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Abstract. Stochastic switched systems are a class of continuous-time dynami-
cal models with probabilistic evolution over a continuous domain and control-
dependent discrete dynamics over a finite set of modes. As such, they represent a
subclass of general stochastic hybrid systems. While the literature has witnessed
recent progress in the dynamical analysis and controller synthesis for the sta-
bility of stochastic switched systems, more complex and challenging objectives
related to the verification of and the synthesis for logic specifications (properties
expressed as formulas in linear temporal logic or as automata on infinite strings)
have not been formally investigated as of yet. This paper addresses these complex
objectives by constructively deriving approximately equivalent (bisimilar) sym-
bolic models of stochastic switched systems. More precisely, a finite symbolic
model that is approximately bisimilar to a stochastic switched system is con-
structed under some dynamical stability assumptions on the concrete model. This
allows to formally synthesize controllers (switching signals) over the finite sym-
bolic model that are valid for the concrete system, by means of mature techniques
in the literature.

1 Introduction

Stochastic hybrid systems are general dynamical systems comprising continuous
and discrete dynamics interleaved with probabilistic noise and stochastic events [4].
Because of their versatility and generality they carry great promise in many safety
critical applications [4], including power networks, automotive and financial engineer-
ing, air traffic control, biology, telecommunications, and embedded systems. Stochastic
switched systems are a relevant class of stochastic hybrid systems: they consist of a fi-
nite set of modes of operation, each of which is associated to a probabilistic dynamical
behavior; further, their discrete dynamics, in the form of mode changes, are governed
by a deterministic control signal. However, unlike general stochastic hybrid systems,
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they do not present probabilistic discrete dynamics (random switch of modes), nor con-
tinuous resets upon mode change.

It is known [12] that switched systems can be endowed with global dynamics that
are not characteristic of the behavior of any of their single modes: for instance, global
instability can arise by proper choice of the discrete switches between a set of stable
dynamical modes. This global emergent behavior is one of the many features that makes
switched systems theoretically interesting. With focus on stochastic switched systems,
despite recent progress on basic dynamical analysis focused on stability properties [6],
there are no notable results in terms of more complex objectives, such as those dealing
with verification or (controller) synthesis for logical specifications. Specifications of
interest are expressed as formulas in linear temporal logic or via automata on infinite
strings, and as such they are not amenable to be handled by classical techniques for
stochastic processes.

A promising direction to investigate these general properties is the use of symbolic
models. Symbolic models are abstract descriptions of the original dynamics, where each
abstract state (or symbol) corresponds to an aggregate of states in the concrete sys-
tem. When a finite symbolic model is obtained and formally is in relationship with the
original system, one can leverage mature techniques for controller synthesis over the
discrete model [14] to automatically synthesize controllers for the original system. To-
wards this goal, a relevant approach is the construction of finite-state symbolic models
that are bisimilar to the original system. Unfortunately, the class of continuous (time
and space) dynamical systems admitting exactly bisimilar finite-state symbolic mod-
els is quite restrictive and in particular it covers mostly non-probabilistic models. The
results in [5] provide a notion of exact stochastic bisimulation for a class of stochas-
tic hybrid systems, however [5] does not provide any abstraction algorithm, nor looks
at the synthesis problem. Therefore, rather than requiring exact equivalence, one can
resort to approximate bisimulation relations [8], which introduce metrics between the
trajectories of the abstract and the concrete models, and further require boundedness in
time of these distances.

The construction of approximately bisimilar symbolic models has been recently
studied for non-probabilistic continuous control systems, possibly endowed with non-
determinism [13,18, and references therein], as well as for non-probabilistic switched
systems [9]. However stochastic systems, particularly when endowed with switched dy-
namics, have only been partially explored. With focus on these models, only a few exist-
ing results deal with abstractions of discrete-time processes [2, and references therein].
Results for continuous-time models cover models with specific dynamics: probabilistic
rectangular hybrid automata [20] and stochastic dynamical systems under contractivity
assumptions [1]. Further, the results in [10] only check the (approximate) relationship
between an uncountable abstraction and a class of stochastic hybrid systems via a no-
tion of stochastic (bi)simulation function, however, these results do not provide any
construction of the approximation, nor do they deal with finite abstractions, and ap-
pear to be computationally tractable only in the case of no inputs. In summary, to the
best of our knowledge, there is no comprehensive work on the construction of finite
bisimilar abstractions for continuous-time stochastic systems with control actions or
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with switched dynamics. A recent result [22] by the authors investigates this goal over
stochastic control systems, however without any hybrid dynamics.

The main contribution of this work consists in showing the existence and the con-
struction of approximate bisimilar symbolic models for incrementally stable stochastic
switched systems. Incremental stability is a stability assumption applied to the stochas-
tic switched systems under study: it can be described in terms of a so-called Lyapunov
function (which can either be a single global function or correspond to a set of mode-
dependent ones). It is an extension of a similar notion developed for non-probabilistic
switched systems [9] in the sense that the results for non-probabilistic switched systems
represent a special case of the results in this paper when the continuous dynamics are
degenerate (they present no noise). The effectiveness of the results is illustrated with
the synthesis of a controller (switching signal) for a room temperature regulation prob-
lem (admitting a global – or common – Lyapunov function), which is further subject
to a constraint expressed by a finite automaton. More precisely, we display a switched
controller synthesis for the purpose of temperature regulation toward a desired level,
subject to the discrete constraint.

