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Abstract. Prinsys (pronounced “princess”) is a new software-tool for
probabilistic invariant synthesis. In this paper we discuss its implemen-
tation and improvements of the methodology which was set out in previ-
ous work. In particular we have substantially simplified the method and
generalised it to non-linear programs and invariants. Prinsys follows
a constraint-based approach. A given parameterised loop annotation is
speculatively placed in the program. The tool returns a formula that
captures precisely the invariant instances of the given candidate. Our
approach is sound and complete. Prinsys’s applicability is evaluated on
several examples. We believe the tool contributes to the successful ana-
lysis of sequential probabilistic programs with infinite-domain variables
and parameters.
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1 Introduction

Motivation. Probabilistic programs are pivotal in different application fields like
security, privacy [2]—several probabilistic protocols (e.g. onion-routing) aim to
ensure privacy, and there is an increasing interest in the topic, partly driven by
the social-media world—and cryptography [1] as well as quantum computing [13].
Such programs are single threaded and typically consist of a small number of
code lines, but are hard to understand and analyse. The two major reasons
for their complexity are the occurrence of program variables with unbounded
domains, and parameters. Such parameters can be either loop bounds, number
of participants (in a protocol), or probabilistic choices where the parameters
range over concrete probabilities. For example, the following simple program
generates a sample x according to a geometric distribution with parameter p.
In every loop iteration, the variable x is increased by one with probability 1−p
and flip is set to one with probability p, where p is an unknown real value from
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Listing 1. x ∼ geom(p)

x := 0 ;
f l i p := 0 ;
while ( f l i p = 0) {

( f l i p := 1 [ p ] x := x+1 ) ;
}

the range (0, 1). The occurrence of unbounded variables and parameters comes
at a price, namely that probabilistic programs in general cannot be analysed
automatically by model-checking tools such as Prism [10], Param [6], Pass [5]
or Apex [9].

Approach. Instead we resort to deductive techniques. Recall that one of the
main approaches to the verification of sequential programs rests on the pioneer-
ing work of Floyd, Hoare, and Dijkstra in which annotations are associated with
control points in the program. Whereas the annotations for sequential programs
are qualitative and can be expressed in predicate logic, quantitative annotations
are needed to reason about probabilistic program correctness. McIver and Mor-
gan [11] have extended the method of Floyd, Hoare, and Dijkstra to probabilistic
programs by making the annotations real- rather than Boolean-valued expres-
sions in the program variables. Using these methods we can prove that in the
above program the average value of x is 1−p

p . Annotating a probabilistic pro-
gram with such expressions is non-trivial and undecidable in general. The main
reason is the occurrence of loops. This all boils down to the question on how to
establish a loop invariant. It is known that this is a notorious hard problem for
traditional programs. For probabilistic programs it is even more difficult as loop
invariants are quantitative—so-called probabilistic loop invariants. Variables do
no longer have a value, but have a certain value with a given likelihood. Finding
an invariant is hard and requires both ingenuity as well as involved computations
to check that a given expression is indeed invariant. Recently, Katoen et al. [7]
have proposed a technique for finding linear invariants for linear probabilistic
programs. Linearity refers to the fact that right-hand sides of assignments and
guards are linear expressions in the program variables (and parameters). This
technique is based on speculatively annotating a loop with a template (in fact a
linear inequality) and using constraint solving techniques to distill all parameters
for which the template is indeed a loop invariant.

Contributions of this paper. The contributions of this paper are manifold. First
and foremost, this paper presents Prinsys (pronounce “princess”), a novel
tool for supporting the semi-automated generation of probabilistic invariants of
pGCL1 programs. This publicly available tool implements the technique

1 pGCL extends Dijkstra’s guarded command language with a probabilistic choice
operator.
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advocated in [7], i.e., automatically computes the constraints under which a
user-provided template is invariant, saving the user from tedious and error prone
calculations. To the best of our knowledge, it is the first tool for synthesizing
probabilistic invariants. Secondly, we show that the theory in [7] can be con-
siderably simplified. In particular, we show that the usage of Motzkin’s trans-
position theorem (a generalisation of Farkas’ lemma) to turn an existentially
quantified formula into a universally quantified one, is not needed. As a result,
Prinsys allows arbitrary formulas in templates and program guards. This al-
lows for polynomial invariant templates and non-linear program expressions. So,
an immediate consequence of this simplification is that the restriction to linear
programs and linear invariants can be dropped. This is more of theoretical in-
terest than of practical interest, as polynomial invariants—as for the traditional,
non-probabilistic setting—are hard to synthesize in practice. Finally, we present
some applications of the tool such as proving the equivalence of two programs
computing a sample from X−Y where X and Y are both geometrically dis-
tributed, and the generation of a fair coin from a biased one. We evaluate the
experiments and give directions for future research.

