modal logics, so the logic
we get in this case is essentially the mono-modal version of Hennessy-Milner logic [4].
To obtain the basic modal logic K one needs to enrich the coalgebra structure with an
interpretation for propositions. So let V be a set of proposition symbols and let CV be
the constant functor that maps every set X to 2V . For each p ∈ V , the (nullary) predicate
lifting �p�X := {π ∈ 2V | p ∈ π} describes structures satisfying p. The Kripke functor
K is then defined as KX := CV × PX and the similarity type Λ = V ∪ {♦,�} is
interpreted using the corresponding predicate liftings on the appropriate projections.

Example 4. The language of graded modal logic corresponds to the similarity type
Λ = {♦k | k ∈ N} and is interpreted over the infinite multiset functor B∞, i.e.,
B∞X = X → N ∪ {∞}. Coalgebras for B∞ are multigraphs, i.e. directed graphs
whose edges are annotated with (potentially infinite) non-negative integer multiplici-
ties. Interpretation of the modal operators is by way of the following family of predicate
liftings, for each k ∈ N:

�♦k�X(A) := {b ∈ B∞X | b(A) > k} (7)

where by b(A) we denote
∑

x∈A b(x), i.e. we use b ∈ B∞X like a measure on X .
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Example 5. Probabilistic modal logics are obtained when one takes the functor D that
maps X to the set of discrete probability distributions over X . For the language ΛM =
{Mp | p ∈ [0, 1] ∩Q}, with Mp informally read as “with probability more than p”, the
corresponding predicate liftings are defined analogously as for graded modal logics.
One can instead take ΛP = {Lp | p ∈ [0, 1] ∩Q}, with Lp read as “with probability at
least p”, and interpreted using

�Lp�X(A) := {μ ∈ DX | μ(A) ≥ p}.

Example 6. As a final example, consider the subfunctorM of the neighbourhood func-
tor Q ◦ Q given by MX = {S ∈ QQX | S is upwards closed}. Over this functor one
can obtain the monotone neighborhood semantics of modal logic with Λ = {�} using
the predicate lifting ���X(A) := {S ∈ MX | A ∈ S}.

A modal operator♥ is called monotone if it satisfies the condition

A ⊆ B ⊆ X implies �♥�XA ⊆ �♥�XB.

While all the examples above are monotone, it is worth stressing that the framework
of coalgebraic modal logics can indeed accommodate non-monotone logics. We will
however focus on the monotone case.

Assumption 7. In the following, we assume all modal operators to be monotone.

For a given endofunctor T , the choice of both the similarity type Λ and the associated
Λ-structure over T may vary (although the number of choices is formally limited [14]),
and each choice yields a potentially different logic. When the choice of predicates of
liftings in Λ is rich enough as to uniquely describe every element in TX , we call such
Λ separating [10]:

Definition 8. We say that Λ is separating if t ∈ TX is uniquely determined by the set
{(♥, A) ∈ Λ× PX | t |= ♥A}.

It is not hard to see that, for example, V ∪ {�} as well as V ∪ {♦} are separating over
the Kripke functor K of Example 3. The reader is referred to [14] for characterizations
of functors that admit separating sets of predicate liftings.

Definition 9. Given T -coalgebras C and D, we say that states x in C and y in D are
behaviourally equivalent, and write (C, x) ≈ (D, y), or shortly x ≈ y, whenever there
exists a T -coalgebra E and coalgebra morphisms f : C → E and g : D → E such that
f(x) = g(y).

Simulations like the ones we will present in Section 3 occur frequently when dealing
with logics that do not contain a Boolean basis; typically, negation is absent or only
allowed on restricted positions (e.g., in front of atoms). The notion of positive formula
is a generalization of this idea.

Definition 10. The language L+(Λ) of positive Λ-formulas is given by:

φ, ψ ::= � | ⊥ | φ ∧ ψ | φ ∨ ψ | ♥φ (♥ ∈ Λ).
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We can regard L+(Λ) as a syntactic fragment of L(Λ) where ∨ is now taken as prim-
itive. The Boolean connectives of L+(Λ) allow expressing all the monotone Boolean
functions, but notice that Λ may contain dual operators (e.g., Λ = {�,♦}) — in fact
if Λ is closed under dual operators then L+(Λ) is as expressive as L(Λ). In general, of
course, L+(Λ) is a proper fragment of L(Λ).

3 Coalgebraic Simulation

We now proceed to introduce our notion of modal simulation. We use standard notation
for relations; in particular, given a binary relation S ⊆ X × Y and A ⊆ X , we denote
by S[A] the relational image S[A] = {y | ∃x ∈ A. xSy}.

Definition 11 (Λ-Simulation, Λ-Homomorphism). Let C = (X, ξ) and D = (Y, ζ)
be T -coalgebras. A Λ-simulation S : C → D (of D by C) is a relation S ⊆ X × Y
such that whenever xSy then for all ♥ ∈ Λ and all A ⊆ X

ξ(x) |= ♥A implies ζ(y) |= ♥S[A].

A function f : X → Y is a Λ-homomorphism if its graph is a Λ-simulation.

Lemma 12. Λ-simulations are stable under unions and relational composition. More-
over, equality is always a Λ-simulation.

Definition 13 (Λ-ordering). The Λ-preorder ≤Λ on TX is defined by

s ≤Λ t ⇐⇒ ∀♥ ∈ Λ,A ⊆ X.(s |= ♥A =⇒ t |= ♥A).

Lemma 14. Let C = (X, ξ) and D = (Y, ζ) be T -coalgebras. A map f : X → Y is a
Λ-homomorphism iff for all x ∈ X ,

Tf(ξ(x)) ≤Λ ζ(f(x)). (8)

Proof. ‘Only if’: Let ♥ ∈ Λ, A ⊆ Y . Then

Tf(ξ(x)) |= ♥A ⇐⇒ ξ(x) |= ♥f−1[A] (naturality)

=⇒ ζ(f(x)) |= ♥f [f−1[A]] (simulation)

=⇒ ζ(f(x)) |= ♥A (monotony).

‘If’: Let ξ(x) |= ♥A. We have to show ζ(f(x)) |= ♥f [A], which will follow by (8)
from Tf(ξ(x)) |= ♥f [A]. By naturality, the latter is equivalent to ξ(x) |= ♥f−1[f [A]].
This however follows from ξ(x) |= ♥A by monotony. ��

Remark 15. In the notation of the above lemma, another equivalent formulation of f
being a Λ-homomorphism is that ξ(x) |= ♥f−1[A] implies ζ(f(x)) |= ♥A for ♥ ∈ Λ,
A ⊆ Y . This is an immediate consequence of the lemma by naturality of predicate
liftings.

As announced, Λ-simulations preserve the truth of positive modal formulas over Λ:
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Theorem 16. If S is a simulation and xSy, then x |=ξ φ implies y |=ζ φ for every
positive Λ-formula φ.

Proof. Induction over φ, with trivial Boolean cases (noting that these do not include
negation). For the modal case, we have

x |=ξ ♥φ ⇐⇒ ξ(x) |= ♥[[φ]]

=⇒ ζ(y) |= ♥{y′ | ∃x′.(x′ |= φ ∧ x′Sy′)}
=⇒ ζ(y) |= ♥[[φ]]

⇐⇒ y |=ζ ♥φ.

��

Example 17. 1. Over Kripke frames, when Λ = {♦}, then a Λ-simulation S : C →
D is just a simulation C → D in the usual sense. (Proof: ‘only if’: if xSy and
x′ ∈ ξ(x), then ξ(x) |= ♦{x′} and hence ζ(y) |= ♦{y′ | x′Sy′}, i.e. there exists y′

such that x′Sy′ and y′ ∈ ζ(y). ‘If’: If ξ(x) |= ♦A, then there exists x′ ∈ A ∩ ξ(x)
and hence we have y′ ∈ ζ(y) such that x′Sy′, so that ζ(y) |= ♦{y′′ | ∃x′′ ∈
ξ(x). x′′Sy′′}.)

2. When Λ = {�}, then a Λ-simulation S : C → D is just a simulation D → C in
the usual sense. (Proof: ‘only if’: Let xSy and y′ ∈ ζ(y). Assume that we cannot
find x′ ∈ ξ(x) such that x′Sy′; that is, ξ(x) |= �{x′ | ¬(x′Sy′). Then by the
definition of Λ-simulation, ζ(y) |= �A for an A with y′ /∈ A, contradiction. ‘If’:
Let ξ(x) |= �A. To show that ζ(y) |= �{y′ | ∃x′ ∈ A. x′Sy′}, let y′ ∈ ζ(y). By
the simulation property, there exists x′ ∈ ξ(x) such that x′Sy′, and since ξ(x) |=
�A, we have x′ ∈ A.)

3. Consequently, a {�,♦}-simulation is a bisimulation in the usual sense.
4. For probabilistic modal logic, with Λ = {Lp | p ∈ [0, 1] ∩ Q}, a relation S ⊆

X × Y between D-coalgebras (X, ξ) and (Y, ζ) is a Λ-simulation iff for all xSy
and all A ⊆ X ,

ζ(y)(S[A]) ≥ ξ(x)(A)

(keep in mind that ξ(x) and ζ(y) are probability measures that we can apply to
subsets). The same comes out when we take Λ = {Mp | p ∈ [0, 1] ∩Q}.

5. For graded modal logic, with Λ = {♦k | k ∈ N}, we obtain the same inequality
characterizing Λ-simulations as for probabilistic logic (keeping in mind that we can
see ξ(x) ∈ B∞(X), ζ(y) ∈ B∞(Y ) as discrete N ∪ {∞}-valued measures).

6. For monotone neighbourhood logic, with Λ = {�}, we have that a relation S ⊆
X × Y between M-coalgebras (X, ξ) and (Y, ζ) is a Λ-simulation iff for xSy,
A ∈ ξ(x) implies S[A] ∈ ζ(y).

For many purposes, simulations can be already too strong, e.g. when we are interested
in preservation results for positive formulas up to a certain modal depth. It is therefore
natural to consider n-simulations.

Definition 18 (Λ-n-simulation). Let C = (X, ξ) and D = (Y, ζ) be T -coalgebras.
We define the notion of Λ-n-simulation inductively as follows. Any S0 ⊆ X × Y is a
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Λ-0-simulation. A relation Sn+1 ⊆ X × Y is a Λ-(n + 1)-simulation if there exists a
Λ-n-simulation Sn such that Sn+1 ⊆ Sn and for all x, y, xSn+1y implies that for all
♥ ∈ Λ, A ⊆ X

ξ(x) |= ♥A implies ζ(y) |= ♥Sn[A].

Theorem 19. If S is a Λ-n-simulation and xSy, then x |=ξ φ implies y |=ζ φ for every
positive Λ-formula φ of rank at most n.

Proof. Induction on n. The base case n = 0 is trivial since then φ is equivalent to either
� or ⊥. For n > 0, we proceed by induction on φ, the interesting case being:

x |=ξ ♥ψ ⇐⇒ ξ(x) |= ♥[[ψ]]

=⇒ ζ(y) |= ♥Sn−1[[[ψ]]]

=⇒ ζ(y) |= ♥[[ψ]] (outer IH + monotony)

⇐⇒ y |=ζ ♥ψ.

��

4 Bisimulations for All

The notion of Λ-(n)-simulation naturally yields a notion of bisimulation (i.e., simula-
tions in both directions). The yardstick for any notion of bisimulation is T -behavioural
equivalence (see Section 2). We say that a notion of bisimulation is sound for T -
behavioural equivalence if any two states related by bisimulation are T -behaviourally
equivalent, and complete for T -behavioural equivalence if any two T -behaviourally
equivalent states can be related by a bisimulation.

The standard coalgebraic notion of (Aczel-Mendler) T -bisimulation that we recall
below is always sound for T -behavioural equivalence, and complete for T -behavioural
equivalence if T preserves weak pullbacks. We will show that our notion of Λ-
bisimilarity is always sound and complete for T -behavioural equivalence, provided that
Λ is separating. It has recently been shown that every finitary functor that preserves
weak pullbacks admits a separating set of monotone predicate liftings [5], so that at
least in the finitely branching case, Λ-bisimilarity applies (strictly) more widely than
T -bisimilarity. Notice also that Λ-bisimulations enjoy nice closure properties, in partic-
ular under unions and composition (see Lemma 12), which for T -bisimulations is only
the case, again, when T preserves weak pullbacks.

Definition 20. Λ-bisimulation is a Λ-simulation S such that S−1 is a Λ-simulation as
well. Analogously, if S and its converse S−1 are Λ-n-simulations, then S is a Λ-n-
bisimulation.

Example 21. 1. Over Kripke frames, both {�}-bisimulations and {♦}-bisimulations
are just bisimulations in the standard sense.

2. Using the description from Example 17, for probabilistic modal logic with Λ =
{Lp | p ∈ [0, 1] ∩ Q}, a relation S ⊆ X × Y between D-coalgebras (X, ξ) and
(Y, ζ) is a Λ-bisimulation iff for all xSy and all A ⊆ X , B ⊆ Y

ζ(y)(S[A]) ≥ ξ(x)(A) and ξ(x)(S−1[A]) ≥ ζ(y)(A).
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Note that standardly, probabilistic bisimulations are explicitly described (i.e. other
than via Aczel-Mendler bisimulation) only for the case where S is an equivalence
relation (see, e.g., [6,16]). In case (X, ξ) = (Y, ζ) and S is an equivalence relation
on X , the condition above can be rewritten to obtain that S is a Λ-bisimulation iff
for every set A ⊆ X that is closed under S (so that S[A] = A = S−1[A]),

ξ(x)(A) = ξ(y)(A)

wheneverxSy, which is exactly the standard definition of probabilistic bisimulation
for this case.

3. For Λ = {�} interpreted over monotone neighbourhood frames, Λ-bisimulations
are easily seen to be exactly monotone bisimulations as defined by Pauly [11]
(see [3]; a similar definition for effectivity models can be found in [12, Definition
2.40]).

Lemma 22. If C, D are T -coalgebras and f : C → D is a coalgebra morphism, then
the graph of f is a Λ-bisimulation.

Proof. It follows from Lemma 14 that the graph of f is a Λ-simulation. To see that its
converse is a Λ-simulation, let C = (X, ξ), D = (Y, ζ), and let x ∈ X , ♥ ∈ Λ, A ⊆ Y
such that ζ(f(x)) |= ♥A. Now ζ(f(x)) = Tf(ξ(x)) because f is a coalgebra mor-
phism, so we obtain ξ(x) |= ♥f−1[A] by naturality of predicate liftings, as required.

��

We are now ready to prove our main results stating that Λ-bisimulation is sound and
complete for behavioural equivalence provided that Λ is separating.

Lemma 23. The behavioural equivalence relation ≈ between two given T -coalgebras
is a Λ-bisimulation.

In other words, Λ-bisimulation is always complete for behavioural equivalence.

Proof. Let C = (X, ξ), D = (Y, ζ) be T -coalgebras; it suffices to show that be-
havioural equivalence ≈ (as a relation between X and Y ) is a Λ-simulation between
C and D. Given x ≈ y, ♥ ∈ Λ and A ⊆ X such that ξ(x) |= ♥A, we then have to
show that ζ(y) |= ♥(≈[A]). So let E be a T -coalgebra and f : C → E and g : D → E
be coalgebra morphisms such that f(x) = g(y). By Lemma 22, and by stability of
simulations under composition, the relation g−1f = {(x′, y′) | f(x′) = g(y′)} is a
Λ-simulation. Thus, we have ζ(y) |= ♥g−1[f [A]]; since g−1f is contained in ≈, we
are done by monotony. ��

Soundness depends, of course, on separation:

Theorem 24. If Λ is separating, then Λ-bisimilarity is sound and complete for
behavioural equivalence.

Proof. As stated above, Lemma 23 proves completeness; it remains to show sound-
ness. Let C = (X, ξ) and D = (Y, ζ) be T -coalgebras, and let S ⊆ X × Y be a
Λ-bisimulation. Let Z be the quotient of the disjoint sum X + Y by the equivalence
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relation generated by S, and let κ1 : X → Z and κ2 : Y → Z denote the prolongations
of the coproduct injections into the quotient. It suffices to define a coalgebra structure χ
on Z that makes κ1 and κ2 into coalgebra morphisms. We thus have to show that putting

χ(κ1(x)) = Tκ1(ξ(x))

χ(κ2(y)) = Tκ2(ζ(x))

yields a well-defined map Z → TZ . To this end, it suffices to show that
Tκ1(ξ(x)) = Tκ2(ζ(y)) whenever xSy. We prove this using separation by showing
that Tκ1(ξ(x)) |= ♥A iff Tκ2(ζ(y)) |= ♥A for ♥ ∈ Λ, A ⊆ Z . We prove only the
left-to-right implication, the converse one being symmetric. So let Tκ1(ξ(x)) |= ♥A.
Then ξ(x) |= ♥κ−1

1 [A] by naturality, and hence ζ(y) |= ♥S[κ−1
1 [A]] since S is a Λ-

simulation. Now clearly S[κ−1
1 [A]] ⊆ κ−1

2 [A], so that ζ(y) |= ♥κ−1
2 [A] by monotony.

We are done by naturality. ��
As mentioned above, in the case where T preserves weak pullbacks, it is well-known
that T -bisimilarity in the sense of Aczel and Mendler is also sound and complete for be-
havioural equivalence, so that T -bisimilarity and Λ-bisimilarity coincide when Λ is sep-
arating. But we can do better: T -bisimulations are Λ-bisimulations (so Λ-simulations
are at least as convenient a tool as T -bisimulations), and for T preserving weak pull-
backs and Λ separating, difunctional Λ-bisimulations are T -bisimulations. We recall
the relevant definitions:

Definition 25. A T -bisimulation between T -coalgebras (X, ξ) and (Y, ζ) is a relation
S ⊆ X × Y such that there exists a coalgebra structure ρ : S → TS that makes the
projections S → X and S → Y into coalgebra morphisms.

Definition 26. A binary relation S ⊆ X × Y is difunctional if whenever xSy, zSy,
and zSw, then xSw.

Essentially, we obtain a difunctional relation if we take an equivalence relation S on the
disjoint union X +Y of two sets and restrict it to X ×Y , i.e. take S ∩ (X ×Y ) (where
originally S ⊆ (X + Y )× (X + Y )).

We now prove that all T -bisimulations are Λ-bisimulations, for any Λ and T , and that
the converse holds for difunctional relations if T preserves weak pullbacks. We conjec-
ture that the assumption of difunctionality can actually be removed. Moreover, we prove
along the way that Λ-bisimulation up to difuctional closure is sound, a property that is
then inherited by T -bisimulation in case T preserves weak pullbacks.

To begin, we note that every relation S ⊆ X×Y has a difunctional closure S̄, where
xS̄y iff there exists chains x = x0, . . . , xn in X and y0, . . . , yn = y in Y such that
xiSyi for i = 0, . . . , n and xi+1Syi for i = 0, . . . , n− 1.

Definition 27. A Λ-bisimulation up to difunctionality between T -coalgebras (X, ξ)
and (Y, ζ) is a relation S ⊆ X × Y such that whenever xSy and ξ(x) |= ♥A for
♥ ∈ Λ, A ⊆ X , then ζ(y) |= ♥S̄[A], where S̄ denotes the difunctional closure of S,
and the analogous condition holds for S−1.

Proposition 28. Let S ⊆ X×Y be a relation between T -coalgebras (X, ξ) and (Y, ζ).
Then S is a Λ-bisimulation up to difunctionality iff the difunctional closure of S is a
Λ-bisimulation.
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Proof. ‘If’ is trivial; we show ‘only if’. Let S̄ be the difunctional closure of S. Let♥ ∈
Λ, A ⊆ X such that ξ(x) |= ♥A, and let xS̄y, i.e. we have x = x0, . . . , xn ∈ X and
y0, . . . , yn = y ∈ Y such that xiSyi for i = 0, . . . , n and xi+1Syi for i = 0, . . . , n−1.
We define A0, . . . , An ⊆ X and B0, . . . , Bn ⊆ Y inductively by A0 = A, Bi =
S̄[Ai], and Ai+1 = S̄−1[Bi]. By induction, ξ(xi) |= ♥Ai and ζ(yi) |= ♥Bi for all i.
Moreover, by difunctionality of S̄, Bi = S̄[A] for all i, so that ζ(y) = ζ(yn) |= ♥S̄[A]
as required. The proof that S̄−1 is also a Λ-simulation is completely analogous. ��

Corollary 29. Let Λ be separating. Then Λ-bisimilarity up to difunctionality is sound
and complete for T -behavioural equivalence.

To complement this, we explicitly define a notion ofT -bisimulation up to difunctionality:

Definition 30. A T -bisimulation up to difunctionality between T -coalgebras (X, ξ)
and (Y, ζ) is a relation S ⊆ X × Y such that there exists a map ρ : S → T S̄, where
S̄ denotes the difunctional closure of S, such that T p̄1ρ = ξp1 and T p̄2ρ = ζp2. Here
p1 : S → X , p2 : S → Y , p̄1 : S̄ → X , and p̄2 : S̄ → Y denote the projections.

It does not seem clear in general that an analogue of Proposition 28 holds for T -
bisimulations. For the case where T preserves weak pullbacks, such an analogue will
follow from the identification with Λ-bisimulations.

Theorem 31. Every T -bisimulation (up to difunctionality) is a Λ-bisimulation (up to
difunctionality).

Proof. Let (X, ξ) and (Y, ζ) be T -coalgebras. The claim for plain bisimulations is im-
mediate by Lemma 22 and stability of Λ-bisimulations under composition.

For the second part, let S be a T -bisimulation up to difunctionality between (X, ξ)
and (Y, ζ), and let S̄ denote the difunctional closure of S. Thus, we have ρ : S → T S̄
such that T p̄1ρ = ξp1 and T p̄2ρ = ζp2, where p1 : S → X , p2 : S → Y , p̄1 : S̄ → X ,
p̄2 : S̄ → Y denote the projections. Let ♥ ∈ Λ, A ⊆ X such that ξ(x) |= ♥A; we
have to show ζ(y) |= ♥S̄[A]. Now ξ(x) = Tp1ρ(x, y), and hence ρ(x, y) |= ♥p̄−1

1 [A].
Since ζ(y) = Tp2ρ(x, y), we have to show ρ(x, y) |= ♥p̄−1

2 S[A]. By monotonicity,
this follows from p̄−1

1 [A] ⊆ p̄−1
2 [S̄[A]]. ��

The announced partial converse to this is

Theorem 32. If Λ is separating and T preserves weak pullbacks, then difunctional
Λ-bisimulations are T -bisimulations, and Λ-bisimulations up to difunctionality are T -
bisimulations up to difunctionality.

Proof. For the first part, let S ⊆ X × Y be a difunctional Λ-bisimulation between T -
coalgebras (X, ξ) and (Y, ζ). Let p1 : S → X and p2 : S → Y denote the projections.
Let

S
p1 ��

p2

��

X

q2

��
Y q2

�� Z
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be a pushout; since S is difunctional, this is also a pullback. Now observe that the square

S
p1 ��

p2

��

X
ξ �� TX

Tq2

��

Y

ζ

��
TY

Tq2

�� TZ

(9)

commutes. To show this, we use separation: let ♥ ∈ Λ, and let A ⊆ Z . After one
application of naturality, we have to show that when xSy then ξ(x) |= ♥q−1

1 [A] iff
ζ(x) |= ♥q−1

2 [A]. We show ‘only if’: observe that Z arises from X + Y by quoti-
enting modulo the equivalence relation ∼S generated by S. Thus q−1

1 [A] consists of
the elements of X whose ∼S-equivalence class belongs to A, similarly for q−1

2 [A].
From ξ(x) |= ♥q−1

1 [A] we conclude ζ(y) |= ♥S[q−1
1 [A]] because S is a Λ-simulation.

But S[q−1
1 [A]] ⊆ q−1

2 [A] because clearly each element of S[q−1
1 [A]] is ∼S-equivalent

to an element of q−1
1 [A] and hence its equivalence class belongs to A. Therefore,

ζ(y) |= ♥q−1
2 [A]. The converse implication is shown dually.

From commutation of (9) we now obtain, by weak preservation of pullbacks, a map
ρ : S → TS such that Tp1ρ = ξp1 and Tp2ρ = ζp2, i.e. ρ is a witness for S being a
T -bisimulation.

For the second part, let S be a Λ-bisimulation up to difunctionality. By Proposi-
tion 28, the difunctional closure S̄ of S is a Λ-bisimulation and hence, by the first part,
a T -bisimulation. By composing the T -coalgebra structure ρ : S̄ → T S̄ as in the defi-
nition of T -bisimulation with the inclusion S ↪→ S̄, we see that S is a T -bisimulation
up to difunctionality. ��

Corollary 33. If T preserves weak pullbacks, then T -bisimulations up to difunctional-
ity are sound (and complete) for T -behavioural equivalence.

Similar results hold for Λ-n-bisimulation. It is easy to see that Λ-n-bisimulations pre-
serve and reflect the truth of formulas with up to n nested modalities. A similar no-
tion of preservation, n-step-equivalence was considered in [15], obtained by projecting
into the terminal sequence. We can show that n-step-equivalence coincides with Λ-n-
bisimilarity when Λ is separating. For the bounded depth version, no n-step variant of
T -bisimulation seems to be available for comparison.

Definition 34. The terminal sequence of a given functor T is the sequence given by
T0 = 1 (some singleton set) and Tn+1 = TTn, connected by functions pn : Tn+1 →
Tn, where pn+1 = Tpn. Every T -coalgebra C = (X, ξ) defines a cone over the ter-
minal sequence by ξ0 : C → 1 (uniquely defined) and ξn+1 = Tξn ◦ ξ. Given T -
coalgebras (X, ξ) and (Y, ζ) and elements x ∈ X , y ∈ Y , we say that x and y are
n-step equivalent (notation: x ≈n y) whenever ξn(x) = ζn(y).

Lemma 35. Let C = (X, ξ) and D = (Y, ζ) be T -coalgebras. The n-step-equivalence
relation ≈n⊆ X × Y is a Λ-n-bisimulation.
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Proof. Of course, it suffices to show that ≈n is a Λ-n-simulation. We proceed by in-
duction on n. Clearly, ≈0 = X × Y is a Λ-0-simulation. For the inductive step, let
x ≈n+1 y and let ♥ ∈ Λ, A ⊆ X such that ξ(x) |= ♥A. We then have

ξ(x) |= ♥A =⇒ ξ(x) |= ♥ξ−1
n [ξn[A]] (monotony)

=⇒ Tζn(ζ(y)) = ζn+1(y) = ξn+1(x) (x ≈n+1 y)

= (Tξn)(ξ(x)) |= ♥ξn[A] (naturality)

=⇒ ζ(y) |= ♥ζ−1
n [ξn[A]] (naturality)

= ♥ ≈n[A] (definition of ≈n).