2 Stochastic Switched Systems

2.1 Notation

The identity map on a set A is denoted by 1A. If A is a subset of B, we de-
note by ıA : A ↪→ B or simply by ı the natural inclusion map taking any a ∈ A
to ı(a) = a ∈ B. The symbols N, N0, Z, R, R+, and R

+
0 denote the set of natu-

ral, nonnegative integer, integer, real, positive, and nonnegative real numbers, respec-
tively. The symbols In, 0n, and 0n×m denote the identity matrix, the zero vector,
and the zero matrix in R

n×n, Rn, and R
n×m, respectively. Given a vector x ∈ R

n,
we denote by xi the i–th element of x, and by ‖x‖ the infinity norm of x, namely,
‖x‖ = max{|x1|, |x2|, ..., |xn|}, where |xi| denotes the absolute value of xi. Given
a matrix M = {mij} ∈ R

n×m, we denote by ‖M‖ the infinity norm of M , namely,
‖M‖ = max1≤i≤n

∑m
j=1 |mij |, and by ‖M‖F the Frobenius norm of M , namely,

‖M‖F =
√

Tr (MMT ), where Tr(P ) =
∑n

i=1 pii for any P = {pij} ∈ R
n×n. The

notations λmin(A) and λmax(A) stand for the minimum and maximum eigenvalues of
matrix A, respectively.

The closed ball centered at x ∈ R
n with radius ε is defined by

Bε(x) = {y ∈ R
n | ‖x− y‖ ≤ ε}. A set B ⊆ R

n is called a box if B =
∏n

i=1[ci, di],
where ci, di ∈ R with ci < di for each i ∈ {1, . . . , n}. The span of a box
B is defined as span(B) = min {|di − ci| | i = 1, . . . , n}. By defining [Rn]η =
{a ∈ R

n | ai = kiη, ki ∈ Z, i = 1, · · · , n}, the set
⋃

p∈[Rn]η
Bλ(p) is a countable cov-

ering of Rn for any η ∈ R
+ and λ ≥ η. For a box B and η ≤ span(B), define the

η-approximation [B]η = [Rn]η ∩ B. Note that [B]η 	= ∅ for any η ≤ span(B). Ge-
ometrically, for any η ∈ R

+ with η ≤ span(B) and λ ≥ η, the collection of sets
{Bλ(p)}p∈[B]η is a finite covering of B, i.e., B ⊆ ⋃

p∈[B]η
Bλ(p). We extend the no-

tions of span and approximation to finite unions of boxes as follows. Let A =
⋃M

j=1 Aj ,
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where each Aj is a box. Define span(A) = min {span(Aj) | j = 1, . . . ,M}, and for
any η ≤ span(A), define [A]η =

⋃M
j=1[Aj ]η.

Given a set X , a function d : X ×X → R
+
0 is a metric on X if for any x, y, z ∈

X , the following three conditions are satisfied: i) d(x, y) = 0 if and only if x = y;
ii) d(x, y) = d(y, x); and iii) (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z). A
continuous function γ : R+

0 → R
+
0 , is said to belong to class K if it is strictly increasing

and γ(0) = 0; γ is said to belong to class K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A
continuous function β : R+

0 × R
+
0 → R

+
0 is said to belong to class KL if, for each fixed

s, the map β(r, s) belongs to class K∞ with respect to r and, for each fixed nonzero
r, the map β(r, s) is decreasing with respect to s and β(r, s) → 0 as s → ∞. We
identify a relation R ⊆ A×B with the map R : A → 2B defined by b ∈ R(a) iff
(a, b) ∈ R. Given a relation R ⊆ A×B, R−1 denotes the inverse relation defined by
R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}.

2.2 Stochastic Switched Systems

Let (Ω,F ,P) be a probability space endowed with a filtration F = (Fs)s≥0 satisfying
the usual conditions of completeness and right-continuity [11, p. 48]. Let (Ws)s≥0 be a
q̂-dimensional F-Brownian motion [17].

Definition 1. A stochastic switched system is a tuple Σ = (Rn,P,P , F,G), where

– R
n is the continuous state space;

– P = {1, · · · ,m} is a finite set of modes;
– P is a subset of S(R+

0 ,P), which denotes the set of piecewise constant functions
(by convention continuous from the right) from R

+
0 to P, and characterized by a

finite number of discontinuities on every bounded interval in R
+
0 ;

– F = {f1, · · · , fm} such that, for all p ∈ P, fp : Rn → R
n is a continuous function

satisfying the following Lipschitz assumption: there exists a constant L ∈ R
+ such

that, for all x, x′ ∈ R
n: ‖fp(x) − fp(x

′)‖ ≤ L‖x− x′‖;
– G = {g1, · · · , gm}, such that for all p ∈ P, gp : Rn → R

n×q̂ is a continuous
function satisfying the following Lipschitz assumption: there exists a constant Z ∈
R

+ such that for all x, x′ ∈ R
n: ‖gp(x) − gp(x

′)‖ ≤ Z‖x− x′‖.

Let us discuss the semantics of model Σ. For any given p ∈ P, we denote by Σp the
subsystem of Σ defined by the stochastic differential equation

d ξ = fp(ξ) d t+ gp(ξ) dWt, (1)

where fp is known as the drift, gp as the diffusion, and again Wt is Brownian motion.
A solution process of Σp exists and is uniquely determined owing to the assumptions
on fp and on gp [17, Theorem 5.2.1, p. 68].

For the global model Σ, a continuous-time stochastic process ξ : Ω × R
+
0 → R

n is
said to be a solution process of Σ if there exists a switching signal υ ∈ P satisfying

d ξ = fυ(ξ) d t+ gυ(ξ) dWt, (2)
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P-almost surely (P-a.s.) at each time t ∈ R
+
0 when υ is constant. Let us emphasize

that υ is a piecewise constant function defined over R+
0 and taking values in P, which

simply dictates which mode the solution process ξ is in at any time t ∈ R
+
0 . Notice that

the mode changes are non-probabilistic in that they are fully encompassed by a given
function υ in P and that, whenever a mode is changed (discontinuity in υ), the value of
the process ξ is not reset on R

n – thus ξ is a continuous function of time.
We further write ξaυ(t) to denote the value of the solution process at time t ∈ R

+
0

under the switching signal υ from initial condition ξaυ(0) = a P-a.s., in which a is a
random variable that is measurable in F0. Note that in general the stochastic switched
system Σ may start from a random initial condition.