Organization of the paper. Section 2 provides the preliminaries such as pGCL,
probabilistic invariants, and expectations. Section 3 presents the steps of our
approach and the simplification of [7]. Section 4 provides three examples to
give insight about what Prinsys can establish. Section 5 evaluates the tool and
approach, whereas Sect. 6 concludes the paper and provides pointers to future
work.

2 Background

When probabilistic programs are executed they determine a probability distri-
bution over final values of program variables. For instance, on termination of

(x := 1 [0.75] x := 2);

the final value of x is 1 with probability 3
4 or 2 with probability 1 − 3

4 = 1
4 .

An alternative way to characterise that probabilistic behaviour is to consider
the expected values over random variables with respect to that distribution.
For example, to determine the probability that x is set to 1, we can compute
the expected value of the random variable “x is 1” which is 3

4 · 1 + 1
4 · 0 = 3

4 .
Similarly, to determine the average value of x, we compute the expected value
of the random variable “x” which is 3

4 · 1 + 1
4 · 2 = 5

4 . More generally, rather
than a distribution-centred approach, we take an “expectation transformer” [11]
approach. We annotate probabilistic programs with expectations.

Expectations. Expectations map program states to non-negative real values.
They generalise Hoare’s predicates for non-probabilistic programs towards real-
valued functions. Intuitively, implication between predicates is generalised to
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pointwise inequality between expectations. For convenience we use square brack-
ets to link Boolean truth values to numbers and by convention [true] = 1 and
[false] = 0. In the example above, we call “x” the post-expectation and 5

4 its
pre-expectation. Thus the annotated program is 〈54 〉 (x := 1 [0.75] x := 2); 〈x〉.

The formal mechanism for computing pre-expectations for a given
program and post-expectation is the expectation transformer semantics [11].
Expectation transformers are the quantitative pendant to Dijkstra’s predicate
transformers. McIver and Morgan extend Dijkstra’s concept and introduce a
function wp(prog,post) which based on the program prog determines the great-
est pre-expectation for any given post-expectation post. A summary of pGCL’s
expectation transformer semantics is given in Table 1 where f is a given post-
expectation. From an operational perspective, pGCL programs can be viewed
as (infinite state) MDPs with a reward structure induced by the given post-
expectation f . Then the greatest pre-expectation can be computed as the ex-
pected cummulative reward on that model [4].

Table 1. Syntax and expectation transformer semantics of pGCL

syntax prog semantics wp(prog,f)

skip f

abort 0

x := E f [x/E]

P ; Q wp(P,wp(Q, f))

if (G) { P } else { Q } [G] · wp(P, f) + [¬G] · wp(Q,f)

P [] Q min{wp(P, f),wp(Q,f)}
P [p] Q p · wp(P, f) + (1− p) · wp(Q, f)

while (G) { P } μX.([G] · wp(P,X) + [¬G] · f)

For loop-free programs, the pre-expectation is simply given by syntactic rules.
However, loops pose a problem because their expectation over final values is given
in terms of a least fixed point (over the domain of expectations with the ordering
≤, a pointwise ordering on expectations).

Invariants. Using special expectations which we call invariants we can avoid
the calculation of a loop’s fixed point. Assume we are given two expectations pre
and post and we want to show that pre is a lower bound on the loop’s actual
pre-expectation, i.e.

pre ≤ wp(while(G){body}, post) .

