
Kaustubh Joshi
Markus Siegle
Mariëlle Stoelinga
Pedro R. D’Argenio (Eds.)

 123

LN
CS

 8
05

4

10th International Conference, QEST 2013
Buenos Aires, Argentina, August 2013
Proceedings

Quantitative Evaluation
of Systems



Lecture Notes in Computer Science 8054
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Kaustubh Joshi Markus Siegle
Mariëlle Stoelinga Pedro R. D’Argenio (Eds.)

Quantitative Evaluation
of Systems
10th International Conference, QEST 2013
Buenos Aires, Argentina, August 27-30, 2013
Proceedings

13



Volume Editors

Kaustubh Joshi
AT&T Labs Research
180 Park Avenue, Building 103, Florham Park, NJ 07932, USA
E-mail: kaustubh@research.att.com

Markus Siegle
Universität der Bundeswehr München, Institut für Technische Informatik
Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
E-mail: markus.siegle@unibw.de

Mariëlle Stoelinga
University of Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Drienerlolaan 5, 7522 NB Enschede, The Netherlands
E-mail: m.i.a.stoelinga@utwente.nl

Pedro R. D’Argenio
Universidad Nacional de Córdoba – CONICET
Facultad de Matemáticas, Astronomía y Física
Medina Allende s/n, X5000HUA Córdoba, Argentina
E-mail: dargenio@famaf.unc.edu.ar

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40195-4 e-ISBN 978-3-642-40196-1
DOI 10.1007/978-3-642-40196-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013944564

CR Subject Classification (1998): F.1, F.3, C.4, D.2, G.3, C.2, D.3, F.4, J.7

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Welcome to QEST 2013, the International Conference on Quantitative Evalua-
tion of SysTems. QEST is a leading forum on quantitative evaluation and veri-
fication of computer systems and networks, and celebrated its 10th anniversary
this year. QEST was first held in Enschede, The Netherlands, in 2004, followed
by meetings in Turin, Italy, in 2005, Riverside, USA, in 2006, Edinburgh, UK,
in 2007, St. Malo, France, in 2008, Budapest, Hungary, in 2009, Williamsburg,
USA, in 2010, Aachen, Germany, in 2011, and, most recently, London, UK, in
2012.

This year’s QEST was held in Buenos Aires, Argentina, and collocated with
the 24th International Conference on Concurrency Theory (CONCUR
2013), the 11th International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS 2013), and the 8th International Symposium on
Trustworthy Global Computing (TGC 2013).

As one of the premier fora for research on quantitative system evaluation
and verification of computer systems and networks, QEST covers topics includ-
ing classical measures involving performance, reliability, safety, correctness, and
security. QEST welcomes measurement-based as well as analytic studies, and
is also interested in case studies highlighting the role of quantitative evaluation
in the design of systems. Tools supporting the practical application of research
results in all of the above areas are of special interest, and tool papers are highly
sought as well. In short, QEST aims to encourage all aspects of work centered
around creating a sound methodological basis for assessing and designing systems
using quantitative means.

The program for the 2013 edition of QEST was curated with the help of
an international Program Committee (PC) of experts from 15 countries. We
received a total of 52 submissions from 19 countries spanning five continents.
Each submission was reviewed by at least four reviewers, either PC members or
external reviewers. The reviews were submitted electronically followed by several
rounds of discussions to reach consensus on acceptance decisions. In the end, 21
full papers and nine tool demonstration papers were selected.

The program was greatly enriched with the invited talks of Lorenzo Alvisi
(joint invited speakers with CONCUR 2013), Gilles Barthe, and Edmundo de
Souza e Silva. The program was completed with two tutorials preceding the main
conference. They were presented by Diego Garbervetsky and Marco Vieira. We
believe the outcome was a high-quality conference program of interest to QEST
attendees and other researchers in the field.

We would like to thank a number of people. First of all, all authors who sub-
mitted their work to QEST: no papers, no conference! We are indebted to the PC
members and additional reviewers for their thorough and valuable reviews. We
also thank the Tools Chair Kai Lampka, the Tutorials Chair Lijun Zhang, the



VI Preface

local Organization Chair Hernán Melgratti, the Publicity Chair Damián Bar-
sotti, the Proceedings Chair Nicolás Wolovick, and the Steering Committee Chair
Joost-Pieter Katoen, for their dedication and excellent work. In addition, we
thank the Facultad de Ciencias Económicas of the University of Buenos Aires
for providing the venue location. Furthermore, we gratefully acknowledge the
financial support of the Consejo Nacional de Investigaciones Cient́ıficas y Téc-
nicas (CONICET), the Agencia Nacional de Promoción Cient́ıfica y Tecnológica
(through the RC program of FONCYT and FONSOFT), and the EU FP7 grant
agreement 295261 MEALS (Mobility between Europe and Argentina applying
Logics to Systems).

Finally, we are also grateful to Andrei Voronkov for providing us with his
conference software system EasyChair, which was extremely helpful for the PC
discussions and the production of the proceedings.

August 2013 Kaustubh Joshi
Markus Siegle

Mariëlle Stoelinga
Pedro R. D’Argenio



Organization

General Chair

Pedro R. D’Argenio Universidad Nacional de Córdoba, Argentina

Program Committee Co-chairs

Kaustubh Joshi AT&T Florham Park, USA
Markus Siegle Bundeswehr University of Munich, Germany
Mariëlle Stoelinga University of Twente, The Netherlands

Steering Committee

Nathalie Bertrand INRIA Rennes, France
Peter Buchholz TU Dortmund, Germany
Susanna Donatelli Università di Torino, Italy
Holger Hermanns Saarland University, Germany
Joost-Pieter Katoen RWTH Aachen University, Germany
Peter Kemper College of William and Mary, USA
William Knottenbelt Imperial College London, UK
Andrew S. Miner Iowa State University, USA
Gethin Norman University of Glasgow, UK
Gerardo Rubino INRIA Rennes, France
Miklos Telek Technical University of Budapest, Hungary

Program Committee

Jonatha Anselmi Basque Center for Applied Mathematics, Spain
Christel Baier Technical University of Dresden, Germany
Nathalie Bertrand INRIA Rennes Bretagne Atlantique, France
Andrea Bobbio Universitá del Piemonte Orientale, Italy
Peter Buchholz TU Dortmund, Germany
Hector Cancela Universidad de la República, Argentina
Giuliano Casale Imperial College London, UK
Gianfranco Ciardo University of California at Riverside, USA
Yuxin Deng Shanghai Jiao Tong University, China
Derek Eager University of Saskatchewan, Canada
Jane Hillston University of Edinburgh, UK
Andras Horvath University of Turin, Italy
David N. Jansen Radboud Universiteit, The Netherlands



VIII Organization

Kaustubh Joshi AT&T Labs Research, USA
Krishna Kant George Mason University, USA
Peter Kemper College of William and Mary, USA
Marta Kwiatkowska University of Oxford, UK
Boris Köpf IMDEA Software Institute, Spain
Kai Lampka Uppsala University, Sweden
Annabelle McIver Macquarie University, Australia
Arif Merchant Google, USA
Gethin Norman University of Glasgow, UK
Anne Remke University of Twente, The Netherlands
William Sanders University of Illinois at Urbana-Champaign,

USA
Roberto Segala University of Verona, Italy
Markus Siegle Universität der Bundeswehr München,

Germany
Marielle Stoellinga University of Twente, The Netherlands
Miklos Telek Budapest University of Technology and

Economics, Hungary
Bhuvan Urgaonkar Pennsylvania State University, USA
Aad Van Moorsel University of Newcastle, UK
Marco Vieira University of Coimbra, Portugal
Verena Wolf Saarland University, Germany

Additional Reviewers

Alhakami, Hind
Andreychenko, Alexander
Angius, Alessio
Ballarini, Paolo
Bernardo, Marco
Bortolussi, Luca
Crocce, Fabián
de Boer, Pieter-Tjerk
Delahaye, Benoit
Diciolla, Marco
Dräger, Klaus
Feng, Lu
Feng, Yuan
Galpin, Vashti
Ghasemieh, Hamed
Gimbert, Hugo
Giusto, Álvaro
Grampin, Eduardo
Hahn, Ernst Moritz
Hedin, Daniel
Horvath, Illes

Jin, Xiaoqing
Kolesnichenko, Anna
Legay, Axel
Mereacre, Alexandru
Mikeev, Linar
Mumme, Malcolm
Parker, David
Perez, Juan F.
Rabehaja, Tahiry
Randour, Mickael
Sandmann, Werner
Santinelli, Luca
Song, Lei
Spieler, David
Sproston, Jeremy
Sundararaman, Akshay
Ujma, Mateusz
Waliji, Muhammad
Wang, Weikun
Zhao, Yang
Zonouz, Saman



Table of Contents

Session 1: Invited Talks

Computer-Aided Security Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Gilles Barthe

On the Interplay between Content Popularity and Performance in P2P
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Edmundo de Souza e Silva, Rosa M.M. Leão,
Daniel Sadoc Menasché, and Antonio A. de A. Rocha

Session 2: Probabilistic Automata
and Markov Automata

Refinement and Difference for Probabilistic Automata . . . . . . . . . . . . . . . . 22
Benôıt Delahaye, Uli Fahrenberg, Kim Guldstrand Larsen, and
Axel Legay

High-Level Counterexamples for Probabilistic Automata . . . . . . . . . . . . . . 39
Ralf Wimmer, Nils Jansen, Andreas Vorpahl, Erika Ábrahám,
Joost-Pieter Katoen, and Bernd Becker

Modelling, Reduction and Analysis of Markov Automata . . . . . . . . . . . . . . 55
Dennis Guck, Hassan Hatefi, Holger Hermanns,
Joost-Pieter Katoen, and Mark Timmer

Deciding Bisimilarities on Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Christian Eisentraut, Holger Hermanns, Julia Krämer,
Andrea Turrini, and Lijun Zhang

Session 3: Population Models

Learning and Designing Stochastic Processes from Logical
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Luca Bortolussi and Guido Sanguinetti

Characterizing Oscillatory and Noisy Periodic Behavior in Markov
Population Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

David Spieler

Model Checking Markov Population Models by Central Limit
Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Luca Bortolussi and Roberta Lanciani



X Table of Contents

Fluid Limit for the Machine Repairman Model with Phase-Type
Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Laura Aspirot, Ernesto Mordecki, and Gerardo Rubino

Session 4: Tool Demos I

Tulip: Model Checking Probabilistic Systems Using Expectation
Maximisation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Rastislav Lenhardt

PLASMA-lab: A Flexible, Distributable Statistical Model Checking
Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Benôıt Boyer, Kevin Corre, Axel Legay, and Sean Sedwards

STRONG: A Trajectory-Based Verification Toolbox for Hybrid
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Yi Deng, Akshay Rajhans, and A. Agung Julius

PEPERCORN: Inferring Performance Models from Location Tracking
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Nikolas Anastasiou and William Knottenbelt

ADTool: Security Analysis with Attack–Defense Trees . . . . . . . . . . . . . . . . 173
Barbara Kordy, Piotr Kordy, Sjouke Mauw, and Patrick Schweitzer

Session 5: Model Checking and Systems

SAT-Based Analysis and Quantification of Information Flow
in Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Vladimir Klebanov, Norbert Manthey, and Christian Muise

Prinsys—On a Quest for Probabilistic Loop Invariants . . . . . . . . . . . . . . . 193
Friedrich Gretz, Joost-Pieter Katoen, and Annabelle McIver

Revisiting Weak Simulation for Substochastic Markov Chains . . . . . . . . . . 209
David N. Jansen, Lei Song, and Lijun Zhang

A Performance Analysis of System S, S4, and Esper via Two Level
Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Miyuru Dayarathna and Toyotaro Suzumura

Session 6: Systems

Effect of Codeword Placement on the Reliability of Erasure Coded
Data Storage Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Vinodh Venkatesan and Ilias Iliadis



Table of Contents XI

Fault-Impact Models Based on Delay and Packet Loss
for IEEE 802.11g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Daniel Happ, Philipp Reinecke, and Katinka Wolter

Session 7: Tools Demos II

VeriSiMPL: Verification via biSimulations of MPL Models . . . . . . . . . . . . . 274
Dieky Adzkiya and Alessandro Abate

The BisimDist Library: Efficient Computation of Bisimilarity
Distances for Markovian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Giorgio Bacci, Giovanni Bacci, Kim Guldstrand Larsen, and
Radu Mardare

Möbius Shell: A Command-Line Interface for Möbius . . . . . . . . . . . . . . . . . 282
Ken Keefe and William H. Sanders

A CTL Model Checker for Stochastic Automata Networks . . . . . . . . . . . . . 286
Lucas Oleksinski, Claiton Correa, Fernando Lúıs Dotti, and
Afonso Sales

Session 8: Control and Games

The Steady-State Control Problem for Markov Decision Processes . . . . . . 290
S. Akshay, Nathalie Bertrand, Serge Haddad, and Löıc Hélouët

Symbolic Control of Stochastic Switched Systems via Finite
Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Majid Zamani and Alessandro Abate

Synthesis for Multi-objective Stochastic Games: An Application to
Autonomous Urban Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Taolue Chen, Marta Kwiatkowska, Aistis Simaitis, and
Clemens Wiltsche

Stochastic Parity Games on Lossy Channel Systems . . . . . . . . . . . . . . . . . . 338
Parosh Aziz Abdulla, Lorenzo Clemente, Richard Mayr, and
Sven Sandberg

Session 9: Timed Automata and Simulation

Transient Analysis of Networks of Stochastic Timed Automata Using
Stochastic State Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Paolo Ballarini, Nathalie Bertrand, András Horváth,
Marco Paolieri, and Enrico Vicario



XII Table of Contents

Automated Rare Event Simulation for Stochastic Petri Nets . . . . . . . . . . . 372
Daniël Reijsbergen, Pieter-Tjerk de Boer, Werner Scheinhardt, and
Boudewijn Haverkort

Topology-Based Mobility Models for Wireless Networks . . . . . . . . . . . . . . . 389
Ansgar Fehnker, Peter Höfner, Maryam Kamali, and Vinay Mehta

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405



Computer-Aided Security Proofs

Gilles Barthe

IMDEA Software Institute

Probabilistic programs provide a convenient formalism for defining probability
distributions and have numerous applications in computer science. In particular,
they are used pervasively in code-based provable security for modeling security
properties of cryptographic constructions as well as cryptographic assumptions.
Thanks to their well-defined semantics, probabilistic programming languages
provide a natural framework to prove the correctness of probabilistic compu-
tations. Probabilistic program logics are program logics that allow to reason
formally about executions of probabilistic programs, and can be used to verify
complex probabilistic algorithms.

However, these program logics cannot be used to reason about the security
of cryptographic constructions. Indeed, cryptographic proofs are reductionist, in
the sense that they show that the probability that an adversary breaks the se-
curity of the cryptographic system in “reasonable time” is “small”, provided the
probability that a probabilistic algorithm solves a computationally intractable
problem in “reasonable time” is also “small”. Such reductionist arguments fall
out of the scope of traditional program logics, that reason about properties of
program executions. They can be captured by relational program logics that
reason about properties of executions of two programs—or as a special case two
executions of the same program.

CertiCrypt [5] and EasyCrypt [4] are computer-assisted frameworks for verifying
relational properties of a core programming language with sequential composi-
tion, conditionals, loops, procedure calls, deterministic assignments and prob-
abilistic assignments drawn from discrete distributions. Both tools implement
mechanisms for deriving valid judgments in a relational program logic, and for
carrying common (algebraic, arithmetic, information-theoretic, . . . ) forms of rea-
soning that arise in cryptographic proofs. Over the last few years, we have used
CertiCrypt and EasyCrypt to prove security of many cryptographic constructions.
Using extensions of the program logic to reason about approximate relational
judgments, we have additionally verified differentially private computations [6].

EasyCrypt is accessible to working cryptographers. However, proofs must be
built interactively, which is time consuming and requires some familiarity with
formal verification. Although fully automated security analyses are not possi-
ble in general, we have been exploring two scenarios for which it is possible to
generate proofs automatically. In [1], we have instrumented a zero-knowledge
compiler with a proof generation mechanism: given a high-level proof goal,
the compiler automatically generates a zero-knowledge protocol that realizes
the goal and proofs in CertiCrypt and EasyCrypt that the protocol complies
with some standard properties of soundness, completeness, and zero knowledge.
In [3], we present the ZooCrypt framework, which supports automated analyses of

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 1–2, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 G. Barthe

public-key encryption schemes built from one-way trapdoor permutations and
random oracles. ZooCrypt implements automated procedures for proving the
security of such constructions, or for discovering attacks. Using ZooCrypt, we
have analyzed over a million (automatically generated) schemes, including many
schemes from the literature.

Our most recent work intends to accomodate real-world descriptions of cryp-
tographic constructions in machine-checked security proofs. Many practical at-
tacks exploit implementation details, for instance error management or message
formatting, that are typically not considered in pen-and-paper provable security
proofs. Pleasingly, EasyCrypt provides effective mechanisms for managing the
complexity of cryptographic proofs, and allows to build rigorous security proofs
for realistic descriptions of cryptographic standards [2].

More information about the project is available from the project web page

http://www.easycrypt.info

References

1. Almeida, J.B.,Barbosa,M.,Bangerter, E., Barthe,G.,Krenn, S., Zanella-Béguelin, S.:
Full proof cryptography: verifiable compilation of efficient zero-knowledge protocols.
In: ACMConference on Computer and Communications Security, pp. 488–500. ACM
(2012)

2. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F.: Certified computer-aided
cryptography: efficient provably secure machine code from high-level implementa-
tions. Cryptology ePrint Archive, Report 2013/316 (2013)

3. Barthe, G., Crespo, J.M., Grégoire, B., Kunz, C., Lakhnech, Y., Schmidt, B.,
Zanella-Béguelin, S.: Automated analysis and synthesis of padding-based encryp-
tion schemes. Cryptology ePrint Archive, Report 2012/695 (2012)

4. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

5. Barthe, G., Grégoire, B., Zanella-Béguelin, S.: Formal certification of code-based
cryptographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2009, pp. 90–101. ACM, New York (2009)

6. Barthe, G., Köpf, B., Olmedo, F., Zanella-Béguelin, S.: Probabilistic relational rea-
soning for differential privacy. In: 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2012, pp. 97–110. ACM, New York
(2012)

http://www.easycrypt.info


On the Interplay between Content Popularity

and Performance in P2P Systems�

Edmundo de Souza e Silva1, Rosa M.M. Leão1,
Daniel Sadoc Menasché1, and Antonio A. de A. Rocha2

1 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
2 Fluminense Federal University, Niteroi, Brazil

{edmundo,rosam,sadoc}@land.ufrj.br,
arocha@ic.uff.br

Abstract. Peer-to-peer swarming, as used by BitTorrent, is one of the
de facto solutions for content dissemination in today’s Internet. By lever-
aging resources provided by users, peer-to-peer swarming is a simple
and efficient mechanism for content distribution. In this paper we sur-
vey recent work on peer-to-peer swarming, relating content popularity to
three performance metrics of such systems: fairness, content availability/
self-sustainability and scalability.

1 Introduction

Peer-to-peer (P2P) swarming system has been, in recent years, one of the most
successful architectures used to share information and has been adopted by nu-
merous publishers [1, 21]. The success of the architecture can be evinced by its
utilization in real-world applications. For instance, updates of the game World
of Warcraft can be obtained via P2P at the site of the company responsible
for the game (Blizzard) [3] and Ubuntu Linux distributions are made available
via P2P [21]. In addition, the Wikipedia is considering the use of P2P to share
videos [22]. Another evidence of the success of P2P architectures is the large
volume of traffic generated by the applications that employ P2P. This traffic
grew approximately 12% between 2009 and 2010 [19].

P2P architectures have been studied for over a decade and there is a multitude
of performance models that address the efficiency of the approach. Most work
in the literature focuses on understanding the BitTorrent (BT) dynamics and
the impact of several aspects of its protocol on performance. For instance, the
impact of incentive mechanisms, free-riding, heterogeneous and homogeneous
peer download/upload rates, file dissemination, etc. [24]. However, fundamental
issues are still open such as those related to the system’s scalability. Examples
of questions that one may ask are: how does the system scale with the number
of users? What are the main parameters that influence the system’s ability to
scale?

� This research is sponsored in part by grants from CAPES, CNPq and FAPERJ.

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 3–21, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



4 E. de Souza e Silva et al.

It should be clear that content popularity severely impacts P2P performance
and its ability to scale. Peers in a swarm act both as consumers as well as content
servers. Intuitively, the more popular a certain content is, the more efficient
should the P2P system be as there are more “resources” available to the user’s
swarm. Suppose a single publisher is available to serve a given content. Does the
swarm depend on the publisher to retrieve the content? How large should the
swarm be in order for the content to be available among peers?

Unpopular contents rarely find a hand full of interested users trying to access
the same information at a given instant of time. Consequently, the publisher of
the content is most likely the only resource from which peers can download the
information at any time. If the publisher becomes unavailable, peers can’t con-
clude their downloads. If there is a large population of requesters for unpopular
contents, the publisher may be overloaded with requests for different files and
the system would not scale with increasing user population. Quantifying the de-
pendence of peers on publishers allows us to evaluate the performance impact of
increasing the content catalog size and to understand the scalability constraints.

As content popularity plays a key role in the P2P system performance, an
important problem is to characterize the empirical probability density function
of the number of peers in a swarm. The large measurement study reported in [8]
addresses this problem. That work indicates that, for the vast majority of the
datasets studied, around 40% to 70% of the swarms have only 3 or less peers
and more than 70% of the swarms are of size smaller than 10.

We have also conducted measurement studies. We developed a crawler to
monitor one of the most popular Torrent Search Engines (Torlock.com) aimed
at determining the daily size of all swarms announced in the website (around
150, 000 swarms) for ten consecutive days. The swarm size was given by the
number of connected peers (both seeders and leechers, i.e., peers that have all
the content or just part of it, respectively).

Figure 1 shows the empirical complementary cumulative distribution of swarm
sizes for the ten days monitored. We only consider swarms with, at least, one
seed. These constitutes a total of approximately 130, 000 swarms which corre-
sponds to more than 85% of the collected measurements. Let f(x, y) be the
fraction of swarms with at least y peers at day x. Each color in the palette of

 1  2  3  4  5  6  7  8  9  10
day of the experiment

 1

 10

 100

 1000

 10000

 100000

nu
m

be
r o

f p
ee

rs

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

y 
=

 n
um

be
r 

of
 p

ee
rs

x = day of experiment

0.1
0.01

0.001

0.0001

1e-05

0.5  < f <= 1 
 < f < 0.5 
 < f < 0.1 

 < f < 0.01 

 < f < 0.001 

 <  f < 0.0001

f = fraction of swarms with at least y peers at day x

Fig. 1. Swarm sizes: Torlock.com, 10-day monitoring



On the Interplay between Content Popularity and Performance 5

Figure 1 characterizes a range of values for f(x, y). Figure 1 indicates that a
very small fraction of swarms are huge, with more than 30.000 peers, while most
of the swarms are very small, that is, approximately 73% of the total are formed
by less than 10 peers and 58% have less than 5 peers. From Figure 1 it is clear
that one must study the performance of P2P systems for a wide range of swam
sizes, from very large sizes (tens of thousands of peers) to those with around half
a dozen of peers.

In this work, we focus on the the performance impact that content popularity
has on the performance of P2P systems. We study three popularity ranges: low,
medium and high. For contents that have low popularity, we survey recent results
that show that users in a swarm may suffer from high variability concerning the
time to retrieve the content. For contents that have low to medium popularity,
we study the dependence that peers have on the publisher to retrieve the desired
content. The less dependent the swarm is on the publisher, the more scalable
the system is, since the load at the publisher should only marginally increase
with the demand for content.

For highly popular contents one may expect that the system perfectly scales
with increasing number of users. We elaborate on this issue and try to determine
if the access rate for a given popular content can increase without bound or if
there are limitations. In order to facilitate the organization of our presentation,
we include Table 1 that presents an heuristic summary of the tradeoffs we study.

Table 1. Heuristic summary of tradeoffs in the peer-to-peer system metrics considered
in this paper, as a function of content popularity

Content popularity Fairness Issues Content Availability Issues Scalability Issues
(compared to service capacity of publisher) (see §2 and [17]) (see §3 and [13,14,16]) (see §4 and [15])
small ✗ ✗

medium ✗

very large ✗

We start by discussing, in Section 2 a fairness problem that may occur when
content is unpopular. We show that peers might experience heterogeneous down-
load times even in homogeneous BitTorrent swarms. It has been observed through
measurement studies reported in the literature that a vast number of swarms
suffers from unavailability. This motivates the models for content availability
presented in Section 3. The first model indicates that, when publishers are inter-
mittent, combiningK contents in a single swarm file (bundling) increases content
availability exponentially as function of K. We also estimate the dependence of
peers on a stable publisher, which is useful for provisioning purposes as well as
in deciding how to bundle. We present a metric which is closely related to avail-
ability, referred to as swarm self-sustainability, and present a model that yields
swarm self-sustainability as a function of the file size, popularity and service
capacity of peers. Finally, in Section 4, we consider very popular contents, and
study the fundamental scalability limits of peer-to-peer swarming systems in this



6 E. de Souza e Silva et al.

regime where the behavior of such systems might resemble that of client-server
systems.

2 Fairness

In this section we study BitTorrent fairness. In the networking literature, fairness
has mostly been studied in the context of bandwidth allocation and different def-
initions of this metric are considered in [25], such as global proportional fairness
and pairwise proportional fairness. In the first case, for instance, the system is
fair when the download capacity of a peer equalizes the overall contribution of
that peer to the system. In the second case, fairness is achieved when a peer i
allocates bandwidth to another peer j based on the service received from j. The
BT chocking algorithm is a variation of this last notion of fairness.

In the literature of peer-to-peer systems, most works are devoted to study
the behavior of large swarms and the effect of heterogeneous download rates on
performance (e.g., [4]). In such cases, BT systems are reasonably fair and peers
with the same characteristics behave similarly and get approximately the same
amount of bandwidth [10]. Nonetheless, in smaller swarms the behavior might
be radically different, and fairness issues are a concern as illustrated in the next
experiment.

2.1 Unfairness Observed through an Experiment

Next, we illustrate the unfairness problem through a controlled experiment de-
ployed at a private swarm at PlanetLab (Figure 2). The arrival rate of peers is
chosen to maintain the swarm with a small number of peers. Let cS and cl be
the upload capacities of the publisher and of the peers, respectively. The param-
eters for this experiment are: arrival rate equal to 8.0× 10−3 peers per second,
cS = cl = 50 KBps, and the file size is 20 MB. Each peer is represented in the
figure by a line. Each line starts when a peer arrives, and ends when a peer con-
cludes its download and departs. The first two peers arrive at approximately the
same time, followed by another couple of peers. The fifth peer (marked in blue)
arrived much later than the others, but experienced a much smaller download
time compared to the first peers. Note that all the first five peers to arrive depart
approximately at the same time (as compared to the file download time) which
shows the high variability of the download times. This is explained by content
synchronizations that occur among peers and are the root causes of unfairness.
In what follows, we introduce a simple model that allow us to obtain the down-
load rates of peers in a swarm as a function of time, and in turn explains why
these synchronizations occur.

2.2 Why Unfairness?

We consider swarms in which peers have approximately the same upload and
(relatively large) download capacities and are interested in the same content.



On the Interplay between Content Popularity and Performance 7

 0

 5

 10

 15

 20

 0  1000  2000 500  1500

pe
er

 id

time (s)

Fig. 2. Experimental results with PlanetLab. Each line in the figure starts when a peer
arrives, and ends when a peer departs.

Such swarms are referred to as homogeneous swarms. As illustrated in
Section 2.1, even in homogeneous swarms, BT protocol may lead to unfairness
problems. Murai et al [17] observed that the peers download times can be highly
variable and their arrival order influences the rate at which service is provided
to each. In addition, peers in a swarm may be content-synchronized, that is,
their current downloaded content may become identical during the download
which results in serious performance degradation. This behavior is predominant
in swarms with a small peer population, which in turn correspond to a large
fraction of the BitTorrent swarms (see Figure 1). In what follows we discuss the
model of [17] that sheds light into the unfairness issue.

Let us consider a swarm with a few homogeneous peers, a single seed and the
BT protocol to exchange content. We first observe that, in a small swarm, it is
usually the case that any peer can upload to all the others. In particular, the
tit-for-tat and optimistic unchoke mechanisms of BT do not come into play if the
swarm size is smaller than the maximum number of upload connections (typical
of small swarms). The rarest-first policy is used for block selection.

Let bi(t) be the amount of content downloaded by peer i during interval (0, t).
Let N(t) be the number of peers in a swarm at time t. Note that, if bj(t) > bi(t),
then peer j has at least bj(t)−bi(t) pieces that i does not have. Assuming infinite
upload capacities, let u′ij(t) be the rate at which peer i uploads content to peer j
at time t. Accordingly, let uij(t) be the corresponding rate when upload capacity
constraints are considered.

The following assumptions are considered: (a) the content is divided into tiny
pieces with respect to the total file size (fluid approximation); (b) due to the
rarest-first policy, the (infinitesimal) pieces currently downloaded by a peer i
from the (single) publisher are not present in the swarm and, as such, are of
immediate interest to all other peers; (c) if bk(t) > bj(t) > bi(t) then peer k has
pieces that both j and i do not have. Similarly to assumption (b), the pieces
peer k sends to i at t are also of immediate interest to j due to the rarest-first
policy; (d) the publisher capacity is equally divided among all the peers in the
swarm; (e) peers have infinite download capacities.

In what follows, for notational convenience, we drop the dependence of the
model variables on time. In addition, also for notational convenience, at any point
in time, we index peers in an order such that if i > j then bi < bj. Figure 3(a)



8 E. de Souza e Silva et al.

illustrates the notation and the transfer rates between peers, when four peers are
present in the system. In Figure 3(a), the single publisher (labeled S) sends pieces
to each of the four peers at a given instant of time.

S

1 2 3 4

cS/N = 10

 u13=30 

 u14=30 

 u23=40  u34=40 

 u43=40 

 u31=10 

 u32=40 

 u12=30 

cS/N = 10
cS/N = 10

 u24=40  

 u21=10 

cS/N = 10

 ui,j = transmission rate from peer i to peer j

 cS = server capacity
 N = number of peers
 

S server (publisher)

i
i-th peer (peers are 
ordered in decreasing 
order based on the
amount of content they
have)

time

download rate=40

download rate=135

t2t1 t3 td

bytes downloaded

file
size

Download times

(a) (b)

 u42=40 

 u41=10   

download rate=110

Fig. 3. (a) Upload rates between peers (4 peers); (b) download rates versus time
(3 peers)

Next, we compute the upload rates from each peer to its neighbors. Recall
that u′ij(t) is the potential transmission rate from i to j provided that there is
no limit to the upload capacity of i. We compute u′ij and uij in lexicographical
order as follows.

From assumptions (b) and (c) above, if bj > bi, then j can potentially transmit
at infinite rate to i since it has pieces that i does not have. In contrast, the
only pieces from i that may interest j are those that i is receiving from the
seed and from other peers that have more pieces than j (i.e., from peers in set
{k : bk > bj}). Then,

u′ij =

⎧⎪⎨⎪⎩
∞, if bi > bj (1a)
cS
N

+
∑
bk>bj

uki, if bi ≤ bj (1b)

We must now impose the restriction on the upload rates in order to obtain uij .
We follow a max-min fair progressive filling algorithm to allocate bandwidth. Let
u′ik = minl{u′il}. The transmission rate from i to every other peer is uniformly
increased until either (a) it reaches u′ik or (b) the upload capacity of peer i is
exhausted. In the first case, the spare capacity is distributed by i in the same
manner as described above, among all peers except k, and so on (refer to [17]
for details).

In scenarios where the publisher offers a large catalog of files, the amount of
bandwidth allocated to each swarm is small. In what follows we consider one
such scenario, and assume cS < cl, letting cS = 40 and cl = 90. Figure 3(a)
shows, for a swarm consisting of four peers, the upload rates obtained using the
bandwidth allocation algorithm described above.



On the Interplay between Content Popularity and Performance 9

The download rate of peer i is di =
∑N

j=1 uji. For the example in Figure
3(a), d1 = 40, d2 = d3 = d4 = 120. Note that peers 2, 3 and 4 download at a
much higher rate than peer 1. This indicates that our model captures the unfair
behavior referred to in the beginning of the section. We also observe the total
download rate when more than one peer is present is larger than that of the
publisher, which shows the benefits of the P2P architecture.

The download rates can be easily calculated as a function of time. To this
aim, assume we are given the arrival times of peers to the swarm. Then, using
equation (1) and the algorithm described above we can obtain di(t) and bi(t).
Figure 3(b) shows how di(t) varies over time for a swarm consisting of three
peers, letting cS = 40 and cl = 90. In this figure, peer 1 is the first to arrive
at time t1, and subsequently peers 2 and 3 arrive at t2 and t3, respectively. We
note that peers 2 and 3 are able to download at a much faster rate than that
of the first peer to arrive until they synchronize in the amount of content they
downloaded. From this moment up to download completion, the rates equalize.
At time td all content is downloaded and the peers may depart. Once again,
the model supports the key observation made in Section 2.1: peers that have
identical characteristics may expect different download times.

3 Content Availability and Self-sustainability

Despite the tremendous success of BitTorrent, it suffers from a fundamental
problem: content unavailability [16]. Although peer-to-peer swarming in BitTor-
rent scales impressively to tolerate massive flash crowds for popular content,
swarming does little to disseminate unpopular content as the availability of such
unpopular content is limited by the presence of a seed or publisher. The extent
of publisher unavailability can be severe. In addition to the statistics already
presented at Section 1, according to measurements in Menasché et al. [16] 40%
of swarms have no publishers available more than 50% of the time and accord-
ing to Kaune et al. [9], in the absence of publishers, 86% of peers are unable to
reconstruct their files.

To appreciate the availability problem, consider a swarm for an episode of
a popular TV show. When a publisher first posts the episode, a flash crowd
of peers joins the swarm to download the content. The original publisher goes
offline at some point, but peers may continue to obtain the content from other
peers while the swarm is active. If a peer arrives after the initial popularity wave,
when the population of the swarm has dwindled to near-zero, it may likely find
the content unavailable and must wait until a publisher reappears.

We review mathematical models to study content availability in swarming
systems such as BitTorrent. First, we consider the single content case and assume
that there is a publisher that may go offline. We present the simplest version of
the availability model and, similarly to Section 2, we use a fluid approximation
and assume that the file is divided into an infinite number of chunks. In addition,
we assume that, whenever two peers meet, they have useful content to share
(Section 3.1).



10 E. de Souza e Silva et al.

In the second half of Section 3.1 we assume that there is a stable publisher
that is always online. Clearly the content is always available in this case, but
we focus on the dependence of the swarm on the publisher and introduce a new
metric to measure the availability among peers. We refer to the fraction of time
that content is available among peers (without considering the publisher) as
self-sustainability. In this case we relax the fluid approximation to account for
the fact that a file is divided into a finite number of chunks. The model yields
self-sustainability as a function of content popularity, the number of chunks in
the file and peer capacities. Finally, we consider the multiple content case, and
study the implications of bundling and playlists on content availability and self-
sustainability (Section 3.2).

3.1 Single Content

Availability. We start by defining when we consider a content to be available.

Definition 1. The system availability (A) is the fraction of time at which there
is at least one publisher in the system or the peer population contiguously remains
at least equal to a given threshold coverage t after all publishers depart.

In what follows, to simplify presentation we consider a threshold coverage of
1, meaning that when all publishers depart, as far as the population of peers
contiguously remains greater than or equal to 1, the content is available. This
assumption is clearly a rough simplification, which we adopt to facilitate the
explanation while preserving the main points we want to emphasize. The as-
sumption is removed in [16].

We use an M/G/∞ queue to model the self-scaling property of BitTorrent
swarms, i.e., more peers bring in more capacity to the system. (In section 4 we
discuss scalability limits, but for now we assume that the system scales without
bound.)

The key insight is to model uninterrupted intervals during which the content is
available as busy periods of that queue. The busy period increases exponentially
with the arrival rate of peers and publishers and with the time spent by peers
and publishers in the swarm (for details see [16]).

The scenario consists of a single publisher that distributes a file of size s
and has service capacity μ. The publisher resides in the system for an inter-
val exponentially distributed with mean s/μ and then departs. Assume peers
take on average s/μ to complete their downloads and arrive according to a
Poisson process with rate λ peers/s. A busy period is a contiguous period
when at least one peer is online. Let B be the average available period length,
B = (eλs/μ − 1)/λ.

If publishers are intermittent (see Figure 4(a)), arriving according to a Pois-
son process with rate r, and have the same mean residence time as peers, the
system passes through idle periods, during which content is unavailable, and
busy periods, during which content is available. The average duration of each



On the Interplay between Content Popularity and Performance 11

λ + r

service
capacity=
(s / μ) n

n

λ + r

(a) Swarm behavior (b) Peers and publishers dynamics in 
      a simplified model of a single swarm 

number of 
peers and
publishers

time
busy idle busy 

busy period: at least one publisher
online or, after all publishers go offline, 
contiguous period when at
least one peer is online

publisher

Fig. 4. Quantifying unavailability

busy period, B, corresponds to the busy period of the M/G/∞ queue illustrated
in Figure 4(b), and equals

B =
e(λ+r)s/μ − 1

(λ+ r)
(2)

Let A be the system availability. The unavailability is 1−A, and equals

1−A =
length of idle period

length of idle period + length of busy period
=

1/r

1/r +B
=

1

1 + rB
(3)

Finally, the mean download time of peers, D, can be approximated as the mean
idle waiting time plus the active download time,

D ≈ (1−A)/r + s/μ (4)

Equations (3) and (4) show that both the unavailability and the expected
download time decrease exponentially with content popularity. It is then ex-
pected that highly popular contents do not need the publisher to download.
But what about unpopular contents? How much load the publisher is expect to
receive from peers? In what follows we address these questions.

Self-sustainability. For unpopular content, peers will rely on publishers in
order to complete their downloads. We investigate this dependence of peers on a
publisher [14]. We consider a scenario in which each swarm includes one stable
publisher that is always online and ready to serve content. The corresponding
system is henceforth referred to as a hybrid peer-to-peer system, since peers can
always rely on the publisher if they cannot find blocks of the content among
themselves.

Definition 2. The swarm self-sustainability, A, is the fraction of time during
which the swarm is self-sustaining, that is, it is the steady-state probability that
the peers collectively have the entire file (each block in the file is present at one
or more peers). If all blocks are available among peers, the swarm is referred to
as self-sustaining.



12 E. de Souza e Silva et al.

Quantifying swarm self-sustainability is useful for provisioning purposes. The
larger the swarm’s self-sustainability, the lower the dependency of peers on a pub-
lisher, and the lower the bandwidth needed by the publisher to serve the peers.

We use a two-layer model to quantify swarm self-sustainability as a function
of the number of blocks in the file, the mean upload capacity of peers and the
popularity of a file. The upper layer of the model captures how user dynamics
evolve over time, while the lower layer captures the probability of a given number
of blocks being available among peers conditioned on a fixed upper layer popula-
tion state. The model is flexible enough to account for large or small numbers of
blocks in the file, heterogeneous download times for different blocks, and peers
residing in the system after completing their downloads.

In [14], closed-form expressions are derived for the distribution of the number
of blocks available among the peers and an efficient algorithm is obtained to com-
pute the swarm self-sustainability. We survey these results that show that self-
sustainability increases as a function of the number of blocks in the file and inves-
tigate the minimum popularity needed to attain a given self-sustainability level.

λ
. . . . . .

service
capacity=

μ1 n0

λ λ λ λ

service
capacity=

μ2 n1

service
capacity=

μh+1 nh

service
capacity=

γ nB

n1n0 nBnh

Fig. 5. User dynamics. In stage h, there are nh users, each user owning h blocks,
0 ≤ h ≤ B.

A file consists of B blocks. Requests for a file arrive according to a Poisson
process with rate λ. We further assume that the time required for a user to
download its jth block is a random variable with mean 1/μj, 1 ≤ j ≤ B. After
completing their downloads, peers remain in the system for mean time 1/γ.

The user dynamics is modeled with (B+1) M/G/∞ queues in series. Each of
the first B M/G/∞ queues models the download of a single block, and capture
the self-scaling property of BitTorrent swarms, i.e., each peer brings one unit
of service capacity to the system. The last queue captures the residence time of
seeds (see Figure 5).

The system population state is characterized by a (B +1)-tuple, n = (n0, n1,
n2, . . . , nB), where nh represents the number of customers in queue h, i.e.,
the number of users that have downloaded h blocks of the file, 0 ≤ h ≤ B.
Let π(n0, . . . , nB) be the joint steady state population probability distribution,
π(n0, . . . , nB) = P (N = (n0, . . . , nB)), of finding nh users in the hth queue,
0 ≤ h ≤ B, and let πh(nh) = P (Nh = nh), h = 0, . . . , B, be the corresponding
marginal probability. The steady state distribution of the queueing system has
the following product form,



On the Interplay between Content Popularity and Performance 13

π(n0, . . . , nB−1, nB) =

B∏
h=0

πh(nh) =
(λ/γ)nB

nB!
e−(λ/γ)

B−1∏
h=0

[
ρnh

nh!
e−ρ] (5)

where ρ = λ/μ is the load of the system.
We now describe the lower layer of the model. Given the current population

state, n = (n0, . . . , nB), our goal is to determine the distribution of the number
of blocks available among the peers. We state our key modeling assumption: in
steady state, the set of blocks owned by a randomly selected user in stage h
is chosen uniformly at random among the

(
B
h

)
possibilities and independently

among users (uniform and independent block allocation).
A user u in stage h, 0 ≤ h ≤ B, has a signature sh,u ∈ {0, 1}B, defined as a

B bit vector where the ith bit is set to 1 if the user has block i and 0 otherwise.
Each user in stage h owns h blocks and has one of

(
B
h

)
possible signatures.

Under the uniform and independent block allocation assumption, signatures
are chosen uniformly at random and independently among users; the latter is
clearly a strong assumption since in any peer-to-peer swarming system the sig-
natures of users are correlated. Nevertheless, in [14] it is shown that the effect
of such correlations on swarm self-sustainability is negligible in many interesting
scenarios.

Let V denote the steady state number of blocks available among the peers.
Denote by p(v) the steady state probability that v blocks are available among
the peers,

p(v) = P (V = v) =
∑

n∈NB+1

P (V = v|N = n)π(n) (6)

Then,
A = p(B) (7)

To illustrate the applicability of the model presented above, we use it to
approximate the minimum load, ρ�, necessary to attain a given self-sustainability
level,A�, when γ =∞, i.e., nodes leave immediately after getting the file (typical
values of 1/γ in BitTorrent are less than 1 hour [20]). It is shown in [14] that
if γ = ∞ the probability that a tagged block is unavailable among the peers is
q = exp(−ρ(B − 1)/2). It is also shown in [14] that for values of q close to 0
(q ≤ 0.01), p(B) ≈ 1+E[V ]−B = 1−Bq. This approximation, in turn, can be
used to select the load ρ� to attain self-sustainability level A�,

ρ� ≈ [2 log (B/(1−A�))] /(B − 1), γ =∞ (8)

Figure 6 shows the minimum load, ρ�, necessary to achieve a given self-
sustainability level, A�, (A� = 0.8, 0.9, 0.99, 0.999), for file sizes varying 2.5 to
256MB (B=10,...,1000 blocks) using (8). The figure indicates that the required
load to attain a given level of self-sustainability significantly decreases as the
file size increases. This, in turn, indicates that an unpopular large file (e.g., a
movie) will be more available among peers than a smaller file with the same
popularity (e.g., the subtitle of that movie) in case they are distributed in two
isolated swarms.



14 E. de Souza e Silva et al.

file size (number of blocks)

lo
ad

 to
 a

tta
in

 a
 d

es
ire

d 
se

lf-
su

st
ai

na
bi

lit
y 

le
ve

l 0.999

0.99

0.9

0.8

10                                 100                                   1000

2.5

2.0

1.5

1.0

0.5

0.0

Fig. 6. Load necessary to attain self-sustainability as a function of file size

3.2 Multiple Contents

Bundling. A common strategy adopted in BitTorrent is bundling wherein,
instead of disseminating individual files via isolated swarms, a publisher packages
a number of related files and disseminates it via a single larger swarm [16].
Nowadays, more than a half of music content as well as nearly one quarter
of TV shows are distributed in bundles. To appreciate why bundling improves
content availability, consider a bundle of K files. Assume that the popularity of
the bundle is roughly K times the popularity of an individual file, since a peer
requesting any file requests the entire bundle. The size of the bundle is roughly
K times the size of an individual file. Our model suggests that the busy period of
the bundled swarm is a factor exp(K2) larger than that of an individual swarm.
Indeed, if busy periods supported by peers alone last until a publisher reappears,
the content will be available throughout [7].

In some cases, improved availability can reduce the download time experienced
by peers, i.e., peers can download more content in less time. The download time
of peers in the system consists of the waiting time spent while content is unavail-
able and the service time spent in actively downloading content (see (4)). If the
reduction in waiting time due to bundling is greater than the corresponding in-
crease in service time, the download time decreases. This conclusion is validated
in [16] through large-scale controlled experiments using the Mainline BitTorrent
client over PlanetLab.

In what follows we quantify the implications of bundling on content availabil-
ity. Bundling K files impacts the system parameters in two ways: (a) the arrival
rate of peers to the bundle is K times the arrival rate of peers to the individual
swarm, λ, since we assume that peers interested in any of the files download the
entire bundle; (b) the size of bundle is K times the size of individual files, s,
therefore the active download time of the bundle is K times longer than that of
an individual file.



On the Interplay between Content Popularity and Performance 15

We use superscript (b) to denote bundled metrics. For instance, the mean du-
ration of the bundled available periods is denoted by B(b). The bundled available
period increases as Θ(exp(K2)),

B(b) =
e(↗λ

Kλ+r)↗s Ks/μ − 1

(↗λ Kλ + r)
= Θ(exp(K2)) (9)

Thus, bundled unavailability decreases as Θ(exp(−K2))

1−A(b) = Θ(exp(−K2)) (10)

Note that the asymptotic results concerning bundling (see (10)) can be linked to
self-sustainability since the bundling parameter K can be related to the increase
in the number of blocks in a file an the file size.

We present measurements on private swarms that corroborate the fact that
bundling can decrease mean download times. Our experiments were conducted
using approximately 200 PlanetLab hosts and two hosts at the University of
Massachusetts at Amherst, one of which is designated as the controller of the
experiment and another as a BitTorrent tracker. Figures 7(a)-(b) show peer
arrivals and departures with time. Each horizontal line delineates the period
a peer stays in the swarm. The publisher appears for a while and then it is
turned off. Figure 7(a) shows that for K = 1, peers get blocked whenever the
publisher goes offline and must wait until the publisher reappears in order to
complete their downloads. On the other hand, when K = 4 (Figure 7(b)) nearly
no blocking occurs. Figure 7(c) indicates that bundling also reduces the mean
time to download content.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  1000  2000  3000  4000  5000

L
ee

ch
er

 ID

Real Experiment Time (sec.)
 0

 20

 40

 60

 80

 100

 0  1000  2000  3000  4000  5000

L
ee

ch
er

 ID

Real Experiment Time (sec.)
(A) (B) (C)

M
ea

n
 d

o
w

n
lo

ad
 t

im
e 

(s
ec

.)

 0

 200

 400

 600

 800

 1000

 1  2  3  4  5  6  7  8
K

Fig. 7. Real experiment with bundling and an intermittent publisher: (a) Swarm dy-
namics for K = 1; (b) Swarm Dynamics for K = 4; (c) Download time with K

Implications of Playlists on Self-sustainability. Next, we consider stream-
ing systems, such as Youtube or Last.fm. In this systems, users have the option
to watch a channel or a playlist [5, 11, 23]. Channels or playlists are bundles
of related content organized in a sequence. In order to simplify presentation,
we assume that users always access the content of the playlists in the order at
which they are setup in the playlist. Our goal is to compute the playlist self-
sustainability, assuming that peers collaborate with each other while accessing
a playlist, but that they also count on a stable publisher that is always online.



16 E. de Souza e Silva et al.

Consider a playlist consisting of N files (e.g., songs). The download and re-
production of the i-th song lasts on average 1/μi seconds. After listening to the
i-th song, a user might depart from the system or start the streaming of the next
song in the playlist. Requests to a playlist arrive to the system according to a
Poisson process with rate λ peer/s. The users that listen to all songs can still
remain in the system after listening to the last song, remaining online as seeds
for an average of 1/γ seconds before departing. After listening to the i-th song,
users might leave the system, which occurs with rate βi, 1 ≤ i ≤ N .

The model introduced in the previous subsection can be easily adapted to
compute the playlist self-sustainability. We assume that users have enough stor-
age capacity to store all the content that they watched in a playlist. In that way,
users streaming the i-th content can collaborate with users streaming contents
0 up to i− 1.

We model a playlist as a series of (N + 1) M/G/∞ queues, where queue j
characterizes the number of users that are streaming the j-th content (see Figure
8). Users at the j-th queue store j − 1 contents. As we assume that users will
always access content in order, the identity of the contents stored by users at
the j-th queue is determined.

λ
. . . . . .

service
capacity=

μ1 n0

λ−β1 λ−β1−β2 λ−β1−...−βh λ−β1−...−βB

service
capacity=

μ2 n1

service
capacity=

μh+1 nh

service
capacity=

γ nB

n1n0 nBnh

β1 β2 βh βB

Fig. 8. Playlist user dynamics. A playlist consists of B files. In stage h, there are nh

users, each user owning h files, 0 ≤ h ≤ B. After watching their h-th file, users may
depart. The aggregate departure rate from stage h is βh.

Let Λk be the arrival rate of requests to the k-th content, Λk = λ−
∑k

i=1 βi. Let
δk be the mean number of peers streaming contents k up to N , plus the seeders,

δk =
(∑N

j=k Λj/μj

)
+ ΛN+1/γ. Then, the probability that the k-th content is

replicated at rk users is P (Rk = rk) = (e−δkδrkk )/rk! and the probability that
song k is available among users, Ak, is the self-sustainability of the k-th content
in the playlist,

Ak = 1− P (Rk = 0) = 1− e−δk (11)

Equation (11) gives the playlist self-sustainability as a function of its popularity,
the song durations and the rate at which peers prematurely depart from the
system. Publishers might also use (11) in order to decide how to construct their
playlists, accounting for user preferences as well as content self-sustainability.
The analysis above can be adapted to account for different configurations, such
as: (1) playlists whose contents are dynamically ordered according to the system



On the Interplay between Content Popularity and Performance 17

state; (2) users that decide to stream a single content and then depart and; (3)
users that have limited caches.

4 Scalability

Swarming is a powerful, simple and scalable solution for content dissemination
in today’s Internet. However, there is a limit on the extent to which swarming
can scale. In this section our goal is to answer the following question: what are
the fundamental scalability limits of peer-to-peer swarming systems? To that
aim, we consider peer-to-peer swarming systems in the limit when the arrival
rate is very high in relation to the service capacity of a stable publisher assumed
to be always online in the system.

We illustrate the fundamental limitations of the scalability of peer-to-peer
swarming system through an analogy, involving Newton’s third law. According
to Newton’s law, there is a linear relationship between the acceleration and the
force, and the constant that relates the two is the mass, F = ma. Accordingly,
in peer-to-peer swarming systems we have T = Nη, where T is the system
throughput (peer departure rate), and N is the number of peers in the system.
The constant η characterizes the system efficiency, and is henceforth assumed to
be equal to one. As the capacity of the system scales with the number of peers,
peer-to-peer swarming system subject to a Poisson arrival process can be well
approximated by an M/G/∞ model, i.e., there is no queueing in the system.
System capacity perfectly scales with the number of peers in the system, as
illustrated in the top three curves of Figure 10(b), to be detailed in what follows.

Let us now consider a peer-to-peer swarming system in which peers depart
as soon as they conclude their downloads. Let U be the service capacity of the
single stable publisher. In physics, as the speed approaches the speed of light, the
mass changes and F = ma does not hold. Accordingly, in peer-to-peer swarming
systems, when the arrival rate λ is larger than U , the relationship T = Nη
does not hold anymore. In essence, this occurs because when λ > U peers bring
resources such as bandwidth and memory to the system, but such resources
cannot be fully utilized. In this regime, the system behaves as a client-server
system. The amount of resources increases linearly with the population size, but
the throughput does not scale accordingly. Peers frequently have no content to
exchange with their neighbors, and resources remain idle until a useful encounter
takes place. In physics, if the speed approaches the speed of light, we need to
rely on the theory of relativity. Accordingly, we need different models in order
to understand the behavior of peer-to-peer swarming systems in face of extreme
popularities.

4.1 Missing Piece Syndrome and the Most Deprived Peer Selection
First

In swarming systems, files are divided into pieces. Eventually, one piece might
become very rare. If peers immediately depart after obtaining a content, they



18 E. de Souza e Silva et al.

can leave before helping other peers receive the rare piece, and the population
of peers that does not have that piece will grow unboundedly. This is referred
to as the missing piece syndrome [6], and the population of peers that does not
have the rare (missing) piece is referred to as the one club. As mentioned above,
the system behaves like a client-server system, because newcomers rapidly join
the one club, and they can only leave the system after receiving the missing
piece from the publisher. As soon as they receive the piece, they depart without
contributing. If λ > U , the arrival rate of peers to the one club is larger than
the departure rate, and the system is unstable.

Whenever a peer has spare service capacity, it needs to make the following
two decisions: whom to contact? and; what piece to transmit? In the literature,
it has been assumed that peers go through random encounters and that peers
are paired uniformly at random [6,18,26]. Nonetheless, if peers can strategically
select their neighbors it is possible to show that the capacity region of the system
increases. To illustrate that claim, we consider a publisher that adopts the most
deprived peer selection first.

Most Deprived First. According to the most deprived peer selection first, the
publisher prioritizes the transmission to peers that have the fewest number of
chunks of the file. The rationale consists of sending rare chunks to peers that
will remain the longest time in the system, and who can potentially contribute
most.

We now reason that if the file is divided into K chunks, the publisher adopts
most deprived peer selection and rarest-first piece selection and if peers adopt
random peer and random useful piece selection, the maximum achievable
throughput is upper bounded by KU (see [12] for details). Let λ > KU and
let n be the system’s state which represents the number of peers that have a
given signature (a bit vector). First, we note that all states n are achievable.
Eventually, the system reaches a state in which a large number of peers have
all pieces except a tagged one. These peers are also referred to as one-club peers
(see Figure 9).

As a consequence of the random peer selection adopted by peers, if the one-
club is large enough then gifted peers (i.e., peers that have the missing piece) will
transmit content only to one-club peers, with high probability. As shown next, if
λ > KU the one club grows unboundedly. Therefore, the effect of transmissions
from gifted peers to members outside the one club reduces with time, and does
not affect the maximum achievable throughput. For this reason, henceforth we
neglect arrow (a) in Figure 9.

All uploads from the stable publisher are to newcomers, a fraction U/λ of
which effectively receive pieces from the publisher. Each peer that receives a
piece from the publisher has an additional expected lifetime of (K−1)/μ. During
this time, it will serve on average K − 1 peers from the one-club, who will then
leave the system. Therefore, the population of the one-club decreases at a rate
of U(K − 1), and increases at a rate of λ − U . Hence, the total departure rate
of peers is upper bounded by U(K − 1) + U = UK and if λ < UK the system
is stable.



On the Interplay between Content Popularity and Performance 19

one club

gifted peers

λ-U

U

U(K-1)

U

stay online (K-1)/μ

λ

non one club,
non gifted peers λ-U

stay online (K-1)/μ
(b)

(c)(a)

peer dynamics
piece transmission

Legend

Fig. 9. Publisher adopts most deprived peer strategy

4.2 Closed System Analysis

Next, to analyze the throughput limits of swarming systems we consider a Marko-
vian model of the peer-to-peer system such that every time a peer leaves a new
one immediately arrives. This system has a fixed population size, N , and is
referred to as a closed system.

Figure 10(a) plots the throughput as a function of the population size, for
different publisher capacities U (varied between 0.5 and 1 blocks/s) and publisher
strategies. Peers follow random peer, random useful piece selection. Figure 10
shows that the throughput obtained when publishers adopt rarest piece/most
deprived peer selection is greater than that obtained with each of the other two
strategies. The figure also shows that for large population sizes, the throughput
of rarest first/random peer and random useful piece/random peer are roughly
the same.

Figure 10(b) shows results for the case where peers reside in the system as seeds
after completing their downloads. The parameters are the same as those used to
generate 10(a). Let 1/γ be the mean time that peers reside in the system after
completing their downloads. Note that if γ = 1/U = 1 the throughput increases
with the population size and the system is scalable. As γ increases the throughput
decreases, γ =∞ corresponding to the scenario shown in Figure 10(a).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1  6  11  16  21  26  31  36  41  46  51

th
ro

u
g

h
p

u
t

population size
(a)

publ. capacity=1; rarest piece, random peer

publ. capacity=1; random piece, random peer

publ. capacity=1; rarest piece, most deprived peer

publ. capacity=0.5; rarest piece, most deprived peer

publ. capacity=0.5; random piece, random peer

publ. capacity=0.5; rarest piece, random peer

 0

 2

 4

 6

 8

 10

 12

 14

 1  6  11  16  21  26  31  36  41  46  51

th
ro

u
g

h
p

u
t

population size
(b)

γ=1

departure rate of seeds=γ

γ=1.1

γ=1.2

γ=1.5

γ=2 γ=10

Fig. 10. System throughput (U=1) (a) immediate departures (γ=∞) (b) with lingering
(γ<∞)



20 E. de Souza e Silva et al.

Since the work by Hajek and Zhu [6], different authors have considered the
fundamental scalability limits of peer-to-peer swarming systems, under differ-
ent assumptions. Accounting for the fact that the network might be the system
bottleneck, Baccelli et al. [2] show conditions under which peer-to-peer net-
works might be super-scalable. Considering a non work-conserving system, i.e.,
that peers might prefer not to transmit content even in face of opportunities,
Oguz and Anantharam [18] present a scheduling strategy according to which the
system is always scalable even if peers leave the system immediately after com-
pleting their downloads. Finally, considering a collection of files, Zhu et al. [26]
show conditions under which the system is stable if peers are willing to down-
load content that they did not initially request, using a strategy that is similar
in spirit to bundling.

5 Conclusion

Our contribution in this paper is to show how content popularity impacts dif-
ferent performance metrics of peer-to-peer swarming systems such as fairness,
content availability, download time and scalability. Content popularity, in turn,
is influenced by social networks and recommendations, among other factors. We
believe that the understanding of how content popularity affects quality of ser-
vice metrics is important not only to provision network capacity, but also to issue
content recommendations and to decide how to organize content into bundles or
playlists.

References

1. Amazon: Using BitTorrent with Amazon S3, http://aws.amazon.com/
2. Baccelli, F., Mathieu, F., Norros, I., Varloot, R.: Can p2p networks be super-
scalable? In: IEEE INFOCOM (2013)

3. Blizzard: World of Warcraft, http://us.battle.net/wow
4. Chow, A.L.H., Golubchik, L., Misra, V.: Bittorrent: An extensible heterogeneous
model. In: IEEE INFOCOM 2009, pp. 585–593. IEEE (2009)

5. Ciullo, D., Martina, V., Garetto, M., Leonardi, E., Torrisi, G.: Stochastic anal-
ysis of self-sustainability in peer-assisted vod systems. In: IEEE INFOCOM,
pp. 1539–1547 (2012)

6. Hajek, B., Zhu, J.: The missing piece syndrome in peer-to-peer communication. In:
IEEE ISIT (2010)

7. Han, J., Kim, S., Chung, T., Kwon, T., Kim, H., Choi, Y.: Bundling practice in
bittorrent: What, how, and why. In: ACM SIGMETRICS/PERFORMANCE Joint
Conference, pp. 77–88 (2012)

8. Hossfeld, T., Lehrieder, F., Hock, D., Oechsner, S., Despotovic, Z., Kellerer, W.,
Michel, M.: Characterization of bittorrent swarms and their distribution in the
internet. Computer Networks 55(5), 1197–1215 (2011)

9. Kaune, S., Cuevas, R., Tyson, G., Mauthe, A., Guerrero, C., Steinmetz, R.: Un-
raveling bittorrent’s file unavailability: Measurements, analysis and solution explo-
ration. arXiv:0912.0625v1 (2009)

http://aws.amazon.com/
http://us.battle.net/wow


On the Interplay between Content Popularity and Performance 21

10. Liao, W., Papadopoulos, F., Psounis, K.: Performance analysis of bittorrent-
like systems with heterogeneous users. Performance Evaluation 64(9-12), 876–891
(2007)

11. Melo, C., Oliveira, J., da Fonseca, N.: Promotion of content availability by playlist
viewers in cdn-p2p systems. In: IEEE ICC (2013)

12. Menasché, D.S., de A. Rocha, A.A., de Souza e Silva, E., Leão, R.M.M., Towsley,
D.: Stability of peer-to-peer swarming systems. In: SBRC, pp. 161–174 (2012)

13. Menasché, D.S., de A. Rocha, A.A., de Souza e Silva, E., Leão, R.M.M., Towsley,
D., Venkataramani, A.: Modeling chunk availability in peer-to-peer swarming sys-
tems. ACM SIGMETRICS Performance Evaluation Review 37(2), 30–32 (2009)

14. Menasché, D.S., de A. Rocha, A.A., de Souza e Silva, E., Leão, R.M.M., Towsley,
D., Venkataramani, A.: Estimating self sustainability in peer-to-peer systems. Per-
formance Evaluation 67(11), 1243–1258 (2010)

15. Menasché, D.S., de A. Rocha, A.A., de Souza e Silva, E., Towsley, D., Leão,
R.M.M.: Implications of peer selection strategies by publishers on the perfor-
mance of p2p swarming systems. ACM SIGMETRICS Performance Evaluation
Review 39(3), 55–57 (2011)

16. Menasché, D.S., de A. Rocha, A.A., Li, B., Towsley, D., Venkataramani, A.: Con-
tent availability and bundling in swarming systems. In: CONEXT (2009)

17. Murai, F., de A. Rocha, A.A., Figueiredo, D., de Souza e Silva, E.: Heteroge-
neous download times in a homogeneous bittorrent swarm. Computer Networks 56,
1983–2000 (2012)

18. Oguz, B., Anantharam, V., Norros, I.: Stable, distributed p2p protocols based on
random peer sampling. In: 50th Allerton Conf. on Comm., Control and Comput.,
pp. 915–919. IEEE (2012)

19. Otto, J.S., Sanchez, M.A., Choffnes, D.R., Bustamante, F.E., Siganos, G.: On blind
mice and the elephant – understanding the network impact of a large distributed
system. In: SIGCOMM (2011)

20. Pouwelse, J., Garbacki, P., Epema, D.H.J., Sips, H.J.: The bittorrent P2P file-
sharing system: Measurements and analysis. In: van Renesse, R. (ed.) IPTPS 2005.
LNCS, vol. 3640, pp. 205–216. Springer, Heidelberg (2005)

21. Ubuntu: Download Ubuntu using BitTorrent, http://torrent.ubuntu.com:6969/
22. Wikipedia. Wikipedia Is Using BitTorrent P2P for HTML5 Video,

http://gigaom.com/wikipedia-is-using-bittorrent-p2p-for-

html5-video-2/

23. Wu, D., Liu, Y., Ross, K.: Queueing network models for multi-channel p2p live
streaming systems. In: IEEE INFOCOM (2009)

24. Xia, R.L., Muppala, J.: A survey of bittorrent performance. IEEE Communications
Surveys & Tutorials 12(2), 140–158 (2010)

25. Yang, X., de Veciana, G.: Performance of peer-to-peer networks: Service capacity
and role of resource sharing policies. Performance Evaluation 63, 175–194 (2006)

26. Zhou, X., Ioannidis, S., Massoulié, L.: On the stability and optimality of univer-
sal swarms. ACM SIGMETRICS Performance Evaluation Review 39(1), 301–312
(2011)

http://torrent.ubuntu.com:6969/
http://gigaom.com/video/wikipedia-is-using-bittorrent-p2p-for-html5-video-2/
http://gigaom.com/video/wikipedia-is-using-bittorrent-p2p-for-html5-video-2/


Refinement and Difference for Probabilistic Automata

Benoît Delahaye1, Uli Fahrenberg1, Kim Guldstrand Larsen2, and Axel Legay1

1 INRIA/IRISA, France
{benoit.delahaye,ulrich.fahrenberg,axel.legay}@inria.fr

2 Aalborg University, Denmark
kgl@cs.aau.dk

Abstract. This paper studies a difference operator for stochastic systems whose
specifications are represented by Abstract Probabilistic Automata (APAs). In the
case refinement fails between two specifications, the target of this operator is to
produce a specification APA that represents all witness PAs of this failure. Our
contribution is an algorithm that allows to approximate the difference of two deter-
ministic APAs with arbitrary precision. Our technique relies on new quantitative
notions of distances between APAs used to assess convergence of the approxi-
mations as well as on an in-depth inspection of the refinement relation for APAs.
The procedure is effective and not more complex than refinement checking.

1 Introduction

Probabilistic automata as promoted by Segala and Lynch [37] are a widely-used for-
malism for modeling systems with probabilistic behavior. These include randomized
security and communication protocols, distributed systems, biological processes and
many other applications. Probabilistic model checking [23,5,41] is then used to analyze
and verify the behavior of such systems. Given the prevalence of applications of such
systems, probabilistic model checking is a field of great interest. However, and similarly
to the situation for non-probabilistic model checking, probabilistic model checking suf-
fers from state space explosion, which hinders its applicability considerably.

One generally successful technique for combating state space explosion is the use of
compositional techniques, where a (probabilistic) system is model checked by verifying
its components one by one. This compositionality can be obtained by decomposition,
that is, to check whether a given system satisfies a property, the system is automatically
decomposed into components which are then verified. Several attempts at such auto-
matic decomposition techniques have been made [10,28], but in general, this approach
has not been very successful [9].

As an alternative to the standard model checking approaches using logical specifica-
tions, such as e.g. LTL, MITL or PCTL [33,3,20], automata-based specification theories
have been proposed, such as Input/Output Automata [31], Interface Automata [11], and
Modal Specifications [29,34,6]. These support composition at specification level; hence
a model which naturally consists of a composition of several components can be veri-
fied by model checking each component on its own, against its own specification. The
overall model will then automatically satisfy the composition of the component specifi-
cations. Remark that this solves the decomposition problem mentioned above: instead

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 22–38, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Refinement and Difference for Probabilistic Automata 23

of trying to automatically decompose a system for verification, specification theories
make it possible to verify the system without constructing it in the first place.

Moreover, specification theories naturally support stepwise refinement of specifica-
tions, i.e. iterative implementation of specifications, and quotient, i.e. the synthesis of
missing component specifications given an overall specification and a partial implemen-
tation. Hence they allow both logical and compositional reasoning at the same time,
which makes them well-suited for compositional verification.

For probabilistic systems, such automata-based specification theories have been first
introduced in [25], in the form of Interval Markov Chains. The focus there is only
on refinement however; to be able to consider also composition and conjunction, we
have in [7] proposed Constraint Markov Chains as a natural generalization which uses
general constraints instead of intervals for next-state probabilities.

In [14], we have extended this specification theory to probabilistic automata, which
combine stochastic and non-deterministic behaviors. These Abstract Probabilistic Au-
tomata (APA) combine modal specifications and constraint Markov chains. Our spec-
ification theory using APA should be viewed as an alternative to classical PCTL [20],
probabilistic I/O automata [32] and stochastic extensions of CSP [21]. Like these, its
purpose is model checking of probabilistic properties, but unlike the alternatives, APA
support compositionality at specification level.

In the context of refinement of specifications, it is important that informative debug-
ging information is given in case refinement fails. We hence need to be able to compare
APA at the semantic level, i.e. to capture the difference between their sets of implemen-
tations. This is, then, what we attempt in this paper: given two APAs N1 and N2, to
generate another APA N for which [[N ]] = [[N1]] \ [[N2]] (where [[N ]] denotes the set of
implementations of N ).

As a second contribution, we introduce a notion of distance between APAs which
measures how far away one APA is from refining a second one. This distance, adapted
from our work in [39,6], is accumulating and discounted, so that differences between
APAs accumulate along executions, but in a way so that differences further in the future
are discounted, i.e. have less influence on the result than had they occurred earlier.

Both difference and distances are important tools to compare APAs which are not in
refinement. During an iterative development process, one usually wishes to successively
replace specifications by more refined ones, but due to external circumstances such as
e.g. cost of implementation, it may happen that a specification needs to be replaced by
one which is not a refinement of the old one. This is especially important when models
incorporate quantitative information, such as for APAs; the reason for the failed refine-
ment might simply be some changes in probability constraints due to e.g. measurement
updates. In this case, it is important to assess precisely how much the new specification
differs from the old one. Both the distance between the new and old specifications, as
well as their precise difference, can aid in this assessment.

Unfortunately, because APAs are finite-state structures, the difference between two
APAs cannot always itself be represented by an APA. Instead of extending the formal-
ism, we propose to approximate the difference for a subclass of APAs. We introduce
both over- and under-approximations of the difference of two deterministic APAs. We
construct a sequence of under-approximations which converges to the exact difference,



24 B. Delahaye et al.

hence eventually capturing all PAs in [[N1]] \ [[N2]], and a fixed over-approximation
which may capture also PAs which are not in the exact difference, but whose distance
to the exact difference is zero: hence any superfluous PAs which are captured by the
over-approximation are infinitesimally close to the real difference. Taken together, these
approximations hence solve the problem of assessing the precise difference between de-
terministic APAs in case of failing refinement.

We restrict ourselves to the subclass of deterministic APAs, as it allows syntactic
reasoning to decide and compute refinement. Indeed, for deterministic APAs, syntactic
refinement coincides with semantic refinement, hence allowing for efficient procedures.
Note that although the class of APAs we consider is called “deterministic”, it still offers
non-determinism in the sense that one can choose between different actions in a given
state. For space reasons, detailed proofs and additional comments are given in [13].

Related Work. This paper embeds into a series of articles on APA as a specification
theory [14,15,16]. In [14] we introduce deterministic APA, generalizing earlier work
on interval-based abstractions of probabilistic systems [18,25,26], and define notions
of refinement, logical composition, and structural composition for them. We also intro-
duce a notion of compositional abstraction for APA. In [15] we extend this setting to
non-deterministic APA and give a notion of (lossy) determinization, and in [16] we in-
troduce the tool APAC. The distance and difference we introduce in the present paper
complement the refinement and abstraction from [14].

Compositional abstraction of APA is also considered in [38], but using a different
refinement relation. Differences between specifications are developed in [35] for the
formalism of modal transition systems, and distances between specifications, in the
variant of weighted modal automata, have been considered in [6]. Distances between
probabilistic systems have been introduced in [12,17,40].

The originality of our present work is, then, the ability to measure how far away one
probabilistic specification is from being a refinement of another, using distances and
our new difference operator. Both are important in assessing precisely how much one
APA differs from another.

2 Background

Let Dist(S) denote the set of all discrete probability distributions over a finite set S and
B2 = {�,⊥}.

Definition 1. A probabilistic automaton (PA) [37] is a tuple (S,A, L,AP, V, s0), where
S is a finite set of states with the initial state s0 ∈ S, A is a finite set of actions, L:
S × A × Dist(S) → B2 is a (two-valued) transition function, AP is a finite set of
atomic propositions and V : S → 2AP is a state-labeling function.

Consider a state s, an action a, and a probability distribution μ. The value of L(s, a, μ)
is set to � in case there exists a transition from s under action a to a distribution μ on
successor states. In other cases, we have L(s, a, μ) = ⊥. We now introduce Abstract
Probabilistic Automata (APA) [14], that is a specification theory for PAs. For a finite
set S, we let C(S) denote the set of constraints over discrete probability distributions



Refinement and Difference for Probabilistic Automata 25

on S. Each element ϕ ∈ C(S) describes a set of distributions: Sat(ϕ) ⊆ Dist(S). Let
B3 = {�, ?,⊥}. APAs are formally defined as follows.

Definition 2. An APA [14] is a tuple (S,A, L,AP, V, S0), where S is a finite set of
states, S0 ⊆ S is a set of initial states, A is a finite set of actions, and AP is a finite
set of atomic propositions. L : S × A × C(S) → B3 is a three-valued distribution-
constraint function, and V : S → 22

AP

maps each state in S to a set of admissible
labelings.

APAs play the role of specifications in our framework. An APA transition abstracts
transitions of a certain unknown PA, called its implementation. Given a state s, an action
a, and a constraint ϕ, the value of L(s, a, ϕ) gives the modality of the transition. More
precisely, the value � means that transitions under a must exist in the PA to some
distribution in Sat(ϕ); ? means that these transitions are allowed to exist;⊥means that
such transitions must not exist. We will sometimes view L as a partial function, with
the convention that a lack of value for a given argument is equivalent to the ⊥ value.
The function V labels each state with a subset of the powerset of AP , which models
a disjunctive choice of possible combinations of atomic propositions. We say that an
APA N = (S,A, L,AP, V, S0) is in Single Valuation Normal Form (SVNF) if the
valuation function V assigns at most one valuation to all states, i.e. ∀s ∈ S, |V (s)| ≤ 1.
From [14], we know that every APA can be turned into an APA in SVNF with the
same set of implementations. An APA is deterministic [14] if (1) there is at most one
outgoing transition for each action in all states, (2) two states with overlapping atomic
propositions can never be reached with the same transition, and (3) there is only one
initial state.

Note that every PA is an APA in SVNF where all constraints represent single-point
distributions. As a consequence, all the definitions we present for APAs in the following
can be directly extended to PAs.

Let N = (S,A, L,AP, V, {s0}) be an APA in SVNF and let v ⊆ AP . Given a state
s ∈ S and an action a ∈ A, we will use the notation succs,a(v) to represent the set of
potential a-successors of s that have v as their valuation. Formally, succs,a(v) = {s′ ∈
S | V (s′) = {v}, ∃ϕ ∈ C(S), μ ∈ Sat(ϕ) : L(s, a, ϕ) = ⊥, μ(s′) > 0}. When clear
from the context, we may use succs,a(s′) instead of succs,a(V (s′)). Remark that when
N is deterministic, we have |succs,a(v)| ≤ 1 for all s, a, v.

3 Refinement and Distances between APAs

We introduce the notion of refinement between APAs. Roughly speaking, refinement
guarantees that ifA1 refinesA2, then the set of implementations ofA1 is included in the
one of A2. We first recall the notion of simulation �R between two given distributions.

Definition 3 ([14]). Let S and S′ be non-empty sets, and μ, μ′ be distributions; μ ∈
Dist(S) and μ′ ∈ Dist(S′). We say that μ is simulated by μ′ with respect to a relation
R ⊆ S × S′ and a correspondence function δ : S → (S′→ [0, 1]) iff
1. for all s ∈ S with μ(s) > 0, δ(s) is a distribution on S′,
2. for all s′ ∈ S′,

∑
s∈S μ(s) · δ(s)(s′) = μ′(s′), and



26 B. Delahaye et al.

3. whenever δ(s)(s′) > 0, then (s, s′) ∈ R.
We write μ �δ

R μ′ if μ is simulated by μ′ w.r.t R and δ, and μ �R μ′ if there exists δ
with μ �δ

R μ′.

We will also need distribution simulations without the requirement of a relationR ⊆
S × S′ (hence also without claim 3 above); these we denote by μ �δ μ′.

Definition 4 ([14]). Let N1 = (S1, A, L1, AP, V1, S
1
0) and N2 = (S2, A, L2, AP, V2,

S2
0) be APAs. A relation R ⊆ S1 × S2 is a refinement relation if and only if, for all

(s1, s2) ∈ R, we have V1(s1) ⊆ V2(s2) and
1. ∀a ∈ A, ∀ϕ2 ∈ C(S2), if L2(s2, a, ϕ2) = �, then ∃ϕ1 ∈ C(S1) : L1(s1, a, ϕ1) =
� and ∀μ1 ∈ Sat(ϕ1), ∃μ2 ∈ Sat(ϕ2) such that μ1 �R μ2,

2. ∀a ∈ A, ∀ϕ1 ∈ C(S1), if L1(s1, a, ϕ1) = ⊥, then ∃ϕ2 ∈ C(S2) such that
L2(s2, a, ϕ2) = ⊥ and ∀μ1 ∈ Sat(ϕ1), ∃μ2 ∈ Sat(ϕ2) such that μ1 �R μ2.

We say thatN1 refinesN2, denotedN1 � N2, iff there exists a refinement relation such
that ∀s10 ∈ S1

0 , ∃s20 ∈ S2
0 : (s10, s

2
0) ∈ R. Since any PA P is also an APA, we say that P

satisfies N (or equivalently P implements N ), denoted P |= N , iff P � N . In [14], it
is shown that for deterministic APAs N1, N2, we have N1 � N2 ⇐⇒ [[N1]] ⊆ [[N2]],
where [[Ni]] denotes the set of implementations of APA Ni. Hence for deterministic
APAs, the difference [[N1]] \ [[N2]] is non-empty iff N1 � N2. This equivalence breaks
for non-deterministic APAs [14], whence we develop our theory only for deterministic
APAs.

To show a convergence theorem about our difference construction in Sect. 4.2 be-
low, we need a relaxed notion of refinement which takes into account that APAs are a
quantitative formalism. Indeed, refinement as of Def. 4 is a purely qualitative relation;
if both N2 � N1 and N3 � N1, then there are no criteria to compare N2 and N3 with
respect to N1, saying which one is the closest to N1. We provide such a relaxed no-
tion by generalizing refinement to a discounted distance which provides precisely such
criteria. In Sect. 4.2, we will show how those distances can be used to prove that increas-
ingly precise difference approximations between APAs converge to the real difference.
The next definition shows how a distance between states is lifted to a distance between
constraints.

Definition 5. Let d : S1 × S2 → R+ and ϕ1 ∈ C(S1), ϕ2 ∈ C(S2) be constraints in
N1 and N2. Define the distance DN1,N2 between ϕ1 and ϕ2 as follows:

DN1,N2(ϕ1, ϕ2, d) =

sup
μ1∈Sat(ϕ1)

[
inf

μ2∈Sat(ϕ2)

(
inf

δ:μ1�δμ2

∑
(s1,s2)∈S1×S2

μ1(s1)δ(s1)(s2)d(s1, s2)

)]
For the definition of d below, we say that states s1 ∈ S1, s2 ∈ S2 are not com-
patible if either (1) V1(s1) = V2(s2), (2) there exists a ∈ A and ϕ1 ∈ C(S1)
such that L1(s1, a, ϕ1) = ⊥ and for all ϕ2 ∈ C(S2), L2(s2, a, ϕ2) = ⊥, or (3)
there exists a ∈ A and ϕ2 ∈ C(S2) such that L2(s2, a, ϕ2) = � and for all
ϕ1 ∈ C(S1), L1(s1, a, ϕ1) = �. For compatible states, their distance is similar to the
accumulating branching distance on modal transition systems as introduced in [6,39],



Refinement and Difference for Probabilistic Automata 27

adapted to our formalism. In the rest of the paper, the real constant 0 < λ < 1 rep-
resents a discount factor. Formally, d : S1 × S2 → [0, 1] is the least fixpoint to the
following system of equations:

d(s1, s2) = (1)⎧⎪⎪⎨⎪⎪⎩
1 if s1 is not compatible with s2

max

⎧⎨⎩
max

{a,ϕ1:L1(s1,a,ϕ1) �=⊥}
min

{ϕ2:L2(s2,a,ϕ2) �=⊥}
λDN1,N2(ϕ1, ϕ2, d)

max
{a,ϕ2:L2(s2,a,ϕ2)=�}

min
{ϕ1:L1(s1,a,ϕ1)=�}

λDN1,N2(ϕ1, ϕ2, d)
otherwise

Since the above system of linear equations defines a contraction, the existence and
uniqueness of its least fixpoint is ensured, cf. [30]. This definition intuitively extends to
PAs, which allows us to propose the two following notions of distance:

Definition 6. Let N1 = (S1, A, L1, AP, V1, S
1
0) and N2 = (S2, A, L2, AP, V2, S

2
0) be

APAs in SVNF. The syntactic distance and thorough distances between N1 and N2 are
defined as follows:

– Syntactic distance. d(N1, N2) = maxs10∈S1
0

(
mins20∈S2

0
d(s10, s

2
0)
)
.

– Thorough distance. dt(N1, N2) = supP1∈[[N1]]

(
infP2∈[[N2]] d(P1, P2)

)
.

Note that the notion of thorough distance defined above intuitively extends
to sets of PAs: given two sets of PAs S1, S2, we have dt(S1, S2) =
supP1∈S1

(
infP2∈S2 d(P1, P2)

)
.

The intuition here is that d(s1, s2) compares not only the probability distributions at
s1 and s2, but also (recursively) the distributions at all states reachable from s1 and s2,
weighted by their probability. Each step is discounted by λ, hence steps further in the fu-
ture contribute less to the distance. We also remark that N1 � N2 implies d(N1, N2) =
0. It can easily be shown, cf. [39], that both d and dt are asymmetric pseudometrics (or
hemimetrics), i.e. satisfying d(N1, N1) = 0 and d(N1, N2) + d(N2, N3) ≥ d(N1, N3)
for all APAs N1, N2, N3 (and similarly for dt). The fact that they are only pseudomet-
rics, i.e. that d(N1, N2) = 0 does not imply N1 = N2, will play a role in our conver-
gence arguments later. The following proposition shows that the thorough distance is
bounded above by the syntactic distance. Hence we can bound distances between (sets
of) implementations by the syntactic distance between their specifications.

Proposition 1. For all APAs N1 and N2 in SVNF, it holds that dt(N1, N2) ≤
d(N1, N2).

4 Difference Operators for Deterministic APAs

The difference N1 \N2 of two APAs N1, N2 is meant to be a syntactic representation
of all counterexamples, i.e. all PAs P for which P ∈ [[N1]] but P /∈ [[N2]]. We will see
later that such difference cannot be an APA itself; instead we will approximate it using
APAs.

Because N1 and N2 are deterministic, we know that the difference [[N1]] \ [[N2]] is
non-empty if and only if N1 � N2. So let us assume that N1 � N2, and let R be



28 B. Delahaye et al.

a maximal refinement relation between N1 and N2. Since N1 � N2, we know that
(s10, s

2
0) ∈ R. Given (s1, s2) ∈ S1 × S2, we can distinguish between the following

cases:

1. (s1, s2) ∈ R
2. V1(s1) = V2(s2),
3. (s1, s2) ∈ R and V1(s1) = V2(s2), and

(a) there exists e ∈ A and ϕ1 ∈ C(S1) such that
L1(s1, e, ϕ1) = � and ∀ϕ2 ∈ C(S2) : L2(s2, e, ϕ2) = ⊥,

s2

ϕ1

s1

e,�
e

(b) there exists e ∈ A and ϕ1 ∈ C(S1) such that
L1(s1, e, ϕ1) =? and ∀ϕ2 ∈ C(S2) : L2(s2, e, ϕ2) = ⊥,

s2

ϕ1

s1

e, ?
e

(c) there exists e ∈ A and ϕ1 ∈ C(S1) such that
L1(s1, e, ϕ1) ≥? and ∃ϕ2 ∈ C(S2) : L2(s2, e, ϕ2) =
?, ∃μ ∈ Sat(ϕ1) such that ∀μ′ ∈ Sat(ϕ2) : μ �R μ′,

ϕ2

s2

ϕ1

s1

=

e, {?,�}
e, ?

(d) there exists e ∈ A and ϕ2 ∈ C(S2) such that
L2(s2, e, ϕ2) = � and ∀ϕ1 ∈ C(S1) : L1(s1, e, ϕ1) = ⊥,

ϕ2

s2s1

e
e,�

(e) there exists e ∈ A and ϕ2 ∈ C(S2) such that
L2(s2, e, ϕ2) = � and ∃ϕ1 ∈ C(S1) : L1(s1, e, ϕ1) =?,

ϕ2

s2

ϕ1

s1

e, ?
e,�

(f) there exists e ∈ A and ϕ2 ∈ C(S2) such that
L2(s2, e, ϕ2) = �, ∃ϕ1 ∈ C(S1) : L1(s1, e, ϕ1) = �
and ∃μ ∈ Sat(ϕ1) such that ∀μ′ ∈ Sat(ϕ2) : μ �R μ′.

s2s1

ϕ1 ϕ2=

e,�
e,�

Remark that because of the determinism and SVNF of APAs N1 and N2, cases 1, 2
and 3 cannot happen at the same time. Moreover, although the cases in 3 can happen
simultaneously, they cannot be “triggered” by the same action. In order to keep track of
these “concurrent” situations, we define the following sets.

Given a pair of states (s1, s2), let us define Ba(s1, s2) to be the set of actions in
A such that case 3.a above holds. If there is no such action, then Ba(s1, s2) = ∅.
Similarly, we define Bb(s1, s2), Bc(s1, s2), Bd(s1, s2), Be(s1, s2) and Bf (s1, s2) to
be the sets of actions such that cases 3.b, c, d, e and 3.f holds respectively. Given a set
X ⊆ {a, b, c, d, e, f}, let BX(s1, s2) = ∪x∈XBx(s1, s2). In addition, let B(s1, s2) =
B{a,b,c,d,e,f}(s1, s2).



Refinement and Difference for Probabilistic Automata 29

4.1 Over-Approximating Difference

We now try to compute an APA that represents the difference between the sets of im-
plementations of two APAs. We first observe that such a set may not be representable
by an APA, then we will propose over- and under-approximations. Consider the APAs
N1 and N2 given in Figures 1a and 1b, where α = β = γ. Consider the difference of
their sets of implementations. It is easy to see that this set contains all the PAs that can
finitely loop on valuation α and then move into a state with valuation β. Since there is
no bound on the time spent in the loop, there is no finite-state APA that can represent
this set of implementations.

1 2

{{α}} {{β}}a, ϕ1,�
(μ(1) = 1) ∨ (μ(2) = 1)
μ ∈ Sat(ϕ1) ⇐⇒

(a) APA N1

A B

{{α}} {{γ}}a, ϕ2,� μ ∈ Sat(ϕ2) ⇐⇒
(μ(A) = 1) ∨ (μ(B) = 1)

(b) APA N2

Fig. 1. APAs N1 and N2 such that [[N1]] \ [[N2]] cannot be represented using a finite-state APA

Now we propose a construction \∗ that over-approximates the difference between
APAs in the following sense: given two deterministic APAs N1 = (S1, A, L1, AP,
V1, {s10}) and N2 = (S2, A, L2, AP, V2, {s20}) in SVNF, such that N1 � N2, we have
[[N1]]\ [[N2]] ⊆ [[N1\∗N2]]. We first observe that if V1(s10) = V2(s

2
0), i.e. (s10, s

2
0) in case

2, then [[N1]]∩ [[N2]] = ∅. In such case, we define N1 \∗N2 as N1. Otherwise, we build
on the reasons for which refinement fails betweenN1 and N2. Note that the assumption
N1 � N2 implies that the pair (s10, s

2
0) can never be in any refinement relation, hence

in case 1. We first give an informal intuition of how the construction works and then
define it formally.

In our construction, states in N1 \∗ N2 will be elements of S1 × (S2 ∪ {⊥}) ×
(A ∪ {ε}). Our objective is to ensure that any implementation of our constructed APA
will satisfy N1 and not N2. In (s1, s2, e), states s1 and s2 keep track of executions of
N1 and N2. Action e is the action of N1 that will be used to break satisfaction with
respect to N2, i.e. the action that will be the cause for which any implementation of
(s1, s2, e) cannot satisfy N2. Since satisfaction is defined recursively, the breaking is
not necessarily immediate and can be postponed to successors. ⊥ is used to represent
states that can only be reached after breaking the satisfaction relation to N2. In these
states, we do not need to keep track of the corresponding execution in N2, thus only
focus on satisfying N1. States of the form (s1, s2, ε) with s2 = ⊥ are states where
the satisfaction is broken by a distribution that does not match constraints in N2 (cases
3.c and 3.f). In order to invalidate these constraints, we still need to keep track of the
corresponding execution in N2, hence the use of ε instead of ⊥.

The transitions in our construction will match the different cases shown in the pre-
vious section, ensuring that in each state, either the relation is broken immediately or
reported to at least one successor. Since there can be several ways of breaking the rela-
tion in state (s10, s

2
0), each corresponding to an action e ∈ B(s10, s

2
0), the APA N1 \∗N2



30 B. Delahaye et al.

Table 1. Definition of the transition function L in N1 \∗ N2

e ∈ N1, N2 N1 \∗ N2 Formal Definition of L

Ba(s1, s2)

s2

ϕ1

s1

e,�
e

ϕ⊥
1

e,�

(s1, s2, e) For all a �= e ∈ A and ϕ ∈ C(S1) such
that L1(s1, a, ϕ) �= ⊥, let L((s1, s2, e), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e), e, ϕ

⊥
1 ) =

�. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e), b, ϕ) = ⊥.

