
Möbius Shell:

A Command-Line Interface for Möbius

Ken Keefe and William H. Sanders

University of Illinois, Urbana, IL 61801, USA
kjkeefe@illinois.edu whs@illinois.edu

https://www.mobius.illinois.edu

Abstract. The Möbius modeling environment is a mature, multi-formal-
ism modeling and solution tool. Möbius provides a user-friendly graphical
interface for creating discrete-event models, defining metrics, and solving
for the metrics using a variety of solution techniques. For certain research
needs, the graphical interface can become a limiting use pattern. This
paper describes recent work that adds a comprehensive text-based inter-
face for interacting with the Möbius tool, called the Möbius Shell. The
Möbius Shell provides an interactive command shell and scriptable com-
mand language that can leverage all the existing and future features of
Möbius.

Keywords: text-based interface, multi-formalism modeling, simulation,
analytical solution, discrete-event systems.

1 The Möbius Modeling Environment

The Möbius Modeling Environment is an extensible modeling and solution tool.
It offers a variety of existing modeling formalisms, including compositional
modeling formalisms, a metric specification formalism that allows for time- and
event-based rewards, global model parameterization with several means of defin-
ing experiments, and a set of analytical and simulation solution methods [1][2].
Until recently, Möbius has provided only a graphical user interface for working
with each of its components. With the addition of the Möbius Shell, Möbius
now offers a text-based user interface that enables an interactive or scriptable
method of performing actions in the top-level tool or within one of the Möbius
components.

2 Using the Möbius Shell

In the Möbius installation directory, the mobius executable launches the graph-
ical version of the tool. The text-based, interactive version of Möbius can be
launched using the mobius-shell executable:

$ mobius-shell
Welcome to Mobius 2.4.1!

Enter "help" for a list of commands.
Mobius>

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 282–285, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Möbius Shell: A Command-Line Interface for Möbius 283

Commands can then be executed at the Mobius> prompt. Each time a com-
mand is executed, text feedback is provided. Long-running jobs, such as the
execution of a simulation, will provide continuous feedback and can be inter-
rupted by hitting Ctrl+C.

Alternatively, the Möbius Shell can execute a script either by using a command
pipe or by passing the script file path using a command switch:

$ cat myScript.txt | mobius-shell
$ mobius-shell -s myScript.txt

3 Key Möbius Shell Commands

The Möbius Shell is intended to be a full-fledged alternative to the traditional
graphical user interface. Because of space limitations, here we detail only a few
important commands. For a full treatment of the Möbius Shell command lan-
guage, see the 2.4.1 (or later) version of the Möbius Manual [3].

3.1 Help

The Möbius Shell provides a comprehensive, integrated help system. Users can
obtain a list of all available commands by executing the help command.

Mobius> help
Mobius Shell Command Help
Further help can be found for each command by executing:

help <command>
archive - Archive a project
clean - Clean a project or model component
...

Detailed help for each command can be accessed by including the command
as an argument to the help command:

Mobius> help save
Generate and compile a model component command:

save <project name> (a|c|r|y|t|s) <component name>
a - Atomic model type
c - Composed model type
r - Reward model type
y - Study type
t - Transformer type
s - Solver type

3.2 Generate, Compile, and Save

When a user saves a model component in Möbius, the first step that Möbius
performs is generation of a C++ representation of the model component. That
typically consists of a set of classes that derive from base classes in the Möbius
code library[1]. Next, Möbius compiles those classes and links them to code
library archives that come with Möbius.

284 K. Keefe and W.H. Sanders

In the Möbius Shell, those steps can be performed individually or combined, as
in the graphical tool. To generate the C++ representation of a model component,
use the generate command. To compile the C++ representation, use the compile
command. To do both, use the save command. For example, the below commands
generate and compile the reward model called “perfEx” in the “satRelay” model.

Mobius> generate satRelay r perfEx
Generating code...............Done!
Mobius> compile satRelay r perfEx
make: Entering directory ‘/home/kjkeefe/MobiusProject/satRelay/Reward/perfEx’
make lib TARGET=libperfExPV_debug.a OBJS="perfExPVNodes.o perfExPVModel.o "
...
make: Leaving directory ‘/home/kjkeefe/MobiusProject/satRelay/Reward/perfEx’
Compile completed: SUCCESS

3.3 Run

The run command begins the execution of a transformer, analytical solver, or
simulator. When a transformer or analytical solver is run, the feedback in the
Möbius Shell is a summary, and the results are stored in a file in the component’s
directory. However, when a simulator runs, an aggregation of reward variable
statistics is reported on the fly until all variables have converged within their
defined confidence intervals, or until some other ending condition has been met
(e.g., max number of iterations simulated). Those behaviors mirror those of the
graphical version of the tool.