Instead of computing the greatest pre-expectation wp(while(G){body}, post) di-
rectly, it is more practical to divide this problem into simpler subtasks:
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1. find an expectation I such that

pre ≤ I and I · [¬G] ≤ post ,

2. show I is invariant2, that is I · [G] ≤ wlp(body, I)
3. show I is sound, that is I ≤ wp(while(G){body}, I · [¬G])

Points 2. and 3. may seem odd as they resemble the original problem of proving
an inequality between an expectation and the greatest pre-expectation of a loop.
However they are easier than the original problem, because in 2. the greatest pre-
expectation can be explicitly computed because body is a loop-free program. In
order to guarantee soundness (point 3.) the loop must terminate with probability
one and the invariant I has to additionally meet one of the following sufficient
conditions [11]:

– from every initial state of the loop only a finite state space is reachable
– or I is bounded above by some fixed constant
– or wp(body, I · [G]) tends to zero as the number of iterations tends to infinity.

Remark 1. It is an open problem to give the necessary and sufficient conditions
for soundness.

Put all together this proves the inequality above as

pre ≤ I ≤ wp(while(G){body}, I · [¬G]) ≤3 wp(while(G){body}, post) .

Example 1 (Application of invariants.). Consider the program prog in Lst. 2.
On each iteration of the loop it sets x to −1 with probability 0.15, to 0 with
probability 0.5 and to 1 with probability 0.35. We would like to prove that the
probability to terminate in a state where x = 1 is 0.7 or equivalently

wp(prog, [x = 1]) = 0.7 .

Instead of computing the least fixed point of the loop wrt. post-expectation
[x = 1], we can show that I = [x = 0] · 0.7 + [x = 1] is invariant. If the loop
terminates, we can establish:

[¬G] · I = [x �= 0] · [x = 0] · 0.7 + [x = 1]

= [x = 1] .

At the beginning of the program the initialisation of x transforms the invariant
to:

wp(x := 0, I) = [0 = 0] · 0.7 + [0 = 1]

= 0.7 .

2 wlp is the “liberal” version of wp. Both expectation transformers coincide for almost
surely terminating programs. Since in this paper we do not consider nested loops,
i.e. body is loop-free (and hence surely terminates), we do not discuss the theoretical
differences between wp and wlp here.

3 wp is monotonic in its second argument [11].



198 F. Gretz, J.-P. Katoen, and A. McIver

Listing 2. A simple loop

x := 0 ;
while ( x=0) {

(x := 0 ; ) [ 0 . 5 ] { ( x := −1 [ 0 . 3 ] x := 1 ) ; }
}

In this way we obtain the annotation

〈0.7〉 x := 0; 〈I〉 while(x = 0){. . .} 〈[x �= 0] · [I] = [x = 1]〉

as desired. It is sound because the program obviously terminates with probability
one and I is bounded.

The crucial point in determining a pre-expectation of a program is to discover
the necessary loop invariants for each loop. Checking soundness and carrying out
subsequent calculations for the other program constructs turns out be easy in
practice. In the following section we explain our approach to finding invariants
step by step.

3 Our Approach

To explain the steps carried out by Prinsys we revisit the geometric distribution
program from Lst. 1. In the next section, we will view it in a broader context.

Template. Consider the loop:

while (flip = 0){ ( flip := 1 [p] x := x+1); }

and an expectation

Tα = [x ≥ 0] · x+ [x ≥ 0 ∧ flip = 0] · α

where α is an unknown (real) parameter. We call Tα a template. Replacing α by
a real value yields an instance of the template. Depending on this value, some
instances may satisfy the invariance condition Tα · [G] ≤ wlp(body, Tα).

Goal. Prinsys gives a characterisation of all invariant instances of a given
template. This characterisation is a formula which is true for all admissible values
of the template parameters, α in our example. It is important to stress that this
method is complete in the sense that for any given template the resulting formula
captures precisely the invariant instances.
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Workflow. Stage 1: After parsing the program text and template, Prinsys
traverses the generated control flow graph of the program and computes:

wp(flip := 1 [p] x := x+1, Tα)
= [x ≥ 0] · px+ (1 − p) · ([x+ 1 ≥ 0] · (x+ 1) + [x+ 1 ≥ 0 ∧ flip = 0] · α) .

For details, cf. Table 1. After expanding this expression, the invariance condition
amounts to:

Tα·[G]
︷ ︸︸ ︷

[x ≥ 0 ∧ flip = 0] · (x+ α) ≤ [x ≥ 0] · px
+ [x+ 1 ≥ 0] · ((1 − p)x− p+ 1)

+[x+ 1 ≥ 0 ∧ flip = 0] · (1− p)α
︸ ︷︷ ︸

wlp(body,Tα)

.