Bb(s1, s2)

s2

ϕ1

s1

e, ?
e

Bd(s1, s2)

ϕ2

s2s1

e
e,� e

(s1, s2, e)
For all a ∈ A and ϕ ∈ C(S1) such that L1(s1, a, ϕ) �=
⊥, let L((s1, s2, e), a, ϕ⊥) = L1(s1, a, ϕ). For all other
b ∈ A and ϕ ∈ C(S), let L((s1, s2, e), b, ϕ) = ⊥.

Be(s1, s2)

ϕ2

s2

ϕ1

s1

e, ?
e,�

ϕB
12

e, ?

(s1, s2, e)
For all a �= e ∈ A and ϕ ∈ C(S1) such
that L1(s1, a, ϕ) �= ⊥, let L((s1, s2, e), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e), e, ϕ

B
12) =

?. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e), b, ϕ) = ⊥.

Bc(s1, s2)

ϕ2

s2

ϕ1

s1

=

e, {?,�}
e, ?

(s1, s2, e)

ϕB
12

e,�

ϕ⊥
1

e, {?,�}

For all a ∈ A and ϕ ∈ C(S1) such that L1(s1, a, ϕ) �=
⊥ (including e and ϕ1), let L((s1, s2, e), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e), e, ϕ

B
12) =

�. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e), b, ϕ) = ⊥.

Bf(s1, s2)

s2s1

ϕ1 ϕ2=

e,�
e,�

will have one initial state for each of them. Formally, if (s10, s
2
0) is in case 3, we define

the over-approximation of the difference of N1 and N2 as follows.

Definition 7. Let N1 \∗ N2 = (S,A, L,AP, V, S0), where S = S1 × (S2 ∪ {⊥}) ×
(A ∪ {ε}), V (s1, s2, a) = V (s1) for all s2 and a, S0 = {(s10, s20, f) | f ∈ B(s10, s

2
0)},

and L is defined by:
– If s2 = ⊥ or e = ε or (s1, s2) in case 1 or 2, then for all a ∈ A andϕ ∈ C(S1) such

that L1(s1, a, ϕ) = ⊥, let L((s1, s2, e), a, ϕ⊥) = L1(s1, a, ϕ), with ϕ⊥ defined
below. For all other b ∈ A and ϕ ∈ C(S), let L((s1, s2, e), b, ϕ) = ⊥.

– Else, we have (s1, s2) in case 3 and B(s1, s2) = ∅ by construction. The definition
of L is given in Table 1, with the constraints ϕ⊥ and ϕB12 defined hereafter.

Given ϕ ∈ C(S1), ϕ⊥ ∈ C(S) is defined as follows: μ ∈ Sat(ϕ⊥) iff ∀s1 ∈ S1, ∀s2 =
⊥, ∀b = ε, μ(s1, s2, b) = 0 and the distribution (μ ↓1: s1 �→ μ(s1,⊥, ε)) is in
Sat(ϕ). Given a state (s1, s2, e) ∈ S with s2 = ⊥ and e = ε and two constraints
ϕ1 ∈ C(S1), ϕ2 ∈ C(S2) such that L1(s1, e, ϕ1) = ⊥ and L2(s2, e, ϕ2) = ⊥,
the constraint ϕB12 ∈ C(S) is defined as follows: μ ∈ Sat(ϕB12) iff (1) for all
(s′1, s

′
2, c) ∈ S, we have μ(s′1, s

′
2, c) > 0 ⇒ s′2 = ⊥ if succs2,e(s

′
1) = ∅ and



Refinement and Difference for Probabilistic Automata 31

1, A, a

2,⊥, ε1,⊥, ε 1, A, ε

{{α}}

{{α}} {{α}}

{{β}}

a, ϕ⊥
1 ,� a, ϕB

12,�

a, ϕ⊥
1 ,�a, ϕ⊥

1 ,�

μ ∈ Sat(ϕB
12) ⇐⇒ (μ(1, A, a) + μ(1, A, ε) = 1) ∧ (μ(1, A, a) > 0)

∨(μ(2,⊥, ε) = 1)

(a) N1 \∗ N2

Ω {α}

a, 1

(b) P

Fig. 2. Over-approximating difference N1 \∗ N2 of APAs N1 and N2 from Figure 1 and PA P
such that P |= N1 \∗ N2 and P |= N2

{s′2} = succs2,e(s
′
1) otherwise, and c ∈ B(s′1, s

′
2)∪{ε}, (2) the distribution μ1 : s′1 �→∑

c∈A∪{ε},s′2∈S2∪{⊥} μ(s
′
1, s

′
2, c) satisfies ϕ1, and (3) either (a) there exists (s′1,⊥, c)

such that μ(s′1,⊥, c) > 0 or (b) the distribution μ2 : s′2 �→
∑

c∈A∪{ε},s′1∈S1
μ(s′1, s

′
2, c)

does not satisfy ϕ2, or (c) there exists s′1 ∈ S1, s′2 ∈ S2 and c = ε such that
μ(s′1, s

′
2, c) > 0. Informally, distributions in ϕB12 must (1) follow the corresponding

execution is N1 and N2 if possible, (2) satisfy ϕ1 and (3) either (a) reach a state in N1

that cannot be matched in N2 or (b) break the constraint ϕ2, or (c) report breaking the
relation to at least one successor state.

The following theorem shows that N1 \∗ N2 is an over-approximation of the differ-
ence of N1 and N2 in terms of sets of implementations.

Theorem 1. For all deterministic APAs N1 and N2 in SVNF such that N1 � N2, we
have [[N1]] \ [[N2]] ⊆ [[N1 \∗ N2]].

The reverse inclusion unfortunately does not hold. Intuitively, as explained in the con-
struction of the constraint ϕB12 above, one can postpone the breaking of the satisfaction
relation for N2 to the next state (condition (3.c)). This assumption is necessary in order
to produce an APA representing all counterexamples. However, when there are cycles
in the execution of N1 \∗N2, this assumption allows to postpone forever, thus allowing
for implementations that will ultimately satisfy N2. This is illustrated in the following
example.

Example 1. Consider the APAs N1 and N2 given in Fig. 1. Their over-approximating
difference N1 \∗ N2 is given in Fig. 2a. One can see that the PA P in Fig. 2b satisfies
both N1 \∗ N2 and N2.

We will later see in Corollary 1 that even though N1 \∗ N2 may be capturing too many
counterexamples, the distance between N1 \∗ N2 and the real set of counterexamples
[[N1]] \ [[N2]] is zero. This means that the two sets are infinitesimally close to each other,
so in this sense, N1 \∗ N2 is the best possible over-approximation.



32 B. Delahaye et al.

4.2 Under-Approximating Difference

We now propose a construction that instead under-estimates the difference between
APAs. This construction resembles the over-approximation presented in the previous
section, the main difference being that in the under-approximation, states are indexed
with an integer that represents the maximal depth of the unfolding of counterexamples.
The construction is as follows.

Let N1 = (S1, A, L1, AP, V1, {s10}) and N2 = (S2, A, L2, AP, V2, {s20}) be two
deterministic APAs in SVNF such that N1 � N2. Let K ∈ N be the parameter of
our construction. As in Section 4.1, if V1(s10) = V2(s

2
0), i.e. (s10, s

2
0) in case 2, then

[[N1]] ∩ [[N2]] = ∅. In this case, we define N1 \K N2 as N1. Otherwise, the under-
approximation is defined as follows.

Definition 8. Let N1 \K N2 = (S,A, L,AP, V, SK
0 ), where S = S1 × (S2 ∪

{⊥}) × (A ∪ {ε}) × {1, . . . ,K}, V (s1, s2, a, k) = V (s1) for all s2, a, k < K ,
SK
0 = {(s10, s20, f,K) | f ∈ B(s10, s

2
0)}, and L is defined by:

– If s2 = ⊥ or e = ε or (s1, s2) in case 1 or 2, then for all a ∈ A and ϕ ∈ C(S1)
such that L1(s1, a, ϕ) = ⊥, let L((s1, s2, e, k), a, ϕ⊥) = L1(s1, a, ϕ), with ϕ⊥

defined below. For all other b ∈ A and ϕ ∈ C(S), let L((s1, s2, e, k), b, ϕ) = ⊥.
– Else we have (s1, s2) in case 3 and B(s1, s2) = ∅ by construction. The definition

of L is given in Table 2. The constraints ϕ⊥ and ϕB,k
12 are defined hereafter.

Given a constraint ϕ ∈ C(S1), the constraint ϕ⊥ ∈ C(S) is defined as follows:
μ ∈ Sat(ϕ⊥) iff ∀s1 ∈ S1, ∀s2 = ⊥, ∀b = ε, ∀k = 1, μ(s1, s2, b, k) = 0 and the
distribution (μ ↓1: s1 �→ μ(s1,⊥, ε, 1)) is in Sat(ϕ). Given a state (s1, s2, e, k) ∈ S
with s2 = ⊥ and e = ε and two constraints ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) such that
L1(s1, e, ϕ1) = ⊥ and L2(s2, e, ϕ2) = ⊥, the constraint ϕB,k

12 ∈ C(S) is defined as
follows: μ ∈ Sat(ϕB,k

12 ) iff (1) for all (s′1, s
′
2, c, k

′) ∈ S, if μ(s′1, s
′
2, c, k

′) > 0, then
c ∈ B(s′1, s

′
2) ∪ {ε} and either succs2,e(s

′
1) = ∅, s′2 = ⊥ and k′ = 1, or {s′2} =

succs2,e(s
′
1), (2) the distribution μ1 : s′1 �→

∑
c∈A∪{ε},s′2∈S2∪{⊥},k′≥1 μ(s

′
1, s

′
2, c, k

′)

satisfies ϕ1, and (3) either (a) there exists (s′1,⊥, c, 1) such that μ(s′1,⊥, c, 1) > 0 ,
or (b) the distribution μ2 : s′2 �→

∑
c∈A∪{ε},s′1∈S1,k′≥1 μ(s

′
1, s

′
2, c, k

′) does not satisfy
ϕ2, or (c) k = 1 and there exists s′1 ∈ S1, s′2 ∈ S2, c = ε and k′ < k such that
μ(s′1, s

′
2, c, k

′) > 0. The construction is illustrated in Figure 3.

4.3 Properties

We already saw in Theorem 1 that N1 \∗ N2 is a correct over-approximation of the
difference of N1 by N2 in terms of sets of implementations. The next theorem shows
that, similarly, allN1\KN2 are correct under-approximations. Moreover, for increasing
K the approximation is improving, and eventually all PAs in [[N1]] \ [[N2]] are getting
caught. (Hence in a set-theoretic sense, limK→∞[[N1 \K N2]] = [[N1]] \ [[N2]].)

Theorem 2. For all deterministic APAs N1 and N2 in SVNF such that N1 � N2:
1. for all K ∈ N, we have N1 \K N2 � N1 \K+1 N2,
2. for all K ∈ N, [[N1 \K N2]] ⊆ [[N1]] \ [[N2]], and



Refinement and Difference for Probabilistic Automata 33

Table 2. Definition of the transition function L in N1 \K N2

e ∈ N1, N2 N1 \K N2 Formal Definition of L

Ba(s1, s2)

s2

ϕ1

s1

e,�
e

ϕ⊥
1

e,�

(s1, s2, e, k) For all a �= e ∈ A and ϕ ∈ C(S1) such
that L1(s1, a, ϕ) �= ⊥, let L((s1, s2, e, k), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e, k), e, ϕ

⊥
1 ) =

�. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e, k), b, ϕ) = ⊥.

Bb(s1, s2)

s2

ϕ1

s1

e, ?
e

Bd(s1, s2)

ϕ2

s2s1

e
e,� e

(s1, s2, e, k)
For all a ∈ A and ϕ ∈ C(S1) such that L1(s1, a, ϕ) �= ⊥,
let L((s1, s2, e, k), a, ϕ⊥) = L1(s1, a, ϕ). For all other
b ∈ A and ϕ ∈ C(S), let L((s1, s2, e, k), b, ϕ) = ⊥.

Be(s1, s2)

ϕ2

s2

ϕ1

s1

e, ?
e,�

ϕB,k
12

e, ?

(s1, s2, e, k)
For all a �= e ∈ A and ϕ ∈ C(S1) such
that L1(s1, a, ϕ) �= ⊥, let L((s1, s2, e, k), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e, k), e, ϕ

B,k
12 ) =

?. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e, k), b, ϕ) = ⊥.

Bc(s1, s2)

ϕ2

s2

ϕ1

s1

=

e, {?,�}
e, ?

(s1, s2, e, k)

ϕB,k
12

e,�

ϕ⊥
1

e, {?,�}

For all a ∈ A and ϕ ∈ C(S1) such that L1(s1, a, ϕ) �=
⊥ (including e and ϕ1), let L((s1, s2, e, k), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e, k), e, ϕ

B,k
12 ) =

�. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e, k), b, ϕ) = ⊥.

Bf(s1, s2)

s2s1

ϕ1 ϕ2=

e,�
e,�

3. for all PA P ∈ [[N1]] \ [[N2]], there exists K ∈ N such that P ∈ [[N1 \K N2]].

Note that item 3 implies that for all PA P ∈ [[N1]] \ [[N2]], there is a finite specification
capturing [[N1]] \ [[N2]] “up to” P .

Using our distance defined in Section 3, we can make the above convergence result
more precise. The next proposition shows that the speed of convergence is exponential
in K; hence in practice, K will typically not need to be very large.

Proposition 2. Let N1 and N2 be two deterministic APAs in SVNF such that N1 � N2,
and let K ∈ N. Then dt([[N1]] \ [[N2]], [[N1 \K N2]]) ≤ λK(1− λ)−1.

For the actual application at hand however, the particular accumulating distance d we
have introduced in Section 3 may have limited interest, especially considering that one
has to choose a discounting factor for actually calculating it.

What is more interesting are results of a topological nature which abstract away from
the particular distance used and apply to all distances which are topologically equivalent
to d. The results we present below are of this nature.

It can be shown, c.f. [39], that accumulating distances for different choices of λ are
topologically equivalent (indeed, even Lipschitz equivalent), hence the particular choice



34 B. Delahaye et al.

{{α}}

{{α}}

{{β}}

a, ϕ⊥
1 ,�

a, ϕ⊥
1 ,�

1, A, a, 1

1,⊥, ε, 1 2,⊥, ε, 1

a, ϕB,1
12 ,�

μ ∈ Sat(ϕB,1
12 ) ⇐⇒ (μ(2,⊥, ε, 1) = 1)

(a) N1 \1 N2

1, A, a, 2 1, A, a, 1{{α}}

{{α}} {{α}}

{{β}}

a, ϕ⊥
1 ,�

a, ϕ⊥
1 ,�a, ϕ⊥

1 ,�
1, A, ε, 12,⊥, ε, 11,⊥, ε, 1

a, ϕ⊥
1 ,�
a, ϕB,1

12 ,�

{{α}}

a, ϕB,2
12 ,�

μ ∈ Sat(ϕB,2
12 ) ⇐⇒ (μ(1, A, a, 2) + μ(1, A, a, 1) + μ(1, A, ε, 1) = 1)

∧(μ(1, A, a, 1) > 0)
∨(μ(2,⊥, ε, 1) = 1)

μ ∈ Sat(ϕB,1
12 ) ⇐⇒ (μ(2,⊥, ε, 1) = 1)

(b) N1 \2 N2

Fig. 3. Under-approximations at level 1 and 2 of the difference of APAs N1 and N2 from Figure 1

of discounting factor is not important. Also some other system distances are Lipschitz
equivalent to the accumulating one, in particular the so-called point-wise and maximum-
lead ones, see again [39].

Theorem 3. Let N1 and N2 be two deterministic APAs in SVNF such that N1 � N2.
1. The sequence (N1 \K N2)K∈N converges in the distance d, and limK→∞ d(N1 \∗

N2, N1 \K N2) = 0.
2. The sequence ([[N1 \K N2]])K∈N converges in the distance dt, and

limK→∞ dt([[N1]] \ [[N2]], [[N1 \K N2]]) = 0.

Recall that as d and dt are not metrics, but only (asymmetric) pseudometrics
(i.e. hemi-metrics), the above sequences may have more than one limit; hence the par-
ticular formulation. The theorem’s statements are topological as they only allure to con-
vergence of sequences and distance 0; topologically equivalent distances obey precisely
the property of having the same convergence behaviour and the same kernel, c.f. [1].

The next corollary, which is easily proven from the above theorem by noticing that
its first part implies that also limK→∞ dt([[N1 \∗ N2]], [[N1 \K N2]]) = 0, shows what
we mentioned already at the end of Section 4.1: N1 \∗ N2 is the best possible over-
approximation of [[N1]] \ [[N2]].

Corollary 1. Let N1 and N2 be two deterministic APAs in SVNF such that N1 � N2.
Then dt([[N1 \∗ N2]], [[N1]] \ [[N2]]) = 0.

Again, as dt is not a metric, the distance being zero does not imply that the sets [[N1 \∗
N2]] and [[N1]] \ [[N2]] are equal; it merely means that they are indistinguishable by the
distance dt, or infinitesimally close to each other.

5 Conclusion

We have in this paper added an important aspect to the specification theory of Ab-
stract Probabilistic Automata, in that we have shown how to exhaustively characterize



Refinement and Difference for Probabilistic Automata 35

the difference between two deterministic specifications. In a stepwise refinement
methodology, difference is an important tool to gauge refinement failures.

We have also introduced a notion of discounted distance between specifications
which can be used as another measure for how far one specification is from being a
refinement of another. Using this distance, we were able to show that our sequence
of under-approximations converges, semantically, to the real difference of sets of
implementations, and that our over-approximation is infinitesimally close to the real
difference.

There are many different ways to measure distances between implementations and
specifications, allowing to put the focus on either transient or steady-state behavior. In
this paper we have chosen one specific discounted distance, placing the focus on tran-
sient behavior. Apart from the fact that this can indeed be a useful distance in practice,
we remark that the convergence results about our under- and over-approximations are
topological in nature and hence apply with respect to all distances which are topologi-
cally equivalent to the specific one used here, typically discounted distances. Although
the results presented in the paper do not hold in general for the accumulating (undis-
counted) distance, there are other notions of distances that are more relevant for steady-
state behavior, e.g. limit-average. Whether our results hold in this setting remains future
work.

We also remark that we have shown that it is not more difficult to compute the dif-
ference of two APAs than to check for their refinement. Hence if a refinement failure is
detected (using e.g. the methods presented in our APAC tool), it is not difficult to also
compute the difference for information about the reason for refinement failure.

One limitation of our approach is the use of deterministic APAs. Even though de-
terministic specifications are generally considered to suffice from a modeling point of
view [29], non-determinism may be introduced e.g. when composing specifications. In-
deed, our constructions themselves introduce non-determinism: for deterministic APAs
N1, N2, both N1 \∗ N2 and N1 \K N2 may be non-deterministic. Hence it is of in-
terest to extend our approach to non-deterministic specifications. The problem here is,
however, that for non-deterministic specifications, the relation between refinement and
inclusion of sets of implementationsN1 � N2 ⇐⇒ [[N1]] ⊆ [[N2]] breaks: we may well
have N1 � N2 but [[N1]] ⊆ [[N2]], cf. [14]. So the technique we have used in this paper
to compute differences will not work for non-deterministic APAs, and techniques based
on thorough refinement will have to be used.

As a last note, we wish to compare our approach of difference between APA specifi-
cations with the use of counterexamples in probabilistic model checking. Counterexam-
ple generation is studied in a number of papers [2,19,42,4,24,36,22,43,8,27], typically
with the purpose of embedding it into a procedure of counterexample guided abstraction
refinement (CEGAR). The focus typically is on generation of one particular counterex-
ample to refinement, which can then be used to adapt the abstraction accordingly.

In contrast, our approach at computing APA difference generates a representation
of all counterexamples. Our focus is not on refinement of abstractions at system level,
using counterexamples, but on assessment of specifications. This is, then, the reason
why we want to compute all counterexamples instead of only one. We remark, however,
that our approach also can be used, in a quite simplified version, to generate only one



36 B. Delahaye et al.

counterexample; details of this are given in [13]. Our work is hence supplementary and
orthogonal to the CEGAR-type use of counterexamples: CEGAR procedures can be
used also to refine APA specifications, but only our difference can assess the precise
distinction between specifications.

Acknowledgement. The authors wish to thank Joost-Pieter Katoen for interesting dis-
cussions and insightful comments on the subject of this work.

References

1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn.
Springer (2007)

2. Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of counterexam-
ples for stochastic model checking. IEEE Trans. Software Eng. (2010)

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1),
116–146 (1996)

4. Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant diagnostic counterexamples in
probabilistic model checking. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394,
pp. 129–148. Springer, Heidelberg (2009)

5. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
6. Bauer, S.S., Fahrenberg, U., Legay, A., Thrane, C.: General quantitative specification theories

with modalities. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012.
LNCS, vol. 7353, pp. 18–30. Springer, Heidelberg (2012)

7. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.: Con-
straint Markov chains. TCS 412(34), 4373–4404 (2011)

8. Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement framework
for Markov decision processes. ACM Trans. Comput. Log. 12(1), 1 (2010)

9. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An evaluation of
automated assume-guarantee reasoning. ACM Trans. Softw. Eng. Methodol. 17(2) (2008)

10. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for compo-
sitional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 331–346. Springer, Heidelberg (2003)

11. de Alfaro, L., Henzinger, T.A.: Interface automata. In: FSE, pp. 109–120. ACM (2001)
12. de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game relations and metrics. In: LICS,

pp. 99–108. IEEE Computer Society (2007)
13. Delahaye, B., Fahrenberg, U., Larsen, K.G., Legay, A.: Refinement and difference for prob-

abilistic automata - long version (2013),
http://delahaye.benoit.free.fr/rapports/QEST13-long.pdf

14. Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F., Wąsowski,
A.: Abstract probabilistic automata. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 324–339. Springer, Heidelberg (2011)

15. Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F., Wąsowski, A.:
New results on abstract probabilistic automata. In: ACSD, pp. 118–127. IEEE (2011)

16. Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wąsowski, A.: APAC: A tool for
reasoning about abstract probabilistic automata. In: QEST, pp. 151–152. IEEE (2011)

17. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov pro-
cesses. TCS 318(3), 323–354 (2004)



Refinement and Difference for Probabilistic Automata 37

18. Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: Valmari, A. (ed.)
SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006)

19. Han, T., Katoen, J.-P., Damman, B.: Counterexample generation in probabilistic model check-
ing. IEEE Trans. Software Eng. 35(2), 241–257 (2009)

20. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Com-
put. 6(5), 512–535 (1994)

21. Hermanns, H., Herzog, U., Katoen, J.: Process algebra for performance evaluation.
TCS 274(1-2), 43–87 (2002)

22. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)

23. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verifi-
cation of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

24. Jansen, N., Ábrahám, E., Katelaan, J., Wimmer, R., Katoen, J.-P., Becker, B.: Hierarchical
counterexamples for discrete-time Markov chains. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA
2011. LNCS, vol. 6996, pp. 443–452. Springer, Heidelberg (2011)

25. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS,
pp. 266–277. IEEE (1991)

26. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for continuous-
time Markov chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 311–324. Springer, Heidelberg (2007)

27. Komuravelli, A., Păsăreanu, C.S., Clarke, E.M.: Assume-guarantee abstraction refinement
for probabilistic systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 310–326. Springer, Heidelberg (2012)

28. Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification for
probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 23–37. Springer, Heidelberg (2010)

29. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

30. Larsen, K.G., Fahrenberg, U., Thrane, C.: Metrics for weighted transition systems: Axioma-
tization and complexity. TCS 412(28), 3358–3369 (2011)

31. Lynch, N., Tuttle, M.R.: An introduction to Input/Output automata. CWI 2(3) (1989)
32. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
33. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Springer

(1992)
34. Raclet, J.-B.: Quotient de spécifications pour la réutilisation de composants. PhD thesis, Uni-

versité de Rennes I (December 2007) (in French)
35. Sassolas, M., Chechik, M., Uchitel, S.: Exploring inconsistencies between modal transition

systems. Software and System Modeling 10(1), 117–142 (2011)
36. Schmalz, M., Varacca, D., Völzer, H.: Counterexamples in probabilistic LTL model checking

for Markov chains. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710,
pp. 587–602. Springer, Heidelberg (2009)

37. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. In: Jonsson, B.,
Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994)

38. Sher, F., Katoen, J.-P.: Compositional abstraction techniques for probabilistic automata. In:
Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 325–341.
Springer, Heidelberg (2012)



38 B. Delahaye et al.

39. Thrane, C., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted transition sys-
tems. JLAP 79(7), 689–703 (2010)

40. van Breugel, F., Mislove, M.W., Ouaknine, J., Worrell, J.: An intrinsic characterization
of approximate probabilistic bisimilarity. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS,
vol. 2620, pp. 200–215. Springer, Heidelberg (2003)

41. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In:
FOCS, pp. 327–338. IEEE (1985)

42. Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-time Markov
chains using bounded model checking. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 366–380. Springer, Heidelberg (2009)

43. Wimmer, R., Jansen, N., Ábrahám, E., Becker, B., Katoen, J.-P.: Minimal critical subsystems
for discrete-time Markov models. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 299–314. Springer, Heidelberg (2012)



High-Level Counterexamples

for Probabilistic Automata

Ralf Wimmer1, Nils Jansen2, Andreas Vorpahl2, Erika Ábrahám2,
Joost-Pieter Katoen2, and Bernd Becker1

1 Albert-Ludwigs-University Freiburg, Germany
{wimmer,becker}@informatik.uni-freiburg.de

2 RWTH Aachen University, Germany
{nils.jansen,abraham,katoen}@cs.rwth-aachen.de,

andreas.vorpahl@rwth-aachen.de�

Abstract. Providing compact and understandable counterexamples for
violated system properties is an essential task in model checking. Existing
works on counterexamples for probabilistic systems so far computed either
a large set of system runs or a subset of the system’s states, both of which
are of limited use in manual debugging. Many probabilistic systems are
described in a guarded command language like the one used by the popu-
lar model checker PRISM. In this paper we describe how a minimal subset
of the commands can be identified which together already make the sys-
tem erroneous. We additionally show how the selected commands can be
further simplified to obtain a well-understandable counterexample.

1 Introduction

The ability to provide counterexamples for violated properties is one of the most es-
sential features of model checking [1]. Counterexamples make errors reproducible
and are used to guide the designer of an erroneous system during the debugging
process. Furthermore, they play an important role in counterexample-guided ab-
straction refinement (CEGAR) [2,3,4,5]. For linear-time properties of digital or
hybrid systems, a single violating run suffices to refute the property. Thereby, this
run—acquired during model checking—directly forms a counterexample.

Probabilistic formalisms like discrete-time Markov chains (DTMCs), Markov
decision processes (MDPs) and probabilistic automata (PAs) are well-suited to
model systems with uncertainties. Violating behavior in the probabilistic setting
means that the probability that a certain property holds is outside of some
required bounds. For probabilistic reachability properties, this can be reduced
to the case where an upper bound on the probability is exceeded [6]. Thereby,
a probabilistic counterexample is formed by a set of runs that all satisfy a given
property while their probability mass is larger than the allowed upper bound.

� This work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center AVACS (SFB/TR 14), the DFG
project CEBug (AB 461/1-1), and the EU-FP7 IRSES project MEALS.

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 39–54, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



40 R. Wimmer et al.

Tools like PRISM [7] verify probabilistic systems by computing the solution of a
linear equation system. While this technique is very efficient, the simultaneous
generation of counterexamples is not supported.

During the last years, a number of approaches have been proposed to compute
probabilistic counterexamples by enumerating certain paths of a system [8,6,9].
In general, such a set may be extremely large; for some systems it is at least
double exponential in the number of system states [6]. Also different compact
representations of counterexamples have been devised, e. g., counterexamples are
described symbolically by regular expressions in [6], while in [10] and [11] the
abstraction of strongly connected components yields loop-free systems.

A different representation is obtained by taking a preferably small subset of
the state space, forming a critical subsystem. Inside this part of the original
system the property is already violated, see [8] and [11]. Both approaches use
heuristic path search algorithms to incrementally build such critical subsystems
for probabilistic reachability properties. In [12,13,14], a different approach was
suggested: not only a small subsystem, but a minimal one is computed for a large
class of properties, namely probabilistic reachability and ω-regular properties for
both DTMCs and MDPs. This is achieved using solver techniques such as mixed
integer linear programming (MILP) [15].

An unanswered question for all these approaches is how they can actually be
used for debugging. Most practical examples are built by the parallel composition
of modules forming a flat state-space with millions of states. Although critical
subsystems are often smaller by orders of magnitude than the original system,
they may still be very large, rendering manual debugging practically impossible.

In this paper, we focus on the non-deterministic and fully compositional model
of probabilistic automata (PA) [16,17]. The specification of such models is gener-
ally done in a high-level language allowing the parallel composition of modules.
The modules of the system are not specified by enumerating states and transi-
tions but can be described using a guarded command language [18,19] like the
one used by PRISM. The communication between different modules takes place
using synchronization on common actions and via shared variables. Having this
human-readable specification language, it seems natural that a user should be
pointed to the part of the system description which causes the error, instead of
referring to the probabilistic automaton defined by the composition. To the best
of our knowledge, no work on probabilistic counterexamples has considered this
sort of high-level counterexamples yet.

We show how to identify a smallest set of guarded commands which induces
a critical subsystem. In order to correct the system, at least one of the returned
commands has to be changed. We additionally simplify the commands by re-
moving branching choices which are not necessary to obtain a counterexample.
We present this as a special case of a method where the number of different
transition labels for a PA is minimized. This offers great flexibility in terms of
human-readable counterexamples. The NP-hard computation of such a smallest
critical label set is done by the established approach of mixed integer linear
programming.



High-Level Counterexamples for Probabilistic Automata 41

Structure of the paper. In Section 2 we review some foundations. Our approach
to obtain smallest command sets is presented in Section 3. How the essential
commands can be simplified is described in Section 4. After some experimental
results in Section 5 we conclude the paper in Section 6.

2 Foundations

Let S be a countable set. A sub-distribution on S is a function μ : S → [0, 1] such
that 0 ≤

∑
s∈S μ(s) ≤ 1. We use the notation μ(S′) =

∑
s∈S′ μ(s) for a subset

S′ ⊆ S. A sub-distribution with μ(S) = 1 is called a probability distribution. We
denote the set of all probability distributions on S by Distr(S) and analogously
by SubDistr(S) for sub-distributions.

Probabilistic Automata

Definition 1 (Probabilistic automaton). A probabilistic automaton (PA)
is a tuple M = (S, sinit,Act, P ) such that S is a finite set of states, sinit ∈ S
is an initial state, Act is a finite set of actions, and P : S → 2Act×Distr(S) is a
probabilistic transition relation such that P (s) is finite for all s ∈ S.

In the following we also use η to denote an action-distribution pair (α, μ). We
further define succ(s, α, μ) = {s′ ∈ S |μ(s′) > 0} for (α, μ) ∈ P (s), succ(s) =⋃

(α,μ)∈P (s) succ(s, α, μ), and pred(s) = {s′ ∈ S | ∃(α, μ) ∈ P (s′) : μ(s) > 0}.
The evolution of a probabilistic automaton is as follows: Starting in the initial

state s = sinit, first a transition (α, μ) ∈ P (s) is chosen non-deterministically.
Then the successor state s′ ∈ succ(s, α, μ) is determined probabilistically accord-
ing to the distribution μ. This process is repeated for the successor state s′. To
prevent deadlocks we assume P (s) = ∅ for all s ∈ S.

An infinite path of a PAM is an infinite sequence s0(α0, μ0)s1(α1, μ1) . . . with
si ∈ S, (αi, μi) ∈ P (si) and si+1 ∈ succ(si, αi, μi) for all i ≥ 0. A finite path π of
M is a finite prefix s0(α0, μ0)s1(α1, μ1) . . . sn of an infinite path ofM with last
state last(π) = sn. We denote the set of all finite paths ofM by PathsfinM.

A sub-PA is like a PA, but it allows sub-distributions instead of probability
distributions in the definition of P .

Definition 2 (Subsystem). A sub-PA M′ = (S′, s′init,Act
′, P ′) is a subsys-

tem of a sub-PA M = (S, sinit,Act, P ), written M′ � M, iff S′ ⊆ S, s′init =
sinit, Act

′ ⊆ Act and for all s ∈ S′ there is an injective function f : P ′(s)→ P (s)
such that for all (α′, μ′) ∈ P ′(s) with f((α′, μ′)) = (α, μ) we have that α′ = α
and for all s′ ∈ S′ either μ′(s′) = 0 or μ′(s′) = μ(s′).

A sub-PA M = (S, sinit,Act, P ) can be transformed into a PA as follows: We
add a new state s⊥ ∈ S, turn all sub-distributions into probability distributions
by defining μ(s⊥) := 1 − μ(S) for each s ∈ S and (α, μ) ∈ P (s), and make s⊥
absorbing by setting P (s⊥) := {(τ, μ) ∈ Act × Distr(S ∪ {s⊥}) | μ(s⊥) = 1}.
This way all methods we formalize for PAs can also be applied to sub-PAs.



42 R. Wimmer et al.

Before a probability measure on PAs can be defined, the nondeterminism has
to be resolved. This is done by an entity called scheduler.

Definition 3 (Scheduler). A scheduler for a PA M = (S, sinit,Act, P ) is a
function σ : PathsfinM → SubDistr(Act × Distr(S)) such that σ(π)(α, μ) > 0
implies (α, μ) ∈ P (last(π)) for all π ∈ PathsfinM and (α, μ) ∈ Act×Distr(S). We
use SchedM to denote the set of all schedulers of M.

By resolving the nondeterminism, a scheduler turns a PA into a fully probabilistic
model, for which a standard probability measure can be defined [20, Chapter
10.1]. In this paper we are interested in probabilistic reachability properties : Is
the probability to reach a set T ⊆ S of target states from sinit at most equal to
a given bound λ ∈ [0, 1] ⊆ R? Such a reachability property will be denoted with
P≤λ(♦T ). Note that checking ω-regular properties can be reduced to checking
reachability properties. For a fixed scheduler σ, this probability PrσM(sinit,♦T )
can be computed by solving a linear equation system. However, for a PA without
a scheduler, this question is not well-posed. Instead we ask: Is the probability
to reach a set T ⊆ S of target states from sinit at most λ for all schedulers?
That means, P≤λ(♦T ) has to hold for all schedulers. To check this, it suffices
to compute the maximal probability over all schedulers that T is reached from
sinit, which we denote with Pr+M(sinit,♦T ). One can show that for this kind of
properties maximizing over a certain subclass of all schedulers suffices, namely
the so-called memoryless deterministic schedulers, which can be seen as functions
σ : S → Act× SubDistr(S).

Definition 4 (Memoryless deterministic scheduler). A scheduler σ of
M = (S, sinit,Act, P ) is memoryless if last(π) = last(π′) implies σ(π) = σ(π′)
for all π, π′ ∈ PathsfinM. The scheduler σ is deterministic if σ(π)(η) ∈ {0, 1} for
all π ∈ PathsfinM and η ∈ Act×Distr(S).

The maximal probability Pr+M(s,♦T ) to reach T from s is obtained as the
unique solution of the following equation system: Pr+M(s,♦T ) = 1, if s ∈ T ;
Pr+M(s,♦T ) = 0, if T is unreachable from s under all schedulers, and Pr+M(s,♦T )
= max(α,μ)∈P (s)

∑
s′∈S μ(s

′) · Pr+M(s′,♦T ) otherwise. It can be solved by either
rewriting it into a linear program, by applying a technique called value itera-
tion, or by iterating over the possible schedulers (policy iteration) (see, e. g., [20,
Chapter 10.6]). A memoryless deterministic scheduler is obtained from the solu-
tion by taking an arbitrary element of P (s) in the first two cases and an element
of P (s) for which the maximum is obtained in the third case.

PRISM’s Guarded Command Language. For a set Var of Boolean variables,
let AVar denote the set of variable assignments, i. e., of functions ν : Var→ {0, 1}.

Definition 5 (Model, module, command). A model is a tuple (Var, sinit,M)
where Var is a finite set of Boolean variables, sinit : Var→ {0, 1} the initial state,
and M = {M1, . . . ,Mk} a finite set of modules.



High-Level Counterexamples for Probabilistic Automata 43

A module is a tuple Mi = (Vari,Acti, Ci) with Vari ⊆ Var a set of variables
such that Vari ∩ Varj = ∅ for i = j, Acti a finite set of synchronizing actions,

and Ci a finite set of commands. The action τ with τ ∈
⋃k

i=1 Acti denotes the
internal non-synchronizing action. A command c ∈ Ci has the form

c = [α] g → p1 : f1 + . . .+ pn : fn

with α ∈ Acti ∪̇ {τ}, g a Boolean predicate (“guard”) over the variables in Var,
pi ∈ [0, 1] a rational number with

∑n
i=1 pi = 1, and fi : AVar → AVari being a

variable update function. We refer to the action α of c by act(c).

Note that each variable may be written by only one module, but the update
may depend on variables of other modules. Each model with several modules
is equivalent to a model with a single module which is obtained by computing
the parallel composition of these modules. We give a short intuition on how this
composition is built. For more details we refer to the documentation of PRISM.
Assume two modules M1 = (Var1,Act1, C1) and M2 = (Var2,Act2, C2) with
Var1 ∩Var2 = ∅. The parallel composition M = M1||M2 = (Var,Act, C) is given
by Var = Var1 ∪ Var2, Act = Act1 ∪ Act2 and

C = { c | c ∈ C1 ∪ C2 ∧ act(c) ∈ {τ} ∪ (Act1 \Act2) ∪ (Act2 \Act1) } ∪
{ c⊗ c′| c ∈ C1 ∧ c′ ∈ C2 ∧ act(c) = act(c′) ∈ Act1 ∩ Act2 } ,

where c⊗ c′ for c = [α] g → p1 : f1 + . . .+ pn : fn ∈ C1 and c′ = [α] g′ → p′1 :
f ′
1 + . . .+ p′m : f ′

m ∈ C2 is defined as

c⊗ c′ = [α] g ∧ g′ → p1 · p′1 : f1 ⊗ f ′
1 + . . .+ pn · p′1 : fn ⊗ f ′

1

. . .

+ p1 · p′m : f1 ⊗ f ′
n + . . .+ pn · p′n : fn ⊗ f ′

m.

Here, for fi : AVar → AVar1 and f ′
j : AVar → AVar2 we define fi ⊗ f ′

j : AVar →
AVar1∪Var2 such that for all ν ∈ AVar we have that (fi⊗f ′

j)(ν)(x) equals fi(ν)(x)
for each x ∈ Var1 and f ′

j(ν)(x) for each x ∈ Var2.
Intuitively, commands labeled with non-synchronizing actions are executed on

their own, while for synchronizing actions a command from each synchronizing
module is executed simultaneously. Note that if a module has an action in its
synchronizing action set but no commands labeled with this action, this module
will block the execution of commands with this action in the composition. This is
considered to be a modeling error and the corresponding commands are ignored.

The PA-semantics of a model is as follows. Assume a model (Var, sinit,M) with
a single moduleM = (Var,Act, C) which will not be subject to parallel composi-
tion any more. The state space S of the corresponding PAM = (S, sinit,Act, P )
is given by the set of all possible variable assignments AVar, i. e., a state s is a
vector (x1, . . . , xm) with xi being a value of the variable vi ∈ Var = {v1, . . . , vm}.
To construct the transitions, we observe that the guard g of each command

c = [α] g → p1 : f1 + . . .+ pn : fn ∈ C



44 R. Wimmer et al.

defines a subset of the state space Sc ⊆ AVar with s ∈ Sc iff s satisfies g. Each
update fi : AVar → AVar maps a state s′ ∈ S to each s ∈ Sc. Together with the
associated values pi, we define a probability distribution μc,s : S → [0, 1] with

μc,s(s
′) =

∑
{i | 1≤i≤n∧fi(s)=s′}

pi

for each s′ ∈ AVar. The probabilistic transition relation P : AVar → 2
Act×Distr(AVar) is given by P (s) = {(α, μc,s) | c ∈ C ∧ act(c) = α ∧ s ∈ Sc}
for all s ∈ AVar.

Mixed Integer Programming. A mixed integer linear program optimizes a
linear objective function under a condition specified by a conjunction of linear
inequalities. A subset of the variables in the inequalities is restricted to take only
integer values, which makes solving MILPs NP-hard [21, Problem MP1].

Definition 6 (Mixed integer linear program). Let A ∈ Qm×n, B ∈ Qm×k,
b ∈ Qm, c ∈ Qn, and d ∈ Qk. A mixed integer linear program (MILP) consists
in computing min cTx+ dT y such that Ax +By ≤ b and x ∈ Rn, y ∈ Zk.

MILPs are typically solved by a combination of a branch-and-bound algorithm
and the generation of so-called cutting planes. These algorithms heavily rely
on the fact that relaxations of MILPs which result by removing the integrality
constraints can be efficiently solved. MILPs are widely used in operations re-
search, hardware-software co-design, and numerous other applications. Efficient
open source as well as commercial implementations are available like Scip [22],
Cplex [23], or Gurobi [24]. We refer to, e. g., [15] for more information on solving
MILPs.

3 Computing Counterexamples

In this section we show how to compute smallest critical command sets. For this,
we introduce a generalization of this problem, namely smallest critical labelings,
state the complexity of the problem, and specify an MILP formulation which
yields a smallest critical labeling.

Let M = (S, sinit,Act, P ) be a PA, T ⊆ S, Lab a finite set of labels, and
L : S × Act × Distr(S) �→ 2Lab a partial labeling function such that L(s, η)
is defined iff η ∈ P (s). Let Lab′ ⊆ Lab be a subset of the labels. The PA
induced by Lab′ is M|Lab′ = (S, sinit,Act, P

′) such that for all s ∈ S we have

P ′(s) =
{
η ∈ P (s) |L(s, η) ⊆ Lab′

}
.

Definition 7 (Smallest critical labeling problem). Let M, T , Lab and L
be defined as above and P≤λ(♦T ) be a reachability property that is violated by
sinit in M. A subset Lab′ ⊆ Lab is critical if Pr+M|Lab′

(sinit,♦T ) > λ.

Given a weight function w : Lab→ R≥0, the smallest critical labeling problem
is to determine a critical subset Lab′ ⊆ Lab such that w(Lab′) :=

∑
�∈Lab′ w(�)

is minimal among all critical subsets of Lab.



High-Level Counterexamples for Probabilistic Automata 45

Theorem 1. To decide whether there is a critical labeling Lab′ ⊆ Lab with
w(Lab′) ≤ k for a given integer k ≥ 0 is NP-complete.

A proof of this theorem, which is based on the reduction of exact 3-cover [21,
Problem SP2] is given in the extended version [25] of this paper.

The concept of smallest critical labelings gives us a flexible description of
counterexamples being minimal with respect to different quantities.

Commands. In order to minimize the number of commands that together induce
an erroneous system, let M = (S, sinit,Act, P ) be a PA generated by modules
Mi = (Vari,Acti, Ci), i = 1, . . ., k. For each module Mi and each command
c ∈ Ci we introduce a unique label1 �c,i with weight 1 and define the labeling
function L : S × Act × Distr(S) → 2Lab such that each transition is labeled
with the set of commands which together generate this transition2. Note that in
case of synchronization several commands together create a certain transition. A
smallest critical labeling corresponds to a smallest critical command set, being
a smallest set of commands which together generate an erroneous system.

Modules. We can alsominimize the number of modules involved in a counterexam-
ple by using the same label for all commands in a module. Often systems consist of
a number of copies of the samemodule, containing the same commands, only with
the variables renamed, plus a few extra modules. Consider for example a wireless
network: n nodes want to transmit messages using a protocol for medium access
control [26]. All nodes run the same protocol. Additionally there may be a module
describing the channel. When fixing an erroneous system, one wants to preserve
the identical structure of the nodes. Therefore the selected commands should con-
tain the same subset of commands from all identical modules. This can be obtained
by assigning the same label to all corresponding commands from the symmetric
modules and using the number of symmetric modules as its weight.

States. The state-minimal subsystems as introduced in [12] can be obtained as
special case of smallest critical labelings: For each state s ∈ S introduce a label
�s and set L(s, η) = {�s} for all η ∈ P (s). Lab′ ⊆ Lab = {�s | s ∈ S} is a smallest
critical labeling iff S′ = {s ∈ S | �s ∈ Lab′} induces a minimal critical subsystem.

We will now explain how these smallest critical labelings are computed. First,
the notions of relevant and problematic states are considered. Intuitively, a state
s is relevant, if there exists a scheduler such that a target state is reachable from
s. A state s is problematic, if there additionally exists a deadlock-free scheduler
under that no target state is reachable from s.

Definition 8 (Relevant and problematic states). Let M, T , and L be as
above. The relevant states ofM for T are given by Srel

T = {s ∈ S | ∃σ ∈ SchedM :
PrσM(s,♦T ) > 0}. A label � is relevant for T if there is s ∈ Srel

T and η ∈ P (s)
such that Srel

T ∩ succ(s, η) = ∅ and � ∈ L(s, η).
1 In the following we write short lc instead of lc,i if the index i is clear from the context.
2 If several command sets generate the same transition, wemake copies of the transition.



46 R. Wimmer et al.

Let Sched+M be the set of all schedulers σ with {η | σ(π)(η) > 0} = ∅ for

all π. The states in Sprob
T = {s ∈ Srel

T | ∃σ ∈ Sched+M : PrσM(s,♦T ) = 0} are

problematic states and the set P prob
T =

{
(s, η) ∈ Sprob

T × Act × Distr(S)
∣∣ η ∈

P (s) ∧ succ(s, η) ⊆ Sprob
T

}
are problematic transitions regarding T .

Both relevant states and problematic states and actions can be computed in
linear time using graph algorithms [27].

States that are not relevant can be removed from the PA together with all
their incident edges without changing the probability of reaching T from sinit.
Additionally, all labels that do not occur in the relevant part of the PA can be
deleted. We therefore assume that the (sub-)PA under consideration contains
only states and labels that are relevant for T .

In our computation, we need to ensure that from each problematic state an
unproblematic state is reachable under the selected scheduler, otherwise the
probability of the problematic states is not well defined by the constraints [14].

We solve this problem by attaching a value rs to each problematic state s ∈ Sprob
T

and encoding that a distribution of s is selected only if it has at least one
successor state s′ with a value rs′ > rs attached to it. This requirement assures
by induction that there is an increasing path from s to an unproblematic state,
along which the values attached to the states are strictly increasing.

To encode the selection of smallest critical command sets as an MILP, we
need the following variables:

– for each � ∈ Lab a variable x� ∈ {0, 1} which is 1 iff � is part of the critical
labeling,

– for each state s ∈ S \T and each transition η ∈ P (s) a variable σs,η ∈ {0, 1}
which is 1 iff η is chosen in s by the scheduler; the scheduler is free not to
choose any transition,

– for each state s ∈ S a variable ps ∈ [0, 1] which stores the probability to
reach a target state from s under the selected scheduler within the subsystem
defined by the selected labeling,

– for each state s ∈ S being either a problematic state or a successor of a
problematic state a variable rs ∈ [0, 1] ⊆ R for the encoding of increasing
paths, and

– for each problematic state s ∈ Sprob
T and each successor state s′ ∈ succ(s) a

variable ts,s′ ∈ {0, 1}, where ts,s′ = 1 implies that the values attached to the
states increase along the edge (s, s′), i.e., rs < rs′ .

Let wmin := min{w(�) | � ∈ Lab∧w(�) > 0} be the smallest positive weight that
is assigned to any label. The MILP for the smallest critical labeling problem is
then as follows:

minimize − 1

2
wmin · psinit +

∑
�∈Lab

w(�) · x� (1a)

such that

psinit > λ (1b)



High-Level Counterexamples for Probabilistic Automata 47

∀s ∈ S \ T :
∑

η∈P (s)

σs,η ≤ 1 (1c)

∀s ∈ S ∀η ∈ P (s) ∀� ∈ L(s, η) : x� ≥ σs,η (1d)

∀s ∈ T : ps = 1 (1e)

∀s ∈ S \ T : ps ≤
∑

η∈P (s)

σs,η (1f)

∀s ∈ S \ T ∀η ∈ P (s) : ps ≤
∑

s′∈succ(s,η)

μ(s′) · ps′ + (1− σs,η) (1g)

∀(s, η) ∈ P prob
T : σs,η ≤

∑
s′∈succ(s,η)

tss′ (1h)

∀s ∈ Sprob
T ∀s′ ∈ succ(s) : rs < rs′ + (1 − tss′) . (1i)

The number of variables in this MILP is in O(l + n +m) and the number of
constraints in O(n+ l ·m) where l is the number of labels, n the number of states,
and m the number of transitions of M, i. e., m =

∣∣{(s, η, s′) | s′ ∈ succ(s, η)}
∣∣.

We first explain the constraints in lines (1b)–(1i) of the MILP, which describe a
critical labeling. First, we ensure that the probability of the initial state is greater
than the probability bound λ (1b). For reachability properties, we can restrict
ourselves to memoryless deterministic schedulers. So for each state s ∈ S \ T at
most one scheduler variable σs,η ∈ P (s) can be set to 1 (1c). Note, that there
may be states where no transition is chosen. For target states we do not need any
restriction. If the scheduler selects a transition η ∈ P (s), all labels � ∈ L(s, η)
have to be chosen (1d). For all target states s ∈ T the probability ps is set to
1 (1e), while for all non-target states without chosen transition (σs,η = 0 for all
η ∈ P (s)), the probability is set to zero (1f); if σs,η = 1 for some η ∈ P (s), this
constraint is no restriction to probability ps. However, in this case constraint (1g)
is responsible for assigning a valid probability to ps. The constraint is trivially
satisfied if σs,η = 0. If transition η is selected, the probability ps is bounded from
above by the probability to go to one of the successor states of η and to reach
the target states from there.

The reachability of at least one unproblematic state is ensured by (1h) and (1i).
First, for every state s with transition η that is problematic regarding T , at least
one transition variable must be activated. Second, for a path according to these
transition variables, an increasing order is enforced for the problematic states.
Because of this order, no problematic states can be revisited on an increasing
path which enforces the final reachability of a non-problematic state.

These constraints enforce that each satisfying assignment of the label variables
x� corresponds to a critical labeling. By minimizing the weight of the selected
labels we obtain a smallest critical labeling. By the additional term − 1

2wmin ·psinit
we obtain not only a smallest critical labeling but one with maximal probability.
The coefficient − 1

2wmin is needed to ensure that the benefit from maximizing the
probability is smaller than the loss by adding an additional label. Please note,
that any coefficient c with 0 < c < wmin could be used.



48 R. Wimmer et al.

Theorem 2. The MILP given in (1a)–(1i) yields a smallest critical labeling.

A proof of this theorem can be found in the extended version [25] of this paper.

Optimizations. The constraints of the MILP describe critical labelings, whereas
minimality is enforced by the objective function. In this section we describe how
some additional constraints can be imposed, which explicitly exclude variable as-
signments that are either not optimal or encode labelings that are also encoded
by other assignments. Adding such redundant constraints to the MILP often
speeds up the search.

Scheduler Cuts. We want to exclude solutions of the constraint set for which
a state s ∈ S has a selected action-distribution pair η ∈ P (s) with σs,η = 1
but all successors of s under η are non-target states without any selected action-
distribution pairs. Note that such solutions would define ps = 0. We add for all
s ∈ S \ T and all η ∈ P (s) with succ(s, η) ∩ T = ∅ the constraint

σs,η ≤
∑

s′∈succ(s,η)\{s}

∑
η′∈P (s′)

σs′,η′ . (2)

Analogously, we require for each non-initial state s with a selected action-
distribution pair η ∈ P (s) that there is a selected action-distribution pair leading
to s. Thus, we add for all states s ∈ S \ {sinit} the constraint∑

η∈P (s)

σs,η ≤
∑

s′∈pred(s)\{s}

∑
{η′∈P (s′) | s′∈succ(s,η)}

σs′,η′ . (3)

As special cases of these cuts, we can encode that the initial state has at least
one activated outgoing transition and that at least one of the target states has an
selected incoming transition. These special cuts come with very few additional
constraints and often have a great impact on the solving times.

Label cuts In order to guide the solver to select the correct combinations of labels
and scheduler variables, we want to enforce that for every selected label � there
is at least one scheduler variable σs,η activated such that � ∈ L(s, η):

x� ≤
∑
s∈S

∑
{η∈P (s) | �∈L(s,η)}

σs,η . (4)

Synchronization cuts While scheduler and label cuts are applicable to the general
smallest critical labeling problem, synchronization cuts take the proper synchro-
nization of commands into account. They are therefore only applicable for the
computation of smallest critical command sets.

Let Mi,Mj (i = j) be two modules which synchronize on action α, c a com-
mand of Mi with action α, and Cj,α the set of commands with action α in
module Mj . The following constraint ensures that if command c is selected by
activating the variable xlc , then at least one command d ∈ Cj,α is selected, too.

x�c ≤
∑

d∈Cj,α

x�d . (5)



High-Level Counterexamples for Probabilistic Automata 49

4 Simplification of Counterexamples

Even though we can obtain a smallest set of commands which together induce
an erroneous system by the techniques described in the previous section, fur-
ther simplifications may be possible. For this we identify branching choices of
each command in the counterexample which can be removed, still yielding an
erroneous system. To accomplish this, we specify an MILP formulation which
identifies a smallest set of branching choices that need to be preserved for the
critical command set, such that the induced sub-PA still violates the property
under consideration.

For this we need a more detailed labeling of the commands. Given a command
ci of the form [α] g → p1 : f1+p2 : f2+ · · ·+pn : fn, we assign to each branching
choice pj : fj a unique label bi,j. Let Labb be the set of all such labels.

When composing the modules, we compute the union of the labeling of the
branching choices being executed together. When computing the corresponding
PAM, we transfer this labeling to the branching choices of the transition relation
of M. We define the partial function Lb : S ×Act× Distr(S)× S �→ 2Labb such
that Lb(s, ν, s

′) is defined iff ν ∈ P (s) and s′ ∈ succ(s, ν). In this case, Lb(s, ν, s
′)

contains the labels of the branching choices of all commands that are involved
in generating the transition from s to s′ via the transition ν.

The following MILP identifies a largest number of branching choices which
can be removed. The program is similar to the MILP for command selection, but
instead of selecting commands it uses decision variables xb to select branching
choices in the commands. Additionally to the probability ps of the composed
states s ∈ S, we use variables ps,ν,s′ ∈ [0, 1] ⊆ R for s ∈ S, ν ∈ P (s) and
s′ ∈ succ(s, ν), which are forced to be zero if not all branching choices which are
needed to generate the transition from s to s′ in ν are available (6g). For the
definition of ps in (6h), the expression μ(s′) · ps′ of (1g) is replaced by ps,η,s′ .
The remaining constraints are unchanged.

minimize − 1

2
psinit +

∑
b∈Labb

xb (6a)

such that

psinit > λ (6b)

∀s ∈ S \ T :
∑

η∈P (s)

σs,η ≤ 1 (6c)

∀s ∈ T : ps = 1 (6d)

∀s ∈ S \ T ∀η ∈ P (s) ∀s′ ∈ succ(s, η) :

ps,η,s′ ≤ μ(s′) · ps′ (6e)

ps,η,s′ ≤ σs,η (6f)

∀b ∈ Lb(s, η, s
′) : ps,η,s′ ≤ xb (6g)

∀s ∈ S \ T ∀η ∈ P (s) : ps ≤
∑

s′∈succ(s,η)

ps,η,s′ + (1 − σs,η) (6h)



50 R. Wimmer et al.

∀s ∈ S \ T : ps ≤
∑

η∈P (s)

σs,η (6i)

∀(s, η) ∈ P prob
T : σs,η ≤

∑
s′∈succ(s,η)

ts,s′ (6j)

∀s ∈ Sprob
T ∀s′ ∈ succ(s) : rs < rs′ + (1− ts,s′) (6k)

5 Experiments

We have implemented the described techniques in C++ using the MILP solver
Gurobi [24]. The experiments were performed on an Intel R© Xeon R© CPU E5-2450
with 2.10 GHz clock frequency and 32 GB of main memory, running Ubuntu
12.04 Linux in 64 bit mode. We focus on the minimization of the number of
commands needed to obtain a counterexample and simplify them by deleting a
maximum number of branchings. We do not consider symmetries in the models.
We ran our tool with two threads in parallel and aborted any experiment which
did not finish within 10 min (1200 CPU seconds). We conducted a number of
experiments that are publicly available on the web page of PRISM [28].
� coin-N -K models the shared coin protocol of a randomized consensus algo-
rithm [29]. The protocol returns a preference between two choices with a certain
probability, whenever requested by a process at some point in the execution
of the consensus algorithm. The shared coin protocol is parameterized by the
number N of involved processes and a constant K > 1. Internally, the proto-
col is based on flipping a coin to come to a decision. We consider the property
P≤λ

(
♦ (finished ∧ all coins equal)

)
, which is satisfied if the probability to finish

the protocol with all coins equal is at most λ.
� wlan-B-C models the two-way handshake mechanism of the IEEE 802.11
Wireless LAN protocol. Two stations try to send data, but run into a collision.
Therefore they enter the randomized exponential backoff scheme. The parameter
B denotes the maximal allowed value of the backoff counter. We check the prop-
erty P≤λ

(
♦ (num collisions = C)

)
putting an upper bound on the probability

that a maximal allowed number C of collisions occur.
� csma-N -C concerns the IEEE 802.3 CSMA/CD network protocol. N is the
number of processes that want to access a common channel, C is the maximal
value of the backoff counter. We check P≤λ(¬collision max backoff U delivered)
expressing that the probability that all stations successfully send their messages
before a collision with maximal backoff occurs is at most λ.
� fw-N models the Tree Identify Protocol of the IEEE 1394 High Performance
Serial Bus (called “FireWire”) [30]. It is a leader election protocol which is
executed each time a node enters or leaves the network. The parameterN denotes
the delay of the wire as multiples of 10 ns. We check P≤λ(♦ leader elected), i.e.,
that the probability of finally electing a leader is at most λ.

Some statistics of the models for different parameter values are shown in
Table 1. The columns contain the name of the model, its number of states,



High-Level Counterexamples for Probabilistic Automata 51

Table 1. Model statistics

Model #states #trans. #mod. #comm. Pr+(sinit,♦T ) λ MCS

coin-2-1 144 252 2 14 (12) 0.6 0.4 13
coin-2-2 272 492 2 14 (12) 0.5556 0.4 25∗

coin-2-4 528 972 2 14 (12) 0.529 40 0.4 55∗

coin-2-5 656 1212 2 14 (12) 0.523 79 0.4 67∗

coin-2-6 784 1452 2 14 (12) 0.519 98 0.4 83∗

coin-4-1 12416 40672 4 28 (20) 0.636 26 0.4 171∗

coin-4-2 22656 75232 4 28 (20) 0.578 94 0.4 244∗

csma-2-2 1038 1282 3 34 (34) 0.875 0.5 540
csma-2-4 7958 10594 3 38 (38) 0.999 02 0.5 1769∗

fw-1 1743 2197 4 68 (64) 1.0 0.5 412
fw-4 5452 7724 4 68 (64) 1.0 0.5 412∗

fw-10 17190 29364 4 68 (64) 1.0 0.5 412∗

fw-15 33425 63379 4 68 (64) 1.0 0.5 412∗

wlan-0-2 6063 10619 3 70 (42) 0.183 59 0.1 121
wlan-0-5 14883 26138 3 70 (42) 0.001 14 0.001 952∗

wlan-2-1 28597 57331 3 76 (14) 1.0 0.5 7
wlan-2-2 28598 57332 3 76 (42) 0.182 60 0.1 121∗

wlan-2-3 35197 70216 3 76 (42) 0.017 93 0.01 514∗

wlan-3-1 96419 204743 3 78 (14) 1.0 0.5 7
wlan-3-2 96420 204744 3 78 (42) 0.183 59 0.1 121∗

transitions, modules, and commands. The value in braces is the number of rel-
evant commands. Column 6 contains the reachability probability and column 7
the bound λ. The last column shows the number of states in the minimal critical
subsystem, i. e., the smallest subsystem of the PA such that the probability to
reach a target state inside the subsystem is still above the bound. Entries which
are marked with a star, correspond to the smallest critical subsystem we could
find within the time bound of 10 min using our tool LTLSubsys [12], but they
are not necessarily optimal.

The results of our experiments are displayed in Table 2. The first column
contains the name of the model. The following three blocks contain the results
of runs without any cuts, with all cuts, and with the best combination of cuts:
If there were cut combinations with which the MILP could be solved within the
time limit, we report the one with the shortest solving time. If all combinations
timed out, we report the one that yielded the largest lower bound.

For each block we give the computation time in seconds (“Time”), the memory
consumption in MB (“Mem.”), the number of commands in the critical command
set (“n”) and, in case the time limit was exceeded, a lower bound on the size
of the smallest critical command set (“lb”), which the solver obtains by solving
a linear programming relaxation of the MILP. An entry “??” for the number
of commands means that the solver was not able to find a non-trivial critical
command set within the time limit. For the run without cuts we additionally
give the number of variables (“Var.”) and constraints (“Constr.”) of the MILP.

In the last block we give information about the number of branching choices
which could be removed from the critical command set (“simp.”). In case the



52 R. Wimmer et al.

Table 2. Experimental results (time limit = 600 seconds)

no cuts all cuts best cut combination branches

Model Var. Constr. Time Mem. n lb Time Mem. n lb Time Mem. n lb simp. |S′|
coin-2-1 277 491 TO 773 9 8 298.56 146 9 opt 145.76 95 9 opt 1/12 28
coin-2-2 533 1004 TO 864 9 6 TO 676 9 7 TO 562 9 7 1/12 72
coin-2-4 1045 2028 TO 511 9 6 TO 162 9 6 TO 426 9 7 1/12 105
coin-2-5 1301 2540 TO 485 9 5 TO 121 9 6 TO 408 9 6 1/12 165
coin-2-6 1557 3052 TO 550 9 5 TO 159 9 6 TO 495 9 6 1/12 103
coin-4-1 26767 50079 TO 642 ?? 3 TO 627 20 3 TO 703 20 5 2/24 391
coin-4-2 47759 92063 TO 947 ?? 3 TO 993 ?? 3 TO 961 ?? 4 ?? ??

csma-2-2 2123 5990 2.49 24 32 opt 17.88 50 32 opt 2.11 24 32 opt 3/42 879
csma-2-4 15977 46882 195.39 208 36 opt 263.89 397 36 opt 184.05 208 36 opt 20/90 4522

fw-1 3974 13121 TO 205 28 27 184.49 119 28 opt 44.21 135 28 opt 38/68 419
fw-4 13144 43836 TO 268 28 21 TO 367 28 21 107.71 328 28 opt 38/68 424
fw-10 46282 153764 TO 790 28 13 TO 1141 28 18 545.68 993 28 opt 38/68 428
fw-15 96222 318579 TO 1496 28 9 TO 958 31 14 TO 1789 28 18 33/68 416

wlan-0-2 7072 6602 TO 324 33 15 TO 209 33 30 TO 174 33 32 23/72 3178
wlan-0-5 19012 25808 TO 570 ?? 10 TO 351 ?? 30 TO 357 ?? 30 ?? ??
wlan-2-1 28538 192 0.04 43 8 opt 0.07 44 8 opt 0.04 43 8 opt 6/14 7
wlan-2-2 29607 15768 TO 413 33 14 TO 188 33 30 TO 180 33 30 23/72 25708
wlan-2-3 36351 18922 TO 600 38 14 TO 315 37 32 TO 275 38 32 31/72 25173
wlan-3-1 96360 192 0.09 137 8 opt 0.13 137 8 opt 0.08 137 8 opt 6/14 7
wlan-3-2 97429 6602 TO 450 33 15 TO 292 33 30 TO 260 33 31 23/72 93639

different runs did not compute the same set, we used the one obtained with all
cuts. An entry k/m means that we could remove k out of m relevant branching
choices. We omit the running times of the simplification since in all cases it
was faster than the command selection due to the reduced state space. The last
column (“|S′|”) contains the number of states in the PA that is induced by the
minimized command set.

Although we ran into timeouts for many instances, in particular without any
cuts, in almost all cases (with the exception of coin4-2 and wlan0-5) a solution
could be found within the time limit. We suppose that also the solutions of the
aborted instances are optimal or close to optimal. It seems that the MILP solver
is able to quickly find good (or even optimal) solutions due to sophisticated
heuristics, but proving their optimality is hard. A solution is proven optimal as
soon as the objective value of the best solution and the lower bound coincide.
The additional cuts strengthen this lower bound considerably. Further experi-
ments have shown that the scheduler cuts of Eq.(2) have the strongest effect on
the lower bound. Choosing good cuts consequently enables the solver to obtain
optimal solutions for more benchmarks.

Our method provides the user not only with a smallest set of simplified com-
mands which induce an erroneous system, but also with a critical subsystem of
the state space. Comparing its size with the size of the minimal critical subsys-
tem (cf. Table 1) we can observe that for some models it is is close to optimal
(e. g., the coin-instances), for others it is much larger (e. g., the wlan-instances).
In all cases, however, we are able to reduce the number of commands and to
simplify the commands, in some cases considerably.



High-Level Counterexamples for Probabilistic Automata 53

6 Conclusion

We have presented a new type of counterexamples for probabilistic automata
which are described using a guarded command language:We computed a smallest
subset of the commands which alone induces an erroneous system. This requires
the solution of a mixed integer linear program whose size is linear in the size
of the state space of the PA. State-of-the-art MILP solvers apply sophisticated
techniques to find small command sets quickly, but they are often unable to
prove the optimality of their solution.

For the MILP formulation of the smallest critical labeling problem we both
need decision variables for the labels and for the scheduler inducing the maximal
reachability probabilities of the subsystem. On the other hand, model checking
can be executed without any decision variables. Therefore we plan to develop a
dedicated branch&bound algorithm which only branches on the decision vari-
ables for the labels. We expect a considerable speedup by using this method.
Furthermore, we will investigate heuristic methods based on graph algorithms.

References

1. Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25
Years of Model Checking. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008)

2. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

3. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)

4. Bobaru, M.G., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)

5. Komuravelli, A., Păsăreanu, C.S., Clarke, E.M.: Assume-guarantee abstraction re-
finement for probabilistic systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 310–326. Springer, Heidelberg (2012)

6. Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Trans. on Software Engineering 35(2), 241–257 (2009)

7. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

8. Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of
counterexamples for stochastic model checking. IEEE Trans. on Software Engi-
neering 36(1), 37–60 (2010)

9. Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-
time Markov chains using bounded model checking. In: Jones, N.D., Müller-Olm,
M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 366–380. Springer, Heidelberg (2009)

10. Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant diagnostic counterexam-
ples in probabilistic model checking. In: Chockler, H., Hu, A.J. (eds.) HVC 2008.
LNCS, vol. 5394, pp. 129–148. Springer, Heidelberg (2009)



54 R. Wimmer et al.

11. Jansen, N., Ábrahám, E., Katelaan, J., Wimmer, R., Katoen, J.-P., Becker, B.:
Hierarchical counterexamples for discrete-time markov chains. In: Bultan, T., Hsi-
ung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 443–452. Springer, Heidelberg
(2011)

12. Wimmer, R., Jansen, N., Ábrahám, E., Becker, B., Katoen, J.-P.: Minimal critical
subsystems for discrete-time markov models. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 299–314. Springer, Heidelberg (2012)

13. Wimmer, R., Becker, B., Jansen, N., Ábrahám, E., Katoen, J.P.: Minimal criti-
cal subsystems as counterexamples for ω-regular DTMC properties. In: Proc. of
MBMV, 169–180. Verlag Dr. Kovač (2012)

14. Wimmer, R., Jansen, N., Ábrahám, E., Katoen, J.P., Becker, B.: Minimal coun-
terexamples for refuting ω-regular properties of Markov decision processes. Reports
of SFB/TR 14 AVACS 88 (2012) ISSN: 1860-9821, http://www.avacs.org

15. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)
16. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-

tems. PhD thesis, Massachusetts Institute of Technology (1995), available as Tech-
nical Report MIT/LCS/TR-676

17. Segala, R.: A compositional trace-based semantics for probabilistic automata. In:
Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 234–248. Springer,
Heidelberg (1995)

18. Dijkstra, E.W.: Guarded commands, non-determinacy and formal derivation of
programs. Communications of the ACM 18(8), 453–457 (1975)

19. He, J., Seidel, K., McIver, A.: Probabilistic models for the guarded command lan-
guage. Science of Computer Programming 28(2-3), 171–192 (1997)

20. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
21. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman & Co. Ltd. (1979)
22. Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Program-

ming Computation 1(1), 1–41 (2009)
23. IBM: CPLEX optimization studio, version 12.5 (2012), http://www-01.ibm.com/

software/integration/optimization/cplex-optimization-studio/

24. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2012),
http://www.gurobi.com

25. Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.P., Becker, B.:
High-level counterexamples for probabilistic automata (extended version). Techni-
cal Report arXiv:1305.5055 (2013), http://arxiv.org/abs/1305.5055

26. Kwiatkowska, M., Norman, G., Sproston, J.: Probabilistic model checking of the
IEEE 802.11 wireless local area network protocol. In: Hermanns, H., Segala, R.
(eds.) PAPM-PROBMIV 2002. LNCS, vol. 2399, pp. 169–187. Springer, Heidelberg
(2002)

27. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

28. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: Proc.
of QEST, pp. 203–204. IEEE CS Press (2012)

29. Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. Journal
of Algorithms 15(1), 441–460 (1990)

30. Stoelinga, M.: Fun with FireWire: A comparative study of formal verification meth-
ods applied to the IEEE 1394 Root Contention Protocol. Formal Aspects of Com-
puting 14(3), 328–337 (2003)

http://www.avacs.org
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www.gurobi.com
http://arxiv.org/abs/1305.5055


Modelling, Reduction and Analysis

of Markov Automata�

Dennis Guck1,3, Hassan Hatefi2, Holger Hermanns2,
Joost-Pieter Katoen1,3, and Mark Timmer3

1 Software Modelling and Verification, RWTH Aachen University, Germany
2 Dependable Systems and Software, Saarland University, Germany

3 Formal Methods and Tools, University of Twente, The Netherlands

Abstract. Markov automata (MA) constitute an expressive continuous-
time compositional modelling formalism. They appear as semantic
backbones for engineering frameworks including dynamic fault trees,
Generalised Stochastic Petri Nets, and AADL. Their expressive power
has thus far precluded them from effective analysis by probabilistic (and
statistical) model checkers, stochastic game solvers, or analysis tools for
Petri net-like formalisms. This paper presents the foundations and un-
derlying algorithms for efficient MA modelling, reduction using static
analysis, and most importantly, quantitative analysis. We also discuss
implementation pragmatics of supporting tools and present several case
studies demonstrating feasibility and usability of MA in practice.

1 Introduction

Markov automata (MA, for short) have been introduced in [13] as a continuous-
time version of Segala’s (simple) probabilistic automata [26]. They are closed
under parallel composition and hiding. An MA-transition is either labelled with
an action, or with a positive real number representing the rate of a negative
exponential distribution. An action transition leads to a discrete probability
distribution over states. MA can thus model action transitions as in labelled
transition systems, probabilistic branching, as well as delays that are governed
by exponential distributions.

The semantics of MA has been recently investigated in quite some detail. Weak
and strong (bi)simulation semantics have been presented in [13,12], whereas it
is shown in [10] that weak bisimulation provides a sound and complete proof
methodology for reduction barbed congruence. A process algebra with data for
the efficient modelling of MA, accompanied with some reduction techniques using
static analysis, has been presented in [29]. Although the MA model raises sev-
eral challenging theoretical issues, both from a semantical and from an analysis

� This work is funded by the EU FP7-projects MoVeS, SENSATION and MEALS,
the DFG-NWO bilateral project ROCKS, the NWO projects SYRUP (grant
612.063.817), the STW project ArRangeer (grant 12238), and the DFG Sonder-
forschungsbereich AVACS.

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 55–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



56 D. Guck et al.

p1 p3

p4

p5

p2

t1

t3(w3)

t2(w2)

λ1

λ2

p6

p7

(a)

p1, p2

p2, p3

p1, p5

p4 p6

p3, p5 p3, p7

λ1

λ2

τ

τ
τ

w3

w2 +w3

w2

w2 +w3

τ

(b)

Fig. 1. (a) Confused GSPN, see [22, Fig. 21] with partial weights and (b) its MA
semantics

point of view, our main interest is in their practical applicability. As MA extend
Hermanns’ interactive Markov chains (IMCs) [18], they inherit IMC application
domains, ranging from GALS hardware designs [6] and dynamic fault trees [3]
to the standardised modeling language AADL [4,17]. The added feature of prob-
abilistic branching yields a natural operational model for generalised stochastic
Petri nets (GSPNs) [23] and stochastic activity networks (SANs) [24], both pop-
ular modelling formalisms for performance and dependability analysis. Let us
briefly motivate this by considering GSPNs. Whereas in SPNs all transitions
are subject to a random delay, GSPNs also incorporate immediate transitions,
transitions that happen instantaneously. The traditional GSPN semantics yields
a continuous-time Markov chain (CTMC), i.e., an MA without action transi-
tions, but is restricted to GSPNs that do not exhibit non-determinism. Such
“well-defined” GSPNs occur if the net is free of confusion. It has recently been
detailed in [19,11] that MA are a natural semantic model for every GSPN. With-
out going into the technical details, consider the confused GSPN in Fig. 1(a).
This net is confused, as the transitions t1 and t2 are not in conflict, but fir-
ing transition t1 leads to a conflict between t2 and t3, which does not occur
if t2 fires before t1. Transitions t2 and t3 are weighted so that in a marking
{p2, p3} in which both transitions are enabled, t2 fires with probability w2

w2+w3

and t3 with its complement probability. Classical GSPN semantics and analysis
algorithms cannot cope with this net due to the presence of confusion (i.e., non-
determinism). Figure 1(b) depicts the MA semantics of this net. Here, states
correspond to sets of net places that contain a token. In the initial state, there
is a non-deterministic choice between the transitions t1 and t2. Note that the
presence of weights is naturally represented by discrete probabilistic branching.
One can show that for confusion-free GSPNs, the classical semantics and the
MA semantics are weakly bisimilar [11].

This paper focuses on the quantitative analysis of MA—and thus (possibly
confused) GSPNs and probabilistic AADL error models. We present analysis
algorithms for three objectives: expected time, long-run average, and timed (in-
terval) reachability. As the model exhibits non-determinism, we focus on maxi-
mal and minimal values for all three objectives. We show that expected time and
long-run average objectives can be efficiently reduced to well-known problems on



Modelling, Reduction and Analysis of Markov Automata 57

MDPs such as stochastic shortest path, maximal end-component decomposition,
and long-run ratio objectives. This generalizes (and slightly improves) the results
reported in [14] for IMCs to MA. Secondly, we present a discretisation algorithm
for timed interval reachability objectives which extends [33]. Finally, we present
the MaMa tool-chain, an easily accessible publicly available tool chain 1 for
the specification, mechanised simplification—such as confluence reduction [31],
a form of on-the-fly partial-order reduction—and quantitative evaluation of MA.
We describe the overall architectural design, as well as the tool components, and
report on empirical results obtained with MaMa on a selection of case studies
taken from different domains. The experiments give insight into the effectiveness
of our reduction techniques and demonstrate that MA provide the basis of a very
expressive stochastic timed modelling approach without sacrificing the ability of
time and memory efficient numerical evaluation.

Organisation of the Paper. After introducing Markov Automata in Section 2, we
discuss a fully compositional modelling formalism in Section 3. Section 4 consid-
ers the evaluation of expected time properties. Section 5 discusses the analysis
of long run properties, and Section 6 focusses on reachability properties with
time interval bounds. Implementation details of our tool as well as experimental
results are discussed in detail in Section 7. Section 8 concludes the paper. Due
to space constraints, we refer to [15] for the proofs of our main results.

2 Preliminaries

Markov Automata. An MA is a transition system with two types of transitions:
probabilistic (as in PAs) and Markovian transitions (as in CTMCs). Let Act be
a universe of actions with internal action τ ∈ Act, and Distr(S) denote the set
of distribution functions over the countable set S.

Definition 1 (Markov automaton). A Markov automaton (MA) is a tuple
M = (S,A, −→ ,=⇒, s0) where S is a nonempty, finite set of states with initial
state s0 ∈ S, A ⊆ Act is a finite set of actions, and

– −→ ⊆ S ×A× Distr(S) is the probabilistic transition relation, and
– =⇒ ⊆ S × R>0 × S is the Markovian transition relation.

We abbreviate (s, α, μ) ∈ −→ by s α−−→μ and (s, λ, s′) ∈ =⇒ by s
λ

=⇒ s′. An
MA can move between states via its probabilistic and Markovian transitions.
If s a−→μ, it can leave state s by executing the action a, after which the prob-
ability to go to some state s′ ∈ S is given by μ(s′). If s

λ
=⇒ s′, it moves from s

to s′ with rate λ, except if s enables a τ -labelled transition. In that case, the MA
will always take such a transition and never delays. This is the maximal progress
assumption [13]. The rationale behind this assumption is that internal transi-
tions are not subject to interaction and thus can happen immediately, whereas

1 Stand-alone download as well as web-based interface available from http://fmt.cs.

utwente.nl/~timmer/mama.

http://fmt.cs.utwente.nl/~timmer/mama
http://fmt.cs.utwente.nl/~timmer/mama


58 D. Guck et al.

0, 0, 0

1, 0, 0

0, 1, 0

0, 0, 1

1, 0, 1

0, 1, 1

1, 1, 1 1, 1, 0

λ1

λ2

9
10

1
10

τ

9
10

1
10τ

μ
λ1

λ2

λ2

μ

μ

λ1

μ

9
10

1
10 τ

9
10

1
10

τ

Fig. 2. A queueing system, consisting of a server and two stations. The two stations
have incoming requests with rates λ1, λ2, which are stored until fetched by the server.
If both stations contain a job, the server chooses nondeterministically (in state (1,1,0)).
Jobs are processed with rate μ, and when polling a station, there is a 1

10
probability that

the job is erroneously kept in the station after being fetched. Each state is represented
as a tuple (s1, s2, j), with si the number of jobs in station i, and j the number of jobs
in the server. For simplicity we assume that each component can hold at most one job.

the probability for a Markovian transition to happen immediately is zero. As an
example of an MA, consider Fig. 2.

We briefly explain the semantics of Markovian transitions. For a state with
Markovian transitions, let R(s, s′) =

∑
{λ | s λ

=⇒ s′} be the total rate to move
from state s to state s′, and let E(s) =

∑
s′∈S R(s, s′) be the total outgoing

rate of s. If E(s) > 0, a competition between the transitions of s exists. Then,
the probability to move from s to state s′ within d time units is

R(s, s′)

E(s)
·
(
1− e−E(s)d

)
.

This asserts that after a delay of at most d time units (second factor), the MA

moves to a direct successor state s′ with probability P(s, s′) = R(s,s′)
E(s) .

Paths. A path in an MA is an infinite sequence π = s0
σ0,μ0,t0−−−−−−→ s1

σ1,μ1,t1−−−−−−→ . . .
with si ∈ S, σi ∈ Act ∪ {⊥}, and ti ∈ R≥0. For σi ∈ Act, si

σi,μi,ti−−−−−−→ si+1

denotes that after residing ti time units in si, the MA has moved via action

σi to si+1 with probability μi(si+1). Instead, si
⊥,μi,ti−−−−−→ si+1 denotes that after

residing ti time units in s, a Markovian transition led to si+1 with probability
μi(si+1) = P(si, si+1). For t ∈ R≥0, let π@t denote the sequence of states that
π occupies at time t. Due to instantaneous action transitions, π@t need not be
a single state, as an MA may occupy various states at the same time instant.
Let Paths denote the set of infinite paths. The time elapsed along the path π
is
∑∞

i=0 ti. Path π is Zeno whenever this sum converges. As the probability of a
Zeno path in an MA that only contains Markovian transitions is zero [1], an MA
is non-Zeno if and only if no SCC with only probabilistic states is reachable with
positive probability. In the rest of this paper, we assume MAs to be non-Zeno.

Policies. Nondeterminism occurs when there is more than one action transition
emanating from a state. To define a probability space, the choice is resolved



Modelling, Reduction and Analysis of Markov Automata 59

using policies. A policy (ranged over by D) is a measurable function which yields
for each finite path ending in state s a probability distribution over the set of
enabled actions in s. The information on basis of which a policy may decide yields
different classes of policies. Let GM denote the class of the general measurable
policies. A stationary deterministic policy is a mapping D : PS→ Act where PS
is the set of states with outgoing probabilistic transitions; such policies always
take the same decision in a state s. A time-abstract policy may decide on basis
of the states visited so far, but not on their timings; we use TA denote this class.
For more details on different classes of policies (and their relation) on models
such as MA, we refer to [25]. Using a cylinder set construction we obtain a σ-
algebra of subsets of Paths ; given a policy D and an initial state s, a measurable
set of paths is equipped with probability measure Prs,D.

Stochastic Shortest Path (SSP) Problems. As some objectives on MA are reduced
to SSP problems, we briefly introduce them. A non-negative SSP problem is
an MDP (S,Act,P, s0) with set G ⊆ S of goal states, cost function c : S \
G × Act → R≥0 and terminal cost function g : G → R≥0. The accumulated
cost along a path π through the MDP before reaching G, denoted CG(π), is∑k−1

j=0 c(sj , αj)+g(sk) where k is the state index of reachingG. Let cRmin(s,�G)
denote the minimum expected cost reachability of G in the SSP when starting
from s. This expected cost can be obtained by solving an LP problem [2].

3 Efficient Modeling of Markov Automata

As argued in the introduction, MA can be used as semantical model for various
modeling formalisms. We show this for the process-algebraic specification lan-
guage MAPA (MA Process Algebra) [29]. This language is rather expressive and
supports several reductions techniques for MA specifications. In fact, it turns
out to be beneficial to map a language (like GSPNs) to MAPA so as to profit
from these reductions. We present the syntax and a brief informal overview of
the reduction techniques.

The Markov Automata Process Algebra. MAPA relies on external mechanisms
for evaluating expressions, able to handle boolean and real-valued expressions.
We assume that any variable-free expression in this language can be evaluated.
Our tool uses a simple and intuitive fixed data language that includes basic
arithmetic and boolean operators, conditionals, and dynamic lists. For expression
t in our data language and vectors x = (x1, . . . , xn) and d = (d1, . . . , dn), let
t[x := d] denote the result of substituting every xi in t by di.

A MAPA specification consists of a set of uniquely-named processes Xi, each
defined by a process equation Xi(xi : Di) = pi. In such an equation, xi is a
vector of process variables with type Di, and pi is a process term specifying the
behaviour of Xi. Additionally, each specification has an initial process Xj(t).
We abbreviate X((x1, . . . , xn) : (D1 × · · · ×Dn)) by X(x1 : D1, . . . , xn : Dn). A
MAPA process term adheres to the grammar:

p ::= Y (t) | c⇒ p | p+ p |
∑

x:D p | a(t)
∑
• x:D f : p | (λ) · p



60 D. Guck et al.

constant queueSize = 10, nrOfJobTypes = 3

type Stations = {1, 2}, Jobs = {1, . . . ,nrOfJobTypes}

Station(i : Stations, q : Queue, size : {0..queueSize})
= size < queueSize ⇒ (2i+ 1) ·

∑
j:Jobs arrive(j) · Station(i, enqueue(q, j), size+ 1)

+ size > 0 ⇒ deliver(i, head(q))
∑
•

k∈{1,9}

k
10
: k = 1⇒ Station(i, q, size)

+ k = 9⇒ Station(i, tail(q), size− 1)

Server =
∑

n:Stations

∑
j:Jobs poll(n, j) · (2 ∗ j) · finish(j) · Server

γ(poll, deliver) = copy // actions poll and deliver synchronise and yield action copy

System = τ{copy,arrive,finish}(∂{poll,deliver}(Station(1, empty, 0) ||Station(2, empty, 0) ||Server))

Fig. 3. MAPA specification of a polling system

Here, Y is a process name, t a vector of expressions, c a boolean expression,
x a vector of variables ranging over a finite type D, a ∈ Act a (parameterised)
atomic action, f a real-valued expression yielding a value in [0, 1], and λ an
expression yielding a positive real number. Note that, if |x| > 1, D is a Carte-
sian product, as for instance in

∑
(m,i):{m1,m2}×{1,2,3} send(m, i) . . .. In a process

term, Y (t) denotes process instantiation, where t instantiates Y ’s process vari-
ables (allowing recursion). The term c ⇒ p behaves as p if the condition c
holds, and cannot do anything otherwise. The + operator denotes nondetermin-
istic choice, and

∑
x:D p a nondeterministic choice over data type D. The term

a(t)
∑
• x:D f : p performs the action a(t) and then does a probabilistic choice

over D. It uses the value f [x := d] as the probability of choosing each d ∈ D.
We write a(t) · p for the action a(t) that goes to p with probability 1. Finally,
(λ) · p can behave as p after a delay, determined by an exponential distribution
with rate λ. Using MAPA processes as basic building blocks, the language also
supports the modular construction of large systems via top-level parallelism (de-
noted ||), encapsulation (denoted ∂), hiding (denoted τ), and renaming (denoted
γ), cf. [30, App. B]. The operational semantics of a MAPA specification yields
an MA; for details we refer to [29].

Example 1. Fig. 3 depicts the MAPA specification [29] of a polling system—
inspired by [27]—which generalised the system of Fig. 2. Now, there are incoming
requests of 3 possible types, each of which has a different service rate. Addition-
ally, the stations store these in a queue of size 10. ��

Reduction Techniques. To simplify state space generation and reduction, we use
a linearised format referred to as MLPPE (Markovian linear probabilistic process
equation). In this format, there is precisely one process consisting of a nondeter-
ministic choice between a set of summands. Each summand can contain a nonde-
terministic choice, followed by a condition, and either an interactive action with
a probabilistic choice (determining the next state) or a rate and a next state. Ev-
ery MAPA specification can be translated efficiently into an MLPPE [29] while



Modelling, Reduction and Analysis of Markov Automata 61

preserving strong bisimulation. On MLPPEs two types of reduction techniques
have been defined: simplifications and state space reductions:

– Maximal progress reduction removes Markovian transitions from states also
having τ -transitions. It is more efficient to perform this on MLPPEs than
on the initial MAPA specification. We use heuristics (as in [32]) to omit all
Markovian summands in presence of internal non-Markovian ones.

– Constant elimination [20] replaces MLPPE parameters that remain con-
stants by their initial value.

– Expression simplification [20] evaluates functions for which all parameters
are constants and applies basic laws from logic.

– Summation elimination [20] removes unnecessary summations, transforming
e.g.,

∑
d:N d = 5 ⇒ send(d) · X to send(5) · X ,

∑
d:{1,2} a · X to a · X , and∑

d:D(λ) ·X to (|D| × λ) ·X , to preserve the total rate to X .
– Dead-variable reduction [32] detects states in which the value of some data

variable d is irrelevant. This is the case if d will be overwritten before being
used for all possible futures. Then, d is reset to its initial value.

– Confluence reduction [31] detects spurious nondeterminism, resulting from
parallel composition. It denotes a subset of the probabilistic transitions of
a MAPA specification as confluent, meaning that they can safely be given
priority if enabled together with other transitions.

4 Expected Time Objectives

The actions of an MA are only used for composing models from smaller ones.
For the analysis of MA, they are not relevant and we may safely assume that
all actions are internal2. Due to the maximal progress assumption, the outgo-
ing transitions of a state s are all either probabilistic transitions or Markovian
transitions. Such states are called probabilistic and Markovian, respectively; let
PS ⊆ S and MS ⊆ S denote these sets.

LetM be an MA with state space S and G ⊆ S a set of goal states. Define the
(extended) random variable VG : Paths → R∞

≥0 as the elapsed time before first
visiting some state inG. That is, for an infinite path π = s0

σ0,μ0,t0−−−−−→s1
σ1,μ1,t1−−−−−→· · · ,

let VG(π) = min {t ∈ R≥0 | G ∩ π@t = ∅} where min(∅) = +∞. (With slight
abuse of notation we use π@t as the set of states occurring in the sequence
π@t.) The minimal expected time to reach G from s ∈ S is defined by

eTmin(s,�G) = inf
D

Es,D(VG) = inf
D

∫
Paths

VG(π) Prs,D(dπ)

whereD is a policy onM. Note that by definition of VG, only the amount of time
before entering the first G-state is relevant. Hence, we may turn all G-states into
absorbing Markovian states without affecting the expected time reachability. In
the remainder we assume all goal states to be absorbing.