Finally, note that a solution process of Σp is also a solution process of Σ correspond-
ing to the constant switching signal υ(t) = p, for all t ∈ R

+
0 . We also use ξap(t) to

denote the value of the solution process of Σp at time t ∈ R
+
0 from the initial condition

ξap(0) = a P-a.s.

3 Notions of Incremental Stability

This section introduces some stability notions for stochastic switched systems, which
generalize the concepts of incremental global asymptotic stability (δ-GAS) [3] for dy-
namical systems and of incremental global uniform asymptotic stability (δ-GUAS) [9]
for non-probabilistic switched systems. The main results presented in this work rely on
the stability assumptions discussed in this section.

Definition 2. The stochastic subsystem Σp is incrementally globally asymptotically
stable in the qth moment (δ-GAS-Mq), where q ≥ 1, if there exists a KL function
βp such that for any t ∈ R

+
0 , and any R

n-valued random variables a and a′ that are
measurable in F0, the following condition is satisfied:

E [‖ξap(t)− ξa′p(t)‖q] ≤ βp

(
E
[‖a− a′‖q] , t) . (3)

Intuitively, the notion requires (a higher moment of) the distance between trajectories to
be bounded and decreasing in time. It can be easily checked that a δ-GAS-Mq stochas-
tic subsystem Σp is δ-GAS [3] in the absence of any noise. Further, note that when
fp(0n) = 0n and gp(0n) = 0n×q̂ (drift and diffusion terms vanish at the origin), then
δ-GAS-Mq implies global asymptotic stability in the qth moment (GAS-Mq) [6], which
means that all the trajectories of Σp converge in the qth moment to the (constant) tra-
jectory ξ0np(t) = 0n, for all t ∈ R

+
0 , (the equilibrium point). We extend the notion of

δ-GAS-Mq to stochastic switched systems as follows.

Definition 3. A stochastic switched system Σ = (Rn,P,P , F,G) is incrementally
globally uniformly asymptotically stable in the qth moment (δ-GUAS-Mq), where q ≥ 1,
if there exists a KL function β such that for any t ∈ R

+
0 , any R

n-valued random vari-
ables a and a′ that are measurable in F0, and any switching signal υ ∈ P , the following
condition is satisfied:

E [‖ξaυ(t)− ξa′υ(t)‖q] ≤ β
(
E
[‖a− a′‖q] , t) . (4)
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Essentially Definition 3 extends Definition 2 uniformly over any possible switching
signal υ. As expected, the notion generalizes known ones in the literature: it can be
easily seen that a δ-GUAS-Mq stochastic switched system Σ is δ-GUAS [9] in the
absence of any noise and that, whenever fp(0n) = 0n and gp(0n) = 0n×q̂ for all
p ∈ P, then δ-GUAS-Mq implies global uniform asymptotic stability in the qth moment
(GUAS-Mq) [6].

For non-probabilistic systems the δ-GAS property can be characterized by scalar
functions defined over the state space, known as Lyapunov functions [3]. Similarly, we
describe δ-GAS-Mq in terms of the existence of incremental Lyapunov functions.

Definition 4. Define the diagonal set Δ as: Δ = {(x, x) | x ∈ R
n}. Consider a

stochastic subsystem Σp and a continuous function Vp : Rn × R
n → R

+
0 that is twice

continuously differentiable on {Rn × R
n}\Δ. Function Vp is called an incremental

global asymptotic stability in the qth moment (δ-GAS-Mq) Lyapunov function for Σp,
where q ≥ 1, if there exist K∞ functions αp, αp, and a constant κp ∈ R

+, such that

(i) αp (resp. αp) is a convex (resp. concave) function;
(ii) for any x, x′ ∈ R

n, αp

(‖x− x′‖q) ≤ Vp(x, x
′) ≤ αp

(‖x− x′‖q);
(iii) for any x, x′ ∈ R

n, such that x 	= x′,

LVp(x, x
′) := [∂xVp ∂x′Vp]

[
fp(x)
fp(x

′)

]

+
1

2
Tr

([
gp(x)
gp(x

′)

]
[
gTp (x) gTp (x

′)
]
[
∂x,xVp ∂x,x′Vp

∂x′,xVp ∂x′,x′Vp

])

≤ −κpVp(x, x
′).

The operator L is the infinitesimal generator associated to the stochastic subsystem (1)
[17, Section 7.3], which characterizes the derivative of the expected value of functions
of the process with respect to time. For non-probabilistic systems, L allows computing
the conventional functional derivative with respect to time. The symbols ∂x and ∂x,x′

denote first- and second-order partial derivatives with respect to x and x′, respectively.
Note that condition (i) is not required in the context of non-probabilistic systems [3].

The following theorem describes δ-GAS-Mq in terms of the existence of a δ-GAS-
Mq Lyapunov function.

Theorem 1. A stochastic subsystem Σp is δ-GAS-Mq if it admits a δ-GAS-Mq Lya-
punov function.

As qualitatively stated in the Introduction, it is known that a non-probabilistic switched
system, whose subsystems are all δ-GAS, may exhibit some unstable behaviors under
fast switching signals [9] and, hence, may not be δ-GUAS. The same occurrence can
affect stochastic switched systems endowed with δ-GAS-Mq subsystems. The δ-GUAS
property of non-probabilistic switched systems can be established by using a common
(or global) Lyapunov function, or alternatively via multiple functions that are mode
dependent [9]. This leads to the following extensions for δ-GUAS-Mq of stochastic
switched systems.

