
VeriSiMPL: Verification via biSimulations

of MPL Models�

Dieky Adzkiya1 and Alessandro Abate2

1 Delft Center for Systems and Control, TU Delft
2 Department of Computer Science, University of Oxford

Abstract. VeriSiMPL (“very simple”) is a software tool to obtain fi-
nite abstractions of Max-Plus-Linear (MPL) models. MPL models (Sect.
2), specified in MATLAB, are abstracted to Labeled Transition Sys-
tems (LTS). The LTS abstraction is formally put in relationship with
the concrete MPL model via a (bi)simulation relation. The abstraction
procedure (Sect. 3) runs in MATLAB and leverages sparse representa-
tions, fast manipulations based on vector calculus, and optimized data
structures such as Difference-Bound Matrices. LTS abstractions can be
exported to structures defined in the PROMELA. This enables the veri-
fication of MPL models against temporal specifications within the SPIN
model checker (Sect. 4). The toolbox is available at

http://sourceforge.net/projects/verisimpl/

1 Motivations and Goals

Max-Plus-Linear (MPL) models are discrete-event systems [1] with continuous
variables that express the timing of the underlying sequential events. MPL mod-
els are employed to describe the timing synchronization between interleaved
processes, and as such are widely employed in the analysis and scheduling of in-
frastructure networks, such as communication and railway systems, production
and manufacturing lines [1]. MPL models are classically analyzed by algebraic [1]
or geometric techniques [2] over the max-plus algebra, which allows investigat-
ing properties such as transient and periodic regimes [1], or ultimate dynamical
behavior. They can be simulated via the max-plus toolbox Scilab [3].

The recent work in [4,5] has explored a novel, alternative approach to analysis,
which is based on finite-state abstractions of MPL models. The objective of this
new approach is to allow a multitude of available tools that has been developed
for finite-state models to be employed over MPL systems. We are in particular
interested in the Linear Temporal Logic (LTL) model checking of MPL models
via LTS abstractions.

This article presents VeriSiMPL, a software toolbox that implements and tests
the abstraction technique in [4,5].

� This research is funded by the European Commission under the MoVeS project,
FP7-ICT-2009-5 257005, by the European Commission under the NoE FP7-ICT-
2009-5 257462, by the European Commission under Marie Curie grant MANTRAS
PIRG-GA-2009-249295, and by NWO under VENI grant 016.103.020.

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 274–277, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



VeriSiMPL: Verification via biSimulations of MPL Models 275

2 Nuts and Bolts of Max-Plus-Linear Models

Define IRε and ε respectively as IR ∪ {ε} and −∞. For a pair x, y ∈ IRε, we
define x ⊕ y = max{x, y} and x ⊗ y = x + y. Max-plus algebraic operations
are extended to matrices as follows: if A,B ∈ IRm×n

ε and C ∈ IRn×p
ε , then

[A ⊕ B](i, j) = A(i, j) ⊕ B(i, j) and [A ⊗ C](i, j) =
⊕n

k=1 A(i, k) ⊗ C(k, j), for
all i, j. An MPL model [1, Corollary 2.82] is defined as:

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) ,

where A ∈ IRn×n
ε , B ∈ IRn×m

ε , x(k) ∈ IRn
ε , u(k) ∈ IRm

ε , for k ∈ IN. In this
work, the state and input spaces are taken to be IRn and IRm, respectively: the
independent variable k denotes an increasing discrete-event counter, whereas the
n-dimensional state variable x defines the (continuous) timing of the discrete
events and the m-dimensional input u characterizes external schedules. If the
input matrix B contains at least a finite (not equal to ε) element, the MPL
model is called nonautonomous, otherwise it is called autonomous since it evolves
under no external schedule. Nonautonomous models embed nondeterminism in
the form of a controller input.

Implementation: VeriSiMPL accepts MPL models written in MATLAB. For
practical reasons, the state matrix A is assumed to be row-finite, namely char-
acterized in each row with at least one element different from ε.

Example: Consider the following autonomous MPL model from [1, p. 4],
representing the scheduling of train departures from two connected stations
i = 1, 2 (event k denotes the time of the k-th departure at time xi(k) for
station i)

x(k) =

[
3 7
2 4

]

⊗ x(k − 1), i.e.

[
x1(k)
x2(k)

]

=

[
max{3 + x1(k − 1), 7 + x2(k − 1)}
max{2 + x1(k − 1), 4 + x2(k − 1)}

]

.

3 From MPL Models to Labeled Transition Systems

We seek to construct a finite-state Labeled Transition System (LTS) as an ab-
straction of an (autonomous or nonautonomous) MPL model. An LTS comprises
a set of finitely many states (Sect. 3.1), of a set of transitions relating pairs of
states (Sect. 3.2), and is further decorated with labels on either states or tran-
sitions (Sect. 3.3).

3.1 LTS States: Partitioning of MPL Space

LTS states are obtained by partitioning the state space IRn based on the un-
derlying dynamics, that is based on the state matrix A [4, Algorithms 1,2]. The
partition can be further refined (in order to seek a bisimulation of the concrete
model) or otherwise coarsened by merging adjacent regions (in order to reduce
the cardinality of the set of abstract states).



276 D. Adzkiya and A. Abate

Implementation: VeriSiMPL implements two alternative approaches [4, Al-
gorithms 1,2]. In order to improve the performance of the procedure, standard
pruning tricks are applied. Each generated region is shown to be a Difference-
Bound Matrix (DBM) [6, Sect. 4.1]: this allows a computationally efficient rep-
resentation based on the expression xi − xj �� αi,j , ��∈ {<,≤}. VeriSiMPL rep-
resents a DBM as a row cell with two elements: the first element is a real-valued
matrix representing the upper bound αi,j , whereas the second is a Boolean ma-
trix representing the value of ��. A collection of DBM is also represented as a
row with two elements, where the corresponding matrices are stacked along the
third dimension. Quite importantly, DBM are closed under MPL operations.