2 Like in the MAPA specification of the queueing system in Fig. 3, the actions used
in parallel composition are explicitly turned into internal actions by hiding.



62 D. Guck et al.

Theorem 1. The function eTmin is a fixpoint of the Bellman operator

[L(v)] (s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

E(s)
+

∑
s′∈S

P(s, s′) · v(s′) if s ∈ MS \G

min
α∈Act(s)

∑
s′∈S

μs
α(s

′) · v(s′) if s ∈ PS \G

0 if s ∈ G.

For a goal state, the expected time obviously is zero. For a Markovian state
s ∈ G, the minimal expected time to G is the expected sojourn time in s plus
the expected time to reach G via its successor states. For a probabilistic state,
an action is selected that minimises the expected reachability time according to
the distribution μsα corresponding to α. The characterization of eTmin(s,�G)
in Thm. 1 allows us to reduce the problem of computing the minimum expected
time reachability in an MA to a non-negative SSP problem [2,9].

Definition 2 (SSP for minimum expected time reachability). The SSP
of MA M = (S,Act, −→ ,=⇒, s0) for the expected time reachability of G ⊆ S is
sspet(M) = (S,Act ∪ {⊥} ,P, s0, G, c, g) where g(s) = 0 for all s ∈ G and

P(s, σ, s′) =

⎧⎪⎨
⎪⎩

R(s,s′)
E(s)

if s ∈ MS, σ = ⊥
μs
σ(s

′) if s ∈ PS, s σ−−→μs
σ

0 otherwise, and

c(s, σ) =

{
1

E(s)
if s ∈ MS \G, σ = ⊥

0 otherwise.

Terminal costs are zero. Transition probabilities are defined in the standard way.
The reward of a Markovian state is its expected sojourn time, and zero otherwise.

Theorem 2. For MA M, eTmin(s,�G) equals cRmin(s,�G) in sspet(M).

Thus here is a stationary deterministic policy on M yielding eTmin(s,�G).
Moreover, the uniqueness of the minimum expected cost of an SSP [2,9] now
yields that eTmin(s,�G) is the unique fixpoint of L (see Thm. 1). The uniqueness
result enables the usage of standard solution techniques such as value iteration
and linear programming to compute eTmin(s,�G). For maximal expected time
objectives, a similar fixpoint theorem is obtained, and it can be proven that
those objectives correspond to the maximal expected reward in the SSP problem
defined above. In the above, we have assumed MA to not contain any Zeno cycle,
i.e., a cycle solely consisting of probabilistic transitions. The above notions can all
be extended to deal with such Zeno cycles, by, e.g., setting the minimal expected
time of states in Zeno BSCCs that do not contain G-states to be infinite (as such
states cannot reach G). Similarly, the maximal expected time of states in Zeno
end components (that do not containg G-states) can be defined as ∞, as in the
worst case these states will never reach G.

5 Long Run Objectives

Let M be an MA with state space S and G ⊆ S a set of goal states. Let
1G be the characteristic function of G, i.e., 1G(s) = 1 if and only if s ∈ G.



Modelling, Reduction and Analysis of Markov Automata 63

Following the ideas of [8,21], the fraction of time spent in G on an infinite path
π in M up to time bound t ∈ R≥0 is given by the random variable (r. v.)

AG,t(π) = 1
t

∫ t

0 1G(π@u) du. Taking the limit t→∞, we obtain the r. v.

AG(π) = lim
t→∞

AG,t(π) = lim
t→∞

1

t

∫ t

0

1G(π@u) du.

The expectation of AG for policy D and initial state s yields the corresponding
long-run average time spent in G:

LRAD(s,G) = Es,D(AG) =

∫
Paths

AG(π) Prs,D(dπ).

The minimum long-run average time spent in G starting from state s is then:

LRAmin(s,G) = inf
D

LRAD(s,G) = inf
D

Es,D(AG).

For the long-run average analysis, we may assume w.l.o.g. that G ⊆ MS, as the
long-run average time spent in any probabilistic state is always 0. This claim
follows directly from the fact that probabilistic states are instantaneous, i.e.
their sojourn time is 0 by definition. Note that in contrast to the expected time
analysis, G-states cannot be made absorbing in the long-run average analysis. It
turns out that stationary deterministic policies are sufficient for yielding minimal
or maximal long-run average objectives.

In the remainder of this section, we discuss in detail how to compute the
minimum long-run average fraction of time to be in G in an MA M with initial
state s0. The general idea is the following three-step procedure:

1. Determine the maximal end components3 {M1, . . . ,Mk} of MA M.
2. Determine LRAmin(G) in maximal end componentMj for all j ∈ {1, . . . , k}.
3. Reduce the computation of LRAmin(s0, G) in MA M to an SSP problem.

The first phase can be performed by a graph-based algorithm [7,5], whereas the
last two phases boil down to solving LP problems.

Unichain MA. We first show that for unichain MA, i.e., MA that under any sta-
tionary deterministic policy yield a strongly connected graph structure, comput-
ing LRAmin(s,G) can be reduced to determining long-ratio objectives in MDPs.
Let us first explain such objectives. LetM = (S,Act,P, s0) be an MDP. Assume
w.l.o.g. that for each state s in M there exists α ∈ Act such that P(s, α, s′) > 0.
Let c1, c2 : S × (Act ∪ {⊥}) → R≥0 be cost functions. The operational inter-
pretation is that a cost c1(s, α) is incurred when selecting action α in state s,
and similar for c2. Our interest is the ratio between c1 and c2 along a path. The

3 A sub-MA of MA M is a pair (S′, K) where S′ ⊆ S and K is a function that
assigns to each s ∈ S′ a non-empty set of actions such that for all α ∈ K(s), s α−−→μ
with μ(s′) > 0 or s

λ
=⇒ s′ imply s′ ∈ S′. An end component is a sub-MA whose

underlying graph is strongly connected; it is maximal w.r.t. K if it is not contained
in any other end component (S′′, K).



64 D. Guck et al.

long-run ratio R between the accumulated costs c1 and c2 along the infinite path
π = s0

α0−−→ s1
α1−−→ . . . in the MDP M is defined by4:

R(π) = lim
n→∞

∑n−1
i=0 c1(si, αi)∑n−1
j=0 c2(sj , αj)

.

The minimum long-run ratio objective for state s of MDP M is defined by:

Rmin(s) = inf
D

Es,D(R) = inf
D

∑
π∈Paths

R(π) · Prs,D(π).

Here, Paths is the set of paths in the MDP, D an MDP-policy, and Pr the prob-
ability mass on MDP-paths. From [7], it follows that Rmin(s) can be obtained
by solving the following LP problem with real variables k and xs for each s ∈ S:
Maximize k subject to:

xs ≤ c1(s, α)− k · c2(s, α) +
∑
s′∈S

P(s, α, s′) · xs′ for each s ∈ S, α ∈ Act.

We now transform an MA into an MDP with 2 cost functions as follows.

Definition 3 (From MA to two-cost MDPs). LetM = (S,Act, −→ ,=⇒, s0)
be an MA and G ⊆ S a set of goal states. The MDP mdp(M) = (S,Act ∪
{⊥},P, s0) with cost functions c1 and c2, where P is defined as in Def. 2, and

c1(s, σ) =

{
1

E(s)
if s ∈ MS ∩G ∧ σ = ⊥

0 otherwise,
c2(s, σ) =

{
1

E(s)
if s ∈ MS ∧ σ = ⊥

0 otherwise.

Observe that cost function c2 keeps track of the average residence time in state s
whereas c1 only does so for states in G.

Theorem 3. For unichain MA M, LRAmin(s,G) equals Rmin(s) in mdp(M).

To summarise, computing the minimum long-run average fraction of time that
is spent in some goal state in G ⊆ S in an unichain MAM equals the minimum
long-run ratio objective in an MDP with two cost functions. The latter can be
obtained by solving an LP problem. Observe that for any two states s, s′ in a
unichain MA, LRAmin(s,G) and LRAmin(s′, G) coincide. We therefore omit the
state and simply write LRAmin(G) when considering unichain MA.

Arbitrary MA. Let M be an MA with initial state s0 and maximal end com-
ponents {M1, . . . ,Mk} for k > 0 where MA Mj has state space Sj . Note that
each Mj is a unichain MA. Using this decomposition of M into maximal end
components, we obtain the following result:

4 In our setting, R(π) is well-defined as the cost functions c1 and c2 are obtained from
non-Zeno MA. Thus for any infinite path π, c2(sj , αj) > 0 for some index j.



Modelling, Reduction and Analysis of Markov Automata 65

Theorem 4. 5 For MA M = (S,Act, −→ ,=⇒, s0) with MECs {M1, . . . ,Mk}
with state spaces S1, . . . , Sk ⊆ S, and set of goal states G ⊆ S:

LRAmin(s0, G) = inf
D

k∑
j=1

LRAmin
j (G) · PrD(s0 |= ♦�Sj),

where PrD(s0 |= ♦�Sj) is the probability to eventually reach and continuously
stay in some state in Sj from s0 under policy D and LRAmin

j (G) is the LRA of
G ∩ Sj in unichain MA Mj.

Computing minimal LRA for arbitrary MA is now reducible to a non-negative
SSP problem. This proceeds as follows. In MA M, we replace each maximal
end component Mj by two fresh states qj and uj. Intuitively, qj represents
Mj whereas uj represents a decision state. State uj has a transition to qj and
contains all probabilistic transitions leaving Sj. Let U denote the set of uj states
and Q the set of qj states.

Definition 4 (SSP for long run average). The SSP of MA M for the LRA
in G ⊆ S is ssplra(M) = (S \

⋃k
i=1Si ∪ U ∪Q,Act ∪ {⊥},P′, s0, Q, c, g), where

g(qi) = LRAmin
i (G) for qi ∈ Q and c(s, σ) = 0 for all s and σ ∈ Act ∪ {⊥}. P′

is defined as follows. Let S′ = S \
⋃k

i=1Si. P
′ equals P for all s, s′ ∈ S′. For the

new states uj:

P′(uj , τ, s
′) = P(Sj , τ, s

′) if s′ ∈ S′ \ Sj and P′(ui, τ, uj) = P(Si, τ, Sj) for i �= j.

Finally, we have: P′(qj ,⊥, qj) = 1 = P′(uj ,⊥, qj) and P′(s, σ, uj) = P(s, σ, Sj).

Here, P(s, α, S′) is a shorthand for
∑

s′∈S′ P(s, α, s′); similarly, P(S′, α, s′) =∑
s∈S′ P(s, α, s′). The terminal costs of the new qi-states are set to LRAmin

i (G).

Theorem 5. For MAM, LRAmin(s,G) equals cRmin(s,♦U) in SSP ssplra(M).

6 Timed Reachability Objectives

This section presents an algorithm that approximates time-bounded reachabil-
ity probabilities in MA. We start with a fixed point characterisation, and then
explain how these probabilities can be approximated using digitisation.

Fixed Point Characterisation. Our goal is to come up with a fixed point charac-
terisation for the maximum (minimum) probability to reach a set of goal states
in a time interval. Let I and Q be the set of all nonempty nonnegative real inter-
vals with real and rational bounds, respectively. For interval I ∈ I and t ∈ R≥0,
let I � t = {x− t | x ∈ I ∧ x ≥ t}. Given MA M, I ∈ I and a set G ⊆ S of goal
states, the set of all paths that reach some goal states within interval I is denoted
by ♦I G. Let pMmax(s,♦I G) be the maximum probability of reaching G within
interval I if starting in state s at time 0. Here, the maximum is taken over all
possible general measurable policies. The next result provides a characterisation
of pMmax(s,♦I G) as a fixed point.

5 This theorem corrects a small flaw in the corresponding theorem for IMCs in [14].



66 D. Guck et al.

Lemma 1. Let M be an MA, G ⊆ S and I ∈ I with inf I = a and sup I = b.
Then, pMmax(s,♦I G) is the least fixed point of the higher-order operator Ω : (S×
I � [0, 1]) � (S × I � [0, 1]), which for s ∈MS is given by:

Ω(F )(s, I) =

{∫ b

0 E(s)e−E(s)t
∑

s′∈S P(s,⊥, s′)F (s′, I � t) dt s /∈ G
e−E(s)a +

∫ a

0
E(s)e−E(s)t

∑
s′∈S P(s,⊥, s′)F (s′, I � t) dt s ∈ G

and for s ∈ PS is defined by:

Ω(F )(s, I) =

{
1 s ∈ G ∧ a = 0

maxα∈Act\⊥(s)

∑
s′∈S P(s, α, s′)F (s′, I) otherwise.

This characterisation is a simple generalisation of that for IMCs [33], reflecting
the fact that taking an action from an probabilistic state leads to a distribution
over the states (rather than a single state). The above characterisation yields an
integral equation system which is in general not directly tractable [1]. To tackle
this problem, we approximate the fixed point characterisation using digitisation,
extending ideas developed in [33]. We split the time interval into equally-sized
digitisation steps, assuming a digitisation constant δ, small enough such that
with high probability at most one Markovian transition firing occurs in any
digitisation step. This allows us to construct a digitised MA (dMA), a variant
of a semi-MDP, obtained by summarising the behaviour of the MA at equidis-
tant time points. Paths in a dMA can be seen as time-abstract paths in the
corresponding MA, implicitly still counting digitisation steps, and thus discrete
time. Digitisation of MA M = (S,Act, −→ ,=⇒, s0) and digitisation constant δ,
proceeds by replacing =⇒ by =⇒δ = { (s, μs) | s ∈MS }, where

μs(s′) =

{
(1 − e−E(s)δ)P(s,⊥, s′) if s′ = s

(1 − e−E(s)δ)P(s,⊥, s′) + e−E(s)δ otherwise.

Using the above fixed point characterisation, it is now possible to relate reach-
ability probabilities in an MA M to reachability probabilities in its dMA Mδ.

Theorem 6. Given MAM = (S,Act, −→ ,=⇒, s0), G ⊆ S, interval I = [0, b] ∈
Q with b ≥ 0 and λ = maxs∈MSE(s). Let δ > 0 be such that b = kbδ for some
kb ∈ N. Then, for all s ∈ S it holds that

pMδ
max(s,♦[0,kb]G) ≤ pMmax(s,♦[0,b]G) ≤ pMδ

max(s,♦[0,kb]G)+1−e−λb
(
1+λδ

)kb .

This theorem can be extended to intervals with non-zero lower bounds; for the
sake of brevity, the details are omitted here. The remaining problem is to com-
pute the maximum (or minimum) probability to reach G in a dMA within a step
bound k ∈ N. Let ♦[0,k]G be the set of infinite paths in a dMA that reach a
G state within k steps, and pDmax(s,♦[0,k]G) denote the maximum probability
of this set. Then we have pDmax(s,♦[0,k]G) = supD∈TA Prs,D(♦[0,k]G). Our algo-
rithm is now an adaptation (to dMA) of the well-known value iteration scheme
for MDPs.



Modelling, Reduction and Analysis of Markov Automata 67

The algorithm proceeds by backward unfolding of the dMA in an iterative
manner, starting from the goal states. Each iteration intertwines the analysis
of Markov states and of probabilistic states. The key issue is that a path from
probabilistic states to G is split into two parts: reaching Markov states from
probabilistic states in zero time and reaching goal states from Markov states in
interval [0, j], where j is the step count of the iteration. The former computation
can be reduced to an unbounded reachability problem in the MDP induced by
probabilistic states with rewards on Markov states. For the latter, the algorithm
operates on the previously computed reachability probabilities from all Markov
states up to step count j. We can generalize this recipe from step-bounded
reachability to step interval-bounded reachability, details are described in [16].

7 Tool-Chain and Case Studies

This section describes the implementation of the algorithms discussed, together
with the modelling features resulting in our MaMa tool-chain. Furthermore, we
present two case studies that provide empirical evidence of the strengths and
weaknesses of the MaMa tool chain.

7.1 MaMa Tool Chain

Our tool chain consists of several tool components: SCOOP [28,29], IMCA [14],
and GEMMA (realized in Haskell), see Figure 4. The tool-chain comprises about
8,000 LOC (without comments). SCOOP (in Haskell) supports the generation
from MA from MAPA specifications by a translation into the MLPPE format.
It implements all the reduction techniques described in Section 3, in particular
confluence reduction. The capabilities of the IMCA tool-component (written in
C++) have been lifted to expected time and long-run objectives for MA, and ex-
tended with timed reachability objectives. It also supports (untimed) reachabil-
ity objectives which are not further treated here. A prototypical translator from
GSPNs to MA, in fact MAPA specifications, has been realized (the GEMMA
component). We connected the three components into a single tool chain, by
making SCOOP export the (reduced) state space of an MLPPE in the IMCA
input language. Additionally, SCOOP has been extended to translate properties,
based on the actions and parameters of a MAPA specification, to a set of goal
states in the underlying MA. That way, in one easy process systems and their
properties can be modelled in MAPA, translated to an optimised MLPPE by
SCOOP, exported to the IMCA tool and then analysed.

SCOOP IMCA Results

MAPA spec + Property

Goal states

MA

reduce

GEMMA
Property

MAPA-spec

GSPN + Property

Fig. 4. Analysing Markov Automata using the MaMa tool chain



68 D. Guck et al.

Table 1. Interval reachability probabilities for the grid. (Time in seconds.)

unreduced reduced
K |S| |G| time |S| |G| time ε I p

m
in (s0

,♦
I G

)

tim
e(
un

re
d)

tim
e(
re
d)

p
m
ax (

s0
,♦

I G
)

tim
e(
un

re
d)

tim
e(
re
d)

2 2,508 1,398 0.6 1,789 1,122 0.8

10−2 [0, 3] 0.91 58.5 31.0 0.95 54.9 21.7
10−2 [0, 4] 0.96 103.0 54.7 0.98 97.3 38.8

10−2 [1, 4] 0.91 117.3 64.4 0.96 109.9 49.0

10−3 [0, 3] 0.910 580.1 309.4 0.950 544.3 218.4

3 10,852 4,504 3.1 7,201 3,613 3.5

10−2 [0, 3] 0.18 361.5 202.8 0.23 382.8 161.1
10−2 [0, 4] 0.23 643.1 360.0 0.30 681.4 286.0

10−2 [1, 4] 0.18 666.6 377.3 0.25 696.4 317.7

10−3 [0, 3] 0.176 3,619.5 2,032.1 0.231 3,837.3 1,611.9

4 31,832 10,424 9.8 20,021 8,357 10.5 10−2 [0, 3] 0.01 1,156.8 614.9 0.03 1,196.5 486.4

7.2 Case Studies

This section reports on experiments with MaMa. All experiments were con-
ducted on a 2.5 GHz Intel Core i5 processor with 4GB RAM, running on Mac
OS X 10.8.3.

Processor Grid. First, we consider a model of a 2 × 2 concurrent processor ar-
chitecture. Using GEMMA, we automatically derived the MA model from the
GSPN model in [22, Fig. 11.7]. Previous analysis of this model required weights
for all immediate transitions, requiring complete knowledge of the mutual be-
haviour of all these transitions. We allow a weight assignment to just a (possibly
empty) subset of the immediate transitions—reflecting the practical scenario of
only knowing the mutual behaviour for a selection of the transitions. For this
case study we indeed kept weights for only a few of the transitions, obtaining
probabilistic behaviour for them and nondeterministic behaviour for the others.

Table 1 reports on the time-bounded and time-interval bounded probabilities
for reaching a state such that the first processor has an empty task queue. We
vary the degree of multitasking K, the error bound ε and the interval I. For each
setting, we report the number of states |S| and goal states |G|, and the generation
time with SCOOP (both with and without the reductions from Section 3).

The runtime demands grow with both the upper and lower time bound, as
well as with the required accuracy. The model size also affects the per-iteration
cost and thus the overall complexity of reachability computation. Note that our
reductions speed-up the analysis times by a factor between 1.7 and 3.5: even more
than the reduction in state space size. This is due to our techniques significantly
reducing the degree of nondeterminism.

Table 2 displays results for expected time until an empty task queue, as well as
the long-run average that a processor is active. Whereas [22] fixed all nondeter-
minism, obtaining for instance an LRA of 0.903 for K = 2, we are now able to re-
tain nondeterminism and provide the more informative interval [0.8810, 0.9953].
Again, our reduction techniques significantly improve runtimes.

Polling System. Second, we consider the polling system from Fig. 3 with two sta-
tions and one server. We varied the queue sizes Q and the number of job types N ,



Modelling, Reduction and Analysis of Markov Automata 69

Table 2. Expected times and long-run averages for the grid. (Time in seconds.)

K eT
m
in (s0

,�
G
)

tim
e(
un

re
d)

tim
e(
re
d)

eT
m
ax (s0

,�
G
)

tim
e(
un

re
d)

tim
e(
re
d)

LR
A
m
in (s0

, G
)

tim
e(
un

re
d)

tim
e(
re
d)

LR
A
m
ax (s0

, G
)

tim
e(
un

re
d)

tim
e(
re
d)

2 1.0000 0.3 0.1 1.2330 0.7 0.3 0.8110 1.3 0.7 0.9953 0.5 0.2
3 11.1168 18.3 7.7 15.2768 135.4 40.6 0.8173 36.1 16.1 0.9998 4.7 2.6
4 102.1921 527.1 209.9 287.8616 6,695.2 1,869.7 0.8181 505.1 222.3 1.0000 57.0 34.5

Table 3. Interval reachability probabilities for the polling system. (Time in seconds.)

unreduced reduced
Q N |S| |G| time |S| |G| time ε I p

m
in (s0

,♦
I G

)

tim
e(
un

re
d)

tim
e(
re
d)

p
m
ax (s0

,♦
I G

)

tim
e(
un

re
d)

tim
e(
re
d)

2 3 1,497 567 0.4 990 324 0.2
10−3 [0, 1] 0.277 4.7 2.9 0.558 4.6 2.5
10−3 [1, 2] 0.486 22.1 14.9 0.917 22.7 12.5

2 4 4,811 2,304 1.0 3,047 1,280 0.6
10−3 [0, 1] 0.201 25.1 14.4 0.558 24.0 13.5

10−3 [1, 2] 0.344 106.1 65.8 0.917 102.5 60.5

3 3 14,322 5,103 3.0 9,522 2,916 1.7
10−3 [0, 1] 0.090 66.2 40.4 0.291 60.0 38.5

10−3 [1, 2] 0.249 248.1 180.9 0.811 241.9 158.8

3 4 79,307 36,864 51.6 50,407 20,480 19.1
10−3 [0, 1] 0.054 541.6 303.6 0.291 578.2 311.0

10−3 [1, 2] 0.141 2,289.3 1,305.0 0.811 2,201.5 1,225.9

4 2 6,667 1,280 1.1 4,745 768 0.8
10−3 [0, 1] 0.049 19.6 14.0 0.118 19.7 12.8

10−3 [1, 2] 0.240 83.2 58.7 0.651 80.9 53.1

4 3 131,529 45,927 85.2 87,606 26,244 30.8
10−3 [0, 1] 0.025 835.3 479.0 0.118 800.7 466.1

10−3 [1, 2] 0.114 3,535.5 2,062.3 0.651 3,358.9 2,099.5

Table 4. Expected times and long-run averages for the polling system. (Time in
seconds.)

Q N eT
m
in (s0

,�
G
)

tim
e(
un

re
d)

tim
e(
re
d)

eT
m
ax (s0

,�
G
)

tim
e(
un

re
d)

tim
e(
re
d)

LR
A
m
in (s0

, G
)

tim
e(
un

re
d)

tim
e(
re
d)

LR
A
m
ax (s0

, G
)

tim
e(
un

re
d)

tim
e(
re
d)

2 3 1.0478 0.2 0.1 2.2489 0.3 0.2 0.1230 0.8 0.5 0.6596 0.2 0.1
2 4 1.0478 0.2 0.1 3.2053 2.0 1.0 0.0635 9.0 5.2 0.6596 1.3 0.6
3 3 1.4425 1.0 0.6 4.6685 8.4 5.0 0.0689 177.9 123.6 0.6600 26.2 13.0
3 4 1.4425 9.7 4.6 8.0294 117.4 67.2 0.0277 7,696.7 5,959.5 0.6600 1,537.2 862.4
4 2 1.8226 0.4 0.3 4.6032 2.4 1.6 0.1312 45.6 32.5 0.6601 5.6 3.9
4 3 1.8226 29.8 14.2 9.0300 232.8 130.8 – timeout (18 hours) – 0.6601 5,339.8 3,099.0

analysing a total of six different settings. Since—as for the previous case—
analysis scales proportionally with the error bound, we keep this constant here.

Table 3 reports results for time-bounded and time-interval bounded proper-
ties, and Table 4 displays probabilities and runtime results for expected times
and long-run averages. For all analyses, the goal set consists of all states for
which both station queues are full.

8 Conclusion

This paper presented new algorithms for the quantitative analysis of Markov
automata (MA) and proved their correctness. Three objectives have been con-
sidered: expected time, long-run average, and timed reachability. The MaMa

tool-chain supports the modelling and reduction of MA, and can analyse these



70 D. Guck et al.

three objectives. It is also equipped with a prototypical tool to map GSPNs onto
MA. The MaMa is accessible via its easy-to-use web interface that can be found
at http://wwwhome.cs.utwente.nl/~timmer/mama. Experimental results on a
processor grid and a polling system give insight into the accuracy and scalability
of the presented algorithms. Future work will focus on efficiency improvements
and reward extensions.

References

1. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE TSE 29(6), 524–541 (2003)

2. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems.
Mathematics of Operations Research 16(3), 580–595 (1991)

3. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: A rigorous, compositional, and ex-
tensible framework for dynamic fault tree analysis. IEEE Trans. Dependable Sec.
Comput. 7(2), 128–143 (2010)

4. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. The Computer
Journal 54(5), 754–775 (2011)

5. Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-
component decomposition and related graph problems in probabilistic verification.
In: SODA, pp. 1318–1336. SIAM (2011)

6. Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance predic-
tion of compositional models in industrial GALS designs. In: Bouajjani, A., Maler,
O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 204–218. Springer, Heidelberg (2009)

7. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University (1997)

8. de Alfaro, L.: How to specify and verify the long-run average behavior of proba-
bilistic systems. In: LICS, pp. 454–465. IEEE (1998)

9. de Alfaro, L.: Computing minimum and maximum reachability times in probabilis-
tic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664,
pp. 66–81. Springer, Heidelberg (1999)

10. Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222,
139–168 (2013)

11. Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for ev-
ery GSPN. In: Colom, J.-M., Desel, J. (eds.) ICATPN 2013. LNCS, vol. 7927,
pp. 90–109. Springer, Heidelberg (2013)

12. Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a
stochastic world. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 21–39. Springer, Heidelberg (2010)

13. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE (2010)

14. Guck, D., Han, T., Katoen, J.-P., Neuhäußer, M.R.: Quantitative timed analysis of
interactive Markov chains. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS,
vol. 7226, pp. 8–23. Springer, Heidelberg (2012)

15. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, re-
duction and analysis of Markov automata (extended version). Technical Report
1305.7050, ArXiv e-prints (2013)

http://wwwhome.cs.utwente.nl/~timmer/mama


Modelling, Reduction and Analysis of Markov Automata 71

16. Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. In:
ECEASST (AVoCS proceedings), vol. 53 (2012) (to appear)

17. Haverkort, B.R., Kuntz, M., Remke, A., Roolvink, S., Stoelinga, M.I.A.: Evaluating
repair strategies for a water-treatment facility using Arcade. In: DSN, pp. 419–424.
IEEE (2010)

18. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality.
LNCS, vol. 2428. Springer, Heidelberg (2002)

19. Katoen, J.-P.: GSPNs revisited: Simple semantics and new analysis algorithms. In:
ACSD, pp. 6–11. IEEE (2012)

20. Katoen, J.-P., van de Pol, J.C., Stoelinga, M.I.A., Timmer, M.: A linear process-
algebraic format with data for probabilistic automata. TCS 413(1), 36–57 (2012)

21. López, G.G.I., Hermanns, H., Katoen, J.-P.: Beyond memoryless distributions:
Model checking semi-markov chains. In: de Luca, L., Gilmore, S. (eds.) PAPM-
PROBMIV 2001. LNCS, vol. 2165, pp. 57–70. Springer, Heidelberg (2001)

22. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. John Wiley & Sons (1995)

23. Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems. ACM Transactions
on Computer Systems 2(2), 93–122 (1984)

24. Meyer, J.F., Movaghar, A., Sanders, W.H.: Stochastic activity networks: Structure,
behavior, and application. In: PNPM, pp. 106–115. IEEE (1985)

25. Neuhäußer, M.R., Stoelinga, M.I.A., Katoen, J.-P.: Delayed nondeterminism in
continuous-time Markov decision processes. In: de Alfaro, L. (ed.) FOSSACS 2009.
LNCS, vol. 5504, pp. 364–379. Springer, Heidelberg (2009)

26. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, MIT (1995)

27. Srinivasan, M.M.: Nondeterministic polling systems. Management Science 37(6),
667–681 (1991)

28. Timmer, M.: SCOOP: A tool for symbolic optimisations of probabilistic processes.
In: QEST, pp. 149–150. IEEE (2011)

29. Timmer, M., Katoen, J.-P., van de Pol, J.C., Stoelinga, M.I.A.: Efficient modelling
and generation of Markov automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 364–379. Springer, Heidelberg (2012)

30. Timmer, M., Katoen, J.-P., van de Pol, J.C., Stoelinga, M.I.A.: Efficient modelling
and generation of Markov automata (extended version). Technical Report TR-
CTIT-12-16, CTIT, University of Twente (2012)

31. Timmer, M., van de Pol, J.C., Stoelinga, M.I.A.: Confluence reduction for
markov automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS,
vol. 8053, pp. 240–254. Springer, Heidelberg (2013)

32. van de Pol, J.C., Timmer, M.: State space reduction of linear processes using control
flow reconstruction. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799,
pp. 54–68. Springer, Heidelberg (2009)

33. Zhang, L., Neuhäußer, M.R.: Model checking interactive markov chains. In: Es-
parza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 53–68. Springer,
Heidelberg (2010)



Deciding Bisimilarities on Distributions

Christian Eisentraut1, Holger Hermanns1, Julia Krämer1,
Andrea Turrini1, and Lijun Zhang2,3,1

1 Saarland University – Computer Science, Saarbrücken, Germany
2 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, Beijing, China
3 DTU Informatics, Technical University of Denmark, Denmark

Abstract. Probabilistic automata (PA) are a prominent compositional concur-
rency model. As a way to justify property-preserving abstractions, in the last
years, bisimulation relations over probability distributions have been proposed
both in the strong and the weak setting. Different to the usual bisimulation rela-
tions, which are defined over states, an algorithmic treatment of these relations
is inherently hard, as their carrier set is uncountable, even for finite PAs. The
coarsest of these relation, weak distribution bisimulation, stands out from the oth-
ers in that no equivalent state-based characterisation is known so far. This paper
presents an equivalent state-based reformulation for weak distribution bisimula-
tion, rendering it amenable for algorithmic treatment. Then, decision procedures
for the probability distribution-based bisimulation relations are presented.

1 Introduction

Weak probabilistic bisimilarity is a well-established behavioural equivalence on prob-
abilistic automata (PA) [20]. However, it is arguably too fine [6, 9]. As an example,
consider the two automata in Fig. 1, where a single visible step, embedding a proba-
bilistic decision is depicted on the left, while on the right this is split into a visible step
followed by an internal, thus invisible probabilistic decision of the very same kind (in-
dicated by τ ). Intuitively, an observer should not be able to distinguish between the two
automata. However, they are not weak probabilistic bisimilar. ≈

a τ
1
3

2
3

a

1
3

2
3

Fig. 1. Distribution bisimilarity

Markov Automata are a compositional behavioural
model for continuous time stochastic and nonde-
terministic systems [5, 8, 9] subsuming Interactive
Markov Chains (IMC) [12] and Probabilistic Au-
tomata. Markov automata weak bisimilarity has been
introduced as an elegant and powerful way of abstracting from internal computation
cascades, yielding the coarsest reasonable bisimilarity [5]. It is a conservative exten-
sion of IMC weak bisimilarity, and also extends weak probabilistic bisimilarity on PA.
But different from standard bisimulation notions, Markov automata weak bisimulations
are defined as relations on subprobability distributions instead of states. Translated back
to the PA setting, this weak distribution bisimilarity enables to equate automata such as
the ones in Fig. 1. The equivalence of these two systems rests on the ability to relate dis-
tributions. If we are only allowed to relate states, we must fail to prove bisimilarity since

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 72–88, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Deciding Bisimilarities on Distributions 73

we would need to require the presence of a state bisimilar to state on the left. This in-
dicates that weak distribution bisimilarity is coarser than weak probabilistic bisimilarity
on PA. It can be regarded as the symmetric version [8] of weak probabilistic forward
similarity [20], the coarsest precongruence preserving trace distributions [16, 17]. The
idea of distribution bisimilarity can also be instantiated in the strong setting [11], where
internal computations are not abstracted from.

In this paper, we present decision algorithms for distribution bisimilarities in the
strong and weak sense. Strong distribution bisimilarity requires only a minor adapta-
tion of the polynomial time decision algorithm for strong probabilistic bisimilarity [1].
However, a decision algorithm for weak distribution bisimilarity cannot follow the tra-
ditional partition refinement approach directly. This is caused by the uncountability of
the underlying carrier set, which here is the set of all distributions over the automaton’s
state space. The key contribution of this paper is an equivalent reformulation of weak
distribution bisimulation in a state-based manner. This makes it eventually amenable
to an algorithmic treatment. To arrive there, we have to tweak the usual approach to
state-based characterisations of bisimulations: instead of all, only specific transitions of
one state must be matched by its bisimilar counterpart. To identify those transitions, we
introduce the concept of behaviour preserving transitions.

Based on this state-based characterisation, we then adapt the standard partition re-
finement algorithm [2, 14, 18] to decide weak bisimilarity. The algorithm successively
refines the current equivalence relation by checking the conditions of the state-based
characterisations. identifying the set of preserving transitions, the overall complexity of
the algorithm is exponential.

The main contribution of this paper is a state-based characterisation of weak distri-
bution bisimilarity, and a decision algorithm based on it. We develop our findings in the
setting of probabilistic automata, they however carry over to Markov automata weak
bisimilarity, where only the notion of maximal progress, inherited from IMC, requires
technical care.

Organisation of the paper. After the preliminaries in Sec. 2, we introduce in Sec. 3
the state-based characterisation of the weak bisimilarity in the context of probabilistic
automata. We devote Sec. 4 to prove the equivalence between state-based and
distribution-based weak bisimilarities. We describe in Sec. 5 the decision procedure
and we conclude the paper by Sec. 6 with a discussion on related and future work and
by Sec. 7 with some general remarks.

2 Preliminaries

For a set X , we denote by SubDisc(X) the set of discrete sub-probability distributions
over X . Given ρ ∈ SubDisc(X), we denote by |ρ| the probability mass ρ(X) of a
subdistribution, by Supp(ρ) the set { x ∈ X | ρ(x) > 0 }, by ρ(⊥) the value 1− ρ(X)
where⊥ /∈ X , and by δx, where x ∈ X∪{⊥}, the Dirac distribution such that ρ(y) = 1
for y = x, 0 otherwise; δ⊥ represents the empty distribution such that ρ(X) = 0. We
call a distribution ρ full, or simply a probability distribution, if |ρ| = 1. The set of all
discrete probability distributions over X is denoted by Disc(X).



74 C. Eisentraut et al.

The liftingL(B) ⊆ SubDisc(X)×SubDisc(X) [15] of an equivalence relation B on
X is defined as: for ρ1, ρ2 ∈ SubDisc(X), ρ1 L(B) ρ2 if and only if for each C ∈ X/B,
ρ1(C) = ρ2(C). We define the distribution ρ := ρ1 ⊕ ρ2 by ρ(s) = ρ1(s) + ρ2(s)
provided |ρ| ≤ 1, and conversely we say ρ can be split into ρ1 and ρ2. Since ⊕ is
associative and commutative, we may use the notation

⊕
for arbitrary finite sums.

Similarly, we define ρ := ρ1 � ρ2 by ρ(s) = max{ρ1(s) − ρ2(s), 0}. For notation
convenience, for a state s, we denote by ρ� s the distribution ρ� δs.

It is often convenient to consider distributions as relations over X × R≥0 and thus
explicitly denote the distribution μ by the relation { (s : ps) | s ∈ X, ps = μ(s) }.

A Probabilistic Automaton (PA) [20] A is a quadruple (S, s̄, Σ,D), where S is a
finite set of states, s̄ ∈ S is the start state, Σ is the set of actions, and D ⊆ S ×
Σ×Disc(S) is a probabilistic transition relation. The set Σ is partitioned into two sets
H = {τ} and E of internal (hidden) and external actions, respectively; we refer to s̄
also as the initial state and we let s,t,u,v, and their variants with indexes range over S
and a, b over actions. In this work we consider only finite PAs, i.e., automata such that
S and D are finite.

A transition tr = (s, a, μ) ∈ D , also denoted by s a−→ μ, is said to leave from state
s, to be labelled by a, and to lead to μ, also denoted by μtr . We denote by src(tr)
the source state s, by act(tr) the action a, and by trg(tr) the target distribution μ. We
also say that s enables action a, that action a is enabled from s, and that (s, a, μ) is
enabled from s. Finally, we denote by D(s) the set of transitions enabled from s, i.e.,
D(s) = { tr ∈ D | src(tr) = s }, and similarly by D(a) the set of transitions with
action a, i.e., D(a) = { tr ∈ D | act(tr) = a }.

Weak Transitions. An execution fragment of a PA A is a finite or infinite sequence of
alternating states and actions α = s0a1s1a2s2 . . . starting from a state s0, also denoted
by first(α), and, if the sequence is finite, ending with a state denoted by last(α), such
that for each i > 0 there exists a transition (si−1, ai, μi) ∈ D such that μi(si) > 0.
The length of α, denoted by |α|, is the number of occurrences of actions in α. If α is
infinite, then |α| = ∞. Denote by frags(A) the set of execution fragments of A and
by frags∗(A) the set of finite execution fragments of A. An execution fragment α is a
prefix of an execution fragment α′, denoted by α � α′, if the sequence α is a prefix
of the sequence α′. The trace trace(α) of α is the sub-sequence of external actions of
α; we denote by ε the empty trace. Similarly, we define trace(a) = a for a ∈ E and
trace(τ) = ε.

A scheduler for a PA A is a function σ : frags∗(A) → SubDisc(D) such that for
each finite execution fragment α, σ(α) ∈ SubDisc(D(last(α))). Note that by using
sub-probability distributions, it is possible that with some non-zero probability no tran-
sition is chosen after α, that is, the computation stops after α. A scheduler is deter-
minate [2] if for each pair of execution fragments α, α′, if trace(α) = trace(α′) and
last(α) = last(α′), then σ(α) = σ(α′). A scheduler is Dirac if for each α, σ(α) is a
Dirac distribution. Given a scheduler σ and a finite execution fragment α, the distribu-
tion σ(α) describes how transitions are chosen to move on from last(α). A scheduler σ
and a state s induce a probability distribution μσ,s over execution fragments as follows.
The basic measurable events are the cones of finite execution fragments, where the cone



Deciding Bisimilarities on Distributions 75

of α, denoted by Cα, is the set {α′ ∈ frags(A) | α � α′ }. The probability μσ,s of a
cone Cα is recursively defined as:

μσ,s(Cα) =

⎧⎪⎨⎪⎩
0 if α = t for a state t = s,

1 if α = s,

μσ,s(Cα′ ) ·
∑

tr∈D(a) σ(α
′)(tr) · μtr (t) if α = α′at.

Standard measure theoretical arguments ensure that μσ,s extends uniquely to the σ-
field generated by cones. We call the resulting measure μσ,s a probabilistic execution
fragment of A and we say that it is generated by σ from s. Given a finite execution
fragment α, we define μσ,s(α) as μσ,s(α) = μσ,s(Cα) · σ(α)(⊥), where σ(α)(⊥) is
the probability of terminating the computation after α has occurred.

We say that there is a weak combined transition from s ∈ S to μ ∈ Disc(S) labelled
by a ∈ Σ, denoted by s a

=⇒c μ, if there exists a scheduler σ such that the following
holds for the induced probabilistic execution fragment μσ,s: (1) μσ,s(frags

∗(A)) = 1;
(2) for each α ∈ frags∗(A), if μσ,s(α) > 0 then trace(α) = trace(a) (3) for each state
t, μσ,s({α ∈ frags∗(A) | last(α) = t }) = μ(t). In this case, we say that the weak
combined transition s a

=⇒c μ is induced by σ.
We remark that trace(α) = trace(a) is equivalent to trace(α) = ε for a = τ and

trace(α) = a for a ∈ E. Moreover, the first two conditions can be equivalently replaced
by μσ,s({α ∈ frags∗(A) | trace(α) = trace(a) }) = 1.

Given a set of allowed transitions Ǎ ⊆ D , we say that there is an allowed weak
combined transition [13] from s to μ with label a respecting Ǎ, denoted by s a�Ǎ

=⇒c μ,
if there exists a scheduler σ inducing s a

=⇒c μ such that for each α ∈ frags∗(A),
Supp(σ(α)) ⊆ Ǎ.

Albeit the definition of weak combined transitions is somewhat intricate, this defini-
tion is just the obvious extension of weak transitions on labelled transition systems to
the setting with probabilities. See [21] for more details on weak combined transitions.

Example 1. As an example of weak combined transition, consider the probabilistic au-
tomaton depicted in Fig. 2 and the probability distribution μ = {( : 3

4 ), ( 5 : 1
4 )}. It

is immediate to verify that the weak combined transition 1 τ
=⇒c μ is induced by the

Dirac determinate scheduler σ defined as follows: σ( 1 ) = δtr1
, σ( 1 τ 2 ) = δtr2

,
σ( 1 τ 3 ) = δtr3

, σ( 1 τ 2 τ 4 ) = σ( 1 τ 3 τ 4 ) = δtr4
, and σ(α) = δ⊥ for

each other finite execution fragment α. If we consider all transitions but tr2 as allowed
transitions Ǎ, then there is no scheduler inducing 1 τ�Ǎ

=⇒c μ. In fact, using this set of
allowed transitions, the maximal probability of reaching from 1 is 1

4 by the execu-
tion fragment 1 τ 3 τ 4 τ . ��

1

2

3

4

5

6
τ

τ

τ

τ

τ

τ

c c

τtr1

1
2

1
2

tr2

tr3

1
2

1
2

tr4

tr51
4

3
4

Fig. 2. A probabilistic automaton

We say that there is a weak (allowed) hy-
per transition from ρ ∈ SubDisc(S) to
μ ∈ SubDisc(S) labelled by a ∈ Σ, de-
noted by ρ a

=⇒c μ (ρ a�Ǎ
=⇒c μ), if there

exists a family of (allowed) weak com-
bined transitions {s a

=⇒c μs}s∈Supp(ρ)

({s a�Ǎ
=⇒c μs}s∈Supp(ρ)) such that μ =⊕

s∈Supp(ρ) ρ(s) · μs.



76 C. Eisentraut et al.

3 Probabilistic Bisimulations

For non-stochastic systems, the idea of bisimulation can be formalised as a binary sym-
metric relation B over states where each pair of states (s, t) ∈ B satisfies that whenever
s a−→ s′ for some state s′, then there exists a state t′ such that t a−→ t′ and s B t.
Strong bisimilarity is the union of all such strong bisimulations. Bisimulation can be
seen as a game [7, 22, 23], and therefore one often calls s the challenger proposing a
transition and t the defender. Phrased differently, in a bisimulation, every transition of
a challenger must be matched by some transition of its corresponding defender. Weak
bisimulation and bisimilarity is defined analogously, but with the strong transition ar-
row a−→ replaced by its weak variant a=⇒ that in addition allows to perform arbitrary
sequences of τ actions before and after the action a is performed.

When translating the idea of bisimulation to probabilistic systems, it is generalised
in order to account for the probabilistic setting: Transitions −→ and =⇒ are replaced
by their combined variants −→c and =⇒c, and target states s′ and t′ become target
distributions μ and γ over states, respectively. Finally, target distributions must match
up to the lifting ofB to distributions (L(B)). For a detailed motivation of these adaptions
we refer the interested reader to [20]. Strong and weak probabilistic bisimulation can
then be defined as follows.

Definition 1 (Strong and Weak Probabilistic Bisimulations). For a probabilistic au-
tomaton A = (S, s̄, Σ,D), a symmetric relation B over S is a probabilistic bisimula-
tion, if each pair of states (s, t) ∈ B satisfies for every a ∈ Σ: s

a� μ implies t
a� γ for

some γ ∈ Disc(S) and μ L(B) γ.

We call B strong, if � = −→c and weak if � = =⇒c. The union of all strong (weak)
bisimulation relations is called strong (weak) bisimilarity. For a uniform presentation,
our definitions differ from the standard in the challenger’s transition, which usually
chooses a strong and not combined transition. The resulting bisimilarities can, however,
be shown to be identical.

It is worthwhile to observe that weak probabilistic bisimulation is often considered
too fine when it comes to intuitively unobservable behavioural differences [6, 9]. This
has been already illustrated in Fig. 1, where weak probabilistic bisimulation fails to
equate the automata on the left and the right hand side. We are going to shed some
more light on this.

Example 2. (Weak Probabilistic Bisimulation is Too Fine) Consider again the PA de-
picted in Fig. 2, where non-circular shaped states are supposed to have pairwise distinct
behaviour. Intuitively, the observable behaviour of state 1 cannot be distinguished from
that of state 6 : whenever the action c happens, or likewise, any of the non-round states
is reached, this happens with the same probability for both 1 and 6 . In [20], this in-
tuition of what the coarsest reasonable notion of observability is, has been formalised
as trace distribution precongruence, that has been proven equivalent [16] to the notion
of weak probabilistic forward similarity. The latter relates states to probability distri-
butions over states. However, weak probabilistic bisimilarity distinguishes between the
two states, as already the first transition of 1 to the distribution γ =

(
1
2δ 2

)
⊕
(
1
2δ 3

)
cannot be matched by 6 . The reason is that the only distribution reachable from 6 is



Deciding Bisimilarities on Distributions 77

μ =
(
3
4δ 4

)
⊕
(
1
4δ 5

)
. Clearly, for μ L(B) γ to hold, all states 2 , 3 , 4 and 5 must

be equivalent. However, this cannot be the case, as for example 5 cannot perform any
transition, while state 4 can perform a transition labelled with c. This means that al-
though, 1 and 6 show the same observable behaviour with the same probability, they
are distinguished by weak probabilistic bisimilarity.

Notably, all the distributions δ 1 ,
(
3
4δ 4

)
⊕
(
1
4δ 5

)
, and γ are pairwise trace distribu-

tion precongruent (and weak probabilistic forward similar). ��

With these motivations in mind, several probabilistic bisimulation variants defined on
probability (sub)distributions over states have been introduced for the strong setting [11]
and for the weak setting [5, 8, 9]. For the weak setting, there currently exist three dif-
ferent variations, however, two of them essentially coincide [6]. We will recall these
notions in the following. Again, our definitions differ from the original definitions for
the sake of a uniform presentation, which allows to highlight differences and similarities
clearly.

Definition 2 (Strong and Weak Probabilistic Distribution Bisimulations). For a PA
A = (S, s̄, Σ,D), a symmetric relation B over SubDisc(S) is a probabilistic distribu-
tion bisimulation, if each pair of subdistributions (μ, γ) ∈ B satisfies |μ| = |γ| and for
every a ∈ Σ

(a) μ
a� μ′ implies γ

a� γ′ for some γ ∈ SubDisc(S) and μ′ B γ′.
(b) μ = μ1⊕μ2 implies γ = γ1⊕ γ2 for some γ1, γ2 ∈ SubDisc(S) such that μi B γi

for i ∈ {1, 2}.

As before, we obtain the strong and weak variants by replacing � by −→c and =⇒c

respectively; the corresponding bisimilarities are defined as the union of all respective
bisimulations.

As shown in [11] (for strong) and [8] (for weak), these distribution-based bisimilar-
ities are indeed reformulations of their state-based counterparts, in so far that for two
states s and t, the distributions δs and δt are bisimilar in the distribution-based bisimu-
lations, if and only if s and t are bisimilar in the respective state-based counterparts.

The weak bisimilarities defined in [9] and [5] (for Markov automata) coincide [6],
if restricted to probabilistic automata, but do not correspond to any known state-based
bisimilarity. We can define them as follows.

Definition 3 (Weak Distribution Bisimulation). For a PA A = (S, s̄, Σ,D), a sym-
metric relation B over SubDisc(S) is a weak distribution bisimulation, if each pair of
subdistributions (μ, γ) ∈ B satisfies |μ| = |γ| and for every a ∈ Σ

(a) μ a
=⇒c μ

′ implies γ a
=⇒c γ

′ for some γ′ ∈ SubDisc(S) and μ′ B γ′.
(b) μ = μ1 ⊕ μ2 implies γ τ

=⇒c γ1 ⊕ γ2 for some γ1, γ2 ∈ SubDisc(S) such that
μi B γi for i ∈ {1, 2}.

The union of all weak distribution bisimulation relations is called weak distribution
bisimilarity, denoted by ≈. It is an equivalence relation and the coarsest weak distribu-
tion bisimulation relation. Two PAs are weak distribution bisimilar if the Dirac distri-
butions of their initial states are weak distribution bisimilar in the direct sum of the two



78 C. Eisentraut et al.

PAs, i.e., in the automaton whose components are the disjoint union of the components
of the two automata. We project the relation ≈ to states (denoted ≈δ) as follows. We
say that two states s, t are related by≈δ ⊆ S × S, if and only if δs ≈ δt.

The strength of this definition is the introduction of a weak transition in Condi-
tion (b). As already noted in [8], this is in fact the only difference to weak probabilistic
distribution bisimulation (Def. 2).

While in Ex. 2 we have argued that the distributions γ =
(
1
2δ 2

)
⊕
(
1
2δ 3

)
and

μ =
(
3
4δ 4

)
⊕
(
1
4δ 5

)
are not weak probabilistic bisimilar in the PA of Fig. 2, they

satisfy μ ≈ γ, because γ τ
=⇒c μ, which is effectively the only transition of γ, and it thus

directly satisfies Condition (a) and (b) of Def. 3.
So while distribution-based bisimulations give rise to coarser and more natural no-

tions of equality, they also have severe drawbacks. A distribution-based bisimulation re-
lation that is to be constructed in order to prove two systems bisimilar is much harder to
define than for a state-based relation: For state-based bisimulations only the set of reach-
able states must be considered and suitably related pairwise. In contrast for distribution-
based systems the potentially uncountable set of all reachable distributions needs to be
considered. This gets problematic when it comes to algorithmic checks for bisimilarity,
for example, in the context of verification of systems and state-space minimisation by
bisimulation quotienting. Standard partition refinement approaches usually applied in
this context seem infeasible here, as even for finite state space, the problem space (i.e.,
the reachable distributions) is uncountable.

For the strong and weak distribution-based bisimilarities according to Def. 2 the
above issue is not a problem, since they can be reduced to the state-based setting. For
weak distribution bisimilarity according to Def. 3, the situation is more complicated as
no state-based characterisation is known, and it is by far not obvious how to arrive at
such a characterisation. To approach this, we will now give an intuitive explanation why
the fact that weak probabilistic bisimilarity is too distinctive seems rooted in the fact
that it is a naturally state-based relation, and then explain how to overcome the problem
while maintaining the state-based bisimulation approach as far as possible.

For the discussion that follows, we assume a generic underlying notion of observa-
tion equivalence such as a trace distribution-based equivalence. We call a state s be-
haviourally pivotal, if s τ−→ μ implies that s and μ are not observation equivalent, i.e.,
μ is not able to perform μ τ=⇒c ρ such that s and ρ are observation equivalent.

Ex. 2. (cont’d) (Behaviourally Pivotal States) Assume again that all non-round states of
the PA in Fig. 2 induce pairwise distinct behaviour (for example each state can only per-
form a different external action). Then state 4 is behaviourally pivotal, since none of
its internal successor distributions δ and δ can behaviourally match the other, and thus
cannot preserve the behaviour of s. Trivially, also 5 is behaviourally pivotal, since it
has no successors. In contrast, all other states are not behaviourally pivotal, as for each
of them the behaviour is fully preserved by one of its respective τ -successor distri-
butions. In particular, state 2 is not behaviourally pivotal since its behaviour is fully
preserved by δ 4 via transition 2 τ−→ δ 4 . ��
Consider the probability distribution μ =

(
3
4δ 4

)
⊕
(
1
4δ 5

)
over behaviourally piv-

otal states. From the perspective of the individual behaviour of the single states in its
support, this distribution is different from the distribution γ =

(
1
2δ 2

)
⊕
(
1
2δ 3

)
over



Deciding Bisimilarities on Distributions 79

non-pivotal states. For example, from the perspective of an observer, 3 ∈ Supp(γ)
can perform the transition to with at most probability 1

2 . In comparison, state 4 ∈
Supp(μ) can perform this transition with probability 1, while 5 ∈ Supp(μ) cannot
perform this transition at all.

However, as we have discussed in Ex. 2, both distributions as such can be regarded as
observation equivalent. Weak probabilistic bisimilarity, however, focusing on state-wise
behaviour, needs to distinguish between μ and γ regardless of the fact that distribution
γ, consisting only of non-pivotal states, can by no means be noticed by an observer, as
it is merely skipped over on the way from 1 to μ.

From the discussion so far, we will now derive necessary steps to recast Def. 3 in
a state-based setting. As we have seen, the fact that weak probabilistic bisimilarity
is arguably too fine is mainly due to the fact that it is too much focused on single
state behaviour. More precisely, the problem is that it treats behaviourally non-pivotal
states (e.g., 2 and 3 ) in the same way as pivotal states (e.g., 4 and 5 ). To overcome
this, a state-based characterisation of weak distribution bisimilarity will first of all iden-
tify pivotal states, and then, speaking from the game perspective on bisimulation, allow
the bisimulation challenger only to propose a challenging transition to a distribution
over pivotal states.

Example 3. When we want to show that 1 and 6 are weak distribution bisimilar, then
the challenger should not be allowed to propose the transition to γ =

(
1
2δ 2

)
⊕
(
1
2δ 3

)
,

which has non-pivotal states in its support (actually both states are non-pivotal). Instead,
it may only propose

(
3
4δ 4

)
⊕
(
1
4δ 5

)
.

In fact, our approach will not characterise pivotal states explicitly, but rather use a set
of distinguished internal transitions (s, τ, μ) ∈ D(τ) with the property that δs and μ
are behaviourally equivalent. We call such transitions preserving. As a state is pivotal
if it has no internal successor distribution that can fully mimic its behaviour, the set of
pivotal state then is exactly the set of all states that do not enable a preserving transition.

The technically crucial idea of our approach is to define the bisimulation relation B
over states and the set P of distinguished transitions simultaneously. The definitions of
B and P will be mutually dependent. This allows us to use the information from set P
to identify pivotal states when defining the bisimulation B. Vice versa, the information
provided from the bisimulation B allows us to determine when a state has a τ -successor
distribution, that is behaviourally equivalent. As it is technically more convenient, we
will not formally define the notion of pivotal states in the sequel, but directly work with
the notion of preserving transitions instead.

Definition 4 (Preserving Transitions). Let B be an equivalence relation on S. We call
an internal transition (s, τ, γ) ∈ D(τ) preserving with respect to B if whenever s a

=⇒c μ
then there exist μ′, γ′ such that μ τ�P

=⇒ c μ
′, γ a

=⇒c γ
′, and μ′ L(B) γ′.

We call a set P ⊆ D(τ) preserving with respect to B if it only consists of preserving
transitions.

Example 4. In Fig 2, transitions tr1, tr2, tr3 and tr5 are preserving, while all other
transitions are not. It is especially interesting to note that tr2 is preserving while the
other internal transition leaving 2 is not, as is not behaviourally equivalent to 2 .



80 C. Eisentraut et al.

Given a set P of preserving transitions, we from now on call weak (hyper) transitions of
the form τ�P

=⇒ preserving weak (hyper) transitions, and τ�P
=⇒ c preserving weak combined

(hyper) transitions.

Definition 5 (State-Based Characterisation of Weak Distribution Bisimulation).
An equivalence relation B on S is called a state-based weak distribution bisimulation,
if there is a set P ⊆ D(τ) that is preserving with respect to B and whenever s B t,

1. if s a=⇒c μ for some μ, then t a=⇒c γ for some γ, such that there exists μ′ such that
μ τ�P

=⇒ c μ
′ and μ′ L(B) γ;

2. if s τ�P
=⇒ c μ for some μ, then t τ�P

=⇒ c γ for some γ, such that there exists μ′ such that
μ τ�P

=⇒ c μ
′ and μ′ L(B) γ.

We write s ≈s t if there exists a state-based weak distribution bisimulation relating
s and t.

s μ

μ′

γ γ′ L(B)

a

τP �

a

τ �P

C

C

C

s μ

μ′

t γ′ L(B)

a

a

τ �P
B

C

C

C

Fig. 3. Preserving transitions (left) and Condition 1 of state-based weak distribution bisimulation

In Fig. 3, preserving transitions and state-based weak distribution bisimulation are
explained graphically. Solid lines denote challenger transitions, dashed lines defender
transitions. Different to weak probabilistic bisimulation, the role of the defender in the
bisimulation game is no longer linked exclusively to transitions of t. Although the weak
allowed hyper transition from μ to μ′ originates from a successor distribution of s rather
than t, the defender can choose this transition. As a consequence, the defender does not
need to match the challenging distribution μ directly, but it is allowed to choose an arbi-
trary distribution μ′, which it is able to match, as long as μ τ�P

=⇒ c μ
′. In intuitive terms,

a transition (t, τ, ξ) is in P if t is non-pivotal; the existence of a transition μ τ�P
=⇒ c μ

′

(with μ = μ′) means that μ must contain non-pivotal states, and thus, we liberate the
defender from its obligation to match μ by allowing it to match μ′ instead. At the same
time, if μ was a distribution exclusively over pivotal states, then no μ′ = μ would exist
such that μ τ�P

=⇒ c μ
′. Thus, the defender is forced to match exactly distributions over

pivotal states. Intuitively, we want a transition s τ−→ γ to be contained in P , exactly if s
and γ allow the same observations, which in turn means that s is non-pivotal. Formally,
this is achieved by defining P completely analogous to the state-based characterisation
of weak distribution bisimulation. The only difference is that the role of the defender is
played by a distribution γ, instead of a state.

So far, we have left Condition 2 of Def. 5 unmentioned, which expresses that if one
of two related states can perform transitions within P , then also the other state must be
able to match these transitions within P . This condition might come unexpected, and
we claim, that the condition can be dropped without affecting the resulting notion of



Deciding Bisimilarities on Distributions 81

bisimilarity. Yet, currently it is needed for the proof of Thm. 1, which establishes that the
distribution-based and the state-based characterisation of weak distribution bisimilarity
are indeed equivalent.

Example 5. (State-Based Weak Distribution Bisimulation) Consider again the PA de-
picted in Fig. 2 and suppose that states , , and are not weak bisimilar. The equiva-
lence relation B whose non-singleton classes are { 1 , 6 } and { 2 , 4 } is a state-based
weak distribution bisimulation, given P = {tr1, tr2, tr3, tr5}.

Checking the step condition for the pair ( 2 , 4 ) is trivial, so let us focus on the pair
( 1 , 6 ). Each weak combined transition 6 τ=⇒c μ enabled by 6 , can be matched by 1

by reaching μtr5
(via preserving transitions tr1, tr2, and tr3 chosen with probability 1)

and then behaving as in 6 τ
=⇒c μ. If we stay in 6 with non-zero probability, then we

remain in 1 with the same probability and the lifting condition is satisfied.
Now, consider the weak transition 1 τ

=⇒c μ enabled by 1 , where μ = {( 2 : 1
2 ),

( 3 : 1
2 )} (this is actually the ordinary transition tr1). 6 has no way to reach μ so it

needs help of 1 to match such a transition: 6 performs the transition 6 τ
=⇒c γ where

γ = {( 4 : 3
4 ), ( 5 : 1

4 )}, i.e., it performs tr5, while μ reaches γ by the preserving
weak hyper transition μ τ�P

=⇒ c γ by choosing with probability 1 preserving transitions
tr2 from 2 and tr3 from 3 and then stopping.

The transition 1 τ
=⇒c μ is not the only weak combined transition enabled by 1 .

It enables, for instance, the weak combined transition 1 τ=⇒c ρ where ρ = {( :
1
2 ), ( 3 : 1

2 )}. 6 matches this transition by enabling 6 τ
=⇒c φ where φ = {( :

1
2 ), ( 4 : 1

4 ), ( 5 : 1
4 )} that can be reached from ρ by the preserving weak hyper tran-

sition ρ τ�P
=⇒ c φ obtained by performing no transitions from and choosing tr3 (that

is preserving) with probability 1 and then stopping. There are several other transitions
enabled by 1 that can be matched in a similar way.

Finally, we want to remark that weak probabilistic distribution bisimulation given in
Def. 2 is obtained from Def. 5 by requiring P = ∅, since, when P = ∅, we have that
s τ�∅

=⇒c μ implies μ = δs as well as μ τ�∅
=⇒c μ

′ implies μ′ = μ.

4 Correctness of the Characterisation

The correctness of the state-based characterisation of weak distribution bisimilarity will
be formalised by Thm. 1. We obtain this equality in a slightly restricted setting where
we collapse probability 1 cycles, or maximal end components (mecs) [4], i.e., τ -cycles
where it is possible to return to each state of the cycle with probability 1. This restric-
tion, that is due to technical reasons, does not affect the general applicability of Thm. 1
since collapsing mecs preserves≈δ , as stated by Lemma 1.

We will now define the restricted setting in which we will then establish the correct-
ness proof. Along the way, we will present insightful examples where the unrestricted
setting has caused unexpected difficulties. In the restricted setting, we will only consider
PAs, where no cyclic structure in the following sense exists.

Definition 6 (Maximal End Components). Given a PAA with set of states S, a maxi-
mal end component (mec) is a maximal set C ⊆ S such that for each s, t ∈ C: s τ

=⇒c δt
and t τ

=⇒c δs.



82 C. Eisentraut et al.

The definition stems from [4]. The set of all mecs is a disjoint partitioning of S. Thus,
the relation =mec, where s =mec t if and only if s and t lie in the same mec, is an
equivalence relation on states. All states that lie in the same mec can mutually reach
each other with τ transitions with probability 11. It is thus straightforward to show that
such states are weak distribution bisimilar.

Lemma 1. s =mec t implies s ≈δ t.

Surprisingly, the presence of mecs in a PA leads to unexpected results. In general, it
is folklore knowledge that replacing the weak challenger transition s a=⇒c μ of weak
bisimulation by a strong challenger transition s a−→ μ leads to equipotent characterisa-
tions of the induced bisimilarities. For state-based weak distribution bisimilarity, this
is not the case. We will refer to this variation of Definition 5 as the strong challenger
characterisation in the sequel.

sv t

τ

τ, P

τ, P a

Example 6. (Strong Challenger Characterisation is Broken in the Presence of Mecs.)
Consider the automaton above. All transitions in this example are Dirac transitions. We
label two transitions with τ, P in order to express that they are elements of P , the set
of supposedly preserving transitions considering the strong challenger characterisation.
Note that, however, the transition from s to v is not a preserving transition in the
sense of the original definition with respect to any bisimulation relation B, since s

can reach with a weak a transition, whereas v cannot perform an a transition at
all. However, all conditions of the strong challenger characterisation are satisfied. The
only non-preserving strong transition s can perform is the one to t . Now it is enough
that t can reach v via preserving transitions, by using t τ−→ δs and s τ−→ δv. For
completeness, it is easy to check that the transition from t to s satisfies the conditions
to be a preserving transition. With this result, it is straightforward to construct two
bisimulations B1 and B2 (satisfying the strong challenger characterisation), where B1

is the reflexive, transitive and symmetric closure of the relation containing only the pair
( v , s ) and B2 accordingly containing ( s , t ). It is easy to check that for both B1 and
B2 our choice of preserving transitions satisfies the strong challenger characterisation.
If this characterisation now indeed was equivalent to ≈δ , the restriction of ≈ to states,
then also v ≈δ s and s ≈δ t would hold and thus, by transitivity, also v ≈δ t .
But clearly, this cannot hold, as t can perform an a-transition while v cannot.

These considerations led us to only consider mec-contracted PAs in the following.

Definition 7 (Mec-Contracted PA). A PA A is called mec-contracted, if for each pair
of states s, t ∈ S, s τ=⇒c δt and t τ=⇒c δs implies s = t.

Obviously, the quotient under =mec is a mec-contracted automaton, where the quotient
under =mec of a PA A is defined as follows:

1 Note that mecs are not necessarily bottom strongly connected components, as a mec may well
be escaped by τ transitions.



Deciding Bisimilarities on Distributions 83

Definition 8 (Quotient under =mec). Given a PA A = (S, s̄, Σ,D) and the equiv-
alence relation =mec on S, the quotient under =mec of A is the automaton A′ =
(S/=mec, [s̄]=mec , Σ,D/=mec) where D/=mec = { ([s]=mec , a, [μ]=mec) | (s, a, μ) ∈ D }
and [μ]=mec ∈ Disc(S/=mec) is the probability distribution defined for each C ∈ S/=mec

as [μ]=mec(C) = μ(C).

In the restricted setting we have introduced, the following theorem states that the state-
based characterisation (Def. 5) of weak distribution bisimulation is indeed equivalent
to the original distribution-based definition (Def. 3).

Theorem 1 (Equivalence of Characterisations). If A is a mec-contracted PA, then
for every t and t′ in S, t ≈δ t

′ if and only if t ≈s t
′.

5 Decision Procedure

In this section we investigate algorithms for distribution bisimilarity that decide whether
two states of an automaton are equivalent. For strong and weak probabilistic distribu-
tion bisimilarity, we can rely on existing decision algorithms for the corresponding
state-based characterisations [1, 2]. If we want to relate a pair of distributions (μ, ν),
we can introduce two fresh states from which a transition with a fresh label goes to
distribution μ, respectively ν, and then check the bisimilarity of these two states with
the above mentioned algorithms tailored to the state-based setting. For weak distribu-
tion bisimilarity, we can proceed accordingly, provided we have a decision algorithm
for state-based weak distribution bisimilarity. In the rest of this section, we will devise
such an algorithm.

More precisely, the algorithm constructs S/≈s, the set of equivalence classes of
states under≈s. In contrast to all known bisimulation variants, we cannot blindly apply
the standard partition refinement approach [2, 14, 18], since we potentially split equiv-
alence classes that should not be split as the result of a negative interference between
the set of preserving transitions and the current partitioning, as Ex. 7 will show. We
shortly repeat the general idea of partition refinement to illustrate the problems we face.
Partition refinement starts with an initial partition W, which only consists of a single
set (called a block) containing all states. Thus, all states are assumed to be pairwise
state-based weak distribution bisimilar. This assumption is then checked, and usually
there is a reason to split the block. Refining the partition then means we successively
split a block in two (or more) blocks, whenever it contains states still assumed state-
based weak distribution bisimilar in the previous iteration of the refinement loop, while
in the current iteration they violate any of the state-based weak distribution bisimula-
tion conditions. When no more splitting is possible, the algorithm has found the largest
state-based weak distribution bisimulation and returns that.

In our setting, we have to manipulate also the set of preserving transitions P , since
it depends on the equivalence relation induced by the partition. The obvious way is to
start initially with the set D(τ) of all internal transitions. Transitions are then elimi-
nated from this set, as soon as they violate Def. 4. However, as it turns out, the two
procedures, partition refinement and transition elimination, interfere negatively. Focus-
ing on Condition 1 of Def. 5, the challenging transition s a

=⇒c μ is only dependent on



84 C. Eisentraut et al.

the transition relation underlying the given PA, but not on the current partition or P .
In contrast, Condition 2 demands s τ�P

=⇒ c μ. However, the existence of such transition
depends on P , which itself varies over the refinement process. As a consequence, we
can obtain false negatives, if P still contains a transition starting from s that will not
be contained in the final P , while the corresponding transition from t has already been
eliminated from P during an earlier refinement step.

Example 7. Let s τ−→ and s τ−→ and also t τ−→ and t τ−→ . Assume that states
and are not weak distribution bisimilar. Then, clearly, none of the transitions is

preserving. However, s and t are obviously weak distribution bisimilar. Assume the
transition t τ−→ has been eliminated from the candidate set P , but s τ−→ has not.
Then, when we check whether s and t satisfy the second condition of Def. 5, s τ�P

=⇒ c δ
holds, but t τ�P

=⇒ c δ does not. Thus, s and t will be erroneously split.

DECIDE(A)
1: A′ = QUOTIENT-UNDER-MEC(A)
2: W = ∅
3: for all P ⊆ D(τ ) do
4: W′ = QUOTIENT-WRT-PRES(A′, P )
5: W = JOIN(W,W′)
6: return W

QUOTIENT-WRT-PRES(A, P )

1: W = {S};
2: repeat
3: W′ = W;
4: if not CONSISTENCY(P,W) then
5: return ∅
6: (C, a, ρ) = FINDSPLIT(W, P );
7: W = REFINE(W, (C, a, ρ));
8: until W = W′

9: return W

If we remove Condition 2 from Def. 5, then we can show that the set P can be correctly
refined with respect to W. Since currently we have to maintain such condition, we adopt
a brute force approach, where we first fix P , and refine W according to the standard
partition refinement approach with respect to the set P .2

We repeat the refinement described for every possible set of preserving transitions.
This is done inside the for loop of the main procedure, DECIDE, of the algorithm. This
means we consider all subsets of D(τ), which, unfortunately, is of size in O(2|D|).

The partition refinement happens in procedure QUOTIENT-WRT-PRES, which is pa-
rameterised by P . This procedure is entirely unsurprising except for a consistency
check performed in procedure CONSISTENCY: During each refinement iteration of W
in QUOTIENT-WRT-PRES, we check whether the currently assumed set P actually still
satisfies Def. 4. If it does not, we stop refining and immediately return W = ∅.

After each call of QUOTIENT-WRT-PRES, in procedure DECIDE the returned par-
titioning W is joined with the previously computed partitioning W′. Procedure JOIN

computes the partitioning that results from the union of the two partitionings. Treat-
ing W and W′ as equivalence relations over S, it computes the reflexive, transitive and
symmetric closure of W ∪W′. Thus, when QUOTIENT-WRT-PRES returns ∅ in order to
indicate that no weak distribution bisimulation exists for the current candidate P , this
result will not change W′.

2 In the following, we will treat W both as a set of partitions and as an equivalence relation,
wherever convenient, without further mentioning.



Deciding Bisimilarities on Distributions 85

As the algorithm is based on the state-based characterisation of weak distribution
bisimulation, we cannot apply the algorithm on arbitrary PAs directly, but only on mec-
contracted. Therefore, we have to transform every input PA into a mec-contracted PA
before further processing. This is done in Line 1 of procedure DECIDE, where pro-
cedure QUOTIENT-UNDER-MEC is applied. This procedure computes the quotient PA
with respect to =mec. Clearly, this quotient is mec-contracted by definition. Deciding
=mec is very efficient [3]. Lemma 1 guarantees the soundness of this approach with
respect to deciding ≈δ .

5.1 Matching Weak Transitions, Consistency Checking, and Splitting

Before we provide explanations of the procedures FINDSPLIT and REFINE, we first
discuss how to construct matching weak transitions. The following enables us to effec-
tively compute the existence of two matching weak transitions.

Proposition 1 (cf. [13, Prop. 3]). Given a PA A, two sub-probability distributions
ρ1, ρ2 ∈ SubDisc(S) such that |ρ1| = |ρ2| > 0, two actions a1, a2 ∈ Σ, two sets
Ǎ1, Ǎ2 ⊆ D of transitions, and an equivalence relation W on S, the existence of
μ1, μ2 ∈ SubDisc(S) such that

ρ1
a1�Ǎ1
=⇒ c μ1, ρ2

a2�Ǎ2
=⇒ c μ2, and μ1 L(W) μ2

can be checked in polynomial time.

The proof that this check, that we denote by P (W, ρ1, a1, Ǎ1, ρ2, a2, Ǎ2), can be per-
formed in polynomial time relies on the construction of a generalised flow problem, that
in turn can be encoded into an LP-problem of polynomial size spanned by the param-
eters ρ1, ρ2, a1, a2, Ǎ1, Ǎ2, and W. Details are given in [13] whose Prop. 3 considers
ρ′1, ρ

′
2 ∈ Disc(S); the above proposition follows by choosing the normalised distribu-

tions ρ′i = ρi/|ρi| for i = 1, 2. An exponential algorithm solving this task has been
given in [2].

CONSISTENCY(P,W)

1: for all (s, τ, ρ) ∈ P do
2: for all (s, a, μ) ∈ T do
3: if P (W, μ, τ, P, ρ, a,D)

has no solution then
4: return false
5: return true

FINDSPLIT(W, P )

1: for all (s, a, ρ) ∈ T do
2: for all t ∈ [s]W do
3: if (s, a, ρ) ∈ TP then
4: if P (W, ρ, τ, P, δt, a, P ) has no

solution then
5: return ([s]W, a, ρ)
6: else
7: if P (W, ρ, τ, P, δt, a,D) has no

solution then
8: return ([s]W, a, ρ)
9: return (∅, τ, δ⊥)

Now we are ready to explain the remaining procedures. Following the same line as
for instance [2], QUOTIENT-WRT-PRES makes use of a sub-procedure REFINE, which
actually creates a finer partitioning, as long as there is a partition containing two states
that violate the bisimulation condition, which is checked for in procedure FINDSPLIT.



86 C. Eisentraut et al.

More precisely, as in [2], procedure REFINE divides partition C into two new parti-
tions according to the discriminating behaviour a−→ μ, which has been identified by
FINDSPLIT before. We do not provide REFINE explicitly.

In FINDSPLIT, the sets T and TX ⊆ T contain all transitions and all candidate
preserving transitions, respectively, we have to match: T is the set of combined weak
transitions and TX is the set of combined candidate preserving weak transitions (de-
fined by a scheduler using only candidate transitions in X) for state-based weak distri-
bution bisimulation. Note that it is sufficient to use for T (TX ) the set of (preserving)
weak transitions defined by Dirac determinate schedulers (on preserving transitionsX),
which is a finite set (cf. [2, Prop. 3, 4]). Unfortunately, this set may be exponential,
which also gives rise to an overall exponential run-time complexity of the algorithm.

Both procedures FINDSPLIT and CONSISTENCY rely on Prop. 1. By verifying
P (W, μ, τ, P, δt, a,D) in their conditional statement, they check the corresponding
conditions from Def. 4 (preserving transitions) and Def. 5 (state-based characterisation
of weak distribution bisimulation), respectively.

6 Related Work

Recently, the problem of a decision algorithm for MA weak bisimilarity has been ad-
dressed by Schuster and Siegle [19]. The treatment uses the concept of tangible states,
which seems dual to our preserving transitions in the sense that a state is tangible if and
only if it has no outgoing preserving transitions. The algorithm presented is a nested
fixed-point computation with exponential time complexity. It iteratively refines a can-
didate state partition while iteratively enlarging the set of candidate tangible states. No
correctness proof is provided. A particular obstacle we see is that some of the crucial
correctness arguments need to be applied to candidate partitions which by construction
do not represent weak bisimulation relations (except for the last one, provided the algo-
rithm is correct). But these arguments are established to hold only in case the partitions
do indeed represent weak bisimulation relations.

7 Concluding Remarks

This paper has developed a decision algorithm for weak distribution bisimulation on
probabilistic automata. It can be extended straightforwardly to Markov automata. This
algorithm can be considered as the nucleus for extending the compositional specifica-
tion and reasoning means in use for IMC to the more expressive MA setting. Albeit
being a distribution-based relation, we managed to circumvent uncountability in the
carrier set by a state-based characterisation. The main obstacle has not been the issue
of finding an alternative characterisation of ≈δ and deriving a decision algorithm from
there. Rather, the formal proof that the characterisation is indeed equivalent to the one
of [9] has been very challenging. As Ex. 6 and Ex. 7 show, the pitfalls are hidden in
seemingly obvious places. The presented algorithm uses worst-case exponential time
and polynomial space, and we are investigating its theoretical and practical runtime
characteristics further.



Deciding Bisimilarities on Distributions 87

Acknowledgements. This work is supported by the DFG/NWO bilateral research pro-
gramme ROCKS, by the DFG as part of the SFB/TR 14 AVACS, by the EU FP7 Pro-
gramme under grant agreement no. 295261 (MEALS), 318490 (SENSATION), and
318003 (TREsPASS), by IDEA4CPS and MT-LAB, a VKR Centre of Excellence. An-
drea Turrini is supported by the Cluster of Excellence “Multimodal Computing and
Interaction” (MMCI), part of the German Excellence Initiative.

References

1. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for
probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)

2. Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim, L.,
Jančar, P., Křetı́nský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–385.
Springer, Heidelberg (2002)

3. Chatterjee, K., Henzinger, M.R.: Faster and dynamic algorithms for maximal end-component
decomposition and related graph problems in probabilistic verification. In: SODA,
pp. 1318–1336 (2011)

4. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University
(1997)

5. Deng, Y., Hennessy, M.: On the semantics of Markov automata. In: Aceto, L., Henzinger,
M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 307–318. Springer, Heidelberg
(2011)

6. Deng, Y., Hennessy, M.: On the semantics of Markov automata. I&C 222, 139–168 (2012)
7. Ehrenfeucht, A.: An application of games to the completeness problem for formalized theo-

ries. Fundamenta Mathematicae 49, 129–144 (1961)
8. Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a stochastic world.

In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 21–39. Springer,
Heidelberg (2010)

9. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In:
LICS, pp. 342–351 (2010)

10. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. Re-
ports of SFB/TR 14 AVACS 62, SFB/TR 14 AVACS (2010)

11. Hennessy, M.: Exploring probabilistic bisimulations, part I. Formal Aspects of Comput-
ing 24(4-6), 749–768 (2012)

12. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality. LNCS,
vol. 2428. Springer, Heidelberg (2002)

13. Hermanns, H., Turrini, A.: Deciding probabilistic automata weak bisimulation in polynomial
time. In: FSTTCS, pp. 435–447 (2012)

14. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems
of equivalence. I&C 86(1), 43–68 (1990)

15. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing (preliminary report). In:
POPL, pp. 344–352 (1989)

16. Lynch, N.A., Segala, R., Vaandrager, F.W.: Compositionality for probabilistic automata. In:
Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 208–221. Springer,
Heidelberg (2003)

17. Lynch, N.A., Segala, R., Vaandrager, F.W.: Observing branching structure through proba-
bilistic contexts. SIAM J. on Computing 37(4), 977–1013 (2007)

18. Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg
(2000)



88 C. Eisentraut et al.

19. Schuster, J., Siegle, M.: Markov automata: Deciding weak bisimulation by means of “non-
naı̈vely” vanishing states, http://arxiv.org/abs/1205.6192

20. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, MIT (1995)

21. Segala, R.: Probability and nondeterminism in operational models of concurrency. In: Baier,
C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 64–78. Springer, Heidelberg
(2006)

22. Stirling, C.: Local model checking games (extended abstract). In: Lee, I., Smolka, S.A. (eds.)
CONCUR 1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)

23. Thomas, W.: On the Ehrenfeucht-Fraı̈ssé game in theoretical computer science. In: Gaudel,
M.-C., Jouannaud, J.-P. (eds.) TAPSOFT 1993. LNCS, vol. 668, pp. 559–568. Springer,
Heidelberg (1993)

http://arxiv.org/abs/1205.6192


Learning and Designing Stochastic Processes

from Logical Constraints

Luca Bortolussi1,2,� and Guido Sanguinetti3,4

1 Department of Mathematics and Geosciences, University of Trieste
2 CNR/ISTI, Pisa, Italy

3 School of Informatics, University of Edinburgh
4 SynthSys, Centre for Synthetic and Systems Biology, University of Edinburgh

Abstract. Continuous time Markov Chains (CTMCs) are a convenient
mathematical model for a broad range of natural and computer systems.
As a result, they have received considerable attention in the theoreti-
cal computer science community, with many important techniques such
as model checking being now mainstream. However, most methodolo-
gies start with an assumption of complete specification of the CTMC,
in terms of both initial conditions and parameters. While this may be
plausible in some cases (e.g. small scale engineered systems) it is cer-
tainly not valid nor desirable in many cases (e.g. biological systems),
and it does not lead to a constructive approach to rational design of
systems based on specific requirements. Here we consider the problems
of learning and designing CTMCs from observations/ requirements for-
mulated in terms of satisfaction of temporal logic formulae. We recast
the problem in terms of learning and maximising an unknown function
(the likelihood of the parameters) which can be numerically estimated
at any value of the parameter space (at a non-negligible computational
cost). We adapt a recently proposed, provably convergent global opti-
misation algorithm developed in the machine learning community, and
demonstrate its efficacy on a number of non-trivial test cases.

1 Introduction

Stochastic processes are convenient mathematical models of a number of real
world problems, ranging from computer systems to biochemical reactions within
single cells. Typically, such models are formulated intensionally by specifying the
transition kernel of a continuous time Markov chain (CTMC, [10]). A classical
question in formal modelling is to calculate the probability that a certain tem-
poral logic formula is true, given a certain process (with specified parameters);
this is the question addressed by stochastic model checking, one of the major
success stories of formal modelling in the last thirty years [4,15].

� Work partially supported by EU-FET project QUANTICOL (nr. 600708) and by
FRA-UniTS.

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 89–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



90 L. Bortolussi and G. Sanguinetti

While probabilistic model checking is indubitably a success story, it is not
an unqualified one. Computationally, model checking suffers from limitations,
either due to state space explosion or to the difficulty (impossibility) in check-
ing analytically formulae in specific logics [4,8]. Simulation-based approaches,
such as statistical model checking, can be used to circumvent these problems:
these methods are usually asymptotically exact, in the limit when the number
of simulations used is large; nevertheless, establishing what is a sufficiently large
number of simulations to achieve a certain accuracy is a nontrivial problem.
Conceptually, both model checking and statistical model checking start from
the premise that a CTMC model of the system is entirely specified, i.e. the un-
derlying parameters of the CTMC are known exactly. This is generally not true:
it is certainly never true when employing CTMCs as models of physical sys-
tems (such as systems biology models, where parameters are at best known with
considerable uncertainty), but it is often not appropriate even when modelling
large-scale computer systems, when a coarse grained abstraction may be useful.
In these cases, one would wish to use observations of the system or of its proper-
ties to determine (approximately) its parameters: this is the system identification
problem. Moreover, the assumption of complete specification is not productive
in an engineering context: rather than checking properties of systems with spe-
cific parameters, one is often interested in specifying a priori the properties of
the system (requirements), and then adjust (few) control parameters in order to
best match the requirements (the system design problem).

The identification of parameters of CTMCs from observations has recently re-
ceived considerable interest in both the statistical machine learning and formal
modelling communities, where a number of approximate methods have been pro-
posed [3,17]. All of these methods assume that the state of the system, e.g. the
counts of particles of each molecular species, is observed at discrete time points.
Here we consider the more general case where the observations are represented
by truth values of linear time temporal logic formulae representing qualitative
properties of the system. This may be more appropriate in a computer systems
scenario, as it may represent an easier type of data to store/ observe, or in a
systems biology scenario, when one observes a qualitative phenotype in multiple
cells as opposed to directly measuring protein counts. It is also a more natural
framework in which to address the design problem, as it is easier to formulate
requirements in terms of logical constraints than in terms of particle counts. The
restriction to linear time properties is justified because we can only observe sin-
gle realisations (trajectories) of a system. Naturally, the amount of information
contained in these qualitative observations is lower, making the problem more
challenging.

For both the design and identification problems the outstanding difficulty is
the lack of an objective function that can be used in an optimisation routine:
the fit of a CTMC with specific parameters to observations (or the match to
requirements) cannot in general be estimated analytically. We therefore need
to optimise an unknown function with the smallest number of function evalua-
tions. The key observation in this paper is that a similar problem also occurs in



Learning and Designing Stochastic Processes from Logical Constraints 91

the classical AI problem of reinforcement learning: there, the goal is to devise a
strategy (i.e. an update rule) which will lead to the optimisation of an unknown
reward function with the smallest number of trials (function evaluations). This
observation allows us to leverage powerful, provably convergent algorithms from
the statistical machine learning community: in particular, we adapt to our situ-
ation the Gaussian Process Upper Confidence Bound (GP-UCB) algorithm [20],
and show on a number of examples that this provides a practical and reliable
approach to both the identification and design problem. We further extend the
algorithm in order to provide confidence estimates for the obtained parameters,
and to detect possible non-identifiability issues. The paper is organised as fol-
lows: the problems we tackle and the formal methods tools we use are introduced
in Section 2. We then present the machine learning tools we use in Section 3,
while in Section 4 we present some computational experiments that give a proof
of concept demonstration of our approach. We then briefly discuss our results,
highlighting how the coupling of advanced machine learning and formal mod-
elling can open innovative directions in both fields.

2 Problem Definition

Let the probability distribution on trajectories of stochastic process of interest
be denoted as P (x0:T |θ), where x0:T denotes a trajectory of the system up to
time T , θ is a set of parameters, and P (·) denotes the probability distribution/
density. Let ϕ1, . . . , ϕd be d (temporal) logic formulae whose truth depends on
the specific trajectory of the process which is observed. We are interested in the
following two problems:

Identification Problem: Given evaluations of each of the d formulae over N
independent runs of the process, arranged into a d×N binary design matrix
D, determine the value(s) of the parameters θ that make these observations
most probable.

Design Problem: Given a probability table P for the joint occurrence of a
number of formulae, determine the parameters of the stochastic process
which optimally match these probabilities.

We will see that a very similar approach can be adopted to solve both problems.
We introduce now the main logical and algorithmic ingredients of our approach.

2.1 Metric Interval Temporal Logic

We will consider properties of stochastic trajectories specified by Metric interval
Temporal Logic (MiTL), see [1,16]. This logic belongs to the family of linear tem-
poral logics, whose truth can be assessed over single trajectories of the system.
MiTL, in particular, is used to reason on real time systems, like those speci-
fied by CTMC, and its temporal operators are all time-bounded. We decided
to focus on MiTL because when we observe a system, e.g. a biological one, we



92 L. Bortolussi and G. Sanguinetti

always observe single time-bounded realisations (essentially, time-bounded sam-
ples from its trajectory space). Hence, MiTL is the natural choice to formalise
the qualitative outcome of experiments.

The syntax of MiTL is given by the following grammar:

ϕ ::= tt | μ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U
[T1,T2]ϕ2,

where tt is the true formula, conjunction and negation are the standard boolean
connectives, and there is only one temporal modality, the time-bounded until
U[T1,T2]. Atomic propositions μ are defined like in Signal Temporal Logic (STL
[16]) as boolean predicate transformers: they take a real valued function x(t),
x : [0, T ]→ Rn, as input, and produce a boolean signal s(t) = μ(x(t)) as output,
where S : [0, T ]→ {tt, ff}. As customary, boolean predicates μ are (non-linear)
inequalities on vectors of n variables, that are extended point-wise to the time
domain. Temporal modalities like time-bounded eventually and always can be
defined in the usual way from the until operator: F[T1,T2]ϕ ≡ ttU[T1,T2]ϕ and
G[T1,T2]ϕ ≡ ¬F[T1,T2]¬ϕ.

A MiTL formula is interpreted over a real valued function of time x, and its
satisfaction relation is given in a standard way, see e.g. [1,16]. We report here
only the rules for atomic propositions and the temporal operator, as those for
boolean connectives are standard:

– x, t |= μ if and only if μ(x(t)) = tt;
– x, t |= ϕ1U

[T1,T2]ϕ2 if and only if ∃t1 ∈ [t+ T1, t+ T2] such that x, t1 |= ϕ2

and ∀t0 ∈ [t, t1], x, t0 |= ϕ1 (here we follow the treatment of STL [16]).

The temporal logic MiTL can be easily extended to the probabilistic setting,
and interpreted over CTMC [12,8]. Essentially, one is interested in the path
probability of a formula ϕ, defined as P (ϕ|θ) = P ({x0:T |x0:T , 0 |= ϕ}|θ), i.e. as
the probability of the set of time-bounded CTMC trajectories that satisfy the
formula1.