Assume that for any p ∈ P, the stochastic subsystem Σp admits a δ-GAS-Mq Lya-
punov function Vp, satisfying conditions (i)-(iii) in Definition 4 with K∞ functions αp,
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αp, and a constant κp ∈ R
+. Let us introduce functions α and α and constant κ for

use in the rest of the paper. Let the K∞ functions α, α, and the constant κ be defied as
α = min {α1, · · · , αm}, α = max {α1, · · · , αm}, and κ = min {κ1, · · · , κm}. First
we show a result based on the existence of a common Lyapunov function, characterized
by functions α = α1 = · · · = αm and α = α1 = · · · = αm, and parameter κ.

Theorem 2. Consider a stochastic switched system Σ = (Rn,P,P , F,G). If there ex-
ists a function V that is a common δ-GAS-Mq Lyapunov function for all the subsystems
{Σ1, · · · , Σm}, then Σ is δ-GUAS-Mq.

The condition conservatively requires the existence of a single function V that is valid
for all the subsystems Σp, where p ∈ P. When this common δ-GAS-Mq Lyapunov
function V fails to exist, the δ-GUAS-Mq property of Σ can still be established by
resorting to multiple δ-GAS-Mq Lyapunov functions (one per mode) over a restricted
set of switching signals. More precisely, from Definition 1, let Sτd

(
R

+
0 ,P

)
denote the

set of switching signals υ with dwell time τd ∈ R
+
0 , meaning that υ ∈ S (

R
+
0 ,P

)
has

dwell time τd if the switching times t1, t2, . . . (occurring at the discontinuity points of
υ) satisfy t1 > τd and ti − ti−1 ≥ τd, for all i ≥ 2. We now show a result based on
multiple Lyapunov functions.

Theorem 3. Let τd ∈ R
+
0 , and consider a stochastic switched system Στd =

(Rn,P,Pτd , F,G) with Pτd ⊆ Sτd

(
R

+
0 ,P

)
. Assume that for any p ∈ P, there ex-

ists a δ-GAS-Mq Lyapunov function Vp for subsystem Στd,p and that in addition there
exits a constant μ ≥ 1 such that

∀x, x′ ∈ R
n, ∀p, p′ ∈ P, Vp(x, x

′) ≤ μVp′(x, x′). (5)

If τd > logμ/κ, then Στd is δ-GUAS-Mq.

The above result can be practically interpreted as the following fact: global stability is
preserved under subsystem stability and enough time spent in each mode. Theorems 1,
2, and 3 provide sufficient conditions for certain stability properties, however they all
hinge on finding proper Lyapunov functions.

For stochastic switched systems Σ (resp. Στd ) with fp and gp of the form of polyno-
mials, for any p ∈ P, one can resort to available software tools, such as SOSTOOLS
[19], to search for appropriate δ-GAS-Mq Lyapunov functions.

We look next into special instances where these functions are known explicitly or
can be easily computed based on the model dynamics. The first result provides a suffi-
cient condition for a particular function Vp to be a δ-GAS-Mq Lyapunov function for a
stochastic subsystem Σp, when q = 1, 2 (first or second moment).

Lemma 1. Consider a stochastic subsystem Σp. Let q ∈ {1, 2}, Pp ∈ R
n×n be a

symmetric positive definite matrix, and the function Vp : Rn ×R
n → R

+
0 be defined as

follows:

Vp(x, x
′) :=

(
Ṽ (x, x′)

) q
2

=

(
1

q
(x− x′)T Pp (x− x′)

) q
2

, (6)



312 M. Zamani and A. Abate

and satisfies

(x− x′)TPp(fp(x)− fp(x
′))+

1

2

∥
∥
∥

√

Pp

(

gp(x)− gp(x
′)
)
∥
∥
∥

2

F
≤ −κp

(

Vp(x, x
′)
) 2

q , (7)

or, if fp is differentiable, satisfies

(x− x′)TPp∂xfp(z)(x− x′)+
1

2

∥
∥
∥

√

Pp

(

gp(x)− gp(x
′)
)
∥
∥
∥

2

F
≤ −κp

(

Vp(x, x
′)
) 2

q , (8)

for all x, x′, z in R
n, and for some constant κp ∈ R

+. Then Vp is a δ-GAS-Mq Lya-
punov function for Σp.

The next result provides a condition that is equivalent to (7) or to (8) for affine stochastic
subsystems Σp (that is, for subsystems with affine drift and linear diffusion terms) in
the form of a linear matrix inequality (LMI), which can be easily solved numerically.

Corollary 1. Consider a stochastic subsystem Σp, where for any x ∈ R
n, fp(x) :=

Apx + bp for some Ap ∈ R
n×n, bp ∈ R

n, and gp(x) :=
[
σ1,px σ2,px . . . σq̂,px

]

for some σi,p ∈ R
n×n, where i = 1, . . . , q̂. Then, function Vp in (6) is a δ-GAS-Mq

Lyapunov function for Σp if there exists a positive constant κ̂p ∈ R
+ satisfying the

following LMI:

PpAp +AT
p Pp +

q̂∑

i=1

σT
i,pPpσi,p ≺ −κ̂pPp. (9)

Notice that Corollary 1 allows obtaining tighter upper bounds for the inequalities (3)
and (4) for any p ∈ P, by selecting appropriate matrices Pp satisfying the LMI in (9).

4 Symbolic Models and Approximate Equivalence Relations

We employ the notion of system [21] to provide (in Sec. 5) an alternative description of
stochastic switched systems that can be later directly related to their symbolic models.

Definition 5. A system S is a tuple S = (X,X0, U,−→, Y,H), where X is a set of
states, X0 ⊆ X is a set of initial states, U is a set of inputs, −→⊆ X × U × X is a
transition relation, Y is a set of outputs, and H : X → Y is an output map.