By the inductive hypothesis, ≈n is a Λ-n-simulation, and, moreover, ≈n+1⊆≈n, so
≈n+1 is a Λ-(n + 1)-simulation. ��

Of course, the converse of this lemma does not hold in general (e.g., take T to be the
multiset functor and consider Λ = {♦0}). However, we do have the following.

Theorem 36. If Λ is a separating set of predicate liftings, then Sn ⊆ ≈n for every
Λ-n-bisimulation Sn.

Proof. Induction on n. Let C = (X, ξ), D = (Y, ζ) be T -coalgebras, let Sn+1 ⊆ X×Y
be a Λ-(n + 1)-bisimulation, and let xSn+1y. Let Sn ⊇ Sn+1 be an n-bisimulation as
in the definition of Λ-(n + 1)-bisimilarity.

We show ξn+1(x) = ζn+1(y) using separation. Thus, let ♥ ∈ Λ, A ⊆ Tn. We have
to show that ξn+1(x) |= ♥A iff ζn+1(y) |= ♥A; by symmetry, it suffices to prove ‘only
if’. Since ξn+1 = Tξξn, we have, by naturality, ξ(x) |= ♥ξ−1

n [A]. By simulation, it
follows that ζ(y) |= ♥Sn[ξ−1

n [A]]. By the inductive hypothesis, Sn ⊆≈n, so that we
obtain ζ(y) |= ♥ ≈n[ξ−1

n [A]] by monotony. Now ≈n[ξ−1
n [A]] = ζ−1

n [A] by definition
of ≈n, and hence ζn+1(y) = Tζnζ(y) |= ♥A by naturality. ��

In other words, Λ-n-bisimulation is always complete for n-step equivalence, and sound
if Λ is separating.

5 Related Work

Recent work by Enqvist [2] introduces a notion of Λ-homomorphism that is almost a
special case of a Λ-simulation, and in fact shows that such Λ-homomorphisms can be
induced by a relator in the sense of [7], so that a notion related to Λ-simulation can
itself be regarded as implicit in that work. When we say ‘almost’, we mean that the
implication in the definition of Λ-homomorphism goes the other way in Enqvist’s work
than it does here, so that in particular Theorem 16 would fail for his notion.

In [8] it is shown that so-called lax extensions of T preserving diagonals induce no-
tions of bisimulation that are sound and complete for behavioural equivalence, and that
a finitary functor has such an extension iff it admits a separating set of finitary mono-
tone predicate liftings. Our result, while otherwise working with similar assumptions,
does not suppose finitariness of the functor.
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In [7] a generic theory of coalgebraic simulation is developed using relators. One
can show that our notion of Λ-simulation is induced by a relator and therefore sub-
sumed by that framework. We cannot currently make out that any of our results about
Λ-(bi)simulation could be obtained by instantiating the generic results, however.

6 Conclusions

We have introduced novel notions of Λ-simulation and Λ-bisimulation that work well in
a setting where the coalgebraic type functor admits a separating set Λ of monotone pred-
icate liftings. In particular, we have shown that Λ-bisimilarity is, in this setting, always
sound and complete for T -behavioural equivalence, and moreover always admits a nat-
ural notion of bisimulation up to difunctionality. We have shown that T -bisimulations
are always Λ-bisimulations, similarly for versions up to difunctionality, and that the
converse holds for versions up to difunctionality in case T preserves weak pullbacks.
We leave the question whether the converse holds in the plain case under preservation
of weak pullbacks as an open problem.
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A Coalgebraic View of ε-Transitions

Alexandra Silva� and Bram Westerbaan

ICIS, Radboud University Nijmegen

Abstract. In automata theory, a machine transitions from one state
to the next when it reads an input symbol. It is common to also allow
an automaton to transition without input, via an ε-transition. These
ε-transitions are convenient, e.g., when one defines the composition of
automata. However, they are not necessary, and can be eliminated. Such
ε-elimination procedures have been studied separately for different types
of automata, including non-deterministic and weighted automata.

It has been noted by Hasuo that it is possible to give a coalgebraic
account of ε-elimination for some automata using trace semantics (as
defined by Hasuo, Jacobs and Sokolova).

In this paper, we give a detailed description of the ε-elimination pro-
cedure via trace semantics (missing in the literature). We apply this
framework to several types of automata, and explore its boundary.

In particular, we show that is possible (by careful choice of a monad)
to define an ε-removal procedure for all weighted automata over the
positive reals (and certain other semirings). Our definition extends the
recent proposals by Sakarovitch and Lombardy for these semirings.

1 Introduction

Automata are among the most basic structures in Computer Science. They have
applications in a wide range of areas, including parsing, speech processing, and
image recognition/generation software. Despite their simplicity, much research
is still devoted to the semantics of automata and of related constructions.

Coalgebra is a mathematical framework to study dynamical systems, of which
automata are prime examples. Deterministic automata were the first automata
to be studied as coalgebras in the seminal paper by Rutten [15]. Subsequently,
various other types of automata and constructions were studied coalgebraically.
This view has unified and generalized existing results and algorithms for different
types of automata [17,1,2,18,3].

In this paper, we give a coalgebraic account of another concrete construction
for automata: the elimination of ε-transitions. For this we use the abstract ma-
chinery of trace semantics. The advantage of this combination is two-fold. On
the one hand, the concrete examples that the various types of automata pro-
vide clarify and ground the abstract notion of trace. On the other hand, trace
semantics provides us with a uniform and intuitive definition for ε-elimination
for many types of automata.
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ε-Transitions are often useful at an intermedi-
ate stage. To illustrate this, let us show how to
construct a non-deterministic automaton (with-
out ε-transitions) that recognizes the language a∗b∗c∗. Note that it is easy to
find automata recognizing the languages a∗, b∗ and c∗ (above, respectively).
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ε ������ ���� ���� ����  !q3
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If we compose these automata using ε-
transitions, we obtain an automaton, on the
left, that recognizes a∗b∗c∗. To obtain an au-
tomaton without ε-transitions that recognizes

a∗b∗c∗ we incrementally eliminate the ε-transitions, as displayed below.
Hasuo and others [7,9] noted that result of the iterative process seen above

can be captured using trace semantics in a Kleisli category, approach which we
will discuss in more detail in Section 2.
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In this paper, we take inspiration from [7,9]
and we give an elaborate treatment of ε-
elimination procedures using trace semantics.
We extend their theory to include a class of
weighted automata.

Though the process of ε-elimination
for non-deterministic automata is classical
and well-understood, for weighted automata
things are less clear-cut, as witnessed by re-
cent research [14,12]. The construction pre-
sented in this paper brings new results in
comparison with the research presented in
the aforementioned papers.

From a coalgebraic perspective, the challenge behind ε-elimination comes from
the fact that many notions and definitions, such as bisimilarity for a functor, are
given in a step-wise fashion. That is, the behavior of a certain system is fully
determined by looking one step ahead at each time. This phenomenon, of having
to deal with multi-step behavior, poses problems when having to model internal
actions, such as ε-transitions, of a system. This is also present in concurrency
theory, where internal actions (τ -steps) are discarded when defining weak bisim-
ilarity. The theory presented in this paper might give a direction to improve
the existing coalgebraic accounts of weak bisimilarity [20,4], which are not yet
satisfactory.

The paper is organized as follows. In Section 2, we discuss the concrete con-
struction for non-deterministic automata, we discuss how this paves the way to
a coalgebraic account, and we introduce the idiosyncrasies behind the analogous
construction for weighted automata. In Section 3, we present the general frame-
work to formalize elimination of ε-transitions. In Section 4, we show how to
model weighted automata in order to fit the framework. In Section 5, we discuss
directions for future work.All proofs are omitted in the present article. A full
version, containing all proofs and extra material can be found in [19].
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2 Motivation

In this section we describe the existing ε-elimination procedures for weighted
and non-deterministic automata more thoroughly. We also recall some of the
basic notions concerning automata. We present the material in a manner that is
suited to the purposes of this paper. For instance, we represent these automata
as coalgebras and make no mention of initial states.

2.1 Non-deterministic Automata

We represent a non-deterministic automaton (nda) with states X over the
alphabet A as a map α : X −→ ℘(A×X + 1), where ℘ is the powerset functor.
Given q, r ∈ X and a ∈ A, we write, omitting the coproduct injections,

q↓α ⇐⇒ ∗ ∈ α(q) q is a final state

q
a−→α r ⇐⇒ (a, r) ∈ α(q) q has an a-transition to r

Let us recall the usual (language) semantics of α, i.e., which words a state q ∈ X
of α accepts. Let w ≡ a1a2 · · · an be a word over A, and let q ∈ X . We say that
q accepts w if there are q1, . . . , qn ∈ X such that

q
a1−→α q1

a2−→α · · ·
an−→α qn and qn↓α. (1)

So the semantics of α is captured by the map [[−]]α : X −→ ℘(A∗) given by

w ∈ [[q]]α ⇐⇒ q accepts w,

where q ∈ X and w ∈ A∗. So we will simply say that [[−]]α is the semantics of α.

ε-Transitions An nda with ε-transitions (ε-nda) with states X over an
alphabet A is simply an nda with states X over the alphabet A + {ε},

α : X −→ ℘((A + {ε})×X + 1),

but with a different semantics, which we define next.
Given a word w̃ over A + {ε}, let w̃\ε be the word on A one obtains by

removing all the letters “ε” from w̃.
Let w ∈ A∗, and let q ∈ X . We say q accepts w (in the ε-nda α) if there

is w̃ ∈ (A + {ε})∗ such that w = w̃\ε and q accepts w̃ in α seen as an nda, as
in (1).

Hence the semantics of α is the map [[−]]εα : X −→ ℘(A∗) given by, for q ∈ X ,

[[q]]εα =
{
w̃\ε : w̃ ∈ [[q]]α

}
.

Or, more abstractly, [[−]]εα = ℘(−\ε) ◦ [[−]]α.
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ε-Elimination for Non-deterministic Automata. Let α be an ε-nda with
states X and over an alphabet A. We construct an nda α# : X → ℘(A×X + 1)
which has the same semantics as α, in the sense that [[−]]α# = [[−]]εα. Since α#

will have no ε-transitions we say “we have eliminated the ε-transitions”.
The nda α# is defined as follows. A state q ∈ X has a transition in α# labelled

by a ∈ A to a state r if either this transition was already there in α or after a
number of ε-transitions, starting from q, it is possible to make an a-transition
to r. Formally:

q↓α# ⇐⇒
[

q
ε−→α q1

ε−→α · · · ε−→α qn and qn↓α
for some n ∈ N and q1, . . . , qn ∈ X

q
a−→α# r ⇐⇒

[
q

ε−→α q1
ε−→α · · · ε−→α qn and qn

a−→α r

for some n ∈ N and q1, . . . , qn ∈ X

Let w ∈ A∗ and q ∈ X . We leave it to the reader to verify that q accepts w in
the ε-nda α if and only if q accepts w in the nda α#, i.e., [[q]]α# = [[q]]εα. Hence,
the following diagram commutes.

X
[[−]]α

��

[[−]]
α# �����

����
����

���� ℘((A + {ε})∗)

℘(−\ε)
��

℘(A∗)

Note that [[−]]α is the semantics of α considered as an nda.

Coalgebraic Formulation. We want to find an abstract definition of α# so
that it can be instantiated for other types of automata. To this end it turns out
to be fruitful to consider the following variant of α#. Let

trα : X −→ ℘(N× (A×X + 1) )

be the map given by: for all q, r ∈ X , and a ∈ A, and n ∈ N:

(n, (a, r)) ∈ trα(q) ⇐⇒
[

q
ε−→α q1

ε−→α · · ·
ε−→α qn and qn

a−→α r

for some q1, . . . , qn ∈ X

(n, ∗) ∈ trα(q) ⇐⇒
[

q
ε−→α q1

ε−→α · · · ε−→α qn and qn↓α
for some q1, . . . , qn ∈ X

The map trα contains more information than α#. For example, α# tells us if a
state q ∈ X is final by whether ∗ ∈ α#(q). The map trα tells us more, namely
whether a final state can be reached from the state q using exactly n ε-transitions
by whether (n, ∗) ∈ trα(q).

Note that we can recover α# from the map trα; we have

b ∈ α#(q) ⇐⇒ ∃n ∈ N (n, b) ∈ trα(q), (2)
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for all q ∈ X and b ∈ B, where B := A × X + 1. More categorically, we can
formulate Statement (2) as:

X
trα ��

α#
��

℘(N ·B )
℘(∇)

�� ℘(B) commutes.

Here, N ·B is the countable coproduct and ∇ : N ·B → B is the codiagonal given
by ∇(n, b) = b for all (n, b) ∈ N · B.

We are interested in trα because it satisfies a recursive relation, namely

(0, b) ∈ trα(q) ⇐⇒ b ∈ α(q)

(n + 1, b) ∈ trα(q) ⇐⇒ ∃r ∈ X
[

(ε, r) ∈ α(q) ∧ (n, b) ∈ trα(r)
]
,

(3)

where q ∈ X and n ∈ N and b ∈ B.
The recursive relation (3) can be cast in an abstract form, and this allows us

to define trα (and hence α#) for different types of automata at once.
For this we will use the Kleisli category K�(℘) of the monad ℘. Recall that a

map f : V → ℘(W ) is a morphism from V to W in K�(℘), which we will write

as f : V ◦ �� W .
Indeed, we will see that the map trα : X → ℘(N · B) is the unique morphism

such that the following diagram commutes, in K�(℘).

X ◦trα ��

◦α′
��

N ·B
◦ξ��

X + B ◦
trα +̇1

�� N · B + B

,

where α′ : X −→ ℘(X + B) is the composition of the following maps

X
α �� ℘( (A + {ε})×X + 1 )

∼= �� ℘(X + (A×X + 1) ) , (4)

and ξ : N ·B −→ ℘(N ·B +B) is given by ξ(0, b) = {b}, and ξ(n+1, b) = {(n, b)},
for all b ∈ B and n ∈ N.

We can formulate this more coalgebraically, as follows. Let F be the functor
on K�(℘) given by F = −+ B. Then we can regard α′ as an F -coalgebra,

X ◦α
′

�� FX = X + B

The final F -coalgebra is ξ, and trα is the unique homomorphism from α′ to ξ.
Such a unique homomorphism trα into the final coalgebra in a Kleisli category

is called a trace map by Hasuo, Jacobs, and Sokolova [8].
We will use the observations above to study ε-elimination in a more general

setting later on. But let us first consider the class of weighted automata.

2.2 Weighted Automata

Let S be a semiring (such as R). A weighted automaton is similar to a non-
deterministic automaton, but each transition and state carries a weight, s ∈ S.
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Depending on the semiring, one may think of the weight of the transition between
two states q and r as the distance of the transition from q to r, or as the
probability that α transitions from q to r. For more information on weighted
automata, see [5].

We represent a weighted automaton over the semiring S with states X
over an alphabet A by a map α : X −→ M (A×X + 1), where M is the multiset
monad over S. Recall that

M (X) =
{
ϕ | ϕ : X → S, suppϕ is finite

}
.

Given q, r ∈ X and a ∈ A and s ∈ S, we write

q↓sα ⇐⇒ s = α(q)(∗) q outputs weight s

q
a|s−→α r ⇐⇒ s = α(q)(a, r)

q has an a-transition to r

with weight s

The subscript α will be omitted whenever it is clear from the context.
Let a ∈ A be given. Note that formally there is an a-transition between any

pair of states with some weight. We will typically only depict transitions with
non-zero weight.

Semantics. We explain the semantics of weighted automata by an example.
Consider the following variation on a directed graph that represents a maze.

�� ���� ��A2


7 ��

2
��

5

����
���

���
��

�� ���� ��B
2 ��

�� ���� ��C
2

���� ���� ��D
3 ��

Suppose we stand at vertex A, and want to find the shortest path to exit the
maze (via one of the exits, ⇒). It is A→ C → D ⇒ with length 7.

Let us increase the complexity of the maze by adding some labels.

�� ���� ��Aa|2


b|7
��

a|2
��

b|5

����
���

���
��

�� ���� ��B
2 ��

�� ���� ��C
a|2

���� ���� ��D
3 ��

(5)

Again, we stand at A and want to find the shortest path to one of the exits,
but this time we are only allowed to move along an ab-labelled path. That is,
to exit the maze, we are only allowed to first move along an edge labelled by a,
and then along an edge labelled by b, and then along ⇒. Now the shortest path
is A → A→ D ⇒ with length 10.

The maze in (5) can be represented by a weighted automaton α with states
X := {A,B,C,D} and alphabet A := {a, b} over a semiring1 on R ∪ {+∞}
1 The appropriate semiring structure on R ∪ {+∞} will become clear later on.
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in a straightforward manner. When there is no c-labelled edge from one vertex
to another we use a c-transition of weight +∞, e.g., α(B)(a,D) = +∞. We
interpret the symbol “

s �� ” at a vertex q to mean that q outputs s.
Note that we can express the length of the shortest ab-labelled path from A

to an exit using α as follows.

min
q1∈X

min
q2∈X

[
α(A)(κ�(a, q1)) + α(q1)(κ�(b, q2)) + α(q2)(κr(∗))

]
Note that “+” and “min” form a semiring Tmin on R ∪ {+∞}, called the tropi-
cal semiring. Confusingly, “+” is the multiplication of Tmin while “min” is the
addition. Hence the zero of Tmin is +∞ and the one is 0.

Observe that if we change the operations “+” and “min” (that is, if we change
the semiring on R ∪ {+∞}) we get different semantics [[−]]α. For instance, if
we take “+” and “max” instead, [[q]]α(w) will be the the length of the longest
w-labelled path from q to an exit.

We now give the general definition of semantics for weighted automata. Let
S be a semiring. Let α : X −→ M (A×X + 1) be a weighted automaton over S.
Then the semantics of α is the map [[−]]α : X −→ SA

∗
, given by, for q1 ∈ X ,

and a word w = a1 · · · an ∈ A∗,

[[q1]]α(w) :=
∑
q2∈X

· · ·
∑

qn+1∈X

( n∏
i=1

α(qi)(ai, qi+1)
)
· α(qn+1)(∗). (6)

So a state in the weighted automaton α recognizes functions in SA
∗
. These

functions are usually referred to as formal power series (over S).
Non-deterministic automata are a special case of weighted automata. Indeed,

the reader can verify that if we take S to be the Boolean semiring then weighted
automata over S correspond exactly to ndas.

ε-Transitions. A weighted automaton with ε-transitions α over a semir-
ing S with states X and alphabet A is simply a weighted automaton over S with
states X and alphabet A + {ε}.

To explain the semantics of α, we first consider the tropical case S = Tmin.
Following the earlier discussion of the semantics of ordinary weighted automata
over Tmin and shortest paths, it seems natural to define the semantics of α to
be the map [[−]]εα : X −→ SA

∗
given by, for q ∈ X and w ∈ A∗,

[[q]]εα(w) = min
{

[[q]]α(w̃) : w̃ ∈ (A + {ε})∗ and w̃\ε = w
}
. (7)

In the maze analogy, [[q]]εα(w) is the length of a shortest w-labelled path from q
to an exit when ε-moves are not counted.

However, note that Equation (7) is not a sound definition for all α since the
minimum might not exist. We will return to this problem shortly.

But first, we will further illustrate the semantics of ε-transitions. Recall that
state q1 in the following nda accepts the language denoted by a∗b∗c∗:
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�� ���� ��q1

a




ε ���� ���� ��q2

b




ε ������ ���� ���� ����  !q3

c





Instead of talking about acceptance we now want to assign to each word in the
language a∗b∗c∗ the difference between the number of b’s and c’s occurring in
the word. In order to do that, we modify the above automaton into a weighted
automaton over the tropical semiring Tmin.

�� ���� ��q1

a|0




ε|0
���� ���� ��q2

b|1




ε|0
������ ���� ��q3

c|−1




0 ��

Note that for w ∈ {a, b, c}∗ the weight [[q1]]εα(w) is precisely the number of b’s
occuring in w minus the number of c’s occuring in w.

Inspired by Equation (7) we would like to define the semantics of a weighted
automaton α with ε-transitions over any semiring S with states X and
alphabet A to be the map [[−]]εα : X −→ SA

∗
given by, for q ∈ X and w ∈ A∗,

[[q]]εα(w) =
∑ {

[[q]]α(w̃) : w̃ ∈ (A + {ε})∗ and w̃\ε = w
}
. (8)

However, without further information this is only a valid definition if the set{
[[q]]α(w̃) : w̃ ∈ (A + {ε})∗ and w̃\ε = w

}
. (9)

is finite. Otherwise, we do not know how we should interpret the symbol “
∑

”.
The problem is quite subtle. For example, consider the following weighted

automata with ε-transitions over R (with the normal “+” and “·”).

�� ���� ��q1

ε|0.5



1 �� �� ���� ��q2

ε|−0.5




1 �� �� ���� ��q3

ε|2



1 �� �� ���� ��q4

ε|−1




1 ��

Writing � for the empty word, one sees using Equation (8), that

[[q1]]ε(�) = 1 + 0.5 + (0.5)2 + · · · = 2,

[[q2]]ε(�) = 1 − 0.5 + (0.5)2 − · · · = 2/3,

and in a daring mood we can compute,

[[q3]]ε(�) = 1 + 2 + 4 + 8 + · · · = +∞,

but what should we make of the following?

[[q4]]ε(�) = 1 − 1 + 1 − 1 + · · ·

To give proper meaning to weighted automata with ε-transitions it seems nec-
essary to require that the semiring is equipped with a notion of summation for
some sequences, and we must restrict ourselves to a class of weighted automata
with ε-transitions for which the set in Expression (9) is summable.



A Coalgebraic View of ε-Transitions 275

Possibly due to this problem, the formal semantics of weighted automata with
ε-transitions has not yet been settled in the literature.

In a recent proposal by Lombardy and Sakarovitch [12], semantics is given
to a certain class of ‘valid ’ weighted automata with ε-transitions over topologi-
cal semirings using a sophisticated ε-elimination algorithm. The automata with
states q1 and q2 are valid, and the other two are not valid.

In this paper, the abstract view on automata gives rise to semantics to all
weighted automata over certain semirings, namely positive partial σ-semirings.
The semiring [0,+∞) is such a semiring, while R is not. So the general theory
yields semantics for the automata with states q1 and q3, but not for the automata
with states q2 and q4.

We will return to the example of weighted automata is Section 4.

3 Generalised ε-Elimination

Let us now turn to ε-elimination in a more general setting.

3.1 Automata in General

Setting 1. Let C be a category, and assume that C has all finite limits and all
countable colimits. Let F be a functor on C, and let T be a monad on C, with
Kleisli category K�(T ).

In this setting, we abstractly define an automaton, parametrized by a functor F
and a monad T , as follows.

Definition 2. Let X be an object from C. An automaton of type T, F with
states X is a morphism α : X −→ TFX.

In other words, an automaton of type T, F is a morphism in K�(T ) of the form

α : X ◦ �� FX.

Examples 3. Let C = Sets, and F = A×−+ 1 for some object A of C.

(i) Let T = ℘ be the powerset monad. Then the automata of type T, F are
non-deterministic automata with alphabet A.

(ii) Let S be a semiring. Let T := M be the multiset monad over S. Then the
automata of type T, F are weighted automata with alphabet A over S.

Example 4. Let C = Meas. Let F = A×−+1. Let T = G be the sub-probability
monad (see [11]). Then the automata of type T, F are sub-probabalistic automata.

3.2 Semantics of Automata

Setting 5. All conditions from Setting 1 and, in addition, assume that F is
lifted to a functor F on K�(T ), via a distributive law λ : FT −→ TF , and that
K�(T ) has a final F -coalgebra, ω : Ω ◦ �� FΩ.
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Note that the F -coalgebras in K�(T ) are precisely the automata (of type T, F ).
The final F -coalgebra is what we will use in order to abstractly define the
semantics for F, T automata:

Definition 6. Let α : X ◦ �� FX in K�(T ) be given. We call unique homo-
morphism into the final coalgebra [[−]]α : X ◦ �� Ω the semantics of α.

3.3 Trace and Iterate in General

Before we turn to the study of ε-elimination for these general automata, we
present some theory on the assignment α �→ α#. The material is a slight
simplification of the work by Hasuo in [7].

Setting 7. Let K be a category that has all countable coproducts. Moreover,
assume that for each object B from K, there is a final −+ B-coalgebra,

ξB : NB −→ NB + B.

This setting is equivalent to require that the functor −+ B is iteratable [13]. In
the sequel we instantiate K to the Kleisli category of a given monad.

Recall that since ξB is final, there is a unique homomorphism from each
−+ B-coalgebra to ξB . We call this homomorphism trace.

Definition 8. Let β : X → X + B be a morphism in K. The trace of β is the
unique morphism trβ : X → NB such that the following diagram commutes.

X
trβ

��

β ��

NB

ξB��

X + B
trβ +B

�� NB + B

Setting 9. Let K be a category that has all countable coproducts. Let B be an
object from K. Denote the initial − + B-algebra by ιB : N · B + B −→ N · B.
Assume also that ξB := ι−1

B is the final −+ B-coalgebra. So we have

ξB : N · B −→ N · B + B.

Before we define the iterate operator, we need two additional definitions.

Definition 10. Let g : A→ B be a morphism in K. Let N ·g : N ·A −→ N ·B be
given by, for all n ∈ N, (N · g) ◦ κn = κn ◦ g. Equivalently, N · g is the unique
morphism such that

N · A N·g
��

ξA��

N ·B
ξB commutes.��

N · A + A
N·g+g

�� N ·B + B

Definition 11. Let B be an object of K. The codiagonal is the morphism
∇B : N · B −→ B given by ∇B ◦ κn = idB, where n ∈ N, and κn : B −→ N · B
is the n-th coprojection.
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Definition 12. Let X and A be objects from K, and let α : X −→ X + A be
a morphism. Then the iterate of α is the morphism α# : X −→ A given by
α# := ∇A ◦ trα.

Proposition 13. Suppose we have a commuting diagram in K of the form

X
f

��

α
��

Y
β��

X + A
f+g

�� Y + B

where g : A→ B. Then the following square commutes.

X
f

��

α#
��

Y
β#
��

A
g

�� B

3.4 ε-Elimination in General

First, we define what an abstract automaton with ε-transitions is. (Since our
general automata do not explicitly contain an alphabet this is not immediately
clear.) Recall that in the case of non-deterministic automata, an automaton with
ε-transitions is a map α : X −→ ℘( (A + {ε})×X + 1 ), and this map gives rise
to a second map,

α′ : X −→ ℘(X + (A×X + 1) ).

We base our definition on the second map, α′, instead of α.

Definition 14. Let X be an object from C. An ε-automaton of type T, F
with states X is a morphism α : X −→ T (X + FX ). In other words, α is an
automaton of type T, Fε, where Fε is the functor with

FεX = X + FX.

To provide the semantics of ε-automata, we need some assumptions.