2.2 Likelihood Function

Consider now a CTMC depending on a set of parameters θ, and a set of d MiTL
formulae ϕ1, . . . , ϕd whose truth values have been observed over N independent
runs of the process. Let D be the d × N design matrix, whose column vectors
correspond to joint observations of the properties. Given a specific value of the
parameters θ, the probability of a particular joint truth value for the set of
formulae of interest is uniquely determined. Let P (Di|θ) be the probability of
the joint truth value of formulae of the ith column of the matrix D given the
parameters θ. Under the assumption of independent runs, the likelihood of the
observations D is then simply

1 We assume implicitly that T is sufficiently large so that the truth of ϕ at time 0 can
always be established from x. The minimum of such times can be easily deduced
from the formula ϕ, see [12,16].



Learning and Designing Stochastic Processes from Logical Constraints 93

L(D, θ) =
N∏
i=1

P (Di|θ). (1)

Alternatively, if prior knowledge over the parameters is available as a prior distri-
bution P (θ), we may want to consider the un-normalised posterior distribution

P (θ,D) = P (θ)
∏N

i=1 P (Di|θ). The identification problem can be carried out by
maximising the likelihood (1) (maximum likelihood, ML) or the un-normalised
posterior (maximum a posteriori, MAP).

Numerical evaluation of P (Di|θ) is a major challenge: computing the path
probability of a MiTL formula is an extremely difficult problem, with current
algorithms [8] suffering severely from the state space explosion. Furthermore,
numerical methods for stochastic model checking have always been developed
to compute the path probability of a single formula, while computing P (Di|θ)
requires to know the joint probability distribution of the formulae ϕ1, . . . , ϕd.
We therefore resort to statistical model checking to approximately evaluate the
likelihood L(D, θ).

2.3 Statistical Model Checking

We now briefly review Statistical Model Checking (SMC [12,22]), a class of
methods that try to estimate the probability of a path formula or the truth
of a state formula relying on simulation and statistical means. In the context
of MiTL, SMC works as follows. Given a CTMC with fixed parameters θ, a
simulation algorithm, like SSA [11], is used to sample trajectories of the process.
For each sampled trajectory, we run a model checking algorithm for MiTL and
establish if ϕ is true or false. The process therefore generates samples from a
Bernoulli random variable Zϕ, equal to 1 if and only if ϕ is true. SMC uses
a statistical treatment of those samples, like Wald sequential testing [22] or
Bayesian alternatives [12], to establish if the query P (ϕ|θ) > q is true, with
a chosen confidence level α, given the evidence seen so far. Bayesian SMC, in
particular, uses a Beta prior distribution Beta(q|a, b) for the probability of q =
P (ϕ = 1); by exploiting the conjugacy of the Beta and Bernoulli distributions
[6], applying Bayes’ theorem we get

P (q|Dϕ) =
1

P (Dϕ)
P (Dϕ|q)P (q) = Beta(q, a+ k1, b+ k0).

The parameters a and b of the Beta prior distribution (usually set to 1) can be
seen as pseudo-counts that regularise the estimate when a truth value is rarely
observed. Given the simulated dataDϕ, our best guess about the true probability
P (Zϕ = tt) is then given by the predictive distribution [6]:

P (Zϕ = tt|Dϕ) =

∫ 1

0

P (Zϕ = tt|q)P (q|Dϕ)dq = E[q|Dϕ] =
k1 + a

k1 + a+ k0 + b



94 L. Bortolussi and G. Sanguinetti

The Bayesian approach to SMC, especially the use of prior distributions as a form
of regularization of sampled truth values of formulae, is particularly relevant for
our setting, since we need to estimate probabilities over the much larger set of
joint truth values of several formulae.

To extend Bayesian SMC to checking the joint truth probabilities of multiple
formulae, we choose a Dirichlet prior distribution with parameters α1, . . . , α2d

equal to 1 (corresponding to adding one pseudo-count to every possible joint
truth value). Given observations Dϕ1,...,ϕd

of the truth values of Zϕ1,...,ϕd
2, anal-

ogous calculations yield the predictive distribution

P (Zϕ1,...,ϕd
= dj |Dϕ1,...,ϕd

) = (αj + kj)/(α0 + k)

where kj is the number of times we observed the jth truth combination, cor-
responding to a point dj ∈ D and α0 =

∑
j αj . This probability is then used

to estimate the likelihood L(D, θ), as L(D, θ) =
∏N

i=1 P (Di|θ). By the law of
large numbers, with probability one, this quantity will converge to the true like-
lihood when the number of samples in the SMC procedure becomes large, and
the deviation from the true likelihood will become approximately Gaussian.

3 Global Optimisation

As we have seen, the identification problem entails the maximisation of an un-
known function which can be only estimated (with approximately Gaussian
noise) at isolated points at considerable computational cost. One can approach
this problem also from a Bayesian angle by treating the unknown function as a
random function (arising from a suitable prior stochastic process) and then use
the numerical evaluations as (noisy) observations of the function value, which
in turn enable a posterior prediction of the function values at new input points.
This is the idea underlying statistical emulation [14]. This leads to a very ele-
gant algorithm for optimisation; we now briefly review the main concepts and
the algorithm we use.

3.1 Gaussian Processes

Gaussian Processes (GPs) are a natural extension of the multivariate normal
distribution to infinite dimensional spaces of functions. A GP is a probability
measure over the space of continuous functions (over a suitable input space) such
that the random vector obtained by evaluating a sample function at a finite set
of points x1, . . . , xN follows a multivariate normal distribution. A GP is uniquely
defined by its mean and covariance functions, denoted by μ(x) and k(x, x′). By
definition, we have that for every finite set of points

f ∼ GP(μ, k)↔ f = (f(x1), . . . , f(xN )) ∼ N (μ,K) (2)

2 Note that Dϕ1,...,ϕd is a matrix, similarly the design matrix discussed in Section 2,
but we treat each column/ observation as a single point of D.



Learning and Designing Stochastic Processes from Logical Constraints 95

where μ is the vector obtained evaluating the mean function μ at every point,
and K is the matrix obtained by evaluating the covariance function k at every
pair of points. In the following, we will assume for simplicity that the prior
mean function is identically zero (a non-zero mean can be added post-hoc to the
predictions w.l.o.g.).

The choice of covariance function is an important modelling decision, as it
essentially determines the type of functions which can be sampled from a GP
(more precisely, it can assign prior probability zero to large subsets of the space
of continuous functions). A popular choice of covariance function is the radial
basis function (RBF) covariance

k(x, x′) = γ exp

[
−‖x− x′‖2

λ2

]
(3)

which depends on two hyper-parameters, the amplitude γ and the lengthscale
λ. Sample functions from a GP with RBF covariance are with probability one
infinitely differentiable functions. For more details, we refer the interested reader
to the excellent review book of Rasmussen and Williams [18].

3.2 GP Regression and Prediction

Suppose now that we are given a set of noisy observations y of the function value
at input values x = x1, . . . , xN , distributed around an unknown true value f(x)
with spherical Gaussian noise of variance σ2. We are interested in determining
how these observations influence our belief over the function value at a further
input value x∗ where the function value is unobserved.

By using the basic rules of probability and matrix algebra, we have that the
predictive distribution at x∗ is again Gaussian with mean

μ∗ = (k(x∗, x1), . . . , k(x
∗, xN )) K̂−1

N y (4)

and variance

k∗ = k(x∗, x∗)−(k(x∗, x1), . . . , k(x
∗, xN )) K̂−1

N (k(x∗, x1), . . . , k(x
∗, xN ))

T
. (5)

where K̂N is obtained by evaluating the covariance function at each pair of
training points and adding σ2 times the identity. Notice that the first term on
the r.h.s of equation (5) is the prior variance at the new input point; therefore, we
see that the observations lead to a reduction of the uncertainty over the function
value at the new point. The variance however returns to the prior variance when
the new point becomes very far from the observation points.

Equation (4) warrants two important observations: first, as a function of the
new point x∗, μ∗ is a linear combination of a finite number of basis functions
k(x∗, x) centred at the observation points. Secondly, the posterior mean at a
fixed x∗ is a linear combination of the observed values, with weights determined
by the specific covariance function used. For the RBF covariance, input points
further from the new point x∗ are penalised exponentially, hence contribute less
to the predicted value.



96 L. Bortolussi and G. Sanguinetti

3.3 Upper Confidence Bound Optimisation

We now return to the problem of finding the maximum of an unknown function
with the minimum possible number of function evaluations. This is related to
the problem of performing sensitivity analysis w.r.t. the parameters of complex
computer models, e.g. climate models, where a quantification of uncertainty on
the model outputs is essential. An elegant approach to solving this problem
has been proposed by Kennedy and O’Hagan [14] by recasting the problem in
a Bayesian formalism: the true function linking the parameters to the model
outputs is assumed unknown and is assigned a GP prior. A (limited) number
of function evaluation are then used as (noiseless) observations to obtain a GP
posterior mean function which emulates the true unknown function, and is used
for subsequent analyses.

In the optimisation case, the situation is slightly different: given an initial
set of function evaluations, we are interested in determining a sequence of input
values that converges to the optimal value of the function. A naive approach
would be to use GP regression to emulate the unknown function, and to explore
the region near the maximum of the posterior mean. It is easy to see, though,
that this approach is vulnerable to remaining trapped in local optima. On the
other hand, one could sample uniformly across the input domain of interest; this
is guaranteed to eventually find the global optimum but is unlikely to do so in a
reasonable time. It is therefore clear that one needs to trade off the exploitation
of promising regions (high posterior mean) with the exploration of new regions
(high posterior variance).

The GP Upper Confidence Bound (GP-UCB) algorithm [20] prescribes an
exploration-exploitation trade-off which provably converges to the global opti-
mum of the function. The idea is intuitively very simple: rather than maximising
the posterior mean function, one maximises an upper quantile of the distribu-
tion, obtained as mean value plus a constant times the standard deviation (e.g.,
the 95% quantile, approximately given as μ+2σ). The GP-UCB rule is therefore
defined as follows: let μt(x) and vart(x) be the GP posterior mean and variance
at x after t iterations of the algorithm. The next input point is then selected as

xt+1 = argmaxx

[
μt(x) + βt

√
vart(x)

]
(6)

where βt is a constant that depends on the iteration of the algorithm.
To specify in which sense the algorithm converges, we need a definition.

Definition 1. Let x∗ be the value at which a function f attains its maximum.
The instantaneous regret of selecting a point xt is defined as rt = f(x∗)− f(xt)

and the cumulative regret at time T is defined as
∑T

t=1 rt. An iterative optimi-
sation algorithm is no-regret if

lim
T→∞

1

T

T∑
t=1

rt = 0.

Srinivas et al [20] then proved the following theorem



Learning and Designing Stochastic Processes from Logical Constraints 97

Theorem 1. Let βt = k + α log t, where k and α are positive constants. Then
the GP-UCB algorithm in equation (6) is no-regret. More specifically, with high
probability, the cumulative regret is bounded by O(

√
T ).

This theorem indicates that, as the algorithm proceeds, exploration needs to
become gradually more important than exploitation (βt is monotonically in-
creasing), as one would intuitively expect. The algorithm has been successfully
employed in a number of difficult optimisation problems, from determining op-
timal structure of synthetic proteins [19] to computer vision [21].

3.4 Estimating Uncertainty

The GP-UCB algorithm enables us to find the maximum of a function (in our
case, the likelihood function or the un-normalised posterior); in many cases,
however, it is very desirable to be able to provide uncertainty estimates over the
parameter values returned. Given the intractable nature of the likelihood, which
requires a computationally expensive statistical model checking procedure at
every parameter value, a fully Bayesian treatment (e.g. based on Markov chain
Monte Carlo simulations [6]) is ruled out.

We therefore resort to a simple deterministic approximation which estimates
the variance/ covariance in the parameter estimates by inverting the Hessian of
the likelihood at its maximum. This approach, known as Laplace approximation
in statistics/ machine learning, is equivalent to approximate the posterior around
the maximum with a Gaussian which locally optimally matches the posterior. In
order to estimate the Hessian, there are at least two strategies available: one can
estimate the likelihood (numerically) on a fine (small) grid around the maximum
and then use standard numerical estimation methods, or one can use the GP
emulation as a surrogate of the function and directly differentiate the GP mean.
This second option has the advantages of handling the noise in the estimation of
the likelihood arising from statistical model checking (which is smoothed out in
GP regression), and of being analytically tractable. Recalling that the GP mean
at a point is a linear combination of basis functions, one can just differentiate
twice equation (4) to obtain the result.

3.5 Model Design

The problem of model design is intimately linked to the inference problem: in
fact, one could characterise model design as inference with the data one would like
to have [5]. In our case, we are given a probability table for the joint occurrence
of a number of formulae ϕ1, . . . , ϕN .3 As explained earlier, the probability of a
specific truth configuration of a number of formulae is an intractable function
of the parameters, which in many cases can only be approximately computed
by statistical model checking. However, in the design case, we do not aim to

3 This problem formulation is different from a recent approach on parameter synthesis
for CTMC using SMC, [13], in which the authors look for a subset of parameters in
which a single formula ϕ is satisfied with probability greater than q.



98 L. Bortolussi and G. Sanguinetti

use this function to estimate the likelihood of observations, rather to match
(or be as near as possible to) some predefined values. We therefore need to
define a different objective function that measures the distance between two
probability distributions; we choose to use the Jensen-Shannon divergence due
to its information theoretic properties and computational good behaviour (being
always finite) [9]. This is defined as

JSD(p‖q) = 1

2

∑
i

[
pi log

2pi
pi + qi

+ qi log
2qi

pi + qi

]
where p and q are two probability distributions over a finite set. The Jensen-
Shannon divergence is symmetric and always non negative, being zero if and only
if q = p. The GP-UCB minimisation of the Jensen-Shannon divergence between
an empirical q and the prescribed p can then be carried out as described above.

4 Experiments

We now illustrate our approach on a number of test cases. We benchmark the
approach on a simple example where the calculations can be performed analyt-
ically: a Poisson process where the truth values of a single logical formula are
observed. We then show how our approach can solve both the identification and
the design problems on a non-trivial computer infection model.

4.1 Poisson Process

Poisson processes are random processes with values in N ∪ {0}; they play a
fundamental role in physics (e.g. as models of radioactive decay), biology (e.g.
as models of RNA production) and computer science (e.g. as models of arrivals
of packets at servers). They can be defined equivalently in several different ways;
here, we take the operational definition that a Poisson process with rate μ is an
increasing, integer valued process such that

P (k = n|μ, t) = (μt)n

n!
exp[−μt]. (7)

We consider a very simple scenario where we have observed five times indepen-
dently the truth value of the formula ϕ(k) = F[0,1]{k > 3}, i.e. the formula ex-
pressing the fact that k has become bigger than 3 within 1 time units, evaluated
on individual trajectories sampled from a process with μ = 2. The probability of
ϕ being true for a trajectory given the value of μ can be calculated analytically
as

p = P (ϕ = true) = 1− P (ϕ = false) = 1−
3∑

n=0

(μ)n

n!
exp[−μ]. (8)

and hence we have an analytical expression for the log-likelihood (or un-
normalised posterior given a prior).



Learning and Designing Stochastic Processes from Logical Constraints 99

Fig. 1. Simulation on a Poisson process: left exact log likelihood and SMC estimation
(red crosses) for μ ∈ [1, 3]; right Illustration of the GP-UCB algorithm: GP likelihood
estimation (black line), true likelihood (green dashed-dotted line), and GP-UCB upper
bound (dotted line).

Figure 1 left panel shows the log-likelihood for 40 independent observations of
process trajectories, overlayed with the estimation obtained by SMC over a grid
using 12 samples. As we can see, SMC provides a noisy (but overall accurate)
measurement of the log-likelihood function. Figure 1 right panel instead shows
the working of the GP-UCB algorithm (with constant βt ≡ 2): here, we have
observed only 15 SMC evaluations of the log-likelihood (red crosses); the GP
mean is given by the solid black line, and the mean ± 2 standard deviations
by the dashed line. The vertical line represents the next point chosen by the
GP-UCB algorithm. The dashed-dotted line is the analytical log-likelihood.

4.2 Network Epidemics

We consider now a more structured example of the spread of a worm epidemics
in a computer network with a fixed number of nodes [7]. We consider a simple
variation of the classical SIR infection model [2], in which an initial population
of susceptible nodes can be infected either from outside the network (e.g. by
receiving an infected email message) or by the active spread of the virus by
infected computers in the network. Infected nodes can be patched, and become
immune to the worm for some time, after which they are susceptible again (for
instance, to a new version of the worm).

This system is modelled as a population CTMC, in which the state space is
described by a vector X of three variables, counting how many nodes are in the
susceptible (XS), infected (XI), and patched state (XR). The dynamics of the
CTMC is described by a list of transitions, or reactions, together with their rate
functions. We represent them in the biochemical notation style (see e.g. [11]).
All rates of this model follow the law of mass action.

External infection: S
ke−→ I, with rate function keXS ;

Internal infection: S + I
ki−→ I + I, with rate function kiXSXI ;

Patching: I
kr−→ R, with rate function krXI ;

Immunity loss: R
ks−→ S, with rate function ksXR;



100 L. Bortolussi and G. Sanguinetti

Fig. 2. True versus predicted value of epidemics model parameters ki, ke, kr. The black
line represents the identity true=predicted. Left: ML; right: MAP.

For this system, we considered three temporal logical properties, expressed as
MiTL formulae, all concerned with the number of infected nodes (total number
of nodes is 100). The properties are:

1. G[0,100](XI < 40): the fraction of infected nodes never exceeds 40% in the
first 100 time units;

2. F[0,60]G[0,40](5 ≤ XI ≤ 20): within time 60, the fraction of infected nodes is
between 5 and 20 and remains so for 40 time units.

3. G[30,50](XI > 30): the fraction of infected nodes is above 30% between time
30 and time 50.

The first property puts a bound on the peak of infection, while the third con-
strains it to happen around time 40. The second property, instead, is intended
to control the number of infected nodes after the infection peak.

Given the model and the properties, we set up the experiment as follows.
We fixed the rate of immunity loss to 0.01; the remaining parameters are those
we explored. First we fixed these parameters to a value sampled uniformly in
ki ∈ [0.08, 0.12], ke ∈ [0.007, 0.013], kr ∈ [0.03, 0.07], and use the sampled config-
uration to generate 40 observations D of the value of the logical formulae. Then,
we ran the GP-UCB optimisation algorithm with the following search space:
ki ∈ [0.01, 1], ke ∈ [0.001, 0.1], kr ∈ [0.005, 0.5], so that each parameter domain
spans over two orders of magnitude. To treat equally each order of magnitude, as
customary we transformed logarithmically the search space, and rescaled each
coordinate into [−1, 1] (log-normalisation). The algorithm first computes the
likelihood, using statistical model checking, for 60 points sampled randomly and
uniformly from the log-normalized space, and then uses the GP-UCB algorithm
to estimate the position of a potential maximum of the upper bound function in
a grid of 800 points, sampled uniformly at each iteration. If in this grid a point
is found with a larger value than those of the observation points, we compute
the likelihood also for this point, and add it to the observations (thus chang-
ing the GP approximation). Termination happens when no improvement can be
made after three grid resamplings. The algorithm terminated after doing only
12 additional likelihood evaluations on average.



Learning and Designing Stochastic Processes from Logical Constraints 101

Table 1. True parameter and three predictions randomly chosen, both for ML and
MAP, after running a gradient ascent optimisation on the GP mean. We show the
predicted value and the uncertainty estimate, obtained from the estimated hessian of
the likelihood function.

Max Likelihood
Param true value pred1 sd pred2 sd pred3 sd

ki 0.0811 0.0803 0.0142 0.0670 0.0084 0.1100 0.0132

ke 0.0118 0.0114 0.0029 0.0106 0.0014 0.0065 0.0011

kr 0.0319 0.0304 0.0032 0.0330 0.0020 0.0293 0.0034

MAP
Param true value pred1 sd pred2 sd pred3 sd

ki 0.1034 0.0927 0.0048 0.0946 0.0079 0.0744 0.0062

ke 0.0084 0.0081 0.0005 0.0106 0.0004 0.0076 0.0011

kr 0.0683 0.0719 0.0044 0.0683 0.0039 0.0643 0.0113

We consider both the maximum likelihood (ML) and maximum a posteriori
(MAP) identification problems; in the MAP case, we use independent, vaguely
informative Gamma priors, with mean 0.1 for ki, 0.01 for ke and 0.05 for kr,
and shape equal to 10. To assess statistically our results, we repeated the ex-
periments (both ML and MAP) on 5 different parameter configurations, doing 6
runs per configuration. In the test, we fixed the length-scale hyperparameter of
the Gaussian kernel to 0.1, and the amplitude to 60% of the difference between
the maximum and the mean value of the likelihood for the 60 initial observa-
tions. Results are reported in Figure 2, where we plot the values of the true
parameters that generated the samples against the estimated values. As can be
seen, the predicted values are quite close to the original ones, both in the ML
and in the MAP cases. Indeed, the average observed error (euclidean distance
from the true configuration) is 0.0492 for ML and 0.0346 for MAP. These re-
sults show that the use of prior information can improve the performances of
the algorithm. Furthermore, it tends to reduce the sensitivity of the algorithm
to the hyperparameters, especially the length-scale. We report also the relative
errors, obtained dividing the absolute ones by the diameter of the search space:
4.43% for ML and 3.11% for MAP. In Table 1, we report for a random subset
of runs both the true/ inferred parameter values, and the uncertainty estimates
obtained using the Laplace approximation described in Section 3.4. Empirically,
we observed that in some instances the Hessian became not negative definite:
this may indicate identifiability problems given a specific set of observations. To
circumvent this problem, we ran a gradient ascent optimisation on the GP mean
before computing the Hessian, to ensure that the point is a local maximum. Also
empirically, we observed that the estimation of the uncertainty is affected by the
values of the hyperparameters of the GP; we discuss further this issue in the
conclusions.



102 L. Bortolussi and G. Sanguinetti

Fig. 3. Left: atanh(1 − 2JSD) GP-estimated landscape for the network epidemics
model and target probability p(1, 1) = 0.5, p(1, 0) = 0.45, p(0, 1) = 0.04, p(0, 0) = 0.01.
Right: true versus predicted value of target probability for the network epidemics design
problem. The black line represents the identity true=predicted.

4.3 System Design

We consider now an example of system design, in which we try to minimise the
Jensen-Shannon divergence (JSD) between the estimated joint probability distri-
bution and a target one (for numerical stability, we consider atanh(1− 2JSD)).
We consider again the network epidemics model, and look at the following two
properties:

1. G[0,100](XI < 20): the fraction of infected nodes never exceeds 20% in the
first 100 time units;

2. F[0,60]G[0,40]XI ≤ 5: within time 60, the fraction of infected nodes is less
than or equal to 5 and remains so for 40 time units.

In our experimental setting, we fixed the internal infection rate to ki = 1 and
the immunity loss rate to ks = 0.01. Hence, the search space is made of two
parameters, ke, the external infection rate, and kr, the patch rate. Intuitively,
those two parameters are somehow controllable, by filtering suspected messages
from outside the network or by active patching. In the first experiment, we set the
target probability p to the following: p(1, 1) = 0.5, p(1, 0) = 0.45, p(0, 1) = 0.04,
p(0, 0) = 0.01. The idea is that we really want the first property to hold, but
we are somehow less restrictive on the second one (conditional on the first being
true). Having a 2 dimension parameter space to explore, allows us to visualise
the GP estimate of the the JSD function, by sampling a 12x12 grid of equispaced
points in [0.01, 1]× [0.01, 5] (after log-normalisation, we use length-scale 0.5 and
amplitude 1 as hyperparameters). The result can be seen in Figure 3 left. As
we can see, there is a relatively small region in the parameter space that seems
to collect the larger score. Running ten experiments, we obtained an average
JSD of 0.0155, while the probability values estimated for p(1, 1) and p(1, 0) are
visually reported in Figure 3 right.

We also run an experiment varying the target probability distribution, sam-
pling it from a Dirichelet distribution with parameters 10, 0.8, 9, 0.2, thus giving



Learning and Designing Stochastic Processes from Logical Constraints 103

Fig. 4. Left: true versus predicted value of target probability for the network epidemics
design problem. The black line represents the identity true=predicted. Right: kr versus
ke of the predicted parameters for the 5x5 grid.

higher probability to (1, 1) and (0, 1), differently from the previous test. We
sampled 5 different target distributions, and run 5 experiments for each com-
bination, obtaining an average JSD of 0.0168. Probabilities obtained, plotted
against target probabilities, are reported in Figure 4 left, while in Figure 4 right,
we plot kr versus ke for parameter combinations found by the algorithm. While
the overall results are good, there is a strong linear dependency between the two
parameters, raising an issue of identifiability for this input specification of model
design.

5 Conclusions

In this paper, we considered the problem of identifying and designing stochastic
processes from logical constraints, given by the (probability of) satisfaction of
specific formulae in MiTL. This complements approaches to learning parameters
of stochastic processes from observations of the state of the system [17,3], and
can be arguably more appropriate in a number of situations; however, the infor-
mation loss resulting from having only access to qualitative observations makes
the problem considerably more challenging. Another benefit of our approach
is that it provides a conceptually unified framework that can also be used to
address the system design problem, where logical constraints are a much more
natural form of specifying requirements. A significant strength of our approach
is its computational efficiency and scalability: in our experiments, the global
maximum was usually found with few tens of function evaluations, hence the
bottleneck is essentially the SMC step. Moreover, the GP regression approach
naturally allows to incorporate and smooth the inaccuracies resulting from SMC
(modelled as Gaussian observation noise), which means that relatively short runs
of SMC are needed at each function evaluation. While we believe the results we
have shown are a promising first step in addressing these challenging problems,
there is considerable scope for further extension and improvements. Setting the
hyperparameters of the GP covariance (3) is currently done heuristically; they
could also be optimised, but at a non-negligible computational cost [18]. For



104 L. Bortolussi and G. Sanguinetti

the system design problem, one may incur in identifiability problems when the
requirements cannot be satisfied (e.g. because of logical contradictions), when
they are redundant, or when they under-constrain the system. Tools to address
these issues would clearly be beneficial.

Finally, we would want to remark on how these results could only be obtained
by the cross-fertilisation of ideas from advanced formal modelling (e.g. Bayesian
SMC) and advanced machine learning (Gaussian processes, the GP-UCB algo-
rithm). It is our opinion that increased interaction between these two areas of
computer science will be highly beneficial to both, in particular towards the
practical deployment of advanced algorithmic tools.

References

1. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J.
ACM 43(1), 116–146 (1996)

2. Andersson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical Anal-
ysis. Springer (2000)

3. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Approximate maximum likeli-
hood estimation for stochastic chemical kinetics. EURASIP Journal on Bioinf. and
Sys. Bio. 9 (2012)

4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model checking continuous-
time Markov chains by transient analysis. IEEE TSE 29(6), 524–541 (2003)

5. Barnes, C.P., Silk, D., Sheng, X., Stumpf, M.P.: Bayesian design of synthetic bio-
logical systems. PNAS USA 108(37), 15190–15195 (2011)

6. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
7. Bradley, J.T., Gilmore, S.T., Hillston, J.: Analysing distributed internet worm
attacks using continuous state-space approximation of process algebra models. J.
Comput. Syst. Sci. 74(6), 1013–1032 (2008)

8. Chen, T., Diciolla, M., Kwiatkowska, M.Z., Mereacre, A.: Time-bounded verifica-
tion of CTMCs against real-time specifications. In: Fahrenberg, U., Tripakis, S.
(eds.) FORMATS 2011. LNCS, vol. 6919, pp. 26–42. Springer, Heidelberg (2011)

9. Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. Wiley (2006)
10. Durrett, R.: Essentials of stochastic processes. Springer (2012)
11. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. of

Physical Chemistry 81(25) (1977)
12. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A

bayesian approach to model checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

13. Jha, S.K., Langmead, C.J.: Synthesis and infeasibility analysis for stochastic mod-
els of biochemical systems using statistical model checking and abstraction refine-
ment. Theor. Comp. Sc. 412(21), 2162–2187 (2011)

14. Kennedy, M., O’Hagan, A.: Bayesian calibration of computer models. Journal of
the Royal Stat. Soc. Ser. B 63(3), 425–464 (2001)

15. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: A hybrid approach. Int. Jour. on Softw. Tools for Tech. Transf. 6(2),
128–142 (2004)

16. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253,
pp. 152–166. Springer, Heidelberg (2004)



Learning and Designing Stochastic Processes from Logical Constraints 105

17. Opper, M., Sanguinetti, G.: Variational inference for Markov jump processes. In:
Proc. of NIPS (2007)

18. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press (2006)

19. Romero, P.A., Krause, A., Arnold, F.H.: Navigating the protein fitness landscape
with Gaussian processes. PNAS USA 110(3), E193–E201 (2013)

20. Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Information-theoretic regret
bounds for Gaussian process optimisation in the bandit setting. IEEE Trans. Inf.
Th. 58(5), 3250–3265 (2012)

21. Vezhnevets, A., Ferrari, V., Buhmann, J.: Weakly supervised structured output
learning for semantic segmentation. In: Comp. Vision and Pattern Recog. (2012)

22. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)



Characterizing Oscillatory and Noisy Periodic

Behavior in Markov Population Models

David Spieler

Saarland University�

spieler@cs.uni-saarland.de

Abstract. In systems biology, an interesting problem is to analyze and
characterize the oscillatory and periodic behavior of a chemical reac-
tion system. Traditionally, those systems have been treated determin-
istically and continuously via ordinary differential equations. In case of
high molecule counts with respect to the volume this treatment is justi-
fied. But otherwise, stochastic fluctuations can have a high influence on
the characteristics of a system as has been shown in recent publications.
In this paper we develop an efficient numerical approach for analyz-

ing the oscillatory and periodic character of user-defined observations
on Markov population models (MPMs). MPMs are a special kind of
continuous-time Markov chains that allow for a discrete representation
of unbounded population counts for several population types and trans-
formations between populations. Examples are chemical species and the
reactions between them.

1 Introduction

Oscillation is a prevalent phenomenon that can be observed within biological
systems at all kinds of granularity, e.g. on a microscopic level within individ-
ual cells [17] as well as on a macroscopic level within the growth of Savanna
patches [18]. An example for oscillatory behavior is the day/night rhythm of
many living organisms, with a period length, i.e. the time needed for one cycle,
of approximately 24 hours. Oscillatory biological networks are the underlying
structure of rhythmic behavior on a cellular level. In the case of the day/night
cycle, the primary mechanism is based on circadian clocks [6].

It is the task of systems biology, an inter-disciplinary field of biology, to study
those complex biological systems, in order to understand their underlying basic
mechanisms. In the systems biology research area, the system under considera-
tion is reduced to a formal model, which is then analyzed for emergent behavior.
Traditionally, those models have been modelled by sets of ordinary differential
equations (ODEs) used to describe the kinetics of the system’s chemical reac-
tion network. Those ODEs have been used to retrieve continuous deterministic
� This research has been partially funded by the German Research Council (DFG)
as part of the Cluster of Excellence on Multimodal Computing and Interaction at
Saarland University and the Transregional Collaborative Research Center ”Auto-
matic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 106–122, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Characterizing Oscillatory and Noisy Periodic Behavior in MPMs 107

solutions, i.e. the concentrations of the involved chemical species over time. An-
alyzing the oscillatory character for those deterministic systems by examination
of its limit-cycles is a well-known problem [19]. An automated approach to re-
trieve information about the period length of the limit cycle in case of a single
equilibrium point is described in [14].

But it has been shown recently, that for some classes of systems, a deter-
ministic formalization is not appropriate. One example is the λ-phage decision
circuit, where λ-phages, when infecting E.coli bacteria, either enter the lytic cy-
cle (i.e. they directly force the host cell to produce replicas of the phage and
then destroy the bacteria’s cell membrane, which is called lysis) or they enter
the lysogenic cycle (i.e. they inject their genetic code into the bacteria’s DNA,
such that phage replicas are produced in later generations of the host). The deci-
sion between lytic and lysogenic cycle is assumed to be probabilistic [2], whereas
a deterministic model would result in the phage always choosing one of the two
pathways or a mixture in-between. Likewise, a stochastic model is needed in
various cases, with another example being the circadian clocks as argued in [6].
More precisely, in the case of a low number of particles, molecules should be
modeled as such, i.e. via population counters. Hence, the state space of possible
configurations, a certain system is in at each point in time, is discrete. In [7]
for example, Bortolussi and Policriti point out that for some systems, to show
oscillatory behavior on the model level, at least a certain subset of the involved
species should be represented discretely.

This paper therefore uses a stochastic and discrete-state modeling approach
via Continuous Time Markov Chains (CTMCs) as proposed by Gillespie [12].
The usual way of analyzing those models in systems biology as described in
Gillespie’s work is via simulation [11], i.e. the generation of large numbers of
sample trajectories. Those trajectories are evaluated using statistical methods
in order to retrieve estimations of stochastic quantities (like the probability of
certain events happening within certain time bounds) together with a confidence
interval, expressing the quality of that estimation.

Related Work: A novel idea of analyzing a system with respect to oscillatory
behavior is the use of model checking. In model checking, the property to check
is first translated into a (modal) logical formula with a clearly defined semantics.
In the case of CTMCs, a prominent logic is Continuous Stochastic Logic (CSL).
The underlying principle of CSL model checking, as proposed in [3], involves it-
erative transient and steady-state analysis methods in order to check the validity
of real-time probabilistic properties. The seminal work of Ballarini et al. [4,5]
features several logical characterizations of different aspects of oscillation as well
as the work of Oana et al. [1]. Examples are the presence or absence of perma-
nent fluctuations as well as whether the model everlastingly shows deviations
by certain amplitude levels. Where classic model checking provides an intuitive
way of describing a property it is always limited by the expressiveness of the
underlying logic. It is therefore well suited for queries like bounded reachabil-
ity but if the properties are getting more complex, logical formulas have to be
nested, which is a highly error-prone task. Also, the chosen logic might turn out



108 D. Spieler

not to be expressive enough, or the model checking procedure might involve an
unnecessary computational overhead since for some properties or parts thereof,
the logic is too expressive. These are lessons learned during the conception of
my Master’s thesis [21].

Contribution: This paper is based on key ideas of the author’s Master’s thesis [21]
as well as on transient and steady state analysis methods developed by the author
and colleagues [13,9,8] and (i) provides a compact way to define oscillatory and
periodic behavior in the stochastic setting inspired by [5], (ii) shows how to
efficiently analyze such behavior in Markov population models by combining
these existing methods, (iii) simplifies and optimizes the used methods as well
as (iv) extends the method to handle infinite state spaces.

2 Preliminaries

Before we define the main concepts, we will clarify the notation and introduce
needed definitions and algorithms. Matrices like Q are symbolized by capital
boldface letters with their components denoted by the indexed lower case ver-
sion (like qij). Vectors are represented by boldface lower case letters (except
distributions which are non-boldface). Vector 0 is the zero vector, e represents a
vector of ones, and ei is the vector of zeros with a one at position i. Given vector
x = [x1 . . .xd] and scalar p we define their concatenation as [x p] = [x1 . . .xd p].
Sets are denoted by capital letters (sometimes calligraphic).

2.1 Markov Population Models

We will use continuous-time stochastic processes {X(t) | t ∈ R≥0}, i.e., families
of random variables X(t), where index t denotes time. At each moment in time
t ∈ R≥0, the system is in a state X(t) ∈ S. We further restrict to homogeneous
continuous-time Markov chains (CTMCs), i.e., we demand that the possible
future behavior only depends on the current state and does not change over
time, as formalized by Equation (1).

Pr[X(tn) = sn | X(tn−1) = sn−1, . . . , X(t0) = s0]

= Pr[X(tn) = sn | X(tn−1) = sn−1]

= Pr[X(tn − tn−1) = sn | X(0) = sn−1]. (1)

We define the transient probability distribution at time point t as a row vector
π(t) such that πs(t) = Pr[X(t) = s] ∈ [0, 1] and π(t) · e = 1, where we assume
a suitable enumeration scheme for its components s ∈ S. Due to the above con-
straints, the behavior of a CTMC is fully described by an infinitesimal generator
matrix Q = (qij)ij ∈ RS×S with qii = −

∑
j �=i qij and initial distribution π(0).

More precisely, the transient distribution satisfies the Kolmogorov differential
equations

d

dt
π(t) = π(t) ·Q. (2)



Characterizing Oscillatory and Noisy Periodic Behavior in MPMs 109

Furthermore, we assume the processes to be ergodic such that the steady state
distribution π = limt→∞ π(t) which satisfies

π ·Q = 0 and π · e = 1, (3)

exists and is unique. We will elaborate that constraint in Section 2.3 and refer
to [8] for details. In our case, we distinguish between N ∈ N population types
such that a state x = [x1 . . .xN ] ∈ S represents the number of individuals xi of
each type 1 ≤ i ≤ N . Consequently, we define the state space S as S ⊆ NN and
can summarize the model class in the following definition.

Definition 1 (Markov population model).
A Markov population model (MPM) with N population types is a continuous-
time Markov chain represented by a tuple (S,Q, π(0)) where S ⊆ NN is the
state space, Q is the infinitesimal generator matrix on S and π(0) is the initial
distribution.

Since S is not bounded a priori in any dimension and is therefore potentially an
infinite set, we can not directly specify all entries ofQ individually. Consequently,
we will use a compact symbolic representation in the form of transition classes.

Definition 2 (Transition class).
A transition class on state space S ⊆ NN is a tuple (α,v) where α : S → R≥0 is
the propensity function and v ∈ ZN \ {0} is the change vector.

A set of transition classes {(αr,vr)}1≤r≤R on S induces the infinitesimal gener-
ator matrix Q of an MPM (S,Q, π(0)) via

qxy =

{∑
{r | x+vr=y} αr(x) if x = y,

−
∑

z�=x qxz if x = y.

2.2 Markov Population Models of Chemical Reaction Networks

For many biological models based on chemical reaction networks, a treatment
on the granularity of single molecules is needed to account for the inherent
stochastic effects that govern its key mechanics [7]. An example for that will be
shown later in Section 3. It has been shown by the seminal work of Gillespie et al.
that under specific conditions [12], the underlying stochastic processes of those
networks are continuous-time Markov chains. The use of Markov population
models allows an intuitive modeling of those systems. More precisely, assuming
we are given a chemical reaction network involving N different chemical species
C1, . . . , CN and R different reactions, each reaction is of the form

ur1 · C1 + · · ·+ urN · CN
cr−→ wr1 · C1 + · · ·+wrN · CN ,

where 1 ≤ r ≤ R, ur = (ur1, . . . ,urN )T ∈ NN and wr = (wr1, . . . ,wrN )T ∈ NN

are the stoichiometric coefficients and cr ∈ R≥0 is the reaction rate. Every



110 D. Spieler

reaction r induces a transition class (αr ,vr) for the MPM (S,Q, π(0)) with
S ⊆ NN , where vr = wr − ur and

αr(x1, . . . ,xN ) = cr ·
N∏
i=1

xi!

uri! · (xi − uri)!
.

Example 1 (Repressilator).
We consider a self-regulating gene network inspired by the repressilator, a model
from synthetic biology that was designed on paper first and afterwards imple-
mented in-vivo [10]. Our system is based on two genes GA and GB that express
proteins A and B, respectively. The behavior of that system is described by
the chemical reactions stated in Table 1a. The state space of the underlying
MPM is S = N2 × {0, 1}4 and the infinitesimal generator is induced by eight
transition classes (αr,vr)r with 1 ≤ r ≤ 8 (cf. Table 1b). We assume that in a
state x = [x1, . . . ,x6]

T ∈ S, component x1 (x2) encodes the number of A (B)
molecules, component x3 (x4) represents the number of GA (GB) molecules and
component x5 (x6) the number of GA (GB) inactive GA (GB) molecules. With
the initial condition πx0(0) = 1 for x0 = [0, 0, 1, 1, 0, 0], we have the invariants
x3,x4,x5,x6 ∈ {0, 1}, x5 = 1− x3, and x6 = 1− x4 that are valid for any point
in time.

Table 1. The repressilator model

(a) Chemical reactions.

R1 : GA
ρA−→ GA + A

R2 : GB
ρB−→ GB +B

R3 : A
δA−→ ∅

R4 : B
δB−→ ∅

R5 : A+GB
βA−→ A+GB

R6 : B +GA
βB−→ B +GA

R7 : GA
νA−→ GA

R8 : GB
νB−→ GB

(b) Transition classes.

α1(x) = ρA, v1 = e1,

α2(x) = ρB , v2 = e2,

α3(x) = δA · x1, v3 = −e1,

α4(x) = δB · x2, v4 = −e2,

α5(x) = βA · x1 · x4, v5 = −e4 + e6,

α6(x) = βB · x2 · x3, v6 = −e3 + e5,

α7(x) = νA · x5, v7 = −e5 + e3,

α8(x) = νB · x6, v8 = −e6 + e4.

2.3 Steady State Analysis for Infinite MPM

In order to study the long-term behavior of a MPM we need to ensure that the
underlying CTMC is ergodic [22] which is equivalent to the unique existence
of the steady-state distribution π. For a MPM with finite state space, the only
requirement for ergodicity is irreducibility, i.e., that each state is reachable by
any other state. Unfortunately, many systems like the repressilator model from
Example 1 are not finite since there exists no a priory bound for the population
counts. Moreover, in Section 3 we will need information about the steady state



Characterizing Oscillatory and Noisy Periodic Behavior in MPMs 111

distribution. We therefore propose to use the results from previous work [8],
where we show how to prove ergodicity and compute a finite subset C of the
state space which contains at least 1 − ε of the total steady state probability
mass for a specified ε > 0. In addition, we approximate π inside C by considering
the infinitesimal generator

Q = (qxy)x,y∈C − diag ((qxy)x,y∈C · e) , (4)

where transitions of Q leaving set C are redirected to the state where the set
is left. This is a valid abstraction since using drift arguments as in [8], with
high probability the system returns to the set C quickly. In the following we will
assume precise estimates of the steady state probabilities. For details, we refer
to [8] in which error bounds are proven.

2.4 Transient Analysis for Infinite MPM

In Section 3 we will have to combine transient and steady-state analysis of MPMs
with potentially unbounded state space. If we had to compute the transient dis-
tribution of such MPMs exactly, we would have to handle infinitely many states
after a non-zero amount of time, since we might have πx(t) > 0 for all reachable
states x ∈ S after t > 0 time units. At each time point t, we therefore concen-
trate on a subset of the state space which only contains states with significant
probability mass, i.e., states x ∈ S with πx(t) > δ for some δ > 0. The tran-
sient analysis algorithm inspired by ideas from [13,9] is shown for completeness
in Algorithm 1 and uses a sub-algorithm to advance the probability mass in
time. In order to keep the presentation of the paper focused, we only show the
Euler method (cf. Algorithm 2) as an example. The actual implementation that
was used in this paper is based on the more stable and accurate Runge-Kutta
4th-order method to solve the system of ODEs that governs the behavior of the

Algorithm 1. transient(Q, π(0), t)

1: t′ ← 0; e ← 0
2: W ← {x | πx(0) > 0}
3: p ← new HashMap(S,[0, 1])
4: ∀x with πx(0) > 0: p(x)← πx(0)
5: while t′ < t do
6: choose appropriate h
7: Δt ← min(t− t′, h)
8: [W ′,p]← advance(Q,W,p,Δt)
9: W ← {x | x ∈ W ′ ∧ p(x) ≥ δ}
10: e ← e+

∑
x∈W ′\W p(x)

11: remove keys x ∈ W ′ \W in p
12: t′ ← t′ +min(t− t′, h)
13: end while
14: return [p, e]

Algorithm 2. advance(Q,W,p, h)

1: W ′ ← ∅
2: p′ ← new HashMap(S,[0, 1])
3: for x ∈ W do
4: for y with qxy > 0 do
5: p′(y)← p′(y) + qxy · p(x) · h
6: W ′ ← W ′ ∪ {y}
7: end for
8: p′(x)← p′(x) + qxx · p(x) · h
9: end for
10: return [W ∪W ′,p′]



112 D. Spieler

state probabilities according to the Kolmogorov differential equations (2). The
algorithm relies on a fast method to compute the possible successor states of
a state, which is the case with transition classes. The time step h should be
chosen with care. In our implementation, this value is adapted in each step as
h = 0.5 · u−1 where u is the current maximal exit rate, i.e., the maximal sum
of outgoing rates over all states. Note that concerning the implementation of
hash maps from states to probabilities, we rely on the property that whenever
a key is not found, the hash map returns 0. Furthermore, our implementation
avoids redundant storage of values e.g. by maintaining a single consistent hash
map mapping significant states to their current transient probabilities. Also, in
addition to storing the probabilities of significant states, it caches the graph-
structure of reachable states and their connecting transitions in order to prevent
the repeated computation of successor states and transition rates.

3 Defining and Analyzing Oscillatory Behavior

In order to motivate the use of stochastic modeling of certain systems in contrast
to traditional techniques based on continuous-deterministic solutions, we will
introduce another example, the 3-way oscillator.

Example 2 (3-way oscillator).
The 3-way oscillator is another synthetic gene regulatory network which is based

Table 2. The 3-way oscillator model

(a) Chemical reactions.

R1 : A+B
τA−→ 2B

R2 : B + C
τB−→ 2C

R3 : C + A
τC−→ 2A

R4 : A
νA−→ B

R5 : B
νB−→ C

R6 : C
νC−→ A

(b) Transition classes.

α1(x) = τA · x1 · x2, v1 = e2,

α2(x) = τB · x2 · x3, v2 = e3,

α3(x) = τC · x1 · x3, v3 = e1,

α4(x) = νA · x1, v4 = e2,

α5(x) = νB · x2, v5 = e3,

α6(x) = νC · x3, v6 = e1.

on a cyclic Lotka-Volterra model [20] inspired by real world examples of bacterial
populations [15,16]. It consists of three chemical species A, B, and C and six
reaction types (cf. Table 2a). Reactions R1, R2, and R3 are positive feedback
loops, where each species boosts the production of another species in a circu-
lar fashion. The remaining three reactions were added to prevent a deadlock
situation, where a species becomes totally depleted and the system stops. The
corresponding transition classes are stated in Table 2b. For further analysis, we
will assume τA = τB = τC = νA = νB = νC = 1.0.



Characterizing Oscillatory and Noisy Periodic Behavior in MPMs 113

3.1 Continuous-Deterministic Solution

At first we would like to use the traditional approach of deriving a continuous-
deterministic solution for the system based on the law of mass action in chem-
istry. A phase plot with initial concentration [A B C] = [30 0 0] is shown in
Figure 1a. As can be seen in the plot, the underlying structure of the determin-
istic solution is a damped oscillation, i.e., an initial perturbation caused by the
asymmetric initial condition is followed by an oscillatory phase with shrinking
amplitude until an equilibrium for all species is reached. Here the equilibrium
point is [10 10 10]. On the other hand, the state space of the MPM induced by the

0

10

20

30

0

10

20

30
0

5

10

15

20

 

AB
 

C

(a) Phase plot of the ODE solution. (b) Sample trajectory (observing A).

Fig. 1. 3-way oscillator

3-way oscillator’s chemical reaction network for initial state [x1 x2 x3] = [30 0 0]
is S = {[x1 x2 x3] ∈ N3 | x1 + x2 + x3 = 30} and due to the irreducibility
of the underlying CTMC coinciding with ergodicity in the finite case we have
for all states s ∈ S that πs > 0. This implies that every state is visited in-
finitely often which contradicts convergence to any molecule level and further
implies everlasting perturbations. Indeed, state [30 0 0] e.g. has a non-negligible
steady state probability of around 0.002 and any simulation run (cf. Figure 1b)
of the stochastic system almost surely shows never-ending fluctuations. Actu-
ally, the deterministic approach reasoning about expected population counts is
only justified in the thermodynamic limit, when the number of molecules is very
high compared to the considered volume. The treatment of a total number of
30 molecules in our case certainly violates that condition and in the following,
we restrict to the case where a deterministic treatment is not justified due to
stochastic noise.

3.2 Discrete-Stochastic Approach

Consequently, we propose a method to analyze the stochastic model based on the
MPM construction from Section 2.2. Please note that where in the deterministic
model we have only to inspect a single solution of the ODE which could be easily



114 D. Spieler

treated e.g. by Fourier analysis, we have to face an uncountably infinite amount
of potential trajectories in the stochastic setting.

Definition 3 (Trajectory).
Given a stochastic process {X(t)}t∈R≥0

, we define a trajectory as a function
f : R≥0 → R mapping each time point t ∈ R≥0 to an observation f(t) = X(t) ·o
with o ∈ RN .

The observation weights o allow us to describe several objectives like the ob-
servation of a single species i with o = ei or the sum of species i and j via
o = ei + ej . The use of constant weights ensures a linear combination of pop-
ulation counts and therefore no artificial oscillations are introduced due to the
definition of observation.

A naive approach to analyze the oscillatory nature of a stochastic system
involves repeated Fourier transformations of a large number of simulation runs.
Unfortunately, this method seems unfeasible since in most cases, an increase of
the precision of the confidence intervals of the inferred quantities by a certain
factor requires an exponential increase of the number of simulation runs. Another
problem is the definition of an oscillatory and periodic character in the stochastic
setting itself. For example, note that for trajectories f(t), the common definitions
of periodicity with period p, i.e., f(t + p) = f(t), and oscillation at a fixed
frequency θ (in Hz), i.e., f(t) = sin(2π · θ · t), are too strict in the sense that
for non-pathological cases, the probability measure of the set of all trajectories
strictly following such a behavior without any violations is trivially zero.

3.3 Oscillatory Behavior and Noisy Periodicity

What we propose instead in order to capture the essence of periodic and oscil-
latory behavior in the stochastic setting is to use a numerical approach. But at
first we will formally define the above mentioned concepts.

Definition 4 (Oscillatory behavior).
A MPM is called oscillatory for observation weights o and amplitude levels
L,H ∈ N with H > L, if the probability measure of all trajectories visiting
intervals (−∞, L), [L,H), and [H,∞)] infinitely often is one.

Obviously, a MPM with observation weights o is either oscillatory or the prob-
ability mass of trajectories with converging or diverging observations is greater
than zero. Assuming a system is oscillatory, we are also interested in the time
needed to oscillate once around this interval. We call this duration noisy period
length. A single period can be split into several events and phases (cf. Figure 2).
It starts with crossing the lower bound L (event LE) which is succeeded by a
phase where the upper bound H has not been reached yet (phase LC). When
this bound is finally reached, the period switches into the HC phase which is
ended by another crossing of the lower bound L from below. This is indicated
by another LE event and the classification pattern repeats.



Characterizing Oscillatory and Noisy Periodic Behavior in MPMs 115

Remark 1. In order to simplfiy presentation, here we assume that L and H are
chosen such that no transition in the MPM may skip the LC phase. Since we
only consider bimolecular reactions which do not alter the observation level by
more than one, this is the case if we choose H − L ≥ 2. Nevertheless, for the
case studies in Section 4, we also choose H = L + 1, but the resulting special
cases were handled in the implementation of the numerical analysis.

3.4 Period Detector Expansion

In the following we will describe how to incorporate the above period classifica-
tion pattern into a given MPM using a compositional approach.

Definition 5 (Deterministic finite automaton).
A deterministic (non-blocking) finite automaton (DFA) on set A is a tuple
(M,m0,→), where M is a finite set of states, m0 ∈ M is the initial state, and
transition relation −→⊆M × P × P ×M where P denotes the set of predicates
over A. We further demand the transition relation to be deterministic and non-
blocking, i.e., ∀m ∈M,x ∈ A.∃!p, p′ ∈ P,m′ ∈M.p(x)∧p′(x)∧(m, p, p′,m′) ∈→.

Definition 6 (Product of MPM and DFA).
The product M⊗D of a MPM M = (S,Q, π(0)) and a DFA D = (M,m0,→)
on S is a MPM M′ = (S′,Q′, π′(0)) where S′ = S ×M , π′

[x m](0) = πx(0) if

m = m0 and 0 otherwise, and its infinitesimal generator Q′ defined by

q′[x m][y m′] =

⎧⎪⎨⎪⎩
qxy if x = y ∧ eval(x,y,m,m′),

E([x m]) if x = y ∧m = m′,

0 otherwise,

where E([x m]) = −
∑

0 �=x∨m′′ �=m q′[x m][0 m′′] and predicate eval(x,y,m,m′) is

true iff ∃p, p′ ∈ P.p(x) ∧ p′(y) ∧ (m, p, p′,m′) ∈→. For a state s = [x m], we
define sM = m.

Definition 7 (Period detector expanded MPM). Given a MPM M =
(S,Q, π(0)) with S ⊆ Nd, the period detector expanded MPM (PDMPM) of
M for observation weights o is the product MPM M′ =M⊗DPD where DPD

denotes the DFA depicted in Figure 3. In order to keep the presentation readable,
we have abbreviated some transitions to make the DFA deterministic and non-
blocking by the expression else.

The intuition behind the period detector expanded MPM is that it mimics the
original behavior but additionally annotates the state space of the MPM by the
information of the DFA in which event or phase of an oscillation the system
currently is. Note that we do not need an acceptance condition for the DFA.

Theorem 1 (Equivalence preservation).
A MPMM = (S,Q, π(0)) and its product with a DFA D on S are F -bisimilar [3]
written M ∼F M ⊗ D for F = R with respect to the labeling functions [3]
l(x) = {x · o} on M and l([x m]) = {x · o} on M⊗D.



116 D. Spieler

L

t

X(t)⋅o

H

LE LC HC LE ...
noisy period length

Fig. 2. Events/phases of noisy periods

LE

LC

HC

true,true

true,x · o < H

true,x · o ≥ H

else

x · o < L,x · o ≥ L

Fig. 3. Period detector DFA

Proof. Let DFA D = (M,m0,→) and relations R1 and R2 be defined as

R1 = {(x, [x m]) | x ∈ S,m ∈M} and

R2 = {([x m], [x m′]) | x ∈ S,m,m′ ∈M}.

Then, relation R = R1 ∪ R−1
1 ∪ R2 ∪ id(S), where id(S) = {(x,x) | x ∈ S}

denotes the identity relation on S, is a F-bisimulation relation. ��

Theorem 1 ensures, that the MPM and its period detector expanded MPM are
equal in the sense that they behave the same with respect to the probability
of any observations that can be made starting in any state. In particular, no
oscillations are artificially introduced due to the described extension.

3.5 Analysis of the PDMPM

The following theorem shows how the oscillatory character of a MPM can be
checked with the help of period detector expansion.

Theorem 2 (Oscillatory character).
Given a MPM with observation weights o and amplitude levels L,H ∈ N with
H > L. If its PDMPM with state space S′ ⊆ S × {LE,LC,HC} is ergodic and

∀m ∈ {LE,LC,HC}.∃x ∈ S.π([x m]) > 0,

where π denotes the steady state probability distribution of the PDMPM, the
MPM is oscillatory.

Proof. Ergodicity implies positive-recurrence of all states and therefore diver-
gence is ruled out. The existence of at least one state [x m] in each phase m ∈
{LE,LC,HC} with positive steady state probability and the construction of the
PDMPM imply that each of the observation intervals (−∞, L), [L,H), [H,∞) is
visited infinitely often contradicting convergence. ��



Characterizing Oscillatory and Noisy Periodic Behavior in MPMs 117

In case of an oscillatory system, we also want to quantify the time needed for
oscillations on the long run. We start by defining the time L needed for the next
two LE events in the PDMPM. Since the underlying process is stochastic, L is
a random variable as defined in Equation (5).

L(t)=min [t2 : ∃t1≥t, t1<t2.X(t1)M=X(t2)M=LE∧∀t′∈(t1, t2).X(t′)M =LE]− t
(5)

Next, we define the noisy period length as the time L(t) for those states and
times where an oscillation just begins, i.e., X(t)M = LE. Our final goal is to
approximate the cumulative distribution function (CDF)

lim
t→∞

Pr[L(t) ≤ T | X(t)M = LE] (6)

of the noisy period length on the long run. We will do that in Algorithm 3.

Algorithm 3. nperiod(M = (S,Q, π(0)),o, L,H,Δ, α)

1: let M′ = (S′ = S × {LE,LC,HC},Q′, π′(0)) be the PDMPM of M for o
2: solve πQ′ = 0 with πe = 1
3: π[x p] ← π[x LE] if p = LC and 0 otherwise
4: π ← π · (πe)−1

5: t ← 0; ea ← 0; cdf(−Δ)← 0
6: while

∑
x π[x LE] < α− ea do

7: [π, e]← transient(Q′, π,Δ) where states [x LE] are made absorbing
8: cdf(t)←

∑
x π[x LE]; ea ← ea + e

9: pdf(t)← cdf(t)− cdf(t−Δ); t ← t+Δ
10: end while
11: return [cdf,pdf]

Theorem 3 (Noisy period length). Given an oscillatory MPM X(t), Algo-
rithm 3 approximates probability limt→∞ Pr[L(t) ≤ T | X(t)M = LE] by cdf(T ).

Proof. First, we note that the set of paths satisfying L(t) ≤ T is measurable since
the problem can be reduced to bounded reachability where respective proofs
as in [3] can be used. Concerning the algorithm, we first compute the steady
state distribution π of the PDMPM in line 2 and normalize the sub-distribution
π[x LE] corresponding to states in the LE event in lines 3 and 4 which resembles
the conditioning in Equation (6). The while-loop from lines 6 to 10 performs
a transient analysis using this distribution as the initial distribution and states
corresponding to a second LE event are made absorbing. Consequently, the
total mass in the absorbing states corresponds to the proportion of paths having
finished a full oscillatory cycle up to time t. Note that the transient analysis is
not exact since we truncate states with probability less than δ (as described in
Algorithm 1). Therefore, in addition, we compute the accumulated error in ea
(line 8). We stop iteration as soon as a threshold α of the total initial probability
mass minus the accumulated error has been absorbed. In line 8, we keep track of
the time and the absorbed mass which gives the CDF quantized by the time step



118 D. Spieler

Δ. Taking finite differences of the CDF finally gives an approximation of the
probability density function (PDF) of the noisy period length. The algorithm
terminates since each period will finally end with probability one due to the
construction of the PDMPM, the ergodicity implied by its oscillatory character
and the states corresponding to the end of an oscillation being made absorbing.
Note that in line 3 we take states in the LC phase instead of the LE event for
the initial distribution. The reason is that this way we do not have to distinguish
between the first and second LE event. Consequently, if a state s with M(s) =
LE is entered, a full period has been performed. This is justified if H − L ≥ 2
and only a maximal increase of one in the observation level per transition can
be made (bimolecular reactions), since the LE event is left in any case after
one step. We restricted to that case in order to simplify the presentation (cf.
Remark 1). In our implementation, we have separate annotations for the first
and second LE event. ��

The total error probability mass θ = 1 − α + ea can be used for bounding the
period length. If the support of the steady state distribution has to be truncated
(cf. Section 2.3), error ε has to be added to θ as well. The error θ can be controlled
by increasing α. A choice of δ = 10−20 usually results in a negligible error
ea [9]. The time complexity of the steady state computation is O(n3), where
n is the number of states and the complexity of the CDF/PDF computation
using truncation based transient analysis is O(u · t · n), where t is the maximal
period length of interest, u is the maximum exit rate encountered and n is the
maximum number of states with significant probability mass until time t.

4 Numerical Results

Finally, we will show the numerical results of applying the presented methods
to two case studies from systems biology. All computations were performed on
an Intel Core i5 2.66 GHz machine with 8 GB of RAM. In all experiments, we
used thresholds δ = 10−20, α = 0.9999, and chose Δ = 0.5 · u−1, where u is the
maximum exit rate (cf. Section 2.4) over the complete time course.

4.1 Three-Way Oscillator

First, we will analyze the 3-way oscillator as described in Table 2. We identify
the count of molecules of type A (B, C) with variable x1 (x2, x3). We choose
initial state (x1,x2,x3) = (30, 0, 0) with probability one and rates τA = τB =
τC = νA = νB = νC = 1.0. As argued in Section 3, the resulting state space is
finite. The mean population counts in steady state are (x1,x2,x3) = (10, 10, 10)
and due to symmetry we are only interested in species A, i.e., o = e1. As can
be seen in the sample trace in Figure 1b,the oscillations are around this mean
value. Consequently, we took L = x1− a

2 and H = x1+
a
2 for the interval bounds

and varied the amplitude a ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18}.
The system is oscillatory for all those amplitude levels and the results of

the noisy period length analysis are depicted in Figure 4 with the computation



Characterizing Oscillatory and Noisy Periodic Behavior in MPMs 119

Fig. 4. Noisy period length PDF of the
3-way oscillator model for several ampli-
tudes

Fig. 5. Computation times for computing
the noisy period length PDF

times presented in Figure 5. Most likely, the (noisy) period length of the 3-way
oscillator is around 0.5 time units and period lengths of 5 or more time units
are rare, even in the case of full amplitudes (a = 18). This coincides with the
observations that can be made from the sample trajectory in Figure 1b.

4.2 Repressilator

The other case study studies the repressilator model as described in Table 1 with
parameter set ρ = ρA = ρB = 10.0, δ = δA = δB = 1.0, β = βA = βB = 0.05,
and ν = νA = νB = 0.2. We identify molecule counts of species A (B) with
variable x1 (x2) and represent the active gene GA (GB) via variable x3 (x4)
and inactive gene GA (GB) via x5 (x6). In contrast to the preceding model, the
state space S = {x ∈ N2 × {0, 1}4 | x3 = 1 − x5 ∧ x4 = 1 − x6} is not finite
for initial state (0, 0, 1, 1, 0, 0). Consequently, geometric bounds for 90% of the
steady state probability mass were computed according to [8] which resulted in
upper bounds of 32 molecules for both protein species.

Sample traces of the repressilator model (cf. Figure 6) reveal that unlike the
oscillation around a mean value, the repressilator with the specified parameters

Fig. 6. Sample trajectory of the repressilator model (observing A)



120 D. Spieler

(a) Noisy period length PDF of the repressi-
lator model for several amplitudes.

(b) Noisy period length PDF of the
repressilator model for a = 1.

Fig. 7. Results for the repressilator model

has a rather peak-like oscillation pattern, i.e., periods start at the zero level, reach
a maximum peak level and finally return to the zero level again. Therefore, we
choose L = 1 and H = L + a for varying a with 1 ≤ a ≤ 19 (cf. Remark 1).
The system is oscillatory for all amplitude values and the results of the noisy
period length analysis are depicted in Figure 7a with the respective computation
times presented in Figure 5. The majority of periods have durations of less than
80 time units and the larger the amplitudes, the larger also the period length
becomes, since peaks of higher amplitudes become more rare. An interesting
phenomenon of the repressilator can be witnessed for an amplitude of a = 1
(cf. Figure 7b) where we set the smallest constraint on the minimal amplitude.
While more than 98% of the oscillations have a period length of 1.23 time units
or more, a small amount of around 1.87% of the oscillations only lasts for 1.23
time units or less as can be seen by the first peak in probability in Figure 7b.
This bi-modality of the probability distribution can be explained by two effects.
The smaller peak (until t = 1.23) occurs since there is little time to build up a
significant amount of A molecules. Consequently, the chance of the A molecules
repressing gene GB is small and therefore the amount of B molecules grows as
well and finally species B may win the competition to represses its competitor,
gene GA. Since the degradation rate δ of the molecules is high compared to
the gene unbinding rate ν, it is very likely that all A molecules degrade until
the unbinding event happens and the oscillatory cycle ends. So each oscillation
must first cross a kick-start level of molecules in order to perform a longer cycle.
However, most of the time this threshold is surpassed and the oscillation is only
ended by spontaneous and long enduring repressions by B molecules.

5 Conclusion

In this work we provided definitions for oscillatory and periodic behavior for
Markov population models. These are continuous-time Markov chains, where
states represent potentially unbounded population counts for several population
types. We further developed an efficient way to check whether a system is oscil-
latory and also provided a numerical algorithm to approximate the probability



Characterizing Oscillatory and Noisy Periodic Behavior in MPMs 121

distribution of the period length. We finally applied our techniques to two well-
known case studies from systems biology. For future work we plan to extend the
approach to capture vanishing oscillations found in damped oscillators as well.

References

1. Andrei, O., Calder, M.: Trend-based analysis of a population model of the akap
scaffold protein. TCS Biology 14 (2012)

2. Arkin, A., Ross, J., McAdams, H.: Stochastic kinetic analysis of developmen-
tal pathway bifurcation in phage λ-infected escherichia coli cells. Genetics 149,
1633–1648 (1998)

3. Baier, C., Hermanns, H., Haverkort, B., Katoen, J.-P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Transactions on Software Engineer-
ing 29(6), 524–541 (2003)

4. Ballarini, P., Guerriero, M.L.: Query-based verification of qualitative trends and
oscillations in biochemical systems. TCS 411(20), 2019–2036 (2010)

5. Ballarini, P., Mardare, R., Mura, I.: Analysing biochemical oscillation through
probabilistic model checking. ENTCS 229(1), 3–19 (2009)

6. Barkai, N., Leibler, S.: Biological rhythms: Circadian clocks limited by noise. Na-
ture 403, 267–268 (2000)

7. Bortolussi, L., Policriti, A.: The importance of being (a little bit) discrete.
ENTCS 229(1), 75–92 (2009)

8. Dayar, T., Hermanns, H., Spieler, D., Wolf, V.: Bounding the equilibrium distri-
bution of Markov population models. NLAA (2011)

9. Didier, F., Henzinger, T.A., Mateescu, M., Wolf, V.: Fast adaptive uniformization
of the chemical master equation. In: Proc. of HIBI, pp. 118–127. IEEE Computer
Society, Washington, DC (2009)

10. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regu-
lators. Nature 403(6767), 335–338 (2000)

11. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81(25), 2340–2361 (1977)

12. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica
A 188, 404–425 (1992)

13. Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite
Markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 337–352. Springer, Heidelberg (2009)

14. Júlvez, J., Kwiatkowska, M., Norman, G., Parker, D.: A systematic approach to
evaluate sustained stochastic oscillations. In: Proc. BICoB. ISCA (2011)

15. Kerr, B., Riley, M.A., Feldman, M.W., Bohannan, B.J.M.: Local dispersal promotes
biodiversity in a real-life game of rock-paper-scissors. Nature 418 (2002)

16. Kirkup, B.C., Riley, M.A.: Antibiotic-mediated antagonism leads to a bacterial
game of rock-paper-scissors in vivo. Nature 428 (2004)

17. Maroto, M., Monk, N.A.M.: Cellular Oscillatory Mechanisms. Advances in Exper-
imental Medicine and Biology, vol. 641. Springer (2009)

18. Meyer, K., Wiegand, K., Ward, D., Moustakas, A.: Satchmo: A spatial simulation
model of growth, competition, and mortality in cycling savanna patches. Ecological
Modelling 209, 377–391 (2007)



122 D. Spieler

19. Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Math-
ematics. Springer (2000)

20. Reichenbach, T., Mobilia, M., Frey, E.: Coexistence versus extinction in the
stochastic cyclic lotka-volterra model. Phys. Rev. E 74, 051907 (2006)

21. Spieler, D.: Model checking of oscillatory and noisy periodic behavior in Markovian
population models. Technical report, Saarland University (2009), Master thesis
available at http://mosi.cs.uni-saarland.de/?page_id=93

22. Stewart, W.J.: Introduction to the numerical solution of Markov chains. Princeton
University Press (1994)

http://mosi.cs.uni-saarland.de/?page_id=93


Model Checking Markov Population Models

by Central Limit Approximation

Luca Bortolussi1 and Roberta Lanciani2

1 Department of Mathematics and Geosciences
University of Trieste, Italy
CNR/ISTI, Pisa, Italy
luca@dmi.units.it
2 IMT Lucca, Italy

roberta.lanciani@imtlucca.it

Abstract. In this paper we investigate the use of Central Limit Approx-
imation of Continuous Time Markov Chains to verify collective proper-
ties of large population models, describing the interaction of many similar
individual agents. More precisely, we specify properties in terms of in-
dividual agents by means of deterministic timed automata with a single
global clock (which cannot be reset), and then use the Central Limit Ap-
proximation to estimate the probability that a given fraction of agents
satisfies the local specification.

Keywords: Stochastic model checking, fluid approximation, central
limit approximation, linear noise approximation, deterministic timed au-
tomata, continuous stochastic logic.

1 Introduction

Science and technology face the increasing need of understanding, designing,
and controlling large scale complex systems, ranging from biological systems to
artificial systems like large computer networks, smart cities, and smart grids.
Most of these systems are characterised by a large number of entities that in-
teract in intricate ways to produce the complex gamma of observed behaviours.
Mathematical and computational modelling of such population processes plays
an important role in this challenge. Computational techniques, in particular, are
needed to describe, store, validate and analyse such models, which can seldom
be treated analytically.

Quantitative Formal Methods (QFM) are very promising in this respect be-
cause of their mix of algorithms and formal specification languages for models
and properties, resulting in advanced analysis tools like model checking. The
class of systems previously mentioned is usually subject to noisy dynamics, so
that stochastic processes, like Continuous Time Markov Chains (CTMC [4]), play
a predominant role in modelling them. Stochastic Model Checking (SMC [4])
can then be used to analyse such CTMCs, building on an established theory
and widely used and well-engineered software tools [17]. However, SMC suffers

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 123–138, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



124 L. Bortolussi and R. Lanciani

severely from the curse of state space explosion, an issue that hampers its ap-
plicability when large population models have to be taken into account. The
same problem affects other standard analysis techniques for CTMCs, like tran-
sient analysis and steady state computation, which are at the heart of SMC
algorithms [4]. Indeed, the most successful applications of SMC to population
models up to now are either based on statistics [14], or on coarse grained ab-
stractions of the original model [13].

A different class of methods to tackle state space explosion is that of Fluid
Approximation (FA, [10, 20]), which consists in approximating the collective
stochastic dynamics of population processes with a simpler, deterministic one,
given by a set of Ordinary Differential Equations (ODE). This operation can
be justified invoking the law of large numbers. FA has received attention re-
cently also in the area of QFM, as a tool to approximate the (average) transient
evolution of Stochastic Process Algebra (SPA) models, see e.g. [7, 19].

As far as SMC is concerned, fluid approximation has entered the arena only
recently [5, 11, 12]. In [5], the authors exploit FA to construct an approximate
model of a single individual agent in a (large) population, and check efficiently
CSL properties for such an individual. A similar approach is taken in [11], re-
stricting to path properties specified by Deterministic Finite Automata (DFA).
In [11, 12], the authors look also at global properties concerned with fraction of
agents satisfying local specifications, using moment closure techniques to find
approximate bounds on the associated probabilities.

In this paper, we continue along this direction, focussing on the lifting of
local specifications to the global level, but using a different FA tool to provide
an estimate of the global probabilities involved: the Central Limit Approximation
(CLA [10]), also known as Linear Noise Approximation [20]. In this respect, our
approach complements that of [11, 12]. We also consider a richer class of path
properties, expressed by Deterministic Timed Automata (DTA, [8]) with 1 global
clock (i.e. a clock referring to the global model time). Hence, this work goes in
the direction of merging the approaches of [5] and [11,12] in the light of the logics
asCSL [2] or CSL-TA [9], in which until path properties of CSL are replaced by
DFA or DTA specifications. The link between local and global properties, with
exclusive focus on average collective properites estimated using the fluid limit,
has been discussed before in a logical setting in [16].

The paper is organised as follows: in Section 2, we introduce population models
by means of a simple automata-based modelling language. In Section 3, we dis-
cuss the DTA specification of local properties and their lifting to the global level.
In Section 4, we discuss how to combine a population model and a DTA specifi-
cation into a larger sequence of population models, which is the key step of the
algorithm of Section 6, based on the Central Limit Approximation (introduced
in Section 5). Finally, in Section 7 we discuss the quality of the approximation
using the main example of the paper, a network epidemic model, and, in Section
8, we draw the final conclusions.



Model Checking MPMs by Central Limit Approximation 125

2 Population Models

In this section, we introduce an automata-based formalism to specify Markovian
population models consisting of large collections of interacting components, or
agents. Each component is a finite state machine, instance of an agent class A
that defines its (finite) state space and its (finite) set of local transitions.

Definition 1 (Agent class). An agent class A is a pair (S,E) where S =
{1, . . . , n} is the state space of the agent and E = {ε1, . . . , εm} is the set of local

transitions of the form εi = si
αi−→ s′i, i ∈ {1, . . . ,m}, where αi is the transition

label, taken from the label set L .

For simplicity, we require that from the same state s ∈ S, there cannot exist
two outgoing transitions having the same label. An agent belonging to the class
A = (S,E) is identified by a random variable Y (t) ∈ S, denoting the state of
the agent at time t, and the initial state Y (0) ∈ S.

In the following, we consider populations ofN agents Y
(N)
k , k ∈ {1, . . . , N}, all

belonging to the same class A = (S,E) with S = {1, . . . , n}We further make the
classical assumption that agents in the same state are indistinguishable, hence
the state of the population model can be described by collective or counting

variables X(N) = (X
(N)
1 , . . . , X

(N)
n ), X

(N)
j ∈ {0, . . . , N}, defined by X

(N)
j =∑N

k=1 1{Y
(N)
k = j}. The initial state x

(N)
0 is given by x

(N)
0 = X(N)(0), and

the counting variables satisfy the conservation relation
∑

j∈S X
(N)
j = N . To

complete the definition of a population model, we need to specify its global
transitions, describing all possible events that can change the state of the system.

Definition 2 (Population model). A population model X (N) of size N is a

tuple X (N) = (A , T (N), x
(N)
0 ), where:

– A is an agent class, as in Definition 1;

– T (N) = {τ1, . . . , τ�} is the set of global transitions of the form τi = (Si, f
(N)
i ),

where:

• Si = {s1
α1−→ s′1, . . . , sp

αp−−→ s′p} is the (finite) set of local transitions
synchronized by τi;

• f
(N)
i : Rn −→ R≥0 is the (Lipschitz continuous) global rate function.

– x
(N)
0 is the initial state.

The rate f
(N)
i gives the expected frequency of transition τi as a function of the

state of the system. We assume f
(N)
i equal to zero if there are not enough agents

available to perform the transition. The synchronization set Si, instead, specifies
how many agents are involved in the transition τi and how they change state:

when τi occurs, we see the local transitions s1
α1−→ s′1, . . . , sp

αp−−→ s′p fire at the
(local) level of the p agents involved in τi. For simplicity, within Si we require
sj = sk for j = k, i.e. agents in the same state cannot be synchronized.



126 L. Bortolussi and R. Lanciani

RI

S

inf
patch1

lossinf
ext
patch0

q0start q1 q2

q3

inf, atS
1 ≤ x ≤ 2

inf, atS
x ≤ 1

inf, atS
x ≤ 4

Fig. 1. Left: The automaton representation of a network node. Right: The 1gDTA
specifications discussed in Example 1 of Section 3.

Remark 1. The population models we introduced have three main restrictions:
(i) there is a single class of agents, (ii) the population is constant, and (iii)
synchronising agents must be in different local states. Restrictions (i) and (iii)
can be easily dropped, at the price of a heavier notation and of a more involved
combinatorics in the definition of the rate functions of the synchronised models,
cf. Section 4. Restriction (ii) can be removed as well, as the approximations we
will use do not rely on such an assumption. However, extra care has to be put
in treating local properties, as discussed in [5].

Given a population model X (N) = (A , T (N),x
(N)
0 ) and a global transition τ =

(Sτ , f
(N)
τ ) ∈ T (N) with Sτ = {s1

α1−→ s′1, . . . , sp
αp−−→ s′p}, we encode the net

change in X(N) due to τ in the update vector vτ =
∑p

i=1(esi − es′i), where esi
is the vector that is equal to 1 in position si and zero elsewhere.

The CTMCX(N)(t) associated with X (N) has state space S(N) = {(z1, . . . , zn)
∈ Nn |

∑n
i=1 zi = N}, initial probability distribution concentrated on x

(N)
0 , and

infinitesimal generator matrix Q defined for x,x′ ∈ S(N), x = x′, by qx,x′ =∑
τ∈T |vτ=x′−x fτ (x).

2.1 Running Example

In order to illustrate the method of the paper, we consider a simple example of a
worm epidemic in a peer-to-peer network composed of N nodes (see e.g. [15] for
mean field analysis of network epidemics). Each node is modelled by the simple
agent shown in Figure 1, which has three states: susceptible to infection (S),
infected (I), and patched/immune to infection (R). The contagion of a susceptible
node can occur due to an event external to the network (ext), like the reception
of an infected email, or by file sharing with an infected node within the network
(inf). Nodes can also be patched, at different rates, depending if they are infected
(patch1) or not (patch0). A patched node remains immune from the worm for
some time, until immunity is lost (loss), modelling for instance the appearance
of a new version of the worm.

The agent class Anode = (Snode, Enode) of the network node can be easily
reconstructed form the automaton representation in Figure 1. The population



Model Checking MPMs by Central Limit Approximation 127

model X (N)
net = (Anode, T (N),x

(N)
0 ) with population variables X = (XS , XI , XR)

is then obtained by specifying transitions and initial conditions. The latter is sim-

ply a network of susceptible nodes, x
(N)
0 = (N, 0, 0), while the former is given by

five global transitions, τext, τloss, τpatch0 , τpatch1 , τinf ∈ T (N). For example, the

external infection is defined by τext = ({S ext−−→ I}, fext), where the synchroni-
sation set specifies that only one susceptible node is involved and changes state
from S to I at a rate given by fext(X) = κextXS , corresponding to a rate of in-
fection κext per node. The transitions τloss, τpatch0 , τpatch1 have a similar format,

while the internal infection is described by τinf = ({I inf−−→ I, S
inf−−→ I}, finf) and

involves one S-node and one I-node. Furthermore, in this case of τinf , we assume
that an infected node sends infectious messages at rate κinf to a random node,
giving a classical density dependent rate function finf (X) = 1

N κinfXSXI [1].

3 Individual and Collective Properties

We introduce now the class of properties considered in the paper. We distinguish
two levels of properties: local properties, describing the behaviour of individual
agents, and global properties, describing the collective behaviour of agents with
respect to a local property of interest. In this classification, our approach is
similar to [12, 16].

In particular, we are concerned with time-bounded local properties specified by
Deterministic Timed Automata (DTA). This restriction to finite time horizons
is justified because the analysis of steady state properties is always problematic
in the context of fluid approximation (see [5,6,12] for further discussion on this
point).

The global property layer, instead, allows us to specify queries about the
fraction of agents that satisfies a given local specification. In particular, given a
(local and time-bounded) path property ϕ, we want to compute the probability
that the fraction of agents that satisfies ϕ at time T is smaller or larger than
a threshold α. This will be captured by a proper operator, that can then be
combined to specify more complex global queries, as in [16].

Let us fix a population model composed of N agents belonging to a class A =
(S,E). We consider local path properties specified by 1-global-clock Deterministic
Timed Automata (1gDTA), which are DTAs with a single clock variable x ∈ R≥0,
called global clock, that is never reset. We call V the set of valuations of x, i.e.
functions η : {x} −→ R≥0 that assign a nonnegative real-value to the global clock
x, and CC the set of clock constraints, which are positive boolean combinations
of basic clock constraints of the form x ≤ a or x ≥ a, where a ∈ Q≥0. We write
η(x) |=CC c if and only if c ∈ CC is satisfied when the clock variable takes the
value η(x). In addition to actions and clock constraints, we also label the edges
of 1gDTA by a boolean formula, interpreted on the states s ∈ S of agent A ,
similarly to asCSL [2] and CSL-TA [9]. Let ΓS be the set of these (atomic) state
propositions over S, and B(ΓS) the set of boolean combinations over ΓS . We
use the letter ϕ to range over formulae in B(ΓS) and we denote by |=ΓS the



128 L. Bortolussi and R. Lanciani

satisfaction relation over B(ΓS)-formulae. In this way, a local transition s
ατ−−→ s′

matches an edge with label α, c, ϕ in the 1gDTA if and only if the action name
is the same, the clock constraint c is satisfied and the B(ΓS)-formulae holds on
the initial state s, i.e. ατ = α, η(x) |=CC c, and s |=ΓS ϕ.

Definition 3 (1-global-clock DTA). A 1gDTA is specified by the tuple T =
(L , ΓS , Q, q0, F,→) where L is the label set of A ; ΓS is the set of atomic state
propositions; Q is the (finite) set of states of the DTA, with initial state q0 ∈ Q;
F ⊆ Q is the set of final (or accepting) states, and →⊆ Q×L ×B(ΓS)×CC×Q
is the edge relation, where (q, α, ϕ, c, q′) ∈→ is usually denoted by q

α,ϕ,c−−−→ q′.
Moreover, T satisfies:

– (determinism) for each q ∈ Q, α ∈ L , s ∈ S and clock valuation η(x) ∈ R≥0,

there is exactly one edge q
α,ϕ,c−−−→ q′ such that s |=ΓS ϕ and η(x) |=CC c;

– (absorption) the final states F are all absorbing.

When we write a 1gDTA, we stick to the convention that all non-specified edges
are self-loops on the automata states.

Example 1. As an example, consider the agent class of the network epidemic
model of Section 2.1, and the 1gDTA specification of Figure 1 right, where the
formula atS is true in local state S and false in states I and R. The automaton
describes the local property stating that an agent is infected by internal con-
tact twice, the first infection happening between time 1 and 2, and the second
infection happening before time 4. The sink state q3 is used to discard agents
being infected for the first time before time 1. The use of the state formula atS
allows us to focus only on agents that are infected, ignoring agents that spread
the contagion.

An individual agent in a population model satisfies the local property specified by
a 1gDTA T at time T if, feeding to T the agent trajectory up to time T , we reach
a final state. This can be formalised in a standard way, see for instance [8,9]. In
order to lift these local specifications to the collective level, we count the number
of agents that satisfy the 1gDTA T at time T . More specifically, we check if the
fraction of agents satisfying T is included in the interval [a, b], which we write as
T (T ) ∈ [a, b], where the bounds a, b are specified in terms of fraction of agents or
population density (the number of agents divided by the total population size).
To verify the random event T (T ) ∈ [a, b], we compute its probability, which
is then compared with a given threshold. The atomic global properties can be
combined together by boolean operators, as in [16], to define more expressive
queries.

Definition 4 (Syntax of global properties). Given a population model X (N),
a collective/global property on X (N) is given by the following syntax:

Ψ = true | P��p(T (T ) ∈ [a, b]) | ¬Ψ | Ψ1 ∧ Ψ2,

where P��p(T (T ) ∈ [a, b]) is true if and only if q �� p, for ��∈ {<,≤,≥, >}, with
q being the probability that at time T the number of agents that satisfies the local
path property T is contained in the interval [a, b].



Model Checking MPMs by Central Limit Approximation 129

As an example, consider again the 1gDTA property T of Figure 1 right. The
atomic global property P≥0.8(T (4) ≤ 1

3 ) specifies that, with probability at least
0.8, no more than one third of network nodes will be infected twice in the first
4 time units by an internal contact, with the first infection happening between
time 1 and 2.

Remark 2. In addition to path properties specified by 1gDTA, we could have
considered state properties in the style of CSL-TA [9]. This can be done at
the price of dealing with nesting of path and state properties, which for local
specifications rises issues of time-dependency of truth values similar to those
discussed in [5]. We leave this for future work.

Remark 3. The fact that final states are absorbing implies that we are looking
for properties in which an accepting state of the 1gDTA must be reached at a
time instant within [0, T ]. Punctual properties, looking at satisfaction exactly at
time T , can be obtained by dropping the absorbing condition in Definition 3.

4 Synchronisation of Agents and Properties

In this section, we present the model checking procedure for the verification of
global atomic properties. We aim at approximating such probabilities by means
of central limit results [10, 20]. The first step is to synchronize the agent and
the property, constructing an extended Markov population model in which the
state space of each agent is combined with the specific path property we are
observing. The Central Limit Approximation is then applied to the so obtained
model.

The main difficulty in this procedure is the presence of time constraints in
the path property specification. However, thanks to the restriction to a single
global clock, we can partition the time interval of interest into a finite set of
subintervals, within which no clock constraint changes status. Thus, in each
subinterval, we can remove the clock constraints, deleting all the edges that
cannot fire being their clock constraint false. In this way, we generate a sequence
of Deterministic Finite Automata (DFA), that are then combined with the local
model A by a standard product of automata. Then, we construct the population
models associated with such a local model (paying attention to the rates) and we
obtain a sequence of population CTMC models to which we apply the Central
Limit Approximation.

Synchronisation of Local Properties

Let A = (S,E) be an agent class, T = (L , ΓS , Q, q0, F,→) be a local path
property, and T > 0 be the time horizon.

First Step: Uniqueness of Transition Labels. We define a new agent class
Ā = (S, Ē) by renaming the local transitions inE tomake their label unique. This
allows us to remove edge formulae in T , simplifying the product construction. In



130 L. Bortolussi and R. Lanciani

particular, if there exist s1
α−→ s′1, . . . , sm

α−→ s′m ∈ E having the same label α, we

rename them by αs1 , . . . , αsm , obtaining s1
αs1−−→ s′1, . . . , sm

αsm−−−→ s′m ∈ Ē. The

1gDTA T is updated accordingly, by substituting each edge q
α,ϕ,c−−−→ q′ with the

set of edges q
αsi

,ϕ,c
−−−−→ q′, for i = 1, . . . ,m. We call L̄ the label set of Ā .

Second Step: Removal of State Conditions. We remove from the edge

relation of T all the edges q
αsi

,ϕ,c
−−−−→ q′ such that si |=ΓS ϕ, where si is the

source state of the (now unique) transition of Ā labeled by αsi . At this point,
the information carried by state propositions becomes redundant, thus we drop

them, writing q
αsi

,c
−−−→ q′ in place of q

αsi
,ϕ,c

−−−−→ q′.

Third Step: Removal of Clock Constraints. Let t1, . . . , tk be the ordered
sequence of constants (smaller than T ) appearing in the clock constraints of
the edges of T . We extend this sequence by letting t0 = 0 and tk+1 = T . Let
Ij = [tj−1, tj ], j = 1, . . . , k + 1, be the j-th sub-interval of [0, T ] identified by
such a sequence. For each Ij , we define a Deterministic Finite Automaton (DFA),
DIj = (L , Q, q0, F,−→j), whose edge relation −→j is obtained from that of T by
selecting only the edges for which the clock constraints are satisfied in Ij , and

dropping the clock constraint. Hence, from q
αsi

,c
−−−→ q′ such that η(x) |=CC c

whenever η(x) ∈ (tj−1, tj), we obtain the DFA edge (q, αsi , q
′) ∈−→j , denoted

also by q
αsi−−→j q

′.

Fourth Step: Synchronization. To keep track of the behaviour of the agents
with respect to the property specified by T , we synchronize the agent class
Ā = (S, Ē) with each DFA DIj through the standard product of automata. The
sequence of deterministic automata obtained in this procedure is called the agent
class associated with the local property T .

Definition 5 (Agent class associated with the local property T ). The
agent class P associated with the local property T is the sequence P =
(PI1 , . . . ,PIk+1

) of deterministic automata PIj = (Ŝ, Êj), j = 1, . . . , k + 1,

where Ŝ = S × Q is the state space and Êj is the set of local transitions

εji = (s, q)
αs−→ (s′, q′), such that s

αs−→ s′ is a local transition in Ā and q
αs−→ q′

is an edge in DIj .

Synchronisation of Global Properties

The population model X (N) = (A , T (N),x
(N)
0 ) has to be updated to follow the

new specifications at the local level. We do this by defining the population model

associated with the local property T as a sequence X (N) = (X (N)
I1

, . . . ,X (N)
Ik

)
of population models. Since the agent states are synchronized with the property
automaton, each transition in the population model needs to be replicated many
times to account for all possible combinations of the extended local state space.
Furthermore, we also need to take care of rate functions in order not to change
the global rate. Fix the j-th element PIj in the agent class P associated with the
property T . The state space of PIj is S×Q, hence to construct the global model



Model Checking MPMs by Central Limit Approximation 131

we need nm counting variables (n = |S|, m = |Q|), where Xs,q counts how many
agents are in the local state (s, q). Let τ = (Sτ , f (N)) ∈ T (N) be a global transi-
tion, apply the relabeling of action labels, according to step 1 above, and focus on

the synchronisation set Sτ = {s1
αs1−−→ s′1, . . . , sk

αsk−−→ s′k}. We need to consider
all possible ways of associating states of Q with the different states s1, . . . , sk in

Sτ . Indeed, each choice (q1, . . . , qk) ∈ Qk generates a different transition in X (N)
Ij

,

with synchronization set Sτ,r = {(s1, q1)
αs1−−→ (s′1, q

′
1), . . . , (sk, qk)

αsk−−→ (s′k, q
′
k)},

where q′i is the unique state of Q such that qi
αsi−−→ q′i. The rate function f

(N)
r

associated with this instance of τ is a fraction of the total rate function f (N) of

τ . Moreover, for all si
αsi−−→ s′i ∈ Sτ , f

(N)
r is proportional to the fraction of agents

that before the synchronisation were in si and are now in state (si, qi), i.e. Xsi,qi

divided by Xsi =
∑

q∈QXsi,q. Formally,

f (N)
r (X) =

∏
si

αsi−−→s′i∈Sτ

(
Xsi,qi∑
q∈QXsi,q

)
f (N)(X̃), (1)

where X̃ = (X1, . . . , Xn) with Xs =
∑m

r=1Xs,r. Due to the restrictions en-

forced in Definition 2, summing up the rates f
(N)
r (X) for all possible choices of

(q1, . . . , qk) ∈ Qk, we obtain f (N)(X̃).1

Definition 6 (Population model associated with a local property). The

population model associated with the local property T is the sequence X (N) =

(X (N)
I1

, . . . ,X (N)
Ik

). The elements X (N)
Ij

= (PIj , T
(N)
j ) are such that PIj is the

j-th element of the agent class associated with T and T (N)
j is the set of global

transitions of the form τ ji = (Sji , f
(N)
j,i ), as defined above.2

5 Central Limit Approximation

Given a population model X (N) = (A , T (N),x
(N)
0 ), the Fluid and Central Limit

Approximations provide an estimation of the stochastic dynamics of X (N), ex-
act in the limit of an infinite population. In particular, we consider an infinite
sequence (X (N))N∈N of population models, all sharing the same structure, for

increasing population size N ∈ N (e.g. the network models (X (N)
net )N∈N with an

increasing number of network nodes). To compare the dynamics of the models

in the sequence, we consider the normalised counting variables X̂ = 1
NX (known

also as population densities or occupancy measures, see [6] for further details)

1 If we drop the restrictions discussed in Remark 1, This will still be true, the only
difference being a more complex definition of the coefficient of f (N)(X̃) in (1).