Our goal is to find all α such that the point-wise inequality is satisfied, i.e. it
holds for every x and every flip. This can be done by pairwise comparison of the
summands on the left-hand side and the right-hand side. But summands may
overlap. This makes it necessary to rewrite the expectations in disjoint normal
form (DNF).

Theorem 1 (Transformation to DNF [7]). Given an expectation of the form

f = [P1] · w1 + . . .+ [Pn] · wn.

Then an equivalent expectation in DNF can be written as:

∑

I∈P(n)\∅

⎛

⎝

⎡

⎣

∧

i∈I

Pi ∧ ¬

⎛

⎝

∧

j∈P(n)\I
Pj

⎞

⎠

⎤

⎦ ·
(

∑

i∈I

wi

)
⎞

⎠

where n is the index set {1, . . . , n} and P(·) denotes the power set.

The left-hand side of the inequality for the example program above is already in
DNF as there is only one summand. We apply the transformation to the right-
hand side expression. The result is an expectation with 15 summands. For better
readability we only show the summands that are not trivially zero:

[x+ 1 ≥ 0 ∧ x < 0 ∧ flip = 0)] · ((1 − p)x+ (1− p)α− p+ 1)

+[x ≥ 0 ∧ flip = 0)] · (x + (1− p)α− p+ 1)

+[x+ 1 ≥ 0 ∧ x < 0 ∧ flip �= 0] · ((1− p)x− p+ 1)

+[x ≥ 0 ∧ flip �= 0] · (x− p+ 1) .

The following theorem provides a straightforward encoding of the inequality as
a first-order formula.
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Theorem 2. Given two expectations over variables x1, . . . , xn in disjoint-
normal form

f = [P1] · u1 + . . .+ [PM ] · uM , g = [Q1] · w1 + . . .+ [QK ] · wK .

The inequality f ≤ g holds if and only if

∀x1, . . . , xn ∈ R :
∧

m∈M

∧

k∈K

(Pm ∧Qk ⇒ (um − wk ≤ 0))

∧
∧

m∈M

⎛

⎝Pm ∧

⎛

⎝

∧

k∈K

¬Qk

⎞

⎠⇒ um ≤ 0

⎞

⎠

∧
∧

k∈K

⎛

⎝Qk ∧

⎛

⎝

∧

m∈M

¬Pm

⎞

⎠⇒ 0 ≤ wk

⎞

⎠

holds, where X is the set of indices {1, 2, . . . , X}.

The idea is that we consider individual summands on the left-hand and right-
hand side of the inequality and compare their values. It may also be the case that
for some evaluations, all predicates on the right-hand side are false and hence
the expectation is zero (i.e., the zero function). Then it must be ensured that no
summand is greater than zero on the left-hand side. Conversely, if none of the
predicates on the left-hand side are satisfied, the summands on the right-hand
side may be no less than zero.

Theorem 2 originally appears in [7] where the last case is omitted because
expectations are assumed to be non-negative by definition. However it is crucial
to encode such informal assumptions in the formula as the tools are not aware of
such expectation properties and instead treat them as usual functions over real
values. This issue remained undiscovered until its implementation in Prinsys
caused incorrect results. The lesson learned is that bridging the gap between an
idea and a working implementation requires more than “just” coding.

Continuing our example, the (simplified) first-order formula obtained is:

∀x,flip :(αp+ p− 1 ≤ 0 ∨ flip �= 0 ∨ x < 0)

∧ (αp− α+ px+ p− x− 1 ≤ 0 ∨ flip �= 0 ∨ x+ 1 < 0 ∨ x ≥ 0)

∧ (flip = 0 ∨ px+ p− x− 1 ≤ 0 ∨ x+ 1 < 0 ∨ x ≥ 0)

∧ (flip = 0 ∨ p− x− 1 ≤ 0 ∨ x < 0) .

The calculation of this formula by Prinsys concludes the first stage.
Stage 2: The formula is passed to Redlog which simplifies the formula by

quantifier elimination. Sometimes the result returned by Redlog still contains
redundant information and can be further reduced by its built-in simplifiers or
by the Slfq tool. In the end the user is presented a formula that characterises
all αs that make Tα invariant:

αp+ p− 1 ≥ 0 .
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Listing 3. Annotated program from Lst. 1

〈 1−p
p

〉
x := 0 ;
f l i p := 0 ;

〈[x ≥ 0] · x+ [x ≥ 0 ∧ flip = 0] · 1−p
p

〉
while ( f l i p = 0) {

( f l i p := 1 [ p ] x := x+1 ) ;
}
〈x〉

We pick the greatest admissible α and obtain an invariant:

T 1−p
p

= [x ≥ 0] · x+ [x ≥ 0 ∧ flip = 0] · 1− p

p
.