We write x
u� x′ if (x, u, x′) ∈−→. If x

u� x′, we call state x′ a u-successor, or
simply a successor, of state x. For technical reasons, we assume that for each x ∈ X ,
there is some u-successor of x, for some u ∈ U – let us remark that this is always the
case for the considered systems later in this paper. A system S is said to be

– metric, if the output set Y is equipped with a metric d : Y × Y → R
+
0 ;

– finite, if X is a finite set;
– deterministic, if for any state x ∈ X and any input u, there exists at most one
u-successor.
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For a system S = (X,X0, U,−→, Y,H) and given any state x0 ∈ X0, a finite state run
generated from x0 is a finite sequence of transitions:

x0
u0� x1

u1� x2
u2� · · · un−2� xn−1

un−1� xn, (10)

such that xi
ui� xi+1 for all 0 ≤ i < n. A finite state run can be trivially extended

to an infinite state run as well. A finite output run is a sequence {y0, y1, . . . , yn} such
that there exists a finite state run of the form (10) with yi = H(xi), for i = 1, . . . , n. A
finite output run can also be directly extended to an infinite output run as well.

Now, we recall the notion of approximate (bi)simulation relation, introduced in [8],
which is useful when analyzing or synthesizing controllers for deterministic systems.

Definition 6. Let Sa = (Xa, Xa0, Ua,
a

� , Ya, Ha) and Sb =

(Xb, Xb0, Ub,
b
� , Yb, Hb) be metric systems with the same output sets Ya = Yb

and metric d. For ε ∈ R
+
0 , a relation R ⊆ Xa ×Xb is said to be an ε-approximate

simulation relation from Sa to Sb if the following three conditions are satisfied:

(i) for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with (xa0, xb0) ∈ R;
(ii) for every (xa, xb) ∈ R we have d(Ha(xa), Hb(xb)) ≤ ε;

(iii) for every (xa, xb) ∈ R we have that xa
ua

a
� x′

a in Sa implies the existence of

xb
ub

b
� x′

b in Sb satisfying (x′
a, x

′
b) ∈ R.

A relation R ⊆ Xa ×Xb is said to be an ε-approximate bisimulation relation between
Sa and Sb if R is an ε-approximate simulation relation from Sa to Sb and R−1 is an
ε-approximate simulation relation from Sb to Sa.

System Sa is ε-approximately simulated by Sb, or Sb ε-approximately simulates Sa,
denoted by Sa 
ε

S Sb, if there exists an ε-approximate simulation relation from Sa to
Sb. System Sa is ε-approximate bisimilar to Sb, denoted by Sa

∼=ε
S Sb, if there exists an

ε-approximate bisimulation relation between Sa and Sb.

Note that when ε = 0, the condition (ii) in the above definition is changed to (xa, xb) ∈
R if and only if Ha(xa) = Hb(xb), and R becomes an exact simulation relation, as
introduced in [16]. Similarly, when ε = 0 and whenever applicable, R translates into
an exact bisimulation relation.

5 Symbolic Models for Stochastic Switched Systems

This section contains the main contributions of this work. We show that for any stochas-
tic switched system Σ (resp. Στd as in Theorem 3), admitting a common (resp. mul-
tiple) δ-GAS-Mq Lyapunov function(s), and for any precision level ε ∈ R

+, we can
construct a finite system that is ε-approximate bisimilar to Σ (resp. Στd). In order
to do so, we use systems as an abstract representation of stochastic switched sys-
tems, capturing all the information contained in them. More precisely, given a stochas-
tic switched system Σ = (Rn,P,P , F,G), we define an associated metric system
S(Σ) = (X,X0, U, � , Y,H), where:
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– X is the set of all Rn-valued random variables defined on the probability space
(Ω,F ,P);

– X0 is the set of all Rn-valued random variables that are measurable over the trivial
sigma-algebra F0, i.e., the system starts from a non-probabilistic initial condition,
which is equivalently a random variable with a Dirac probability distribution;

– U = P× R
+;

– x
p,τ� x′ if x and x′ are measurable in Ft and Ft+τ , respectively, for some

t ∈ R
+
0 , and there exists a solution process ξ : Ω × R

+
0 → R

n of Σ satisfying
ξ(t) = x and ξxp(τ) = x′ P-a.s.;

– Y is the set of all Rn-valued random variables defined on the probability space
(Ω,F ,P);

– H = 1X .

We assume that the output set Y is equipped with the natural metric d(y, y′) =
(
E
[‖y − y′‖q])

1
q , for any y, y′ ∈ Y and some q ≥ 1. Let us remark that the set of

states of S(Σ) is uncountable and that S(Σ) is a deterministic system in the sense of
Definition 5, since (cf. Subsection 2.2) its solution process is uniquely determined.

In subsequent developments, we will work with a sub-system of S(Σ) obtained
by selecting those transitions of S(Σ) describing trajectories of duration τ , where
τ is a given sampling time. This can be seen as a time discretization or a sam-
pling of S(Σ). This restriction is practically motivated by the fact that the switch-
ing in the original model Σ has to be controlled by a digital platform with a
given clock period (τ ). More precisely, given a stochastic switched system Σ =
(Rn,P,P , F,G) and a sampling time τ ∈ R

+, we define the associated system

Sτ (Σ) =
(
Xτ , Xτ0, Uτ ,

τ
� , Yτ , Hτ

)
, where Xτ = X , Xτ0 = X0, Uτ = P,

Yτ = Y , Hτ = H , and

– xτ
p

τ
� x′

τ if xτ and x′
τ are measurable, respectively, in Fkτ and F(k+1)τ for

some k ∈ N0, and there exists a solution process ξ : Ω×R
+
0 → R

n of Σ satisfying
ξ(kτ) = xτ and ξxτp(τ) = x′

τ P-a.s..

Note that a finite state run x0
u0

τ
� x1

u1

τ
� ...

uN−1

τ
� xN of Sτ (Σ), where ui ∈ P

and xi = ξxi−1ui−1(τ) for i = 1, · · · , N , captures the trajectory of the stochastic
switched system Σ at times t = 0, τ, · · · , Nτ , started from the non-probabilistic initial
condition x0 and resulting from a switching signal υ obtained by the concatenation of
the modes ui

(
i.e. υ(t) = ui−1 for any t ∈ [(i − 1)τ, i τ [

)
, for i = 1, · · · , N .