Setting 15. In addition to the assumptions in Setting 5, we assume that K�(T )
has a final F ε-coalgebra ωε : Ωε ◦ �� Ωε + FΩε. Here, F ε is the lifting of Fε
to K�(T ), via the distributive law λε given by (λε)X = [Tκ�, Tκr ◦ λX ], where
X is an object from C. Moreover, let B be an object from C. We denote the
initial − + B-algebra in K�(T ) by ιB : N · B + B ◦ �� N · B. Assume that
ξB := ι−1

B is the final −+ B-coalgebra in K�(T ).

We need a last definition, before providing semantics to ε-automata.

Definition 16. Let −\ε be the unique morphism in C such that

Ωε

◦ω#
ε ��

◦
·\ε

�� Ω
◦ω��

FΩε ◦
F (·\ε)

�� FΩ

commutes. That is, ·\ε is the semantics of the automaton ω#
ε , ·\ε = [[−]]ω#

ε
.
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Definition 17. Let α : X ◦ �� X + FX be an ε-automaton of type T, F .
The semantics of α is the map [[−]]εα : X ◦ �� Ω such that

X
◦��

����

[[−]]α �����
���

◦
[[−]]εα �� Ω

Ωε

◦−\ε
��

commutes, where [[−]]α is the semantics of α seen as automaton of type T, Fε.

We can now present one of the main results of this paper, showing that (language)
semantics is preserved by the abstract ε-elimination procedure.

Theorem 18 (ε-Elimination). Let X be from C. Let α : X ◦ �� X+FX be
an ε-automaton of type T, F . Then the iterate α# : X ◦ �� FX is an
automaton of type T, F with the same semantics as α. That is,

[[−]]α# = [[−]]εα.

4 Weighted Automata and the σM Monad

We now briefly return to the case of the weighted automata. Due to space con-
straints, we leave most details to the reader. Recall that a weighted automaton
over a semiring S with states X and alphabet A is a map α : X −→ MFX ,
where F = A×−+ 1. So α is an automaton of type M , F .

Unfortunately, the type M , F does not fit our general framework for automata
(see Setting 15), since the inverse

ι−1
B : N ·B ◦ �� N ·B + B

of the initial −+ B-algebra ιB in K�(M ) is not the final −+ B-coalgebra.
Indeed, this follows from the following example.

Example 19. Let B := {b} and let α : {∗} ◦ �� {∗}+ B be given by

α(∗)(κ�(∗)) = α(∗)(κr(b)) = 1.

Suppose τ : {∗} ◦ �� N ·B is a homomorphism from α to ι−1
B . Then supp τ(∗)

is finite by definition of M . However, the reader can verify that τ(∗)(n, b) = 1
for all n ∈ N. So we see that supp τ(∗) must be infinite as well. No such τ exists.
Hence, ι−1

B is not the final −+ B-coalgebra in K�(M ).

In order to study weighted automata in the general framework, we use

σMX := { ϕ : X → S | suppϕ is at most countable }

instead of MX . To turn σM in a monad we need to assume that S is equipped
with a notion of countable sums. For more details, see [19].
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Note that an automaton of type σM , F represents a weighted automaton that
is allowed to have infinitely many (proper) transitions from a given state, while
an automaton of type M , F is a weighted automaton with only finitely many
transitions from a given state.

Fortunately, the automata of type σM , F do fit nicely in our framework. That
is, Setting 15 applies to them.

Proposition 1. Given a set B, the inverse ι−1
B : N · B ◦ �� N · B + B of the

initial − + B-algebra ιB in K�(σM ) is the final − + B-coalgebra. Similarly, the
inverse ξ : A∗ ◦ �� A×A∗ + 1 of the initial F -algebra is the final F -coalgebra
in K�(σM ).

Moreover, given a set A, and α : X ◦ �� X +A in K�(σM ), the iterate α# of α
is given by, for all q0 ∈ X and a ∈ A,

α#(q0)(a) =
∑
n∈N

∑
q1∈X

· · ·
∑

qn+1∈X

( n∏
i=1

α(qi)(qi+1)
)
· α(a).

So we see that the abstract theory gives the expected results: the semantics
[[−]]α of an automaton of type σM , F turns out to be precisely the same as the
semantics that we discussed before (see Equation (6)).

4.1 Valid Semirings

There is, however, a catch. The monad σM is only defined over a σ-semiring,
that is, a semiring S equipped with a summation operation that assigns to each
family (xi)i∈I of elements of S a sum

∑
i∈I xi.

Usually, a semiring S is only equipped with a sum for some families of ele-
ments, which are then called summable. This idea is formalised in the notion
partial σ-semiring. An example is the semiring of non-negative reals, [0,∞),
equipped with a sum for all absolutely summable sequences. There are many ex-
amples of such partial σ-semirings. In fact, any semiring S is a partial σ-semiring
in which only the finite families are summable.

It is often possible to extend a partial σ-semiring S to a σ-semiring by adding
one element ∗ to S and declaring that the sum of a family of element (xi)i∈I
of S ∪ {∗} is the sum in S when (xi)i∈I was summable in S and otherwise ∗.

Indeed, the above construction is possible if the partial σ-semiring has the
following property: for all a, b ∈ S, a+ b = 0 =⇒ a = 0 and b = 0. We call such
semirings positive (using the terminology Gumm introduced for monoids [6]).
In fact, any σ-semiring must be positive. So we see that only the positive partial
σ-semirings can be extended to a σ-semiring. A typical example of a semiring
that is not positive is R.

Let S be a positive partial σ-semiring. Then S can be extended to a σ-semiring
S∪{∗}, and hence the abstract framework for automata is applicable to weighted
automata over the semiring S ∪ {∗}.
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The object ∗ acts as an “undefined” element. Consider the following weighted
automaton α with ε-transitions over the semiring R with alphabet {a, b}.

�� ���� ��

ε|2

��
1&& ��������q

a|1
��

b|1
���� ���� �� 3 ��

Let us compute the semantics of α with Equation (8). We see that [[q]]εα(b) = 3,
but there is a difficulty when computing [[q]]εα(a) = 1 + 2 + 4 + · · · . However,
if we consider α as a weighted automaton over the semiring S ∪ {∗}, then we
simply get [[q]]εα(a) = ∗, while still [[q]]εα(b) = 3.

All in all, the abstract framework applies to, and hence given us seman-
tics, ε-elimination, and so on, for all weighted automata over positive semirings
(possibly equipped with a partial summation).

5 Discussion

We have presented a framework where ε-elimination can be thought of in an ab-
stract manner. The framework yields procedures for non-deterministic automata
and, notably, for weighted automata. What we presented here can be seen as
the beginning of a larger quest to understand multi-step behavior, which is still
a challenge coalgebraically. There are several directions we would like to explore
further and which we discuss briefly next.

Kleisli versus Eilenberg–Moore. Recovering coalgebraic definitions of lan-
guage equivalence has been done in two different settings. The one we used in
this paper, based on Kleisli categories, and the one presented in [18,17,10], based
on Eilenberg-Moore categories and a generalized powerset construction. The def-
inition of iterate is natural in Kleisli and hence we have taken the first approach.
We want to explore if it is possible to define similar notions in the Eilenberg-
Moore setting and enlarge the examples the framework covers. For instance, the
generalized powerset construction works for every weighted automaton, without
having to resort to changes in the monad.

Weak Bisimilarity. ε-transitions are in some sense similar to τ -transitions
in labelled transition systems (LTS). However, there are some subtleties to be
tackled, before fully exploring the present framework to study weak bisimilarity.
In particular, consider the example of the processes a + b and τ.a + b, which are
not weakly bisimilar. Naively applying the framework above would erroneously
identify them and extra care needs to be taken in order to avoid this. A more
detailed account on the applications to weak bisimilarity can be found in [19].
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Nets, Relations and Linking Diagrams
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Abstract. In recent work, the author and others have studied compo-
sitional algebras of Petri nets. Here we consider mathematical aspects of
the pure linking algebras that underly them. We characterise composi-
tion of nets without places as the composition of spans over appropriate
categories of relations, and study the underlying algebraic structures.

Introduction

Linking structures are ubiquitous in Computer Science, Logic and Mathemat-
ics. Amongst many examples, we mention Kelly-Laplaza graphs for compact
closed categories [13] and proof nets [10]. Linking diagrams1 underly string di-
agrams [12, 19] that are used to characterise the arrows of various kinds of free
categories. Similar structures have been used by Computer Scientists to de-
velop foundational algebras for composing software components [2, 3]. Theoret-
ical work has led to tool support for reasoning about different kinds of string
diagrams [14, 22].

In [4, 5, 20, 21] the author and others have studied compositional algebras
of Petri nets. The two main variants, studied in detail in [5], are C/E nets
with boundaries and P/T nets with boundaries. Nets without places are pure
algebras of linkings; we show in this paper that they are, respectively, the ar-
rows of two categories Sp(Relcf ) and Spr(RelMf )2. Recently, string diagrams and
closely related algebraic structures have also been used to reason about quantum
computation [1, 7, 18].

Both categories are generated from a set of basic components, which are the
building blocks of two different monoid-comonoid structures on the underlying
categories. The two structures arise, roughly, from the elementary setting of
cospans and spans of finite sets.

In an effort to capture several different kinds of linking algebras, Hughes [11]
introduced the category Link of spans over iRel the category of injective rela-
tions, which has pullbacks. Pullbacks are obtained by considering paths, called
minimal synchronisations, in the corresponding linking diagrams. Similar ideas
are used here in order to construct pullbacks in Relcf , the category of relations

1 We use this terminology loosely to mean “string diagrams without boxes.”
2 The notation Sp(−) means “not quite the category of spans,” as the objects are
the natural numbers, instead of arbitrary sets. Similarly Spr(−) is “not quite the
category of relational spans,” where relational means that the two legs are jointly
mono. Both categories are PROPs [16,17].

R. Heckel and S. Milius (Eds.): CALCO 2013, LNCS 8089, pp. 282–298, 2013.
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with contention and weak pullbacks in RelMf , the category of multirelations.
In this paper we study only finite linkings but the category of spans of rela-
tions with contention is more expressive than the category of spans of injective
relations: the finite counterpart of Hughes’ category Link embeds into Sp(Relcf ).

Structure of the Paper. In §1 we introduce the two monoid-comonoid structures
that arise from considering cospans and spans of finite sets. In §2 we introduce
sets and relations with contention, and show that the category of the latter has
pullbacks. This allows us, in §3 to consider the category Sp(Relcf ), a universe
where both the monoid-comonoid structures can be considered. In §4 we discuss
multirelations and construct weak pullbacks, which we then use in §5 to consider
another universe where both the monoid-comonoid structures exist and interact.

Notational Conventions. Relations from X to Y are identified with functions
X → 2Y . For k ∈ N we abuse notation and denote the kth finite ordinal
{0, 1 . . . , k−1} with k. For sets X , Y , X+Y

def
= { (x, 0) |x ∈ X }∪{ (y, 1) | y ∈ Y }.

Functions are labelled with ! when there is a unique function with that particu-
lar domain and codomain, tw : 2 → 2 is the function tw(0) = 1 and tw(1) = 0.

Given a function f : X → Y , [f ] ⊆ X × Y is its graph: [f ]
def
= { (x, fx) |x ∈ X }.

Given a relation R ⊆ X × Y , Rop ⊆ Y ×X is the opposite relation.

1 Components of Linking Diagrams

Let Csp(Setf ) be the category3 with objects the natural numbers, and arrows
isomorphism classes of cospans k → x ← l, where k and l are considered as finite
ordinals. Composition is obtained via pushout in Setf , associativity follows from
the universal property. Given k1 → m1 ← ll and k2 → m2 ← l2, the tensor
product is k1 + k2 → m1 + m2 ← l1 + l2.

The following diagrams represent certain arrows in Csp(Setf ). They have

(Δ⊥⊥⊥∇���)

Δ : 1 → 2 ⊥⊥⊥ : 1 → 0

Δ

: 2 → 1 ��� : 0 → 1

representatives 1
id−→ 1

!←− 2, 1
id−→ 1

!←− 0, 2
!−→ 1

id←− 1 and 0
!−→ 1

id←− 1.
Our graphical notation calls for further explanation: within the diagrams,

each link–an undirected multiedge–represents an element of the carrier set, its
connections to boundary ports (elements of the ordinals on the boundary) are
determined in Csp(Setf ) by the functions from the ordinals that represent the
boundaries. Each link has a small perpendicular mark; this is used to distinguish
between different links within diagrams.

3 Not quite the category of cospans. Again, this is a PROP.
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The definition of Csp(Setf ) enforces some structural restrictions on links.
Indeed, each boundary port must be connected to exactly one link; ie no two
links can be connected to the same boundary port. Any link, however, can be
connected to several ports on each boundary.

Now consider Sp(Setf ), the category with objects the natural numbers, and
arrows isomorphism classes of spans k ← x→ l, where k and l are considered as
finite ordinals. Composition is obtained via pullback in Setf , and associativity
is again guaranteed by a universal property, this time of pullbacks. Again, +
gives a tensor product.

The following diagrams represent certain arrows in Sp(Setf ). They have

(Λ ↓↓↓ V ↑↑↑ )

Λ : 1 → 2 ↓↓↓ : 1 → 0 V : 2 → 1 ↑↑↑ : 0 → 1

representatives 1
!←− 2

id−→ 2, 1
!←− 0

id−→ 0, 2
id←− 2

!−→ 1 and 0
id←− 0

!−→ 1.
In the diagrams, the links again represent elements of the carrier set but

connections to boundary ports are now given by the functions from the carrier
to the boundaries. Due to the definition of Sp(Setf ), there are again structural
restrictions: each link is connected to exactly one port on each boundary. Any
port, however, can be connected to many links.

The following diagrams represent certain arrows in Csp(Setf ) and Sp(Setf ).

As (isomorphism classes of) cospans they are 1 → 1 ← 1, 2
tw−→ 2 ← 2, as spans

(I X)

I : 1 → 1 X : 2 → 2

they are 1 ← 1 → 1, 2 ← 2
tw−→ 2.

1.1 The Algebra of Csp(Setf)

In Fig. 1 we give some of the equations satisfied by the algebra generated from
the components (Δ⊥⊥⊥∇���) and (I X) in Csp(Setf ): (ΔUC) and (ΔA) show that
Δ is the comultiplication of a cocommutative comonoid. The symmetric equa-
tions hold for

Δ

, meaning that it is part of a commutative monoid structure.
The Frobenius axioms (F) [6, 15] hold, and the algebra is separable (S). In fact
Csp(Setf ) is the free PROP on (Δ⊥⊥⊥∇���) satisfying such axioms, where (F),
(S) can be understood as witnessing a distributive law of PROPs; see [16] for
the details. In (CC) we indicate how the (self dual) compact closed structure of
Csp(Setf ) arises.
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; = ; = (ΔUC)

; = = ; (ΔA)

; = ; = ; = (F)

; = (S)

; = (CC)

Fig. 1. Equations in Csp(Setf )

1.2 The Algebra of Sp(Setf )

In Fig. 2 we exhibit some equations satisfied by the components (Λ ↓↓↓ V ↑↑↑ ) and (I X)
in Sp(Setf ): (ΛUC) and (ΛA) show that Λ is the multiplication of a cocommuta-
tive comonoid, similarly the symmetric equations, which we do not illustrate, show
that that V is a commutative monoid. Differently from Fig. 1, here the Frobenius
equations do not hold; but rather the equations of commutative and cocommu-
tative bialgebras: in (B), (V↓↓↓ ) and (ΛV) we show how the monoid and comonoid
structures interact in Sp(Setf ). In fact, Sp(Setf ) is the free PROP on (Λ ↓↓↓ V ↑↑↑ )
satisfying the equations of commutative and cocommutative bialgebras, and the
bialgebra axiom can be understood as a distributive law of PROPs, see [16].

1.3 Bringing It All Together

Note that none of the diagrams in (Δ⊥⊥⊥∇���) represent valid spans: for instance
the link in Δ connects to two different ports on its right boundary, and the
link in ⊥⊥⊥ does not connect to any port on its right boundary. Similarly, none
of (Λ ↓↓↓ V ↑↑↑ ) represent valid cospans. Thus, for mundane “expressivity” reasons,
(Δ⊥⊥⊥∇���) are not arrows of Sp(Setf ), and vice-versa, (Λ ↓↓↓ V ↑↑↑ ) are not arrows
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; = ; = (ΛUC)

; = = ; (ΛA)

; ; = ; = (B)

; = (V↓↓↓ )

; = (ΛV)

Fig. 2. Equations in Sp(Setf )

of Csp(Setf ). The remit of this paper is to study how these two commutative
monoid-comonoid structures interact together in universes that are expressive
enough to accommodate them.

For example, instead of studying cospans and spans of functions, one could
consider spans (or cospans) of relations. Indeed, it is not difficult to check that
all of the components (Δ⊥⊥⊥∇���), (Λ ↓↓↓ V ↑↑↑ ) and (I X) are spans of relations of
finite sets. The problem, of course, is that Relf , the category of finite sets and
relations, does not have pullbacks nor pushouts: it is thus not clear how to define
the composition of such linking diagrams.

In the following sections we study two different universes that are expres-
sive enough to contain (Δ⊥⊥⊥∇���), (Λ ↓↓↓ V ↑↑↑ ) and (I X) and the intriguing, dif-
ferent ways in which the two monoid/comonoid structures interact in the uni-
verses. They arose through the study of compositional algebras of Petri nets with
boundaries [4, 5, 20, 21].
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2 Sets with Contention

In this section we introduce sets with contention, over which one can define a cat-
egory of relations that has pullbacks, and is expressive enough to accommodate
the components (Δ⊥⊥⊥∇���), (Λ ↓↓↓ V ↑↑↑ ) and (I X).

A set with contention, or c-set, is a pair (X, "'X), where X is a set and
"'X⊆ X×X is a reflexive (∀x ∈ X. (x "'X x)) and symmetric (∀x, y ∈ X. (x "'X
y) ⇒ (y "'X x)) relation called contention.4 The complement relation �X is called
independence. To describe a c-set it is thus of course enough to specify either
contention or independence. Sets with contention of the form (X, δX), where
δX = { (x, x) | x ∈ X }, are said to be discrete. We will normally write simply
X for the pair (X, "'X).

A morphism of c-sets f : X → Y is a function f : X → Y such that:

∀x, x′ ∈ X. f(x) "'Y f(x′) ⇒ x "'X x′ (1)

(or equivalently ∀x, x′ ∈ X , x �X x′ implies fx �Y fx′.) The category of finite
c-sets and their morphisms is denoted Setcf .

Given c-sets X0 and X1, X0+X1 is the c-set with X0+X1 as its underlying set
and (x, i) "'X0+X1 (y, j) iff i = j and x "'Xi y. This is the categorical coproduct
in Setcf .

Given a c-set X , U ⊆ X is said to be independent when

∀u, u′ ∈ U. u "'X u′ ⇒ u = u′. (2)

Let PcX denote the set of independent subsets of X . There is functor Pc :
Setcf → Setcf that takes a c-set X to the set of independent subsets PcX , with
contention between subsets defined:

U "'PcX V iff ∃u ∈ U, v ∈ V, u "'X v.

Note that independent subsets are closed under intersection and set difference:
indeed, if U ′ ⊆ U and U is independent then also U ′ is independent. They are
not, in general, closed under union.

If f : X → Y is a morphism, then letting

Pcf(U)
def
= { fu | u ∈ U }

defines a morphism Pcf : PcX → PcY in Setcf , since:

(i) given U , for all u, u′ ∈ U if f(u) "'Y f(u′) means that u "'X u′. But
U is independent, and thus u = u′ and f(u) = f(u′), thus Pcf(U) is an
independent subset of Y (recall (2)).

(ii) if Pcf(U) "'Y Pcf(V ) then there exists u ∈ U , v ∈ V , such that f(u) "'Y
f(v), so u "'X v and thus U "'X V , thus Pcf satisfies (1).

4 A useful intuition is that links carry signals. When two links are in contention they
cannot transmit concurrently. With this intuition (Δ⊥⊥⊥∇���) are copy and forget
operations, while (Λ ↓↓↓ V ↑↑↑ ) are non-deterministic switches and “failure.”
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2.1 Relations with Contention

There are morphisms μX : P2
cX → PcX with {Ui} �→

⋃
i Ui and a morphism

ηX : X → PcX . It is not difficult to check that they are natural transformations
that satisfy the monad axioms.

Let Relcf
def
= Kl(Pc) of relations with contention, or c-relations, be the Kleisli

category with objects finite c-sets. Arrows from X to Y are morphisms f : X →
PcY in Setcf , which we will sometimes denote f : X →	 Y . Given a morphism

f : X → PcY in Setcf (or equivalently, a morphism of Relcf ), f# : PcX → PcY
is the morphism f#U

def
=
⋃
u∈U fu.

The following lemma is useful when calculating in Relcf . It does not hold in
Relf , the category of ordinary finite sets and relations.

Lemma 21. Suppose f : X → PcY in Setcf . Then, given U,U ′ ∈ PcX with

U ⊆ U ′, f#(U ′\U) = f#(U ′)\f#(U). Also, given U, V, V ′ ∈ PcX, with V ⊆ U ,
V ′ ⊆ U , we have f#(V ∩ V ′) = f#(V ) ∩ f#(V ′).

Proof. Since U ′ is independent, {fu}u∈U ′ is a family of disjoint, independent
subsets of Y . Similarly V ∪ V ′ is independent, since they are both subsets of an
independent set; and {fu}u∈V∪V ′ is a family of disjoint, independent subsets of
Y . Disjointness implies the desired conclusions. ��

2.2 Pullbacks in Relcf

Suppose that f : A→	 X and g : B →	 X in Relcf . Given U ∈ PcA, V ∈ PcB, say

that (U, V ) is a (f ,g)-synchronisation5 if f#U = g#V . We will typically infer f
and g from the context and write ‘〈U 	 V 〉’ as shorthand for ‘a synchronisation
(U, V )’. Synchronisations inherit an ordering from the subset ordering, pointwise:

〈U 	 V 〉 ⊆ 〈U ′ 	 V ′〉 def
= U ⊆ U ′ ∧ V ⊆ V ′.

The trivial synchronisation is 〈∅ 	 ∅〉. A synchronisation 〈U 	 V 〉 is said to be
minimal when it is not trivial and for all 〈U ′ 	 V ′〉 such that 〈U ′ 	 V ′〉 ⊆ 〈U 	
V 〉, either 〈U ′ 	 V ′〉 is trivial or equal to 〈U 	 V 〉.

Let minsnc(f, g) be the set of minimal synchronisations of f and g. We can
define contention on this set by letting

〈U 	 V 〉 "'minsnc(f,g) 〈U ′ 	 V ′〉 def
= U "'PA U ′ ∨ V "'PB V ′.

It follows that have the following commutative diagram in Relcf

minsnc(f, g)
p

/.   
   

 q

��!!
!!!

!!

A

f ��!!
!!!

!!!
! B

g/."""
"""

"""

X

(3)

5 Hughes [11] uses the term synchronisation in a similar context, and the term has
been used in [4,5,20] to compose Petri nets with boundaries.
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where p〈U 	 V 〉 = U and q〈U 	 V 〉 = V . The following observations will lead
us to conclude in Lemma 24 that the diagram is a pullback in Relcf .

Synchronisations are not in general closed under (pointwise) union, because
if 〈U 	 V 〉 and 〈U ′ 	 V ′〉 then in general it is not true that U ∪ U ′ ∈ PcA
and V ∪ V ′ ∈ PcB. It is true, however, that the union of any set of minimal
synchronisations contained in any synchronisation is again a synchronisation:
this is guaranteed by the following.

Lemma 22. Suppose that 〈U ′ 	 V ′〉 �= 〈U ′′ 	 V ′′〉 are minimal synchronisations
contained in 〈U 	 V 〉. Then U ′ ∩ U ′′ = ∅ and V ′ ∩ V ′′ = ∅.

Proof. By the conclusion of Lemma 21, f#(U ∩ U ′) = f#U ∩ f#U ′ = g#V ∩
g#V ′ = g#(V ∩ V ′), so 〈U ′ ∩ U ′′ 	 V ′ ∩ V ′′〉; by minimality of 〈U ′ 	 V ′〉 and
〈U ′′ 	 V ′′〉 it follows that 〈U ′ ∩ U ′′ 	 V ′ ∩ V ′′〉 is trivial. ��

Lemma 23. 〈U 	 V 〉 is the union of min. synchronisations it contains.

Proof. Let {〈Ui 	 Vi〉}i∈I be the set of minimal synchronisations contained in

〈U 	 V 〉 and 〈U ′ 	 V ′〉 def
=
⋃
i{〈Ui 	 Vi〉}, then clearly we have 〈U ′ 	 V ′〉 ⊆ 〈U 	

V 〉. Let U ′′ = U\U ′ and V ′′ = V \V ′. Now, using the conclusion of Lemma 21,
〈U ′′ 	 V ′′〉, and thus it is either null or it contains a minimal synchronisation.
But {〈Ui 	 Vi〉}i∈I contains all minimal synchronisations in 〈U 	 V 〉; thus
U ′′ = V ′′ = ∅ and we are finished. ��

Lemma 24. The square (3) is a pullback diagram in Relcf .

Proof. Suppose Z is a c-set and α : Z → A, β : Z → B are morphisms in
Relcf such that fα = gβ. In particular, this means that for all z ∈ Z, we
have 〈αz 	 βz〉. Define h : Z → minsnc(f, g) by letting hz be the family of
minimal synchronisations contained in 〈αz 	 βz〉. This is a independent set,
due to Lemma 22, and the fact that αz and βz are independent. Then, by the
conclusion of Lemma 23, ph = α and qh = β.

If another h′ satisfies ph′ = α and qh′ = β then there exists a family of minimal
synchronisations h′z = {〈Ui 	 Vi〉}i∈I such that

⋃
i Ui = αz and

⋃
i Vi = βz. By

the conclusion of Lemma 22 this family must be hz. ��

3 The Algebra of Sp(Relcf)

In this section we consider a category with enough structure for all of (Δ⊥⊥⊥∇���),
(Λ ↓↓↓ V ↑↑↑ ) and (I X). It has been considered as part of a compositional algebra
of C/E (1 bounded) nets [5, 20]—indeed, it is the category of C/E nets with
boundaries, without net places, up to isomorphism.

Consider the category Sp(Relcf ), that has objects the natural numbers and

arrows k → l isomorphism classes of spans k
f←−	 (X, "'X)

g−→	 l in Relcf , where
k and l are considered as discrete c-sets. Composition is via pullback in Relcf ;
associativity follows from the universal property. There is a tensor product, given
by +.
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Sp(Relcf ) has enough structure for (Δ⊥⊥⊥∇���), (Λ ↓↓↓ V ↑↑↑ ) and (I X). Indeed,

(Δ⊥⊥⊥∇���) are, respectively, spans 1
[id]←−−	 1

[!]op−−→	 2, 1
[id]←−−	 1

[!]op−−→	 0, 2
[!]op←−−	 1

[id]−−→	 1

and 0
[!]op←−−	 1

[id]−−→	 1. Similarly, (I X) are spans 1
[id]←−−	 1

[id]−−→	 and 2
[id]←−−	 2

[tw]−−→	 2.
Indeed, Csp(Setf ) embeds into Sp(Relcf ).