This can be used to prove that the program in Lst. 1 has an average outcome of
1−p
p which indeed is the mean of a geometric distribution with parameter p. The

annotated program now looks as follows: The soundness of our invariant is given
because there is always a non-zero probability to exit the loop, cf. definition of
invariants above.

Figure 1 pictures the described workflow of Prinsys.

Parsing
Numerical
constraints
generation

Transformation
to disjoint
normal form

Translation to
FO-formulae

Quantifier
elimination

Redlog

Simplification

Slfq, Redlog

template

program

invariant

Stage 1

Stage 2

Fig. 1. Tool chain workflow

New Insights. There are major differences with the approach sketched in [7].
In Prinsys we skip the additional step of translating the universally quantified
formula into an existential one using the Motzkin’s transposition theorem. This
step turns out to be not necessary. In fact it complicates matters as the exis-
tential formula will have more quantified variables which is bad for quantifier
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Listing 4.

c := IC ; // c a p i t a l c ( i s s e t to some I n i t i a l C a p i t a l )
b := 1 ; // i n i t i a l l y b e t one un i t
rounds := 0 ; //number o f rounds p l ayed ( su r v i v ed )
while (b > 0){

{// win wi th p r o b a b i l i t y p
c := c+b ;
b := 0 ;}
[ p ]
{// l o s e wi th p r o b a b i l i t y 1−p
c := c−b ;
b := 2∗b ;}

rounds := rounds+1;
}

elimination. Furthermore, Motzkin’s transposition theorem requires the univer-
sally quantified formula to be in a particular shape. Our implementation however
does not have these restrictions and allows arbitrary predicates in the program’s
guards and in templates. Also the template and program do not have to be linear
(theoretically at least) because Redlog and Slfq can work with polynomials.
Moreover the invariant generation method remains complete in this case. This
is because starting with the invariance condition all subsequent steps to obtain
the simplified first-order formula are equivalence transformations.

This section has not only illustrated how the tool-chain works but also clearly
shows the great amount of calculations that are done automatically for the user.
Within seconds the user may try out different templates and play with the
parameters until an invariant is found. The Prinsys tool saves the user a lot
of tedious, error-prone work and pushes forward the automation of probabilistic
program analysis.

4 Applications

This section presents three examples, for simplicity all based on our running
example of the geometric distribution, that illustrate the possibilities of the
Prinsys approach. Let us start with a relatively simple example.

Martingale Betting Strategy. Another variant of the geometric distribution
appears in the following program, which models a gambler with infinite resources
who is playing according to the martingale strategy. Note that this program has
two unbounded variables. Using the same template as before, we discover that 1

p
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Listing 5. Listing 6.

x := 0 ;
f l i p := 0 ;
while ( f l i p = 0) {

( x := x+1 [ p ] f l i p := 1 ) ;
}
f l i p := 0 ;
while ( f l i p = 0) {

( x := x−1 [ q ] f l i p := 1 ) ;
}

x := 0 ;
( f l i p := 0 [ 0 . 5 ] f l i p := 1 ) ;
i f ( f l i p = 0) {

while ( f l i p = 0) {
( x := x+1 [ p ] f l i p := 1 ) ;

}
} else {

f l i p := 0 ;
while ( f l i p = 0) {

x := x−1;
( skip [ q ] f l i p := 1 ) ;

}
}

is the expected number of rounds played before the gambler stops. The expecta-
tion differs from what we have computed for the program in Lst. 1 because here
the counter is increased also on the last iteration before the loop terminates.

Geometric Distribution. This example is taken from [8] where amongst oth-
ers it has been shown that the two programs in Lst. 5 and Lst. 6 are equivalent
for p = 1

2 and q = 2
3 . The proof in [8] relies on language equivalence check-

ing of probabilistic automata. Here, we show how the techniques supported by
Prinsys can be used to show that both programs are equivalent for any p and
q satisfying q = 1

2−p . Let us explain the example in more detail. The aim is to
generate a sample x according to the distributionX−Y whereX is geometrically
distributed with parameter 1−p and Y is geometrically distributed with 1−q.