Before introducing the symbolic model for the stochastic switched system, we pro-
ceed with the next lemma, borrowed from [22], which provides an upper bound on the
distance (in the qth moment metric) between the solution processes of Σp and the cor-
responding non-probabilistic system obtained by disregarding the diffusion term (gp).

Lemma 2. Consider a stochastic subsystem Σp such that fp(0n) = 0n and gp(0n) =
0n×q̂. Suppose there exists a δ-GAS-Mq Lyapunov function Vp for Σp such that its
Hessian is a positive semidefinite matrix in R

2n×2n and q ≥ 2. Then for any x in a
compact set D ⊂ R

n and any p ∈ P, we have
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E
[∥
∥ξxp(t)− ξxp(t)

∥
∥q

]
≤ hp(gp, t), (11)

where ξxp is the solution of the ordinary differential equation (ODE) ξ̇xp = fp
(
ξxp

)

starting from the initial condition x, and the nonnegative valued function hp tends to
zero as t → 0, t → +∞, or as Z → 0, where Z is the Lipschitz constant, introduced in
Definition 1.

Although the result in [22, Lemma 3.7] is based on the existence of δ-ISS-Mq Lya-
punov functions, one can similarly show the result in Lemma 2 by using δ-GAS-
Mq Lyapunov functions. In particular, one can compute explicitly function hp us-
ing [22, Equation (9.4)] with slight modifications. Moreover, we refer the interested
readers to [22, Lemma 3.9 and Corollary 3.10], providing explicit forms of the func-
tion hp for (affine) stochastic subsystems Σp admitting a δ-GAS-Mq Lyapunov func-
tion Vp as in (6), where q ∈ {1, 2}. Note that one does not require the condi-
tion fp(0n) = 0n for affine subsystems Σp. For later use, we introduce function
h(G, t) = max {h1(g1, t), · · · , hm(gm, t)} for all t ∈ R

+
0 .

In order to show the main results, we raise the following supplementary assumption
on the δ-GAS-Mq Lyapunov functions Vp: for all p ∈ P, there exists a K∞ and concave
function γ̂p such that

|Vp(x, y)− Vp(x, z)| ≤ γ̂p (‖y − z‖) , (12)

for any x, y, z ∈ R
n. This assumption is not restrictive, provided the function Vp is

limited to a compact subset of Rn×R
n. For all x, y, z ∈ D, whereD is a compact subset

of Rn, by applying the mean value theorem to the function y → Vp(x, y), one gets

|Vp(x, y)− Vp(x, z)| ≤ γ̂p (‖y − z‖) , where γ̂p(r) =
(
max(x,y)∈D\Δ

∥
∥
∥
∂Vp(x,y)

∂y

∥
∥
∥
)
r.

In particular, for the δ-GAS-M1 Lyapunov functionVp defined in (6), we obtain γ̂p(r) =
λmax(Pp)√
λmin(Pp)

r [21, Proposition 10.5]. For later use, let us define the K∞ function γ̂ such

that γ̂ = max {γ̂1, · · · , γ̂m}. (Note that, for the case of a common Lyapunov function,
we have: γ̂ = γ̂1 = · · · = γ̂m.) We proceed presenting the main results of this work.

5.1 Common Lyapunov Function

We first show a result based on the existence of a common δ-GAS-Mq Lyapunov
function for subsystems Σ1, · · · , Σm. Consider a stochastic switched system Σ =
(Rn,P,P , F,G) and a pair q = (τ, η) of quantization parameters, where τ is the sam-
pling time and η is the state space quantization. Given Σ and q, consider the following
system: Sq(Σ) = (Xq, Xq0, Uq,

q
� , Yq, Hq), where Xq = [Rn]η, Xq0 = [Rn]η ,

Uq = P, and

– xq
p

q
� x′

q if there exists a x′
q ∈ Xq such that

∥
∥
∥ξxqp(τ)− x′

q

∥
∥
∥ ≤ η, where

ξ̇xqp = fp

(
ξxqp

)
;
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– Yq is the set of all Rn-valued random variables defined on the probability space
(Ω,F ,P);

– Hq = ı : Xq ↪→ Yq.

In order to relate models, the output set Yq is taken to be that of the stochastic switched
system Sτ (Σ). Therefore, in the definition of Hq, the inclusion map ı is meant, with
a slight abuse of notation, as a mapping from a grid point to a random variable with a
Dirac probability distribution centered at the grid point. There is no loss of generality
to alternatively assume that Yq = Xq and Hq = 1Xq .

The transition relation of Sq(Σ) is well defined in the sense that for every xq ∈ [Rn]η

and every p ∈ P there always exists x′
q ∈ [Rn]η such that xq

p

q
� x′

q. This can be seen

since by definition of [Rn]η, for any x̂ ∈ R
n there always exists a state x̂′ ∈ [Rn]η such

that ‖x̂− x̂′‖ ≤ η. Hence, for ξxqp(τ) there always exists a state x′
q ∈ [Rn]η satisfying

∥
∥
∥ξxqp(τ) − x′

q

∥
∥
∥ ≤ η.

We can now present one of the main results of the paper, which relates the existence
of a common δ-GAS-Mq Lyapunov function for the subsystems Σ1, · · · , Σm to the
construction of a finite symbolic model that is approximately bisimilar to the original
system.

Theorem 4. Let Σ = (Rn,P,P , F,G) be a stochastic switched system admitting a
common δ-GAS-Mq Lyapunov function V , of the form of (6) or the one explained in
Lemma 2, for subsystems Σ1, · · · , Σm. For any ε ∈ R

+, and any double q = (τ, η) of
quantization parameters satisfying

α (ηq) ≤ α (εq) , (13)

e−κτα (εq) + γ̂
(
(h(G, τ))

1
q + η

)
≤ α (εq) , (14)

we have that Sq(Σ) ∼=ε
S Sτ (Σ).