Theorem 1. There is a faithful functor E : Csp(Setf ) → Sp(Relcf ) that is
identity-on-objects.

Proof. A cospan k
f−→ x

g←− l is taken to k
[f ]op←−−−	 x

[g]op−−→	 l, where k, x and l
are discrete c-sets, and [f ]op, [g]op are the opposites of graphs of, respectively,
f and g. As arrows in Kl(Pc), [f ]opu = f−1u and [g]opu = g−1u for any u ∈ x.
Identities are clearly preserved.

We must show that composition is preserved; it suffices to show that, given
g0 : l → x0 and f1 : l → x1, a pushout diagram of g0, f1 in Setf is taken to a
pullback diagram in Relcf , as illustrated below.

l
g0

0/##
##
## f1

,0$
$$

$$
$

x0

r ,0$
$$

$ x1

s0/##
##

M

〈
�−→

M

〈[r]op

0/##
##
## [s]op

,0$
$$

$$
$

x0

[g0]
op ,0$

$$
$$$

x1

[f1]
op0/###

##
#

l

(4)

If M = 0 then also x0 = x1 = l = 0 and all arrows are id0. Otherwise, by an
inductive argument it suffices to consider the case M = 1. In that case, if x0 = 0
then x1 = 1 and l = 0. Then minsnc([g0]op, [f1]op) = {〈∅ 	 1〉} and we are done.
The case x1 = 0 is symmetric. If both x0, x1 �= 0 then clearly 〈x0 	 x1〉. In
fact, it is the only non-trivial synchronisation (and thus minimal). To see this,
notice that g0 and f1 are surjective and therefore, if 〈U1 	 V1〉 and 〈U2 	 V2〉 are

two different non-trivial synchronisations then l1
def
= g−1

0 U1 = f−1
1 V1 �= ∅ and

l2
def
= g−1

0 U2 = f−1
1 V2 �= ∅, but l1 ∩ l2 = ∅. This means that l = l1 + l2 + l3, for

some l3, and the whole left hand side of (4) decomposes into a sum, contradicting
the assumption that M = 1.

The inductive argument relies on sums being compatible with pullbacks in
Relcf . This follows from the construction: minimal synchronisations of x0 +

x′
0

[g0+g
′
0]

op

−−−−−−→	 l + l′
[f0+f

′
1]

op

←−−−−−−	 x1 + x′
1 arise either as a minimal synchronisations of

[g0]op and [f1]op, or those of [g′0]op and [f ′
1]op. ��

As a consequence, the equations for (Δ⊥⊥⊥∇���) —presented in (ΔUC), (ΔA),
(F), (S) and (CC)— also hold in Sp(Relcf ).

Also (Λ ↓↓↓ V ↑↑↑ ) are spans of c-relations: 1
[!]←−	 (2, 2 × 2)

[id]−−→	 2, 1
[!]←−	 0

[id]−−→	 0,

2
[id]←−−	 (2, 2 × 2)

[!]−→	 1 and 0
[id]←−−	 0

[!]−→	 1; notice that contention is used to
“encode” (Λ ↓↓↓ V ↑↑↑ ). This is necessary because the two elements of 2 must be in
contention in order for ! : 2 → 1 to be a c-morphism.
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Remark 1. When considering, for instance Λ of (Λ ↓↓↓ V ↑↑↑ ) we are in a situation
where two links connect to the same point on the boundary. Since any element
is in contention with itself, this means that the two links must be in contention.
Thus, in this example, contention between the two links is implied and we will
not alter our graphical notation. We will, however, need a way to represent
contention graphically when it is not implied “structurally,” and we will do this
by connecting the links with dotted lines. For instance, the two diagrams below

represent the spans 2
[id]←−− (2, 2× 2)

[id]−−→ 2 and 2
[id]←−− (2, 2× 2)

[tw ]−−→ 2.

(5)

Remark 2. There is also an “embedding” F : Sp(Setf ) → Sp(Relcf ). A span

k
f←− x

g−→ l is sent to the span k
[f ]←−−	 (x, x × x)

[g]−→	 l, with the carrier set
having all elements in contention. It is not difficult to check that composition
is preserved, but the mapping fails to be a functor because identities are not
preserved. For instance, the identity on 2 is mapped to the left diagram of (5),
which is not the identity on 2 in Sp(Relcf ).

The finite fragment of Hughes’ category Link of spans of injective relations [11]
lies between Csp(Setf ) and Sp(Relcf ). Indeed, spans of injective relations are
expressive enough to consider all the structure of (Δ⊥⊥⊥∇���), (I X) and the units
↓↓↓ , ↑↑↑ of (Λ ↓↓↓ V ↑↑↑ ); but not the comultiplication and multiplication Λ, V — these
are not injective relations. Link embeds into Sp(Relcf ), thus all the equations
that hold in the former hold also in the latter. We omit the details here.

Equations (ΛUC), (ΛA), (V↓↓↓ ) and (ΛV) hold in in Sp(Relcf ). Equation (B)
does not hold: while we have

; ; = (Bc)

we have

; = (VΛc)

and the right-hand sides are not equal as arrows of Sp(Relcf ).
In (Δ↓↓↓↑↑↑c), (Λ���⊥⊥⊥c), (ΔVc) and (ΔΛc) below we show how (Δ⊥⊥⊥∇���) and

(Λ ↓↓↓ V ↑↑↑ ) interact together in Sp(Relcf ). We comment on two of the more in-
teresting equations that the interactions suggest: the right hand side of (ΔVc)
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implies V ; Δ = (Δ ⊗ Δ) ; (I ⊗ X ⊗ I) ; (V ⊗ V), an “asymmetric” commu-
tative/cocommutative bialgebra structure. The left hand side of (ΔΛc) implies
Δ ; (Λ⊗ I) = Λ ; (Δ⊗Δ) ; (I⊗ X⊗ I) ; (I⊗ I⊗ V).

; = ; = (Δ↓↓↓↑↑↑ c)

; = ; = (Λ���⊥⊥⊥c)

; = ; = (ΔVc)

; = ; = (ΔΛc)

All linking diagrams in Sp(Relcf ) can be obtained from the basic set of compo-
nents (Δ⊥⊥⊥∇���), (Λ ↓↓↓ V ↑↑↑ ) and (I X), combined using the operations of compo-
sition and tensor.

Theorem 2. Every arrow in Sp(Relcf ) decomposes into an expression consisting
only of Δ, ⊥⊥⊥,

Δ

, ���, Λ, ↓↓↓ , V, ↑↑↑ , I, X, composed with ; and ⊗.

Proof. Omitted.

4 Multisets and Multirelations

We have seen that Sp(Relcf ) is a setting in which one can study the algebra of
(Δ⊥⊥⊥∇���), (Λ ↓↓↓ V ↑↑↑ ) and (I X). Here we develop a second, different setting, that
arises from a compositional algebra of P/T nets [5].

Given a set X , let MX denote the set of finite maps U : X → N, ie where
dom(U) is a finite set. We call elements of MX multisets. We will sometimes
abuse set notation to when talking about multisets; any ordinary set U ⊆ X can
be considered as a multiset in the obvious way:

Ux =

{
1 if x ∈ U

0 otherwise.

Given U ,V ∈MX , U+V is the multiset (U+V )(x) = Ux+Vx. We say U ≥ V if

∀x. Ux−Vx ∈ N. If U ≥ V , let (U −V) ∈ MX be defined (U −V)x
def
= Ux−Vx.

Given k ∈ N and U ∈MX , kU(x)
def
= k · U(x).
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MX is the action on objects of the functor M− : Set → Set. On functions,
Mf : MX → MY is defined MfU(y) =

∑
x∈X:f(x)=y Ux; note that since U

is nonzero on a finite subset of X , this is well-defined. There is a natural trans-
formation μX : MMX → MX that takes μXV(x) =

∑
V(U)≥0 VU · Ux and

ηX : X → MX where ηXx(y) =

{
1 if x = y

0 otherwise.
It is not difficult to check

that (M−, μ, η) is a monad, commonly referred to as the multiset monad. Given
f : A→MB, the definition of f# : MA →MB follows from a simple calculation:
f#(U) =

∑
a∈A(Ua)f(a).

Let RelM def
= Kl(M−) and RelMf be the full subcategory of RelM with

objects the finite sets. The arrows of RelMf are thus functions f : X →MY in
Setf , we will sometimes write f : X →� Y .

4.1 Multi Synchronisations

Suppose that f : A →� X and g : B →� X in RelMf . A (multi f , g) synchro-

nisation is a pair (U ,V) with U ∈ MA and V ∈ MB such that f#U = g#V .
A synchronisation thus consists of a multiset of A together with a multiset of
B that both map to the same multiset of X via f# and g#, respectively; this
notion is the multiset equivalent of the notion of synchronisation that we have
considered in §2.2. We will again write 〈U 	 V〉 as shorthand and write snc(f, g)
for the set of synchronisations.

Synchronisations inherit an ordering from multisets, pointwise. If we have
〈U ′ 	 V ′〉 ≤ 〈U 	 V〉 then 〈U −U ′ 	 V−V ′〉: indeed f#(U−U ′) = f#U−f#U ′ =
g#V−g#V ′ = g#(V−V ′). Synchronisations are closed under linear combinations:

if {〈Ui 	 Vi〉}i∈I and ki ∈ N then define
∑

i ki〈Ui 	 Vi〉 def
= (
∑

i kiUi,
∑

i kiVi),
which is clearly a synchronisation.

A set X of synchronisations is mutually incomparable when

∀〈U 	 V〉, 〈U ′ 	 V ′〉 ∈ X. 〈U 	 V〉 ≤ 〈U ′ 	 V ′〉 ∨ 〈U ′ 	 V ′〉 ≤ 〈U 	 V〉
⇒ 〈U 	 V〉 = 〈U ′ 	 V ′〉.

We need to recall a version of Dickson’s lemma [8], stated in terms of synchro-
nisations. It can be proved by a straightforward induction.

Lemma 41 (Dickson). Suppose f : A→� X and g : B →� X in RelMf . Any set
X of mutually incomparable multi-f , g synchronisations is finite.

Let minsnc(f, g) be the set of minimal synchronisations. Clearly any two min-
imal synchronisations are incomparable, thus, by the conclusion of Lemma 41,
minsnc(f, g) is finite. In particular (6) is a commutative diagram in RelMf where
p〈U 	 V〉 = U and q〈U 	 V〉 = V .
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minsnc(f, g)
p

/.   
   

 q

��!!
!!!

!!

A

f ��!!
!!!

!!!
! B

g/."""
"""

"""

X

(6)

4.2 Weak Pullbacks in RelMf

The following result shows that any synchronisation can be written as a linear
combination of minimal synchronisations.

Lemma 42. If 〈U 	 V〉 then there exists a family {(ki, 〈Ui 	 Vi〉)}i∈I , where
each 〈Ui 	 Vi〉 is minimal and different from 〈Uj 	 Vj〉 for all j �= i, s.t.
〈U 	 V〉 =

∑
i ki〈Ui 	 Vi〉. The family is called a minimal decomposition of

〈U 	 V〉.

Proof. Simple induction. ��

The conclusion of Lemma 42 implies that (6) is a weak pullback diagram: given
α : Y →� A and β : Y →� B such that fα = gβ in RelMf , h : Y →� minsnc(f, g)
takes y to a minimal decomposition of 〈αy 	 βy〉.

Remark 43. The diagram (6) is merely a weak pullback, because the decom-
position of Lemma 42 is not, in general, unique. Indeed, consider t : 2 → 1 in
RelMf with t0 = t1 = {0}. Now minsnc(t, t) = {〈{0} 	 {0}〉, 〈{0} 	 {1}〉, 〈{1} 	

{0}〉, 〈{1} 	 {1})〉}. Consider u : 1 → 2 in RelMf with u0 = {0, 1}. Then 〈u0 	
u0〉 but there are several minimal decompositions: eg 〈{0} 	 {0}〉+ 〈{1} 	 {1}〉
and 〈{0} 	 {1}〉+ 〈{1} 	 {0}〉.

5 Linking Diagrams in Spr(RelMf )

Consider Spr(RelMf ), with objects that the natural numbers and arrows spans

k
f←− x

g−→ l in RelMf where x→ k× l is injective6. Composition proceeds in two
steps. First, given

k0
f0←− x0

g0−→ k1
f1←− x1

g1−→ k2,

construct k0
f0p←−− minsnc(g0, f1)

g1q−−→ k2 where p : minsnc(g0, f1) → x0 and
q : minsnc(g0, f1) → x1 are the projections. In general, however, [f0p, g1q] :
minsnc(g0, f1) → k0 × k2 may be non-injective, thus we obtain minsnc(g0, f1)′

below, together with f ′, g′ in RelMf through an epi-mono factorisation of

[f0
#p, g1

#q] in Set, and this is the composition.

6 In other words, the internal binary relations in RelMf : an internal relation is a span
k ← x → l where x → k × l is mono.
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k0
f ′
←− minsnc(g0, f1)

′ g′−→ k2

Proposition 1. Spr(RelMf ) is a category.

Proof. (Sketch) The non-trivial part is showing that composition is associative.
The essence is captured in the diagram below, in RelMf .

minsnc(g0, f1p1)
Φ ��

r0

��

s0

������
�����

����
h0��

minsnc(g1q0, f2)

h1 ��
					

	r1

1&					
	

s1

��

minsnc(g0, f1)

(†)

p0

21���
���

�� q0



%%
%%%

%%%
minsnc(g1, f2)

(‡)

p1

21���
���

�� q1



%%
%%%

%%%

x0
f0

32&&&
&& g0

��%%
%%%

%%%
%% x1

f1

�����
���

���
�

g1

��%%
%%%

%%%
%% x2

f2

�����
���

���
�

g2

��'
''

''

k0 k1 k2 k3

In addition to the two weak pullback diagrams (†) and (‡), we have a set
minsnc(g0, f1p1) and the projection maps in RelMf

r0 : minsnc(g0, f1p1) → x0, s0 : minsnc(g0, f1p1) → minsnc(g1, f2)

and a set minsnc(g1q0, f2) together with maps

r1 : minsnc(g1q0, f2) → minsnc(g0, f1), s1 : minsnc(g1q0, f2) → x2

The sets minsnc(g0, f1p1), minsnc(g1q0, f2) are not, in general isomorphic, for
similar reasons why the minsnc(f, g) construction fails to be a pullback; there
is, in general, more than one decomposition of a synchronisation into a linear
combination of minimal synchronisations.

This is not a problem, because all that we require is that (f0r0, g2q1s0) and
(f0p0r1, g2s1) have the same image in Mk0 ×Mk2 .

To show this, first we use the weak pullback property of (†) to obtain h0 :
minsnc(g0, f1p1) → minsnc(g0, f1), satisfying p0h0 = r0 and q0h0 = p1s0. The
second of these equations, together with the fact that minsnc(g1q0, f2) is a weak
pullback allows us to obtain

Φ : minsnc(g0, f1p1) → minsnc(g1q0, f2)

that satisfies r1Φ = h0 and s1Φ = q1s0. Now, for any σ ∈ minsnc(g0, f1p1)
we have f0r0σ = f0p0h0σ = f0p0r1Φσ and g2q1s0σ = g2s1Φσ, so the image
of (f0r0, g2q1s0) is contained in the image of (f0p0r1, g2s1). A symmetric ar-
gument, constructing morphisms h1 : minsnc(g1q0, f2) → minsnc(g1, f2) and
Ψ : minsnc(g1q0, f2) → minsnc(g0, f1p1) allows us to demonstrate the reverse
inclusion.

��
Note that, as indicated in the proof above, the “relational” requirement on spans
is necessary in order to ensure associativity of composition. Again there is a
tensor product inherited from the coproduct in Setf .
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5.1 The Algebra of Spr(RelMf )

While we no longer have to draw contention, in Spr(RelMf ) links can have multi-
ple connections to boundary ports. We indicate this by

2

5

annotating connections with natural numbers ≥ 2: for instance

the diagram to the right is the span 2
a←−� 1

b−→� 2 where (a0)(0) =
(b0)(1) = 1, (a0)(1) = 5 and (b0)(0) = 2.

Considering the diagrams of (Δ⊥⊥⊥∇���) and (I X) in Spr(RelMf ),
all the equations in (ΔUC), (ΔA), (F), (S), (CC) hold in
Spr(RelMf ). On the other hand, the structure in (Λ ↓↓↓ V ↑↑↑ ) and
(I X) satisfies the equations in (ΛUC), (ΛA), (B) and (V↓↓↓ ). Differ-
ently from (ΛV), in Spr(RelMf ) we have the following:

; = (ΛVM)

Below, we show how (Δ⊥⊥⊥∇���) and (Λ ↓↓↓ V ↑↑↑ ) interact in Spr(RelMf ).

; = ; = (Δ↓↓↓↑↑↑M)

; = ; = (Λ⊥⊥⊥���M)

; =
2

; = (ΔVM)

; = ; = (ΔΛM)

The equations in (Δ↓↓↓↑↑↑M) are the same as in (Δ↓↓↓↑↑↑ c). The left equation in
(Λ⊥⊥⊥���M) is the same as the corresponding one in (Λ���⊥⊥⊥c), but the right hand
side equations differ because the contention relation does not play a role in
Spr(RelMf ). The right hand side equation in (ΔΛM) agrees with the correspond-
ing one in (ΔVc), but the left one deserves attention: while in (ΔVc) there was
no possible synchronisation between Δ and V because of the fact that the two
links in V were in contention, in Sp(RelMf ) there is a synchronisation that in-

volves all three links, as represented in the left hand side equation of (ΔΛM).
The interaction between Λ and Λ is as in (ΔΛc), and (ΔΛM) are the same as
(ΔΛc).
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Theorem 3. Every arrow inSpr(RelMf ) decomposes into an expression consisting
only of Δ,⊥⊥⊥,

Δ

,���, Λ, ↓↓↓ , V, ↑↑↑ , I, X, composed with ; and ⊗.

Proof. Omitted.

6 Conclusion

We have studied two categories of linking diagrams. The first, Sp(Relcf ), arose from
the study of a compositional algebra of C/E nets, called C/E nets with bound-
aries. Indeed, the arrows of Sp(Relcf ) are just C/E nets with boundaries, without

places. The second, Spr(RelMf ) arose from the study of a compositional algebra

of P/T nets, called P/T nets with boundaries. The arrows of Spr(RelMf ) are P/T
nets with boundaries, without places. These categories generalise previous work
by Hughes [11].

Both categories are “expressive enough” to carry two different commutative
monoid-comonoid structures on objects, one of which a separable Frobenius alge-
bra, the other a commutative bialgebra. In both settings the interaction between
the two structures is interesting and we have examined some of the phenomena that
arise. Both categories are generated by the small number of basic components that
witness the monoid-comonoid structures.

In future work a full axiomatisation will be presented, and the categories of
linking diagrams will be shown to characterise the arrows of the resulting free
categories. The theory of PROPs [16] seems well adapted for expressing the
relationship between the algebraic structures, as well as the complete algebras
of C/E and P/T nets; Fiore and Campos [9] have recently used a similar setting
to develop the algebra of dags.

Acknowledgment. Thanks to R.F.C. Walters for inspiration and guidance,
and to the referees for remarks that have improved the presentation.
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22. Sobociński, P., Stephens, O.: Penrose: Putting compositionality to work for petri
net reachability. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089,
pp. 346–352. Springer, Heidelberg (2013)



A Logic-Programming Semantics of Services
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Abstract. We develop formal foundations for notions and mechanisms needed to
support service-oriented computing. Our work provides semantics for the service
overlay by abstracting concepts from logic programming. It draws a strong anal-
ogy between the discovery of a service that can be bound to a client application
and the search for a clause that can be used for computing an answer to a query.
In addition, it describes the process of binding services and the reconfiguration
of applications as service-oriented derivatives of unification and resolution.

1 Introduction

Service-Oriented Computing. SOC is a recent paradigm that addresses computation
in ‘global computers’ – computational infrastructures available globally in which soft-
ware applications can discover and bind dynamically, at run time, to services offered by
providers. Whereas the paradigm has been effectively in use for a more than a decade
in the form of Web services [1] or Grid computing [13], research into its formal foun-
dations has lagged somewhat behind, partly because of our lack of understanding of (or
agreement on) what is really new about the paradigm.

It is fair to say that significant advances have been made towards formalising new
forms of distributed computation that have arisen around the notion of service (e.g.
choreography [18]), notably through several variants of the π-calculus. However, SOC
raises more profound challenges at the level of the structure of systems thanks to their
ability to discover and bind dynamically, in a non-programmed way, to other systems.
The structure of the systems we are now creating in the virtual space of computational
networks is intrinsically dynamic, a phenomenon hitherto unknown. Formalisms such
as the π-calculus do not address these structural properties of systems.

Towards that end, we have investigated algebraic structures that account for modu-
larity (e.g. [10,12]) – the way services are orchestrated as composite structures of com-
ponents and how binding is performed through interaction protocols – and the mech-
anisms through which discovery can be formalised in terms of logical specifications
of required/provided services and constraint optimisation for service-level agreements
(e.g. [9,11]). In the present paper, we take further this research to address the oper-
ational aspects behind dynamic discovery and binding, i.e. the mechanisms through
which applications discover and bind, at run time, to services. Our aim is to develop
an abstract, foundational setting – i.e. independent of the specific technologies that are
currently deployed, such as SOAP for message-exchange protocols and the UDDI for

R. Heckel and S. Milius (Eds.): CALCO 2013, LNCS 8089, pp. 299–313, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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description, discovery, and integration – that combines both declarative and dynamic
semantics of services. The challenge here is to develop an integrated algebraic frame-
work that accounts for (a) logical specifications of services, (b) the way models of those
specifications capture orchestrations of components that depend on externally provided
services to be discovered, and (c) the way the discovery of services and the binding of
their orchestrations to client applications can be expressed in logical/algebraic terms.

Logic Programming. The approach that we propose to develop to meet this challenge
builds on (Horn-clause) logic programming (LP) – the paradigm that epitomises the
integration of declarative and operational aspects of logic. In LP, clauses have a declar-
ative semantics as disjunctions of literals that express relationships over a domain (the
Herbrand universe), and an operational semantics that derives from resolution and term
unification: definite clauses (from a program) are used to resolve queries (expressed
as goal clauses) by generating new queries and, through term unification, computing
partial answers as substitutions for the variables of the original query.

In a nutshell, the analogy with SOC that we propose to develop works as follows:

– The Herbrand universe consists of all possible service orchestrations with no de-
pendencies on external services (‘ground services’).

– Variables correspond to requires-points of orchestrations, i.e. dependencies on ex-
ternal services that need to be discovered.

– Terms correspond to services delivered through provides-points of orchestrations.
– Definite clauses express properties of provides-points (head) and requires-points

(body) of service orchestrations – what in [11] we call service modules. Their
declarative semantics is that, when bound to applications that deliver services sat-
isfying the properties of the requires-points, the orchestrations will deliver at the
provides-points services that satisfy the specified properties.

– Goal clauses express properties of orchestrations of services that an application re-
quires in order to fulfil given business goals – what in [11] we call activity modules.

– Programs correspond to service repositories.
– Resolution and term unification account for service discovery by matching required

properties with provided ones and the binding of required with provided services.

Structure of the Paper. In Sect. 2 we propose an algebraic model of service orches-
trations as asynchronous relational networks similar to those used in [8], and we define
the logical framework over which we can express properties of the interaction points
through which such networks can be interconnected. We prove that the resulting logic
constitutes an institution [14], which provides the declarative semantics of our approach
to SOC. In Sect. 3 we show how clauses, unification and resolution can be defined over
that institution, thus providing the corresponding operational semantics of SOC.

2 Asynchronous Relational Networks

Our first contribution is the formulation of an institution of asynchronous relational
networks. This accounts for the service-oriented counterpart of the declarative aspects
of conventional LP within first-order logic, in particular the key role played by variables
– the structures over which the computational aspects of LP operate.
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The concepts discussed here depend upon elements of linear temporal logic (LTL).
However, the proposed theory is largely independent of the logical framework of choice,
and can be easily adapted to any institution such that

– the category of signatures is (finitely) co-complete;
– there exist co-free models along any signature morphism, i.e. the reduct functor of

any signature morphism has a right adjoint;
– the category of models of any signature has products;
– any model homomorphism reflects the satisfaction of any sentence.

In order to capture a more operational notion of service orchestration, we work with
a variant MA-LTL of LTL whose models are not traces, but Muller automata [17]; by
definition, an automaton satisfies a sentence if and only if every trace accepted by the
automaton satisfies the considered sentence.

2.1 Signatures and Signature Morphisms

We start by defining the category ARN of signatures and signature morphisms of our
institution. These are asynchronous relational networks similar to those defined in [8]
except that we use Muller automata instead of sets of traces as models of behaviour,
and hypergraphs instead of graphs.

Following [8], we regard service components as networks of processes that interact
asynchronously by exchanging messages through communication channels. Messages
are considered to be atomic units of communication. They can be grouped into struc-
tures – ports – through which processes and channels can be interconnected.

Ports are sets of messages with attached polarities. As in [2,3] we distinguish be-
tween outgoing or published messages (labelled with a minus sign) and incoming or
delivered messages (labelled with a plus sign).

Definition 1 (Port). A port M is a pair 〈M−,M+〉 of disjoint finite sets of messages.
The set of all messages of M is given by the union M− ∪M+, usually denoted by M .
Every port M determines the set of actions AM = AM− ∪AM+ , where AM− is the set
{m! | m∈M−} of publications, and AM+ is the set {m¡ | m∈M+} of deliveries.

Processes are defined by sets of interaction points labelled with ports and by Muller
automata that describe process behaviour in terms of observable actions.

Definition 2 (Process). A process ({Mx | x∈X}, Λ) consists of a finite set X of inter-
action points, each point x∈X being labelled with a port Mx, and a Muller automaton
Λ over the alphabet P(AM ), where M is the port given by

M∓ =
⊎
x∈X

M∓
x = {x.m | x∈X,m∈M∓

x } .

Example 1. In Fig. 1 we depict a process JourneyPlanner that provides directions from
a source to a target location. The process interacts with the environment through two
ports: JP1 and JP2. The first port is used for communicating with potential client pro-
cesses – the request for directions (including the source and the target locations) is en-
coded into the incoming message planJourney, while the response is represented by the
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outgoing message directions. The second port defines messages that JourneyPlanner
exchanges with other processes in order to complete its task – the outgoing message
getRoutes can be seen as a query for all possible routes between the specified source
and target locations, and the incoming messages routes and timetables define the result
of the query and the timetables of the available transport services for the selected routes.