2 Initial conditions of population models in X (N) are dropped, as they are not required
in the following. The initial condition at time zero is obtained from that of X (N) by
letting (x0)s,q0 = (x0)s, where q0 the initial state of T and s ∈ S.



132 L. Bortolussi and R. Lanciani

and we define the normalized population models X̂ (N) = (A , T̂ (N), x̂
(N)
0 ), ob-

tained from X (N) by making the rate functions depend on the normalised vari-
ables and rescaling the initial conditions. For simplicity, we assume that the
rate function of each transition τ ∈ T̂ (N) satisfies the density dependent con-

dition 1
N f

(N)
τ (X̂) = fτ (X̂) for some Lipschitz function fτ : Rn −→ R≥0, i.e.

rates on normalised variables are independent of N . Also the drift F of X (N),
that is the mean instantaneous change of the normalised variables, is given by
F(X̂) =

∑
τ∈T̂ (N) vτfτ (X̂) and, thus, is independent of N . The unique solution3

Φ : R≥0 −→ Rn of the differential equation dΦ(t)
dt = F(Φ(t)), given Φ(0) = x̂

(N)
0 ,

is the Fluid Approximation of the CTMC X̂
(N)

(t) associated with X̂ (N) and has
been successfully used to describe the collective behaviour of complex systems
with large populations [6]. The correctness of this approximation in the limit of
an infinite population is guaranteed by the Kurtz Theorem [6, 10], which states

that supt∈[0,T ] ‖X̂
(N)

(t)− Φ(t)‖ converges to zero (almost surely) as N goes to
infinity.

While the Fluid Approximation correctly describes the transient collective
behaviour for very large populations, it is less accurate when one has to deal
with a mesoscopic system, meaning a system with a population in the order of
hundreds of individuals and whose dynamics results to be intrinsically proba-
bilistic. Indeed, the (stochastic) behaviour of single agents becomes increasingly
relevant as the size of the population decreases. The technique of Central Limit
Approximation (CLA), also known as Linear Noise Approximation, provides an
alternative and more accurate estimation of the stochastic dynamics of meso-
scopic systems. In particular, in the CLA, the probabilistic fluctuations about the
average deterministic behaviour (described by the fluid limit) are approximated
by a Gaussian process.

First, we define the process Z(N)(t) := N
1
2

(
X̂

(N)
(t)−Φ(t)

)
, capturing

the rescaled fluctuations of the Markov chain around the fluid limit. Then, by
relying on convergence results for Brownian motion, one shows that Z(N)(t), for
large population sizes, can be approximated [10, 20] by the Gaussian process4

{Z(t) ∈ Rn | t ∈ R} (independent of N), whose mean E[t] and covariance C[t]
are given by {

∂E[t]
∂t = JF(Φ(t))E[t]

E[0] = 0
(2)

and {
∂C[t]
∂t = JF(Φ(t))C[t] +C[t]JTF(Φ(t)) +G(Φ(t))

C[0] = 0,
(3)

where JF(Φ(t)) denotes the Jacobian of the limit drift F calculated along the

deterministic fluid limit Φ : R≥0 −→ Rn, and G(X̂) =
∑

τ∈T̂ (N) vτv
T
τ fτ (X̂) is

3 The solution exists and is unique because F is Lipschitz continuous, as each fτ is.
4 A Gaussian process Z(t) is characterised by the fact that the joint distribution of
Z(t1), . . . ,Z(tk) is a multivariate normal distribution for any t1, . . . , tk.



Model Checking MPMs by Central Limit Approximation 133

called the diffusion term. The nature of the approximation of Z(N)(t) by Z(t) is
captured in the following theorem [10].

Theorem 1. Let Z(t) be the Gaussian process with mean (2) and covariance (3)

and Z(N)(t) be the random variable given by Z(N)(t) := N
1
2

(
X̂

(N)
(t)− Φ(t)

)
.

Assume that limN→∞ Z(N)(0) = Z(0). Then, Z(N)(t) converges in distribution

to Z(t) (Z(N)(t)⇒ Z(t)).

The Central Limit Approximation then approximates the normalized CTMC

X̂
(N)

(t) = Φ(t) +N− 1
2Z(N)(t) associated with X̂ (N) by the stochastic process

Φ(t) +N− 1
2Z(t). (4)

Theorem 1 guarantees its asymptotic correctness in the limit of an infinite
population.

6 Computing the Probability of Collective Properties

Consider a population model X (N), for a fixed population size N , and a global
property P��p(T (T ) ∈ [a, b]). In order to verify the latter, we need to compute
the probability P(T (T ) ∈ [a, b]) that, at time T , the fraction of agents satisfying
the local specification T is contained in [a, b]. This probability can be computed
exploiting the construction of Section 4, according to which we obtain a sequence

of population models X (N) = (X (N)
I1

, . . . ,X (N)
Ik

), synchronising local agents with
the sequence of deterministic automata associated with T . In such construction
we identified a sequence of times 0 = t0, t1, . . . , tk = T and in each interval
Ij = [tj−1, tj ] the satisfaction of clock constraints does not change.

Therefore, in order to compute P(T (T ) ∈ [a, b]), we can rely on transient
analysis algorithms for CTMCs [3]: first we compute the probability distribution

at time t1 for the first population model X (N)
I1

; then we use this result as the

initial distribution for the CTMC associated with the population model X (N)
I2

and we compute its probability distribution at time t2; and so on, until we obtain

the probability distribution for X (N)
Ik

at time tk = T . Once we have this result,
we can find the desired probability by summing the probability of all those states
X ∈ S(N) such that

∑
s∈S,q∈F X̂s,q ∈ [a, b].

Unfortunately, this approach suffers from state space explosion, which is se-
vere even for a population size of few hundreds of individuals. Furthermore, for
these population levels we cannot either rely on the Fluid Approximation, as it
would only give us an estimate of the average of the counting variables, while
we need information about their distribution. It is here that the Central Limit
Approximation enters the picture.

The idea is simply to compute the average and covariance matrix of the ap-
proximating Gaussian Process by solving the ODEs shown at the end of the
previous section. In doing this, we have to take proper care of the different pop-
ulation models associated with the time intervals Ij . Then, we integrate the



134 L. Bortolussi and R. Lanciani

Gaussian density of the approximating distribution at time T to estimate of the
probability P(T (T ) ∈ [a, b]). The justification of this approach is in Theorem 1,
which guarantees that the estimated probability is asymptotically correct, but
in practice, we can obtain good approximations also for relatively small popula-
tions, in the order of hundreds of individuals.

Verification Algorithm

The input of the verification algorithm is:

• an agent class A = (S,E) and a population model X (N) = (A , T (N),x
(N)
0 );

• a local property specified by a 1gDTA T = (L , ΓS , Q, q0, F,→);
• a global property P��p(T (T ) ∈ [a, b]) with time horizon T > 0.

The steps of the algorithm are:

1. Construction of the Population Model Associated with T . Con-

struct the normalised population model X̂ (N) = (X̂ (N)
I1

, . . . , X̂ (N)
Ik

) associ-
ated with T according to the recipe of Section 4. Then modify it by adding

to its vector of counting variables X̂
(N)

a new variable X̂Final that keeps
track of the fraction of agents entering one of the final states (s, q), q ∈ F .

2. Integration of the Central Limit Equations. For each j = 1, . . . , k, gen-
erate and solve numerically the system of ODEs that describes the fluid limit

Φj(t) and the Gaussian covariance Cj[Z(t)] for the population model X (N)
Ij

in the interval Ij = [tj−1, tj ], with initial conditions Φj(tj−1) = Φj−1(tj−1)
and Cj [Z(tj−1)] = Cj−1[Z(tj−1)] for j > 1, and Φ1(0) = x0, C1[Z(0)] = Id.
Define the population mean as E(N)[X(t)] = NΦj(t) and the population
covariance as C(N)[X(t)] = NCj [Z(t)], for t ∈ Ij . Finally, identify the com-

ponent E
(N)
Final[X(t)] and the diagonal entry C

(N)
Final[X(t)] corresponding to

XFinal.
3. Computation of the Probability. Let g(x | μ, σ2) be the probability

density of a Gaussian distribution with mean μ and variance σ2. Then, ap-
proximate P(T (T ) ∈ [a, b]) by

P̃
(N)
T (T ) =

∫ Nb

Na

g(x | E(N)
Final[X(t)], C

(N)
Final[X(t)])dx,

and compare the result with the probability bound �� p.

The asymptotic correctness of this procedure is captured in the next theo-
rem, whose proof is a straightforward consequence of Theorem 1. We denote

by P
(N)
T (T ) the exact value of P(T (T ) ∈ [a, b]) and by P̃

(N)
T (T ) the approxi-

mate value computed by the Central Limit Approximation.

Theorem 2. Under the hypothesis of Theorem 1, it holds that

limN→∞ ‖P (N)
T (T )− P̃

(N)
T (T )‖ = 0. �



Model Checking MPMs by Central Limit Approximation 135

q0

start

q1 q2
inf, ϕI

patch1

ϕI
q0

start

q1 q2

inf, ϕS

x < τ

inf, ϕS

x ≥ τ

Fig. 2. The 1gDTA specifications experimentally analysed in Section 7

Remark 4. The introduction of the counting variable XFinal is needed to cor-
rectly capture the variance in entering one of the final states of the property.
Indeed, it holds that XFinal =

∑
s∈S,q∈F Xs,q, and in principle we could have

applied the CLA to the model without XFinal, using the fact that the sum of
Gaussian variables is Gaussian (with mean and variance given by the sum of
means and variances of the addends). In doing this, though, we overestimate the
variance of XFinal, because we implicitly take into account the dynamics within
the final components. The introduction of XFinal, instead, avoids this problem,
as its variance depends only on the events that allow the agents to enter one of
the final states.

7 Experimental Analysis

We discuss now the quality of the Central Limit Approximation for mesoscopic
populations from an experimental perspective. We present a detailed investiga-
tion of the behaviour of the example describing a network epidemics introduced
in Section 2.

We consider two local properties in terms of the 1gDTAs shown in Figure 2.
The first property T1 has no clock constraints on the edges of the automaton,
therefore the 1gDTA reduces to a DFA. The property is satisfied if an infected
node is patched before being able to infect other nodes in the network, thus
checking the effectiveness of the antivirus deploy strategy. The second property
T2, instead, is properly timed. It is satisfied when a susceptible node is infected
by an internal infection after the first τ units of time. The corresponding global
properties that we consider are P(T1(T ) ≥ α1) and P(T2(T ) ≥ α2).

In Figure 3, we show the probability of the two global properties as a function
of the time horizon T , for different values of N and a specific configuration of
parameters. The CLA is compared with a statistical estimate, obtained from
10000 simulation runs. As we can see, the accuracy in the transient phase in-
creases rapidly with N , and the estimate is very good for both properties already
for N = 100.

Furthermore, in order to check more extensively the quality of the approxima-
tion also as a function of the system parameters, we ran the following experiment.
We considered five different values of N (N = 20, 50, 100, 200, 500). For each of
these values, we randomly chose 20 different combinations of parameter values,
sampling uniformly from: κinf ∈ [0.05, 5], κpatch1 ∈ [0.02, 2], κloss ∈ [0.01, 1],
κext ∈ [0.05, 5], κpatch0 ∈ [0.001, 0.1], α1 ∈ [0.1, 0.95], α2 ∈ [0.1, 0.3]. For each



136 L. Bortolussi and R. Lanciani

Fig. 3. Comparison of Central Limit Approximation (CLA) and a statistical estimate
(using the Gillespie algorithm, SSA) of the path probabilities of the 1gDTA properties
of Figure 2 computed on the network epidemic model for different values of the popu-
lation size N . Parameters of the model are κinf = 0.05, κpatch1 = 0.02, κloss = 0.01,
κext = 0.05, κpatch0 = 0.001, α1 = 0.5, α2 = 0.2.

such a parameter set, we compared the CLA of the probability of each global
property with a statistical estimate (from 5000 runs), measuring the error in a
grid of 1000 equi-spaced time points. We then computed the maximum error and
the average error. In Table 1, we report the mean and maximum values of these
quantities over the 20 runs, for each considered value of N . We also report the
error at the final time of the simulation, when the probability has stabilised to
its limit value.5 It can be seen that both the average and the maximum errors
decrease with N , as expected, and are already quite small for N = 100 (for the
first property, the maximum difference in the path probability for all runs is
of the order of 0.06, while the average error is 0.003). For N = 500, the CLA
is practically indistinguishable from the (estimated) true probability. For the
second property, the errors are slightly worse, but still reasonably small.

Finally, we considered the problem of understanding what are the most im-
portant aspects that determine the error. To this end, we regressed the observed
error against the following features: estimated probability value by CLA, er-
ror in the predicted average and variance of XFinal (between the CLA and the
statistical estimates), and statistical estimates of the mean, variance, skewness
and kurtosis of XFinal. We used Gaussian Process regression with Adaptive
Relevance Detection (GP-ADR, [18]), which performs a regularised regression
searching the best fit on an infinite dimensional subspace of continuous func-
tions, and permitted us to identify the most relevant features by learning the
hyperparameters of the kernel function. We used both a squared exponential ker-
nel, a quadratic kernel, and a combination of the two, with a training set of 500
points, selected randomly from the experiments performed. The mean predic-
tion error on a test set of other 500 points (independently of N) is around 0.015
for all the considered kernels. Furthermore, GP-ADR selected as most relevant

5 For this model, we can extend the analysis to steady state, as the fluid limit has a
unique, globally attracting steady state. This is not possible in general, cf. [6].



Model Checking MPMs by Central Limit Approximation 137

Table 1. Maximum and mean of the maximum error (max(err), E[max err]) for each
parameter configuration, maximum and mean of the average error with respect to time
(max(E[err]), E[E[err]]) for each parameter configuration, maximum and average error
at the final time horizon T (max(err(T )), E[err(T )] ), for each parameter configuration.
Data is shown as a function of the network size N . Top: First property. Bottom: second
property.

N max(err) E[max err] max(E[err]) E[E[err]] max(err(T )) E[err(T )]
20 0.1336 0.0420 0.0491 0.0094 0.0442 0.0037

50 0.0866 0.0366 0.0631 0.0067 0.0128 0.0018

100 0.0611 0.0266 0.0249 0.0030 0.0307 0.0017

200 0.0504 0.0191 0.0055 0.0003 0.0033 0.0002

500 0.0336 0.0120 0.0024 0.0003 0.0002 9.5e-6

N max(err) E[max err] max(E[err]) E[E[err]] max(err(T )) E[err(T )]
20 0.2478 0.1173 0.1552 0.0450 0.1662 0.0448

50 0.2216 0.0767 0.1233 0.0340 0.1337 0.0361

100 0.1380 0.0620 0.0887 0.0216 0.0979 0.0208

200 0.1365 0.0538 0.0716 0.0053 0.0779 0.0162

500 0.1187 0.0398 0.0585 0.0100 0.0725 0.0108

the quadratic kernel, and in particular the following two features: the estimated
probability and the error in the mean of XFinal. This suggests that moment
closure techniques improving the prediction of the average can possibly reduce
the error of the method.

8 Conclusions

In this paper we considered population models and properties of individual
agents specified by DTAs. We introduced a method based on the central limit
theorem for CTMCs to approximate the collective probability with which a given
fraction of agents satisfies the local specification. To our knowledge, this has been
the first attempt of using central limit results for verification of CTMC proper-
ties. The correctness of our method is guaranteed by a convergence result and
validated experimentally on a network epidemics model.

For future work, we plan to generalise the class of local specification and
the central limit algorithm to more complex DTAs (following [8]), considering
also state properties like in CSL-TA [9] (thus extending and connecting with
the approach of [5]). We will also investigate the speed of convergence of the
approximation in Theorem 2 in order to possibly compare it with fluid limit
results (see e.g. [6]). Furthermore, we will also study the connection between
the approximation error and the topology of the phase space of the fluid ODEs.
We also plan to explore the use of CLA to check purely collective properties,
expressed in a temporal logic such as CSL or MiTL, with atoms being inequalities
on population variables. Finally, we plan to release a prototype implementation.



138 L. Bortolussi and R. Lanciani

Acknowledgements. This research has been partially funded by the EU-FET
project QUANTICOL (nr. 600708) and by FRA-UniTS.

References

1. Andersson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical Anal-
ysis. Springer (2000)

2. Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model checking markov
chains with actions and state labels. IEEE Trans. Software Eng. 33(4), 209–224
(2007)

3. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model checking continuous-
time Markov chains by transient analysis. In: Emerson, E.A., Sistla, A.P. (eds.)
CAV 2000. LNCS, vol. 1855, pp. 358–372. Springer, Heidelberg (2000)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
5. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012)

6. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective systems behaviour: A tutorial. Perf. Eval (2013)

7. Bortolussi, L., Policriti, A.: Dynamical systems and stochastic programming: To
ordinary differential equations and back. Trans. Comp. Sys. Bio. XI (2009)

8. Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Model checking of continuous-
time Markov chains against timed automata specifications. Logical Methods in
Computer Science 7(1) (2011)

9. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic prop-
erties with csl{TA}. IEEE Trans. Software Eng. 35(2), 224–240 (2009)

10. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence.
Wiley (2005)

11. Hayden, R.A., Bradley, J.T., Clark, A.: Performance specification and evaluation
with unified stochastic probes and fluid analysis. IEEE Trans. Software Eng. 39(1),
97–118 (2013)

12. Hayden, R.A., Stefanek, A., Bradley, J.T.: Fluid computation of passage-time dis-
tributions in large Markov models. Theor. Comput. Sci. 413(1), 106–141 (2012)

13. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilis-
tic model checking of complex biological pathways. Theor. Comput. Sci (2007)

14. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
bayesian approach to model checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

15. Kolesnichenko, A., Remke, A., de Boer, P.-T., Haverkort, B.R.: Comparison of the
mean-field approach and simulation in a peer-to-peer botnet case study. In: Thomas,
N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 133–147. Springer, Heidelberg (2011)

16. Kolesnichenko, A., Remke, A., de Boer, P.T., Haverkort, B.R.: A logic for model-
checking of mean-field models. In: Proc. of DSN (2013)

17. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

18. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press (2006)

19. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process
algebra models. IEEE Trans. Software Eng. 38(1), 205–219 (2012)

20. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier (1992)



Fluid Limit for the Machine Repairman Model

with Phase-Type Distributions

Laura Aspirot1, Ernesto Mordecki1, and Gerardo Rubino2,�

1 Universidad de la República, Montevideo, Uruguay
2 INRIA, Rennes, France

We consider the Machine RepairmanModel withN working units that break ran-
domly and independently according to a phase-type distribution. Broken units
go to one repairman where the repair time also follows a phase-type distribu-
tion. We are interested in the behavior of the number of working units when N
is large. For this purpose, we explore the fluid limit of this stochastic process
appropriately scaled by dividing it by N .

This problem presents two main difficulties: two different time scales and
discontinuous transition rates. Different time scales appear because, since there
is only one repairman, the phase at the repairman changes at a rate of order N ,
whereas the total scaled number of working units changes at a rate of order 1.
Then, the repairman changes N times faster than, for example, the total number
of working units in the system, so in the fluid limit the behavior at the repairman
is averaged. In addition transition rates are discontinuous because of idle periods
at the repairman, and hinders the limit description by an ODE.

We prove that the multidimensional Markovian process describing the system
evolution converges to a deterministic process with piecewise smooth trajec-
tories. We analyze the deterministic system by studying its fixed points, and
we find three different behaviors depending only on the expected values of the
phase-type distributions involved. We also find that in each case the stationary
behavior of the scaled system converges to the unique fixed point that is a global
attractor. Proofs rely on martingale theorems, properties of phase-type distri-
butions and on characteristics of piecewise smooth dynamical systems. We also
illustrate these results with numerical simulations.

1 Introduction

The Machine Repairman Model. The Machine Repairman Model (MRM) is a
basic Markovian queue representing a finite number N of machines that can fail
independently and, then, be repaired by a repair facility. The latter, in the basic
model, is composed of a single repairing server with a waiting room for failed
machines managed in FIFO order, in case the repairing server is busy when units
fail. In Kendall’s notation, this is the M/M/1//N model, specifying that life-
times and repair times are exponentially distributed. This model is well known

� This paper received partial support from the STIC-AmSud project “AMMA” and
project FCE-2-2011-1-6739.

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 139–154, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



140 L. Aspirot, E. Mordecki, and G. Rubino

and widely studied in queuing theory and in many applications, as for example
in telecommunications or in reliability. Almost all these studies look at the queue
in equilibrium. The model is a precursor of the development of queuing network
theory, motivated first in computer science. In particular, Scherr from IBM used
it in 1972 for analyzing the S360 OS (see [1]). Many extensions of the basic
model have been studied, considering more than one repairing server, different
queuing disciplines, and other probability distributions for the life-time or for
the repair time. We refer to [2] for further reference on the problem.

Fluid Limits. Fluid limits is a widely developed technique that proves very useful
for the study of large Markov systems. Many of these systems, under a suitable
scaling, have a deterministic limit given by an ordinary differential equation
(ODE). As an example, let us consider the fluid limit for a M/M/1 queue [3]
with arrival rate λ and service rate μ. Let X(t) be the number of units at time

t and let X̂N(t) = X(Nt)/N be the scaled number of units. Time is accelerated
by a factor N , and the initial state is also scaled by the same factor. If the scaled
initial condition converges with N , then the process X̂N can be approximated,
for large N , by the deterministic solution to ẋ = λ− μ if x > 0, ẋ = 0 if x = 0.
For λ < μ the equation defines a piecewise smooth dynamical system, with a
solution for the initial condition x(0) that is smooth on [0, x(0)/(μ − λ)) and
(x(0)/(μ− λ),∞). If the initial condition is 0, the solution remains at zero.

Other examples from [3] are the M/M/∞ queue and the M/M/N/N queue.

Let λN be the arrival rate and μ the service rate in both cases and let X̃N be
the number of units in the system. The scaling is different from the M/M/1,
as time is not scaled, only the arrival rate is accelerated, and the total service
rate scales with the number of units in the system. The scaled number of units
XN = X̃N/N converges to the solution to ẋ = λ − μx for the M/M/∞ queue,
and to the solution to ẋ = λ − μx, if x < 1, ẋ = 0 if x = 1, in the M/M/N/N
model. In the last case, we find again a piecewise smooth dynamical system, that
converges exponentially fast to ρ = λ/μ if ρ < 1 and to 1 if ρ ≥ 1.

Looking for fluid limits is a suitable approach to repairman problems, as shown
in [4], where the MRM model with two repair facilities, studied by Iglehart and
Lemoine in [5,6], is analyzed using these tools. In [5] there are N operating
units subject to exponential failures with parameter λ. Failures are of type 1
(resp. 2) with probability p (resp. 1 − p = q). If failure is of type i (i = 1, 2)
the unit goes to repair facility i that has siN exponential servers, each one with
exponential service rate μi. The goal is to study the stationary distribution when
sNi ∼ Nsi as N → ∞, i = 1, 2. The behavior of the system is characterized in
terms of the parameter set that defines the model. In addition, the case with
spares is presented in [6]. The original approach consists in approximating the
number of units in each repair facility by binomial random variables, and then
proving for them a law of large numbers and a central limit theorem. Kurtz,
in [4] studies the same model with a fluid limit approach, proves convergence
to a deterministic system, and goes a step beyond, considering the rate of this
approximation through a central limit theorem-type result. The same discussion



Fluid Limit for the MRM with Phase-Type Distributions 141

as in [5] in terms of the different parameter set follows from the study of the
ODE’s fixed point.

Contributions. In this paper we analyze a repairman problem with N working
units that break randomly and independently according to a phase-type distri-
bution. Broken units go to one repairman where the repair time also follows a
phase-type distribution (that is, a PH/PH/1//N model). We consider a scaled
system, dividing the number of broken units and the number of working units in
each phase by the total number of units N . The scaled process has a determin-
istic limit when N goes to infinity. The first problem that the model presents
is that there are two time scales: the repairman changes its phase at a rate of
order N , whereas the total scaled number of working units changes at a rate
of order 1. Another problem is that transition rates are discontinuous because
of idle periods at the repairman (this second issue is also present in the models
M/M/1 and M/M/N/N described above).

In our main result we prove that the scaled Markovian multi-dimensional
process describing the system dynamics converges to the solution of an ODE as
N →∞. The convergence is in probability and takes place uniformly in compact
time intervals (usually denoted u.c.p. convergence), and the deterministic limit,
the solution to the ODE, is only picewise smooth. We analyze the properties
of this limit, and we prove the convergence in probability of the system in sta-
tionary regime to the ODE’s fixed point. We also find that this fixed point only
depends on the repair time by its mean. As a matter of fact, recall that when
in equilibrium, if the repair times are exponentially distributed, the distribution
of the number of broken machines has the insensitivity property with respect to
the life-time distribution (only the latter’s mean appears in the former). For an
example of what happens here, see the end of Section 4.

Related Work. Fluid limits, density dependent population process, approxima-
tion by differential equations of Markov chains, are all widely developed objects.
As a general reference we refer to the monograph by Ethier and Kurtz [7] and ref-
erences therein. The main approach there consists in a random change of time
that allows to write the original Markov chain as a sum of independent unit
Poisson processes evaluated at random times. Darling and Norris [8] present a
survey about approximation of Markov chains by differential equations with an
approach based on martingales. However, [8] does not deal with discontinuous
transition rates. We refer to the books by Shwartz and Weiss [9], and Robert [3]
for extensive analysis of the M/M/1 and the M/M/∞ queues, including de-
terministic limits, asymptotic distributions and large deviations results. In par-
ticular, in [9] the discontinuous transition rates and different time scales are
considered. The latter situation is also considered in [10] and [11]. We mostly
follow the approach of [12] to deal with discontinuous transition rates, which
considers hybrid limits for continuous time Markov chains with discontinuous
transition rates, with examples in queuing and epidemic models. Discontinuous
transition rates are also studied in [13,14]. Paper [13] analyzes queuing networks
with batch services and batch arrivals, that lead to fluid limits represented by



142 L. Aspirot, E. Mordecki, and G. Rubino

ODEs with discontinuous right hand sides. Paper [14] models optical packet
switches, where the queuing model lead to ODEs with discontinuous right hand
sides, and where they consider both exponential and phase-type distributions for
packet lengths. Convergence to the fixed points is studied in several works (e.g.
[9,13,15]). However there are counterexamples where there is no convergence of
invariant distributions to fixed points [15]. There are general results with quite
strong hypotheses as in [16], where reversibility is assumed in order to prove
convergence to the fixed point.

Organization of the Paper. In Section 2 we present our model. In Section 3
we compute the drift, and we describe the ODE that defines the fluid limit. In
Section 4 we state our main results about convergence and description of the
fluid limit. In Section 5 we show several numerical examples that illustrates the
results and we conclude in Section 6. Proofs are provided in Section 7.

2 Model

We consider N identical units that work independently, as part of some system,
that randomly fail and that get repaired. Broken units go to a repairman with
one server, where the repair time is a random variable with a phase-type distri-
bution. After being repaired units start working again. A given unit’s life-times
are independent identically distributed random variables also with phase-type
distribution. We want to describe the number of working units in each phase
before failure and the number of broken units in the system. We consider the
system for large N , with the repair time scaled by N . This means that the re-
pair time per unit decreases as N increases. We describe the limit behavior of
the system when N goes to infinity. The assumption of phase-type distributions
allows to represent a wide variety of systems, as phase-type distributions well
approximate many positive distributions, allowing, at the same time, to exploit
properties of exponential distributions and Markov structure. Concerning the
repairing facility, we consider a single server with the service time also scaled
according with the number of units, and we find a different behavior that for the
model scaled both in the number of units and the number of servers.

Phase-Type Distributions. A phase-type distribution with k phases is the dis-
tribution of the time to absorption in a finite Markov chain with k + 1 states,
where one state is absorbing and the remaining k states are transient. With an
appropriate numbering of the states, the transient Markov chain has infinitesimal

generator M̂ =

(
M m
0 0

)
, whereM is a k×k matrix, and m = −M1l, with 1l the

column vector of ones in IRk. The initial distribution for the transient Markov
chain is a column vector (r, 0) ∈ IRk+1, where r is the initial distribution among
the transient states. We represent this phase-type distribution by (k, r,M). We
refer to [17] for further background about phase-type distributions.



Fluid Limit for the MRM with Phase-Type Distributions 143

Variables. We describe the distributions and variables involved in the model.
All vectors are column vectors.

Repair Time. The repair time follows a phase-type distribution (m, p,NA),
with m phases, matrix NA (where A is a fixed matrix and N is the scaling
factor) and initial distribution p. We denote Na = N(a1, . . . , am) = −NA1l.

Life-Time. The life-time for each unit is phase-type (n, q, B), with n phases,
matrix B and initial distribution q. We denote b = (b1, . . . , bn) = −B1l.

Working Units. X̃N
i (t) is the number of units working in phase i at time t, for

i = 1, . . . , n, and X̃N = (X̃N
1 , . . . , X̃

N
n ).

Repairman State. Z̃N
i (t) is number of units being repaired in phase i for i =

1, . . . ,m (Z̃N
i (t) is zero or one), and Z̃N = (Z̃N

1 , . . . , Z̃
N
m ).

Waiting Queue. Ỹ N (t) is the number of broken units waiting to be repaired.

Scaling. We consider the scaling: XN =
1

N
Ỹ N , Y N =

1

N
Ỹ N , ZN =

1

N
Z̃N .

Note that 1lT Z̃N (t) + χ{1lT X̃N (t)=N} = 1, where χP is the indicator function of

the predicate P . That means that units are all working, or there is one unit
being repaired at the server. In addition, 1lT X̃N(t) + Ỹ N (t) +

∑m
i=1 Z̃

N
i (t) = N.

Model Dynamics. ŨN =
(
X̃N

1 , . . . , X̃
N
n , Ỹ

N , Z̃N
1 , . . . , Z̃

N
m

)
is a Markov chain.

We denote by ei ∈ IRn+m+1 the vector ei = (ei1, . . . , e
i
n+m+1) with e

i
i = 1 and

eij = 0 for i = j, i, j = 1, . . . , n + m + 1. We describe the possible transitions
for this Markov chain from a vector ũ in the state space, with its corresponding
transition rates. The vector ũ = (x̃, ỹ, z̃) with x̃ = (x̃1, . . . , x̃n), z̃ = (z̃1, . . . , z̃m),
with x̃i ∈ {0, 1, . . . , N} for all i = 1, . . . n, ỹ ∈ {0, 1, . . . , N} and z̃i ∈ {0, 1} for
all i = 1, . . .m.

A working unit in phase i changes to phase j. For i, j = 1, . . . , n, transition
ej − ei occurs with rate bij x̃i.

A working unit in phase i breaks and goes to the buffer. The unit goes to
the buffer because there is one unit in service. For i = 1, . . . , n, transition
en+1 − ei occurs at rate bix̃iχ{1lT x̃<N}.

A working unit in phase i breaks and starts being repaired. The unit starts
being repaired because the repairman is idle, at phase j. For i = 1, . . . , n,
j = 1, . . . ,m, transition en+1+j − ei occurs at rate bipjx̃iχ{1lT x̃=N}.

A unit that is being repaired in phase i changes to phase j. For i, j = 1, . . . ,m,
transition en+1+j − en+1+i occurs at rate Naij z̃i.

A unit that is being repaired in phase i ends its service and starts working at
phase j with the buffer empty. If the buffer is empty, nobody starts being
served and for j = 1, . . . , n, i = 1, . . . ,m, the transition ej − en+1+i occurs
at rate Naiqj z̃iχ{ỹ=0}.

A unit that is being repaired in phase i ends its service and starts working at
phase j with nonempty buffer. If the buffer is nonempty a unit in the buffer
starts being served in phase k at the same time, then for j = 1, . . . , n and
i, k = 1, . . . ,m, the transition ej + en+1+k − en+1 − en+1+i occurs at rate
Naiqjpkz̃iχ{ỹ>0}.



144 L. Aspirot, E. Mordecki, and G. Rubino

3 Drift Computation and Description of the Limit

In order to understand an summarize the dynamics of the stochastic process we
compute the drift for our model. We compute it and we analyze the behavior
of the ODE that will define the limit. For this purpose we also present a brief
description of ODEs with discontinuous right hand sides.

Let us recall that for a Markov chain V ∈ IRd, with transition rates rv(x)
from x to x + v, the drift is defined by β(x) =

∑
v vrv(x), where the sum is

in all possibles values of v. One possible representation of a Markov chain is in
terms of the drift, where in a general way V (t) = V (0) +

∫ t

0 β(V (s))ds +M(t),
with M(t) a martingale. One approach to establish a fluid limit is to exploit this
decomposition for the scaled process, to prove that there is a deterministic limit
for the integral term and to prove that the martingale term converges to 0.

We write down the drift β of the scaled process UN = ŨN/N , evaluated at
u = (x, y, z) with x = (x1, . . . , xn), z = (z1, . . . , zm), with x̃i ∈ {0, 1/N, . . . , 1}
for all i = 1, . . . n, ỹ ∈ {0, 1/N, . . . , 1} and z̃i ∈ {0, 1/N} for all i = 1, . . .m. Let
β = (β1, . . . , βn+m+1). For i = 1, . . . , n we have the following equations:

βi(u) =

n∑
j=1

bjixj + qi

m∑
j=1

ajNzj.

Let us call βX the first n coordinates of the drift. In matrix notation:

βX(u) = BTx+ aTNzq.

For i = n+ 1 the drift equation (the (n+ 1)th coordinate of the drift) is:

βn+1(u) =

n∑
j=1

bjxjχ{1lT x<1} −
m∑
i=1

aiNziχ{y>0}

and in matrix notation (we also call this coordinate βY ):

βY (u) = bTxχ{1lT x<1} − aTNzχ{y>0}.

For k = n+ 1 + i, with i = 1, . . . ,m we have:

βk(u)=piχ{1lT x=1}

n∑
j=1

bjxj +

m∑
j=1

Nzj
(
aji + piχ{y>0}aj

)
.

In matrix notation (we call these coordinates of the drift βZ) we have:

βZ(u) = bTxχ{1lT x=1}p+ATNz + aTNzχ{y>0}p.

We call the drift β(u) = β(x, y, z).

βX(x, y, z) = BTx+ aTNzq, (1)

βY(x, y, z) = bTxχ{1lT x<1} − aTNzχ{y>0}, (2)

βZ(x, y, z) = bTxχ{1lT x=1}p+ATNz + aTNzχ{y>0}p. (3)



Fluid Limit for the MRM with Phase-Type Distributions 145

These equations suggest the ODE that should verify the deterministic limits
(x, y) of (XN , Y N ), if they exist. However, the drift depends on the values of

Nz. The process Z̃N varies at a rate of order N whereas the processes XN and
Y N vary at a rate of order 1. So, we can assume that when N goes to infinity
and for a fixed time the process Z̃N has reached its stationary regime and then
the limit of the last m coordinates of the drift is negligible. With this argument
the candidate to the ODE defining the fluid limit is obtained by replacing in
equations (1) and (2) Nz by z̃, the solution to the n-dimensional equation

bTxχ{1lT x=1}p+AT z̃ + aT z̃χ{y>0}p = 0.

Solving the last equation (multiplying by 1lT , by 1lT
(
AT

)−1
, andusing the relation-

ship 1lT z̃ = χ{1lT x<1}) we obtain a
T z̃ = μχ{1lT x<1}, with 1/μ = −1lT

(
AT

)−1
p,

the mean time before absorption for the transient Markov chain defining the
phase-type repair time distribution. We refer to [17] for properties of phase-type
distributions. As we want to obtain an ODE for x, the candidate to ODE’s vector
field is F (x) = BTx+μχ{1lT x<1}q. We observe that the equation ẋ = BTx+μq is

valid when 1lTx < 1, or, in the border 1lTx = 1, when the vector field BTx+ μq
points towards the region 1lTx < 1, that is 1lT (BTx + μq) < 0. Using that
B1l = −b the condition is bTx > μ. When 1lTx = 1 and bTx ≤ μ the equation
presents what is called sliding motion. We follow the presentation of this topic
in [12]. What happens is that the deterministic system has trajectories in the
border surface 1lTx = 1. The vector field that drives the equation in the border is
G(x), where 1lTG(x) = 0 and G(x) is a linear combination of BTx+μq and BTx
(the vectors fields corresponding to the drift in the interior and in the border).
Then G(x) = (1 − φ(x))(BT x+ μq) + φ(x)BT x with 1lTG(x) = 0 that leads to
φ(x) = 1− bTx/μ and then, computing G(x),

ẋ =

{
BTx+ μq, if bTx > μ or 1lTx < 1,

BTx+ bTxq, if bTx ≤ μ and 1lTx = 1,
(4)

4 Main Results

In this section we state our main results. Proofs are presented in Section 7.
First we show that the scaled stochastic process

(
XN , Y N

)
converges to the

deterministic piecewise smooth dynamical system (x, y). Processes
(
XN , Y N

)
and (x, y) are multidimensional (they live in IRn+1), as the number of phases
for working units is n. Convergence is in probability, uniformly in compact time
intervals (u.c.p. convergence). From the calculus of the drift for the stochastic
processes in Section 3 we have that the limit processes is driven by the vector
field BTx + μq in the interior 1lTx < 1 and by the vector field BTx in the
border 1lTx = 1. Very close to the border 1lTx = 1, when bTx ≤ μ the vector
field BTx+ μq points outside the region 1lTx < 1, but if we consider the vector
field induced by transitions in the border, when bTx ≤ μ we should have a
vector field BTx that points towards the region 1lTx < 1. Because of this, the



146 L. Aspirot, E. Mordecki, and G. Rubino

processes driven by those vector fields present a sliding motion, that means
that, when bTx ≤ μ, the trajectory remains in the border 1lTx = 1 driven by a
linear combination of both fields. So, we must first define the piecewise smooth
dynamical system (x, y), where y = 1 − 1lTx and x is the solution (in the sense
of Filippov) of the differential equation with discontinuous right hand side (4).

Lemma 1. The differential equation (4) has a unique solution for each initial
condition x0, with 1lTx0 ≤ 1.

Once our limit candidate is defined, we state the following theorem.

Theorem 1. Let limN→∞XN(0) = x0 in probability, with x0 deterministic.
Then for all T > 0

lim
N→∞

sup
[0,T ]

∥∥(XN(t), Y N (t)
)
− (x(t), y(t))

∥∥ = 0,

in probability. The process (x, y) is defined by y = 1− 1lTx and x the solution to
equation (4) with initial condition x0.

The main contribution here is the study of different time scales, one at the
repairman and one for life-times, and the averaging phenomena at the repairman.
We treat this problem, together with the problem of discontinuous transition
rates. The problem of different time scales has been addressed in other contexts
(e.g. [11,10]).

Let us study the behavior of the system defined by equation (4) by studying
its fixed points. We observe that 1/μ is the mean of the phase-type distribution

(m, p,A). We define 1/λ = −1lT
(
BT

)−1
q, the expected value of a phase-type

distribution (n, q, B), and

ρ =
μ

λ
. (5)

We identify three different behaviors, that we call (using the same definitions
that in [3] for the M/M/N/N queue) sub-critical when ρ < 1, critical when
ρ = 1 and super-critical when ρ > 1.

Sub-critical case, ρ < 1. The mean repair time per unit 1/μ is greater than the
mean life-time, so we find an equilibrium with a positive number of broken
units in the system. When we compute the fixed points in equation (4) the
fixed point is an interior point in 1lTx ≤ 1, and it is a global attractor.

Super-critical case, ρ > 1. When ρ > 1, intuitively the repairman is more
effective, and we have an equilibrium with all the units (in the deterministic
approximation) working. The fixed point is also a global attractor, and it is
in the border 1lTx = 1.

Critical case, ρ = 1. In this case the fixed points for the equation in the interior
and in the border coincide, giving a fixed point in the border that is a global
attractor.

We state these results in the following lemma.



Fluid Limit for the MRM with Phase-Type Distributions 147

Lemma 2. There are three different behaviors for equation (4):

ρ < 1 (sub-critical). There is a unique fixed point x∗ that is a global attractor
and verifies 1lTx∗ = ρ < 1:

x∗ = −μ(BT )−1q, (6)

ρ > 1 (super-critical). There is a unique fixed point x∗ that is a global attractor
and verifies 1lTx∗ = 1 and bTx∗ < μ:

x∗ = −λ(BT )−1q, (7)

ρ = 1 (critical). There is unique fixed point x∗ given by equations (6) or (7). It
is a global attractor and verifies 1lTx∗ = 1 and bTx∗ = μ = λ.

Theorem 2. The system in stationary regime XN(∞) converges in probability
to x∗, when N →∞, where x∗ is the unique fixed point of equation (4).

We observe that the fixed point depends only on the mean repair-time but on
matrix B. That means that different life-time distribution with the same mean
lead to different stationary behaviors.

5 Numerical Examples

We consider the repairman problem with N = 100 units, for different phase type
time distributions and for different values of ρ. The parameters are defined in
Section 2 and ρ is defined in equation (5). As initial condition we fix the total
number of working units and sample the number in each phase according to the
phase type initial distribution. We show the scaled number of working units in
each phase. We illustrate the convergence to the ODE’s fixed point x∗ and the
sliding motion. The parameters for each example (figure) are given in Table 1.

Exponencial life-time and hypoexponential repair time. In Figure 1 we con-
sider exponential life-time and hypoexponential (sum of independent expo-
nentials). We represent for each parameter set the evolution with time of the
stochastic process XN and we show the convergence to the fixed point x∗.

Hypoexponential life and repair time, sliding motion. In Figure 2 we consider
two phases both in the life and repair times (both distributions are hypo-
exponential). At the left we represent, for each parameter set, the evolution
with time of the stochastic processes XN

1 and XN
2 and the ODE’s solution

(x1, x2). We also show the convergence to the fixed point x∗ = (x∗1, x
∗
2). At

the right we represent, for each parameter set, the trajectory of process XN ,
the trajectory of the ODE’s solution x and the fixed point. Depending on the
initial condition, we find sliding motion (as shown in the bottom figures),
but, as we have the same parameters, both trajectories converge to the fixed
point.



148 L. Aspirot, E. Mordecki, and G. Rubino

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

W
or

ki
ng

 u
ni

ts
/N

 

 

XN

x∗

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

W
or

ki
ng

 u
ni

ts
/N

 

 

XN

x∗

Fig. 1. Exponential life-time and hypoexponential repair time. In the right we show
the sliding motion.

Table 1. Parameters for Figures 1, 2 and 3

Fig.1(left) Fig.1(right) Fig.2(top) Fig.2(bottom) Fig.3(top) Fig.3(bottom)

A

(
−1 1
0 −2

) (
−2 2
0 −3

) (
−1 1
0 −2

) (
−1 1
0 −2

)
−0.5 −1.5

B −1 −1
(
−2 2
0 −3

) (
−2 2
0 −3

) ⎛
⎝−3 3 0

0 −2 2
0 0 −5

⎞
⎠

⎛
⎝−3 3 0

0 −2 2
0 0 −5

⎞
⎠

p (1, 0) (1, 0) (1, 0) (1, 0) 1 1
q 1 1 (1, 0) (1, 0) (1, 0, 0) (1, 0, 0)

XN (0) 0.75N 0.75N 0.75N N 0.75N 0.75N
ρ 0.6667 1.2 0.5556 0.5556 0.5167 1.55

Hypoexponential life-time with three phases and exponential repair time. In
Figure 3 we consider three phases (hypoexponential) in the life-time and
exponential repair time. At the left we represent the evolution with time
of the stochastic processes XN

1 , XN
2 , XN

3 and we show the convergence to
the fixed point x∗ = (x∗1, x

∗
2, x

∗
3). At the right we represent the trajectory

of process XN and the fixed point. The example at the top has ρ < 1. The
example at the bottom has ρ > 1, so we find sliding motion in the plane
1lTx = 1 and the fixed point is also in the same plane.

6 Conclusions

In this paper we find a deterministic fluid limit for a Machine Repairman Model
with phase type distributions. The fluid limit is a deterministic process with
piecewise smooth trajectories, that presents three different behaviors depend-
ing only on the expected values of the phase type distributions involved. The
stationary behavior of the scaled system converges to a fixed point that only
depends on the mean time between failures and on the mean repair time at the



Fluid Limit for the MRM with Phase-Type Distributions 149

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

W
or

ki
ng

 u
ni

ts
/N

 

 

XN
1

XN
2

x
1

x
2

x∗

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

XN
1

X
N 2

 

 

XN

x

x∗

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

W
or

ki
ng

 u
ni

ts
/N

 

 

XN
1

XN
2

x
1

x
2

x∗

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

XN
1

X
N 2

 

 

XN

x

x∗

Fig. 2. Hypoexponential life and repair time (parameters in Table 1). The bottom
figure shows the sliding motion.

repairman. There are characteristics of the system that hinder us from using
classical results from fluid limits or density dependent population processes, as
the presence of two different time scales (one for the working units and one for
the repairman) and discontinuities in the transition rates due to idle time at
the repairman. Concerning the different time scales we find an averaging result,
where the phase type distribution at the repairman is represented in the limit
only by its mean value. The behavior of the system due to idle times is similar
to the behavior of the M/M/N/N queue if we consider exponential distribu-
tions instead of phase type ones. The phase type distribution at the failure time
adds more dimensions to the problem. This leads to different behaviors for the
deterministic system than for the M/M/N/N queue.

Another situation to be addressed in future work is to consider a general dis-
tribution at the repairman, as with this scaling it seems to be some insensitivity
property where in the limit the behavior depends on the repair time only by
its mean. However, the variability at life-time leads to different fluid limits so
another possible topic of study is the impact of the life-time distribution on per-
formance measures. Last, we also intend to analyze the asymptotic distribution
of the difference between the scaled system and its deterministic limit.



150 L. Aspirot, E. Mordecki, and G. Rubino

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

W
or

ki
ng

 u
ni

ts
/N

 

 

XN
1

XN
2

XN
3

x∗

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

 

XN
1

XN
2

 

X
N 3

XN

x∗

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

W
or

ki
ng

 u
ni

ts
/N

 

 

XN
1

XN
2

XN
3

x∗

0 0.2 0.4 0.6 0.8 1

0

0.5

1
0

0.5
1

 

XN
1

XN
2

 
X

N 3

XN

x∗

0 0.2 0.4 0.6 0.8 1 0
0.5

10

0.5

1

 

XN
2XN

1

 

X
N 3

XN

x∗

Fig. 3. Hypoexponential life-time and exponential repair times (parameters in Table 1).
The three bottom figures shows the sliding motion and the fixed point in the plane
1lTx = 1 at the right.

7 Proofs

In what follows we give some proofs of results stated in section 4. First we
address the existence of solutions to equation (4) and we prove Lemma 1. For
a differential equation ẋ = F (x), with F discontinuous, solutions are defined in
the set of absolutely continuous functions, instead of differentiable functions as
in the classical case. The ODE is defined in the region {1lTx ≤ 1} by BTx+ μq
in the region {1lTx < 1} and BTx in the region {1lTx = 1}. In order to consider
the framework of differential equations with discontinuous right hand sides, we
extend the definition of the ODE. We define the equation by two continuous
fields, F1(x) = BTx + μq in the region R1 = {1lTx < 1}, F2(x) = BTx in the
region R2 = {1lTx > 1} with a region H = {x ∈ IRn : 1lTx = 1} where the field
is discontinuous. The field BTx always point towards R1. The field BTx + μq
points toward R1 when bTx > μ and point towards R2 when bTx < μ. We find
that the equation presents transversal crossing in H for bTx > μ and a stable
sliding motion in H for bTx < μ (defined as in [12]). Transversal crossing occurs
when both vector fields point towards R1 and trajectories from R2 crosses H . If
trajectories start in R1 or in H , with bTx > μ they go into R1. Stable sliding



Fluid Limit for the MRM with Phase-Type Distributions 151

motion occurs as F1 points towards R2 and F2 points towards F1 (in H , for
bTx < μ). The ODE has trajectories in the border surface H . The vector field
that drives the equation is G(x), with G = F1 in the interior and in the border,
when bTx < μ, G(x) verifies 1lTG(x) = 0 and it is a linear combination of
F1(x) = BTx + μq and F2(x) = BTx, leading to equation (4). When bTx + μ,
BTx+μq is tangential to H , whereas BTx points toward R1, so the trajectories
go into R1. It is called first order exit condition of sliding motion.

Proof (Lemma 1). From [12], in order to prove the existence of solutions we need
to verify that the field F defined as F1(x) = BTx+ μq in R1 and F2(x) = BTx
in R2 is continuous in each closure R̄1 and R̄2. In addition, if we consider the
normal vector to H , 1l, we can verify that (except in the region {bTx = μ})
we have 1lTF1(x) > 0 and 1lTF2(x) < 0. These conditions mean that there is a
stable sliding motion, where the solution belongs to H , driven by G, the linear
combination of F1 and F2. In addition, unique solutions are also defined for
initial conditions in H . ��

Now we address the proof of Theorem 1. We recall the definitions of the drift
and the vector fields. Let UN =

(
XN , Y N , ZN

)
and u = (x, y, 0). We have that

(x(t), y(t)) = (x0, y0) +
∫ t

0
G(x(s), y(s))ds .

Proof (Theorem 1). First, we observe that 1lTXN(t) + Y N (t) + 1lTZN (t) = 1,
and that limN→+∞ sup[0,T ] Z

N (t) = 0. Then, in order to prove that

lim
N→+∞

sup
[0,T ]

∥∥(XN(t), Y N (t)
)
− (x(t), y(t))

∥∥ = 0

in probability, we only need to prove that limN→+∞ sup[0,T ]

∥∥XN(t)− x(t)
∥∥ = 0

in probability. In the proof of this theorem we follow the approach of [18].

sup
[0,T ]

∥∥XN(t)− x(t)
∥∥ ≤ ∥∥XN (0)− x(0)

∥∥ (8)

+ sup
[0,T ]

∥∥∥∥XN(t)−XN(0)−
∫ t

0

βX
(
UN (s)

)
ds

∥∥∥∥ (9)

+ sup
[0,T ]

∥∥∥∥∫ t

0

βX
(
UN (s)

)
ds−

∫ t

0

F
(
XN (s)

)
ds

∥∥∥∥ (10)

+ sup
[0,T ]

∥∥∥∥∫ t

0

F
(
XN(s)

)
ds−

∫ t

0

G
(
XN(s)

)
ds

∥∥∥∥ (11)

+ sup
[0,T ]

∥∥∥∥∫ t

0

G
(
XN(s)

)
ds−

∫ t

0

G (x(s)) ds

∥∥∥∥ (12)

We want to prove that (9), (10) and (11) converge to 0 in probability. So, provided
that the initial conditionXN (0) converges to x(0), we have that, with probability
that tends to 1 with N ,

sup
[0,T ]

∥∥XN(t)− x(t)
∥∥ ≤ ε+ sup

[0,T ]

∥∥∥∥∫ t

0

G
(
XN(s)

)
ds−

∫ t

0

G (x(s)) ds

∥∥∥∥ .



152 L. Aspirot, E. Mordecki, and G. Rubino

Using that G is piecewise linear and Gronwall inequality, we obtain the bound
sup[0,T ]

∥∥XN(t)− x(t)
∥∥ ≤ εeKT , which leads to sup[0,T ]

∥∥XN (t)− x(t)
∥∥ → 0

in probability. We study the convergence of (9), (10) and (11). To show the
convergence of (9), we first notice that

(9) ≤
∥∥∥∥UN(t)− UN(0)−

∫ t

0

β
(
UN (s)

)
ds

∥∥∥∥ .
Convergence follows from the representation of the process as the initial condi-
tion plus the integral of the drift plus a martingale term. The martingale term
goes to 0 withN because of the scaling. Let us define for a Markov chain V ∈ IRd,
with transition rates rv(x) from x to x + v, α(x) =

∑
v ‖v‖2rv(x). Let us also

call α the corresponding object for UN . Convergence of (9) can be then proved
using Proposition 8.7 in [8], that states that

E

(
sup
[0,T ]

∥∥∥∥UN (t)− UN(0)−
∫ t

0

β
(
UN (s)

)
ds

∥∥∥∥2
)
≤ 4

∫ T

0

α
(
UN (s)

)
ds.

As for our scaling sup[0,T ] α
(
UN (t)

)
∼ O(1/N), convergence holds.

To prove that (10) converges to 0 in probability we consider the last m coor-
dinates of (9), corresponding to the phases at the repairman. As we have proved
that (9) converges to 0 in probability, we conclude that

∫
t

0

βZ

(
U

N
(s)

)
ds =

∫
t

0

(
b
T
X

N
(s)χ{1lT XN (s)=1}p+ A

T
Z̃

N
(s) + a

T
Z̃

N
(s)χ{Y N (s)>0}p

)
ds

converges to 0 in probability. Multiplying by μ1lT (AT )−1,

∫ t

0

(
−bTXN (s)χ{1lT XN (s)=1} + μχ{1lT XN (s)<1} − aT Z̃N (s)χ{Y N (s)>0}

)
ds (13)

goes to 0 in probability. In addition, 1lTβX + βY + 1lTβZ =
0. Then, as

∫ t

0 βZ
(
UN (s)

)
ds converges to 0 in probability,∫ t

0

(
1lTβX

(
UN (s)

)
+ βY

(
UN (s)

))
ds also converges to 0 in probability

and it is equal to

∫ t

0

(
−btXN(s)χ{1lTXN (s)=1} + aT Z̃N(s)χ{Y N (s)=0}

)
ds. (14)

Then, considering the sum of equations (13) and (14), we obtain

lim
N→+∞

(10) = lim
N→+∞

sup
[0,T ]

∫ t

0

(
aT Z̃N (s)q − μχ{1lTXN (s)<1}q

)
ds = 0.

The convergence of (11) can be proved by approximating the continuous process
in the border by a discrete process with the same jumps. As our model verifies
the hypotheses of [12], the same proof that in Lemma 3 of [18] holds. ��



Fluid Limit for the MRM with Phase-Type Distributions 153

Proof (Lemma 2). First, we compute the fixed points of both fields: BTx + μq
in IRn, and (BT + qbT )x in {1lTx = 1}. We will exploit the linearity of the field
in each region where it is continuous. Then we discuss in terms of ρ.

The fixed point for BTx+μq is x∗1 = −μ(BT )−1q. We recall that BT is regular
due to the properties of phase type distributions. In addition, the eigenvalues of
BT are all negative (since BT has the same eigenvalues than B). Matrix B has
a negative diagonal, and the sum of all non diagonal entries per row (that are
all positive) is less than or equal to the absolute value of the diagonal element.

This is because the sum of each row of B̂ is 0 and the last column (that does
not belong to B) has non-negative entries. Then, considering the field in IRn, we
have that x∗1 = −μ(BT )−1q is a global attractor. In addition, as 1lTx∗1 = ρ, we
have that x∗1 is an interior point of R1 iff ρ < 1, x∗1 is an interior point of R2 iff
ρ > 1, and x∗1 ∈ H ∩ {bTx = μ} iff ρ = 1. We observe that when ρ ≥ 1, as x∗1 is
the unique fixed point of BTx + μq, and the vector field points outside R1, the
solution of ẋ = BTx+ μq is pushed towards H .

Now we consider the fixed point of (BT+qbT )x in {1lTx = 1}. As b = −B1l, we
have that (BT + qbT )x = 0 iff (I − q1lT )BTx = 0, where I is the identity matrix.
As BT is invertible, if v is an eigenvector of q1lT with eigenvalue 1, x∗1 = (BT )−1v
is a fixed point. Matrix q1lT has eigenvalues 0 and 1 and, as q1lT has range 1, the
dimensions of the corresponding eigenspaces are respectively n− 1 and 1. Then
there is a one-dimensional space with eigenvalue 1, that intersects {1lTx = 1},
giving the fixed point x∗2 = −λ(BT )−1q. Since 1lTx∗2 = 1, we have that x∗2 ∈ H .
In addition x∗2 ∈ H ∩ {bTx < μ} iff ρ > 1, x∗2 ∈ H ∩ {bTx > μ} iff ρ < 1
and x∗2 ∈ H ∩ {bTx = μ} iff ρ = 1. We also have that, restricted to H , x∗2 is
a global attractor, so in the case of ρ ≤ 1, the solution in H is pushed to the
region {btx > μ}, where the solution is again driven by the field BTx + μq, so
the solution that starts in H does not remain in H for ρ < 1. ��

Proof (Theorem 2). To prove the convergence in stationary regime, we use the
results in [14]. In Theorem 5 in [14] it is proved convergence in stationary regime
to the fixed point for piecewise smooth dynamical systems. This is an extension
of a general result in [15]. The hypotheses needed are that the fixed point is
a unique global attractor and regularity assumptions for the trajectories. We
use Lemma 2 to characterize the fixed point. are verified in our case, where
solutions are piecewise linear and the discontinuity surface H is a hyperplane.
Then applying Theorem 5 in [14] we obtain Theorem 2. ��

References

1. Lavenberg, S.: Computer performance modeling handbook. Notes and reports in
computer science and applied mathematics. Academic Press (1983)

2. Haque, L., Armstrong, M.J.: A survey of the machine interference problem. Euro-
pean Journal of Operational Research 179(2), 469–482 (2007)

3. Robert, P.: Stochastic Networks and Queues. Stochastic Modelling and Applied
Probability Series. Springer, New York (2003)



154 L. Aspirot, E. Mordecki, and G. Rubino

4. Kurtz, T.G.: Representation and approximation of counting processes. In: Fleming,
W.H., Gorostiza, L.G. (eds.) Advances in Filtering and Optimal Stochastic Control.
LNCIS, vol. 42, pp. 177–191. Springer, Berlin (1982)

5. Iglehart, D.L., Lemoine, A.J.: Approximations for the repairman problem with two
repair facilities, I: No spares. Advances in Applied Probability 5(3), 595–613 (1973)

6. Iglehart, D.L., Lemoine, A.J.: Approximations for the repairman problem with two
repair facilities, II: Spares. Advances in Appl. Probability 6, 147–158 (1974)

7. Ethier, S.N., Kurtz, T.G.: Markov processes: Characterization and convergence.
Wiley Series in Probability and Statistics. John Wiley & Sons Inc., New York
(1986)

8. Darling, R.W.R., Norris, J.R.: Differential equation approximations for Markov
chains. Probab. Surv. 5, 37–79 (2008)

9. Shwartz, A., Weiss, A.: Large deviations for performance analysis. Stochastic Mod-
eling Series. Chapman & Hall, London (1995)

10. Ayesta, U., Erausquin, M., Jonckheere, M., Verloop, I.M.: Scheduling in a random
environment: Stability and asymptotic optimality. IEEE/ACM Trans. Netw. 21(1),
258–271 (2013)

11. Ball, K., Kurtz, T.G., Popovic, L., Rempala, G.: Asymptotic analysis of multiscale
approximations to reaction networks. The Annals of Applied Probability 16(4),
1925–1961 (2005)

12. Bortolussi, L.: Hybrid limits of continuous time markov chains. In: Proceedings of
Eighth International Conference on Quantitative Evaluation of Systems (QEST),
pp. 3–12 (September 2011)

13. Bortolussi, L., Tribastone, M.: Fluid limits of queueing networks with batches.
In: Proceedings of the Third Joint WOSP/SIPEW International Conference on
Performance Engineering, ICPE 2012, pp. 45–56. ACM, New York (2012)

14. Houdt, B.V., Bortolussi, L.: Fluid limit of an asynchronous optical packet switch
with shared per link full range wavelength conversion. In: SIGMETRICS 2012,
pp. 113–124 (2012)

15. Benäım, M., Le Boudec, J.Y.: A class of mean field interaction models for computer
and communication systems. Perform. Eval. 65(11-12), 823–838 (2008)

16. Le Boudec, J.Y.: The Stationary Behaviour of Fluid Limits of Reversible Processes
is Concentrated on Stationary Points. Technical report (2010)

17. Asmussen, S., Albrecher, H.: Ruin probabilities, 2nd edn. Advanced Series on Sta-
tistical Science & Applied Probability, vol. 14. World Scientific Publishing Co. Pte.
Ltd., Hackensack (2010)

18. Bortolussi, L.: Supplementary material of Hybrid Limits of Continuous Time
Markov Chains, http://www.dmi.units.it/~bortolu/files/qest2011supp.pdf
(2011) (accesed March 15, 2013)

http://www.dmi.units.it/~bortolu/files/qest2011supp.pdf


Tulip: Model Checking Probabilistic Systems

Using Expectation Maximisation Algorithm

Rastislav Lenhardt

Department of Computer Science, University of Oxford, United Kingdom

Abstract. We describe a novel tool for model checking ω-regular spec-
ifications on interval Markov chains, recursive interval Markov chains
and interval stochastic context-free grammars. The core of the tool is an
iterative expectation maximisation procedure to compute values for the
unknown probabilities in a parametrised system, which maximises the
probability of satisfying the specification. The tool supports specifica-
tions given as LTL formulas or unambiguous Büchi automata.

1 Introduction

a b

Interval Markov chain M

x
y

0.9

0.2

0.1
0.8

1

Interval Markov chains (IMCs) generalise ordinary
Markov chains by allowing undetermined transition
probabilities that are constrained to intervals [7].
IMCs arise naturally in the modelling and verifi-
cation of probabilistic systems. They are useful for
modelling systems in which some transition prob-
abilities depend on an unknown environment, are
only approximately known, or are parameters that
can be controlled. Consider the interval Markov
chain M with undefined transition probabilities,
represented by variables x, y ∈ [0, 1], shown on the
left. For example, we can optimise M with respect

to the LTL formula ϕ
def
= a ∧b.

IMCs can be also seen as a type of Markov decision process. Valuations of their
undetermined transition probabilities can correspondingly be seen as history-
free stochastic schedulers. This enforced history-independence makes them dif-
ferent. Here we consider the problem of computing the maximum probability
that an IMC can satisfy specification, which is given as an automaton or as
a Linear Temporal Logic (LTL) formula. We consider also recursive IMCs. They
are extension of ordinary recursive Markov chains [4], where we allow transition
probabilities to be intervals. Since there is a straightforward translation from
stochastic context-free grammar (SCFG) to recursive IMCs, we can handle also
model checking SCFG with rules having interval probabilities. Popular appli-
cations of SCFG include e.g. describing the secondary structure of tRNA (see
Figure 1) and natural language processing. Interval probabilities provide a more
realistic model than fixed values, because the probabilities in a model are often
only approximately known, being themselves obtained as a result of learning.
We refer the reader for the full complexity analysis of the problem to [2].

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 155–159, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



156 R. Lenhardt

UC
G
C U

U
A

C
G A

G
CG

U
A

A

Secondary structure of RNA on the left can be rep-
resented by a string, where matching brackets in-
dicate connections: UCGC(U(U(A(CGAGCG)U)A)A).
We can then use LTL to query this string generated by
the rules of SCFG with interval ranges. Some of them

can be e.g.: S
[0.19, 0.2]−−−−−−−→ HT , H

[0.38, 0.4]−−−−−−−→ (cHg),

H
[0.5, 0.51]−−−−−−−→ (uHt), H

[0.1, 0.11]−−−−−−−→ g, . . .

Fig. 1. Secondary structure of RNA

2 Tulip

Tulip is a web application available at http://tulip.lenhardt.co.uk, along with
several built-in examples and documentation. There is no installation needed.
The tool accepts as input either a labelled interval Markov chain, SCFG or a la-
belled recursive IMC, along with properties specified either by LTL formulas or
by unambiguous Büchi automata. Tulip can translate LTL formulas directly to
unambiguous automata. We take advantage of this translation, which outper-
forms the traditional approach via deterministic automata [2].

Tulip brings a novel algorithmic approach to solving the model checking prob-
lem in practice by using the expectation-maximisation (EM) procedure, which is
ubiquitous in machine learning. Indeed, our algorithm can be seen as a variant
of the classical Baum-Welch procedure [1]. It performs a specified number of
iterations of the EM algorithm, and outputs an approximation to the maximum
probability with which the model satisfies the property, together with the values
within the intervals for which the maximum is achieved.

EM Algorithm. We start with initial feasible values within intervals, which we
plug into a cross product of chain and automaton. In each iteration, we improve
these values by computing (i) the expected number of times to visit a given state
before reaching an accepting strongly connected component (SCC) and (ii) the
probability of reaching an accepting SCC given a starting state. This allows us
to compute for each interval, the expected number of times a run takes this edge
before it is clear it will be accepted. For all intervals leaving the same vertex of
an IMC we set their new values to be proportional to these expectations. In case
of IMCs, see [2] for more details about the update procedure, convergence, the
choice of initial refinement and handling the cases, where new improved values
violates the given ranges for intervals.

Optimisations. Firstly, we identify reachable states of the cross-product. Then,
in the non-recursive case, we use probabilistic bisimulation and a heuristic to
collapse together vertices v and v′ whenever we can determine that starting in
v any path will pass through v′ with probability one. Finally, we use the Sparse
Newton method implementation from [8] to solve systems of linear equations
(or non-linear equations in the recursive case). We have chosen this method
because for our type of equations it (i) converges, as shown in [4] (ii) has the



Tulip: Model Checking Probabilistic Systems 157

best performance among many compared in [8] (iii) allows us to run the whole
algorithm in linear time.

Problems Tulip Can Solve. (i) Model checking IMCs and recursive IMCs
against LTL or automata (ii) Model checking ordinary Markov chains and re-
cursive Markov chains (RMCs). Note that PReMo [8], the only tool for model-
checking RMCs and SCFG, does not support intervals, nor LTL specification
(iii) Finding optimal positional schedulers for MDPs and recursive MDPs given
an LTL specification. Note that the latter problem is undecidable for schedulers
with memory [5] (iv) Perform model repair, by adjusting transition probabilities
to meet the specification (v) Model check stochastic context free grammars also
with interval ranges for probabilities.

3 Experiments

We evaluate the performance of Tulip using a single core of 1.7 GHz Intel Core
i5 CPU and show the impact of our optimisations on several examples which
are described on our website. They cover a range of scenarios, including finding
mixed strategies in some economic games and evaluating properties specifying
competing goals. One of the larger examples we consider is a Bounded Retrans-
mission Protocol [3], where we model-check the property that the sender does
not report a successful transmission. We include also examples covering interval
stochastic context-free grammars and recursive IMCs.

Examples: Rendezvous in the Park (R), Predicting Football (F), Bounded Re-
transmission Protocol (B), Natural Language Processing (N), Secondary Struc-
ture of RNA (S).

R F B N S
Example is recursive no no no yes yes
Size of interval Markov chain 5 22 1767 78 57
Initial automaton size 6 82 5 19 37
Automaton after bisimulation 6 29 3 8 9
Naive cross product 30 638 5301 624 513
Product with reachable states only 20 171 1767 330 459
Product after collapse 7 41 610 - -
Product after bisimulation 6 15 544 - -
Iterations for 5-decimal digit precision 14 12 1 1 1
Overall running time (in seconds) 0.013 0.024 1.241 0.495 0.729

For all our examples fewer than 15 iterations are sufficient to attain a precision
up to five decimal places. Each iteration of our EM algorithm runs in practice in
linear time in the number of vertices and edges of the cross product. It is because
all parts of the algorithm run in linear time: finding reachable vertices, strongly
connected components, building systems of equations and also solving iteratively
these equations. It is confirmed by the example we consider in Figure 2, where we
model a Probabilistic Broadcast Protocol [6], a synchronous variant with message
collision.



158 R. Lenhardt

naive cross-product size

runtime (in seconds)

20k 40k 80k 160k 320k 640k

1/4

1/2

1

2

Fig. 2. Runtime of one iteration for different sizes of Probabilistic Broadcast Protocol.
Note that both axes grow exponentially and that we use k to denote thousands.

4 Conclusions and Future Work

We have shown that Tulip can be used to model check temporal logic properties
of many different systems. In many cases, there were no tools available before.
The linear running time in the size of the cross product means that Tulip al-
ready scales well to large systems. To make it even more useful in practice and
overcome memory limitations, we plan to improve the running time of the opti-
misations and include symbolic algorithms as in the symbolic engine of PRISM.
They usually make algorithm a little slower, but much less memory is sufficient.
Another extension we are working on is to support a richer set of properties. We
would like to support finding the values within intervals for which the expected
number of steps to reach the accepting set is minimised. That would allow us, for
example, to find the optimal parameters for the runs of Las Vegas algorithms.

References

1. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring
in the statistical analysis of probabilistic functions of markov chains. The Annals of
Mathematical Statistics 41(1), 164–171 (1970)

2. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval markov
chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 32–46. Springer, Heidelberg (2013)

3. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis of
probabilistic systems by successive refinements. In: de Luca, L., Gilmore, S. (eds.)
PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg (2001)

4. Etessami, K., Yannakakis, M.: Recursive markov chains, stochastic grammars, and
monotone systems of nonlinear equations. In: Diekert, V., Durand, B. (eds.) STACS
2005. LNCS, vol. 3404, pp. 340–352. Springer, Heidelberg (2005)



Tulip: Model Checking Probabilistic Systems 159

5. Etessami, K., Yannakakis, M.: Recursive markov decision processes and recursive
stochastic games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 891–903. Springer, Heidelberg (2005)

6. Fehnker, A., Gao, P.: Formal verification and simulation for performance analysis
for probabilistic broadcast protocols. In: Kunz, T., Ravi, S.S. (eds.) ADHOC-NOW
2006. LNCS, vol. 4104, pp. 128–141. Springer, Heidelberg (2006)

7. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS (1991)

8. Wojtczak, D., Etessami, K.: PReMo: An analyzer for probabilistic recursive mod-
els. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 66–71.
Springer, Heidelberg (2007)



PLASMA-lab: A Flexible, Distributable

Statistical Model Checking Library

Benôıt Boyer, Kevin Corre, Axel Legay, and Sean Sedwards

INRIA Rennes – Bretagne Atlantique

Abstract. We present PLASMA-lab, a statistical model checking
(SMC) library that provides the functionality to create custom statistical
model checkers based on arbitrary discrete event modelling languages.
PLASMA-lab is written in Java for maximum cross-platform compatib-
ility and has already been incorporated in various performance-critical
software and embedded hardware platforms. Users need only implement
a few simple methods in a simulator class to take advantage of our effi-
cient SMC algorithms.
PLASMA-lab may be instantiated from the command line or from

within other software. We have constructed a graphical user interface
(GUI) that exposes the functionality of PLASMA-lab and facilitates its
use as a standalone application with multiple ‘drop-in’ modelling lan-
guages. The GUI adds the notion of projects and experiments, and imple-
ments a simple, practical means of distributing simulations using remote
clients.

Background and Motivation

Statistical model checking (SMC) is a form of probabilistic model checking that
employs Monte Carlo methods to avoid the state explosion problem. SMC uses
a number of independent simulation traces of a discrete event model to estimate
the probability of a property. The traces may be generated on different machines,
so SMC can efficiently exploit parallel computation (see Fig. 2). Reachable states
are generated on-the-fly and the length of simulations is only weakly related to
the size of the state space. Hence SMC tends to scale polynomially with respect to
system description (see Fig. 1). Properties may be specified in bounded versions
of the same temporal logics used in probabilistic model checking. Since SMC is
thus applied to finite traces, it is also possible to use logics and functions that
would otherwise be intractable or undecidable.

SMC abstracts the probabilistic model checking problem to one of estimating
the parameter of a Bernoulli random variable with well defined confidence (e.g.,
using a Chernoff bound). The complexity of the estimation problem with respect
to confidence is largely independent of the total number of possible traces. Hence
SMC may also be applied to stochastic models with continuous states.

Dedicated SMC tools, such as YMER1, VESPA, APMC2 and COSMOS3,
have been joined by statistical extensions of established tools such as PRISM4

1 www.tempastic.org/ymer 2 sylvain.berbiqui.org/apmc
3 www.lsv.ens-cachan.fr/~barbot/cosmos/

4 www.prismmodelchecker.org

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 160–164, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.tempastic.org/ymer
sylvain.berbiqui.org/apmc
www.lsv.ens-cachan.fr/~barbot/cosmos/
www.prismmodelchecker.org


PLASMA-lab: A Flexible, Distributable Statistical Model Checking Library 161

and UPPAAL5. In the case of UPPAAL-SMC, this has required the definition of
stochastic timed semantics. The tool MRMC6 has both numerical and statistical
functionality, but takes as input a low level textual description of a Markov chain.
Many other tools are available or under development, with most using a single
high level modelling language related to a specific semantics. Our previous tool
[2] suffered the same limitation, prompting us to develop a radically new tool
with modular architecture.

PLASMA-lab

PLASMA-lab [3] is an efficient SMC library written in Java, featuring a cus-
tomisable simulator class. This allows SMC functionality to be added to existing
domain-specific modelling platforms, such as DESYRE7, and allows rapid proto-
typing of formal verification solutions using, e.g., Scilab8 and MATLAB9. High
performance standalone model checkers can also be constructed with PLASMA-
lab by including a suitable language parser in the simulator class. PLASMA-lab’s
integrated development environment facilitates distributed simulation and can
work with multiple user-defined language plug-ins.

Properties. PLASMA-lab accepts properties described in a form of bounded
linear temporal logic (BLTL) extended with custom temporal operators based
on concepts such as minimum, maximum and mean of a variable over time.

Model Checking Modes. PLASMA-lab offers three basic modes of model
checking: simple Monte Carlo, Monte Carlo using a Chernoff confidence bound
and sequential hypothesis testing. There is also a simulation mode for debugging.
Rare event model checking modes, such as importance sampling and importance
splitting, can be implemented as part of the simulator class when the modelling
semantics support them.

– Monte Carlo: the user explicitly specifies the number of simulations that
PLASMA-lab must use to estimate the probability of a property.

– Chernoff: the user specifies an absolute error ε and a probability δ. PLASMA-
lab calculates the number of simulations required to ensure that the resulting
estimate is within ±ε of the correct value with minimum probability δ.

– Sequential: PLASMA-lab adopts the sequential hypothesis ratio test of [4] to
verify that the probability of a property is above a user-specified threshold.
The user also specifies a level of indifference and parameters to control er-
rors of Types I and II. The number of simulations is not specified a priori:
simulations are performed as necessary. See [4] for details.

5 www.uppaal.org 6 www.mrmc-tool.org 7 www.ales.eu.com 8 www.scilab.org
9 www.mathworks.com

www.uppaal.org
www.mrmc-tool.org
www.ales.eu.com
www.scilab.org
www.mathworks.com


162 B. Boyer et al.

Usage. PLASMA-lab may be invoked from the command line or embedded in
other software as a library. PLASMA-lab is provided as a pre-compiled jar file
(plasmalab.jar) and a source template (Simulator.java) to create the simulator
class. The minimum requirement is to implement the methods newTrace() and
nextState(), that initiate a new simulation and advance the simulation by one
step, respectively. Language parsers are typically invoked in the constructor.

Graphical User Interface. The GUI provides an integrated development en-
vironment (IDE) to facilitate the use of PLASMA-lab as a standalone statistical
model checker with multiple ‘drop-in’ modelling languages. To demonstrate this,
we have included a biochemical language and a language based on reactive mod-
ules. The website [3] includes other examples. The GUI implements the notion
of a project file, that links the description of a model to a specific modelling
language simulator and a set of associated properties and experiments. The GUI
also provides 2D and 3D graphical output of results and implements a distributed
algorithm that will work with any of its associated modelling languages.

Size of model (philosophers)

O
ve

ra
ll 

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

3 10 30 100 300

1
10

10
0

10
00

numerical (PRISM)

PLASMA−lab

Fig. 1. Exponential scaling of numer-
ical model checking vs. linear scaling of
PLASMA-lab SMC, considering a fair-
ness property of the probabilistic dining
philosophers protocol.

Size of model (philosophers)

O
ve

ra
ll 

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

3 10 30 100 300

1
10

10
0

10
00

local simulation
1

4
8
16
32
64

Fig. 2. Scaling of PLASMA-lab distrib-
uted algorithm applied to dining philo-
sophers. Numbers are quantity of simu-
lation nodes. Local simulation scaling is
shown for reference.

Distributed Algorithm. The administrative time needed to distribute SMC
on parallel computing architectures is often a deterrent. To overcome this, the
PLASMA-lab GUI implements a simple and robust client-server architecture,
based on Java Remote Method Invocation (RMI) using IPv4/6 protocols. The
algorithm will work on dedicated clusters and grids, but can also take advantage
of ad hoc networks of heterogeneous computers. The minimum requirement is
that the IP address of the GUI is available to the clients. PLASMA-lab imple-
ments the SMC distribution algorithm of [4], which avoids the statistical bias
that might otherwise occur from load balancing. Distributed performance in
illustrated in Fig. 2. The user selects the distributed mode via the GUI and



PLASMA-lab: A Flexible, Distributable Statistical Model Checking Library 163

publishes the IP address of the instance of PLASMA-lab GUI that is acting as
server. Clients (instances of the PLASMA-lab service application) willing to par-
ticipate respond by sending a message to the published IP address. The server
sends an encapsulated version of the model and property to each of the parti-
cipating clients, which then wait to be told how many simulations to perform.
When sufficient clients are available, the user initiates the analysis by causing
the server to broadcast the simulation requirements to each client.

Applications

Sensor BoardMotion Planner Board

Social Force
Model

PLASMA‐lab
SMC Engine

Suggested
Motion

Global
Objectives

Sensor
Processing

Sensors

actual mo on

plausible paths

current state

Fig. 3. Control loop of DALi
motion planner

PLASMA-lab has been applied to prob-
lems from, e.g., systems biology, rare
events, performance, reliability, motion
planning and systems of systems [3].
PLASMA-lab is the focus of ongoing
collaborations with companies Dassault,
Thales, IBM, and EADS. PLASMA-lab
is also used by several European pro-
jects. The following examples relate to the
DALi10 and DANSE11 projects.

Motion Planning. PLASMA-lab is
used by the DALi project in a novel mo-
tion planning application of SMC. DALi

aims to develop an autonomous device to help those with impaired ability to
negotiate complex crowded environments (e.g. shopping malls). High level con-
straints and the objectives of the user are expressed in temporal logic, while low
level behaviour is predicted by the ‘social force model’ [1].

PLASMA-lab was integrated with MATLAB to develop the prototype al-
gorithm. The final version is implemented directly in C on embedded hardware
and finds the optimum trajectory in a fraction of a second. PLASMA-lab im-
proves the social force model’s ability to avoid collisions by a factor of five.

Systems of Systems. The DANSE project is concerned with the design and
analysis of ‘systems of systems’ (SoS). SoS feature a dynamicity of configurations
that introduces significant additional complexity (the state and state space of
the model are not necessarily known a priori). PLASMA-lab is now an integral
part of the DANSE software platform, using a Simulator class that wraps the
DESYRE12 hybrid simulation engine to make dynamicity transparent to SMC.

References

1. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev.
E 51, 4282–4286 (1995)

10 www.ict-dali.eu 11 www.danse-ip.eu 12 www.ales.eu.com

www.ict-dali.eu
www.danse-ip.eu
www.ales.eu.com


164 B. Boyer et al.

2. Jegourel, C., Legay, A., Sedwards, S.: A Platform for High Performance Statistical
Model Checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 498–503. Springer, Heidelberg (2012)

3. PLASMA-lab project page, https://project.inria.fr/plasma-lab/
4. Younes, H.L.S.: Verification and planning for stochastic processes with asynchronous
events. PhD thesis, Carnegie Mellon University (2005)

https://project.inria.fr/plasma-lab/


STRONG: A Trajectory-Based Verification

Toolbox for Hybrid Systems

Yi Deng1, Akshay Rajhans2, and A. Agung Julius1

1 ECSE Department, Rensselaer Polytechnic Institute
2 ECE Department, Carnegie Mellon University

Abstract. We present STRONG, a MATLAB toolbox for hybrid system
verification. The toolbox addresses the problem of reachability/safety
verification for bounded time. It simulates a finite number of trajecto-
ries and computes robust neighborhoods around their initial states such
that any trajectory starting from these robust neighborhoods follows the
same sequence of locations as the simulated trajectory does and avoids
the unsafe set if the simulated trajectory does. Numerical simulation and
computation of robust neighborhoods for linear dynamics scale well with
the size of the problem. Moreover, the computation can be readily paral-
lelized because the nominal trajectories can be simulated independently
of each other. This paper showcases key features and functionalities of
the toolbox using some examples.

1 Introduction

The problem of safety verification using reachability analysis, i.e., finding out
whether the trajectories of a system reach a goal set and/or avoid an unsafe set,
has received a lot of attention particularly in the hybrid systems community.
The different approaches from the literature can be roughly classified into two
types: state-space exploration techniques and construction of certificate-based
guarantees. Despite recent progress, the applicability of these formal techniques
still remains limited due the state-explosion problem and due to challenges in
coming up with the right certificates necessary. On the other hand, in prac-
tice, simulation remains a widely-used approach for analyzing systems despite it
being incomplete and informal. To bridge the divide between simulation and ver-
ification, tools that combine simulation with some formal analysis are recently
being developed [3,2]. In the similar spirit, we have been developing STRONG
(System Testing using RObust Neighborhood Generation)1, a Matlab toolbox
for trajectory-based reachability/safety verification of hybrid systems.

Our approach combines simulation and formal verification. By simulating tra-
jectories from a finite number of initial points within a compact set of initial
conditions, we can obtain reachability and safety properties for the entire set of
initial conditions [5].

1 The toolbox and the supporting examples can be downloaded at http://dengy3.
myrpi.org/strong.html . Preliminary work on the tool was done at University of
Pennsylvania as a part of the masters thesis [6].

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 165–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://dengy3.myrpi.org/strong.html
http://dengy3.myrpi.org/strong.html


166 Y. Deng, A. Rajhans, and A.A. Julius

2 Features and Functionalities

Model Consistency Checking. The toolbox has the ability to detect and correct
certain kinds of ill-posedness in the model. It tracks the validity of state flow to
detect common mistakes such as the reset state after a discrete transition falling
out of the invariant of the new location. It can also detect a particular case of
Zeno behaviors (infinite jumps in finite time between two neighboring locations),
and correct the model by replacing such transitions with sliding modes.

Trajectory Simulation. Simulating a trajectory for a given initial condition is one
of the main functionalities of the toolbox and forms a basis for the verification.
The toolbox uses MATLAB’s ode45 solver as a default for numerical integration.
For every trajectory, the tool gathers all the information including the continuous
evolution, transition events (e.g. unsafe), and event times. Trajectories of linear
as well as nonlinear dynamics can be simulated.

Robustness Computation. The trajectory robustness and upper/lower time dif-
ference bounds between a simulated trajectory and its neighbors can be com-
puted automatically for each continuous segment within every discrete location
visited by the simulated trajectory. For linear dynamics, the computation in-
volves solving a Lyapunov equation, for which we use standard convex optimiza-
tion tools. Automatic verification of nonlinear systems is still under development.
A trajectory and its robust ball of initial states can be visualized for any two
specified dimensions.

Initial Set Coverage. Using the robustness analysis of a single trajectory, we can
ascertain that the portion of the initial set covered by a robust ball around the
chosen initial state leads to trajectories with the same safety and reachability
properties as the simulated one. The final goal is to cover a given compact initial
set as much as possible using simulated trajectories and their robust neighbor-
hoods. Doing this in an effective way involves smartly choosing initial states for
the simulated trajectories and assessing current coverage. Currently, the cover-
age strategy implemented is to generate random points as initial states, and an
unbiased estimator [1] is used to evaluate the percentage of the covered initial
set, which has a precision independent of the dimension of the state space.

The procedure of property verification for
an initial set is parallelized in the tool. As
shown in the adjacent figure, trajectory
simulations and robustness computation,
which form the majority of the computa-
tion, can be performed independently and
the initial set can be covered in a highly
parallel manner.

Initial Set Coverage

Trajectory 1

Trajectory 2

Trajectory n Trajectory n

Trajectory 2

Trajectory 1

Coverage

Assessment

Simulation
Robustness
Computation



STRONG: A Trajectory-Based Verification Toolbox for Hybrid Systems 167

3 Examples

Demos of all examples can be found in the toolbox. Readers are recommended to
view them for specific usage of commands. Here we present the examples briefly,
and summarize the results as well as the performance of the tool in a table. For
details, we refer the reader to the tool user guide available on the tool webpage.

Navigation Benchmark. Consider the navigation
benchmark problem from [4,5]. The system state vec-
tor x is comprised of position variables (x1, x2) and
velocity variables (v1, v2). As shown in the plot, a sim-
ulated trajectory reaches four locations (�2, �5, �2, �3)
and no unsafe state ever reached. Any initial state
within the robust ball leads to a safe trajectory that
will reach (�2, �5, �2, �3) with upper and lower bounds
on each transition time.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Unsafe Initial Set

Robust Ball

Trajectory

l1 l4 l7

l2 l5 l8

l3 l6 l9

x2

x1

Automotive Cruise Control. In the automotive cruise
control example from [7], v is the vehicle’s velocity
and r is the distance to another vehicle. The original
dynamics has chattering, so we invoke our model con-
sistency checking feature to automatically incorporate
sliding modes. After that, normal verification can be
performed. As shown in the plot, part of the simulated
trajectory is along a guard, where we have inserted a
location with sliding dynamics. 40 45 50 55 60

22

26

30

34

38

Initial set
Trajectory

Guards

Sliding Mode

r

v

A High-dimensional Example. To demonstrate the scalability of our tool with
the system dimension, we use a finite-element model to describe the heat-flow
phenomenon along a rod as a 60th-order differential equation. A critical element
is to be protected from being under- or over-heated (¬(10 ≤ T (C) ≤ 30)) by
injecting a hot/cold flux into the ends of the rod.

We simulate and verify the 60-
dimensional system under two different
initial conditions. For the first case
shown in the adjacent figure, although
several elements start from a relatively
high temperature, safety can been
maintained as the maximum T (C),
which occurs at time t = 32 is less
than the unsafe threshold. On the other
hand, in the second case depicted, the
higher (worse) initial temperature of
some elements results in unsafe temper-
ature T (C) at time t = 33. Properties
of two different initial sets are verified
as in the summary table.

25

30

35

40

20

60



168 Y. Deng, A. Rajhans, and A.A. Julius

problem Navigation Benchmark Cruise Control Heat Flow
end time 3 20 600
dimension 4 2 60

initial set

0.3 ≤ x1 ≤ 0.7 0.3 ≤ x1 ≤ 0.7
49 ≤ x1 ≤ 53

For 26 ≤ i ≤ 34, For 26 ≤ i ≤ 34,
1.3 ≤ x2 ≤ 1.7 1.3 ≤ x2 ≤ 1.7 35.8 ≤ xi ≤ 36.2; 39.8 ≤ xi ≤ 40.2;

−2.1 ≤ v1 ≤ −1.9 1.9 ≤ v1 ≤ 2.1
30 ≤ x2 ≤ 35

otherwise, otherwise,
−2.1 ≤ v2 ≤ −1.9 0.9 ≤ v2 ≤ 1.1 xi = 27. xi = 27.

results1
t # traj. cvg

unsafe2
t # traj. cvg t # traj. cvg

unsafe2
0.7s 1 100% 75.4s 1500 100% 60.1s 50 100%

1 t = computation time on a 3.40 GHz Inter Xeon CPU, 16GB RAM, 4 cores; # traj. = number
of trajectories tested; cvg = coverage assessment (±2%, Pr > 99%).