It can be readily seen that when we are interested in the dynamics of Σ, initialized on a
compact D ⊂ R

n of the form of finite union of boxes and for a given precision ε, there
always exist a sufficiently large value of τ and a small value of η such that η ≤ span(D)
and the conditions in (13) and (14) are satisfied. For a given fixed sampling time τ , the
precision ε is lower bounded by:

ε >

⎛

⎝α−1

⎛

⎝

γ̂
(

(h(G, τ ))
1
q

)

1− e−κτ

⎞

⎠

⎞

⎠

1
q

. (15)

One can easily verify that the lower bound on ε in (15) goes to zero as τ goes to infinity
or as Z → 0, whereZ is the Lipschitz constant, introduced in Definition 1. Furthermore,
one can try to minimize the lower bound on ε in (15) by appropriately choosing a
common δ-GAS-Mq Lyapunov function V .

Note that the results in [9, Theorem 4.1] for non-probabilistic models are fully recov-
ered by the statement in Theorem 4 if the stochastic switched system Σ is not affected
by any noise, implying that hp(gp, t) is identically zero for all p ∈ P, and that the
δ-GAS-Mq common Lyapunov function simply reduces to being the δ-GAS one.
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5.2 Multiple Lyapunov Functions

If a common δ-GAS-Mq Lyapunov function does not exist, one can still attempt com-
puting approximately bisimilar symbolic models by seeking mode-dependent Lyapunov
functions and by restricting the set of switching signals using a dwell time τd. For sim-
plicity and without loss of generality, we assume that τd is an integer multiple of τ , i.e.
there exists N ∈ N such that τd = Nτ .

Given a stochastic switched system Στd = (Rn,P,Pτd , F,G) and a sampling time
τ ∈ R

+, we define the system Sτ (Στd) = (Xτ , Xτ0, Uτ ,
τ
� , Yτ , Hτ ), where:

– Xτ = X × P × {1, . . . , N − 1}, where X is the set of all Rn-valued random
variables defined on the probability space (Ω,F ,P);

– Xτ0 = X0 × P × {0}, where X0 is the set of all Rn-valued random variables
that are measurable with respect to the trivial sigma-algebra F0, i.e., the stochastic
switched system starts from a non-probabilistic initial condition;

– Uτ = P;

– (xτ , p, i)
p

τ
� (x′

τ , p
′, i′) if xτ and x′

τ are measurable, respectively, in Fkτ and

F(k+1)τ for some k ∈ N0, and there exists a solution process ξ : Ω×R
+
0 → R

n of
Σ satisfying ξ(kτ) = xτ and ξxτp(τ) = x′

τ P-a.s. and one of the following holds:
• i < N − 1, p′ = p, and i′ = i + 1: switching is not allowed because the time

elapsed since the latest switch is strictly smaller than the dwell time;
• i = N − 1, p′ = p, and i′ = N − 1: switching is allowed but no mode switch

occurs;
• i = N − 1, p′ 	= p, and i′ = 0: switching is allowed and a mode switch occurs.

– Yτ = X is the set of all Rn-valued random variables defined on the probability
space (Ω,F ,P);

– Hτ is the map taking (xτ , p, i) ∈ X × P× {1, · · · , N − 1} to xτ ∈ X .

We assume that the output set Yτ is equipped with the natural metric d(y, y′) =
(
E
[‖y − y′‖q]) 1

q , for any y, y′ ∈ Yτ and some q ≥ 1. One can readily verify that the
(in)finite output runs of Sτ (Στd) are the (in)finite output runs of Sτ (Σ) corresponding
to switching signals with dwell time τd = Nτ .

Consider a stochastic switched system Στd = (Rn,P,Pτd , F,G) and a pair q =
(τ, η) of quantization parameters, where τ is the sampling time and η is the state
space quantization. Given Στd and q, consider the following system: Sq (Στd) =
(Xq, Xq0, Uq,

q
� , Yq, Hq), where Xq = [Rn]η × P × {0, · · · , N − 1}, Xq0 =

[Rn]η × P× {0}, Uq = P, and

– (xq, p, i)
p

q
� (

x′
q, p

′, i′
)

if there exists a x′
q ∈ Xq such that

∥
∥
∥ξxqp(τ)− x′

q

∥
∥
∥ ≤ η,

where ξ̇xqp = fp

(
ξxqp

)
and one of the following holds:

• i < N − 1, p′ = p, and i′ = i+ 1;
• i = N − 1, p′ = p, and i′ = N − 1;
• i = N − 1, p′ 	= p, and i′ = 0.

– Yq = X is the set of all Rn-valued random variables defined on the probability
space (Ω,F ,P);
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– Hq is the map taking (xq, p, i) ∈ [Rn]η×P×{1, · · · , N − 1} to a random variable
with a Dirac probability distribution centered at xq.

Similar to what we showed in the case of a common Lyapunov function, the transition
relation of Sq (Στd) is well defined in the sense that for every (xq, p, i) ∈ [Rn]η × P×
{0, · · · , N − 1} there always exists

(
x′
q, p

′, i′
) ∈ [Rn]η × P × {0, · · · , N − 1} such

that (xq, p, i)
p

q
� (

x′
q, p

′, i′
)
.

We present the second main result of the paper, which relates the existence of mul-
tiple Lyapunov functions for a stochastic switched system to that of a symbolic model.

Theorem 5. Consider τd ∈ R
+
0 , and a stochastic switched system Στd =

(Rn,P,Pτd , F,G) such that τd = Nτ , for some N ∈ N. Let us assume that for any
p ∈ P, there exists a δ-GAS-Mq Lyapunov function Vp, of the form in (6) or as the one
in Lemma 2, for subsystem Στd,p. Moreover, assume that (5) holds for some μ ≥ 1. If
τd > logμ/κ, for any ε ∈ R

+, and any pair q = (τ, η) of quantization parameters
satisfying

α (ηq) ≤ α (εq) , (16)

γ̂
(
(h(G, τ))

1
q + η

)
≤

1
μ − e−κτd

1− e−κτd

(
1− e−κτ

)
α (εq) , (17)

we have that Sq (Στd)
∼=ε

S Sτ (Στd).