Journey
Planner

ΛJP

planJourney +
directions −

JP1

− getRoutes
+ routes
+ timetables

JP2

Fig. 1. The JourneyPlanner process

The behaviour of JourneyPlanner is given by the Muller automaton depicted in
Fig. 2, whose final state sets contain q0 whenever they contain q5. We can describe it
informally as follows: whenever JourneyPlanner receives a request planJourney it im-
mediately initiates the search of the available routes by sending the message getRoutes;
it then waits for the delivery of the routes and of the corresponding timetables; once it
receives both it compiles the directions and replies to the client.

q0 q1 q3

q2

q5

q4

¬planJourney¡

planJourney¡

getRoutes!

¬routes¡ ∧ ¬timetables¡

routes¡ ∧
timetables¡

¬routes¡ ∧ timetables¡routes¡ ∧ ¬timetables¡

routes¡

¬routes¡

timetables¡

¬timetables¡

¬directions!

directions!

Fig. 2. The JourneyPlanner automaton1

Note that every polarity-preserving map θ between ports M and M ′ defines a function
Aθ : AM → AM ′ , often denoted simply by θ, that maps every publication action m!
into θ(m)! and every delivery action m¡ into θ(m)¡.

Fact 1. For any process ({Mx | x∈X}, Λ), the injections {x. : AMx → AM}x∈X
define a co-product in the category of MA-LTL-signatures.

Processes communicate by transmitting messages through channels. As in [3,8], chan-
nels are bidirectional: they may transmit both incoming and outgoing messages.

Definition 3 (Channel). A channel (M,Λ) consists of a finite set M of messages and
a Muller automaton Λ over the alphabetP(AM ), where AM is the union A−

M ∪A+
M of

A−
M = {m! | m∈M} and A+

M = {m¡ | m∈M}.

1 In the graphical representation the transitions are labelled with propositional sentences; this
means that there exists a transition for any model (set of actions) of the considered sentence.
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In order to enable given processes to exchange messages, channels need to be attached
to their ports, thus forming connections.

Definition 4 (Connection). A connection ({μx : M ⇀ Mx | x∈X}, Λ) between the
ports {Mx | x∈X} consists of a channel (M,Λ) and a finite family of partial at-
tachment injections {μx : M ⇀ Mx | x∈X} such that M =

⋃
x∈X dom(μx) and

μ−1
x (M∓

x ) ⊆
⋃
y∈X\{x} μ

−1
y (M±

y ), for any x∈X .

This notion of connection differs from the one found in [8] in that messages can be
transmitted between more than two ports. The additional condition ensures that mes-
sages are well paired: every published message of Mx, for x∈X , is paired with a
delivered message of My , for y∈X \ {x}, and vice versa.

Example 2. In order to illustrate how the process JourneyPlanner can send or receive
messages, we consider the connection C depicted in Fig. 3 that moderates the flow of
messages between the port JP2 and two other ports, R1 and R2.

− getRoutes
+ routes
+ timetables

JP2
getRoutes +

routes −

R1

routes +
timetables −

R2

C

ΛC

Fig. 3. The JourneyPlanner’s connection

The underlying channel of C is given by the set of messages M = {g, r, t} together
with the automaton ΛC that specifies the delivery of all published messages without any
delay. ΛC can be built as the product of the automata Λm, for m∈M , whose transition
map is depicted in Fig. 4, and whose sets of states are all marked as final.

The channel is attached to the ports JP2, R1 and R2 through the partial injections:

– μJP2 = {g �→ getRoutes, r �→ routes, t �→ timetables},
– μR1 = {g �→ getRoutes, r �→ routes} and
– μR2 = {r �→ routes, t �→ timetables}.

Note that the actual senders and receivers of messages are specified through the attach-
ment injections. For example, g is delivered only to the port R1 (because μR2 is not
defined on g), while r is simultaneously delivered to both JP2 and R2.

q0 q1

¬m!
m!

m! ∧m¡

¬m! ∧m¡

Fig. 4. The Λm automaton
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As already suggested in Ex. 1 and 2, processes and connections have dual roles and in-
terpret the polarities of the messages accordingly. In this sense, processes are responsi-
ble for publishing messages (i.e. delivered messages are inputs and published messages
are outputs), while connections are responsible for delivering messages.

We clarify this dual nature of connections ({μx : M ⇀ Mx | x∈X}, Λ) by defining
partial translations {Aμx : AM ⇀ AMx | x∈X} given by

– dom(Aμx) = {m! | m∈μ−1
x (M−

x )} ∪ {m¡ | m∈μ−1
x (M+

x )},
– Aμx(m!) = μx(m)! for all m∈μ−1

x (M−
x ),

– Aμx(m¡) = μx(m)¡ for all m∈μ−1
x (M+

x ).

We often designate the partial maps Aμx simply by μx if there is no risk of confusion.

Fact 2. Every connection ({μx : M ⇀ Mx | x∈X}, Λ) defines a family of spans{
AM

⊇←− dom(μx)
μx−−→ AMx

}
x∈X in the category of MA-LTL-signatures.

We can now define asynchronous networks of processes as hypergraphs having vertices
labelled with ports and hyperedges labelled with processes and connections.

Definition 5 (Hypergraph). An (edge-labelled) hypergraph (X,E, γ) consists of a set
X of vertices or nodes, a set E of hyperedges disjoint from X , and an incidence map
γ : E → P(X) defining for every hyperedge e∈E a non-empty set γe ⊆ X of vertices
it is incident with. A hypergraph (X,E, γ) is said to be edge-bipartite if E is partitioned
into two subsets F and G such that no adjacent hyperedges belong to the same partition,
i.e. for every two hyperedges e1, e2 ∈E such that γe1 ∩ γe2 �= ∅, either e1 ∈F and
e2 ∈G, or e1 ∈G and e2 ∈F .

Hypergraphs have been used extensively in the context of graph-rewriting-based ap-
proaches to concurrency, including SOC (e.g., [4,7]). We use them instead of graphs [8]
because they offer a more flexible mathematical framework for handling the notions of
variable and variable binding that we require in Sect. 3.

Definition 6 (Asynchronous Relational Network – ARN). An asynchronous
relational network α = (X,P,C, γ,M, μ, Λ) consists of a (finite) edge-bipartite hy-
pergraph (X,P,C, γ) of points x∈X , computation hyperedges p∈P and communi-
cation hyperedges c∈C, together with

– a port Mx for every point x∈X ,
– a process ({Mx | x∈ γp}, Λp) for every hyperedge p∈P , and
– a connection ({μcx : Mc ⇀ Mx | x∈ γc}, Λc) for every hyperedge c∈C.

Example 3. By putting together the process and the connection presented in Ex. 1 and 2,
we obtain the ARN JourneyPlanner depicted in Fig. 5. Its underlying hypergraph
consists of the points JP1, JP2, R1 and R2, the computation hyperedge JP, the com-
munication hyperedge C, and the incidence map γ given by γJP = {JP1, JP2} and
γC = {JP2,R1,R2}.

An interaction-point of an ARN α is a point of α that is not bound to both computation
and communication hyperedges. We distinguish between requires-points and provides-
points, as follows.
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Journey
Planner

ΛJP

planJourney +
directions−

JP1

− getRoutes
+ routes
+ timetables

JP2
getRoutes +

routes −

R1

routes +
timetables −

R2

C

ΛC

Fig. 5. The JourneyPlanner ARN

Definition 7 (Requires and Provides-point). A requires-point of an ARN α is a point
of α that is incident only with a communication hyperedge. Similarly, a provides-point
of α is a point incident only with a computation hyperedge.

Morphisms of ARNs can be defined as injective homomorphisms between their under-
lying hypergraphs that preserve all labels, except those associated with requires-points.

Definition 8 (Homomorphism of Hypergraphs). A homomorphismh between hyper-
graphs (X,E, γ) and (X ′, E′, γ′) consists of functions hv : X → X ′ and he : E → E′

such that for any x∈X and e∈E, x∈ γe if and only if hv(x)∈ γ′
he(e).

Definition 9 (Morphism of ARNs). Given two ARNs α = (X,P,C, γ,M, μ, Λ) and
α′ = (X ′, P ′, C′, γ′,M ′, μ′, Λ′), a morphism δ : α → α′ consists of

– an injective homomorphism δ : (X,P,C, γ) → (X ′, P ′, C′, γ′) between the under-
lying hypergraphs of α and α′ such that δe(P ) ⊆ P ′ and δe(C) ⊆ C′, and

– a family of polarity-preserving injections δpt =
{
δptx : Mx → M ′

δv (x)

}
x∈X ,

such that

– for every non-requires-point x∈X , δptx = 1Mx ,
– for every computation hyperedge p∈P , Λp = Λ′

δe(p), and
– for every communication hyperedge c∈C, Mc = M ′

δe(c), Λc = Λ′
δe(c) and the

following diagram commutes, for any point x∈ γc.

Mc = M ′
δe(c)

μc
x ��

(μ′)δ
e (c)

δv (x) ����
���

���
��

Mx

δptx

��
M ′
δv (x)

Proposition 1. The morphisms of ARNs form a category, denoted ARN , in which the
composition is defined component-wise, with left and right identities given by mor-
phisms whose components are set-theoretic identities.

2.2 Sentences and Sentence Translations

We now define the sentence functor of our institution.
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Definition 10 (Sentence). For any ARN α, i.e. for any signature α, the set SenSOC(α)
of (atomic) α-sentences is defined as the set of pairs (x, ρ), usually denoted @x ρ, where
x is a point of α and ρ is an MA-LTL-sentence over AMx .

The translation of sentences is straightforward: for every morphism δ : α → α′ of
ARNs, the map SenSOC(δ) : SenSOC(α) → SenSOC(α′) is given by

SenSOC(δ)(@x ρ) = @δv (x) δ
pt
x (ρ)

for any point x of α and any MA-LTL-sentence ρ over the actions of x.

Proposition 2. SenSOC is a functor ARN → Set .

2.3 Models and Model Reductions

The model functor of our institution assigns ground ARNs to the requires-points of the
considered networks.

Definition 11 (Ground ARN). An ARN is said to be ground if it has no requires-points.
We denote by GARN the full subcategory of ARN determined by ground ARNs.

Definition 12 (Model). For any ARN α, the category ModSOC(α) of α-models or α-
interpretations is the comma category α/GARN .

It follows that α-interpretations are morphisms of ARNs ι : α → β such that β is a
ground network, which can also be seen as collections of ground ARNs that are desig-
nated to the requires-points of α. In order to explain this in more detail let us introduce
the following notions of dependency and ARN defined by a point.

Definition 13 (Dependency). Let x and y be points of an ARN α. x is said to be depen-
dent on y if there exists a path from x to y that begins with a computation hyperedge,
i.e. if there exists an alternating sequence x e1 x1 · · · en y of (distinct) points and hyper-
edges such that x∈ γe1 , y ∈ γen , xi ∈ γei ∩ γei+1 for any 1 ≤ i < n, and e1 ∈P .

Definition 14 (ARN Defined by a Point). The ARN defined by a point x of an ARN α
is the full sub-ARN αx of α determined by x and the points on which x is dependent.

One can now see that any interpretation ι : α → β of an ARN α assigns to each requires-
point x of α the ground sub-ARN βιv(x) of β defined by ιv (x).

Example 4. Based on the ground ARN depicted in Fig. 6 we can define an interpretation
ι : JourneyPlanner → JourneyPlannerNet that preserves all the labels, points and
hyperedges of JourneyPlanner, with the exception of the points R1 and R2, which
are mapped to MS1 and TS1, respectively. In this case, the point MS1 only depends on
itself, hence the sub-ARN of JourneyPlannerNet defined byMS1, i.e. the ground ARN
assigned to the requires-pointR1 of JourneyPlanner, is given by the processMS and its
portMS1. In contrast, the point JP1 depends on all other points of JourneyPlannerNet,
and thus it defines the entire ARN JourneyPlannerNet.
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Journey
Planner

ΛJP

planJourney +
directions −

JP1

− getRoutes
+ routes
+ timetables

JP2

Map
Services

ΛMS

getRoutes +
routes −

MS1

Transport
System

ΛTS

routes+
timetables −

TS1

C

ΛC

Fig. 6. The JourneyPlannerNet ARN

The reduction of interpretations is defined as the left composition with the consid-
ered ARN morphism. For every morphism of ARNs δ : α → α′, the reduct func-
tor ModSOC(δ) is just the composition functor δ/GARN : α′/GARN → α/GARN
given by (δ/GARN )(ι′) = δ; ι′ and (δ/GARN )(ζ′) = ζ′ for every α′-interpretation
ι′ and every α′-interpretation homomorphism ζ′.

Proposition 3. ModSOC is a contravariant functor ARN op → Cat .

2.4 The Satisfaction Relation

The evaluation of ARN sentences with respect to ARN interpretations relies on the
concepts of diagram of a network and of automaton defined by a point, whose purpose
is to describe the observable behaviour of a ground ARN through one of its points. We
start by extending Facts 1 and 2 to ARNs.

Fact 3 (Diagram of an ARN). Every ARN α = (X,P,C, γ,M, μ, Λ) defines a diagram
Dα : Jα → SigMA-LTL as follows:

– Jα is the free preordered category given by the set of objects

X ∪ P ∪C ∪ {〈c, x, α〉 | c∈C, x∈ γc}

and the arrows
• {x→ p | p∈P, x∈ γp} for computation hyperedges, and
• {c ← 〈c, x, α〉 → x | c∈C, x∈ γc} for communication hyperedges;

– Dα is the functor that provides the sets of actions of ports, processes and chan-
nels, together with the appropriate mappings between them. For example, given a
communication hyperedge c∈C and a point x∈ γc,
• Dα(c) = AMc , Dα(〈c, x, α〉) = dom(μcx), Dα(x) = AMx ,
• Dα(〈c, x, α〉 → c) =

(
dom(μcx) ⊆ AMc

)
, and

• Dα(〈c, x, α〉 → x) = μcx.

Because the category SigMA-LTL is finitely co-complete, we can define the signature of
an ARN based on its diagram.

Definition 15 (Signature of an ARN). The signature of an ARN α is the co-limiting
co-cone ξ : Dα ⇒ Aα of the diagram Dα.
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The most important construction that allows us to define the satisfaction relation is the
one that defines the observed behaviour of a (ground) network at one of its points.

Definition 16 (Automaton Defined by a Point). Let x be a point of a ground ARN β.
The observed automaton Λx at x is given by the reduct Λβx�ξx , where

– βx = (X,P,C, γ,M, μ, Λ) is the sub-ARN of β defined by x,
– ξ : Dβx ⇒ Aβx is the signature of βx,
– Λβx is the product automaton

∏
e∈P∪C Λβx

e , and
– Λβx

e is the co-free expansion of Λe along ξe, for any hyperedge e∈P ∪ C.

Example 5. Let us consider the ground ARN outlined in Fig. 6. The automaton defined
by the point MS1 is just ΛMS�AMS1

– this follows from the observation that the ARN
defined by MS1 consists solely of the process MS and the port MS1. On the other hand,
the calculation of the automaton defined by provides-point JP1 involves the product of
the co-free expansions of all four automata ΛJP, ΛMS, ΛTS and ΛC.

We now have all the necessary concepts for defining the satisfaction of ARN sentences
by ARN interpretations. Let us thus consider an ARN α, an α-interpretation ι : α → β
and an α-sentence @x ρ. Then

ι |=SOC
α @x ρ if and only if Λιv (x)�ιptx |=

MA-LTL ρ ,

where Λιv (x) is the observed automaton at ιv (x) in β.
The construction of the institution of ARNs is completed by the following result,

which states that satisfaction is invariant with respect to changes of ARNs.

Proposition 4. For every ARN morphism δ : α → α′, any α′-interpretation ι′ and any
α-sentence @x ρ,

ι′ |=SOC
α′ SenSOC(δ)(@x ρ) if and only if ModSOC(δ)(ι′) |=SOC

α @x ρ .

Corollary 1. SOC =
(
ARN , SenSOC,ModSOC, |=SOC

)
is an institution.

3 A Logical View on Service Discovery and Binding

Building on the results of Sect. 2, we now investigate how the semantics of the ser-
vice overlay can be characterised using fundamental computational aspects of the LP
paradigm such as unification and resolution.

Our approach is built upon a simple and intuitive analogy between the SOC con-
cepts of service module and client application [11] and the LP concepts of clause and
query [16]. In order to clarify this analogy we rely on the institution FOL of first-order
logic [6] and also on the studies on internal logic developed in [19] and [5].

We begin by briefly describing the structure that provides the basic elements involved
in defining the denotational and operational semantics of relational LP – the institution
of (sets of) variables and substitutions over a first-order signature (S, F, P ).

The signatures of this institution are finite sets (or blocks) of variables, i.e. finite sets
of pairs (x, s), where x is the name of the variable (distinct from the names of other



A Logic-Programming Semantics of Services 309

variables) and s∈S is its sort. The models, sentences, and the satisfaction relation are
inherited from FOL. In this sense, for every set of variables X , we consider the corre-
sponding category of models, set of sentences and satisfaction relation of the extended
first-order signature (S, F ∪X,P ).

The morphisms of signatures X → Y are substitutions, i.e. mappings of the variables
of X into terms over Y . Based on the evaluation of terms in models and on the canonical
extension of substitutions from variables to terms, the substitutions define appropriate
reductions of models and translations of sentences, about which it has been shown in [5]
that the satisfaction condition holds.

3.1 The Clausal Structure of Services

Given the above constructions, we can describe definite first-order clauses as structures

C←−−
X

H

such that X is a block of variables, C is a relational atom over X , i.e. a relational atom
of the extended signature (S, F ∪X,P ), and H is a finite set of relational atoms over X .
Their semantics is given by the class of (S, F, P )-algebras whose expansions to (S, F ∪
X,P ) satisfy C whenever they satisfy every sentence in H . Note that in traditional LP
the symbols of variables are often distinguished from other symbols through notational
conventions. For this reason, the block X of variables is at times omitted.

Service clauses can be defined in a similar manner, essentially by replacing the in-
stitution of first-order substitutions with the institution of ARNs. Intuitively, this means
that we replace blocks of variables with ARNs, variables with requires-points, and terms
(over variables) with provides-points.

Definition 17 (Clause). A SOC-clause is a structure (P, α,R), also written

P ←−−
α

R

such that α is an ARN, P is an α-sentence referring to a provides-point of α and R is a
finite set of α-sentences referring to distinct requires-points of α.

The semantics of service clauses is defined just as the semantics of first-order clauses,
except that they are evaluated over the class G of ground ARNs instead of (S, F, P )
ground terms. In this sense, G (which may be intuitively regarded as the Herbrand uni-
verse) satisfies a clause (P, α,R) if and only if any interpretation of α that satisfies all
sentences in R satisfies P as well.

Example 6. The ARN JourneyPlanner introduced in Ex. 3 can orchestrate a service
module that consistently delivers the requested directions, provided that the routes and
the timetables can always be obtained. We specify this through the service clause

@JP1 ρ
JP←−−−−−−−−−−−

JourneyPlanner

{
@R1 ρ

JP
1 ,@R2 ρ

JP
2

}
where ρJP, ρJP1 , ρJP2 are the MA-LTL-sentences � (planJourney¡ ⊃ ♦ directions!),
� (getRoutes¡ ⊃ ♦ routes!) and � (routes¡ ⊃ ♦ timetables!), respectively.
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Client applications are captured in the present setting by service queries. They are de-
fined in a similar manner to service clauses and their semantics are, as expected, exis-
tential rather than universal.

Definition 18 (Query). A SOC-query is a structure (α,Q), also denoted

�−−−
α

Q

such that α is an ARN and Q is a finite set of α-sentences referring to distinct requires-
points of α. With respect to semantics, G satisfies (α,Q) if and only if there exists an
interpretation of α satisfying all sentences in Q.

Example 7. Figure 7 outlines the ARN of a possible client for the Journey Planner
service. We specify the actual client through the service query

�−−−−−−
Client

{
@R1 ρ

C
1

}
given by the MA-LTL-sentence � (getRoute¡ ⊃ ♦ route!).

Client

ΛClient

− getRoute
+ route

Client1

getRoute +
route −

R1

C

ΛC

Fig. 7. The Client ARN

3.2 Resolution as Service Discovery and Binding

Service discovery represents, as in conventional LP, the search for a clause that could
take the current goal one step closer to a possible solution. The solutions to service
queries are defined in the same way as the solutions to first-order queries, but with
ARN morphisms in the role of term substitutions.

Definition 19 (Solution). A solution to (α,Q) consists of a morphism θ : α → α′ such
that any interpretation of α′ satisfies the θ-translation of any sentence in Q.

The following result relates satisfiable queries and queries that have solutions, and may
be regarded as a service-oriented correspondent of Herbrand’s theorem.

Proposition 5. A service query (α,Q) is satisfiable if and only if it admits a solution
θ : α → α′ such that the category ModSOC(α′) is not empty.

The procedure that ultimately decides whether or not a service can be bound to an
application is unification.

Definition 20 (Unifier). Let @x1 ρ1 and @x2 ρ2 be two sentences of ARNs α1 and α2,
respectively. A unifier of @x1 ρ1 and @x2 ρ2 consists of a pair 〈θ1, θ2〉 of morphisms
θ1 : α1 → α and θ2 : α2 → α such that θv1 (x1) = θv2 (x2) and

θpt2,x2
(ρ2) |=MA-LTL θpt1,x1

(ρ1) .
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In conventional LP the resolution process simplifies the current goal and at the same
time, through unification, yields computed substitutions that could eventually deliver a
solution to the initial query. This process is accurately reflected in the case of SOC by
service binding.

Definition 21 (Resolution). A service query (α,Q) is said to be derived by resolution
from (α1, Q1) and (P2, α2, R2) using the computed morphism θ1 : α1 → α when

�−−−
α1

Q1 P2←−−α2
R2

(θ1)

�−−−
α

SenSOC(θ1)(Q1 \ {R1}) ∪ SenSOC(θ2)(R2)

– there exists a unifier 〈θ1, θ2〉 of a sentence R1 ∈Q1 and P2, and
– Q is the set of sentences given by the translation along θ1 and θ2 of the sentences

in Q1 \ {R1} and R2.

Example 8. Let us consider the query and the clause detailed in the Ex. 7 and 6. One can
easily see that the Client-sentence @R1 ρ

C
1 and the JourneyPlanner-sentence @JP1 ρ

JP

are unifiable. They admit the unifier 〈θ1, θ2〉 given by

Client
θ1 �� Client‖JourneyPlanner JourneyPlanner

θ2��

– the ARN Client‖JourneyPlanner depicted in Fig.8,
– the ARN morphism θ1 that maps the point R1 into JP1, the communication hyper-

edgeC intoCJP and the messages getRoute and route of MR1 into planJourney and
directions, respectively (while preserving all the remaining elements of Client),

– the ARN inclusion morphism θ2.

It follows that we can derive by resolution a new service query, defined by the network
Client‖JourneyPlanner and the set of sentences

{
@R1 ρ

JP
1 ,@R2 ρ

JP
2

}
.

�−−−−−−
Client

{
@R1 ρ

C
1

}
@JP1 ρ

JP←−−−−−−−−−−−
JourneyPlanner

{
@R1 ρ

JP
1 ,@R2 ρ

JP
2

}
(θ1)

�−−−−−−−−−−−−−−−−
Client‖JourneyPlanner

{
@R1 ρ

JP
1 ,@R2 ρ

JP
2

}

Client

ΛClient

− getRoute
+ route

C1 Journey
Planner

ΛJP

planJourney +
directions −

JP1

− getRoutes
+ routes
+ timetables

JP2
getRoutes +

routes −

R1

routes +
timetables −

R2

CJP

ΛCJP

C

ΛC

Fig. 8. The Client‖JourneyPlanner ARN
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Computed Solutions. The process of service discovery and binding allows us to search
for solutions to arbitrary queries. The search is triggered by a query (α,Q) and consists
in the iterated application of resolution until the derived service query is empty, i.e.
a query of the form (α′, ∅). Whenever the search procedure successfully terminates
we obtain a computed solution of the original query by sequentially composing the
resulting computed morphisms.

The correctness of the search procedure relies on the correctness of resolution.

Proposition 6. Let (α,Q) be a service query derived by resolution from (α1, Q1) and
(P2, α2, R2) using the computed morphism θ1. If (P2, α2, R2) is satisfiable then for any
solution θ of (α,Q), θ1; θ is a solution of (α1, Q1).

It is easy to see that any empty query admits a trivial solution, namely the solution given
by the identity morphism of its underlying ARN. By applying Prop. 6 backwards, for
each resolution step, we deduce that the composition of any terminating sequence of
computed morphisms, and thus any computed solution, is a solution.

4 Conclusions

In this paper, we showed how the integration of declarative and operational semantics
as provided by Logic Programming can be generalised to Service-Oriented Computing
to offer an integrated semantics for the static and dynamic aspects of this paradigm, i.e.
to provide, for the first time, an algebraic framework that accounts for the mechanisms
through which service interfaces can be orchestrated and for those that allow applica-
tions to discover and bind to services. The analogy that we established is based on the
identification of the binding of terms to variables in LP with the binding of orchestra-
tions of services to requires-points of software applications in SOC. The answer to a
service query – the request for external services – is obtained through resolution using
the service clauses (orchestrated service interfaces) available from a repository. This
departs from other works on the logic-programming semantics of services such as [15]
that considered implementations of the service discovery and binding mechanisms us-
ing constraint logic programming.

The analogy is grounded on a declarative semantics of service clauses defined over
a novel institution whose models are asynchronous networks of Muller automata (ser-
vice orchestrations) and whose sentences are linear temporal logic sentences expressing
properties that can be observed at given interaction points of a network. Other logics
could have been used instead of linear temporal logic, more specifically any institution
such that (a) the category of signatures is (finitely) co-complete; (b) there exist co-free
models along any signature morphism; (c) the category of models of any signature has
products; (d) any model homomorphism reflects the satisfaction of any sentence. These
results encourage us to further develop a unifying framework for the foundations of LP
that incorporates ideas from existing concrete variants of the phenomena, not neces-
sarily restricted to relational or service-oriented programming. One possible course of
action would be to isolate the principles of the LP paradigm in an institutional setting.
This assumes institution-independent versions of LP concepts such as Herbrand model,
clause, substitution, unifier and resolution, some of which have already been considered
in the literature (e.g. [5]).
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1 Introduction

Conservative extension is an important notion in the theory of formal specification [8].
If we can implement a specification SP, we can implement any conservative extension
of SP as well. Hence, a specification can be shown consistent by starting with a consis-
tent specification and extending it using a number of conservative extension steps. This
is important, because during a formal development, it is desirable to guarantee con-
sistency of specifications as soon as possible. Checks for conservative extensions also
arise in calculi for proofs in structured specifications [12,9]. Furthermore, consistency
is a special case of conservativity: it is just conservativity over the empty specification.
Moreover, using consistency, also non-consequence can be checked: an axiom does not
follow from a specification if the specification augmented by the negation of the ax-
iom is consistent. Finally, [3] puts forward the idea of simplifying the task of checking
consistency of large theories by decomposing them with the help of an architectural
specification [2]. In order to show that an architectural specification is consistent, it is
necessary to show that a number of extensions are conservative (more precisely, the
specifications of its generic units need to be conservative extensions of their argument
specifications, and those of the non-generic units need to be consistent).