2 An unsafe trajectory is detected. The initial set cannot have uniform reachability and safety
property.

To summarize, the STRONG toolbox is developed for bounded time reach-
ability and safety verification of hybrid systems. Based on the idea of robust
test generation and coverage, the tool computes a mathematically proven bound
on the trajectory divergence and provides formal verification for the covered
initial states. The tool does not use gridding; high-dimensional problems can
be handled, and systems that are robustly safe can be verified with potentially
very few trajectories. Further speed up can be achieved by using parallelization
on multi-core machines. Directions for future work include supporting temporal
logic specifications and handling stochastic system models.

Acknowledgments. YD and AAJ would like to acknowledge the support of
NSF CAREER grant CNS-0953976. AR would like to acknowledge the support
of NSF grants CNS-1035800 and CCF-0926181.

References

1. Afshari, S.: Coverage assessment criteria for approximate bisimulation theory and
introduction of computer games in hybrid systems safety/reachability design. Mas-
ter’s thesis, Rensselaer Polytechnic Institute, NY (2010)

2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-taLiRo: A tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011)

3. Donzé, A.: Breach, A toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010)

4. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg
(2004)

5. Julius, A.A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust test gener-
ation and coverage for hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G.
(eds.) HSCC 2007. LNCS, vol. 4416, pp. 329–342. Springer, Heidelberg (2007)

6. Rajhans, A.: Development of robust testing toolbox for hybrid systems. Master’s
thesis, School of Engineering and Applied Science, Univ. of Pennsylvania (2007)

7. Stursberg, O., Fehnker, A., Han, Z., Krogh, B.H.: Verification of a cruise control sys-
tem using counterexample-guided search. In: Control Engineering Practice, vol. 12,
pp. 1269–1278 (October 2004)



PEPERCORN: Inferring Performance Models

from Location Tracking Data

Nikolas Anastasiou and William Knottenbelt

Department of Computing
Imperial College London
South Kensington Campus

London SW7 2AZ
{na405,wjk}@doc.ic.ac.uk

Abstract. Stochastic performance models are widely used to analyse
the performance of systems that process customers and resources. How-
ever, the construction of such models is traditionally manual and there-
fore expensive, intrusive and prone to human error. In this paper we
introduce PEPERCORN, a Petri Net Performance Model (PNPM) con-
struction tool, which, given a dataset of raw location tracking traces
obtained from a customer-processing system, automatically formulates
and parameterises a corresponding Coloured Generalised Stochastic Petri
Net (CGSPN) performance model.

Keywords: Performance Modelling, Location Tracking, Data Mining,
Coloured Generalised Stochastic Petri Nets.

1 Introduction

Performance modelling and analysis facilitates the understanding of customer
and resource flow in complex physical customer-processing systems, such as hos-
pitals, airports and car assembly lines. The accurate formulation and parameter-
isation of a performance model is critical to the validity of subsequent analysis.
Yet the construction of such a model usually requires the availability of large
amounts of data. Current data-gathering techniques, such as time and motion
studies, involve tedious manual tasks that are not only time consuming, but may
also be inaccurate and disrupt the system’s natural flow.

The increasing adoption of real time location systems (RTLSs) has led to an
abundance of low-level data describing the fine-grained flow of customers and
resources in customer-processing systems. In this paper, we introduce PEPER-
CORN, a tool which exploits the availability of such data in order to auto-
matically infer and construct the PNPM of the underlying system and thus,
provide insights regarding the system’s high-level operations and performance.
Constructed models can be visualised and/or analysed in PIPE2, the platform-
independent Petri Net editor [4].

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 169–172, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



170 N. Anastasiou and W. Knottenbelt

2 PEPERCORN

PEPERCORN is a Java-based implementation of our earlier work [1–3] which
presented a methodology, based on a four-stage data processing pipeline (cf. Fig-
ure 1), that allows the automated construction of CGSPN performance models
from high-precision location tracking data. Key assumptions include static ser-
vice areas with single-server service semantics and random service discipline.

Location
Tracking
Data

Stage 1 Stage 2 Stage 3 Stage 4 PNPM

1. Data standardisation
2. Customer path

separation
3. Data filtering

...

1. Inference of service areas
2. Location and service

radius approximation
for each inferred service
area

...

1. Allocation of places and tran-
sitions

2. Sojourn and travelling time
sample extraction

3. Calculation of initial and
inter-routing probabilities

4. Service cycle detection
5. Synchronisation detection

0.3

0.7

?

1

1 1 1 11

1
11111

1

1

?

1. Service and travelling
time distribution fitting

2. Model refinement

Fig. 1. The four-stage data processing pipeline that is implemented by PEPERCORN

The basic actions provided by PEPERCORN’s main menu bar are shown in
Figure 2. In order to construct a PNPM using PEPERCORN, the user first
opens a file containing raw location tracking updates retrieved from a particular
customer-processing system. PEPERCORN currently supports location tracking
data obtained from a Ubisense UWB-based RTLS and synthetic data generated
by the location-aware queueing network simulator LocTrackJINQS [6]. This
data is a stream of tuples of the form (tag id, type, x, y, time, stderr).
The tag id field denotes the monitoring tag’s unique identifier and type con-
tains the tag’s category, e.g. doctor, patient, etc. In the case of multiple customer
classes, type can also be used to specify the customer class that the tag belongs
to. time denotes the timestamp of the location update, i.e. the time when the
location update was recorded by the RTLS, and x, y specify the location of
the tag at that particular instance. stderr is the expected deviation between
the tag’s recorded location and actual location.

Once a file has been imported, the user can initiate the data processing
pipeline through the ‘Process File’ toolbar button. The user may wish to ad-
just some of the pipeline’s default parameters or disable the synchronisation



PEPERCORN: Inferring Performance Models from Location Tracking Data 171

Open File

Process
File

Export
PNPM

View
Results

Animate

Disable
Synchro-
nisation
Detection

Enable
Synchro-
nisation
Detection

(a)

Animate
Customer
Movement

Animate
Velocity
Filter

Animate
Density
Filter

Animate
Clustering

(b)

Fig. 2. Figure 2(a) shows the basic actions provided by PEPERCORN’s toolbar. Fig-
ure 2(b) shows additional animation actions, once the ‘Animate’ button is pressed.

detection mechanism before processing commences. A user can also animate the
processing phases of the second pipeline stage (cf. Figure 2(b)).

During data processing only one mandatory input is required: the Eps value
used by the DBSCAN [5] clustering algorithm (cf. Figure 3(a)). This value defines
the area of the neighbourhood around each point in the dataset for which the
density is measured1. When processing is completed, the user can export the
constructed PNPM as an XML file (a custom variation of PNML) so it can be
visualised and/or analysed in PIPE2 (cf. Figure 3(b)). PEPERCORN also allows
users to examine key quantitative results, such as the service and travelling
time distribution fits (obtained by interfacing with the G-FIT tool [7]), the
compatibility of the extracted time samples with the fitted distribution, and the
inferred service area locations.

(a) (b)

Fig. 3. Figure 3(a) shows the Eps selection dialog. Figure 3(b) shows the constructed
PNPM as visualised in PIPE2 (in compact transition form).

1 DBSCAN requires a second parameter in order to determine density-connected
points: the value of the minimum number of points (MinPts) that must lie within
the neighbourhood (defined by Eps) of each point in the dataset. However, we set
the value of MinPts to be equal to four in all cases after the suggestion of [5].



172 N. Anastasiou and W. Knottenbelt

3 Conclusion

This paper has presented PEPERCORN, a tool used to automatically construct
PNPMs by analysing the traces of the customer flow of customer-processing sys-
tems. This tool has been evaluated through a number of case studies in [1–3].
These case studies, conducted using synthetic location tracking data generated
by LocTrackJINQS [6], employ several types of customer-processing systems,
including systems with synchronisation, multiple customer classes and service
cycles. Their results suggest that PEPERCORN is capable of inferring the ab-
stract structure, stochastic features and high-level customer flow of complex
systems, at least when synthetic location tracking data is used.

The constructed models can be used to provide insights into the system’s
performance through the computation of end-to-end response time distributions
and to identify bottlenecks not likely to be discovered by a manual process. At
this stage PEPERCORN is particularly suitable for small-scale indoor customer-
processing systems characterised by complex processes which are difficult to
capture via manually collected data.

References

1. Anastasiou, N., Horng, T.-C., Knottenbelt, W.: Deriving Generalised Stochastic
Petri Net performance models from High-Precision Location Tracking Data. In:
Proc. 5th Intl. Conference on Performance Evaluation Methodologies and Tools,
VALUETOOLS 2011 (2011)

2. Anastasiou, N., Knottenbelt, W.: Deriving Coloured Generalised Stochastic Petri
Net Performance Models from High-Precision Location Tracking Data. In: Proc.
4th ACM/SPEC International Conference on Performance Engineering (2013)

3. Anastasiou, N., Knottenbelt, W., Marin, A.: Automatic Synchronisation Detection
in Petri Net Performance Models Derived from Location Tracking Data. In: Thomas,
N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 29–41. Springer, Heidelberg (2011)

4. Dingle, N.J., Knottenbelt, W.J., Suto, T.: PIPE2: A tool for the Performance Evalu-
ation of Generalised Stochastic Petri Nets. ACM SIGMETRICS Performance Eval-
uation Review 36(4), 34–39 (2009)

5. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: Proc. 2nd Intl. Conf. on
Knowledge Discovery and Data Mining, KDD 1996 (1996)

6. Horng, T.-C., Anastasiou, N., Knottenbelt, W.: LocTrackJINQS: An Extensible
Location-aware Simulation Tool for Multiclass Queueing Networks. In: Proc. 5th
Intl. Workshop on Practical Applications of Stochastic Modelling (2011)

7. Thümmler, A., Buchholz, P., Telek, M.: A Novel Approach for Phase-Type Fitting
with the EM Algorithm. IEEE Transactions on Dependable and Secure Comput-
ing 3, 245–258 (2005)



ADTool: Security Analysis

with Attack–Defense Trees�

Barbara Kordy, Piotr Kordy, Sjouke Mauw, and Patrick Schweitzer

University of Luxembourg, SnT
{barbara.kordy,piotr.kordy,sjouke.mauw,patrick.schweitzer}@uni.lu

Abstract. ADTool is free, open source software assisting graphical mod-
eling and quantitative analysis of security, using attack–defense trees.
The main features of ADTool are easy creation, efficient editing, and
automated bottom-up evaluation of security-relevant measures. The tool
also supports the usage of attack trees, protection trees and defense trees,
which are all particular instances of attack–defense trees.

1 Background and Motivation

Attack–defense trees (ADTrees) extend and improve the well-known formalism
of attack trees, by including not only the actions of an attacker, but also pos-
sible counteractions of a defender. Since interactions between an attacker and
a defender are modeled explicitly in ADTrees, the extended formalism allows
for a more thorough and accurate security analysis compared to regular attack
trees. This paper presents ADTool software [7] which supports quantitative and
qualitative security assessment using attack–defense trees.

Theoretical foundations of the ADTree methodology, including a graphical
and a term-based syntax as well as numerous formal semantics, have been intro-
duced in [6]. A mathematical framework for quantitative evaluation of ADTrees
is based on the notion of attributes, which allow us to formalize and specify
relevant security metrics. Standard quantitative analysis of ADTrees relies on a
step-wise computation procedure. Numerical values are assigned to all atomic ac-
tions, represented by the non-refined nodes. The values for the remaining nodes,
including the root of the tree, are deduced automatically in a bottom-up way.
This bottom-up algorithm makes use of attribute domains which specify opera-
tors to be used while calculating values for different node configurations.

The practical use of the ADTree methodology requires dedicated tool sup-
port. Lack of such support may result in numerous modeling difficulties and
computational errors. On the one hand, there exist a number of commercial
software applications for attack tree-like modeling, including SecurITree1 and

� The research leading to the results presented in this work received funding from the
Fonds National de la Recherche Luxembourg under the grants C08/IS/26 and PHD-
09-167 and the European Commission’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 318003 (TREsPASS).

1 http://www.amenaza.com/

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 173–176, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.amenaza.com/


174 B. Kordy et al.

AttackTree+2. However, these are closed source tools and their use is not free
of charge. On the other hand, existing academic software, such as SeaMonster3,
does not support quantitative analysis and uniformly integrated defenses.

The above observations motivated the development of ADTool, which

– is a free and open source application supporting qualitative and quantitative
analysis of tree-based models integrating attack and defense components;

– is based on well-founded formal framework;
– guides the user in constructing well-formed and visually appealing models;
– facilitates sharing, management and updating of the models;
– automates computation of security related parameters.

This paper provides a brief overview of the main features and practical capa-
bilities of ADTool. For a more detailed description we refer the reader to an
extended and illustrated version of this article [5] and to the ADTool manual
available at http://satoss.uni.lu/software/adtool/manual.pdf.

2 Main Features of ADTool

ADTool is guiding the user in constructing models that comply with the graph-
ical ADTree language. All options that allow to modify or refine the models can
be accessed via a user-friendly GUI of the application.

ADTool uses an improved version of Walker’s algorithm [2] to produce trees
having an appealing layout. Furthermore, when an ADTree is built, the corre-
sponding attack–defense term (ADTerm), is immediately displayed. ADTerms
form a compact, algebraic representation of ADTrees. The shortest tree edit dis-
tance algorithm [3] implemented in ADTool ensures that when an ADTerm is
modified, the corresponding ADTree is adapted accordingly.

ADTool provides advanced features for model manipulation and management.
Folding, expanding and zooming options make the analysis of large models pos-
sible. Temporarily hiding parts of a tree permits users to focus on the displayed
components. This is highly appreciated during industrial meetings and presen-
tations. ADTrees created with ADTool can be saved as special .adt files, which
enables their reuse and modification. Models can also be exported to vector
graphics files (pdf), raster graphics files (png, jpeg) and LATEX files (tex). Re-
sulting figures can be used as illustrations in presentations, research papers and
posters. A dedicated option makes it possible to print trees on a specified number
of pages, which enhances readability of large-scale models.

The bottom-up algorithm for evaluation of attributes on ADTrees has been
implemented in ADTool. Supported measures include: attributes based on real
values (e.g., time, cost, probability), attributes based on levels (e.g., required
skill level, reachability of the goal in less than k units of time), and Boolean
properties (e.g., satisfiability of a scenario). The implemented measures can be

2 http://www.isograph-software.com/2011/software/attacktree/
3 http://sourceforge.net/projects/seamonster/

http://satoss.uni.lu/software/adtool/manual.pdf
http://www.isograph-software.com/2011/software/attacktree/
http://sourceforge.net/projects/seamonster/


ADTool: Security Analysis with Attack–Defense Trees 175

computed from the point of view of an attacker (e.g., the cost of an attack), of
a defender (e.g., the cost of defending a system), or relate to both of them (e.g.,
overall maximum power consumption). Using different attribute domains allows
us to distinguish between actions executed sequentially or in parallel.

After a user selects an attribute, the tool decorates the ADTree with default
values representing the worst case scenario, e.g., infinite cost or maximal required
skill level. The user then customizes the inputs for the relevant non-refined nodes
and the linear bottom-up algorithm computes the values of the remaining nodes.
Input values can be modified directly on the tree or using an overview table which
is particularly helpful in case of large models. The tool ensures that the provided
values are consistent and belong to a specified value domain. This is especially
important when several specialists supply values for different parts of the tree.

The tool has been extensively tested and has proven to be able to easily han-
dle realistic models containing a few thousand nodes. The computations using
ADTool are performed instantaneously. The limiting factor is the graphical dis-
play of ADTrees. For trees of more than ten thousand nodes, a delay of about
five seconds occurs when a new node is added. This is due to the recalculation
of the positions of some nodes.

3 Implementation Characteristics

The application has been written in a modular way with a clear distinction
between the GUI and the Implementation Model. An overview of the ADTool
architecture is depicted in Figure 1. The Implementation Model consists of the

InfoNode Docking Windows

Tree/Domain Views Term View

GUI

User

interactpdf
tex
jpg
png

Printer

Tree Model

Quantitative Models

extend

Domain Classes

derrive

Implementation Model

edit

edit

Disk

load/save

load/save

bottom-up evaluation

Fig. 1. An overview of the ADTool architecture

Tree Model (which stores the basic tree structure), Domain Classes (defining
the implemented attribute domains), and Quantitative Models (which are de-
rived from Domain Classes and contain inserted and computed values). The
functionality of the tool can easily be extended by defining new attributes. For
this purpose, a new Domain Class needs to be created and compiled. Domain
Classes have been designed to be simple, in order to make it possible for a user
with minimal knowledge of Java to add a new domain. Due to the use of Java



176 B. Kordy et al.

reflection, no recompilation or other modifications of the program are required
after adding a new Domain Class.

ADTool runs on all common operating systems (Windows, Linux, Mac OS).
The program is written in Java and it depends on the following free libraries:
abego TreeLayout4, implementing an efficient and customizable tree layout al-
gorithm in Java, and InfoNode Docking Windows5, a pure Java Swing based
docking windows framework, allowing to set up windows in a flexible way and to
save and restore their layout. ADTool is available for download and as an online
application at http://satoss.uni.lu/software/adtool/.

4 Conclusion and Future Work

ADTool provides security consultants as well as academic researchers with a rig-
orous but user-friendly application that supports security analysis using
ADTrees. It integrates two crucial modeling aspects: the creation of security
models and their quantitative analysis. From a formal perspective, attack trees
[8], protection trees [4], and defense trees [1] are instances of ADTrees. Thus,
ADTool can also be employed to automate and facilitate the usage of all these
formalisms.

We are currently working on combining the ADTree methodology with Bayes-
ian Networks, to make probabilistic reasoning about scenarios involving depen-
dent actions possible. Related theoretical findings and newly identified features
will be implemented in the next versions of ADTool.

References

1. Bistarelli, S., Fioravanti, F., Peretti, P.: Defense Trees for Economic Evaluation of
Security Investments. In: ARES 2006, pp. 416–423. IEEE Computer Society (2006)

2. Buchheim, C., Jünger, M., Leipert, S.: Drawing rooted trees in linear time. Software:
Practice and Experience 36(6), 651–665 (2006)

3. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An Optimal Decomposition
Algorithm for Tree Edit Distance. ACM Trans. Algorithms 6(1), 2:1–2:19 (2009)

4. Edge, K.S., Dalton II, G.C., Raines, R.A., Mills, R.F.: Using Attack and Protec-
tion Trees to Analyze Threats and Defenses to Homeland Security. In: MILCOM,
pp. 1–7. IEEE (2006)

5. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: Security Analysis with
Attack–Defense Trees (Extended Version). CoRR abs/1305.6829 (2013)

6. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack–Defense Trees.
Journal of Logic and Computation pp. 1–33 (2012),
http://logcom.oxfordjournals.org/content/early/2012/06/21/

logcom.exs029.short?rss=1

7. Kordy, P., Schweitzer, P.: ADTool (2012), http://satoss.uni.lu/software/adtool
8. Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In: Won, D., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)

4 http://code.google.com/p/treelayout/
5 http://www.infonode.net/index.html?idw

http://satoss.uni.lu/software/adtool/
http://logcom.oxfordjournals.org/content/early/2012/06/21/logcom.exs029.short?rss=1
http://logcom.oxfordjournals.org/content/early/2012/06/21/logcom.exs029.short?rss=1
http://satoss.uni.lu/software/adtool
http://code.google.com/p/treelayout/
http://www.infonode.net/index.html?idw


SAT-Based Analysis and Quantification

of Information Flow in Programs

Vladimir Klebanov1, Norbert Manthey2, and Christian Muise3

1 Karlsruhe Institute of Technology (KIT)
Am Fasanengarten 5, 76131 Karlsruhe, Germany

klebanov@kit.edu
2 Knowledge Representation and Reasoning Group

Technische Universität Dresden, 01062 Dresden, Germany
norbert@iccl.tu-dresden.de

3 Department of Computer Science
University of Toronto, Toronto, Canada

cjmuise@cs.toronto.edu

Abstract. Quantitative information flow analysis (QIF) is a portfolio
of security techniques quantifying the flow of confidential information to
public ports. In this paper, we advance the state of the art in QIF for
imperative programs. We present both an abstract formulation of the
analysis in terms of verification condition generation, logical projection
and model counting, and an efficient concrete implementation targeting
ANSI C programs. The implementation combines various novel and ex-
isting SAT-based tools for bounded model checking, #SAT solving in
presence of projection, and SAT preprocessing. We evaluate the tech-
nique on synthetic and semi-realistic benchmarks.

1 Introduction

Quantitative information flow analysis (QIF) is a collection of techniques for
security assessment of software. The research in QIF is motivated by the obser-
vation that it is not feasible to completely prevent information leaks (i.e., the
flow of confidential information to public ports) in realistic systems. Instead,
practical security analysis demands a measure of leaked information in order to
decide if a leak is tolerable.

QIF techniques have been applied to a variety of problems. Deciding whether
a PIN generation algorithm produces PINs that are hard to guess [1], or whether
a particular image transformation is a secure anonymization mechanism (cf. Fig-
ure 1) [17] are examples of QIF applications. While the information-theoretical
foundations of QIF in deterministic programs are relatively well-understood,
practical analysis techniques and tools are still under development.

So far, QIF analyses have been typically described operationally, i.e., with
focus on algorithm development. One contribution of this paper is an abstract
formulation, describing a whole class of QIF analyses in terms of verification

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 177–192, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

klebanov@kit.edu
norbert@iccl.tu-dresden.de
cjmuise@cs.toronto.edu


178 V. Klebanov, N. Manthey, and C. Muise

condition generation, logical projection (most notably), and model enumera-
tion/counting. This view facilitates understanding and comparison of existing
approaches and better connects QIF to the existing body of work in these areas.

Inspired by this connection is another contribution of this paper: a novel
combination of SAT preprocessing, projection, and counting, resulting in a QIF
analysis that is more efficient than its predecessors. Our toolchain for analysis
of C programs consists of an off-the-shelf bounded model checker CBMC [6],
a propositional formula preprocessor that we developed previously, and three
tools for propositional model enumeration/counting under projection that we
developed (resp. extended) for this paper.

The discerning properties of our analysis are: (1) The implemented analy-
sis is general-purpose, i.e., it is not taylored to a particular software applica-
tion domain. No restrictions on the shape of the indistinguishability relation
are posed (in contrast to [2,14,13]). The implementation supports almost all of
ANSI C by virtue of using CBMC. (2) The analysis is not compositional, but it
is fully automated—the only required user input is the program under analysis.
Loops are handled by bounded unwinding, which is computationally expensive,
but fully automatic and complete (with unwinding assertion checking). (3) The
analysis supports measuring both the conditional min-entropy (counting the
number of program outputs) and conditional Shannon entropy (counting output
preimage sizes). (4) The analysis is, conceptually, sound and precise (in contrast
to [17,18,21]). Of course, QIF is a hard problem, so computational constraints
may force the user to settle for merely deriving (more or less tight) leak bounds
as program complexity increases. (5) The analysis outpferforms comparable pre-
vious approaches both for theoretical reasons (e.g., it avoids computationally
expensive program self-composition used in [11,12,2,13]) and practically due to
the use of a number of well-connected novel and existing state-of-the-art tech-
niques and tools for propositional reasoning.

(a) Original image (b) Image (a) swirled by
720 degrees

(c) Image (b) swirled by
−720 degrees

Fig. 1. Anonymization by image swirling. Details in Section 6.3.



SAT-Based Analysis and Quantification of Information Flow in Programs 179

2 QIF Basics and Technical Preliminaries

Programs, States, and Transition Relation. A program state is a seman-
tical structure assigning values to mutable program vocabulary of a program p.
Let S be the set of all (program) states for p. A program p induces a transition
relation ρp ⊆ S × S on states as follows: (s, s′) ∈ ρp iff p started in state s
terminates in a state s′. A security analysis may sometimes wish to focus on a
particular set of initial states SI ⊆ S. In this case ρp ⊆ SI × S.

We only consider programs that are written in a deterministic (read: sequen-
tial) programming language and are terminating, i.e., we require that ρp is a
total function. The termination requirement is enforced by model checking (see
Section 4). We call a pair of an initial and a final state (s, s′) ∈ ρp a run of p.

Unless stated otherwise, we establish the convention that the program takes its
input in the variable I and produces its output in the variable O. The shorthand
phrase value of I resp. O is to be understood as referring to the value in the initial
resp. final state of a given run of p. Whenever necessary, I and O are silently
lifted to be vectors (with I∩O = ∅). A treatment of C structs as program output
is shown in Section 6.2.

More amenable to reasoning is a description of ρp by a logical formula with two
free variables I and O. We denote such formula as 〈p〉(I, O) or, later, simply 〈p〉.
The formula 〈p〉(I0, O0) evaluates to True iff p started with the input denoted
by I0 terminates with output denoted by O0.

Attacker Model and Indistinguishability Relation. We assume that the
attacker knows the program p, and that the input I is secret and the output O
is public. The attacker has observed the value of the output O in a final state of
some run of p and wants to learn something about the value of I in the initial
state. It is the goal of QIF analysis to measure p’s vulnerability to such an attack.

In the above attacker model, each program induces a partition on secret in-
puts ≈p called the indistinguishability relation. Each block in this partition is a
set corresponding to some output value of the program and containing exactly
the input values leading to this output. Formally, ≈p= {ρ−1

p (s′) | s′ ∈ ρp ◦ SI}.
One also speaks of blocks in ≈p as preimages of program outputs. For example,
if I is an unsigned 32-bit integer, then the program if(I==42) O=1 else O=0;

induces ≈p= {{0, . . . , 41, 43, . . . , 232 − 1}, {42}}.
Intuitively, an attacker can discern secret inputs from different blocks but

not within one block. Secure programs have a coarse ≈p, while insecure a fine
one. If ≈p is identity (very fine), then all blocks are singleton sets, and each
output corresponds uniquely to a secret input: the attacker has perfect knowl-
edge. Conversely, the coarsest indistinguishability relation ≈p= SI × SI with
only one block means that the attacker learns nothing about the secret inputs
by observing program outputs (a scenario known as “non-interference”).

Sometimes, a more powerful attacker is considered who can observe multiple
runs while partially choosing the program inputs (so called low inputs). In this
case, the indistinguishability relation becomes parametrized by a set of actual-
ized low inputs L. If the set L is small, the QIF problem can be reduced to the



180 V. Klebanov, N. Manthey, and C. Muise

no-low-input case by calculating the cartesian product of outputs for each low
input l ∈ L. If the set L is large, other approaches (typically based on computa-
tionally more expensive self-composition) must be used.

Quantitative Security Measures. Given the number and sizes of blocks
in ≈p, it is possible to compute a range of security measures summarizing in-
formation flow (leakage) in a program. The leaked information is the difference
between the attacker’s initial uncertainty about the secret inputs and the remain-
ing (a.k.a. residual) uncertainty after observing the output of the program [23].

It should be noted that different security measures have different properties
and are appropriate for different scenarios. It may also be necessary to consider
several measures in order to give dependable operational guarantees. We focus
on two popular measures and refer to [23] for an in-depth discussion.

For quantification purposes, we interpret I and O as random variables ranging
over SI and S respectively. The program p restricts the values of I and O that
can occur simultaneously. We assume that I follows a uniform distribution, i.e.,
that all secret inputs are equally likely. If this is not the case, techniques exist
for reducing the analysis to a uniform case [1].

Under these assumptions, and given ≈p= {C1, . . . , Cn} (n is, thus, the to-
tal number of possible distinct outputs of p), the following measures can be
computed [23,2]:

H∞(I|O) = log2
|SI |
n

and H(I|O) =
1

|SI |

n∑
i=1

|Ci| log2|Ci|

where the conditional min-entropy H∞(I|O) is a measure in bit reflecting the
probability of correctly determining I in a single guess after observing O, and
the conditional Shannon entropy H(I|O) is a lower bound in bit on the expected
message length needed to communicate the remaining secret about I after ob-
serving O.

3 Analysis, Abstractly

In this section, we formulate our QIF framework in abstract logical terms. Our
implementation, described later, is based on propositional logic, but other log-
ics supporting model generation (e.g., QF ABV) could be used just as well. We
assume that logical formulas are built from usual logical connectives (∧, ∨, ¬,
etc.) and user-defined vocabulary Σ. In propositional logic, Σ is a set of propo-
sitional variables. A model is a logic-specific semantical structure used to give
meaning to user-defined vocabulary of a formula. In propositional logic, a model
m : Σ → {True,False} is a map assigning every variable in Σ a truth value.
In general, a given model m can be homomorphically extended to give a truth
value to a formula Φ according to standard rules for logical connectives. We call a
model m a model of Φ, if m assigns Φ the value True. A formula Φ is satisfiable
if it has at least one model, and unsatisfiable otherwise.



SAT-Based Analysis and Quantification of Information Flow in Programs 181

Definition 1. We build our analysis from a number of abstract operators, which
we define below, using the following designations. Σ and Δ are vocabularies with
Δ ⊆ Σ. A Σ-entity (i.e., formula or model) is an entity defined (only) over
vocabulary from Σ. In the following, Φ is a Σ-formula, Ψ is a Δ-formula, i is an
integer, m is a Σ-model, m1 is a Δ-model, M is a set of models, p is a program,
I and O are program variables.

Expression Meaning

Φ := 〈p〉 formula encoding the behaviors of p (i.e., its transition
relation or the set of traces)

Δ := 〈I〉, Δ := 〈O〉 vocabulary denoting in 〈p〉 the input and output variables
of p (while p is implied)

m := model(Φ) some model satisfying Φ. If Φ is unsatisfiable, the result
is a special value ⊥.

M := models(Φ) the set of all models satisfying Φ. If Φ is unsatisfiable,
the result is the empty set ∅.

i := count(Φ) i := |models(Φ)| (number of models satisfying Φ)
m1 := m

∣∣
Δ

the Δ-model that coincides with the Σ-model m on the
vocabulary Δ

Ψ := Φ
∣∣
Δ

the strongest Δ-formula that, when interpreted as a
Σ-formula, is entailed by Φ (projection of Φ on Δ).
models(Φ

∣∣
Δ
) = {m

∣∣
Δ
| m ∈ models(Φ)}

Ψ := Δ ( m1 a Δ-formula that is true in m1 and false in all other
Δ-models.

Ψ := Δ ( m1 ¬(Δ ( m1), a Δ-formula that is false in m1 and true in
all other Δ-models.

The most interesting operator in the list above is projection. It makes the for-
mula Φ

∣∣
Δ

say the same things about Δ as Φ does—but nothing else. Projection
allows isolating aspects of program behavior along syntactical boundaries. For
instance, the formula 〈p〉

∣∣
〈O〉 describes (just) the set of outputs that are com-

patible with the behavior of program p. Orthogonally, the formulas Δ ( m1

and Δ ( m1 allow—when conjoined with 〈p〉—selecting or rejecting particular
runs of the program. These formulas are easier to illustrate if the underlying
logic is first-order; an implementation in propositional logic is given later. For
instance, the first-order formula 〈p〉 ∧ 〈O〉 = 5 would be a particular instance of
〈p〉 ∧ 〈O〉 ( m1 (for m1 where 〈O〉 has the value 5) and describe all those runs
of p that terminate with O = 5. Employing projection, we can describe the set
of inputs that produce the output O = 5 by (〈p〉 ∧ 〈O〉 = 5)

∣∣
I
. In this light, we

now formulate a general result:

Proposition 1.

H∞(I|O) = log2
|SI |

count(〈p〉
∣∣
〈O〉)

and H(I|O) =
1

|SI |
∑
o∈M

|C(o)| log2|C(o)|

where M = models(〈p〉
∣∣
〈O〉) and |C(o)| = count(

(
〈p〉 ∧ 〈O〉 ( o

)∣∣
〈I〉).



182 V. Klebanov, N. Manthey, and C. Muise

We note that computingH(I|O) requires model enumeration and counting, while
H∞(I|O) only requires counting. We also note that since searching for models
is computationally expensive, determining the residual min-entropy is easier the
more secure the program of a given complexity is (fewer blocks in ≈p). This does
not hold for the Shannon entropy, as there is a tension between the number and
size of blocks in ≈p (fewer blocks entail larger block sizes and vice versa).

4 From Program to Transition Relation with Bounded
Model Checking

SAT-Based Bounded Model Checking. To implement the 〈·〉 operator for
translating programs into (propositional) logic, we use the SAT-based model
checker CBMC [6] for C programs. CBMC is a very mature and popular veri-
fication tool supporting almost all ANSI C language features, including pointer
constructs, dynamic memory allocation, recursion, and the float and double data
types [6]. A similar, if less mature, tool for Java is JForge [8].

Given a C program p and a specification spec (given by assert statements
in the code), CBMC generates a formula 〈p〉 ∧ ¬〈spec〉 in propositional logic,
where 〈p〉 encodes the behaviors of the program p, and ¬〈spec〉 encodes the
behaviors that a specification-compliant program should not exhibit. This veri-
fication condition 〈p〉 ∧ ¬〈spec〉 is passed to a SAT solver. If it is unsatisfiable,
then the program is correct w.r.t. the specification; otherwise, any model of
〈p〉 ∧ ¬〈spec〉 describes a violation of the specification.

During CBMC operation, functions are inlined and loops are unwound to
the user-specified depth. CBMC warns the user if the unwinding depth is in-
sufficient to cover all of the program behaviors (this is known as unwinding
assertion checking). The unwound program is transformed into the static-single-
assignment (SSA) form. In this form, statements can be interpreted as equations
over bit vectors. The equations are combined and reduced to a formula of propo-
sitional logic in a process resembling synthesis of arithmetic circuits. The formula
is flattened into conjunctive normal form (CNF)

∧
i

∨
j Li,j , where each literal

Li,j is either a propositional variable or its negation. The formula can be ex-
changed with other tools by means of a standard DIMACS format.

Translating Programs into Logic. First, we carry out a preliminary verifi-
cation pass, during which we incrementally increase the unwinding depth until
CBMC reports no more unwinding assertion violations. This ensures that all
program behaviors are covered and also that the program terminates for all in-
puts. In the main CBMC pass, we augment the program with the specification
assert(0); (i.e., an assertion that is never fulfilled) before each return state-
ment and make CBMC export the verification condition formula 〈p〉 ∧ ¬〈spec〉.
The specification reduces the ¬〈spec〉 conjunct to true, leaving the desired 〈p〉.
The process may consume large amounts of memory but it is not a computa-
tional bottleneck as long as the unwinding depth is reasonable. The runtimes in
our examples ranged from instantaneous to under a minute.



SAT-Based Analysis and Quantification of Information Flow in Programs 183

Identifying Program Variables in the Transition Relation Formula.
Internally, CBMC represents each program variable bit-wise according to its
type (and machine architecture). For example, the initial value of a char-typed
program variable is represented by 8 propositional variables. More precisely,
CBMC tracks the evolution of each program variable over a series of time frames
(relative to each variable). Typically, we are only interested in time frame one
for I (i.e., initial state) and the highest time frame for O (final state). The
mapping from program variables and time frames to sets of propositional vari-
ables is embedded as comments in the CBMC-generated formula (lines starting
with c, at the bottom of the DIMACS file). These comments have the following
structure: c function id :: prg var id ! thr nr @ rec depth # time prop var list .
Thus, c c::main::1::I!0@1#1 1 2 3 4 5 6 7 8 means that the variable I in
function main in thread 0 at recursion depth 1 during time frame 1 is represented
by propositional variables v1, . . . , v8. We extract this information with a simple
parser.

5 Model Enumeration and Counting

input : Σ-Formula Φ,
projection
scope Δ ⊆ Σ

output: models(Φ
∣∣
Δ
)

M ← ∅
m← model (Φ)
while m = ⊥ do

M ←M ∪m
∣∣
Δ

Φ ← Φ∧(Δ ( m
∣∣
Δ
)

m ← model(Φ)

end
return M

Fig. 2. An algorithm for
enumerating models(Φ

∣∣
Δ
)

In this section, we present two conceptu-
ally different approaches and three tools that
we developed to implement models(Φ

∣∣
Δ
) resp.

count(Φ
∣∣
Δ
).

5.1 Iterative Model
Enumeration/Counting

Proposition 2. The algorithm shown in Fig-
ure 2 implements model enumeration of a for-
mula under projection.

We have implemented this projection-capable
version of a well-known model enumeration al-
gorithm in a tool named sharpCDCL

1. The
basic model (Φ)-finding functionality is offered
by the SAT solver Minisat [9]. Implementing
model projection m

∣∣
Δ

is trivial, as one simply

restricts the domain of the mapping m to the scope Δ. The formula Δ ( m
∣∣
Δ

can be constructed as
∨

v∈Δ flip(v,m), where flip(v,m) ≡ v, if m(v) = False,
and flip(v,m) ≡ ¬v, if m(v) = True. This way, the truth value of at least one
variable in m

∣∣
Δ

must flip in order to satisfy Δ ( m
∣∣
Δ
. Conjoining this formula

(which is already in CNF) with Φ ensures that the current model m will not be
found again. After the loop terminates (or sharpCDCL is interrupted), the set
resp. number of found models is returned.

1 Available at http://tools.computational-logic.org/

http://tools.computational-logic.org/


184 V. Klebanov, N. Manthey, and C. Muise

5.2 Model Counting via Compilation to d-DNNF

State-of-the-art deterministic #SAT solvers implement count(·) via compila-
tion of the formula to Deterministic Decomposable Negation-Normal Form (d-
DNNF). We have extended two such tools2, sharpSAT [25] and Dsharp [20],
with projection capabilities—something that has not been available in #SAT
solvers so far. While iterative model enumeration/counting works better on large
formulas with few models, d-DNNF-based #SAT solvers are useful to analyze
smaller formulas with a large number of models. Empirical evidence is presented
in Section 6. Below, we briefly sketch the necessary theoretical results for inte-
grating model counting and projection.

Definition 2. A formula in d-DNNF is a rooted tree such that:

– The label of each leaf node is either true, false, or a literal (i.e., negation
can only appear attached to variables), while the label of each internal node
is either a conjunction (∧) or a disjunction (∨).

– Decomposability holds: any two children ci and cj of a conjunctive node share
no vocabulary: Σci ∩Σcj = ∅.

– Determinism holds: let Φ(n) be the formula represented by the subtrees rooted
at node n. For any two children di and dj of a disjunctive node, Φ(di) and
Φ(dj) must be contradictory, i.e., Φ(di) ∧ Φ(dj) is unsatisfiable.

∨
∧ ∧

x
Φ[x]

¬x
Φ[¬x]

x =?
Φ

Fig. 3. A typical d-DNNF fragment

A propositional formula is typically
compiled to d-DNNF by an exhaus-
tive DPLL-style algorithm alternat-
ing systematic case distinctions (de-
cisions) and unit propagation. Each
decision gives rise to an ∨-node as
per equality Φ = Φ[v] ∨ Φ[¬v]. Fig-
ure 3 illustrates such a decision on
variable x. The #SAT solvers also
employ a number of optimizations

(e.g., subtree caching, clause learning, etc.), but these are of no interest here.
After a (computationally hard) compilation to d-DNNF, both projection com-
putation and model counting—though not in combination—can be carried out
in linear time [7].

Proposition 3. If Φ is a Σ-formula in d-DNNF, then Φ
∣∣
Δ

can be computed in
polynomial time by replacing every satisfiable (Σ \Δ)-subtree in Φ by true, and
every unsatisfiable (Σ \Δ)-subtree in Φ by false.

This is a direct consequence of [7, Theorems 3 and 9]. Unfortunately, projection
can destroy determinism (e.g., if the nodes x and ¬x in Figure 3 are removed),
making later model counting impossible. Yet, it is easy to see that:

2 Available at http://formal.iti.kit.edu/~klebanov/software/

http://formal.iti.kit.edu/~klebanov/software/


SAT-Based Analysis and Quantification of Information Flow in Programs 185

Proposition 4. Determinism is retained during projection of a d-DNNF for-
mula Φ on scope Δ, if every subtree rooted at an ∨-node associated with a deci-
sion on variable v ∈ Σ \Δ only contains variables from Σ \Δ.

In other words, losing determinism in a subtree is not harmful, if the whole
subtree is bound to be removed.

We enforce projection determinism by modifying the variable selection
heuristic of the #SAT solvers’ d-DNNF compilers to always perform decisions
on variables from Δ first. Further, we implemented the satisfiability check of
Proposition 3 by integrating Minisat into Dsharp. We omitted a similar check
in projecting sharpSAT; the latter can thus report a result that is higher than
the actual model count (though this never happened in our benchmarks). When
computing min-entropy, such overapproximation entails an error on the conser-
vative side.

5.3 Boosting Counting Performance with Formula Preprocessing

In [10], model counting has been improved by a few preprocessing techniques,
namely unit propagation, equivalence reduction and hyper binary resolution.
In general, any equivalence-preserving preprocessing technique can be applied
before model counting, because the set of models does not change. However,
there are also many powerful preprocessing techniques that are merely satisfia-
bility-preserving but not equivalence-preserving, such as variable elimination or
blocked clause elimination. For general model counting, these techniques cannot
be applied. The situation changes when projection is involved.

Proposition 5. Let Φ be a propositional Σ-formula and Δ ⊆ Σ a projection
scope. Applying satisfiability-preserving preprocessing on Σ \ Δ in Φ does not
change the set of models of the projection Φ

∣∣
Δ
.

We use the propositional preprocessor Coprocessor 2
3 [15,16], which we de-

veloped earlier, for equivalence-preserving simplification and scope-restricted
satisfiability-preserving simplification. While the more advanced simplification
techniques are not always beneficial, preprocessing boosts model counting per-
formance in most cases, as shown in the next section. The benchmark results are
given for default settings. The exact set of applied techniques can be configured
by the user.

6 Benchmarks and Evaluation

6.1 Synthetic Benchmarks

A number of microbenchmarks for general-purpose QIF have appeared in [2]
and [21]. The collection has later been consolidated and extended in [18]. It is
valuable as it is quite varied and targets different bottlenecks in QIF analyses.

3 Available at http://tools.computational-logic.org/

http://tools.computational-logic.org/


186 V. Klebanov, N. Manthey, and C. Muise

O = ((I >> 16) ^ I);
O = O & 0xffff;
O = O | (O << 16);

(a) Mix and duplicate

if (I == R1) O = R1;
else if (I==R2) O = R2;
...
else if (I==R9) O = R9;
else O = R10;

(b) Ten random outputs

O = 0;
for (i = 0; i < N; i++) {

m = 1 << (31-i);
if (O + m <= I) O += m;

}

(c) Binary search

Fig. 4. Benchmarks from [21] and [18]

The only drawback is that the majority of the benchmarks no longer pose a
challenge. Below we report results on five benchmarks (out of eleven total) that
are still difficult or interesting in some sense.

Table 1 summarizes the performance results. The experiments were performed
on a machine with an Intel Core i7 860 2.80GHz CPU. We have included the
timings published in [18] for comparison, though no hardware description is
available in that paper. The code is presented in Figure 4. Unless noted otherwise,
the variable I is the secret input, O is the observable output, and the type of
variables is uint32_t (32-bit unsigned integer).

The mix and duplicate benchmark (Figure 4a)—we cite [21]—“combines the
two halves of its input word with XOR, and then duplicates these 16 bits in both
the upper and lower halves of its output”, leaking 16 bit of the secret. “[This
leak] is too large to be effectively measured exhaustively, too small for effective
sampling, and too uniformly distributed for range queries, so only our proba-
bilistic #SAT strategy gives an accurate estimate” [21]. We can see that neither
iterative model enumeration nor modern precise #SAT solvers have difficulties
with this benchmark.

The ten-random benchmark (Figure 4b) is essentially a program with ten
outputs that do not follow a particular pattern. On this benchmark, the two-bit
abstraction from [18] overapproximates the leak.

In the sum benchmark O = I1 + I2 + I3;, we increase the difficulty compared
to [18], dropping the restriction of the summands to the range 0–10. Instead, we

Table 1. Benchmark runtimes (seconds)

w/PP=with preprocessing, t/o=timeout at 1h, *=result overapproximates number of
models. Preprocessing time was negligible in all cases.

Iterative enum. Precise #SAT Overapprox. #SAT

Benchmark m
od
el
s

sh
ar
p-

C
D
C
L

w
/P
P

D
sh
ar
p

w
/P
P

sh
ar
p-

SA
T

w
/P
P

[1
8]

mix-n-dup 216 16.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 1.3
ten-random 10 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 4.6*
sum-three-32 232 t/o t/o t/o < 0.1 t/o < 0.1 n/a
bin-search-16 216 6.9 9.6 166.6 39.3 12.9 5.7 6.4
bin-search-32 232 t/o t/o t/o 48.2 t/o 9.8 55.5



SAT-Based Analysis and Quantification of Information Flow in Programs 187

1 int atalk_getname(struct socket *sock , struct sockaddr *uaddr ,
2 int *uaddr_len , int peer)
3 {
4 struct sockaddr_at sat;
5 struct sock *sk = sock ->sk;
6 struct atalk_sock *at = at_sk(sk);
7 int err;
8

9 // lock_sock(sk);
10 err = -ENOBUFS ;
11 if (sock_flag(sk, SOCK_ZAPPED)) if (atalk_autobind(sk) < 0) goto out;
12

13 *uaddr_len = sizeof (struct sockaddr_at);
14 // memset(& sat.sat_zero , 0, sizeof(sat.sat_zero)); // leak patch
15

16 if (peer) { err = -ENOTCONN ;
17 if (sk->sk_state != TCP_ESTABLISHED) goto out;
18 sat.sat_addr .s_net = at ->dest_net ;
19 sat.sat_addr .s_node = at ->dest_node;
20 sat.sat_port = at ->dest_port;
21

22 } else { sat.sat_addr .s_net = at ->src_net ;
23 sat.sat_addr .s_node = at ->src_node ;
24 sat.sat_port = at ->src_port ;
25 }
26

27 err = 0;
28 sat.sat_family = AF_APPLETALK;
29 memcpy(uaddr , &sat , sizeof(sat));
30

31 out:
32 // release_sock(sk);
33 unsigned char O; int i;
34 for (i=0; i<sizeof (struct sockaddr_at); i++) O=((char *)uaddr )[i];
35 assert (0);
36 return err;
37 }

Fig. 5. AppleTalk driver function leaking kernel memory (CVE 2009-3002)

consider the sum of three arbitrary 32-bit secret values (variable type int32_t).
Unsurprisingly, iterative enumeration of models is ineffective, while preprocessing
quickly simplifies 〈p〉

∣∣
O
to true, corresponding to 232 outputs.

The binary search benchmark (Figure 4c) is valuable, because it is parametric
and can help assess analysis scalability. The program leaks the most significant N
bit of the secret by repeated dichotomy. We note the improved rates of slowdown
between N = 16 and N = 32 with our tools.

6.2 Linux Kernel

This benchmark has originally appeared in [12], where the authors analyze a
number of vulnerabilities previously found in the Linux kernel. The goal is to
measure the amount of unsanitized kernel memory leaking to applications in the
userland. The value of the benchmark stems less from the operational signifi-
cance of the leak size, but rather from its origin in actual systems software. We
revisit the most complex example presented in the above paper, a leak in the
atalk_getname routine in the AppleTalk driver (Figure 5).



188 V. Klebanov, N. Manthey, and C. Muise

The leak is as follows. The kernel allocates a 16-byte structure sat (the secret
input) and initializes it. Later, the content of the structure is copied to userland.
Due to a programming error, parts of the structure are not initialized properly.
The official patch fixing the bug is shown in line 14.

In order to deal with an output that is a C struct, we introduce an auxiliary
variable O and a loop reading the structure before the return statement (lines 33–
34). The observable output is then the last sizeof(struct sockaddr_at) val-
ues of O. This is possible since CBMC actually encodes the full trace of variable
values rather than merely the initial and the final states.

We have used the code from net/appletalk/ddp.c of the Linux kernel 3.4.28
(minus the bugfix). The only simplification that we performed was to remove
the locking calls in line 9 and 32, caused by technical difficulties with the code
organization of the kernel. It took the analysis in [12] one hour and 39 minutes
to find at least 64 blocks in ≈p of the function—a time explained by an extreme
form of self-composition exploring the function behavior 64 times. With sharp-

CDCL, finding 64 blocks was instantaneous, while finding 65536 blocks (i.e., a
16-bit leak) took 20 seconds resp. 14 seconds with preprocessing. The full size
of the leak is too large to be established precisely.

6.3 Image Anonymization

This benchmark has originally appeared in [17], where the authors assess the
effect of several image anonymization techniques on a 125×125 pixel test image.
While effective leakage bounds could be established for blurring or pixelation,
no useful bounds (in either direction) could be established for image swirling
demonstrated in Figure 1. While, the analysis in [17] sacrifices soundness and
precision for scalability (cf. next section), we test our tools by establishing precise
leakage in a variant of this application.

As in [17], the source code is derived from the SwirlImage() function of the
popular ImageMagick4 image manipulation suite. We deviate from [17] by dis-
counting target image interpolation. This simplification eliminates the influence
of image data, and leaves us with a function that merely transforms a pair of
integer coordinates into another pair (Figure 6). The coordinates that are not
reachable by the swirling transformation appear as black pixels in the illustration
in Figure 1b.

Two things should be noted about analyzing code with non-integral data
types. First, CBMC approximates data types such as double with a 16+16
bit fixed-point representation. We think, it is reasonable to assume that this
precision is sufficient in this example. Second, modern general-purpose processors
typically implement mathematical functions such as sine, cosine, and square
root in hardware. For the analysis, we have used their software counterparts
from the popular Freely Distributable C Math Library FDLIBM5. Thus, the
main function shown in Figure 6 accounts for only 23 out of 379 total lines of

4 http://imagemagick.org/. The SwirlImage() function is in fx.c.
5 http://www.netlib.org/fdlibm/

http://imagemagick.org/
http://www.netlib.org/fdlibm/


SAT-Based Analysis and Quantification of Information Flow in Programs 189

1 int main(int argc , char **argv) {
2

3 unsigned char x,y; // secret inputs
4 __CPROVER_assume(x>=0 && x<125); // range limit
5 __CPROVER_assume(y>=0 && y<125);
6 unsigned char newx , newy; // observable outputs
7

8 double center = (double) 125/2.0;
9 double radius = center;

10 double degrees = (double) (3.141593*720.0/180.0);
11 double deltay = (double) (y-center );
12 double deltax = (double) (x-center );
13 double distance = deltax*deltax + deltay*deltay;
14

15 if (distance < radius*radius) {
16 double factor =1.0- sqrt((double) distance )/radius;
17 double d = (double) (degrees *factor *factor );
18 double sine=sin(d);
19 double cosine=cos(d);
20

21 newx = ((cosine *deltax -sine*deltay )+center );
22 newy = ((sine*deltax+cosine*deltay )+center );
23 } else { newx = x; newy = y; }
24 assert (0);
25 return 0;
26 }

Fig. 6. Image anonymization main function

analyzed code (about 6%). The code contains four loops (maximal unwinding
depth 32). A total of 2079 bitvector equations encode the transition relation 〈p〉.

It took sharpCDCL 4h58m to find all 12228 blocks in ≈p, which corresponds
to a leak of 13.58 out of 13.93 bit, if one measures min-entropy. In other words,
swirling is not a good anonymization technique. The deanonymization in Fig-
ure 1c actually underestimates the leakage, as the unswirling transformation
used is also lossy.

Measuring the residual Shannon entropy of the secret was quite more costly.
It took sharpCDCL 5h23m to find all six inputs in the preimage of a single
output (newx=87,newy=62), and this was only possible as we used—in this case
only—Minisat’s randomized variable selection heuristic, which can sometimes
produce much faster SAT solver runs at the price of generally unpredictable
performance.

Altogether, while we do obtain proof of the secret leaking almost completely,
we clearly cannot claim a practical benefit of our analysis in this case. The
reasons for this are twofold. First, the analyzed code is too large, and we see
this benchmark as marking the frontier of what is barely possible with current
technology. Second, the size of the secret is too small, making simple exhaustive
simulation an attractive alternative

A new perspective opens if our toolchain were used as part of probabilistic
QIF for large secrets (and on programs of more appropriate size). Köpf and

Rybalchenko show in [14] that it is sufficient to randomly choose (log2|SI |)2
(1−P )δ2 in-

put samples and measure the respective size of the enclosing block in ≈p, in
order to probabilistically estimate the residual Shannon entropy to a degree of



190 V. Klebanov, N. Manthey, and C. Muise

precision δ and a confidence level P ∈ [0, 1). As the size of the secret increases,
the polylogarithmic probabilistic approach remains feasible in contrast to ex-
haustive simulation.

7 Related Work

We survey most recent and relevant works in the field; a further survey of QIF
models and techniques is available in [19].

Backes et al. [2] describe a precise QIF analysis for programs with affine in-
distinguishability relations based on self-composition and Barvinok’s counting
algorithm. This was later extended in [14] to improve scalability. In order to
maintain automation, the latter approach gives up precise computation of the
leak and opts for an approximative characterization, deriving lower and up-
per bounds on residual min-entropy, as well as probabilistic bounds on residual
Shannon entropy. A different extension based on symbolic Barvinok counting
was proposed by Klebanov in [13].

Heusser and Malacaria have developed two relevant QIF approaches: [12]
and [11]. The former encodes detection of (small) leaks as a pure model checking
problem via self-composition in CBMC. The latter one and our SAT-based anal-
ysis are quite similar in spirit, though [11] builds on expensive self-composition,
supplementing it with a model enumerator and a #SAT solver.

The following three approaches compute leakage bounds by approximating
the projection 〈p〉

∣∣
〈O〉 with a series of entailment queries on 〈p〉, followed by

precise or approximative model counting.
Newsome et al. [21] use a series of SMT entailment queries to identify and

narrow down in-/feasible output ranges. Such approximations of 〈p〉
∣∣
〈O〉 are

amenable to simple model counting. The approach is complemented by sam-
pling and probabilistic counting. Models generated by the SMT solver are used
to identify the presence of a feasible output within a range, but this procedure
is not leveraged fully as an output-finding technique.

Phan et al. [22] encode a full binary search for feasible outputs (models
of 〈p〉

∣∣
〈O〉) in a bounded model checker. This approach is precise, but requires

in practice more than one call to the underlying solver to find a single feasi-
ble output. It is useful when the program verification system does not expose
the underlying logical representation or when the used solver cannot generate
models.

Meng and Smith [18] use “two-bit-pattern” SMT entailment queries to calcu-
late a propositional overapproximation (w.r.t. the number of models) of 〈p〉

∣∣
〈O〉

and count its instances with a #SAT solver of the computer algebra system
Mathematica.

McCamant and Ernst combine in [17] a dynamic bitwise taint analysis with
static analysis to derive bounds on information leakage in C programs. The
technique has been applied to large programs used in practice. On the other
hand, it only measures leakage along one or a few selected program paths, leaving
it to the user to supply “representative” inputs.



SAT-Based Analysis and Quantification of Information Flow in Programs 191

Another tool for dynamic analysis is reported by Chatzikokolakis in [5]. The
tool automatically derives bounds of information leakage in terms of mutual
information and capacity from trial runs of the system, which is treated as a
black box.

The theoretical hardness of QIF has been shown by Terauchi et al. in [27,24].
As with other hard problems (e.g., SAT), these results do not preclude the exis-
tence of efficient analyses for individual instances or subclasses of the problem.

8 Conclusion

We presented a unifying abstract formulation of a class of QIF analyses for im-
perative programs and an instance of this class outperforming previous compa-
rable approaches. We demonstrated that logical projection is a useful framework
for understanding and implementing QIF. In the future, we are interested in
exploring more advanced projection computation techniques [3,4,26].

Though our implementation is not a single tool, all its components are avail-
able publicly. A part of the performance improvement is due to advances in the
underlying reasoning technology, which have been fueled by regular SAT compe-
titions and associated benchmark collections. Maintaining and extending a set
of canonical benchmarks would benefit the QIF field as well.

Acknowledgments. This work was in part supported by the German National
Science Foundation (DFG) under the priority programme 1496 “Reliably Secure
Software Systems – RS3.” The authors would like to thank Christoph Wernhard
for his comments on projection computation.

References

1. Backes, M., Berg, M., Köpf, B.: Non-uniform distributions in quantitative
information-flow. In: ASIACCS 2011, pp. 367–375. ACM (2011)

2. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: S&P 2009, pp. 141–153. IEEE Computer Society (2009)

3. Brauer, J., King, A.: Approximate quantifier elimination for propositional boolean
formulae. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM
2011. LNCS, vol. 6617, pp. 73–88. Springer, Heidelberg (2011)

4. Brauer, J., King, A., Kriener, J.: Existential quantification as incremental SAT. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 191–207.
Springer, Heidelberg (2011)

5. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of informa-
tion leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 390–404. Springer, Heidelberg (2010)

6. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

7. Darwiche, A.: Decomposable negation normal form. J. ACM 48(4), 608–647 (2001)
8. Dennis, G., Chang, F.S.-H., Jackson, D.: Modular verification of code with SAT.
In: ISSTA 2006, pp. 109–120. ACM (2006)



192 V. Klebanov, N. Manthey, and C. Muise

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

10. Guo, Q., Sang, J., He, Y.-M.: Effective preprocessing in #SAT. In: ICMV 2011.
SPIE (2011)

11. Heusser, J., Malacaria, P.: Applied quantitative information flow and statistical
databases. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983,
pp. 96–110. Springer, Heidelberg (2010)

12. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: ACSAC
2010, pp. 261–269. ACM (2010)

13. Klebanov, V.: Precise quantitative information flow analysis using symbolic model
counting. In: Martinelli, F., Nielson, F. (eds.) Proceedings of the International
Workshop on Quantitative Aspects in Security Assurance, QASA (2012)

14. Köpf, B., Rybalchenko, A.: Approximation and randomization for quantitative
information-flow analysis. In: CSF 2010, pp. 3–14. IEEE Computer Society, Wash-
ington, DC (2010)

15. Manthey, N.: Coprocessor 2.0 – A flexible CNF simplifier. In: Cimatti, A., Se-
bastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer, Heidelberg
(2012)

16. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas.
In: Proceedings of Haifa Verification Conference 2012 (2012)

17. McCamant, S., Ernst, M.D.: Quantitative information flow as network flow capac-
ity. In: PLDI 2008, pp. 193–205. ACM (2008)

18. Meng, Z., Smith, G.: Calculating bounds on information leakage using two-bit
patterns. In: PLAS 2011, pp. 1–12. ACM (2011)

19. Mu, C.: Quantitative information flow for security: a survey. Technical Report TR-
08-06, Department of Computer Science, King’s College London (2008),
http://www.dcs.kcl.ac.uk/technical-reports/papers/TR-08-06.pdf

(updated 2010)
20. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.I.: Dsharp: Fast d-DNNF compila-

tion with sharpSAT. In: Kosseim, L., Inkpen, D. (eds.) Canadian AI 2012. LNCS,
vol. 7310, pp. 356–361. Springer, Heidelberg (2012)

21. Newsome, J., McCamant, S., Song, D.: Measuring channel capacity to distinguish
undue influence. In: PLAS 2009, pp. 73–85. ACM, New York (2009)

22. Phan, Q.-S., Malacaria, P., Tkachuk, O., Păsăreanu, C.S.: Symbolic quantitative
information flow. In: Mehlitz, P., Rungta, N., Visser, W. (eds.) Proceedings, Java
Pathfinder Workshop, pp. 1–5 (2012)

23. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

24. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005)

25. Thurley, M.: sharpSAT – counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 424–429. Springer, Heidelberg (2006)

26. Wernhard, C.: Tableaux for projection computation and knowledge compilation.
In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607,
pp. 325–340. Springer, Heidelberg (2009)

27. Yasuoka, H., Terauchi, T.: Quantitative information flow – verification hardness
and possibilities. In: CSF 2010, pp. 15–27. IEEE Computer Society (2010)

http://www.dcs.kcl.ac.uk/technical-reports/papers/TR-08-06.pdf


Prinsys—On a Quest for Probabilistic Loop

Invariants�

Friedrich Gretz1,2, Joost-Pieter Katoen1, and Annabelle McIver2

1 RWTH Aachen University, Germany
lastname@cs.rwth-aachen.de

2 Macquarie University, Australia
firstname.lastname@mq.edu.au

Abstract. Prinsys (pronounced “princess”) is a new software-tool for
probabilistic invariant synthesis. In this paper we discuss its implemen-
tation and improvements of the methodology which was set out in previ-
ous work. In particular we have substantially simplified the method and
generalised it to non-linear programs and invariants. Prinsys follows
a constraint-based approach. A given parameterised loop annotation is
speculatively placed in the program. The tool returns a formula that
captures precisely the invariant instances of the given candidate. Our
approach is sound and complete. Prinsys’s applicability is evaluated on
several examples. We believe the tool contributes to the successful ana-
lysis of sequential probabilistic programs with infinite-domain variables
and parameters.

Keywords: invariant generation, probabilistic programs, non-linear
constraint solving.

1 Introduction

Motivation. Probabilistic programs are pivotal in different application fields like
security, privacy [2]—several probabilistic protocols (e.g. onion-routing) aim to
ensure privacy, and there is an increasing interest in the topic, partly driven by
the social-media world—and cryptography [1] as well as quantum computing [13].
Such programs are single threaded and typically consist of a small number of
code lines, but are hard to understand and analyse. The two major reasons
for their complexity are the occurrence of program variables with unbounded
domains, and parameters. Such parameters can be either loop bounds, number
of participants (in a protocol), or probabilistic choices where the parameters
range over concrete probabilities. For example, the following simple program
generates a sample x according to a geometric distribution with parameter p.
In every loop iteration, the variable x is increased by one with probability 1−p
and flip is set to one with probability p, where p is an unknown real value from

� This work is partially funded by the DFG Research Training Group Algosyn, the
EU FP7 Project CARP (Correct and Efficient Accelerator Programming), and the
EU MEALS exchange project with Latin America.

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 193–208, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



194 F. Gretz, J.-P. Katoen, and A. McIver

Listing 1. x ∼ geom(p)

x := 0 ;
f l i p := 0 ;
while ( f l i p = 0) {

( f l i p := 1 [ p ] x := x+1 ) ;
}

the range (0, 1). The occurrence of unbounded variables and parameters comes
at a price, namely that probabilistic programs in general cannot be analysed
automatically by model-checking tools such as Prism [10], Param [6], Pass [5]
or Apex [9].

Approach. Instead we resort to deductive techniques. Recall that one of the
main approaches to the verification of sequential programs rests on the pioneer-
ing work of Floyd, Hoare, and Dijkstra in which annotations are associated with
control points in the program. Whereas the annotations for sequential programs
are qualitative and can be expressed in predicate logic, quantitative annotations
are needed to reason about probabilistic program correctness. McIver and Mor-
gan [11] have extended the method of Floyd, Hoare, and Dijkstra to probabilistic
programs by making the annotations real- rather than Boolean-valued expres-
sions in the program variables. Using these methods we can prove that in the
above program the average value of x is 1−p

p . Annotating a probabilistic pro-
gram with such expressions is non-trivial and undecidable in general. The main
reason is the occurrence of loops. This all boils down to the question on how to
establish a loop invariant. It is known that this is a notorious hard problem for
traditional programs. For probabilistic programs it is even more difficult as loop
invariants are quantitative—so-called probabilistic loop invariants. Variables do
no longer have a value, but have a certain value with a given likelihood. Finding
an invariant is hard and requires both ingenuity as well as involved computations
to check that a given expression is indeed invariant. Recently, Katoen et al. [7]
have proposed a technique for finding linear invariants for linear probabilistic
programs. Linearity refers to the fact that right-hand sides of assignments and
guards are linear expressions in the program variables (and parameters). This
technique is based on speculatively annotating a loop with a template (in fact a
linear inequality) and using constraint solving techniques to distill all parameters
for which the template is indeed a loop invariant.

Contributions of this paper. The contributions of this paper are manifold. First
and foremost, this paper presents Prinsys (pronounce “princess”), a novel
tool for supporting the semi-automated generation of probabilistic invariants of
pGCL1 programs. This publicly available tool implements the technique

1 pGCL extends Dijkstra’s guarded command language with a probabilistic choice
operator.



Prinsys—On a Quest for Probabilistic Loop Invariants 195

advocated in [7], i.e., automatically computes the constraints under which a
user-provided template is invariant, saving the user from tedious and error prone
calculations. To the best of our knowledge, it is the first tool for synthesizing
probabilistic invariants. Secondly, we show that the theory in [7] can be con-
siderably simplified. In particular, we show that the usage of Motzkin’s trans-
position theorem (a generalisation of Farkas’ lemma) to turn an existentially
quantified formula into a universally quantified one, is not needed. As a result,
Prinsys allows arbitrary formulas in templates and program guards. This al-
lows for polynomial invariant templates and non-linear program expressions. So,
an immediate consequence of this simplification is that the restriction to linear
programs and linear invariants can be dropped. This is more of theoretical in-
terest than of practical interest, as polynomial invariants—as for the traditional,
non-probabilistic setting—are hard to synthesize in practice. Finally, we present
some applications of the tool such as proving the equivalence of two programs
computing a sample from X−Y where X and Y are both geometrically dis-
tributed, and the generation of a fair coin from a biased one. We evaluate the
experiments and give directions for future research.

Organization of the paper. Section 2 provides the preliminaries such as pGCL,
probabilistic invariants, and expectations. Section 3 presents the steps of our
approach and the simplification of [7]. Section 4 provides three examples to
give insight about what Prinsys can establish. Section 5 evaluates the tool and
approach, whereas Sect. 6 concludes the paper and provides pointers to future
work.

2 Background

When probabilistic programs are executed they determine a probability distri-
bution over final values of program variables. For instance, on termination of

(x := 1 [0.75] x := 2);

the final value of x is 1 with probability 3
4 or 2 with probability 1 − 3

4 = 1
4 .

An alternative way to characterise that probabilistic behaviour is to consider
the expected values over random variables with respect to that distribution.
For example, to determine the probability that x is set to 1, we can compute
the expected value of the random variable “x is 1” which is 3

4 · 1 + 1
4 · 0 = 3

4 .
Similarly, to determine the average value of x, we compute the expected value
of the random variable “x” which is 3

4 · 1 + 1
4 · 2 = 5

4 . More generally, rather
than a distribution-centred approach, we take an “expectation transformer” [11]
approach. We annotate probabilistic programs with expectations.

Expectations. Expectations map program states to non-negative real values.
They generalise Hoare’s predicates for non-probabilistic programs towards real-
valued functions. Intuitively, implication between predicates is generalised to



196 F. Gretz, J.-P. Katoen, and A. McIver

pointwise inequality between expectations. For convenience we use square brack-
ets to link Boolean truth values to numbers and by convention [true] = 1 and
[false] = 0. In the example above, we call “x” the post-expectation and 5

4 its
pre-expectation. Thus the annotated program is 〈54 〉 (x := 1 [0.75] x := 2); 〈x〉.

The formal mechanism for computing pre-expectations for a given
program and post-expectation is the expectation transformer semantics [11].
Expectation transformers are the quantitative pendant to Dijkstra’s predicate
transformers. McIver and Morgan extend Dijkstra’s concept and introduce a
function wp(prog,post) which based on the program prog determines the great-
est pre-expectation for any given post-expectation post. A summary of pGCL’s
expectation transformer semantics is given in Table 1 where f is a given post-
expectation. From an operational perspective, pGCL programs can be viewed
as (infinite state) MDPs with a reward structure induced by the given post-
expectation f . Then the greatest pre-expectation can be computed as the ex-
pected cummulative reward on that model [4].

Table 1. Syntax and expectation transformer semantics of pGCL

syntax prog semantics wp(prog,f)

skip f

abort 0

x := E f [x/E]

P ; Q wp(P,wp(Q, f))

if (G) { P } else { Q } [G] · wp(P, f) + [¬G] · wp(Q,f)

P [] Q min{wp(P, f),wp(Q,f)}

P [p] Q p · wp(P, f) + (1− p) · wp(Q, f)

while (G) { P } μX.([G] · wp(P,X) + [¬G] · f)

For loop-free programs, the pre-expectation is simply given by syntactic rules.
However, loops pose a problem because their expectation over final values is given
in terms of a least fixed point (over the domain of expectations with the ordering
≤, a pointwise ordering on expectations).

Invariants. Using special expectations which we call invariants we can avoid
the calculation of a loop’s fixed point. Assume we are given two expectations pre
and post and we want to show that pre is a lower bound on the loop’s actual
pre-expectation, i.e.

pre ≤ wp(while(G){body}, post) .

Instead of computing the greatest pre-expectation wp(while(G){body}, post) di-
rectly, it is more practical to divide this problem into simpler subtasks:



Prinsys—On a Quest for Probabilistic Loop Invariants 197

1. find an expectation I such that

pre ≤ I and I · [¬G] ≤ post ,

2. show I is invariant2, that is I · [G] ≤ wlp(body, I)
3. show I is sound, that is I ≤ wp(while(G){body}, I · [¬G])

Points 2. and 3. may seem odd as they resemble the original problem of proving
an inequality between an expectation and the greatest pre-expectation of a loop.
However they are easier than the original problem, because in 2. the greatest pre-
expectation can be explicitly computed because body is a loop-free program. In
order to guarantee soundness (point 3.) the loop must terminate with probability
one and the invariant I has to additionally meet one of the following sufficient
conditions [11]:

– from every initial state of the loop only a finite state space is reachable
– or I is bounded above by some fixed constant
– or wp(body, I · [G]) tends to zero as the number of iterations tends to infinity.

Remark 1. It is an open problem to give the necessary and sufficient conditions
for soundness.

Put all together this proves the inequality above as

pre ≤ I ≤ wp(while(G){body}, I · [¬G]) ≤3 wp(while(G){body}, post) .

Example 1 (Application of invariants.). Consider the program prog in Lst. 2.
On each iteration of the loop it sets x to −1 with probability 0.15, to 0 with
probability 0.5 and to 1 with probability 0.35. We would like to prove that the
probability to terminate in a state where x = 1 is 0.7 or equivalently

wp(prog, [x = 1]) = 0.7 .

Instead of computing the least fixed point of the loop wrt. post-expectation
[x = 1], we can show that I = [x = 0] · 0.7 + [x = 1] is invariant. If the loop
terminates, we can establish:

[¬G] · I = [x = 0] · [x = 0] · 0.7 + [x = 1]

= [x = 1] .

At the beginning of the program the initialisation of x transforms the invariant
to:

wp(x := 0, I) = [0 = 0] · 0.7 + [0 = 1]

= 0.7 .

2 wlp is the “liberal” version of wp. Both expectation transformers coincide for almost
surely terminating programs. Since in this paper we do not consider nested loops,
i.e. body is loop-free (and hence surely terminates), we do not discuss the theoretical
differences between wp and wlp here.

3 wp is monotonic in its second argument [11].



198 F. Gretz, J.-P. Katoen, and A. McIver

Listing 2. A simple loop

x := 0 ;
while ( x=0) {

(x := 0 ; ) [ 0 . 5 ] { ( x := −1 [ 0 . 3 ] x := 1 ) ; }
}

In this way we obtain the annotation

〈0.7〉 x := 0; 〈I〉 while(x = 0){. . .} 〈[x = 0] · [I] = [x = 1]〉

as desired. It is sound because the program obviously terminates with probability
one and I is bounded.

The crucial point in determining a pre-expectation of a program is to discover
the necessary loop invariants for each loop. Checking soundness and carrying out
subsequent calculations for the other program constructs turns out be easy in
practice. In the following section we explain our approach to finding invariants
step by step.

3 Our Approach

To explain the steps carried out by Prinsys we revisit the geometric distribution
program from Lst. 1. In the next section, we will view it in a broader context.

Template. Consider the loop:

while (flip = 0){ ( flip := 1 [p] x := x+1); }

and an expectation

Tα = [x ≥ 0] · x+ [x ≥ 0 ∧ flip = 0] · α

where α is an unknown (real) parameter. We call Tα a template. Replacing α by
a real value yields an instance of the template. Depending on this value, some
instances may satisfy the invariance condition Tα · [G] ≤ wlp(body, Tα).

Goal. Prinsys gives a characterisation of all invariant instances of a given
template. This characterisation is a formula which is true for all admissible values
of the template parameters, α in our example. It is important to stress that this
method is complete in the sense that for any given template the resulting formula
captures precisely the invariant instances.



Prinsys—On a Quest for Probabilistic Loop Invariants 199

Workflow. Stage 1: After parsing the program text and template, Prinsys
traverses the generated control flow graph of the program and computes:

wp(flip := 1 [p] x := x+1, Tα)
= [x ≥ 0] · px+ (1 − p) · ([x+ 1 ≥ 0] · (x+ 1) + [x+ 1 ≥ 0 ∧ flip = 0] · α) .

For details, cf. Table 1. After expanding this expression, the invariance condition
amounts to:

Tα·[G]︷ ︸︸ ︷
[x ≥ 0 ∧ flip = 0] · (x+ α) ≤ [x ≥ 0] · px

+ [x+ 1 ≥ 0] · ((1 − p)x− p+ 1)

+[x+ 1 ≥ 0 ∧ flip = 0] · (1− p)α︸ ︷︷ ︸
wlp(body,Tα)

.

Our goal is to find all α such that the point-wise inequality is satisfied, i.e. it
holds for every x and every flip. This can be done by pairwise comparison of the
summands on the left-hand side and the right-hand side. But summands may
overlap. This makes it necessary to rewrite the expectations in disjoint normal
form (DNF).

Theorem 1 (Transformation to DNF [7]). Given an expectation of the form

f = [P1] · w1 + . . .+ [Pn] · wn.

Then an equivalent expectation in DNF can be written as:

∑
I∈P(n)\∅

⎛⎝⎡⎣∧
i∈I

Pi ∧ ¬

⎛⎝ ∧
j∈P(n)\I

Pj

⎞⎠⎤⎦ ·(∑
i∈I

wi

)⎞⎠
where n is the index set {1, . . . , n} and P(·) denotes the power set.

The left-hand side of the inequality for the example program above is already in
DNF as there is only one summand. We apply the transformation to the right-
hand side expression. The result is an expectation with 15 summands. For better
readability we only show the summands that are not trivially zero:

[x+ 1 ≥ 0 ∧ x < 0 ∧ flip = 0)] · ((1 − p)x+ (1− p)α− p+ 1)

+[x ≥ 0 ∧ flip = 0)] · (x + (1− p)α− p+ 1)

+[x+ 1 ≥ 0 ∧ x < 0 ∧ flip = 0] · ((1− p)x− p+ 1)

+[x ≥ 0 ∧ flip = 0] · (x− p+ 1) .

The following theorem provides a straightforward encoding of the inequality as
a first-order formula.



200 F. Gretz, J.-P. Katoen, and A. McIver

Theorem 2. Given two expectations over variables x1, . . . , xn in disjoint-
normal form

f = [P1] · u1 + . . .+ [PM ] · uM , g = [Q1] · w1 + . . .+ [QK ] · wK .

The inequality f ≤ g holds if and only if

∀x1, . . . , xn ∈ R :
∧

m∈M

∧
k∈K

(Pm ∧Qk ⇒ (um − wk ≤ 0))

∧
∧

m∈M

⎛⎝Pm ∧
⎛⎝ ∧

k∈K

¬Qk

⎞⎠⇒ um ≤ 0

⎞⎠
∧

∧
k∈K

⎛⎝Qk ∧

⎛⎝ ∧
m∈M

¬Pm

⎞⎠⇒ 0 ≤ wk

⎞⎠
holds, where X is the set of indices {1, 2, . . . , X}.

The idea is that we consider individual summands on the left-hand and right-
hand side of the inequality and compare their values. It may also be the case that
for some evaluations, all predicates on the right-hand side are false and hence
the expectation is zero (i.e., the zero function). Then it must be ensured that no
summand is greater than zero on the left-hand side. Conversely, if none of the
predicates on the left-hand side are satisfied, the summands on the right-hand
side may be no less than zero.

Theorem 2 originally appears in [7] where the last case is omitted because
expectations are assumed to be non-negative by definition. However it is crucial
to encode such informal assumptions in the formula as the tools are not aware of
such expectation properties and instead treat them as usual functions over real
values. This issue remained undiscovered until its implementation in Prinsys

caused incorrect results. The lesson learned is that bridging the gap between an
idea and a working implementation requires more than “just” coding.

Continuing our example, the (simplified) first-order formula obtained is:

∀x,flip :(αp+ p− 1 ≤ 0 ∨ flip = 0 ∨ x < 0)

∧ (αp− α+ px+ p− x− 1 ≤ 0 ∨ flip = 0 ∨ x+ 1 < 0 ∨ x ≥ 0)

∧ (flip = 0 ∨ px+ p− x− 1 ≤ 0 ∨ x+ 1 < 0 ∨ x ≥ 0)

∧ (flip = 0 ∨ p− x− 1 ≤ 0 ∨ x < 0) .

The calculation of this formula by Prinsys concludes the first stage.
Stage 2: The formula is passed to Redlog which simplifies the formula by

quantifier elimination. Sometimes the result returned by Redlog still contains
redundant information and can be further reduced by its built-in simplifiers or
by the Slfq tool. In the end the user is presented a formula that characterises
all αs that make Tα invariant:

αp+ p− 1 ≥ 0 .



Prinsys—On a Quest for Probabilistic Loop Invariants 201

Listing 3. Annotated program from Lst. 1

〈 1−p
p

〉
x := 0 ;
f l i p := 0 ;

〈[x ≥ 0] · x+ [x ≥ 0 ∧ flip = 0] · 1−p
p

〉
while ( f l i p = 0) {

( f l i p := 1 [ p ] x := x+1 ) ;
}
〈x〉

We pick the greatest admissible α and obtain an invariant:

T 1−p
p

= [x ≥ 0] · x+ [x ≥ 0 ∧ flip = 0] · 1− p

p
.

This can be used to prove that the program in Lst. 1 has an average outcome of
1−p
p which indeed is the mean of a geometric distribution with parameter p. The

annotated program now looks as follows: The soundness of our invariant is given
because there is always a non-zero probability to exit the loop, cf. definition of
invariants above.

Figure 1 pictures the described workflow of Prinsys.

Parsing
Numerical
constraints
generation

Transformation
to disjoint
normal form

Translation to
FO-formulae

Quantifier
elimination

Redlog

Simplification

Slfq, Redlog

template

program

invariant

Stage 1

Stage 2

Fig. 1. Tool chain workflow

New Insights. There are major differences with the approach sketched in [7].
In Prinsys we skip the additional step of translating the universally quantified
formula into an existential one using the Motzkin’s transposition theorem. This
step turns out to be not necessary. In fact it complicates matters as the exis-
tential formula will have more quantified variables which is bad for quantifier



202 F. Gretz, J.-P. Katoen, and A. McIver

Listing 4.

c := IC ; // c a p i t a l c ( i s s e t to some I n i t i a l C a p i t a l )
b := 1 ; // i n i t i a l l y b e t one un i t
rounds := 0 ; //number o f rounds p l ayed ( su r v i v ed )
while (b > 0){

{// win wi th p r o b a b i l i t y p
c := c+b ;
b := 0 ;}
[ p ]
{// l o s e wi th p r o b a b i l i t y 1−p
c := c−b ;
b := 2∗b ;}
rounds := rounds+1;

}

elimination. Furthermore, Motzkin’s transposition theorem requires the univer-
sally quantified formula to be in a particular shape. Our implementation however
does not have these restrictions and allows arbitrary predicates in the program’s
guards and in templates. Also the template and program do not have to be linear
(theoretically at least) because Redlog and Slfq can work with polynomials.
Moreover the invariant generation method remains complete in this case. This
is because starting with the invariance condition all subsequent steps to obtain
the simplified first-order formula are equivalence transformations.

This section has not only illustrated how the tool-chain works but also clearly
shows the great amount of calculations that are done automatically for the user.
Within seconds the user may try out different templates and play with the
parameters until an invariant is found. The Prinsys tool saves the user a lot
of tedious, error-prone work and pushes forward the automation of probabilistic
program analysis.

4 Applications

This section presents three examples, for simplicity all based on our running
example of the geometric distribution, that illustrate the possibilities of the
Prinsys approach. Let us start with a relatively simple example.

Martingale Betting Strategy. Another variant of the geometric distribution
appears in the following program, which models a gambler with infinite resources
who is playing according to the martingale strategy. Note that this program has
two unbounded variables. Using the same template as before, we discover that 1

p



Prinsys—On a Quest for Probabilistic Loop Invariants 203

Listing 5. Listing 6.

x := 0 ;
f l i p := 0 ;
while ( f l i p = 0) {

( x := x+1 [ p ] f l i p := 1 ) ;
}
f l i p := 0 ;
while ( f l i p = 0) {

( x := x−1 [ q ] f l i p := 1 ) ;
}

x := 0 ;
( f l i p := 0 [ 0 . 5 ] f l i p := 1 ) ;
i f ( f l i p = 0) {

while ( f l i p = 0) {
( x := x+1 [ p ] f l i p := 1 ) ;

}
} else {

f l i p := 0 ;
while ( f l i p = 0) {
x := x−1;
( skip [ q ] f l i p := 1 ) ;

}
}

is the expected number of rounds played before the gambler stops. The expecta-
tion differs from what we have computed for the program in Lst. 1 because here
the counter is increased also on the last iteration before the loop terminates.

Geometric Distribution. This example is taken from [8] where amongst oth-
ers it has been shown that the two programs in Lst. 5 and Lst. 6 are equivalent
for p = 1

2 and q = 2
3 . The proof in [8] relies on language equivalence check-

ing of probabilistic automata. Here, we show how the techniques supported by
Prinsys can be used to show that both programs are equivalent for any p and
q satisfying q = 1

2−p . Let us explain the example in more detail. The aim is to
generate a sample x according to the distributionX−Y whereX is geometrically
distributed with parameter 1−p and Y is geometrically distributed with 1−q.

0

1

1p

q

Fig. 2. Pairs (p, q) for which the programs
in List. 5 and List. 6 produce the same x
on average.

Although it is not common to say that
a distribution has a parameter 1−p, it
is natural in the context of these pro-
grams where x is manipulated with
probability p and the loop is termi-
nated with the remaining probability.
The difference between the programs
in Lst. 5 and Lst. 6 is that the first
uses two loops in sequence whereas
the latter needs only one out of two
loops. Our goal is to determine when
the two programs are equivalent, in
the sense that they compute the same
value for x on average.



204 F. Gretz, J.-P. Katoen, and A. McIver

Listing 7. x is set to zero or one, each with probability 0.5

x := 0 ; // s t o r e s outcome o f f i r s t b i a sed coin f l i p
y := 0 ; // s t o r e s outcome o f second b i ased coin f l i p

while (x−y = 0) {
(x := 0 [ p ] x := 1 ) ;
(y := 0 [ p ] y := 1 ) ;

}

The Prinsys tool generates invariants for single loops, so we consider each
loop separately. Using the template Tα = [x ≥ 0] · x+ [x ≥ 0 ∧ flip = 0] · α from
our running example, Prinsys yields the following invariants:

– I11 = x+ [flip = 0] · p
1−p ,

– I12 = x+ [flip = 0] ·
(
− q

1−q

)
,

– I21 = I11 and

– I22 = x+ [flip = 0] ·
(
− 1

1−q

)
,

where Iij is the invariant of the j-th loop in program i, i, j ∈ {1, 2}. With
these invariants we can easily derive the expected value of x, which is p

1−p −
q

1−q

and p
2(1−p) −

1
2(1−q) for the program in List. 5 and List. 6, respectively. The two

programs thus are equivalent whenever these two expectations coincide; e. g. this
is the case for p = 1

2 and q = 2
3 as discussed in [8]. Figure 2 visualises our result:

for every point (p, q) on the graph the two programs are equivalent. This result
cannot be obtained using the techniques in [8]; to the best of our knowledge
there are no other automated techniques that can establish this.

Generating a Fair Coin from a Biased Coin. In [7], Hurd’s algorithm
to generate a sample according to a biased coin flip using only fair coin flips
has been analysed. Using Prinsys the calculations can be automated. This was
elaborated in [3]. Here we consider an algorithm for the opposite problem. Using
a coin with some arbitrary bias 0 < p < 1, the algorithm in Lst. 7 generates a
sample according to a fair coin flip. The loop terminates when the biased coin was
flipped twice and showed different outcomes. Obviously the program terminates
with probability one as on each iteration of the loop there is a constant positive
chance to terminate. The value of x is taken as the outcome. The two possible
outcomes are characterised by x = 0∧y = 1 and x = 1∧y = 0. We encode these
two possibilities in the template:

[x = 0 ∧ y − 1 = 0] · (α) + [x− 1 = 0 ∧ y = 0] · (β)

Prinsys returns one constraint:

αp2 − αp+ βp2 − βp ≤ 0



Prinsys—On a Quest for Probabilistic Loop Invariants 205

As before we look for the maximum value, hence we consider equality with zero.
The equation simplifies to α = −β because we know that 0 < p < 1. Hence
[x = 0∧y− 1 = 0]− [x− 1 = 0∧y = 0] is invariant4 which, together with almost
sure termination, gives us

wp(prog, [x = 0 ∧ y − 1 = 0]− [x− 1 = 0 ∧ y = 0])

= wp(prog, [x = 0 ∧ y − 1 = 0])− wp(prog, [x− 1 = 0 ∧ y = 0])

= 0 . (1)

where prog is the entire program from Lst 7. The previous argument about
almost sure termination and possible outcomes shows that

wp(prog, [x = 0 ∧ y − 1 = 0] + [x− 1 = 0 ∧ y = 0])

= wp(prog, [x = 0 ∧ y − 1 = 0]) + wp(prog, [x− 1 = 0 ∧ y = 0])

= 1 . (2)

The unique solution to (1) and (2) is

wp(prog, [x = 0 ∧ y − 1 = 0])

= wp(prog, [x− 1 = 0 ∧ y = 0])

= 0.5 .

This concludes the proof that x is distributed evenly for any p satisfying
0 < p < 1.

5 Evaluation

We have seen three pGCL programs that were variants of the geometric distri-
bution. Our approach allows us to exploit their common structure and enables
us to calculate the expectation of these programs using the same template al-
though they compute different (mean) values. Since our method does not rely
on numerical calculation we are able to parameterise the programs and provide
very general results. In particular we could decide when two programs have the
same expectation depending on their parametric distributions. Another handy
feature of reasoning with expectation-transformer wp is that we can exploit its
properties as well. For example, the reasoning is modular with respect to sequen-
tial composition. That means we can compute the pre-expectation for individual
loops and then add the results when we put the loops in sequence. The last ex-
ample demonstrates yet another use of invariants. Instead of deriving a bound
on the pre-expectation we have shown how an invariant may give constraints on
the pre-expectation. Together with termination these constraints produced the
sought pre-expectation. This exemplifies that invariants are not just a particular

4 We pick α = 1 and β = −1 but in fact any non-zero pair of values α = −β would
result in the same argument.



206 F. Gretz, J.-P. Katoen, and A. McIver

way to compute an expectation but rather they describe the behaviour of the
program and can be used in different ways.

Together with the three (other) examples discussed in [4,7] we have a set of
interesting programs which we can analyse with the help of Prinsys. Note, that
our examples do not make use of the non-deterministic choice statement. This
is because the algorithms we focused on do not need it, however Prinsys also
supports non-deterministic pGCL programs. There is no commonly accepted
benchmark suite that we can compare against as this area of research has not
spawned many tools yet. We refrain from giving a table that shows for each
program the state space size, the number of discovered invariants or running
times. This is because the beauty of this approach is exactly that the number
of states does not matter. In fact all programs that generate (a variant) of the
geometric distribution have an infinite set of reachable states! The number of
discovered invariants cannot be really be given as, first of all the result depends
on the template provided and second we get a characterisation of all invariant
instances of a template. Since we reason over the reals there are uncountably
many.

The runtime of Prinsys depends on the size of the expressions that we have
to handle. This means that if we have many choices in the loop (i.e. there are
many paths in the control flow graph) this will blow up the size of wp(body, T ).
The same is true for templates that have many summands. Finally, the external
tools used by Prinsys affect the overall running time. Their execution time
cannot be predicted exactly but experience shows that the final simplification
step takes considerably longer the more parameters we allow in the template.
The overall runtime for the presented examples lies within a second on a laptop
computer.

Since there is no software that could be easily adapted to support our methods,
Prinsys was developed from scratch. It was recently redesigned to be more
extensible and easier to maintain as we hope that future developments in the
area of constraint-based methods will use our work as a basis. From the user’s
point of view, the usability was substantially increased with the introduction of
a graphical user interface that allows an intuitive interaction.