Mobius> run satRelay t AvNumSSG
Building State Space Generator for Linux architecture
Building for Linux systems on darboux
...
Generated: 8190 states
Computation Time (user + system): 2.160100e-01 seconds
State Generation of Experiment_3 on model AvNumSSG finished at Wed Mar 06 21:13:11
CST 2013.

3.4 Edit

The edit command allows the user to step into project components. For model
components that have nested child elements (e.g., a Stochastic Activity Network
(SAN) [4] model containing input gates and activities), the edit command can
further step into those elements to make changes to their attributes (e.g., input
predicate, firing distribution).

In the following example, we start by editing the “cpu module” SAN model
in the “Multi-Proc” project (which is included in the standard set of examples
that come with Möbius). On line 3 we execute the show command to get a brief
summary of this atomic model. Next, on line 10, we ask for further details on
the activities in this SAN model. We could get a complete description of the
“cpu failure” activity by using the show activity command. On line 13 we begin
editing the “cpu failure” activity. We start by showing the details of the timing
distribution. Next, on lines 19, 21, and 23, we alter the timing distribution type,
mean, and variance, respectively. Having made the desired changes, we close

Möbius Shell: A Command-Line Interface for Möbius 285

that activity on line 25. Finally, we close the “cpu module” SAN model. Möbius
Shell then asks us if we would like to save our changes, which we do, and the
model compiles successfully.

1 Mobius> edit Multi-Proc a cpu_module
2 Now editing the cpu_module SAN Atomic Model (enter the "close" command when finished)...
3 Multi-Proc/Atomic/cpu_module> show
4 Model contains 10 elements and 18 connections:
5 1 activity (0 instantaneous, 1 timed)
6 0 extended places
7 1 input gate
8 3 output gates
9 5 places

10 Multi-Proc/Atomic/cpu_module> show activities
11 Model contains 1 activity:
12 cpu_failure (timed, incoming: Input_Gate1, outgoing: Case 1: OG1, Case 2: OG2, Case 3: OG3)
13 Multi-Proc/Atomic/cpu_module> edit cpu_failure
14 Now editing the cpu_failure Timed Activity (enter the "close" command when finished)...
15 Multi-Proc/Atomic/cpu_module/cpu_failure> show timing
16 Timing distribution: Exponential
17 Parameters:
18 Rate: 6.0 * failure_rate * cpus->Mark()
19 Multi-Proc/Atomic/cpu_module/cpu_failure> set timing distribution Normal
20 Timing distribution set to Normal (Mean: , Variance:)
21 Multi-Proc/Atomic/cpu_module/cpu_failure> set timing Mean "failure_rate * cpus->Mark()"
22 Timing distribution set to Normal (Mean: failure_rate * cpus->Mark(), Variance:)
23 Multi-Proc/Atomic/cpu_module/cpu_failure> set timing Variance "0.1"
24 Timing distribution set to Normal (Mean: failure_rate * cpus->Mark(), Variance: 0.1)
25 Multi-Proc/Atomic/cpu_module/cpu_failure> close
26 Closing the cpu_failure Timed Activity (changes will not be saved until atomic model is saved)...
27 Multi-Proc/Atomic/cpu_module> close
28 You have unsaved changes, would you like to save? (Y|n) y
29 Generating code...............Done!
30 make: Entering directory ‘/home/kjkeefe/MobiusProject/Multi-Proc/Atomic/cpu_module’
31 ...
32 Compile completed: SUCCESS
33 Mobius>

Acknowledgments. The authors would like to acknowledge the current and
former members of the Möbius team and the outside contributors to the Möbius
project. The authors would also like to thank Jenny Applequist for her editorial
work.

References

1. Deavours, D.D., Clark, G., Courtney, T., Daly, D., Derisavi, S., Doyle, J.M., Sanders,
W.H., Webster, P.G.: The Möbius framework and its implementation. IEEE Trans-
actions on Software Engineering 28(10), 956–969 (2002)

2. Doyle, J.M.: Abstract model specification using the Möbius modeling tool. Master’s
thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois (January 2000)

3. Möbius Team: The Möbius Manual. University of Illinois at Urbana-Champaign,
Urbana, IL (2013), http://www.mobius.illinois.edu

4. Sanders, W.H., Meyer, J.F.: Stochastic activity networks: Formal definitions and
concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) FMPA 2000. LNCS,
vol. 2090, pp. 315–343. Springer, Heidelberg (2001)

http://www.mobius.illinois.edu

	M\"{o}bius Shell:A Command-Line Interface for M\"{o}bius
	1The Möbius Modeling Environment
	2Using the Möbius Shell
	3Key Möbius Shell Commands
	3.1Help
	3.2Generate, Compile, and Save
	3.3Run
	3.4Edit

	References