In this paper we present a (sound, but incomplete) algorithm for deciding conserva-
tivity of extensions of specifications in CASL [4] as part of the Heterogeneous Tool Set
(HETS) [10], available at http://hets.dfki.de.

2 Conservative Extensions in CASL

CASL [4] extends many-sorted first-order logic with partial functions and subsorting. It
also provides induction sentences, expressing the (free) generation of datatypes.

CASL signatures consist of a set S of sorts with a subsort relation≤ between them to-
gether with families {PFw,s}w∈S∗,s∈S of partial functions, {TFw,s}w∈S∗,s∈S of total func-
tions and {Pw}w∈S∗ of predicate symbols. Signature morphisms consist of maps taking
sort, function and predicate symbols respectively to a symbol of the same kind in the
target signature, and they must preserve subsorting, typing of function and predicate
symbols and totality of function symbols.

For a signature Σ , terms are formed starting with variables from a sorted set X us-
ing applications of function symbols to terms of appropriate sorts, while sentences are
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partial first-order formulas extended with sort generation constraints which are triples
(S′,F ′,σ ′) such that σ ′ : Σ ′ → Σ and S′ and F ′ are respectively sort and function
symbols of Σ ′. Partial first-order formulas are translated along a signature morphism
ϕ : Σ → Σ ′′ by replacing symbols as prescribed by ϕ while sort generation constraints
are translated by composing the morphism σ ′ in their third component with ϕ .

Models interpret sorts as sets such that subsorts are injected into supersorts, par-
tial/total function symbols as partial/total functions and predicate symbols as relations.
Note that sorts are assumed to be interpreted as non-empty sets, unless they are intro-
duced using the keywords esort or etype (for datatypes).

The satisfaction relation is the expected one for partial first-order sentences. A sort
generation constraint (S′,F ′,σ ′) holds in a model M if the carriers of the reduct of M
along σ ′ of the sorts in S′ are generated by function symbols in F ′.

A theory Γ is a pair 〈Σ ,Γ 〉 where Σ is a signature and Γ a set of sentences. A theory
morphism σ : 〈Σ ,Γ 〉−→〈Σ ′,Γ ′〉 is a signature morphism σ : Σ −→Σ ′ such that the
sentences in Γ are mapped by σ to logical consequences of Γ ′. A theory morphism
σ : 〈Σ ,Γ 〉−→〈Σ ′,Γ ′〉 is

– conservative, denoted Cons(σ), if each 〈Σ ,Γ 〉-model has a σ -expansion to a
〈Σ ′,Γ ′〉-model;

– monomorphic (Mono(σ)), if such an expansion exists uniquely up to isomorphism,
and

– definitional (Def(σ)), if each model has a unique such expansion.

We moreover write DontKnow(σ) and NotCons(σ) when the conservativity of σ
can not be determined or does not hold, respectively. The following implications hold:
Def(σ) =⇒ Mono(σ) =⇒ Cons(σ).

CASL specifications are built starting with basic specifications which are just theo-
ries. An extension of specifications is written: SP1 then . . . then SPn, where at each
step i = 2, . . .n, SPi must extend the signature Σi−1 constructed at the previous step to a
correct CASL signature Σi.

3 The Conservativity Checker

Unfortunately already for first-order logic, neither the check for conservative, nor mono-
morphic, nor definitional extension are recursively enumerable, which means that there
cannot be a complete (recursively axiomatized) calculus for them.

Let us consider a specification extension SP1 then SP2. The main idea of the al-
gorithm for checking conservativity of this extension is to separate the definitions of
SP2 into definitions of new sorts and datatypes and definitions of new functions and
predicates. Each of the definitions is then analysed individually, and for each of them
we obtain a consistency status. The possible answers are not conservative (NotCons),
no result has been obtained (DontKnow), conservative (Cons), monomorphic (Mono),
definitional (Def), and they are ordered by their strength as follows:

NotCons < DontKnow < Cons < Mono < Def
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The result of the analysis of the conservativity status of the extension is then obtained
as the minimum of the results of the analysis of all its definitions w.r.t. the order given
above. We denote the conservativity calculus for extensions of specifications thus de-
fined by � SP1 then SP2 �Status.

3.1 Checking Conservativity for Sorts and Datatypes

declaration only?
yes

��
no

��
conservative definition of a subsort?

yes

��
no
��

E-sort?
yes

��

no
��

freely generated?

yes

��
no

��

proof of non-emptiness

yes

��

no

��

E-type?

yes

��

no

��
don’t know monomorphic term of that sort?

yes

��

no
��

not conservative

Fig. 1. Check for sorts and datatypes

If SP2 contains no definitions of new sorts, then the result of analysis is just Def (the
neutral element w.r.t the minimum operation). Otherwise, if a new sort or subsort has
been declared without a definition, it does not depend on the old symbols and can be
interpreted in any way, thus its status is Cons. If a sort is defined as a subsort of an
existing sort with the help of a predicate Φ (as in t = {x : s.Φ(x)}), then for a given
model M of SP1 the subsort t can be interpreted as any set isomorphic to the subset MΦ .
The result of analysis is thus Mono, provided that t has been declared as a esort or if the
subset can be proven as non-empty. In the latter case a proof obligation is introduced
and if it can not be discharged the status becomes DontKnow. If a sort t is defined
as a free datatype, the status is Mono, provided that t has been declared as a etype or
the specification ensures existence of a term of sort t. If this is not the case, the status
becomes NotCons. This is summarised in Fig. 1.

3.2 Checking Conservativity for Functions and Predicates

Figure 2 shows the decision diagram for operation and predicate symbols. For each such
symbol, all definitions involving the symbol are collected. Definitions are sentences of
the following form
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sentence defined symbol type of definition
∀x1 : s1, . . .xm : sm . f (t1, . . . , tn) = t f function definition
∀x1 : s1, . . .xm : sm .¬def f (t1, . . . , tn) f function definition
∀x1 : s1, . . .xm : sm .def f (t1, . . . , tn)⇔ ψ f domain axiom
∀x1 : s1, . . .xm : sm . p(t1, . . . , tn)⇔ ψ p predicate definition

All sentences not associated to sorts are required to have one of these forms (any ex-
ception immediately leads to a DontKnow). So does any sentence which is a definition
of an “old” symbol. The first check for a symbol is that for (syntactic) confluence (or
proof of semantic confluence) of all its definitions. For total functions, we need to prove
termination of the definitions in order to ensure totality. Sufficient completeness then
implies that the function is uniquely defined; otherwise, we only know that the defini-
tion has at least one solution. For partial function symbols, the presence of a domain
axiom is checked. If there is more than one, we end with DontKnow. If there is exactly
one, we need to prove that the remaining definitions have a least fixed-point (taken for
the function graphs) whose domain is captured by the domain axiom(s). If this proof
succeeds, we can proceed as for total functions. If there are no domain axioms, we need
to prove termination as well in order to proceed as with total functions. Otherwise, we
still have conservativity.

confluent definition?

yes

��

no

		
proof of semantic confluence?

yes

��
no





domain axiom?

>1

��

0
��

1

��

partial function?
yes��

no

		
terminating?

no

��

yes

��

domain proof?

yes

��

no

��

terminating?
yes

��
no

��

sufficiently complete?
no

��
yes

��
conservative definitional don’t know

Fig. 2. Check for definitions of functions and predicates

The following result has been proved in [6].

Theorem 1 (Soundness). If � SP1 then SP2 �Status then Status(ι : SP1−→SP2).
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4 Examples

As an example, we present a simple but illustrative HETS library of natural numbers and
operations on them. More examples, illustrating all branches of the diagrams, are avail-
able athttps://hets.dfki.de/Hets-lib/Conservativity/examples.
het.

spec NAT = %mono
free type Nat ::= 0 | suc(Nat)

spec NAT COMP =
NAT then %def
free
{pred < : Nat × Nat
∀ x, y : Nat
• 0 < suc (x)
• x < y ⇒ suc (x) < suc (y)
}

spec POS =
NAT then %mono
sort Pos = {p : Nat • ¬ p = 0}

spec NAT ADD =
NAT then %def
op + : Nat × Nat → Nat
∀ x, y : Nat
• x + 0 = x
• x + suc (y) = suc(x + y)

spec NAT PRED =
NAT then %def
op pre : Nat →? Nat
∀ x : Nat
• ¬ def (pre(0))
• pre(suc(x)) = x

spec NAT DIFF =
NAT PRED and NAT COMP then %def
op − : Nat × Nat →? Nat
∀ x, y : Nat
• def (x − y) ⇔ y < x ∨ y = x
• def (x − 0) ⇒ x − 0 = x
• def (x − suc (y)) ⇒ x − suc (y) = pre(x − y)

HETS analyses the specifications and produces a development graph [9]. Checking
that NAT is monomorphic using HETS is done by right-clicking the node of NAT (its

https://hets.dfki.de/Hets-lib/Conservativity/examples.het
https://hets.dfki.de/Hets-lib/Conservativity/examples.het
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yellow colour denotes that a conservativity proof obligation has been introduced) and
selecting “Check conservativity”, with the meaning that conservativity is checked over
the empty signature. This also implies that NAT is consistent. HETS provides an interface
for checking consistency of a theory directly, using a conservativity checker, by selecting
“Check consistency” in the context menu of the node. This is illustrated in Fig. 3. In all
other cases, the conservativity checker can be invoked by right-clicking the correspond-
ing link (which is marked with Mono? or Def?) and selecting “Check conservativity”.

Fig. 3. Checking conservativity with HETS

HETS also uses conservativity to simplify the task of checking consistency of large
theories. A node in a development graph is consistent if it has an incoming path with the
origin in a node that has been proven to be consistent and such that all the morphisms
contained in the path have been proven to be conservative.

We have run our conservativity checker for all the links in the CASL basic libraries
[11]. The results are as follows:

don’t know 790
conservative 455
conditionally conservative 49
monomorphic 25
conditionally monomorphic 11
definitional 322
sum 1652

The conditional variants indicate that some proof obligation has to be shown before
conservativity (or monomorphicity) can be guaranteed.

5 Conclusion and Related Work

We have presented a tool (as part of the Heterogeneous Tool Set HETS) for checking
conservativity of first-order specifications in CASL. In [5] we have shown the upper
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ontology DOLCE to be consistent using HETS architectural specifications. This has
involved 38 checks of consistency and conservativity, which all have been done with
the HETS conservativity checker.

A tool with similar scope is the CASL consistency checker (CCC) [7]. However, it
only provides a cumbersome-to-use calculus, whereas our tool uses a decision diagram
giving automated results in most cases (proof obligations are generated only in a few
cases). The CCC also has rules for structured specifications; in HETS these are realised
as so-called development graphs rules [9].

Future work will integrate recent research on SMT solvers, in particular, the “big
engine” approach with a generic base theory [1].
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The HI-Maude Tool
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Abstract. In complex hybrid systems, different components may influ-
ence each others’ continuous behaviors. HI-Maude is a rewriting-logic-
based tool that supports an object-oriented modeling methodology in
which it is sufficient to specify the continuous dynamics of single (phys-
ical component and physical interaction) objects in such interacting hy-
brid systems. HI-Maude supports simulation and model checking for a
number of numerical approximations of the continuous behaviors, based
on adaptations of the Euler and the Runga-Kutta methods.

1 Introduction

Many nontrivial hybrid systems consist of several components that may influence
each others’ continuous behaviors. The continuous behavior of such systems is
typically very hard to define. Consider a system consisting of a cup of hot coffee in
a room. The coffee will continuously become cooler and the room temperature
will increase due to heat transfer from the coffee to the room. Although the
continuous behaviors of the single components and the heat flow between them
are well known and can be easily defined (see Fig. 1), it is very challenging to
define the continuous behavior of the entire system “explicitly” in one shot,
which is what current formal models of hybrid systems require.

In addition to making it practically impossible to define the continuous be-
haviors of nontrivial systems, such as the one discussed in Section 4, existing
formalisms do not support an object-oriented specification methodology of con-
tinuously interacting hybrid systems, since the continuous behavior must be re-
defined for each new configuration of objects, e.g., if we have three cups of coffee
in the room. Existing methodologies also do not support central object-oriented
features such as dynamic creation and deletion of objects.

HI-Maude is a rewriting-logic-based formal tool for hybrid systems that sup-
ports an object-oriented modeling methodology in which both the physical com-
ponents and their physical interactions are modeled explicitly. For example, heat
flows from the coffee and the cup to the room through heat convection, and heat
flows between the coffee and the cup through heat conduction. In HI-Maude,
one can define the continuous dynamics of single physical component objects
and single interaction objects. HI-Maude then computes the continuous dynam-
ics of the entire system. This enables object-oriented modeling, since both the
discrete and the continuous dynamics are defined at the class level, and since the
dynamic creation/deletion of physical components is supported. For example, to
add another cup of coffee, one could just add (possibly dynamically) a new coffee

R. Heckel and S. Milius (Eds.): CALCO 2013, LNCS 8089, pp. 322–327, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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object, a new cup object, and three new interaction objects (for the convection
between the new cup and the room and between the new coffee and the room,
and for the conduction between the new coffee and the new cup) to the state.

To analyze hybrid systems—and HI-Maude targets complex systems whose
continuous dynamics may be defined by differential equations that are not ana-
lytically solvable—HI-Maude uses an adaptation of different numerical methods
(the Euler method and Runge-Kutta methods of different order) to give approxi-
mate solutions to coupled ordinary differential equations. These approximations
are then used in HI-Maude simulation, reachability analysis, and linear tempo-
ral logic model checking. Since the numerical methods only approximate the real
continuous behaviors, HI-Maude analyses are in general not sound and complete.

The HI-Maude tool, together with examples and documentation, is available
at http://folk.uio.no/mohamf/HI-Maude. The paper [2] describes the adap-
tation of the numerical methods to the effort/flow modeling approach and com-
pares the accuracy and execution times of the different methods in HI-Maude;
the paper [3] presents HI-Maude and its semantic foundations in more detail;
and [4] describes the case study summarized in Section 4.

2 Formal Modeling in HI-Maude

The HI-Maude modeling methodology is based on the the effort/flow method [5],
in which a physical system is modeled as a network of physical entities and phys-
ical interactions between the entities. This approach is applicable to different
systems. In mechanical translation systems, the pair of effort and flow variables
are force and velocity; in mechanical rotation systems, torque and angular ve-
locity; in electrical systems, voltage and current; in fluidic systems, pressure and
volume flow rate; and in thermal systems, temperature and heat flow rate.

A physical entity is described by an effort value, a set of attribute values, and
the entity’s continuous dynamics (see Fig. 1, left). The effort variable represents
a physical quantity, such as temperature, that evolves continuously, where the
time derivative ė of the effort e is a function of both the entity’s attribute values
and the flows of connected interactions (i.e., ė = f(atts,

∑
flows)).

An interaction between two physical entities is described by a flow, a set of
attribute values, and a continuous dynamics. The flow value’s evolution over
time is specified as function of the interaction’s attributes and the efforts of the
connected entities (i.e., flow = g(atts, effort1, effort2)). A one-sided interaction
represents an interaction between a physical entity and its environment.

Figure 1 illustrates the effort/flow methodology on our coffee example, where
the flow variable (Q̇) denotes the heat flow rate. The effort variables TR, TC , and
TK of the room, the coffee, and the cup are their temperatures. The attributes
denote parameters such as the mass and surface area of the coffee. An immersion
heater that can be dynamically added to or removed from the system adds
constant heat to the coffee. The system also exhibits discrete behaviors; e.g., the
heater is turned off and on to keep the coffee temperature between 70◦ and 80◦.

http://folk.uio.no/mohamf/HI-Maude
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Fig. 1. Physical system components and their interaction in a simple thermal system

Since HI-Maude extends Maude [1], a membership equational logic theory
(Σ,E), with Σ a signature1 and E a set of conditional equations, specifies the
system’s state space as an algebraic data type. Instantaneous transitions are
specified by conditional rewrite rules crl t => t′ if cond , where t and t′ are
two Σ-terms. A declaration class C | att1 : s1, ..., attn : sn declares
a class C with attributes att1 to attn of sorts s1 to sn. An object of class C is
represented as a term <O :C | att1 :val1, ..., attn :valn >, where O, of sort Oid, is
the object’s identifier, and where val1 to valn are the values of the attributes att1
to attn. The state is a term of sort Configuration denoting a multiset of objects
and messages. A subclass inherits the attributes and rules of its superclasses.

In HI-Maude, physical entities and (one-sided and two-sided) interactions are
defined as object instances of user-defined subclasses of the built-in classes

class PhysicalEntity | effort : Float .

class TwoSidedInteraction | flow : Float, entity1 : Oid, entity2 : Oid .

class OneSidedInteraction | flow : Float, entity : Oid .

The entity attributes denote the physical entities involved in the interaction.
The user must define the time derivative effortDyn(object,

∑
Q̇) of the effort

variable of object for each physical entity; the sum
∑

Q̇ of the flows to/from the
entity is provided by the tool. For example, if ė = f(atts,

∑
flows), we define

effortDyn(<O : C | atts >, X) = f(atts,X). We specify flowDyn(object, e1, e2)
and flowDyn(object, e1) to define the continuous dynamics of two-sided (resp.
one-sided) interaction objects; the effort values e1 and e2 are given by HI-Maude.

1 i.e., Σ is a set of declarations of sorts, subsorts, and function symbols.
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Discrete transitions are modeled as rewrite rules, and timeCanAdvance(s)
must be false in states s in which a rule must be applied.

To model the system in Fig. 1, we first define a class ThermalEntity (with
attributes denoting the heat capacity and the mass of the entity), whose objects
model thermal entities, such as the cup, the coffee, and the room:

class ThermalEntity | heatCap : Float, mass : Float .

subclass ThermalEntity < PhysicalEntity .

The effort attribute of the superclass denotes the temperature; its continuous

dynamics is defined in the same way for each entity (e.g., ṪR =
∑
Q̇R

mR·cR ):2

eq effortDyn(< O : ThermalEntity | mass : M, heatCap : C >, X) = X / (M * C) .

The heat flow by convection through the surface of the coffee or cup is given by
the temperatures of the entities, the area of the surface (A), and the convection
coefficient h. The definition of its dynamics is straight-forward from Fig. 1:

class Convection | area : Float, convCoeff : Float .

subclass Convection < TwoSidedInteraction .

eq flowDyn(< O : Convection | convCoeff : CC, area : A >, E1, E2) = CC * A * (E1 - E2).

The heater is a one-sided interaction (whose flow is 0 when the status is off

and is 500 when the status is on; it also monitors the temperature of the coffee):

class Heater | status : OnOff, temp : Float. subclass Heater < OneSidedInteraction.

eq flowDyn(< O : Heater | status : S >, E) = if S == on then 500.0 else 0.0 fi.

A rewrite rule turns off the heater when the temperature of the coffee has reached
80 degrees. timeCanAdvance forces the timely application of this rule:

crl < H : Heater | status : on, temp : T > => < H : Heater | status : off > if T >= 80.0.

ceq timeCanAdvance(< H : Heater | status : on, temp : T >) = false if T >= 80.0 .

3 Formal Analysis in HI-Maude

HI-Maude provides a range of formal analyses, including: (i) simulating one
behavior from a given initial state; (ii) checking whether a state matching a state
pattern is reachable from the initial state (possibly within a given time interval);
(iii) finding the shortest/longest time needed to reach an (un)desired state; and
(iv) checking whether all possible behaviors from the initial state (possibly up
to some duration) satisfy a linear temporal logic property. In all such analysis,
HI-Maude advances time in small time increments and approximates the values
of the continuous variables at each “visited” point in time. We have adapted
the following numerical methods to our effort/flow framework: the Euler, the
Runge-Kutta 2nd order (RK2), and the Runge-Kutta 4th order (RK4) methods.

2 We follow the Maude convention that variables are written with (only) capital letters,
and do not show the variable declarations.
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In any analysis command, the user selects the numerical approximation tech-
nique and the time increment used in the approximation. For example, HI-
Maude’s hybrid rewrite command is used to simulate one behavior of the system
from a given initial state initState up to duration timeLimit :

(hrew initState in time ∼ timeLimit using numMethod stepsize stepSize .)

∼ is either ‘<=’ or ‘<’; numMethod ∈ {euler, rk2, rk4}; and stepSize is the time
increment used in the approximations.

Using HI-Maude. The following module defines an initial state c1 for the
coffee example, consisting of one room, one heater, one coffee, and one cup object
(each with temperature 20◦), and the interaction objects in Fig. 1:

(homod COFFEE-SYSTEM is including HYBRID-LIB . including TIMED-MODEL-CHECKER .

...

eq c1 =

{< coffee : WaterEntity | effort : 20.0, mass : mC, heatCap : cC, phase : liquid, ... >

< cup : ThermalEntity | effort : 20.0, mass : mK, heatCap : cK, ... >

< room : ThermalEntity | effort : 20.0, mass : mR, heatCap : cR, ... >

< condCK : Conduction | flow : 0.0, entity1 : coffee, entity2 : cup, thermCond : k1,
thickness : L1, area : A1, ... >

< convCR : Convection | flow : 0.0, entity1 : coffee, entity2 : room, area : A2,

convCoeff : h2 ... >

< convKR : Convection | flow : 0.0, entity1 : cup, entity2 : room, area : A3, ... >

< immerHeater : Heater | flow : 0.0, entity : coffee, state : off, ... >} .

endhom)

HI-Maude simulation shows that after 5 minutes, the temperatures of the coffee,
cup, and room are 79.47◦, 74.43◦, and 20.17◦, respectively:

Maude> (hrew c1 in time <= 300 using euler stepsize 1.0 .)

Result ClockedSystem :

{< coffee : WaterEntity | effort : 7.9470872797477682e+1, phase : liquid, ... >

< cup : ThermalEntity | effort : 7.4430660426346876e+1, ... >

< room : ThermalEntity | effort : 2.0171582578947586e+1, ... > ... } in time 300

HI-Maude’s hybrid find earliest command can then be used to find out how
quickly the coffee temperature can reach 80◦:

Maude> (hfind earliest

c1 =>* {C:Configuration < coffee : WaterEntity | effort : T:Float >}

such that (T:Float >= 80.0) using euler stepsize 1.0 .)

Result: {< coffee : WaterEntity | effort : 8.00470...e+1, ... > ... } in time 277

Finally, we define a state proposition temp-ok to hold if the temperature of the
coffee temperature is between 69.95◦ and 80.05◦:
eq {REST < coffee : WaterEntity | effort : T >} |= temp-ok = T >= 69.95 and T <= 80.05.

We can then model check (for all behaviors up to 30 minutes) that once an ok
coffee temperature has been reached, it will remain in this interval:

Maude> (hmc c1 |=t [](temp-ok -> [] temp-ok) in time <= 1800 using euler stepsize 1.0.)

Result Bool : true
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4 Case Study: The Sauna World Championships

The winner of the Sauna World Championships is the contestant who can stay
the longest in a 110◦C sauna where half a liter of water is poured onto the sauna
rocks every thirty seconds. The 2010 event ended in a tragedy when the two
finalists collapsed with severe burn injuries after about six minutes; one of them
died the next day. The cause of this tragedy is still under investigation.

Instead of experimenting with humans in different saunas to investigate the
cause of this unsolved accident, one might use computers to analyze possible
causes of the accident. However, that is a tricky task for reasons that include:
– The continuously changing temperature of the skin and of the “core” of the

human body are different. Since problems may be caused by severe hyper-
thermia (body temperature above 40.6◦C) and second degree burn (skin
temperature above 55◦C), we must take both values into account.

– The system also has instantaneous transitions (e.g., release of half a liter of
water in the sauna) and nondeterministic behaviors (others leave the sauna).

We have defined a HI-Maude model of the human thermoregulatory system
according to accepted physiological facts and models [4], where the body core and
the skin are two main components. Heat flows between them through blood flows
where the diameter of the blood vessels changes continuously. The main forms
of heat exchange between skin and environment are by conduction/convection,
radiation, and evaporation of sweat; between core and environment heat flows
mainly through respiration. For the sauna, we model the heating rocks, their
specific heat capacity, the pouring of water on the rocks, the heater, etc.

Our HI-Maude analyses (see [4]) show that even the average person should en-
dure 12 minutes in the sauna before the onset of major injuries. Our results seem
consistent with what we know about how long both professionals and amateurs
can endure in the sauna. HI-Maude analysis showed that any of the following
scenarios could explain the still unsolved tragedy that could cause major injuries
to a five-time world champion in around 6 minutes:

– The initial temperature of the heating rocks is 250◦C.
– The sauna temperature of 210◦C.
– The initial humidity is very high (39 liters of water vapor instead of 10 liters).
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Abstract. Constructor-based Theorem Prover (CITP) is a tool for prov-
ing inductive properties of software systems specified with constructor-
based logics. CITP is equipped with a default proof strategy for the
automated verification of Observational Transitional Systems (OTS), but
the area of applications is not restricted to OTS. The proof strategy can
be customised by the user, or the basic tactics can be applied step-by-
step. The tool features are exhibited on concrete examples, showing how
to perform verification with CITP.

1 Introduction

CITP is currently implemented in Maude [3] but its underlying logic is construct-
or-based order-sorted preorder algebra [8]. Unlike Maude ITP [9] or CIRC [10],
the axioms of the specifications may include rewrite rules as well as equational
and membership axioms. The denotational semantics of modules is restricted
to reachable models w.r.t. given constructors [2]. It follows that the induction
schemes are available not only for the specifications declared with an initial se-
mantics but also for the specifications with a loose semantics [2,4]. In constructor-
based logics the existence of initial models is guaranteed by the sufficient com-
pleteness property (see [5] for details). However, the soundness of the induction
schemes is independent of sufficient completeness. Roughly speaking, the in-
duction schemes are valid for the specifications with a loose semantics even if
some of the non-constructor operations are underspecified. These semantic fea-
tures increase the expressivity power of specifications and allow modeling the
non-deterministic behavior of systems (see section 3).

A goal SP � E consists of a specification SP and set of formulas E rather

than a single formula like in Coq [1]. The proof rules
SP1 � E1 . . . SPn � En

SP � E
of the specification calculus can be regarded, upside down, as basic tactics for
decomposing problems. By applying a tactic to a goal SP � E we obtain a set
of goals {SP1 � E1, . . . , SPn � En} if some preconditions are satisfied. If it is not
the case, the goal remains unchanged. CITP is based on a methodology that
takes into account that both the specification and the set of formulas of the
initial goal are changing during verification. The tool is equipped with tactics
that preserve the confluence and termination properties of the specifications in
the proof process.
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CITP supports a simultaneous induction scheme which can be applied to a
goal which consists of a specification and a set of formulas rather than a single
formula. The tool can perform a complex case analysis automatically. CITP and
many examples can be downloaded from http://www.jaist.ac.jp/ danielmg/

citp.