0

1

1p

q

Fig. 2. Pairs (p, q) for which the programs
in List. 5 and List. 6 produce the same x
on average.

Although it is not common to say that
a distribution has a parameter 1−p, it
is natural in the context of these pro-
grams where x is manipulated with
probability p and the loop is termi-
nated with the remaining probability.
The difference between the programs
in Lst. 5 and Lst. 6 is that the first
uses two loops in sequence whereas
the latter needs only one out of two
loops. Our goal is to determine when
the two programs are equivalent, in
the sense that they compute the same
value for x on average.
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Listing 7. x is set to zero or one, each with probability 0.5

x := 0 ; // s t o r e s outcome o f f i r s t b i a sed coin f l i p
y := 0 ; // s t o r e s outcome o f second b i ased coin f l i p

while (x−y = 0) {
(x := 0 [ p ] x := 1 ) ;
(y := 0 [ p ] y := 1 ) ;

}

The Prinsys tool generates invariants for single loops, so we consider each
loop separately. Using the template Tα = [x ≥ 0] · x+ [x ≥ 0 ∧ flip = 0] · α from
our running example, Prinsys yields the following invariants:

– I11 = x+ [flip = 0] · p
1−p ,

– I12 = x+ [flip = 0] ·
(

− q
1−q

)

,

– I21 = I11 and

– I22 = x+ [flip = 0] ·
(

− 1
1−q

)

,

where Iij is the invariant of the j-th loop in program i, i, j ∈ {1, 2}. With
these invariants we can easily derive the expected value of x, which is p

1−p −
q

1−q

and p
2(1−p) −

1
2(1−q) for the program in List. 5 and List. 6, respectively. The two

programs thus are equivalent whenever these two expectations coincide; e. g. this
is the case for p = 1

2 and q = 2
3 as discussed in [8]. Figure 2 visualises our result:

for every point (p, q) on the graph the two programs are equivalent. This result
cannot be obtained using the techniques in [8]; to the best of our knowledge
there are no other automated techniques that can establish this.

Generating a Fair Coin from a Biased Coin. In [7], Hurd’s algorithm
to generate a sample according to a biased coin flip using only fair coin flips
has been analysed. Using Prinsys the calculations can be automated. This was
elaborated in [3]. Here we consider an algorithm for the opposite problem. Using
a coin with some arbitrary bias 0 < p < 1, the algorithm in Lst. 7 generates a
sample according to a fair coin flip. The loop terminates when the biased coin was
flipped twice and showed different outcomes. Obviously the program terminates
with probability one as on each iteration of the loop there is a constant positive
chance to terminate. The value of x is taken as the outcome. The two possible
outcomes are characterised by x = 0∧y = 1 and x = 1∧y = 0. We encode these
two possibilities in the template:

[x = 0 ∧ y − 1 = 0] · (α) + [x− 1 = 0 ∧ y = 0] · (β)

Prinsys returns one constraint:

αp2 − αp+ βp2 − βp ≤ 0
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As before we look for the maximum value, hence we consider equality with zero.
The equation simplifies to α = −β because we know that 0 < p < 1. Hence
[x = 0∧y− 1 = 0]− [x− 1 = 0∧y = 0] is invariant4 which, together with almost
sure termination, gives us

wp(prog, [x = 0 ∧ y − 1 = 0]− [x− 1 = 0 ∧ y = 0])

= wp(prog, [x = 0 ∧ y − 1 = 0])− wp(prog, [x− 1 = 0 ∧ y = 0])

= 0 . (1)

where prog is the entire program from Lst 7. The previous argument about
almost sure termination and possible outcomes shows that

wp(prog, [x = 0 ∧ y − 1 = 0] + [x− 1 = 0 ∧ y = 0])

= wp(prog, [x = 0 ∧ y − 1 = 0]) + wp(prog, [x− 1 = 0 ∧ y = 0])

= 1 . (2)

The unique solution to (1) and (2) is

wp(prog, [x = 0 ∧ y − 1 = 0])

= wp(prog, [x− 1 = 0 ∧ y = 0])

= 0.5 .

This concludes the proof that x is distributed evenly for any p satisfying
0 < p < 1.