Programs and templates considered in our examples are linear. This means all
guards, assignments or terms are linear in the program variables. As pointed out
earlier, our approach per se allows polynomial expressions as well. To see to what
extent this applies in practice we have tried to generate polynomial invariants for
variants of a bounded random walk, cf. Lst. 8. The goal is here to estimate the
number of steps taken before x hits its lower bound zero or upper boundM where
M is a fixed parameter. Surprisingly quantifier elimination works reasonably fast
for formulas with polynomials but the returned quantifier-free formula is very
big. The lack of powerful simplification methods makes it difficult to find a
concise representation of the formula that describes all invariant instances of the
template. Redlog’s simplifier might increase the formula size or not terminate
at all, whereas Slfq hits the memory bound quickly and crashes, even if the
allocated memory is increased maximally.



Prinsys—On a Quest for Probabilistic Loop Invariants 207

Listing 8. Bounded random walk

counter := 0 ;
while ( x > 0 and x−M < 0){

(x := x+1 [ p ] x := x−1);
counter := counter+1;

}

6 Conclusion

We have presented a new software tool called Prinsys for probabilistic invari-
ant generation. Its functionality was explained and its merits were assessed in
the discussion. Also implementation details that deviate from the theoretic de-
scription of the method in [7] were pointed out. During our evaluation we have
reached the next challenge, that is to extend invariant generation to polynomial
templates. Related work, e.g. [12] suggests a workaround to find polynomial
invariants for non-probabilistic programs. This comes at the price that they sac-
rifice completeness and limit the class of systems permitted. In the future we
would like to work out a similar approximate invariant generation method for
probabilistic systems and evaluate it within Prinsys.

References

1. Barthe, G., Grégoire, B., Béguelin, S.Z.: Probabilistic relational Hoare logics for
computer-aided security proofs. In: Gibbons, J., Nogueira, P. (eds.) MPC 2012.
LNCS, vol. 7342, pp. 1–6. Springer, Heidelberg (2012)

2. Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic relational reason-
ing for differential privacy. In: Symp. on Principles of Programming Languages
(POPL), pp. 97–110. ACM (2012)

3. Gretz, F.: Invariant Generation for Linear Probabilistic Programs. Master’s thesis,
RWTH Aachen (2010), http://www-i2.informatik.rwth-aachen.de/i2/gretz/

4. Gretz, F., Katoen, J.P., McIver, A.: Operational versus Weakest Precondition Se-
mantics for the Probabilistic Guarded Command Language. In: QEST, pp. 168–177
(2012)

5. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PASS: Abstraction refinement
for infinite probabilistic models. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 353–357. Springer, Heidelberg (2010)

6. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic Reachability for Parametric
Markov Models. STTT 13(1), 3–19 (2011)

7. Katoen, J.-P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-Invariant Gen-
eration for Probabilistic Programs: In: Cousot, R., Martel, M. (eds.) SAS 2010.
LNCS, vol. 6337, pp. 390–406. Springer, Heidelberg (2010)

8. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: On the Com-
plexity of the Equivalence Problem for Probabilistic Automata. In: Birkedal, L.
(ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 467–481. Springer, Heidelberg (2012)

http://www-i2.informatik.rwth-aachen.de/i2/gretz/


208 F. Gretz, J.-P. Katoen, and A. McIver

9. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: APEX: An An-
alyzer for Open Probabilistic Programs. In: Madhusudan, P., Seshia, S.A. (eds.)
CAV 2012. LNCS, vol. 7358, pp. 693–698. Springer, Heidelberg (2012)

10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

11. McIver, A., Morgan, C.: Abstraction, Refinement and Proof For Probabilistic Sys-
tems. Monographs in Computer Science. Springer (2004)

12. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear Loop Invariant Genera-
tion Using Gröbner Bases. In: POPL, pp. 318–329 (2004)

13. Ying, M.: Floyd-Hoare logic for quantum programs. ACM Trans. Program. Lang.
Syst. 33(6), 19 (2011)



Revisiting Weak Simulation

for Substochastic Markov Chains

David N. Jansen1, Lei Song2,5, and Lijun Zhang3,4,5

1 Radboud Universiteit, Model-Based System Development,
Nijmegen, The Netherlands

dnjansen@cs.ru.nl
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

song@cs.uni-saarland.de
3 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, Beijing, China
zhanglj@ios.ac.cn

4 Technical University of Denmark, DTU Compute, Denmark
5 Universität des Saarlandes, Saarbrücken, Germany

Abstract. The spectrum of branching-time relations for probabilistic
systems has been investigated thoroughly by Baier, Hermanns, Katoen
and Wolf (2003, 2005), including weak simulation for systems involving
substochastic distributions. Weak simulation was proven to be sound
w. r. t. the liveness fragment of the logic PCTL\X , and its completeness
was conjectured. We revisit this result and show that soundness does
not hold in general, but only for Markov chains without divergence. It
is refuted for some systems with substochastic distributions. Moreover,
we provide a counterexample to completeness. In this paper, we present
a novel definition that is sound for live PCTL\X , and a variant that is
both sound and complete.
A long version of this article containing full proofs is available from [11].

1 Introduction

Simulation relations are often used to verify that one system correctly imple-
ments another, more abstract system [1]. Simulation relations are therefore used
as a basis for abstraction techniques, where the rough idea is to replace the model
to be verified by a smaller model and to verify the latter instead of the original
one. Dually, simulation relations are also used to refine a high-level specification
into a low-level implementation. To be useful for abstraction and refinement, a
simulation relation has to show a form of weak preservation, i. e., all properties
expressible as positive formulas are preserved.

We choose a liveness view on simulation, for reasons that will be explained
shortly. In this view, an abstract model underapproximates a concrete one, so
the latter simulates the former. Every behaviour possible in the abstract model
is also possible in the concrete one; i. e., every liveness property ensured by the
former also holds in the latter. In a probabilistic context, a liveness property is

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 209–224, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



210 D.N. Jansen, L. Song, and L. Zhang

0.8

	live

0.8 0.2

�	live

0.9 0.1 0.2

s1

g

s2

g w

s3

g w

s4

w

Fig. 1. Without substochastic distributions, simulation degenerates to bisimulation.

a lower bound on the probability of some (good) behaviour. For example, for
strong simulation 	 in labelled Markov processes, s 	 t iff for all formulas Φ in
L∨ (a logic for liveness properties), s |= Φ implies t |= Φ [8]. The concrete state
t satisfies all liveness properties that hold in the abstract state s.

Simulation for fully probabilistic models (without nondeterminism) faces a
difficulty: many modelling formalisms require that all probability distributions
are stochastic, i. e. the probabilities sum to exactly one. Consider s2 in Fig. 1. (We
use colours to indicate the state labelling: a state can only simulate states with
the same colour.) If it is required to reach the goal state with probability at
least 0.8, such a model cannot leave unspecified what happens with the remaining
probability. For example, the wrong state is reached with probability 0.2. As
a consequence, s3 in the same figure, while satisfying the requirement, does not
simulate s2 because the probability to reach from s3 is not large enough.
Simulation degenerates to bisimulation. A solution to this problem is to allow
substochastic distributions: it is enough if the probabilities sum to at most one,
so that we can model the requirement like s1 in Fig. 1. It is not specified what s1
will do with the remaining probability 0.2. Another interpretation is that with
probability 0.2, s1 will do nothing at all, i. e. it deadlocks. In both interpretations,
any model will simulate an unspecified or deadlocking model.

Alternatively, one could have chosen a safety view on simulation, i. e. the ab-
stract model overapproximates the concrete one and every behaviour forbidden
by the abstract model is also forbidden in the concrete one. But if we try to
model forbidden behaviours by substochastic distributions, we get models like
s4 in Fig. 1, which should express that with probability (at most) 0.2, is
reached and with probability (at least) 0.8, any behaviour except entering is
acceptable – a much more complex semantics.

In a weak simulation relation, only visible steps are compared, while internal
computations (called silent steps) are neglected. Weak simulation for Markov
chains (including substochastic ones) was introduced in [2, 4] and denoted �d.
The authors claim that weak simulation is sound w. r. t. the liveness fragment of
the logic PCTL\X . Completeness is conjectured to hold as well. Unfortunately,
neither of the properties holds on substochastic DTMCs.

The main problem with soundness is that �d only compares probabilities
under the condition that some visible step is taken. However, if the concrete
model deadlocks, nothing visible will happen, nor is there a successor state that
could take the required visible step. Completeness is broken in a similar way:
A single PCTL path property is not able to express multiple requirements on



Revisiting Weak Simulation for Substochastic Markov Chains 211

behaviours, but �d still requires that the concrete state reached after a silent
step can execute all behaviours of the abstract state.

To combat these problems, we base our definition of weak simulation on a
notion of weak transition called derivative. In a derivative, one does not look
too closely at intermediary states reached by silent steps, but concentrates on
the visibly reached states. Overall, we get a relation that is sound w. r. t. the
liveness fragment of PCTL\X , and we conjecture its completeness. A variant of
the definition is provably sound and complete.

2 Preliminaries

A distribution μ over the set Σ is a function μ : Σ → [0, 1] satisfying the
condition μ(Σ) ≤ 1, where μ(T ) :=

∑
s∈T μ(s). We let Dist(Σ) denote the set of

distributions over Σ. The support of μ is the set of states on which μ is non-zero,
i. e., Supp(μ) = {s ∈ Σ | μ(s) > 0}. We assume that all distributions considered
have countable supports; most distributions will even have finite supports.

The distribution μ is called stochastic if μ(Σ) = 1 and absorbing if μ(Σ) = 0.
Otherwise, i. e. if 0 < μ(Σ) < 1, we say μ is substochastic. Some authors call
a substochastic or absorbing distribution a subdistribution. We sometimes use
an auxiliary outcome ⊥ ∈ Σ and set μ(⊥) := 1 − μ(Σ). Let Σ⊥ denote the set
Σ ∪ {⊥}. Ds denotes the Dirac distribution such that Ds(s) = 1.

For a relation R ⊆ Σ ×Π (for sets Σ and Π) and some s ∈ Σ, we let R[s]
denote the set {p ∈ Π | s R p}. Similarly, R[S] = {p ∈ Π | ∃s ∈ S : s R p}.

2.1 Substochastic Discrete-Time Markov Chains

Let AP denote a fixed, finite, nonempty set of atomic propositions.

Definition 1. A substochastic discrete-time Markov chain (sDTMC) is a tuple
M = (S,P, L) where:

– S is a finite or countable set of states,
– P : S × S → [0, 1] is a subprobability matrix such that for all s ∈ S, P(s, · )

is a distribution over S with finite support,
– L : S → 2AP is a labelling function.

A state s ∈ S is called stochastic, absorbing, or substochastic if the distribution
P(s, · ) is stochastic, absorbing, or substochastic, respectively. (A state s with
P(s, s) = 1 is stochastic.) Intuitively, P(s, t) denotes the probability of moving
from s to t in a single step. For s ∈ S, let post⊥(s) := {t ∈ S⊥ | P(s, t) > 0},
i. e., the set of successor states of s (including ⊥ if s is not stochastic). A sDTMC
without substochastic states is a discrete-time Markov chain.

A path π is either an infinite sequence s0, s1 . . . such that P(si, si+1) > 0 for
i = 0, 1, . . ., or a finite sequence s0, s1 . . . sn satisfying sn = ⊥ and P(si, si+1) > 0
for i = 0, 1, . . . , n − 1. We use πi = si to denote the (i + 1)th state, if it exists.
A path fragment is a strict prefix of a path. Each state s induces a probability



212 D.N. Jansen, L. Song, and L. Zhang

space, whose σ-algebra is generated by cylinder sets like C(s, s1, . . . , sn), the
set that contains all paths beginning with the path fragment s, s1, . . . , sn. The
probability measure Probs is uniquely determined by: Probs(C(s, s1, . . . , sn)) =
P(s, s1)P(s1, s2) · · ·P(sn−1, sn).

For k ∈ N, s ∈ S, and sets Tau , G ⊆ S, let Probs(Tau U=k G) denote the
probability to be in aG-state after exactly k steps and to pass through Tau-states
before, if starting in s. Similarly, Probs(Tau U≤k G) denotes the probability to
reach G after passing through Tau for at most k steps, and Probs(Tau U G)
is an abbreviation for limk→∞ Probs(Tau U≤k G). Finally, Probs(�

≤kG) is an
abbreviation for Probs(S U≤k G).

In the following, we assume given a fixed sDTMC M = (S,P, L).

2.2 Probabilistic CTL

We recall briefly the PCTL\X liveness formulas and their semantics. Details can
be found in [4]. The syntax of the PCTL\X liveness formulas is defined by:

Φ = true | false | a | ¬a | Φ ∧ Φ | Φ ∨ Φ | P>p(Φ U Φ) | P≥p(Φ U Φ),

where a ∈ AP runs over the atomic propositions and p ∈ [0, 1]. The semantics
for true, false, atomic propositions, negation, conjunction and disjunction are
defined as usual. We denote the set of states that satisfy Φ by Sat(Φ).

A path π satisfies the until formula Φ1 U Φ2 if there exists an index i such
that πi exists with πi |= Φ2, and πj |= Φ1 for all j < i. A state s satisfies
the probabilistic formula P�p(Φ1 U Φ2) if the probability that a path from s
satisfies Φ1 U Φ2 meets the bound, i. e. Probs(Sat(Φ1) U Sat(Φ2)) 
 p. We write
P�p(�Φ2) as an abbreviation for P�p(true U Φ2).

We define a relation �live by: s �live t if for all PCTL\X liveness formulas Φ
it holds that s |= Φ implies t |= Φ. The equivalence relation ≈live can be defined
as the intersection �live ∩�live. So, s ≈live t if for all PCTL\X liveness formulas
Φ it holds that s |= Φ if and only if t |= Φ.1

3 Weak Bisimulation and Divergence

Weak bisimulation ≈d (as defined in [4]) is sound and complete, i. e., it coincides
with ≈live, for most sDTMCs; only for infinite sDTMCs with nonzero probability
to take infinitely many silent transitions (to diverge), there is a problem:

Example 2. Consider the infinite DTMC in Fig. 2, constructed by Chenyi Zhang
and Carroll Morgan [6, Example 3.16]. The probability to diverge, i. e. to take
infinitely many transitions within the -states, when starting from s′k, is

∞∏
i=k

i2 − 1

i2
= lim

m→∞

m∏
i=k

(i− 1)(i+ 1)

i2
= lim

m→∞

(k − 1)(m+ 1)

km
=
k − 1

k
.

1 Others define s ≈PCTL\X t to hold if for all PCTL\X formulas Φ, even those that are
not liveness formulas, s |= Φ iff t |= Φ. However, this relation coincides with ≈live.
See Thm. 10.67 in [3, page 813sq.], (c)⇐⇒ (d), for an analogous statement, whose
proof can easily be adapted.



Revisiting Weak Simulation for Substochastic Markov Chains 213

1

≈d

�≈live

22−1
22

32−1
32

42−1
42

52−1
52

1
22

1
32

1
42

1
52

s5

g

s′2 s′3 s′4 s′5 · · ·

g

Fig. 2. ≈d may be unsound for DTMCs that diverge with nonzero probability.

As a result, Probs′k(� Sat( )) = 1− (k − 1)/k = 1/k and s5 ≈live s
′
k. However,

s5 ≈d s
′
k for all k ≥ 2: All transitions between -states can be considered silent,

and then the probability to reach under the condition to take a visible step
agrees between s5 and s′k.

Reachability probabilities are often calculated with a linear equation system
(Eqn. (6) in [4]). The proof that ≈d is sound relies on the assumption that it has
a unique solution, which holds if the probability of divergence is zero. Generally,
the reachability probabilities are the smallest solution, which is always unique
because of the Knaster–Tarski fixpoint theorem [15]. So it is enough to restrict
the probability of divergence. We propose to change the third condition of the
definition:

Definition 3. The equivalence relation R ⊆ S × S is a divergence-sensitive
weak bisimulation2 iff for all s, t with s R t:

1. L(s) = L(t),
2. Let B := R[s] = R[t] be the equivalence class of s and t. If P(s,B) < 1 and

P(t, B) < 1, then for all C ∈ S/R with C = B:

P(s, C)

1−P(s,B)
=

P(t, C)

1−P(t, B)
,

3. Probs(� S \B) = Probt(� S \B).

States s and t are ds-weakly bisimilar, denoted s ≈ t, if there exists a divergence-
sensitive weak bisimulation R with s R t.

Proposition 4. Divergence-sensitive weak bisimulation ≈ is sound and com-
plete for sDTMCs, both countable and finite. On sDTMCs that diverge with
probability 0, it coincides with ≈d.

4 Defects of Original Weak Simulation

We recall the definition of weak simulation [4]. It is based on the notion of weight
functions, used to lift a relationR ⊆ S×M to a relation�R ⊆ Dist(S)×Dist(M).
We will first use the definition only for relations R ⊆ S × S. Weight functions
were introduced in [12] and adapted in [4] to incorporate substochastic states.

2 The name reminds of divergence-sensitive stutter equivalence [5].



214 D.N. Jansen, L. Song, and L. Zhang

Definition 5 (Weight function). Let S and M be sets and R ⊆ S ×M be
a relation. Let σ ∈ Dist(S) and μ ∈ Dist(M) be distributions with at most
countable supports. A weight function for (σ, μ) with respect to R is a function
Δ : S⊥ ×M⊥ → [0, 1] such that

1. Δ(s,m) > 0 implies s R m or s = ⊥,
2. σ(s) = Δ(s,M⊥) for s ∈ S⊥, and
3. μ(m) = Δ(S⊥,m) for m ∈M⊥.

We write σ �R μ if there exists a weight function for (σ, μ) with respect to R.

Note that the support of Δ is a subset of Supp(σ) × Supp(μ), so it is at most
countable. Therefore, the sums in Conds. 2 and 3 have at most a countable
number of nonzero summands.

The following equivalent characterisation of the lifting will be useful later. See
[16, 9], and a detailed proof can be found in [13, Lemma 1].

Lemma 6. With the notations of Def. 5, σ �R μ iff σ(G) ≤ μ(R[G]) for all
G ⊆ Supp(σ).

To check whether some relation R is a weak simulation, [4] defines, for every pair
s1 R s2, which successors of si are visible and which ones are silent. The functions
δi : S⊥ → [0, 1] below have this task: δi(s

′) = 0 means that the transition si → s′

is silent. Then, Ki :=
∑

u∈S⊥ P(si, u)δi(u) is the probability to take a visible
transition from si at all. If R is a weak simulation, there should exist a mapping
from the visible transitions of s1 to (a subset of) the visible transitions of s2. To
this end, [4] compares (through the lifting of R) the probabilities to move from
si to u, under the condition that the transition is visible: P(si, u | visible) :=
P(si, u)δi(u)/Ki.

Definition 7 (Weak simulation �d in [4]). The relation R ⊆ S × S is a
weak simulation if s1 R s2 implies that L(s1) = L(s2) and there exist functions
δi : S⊥ → [0, 1] such that, using the sets

Ui = {ui ∈ post⊥(si) | δi(ui) > 0} (visible successors)

Vi = {vi ∈ post⊥(si) | δi(vi) < 1} (silent successors),

the following conditions hold:

1. v1 R s2 for all v1 ∈ V1 \ {⊥} and s1 R v2 for all v2 ∈ V2 \ {⊥}.
2. If both K1 > 0 and K2 > 0, then P(s1, · | visible) �R P(s2, · | visible).
3. For every u1 ∈ U1 \ {⊥}, Probs2(R[s1] U R[u1]) > 0.

We say that s2 weakly simulates s1, denoted s1 �d s2, iff there exists a weak
simulation R such that s1 R s2.

Weak simulation on DTMCs arises as a special case of the above definition, as
every DTMC is an sDTMC (where each state is absorbing or stochastic).

Theorem 63 of [4] now states the soundness of �d w. r. t. live PCTL\X .
Namely, that for s, t ∈ S, we have: If s �d t, then for all PCTL\X liveness
formulas Φ, s |= Φ implies t |= Φ. In the conclusion of [4] it is conjectured that
also the converse – completeness of �d – holds. Unfortunately this is false:



Revisiting Weak Simulation for Substochastic Markov Chains 215

0.7
0.3

��d

�live

0.8 0.2

s6

g y

s2

g w

Fig. 3. �d is not complete.

1

�d

��live

0.8

s5

g

s1

g

Fig. 4. �d is not sound.

Example 8. The DTMC depicted in Fig. 3 illustrates that weak simulation is
not complete w. r. t. live PCTL\X . Let us prove that for all formulas Φ, s6 |= Φ
implies s2 |= Φ. The only formulas for which the proof is not trivial are those
that measure the paths in C(s6, y), say s6 |= P≥0.3(Φ1 U Φ2) with y |= Φ2. As
s2 has the same colour as y, also s2 |= Φ2, and thus s2 |= P≥0.3(Φ1 U Φ2).

If it would hold that s6 �d s2, then δ1(g) = δ2(g) = δ2(w) = 1. So, U1 = {g}
or {g, y}, K1 ≥ 0.7 and K2 = 1, therefore a weight function Δ would exist.
However, as g �d w and y �d w, it satisfies 0 = Δ(U1, w) = P(s2, w | visible) =
P(s2, w)δ2(w)/K2 = 0.2. Contradiction!

Even worse: the relation �d is not sound on sDTMCs.

Example 9. The sDTMC in Fig. 4 illustrates that weak simulation is not sound
w. r. t. live PCTL\X . Namely, s5 �d s1, because we can choose δ1(g) = δ2(g) = 1
and δ2(⊥) = 0. Then, the sets Ui and Vi are: U1 = U2 = {g}, V1 = ∅, V2 = {⊥},
and K1 = 1, K2 = 0.8. The conditions hold trivially.

Now consider the formula Φ := P>0.9( U ), which states that the proba-
bility to reach -states is greater than 0.9. Obviously, the probability to reach
-states from s5 is 1, and from s1 is 0.8, thus s5 |= Φ but s1 |= Φ.

The problem went undetected because the proof of Thm. 63 in [4] allows a nice
intuition with just one wrong detail: one constructs an intermediary sDTMC
that contains states 〈s, t, 1〉 and 〈s, t, 2〉 for every state pair s �d t, defined in a
way that it is easy to see s ≈d 〈s, t, 1〉 �live 〈s, t, 2〉 ≈d t. If K1 > 0 and K2 > 0,
the new state 〈s, t, 1〉 has 1/(1+M) times the original transitions of s (for some
carefully selected constant M ∈ R≥0) and moves to states bisimilar to s with
probability M/(1 +M), so that s ≈d 〈s, t, 1〉 follows immediately. The bisimilar
states have the form 〈s, v2, 1〉 for v2 ∈ V2 – except that there is no state 〈s,⊥, 1〉.
This is problematic if M > 0 (which is equivalent to K2 < 1) and ⊥ ∈ V2. Note
that K2 < 1 follows from ⊥ ∈ V2.

In terms of the example, for any silent step s1 → v2, the reached state satisfies
s5 �d v2 and therefore P(s5, ) ≤ Probv2(� ) – except for v2 = ⊥.

As the proof also relies on the soundness of ≈d, it does not work for sDTMCs
that may diverge. In particular, also s5 �d s

′
k, similar to Example 2.

Lemma 10. �d is sound on sDTMCs that diverge with probability 0, if no state
pair s �d t requires a choice of δ1 and δ2 such that K1 > 0, K2 > 0 and ⊥ ∈ V2.
For DTMCs without substochastic states, always ⊥ ∈ V2. So, �d is sound if the
simulating sDTMC is not substochastic and almost surely does not diverge.



216 D.N. Jansen, L. Song, and L. Zhang

0.6
0.04

0.24
0.2

0.8

�live

�live

�live

0.5

0.8 0.2

0.20.8

0.06

0.2
0.24

0.04
0.6

0.16

s7

s8 w

g s1

s9

s9

g s2 w

s9

s2

g w

Fig. 5. Some sDTMCs illustrating the weak simulation relation.

0.56 0.4

0.75

�live

0.8
1· 3

4

0.3/ 3
40.56

s10

g s11

s1

g 3
4
s1

s1

g

Fig. 6. Rescaling states: 3
4
of s1 is used to simulate s11.

5 A New Notion of Weak Simulation

Before we come to an improved definition, let us give three motivating examples.

Example 11. This example illustrates which kinds of delaying or stuttering are
needed for weak simulation.

Consider the sDTMCs on the left and right of Fig. 5. To simulate the transi-
tions of s7, state s9 has to delay or to stutter with probability 0.6, and with the
remaining probability, it moves on, so that it reaches a -state with probability
(1 − 0.6) · 0.5 · 0.2 = 0.04. Note that we cannot simulate the transition s7 → s8
by s9 → s2 because the probability of the latter is lower than of the former.

Now consider s8 �live s9. Here, the transition to s1 cannot be simulated by
delaying in s9 because the probability to reach a -state from the latter is too
small. We therefore choose to delay in state s2 instead with probability 0.2, so
we reach a -state with probability (0.5− 0.2) · 0.8 = 0.24.

In our definition, we use derivatives, a kind of weak transition, to describe
these delays systematically. In the center of Fig. 5, we show the weak transitions
with double lines; see Example 22 below for the exact definitions of the derivative.
State s9 is drawn twice because we use two different derivatives to simulate s7
and s8, respectively.

Example 12. Sometimes, we have to rescale a part of the derivative.
Now consider state s10 in Fig. 6. The probability to reach g from s10 satis-

fies Probs10(� ) = 0.56 + 0.4 · 0.75 · Probs10(� ), so it is 0.8. We conclude
s10 �live s1.



Revisiting Weak Simulation for Substochastic Markov Chains 217

0.24

0.16
0.1

0.8

�live

0.8

0.1
0.16

0.24

s12

s1g w

s9

g s2�ρ w

Fig. 7. Splitting states: s12 �live s9. A part of s2 is used to simulate s1.

How can we find a derivative of s1 to simulate P(s10, · )? The näıve choice

would be to delay in s1 with probability 0.4, corresponding to s10
0.4−−→ s11 �live

s1. But then, the probability to go to g can be at most P(s1, g) · (1 − 0.4) =

0.8 · 0.6 = 0.48, which is too small for s10
0.56−−→ g. The point here is that s1

oversimulates s11; it would be enough to use 3
4 of s1. Our definitions allow to

rescale this part of the derivative, so that enough probability mass is left to
simulate the transition s10 → g. The correct derivative therefore only delays in
s1 with probability 0.3; this corresponds to moving to “ 3

4 of s1” with probability
0.4. The derivative then moves on to g with probability P(s1, g)·(1−0.3) = 0.56,
the required value. We draw the incomplete state as a partial eclipse.

Now, one might think that these two ideas – delaying and rescaling – provide
enough liberty to define a new notion of weak simulation. However, we have to
generalise rescaling slightly:

Example 13. Consider state s12 in Fig. 7. One can show that s12 �live s9. How-
ever, if we try to find a (rescaled) derivative, we get that the derivative is not
allowed to delay in s9 nor in s2, because otherwise, the probability to get to w
in one step by the simulating derivative would become too small.

The solution is to move to s2 (a state that can simulate s12) and rescale
that state selectively: 0.5 · P(s2, · ) is split into two substates with transition
distributions σ := {(g, 0.24), (w, 0.1)} and ρ′ := {(g, 0.16)}, respectively. The
first is used to simulate the transitions from s12 to g and w. In order to simulate
the transition from s12 to s1, we delay in the part of s2 that has been split off.
We denote this substate (rescaled appropriately) as s2�ρ.

We now introduce the concept of substates formally as follows:

Definition 14 (Substate). A substate of s ∈ S is a pair (s, σ) ∈ S ×Dist(S)
such that σ ≤ P(s, · ) (pointwise). We write this pair as s�σ. We extend P (in
the first argument) to substates by setting P(s�σ, · ) := σ. Let Sub(T ), for any
T ⊆ S, denote the set of all substates s�σ with s ∈ T .

We will often write the improper substate s�P(s, · ) as s�.
We adapt the notion of derivatives, weak transitions, introduced in [7] to our

state-based setting. We will assume given a set Tau ⊆ S; transitions between
states in Tau are regarded as silent steps or τ steps. It typically contains the
start state together with states that should not be distinguished from it.



218 D.N. Jansen, L. Song, and L. Zhang

For a distribution ν ∈ Dist(Sub(S)), we let its flattening ν ∈ Dist(S) be
ν :=

∑
u�υ∈Sub(S) ν(u�υ)υ.

Definition 15 (Delay scheme). Suppose given a substate s�σ and a set Tau ⊆
S. For every t ∈ Tau and i ∈ N1 = {1, 2, . . .}, choose distributions μ→

t,i ≤ P(t, · )
and μ×

t,i ∈ Dist(Sub({t})) such that

μ→
t,i(S) + μ×

t,i(Sub(S)) ≤ 1 and (1)

μ→
t,i + μ×

t,i ≤ P(t, · ). (2)

Similarly, choose μ→
s�σ ,0 ≤ σ and μ×

s�σ ,0 ∈ Dist(Sub({s})), such that

μ→
s�σ,0(S) + μ×

s�σ ,0(Sub(S)) ≤ 1,

μ→
s�σ ,0 + μ×

s�σ ,0 ≤ σ, and

if s ∈ Tau, then μ×
s�σ ,0(s�σ) = 1. (3)

This choice (μ→
t,i, μ

×
t,i)t∈Tau,i∈N1 , μ

→
s�σ,0, μ

×
s�σ ,0 is a delay scheme.

The idea behind the scheme is: Whenever t ∈ Tau is visited (after i transitions),
we will either choose to continue with the probabilities indicated by μ→

t,i or to stop

in (a substate of) t with the probabilities indicated by μ×
t,i. The conditions ensure

that the total probability is at most 1 and the probability to reach any successor
of t, either directly or via a delay state, does not increase over Probt(Tau U · ).
For technical reasons, the counter i is added; however, one can often choose μ→

t,i

and μ×
t,i independent from i.

Definition 16 (Derivative). Suppose given a substate s�σ, a set Tau ⊆ S, and
a delay scheme (μ→

t,i, μ
×
t,i)t∈Tau,i∈N1 , μ

→
s�σ,0, μ

×
s�σ,0. We extend μ×

t,i to S by setting

μ×
t,i(t�) := 1 for t ∈ Tau. Let ν→i ∈ Dist(S) and ν×i ∈ Dist(Sub(S)), for every
i ≥ 0, be as follows:

ν→0 := μ→
s�σ ,0 ν→i+1 :=

∑
t∈Tau

ν→i (t)μ→
t,i+1

ν×0 := μ×
s�σ ,0 ν×i+1 :=

∑
t∈S

ν→i (t)μ×
t,i+1.

The distribution

ν :=

∞∑
i=0

ν×i ∈ Dist(Sub(S)) (4)

is a derivative of s�σ. (The support of ν may be countable.) We write s�σ
Tau
===⇒ ν

if ν is a derivative of s�σ.

The following lemma shows that our definition of derivative exactly models the
reachability probabilities: A derivative cannot exceed the probability to reach a
set of states; concretely, given a set of states G ⊆ S, ν(Sub(G)) is at most the
probability to reach G.



Revisiting Weak Simulation for Substochastic Markov Chains 219

Lemma 17. Suppose given a substate s�σ, sets Tau ⊆ S and G ⊆ S, and a

derivative s�σ
Tau
===⇒ ν. Then, Probs�σ (Tau U G) ≥ ν(Sub(G)).

Equality holds if the delay scheme satisfies, for all i ∈ N1,

μ→
s�σ ,0 = σ if s ∈ Tau \G μ→

t,i = P(t, · ) if t ∈ Tau \G
μ×
s�σ ,0(Sub(S)) = 1 if s ∈ G μ×

t,i(Sub(S)) = 1 if t ∈ G.

Proof sketch. We first prove equality under the mentioned conditions. Later, we
will show that a condition violation does not increase ν(Sub(G)).

One can prove by induction over k ≥ 0 the following stronger statements:

1. Probs�σ (Tau U≤k G) =
∑k

i=0 ν
×
i (Sub(G)).

2. Probs�σ ([Tau \G] U=k+1 · ) = ν→k .

The lemma then follows from Statement 1 by taking the limit k →∞.
To prove that violating the equality conditions does not increase ν(Sub(G)),

assume that we reduce μ→
t,i+1 below P(t, · ) for some t ∈ Tau \ G. Then we

can see immediately from Def. 15 that ν→i+1 and ν×i+1 will not increase. Even

if we now have room to set μ×
t,i+1 to some nonzero value, it still holds that

μ×
t,i+1(Sub(G)) = 0, so ν(Sub(G)) is not affected.
If some other equality condition is violated, one can argue similarly that

ν(Sub(G)) will not increase. ��

From the above lemma, we derive a corollary that provides the heart of the
soundness proof:

Corollary 18. s |= P�p(Φ U Ψ) iff there exists a derivative s�
Sat(Φ)
====⇒ ν such

that ν(Sub(Sat(Ψ))) 
 p.

Remark 19. Note that in Defs. 15 and 16, we allowed as an atypical case that
s ∈ Tau . The reason for this now becomes clear: we can apply Corollary 18 even
if s |= Φ. To make sure that Lemma 17 holds even then, Cond. (3) in Def. 15 was
added. – Additionally, we do not require that Tau be an R-upset (an R-upward
closed set), i. e. it may happen that R[Tau] ⊆ Sub(Tau).

Definition 20 (Weak simulation). Suppose given a relation R ⊆ S×Sub(S).
We let R[s]St := {s′ | s R s′�}. The relation R is a weak simulation if s R t�τ

implies that L(s) = L(t) and there exists t�τ
R[s]St

====⇒ ν such that P(s, · ) �R ν.
We say that t�τ weakly simulates s, denoted as s � t�τ , iff there exists a weak
simulation R such that s R t�τ .

Let us first apply our definition of weak simulation to the examples above.

Example 21. The pathological examples in Figs. 2–4 are handled correctly:

s5 � s′k�: From Lemma 17, we conclude that any derivative s′k�
R[s5]

St

=====⇒ ν satis-
fies ν(Sub({g})) ≤ 1/k. But P(s5, · ) �R ν (for any sensible R) would imply,
according to Lemma 6, 1 = P(s5, {g}) ≤ ν(Sub({g})) ≤ 1/k. Contradiction!



220 D.N. Jansen, L. Song, and L. Zhang

s6 � s2�: Let R := {(s6, s2�), (g, g�), (y, s2�0), (y, s2�)}. We simulate y by s2,
rescaled to no transitions at all. We have to prove thatR is a weak simulation.
Obviously, the labellings are compatible (L(s6) = L(s2) etc.), and the proof
for g R g� is trivial.

Let us have a look at s6 R s2�. Here, Tau = R[s6]
St = {s2}, so our choice of

delay scheme only consists of μ→
s2�,0 := 0.7Dg and μ

×
s2�,0 := 0.3Ds2�0 . (Choices

μ→
s2,i for i > 0 are irrelevant.) This delay scheme satisfies the conditions; note,

in particular, that we have dropped the probability to reach w, so that the
total probability to go anywhere is ≤ 1. The derivative is constructed by:

ν→0 = 0.7Dg ν→1 = 0

ν×0 = 0.3Ds2�0 ν×1 = 0.7Dg�

So, s2�
R[s6]

St

=====⇒ 0.3Ds2�0 + 0.7Dg� =: ν, and to show P(s6, · ) �R ν, we can
use the weight function Δ : S⊥ × Sub(S)⊥ → [0, 1] with:

Δ(g, g�) = 0.7 Δ(y, s2�0) = 0.3

and Δ(s, t�τ ) = 0 otherwise.
For the other pairs in R, the proof that they satisfy the conditions of weak

simulation is easy.

s5 � s1�: Similar to s5 � s′k�, all derivatives s1�
R[s5]

St

=====⇒ ν satisfy ν(Sub({g})) ≤
0.8. Again, 1 ≤ 0.8 would follow. Contradiction!

Example 22. Reconsider s7 and s9 in Fig. 5. We are going to prove that s7 � s9�.
Let R = {(s7, s9�), (s7, s2�), (s8, s9�), (s8, s2�), (s1, s2�), (g, g�), (w,w�)}. Let us
look at s8 R s9� first. Tau = R[s8]

St = {s9, s2}. We choose the delay scheme

μ→
s9�,0 := P(s9, · ) μ→

s2,1 := 0.6P(s2, · )
μ×
s9�,0 := 0 μ×

s2,1
:= 0.4Ds2� ,

as suggested by Fig. 5. As the derivative of s9�, we get s9�
R[s8]

St

=====⇒ 0.2Ds2� +
0.24Dg� + 0.06Dw� =: ν. Then, we have to prove P(s8, · ) �R ν. The weight
function Δ : S⊥ × Sub(S)⊥ → [0, 1] that witnesses this relation is

Δ(g, g�) = 0.24 Δ(⊥, w�) = 0.06

Δ(s1, s2�) = 0.2 Δ(⊥,⊥) = 0.5

and Δ(s, t�τ ) = 0 otherwise.
For the proof of s7 R s9�, one has to define a derivative according to the same

principles; this is left to the reader.
Now let us find a derivative for s8 R s2�. Here, Tau = {s9, s2} again, but μ→

s9,i

and μ×
s9,i

are irrelevant, as s9 is not reachable from s2. For μ
→
s2�,0 and μ×

s2�,0,
we can choose between several values, as s2� oversimulates s8. For example,



Revisiting Weak Simulation for Substochastic Markov Chains 221

let μ→
s2�,0 := 0.55P(s2, · ) and μ×

s2�,0 := 0.4Ds2� . This will lead to s2�
R[s8]

St

=====⇒
0.4Ds2� + 0.44Dg� + 0.11Dw� .

The proof for s1 R s2� is even easier, as P(s1, · ) �R P(s2, · St).
So, every pair in R satisfies the requirements, and R is a weak simulation.

Example 23. Now let us prove that s12 � s9�. Let R = {(s12, s9�), (s12, s2�),
(s1, s2�0.8Dg), (s1, s2�), (g, g�), (w,w�)}.

First, look at s12 R s9�. Here, Tau = R[s12]
St = {s9, s2}. We choose the delay

scheme

μ→
s9�,0 := P(s9, · ) μ→

s2,1 := 0.48Dg + 0.2Dw

μ×
s9�,0 := 0 μ×

s2,1
:= 0.32Ds2�0.8Dg

.

The conditions for delay schemes are satisfied; in particular, we have μ→
s2,1(S) +

μ×
s2,1

(Sub(S)) = 0.68+0.32 ≤ 1 and μ→
s2,1+μ

×
s2,1

= μ→
s2,1+μ

×
s2,1

(s2�0.8Dg)0.8Dg =
(0.48 + 0.32 · 0.8)Dg + 0.2Dw ≤ P(s2, · ). For the derivative of s9�, we get

ν→0 = P(s9, · ) ν→1 = 0.5 · [0.48Dg + 0.2Dw] ν→2 = 0

ν×0 = 0 ν×1 = 0.5 · 0.32Ds2�0.8Dg
ν×2 = 0.24Dg� + 0.1Dw�

and therefore, we have s9�
R[s12]

St

=====⇒ 0.16Ds2�0.8Dg
+ 0.24Dg� + 0.1Dw� =: ν. The

weight function that witnesses P(s12, · ) �R ν is straightforward.
The other pairs in R are easy to handle. Therefore, R is a weak simulation.

6 Soundness and Completeness

In this section we prove the soundness of weak simulation with respect to
PCTL\X and give a fragmentary proof of its completeness.

Lemma 24. The relation R ⊆ S × Sub(S) is a weak simulation iff s R t�τ
implies that L(s) = L(t) and for any set Tau ⊆ S, whenever s�

Tau
===⇒ μ (with a

delay scheme that never delays, i. e. μ(Sub(Tau)) = 0), there exists t�τ
R[Tau]St

======⇒
ν such that μSt �R ν.

Proof sketch. The “if” direction is almost trivial; let us concentrate on the “only

if” direction. Let s�
Tau
===⇒n μn denote the partial derivative: instead of summing∑∞

i=0 ν
×
i in (4) of Def. 16, we let μn :=

∑n
i=0 ν

×
i . Then μ = limn→∞ μn.

One first proves by induction on n that for any s R t�τ , Tau ⊆ S, and

s�
Tau
===⇒n μ

(s,t�τ )
n with μ

(s,t�τ )
n (Sub(Tau)) = 0, there exists t�τ

R[Tau]St

======⇒ ν
(s,t�τ )
n

such that (μ
(s,t�τ )
n )St �R ν

(s,t�τ )
n , and additionally that ν

(s,t�τ )
n−1 ≤ ν

(s,t�τ )
n .

Now assume given a derivative s�
Tau
===⇒ μ that never delays, and let μn be the

corresponding partial derivatives. The above induction gives us, for every n, a

derivative t�τ
R[Tau]St

======⇒ νn such that μSt
n �R νn. Taking the limit on both sides,

we get μSt = limn→∞ μSt
n �R limn→∞ νn =: ν. This ν is the derivative that we

were required to construct. ��



222 D.N. Jansen, L. Song, and L. Zhang

Theorem 25 (� is sound). s � t� implies for all PCTL\X liveness formulas
Φ, s |= Φ implies t |= Φ.

Proof. We need to prove that s � t� implies s �live t. Suppose that s � t� and
s |= Φ, where Φ is a PCTL\X liveness formula. Our goal is to prove that t |= Φ.
This can be done by induction on the structure of Φ. The cases true, a,¬a, Φ1∧Φ2

and Φ1 ∨ Φ2 are standard, so we omit them here.
The remaining case is the probabilistic operator, namely Φ = P�p(Φ1 U Φ2).

Let Tau := Sat(Φ1) and G := Sat(Φ2). According to Corollary 18, there exists

s�
Tau
===⇒ μ such that μ(Sub(G)) 
 p. We use w. l. o. g. a delay scheme for μ that

satisfies the equality conditions in Lemma 17 and μ×
t (s

′�) = 1 for all s′ ∈ G.

Note that this implies that s�
Tau\G
=====⇒ μ is also a derivative, and it never delays.

By Lemma 24 there exists t�
�[Tau\G]St

========⇒ ν such that μSt �� ν, which indicates

that ν(Sub(G)) ≥ μ(Sub(G)) 
 p. As �[Tau \G]St ⊆ �[Tau]St ⊆ Tau = Sat(Φ1)
by induction hypothesis, t |= Φ by Corollary 18. ��

We also explain why we think that � is complete with respect to PCTL\X .

Conjecture 26 (� is complete). For s, t ∈ S, we have: if s |= Φ implies
t |= Φ for all PCTL\X liveness formulas Φ, then s � t�.

Proof fragment. Let R ⊆ S × Sub(S) be the following relation: s R t�τ if L(s) =
L(t) and for all �live-upsets U1, U2 ⊆ S, we have Probs(U1 U U2) ≤ Probt�τ (U1 U
U2). We will have to prove two things: First, �live is a subrelation of R, i. e.,
{(s′, t′�) | s′ �live t

′} ⊆ R; and second, R is a weak simulation relation.
For the first part, assume to the contrary that there existed a pair of states

s′, t′ such that s′ �live t′ but not s′ R t′�. So there would exist �live-upsets
U1, U2 ⊆ S with p := Probs′(U1 U U2) > Probt′�(U1 U U2). Both U1 and U2 can
be described by some live PCTL\X -formula, say Ψ1 and Ψ2 with Sat(Ψ1) = U1

and Sat(Ψ2) = U2. Obviously, s′ |= P≥p(Ψ1 U Ψ2), therefore t
′ |= P≥p(Ψ1 U Ψ2).

So it would follow from the semantics of P that p ≤ Probt′(Sat(Ψ1) U Sat(Ψ2)) =
Probt′�(U1 U U2) < p. Contradiction!

It is easy to see that

∀G ⊆ S : ∃t�τ
R[s]St

====⇒ νG : P(s,G) ≤ νG(R[G]), (5)

and we would have to prove

∃t�τ
R[s]St

====⇒ ν : ∀G ⊆ S : P(s,G) ≤ ν(R[G]). (6)

From Lemma 6, we know that (6) implies P(s, · ) �R ν, so R would be a weak
simulation, and � would be complete as well.

While swapping two quantifiers like in (5)=⇒ (6) is not allowed in general,
we believe that this implication holds because the νG are all derivatives. ��



Revisiting Weak Simulation for Substochastic Markov Chains 223

6.1 A Sound and Complete Variant

We now proceed to a slightly modified definition of �, which is provably sound
and complete. We call this relation Π-weak simulation because it is similar to
(5), a Π1

2-formula in the analytical hierarchy.

Definition 27 (Π-weak simulation). Suppose given relation R ⊆ S×Sub(S).
The relation R is a Π-weak simulation if s R t�τ implies that L(s) = L(t) and

∀G,Tau ⊆ S, whenever s�
Tau
===⇒ μ (with a delay scheme that never delays, i. e.

μ(Sub(Tau)) = 0), there exists t�τ
R[Tau]St

======⇒ ν such that μ(Sub(G)) ≤ ν(R[G]).
We say that t�τ Π-weakly simulates s, denoted as s �Π t�τ , iff there exists a
Π-weak simulation R such that s R t�τ .

Theorem 28. �Π is sound w. r. t. PCTL\X .

Proof. The proof is completely analogous to the proof of Thm. 25. ��
Theorem 29. �Π is complete w. r. t. PCTL\X .

Proof. Let R be the same relation as in Conjecture 26. We already have shown
that �live is a subrelation of R; it remains to be proven that R is a Π-weak
simulation.

Assume given a pair s R t�τ . Let G,Tau ⊆ S, and s�
Tau
===⇒ μ be arbitrary. By

Lemma 17, μ(Sub(G)) ≤ Probs�(Tau U G) ≤ Probs�(�live[Tau] U �live[G]). The

definition of R, together with Lemma 17, ensures that there exists t�τ
�live[s]
=====⇒ ν

such that μ(Sub(G)) ≤ Probt�τ (�live[Tau] U �live[G]) = ν(Sub(�live[G])). One
can define ν in such a way that its support only contains improper substates
of �live[G]. All these substates are contained in R[G]. Obviously μ(Sub(G)) ≤
ν(R[G]). ��

7 Conclusion

In this paper we have redefined the notion of weak simulation for Markov chains
such that it is sound with respect to the logical preorder induced by the PCTL\X
liveness properties. Unfortunately, we were unable to prove its completeness; but
at least there exists a variant that is provably sound and complete.

Our definition of weak simulation relies on the concept of substates, which
are closely related to (bi)simulation defined on distributions instead of states.
In [14], probabilistic forward simulation is defined as the coarsest congruence
relation preserving probabilistic trace distribution on probabilistic automata;
while in [10], weak bisimulation – a symmetric version of probabilistic forward
simulation – is introduced for Markov automata (subsuming probabilistic au-
tomata). Both relations are defined over distributions. An important difference
is that our substates are labelled, i. e. they have a “colour”.

We hope that the scientific community can fill in the gap in the proof left by us.
Of course one also has to prove that � is a congruence, to find an axiomatisation
and an efficient algorithm to abstract a sDTMC – however, we think that the
definitions and the completeness proof should be finalised first.



224 D.N. Jansen, L. Song, and L. Zhang

Acknowledgements. The authors are partially supported by DFG/NWO Bi-
lateral Research Programme ROCKS, MT-LAB (a VKR Centre of Excellence)
and IDEA4CPS. We thank Holger Hermanns, Verena Wolf and Rob van Glab-
beek for their extensive remarks and helpful discussions.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Com-
puter Science 82(2), 253–284 (1991)

2. Baier, C., Hermanns, H., Katoen, J.-P., Wolf, V.: Comparative branching-time
semantics for Markov chains (extended abstract). In: Amadio, R., Lugiez, D. (eds.)
CONCUR 2003. LNCS, vol. 2761, pp. 492–507. Springer, Heidelberg (2003)

3. Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press, Cambridge
(2008)

4. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Information and Computation 200(2), 149–214 (2005)

5. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. Journal of
the ACM 42(2), 458–487 (1995)

6. Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C.: Testing finitary prob-
abilistic processes, http://www.cse.unsw.edu.au/~rvg/pub/finitary.pdf, an
extended abstract has been published as [7]

7. Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C.: Testing finitary probabilis-
tic processes (extended abstract). In: Bravetti, M., Zavattaro, G. (eds.) CONCUR
2009. LNCS, vol. 5710, pp. 274–288. Springer, Heidelberg (2009)

8. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labelled
Markov processes. Information and Computation 184(1), 160–200 (2003)

9. Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilis-
tic processes: Logic, simulation and games. In: QEST 2008, pp. 264–273. IEEE
Computer Society, Los Alamitos (2008)

10. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: 25th Annual IEEE Symposium on Logic in Computer Science: LICS,
pp. 342–351. IEEE Computer Society, Los Alamitos (2010)

11. Jansen, D.N., Song, L., Zhang, L.: Revisiting weak simulation for substochastic
Markov chains. Tech. Rep. ICIS–R13005, Radboud Universiteit, Nijmegen (2013),
http://www.cs.ru.nl/research/reports

12. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic pro-
cesses. In: Sixth Annual IEEE Symposium on Logic in Computer Science (LICS),
pp. 266–277. IEEE Computer Society, Los Alamitos (1991)

13. Sack, J., Zhang, L.: A general framework for probabilistic characterizing for-
mulae. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 396–411. Springer, Heidelberg (2012)

14. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge (1996)

15. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5(2), 285–309 (1955)

16. Zhang, L.: Decision Algorithms for Probabilistic Simulations. Ph.D. thesis,
Universität des Saarlandes, Saarbrücken (2008)



A Performance Analysis of System S, S4,

and Esper via Two Level Benchmarking

Miyuru Dayarathna1 and Toyotaro Suzumura1,2

1 Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Ookayama,
Meguro-ku, Tokyo 152-8552, Japan

dayarathna.m.aa@m.titech.ac.jp, suzumura@cs.titech.ac.jp
2 IBM Research - Tokyo

Abstract. Data stream processing systems have become popular due to
their effectiveness in applications in large scale data stream processing
scenarios. This paper compares and contrasts performance characteris-
tics of three stream processing softwares System S, S4, and Esper. We
study about which software aspects shape the characteristics of the work-
loads handled by these software. We use a micro benchmark and different
real world stream applications on System S, S4, and Esper to construct
70 different application scenarios. We use job throughput, CPU, Mem-
ory consumption, and network utilization of each application scenario as
performance metrics. We observed that S4’s architectural aspect which
instantiates a Processing Element (PE) for each keyed attribute is less
efficient compared to the fixed number of PEs used by System S and Es-
per. Furthermore, all the Esper benchmarks produced more than 150%
increased performance in single node compared to S4 benchmarks. S4 and
Esper are more portable compared to System S and could be fine tuned
for different application scenarios easily. In future we hope to widen our
understanding of performance characteristics of these systems by inves-
tigating in to the code level profiling.

Keywords: stream processing, data-intensive computing, workload
characterization, performance analysis, benchmarking, systems
scalability.

1 Introduction

Stream processing [16] (which is also called Complex Event Processing [5]) has
emerged as an exciting new filed to support online information processing ac-
tivities. These software process data on-the-fly, in-memory without requiring to
store data in secondary storage. There have been extensive studies for char-
acterizing the workload and performance implications of computing systems.
However, there has not been sufficient amount of such studies carried out in
the area of stream computing. In this paper we work on stream processing soft-
ware performance characterization using System S, S4, and Esper; which are
currently three prominent stream processing software in the field. Decision to

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 225–240, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



226 M. Dayarathna and T. Suzumura

choose these three software was stimulated due to their unique architectural de-
signs. While System S is developed following a manager and worker model; S4
has a decentralized and symmetric architecture and follows Actors model [9].
Esper is completely different from System S and S4 because it is just a com-
ponent for stream processing [4]. However, Esper provides a complete software
suite for stream processing which has been used by popular software vendors
for their event processing back-ends. Furthermore, current implementation of
S4’s operators are purely based on Java and also Esper is a pure Java library,
whereas System S allows for both C/C++ and Java versions. We checked the
software’s licenses and got confirmed that they allow for publishing performance
comparisons.

In achieving the aforementioned objectives we created 70 different experiment
scenarios using three real-world application benchmarks and a micro benchmark.
Performance characteristics such as Job throughput, CPU usage, Memory Usage,
Network I/O were observed in arriving at conclusions about the design of stream
processing system architectures.

2 Related Work

There have been several previous studies on characterizing performance of stream
processing systems. Mendes et al. have conducted a performance evaluation of
three event processing systems by running several micro-benchmarks [8]. Their
intention was to provide a first insight in to the performance of event processing
systems. We try to delve more deep in to the performance characteristics of such
systems. They have used Esper similar to us. However, their study has been
conducted in single node settings. Different to them, we implemented all the
benchmarks using Esper in distributed settings using Java Messaging Service
(JMS) [12].

Suzumura et al. made a performance study considering ETL (Extract-Transf-
orm-Load) scenario of System S [14]. However, our intention is completely dif-
ferent from their work. While they evaluate performance of System S in the
context of ETL applications; we aim for identifying the characteristics of stream
processing systems in a more general context. The works done by Parekh et
al. and Zhang et al. study methods for characterizing resource usage profiles
and characterizing the resource usage of Processing Elements (PEs) respectively
[19][11]. Both these works are based on System S and their aim is to provide
solid foundation for modeling and predicting resource usage of stream programs
which is different from our motivation of performance characterization.

Arasu et al. described a stream data management benchmark [3] which has
been originally used by members of Aurora [1] and STREAM [15] projects
to compare performance characteristics of Data Stream Management Systems
(DSMS) (i.e., Stream Processing Systems). Recently Zeitler et al. implemented
the Linear Road benchmark on SCSQ DSMS [18]. However, in this study our
approach does not concentrate on single concrete benchmark. Rather we use a
collection of applications which is a distinguishing point of our work from their’s.
Yet we see Linear Road as a possible avenue for extending our work.



A Performance Analysis of System S, S4, and Esper 227

On their paper introducing S4 [9], Neumeyer et al. have conducted two exper-
iments (online and offline) on S4 with a Streaming Click-Through Rate compu-
tation application. While they conducted their experiments maximum at 20000
input events per second rate; we conduct the experiments with several magni-
tudes higher input data rates to compare performance of S4 with respect to
System S.

3 An Overview of Stream Processing Software

System S, S4, and Esper are three popular stream processing software in use.
We provide brief introduction to each of them below.

System S is an operator-based, large-scale distributed data stream processing
middleware [7]. The project was initiated in 2003 and is currently under devel-
opment at IBM Research [17]. System S uses an operator-based programming
language called SPADE [6] for defining data flow graphs. SPADE has a set of
built-in operators (BIOP) and also supports for creating customized operators
(i.e., User Defined Operators (UDOP)) which allows for extending the SPADE
language. Communication between operators is specified as streams. SPADE
compiler fuses operators into one or more Processing Elements (PEs) during the
compilation process. System S Scheduler (see Figure 1 (c)) makes the connection
between PEs, when the application is run in a stream processing cluster. Out of
the BIOPs used for implementing the sample programs Source creates a stream
from data coming from an external source. Sink converts a stream into a flow of
tuples that can be used by external components. Functor performs tuple-level
manipulations (e.g., filtering, mapping, projection, attribute creation, transfor-
mation, etc.). Aggregate groups and summarizes incoming tuples. Split splits a
stream into multiple output streams.

S4 is an open source operator-based stream processing system released by Ya-
hoo Inc. in October 2010 [9]. S4 follows Actors model which makes it consider-
ably different from System S. S4 has a decentralized and symmetric architecture
where all nodes share the same responsibilities. Furthermore, S4 uses a pluggable
architecture (see Figure 1 (a)) that keeps the design generic and customizable
to a greater extent.

In S4 the computations are performed by PEs. Communication between the
PEs is done in the form of data events. A sequence of events in S4 is defined as
a stream. Event emission and consumption is the only mode of communication
between PEs. Current version of S4 provides several PEs for standard tasks
such as count, aggregate, join, etc. However, custom PEs can be easily created
by extending the classes provided by S4 API. All PEs consume exactly the events
which correspond to the values on which they are keyed.

Programming model of S4 has been created in such a way that developers
write PEs in Java programming language, and the PEs are assembled into appli-
cations using Spring framework. Developers need to essentially implement input
event handler processEvent(), and output() which implements the output
mechanism [9].



228 M. Dayarathna and T. Suzumura

Esper is a software component for stream processing developed by EsperTech
Inc. [4]. The software is available in Java with the name Esper, and in.NET as
NEsper. However, this paper uses only Esper since we wanted to compare perfor-
mance of S4 with a Java based stream processing software. One of the important
differences of Esper from System S and S4 is that it is just a software library.
Therefore, important features of stream processing systems such as distributed
processing, fault tolerance, etc. has to be coded manually. However, since Esper
is a software library it can be easily integrated with variety of applications such
as J2EE web servers, distributed caches, web browsers, etc.

Since Esper is just a software library we implemented the distributed event
processing functionality by using Esper with ActiveMQ [12] which is an open
source message broker implementation of the Java Messaging Service (JMS)
specification.

Software architecture of the three stream processing software is shown in
Figure 1.

Client Client Client 

Monitoring 

I/O Stub Client I/O Stub I/O Stub 

Adapter 

S4 Cluster 

Legacy 
Support 

TCP/IP 

UDP/IP 

PNode 
PNode 

PNode 
PNode 

PNode 

Event 
Listener Dispatcher Emitter 

Processing Node 
Processing Element Container 

PE1 PE2 PEn 

Communication Layer 
Routing Load Balancing 

Failover Management 
Transport Protocols 

Zookeeper 

Shared File System 

Host controller 

Processing Element 
Container 

Application Host 

Management Host 

Streams Web Service (SWS) 
Streams Application Manager (SAM) 
Streams Resource Manager (SRM) 

Authorization and Authentication Services (AAS) 

Host controller 

Processing Element 
Container 

Application Host 

Host controller 

Processing Element 
Container 

Application Host 

System S runtime environment 
System S single instantiation is referred to as a Streams instance. Collection 
of the following services work together to facilitate the running of SPADE 
applications. Event Stream 

Connectors & 
adapters 

Historical data 
access layer 

Statements POJOs 
Output 

adapters 

Esper engines

Event Query & Causality Pattern Language 

Core Container 

Esper: Lightweight ESP/CEP Container 

Historical 
Data 

(d) 

(a) 

(b) (c) 

Data  
streams 

Scheduler (SCH) Name Service Recovery DB 

Fig. 1. Software architecture of the three stream processing software. (a) S4 Framework
overview (b) A processing node of S4 (c) System S runtime environment (d) Esper’s
architecture.

4 Methodology and Performance Metrics

Our methodology is based on two level benchmarking. We use a micro-benchmark
to get basic characterization of the three software’s performance. Next, we use
three different stream programs (Application-Specific Benchmarks) which are
used for different purposes. These programs, the reasons for choosing them, and
the features of their associated data sets are described below.

4.1 Sample Programs and Data Sets

Micro-benchmark. We use a three operator micro-benchmark program to
get a basic understanding of the behavior of the stream processing software.
This program’s structure is shown in Figure 2 (d). It has only one functor (F1)



A Performance Analysis of System S, S4, and Esper 229

that increments an integer value it receives from the Source operator (S). The
result from F1 gets stored in results.dat via Sink operator (SI). We chose this
program for our study because of its simple nature which allows us to reveal the
behavior of the stream processing systems during heavy work loads. We used a
synthetic data set of two digit integer values (in CSV format) for our experiment.
The data set contained 10 million records.

VWAP. Calculation of Volume-Weighetd Average Price (VWAP) is a real world
application scenario of stream processing in the financial services domain. VWAP
is calculated as the ratio of the value traded and the volume traded within a
specified time horizon. This can be depicted as,

VWAP =

∑n
i=1(Pi.Vi)∑n
i=1(Vi)

where Vi represents each traded volume and Pi represents the corresponding
traded price in a series of n transactions. Figure 2 (a) shows the data flow graph of
the VWAP application used for performance evaluation. This application is part
of a larger financial trading application described at [2]. The first functor (F1)
filters the tuples for valid records and the aggregate operator (AG) keeps a tuple
window of 4 based on the ticker id it receives from F1. Furthermore, it calculates
the Pi.Vi portion of the VWAP formula for each tuple. AG outputs a new tuple
each time it receives a tuple from F1. Finally, F2 calculates the VWAP value
and transfers to Sink operator (SI) which stores the result in result.dat file.
We used a dataset that is available with System S’s sample VWAP application;
but magnified it to a larger data set of 1 million tuples.

CDR. Call Detail Record (CDR) is a piece of information produced by a tele-
phone exchange containing details of a phone call passed through it. Telecommu-
nication networks process massive amounts of CDR events, another application
area for stream processing software systems. Furthermore, we wanted to test
how well different stream processing software scale under massive data rates if
programmers do not worry about producing optimized version of their codes.
Considering these factor, we decided to use a four operator CDR processing
application (shown in Figure 2 (b)) in our study to evaluate the three stream
processing software. First functor (F1) splits the input tuples read by Source
operator to different routes based on a hash value of call station ID (which iden-
tifies each user). The Aggregate operator (AG) calculates the total packet count
by adding input and output packet values mentioned in the tuple. Finally, the
result is stored in the disk via Sink (SI) operators. We used a synthesized data set
with 2 million data tuples with each tuple having 22 fields for this experiment.
The data set had information of 0.1 million users.



230 M. Dayarathna and T. Suzumura

Twitter Topic Counter. As the third application specific benchmark we se-
lected a Twitter hash tag count application. Twitter users can label the key
words of their tweets using # (e.g., #car) which indicate to which conversations
the messages relate to. As shown in Figure 2 (c) we developed a six operator
SPADE program with similar functionality to the Twitter Topic Counter appli-
cation (here onwards referred to as Twitter application) available with S4 and
used both these applications during our performance evaluations. We used a real
data set with 90507 tweets gathered from twitter on 4th June 2011 in the period
00:00-01:00 JST for this experiment.

TQ.csv result
.dat S F1 A

G F2 SI 

Key 
S    – Source 
Fn  – Functor n 
AG – Aggregate 
SI   – Sink 

CD.csv result
.dat S F1 A

G SI ND.csv result
.dat S F1 SI 

result
.dat F1 F2 F3 A

G SI U TD.txt (a) 

(b) 

(c) 

(d) 
VWAP 

CDR 

Twitter 

Micro-benchmark 

Fig. 2. Data flow graphs of sample applications

4.2 Experimental Setup

The experiments were conducted on 12 compute nodes each with AMD
OpteronTM Processor 242, 1600MHz 1MB L2 cache per core, 250GB hard drive.
Seven out of twelve nodes had 8GB RAM (Nodes labeled as sa0<n>, n is from
1 to 7) while the remaining five (Nodes labeled as sb0<m>, m is from 1 to 5)
had 4GB RAM. From the profiling results we obtained using Oprofile [13], and
Nmon [10] we observed that the difference of main memory in the nodes did not
affect our experiments. All the nodes were installed with Linux Cent OS release
5.4, IBM Infosphere Streams Version 1.2, and JRE 1.6.0; and were connected
via 1Gigabit Ethernet. We used S4 version 0.3.0.0 and Esper version 4.5.0. We
set both initial Java heap sizes and Maximum Java heap sizes to 3GB to avoid
CPU time being spent on increasing Java heap memory during the experiments.

4.3 Performance Metrics

We used job throughput, CPU usage, network I/O, and memory usage of each
sample application (i.e., job) as the metrics for the evaluations.

– Job Throughput : Measures number of input tuples processed by each stream
processing system. On System S we measured this in Tuples per second while
on S4 and Esper it was measured in Events per second.

– CPU usage (%): Overall CPU utilization during the experiments. This metric
provides information on which nodes are busy processing data hence allows
for identifying stream processing system’s node level bottlenecks.



A Performance Analysis of System S, S4, and Esper 231

– CPU usage by process (%): Measures what processes contribute to overall
CPU utilization and the amount of their contribution. This allows us to
identify where the performance bottlenecks exist (i.e., in stream process-
ing system level or OS level) and which processes are responsible for such
behavior.

– Memory Usage (MB) : The amount of main memory (RAM) use during
application execution. It is essential to maintain high percentage of free main
memory for proper functioning of stream applications. Memory usage is one
of the important metrics for this study because unlike most batch processing
tasks stream processing keeps all the required data in main memory during
the program execution.

– Network I/O (KB/s) : We measured network I/O of each node of stream
processing system cluster during experiments to quantitatively understand
what kind of communication overhead exists between the nodes.

4.4 Objectives and Methodology

Measurement of throughput was done in two different ways for S4, Esper, and
System S. In S4, and Esper we measured time required to process a specific
amount of events while in System S we measured time between processing first
tuple and a last tuple in order to increase the accuracy of the results.

By measuring throughput our intention was to understand how well the appli-
cations scale in both stream processing systems. Scalability of current S4 appli-
cations are characterized by S4 runtime. The runtime determines what number
of PEs to be created to suit for a particular node allocation under different work-
loads. We cannot explicitly allocate PEs for different nodes. Hence we utilized
the automatic node allocation for S4. However, SPADE allows for allocating a
node pool (a collection of hosts in a stream processing cluster) and attaching
different operators to specific nodes programmatically. We used this feature to
distribute workload of System S jobs among nodes. The Esper applications we
developed had to be manually allocated for different nodes giving us more finer
grain control over their distributed execution. Furthermore, we augmented the
sample programs shown in Figure 2 in such a way that the modified versions
allow for attaching more nodes with the job. The objective was to use more
nodes than the operators (PEs) available in the data flow graph and allocate
multiple operators to each node. E.g., If we used 12 nodes we need a data flow
graph with at least 12 operators which is not possible with any sample program
layout shown in Figure 2. How the augmentation of data flow graphs of sample
applications developed for System S has been carried out is shown in Figure 3.

Apart from the four augmented sample applications we used an optimized
version of the CDR application (shown in Figure 3 (c)) in order to observe how
introduction of multiple sources affects the throughput of a stream program.
However, we used this program only for this purpose but used normal augmented
version of CDR application (in Figure 3 (b)) in order to make the comparison a
fair one. In order to supply four source files to CDR Optimized data flow graph
the data file used for CDR was splitted equally in to four files using Linux’s



232 M. Dayarathna and T. Suzumura

split command and resulting files were checked to make sure that the first and
last packets were in the correct format. Note that we do not do any optimization
of the workload across different nodes in our experiments in order to make a fair
comparison between the three systems.

As shown in Figure 3 we introduced a split operator (SP) for each sample pro-
gram that splitted the data stream from source operator to several sub graphs.
The splitting was based on a hash value produced for each incoming packet.
We made sure the packets are evenly splitted among sub-graphs by choosing
an appropriate filed to hash and by generating the input data file with proper
distribution of tuples. Furthermore, we introduced two Functor operators (FS
(at the beginning) and FE (at the end)) which recorded the time of receiving
start packet and a desired last packet.

TQ.
csv S 

CD.
csv 

ND.
csv 

TD.t
xt 

(a) 

(b) 

(d) 

(e) 

result1.dat 

FS SP 

F1 F2 SI FE 

4 Times 

8 Times 

CD_1.
csv 

(c) 

2 Times 

4 Times 

2 Times 

bundle 
stream 

4 Times 

12 Times 

VWAP 

CDR 

CDR Optimized 

Twitter Topic Counter 

Micro-benchmark 

AG result1.dat 

F1 F2 SI FE AG 

S FS SP 

F1 

F1 FE 

FE AG 

AG result1.dat 

SI result1.dat 

SI 

S FS SP 

CD_4.
csv S FS SP 

F1 

F1 FE 

FE AG 

AG Result1_1.dat 

SI Result1_2.dat 

SI 

F1 

F1 FE 

FE AG 

AG Result4_1.dat 

SI Result4_2.dat 

SI 

U FS SP 

F1 

F1 

F2 

F2 

F3 

F3 

FE AG SI Result 
.dat 

S FS SP 

F1 FE SI Result1.dat 

F1 FE SI Result12.dat 

TQ.txt 

ND.txt 

TD.txt 

(f) 

(g) 

(i) 

(j) 

result1.dat 

A
G F2 

SI 

SP 
F 

result24.dat 
A
G F2 

SI 

CD.txt (h) SP 

result1.dat 

result100.dat 

100 PEs 

F1 

A
G SP result.dat 

F1 

result1.dat F1 

SP 

result24.dat F1 

24 PEs 

VWAP 

CDR 

CDR Optimized 

Twitter Topic Counter 

Micro-benchmark 

F1 

A
G 

F1 

A
G 

24 PEs AD 

AD 

CD.txt SP 

result1.dat 

result100.dat 

  A PE is created for each user 
 (0.1 million different users’ information 
processed  in 0.1 million PEs) 

F1 

A
G 

F1 

A
G 

24 PEs AD 

AD PEs for each ticker 

PEs for each topic AD 

Optimization made on AG 
  

Each AG aggregates event stream it 
receives from F1 by using a Hashtable. The  
keys of Hashtable correspond to user ids. 
(0.1 million different users’ information 
processed by 100 PEs) 

24 PEs 

SP : Extracts hash tags from status texts 
 
F1 : Keeps counts each topic count across  
       all PEs and emits an event if the topic  
       count is larger than a threshold. 
 
AG : Keeps counts for top topics and outputs  
        top N topics to result.dat 

AD : Sends events to S4 cluster 
 
SP : Splits input events to 24 F1 PEs 
 
F1 : Increments the event’s value by one 
       and stores it in results files 

AD : Sends events to S4 cluster 
 
SPF : Splits and filters events 
 
AG : Calculates Pi.Vi 

 
F2 : Calculates VWAP 
 
SI : Stores results 
 

Fig. 3. Augmentation of sample application data flow graphs on System S and S4.
Sub-figures (a) to (e) correspond to System S application while (f) to (j) correspond
to S4.

In the case of VWAP we used a data set of 1 million data tuples and we
attached last packet with trade ticker “GMD”. The time it took to receive this
packet at one of the four PEs was taken as the total runtime and throughput was
calculated. For CDR the input data file had 2 million data tuples. We measured
the time it takes to receive the last packet (i.e., 2 millionth packet) by one of the
FEs. The same method was employed to measure the runtime of CDR optimized
version.



A Performance Analysis of System S, S4, and Esper 233

The data flow graph of Twitter application is significantly different from other
augmented versions because we wanted to keep the similarity of program design
with S4 version of Twitter application. It should be noted that in CDR, CDR
Optimized, and Twitter applications measurement of the last packet was done
before the Aggregate operators. It is because Aggregate operators output only
a subset of tuples they receive. The measurements of the throughput was con-
ducted on the corresponding Aggregate operators on S4 versions; hence this en-
sured that the measurements were taken on the same operator on both System
S and S4.

How the sample applications have been implemented on S4 is shown in Figure
3 (f) to (j). For data flow graphs shown in Figure 3 (g), (h), (i), and (j) the
storing of results was done without use of a Sink (SI) PE because we can store
the results by using the code of last operator. However, we defined a separate
SI PE for VWAP since data output involved an additional step of conversion to
CSV format. Furthermore, as shown in Figure 3 (g) and (h) we developed two
versions of CDR for S4 since the original version shown in Figure 3 (g) resulted
in inefficient use of system resources by spawning 0.1 million PEs. The solution
was to reduce the number of PEs to 100 by using a hash table on each PE with
user id as the key. All the PEs were distributed equally to all nodes during the
experiments that ran on S4.

TQ.txt 

ND.txt 

TD.txt (a) 

(b) 

(c) 

(d) 

result1.dat 

O
P1 

O
P2 

SI 

SP 

result24.dat 
O
P1 

O
P2 

SI 

O
P1 

A
G SP result.dat 

O
P1 

result1.dat 
O
P1 

SP 

result24.dat 
O
P1 

VWAP 

CDR 

Twitter Topic Counter 

Micro-benchmark 

CD.txt SP 

result1.dat 

result100.dat 

O
P1 

SI 

O
P1 

SI 

SP : Extracts hash tags from status texts 
 
F1 : Keeps counts each topic count across  
       all PEs and emits an event if the topic  
       count is larger than a threshold. 
 
AG : Keeps counts for top topics and outputs  
        top N topics to result.dat 

SP : Splits input events to OP1 PEs 
 
OP1 : Increments the event’s value by one. 
        and stores it in results files 

 
SP : Splits events to different 
paths 
 

OP1 : Calculates Pi.Vi 
  

OP2 : Calculates VWAP 
 
SI : Stores results 
 

 
SP : Splits events to different 
paths 
 

OP1 : Calculates total packet 
count 
  

SI : Stores results 
 

Fig. 4. Augmentation of sample application data flow graphs for Esper

Augmented versions of the Esper applications are shown in Figure 4. Each
operator denoted by OP (e.g., OP1) is attached to a JMS server running on the
same node.

For each augmented sample program we allocated different number of oper-
ators per node as the number of worker nodes involved in the processing vary.
Each version of the sample program was run three times for both System S,
Esper, and S4. Average value of the running times was taken for calculating the
throughput to improve the accuracy of end results. Furthermore, we ran both
Nmon and Oprofile on each node associated with the experiment well before
one of the experiments during three experiment runs begin. The two daemons
were shutdown after the experiment completed keeping enough delay from the
experiment end time.



234 M. Dayarathna and T. Suzumura

5 Performance Evaluation

5.1 Job Throughput

The throughput results obtained from running the four sample applications and
the micro-benchmark based on System S, S4, and Esper are shown in Figure
5 (a), (b), and (c) respectively. Note that a tuple in System S corresponds to
an event in S4 and Esper. Since most research literature on System S uses the
term tuple to represent a data event we use the same terminology in our work.
The performance curves on Figure 5 (b) shows that S4 achieves sub-linear scal-
ability for CDR, VWAP, and micro-benchmark because doubling the number of
nodes did not result in a corresponding doubling of the system’s performance.
We have drawn two different curves for CDR on S4. The curve marked with
CDR corresponds to the data flow graph shown in Figure 3 (g) which is a naive
unoptimized version while the curve CDR Optimized is obtained by running the
optimized program shown in Figure 3 (h). The latter was created to avoid inef-
ficient resource usage as described in Section 4.4. Twitter application indicated
super-linear scalability because in each case shown in Figure 5 (b) increasing the
number of nodes increased the system performance more than twice.

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

Th
ro

ug
hp

ut
 (E

ve
nt

s\
s)

 
Th

ou
sa

nd
s 

Number of Nodes 

Throughput of four applications on S4 

CDR Optimized

VWAP

Twitter

Micro-benchmark

CDR

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t (

T
up

le
s\

s)
 

Th
ou

sa
nd

s 

Number of Nodes 

Throughput of five applications on System S 

CDR

VWAP

Micro-benchmark

CDR Optimized

Twitter

(b) (a) (c) 

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t (

E
ve

nt
s\

s)
 Th

ou
sa

nd
s 

Number of Nodes 

Throughput of four Esper Applications 

Micro-benchmark

Twitter

VWAP

CDR

Fig. 5. Throughput comparison of sample applications. (a) System S Applications (b)
S4 Applications (c) Esper Applications.

Out of the System S versions of these applications; micro-benchmark and CDR
Optimized version produced almost linear throughput curves. CDR, VWAP,
and Twitter applications indicated sub-linear scalability (saturated). However,
considering the throughput characteristics obtained from optimized version of
CDR, it is apparent that having a single source operator in the data flow graph
results in such sub-linear scalability.

Esper reported more than 1.5 times higher performance for single node ap-
plications compared to S4. This indicates that Esper is much suited for single
node event processing scenarios. However, the distributed versions of the Esper
applications did not scale well compared to S4 or System S. We believe the rea-
son for such less scalability was because of the overhead associated with object
serialization.

In order to get more details of System S, S4, and Esper (on single node) we
used Nmon and Oprofiler tools. We wanted to get profile information of Esper



A Performance Analysis of System S, S4, and Esper 235

on single node setting because it reported best performance on single node. The
results are discussed below.

5.2 CPU Usage

CPU utilization of manager nodes and worker nodes of both S4 and System S
are shown in Figure 6. We refer the node on which the S4 adapter component
run during the experiment as Manager node and the remaining nodes as Worker
nodes in the case of an S4 cluster. The node on which Streams Application
Manager (SAM) [7] resides is referred as Manager node and the other nodes are
taken as Worker nodes.

0

10

20

30

40

50

60

70

80

90

100

cdr (1) vwap
(1)

twitter
(1)

cdr (2) vwap
(2)

twitter
(2)

cdr (4) vwap
(4)

twitter
(4)

cdr (8) vwap
(8)

twitter
(8)

cdr (12) vwap
(12)

twitter
(12)

Pe
rc

en
ta

ge
 o

f C
PU

 u
se

 (%
) 

Application Name (Number of nodes) 

CPU use by Manager node of S4 while running CDR, 
VWAP and Twitter Applications 

wait

system

user

0

10

20

30

40

50

60

70

80

90

100

cdr (2) vwap (2) twitter (2) cdr (4) vwap (4) twitter (4) cdr (8) vwap (8) twitter (8) cdr (12) vwap (12) twitter
(12)

Pe
rc

en
ta

ge
 o

f C
PU

 u
as

e 
(%

) 

Application Name (Number of Nodes) 

Average CPU use by worker nodes of S4 while running CDR, 
VWAP and Twitter Applications 

wait

system

user

0

10

20

30

40

50

60

70

80

90

100

cdr (1) vwap
(1)

twitter
(1)

cdr (2) vwap
(2)

twitter
(2)

cdr (4) vwap
(4)

twitter
(4)

cdr (8) vwap
(8)

twitter
(8)

cdr (12) vwap
(12)

twitter
(12)

Pe
rc

en
ta

ge
 o

f C
PU

 u
se

 (%
) 

Application Name (Number of Nodes) 

CPU use by Manager node of System S while running 
CDR,VWAP and Twitter Applications 

wait
system
user

0

10

20

30

40

50

60

70

80

90

100

cdr (2) vwap (2) twitter (2) cdr (4) vwap (4) twitter (4) cdr (8) vwap (8) twitter (8) cdr (12) vwap (12) twitter
(12)

Pe
rc

en
ta

ge
 o

f C
PU

 u
se

 (%
) 

Application Name (Number of Nodes) 

Average CPU use by worker nodes of System S while running 
CDR, VWAP and Twitter Applications 

wait
system
user

(a) (b) 

(c) (d) 

Fig. 6. CPU usage on different nodes of System S and S4 while running CDR, VWAP,
and Twitter applications

To increase the legibility of results and to distinguish between application-level
and micro-level benchmarks we separately list the results of micro-benchmark
experiments’ CPU utilization in Figure 7.

It was clear that System S’s workers used (in Figure 6 (c), (d)) less CPU
compared to S4 with VWAP and CDR applications. However, in the case of
Twitter which operated relatively low input data rate S4 workers and manager
node reported relatively less CPU usage compared to their System S counter
parts. Furthermore, in System S a considerable amount of processing has been
performed by the system processes rather than by user processes as can be
observed from S4.

Esper on single node reported average CPU usage of 83.4%, 72.1%, 66.2%,
50.8% for VWAP, Twitter, CDR, and micro-benchmark respectively.

We used Oprofile to identify what happens in system and user processes in
the case of the CDR and micro-benchmark experiments with 12 nodes for both



236 M. Dayarathna and T. Suzumura

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 12

Pe
rc

en
ta

ge
 o

f C
PU

 u
se

 (%
) 

Number of Nodes 

CPU use by Manager node of S4 while running 
micro-benchmark 

0

10

20

30

40

50

60

70

80

90

100

2 4 8 12

Pe
rc

en
ta

ge
 o

f C
PU

 u
se

 (%
) 

Number of Nodes 

Average CPU use by worker nodes of S4 
while running micro-benchmark 

(a) (b) 

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 12

Pe
rc

en
ta

ge
 o

f C
PU

 u
se

 (%
) 

Number of Nodes 

CPU use by Manager node of System S 
while running micro-benchmark 

0

10

20

30

40

50

60

70

80

90

100

2 4 8 12

Pe
rc

en
ta

ge
 o

f C
PU

 u
se

 (%
) 

Number of Nodes 

Average CPU use by worker nodes of 
System S while running micro-benchmark 

(c) (d) 

system Legend for (a), (b), (c), (d)  user wait 

Fig. 7. CPU utilization by nodes when running micro-benchmark on System S and S4

0

10

20

30

40

50

60

70

80

90

100

sa01 sa02 sa03 sa04 sa05 sa06 sa07 sb01 sb02 sb03 sb04 sb05

Pe
rc

en
ta

ge
 o

f c
ou

nt
ed

 C
PU

_C
L

K
_U

N
H

A
LT

 
ev

en
ts

 (%
) 

Host Name 

Percentage of CPU_CLK_UNHALT events consumed by processes on each node for 
running micro-benchmark on System S using 12 Nodes 

libstreams-pe

kernel

libc

libperl

libstdc++

All System S
Components

Legend for 
(c) and (d) 

(a) (b) 

(c) (d) 

(libstreams-pe, 
libc, libstdc++, 
libperl) 

0

10

20

30

40

50

60

70

80

90

100

sa01 sa02 sa03 sa04 sa05 sa06 sa07 sb01 sb02 sb03 sb04 sb05

Pe
rc

en
ta

ge
 o

f c
ou

nt
ed

 
C

PU
_C

LK
_U

N
H

A
LT

 e
ve

nt
s (

%
) 

Host Name 

Percentage of CPU_CLK_UNHALT events consumed by processes on each 
node for running CDR on S4 using 12 Nodes 

java

kernel

0

10

20

30

40

50

60

70

80

90

100

sa01 sa02 sa03 sa04 sa05 sa06 sa07 sb01 sb02 sb03 sb04 sb05

Pe
rc

en
ta

ge
 o

f c
ou

nt
ed

 
C

PU
_C

LK
_U

N
H

A
LT

 e
ve

nt
s (

%
) 

Host name 

Percentage of CPU_CLK_UNHALT events consumed by processes on each 
node for running micro-benchmark on S4 using 12 Nodes 

java

kernel

0

10

20

30

40

50

60

70

80

90

100

sa01 sa02 sa03 sa04 sa05 sa06 sa07 sb01 sb02 sb03 sb04 sb05

Pe
rc

en
ta

ge
 o

f c
ou

nt
ed

 C
PU

_C
L

K
_U

N
H

A
LT

 
ev

en
ts

 (%
) 

Host name 

Percentage of CPU_CLK_UNHALT events consumed by processes on 
each node for running CDR on System S using 12 Nodes 

Fig. 8. Breakdown of CPU usage by processes for CDR and Micro-benchmark



A Performance Analysis of System S, S4, and Esper 237

System S and S4. The results are shown in Figure 8. Each graph of Figure 8
shows the share of CPU CLK UNHALT events used by different processes. It can be
observed that in both experiments involved with S4 (Figure 8 (a), (b)), in most
of the nodes the Java virtual machine (java) had used slightly less than 30%
of CPU CLK UNHALT events which is little less than the amount consumed by the
operating system’s kernel. However, in the case of System S when running both
CDR and micro-benchmark the System S components had consumed roughly
20% to 30% CPU CLK UNHALT events. However, unlike the case with S4 nodes’
kernel consumed 50% to 60% CPU CLK UNHALT events. This gives an explanation
for why we saw considerable amount of processing conducted by system processes
in Figure 6.

5.3 Memory Usage

Memory consumption of different nodes while running the four augmented appli-
cations on S4 and System S are shown in Figure 9. It can be observed that worker
nodes of System S consumed less memory compared to S4 workers. Twitter ap-
plication introduced relatively less data transfer rate among the nodes since it
only injected 90507 events. This is a reason for why S4 nodes indicate less mem-
ory use compared to other applications. Huge amount of memory consumption
can be observed on manager node (sa01). It should be noted that the node
named sa01 was used as the master node in all the experiments carried out in
this paper. Memory usage during Esper run on single node was 7.7GB, 5.5GB,
6.1GB, and 7.3GB micro-benchmark, Twitter, VWAP, and CDR respectively.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

sa01 sa02 sa03 sa04 sa05 sa06 sa07 sb01 sb02 sb03 sb04 sb05

M
em

or
y 

us
ag

e 
du

ri
ng

 e
xp

er
im

en
t (

M
B

) 

Node Name 

Memory usage of S4 for different applications running on 12 nodes 

CDR

VWAP

Twitter

Micro-benchmark

0

1000

2000

3000

4000

5000

6000

sa01 sa02 sa03 sa04 sa05 sa06 sa07 sb01 sb02 sb03 sb04 sb05

M
em

or
y 

us
ag

e 
du

ri
ng

 e
xp

er
im

en
t (

M
B

) 

Node Name 

Memory usage of System S for different applications running on 
12 nodes 

CDR

VWAP

Twitter

Micro-benchmark

(a) (b) 

Fig. 9. Memory consumption of sample applications on System S and S4

5.4 Network I/O

The network I/O happening between nodes of a stream processing system is a
key criterion that determines its performance. Figure 10 shows the network I/O
of different nodes when running CDR application on both S4 and System S. Note
that we compare only the external communications happening through Ethernet
port (eth0) rather than through the loop back interface (lo). When considering



238 M. Dayarathna and T. Suzumura

the eth0-write at master nodes and eth0-read at worker nodes it is apparent
that the amount of data transferred between the master and the worker nodes is
considerably larger in S4 compared to System S. For the data shown in Figure
10 the average eth0-write rate of Manager node of S4 is 60% larger than the
average eth0-write rate of System S’s Manager node. Moreover, average rate
of eth0-read at worker nodes of S4 is 120% larger than average eth0-read at
worker nodes of System S. However, both System S and S4 applications used
the same 2 million data set. This indicates that S4’s data transfer protocol
consumes more memory bandwidth compared to System S. The network I/O for
eight nodes while running CDR for both S4 and System S (shown in Figure 10
(c) and (f)) confirms the aforementioned fact.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 2 4 8 12

D
at

a 
R

at
e 

(K
B

\s
) 

Th
ou

sa
nd

s 

Number of Nodes 

Network I/O of Manager Node of S4 for running CDR 

eth0-write

lo-write

eth0-read

lo-read

0

2

4

6

8

10

12

2 4 8 12

D
at

a 
R

at
e 

(K
B

\s
) 

Th
ou

sa
nd

s 

Number of Nodes 

Average Network I/O of Worker Nodes of S4 for 
running CDR 

eth0-write

lo-write

eth0-read

lo-read

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 2 4 8 12

D
at

a 
R

at
e 

(K
B

\s
) 

Th
ou

sa
nd

s 

Number of Nodes 

Network I/O of Manager Node of System S for running 
CDR 

eth0-write
lo-write
eth0-read
lo-read

0.0

2.0

4.0

6.0

8.0

10.0

12.0

2 4 8 12

D
at

a 
R

at
e 

(K
B

\s
) 

Th
ou

sa
nd

s 

Number of Nodes 

Average Network I/O of Worker Nodes of System S 
for running CDR 

eth0-write

lo-write

eth0-read

lo-read

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

sa01 sa02 sa03 sa04 sa05 sa06 sa07 sb01

D
at

a 
ra

te
 (K

B
\s

) 
Th

ou
sa

nd
s 

Node 

Network I/O CDR on System S for 8 Nodes  

eth0-read

eth0-write

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

sa01 sa02 sa03 sa04 sa05 sa06 sa07 sb01

D
at

a 
ra

te
 (K

B
\s

) 
Th

ou
sa

nd
s 

Node 

Network I/O CDR on S4 for 8 Nodes  

eth0-read

eth0-write

(a) (b) (c) 

(d) (e) (f) 

Fig. 10. Network I/O for Manager node and Worker nodes while running CDR on S4
and System S

6 Discussion

The results we obtained by running ten different applications (totaling 70 appli-
cations considering 1,2,4,8,12 node scenarios including System S and S4 source
code optimization) on System S, S4, and Esper gave us sufficient insight to their
internals. It became clear from the throughput comparison made on Figure 5
that the stream programming models that allow/require programmers to write
optimized codes should be used carefully to maximize the throughput. E.g.,
A SPADE program written with single source operator might not scale well
in different hardware configurations. Also a S4 application that generates huge
numbers of PEs for incoming events cannot scale well with limited PEContainer

queue size. Yet introduction of multiple source operators resulted in a 3.2 times



A Performance Analysis of System S, S4, and Esper 239

speedup for CDR application on System S and a 1.34 times speed up for reduc-
ing 0.1 million Aggregator PEs of S4 to 100 PEs (See Figure 5) which indicated
possible avenues for performance improvements in different stream programming
models.

While Java based stream processing system architectures are gaining consid-
erable attention due to their portability, system designers and programmers have
to think carefully before choosing the desired solution. E.g., A light weight input
event rate job could be easily processed using S4 with few amount of PEs (E.g.,
Twitter application run on S4). However, a large scale application with high
commercial importance such as the VWAP and CDR might produce millions of
PEs since S4 dynamically generates PEs for each new data events it receives. As
with any other JVM related optimizations, setting of maximum and minimum
heap size values plays a key role in determining the performance of Java based
stream processing systems. However, in the case of S4 and Esper based stream
processing system administrators need to be vigilant about the characteristics
of the data handled by their S4/Esper applications properly (See Figure 9 (a)).