2 Tactics

The basic tactics of CITP consist of the proof rules of the specification calcu-
lus defined in [4] and refined for applications in [6]. They are divided into two
categories, general basic tactics and specialized basic tactics . General basic tac-
tics can be applied to any specification. In contrast, specialized basic tactics
are designed for the data types declared with an initial semantics such as BOOL,
SEQUENCE and NAT.

General Basic Tactics. We present the general basic tactics which are sound
for all specifications.

Simultaneous induction (SI) applies induction to a goal SP � E consisting of
a specification SP and a set of formulas E. The induction variables are specified
by the command (set ind on VarSet .). Each induction case is given by a
sort preserving mapping CON : VarSet→ ConSet. This tactic can be applied by
giving the command (apply SI .). See [6] for details about SI.

Except SI, all basic tactics are designed for goals consisting of a specification
and a single formula. However, if a tactic (different from SI) is applied to a
goal of the form SP � {e1, · · · , en}, the goal is decomposed into a set of subgoals
{SP � e1, · · · , SP � en}, and then the tactic is applied to each SP � ei.

Case analysis (CA) adds conditions to the specification of a goal from condi-
tional equations whose left hand sides match subterms of the formula to prove.
Conditional equations marked with a string starting with "CA-" are used for case
analysis (see section 3). The technical details for finding conditional equations
and subterms to apply CA are described in [6]. This tactic can be applied by
giving the command (apply CA .).

Theorem of constants (TC) instantiates variables appearing in the formula of
the input goal by fresh constants. Such constants are automatically generated.
Sort information of such constants is added to the specification. This tactic can
be applied by giving the command (apply TC .).

Implication (IP) adds the condition of a quantifier-free sentence of a goal to
the specification of the goal, as assumption. This tactic can be applied by giving
the command (apply IP .).

Reduction is applied automatically by the system. Any goal of the form (1)
SP � eq t = t′, (2) SP � mb t : s and (3) SP � rl t ⇒ t′ is reduced to the
empty goal set if (1) t and t′ have the same normal form, (2) the sort of t is a
subsort of s, and (3) t can be rewritten to t′ by applying the rewrite rules of
SP, respectively. Maude search engine is invoked in the third case.

Specialized Basic Tactics. The specialized basic tactics presented in this
paper are sound for the specifications that protect booleans, sequences and

http://www.jaist.ac.jp/~danielmg/citp
http://www.jaist.ac.jp/~danielmg/citp
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natural numbers. That is, there is neither junk data nor confusion introduced in
BOOL, SEQUENCE and NAT.

Contradiction is applied automatically by the system. Any goal of the form
(1) SP � eq t = t′, (2) SP � mb t : s and (3) SP � rl t ⇒ t′ is reduced to the
empty goal set if (1) true and false have the same normal form, (2) true and
false have the same normal form, and (3) true can be rewritten to false by
applying the rewrite rules of SP, respectively. This tactic is complementary to
Reduction since it is applied when Reduction does not return an empty goal set.

Inconsistency is applied automatically by the system. Any goal of the form
SP � ceq t1 = t2 if C1

∧
b = not b

∧
C2 is reduced to empty goal set. This

strategy avoids non-termination processes during verification. If the specification
of a goal contains two equations eq sn0 <= t and eq t <= sm0 such that m ≤ n
then the goal is reduced automatically to empty goal set.

Case analysis for sequences (CS) is a specific pattern matching rule which
splits a goal into subgoals, changing the formula to prove by considering occur-
rences of elements into sequences. CS leaves unchanged the specification of the
initial goal. This tactic can be applied by giving the command (apply CS .).
It is crucial for Example 2 of section 3.

Derived Tactics. Every application of a basic tactic is preceded by a reduc-
tion of the ground terms occurring in the formulas of the goals to their normal
forms. The application order of the basic tactics is crucial for automating the
proof process. For CITP the default order is as follows: SI CA CS TC IP. This
proof strategy is designed to preserve confluence of the specifications modeling
OTS. CITP allows users to customise the proof strategy depending on the prob-
lem to solve (see Example 1). CITP supports also the application of any derived
tactics such as (apply SI CA .). The goals on the leaves of the proof trees are
discharged by Reduction, Contradiction or Inconsistency.

3 Examples

In this section we present two examples of proofs assisted by CITP to show how
to interact with the tool and demonstrate its efficiency.

Example 1. This is a simple example illustrating the complexity of the case
analysis performed by the tool. The conditional equations used for case analysis
are marked with a string starting with "CA-". The functions F and G over the
natural numbers are defined in the module FUN as follows:

ceq F(X) = 5 if X <= 7 [metadata "CA-A"].
ceq F(X) = 1 if 8 <= X [metadata "CA-B"].
ceq G(Y) = 2 if Y <= 4 [metadata "CA-1"].
ceq G(Y) = 7 if 5 <= Y [metadata "CA-2"].

Suppose we want to prove (goal FUN |- eq 9 <= G(F(X:Nat))+ G(X:Nat)

= true .). We set the tactic (set tactic TC CA .) and then the goal is
discharged by giving the command (auto .). Theorem of constants is applied
first. The new specification consists of FUN enhanced with the declaration of
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the constant op X#1 : -> Nat. The formula to prove is eq 9 <= G(F(X#1))+

G(X#1) = true. Case analysis is performed w.r.t. patterns given by the inner-
most sub-terms of G(F(X#1))+ G(X#1) matched by the conditional equations
above: F(X#1) and G(X#1). There are four cases: (a) X#1 <= 4, (b) 5 <= X#1
<= 7 (c) 8 <= X#1 <= 4 (d) 8 <= X#1. Note that CITP can identify and dis-
charge goals with inconsistent specifications such as (c).

Maude ITP does not support the application of such a complex case analysis
automatically. CIRC is equipped with a similar tactic for case analysis but it
cannot identify goals with inconsistent specifications such as case (c).

Example 2. The following example is a simplified version of the alternating bit
protocol. One agent puts repeatedly pairs < bit, d > of bits and encoded data
into a channel which automatically decodes the information. When the agent
gets < bit′, d′ > from the channel such that bit = bit′, it is a confirmation
that the data sent for decoding was received. In this case, the agent stores the
data received into a list structure, alternates the bit, and selects the next
encoded data for sending. We assume that the channel is unreliable, meaning
that the data in the channel may be lost, but not exchanged or damaged.

The data sent by the agent are indexed by natural numbers: data(0), . . .,
data(sn0), where op data : Nat -> Data is the constructor for the data items.
The sort Bit has two constructors op t : -> Bit and op f : -> Bit since
the bits can have only two values. The function op not : Bit -> Bit al-
ternates the bits. The channel consists of sequences of bits and data of the
form < bit0, data(i0) >,< bit1, data(i1) >, . . . , < bitn, data(in) >. The
list of decoded data items received by the agent consists of sequences of form
data(i0), data(i1), . . . , data(in).

In the OTS/CafeOBJ method the transitions between the states of the sys-
tem are modelled with constructor operators. For our specification, ABPS, the
constructors are the following ones:

Contructor Meaning

init : -> Sys Initial state
rec : Sys -> Sys Agent receives pairs of bits & data
send : Sys -> Sys Agent sends pairs of bits & encoded data
drop : Sys -> Sys Dropping one element of queue

The structure of a state is abstracted by the following observers, each one
returning observable information about the state:

Observer Meaning

channel : Sys -> Channel channel structure in a given state
bit : Sys -> Bit Agent’s bit
next : Sys -> Nat Number of data sent by Agent
list : Sys -> List Lists of data received by Agent

The ABPS specification is declared with a loose semantics. Two states are
equal if they are undistinguishable by observers. This fact is formally described
by means of equations. At the initial state the agent’s bit is f, the channel is
empty, the list is nil, and the index of the data to send is 0. The values of the
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bit after the execution of the constructor rec are described by the following
equations:

ceq bit(rec(S)) = bit(S) if channel(S) = empty [metadata "CA-b1"].
ceq bit(rec(S)) = bit(S) if < B,D >,C := channel(S)

∧
B = not bit(S)

[metadata "CA-b2"].
ceq bit(rec(S)) = not bit(S) if < B,D >,C := channel(S)

∧
B = bit(S)

[metadata "CA-b3"].

Since elements from arbitrary positions of the channel may be dropped, the
specification of loosing data is more subtle. We use “underspecified” operations
to model the dropping action. For instance, the constructor drop is specified by
two operations x y : Sys -> Channel and the following equations:

ceq channel(drop(S)) = x(S),y(S) if x(S),< B,D >,y(S) := channel(S)
[metadata "CA-d1"].

ceq channel(drop(S)) = channel(S) if match(channel(S),x(S),y(S))= false
[metadata "CA-d2"].

eq bit(drop(S)) = bit(S).
eq next(drop(S)) = next(S) .
eq list(drop(S)) = list(S) .

There are no equations to define the values of x and y meaning that each ABPS-
model has its own interpretation of x and y. The non-determinism consists in
the choice among models rather than the choice within models.

We prove that if channel contains agent’s bit then on the lower positions of
the channel all bits are equal to the agent’s bit.

(inv
def
= crl B2:Bit => bit(S:Sys) if

C1:Channel,< B1:Bit,D1:Data >,C2:Channel,< B2:Bit,D2:Data >,C3:Channel :=
channel(S:Sys)

∧
B1:Bit = bit(S:Sys).)

Note that the formula to prove is formalized as a rewrite rule. As an equation
the above invariant would cause non-termination during the verification. For the
following proof, both equational and rewrite rules have the same denotational
semantics, that of equality. We start our proof by adding the lemma crl true

=> false if not bit(S) => bit(S) to ABPS:

(th ABPSL is inc ABPS .
var S : Sys .
crl [lemma-inc]: true => false if not bit(S) => bit(S)[nonexec].
endth)

The proof is as follows:

(goal ABPSL |- crl B’:Bit => bit(S:Sys) if
C1:Channel,< B1:Bit,D1:Data >,C2:Channel,< B2:Bit,D2:Data >,C3:Channel :=
channel(S:Sys)

∧
B:Bit = bit(S:Sys).)

(set ind on S:Sys .) --- S:Sys is marked for induction
(apply SI .) --- induction is applied
(auto .) --- init
(auto .) --- send
(auto .) --- drop
(init lemma-inc by S:Sys <- x#1 .) (auto .) --- rec
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After induction is applied four subgoals are generated corresponding to the four
constructors. The subgoals corresponding to init, send, and drop are discharged
automatically by the command (auto .). In order to discharge the subgoal
corresponding to rec, we initialise lemma-inc with S = x#1, where x#1 is
the induction constant generated by the tool, and then we apply (auto .) to
prove it automatically. Case analysis generates a subgoal with an inconsistent
specification which is discharged by the Contradiction tactic.

4 Conclusion

CITP is based on a solid theoretical foundation (see [8,5,7,4]). The methodology
supported by CITP was defined in [6] and it coherently combines the general
proof rules (which are valid for all specifications) with the specialized rules of
deduction (which are defined for specification declared with an initial seman-
tics). Algebraic specification languages have standard libraries with predefined
modules. In order to perform verification of complex software systems it is cru-
cial to have tactics for the initial data types that are often used in practice such
as booleans, sequences or natural numbers. The challenge is how to integrate
these tactics with the ones for loose semantics and to push the boundaries of
automation.
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Abstract. This paper describes a recent timed CTL (TCTL) model
checker for Real-Time Maude. Our model checker is sound and complete
for large classes of systems for which there were previously no TCTL
model checkers. Furthermore, since Real-Time Maude also provides a
formal analysis back-end to a number of modeling languages, our model
checker also equips such languages with a TCTL model checker for free.

1 Introduction

Real-Time Maude [10] extends the rewriting-logic-based Maude language and
tool [4] to support the formal modeling and analysis of real-time systems. In con-
trast to most formal tools for real-time systems—whose specification formalisms
are fairly restrictive to ensure that key properties are always decidable—Real-
Time Maude emphasizes expressiveness and ease of specification. This has made
it possible to successfully apply the tool to large state-of-the-art network proto-
cols, scheduling algorithms, etc., that cannot be formalized using the most well
known real-time tools such as RED, Kronos, Uppaal and TSMV (see [10]).

For the same reason, Real-Time Maude has also proved to be a suitable seman-
tic framework and formal analysis back-end for a number of modeling languages.
For example, Real-Time Maude analysis has been integrated into timed model
transformation tools, the graphical modeling tool Ptolemy II, the OSATE tool
environment for the avionics modeling standard AADL, and a number of other
modeling languages (see, e.g., [8,2]). These languages cannot be formalized by
timed automata because of, e.g., state variables whose values can grow beyond
any bound and the need for unbounded data structures.

Until now, Real-Time Maude could only analyze reachability and untimed
temporal logic properties. However, one is often interested in timed (or metric)
properties, such as “the airbag will deploy within 10 ms. of a crash,” instead of
untimed ones, such as “the airbag will eventually deploy after a crash.”

This paper describes a recent timed CTL (TCTL) model checker for Real-Time
Maude. Although TCTL model checking is decidable for timed automata, very
few timed temporal logic model checkers exist today, and then only for fairly re-
stricted formalisms. The state-of-the-art timed-automata-based tool Uppaal [3]
supports model checking for only a quite limited subset of non-nested TCTL
properties. Kronos [12] and RED [11] implement TCTL model checkers for,
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respectively, timed automata and linear hybrid automata. While the above tools
are based on dense time, TSMV [7] implements a RTCTL1 model checker for
timed Kripke structures for discrete time domains.

Of course, the TCTL model checking problem for the expressive Real-Time
Maude formalism is in general undecidable. However, we have proved in [5,6]
that, for a large class of systems that satisfy some easily checkable conditions,
our TCTL model checker is indeed sound and complete also for dense time.
An important consequence is that Real-Time Maude now provides, for free,
sound and complete TCTL model checking to many of the modeling languages
mentioned above. Such model checking has already been integrated into the
Ptolemy II tool, and has been used to discover a previously unknown bug in a
Ptolemy II model of a traffic light system.

The paper [6] introduces the semantic foundations of our model checker,
focusing on the soundness and completeness issues (which is extended to the
whole TCTL in [5]). The tool, with associated papers, is available at
http://folk.uio.no/leprid/TCTL-RTM/.

2 The TCTL Model Checker

A Real-Time Maude specification contains declarations of sorts, subsorts, and
function symbols, and a set of conditional equations, which specify the system’s
state space as an algebraic data type, and must contain a specification of a sort
Time modeling the time domain (which may be dense or discrete). Labeled con-
ditional instantaneous rewrite rules, written crl [l] : t => t′ if cond, spec-
ify the system’s instantaneous (i.e., zero-time) local transitions. Time elapse is
modeled by a set of tick (rewrite) rules, which typically have the form

crl [l] : {t} => {t′} in time x if x <= u /\ cond .

where x is a new variable of sort Time that denotes the duration of the rewrite.
Such tick rules are not directly executable, since many values are possible for
the new variable x. Real-Time Maude therefore offers different time sampling
strategies [9] to execute such tick rules. The maximal time sampling strategy
advances time by the maximum possible time elapse u in each application of the
tick rule. The fixed-increment strategy advances time by a given time value r.

Timed CTL (TCTL) [1] extends CTL by adding interval time constraints on
the temporal operators. A TCTL formula is defined by:

ϕ ::= true | p | ¬ϕ | ϕ ∧ ϕ | E ϕ UI ϕ | A ϕ UI ϕ

where p is a state proposition and I is a time interval. We can define the usual
abbreviations, such as E FI ϕ, A FI ϕ, E GI ϕ, and A GI ϕ, in the standard
way. Intuitively, E ϕ1 UI ϕ2 holds in a state s if a state s′ is reachable from s
in time t ∈ I, and ϕ2 is satisfied in s′, and all states from s to s′ satisfy ϕ1.

1 RTCTL is a timed extension of CTL with integer-valued time constraints.

http://folk.uio.no/leprid/TCTL-RTM/
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State propositions are terms of sort Prop and are specified by (possibly con-
ditional) equations of the form {statePattern} |= prop = b, for b a term of
sort Bool, which defines the state proposition prop to evaluate to b in all states
matching the given pattern. The syntax of TCTL formulas is fairly intuitive, e.g.
E p1 U≤5 (¬p2 ∧ A G (E F(7,8] p3)) is written

E p1 U[<= than 5)](not p2 and AG (EF[o 7, 8 c] p3))

where a time interval is a term of the kind [c1 τ1, τ2 c2], where c1 (respectively
c2) is o if the time interval is left (respectively right) open, and is c if it is closed.

Some care must be taken when defining the validity of TCTL formulae in
Real-Time Maude. Does the formula A F[1,2] true (in all paths, a state where
true holds must be reached in some time 1 ≤ τ ≤ 2) hold in the model with the
single (tick) rule {f(y)} => {f(y + x)} in time x if x <= 3− y and initial
state {f(0)}? The satisfaction of a formula can be defined under two different se-
mantics: the pointwise semantics considers all possible paths (hence A F[1,2] true
does not hold, since we have a path {f(0)} => {f(3)} => . . .); in the contin-
uous semantics, all possible states “in-between” are taken into account when
deciding the formula (and hence A F[1,2] true holds). See [5] for details.

Our explicit-state TCTL model checker is implemented in Maude and analyses
a formula ϕ under the pointwise semantics. The model checker provides the user
with two model checking commands:

(mc-tctl t |= ϕ .) and (mc-tctl-gcd t |= ϕ .)

for t the initial state and ϕ a TCTL formula. The first one performs the model
checking on the model obtained by applying the user-selected time sampling
strategy on the original model. The second command executes the gcd strategy,
which advances time by r̄ time units, where r̄ is half of the greatest common
divisor of all tick durations from t using the maximal time sampling strategy and
all the non-zero, non-infinite time bounds in ϕ. The point of the gcd strategy is
that pointwise model checking the gcd theory Rgcd(t0,r,ϕ) provides a sound and
complete model checking procedure for the continuous semantics, which is the
more natural semantics, for large classes of systems [6,5]. In particular, we have

R, LP , t |=c ϕ ⇐⇒ Rgcd(t0,r,ϕ), LP , t |=p ϕ,

under the following reasonable assumptions:

– applying a tick rule does not change the valuation of a state proposition;
– instantaneous rewrite rules can only be applied after maximal tick steps or

after applying an instantaneous rule;

– the state space reachable from the given initial state is finite.

At the moment, the model checker returns a “yes/no” answer and does not
generate counterexamples/witnesses, in line with current TCTL model checkers,
which at most provide counterexamples for very limited subsets of TCTL.
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3 Performance Comparison

We compare our model checker with TSMV and RED on the bridge crossing
benchmark, in which four persons must cross a bridge at night using a lamp.
Only one lamp is available and at most two persons can cross at the same time.
Each person walks with a different speed. When crossing together, they must
walk at the speed of the slower one.

We model a state by a lamp and a multiset of terms person(τ,b), where τ is
the crossing time and b is true iff the person has crossed the bridge. We use the
same values as in the TSMV analysis; p1 crosses in time 5, p2 in time 10, p3 in
time 20, and p4 in time 25. We define the initial state init(N) to be parametric
in the “scaling factor” N:2

eq init(N) = person(5 * N,false) person(10 * N,false)

person(20 * N,false) person(25 * N,false) lamp(false) .

The state proposition safe holds if all persons have crossed the bridge:

op safe : -> Prop .

eq {person(T:Time, false) S:System} |= safe = false .

eq {S:System} |= safe = true [owise] .

From the initial state, the shortest crossing time is 60. Therefore, under the
pointwise semantics, using the maximal time sampling, from any possible state,
it is possible to reach the safe state in time 85 (in the worst case, the slowest
guy is alone on the other side with the lamp), which can be verified as follows:

Maude> (mc-tctl {init(1)} |= AG EF[<= than 85] safe .)

However, under the continuous semantics, 85 time units may not be enough to
reach a safe state: if the slowest guy has just started to cross the bridge, we have
to wait for time 50 − ε for her to be back with the lamps, since she does not
turn around on the middle of the bridge. Hence, under the continuous semantics,
we can only guarantee that, from any state, a safe state can be reached in less
than time 110. Indeed, the mc-tctl-gcd command for the formula above returns
false for time bound 85 and true for time bound < 110.

Table 1 shows a comparison between our explicit-state model checker and the
symbolic state-space-representation tools TSMV and RED.3 The first 4 rows
show a comparison for the formula AG EF[<= than (85 * n)] safe, with 110

instead of 85 for the continuous semantics, for n the scaling factor. The last 4
rows show a comparison for the same formulae, where init+(m) is init(1)

with m additional P2 persons.4 TSMV should be compared to the “pointwise”
results of Real-Time Maude, while RED should be compared to the “continuous”

2 All specifications are available at http://folk.uio.no/leprid/TCTL-RTM/ .
3 Uppaal does not support model checking the above TCTL formula.
4 The analysis was performed on a 1.87 GHz IntelR© XeonR© with 128GB of RAM.

http://folk.uio.no/leprid/TCTL-RTM/
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Table 1. Execution times (in seconds) for the bridge crossing problem

Initial state TSMV Real-Time Maude RED 7.0
(pointwise) (continuous)

init(1) 0.003 0.040 1.779 0.406
init(10) 0.125 0.036 1.871 0.408
init(100) 1.261 0.034 1.876 0.404
init(1000) 53.511 0.036 1.914 0.406

init+(2) 0.062 0.086 23.573 0.871
init+(4) 0.139 0.184 100.940 1.989
init+(8) 0.363 0.431 500.941 14.712
init+(12) 0.805 0.779 1658.725 70.316

ones.5 It is not surprising that RED—optimized for timed automata, of which
this problem is an instance—was the fastest in the comparison.
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Abstract. This paper presents the encoding of the hybridisation method pro-
posed in [MMDB11, DM13] into the HETS platform.

Keywords: Hybrid logics, institutions, reconfigurable systems.

1 Introduction and Purpose

Hybrid logics [Bla00] are a brand of modal logics that provides appropriate syntax
for the possible worlds semantics through nominals. In particular, it adds to the modal
description of transition structures the ability to refer to specific states. This paves the
way to an expressive framework for specifying complex software able to evolve through
different execution configurations. In a number of papers, starting with [MFMB11], the
foundations and methodological aspects of such a framework for reconfigurability have
been developed, leading to a two-stage method:

– globally the system’s dynamics is represented by a transition structure described in
a hybrid language, whose states correspond to possible configurations;

– locally each state is endowed with a structure modeling the respective configuration
specification.

The logic used locally depends on the application requirements. Typical candidates
are equational, partial algebra or first-order logic (FOL), but one may equally resort
to multivalued logics or even to hybrid logic itself equipping, in the last case, each
state with another (local) transition system. Instead of fixing a particular hybrid logic,
a systematic method to develop on top of each local logic, the characteristic features of
hybrid logic was proposed. This process is called hybridisation and was characterised
in [MMDB11, DM13], framed in the context of the theory of institutions [GB92] to
achieve greater generality.

The hybridisation process abstracts away the syntactic and semantic details, that
are independent of the very essence of the hybrid logic idea. This has a number of
benefits, even if paying the price of a heavy notational burden. One is the focus on the
essential, the theoretical development not being hindered by irrelevant details. Another
one concerns its applicability to a wide number of concrete instances, since all of them
could be regarded as combinations between concrete versions of hybrid logics with

R. Heckel and S. Milius (Eds.): CALCO 2013, LNCS 8089, pp. 340–345, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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other logical systems. In this sense, the hybridisation method can be seen as a source of
logics for the specification of reconfigurable systems [MFMB11].

Institutions provide a systematic way to relate logics and transport results from one
to another, which means that a theorem prover for the latter can be used to reason about
specifications written in the former. This is achieved through a special class of maps
between institutions, referred to conservative comorphisms.

This paper reports on the implementation of the method introduced in [MMDB11]
along two different directions. Firstly the general hybridisation method is incorporated
in the HETS platform [MML07] — parsing and static analysis for the hybridisation of
any base institution already supported in HETS being provided. Secondly, the comor-
phism HCASL → CASL is implemented, offering effective tool support for proofs on
a number of HCASL-sub-institutions, namely HFOL and hybrid propositional logic1.
This provides for free the proof support environment of a particularly well established
logic. Naturally, the final goal is to have in HETS for free a comorphism from a hy-
bridised logic HI to FOL given that a comorphism exists from the base logic I to
FOL.

HETS has been described as a “motherboard” where different “expansion cards” can
be plugged. These pieces are individual logics (with their particular analysers and proof
tools) as well as logic translations. To make them compatible, logics are formalised as
institutions and translations as comorphisms. Therefore, the integration of the hybrid
specifications on the HETS platform is legitimate, since all formal requirements (e.g.,
that institutions exist, that a comorphism can be defined, etc.) are already guaranteed by
the hybridisation process itself.

The code for this extension to HETS, as well as a set of hybrid specification examples,
is available from GITHUB (https://github.com/nevrenato/Hets_Fork).
Additionally a ready–to–use HETS system is provided in a virtual machine available
at SUGARSYNC (https://www.sugarsync.com/pf/D7620475 67336482
6511440).

2 Hybridisation as a Plug-in to HETS

2.1 Hybridisation of CASL

The hybridisation process was first incorporated into HETS through its direct applica-
tion to what is the platform lingua franca: CASL[MHST03]. A comorphism from the
outcome HCASL to CASL was also defined. Thus, assisted proof support for HCASL

becomes available for free.HCASL specifications add to the usual ones in CASL a dec-
laration of nominals and modalities. Sentences include the typical hybrid machinery
and quantification over nominals. Thus, the respective grammar is extended as follows:

CFor’ = HFor | . . . ;
HFor = @ n CFor’ | < m > CFor’ | [ m ] CFor’ | Here n | ! n CFor’ | ? n CFor’;

1 HCASL consists of the hybridisation of the institution CASL with the models restricted to
those with sorts commonly realised in all the states and with common realisation of the quan-
tified variables.

https://github.com/nevrenato/Hets_Fork
https://www.sugarsync.com/pf/D7620475_67336482_6511440
https://www.sugarsync.com/pf/D7620475_67336482_6511440
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where n is a nominal, m a modality, and the last two alternatives the universal and
existential quantifiers over nominals. The grammar above besides extending sentences
with the typical hybrid machinery also includes the quantification over nominals. The
latter makes possible to define complex operators such as the ↓ binder, or the notion of
a rigid designator

Notice also the need to use the keyword Here, when having a nominal for a sentence.
Such is needed so that the parser for CASL does not take nominals as a common propo-
sition. In the following section a more sophisticated mechanism to prevent this kind of
ambiguities is discussed.