It can be readily seen that when we are interested in the dynamics of Στd , initialized
on a compact D ⊂ R

n of the form of finite union of boxes, and for a precision ε, there
always exist sufficiently large value of τ and small value of η such that η ≤ span(D)
and the conditions in (16) and (17) are satisfied. For a given fixed sampling time τ , the
precision ε is lower bounded by:

ε ≥
⎛

⎝α−1

⎛

⎝

γ̂
(

(h(G, τ ))
1
q

)

1− e−κτ
· 1− e−κτd

1
μ
− e−κτd

⎞

⎠

⎞

⎠

1
q

. (18)

The properties of the bound in (18) are analogous to those of the case of a com-
mon Lyapunov function. Similarly, Theorem 5 subsumes [9, Theorem 4.2] over non-
probabilistic models.

6 Case Study

We experimentally demonstrate the effectiveness of the results. In the example below,
the computation of the abstraction Sq(Σ) has been performed via the software tool
Pessoa [15] on a laptop with CPU 2GHz Intel Core i7. Controller enforcing the speci-
fication was found by using standard algorithms from game theory [14], as implemented
in Pessoa. The terms W i

t , i = 1, 2, denote the standard Brownian motion.
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The stochastic switched system Σ is a simple thermal model of a two-room build-
ing, borrowed from [7], affected by noise and described by the following stochastic
differential equations:

{
d ξ1 = (α21 (ξ2 − ξ1) + αe1 (Te − ξ1) + αf (Tf − ξ1) (p− 1)) d t+ σ1ξ1 dW

1
t ,

d ξ2 = (α12 (ξ1 − ξ2) + αe2 (Te − ξ2)) d t+ σ2ξ2 dW
2
t ,

(19)

where ξ1 and ξ2 denote the temperature in each room, Te = 10 (degrees Celsius) is the
external temperature and Tf = 50 is the temperature of a heater that can be switched
off (p = 1) or on (p = 2): these two operations correspond to the modes P of the model,
whereas the state space is R

2. The drifts fp and diffusion terms gp, p = 1, 2, can be
simply written out of (19) and are affine. The parameters of the drifts are chosen based
on the ones in [7] as follows:α21 = α12 = 5×10−2,αe1 = 5×10−3, αe2 = 3.3×10−3,
and αf = 8.3 × 10−3. We work on the subset D = [20, 22] × [20, 22] ⊂ R

2 of the
state space of Σ. Within D one can conservatively overapproximate the multiplicative
noises in (19) as additive noises with variance between 0.02 and 0.022.

It can be readily verified that the function V (x1, x2) =
√
(x1 − x2)T (x1 − x2) is

a common δ-GAS-M1 Lyapunov function for Σ, satisfying the LMI condition (9) with
Pp = I2, and κ̂p = 0.0083, for p ∈ {1, 2}.

For a given sampling time τ = 20 time units, using inequality (15), the precision
ε is lower bounded by the quantity 1.09. While one can reduce this lower bound by
increasing the sampling time, as discussed later the empirical bound computed in the
experiments is significantly lower than the theoretical bound ε = 1.09. For a selected
precision ε = 1.1, the discretization parameter η of Sq(Σ), computed from Theorem 4,
equals to 0.003. This has lead to a symbolic system Sq(Σ) with a resulting number of
states equal to 895122. The CPU time employed to compute the abstraction amounted
to 506.32 seconds.

Consider the objective to design a controller (switching policy) forcing the first mo-
ment of the trajectories of Σ to stay within D. This objective can be encoded via the LTL
specification �D. Furthermore, to add an additional discrete component to the problem,
we assume that the heater has to stay in the off mode (p = 1) at most one time slot in
every two slots. A time slot is an interval of the form [kτ, (k + 1)τ [, with k ∈ N and
where τ is the sampling time. Possible switching policies are for instance:

|12|12|12|12|12|12|12| · · · , |21|21|21|21|21|21|21| · · · , |12|21|22|12|12|21|22| · · · ,

where 2 denotes a slot where the heater is on (p = 2) and 1 denotes a slot where
heater is off (p = 1). This constraint on the switching policies can be represented
by the finite system (labeled automaton) in Figure 1, where the allowed initial states
are distinguished as targets of a sourceless arrow. The CPU time for synthesizing the
controller amounted to 21.14 seconds. In Figure 2, we show several realizations of
closed-loop trajectory ξx0υ stemming from initial condition x0 = (21, 21) (left panel),
as well as the corresponding evolution of switching signal υ (right panel), where the
finite system is initialized from state q1. Furthermore, in Figure 2 (middle panels), we
show the average value over 100 experiments of the distance in time of the solution
process ξx0υ to the set D, namely ‖ξx0υ(t)‖D, where the point-to-set distance is defined
as ‖x‖D = infd∈D ‖x− d‖. Notice that the average distance is significantly lower than
the precision ε = 1.1, as expected since the conditions based on Lyapunov functions
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q1

1

q2

2

Fig. 1. Finite system describing the constraint over the switching policies. The lower part of the
states are labeled with the outputs (2 and 1) denoting whether heater is on (p = 2) or off (p = 1).
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Fig. 2. Several realizations of the closed-loop trajectory ξx0υ with initial condition x0 = (21, 21)
(left panel). Average values (over 100 experiments) of the distance of the solution process ξx0υ

to the set D, in different vertical scales (middle panels). Evolution of the synthesized switching
signal υ (right panel), where the finite system initialized from state q1.

can lead to conservative bounds. (As discussed in Corollary 1, bounds can be improved
by seeking optimized Lyapunov functions.)
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