5 Evaluation

We have seen three pGCL programs that were variants of the geometric distri-
bution. Our approach allows us to exploit their common structure and enables
us to calculate the expectation of these programs using the same template al-
though they compute different (mean) values. Since our method does not rely
on numerical calculation we are able to parameterise the programs and provide
very general results. In particular we could decide when two programs have the
same expectation depending on their parametric distributions. Another handy
feature of reasoning with expectation-transformer wp is that we can exploit its
properties as well. For example, the reasoning is modular with respect to sequen-
tial composition. That means we can compute the pre-expectation for individual
loops and then add the results when we put the loops in sequence. The last ex-
ample demonstrates yet another use of invariants. Instead of deriving a bound
on the pre-expectation we have shown how an invariant may give constraints on
the pre-expectation. Together with termination these constraints produced the
sought pre-expectation. This exemplifies that invariants are not just a particular

4 We pick α = 1 and β = −1 but in fact any non-zero pair of values α = −β would
result in the same argument.
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way to compute an expectation but rather they describe the behaviour of the
program and can be used in different ways.

Together with the three (other) examples discussed in [4,7] we have a set of
interesting programs which we can analyse with the help of Prinsys. Note, that
our examples do not make use of the non-deterministic choice statement. This
is because the algorithms we focused on do not need it, however Prinsys also
supports non-deterministic pGCL programs. There is no commonly accepted
benchmark suite that we can compare against as this area of research has not
spawned many tools yet. We refrain from giving a table that shows for each
program the state space size, the number of discovered invariants or running
times. This is because the beauty of this approach is exactly that the number
of states does not matter. In fact all programs that generate (a variant) of the
geometric distribution have an infinite set of reachable states! The number of
discovered invariants cannot be really be given as, first of all the result depends
on the template provided and second we get a characterisation of all invariant
instances of a template. Since we reason over the reals there are uncountably
many.

The runtime of Prinsys depends on the size of the expressions that we have
to handle. This means that if we have many choices in the loop (i.e. there are
many paths in the control flow graph) this will blow up the size of wp(body, T ).
The same is true for templates that have many summands. Finally, the external
tools used by Prinsys affect the overall running time. Their execution time
cannot be predicted exactly but experience shows that the final simplification
step takes considerably longer the more parameters we allow in the template.
The overall runtime for the presented examples lies within a second on a laptop
computer.

Since there is no software that could be easily adapted to support our methods,
Prinsys was developed from scratch. It was recently redesigned to be more
extensible and easier to maintain as we hope that future developments in the
area of constraint-based methods will use our work as a basis. From the user’s
point of view, the usability was substantially increased with the introduction of
a graphical user interface that allows an intuitive interaction.

Programs and templates considered in our examples are linear. This means all
guards, assignments or terms are linear in the program variables. As pointed out
earlier, our approach per se allows polynomial expressions as well. To see to what
extent this applies in practice we have tried to generate polynomial invariants for
variants of a bounded random walk, cf. Lst. 8. The goal is here to estimate the
number of steps taken before x hits its lower bound zero or upper boundM where
M is a fixed parameter. Surprisingly quantifier elimination works reasonably fast
for formulas with polynomials but the returned quantifier-free formula is very
big. The lack of powerful simplification methods makes it difficult to find a
concise representation of the formula that describes all invariant instances of the
template. Redlog’s simplifier might increase the formula size or not terminate
at all, whereas Slfq hits the memory bound quickly and crashes, even if the
allocated memory is increased maximally.
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Listing 8. Bounded random walk

counter := 0 ;
while ( x > 0 and x−M < 0){

(x := x+1 [ p ] x := x−1);
counter := counter+1;

}

6 Conclusion

We have presented a new software tool called Prinsys for probabilistic invari-
ant generation. Its functionality was explained and its merits were assessed in
the discussion. Also implementation details that deviate from the theoretic de-
scription of the method in [7] were pointed out. During our evaluation we have
reached the next challenge, that is to extend invariant generation to polynomial
templates. Related work, e.g. [12] suggests a workaround to find polynomial
invariants for non-probabilistic programs. This comes at the price that they sac-
rifice completeness and limit the class of systems permitted. In the future we
would like to work out a similar approximate invariant generation method for
probabilistic systems and evaluate it within Prinsys.
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