Fig. 1. Kripke frame for the swinging calculator

Figure 1 depicts a toy example of a calculator which commutes, through a modality
shift, between two modes of operation: a binary operation is interpreted as arithmetic
addition in mode Sum and multiplication in Mult. Its HCASL encoding is reproduced
below.

logic HYBRID

spec RECONFCALC =

HNAT

then modalities Shift

nominals Sum,Mult

ops # : Nat × Nat → Nat

%% global axioms
∀ n, m, p : Nat • n # m = m # n ∧ (n # m) # p = n # (m # p)

%% axioms specific to Sum and Mult
∀ n, m : Nat • @Sum n # 0 = n ∧ @Sum n # suc(m) = suc(n # m) ∧ @Mult n # 0 = 0

∃ p, q : Nat • @Mult n # suc(m) = p ∧ @Sum n # q = p ∧ @Mult n # m = q

%% axioms specific to the Kripke frame
• Here Sum ∨ Here Mult

• @Sum (< Shift > Here Mult ∧ [Shift] Here Mult)
• @Mult (< Shift > Here Sum ∧ [Shift] Here Sum)

%% lt relation definition, using # op
∀ n, m, r : Nat • n <= m ⇒ n # r <= m # r

The encoding fromHCASL to CASL provides the expected proof support for this sort of
hybrid specifications, i.e. the set of proof tools available for CASL is brought toHCASL.
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Below there are some examples of properties of the swinging calculator specification
verified in this way.

Figure 2 registers the corresponding HETS session, showing the proof window, part
of the model theory, and the specification graph.

• @Sum n # m >= n %(lemma2)%
• @Mult (m = 0 ∨ m = suc(0) ⇒ n # m <= n) %(lemma6)%
• @Sum [Shift] [Shift] Here Sum %(Cyclicity1)%
∀ n, m, r : Nat
• n # 0 = 0⇒ < Shift > n # 0 = n %(StateExclusion)%
• ∃ p : Nat • @Sum n # n = p ⇒ @Mult n # suc(suc(0)) = p %(DoubleDef)%
• ∃ p, q : Nat • m <= suc(0) ⇒ @Sum n # m = p ∧ @Mult n # m = q ⇒ p >= q

%(CasesSumBiggerMult)%

Fig. 2. A HETS session for the swinging calculator

2.2 Generic Hybridisation

The current integration of the hybridisation method into HETS offers the user hybridised
versions of logics already “plugged in” HETS . Examples include propositional logic,
CASL, COCASL, and any other logic previously hibridised. The implementation of the
hybridisation framework can also be used to expand this list: given an identifier, a sen-
tences’ parser and an analyser, a new logic can be taken into the picture.

In each case the resulting grammar for writing hybridised specifications is the com-
position of a specification in the base logic, the declaration of nominals and modalities,
and the sentences enriched with hybrid properties.
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Note, finally, that hybridisation as described here may introduce ambiguities. In the
example below, for instance, it is not clear which nominals belong to the base or the
hybridised layer.

To clear out possible ambiguities resulting from double or multiple applications of
the hybridisation method, formulas associated to the base layer are wrapped into curly
brackets (i.e. they are transported to the hybridised level through an injection).
Follows an example specified in HETS using the double hybridisation of propositional
logic:

logic HYBRIDIZE

spec GEOGRAPHY =
baselogic Hybridize
Basic Spec{ baselogic Propositional

Basic Spec { props p }
Nominals Portugal, England, Canada
Modalities Car
• @ Portugal <Car> England }

Nominals Europe, America
Modalities Plane
• America => { not ( Portugal ∨ England ) } ∧ Europe => { not Canada };
• @ Europe <Plane> ( America ∧ { Canada } )

The specification above exemplifies a double hybridisation. It describes routes in a map
linked by some means of transport (the modalities) between different places (identified
by nominals). One level of hybridisation corresponds to countries; the second one to
continents. Clearly, in this case nominals can be ordered respecting the order used to
build an hierarchy of countries and continents. Note how this hierarchy is brought back
into sentences. For instance the last one in the above specification states : from Europe
one can travel by plane to America; and, in particular, to Canada.

3 Discussion

The hybridisation process and its implementation on HETS proved an effective and
flexible way to prove properties of hybrid specifications and thus to support the design
method in [MFMB11]. The implementation compares well with respect to dedicated
provers for (specific) hybrid logics, although a systematic comparison is still being
done. Typically, such tools, such as HTAB[HA09] or HYLORES[AH02], are faster to
prove a formula with low complexity, but HETS achieves similar or even better perfor-
mance in more complex ones. In some cases, formulas hard to deal with in HTAB are
straightforward in HETS. A typical example is A(↓ x〈m〉¬x).

Moreover, the genericity of the approach reported in this paper seems highly attrac-
tive in practice.

The results of [MMDB11, DM13] have yet a great potential to be explored on top
of their integration in the HETS integration. The first reference shows that a comor-
phism from an arbitrary institution I to FOL gives rise to another comorphism from
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its hybridisationHI toFOL. Reference [DM13] refines this by characterising the con-
servativeness of such maps. Conservativeness is sometimes achieved not for the “free
hybridisation” but for a restrict semantics of the hybridised institution satisfying a set
of properties. Those restrictions are axiomatised on the FOL “side” as suitable presen-
tations. The HETS rich support for FOL justifies the pertinence of the “hybridisation
of comorphisms” method, since it extends tool support for a wide class of hybridised
logics. Those includes not only hybrid equational logic and hybrid first-order logic (al-
ready supported by the comorphism presented above) but also hybridised modal logic
and even hybridised hybrid propositional logic, among others.
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Penrose: Putting Compositionality to Work

for Petri Net Reachability
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Abstract. Recent work by the authors introduced a technique for reach-
ability checking in Petri Nets, exploiting compositionality to increase
performance for some well-known examples. We introduce a tool that
uses this technique, Penrose, discuss some design details in its imple-
mentation, and identify potential future improvements.

1 Introduction

The famous example of Dining Philosophers has n philosophers around a dining
table, contending for the use of shared forks, in order to eat. A Petri net1 repre-
sentation of three dining philosophers is given in Fig. 1. The graphical notation
is non-standard, with “directed” places and undirected links2.

Independent sets of transitions of a (1 bounded) Petri net can fire if the
current marking contains tokens in the source place(s) and none in the target
place(s). Reachability is the problem of determining if a particular marking—a
set of places that contain a token—can be reached by firing transitions, starting
from some initial marking. In this paper we introduce Penrose3 a tool, written
in Haskell, for solving reachability in Petri nets, via an algebraic approach.

P1

P2P3

F1 F2

F3

Fig. 1. Petri net representing a table of three dining philosophers

1 Here we consider 1-bounded Petri nets, aka C/E nets or Elementary Net Systems.
2 Places in the graphical presentation have separate in/out ports, and distinct transi-
tions are marked with a stroke. For details see [12].

3 Available for download: http://users.ecs.soton.ac.uk/os1v07/Penrose_CALCO13

R. Heckel and S. Milius (Eds.): CALCO 2013, LNCS 8089, pp. 346–352, 2013.
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Each Petri net determines a transition system with states the markings of the
net and transitions that witness the simultaneous firing of an independent set of
net transitions. For reachability, we consider the net’s transition system as a non-
deterministic finite automaton (NFA) over a unary alphabet: the initial and final
states are, respectively, the initial and desired markings. Deciding reachability
then coincides with emptiness of the NFA’s language. This NFA is known as
the reachability graph of a net; one algorithm is thus to construct the transition
system, and determine if there is a path from the initial marking to the final one.
State explosion makes this approach untenable: the number of markings (and
thus, the statespace) is exponential in the number of places of the net.

1.1 A Local Approach: Penrose

Most standard approaches (e.g. [8,13]) to checking reachability are monolithic
in that they consider a net as a whole. Penrose takes a different approach:
decompose the net into small components (or take a decomposition as input),
locally check reachability, and use the local information to reconstruct a global
result. Our methodology is thus reminiscent of compositional model checking [5].

We use the algebra of nets with boundaries [11,3]. These extend Petri nets by
adding left and right boundaries to a net, to which, transitions of the net can
connect. They inherit the algebra of monoidal categories: composition can be
“sequential”, written ‘;’, where two nets are synchronised, having their common
boundary connected, or “tensor”, written ‘⊗’, where two nets are placed “on top”
of one another and considered as a single net. If N is a net with boundaries, we
write N : k → l if N has a left boundary of size k and right boundary of size l.

d2 : 0 → 4 ph : 2 → 2 fk : 2 → 2 i2 : 2 → 2 e2 : 4 → 0

Fig. 2. Component nets with boundaries of Dining Philosophers

Using nets with boundaries, we can give a decomposition of the net in Fig. 1,
in terms of 5 simple component nets, illustrated in Fig. 2: PhRown is a row of
n alternating philosophers and forks, and Phn a table of n dining philosophers:

PhRow1
def
= ph ; fk

PhRowk+1
def
= ph ; fk ; PhRowk

Phn
def
= d2 ; (i2 ⊗ PhRown) ; e2

The Phn construction “seals” the row of philosophers into a table, by wiring the
last fork to the first philosopher, using d2, i2 and e2.
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Consider the deadlocked configuration, where all forks are picked up, but
no philosophers are eating; this situation corresponds to a marking with fork
places empty, and the “eating” places unmarked in each philosopher. A net with
boundaries N : k → l determines an NFA in a similar fashion to a Petri net,
however, the labels of the NFA’s transitions are now important—they record
the interaction of underlying sets of net transitions on the boundaries, as a
pair of k-bit and l-bit binary strings4. The minimal DFA for PhRow2 with the
desired (local) marking is shown in Fig. 3 (the error state has been omitted, to
increase readability.) The DFA illustrated is actually a fixed point: for n ≥ 2,
the minimised DFA of PhRown is the same5. Similar observations have been
made about dining philosophers modelled using the algebra of Span(Graph) [7].

1 {00/00}

2

{10/00}

3

{00/01}

4

{00/10}

5

{10/10}

6

{10/01}

{01/00}

{00/00}

{01/01}

{01/10}

{00/10}

{00/01}{00/10}

{10/10}

{00/00}

{10/00}

{00/01}

{10/01}

{00/00}

{10/00}

{01/01}

{00/01}

{01/00}

{00/00}

{01/10}

{00/10}

{01/00}

{00/00}

Fig. 3. Minimal DFA for PhRow2

The automata representing the underlying net components are ‘;’- or ‘⊗’-
composed through modifications of the standard product construction.

The high-level algorithm of Penrose is:

1. Take as input a reachability problem, comprised of a Petri net, considered
as a net with boundaries, and initial and final markings.

2. Transform the net into a wiring decomposition [12], or take one as input6.
A wiring decomposition is a binary tree, with nodes composition operators,
and leaves nets with boundaries (with local marking information).

4 A ‘1’ in the ith position indicates the presence of an interaction with the ith boundary
port, on the corresponding side.

5 In general, when we talk about fixed points we are referring to a situation in which
there exists k ∈ N such that Min(Nk) = Min(Nk+1), where Nn is a recursively defined
net built up from component nets with boundaries, and Min is some minimisation
operation (DFA minimisation, quotienting by weak bisimilarity, etc.).

6 Many real Petri nets have recursive specifications that are readily translated to the
language of nets with boundaries.
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3. Traverse the wiring decomposition, avoiding duplicate work via memoisation:
– convert leaves (once per unique net) into corresponding NFAs and con-

struct minimal DFAs to discard irrelevant local statespace.
– at internal nodes, combine DFAs (once per unique pair) using either form

of composition, and then minimise the resulting DFA.

DFA minimisation can be prohibitively expensive. On the other hand, it is a
very coarse equivalence that allows us to prune the statespace aggressively, and
in some examples allows us to reach a fixed point quickly, when using a finer
equivalence would not suffice, as explained in Sec. 2. Properties of nets with
boundaries [11,3] ensure correctness, see [12] for proofs.

2 Applicability and Performance

State explosion is common in model checking of concurrent systems; by min-
imising the automata of component nets, we obtain the minimal characterisa-
tion of their “protocol”: how they must interact with the environment in order
to reach a desired configuration. Prior to minimisation, we ε-close7 the NFA,
since only actions that interact with the net’s boundaries affect its protocol. We
then determinise and minimise, using Brzozowski’s [4] algorithm. This algorithm
is conceptually very simple: the NFA’s transition relation is twice reversed and
determinised (using the subset construction).

The performance of Penrose depends on two factors:

1. The structure of the input net: can we identify repeated “small” components?
2. The semantics of a decomposition: does the statespace explode or grow

slowly as the net is reconstructed; do we reach a fixed point?

An initial investigation into structural issues has been carried out in [10]. Through
memoisation, we can avoid duplicate work if repeated structure of a net is ex-
posed and leads to a fixed point; for example, given the decomposition PhRown,
no extra work is required to check reachability for n ≥ 3, since a fixed point is
reached at n = 2. This leads to performance that sometimes asymptotically
outperforms monolithic approaches, see [12] for experiemental results. Charac-
terising the underlying semantic issues is an open research question: why do
Dining Philosophers reach a fixed point at n = 2?

2.1 Minimisation and Fixed Points

Minimisation using Brzozowski’s algorithm is potentially very expensive, since
the subset construction is performed twice. Indeed, Penrose performs well only
if small automata are minimised. The advantage to minimising w.r.t. language
equivalence is that statespace is pruned aggressively—in particular, branching
is discarded—and thus the likelihood of finding a fixed point8 is greater.

7 ε-transitions are those with labels 0∗, indicating internal behaviour.
8 Penrose finds fixed points via memoisation.
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One alternative would be to quotient NFAs by (weak-) bisimilarity, obtain-
ing smaller, equivalent NFAs without exponential blowup. However, on many
examples bisimilarity is too fine an equivalence and fixed points do not exist
because of branching, which is irrelevant for reachability. Indeed, quotienting by
weak bisimilarity results in a fixed point only in deterministic variants9 of the
Dining Philosophers. We give another simple example of this phenomenon for
the “replicators” of Fig. 4a. A replicator component can output an unbounded

...

(a) Chain of n Replicators

2

1

{0/*}
0

{1/*}

{0/0}

{*/1}

{1/0}

{*/*}

(b) Minimal DFA for n Replicators

number of tokens on the right after receiving a single token as input on the left.
Consider a chain of n replicators, with the desired marking having a token only
in the upper place of each; the chain’s protocol is simple, and furthermore, is
identical irrespective of n: after a single token has been received by the first
replicator, it can be percolated through the chain with no interaction on the
outermost boundary ports. This protocol is a fixed point reached at n = 1 and
is the DFA shown in Fig. 4b. Quotienting by weak bisimilarity does not induce
a fixed point. Therefore, in this example, the initial cost of determinisation pays
off, whereas quotienting by bisimilarity is prohibitively expensive for large n.

3 Representing Transition Functions with BDDs

Recall that a net with boundaries N determines an NFA L, with labels binary
strings of length l = |boundaries(N)|. A simple data structure for such an NFA

is a set of pairs (s, f), where s ∈ states(L) and f : { 0, 1 }l → 2states(L), that is, a
source state and function from labels to sets of (target) states.

Reduced Ordered Binary Decision Diagrams (ROBDDs, or commonly just
BDDs) are a compact representation of n-ary binary functions [1]. Penrose uses
a generalisation of BDDs, Multi-Terminal BDDs [6], encoding functions with
codomain the Boolean algebra of subsets 2places(N), rather than the Booleans.

As an example, consider the one place buffer net, B, and the reachability
problem (B, 〈absent〉, 〈present〉); we show B, the corresponding NFA and two
alternative BDDs representing state 2’s transition function, in Fig. 4.

BDDs are not necessarily minimal, with their size sensitive to variable order-
ing; for us, the lexicographical order10 on boundary ports. Indeed, by reversing

9 For example, philosophers that always take their left fork first.
10 The ordering gives an interleaving left-right, top-bottom, on boundary ports (i, s)

where i ∈ N, s ∈ {L,R } and L < R.
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(c) Net B (d) NFA for B

0L

0R

0

0R

1

{2}

0

{0}

1 1

{1}

0

(e) 0L < 0R (f) 0R < 0L

Fig. 4. One place buffer net with boundaries B, NFA for B with the initially empty,
finally full marking and non-minimal and minimal BDDs for state 2

the variable ordering of Fig. 4e we obtain a smaller BDD, illustrated in Fig. 4f.
For larger BDDs, the effect of reordering variables can be more dramatic. Com-
puting optimal variable ordering is NP-Complete [2].

Penrose represents NFA transitions with a collection of BDDs, one for each
state, but doing so loses potential sharing of common targets. For example, in
Fig. 4d, the BDDs for state 2 and state 1 transitions will both have leaves for
{ 0 }. One possible solution is to use a data-structure similar to that of Minato
et al. [9], where a single BDD is referenced by multiple “pointers” to nodes of
the BDD graph, thereby retaining sharing.

4 Future Work

Penrose is under active development, currently supporting basic reachability-
checking functionality outlined in this paper. We have obtained encouraging
experimental results, sometimes asymptotically improving on monolithic ap-
proaches. Future work will investigate applying our decomposition technique to
model checking problems other than reachability; optimising BDD representa-
tion, particularly w.r.t. the performance of the NFA to minimal DFA procedure;
and further development of an algorithm for automatic decomposition of nets.
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Abstract. We present a simple tool in Haskell, QStream1, implementing
the technique of coinductive counting by making use of Haskell’s built-
in coinduction capabilities. We furthermore provide a number of useful
tools for stream exploration, including a number of pretty print functions
and integration with the Online Encyclopedia of Integer Sequences.

1 Introduction

It has been observed before, for example in [McI01] and [Hin11], that Haskell’s
built-in coinduction capabilities allow for easy and simple specifications of streams
making use of variants of the coinductive stream calculus presented in e.g. [Rut05].

Borrowing some terminology from [McI01], the present paper can perhaps be
considered as presenting another variation on this theme. Compared to [McI01],
in which expressions for generating functions are given a coinductive semantics
directly, our main focus lies on the connection with weighted automata, and
systems of behavioural differential equations, using which rational and algebraic
(or context-free) streams (or formal power series) can be chacaterized. We have
opted for using a set of operators which is minimal but still expressive enough
to be able to classify the complete classes of rational and algebraic streams.

Often, the specifications obtained this way turn out to be surprisingly elegant,
although with a different flavour from the more familiar generating function
expressions. For example, given a fixed integer k, the generating function for
the stream of powers of k is 1/(1 − kX), whereas the corresponding system of
behavioural differential equations consists of the equations o(x) = 1 and x′ = kx.

We have built a simple package, QStream, providing the necessary definitions
required for such coinductive reasoning, as well as a usable and simple interface
for stream exploration, including a number of pretty-printing functions for sys-
tems of streams, as well as an interface to the Online Encyclopedia of Integer
Sequences2.

Introductions to generating functions can be found, for example, in [Wil06]
and [GKP94]. The idea of using coinductive techniques and weighted automata
to describe combinatorial problems can be traced back to [Rut02]. For back-
ground material on the theory of rational and algebraic streams, we refer to
[Rut08] and [BRW12], respectively.

� Supported by the NWO project CoRE.
1 The letter Q is intended to highlight the connection to automata theory.
2 http://oeis.org

R. Heckel and S. Milius (Eds.): CALCO 2013, LNCS 8089, pp. 353–358, 2013.
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The QStream package has been developed and tested using version 7.4.1 of
The Glorious Glasgow Haskell Compilation System3, and can be downloaded
from http://homepages.cwi.nl/∼winter/qstream.
Related Work: Existing tools aimed at stream calculus tend to fall into two
distinct categories. The first category consists of tools, generally more ‘heavy-
weight’ and with an emphasis on proving equality of streams: this group of tools
includes CIRC [LGCR09] and Streambox4.

The second category – in which computation of streams, rather than proving
equality is the main aim – consists of more ‘lightweight’ implementations in
Haskell. Earlier implementations in this category include those by McIlroy5 and
Hinze6, which both have been a source of inspiration for QStream. Compared to
these existing implementations, the present implementation attempts to provide
a closer link with the underlying framework of systems of behavioural differential
equations, as well as adding some useful interactivity by providing integration
with the Online Encyclopedia of Integer Sequences.

2 A Suite of Streams

Elementary Coinductive Definitions: Haskell’s built-in capabilities allow
for easy coinductive specifications of streams. As a very elementary example,
consider the specification x = 1:2:3:x. With this specification, it is directly
possible to obtain initial segments of the stream thus defined as follows:

Prelude> take 10 x

[1,2,3,1,2,3,1,2,3,1]

Eventually periodic streams can, in general, be specified using specifications of
this type. Although elementary, some important streams can already be defined
now, such as the stream 0, 0, 0, . . . defined by zero = 0:zero, and the stream
1, 1, 1, . . ., defined by ones = 1:ones.

In order to be able to produce more interesting classes of streams than the
eventually periodic streams, we coinductively define a few basic operations on
streams. Moreover, following McIlroy’s example, we let streams be a Num type,
enabling us to reap the fruits of type coercion, use the standard operators + and
*, and furthermore directly inherit functions such as sum, ^, etc. We also include
a separate scalar product operator *!, which brings extra conceptual clarity as
well as a tremendous performance boost.

The behavioural differential equations for sum, scalar product, and convolu-
tion product can be now represented directly in Haskell:

s + t = o s + o t : d s + d t -- Or: (+) = zipWith (+)

k *! t = k * o t : k *! d t -- Or: (*!) k = map ((*) k)

s * t = o s * o t : d s * t + o s *! d t

3 http://www.haskell.org/ghc
4 http://infinity.few.vu.nl/streambox/
5 http://www.cs.dartmouth.edu/∼doug/powser.html
6 http://hackage.haskell.org/packages/archive/hinze-streams
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Here o and d, standing for output and derivative respectively, are simply defined
as synonyms for head and tail.

Rational and Algebraic Streams: As a first example of a rational stream,
consider the definition:

fibs = 0 : 1 : fibs + d fibs

This definition corresponds to the following system of behavioural differential
equations

o(x) = 0 o(y) = 1 x′ = y y′ = x + y

and yields the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, . . .
Making use of the existing oeis package on Hackage, our module QStream.IO

provides a function info, which takes a stream of integers as argument, looks
up an initial part of this stream in the Online Encyclopedia of Integer Sequences
(http://oeis.org), and then displays its description and identifier.

*QStream> info fibs

Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) =

1. (A000045)

For two more rational streams, consider:

dups = 1 : 2 *! dups

hypercube = 1 : 2 *! (hypercube + dups)

Here dups consists of the powers of 2: (1,2,4,8,. . . ). The nth element of
hypercube, on the other hand, is equal to the number of edges in a n-dimensional
hypercube.

A celebrated example of an algebraic stream is the specification

cats = 1 : cats ^ 2

corresponding to the system of behavioural differential equations

o(x) = 1 x′ = x2

and yielding the stream of Catalan numbers 1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .

Systems of Streams: It is also possible to define complete systems of streams
at once. As an example, the following stream systems yield, respectively, diagonal
rows from Pascal’s triangle, and the Stirling numbers of the 2nd kind:

pascal n = 1 : sum [ pascal i | i <- [1..n] ] -- A007318

stirling2 n = 1 : sum [ i *! stirling2 i | i <- [1..n] ] -- A008277

These Haskell specifications are in direct correspondence to the systems of be-
havioural differential equations
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o(pn) = 1 p′n =
n∑

i=1

pi (n ∈ N) giving: [[pn]](k) =

(
n+ k

k

)

o(sn) = 1 s′n =
n∑

i=1

isi (n ∈ N) giving: [[sn]](k) =
1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jn+k

which can easily be derived from the familiar recurrence relations for these se-
quences.

For these types of stream systems, again a few helper functions are provided:
rangeinfo gives the description and OEIS numbers of a stream system for a
provided range of values:

*QStream> rangeinfo stirling2 [2..4]

2: 2^n - 1. (Sometimes called Mersenne numbers, although that

name is usually reserved for A001348.) (A000225)

3: Stirling numbers of second kind S(n,3). (A000392)

4: Stirling numbers of the second kind, S(n,4). (A000453)

Another pair of helper functions, maketable and oeistable, generates a table
providing an initial part of a function from natural numbers to streams, with
oeistable presenting the OEIS ids in addition:

*QStream> oeistable pascal 12 5

1: 1 1 1 1 1 1 1 1 1 1 1 1 (A000012)

2: 1 2 3 4 5 6 7 8 9 10 11 12 (A000027)

3: 1 3 6 10 15 21 28 36 45 55 66 78 (A000217)

4: 1 4 10 20 35 56 84 120 165 220 286 364 (A000292)

5: 1 5 15 35 70 126 210 330 495 715 1001 1365 (A000332)

Sometimes, systems of behavioural differential equations, and the corresponding
specifications in Haskell, are much simpler in form than the sometimes more
familiar explicit formulas for these sequences. For example, the number of m-ary
search trees on n keys is equal to the nth element of the stream searchtrees

m, specified by:

searchtrees m = take (m - 1) ones ++ searchtrees m ^ m

This equation can easily be derived from the generating function specification

A(X) =

m−2∑
j=0

Xj + Xm−1Am(X),

found in e.g. [FD97], where a corresponding explicit formula (omitted here due
to space constraints) is also provided.

Building a Catalog of Streams: In [Plo92], generating functions for 1031
different integer sequences have been identified using gfun, a Maple package.
With QStream, we have so far found behavioural differential equations for over
100 of the generating functions presented there [Plo92]: this small catalog can
be found in the module QStream.Plouffe.
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3 Conclusions and Future Work

So far, QStream has been, at least for its author, a useful tool in exploration of
classes of streams and systems of behavioural differential equations. The under-
lying theoretical framework links up beautifully with Haskell, and typical Haskell
features such as lazy evaluation. Even merely experimenting around a bit with
coinductive specifications often yields interesting sequences; as well as elegant
specifications for these sequences.

However, when parameterized systems such as pascal are involved, compu-
tation of streams turns out to be awkwardly slow. Possible tactics to address
this issue include memoization, and direct modelling of weighted automata us-
ing linear combinations of weighted states. As a first step in the second direction,
the module QStream.Fast hard-codes weighted automata for a relatively wide
class of streams (including the pascal and stirling2 stream systems). This
approach, albeit ad hoc, already yields a huge speed up, resulting in much more
reasonable computation times. Further work here should include a more modular
approach, in which data types representing weighted automata are introduced.

Looking up streams on OEIS can be a rather slow process: somehow, espe-
cially looking up basic sequences (such as ones or the natural numbers) often
is inexplicably slow. Although this issue is mostly out of our control, to remedy
this, we might think for example of building a local database of OEIS entries.

As a final remark, we note that there should be a number of easy general-
izations of this work: for example by moving from integers to rationals, or from
streams to formal power series over noncommuting variables (or, equivalently,
weighted languages). However, in neither of these cases would we be able to
make any good use of the OEIS, which focuses on integer sequences.

Acknowledgements. The author would like to thank Marcello Bonsangue and
Jan Rutten for their comments and constructive criticism, as well as to the
anonymous reviewers for their comments and suggestions.
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