Example: The partitioning regions generated for the MPL model in Sect. 2
are R1 = {x ∈ IR2 : x1 − x2 > 4}, R2 = {x ∈ IR2 : 2 < x1 − x2 ≤ 4}, and
R3 = {x ∈ IR2 : x1 − x2 ≤ 2}.

3.2 LTS Transitions: Forward-Reachability Analysis

An LTS transition between any two abstract states R and R′ is generated based
on the relation between the two corresponding partitioning regions. At any given
event counter k, there is a transition from R to R′ if there exists an x(k−1) ∈ R
and possibly a u(k) ∈ U ⊆ IRm such that x(k) ∈ R′. Such a transition can
be determined by a forward-reachability computation, i.e. checking the non-
emptiness of R′ ∩ {x(k) : x(k − 1) ∈ R, u(k) ∈ U}. We assume that the set of
allowed inputs U ⊆ IRm is characterized via a DBM.

Implementation: VeriSiMPL performs forward reachability by mapping and
manipulating DBM. It represents a transition in MATLAB as a sparse Boolean
matrix. As in a precedence graph [1, Definition 2.8], the (i, j)-th element equals
to 1 if there is a transition from j to i, else it is equal to 0.

Example: The transitions for the model in Sect. 2 are represented in Fig. 1.
In a nonautonomous version of the model, the finite-state structure in Fig. 1 will
simply present additional transitions.

3.3 LTS Labels: Fast Manipulation of DBM

LTS labels are quantities associated with states or transitions and characterize
1) the difference between the timing of a single event (k) for any two variables

of the original MPL model, i.e. xi(k)− xj(k), where 1 ≤ i < j ≤ n; or
2) the time difference between consecutive events of the MPL model, i.e.

xi(k)− xi(k − 1), for 1 ≤ i ≤ n.
The first class of labels is determined by the representation of a partitioning

region, whereas the second is derived from an outgoing partitioning region and
its affine dynamics.

Implementation: Practically, in both cases VeriSiMPL stores the labels as
(unions of) vectors of real-valued intervals in MATLAB. In the second case the
labels are computed by fast DBM manipulations.

Example: The obtained LTS can be expressed as a simple text file and parsed
by Graphviz for plotting, as displayed in Fig. 1.



VeriSiMPL: Verification via biSimulations of MPL Models 277

[3, 4]
[5, 6]

[5,∞)
[4, 4][3, 3]

(6,∞)

(4, 5)
(4, 5)

R1 R3 R2

Fig. 1. LTS abstraction of the MPL model in Sect. 2, inclusive of abstract states,
transitions, and labels

4 Computational Benchmark and Case Study

We have computed the runtime required to abstract an autonomous MPL system
as a finite-state LTS, for increasing dimensions n of the MPL model, and kept
track of the number of states and of transitions of the obtained LTS (memory
requirement). Compared to partition-based abstraction procedures in the litera-
ture for other classes of dynamical systems [7], the present procedure comfortably
manages MPL models with significant size (number of continuous variables).

Implementation: For any n, we have generated row-finite matrices A with
2 finite elements (random integers taking values between 1 and 100) placed
randomly in each row. The algorithms have been implemented in MATLAB
7.13 (R2011b) and the experiments have been run on a 12-core Intel Xeon 3.47
GHz PC with 24 GB of memory. For n = 15, VeriSiMPL generates an LTS with
about 104 states and 106 transitions, with a runtime limited within a few hours.

Example: The obtained LTS can be exported to PROMELA (a PROcess
MEta LAnguage), to be later used by the SPIN model checker [8]. Consider the
specification Ψ : ∀k ∈ IN, ψ(k), where ψ(k) = {x2(k+1)−x2(k) ≤ 6}. Notice that
Ψ can be expressed as �ψ. We obtain the satisfiability set Sat(Ψ) = {R2, R3}.

References

1. Baccelli, F., Cohen, G., Olsder, G., Quadrat, J.P.: Synchronization and Linearity,
An Algebra for Discrete Event Systems. John Wiley and Sons (1992)

2. Katz, R.: Max-plus (A,B)-invariant spaces and control of timed discrete-event sys-
tems. IEEE Trans. Autom. Control 52(2), 229–241 (2007)

3. Plus, M.: Max-plus toolbox of Scilab (Online) (1998),
http://www.cmap.polytechnique.fr/~gaubert/MaxplusToolbox.html

4. Adzkiya, D., De Schutter, B., Abate, A.: Abstraction and verification of autonomous
max-plus-linear systems. In: Proc. 31st Amer. Control Conf., pp. 721–726 (2012)

5. Adzkiya, D., De Schutter, B., Abate, A.: Finite abstractions of nonautonomous
max-plus-linear systems. In: Proc. 32nd Amer. Control Conf. (June 2013)

6. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990)

7. Yordanov, B., Belta, C.: Formal analysis of discrete-time piecewise affine systems.
IEEE Trans. Autom. Control 55(12), 2834–2840 (2010)

8. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley (2003)

http://www.cmap.polytechnique.fr/~gaubert/MaxplusToolbox.html

	VeriSiMPL: Verification via biSimulationsof MPL Models
	1Motivations and Goals
	2Nuts and Bolts of Max-Plus-Linear Models
	3From MPL Models to Labeled Transition Systems
	3.1 LTS States: Partitioning of MPL Space
	3.2LTS Transitions: Forward-Reachability Analysis
	3.3LTS Labels: Fast Manipulation of DBM

	4Computational Benchmark and Case Study
	References