Esper applications’ throughput results indicate that scalability is one of the
key challenges faced by JMS based distributed Esper applications. While there
was a slight scalability advantage scaling from one node to two nodes for all
the benchmarks (See Figure 5), the performance tend to degrade when the ap-
plication is scaled to more nodes. We believe the reason for such behavior is
slowness in network communication and serialization. However, the Esper micro-
benchmark application had considerably higher performance compared to its S4
counterpart.

While we observed heavy use of network bandwidth by S4, by using optimized
protocols and techniques such as Java New I/O, InfiniBand Remote Direct Mem-
ory Access the conditions could be improved.

7 Conclusion

In this paper we presented a performance study on three stream processing soft-
ware. We used three popular stream processing software: IBM System S, Yahoo
S4, and EsperTech’s Esper. We ran three application benchmarks covering dif-
ferent domains of stream processing. We used a micro-benchmark to further
clarify performance of the software systems. The study used job throughput,
CPU usage, memory usage, and network usage of each node as the performance
metrics. By analyzing the throughput and profiling results we observed that
carefully designed stream applications result in high throughput. Another con-
clusion we arrived at is that choice of a stream processing system need to be
made considering factors such as performance, platform independence, and size
of the jobs. Furthermore, we understood the importance of key role played by
operating system kernel in stream processing system’s performance.

A stream processing system architecture that scales in terms of number of
PEs is a further work that is inspired by this work. In future we hope to extend
this work to a code level performance study on S4, specially to identify which
components, code segments are most resource intensive.



240 M. Dayarathna and T. Suzumura

Acknowledgments. This research was supported by the Japan Science and
Technology Agency’s CREST project titled “Development of System Software
Technologies for post-Peta Scale High Performance Computing”.

References

1. Abadi, D.J., et al.: Aurora: a new model and architecture for data stream manage-
ment. The VLDB Journal 12, 120–139 (2003)

2. Andrade, H., et al.: Scale-up strategies for processing high-rate data streams in
systems. In: ICDE 2009 (2009)

3. Arasu, A., et al.: Linear road: a stream data management benchmark. In: VLDB
2004, pp. 480–491 (2004)

4. EsperTech. Esper - Complex Event Processing (February 2012),
http://esper.codehaus.org/

5. Etzion, O., Niblett, P.: Event Processing in Action (2011)
6. IBM. Ibm infosphere streams version 1.2.0.1: Programming model and language
reference (February 2010)

7. IBM. Ibm infosphere streams version 1.2.1: Installation and administration guide
(October 2010)

8. Mendes, M.R.N., Bizarro, P., Marques, P.: A performance study of event process-
ing systems. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895,
pp. 221–236. Springer, Heidelberg (2009)

9. Neumeyer, L., et al.: S4: Distributed stream computing platform. In: KDCloud
2010 (December 2010)

10. Nmon. nmon for Linux (June 2011), http://nmon.sourceforge.net
11. Parekh, S., et al.: Characterizing, constructing and managing resource usage

profiles of systems applications: challenges and experience. In: CIKM 2009,
pp. 1177–1186 (2009)

12. Snyder, B., Bosanac, D., Davies, R.: ActiveMQ in Action (2011)
13. SourceForge. OProfile - A System Profiler for Linux (June 2011),

http://oprofile.sourceforge.net

14. Suzumura, T., Yasue, T., Onodera, T.: Scalable performance of systems for extract-
transform-load processing. In: SYSTOR 2010 (2010)

15. The STREAM Group. Stream: The stanford stream data manager. Technical Re-
port 2003-21 (2003)

16. Turaga, D., et al.: Design principles for developing stream processing applications.
In: Software: Practice and Experience (August 2010)

17. Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D., Wagle, R., Wu, K.-
L., Fleischer, L.K.: SODA: An optimizing scheduler for large-scale stream-based
distributed computer systems. In: Issarny, V., Schantz, R. (eds.) Middleware 2008.
LNCS, vol. 5346, pp. 306–325. Springer, Heidelberg (2008)

18. Zeitler, E., Risch, T.: Scalable splitting of massive data streams. In: Kitagawa,
H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982,
pp. 184–198. Springer, Heidelberg (2010)

19. Zhang, X.J., et al.: Workload characterization for operator-based distributed
stream processing applications. In: DEBS 2010, pp. 235–247 (2010)

http://esper.codehaus.org/
http://nmon.sourceforge.net
http://oprofile.sourceforge.net


Effect of Codeword Placement on the Reliability

of Erasure Coded Data Storage Systems

Vinodh Venkatesan and Ilias Iliadis

IBM Research – Zurich, 8803 Rüschlikon, Switzerland
{ven,ili}@zurich.ibm.com

Abstract. Modern data storage systems employ advanced erasure codes
to protect data from storage node failures because of their ability to pro-
vide high data reliability at high storage efficiency. In contrast to previous
studies, we consider the practical case where the length of codewords in
an erasure coded system is much smaller than the number of storage
nodes in the system. In this case, there exists a large number of pos-
sible ways in which different codewords can be stored across the nodes
of the system. In this paper, it is shown that a declustered placement
of codewords can significantly improve system reliability compared to
other placement schemes. A detailed reliability analysis is presented that
accounts for the rebuild times involved, the amounts of partially rebuilt
data when additional nodes fail during rebuild, and an intelligent rebuild
process that attempts to rebuild the most critical codewords first.

1 Introduction

Modern data storage systems are complex in nature consisting of several com-
ponents of hardware and software. To perform a reliability analysis, we require a
model that abstracts the reliability behavior of this complex system and lends it-
self to theoretical analysis, but at the same time, preserves the core features that
affect the system failures and rebuilds. In this article, we develop and describe
a relatively simple yet powerful model that captures the essential reliability be-
havior of an erasure coded data storage system. Using this model, we show the
effect of codeword placement on the system reliability.

As an alternative to replication, storage systems employ advanced erasure
codes to protect data from storage node failures because of their ability to pro-
vide high data reliability as well as high storage efficiency. The use of such
erasure codes can be dated back to as early as the 1980s when they were ap-
plied in systems with redundant arrays of inexpensive disks (RAID) [1, 2]. When
nodes fail, storage systems try to maintain the redundancy through node rebuild
processes that use the data from the surviving nodes to reconstruct the lost data
in new replacement nodes. There exists a non-zero probability of further node
failures during rebuild that can cause the system to lose enough redundant data
to make some of the originally stored data irrecoverable. The average amount
of time taken by the system to end up in irrecoverable data loss, also known as
the mean time to data loss, or MTTDL, is a measure of reliability commonly

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 241–257, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



242 V. Venkatesan and I. Iliadis

used for comparing different coding schemes and studying the effect of various
design parameters [3]. The length of codewords in an erasure coded system is
typically much smaller than the number of storage nodes in the system (e.g.
RAID-6 typically uses a codeword length of 16). This implies that there exist
a large number of possible ways in which codewords can be stored across the
nodes of the system. However, many reliability analyses in the literature are
performed under the assumption that the number of storage nodes is equal to
the codeword length [1, 2, 4]. In addition, some of the reliability analyses do not
account for the time taken to rebuild [4–7]. For replication-based systems, it is
well-known that the MTTDL is significantly affected by the choice of placement
of replicas [5, 6, 8–10]. In particular, it is known that a certain replica placement
scheme, known as declustered placement, can provide significantly higher relia-
bility than other placement schemes, especially for large storage systems [9]. The
intuition behind this is that the declustered placement scheme spreads replicas
of data across more number of devices thereby reducing the amount of critical
data (i.e., the amount of data with the least number of surviving replicas) when
multiple node failures occur. An intelligent rebuild scheme that always rebuilds
the critical data first reduces the risk of data losing all its replicas, and hence
the risk of data loss in the system.

This paper addresses the following practical questions regarding erasure coded
systems. How does the MTTDL of a system depend on the codeword length and
the number of parities in the erasure code? For a given codeword length and a
given number of parities, how does the codeword placement affect the MTTDL
of a system? Do the results on the effect of replica placement on MTTDL in
replication-based systems extend to the effect of codeword placement on the
MTTDL in erasure coded systems? How does the trade-off between storage ef-
ficiency and MTTDL depend on the codeword placement scheme?

The key contributions of this article are the following. We extend previous
work in the literature by considering the general case of erasure coded systems,
which includes replication-based systems. A new model enhancing previous ones
is developed here to evaluate the MTTDL of erasure coded systems. The model
developed captures the effect of the various system parameters as well as the
effect of various codeword placement schemes. The reliability analysis is detailed,
in the sense that it accounts for the rebuild times involved, the amounts of
partially rebuilt data when additional nodes fail during rebuild, and and an
intelligent rebuild process that attempts to rebuild the most critical codewords
first. The validity of the model is confirmed by simulation.

The remainder of this article is organized as follows: Section 3 describes the
system model considered. Section 4 describes the methodology of reliability anal-
ysis used. Using the methodology described in the previous section, Section 5
evaluates the reliability of clustered and declustered placement schemes. Sec-
tion 6 provides numerical results and discusses the effect of codeword placement
on reliability. Section 7 compares simulation-based MTTDL values with the the-
oretical predictions. Finally, the paper is concluded in Section 8.



Effect of Codeword Placement on the Reliability 243

Table 1. Parameters of a storage system

c amount of data stored on each storage node (bytes)
n number of storage nodes
cμ average read-write rebuild bandwidth of a storage node (bytes/s)
1/λ mean time to failure of a storage node (s)
1/μ mean time to read/write c amount of data from/to a node (s)

2 Related Work

A comparison between erasure codes and replication in terms of availability in
peer-to-peer systems has been presented in [11]. It has been well-established that
erasure codes can provide much higher reliability than replication for the same
level of storage efficiency. The trade-off, however, is in the performance as erasure
codes may require Galois field arithmetic for encoding and decoding. Therefore,
many recent works have laid emphasis on the development of new codes as
well as new encoding and decoding techniques to improve the performance of
erasure coded systems (see [12] and references therein). Some works have also
addressed the reliability assessment of erasure codes through simulation [13]. One
thing that is common in all these works is that they essentially consider the case
where the codeword length is equal to the number of nodes. In contrast, our work
provides a unified framework for assessing the reliability of erasure coded systems
where the codeword length may be larger than the number of nodes, in which
case, there exist many possible ways of storing each codeword across the nodes
in the system. This is a practically relevant case as, for performance reasons, the
lengths of the erasure codes used in real storage systems are kept constant and
small, whereas the number of nodes in the system grows with the system capacity.
For replication-based systems, it was shown that the reliability is significantly
affected by the choice of placement of replicas [9, 10, 14]. In this article, we extend
these results to a more general case of maximum distance separable (MDS)
erasure codes. To the best of our knowledge, this is the first work exploring the
space of codeword placement for erasure codes in a homogeneous environment
through both theory and simulation, which shows that codeword placement can
have a significant impact on reliability.

3 System Model

The storage system is modeled as a collection of n storage nodes each of which
stores c amount of data. In addition to the space required for the c amount of
data that is stored, each node is assumed to have sufficient spare space that may
be used for a distributed rebuild process (see Section 3.5) when other nodes fail.
The main parameters used in the storage system model are listed in Table 1.



244 V. Venkatesan and I. Iliadis

3.1 Storage Node

Each storage node is a fairly complex entity that comprises of disks, memory,
processor, network interface, and power supply. Any of these components can
fail and lead to the node either becoming temporarily unavailable, or failed. It
is assumed that there is some mechanism, such as regular pinging of each node,
in place to detect node failures as they occur.

Node Unavailability vs. Node Failure: As noted in [15], more than 90% of
the node unavailabilities are transient and do not last for more than 15 minutes.
As most of the unavailabilities are transient, a node rebuild process is initiated
only if a node stays unavailable for more than 15 minutes [15]. In other words,
node unavailabilities lasting longer than a certain amount of time are treated
as node failures. The primary focus of this paper is on node failures. Node
unavailabilities have been observed to exhibit strong correlation that may be
due to short power outages in the datacenter, or part of a rolling reboot or
upgrade activity at the datacenter management layer [15]. However, there is
no indication that correlations exist among node failures. Therefore, for ease of
analysis, we assume that node failures are independent.

3.2 Redundancy

In erasure coded systems, the user data is divided into blocks (or symbols) of a
fixed size (e.g. sector size of 512 bytes) and each set of l blocks is encoded into
a set of m (> l) blocks, called a codeword, before storing them on m distinct
nodes. In this paper, we consider (l,m)-MDS codes, in which the encoding is
done, such that, any subset of l symbols of a codeword can be used to decode
the l symbols of user data corresponding to that codeword. Replication-based
systems, with a given replication factor r, are a subset of erasure coded systems
where the parameters l and m are equal to 1 and r, respectively.

3.3 Codeword Placement

In a large storage system, the number of nodes, n, is typically much larger than
the codeword length, m. Therefore, there exist many ways in which a codeword
of m blocks can be stored across n nodes.

Clustered Placement: If n is divisible bym, one simple way to place codewords
would be to divide the n nodes into disjoint sets, of m nodes each, and store
each codeword across the nodes of a particular set. We refer to this type of data
placement as clustered placement, and each of these disjoint sets of nodes as clus-
ters. Note that we disregard the various permutations of the m symbols in each
codeword, e.g., we consider both RAID-4 and RAID-5 to have clustered place-
ment, although they have different placement of parities. In such a placement
scheme, it can be seen that no cluster stores the redundancies corresponding to
the data on another cluster. The entire storage system can essentially be mod-
eled as consisting of n/m independent clusters. Reliability behavior of a cluster



Effect of Codeword Placement on the Reliability 245

under exponential failure and rebuild time distributions is well-known [1, 2, 16].
To the best of our knowledge, all prior work in the reliability analysis of erasure
coded systems have solely been for clustered placement (see [12] and references
therein).

Declustered Placement: A placement scheme that can potentially offer far
higher reliability than the clustered placement scheme, especially as the number
of nodes in the system grows, is the declustered placement scheme. There exist(
n
m

)
different ways of placing m symbols of each codeword across n nodes. In this

scheme, all these
(
n
m

)
possible ways are equally used to store all the codewords in

the system. It can be seen that, in such a placement scheme, when a node fails,
the redundancy corresponding to the data on the failed node is equally spread
across all the surviving nodes (as opposed to clustered placement in which it is
spread only across the surviving nodes of the corresponding cluster). This allows
one to use the rebuild read-write bandwidth available at all surviving nodes to
do a distributed rebuild in parallel, which can be extremely fast when the number
of nodes is large. As it turns out, this is one of the main reasons why declustered
placement can offer significantly higher reliability than clustered placement for
large systems.

Spread Factor: A broader set of placement schemes can be defined using the
concept of spread factor. For each node in the system, its redundancy spread
factor is defined as the number of nodes over which the data on that node
and its corresponding redundant data are spread. In an erasure coded system,
when a node fails, its spread factor determines the number of nodes which have
the redundancy corresponding to the lost data, and this in turn determines
the degree of parallelism that can be used in rebuilding the data lost by that
node. In this paper, we will consider symmetric placement schemes in which
the spread factor of each node is the same, denoted by k. Two examples of
such symmetric placement schemes are the clustered and declustered placement
schemes for which the spread factor, k, is equal to m and n, respectively. A
number of different placement schemes can be generated by varying the spread
factor, k, between m and n.

3.4 Node Failure

Based on the discussion in Section 3.1, the times to node failures are modeled
as independent and identically distributed random variables. Denote the cumu-
lative distribution function of the times to node failure by Fλ, with mean, 1/λ.
An interesting result of this paper is that the mean time to data loss of an era-
sure coded storage system tends to be invariant within a large class of failure
time distributions, that includes the exponential distribution and, most impor-
tantly, real-world distributions like Weibull and gamma. A similar result has
been established earlier for replication-based systems [14].



246 V. Venkatesan and I. Iliadis

cμ cμ cμ

c

m−1
n−1

c m−1
n−1

c m−1
n−1

c

distributed rebuild from n− 1 nodes

– most-exposed data

– other data

– spare space

Fig. 1. Distributed rebuild in declustered placement

3.5 Node Rebuild

When storage nodes fail, codewords lose some of their symbols and this leads to a
reduction in data redundancy. The system attempts to maintain the redundancy
of the system by reconstructing the lost codeword symbols using the surviving
symbols of the affected codewords.

Codeword Reconstruction: For a system using an (l,m)-MDS code for redun-
dancy, a simple way to reconstruct a codeword that has lost up to m− l symbols
is to read any of its l symbols, decode the original l user data blocks, re-encode
these l user data blocks using the (l,m)-MDS code, and recover the lost code-
word symbols. The reconstruction process takes an amount of time that depends
on the amount of data to read, the time taken for decoding and re-encoding this
data, and the amount of data to write. Typically the amount of time taken for
decoding and re-encoding this data is much smaller than the time taken to read
the required data and write the re-encoded data. It is assumed that the decoding
and re-encoding of data is done in a streaming fashion, that is, as the data is
being read, the decoding and re-encoding is assumed to be done on-the-fly which
converts a stream of input data to a stream of output data. This implies that the
time taken for the reconstruction is equal to the time taken to stream the input
and output data. Alternative methods of reconstruction based on regenerating
codes have been proposed as a solution to reduce the amount of data transferred
over the storage network during reconstruction (see [17] and references therein).
The effect of these methods on the system reliability is outside the scope of this
paper and is a subject of further investigation.

Intelligent Rebuild: In an intelligent rebuild process, the system attempts
to first recover the codewords of the user data that have the least number of
codeword symbols left. These codewords are also referred to as the most-exposed
codewords. In contrast to intelligent rebuild, one may consider a blind rebuild,



Effect of Codeword Placement on the Reliability 247

where lost codeword symbols are being recovered in an order that is not specif-
ically aimed at recovering the codewords with the least number of surviving
symbols first. Clearly, such a blind rebuild is more vulnerable to data loss. So,
in the remainder of the paper, we consider only intelligent rebuild.

Distributed Rebuild: When a storage node fails, all the codewords that had
one of their symbols stored on this node are affected. For a symmetric placement
scheme with spread factor k, m ≤ k ≤ n, the surviving symbols of the affected
codewords are equally distributed across k − 1 other surviving nodes of the
system.

For clustered placement, i.e., k = m, the surviving symbols are present in the
m− 1 surviving nodes of the affected cluster. The lost symbols are recovered by
reading the required codeword symbols from a set of l nodes of the corresponding
surviving cluster. The lost symbols are reconstructed on the fly and directly
written to a new replacement node.

For other placement schemes, i.e., m+ 1 ≤ k ≤ n, the surviving symbols are
present in k−1 (≥ m) surviving nodes. Performing a rebuild similar to clustered
placement would, in general, degrade reliability for these placement schemes.
This is because, although the rebuild time would be the same (as the same
amount of data is written to the new replacement node), there are more nodes
(k − 1 > m − 1) that contain the surviving symbols of the affected codewords
The failure of any of these nodes can result in additional symbols of the affected
codewords being lost. We therefore consider instead distributed rebuild for these
placement schemes as illustrated in Fig. 1. Distributed rebuild involves reading
the required codeword symbols from all the k − 1 nodes, computing the lost
codeword symbols, and writing them to the spare space of these k − 1 nodes
in such a way that no symbol is written to a node in which another symbol
corresponding to the same codeword is already present. Once all lost codeword
symbols are recovered, they are transferred to a new replacement node. Due to
the parallel nature of distributed rebuild, the rebuild times can be extremely
short for large storage systems. Such a distributed rebuild process is in fact used
in practical systems [18].

Node Rebuild Bandwidth: During the rebuild process, an average read-write
bandwidth of cμ bytes/s is assumed to be reserved at each node for the rebuild.
This implies that the average time required to read (or write) c amount of data
from (or to) a node is equal to 1/μ. The average rebuild bandwidth is usually
only a fraction of the total bandwidth available at each node; the remainder is
being used to serve user requests. Denote the cumulative distribution function
of the time required to read (or write) c amount of data from (or to) a node by
Gμ, and its corresponding probability density function by gμ.

3.6 Failure and Rebuild Time Distributions

It is known that real-world storage nodes are generally reliable, that is, the mean
time to read all contents of a node (which is typically of the order of tens of hours)
is much smaller than the mean time to failure of a node (which is typically at



248 V. Venkatesan and I. Iliadis

least of the order of thousands of hours). So, it follows that generally reliable
nodes satisfy the following condition:

1/μ* 1/λ, or λ/μ* 1. (1)

This assumption is holds for each node. The effect of this assumption on a col-
lection of nodes is captured in the analysis. In the subsequent analysis, this
condition implies that terms involving powers of λ/μ greater than one are neg-
ligible compared to λ/μ and can be ignored. Let the cumulative distribution
functions Fλ and Gμ satisfy the following condition:

μ

∫ ∞

0

Fλ(t)(1 −Gμ(t))dt* 1, with
λ

μ
* 1. (2)

The results of this paper are derived for the class of failure and rebuild distri-
butions that satisfy the above condition. In particular, the mean time to data
loss of a system is shown to be insensitive to the failure distributions within
this class. This result is of great importance because it turns out that this con-
dition holds for a wide variety of failure and rebuild distributions, including,
most importantly, distributions that are seen in real-world storage systems [14].
Condition (2) can also be stated in the following alternate way [14]:

Fλ(t)* 1 when Gμ(t) < 1 and λ* μ, (3)

μ(1 −Gμ(t))* 1 when Fλ(t) > 0 and μ+ λ. (4)

4 Reliability Analysis

The reliability analysis in this article uses a methodology similar to [9, 10, 14]. It
involves a series of approximations, each of which is justified for generally reliable
nodes with failure and rebuild time distributions satisfying (2). The theoretical
estimates of mean times to data loss predicted using this methodology have also
been shown to match with simulations, which avoid all the approximations made
in the methodology, over a wide range of system parameters [9, 10, 14].

4.1 Mean Time to Data Loss (MTTDL)

In an erasure coded system, a data loss is said to have occurred when sufficient
number of blocks of at least one codeword have been lost, rendering the code-
word(s) undecodeable. The average time taken for the system to end up in data
loss, also referred to as the mean time to data loss, or MTTDL, is a commonly
used measure that is useful for assessing trade-offs, for comparing schemes, and
for estimating the effect of the various parameters on the system reliability [3].

At any point of time, the system can be thought to be in one of two modes:
fully-operational mode or rebuild mode. During the fully-operational mode, all
data in the system has the original amount of redundancy and there is no active
rebuild process. During the rebuild mode, some data in the system has less than



Effect of Codeword Placement on the Reliability 249

the original amount of redundancy and there is an active rebuild process that is
trying to restore the lost redundancy. A transition from fully-operational mode
to rebuild mode occurs when a node fails; we refer to this node failure that
causes a transition from the fully-operational mode to the rebuild mode as a
first-node failure. Following a first-node failure, a complex sequence of rebuilds
and subsequent node failures may occur, which eventually lead the system either
to irrecoverable data loss, with probability PDL, or back to the original fully-
operational mode by restoring all codeword symbols, with probability 1− PDL.
In other words, the probability of data loss in the rebuild mode, PDL, is defined
as follows:

PDL := Pr

{
data loss occurs before returning
to the fully-operational mode

∣∣∣∣ system enters rebuild mode

}
.(5)

Since the rebuild times are much shorter than the times to failure, when com-
puting the time to data loss, the time spent by the system in rebuild mode can
be ignored. If we ignore the rebuild times, the system timeline consists of one
first-node failure after another, each of which can end up in data loss with a
probability PDL. It can be shown that the mean time between two successive
first-node failures, converges to 1/(nλ) [14] and that the MTTDL is given by
the following proposition. In the remainder of this article, by A ≈ B, we mean
limλ/μ→0 A/B = 1.

Proposition 1. Consider a system with generally reliable nodes whose failure
and rebuild distributions, Fλ and Gμ, satisfy (2). Its MTTDL is given by

MTTDL ≈ 1/(nλPDL), (6)

where PDL is defined in (5). The relative error in the approximation tends to
zero as λ/μ tends to zero.

Proof. See [14]. ��

4.2 Probability of Data Loss in Rebuild Mode (PDL)

This section shows how PDL is estimated so that MTTDL can be obtained using
Proposition 1.

Exposure Levels: Consider an erasure coded storage system with an (l,m)-
MDS code. Let

r̃ := m− l+ 1. (7)

We model the system as evolving from one exposure level to another as nodes fail
and rebuilds complete. At time t ≥ 0, let Dj(t) be the amount of user data that
have lost j symbols of their corresponding codewords, for 0 ≤ j ≤ r̃. At time t,
the system is said to be in exposure level e, 0 ≤ e ≤ r̃, if e = maxDj(t)>0 j.

Direct Path Approximation: A path to data loss following a first-node-failure
event is a sequence of exposure level transitions that begins in exposure level 1



250 V. Venkatesan and I. Iliadis

and ends in exposure level r̃ (data loss) without going back to exposure level 0,
that is, for some j ≥ r, a sequence of j− 1 exposure level transitions e1 → e2 →
· · · → ej such that e1 = 1, ej = r̃, e2, · · · , ej−1 ∈ {1, · · · , r̃−1}, and |ei−ei−1| =
1, ∀ i = 2, · · · , j. To estimate PDL, we need to estimate the probability of the
union of all such paths to data loss following a first-node failure. As the set of
events that can occur between exposure level 1 and exposure level r̃ is complex,
estimating PDL is a non-trivial problem. Therefore, we proceed by considering
the direct path of successive transitions from exposure levels 1 to r̃. Denote the
probability of the direct path to data loss by PDL,direct, that is,

PDL,direct := Pr{exposure level path 1→ 2→ · · · → r̃}, (8)

and approximate PDL by PDL,direct using the following proposition.

Proposition 2. Consider a system with generally reliable nodes whose failure
and rebuild distributions, Fλ and Gμ, satisfy (2). Its PDL is given by

PDL ≈ PDL,direct, (9)

The relative error in the approximation tends to zero as λ/μ tends to zero.

Proof. See [9]. ��

4.3 Probability of the Direct Path to Data Loss (PDL,direct)

Consider the direct path to data loss, that is, the path 1 → 2 → · · · → r̃
through the exposure levels. At each exposure level, the intelligent rebuild pro-
cess attempts to rebuild the most-exposed data, that is, the data with the least
number of codeword symbols left (see Section 3.5). Let the rebuild times of
the most-exposed data at each exposure level in this path be denoted by Re,
e = 1, · · · , r̃ − 1. Let te, e = 2, · · · , r̃, be the times of transitions from exposure
level e − 1 to e following a first-node failure. Let ñe be the number of nodes in
exposure level e whose failure before the rebuild of most-exposed data causes
an exposure level transition to level e+ 1. Denote the time period from te until

the next failure of node i by E
(i)
te . The time, Fe, until the first failure among the

ñe−1 nodes that causes the system to enter exposure level e from e− 1, is

Fe := min
i∈{1,··· ,ñe−1}

E
(i)
te−1

, e = 2, · · · , r̃. (10)

At exposure level e, let αe be the fraction of the rebuild time Re still left when
a node failure occurs causing an exposure level transition, that is, let

αe := (Re − Fe+1)/Re, e = 1, · · · , r̃ − 2. (11)

It can be shown that αe is uniformly distributed in (0, 1) (see [19, Lemma 2]).
Now, denote by 1/μe the following conditional means of Re:

1/μe := E[Re|Re−1, αe−1], e = 2, · · · , r − 1. (12)



Effect of Codeword Placement on the Reliability 251

The actual values of 1/μe depend on the codeword placement and this will be
further discussed in later sections of this paper. Now, the distribution of Re

given Re−1 and αe−1 could be modeled in several ways. We consider the model
B presented in [14], namely,

Re|Re−1, αe−1 = 1/μe w.p. 1 for e = 2, · · · , r̃ − 1. (13)

This model assumes that the rebuild time Re is determined completely by Re−1

and αe−1 and no new randomness is introduced in the rebuild time of exposure
level e. For further discussion on this model see [14]. Under this model, the
probability of the direct path to data loss is given by the following proposition.

Proposition 3. Consider a system with generally reliable nodes whose failure
and rebuild distributions, Fλ and Gμ, satisfy (2). Consider the direct path 1 →
2 → · · · → r̃ through the exposure levels in which the rebuild times Re satisfy
(13). The probability of this direct path is given by

PDL,direct ≈ λr̃−1 × ñ1 · · · ñr̃−1

∫ ∞

τ1=0

· · ·
∫ ∞

τr̃−1=0

∫ 1

a1=0

· · ·
∫ 1

ar̃−2=0

(
τ1 · · · τr̃−1gμ1(τ1)

× δ

(
τ2 −

1

μ2

)
· · · δ

(
τr̃−1 −

1

μr̃−1

)
dar̃−2 · · · da1dτr̃−1 · · · dτ1

)
. (14)

The relative error in the approximation tends to zero as λ/μ tends to zero.

Proof. See [19, Appendix A]. ��

5 Effect of Codeword Placement on Reliability

In this section, we consider different codeword placement schemes as discussed
in Section 3.3. We wish to estimate their reliability in terms of their MTTDL
and understand how codeword placement affects data reliability. To use the
expression (14) for PDL,direct, we need to compute the conditional means of
rebuild times in each exposure level, 1/μe, e = 1, · · · , r̃ − 1, and the number of
nodes whose failure can cause a transition to the next exposure level, ñe, e =
1, · · · , r̃ − 1. The values of these quantities depend on the underlying codeword
placement and the nature of the rebuild process used. Now, denote the kth raw
moment of the rebuild distributionGμ byMk(Gμ). The MTTDL of clustered and
declustered codeword placement schemes are given by the following propositions.

Proposition 4. Consider a storage system using clustered codeword placement
with generally reliable nodes whose failure and rebuild distributions satisfy (2).
Its mean time to data loss is given by

MTTDLclus. ≈ μm−l

nλm−l+1

1(
m−1
l−1

)Mm−l
1 (Gμ)

Mm−l(Gμ)
. (15)

The relative error in the above approximation tends to zero as λ/μ tends to zero.



252 V. Venkatesan and I. Iliadis

Proof. See [19, Appendix B]. ��

Proposition 5. Consider a storage system using declustered codeword place-
ment with generally reliable nodes whose failure and rebuild distributions satisfy
(2). Its mean time to data loss is given by

MTTDLdeclus. ≈ μm−l

nλm−l+1

(m− l)!

(l + 1)m−l

Mm−l
1

(
Gn−1

l+1 μ

)
Mm−l

(
Gn−1

l+1 μ

) m−l−1∏
e=1

(
n− e

m− e

)m−l−e

.(16)

The relative error in the above approximation tends to zero as λ/μ tends to zero.

Proof. See [19, Appendix C]. ��

Remark 1. The expressions for MTTDL obtained in this paper are better ap-
proximations for smaller values of λ/μ. This implies that, if simulation-based
MTTDL values match the theoretically predicted MTTDL values for a certain
value of λ/μ, it will also match for all smaller values of λ/μ. This fact is used
in Section 7, where simulations are shown to match theory for values of λ/μ
that are much larger than those observed in real-world storage systems, thereby
establishing the applicability of the theoretical results to real-world storage
systems.

6 Numerical Results

In this section, we compare the MTTDLs of (l,m)-MDS code based systems for
clustered and declustered placement schemes for various choice of parameters l
and m with the help of figures.

Single Parity Codes: Single parity (l,m)-MDS codes correspond to the case
wherem−l = 1. When l = 1, this corresponds to two-way replication. For higher
values of l, this corresponds to RAID-5 [1]. It is observed that the MTTDL of
single parity codes under both placement schemes are directly proportional to
the square of the mean time to node failure, 1/λ, and inversely proportional
to the mean time to read all contents of a node during rebuild, 1/μ. In addi-
tion, the MTTDL values are seen to be independent of the underlying rebuild
distribution. The result for clustered placement is well known since the 1980s
when the reliability of RAID-5 systems were studied [1]. Fig. 2(a) illustrates the
MTTDL behavior of single parity codes with respect to the number of nodes in
the system. It is seen that the MTTDL is inversely proportional to the number
of nodes for both clustered and declustered placement schemes.

Fig. 2(b) shows how the MTTDL varies as a function of both the codeword
length m and the spread factor k for single parity codes, for a given number
of nodes n. In Fig. 2(b), clustered placement corresponds to the cases where
the spread factor is equal to the codeword length, and declustered placement
corresponds to the case where the spread factor is equal to the number of nodes.
It is observed that the clustered placement scheme has slightly higher MTTDL



Effect of Codeword Placement on the Reliability 253

10
0

10
1

10
2

10
2

10
3

10
4

10
5

Number of nodes

M
T

T
D

L
 (

in
 d

ay
s)

 

 

Single Parity Codes
1/λ = 30000 h
1/μ = 30 h

(1,2)−MDS, clustered
(1,2)−MDS, declustered
(3,4)−MDS, clustered
(3,4)−MDS, declustered
(7,8)−MDS, clustered
(7,8)−MDS, declustered
(15,16)−MDS, clustered
(15,16)−MDS, declustered

(a) MTTDL vs number of nodes n

2
4

6
8

10
12

14
16

18
20

2
4

6
8

10

1.0e+003

3.2e+003

1.0e+004

3.2e+004

1.0e+005

Spread Factor 

Codeword Length

M
T

T
D

L
 (

in
 d

ay
s)

Single Parity Codes
1/λ = 30000 h
1/μ = 30 h
n = 20 nodes

(b) MTTDL vs codeword length m and
spread factor k for n = 20

Fig. 2. MTTDL for single parity codes with 1/λ = 30000 h and 1/μ = 30 h

values than other placement schemes, and that increasing the codeword length
decreases the MTTDL.

Double Parity Codes: It is observed that the MTTDL of double parity codes
under both placement schemes are directly proportional to the cube of the mean
time to node failure, 1/λ, and inversely proportional to the square of the mean
time to read all contents of a node during rebuild, 1/μ. The result for clustered
placement is well known in the context of RAID-6 systems [2].

In contrast to single parity codes, it is seen that the MTTDL of double parity
codes depends on rebuild distribution. For deterministic rebuild times, the ra-

tios M2
1 (Gμ)/M2(Gμ) and M2

1

(
G n−1

m−1μ

)
/M2

(
G n−1

m−1μ

)
become one. However,

for random rebuild times, these ratios are upper-bounded by one by Jensen’s
inequality. The MTTDL of a system using a (2, 4)-MDS code is plotted against
the number of nodes in the system for clustered and declustered placements, as
well as for deterministic and exponential rebuild times, in Fig. 3(a). It is ob-
served that the rebuild time distribution scales down the MTTDL, but leaves
the behavior with respect to the number of nodes, n, unaffected.

In contrast to single parity codes, the difference in MTTDL between the two
schemes can be significant, depending on the number of nodes, n, in the system.
This is because, the MTTDL of clustered placement is inversely proportional
to n, whereas the MTTDL of declustered placement is roughly invariant with
respect to n. This is illustrated in Fig. 3(b) in which MTTDL of double parity
codes is plotted against the number of nodes, n, in a log-log scale. The lines
corresponding to clustered placement have a slope of −1, whereas the lines cor-
responding to declustered placement have a slope of roughly 0. It is also observed
from Fig. 3(b) that longer codes, which are more desirable as they have higher
storage efficiency, can have better MTTDL with declustered placement than
shorter codes with clustered placement for large systems. This is seen, for exam-
ple, by observing the lines corresponding to (4, 6)-MDS code with declustered
placement and (1, 3)-MDS code with clustered placement, for n > 100. Just like



254 V. Venkatesan and I. Iliadis

10
0

10
1

10
2

10
6

10
7

10
8

Number of nodes

M
T

T
D

L
 (

in
 d

ay
s)

 

 

(2, 4)-MDS code
1/λ = 30000 h
1/μ = 30 h

clustered, deterministic rebuild
declustered, deterministic rebuild
clustered, exponential rebuild
declustered, exponential rebuild

(a) MTTDL vs number of nodes n for a
(2, 4)-MDS code illustrating the effect of
rebuild distribution

10
0

10
1

10
2

10
4

10
5

10
6

10
7

10
8

10
9

Number of nodes

M
T

T
D

L
 (

in
 d

ay
s)

 

 

Double Parity Codes
1/λ = 30000 h
1/μ = 30 h

(1,3)−MDS, clustered
(1,3)−MDS, declustered
(4,6)−MDS, clustered
(4,6)−MDS, declustered
(10,12)−MDS, clustered
(10,12)−MDS, declustered
(22,24)−MDS, clustered
(22,24)−MDS, declustered

(b) MTTDL vs number of nodes n for
various double parity codes

3
6

9
12

15
18

21
24

27
30

3
6

9
12

15

1.0e+005

1.0e+006

1.0e+007

1.0e+008

1.0e+009

Spread Factor 

Codeword Length

M
T

T
D

L
 (

in
 d

ay
s)

Double Parity Codes
1/λ = 30000 h
1/μ = 30 h
n = 30 nodes

(c) MTTDL vs codeword length m and
spread factor k for n = 30

Fig. 3. MTTDL for double parity codes with 1/λ = 30000 h and 1/μ = 30 h

in the case of single parity codes, the difference in MTTDL between clustered
and declustered is observed to be smaller for larger values of the codeword length,
m. Fig. 3(c) shows how the MTTDL varies as a function of both the codeword
length m and the spread factor k for double parity codes, for a given number of
nodes, n.

Codes with Higher Number of Parities: Comparing the MTTDL values
of clustered placement in (15) with those of declustered placement in (16), we
observe that they are both directly proportional to the (m− l+1)th power of the
mean time to node failure 1/λ, and inversely proportional to the (m− l) power
of the mean time to node rebuild 1/μ. This is a general trend in the MTTDL
behavior of data storage systems. However, in contrast to clustered placement,
which always scales inversely proportional to the number of nodes, the MTTDL
of declustered placement is observed to scale differently with the number of nodes
for different values of r̃ = m − l + 1. In particular, for codes with more than
two parities, the MTTDL of declustered placement increases with n. This shows
that, by changing the codeword placement scheme, one can influence the scaling
of MTTDL with respect to the number of nodes n, resulting in a tremendous
improvement in reliability for large storage systems.



Effect of Codeword Placement on the Reliability 255

Table 2. Range of values of different simulation parameters

Parameter Meaning Range

c amount of data stored on each node 12 TB
n number of storage nodes 4 to 200

m− l number of parities 1, 2
b average rebuild bandwidth at each storage node 96 MB/s
1/λ mean time to failure of a node 1000 h to 10000 h
1/μ average time to read/write c amount of data

from/to a node during rebuild (1/μ = c/b)
35 h

7 Simulations

Event-driven simulations are used to verify the theoretical estimates of MTTDL
of erasure coded systems for two placement schemes, namely, clustered and
declustered. The simulations are more involved than the theoretical analysis
as they do not make any of the approximations made in theory. Despite this
fact, it is found that the theoretical estimates match the simulation results for a
wide range of parameters, including the parameters generally observed in prac-
tice, thereby validating the applicability of the reliability analysis to real-world
storage systems. A detailed description of the simulation method and why the
simulations are more realistic than theory can be found in [19].

Simulation Results: Table 2 shows the range of parameters used for the sim-
ulations. Typical values for practical systems are used for all parameters, except
for the mean times to failure of a node, which have been chosen artificially low
(1000 h to 10000 h) to run the simulations fast. The running times of simulations
with practical values of the mean times to node failure, which are of the order
of 10000 h or higher, are prohibitively high; this is due to the fact that PDL be-
comes extremely low thereby making the number of first-node-failure events that

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

Number of nodes

M
T

T
D

L
 (

in
 d

ay
s)

 

 
1/λ = 3000 h
1/μ = 34.7 h
deterministic rebuilds

(6,8), clus.
(6,8), declus.
(6,8), clus., sim.
(6,8), declus., sim.
(3,4), clus.
(3,4), declus.
(3,4), clus., sim.
(3,4), declus., sim.

Fig. 4. MTTDL of two different erasure codes with the same storage efficiency for a
system with mean time to node failure 1/λ = 3000 h and mean time to read all contents
of a node during rebuild 1/μ = 34.7 h.



256 V. Venkatesan and I. Iliadis

need to be simulated (along with the other complex set of events that restore all
lost codeword symbols following each first-node-failure event) extremely high for
each run of the simulation. It is seen that, despite the unrealistically low values
of mean times to node failure, the simulation-based values are a good match to
the theoretical estimates. This observation in conjunction with Remark 1 implies
that the theoretical estimates will also be accurate for realistic values of mean
times to node failure, 1/λ, which are generally much higher.

Figure 4 shows the comparison between the theoretically-predicted MTTDL
values and the simulation-based MTTDL values for systems using (3, 4) and
(6, 8) MDS codes. The simulation-based MTTDLs are observed to be in agree-
ment with the theoretical predictions.

8 Conclusion

The reliability of erasure coded systems was studied with a detailed analytical
model that accounts for the rebuild times involved, the amounts of partially
rebuilt data when additional nodes fail during rebuild, and the fact that mod-
ern systems utilize an intelligent rebuild process that rebuilds the most critical
codewords first. It was shown that the mean time to data loss of erasure coded
systems are practically insensitive to distribution of times to node failure but
sensitive to the distribution of node rebuild times. In particular, it was shown
that random rebuild times result in lower MTTDL values compared to deter-
ministic rebuild times. The codeword placement scheme, and the rebuild process
used, are major factors that influence the scaling of MTTDL with the number of
nodes in the system. Declustered codeword placement with distributed rebuild
was shown to potentially have significantly larger values of MTTDL compared
to clustered codeword placement as the number of nodes in the system increases.
Simulations were used to confirm the validity of the theoretical model. Exten-
sions of this work to non-MDS codes and correlated failures are subjects of
further investigation.

References

1. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpensive
disks (RAID). In: Proc. 1988 ACM SIGMOD Int’l Conference on Management of
Data, pp. 109–116 (1988)

2. Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H., Patterson, D.A.: RAID: high-
performance, reliable secondary storage. ACM Computing Surveys 26(2), 145–185
(1994)

3. Thomasian, A., Blaum, M.: Higher reliability redundant disk arrays: Organization,
operation, and coding. ACM Trans. Storage 5(3), 1–59 (2009)

4. Leong, D., Dimakis, A.G., Ho, T.: Distributed storage allocation for high reliability.
In: Proc. IEEE Int’l Conference on Communications, pp. 1–6 (2010)

5. Leslie, M., Davies, J., Huffman, T.: A comparison of replication strategies for
reliable decentralised storage. Journal of Networks 1(6), 36–44 (2006)



Effect of Codeword Placement on the Reliability 257

6. Thomasian, A., Blaum, M.: Mirrored disk organization reliability analysis. IEEE
Transactions on Computers 55, 1640–1644 (2006)

7. Li, X., Lillibridge, M., Uysal, M.: Reliability analysis of deduplicated and erasure-
coded storage. ACM SIGMETRICS Performance Evaluation Review 38(3), 4–9
(2011)

8. Xin, Q., Miller, E.L., Schwarz, T.J.E.: Evaluation of distributed recovery in large-
scale storage systems. In: Proc. 13th IEEE Int’l Symposium on High Performance
Distributed Computing (HPDC 2004), pp. 172–181 (2004)

9. Venkatesan, V., Iliadis, I., Fragouli, C., Urbanke, R.: Reliability of clustered vs.
declustered replica placement in data storage systems. In: Proc. 19th Annual
IEEE/ACM Int’l Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS 2011), pp. 307–317 (2011)

10. Venkatesan, V., Iliadis, I., Haas, R.: Reliability of data storage systems under net-
work rebuild bandwidth constraints. In: Proc. 20th Annual IEEE Int’l Symposium
on Modelling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS 2012), pp. 189–197 (2012)

11. Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. replication: A quanti-
tative comparison. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 328–338. Springer, Heidelberg (2002)

12. Plank, J.S., Huang, C.: Tutorial: Erasure coding for storage applications. Slides
presented at 11th Usenix Conference on File and Storage Technologies (FAST
2013) (February 2013)

13. Greenan, K.M., Miller, E.L., Wylie, J.: Reliability of flat XOR-based erasure codes
on heterogeneous devices. In: Proc. 38th Annual IEEE/IFIP Int’l Conference on
Dependable Systems and Networks (DSN 2008), pp. 147–156 (June 2008)

14. Venkatesan, V., Iliadis, I.: A general reliability model for data storage systems. In:
Proc. 9th Int’l Conference on Quantitative Evaluation of Systems (QEST 2012),
pp. 209–219 (2012)

15. Ford, D., Labelle, F., Popovici, F.I., Stokely, M., Truong, V.A., Barroso, L., Grimes,
C., Quinlan, S.: Availability in globally distributed storage systems. In: Proc. 9th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2010), pp. 61–74 (2010)

16. Ramabhadran, S., Pasquale, J.: Analysis of long-running replicated systems. In:
Proc. 25th IEEE Int’l Conference on Computer Communications (INFOCOM
2006), pp. 1–9 (2006)

17. Dimakis, A.G., Ramchandran, K., Wu, Y., Suh, C.: A survey on network coding
for distributed storage. Proceedings of the IEEE 99(3) (2011)

18. IBM: XiV Storage System Specifications, http://www.xivstorage.com
19. Venkatesan, V., Iliadis, I.: Effect of codeword placement on the reliability of erasure

coded data storage systems. Technical Report RZ 3827, IBM Research - Zurich
(2012)

http://www.xivstorage.com


Fault-Impact Models Based on Delay

and Packet Loss for IEEE 802.11g

Daniel Happ, Philipp Reinecke, and Katinka Wolter

Freie Universität Berlin
Institut für Informatik

Takustraße 9
14195 Berlin, Germany

{daniel.happ,philipp.reinecke,katinka.wolter}@fu-berlin.de

Abstract. In this paper we derive fault-impact models for wireless net-
work traffic as it could be used in the control traffic for smart grid nodes.
We set up experiments using a testbed with 116 nodes which uses the
protocol IEEE 802.11g. We develop models for packet loss, the length
of consecutive packet loss or non-loss as well as for packet transmis-
sion time. The latter is a known challenge and we propose a sampling
technique that benefits from the wireless as well as wired connections
between the nodes in the testbed. The data obtained shows similarity
with previous measurements. However, we progress the state of the art
in two ways: we show measurements of packet transmission times and
fit models to those and we provide some more detailed insight in the
data. We find that with increasing link quality, the distributions of lossy
and loss-free periods show major fluctuation. It is shown that in those
cases, phase-type distributions can approximate the data better than
traditional Gilbert models. In addition, the medium access time is also
found to be approximated well with a PH distribution.

1 Introduction

Precise stochastic description of network behaviour is important for various types
of studies. Several experimentation studies on wireless network behaviour have
been conducted in the past [1, 4, 11, 17, 27] and evaluated in terms of standard
analysis techniques such as moments and histograms. These studies provide in-
sight into network behaviour and the traces can be used in detailed simulation
models. However, all experimental results are specific to the environment where
they are sampled. In this paper we aim at providing more general results by
extensive experiments in a testbed with 116 wireless nodes. The network is de-
ployed across three buildings and includes nodes on the outside of buildings as
well as inside. We try to achieve generality by randomly selecting communicating
pairs of nodes. We obtain a wide variety of connections some of which have very
good and some very poor transmission quality.

Existing studies of wireless networks mostly determine the packet loss rate.
Time-synchronisation of wireless networks is difficult and therefore transmis-
sion times can normally not be determined. In the testbed we use nodes that

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 258–273, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Fault-Impact Models Based on Delay and Packet Loss for IEEE 802.11g 259

are connected through several interfaces, one of them being a standard ether-
net connection. We use the different interfaces to measure transmission times
over the wireless link. This gives us very valuable data which we have not seen
published elsewhere before.

As illustrated in e.g. [21, 22], packet loss may affect dependability of higher
networking and system layers even with the reliable TCP protocol, which guar-
antees reliable data transmission. Consequently, methods for reproducing distur-
bances are required for evaluating the reliability of those systems. Using traces
has several disadvantages; in particular, traces are often large, and abstract mod-
els can rarely benefit from them. Therefore, a solid model-based description of
experimental data is very valuable.

While in the simplest case packet loss may be described by a Bernoulli model,
packet loss is often comprised of bursts of elevated loss probability, which can be
modelled more closely with Gilbert-Elliot (GE) models [5–7,11,12,17,27–29]. A
Gilbert-Elliot model describes the loss process as a Markov Chain with different
loss probabilities for each state. We extend the continuous-time Gilbert-Elliot
model [23] by using a phase-type distribution [19] for the state transitions. We
show that this more complex model fits the data much better, especially when
the link quality is high.

The contributions of this paper can be summarised as follows:

– We provide a large data set obtained through extensive randomised experi-
ments in a testbed with different connection characteristics

– We propose a method for sampling transmission times in such a testbed
– We fit extended Gilbert-Elliot models using phase-type fitting to the data
– We show that PH distributions should be considered for modeling packet

delay

The paper is organised as follows. In Section 2 we describe the examples moti-
vating our study of packet loss and packet delay characteristics and the metrics
we consider. We then discuss related work in Section 3. In Section 4 we introduce
our methodology for obtaining accurate measurements and describe the experi-
ments and the measurement results. In Section 6 we fit fault-impact models to
the measurement data, before concluding the paper in Section 7.

2 Motivating Examples

In this section we provide motivating examples for the fault-impact models stud-
ied in this work. Fault-impact models represent specific types of behaviour of
the modelled system. We study two types of models: The first type of model
represents the packet-loss characteristics of wireless networks, while the second
type reflects delay characteristics.

Packet-loss characteristics are important for a wide range of applications in
both public and private usage scenarios. For instance, wireless audio and video
applications may adjust their transmission rate depending on packet loss or
predict possible future error patterns [28].



260 D. Happ, P. Reinecke, and K. Wolter

Likewise, delay characteristics affect the service quality. Delays often depend
not only on the conditions in the network, but on the traffic patterns as well.
Our motivating example here is control traffic in the Smart Grid, where end
nodes such as smart meters, smart plugs or power providers must be remotely
controlled for e.g. billing, power production or power usage regulation. In the
Smart Grid, the connection to the end nodes may in many cases be wireless on
the last hop [10]. We consider the case where that hop uses IEEE 802.11 [14,15].
Control traffic on the last hop consists of data packets sent following different
patterns with different requirements as necessary for the specific application.
The traffic characteristics are given in Table 2. For comparison, it should be
noted that Internet telephony/VOIP must satisfy a delay bound of 200 ms.

Table 1. Motivation for Smart Grid control traffic

Application Latency Remark

Telemonitoring 8- 10 ms Short distances,
often inside properties, utilities

Phasor Measurement 10-20 ms (class A) NASPI (North American
Units (PMU) 500 ms (class C) SynchroPhasor Initiative)

SCADA systems 200 ms Short distances, often inside
properties, utilities (power substations)

Smart Meter 200ms Short distance data collection (concentrator)

Smart Meter ≥1s Cyclic data measurements

3 Related Work

There have been several studies dealing with wireless channel behaviour [1,4,11,
17]. Aguayo et al. [1] analyse the packet loss in a 38-node urban multi-hop IEEE
802.11b network. The paper makes the observations that the distribution of loss
rates is relatively uniform, most links have relatively stable loss rates, only a
small minority experience burst losses, and that signal-to-noise ratio and distance
have little impact on the loss rate. Blywis et al. [4] made similar observations
using the DES-testbed at Freie Universitt Berlin. They considered IEEE 802.11a
and g networks. They found, however, that the distribution of loss rates follows
a bathtub curve [24].

Markov models are used because of the simplicity of their characterisation and
implementation. There are numerous publications especially on Gilbert-Elliot
models [5–7, 11, 12, 17, 27–29]. Haßlinger and Hohlfeld [12] give a good overview
of Gilbert-Elliot models in general. They use their own fitting approach to fit
models to real internet traces. Yajnik et al. [28] examine the packet loss in
multicast networks. They analyse the loss process of stationary traces, i.e. the
error characteristics do not change over time. They introduce a way of fitting
parameters based on the assumption of geometrically distributed loss runs.



Fault-Impact Models Based on Delay and Packet Loss for IEEE 802.11g 261

There is also research combining both efforts, such as [5]. Carvalho et al. claim
that the Gilbert model cannot capture certain characteristics of wireless errors
in 802.11g networks. Wolter et al. [27] observed the same. That would suggest
that links experience burst errors which contradicts some previous studies [1].

PH-distributions can be used to fit almost any empirical distribution and are
recently studied extensively. There are some publications dealing with phase type
fitting of empirical data, e.g. [13, 20, 26]. Wolter et al. [27] use PH-distributions
for network loss modelling.

4 Experiment Setup and Methodology

We now present a measurement study conducted in the DES Testbed, an experi-
mental network of 116 nodes distributed around the campus of Freie Universität
Berlin [4,9]. The testbed spans three buildings and includes indoor and outdoor
nodes. Approximate positions of the nodes on campus can be found in Figure 1.
All nodes are equipped with three or more standard IEEE 802.11a/b/g wireless
network adapters, and the nodes are additionally connected using the campus
Ethernet.

In the first set of experiments we transmit large packets at the maximum
rate between randomly-select pairs of nodes. The aim of these experiments is to
observe end-to-end packet loss. In the second set of experiments we measure the
end-to-end delay of Smart Grid control and data traffic.

4.1 Packet-Loss Measurements

We obtain packet-loss measurements by sending out probe packets, similar to [23],
and monitoring the network, as follows: We send probe packets in broadcast
mode on the primary network interface of a single node at a time. The second
interface of all nodes (including the one sending) monitors the network, record-
ing the header data of each packet it receives. We use the Tcpdump [25] tool to
capture raw packet traces of all packets present on the same channel, including
packets from other networks. Of course, for each node sending a packet, the
majority of nodes in the testbed do not receive this packet, since they are out
of the transmission range. In the experiment post-processing, all trace files that
contain no packet of the original transmission are discarded, i.e. every remaining
trace contains at least one packet sent out by the sending node.

Our experiment setup ensures that all relevant data is recorded. It is also
used in a similar way by other authors [2, 11]. In particular, we are able to
determine the sequence numbers of the probe packets that arrived successfully
at the receivers.

We use a packet size of 1500 bytes and use all available bandwidth, by sending
out packets as fast as possible. Nodes are configured to send at 54 Mbit/s fixed
using an ad-hoc network on channel 13, which is not occupied by the campus
network. However, channel 11 is used by campus access points, which overlaps
with channel 13. In order to prevent a bias in the results, all mechanisms that



262 D. Happ, P. Reinecke, and K. Wolter

0 50 100 150

−5
0

0
50

10
0

15
0

x−Coordinate

y−
C

oo
rd

in
at

e

Takustr. 9

Arnimallee 6

Arnimallee 3

● ●

●

●
●

●

● ●

●

●

●

● ●

●

● ● ● ●
● ●

●
●●

●● ●

●

● ●
●

●
●● ●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

● ● ●

●●●

● ● ●

●●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●
●
●
●

●
●

●
●

●

●
●● ●●●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

Fig. 1. Top view of the approximate positions of the nodes in the testbed with
surroundings

could send additional packets as an overhead are switched off. Those include
RTS/CTS (request to send / clear to send), MAC-retransmission and the address
resolution protocol (ARP). Furthermore, no packet is allowed to be fragmented.

We obtained 3515 individual traces of 25000 packets each. Lost packets are
detected based on a sequence number. All packets whose sequence numbers are
not detected at the receiver are assumed to be lost.

In the data analysis we describe the packet error traces as a binary time series
{Xi}ni=1, where xi takes the value 1 if the ith packet is correctly transmitted and
the value 0 if it was lost. In this paper, a sequence of consecutive 1’s is defined
to be a success run. In the same way, a sequence of consecutive 0’s is called a
loss run [17, 28].

We use the average packet error rate (PER) and its counterpart, the packet
delivery ratio (PDR) [8, 14–16]. The PER is defined in this work as:

PER =
# of Packets lost

# of Packets sent
(1)

Sometimes it is more intuitive to observe the packet delivery ratio (PDR)
instead [4]:

PDR = 1− PER =
# of Packets received

# of Packets sent
(2)



Fault-Impact Models Based on Delay and Packet Loss for IEEE 802.11g 263

4.2 Delay Measurements

In the absence of synchronised clocks on end nodes, measuring end-to-end delay
is still a considerable challenge. Although end-to-end delay can be estimated
from round-trip times observed at the sender without requiring synchronised
clocks, this approach is not applicable in a shared medium, as the additional
return packets compete for the medium and interfere with other packets, biasing
other results.

We have therefore developed a new method that uses the Ethernet interface
of the testbed nodes to measure end-to-end delay on the wireless medium with
high accuracy. Our method assumes that the Ethernet backbone of the campus
network has negligible jitter, meaning the round trip time over Ethernet is almost
constant. Furthermore, we assume that the clock drift on the nodes is negligible.

A B

Wireless

Ethe
rnet

Ethernet

Wireless Delay (dW )

Ethernet Delay (dRTT)

Delay A (dA)

t1

t2

t3

t4

Fig. 2. Sequence diagram of packet exchange for delay measurement

The approach is illustrated in Figure 2: At time t1 node A sends a packet
over the wireless medium to B. Node B stores the time t2 at which it received
the packet, and immediately sends a response packet to A over the Ethernet
connection. Node A receives this packet at time t3 and computes the delay

dA = t3 − t1. (3)

Node A then sends dA to node B, again using the Ethernet connection. Node B
receives the packet at time t4 and can thus compute the Ethernet round-trip
time:

dRTT = t4 − t2 = t4 − t3 + t3 − t2. (4)

Assuming that Ethernet round-trip times are symmetric,

dRTT = 2(t3 − t2). (5)

Note that
dA = t2 − t1 + t3 − t2, (6)



264 D. Happ, P. Reinecke, and K. Wolter

and hence node B can compute the wireless one-way delay as

dW = dA −
dRTT

2
. (7)

We measure delays for Smart-Grid control traffic and Smart-Grid data traffic.
Smart Grid control traffic is divided into three classes A, B, and C. The control-
traffic classes represent small control messages (class A), large control messages
(class B) and bursty traffic (class C) with real-time requirements. The data traffic
represents billing information. The parameters of the traffic are shown in Table 2.
The values are based on industry documentation and have been determined in
discussion with industry experts.

Table 2. Smart-Grid traffic definition for the experiments

Packet Size Packet Gap Burst Length Burst Gap

Control Type A Pareto (bounded) exponential geometric exponential
μ = 90B μ = 1s μ = 5 μ = 5s

Control Type B Pareto (bounded) exponential - -
μ = 750B μ = 100ms

Control Type C 70 B fixed 20ms fixed - -
Data Type A Pareto (bounded) exponential geometric exponential

μ = 490B μ = 100ms μ = 5 μ = 10s

5 Results

We now describe our measurement results. Although our focus is on deriving
fault-impact models for these data (Section 6), we also provide a broader dis-
cussion of interesting properties.

5.1 Packet-Loss Measurements

We start with the packet-loss measurements. We first discuss general characteris-
tics of the data set; in particular, we consider the distribution of packet-delivery
ratios and the spatial distribution of link qualities throughout the testbed. We
then focus on the behaviour of packet-loss runs, which will be modelled in
Section 6.

We first study the effect of the distance on the packet-delivery ratio (PDR).
Figure 4a shows the PDR as a function of the distance between the nodes.
Although it is apparent that for longer distances the PDR has lower maximum
values, i.e. the probability of a packet been transmitted successfully is smaller,
there are also low PDR links with close distances. In particular, note that at
distance 0, i.e. when the sender and receiver are the same node, the PDR is



Fault-Impact Models Based on Delay and Packet Loss for IEEE 802.11g 265

0 50 100 150

−50

0

50

100

150

x−Coordinate

y−
C

oo
rd

in
at

e

Takustr. 9

Arnimallee 6

Arnimallee 3

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Top-view map of the link quality in the testbed (1500 bytes packets)

(a) Scatterplot of the PDR for each link
over the distance of the two corresponding
stations

0

200

400

600

800

0.0 0.2 0.4 0.6 0.8 1.0
PDR

C
ou

nt

(b) Histogram of the distribution of link
qualities in the testbed measured using
the PDR

Fig. 4. Packet loss measurement results

distributed over the entire range from 0 to 1. This is most likely an effect of over-
saturation at the receiver. In general, distance seems to have a minor influence
on packet losses.

In [27], we observed that there is a strong correlation between distance and
average PDR. Our current results do not fully support this observation. However,
our current measurement setup in the DES testbed is quite different from the
one we used in [27]. In particular, the current setup involves a large set of nodes



266 D. Happ, P. Reinecke, and K. Wolter

in separate buildings under real-life operating conditions, whereas in [27] we used
an isolated setup of 2 nodes.

Figure 3 illustrates the spatial distribution of link qualities based on the av-
erage PER. The figure shows individual links in the testbed, with red indicating
high PER and green indicating low PER. Note that the quality of links spanning
buildings is, in general, lower than the quality of links within the same building;
however, neighbouring nodes do not necessarily have good link quality.

Figure 4b shows a histogram of the PDRs over all links. Due to space con-
straints we omit histograms for different packet sizes; however, for every packet
size under consideration, the general shape of the PDR distribution shows a
similar bathtub curve. The data shows two dense groups of node-pairs that have
either very high or very low quality links. Note that similar observations have
been made in [4] and [1].

In most wireless scenarios, the key factor determining the link quality is not
only the mean packet loss but its behaviour. The method commonly used to
describe packet loss behaviour is the length of lossy and loss-free periods [5,
12, 17, 18, 28]. In [27], we took several measurements using different distances
between sender and receiver. Our recent study shows little dependence of the
PER on the distance between sender and receiver. Because of that, we investigate
packet loss distributions in relation to their link qualities in this work.

Traces with long run-lengths show phenomena that do not show up in other
traces. Long run-lengths are mainly found in the success-runs of high quality
links and at the loss-runs of low quality links. Since these traces, however, are
the most frequent, they should be given particular consideration. Figure 5a shows
the combined distribution of success runs on all high quality links, i.e. links with
less than 10% PER. Figure 5a depicts the combined distribution of loss runs on
all low quality link, i.e. links with more than 90% PER.

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100
Success Run Length

D
en

si
ty

ABEL

Baum−Welch

Bernoulli

PH

(a) Histogram of success runs on high
quality links

0.00

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80 100
Loss Run Length

D
en

si
ty

ABEL

Baum−Welch

Bernoulli

PH

(b) Histogram of loss runs on low quality
links

Fig. 5. Results of the analysis of the length of consecutive packet loss or non-loss



Fault-Impact Models Based on Delay and Packet Loss for IEEE 802.11g 267

While Figure 5b shows a monotonically decreasing curve, Figure 5a shows
major fluctuations. Also, both traces show that there exist very long individual
runs close to the maximum of total transmitted packets at 25.000.

5.2 Delay Measurements

In our analysis of the delay data we concentrate on the delay and on the medium
access time.

The measured delay data is shown in Figure 6. Figure 6a is an example of the
delays of one trace plotted over time. We have found that at the low data rate
we used the medium access time is small compared to the actual transmission
time of the packets.

0

5

10

15

20

25

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●
●

●●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●●
●
●
●

●

●

●
●

●

●

●●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●
●●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●●

●

●●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●
●

●

●

●

●●

●

●●
●

●●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●
●

●
●
●
●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●●●

●

●

●
●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●
●

●

●●●

●●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●
●

●●
●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●●●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●●

●

●●
●
●●

●

●

●

●●●
●
●

●●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●●●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●
●

●●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●●

●●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●
●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●●

●●●
●

0 50 100 150 200 250 300
Time [s]

D
el

ay
 [m

s]

Size

●

●

●

●

●

600

800

1000

1200

1400

(a) Delay measurement between T9-K36a
and T9-K46

0

50

100

150

0 5 10 15 20 25
Delay [ms]

C
ou

nt

(b) Histogram of delay between T9-K36a
and T9-K46

Fig. 6. Delay measurement results for the node pair T9-K36a, T9-K46

The majority of the delay is composed of the transmission time of the packets.
As expected, large packages take longer. In Figure 6b, which shows the distri-
bution of the delay times, the Pareto distribution used for traffic generation is
also apparent.

Nevertheless, the most important factor in the delay is the medium access
time, since the actual transmission time of a packet of a certain size is determin-
istic and simple to compute. We therefore calculated the medium access time by
subtracting the transmission time of a packet from the observed delay.

Figure 7 shows the observed medium access time distributions. The various
traffic types show very different delay patterns. Notably, all traffic types show
a local maximum at around 1 ms. Control type A and C show another local
maximum close to 0.3 ms. Control type B and data type A show a smaller local
maximum at around 0.6 ms.

A likely reason is the retransmission of packets. Control type B and data type
A consist of larger packets, which are more likely to experience packet loss on a



268 D. Happ, P. Reinecke, and K. Wolter

0

200

400

600

0 2 4 6 8 10
Medium access time [ms]

C
ou

nt

PH

(a) Medium access time distribution for
control type A traffic

0

2000

4000

6000

0 2 4 6 8 10
Medium access time [ms]

C
ou

nt

PH

(b) Medium access time distribution for
control type B traffic

0

10000

20000

30000

40000

50000

0 2 4 6 8 10
Medium access time [ms]

C
ou

nt

PH

(c) Medium access time distribution for
control type C traffic

0

200

400

600

0 2 4 6 8 10
Medium access time [ms]

C
ou

nt

PH

(d) Medium access time distribution for
data type A traffic

Fig. 7. Medium access time and modeling results

first transmission. In contrast, control type A and C have significantly smaller
packets that are more likely to be transmitted successfully.

6 Fault-Impact Modelling

In the following section, we develop fault-impact models for IEEE 802.11. The
remainder of this section is divided into two parts. First, we introduce loss mod-
els for the wireless medium for different link qualities based on PH distributions.
For the actual usage of the models in IP packet loss injection [23], this is ex-
ceptionally useful, as it is easy to work with the PER as a parameter, rather
than with distance as in [27]. We then present the modeling results of our delay
measurements. This is also done using PH distributions. As fitting metrics, we
use both moments and the mean squared error (MSE) between the distribution
given by the models under consideration and the observed distributions.

6.1 Loss Models

For the modeling of wireless packet loss, we proposed the use of PH distributions
in [27]. In the following section, we fitted a PH distribution to the samples. We
used the G-FIT tool [26] to automatically select the best fit from a Hyper-Erlang
distribution with 10 phases and 1–7 branches. The automatic selection process
returned distributions with 4–5 branches, with maximum branch length of 5.
We compare our phase-type modeling approach to traditional models, namely a



Fault-Impact Models Based on Delay and Packet Loss for IEEE 802.11g 269

Bernoulli trial, a simple Gilbert model with two states and two parameters fitted
to the average burst error length (ABEL) [3, 12, 28] and a Gilbert-Elliot model
with two states and four parameters fitted with the Baum-Welch algorithm.

The resulting curves are shown in Figures 5. We observe that most of the
measurements obtained were fitted well using a simple Gilbert-Model with two
states and two parameters. However, we found that with increasing run-lengths,
the models performed poorly. Because of that and because they are the most
common link qualities, we concentrate on exceptionally high and low quality
links in this work, namely the top and bottom 10% of the PDR range.

Especially Figure 5b, but also 5a show heavy-tailed behaviour, which the
traditional models tend to fit rather than the maximum around 1. This applies
both to the simple Gilbert model and to to the standard Gilbert-Elliot model
in Figure 5b, although the fitting techniques are fundamentally different. This
suggests that the number of states in the traditional models are not sufficient to
reproduce the measured course of the distribution.

The PH distribution, on the other hand, approximates the distributions more
accurately. Both the maximum at 1, as well as the tail are closely approximated.
The distribution also follows characteristic bumps in the original distribution to
some degree.

Table 3. Overview of performance metrics (% difference and MSE) for Bernoulli (BN),
ABEL, Baum-Welch (BW) and PH-models (PH) of the loss-free run lengths of 1500
bytes packets between 0 and 0.1 PER

BN ABEL BW PH
Mean 38.44 % 0 % 40.01 % 0.01 %
Variance 90.79 % 75.33 % 91.26 % 26.29 %
MSE PMF 8.47 · 10−08 1.20 · 10−07 8.66 · 10−08 9.05 · 10−08

This also shows in the metrics, presented in Tables 3 and 4. For the distribu-
tion of success runs on high quality links, the mean run length is approximated
accurately by the simple Gilbert model and the PH distribution. The PH distri-
bution has the most accurate variance with a difference of 26.29% to the observed
variance of the run length distribution and is by far the most accurate model
under consideration. While the Bernoulli and Baum-Welch methods show a vari-
ance error of almost 100%, the ABEL approach captures the variance slightly
better with around 70% error. Surprisingly, in terms of the PMF, the Bernoulli
model has the lowest MSE. The Baum-Welch and PH models, however, only
show a slightly higher MSE. Overall, the PH-distribution must be rated as the
most suitable model for very high quality links.

For the distribution of loss runs on low quality links, the mean run length is
approximated accurately by the simple Gilbert as well as the PH distribution.
The PH distribution also shows the most accurate variance. In this particular
case, the PH distribution also shows by far the lowest PMF MSE. The ABEL



270 D. Happ, P. Reinecke, and K. Wolter

Table 4. Overview of performance metrics (% difference and MSE) for Bernoulli (BN),
ABEL, Baum-Welch (BW) and PH-models (PH) of the loss run lengths of 1500 bytes
packets between 0.9 and 1 PER

BN ABEL BW PH
Mean 11.34 % 0 % 14.08 % 0.04 %
Variance 98.07 % 97.54 % 98.18 % 31.15 %
MSE PMF 4.81 · 10−07 5.11 · 10−07 4.73 · 10−07 9.62 · 10−08

method has the highest PMF MSE, although the traditional models are all sim-
ilar with a magnitude of 10−07.

6.2 Delay Models

For the modeling of wireless traffic delay, we also propose the use of PH distri-
butions. In a delay model, it is also sufficient to approximate this medium access
time, since the additional transmission time of the packet can be easily added.
In the following section, we fit PH distributions with 20 phases to the measured
data. Figure 7 shows the observed medium access time distributions with their
respective PH distributions.

The PH distributions used generally capture the observed distributions well.
Control type C traffic shows the poorest fit. The two distinct local maxima of
the measured distribution are indistinguishable in the fitted model and in any
case represent a significant simplification of the observation.

Table 5. Overview of fitting metrics for the medium access delay approximations

First Moment Second Moment Third Moment Variance

Control Type A 0.00% 7.23% 26.54% 14.90%
Control Type B 0.00% 4.01% 24.74% 5.16%
Control Type C 0.00% 12.27% 20.35% 22.11%
Data Type A 0.00% 0.02% 4.63% 0.03%

Table 5 shows the errors of the first three moments and the variance of the
models in relation to the measured data. It confirms the assumptions that have
been previously mentioned. The mean of all distributions is captured exactly at
all traffic types. In general, the moments are well reproduced. Control type C is
a challenging distribution, which would need additional phases to be represented
accurately and shows the worst fitting. Outstanding is the exceptionally good
fitting of data type A.



Fault-Impact Models Based on Delay and Packet Loss for IEEE 802.11g 271

7 Conclusion

This work proposed fault-impact models based on delay and packet loss for IEEE
802.11g traffic. In a first step, the underlying wireless channel characteristics
were presented in the form of the effect of load and packet size on the packet
losses measured on a testbed. In a second step, the measured data was further
analysed regarding characteristics of packet loss, like the impact of distance, PDR
and RSSI distribution, and burst or loss-free run lengths. The main contribution
developed throughout our research has been the development of new ways of
characterising packet loss and delay, namely with PH-distributions, on the basis
of the measured data.

In conclusion, the evaluation of the presented error models with appropriate
metrics yield the following results:

– models based on PH-distributions should be considered for error modelling
– run distributions with long run lengths are better approximated with PH

models
– models based on PH-distributions should be considered for delay modelling

A very important factor which is missing in the previously mentioned evaluation
is the impact of the rate adaptation behaviour of the IEEE 802.11 interface. This
would require that the measurements are repeated at different transmission rates.
Additionally, different algorithms would have to be considered that determine
when to change the transmission rate. Those algorithms would need additional
study in themselves, as they are not publicly known, and their behaviour would
greatly influence the performance of the system under study.

Rapid changes in technology provide further research opportunities in the
area. In particular it would be interesting to study other technologies such as
802.11n, multiple-input and multiple-output (MIMO) technology and sensor net-
works. For all of these new technologies no models are available today.

Acknowledgments. We would like to thank Tilman Krauß for implementations
of the Smart Grid control traffic patterns. We thank Detlef Hartmann from
Bell Labs Berlin, Alcatel-Lucent, for many discussions of the requirements and
characteristics of Smart Grid control traffic.

References

1. Aguayo, D., Bicket, J., Biswas, S., Judd, G., Morris, R.: Link-level measurements
from an 802.11b mesh network. In: Proceedings of the 2004 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications,
SIGCOMM 2004, pp. 121–132. ACM, New York (2004)

2. Arauz, J., Krishnamurthy, P.: Markov modeling of 802.11 channels. In: Vehicular
Technology Conference, vol. 2, pp. 771–775. IEEE Computer Society (2003)

3. Billingsley, P.: Statistical Inference for Markov Processes. The University of
Chicago Press (1961)



272 D. Happ, P. Reinecke, and K. Wolter

4. Blywis, B., Günes, M., Juraschek, F., Hahm, O.: Properties and Topology of
the DES-Testbed. Technical Report TR-B-11-02, Freie Universität Berlin (2011),
http://edocs.fu-berlin.de/docs/receive/FUDOCS_document_000000009836

5. Carvalho, L., Angeja, J., Navarro, A.: A new packet loss model of the IEEE 802.11g
wireless network for multimedia communications. IEEE Transactions on Consumer
Electronics 51(2), 809–814 (2005)

6. Elliott, E.O.: Estimates of Error Rates for Codes on Burst-Noise Channels. Bell
System Technical Journal 42, 1977–1997 (1963)

7. Gilbert, E.N.: Capacity of a Burst-Noise Channel. Bell System Technical Jour-
nal 39, 1253–1266 (1960)

8. Goldsmith, A.: Wireless Communications. Cambridge University Press (2005)

9. Günes, M., Blywis, B., Juraschek, F.: Concept and Design of the Hybrid Dis-
tributed Embedded Systems Testbed. Technical Report TR-B-08-10, Freie Univer-
sität Berlin (2008), ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-08-10.pdf

10. Gungor, V.C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., Hancke,
G.P.: Smart grid technologies: Communication technologies and standards. IEEE
Transactions on Industrial Informatics 7(4), 529–539 (2011)

11. Hartwell, J.A., Fapojuwo, A.O.: Modeling and characterization of frame loss pro-
cess in IEEE 802.11 wireless local area networks. In: Vehicular Technology Confer-
ence, vol. 6, pp. 4481–4485. IEEE Computer Society (2004)

12. Haßlinger, G., Hohlfeld, O.: The Gilbert-Elliott Model for Packet Loss in Real Time
Services on the Internet. In: 14th GI/ITG Conference on Measurement, Modeling,
and Evaluation of Computer and Communication Systems (MMB), pp. 269–286.
VDE Verlag (2008)

13. Horváth, A., Telek, M.: PhFit: A General Phase-Type Fitting Tool. In: Field,
T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324,
pp. 82–91. Springer, Heidelberg (2002)

14. IEEE. IEEE 802.11g-2003: Further Higher Data Rate Extension in the 2.4 GHz
Band. Institute of Electrical and Electronics Engineers, Inc. (2003)

15. IEEE. IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications (2007 revision). Institute of Electrical and Electronics
Engineers, Inc. (2007)

16. Khalili, R., Salamatian, K.: A new analytic approach to evaluation of packet er-
ror rate in wireless networks. In: Proceedings of the 3rd Annual Communication
Networks and Services Research Conference, CNSR 2005, pp. 333–338. IEEE Com-
puter Society (2005)

17. Konrad, A., Zhao, B.Y., Joseph, A.D., Ludwig, R.: A Markov-based channel model
algorithm for wireless networks. Wireless Networks 9(3), 189–199 (2003)

18. McDougall, J., Miller, S.: Sensitivity of Wireless Network Simulations to a Two-
State Markov Model Channel Approximation. In: Global Telecommunications Con-
ference. GLOBACOM 2003, vol. 2, pp. 697–701. IEEE Computer Society (2003)

19. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. Dover Publications Inc. (1981) (revised edition)

20. Reinecke, P., Krauß, T., Wolter, K.: Cluster-based fitting of phase-type distribu-
tions to empirical data. Computers & Mathematics with Applications (2012)

21. Reinecke, P., van Moorsel, A.P.A., Wolter, K.: The Fast and the Fair: A Fault-
Injection-Driven Comparison of Restart Oracles for Reliable Web Services. In:
Proc. 3rd International Conference on the Quantitative Evaluation of SysTems
(QEST 2006), Riverside, CA, USA. IEEE (September 2006)

http://edocs.fu-berlin.de/docs/receive/FUDOCS_document_000000009836
ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-08-10.pdf


Fault-Impact Models Based on Delay and Packet Loss for IEEE 802.11g 273

22. Reinecke, P., Wolter, K.: Phase-type approximations for message transmission
times in web services reliable messaging. In: Kounev, S., Gorton, I., Sachs, K.
(eds.) SIPEW 2008. LNCS, vol. 5119, pp. 191–207. Springer, Heidelberg (2008)

23. Reinecke, P., Wolter, K.: On Stochastic Fault-Injection for IP-Packet Loss Emula-
tion. In: Thomas, N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 163–173. Springer,
Heidelberg (2011)

24. Siewiorek, D.P., Swarz, R.S.: Reliable Computer Systems. A K Peters (1998)
25. Tcpdump/libpcap public repository
26. Thümmler, A., Buchholz, P., Telek, M.: A Novel Approach for Phase-Type Fitting

with the EM Algorithm. IEEE Transactions on Dependable and Secure Comput-
ing 3, 245–258 (2006)

27. Wolter, K., Reinecke, P., Krauss, T., Happ, D., Eitel, F.: PH-distributed Fault
Models for mobile Communication. In: Proceedings of the 2012 Winter Simulation
Conference, WSC, Berlin, Germany (2012)

28. Yajnik, M., Moon, S.B., Kurose, J.F., Towsley, D.F.: Measurement and Modeling of
the Temporal Dependence in Packet Loss. In: Eighteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. INFOCOM 1999, vol. 1,
pp. 345–352. IEEE Computer Society (1999)

29. Zhang, Y., Duffield, N., Paxson, V., Shenker, S.: On the constancy of internet
path properties. In: Proceedings of the 1st ACM SIGCOMM Workshop on Inter-
net Measurement, IMW 2001, San Francisco, California, USA, pp. 197–211. ACM
(2001)



VeriSiMPL: Verification via biSimulations

of MPL Models�

Dieky Adzkiya1 and Alessandro Abate2

1 Delft Center for Systems and Control, TU Delft
2 Department of Computer Science, University of Oxford

Abstract. VeriSiMPL (“very simple”) is a software tool to obtain fi-
nite abstractions of Max-Plus-Linear (MPL) models. MPL models (Sect.
2), specified in MATLAB, are abstracted to Labeled Transition Sys-
tems (LTS). The LTS abstraction is formally put in relationship with
the concrete MPL model via a (bi)simulation relation. The abstraction
procedure (Sect. 3) runs in MATLAB and leverages sparse representa-
tions, fast manipulations based on vector calculus, and optimized data
structures such as Difference-Bound Matrices. LTS abstractions can be
exported to structures defined in the PROMELA. This enables the veri-
fication of MPL models against temporal specifications within the SPIN
model checker (Sect. 4). The toolbox is available at

http://sourceforge.net/projects/verisimpl/

1 Motivations and Goals

Max-Plus-Linear (MPL) models are discrete-event systems [1] with continuous
variables that express the timing of the underlying sequential events. MPL mod-
els are employed to describe the timing synchronization between interleaved
processes, and as such are widely employed in the analysis and scheduling of in-
frastructure networks, such as communication and railway systems, production
and manufacturing lines [1]. MPL models are classically analyzed by algebraic [1]
or geometric techniques [2] over the max-plus algebra, which allows investigat-
ing properties such as transient and periodic regimes [1], or ultimate dynamical
behavior. They can be simulated via the max-plus toolbox Scilab [3].

The recent work in [4,5] has explored a novel, alternative approach to analysis,
which is based on finite-state abstractions of MPL models. The objective of this
new approach is to allow a multitude of available tools that has been developed
for finite-state models to be employed over MPL systems. We are in particular
interested in the Linear Temporal Logic (LTL) model checking of MPL models
via LTS abstractions.

This article presents VeriSiMPL, a software toolbox that implements and tests
the abstraction technique in [4,5].

� This research is funded by the European Commission under the MoVeS project,
FP7-ICT-2009-5 257005, by the European Commission under the NoE FP7-ICT-
2009-5 257462, by the European Commission under Marie Curie grant MANTRAS
PIRG-GA-2009-249295, and by NWO under VENI grant 016.103.020.

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 274–277, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



VeriSiMPL: Verification via biSimulations of MPL Models 275

2 Nuts and Bolts of Max-Plus-Linear Models

Define IRε and ε respectively as IR ∪ {ε} and −∞. For a pair x, y ∈ IRε, we
define x ⊕ y = max{x, y} and x ⊗ y = x + y. Max-plus algebraic operations
are extended to matrices as follows: if A,B ∈ IRm×n

ε and C ∈ IRn×p
ε , then

[A ⊕ B](i, j) = A(i, j) ⊕ B(i, j) and [A ⊗ C](i, j) =
⊕n

k=1 A(i, k) ⊗ C(k, j), for
all i, j. An MPL model [1, Corollary 2.82] is defined as:

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) ,

where A ∈ IRn×n
ε , B ∈ IRn×m

ε , x(k) ∈ IRn
ε , u(k) ∈ IRm

ε , for k ∈ IN. In this
work, the state and input spaces are taken to be IRn and IRm, respectively: the
independent variable k denotes an increasing discrete-event counter, whereas the
n-dimensional state variable x defines the (continuous) timing of the discrete
events and the m-dimensional input u characterizes external schedules. If the
input matrix B contains at least a finite (not equal to ε) element, the MPL
model is called nonautonomous, otherwise it is called autonomous since it evolves
under no external schedule. Nonautonomous models embed nondeterminism in
the form of a controller input.

Implementation: VeriSiMPL accepts MPL models written in MATLAB. For
practical reasons, the state matrix A is assumed to be row-finite, namely char-
acterized in each row with at least one element different from ε.

Example: Consider the following autonomous MPL model from [1, p. 4],
representing the scheduling of train departures from two connected stations
i = 1, 2 (event k denotes the time of the k-th departure at time xi(k) for
station i)

x(k) =

[
3 7
2 4

]
⊗ x(k − 1), i.e.

[
x1(k)
x2(k)

]
=

[
max{3 + x1(k − 1), 7 + x2(k − 1)}
max{2 + x1(k − 1), 4 + x2(k − 1)}

]
.

3 From MPL Models to Labeled Transition Systems

We seek to construct a finite-state Labeled Transition System (LTS) as an ab-
straction of an (autonomous or nonautonomous) MPL model. An LTS comprises
a set of finitely many states (Sect. 3.1), of a set of transitions relating pairs of
states (Sect. 3.2), and is further decorated with labels on either states or tran-
sitions (Sect. 3.3).

3.1 LTS States: Partitioning of MPL Space

LTS states are obtained by partitioning the state space IRn based on the un-
derlying dynamics, that is based on the state matrix A [4, Algorithms 1,2]. The
partition can be further refined (in order to seek a bisimulation of the concrete
model) or otherwise coarsened by merging adjacent regions (in order to reduce
the cardinality of the set of abstract states).



276 D. Adzkiya and A. Abate

Implementation: VeriSiMPL implements two alternative approaches [4, Al-
gorithms 1,2]. In order to improve the performance of the procedure, standard
pruning tricks are applied. Each generated region is shown to be a Difference-
Bound Matrix (DBM) [6, Sect. 4.1]: this allows a computationally efficient rep-
resentation based on the expression xi − xj �� αi,j , ��∈ {<,≤}. VeriSiMPL rep-
resents a DBM as a row cell with two elements: the first element is a real-valued
matrix representing the upper bound αi,j , whereas the second is a Boolean ma-
trix representing the value of ��. A collection of DBM is also represented as a
row with two elements, where the corresponding matrices are stacked along the
third dimension. Quite importantly, DBM are closed under MPL operations.

Example: The partitioning regions generated for the MPL model in Sect. 2
are R1 = {x ∈ IR2 : x1 − x2 > 4}, R2 = {x ∈ IR2 : 2 < x1 − x2 ≤ 4}, and
R3 = {x ∈ IR2 : x1 − x2 ≤ 2}.

3.2 LTS Transitions: Forward-Reachability Analysis

An LTS transition between any two abstract states R and R′ is generated based
on the relation between the two corresponding partitioning regions. At any given
event counter k, there is a transition from R to R′ if there exists an x(k−1) ∈ R
and possibly a u(k) ∈ U ⊆ IRm such that x(k) ∈ R′. Such a transition can
be determined by a forward-reachability computation, i.e. checking the non-
emptiness of R′ ∩ {x(k) : x(k − 1) ∈ R, u(k) ∈ U}. We assume that the set of
allowed inputs U ⊆ IRm is characterized via a DBM.

Implementation: VeriSiMPL performs forward reachability by mapping and
manipulating DBM. It represents a transition in MATLAB as a sparse Boolean
matrix. As in a precedence graph [1, Definition 2.8], the (i, j)-th element equals
to 1 if there is a transition from j to i, else it is equal to 0.

Example: The transitions for the model in Sect. 2 are represented in Fig. 1.
In a nonautonomous version of the model, the finite-state structure in Fig. 1 will
simply present additional transitions.

3.3 LTS Labels: Fast Manipulation of DBM

LTS labels are quantities associated with states or transitions and characterize
1) the difference between the timing of a single event (k) for any two variables

of the original MPL model, i.e. xi(k)− xj(k), where 1 ≤ i < j ≤ n; or
2) the time difference between consecutive events of the MPL model, i.e.

xi(k)− xi(k − 1), for 1 ≤ i ≤ n.
The first class of labels is determined by the representation of a partitioning

region, whereas the second is derived from an outgoing partitioning region and
its affine dynamics.

Implementation: Practically, in both cases VeriSiMPL stores the labels as
(unions of) vectors of real-valued intervals in MATLAB. In the second case the
labels are computed by fast DBM manipulations.

Example: The obtained LTS can be expressed as a simple text file and parsed
by Graphviz for plotting, as displayed in Fig. 1.



VeriSiMPL: Verification via biSimulations of MPL Models 277

[3, 4]
[5, 6]

[5,∞)
[4, 4][3, 3]

(6,∞)

(4, 5)
(4, 5)

R1 R3 R2

Fig. 1. LTS abstraction of the MPL model in Sect. 2, inclusive of abstract states,
transitions, and labels

4 Computational Benchmark and Case Study

We have computed the runtime required to abstract an autonomous MPL system
as a finite-state LTS, for increasing dimensions n of the MPL model, and kept
track of the number of states and of transitions of the obtained LTS (memory
requirement). Compared to partition-based abstraction procedures in the litera-
ture for other classes of dynamical systems [7], the present procedure comfortably
manages MPL models with significant size (number of continuous variables).

Implementation: For any n, we have generated row-finite matrices A with
2 finite elements (random integers taking values between 1 and 100) placed
randomly in each row. The algorithms have been implemented in MATLAB
7.13 (R2011b) and the experiments have been run on a 12-core Intel Xeon 3.47
GHz PC with 24 GB of memory. For n = 15, VeriSiMPL generates an LTS with
about 104 states and 106 transitions, with a runtime limited within a few hours.

Example: The obtained LTS can be exported to PROMELA (a PROcess
MEta LAnguage), to be later used by the SPIN model checker [8]. Consider the
specification Ψ : ∀k ∈ IN, ψ(k), where ψ(k) = {x2(k+1)−x2(k) ≤ 6}. Notice that
Ψ can be expressed as �ψ. We obtain the satisfiability set Sat(Ψ) = {R2, R3}.

References

1. Baccelli, F., Cohen, G., Olsder, G., Quadrat, J.P.: Synchronization and Linearity,
An Algebra for Discrete Event Systems. John Wiley and Sons (1992)

2. Katz, R.: Max-plus (A,B)-invariant spaces and control of timed discrete-event sys-
tems. IEEE Trans. Autom. Control 52(2), 229–241 (2007)

3. Plus, M.: Max-plus toolbox of Scilab (Online) (1998),
http://www.cmap.polytechnique.fr/~gaubert/MaxplusToolbox.html

4. Adzkiya, D., De Schutter, B., Abate, A.: Abstraction and verification of autonomous
max-plus-linear systems. In: Proc. 31st Amer. Control Conf., pp. 721–726 (2012)

5. Adzkiya, D., De Schutter, B., Abate, A.: Finite abstractions of nonautonomous
max-plus-linear systems. In: Proc. 32nd Amer. Control Conf. (June 2013)

6. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990)

7. Yordanov, B., Belta, C.: Formal analysis of discrete-time piecewise affine systems.
IEEE Trans. Autom. Control 55(12), 2834–2840 (2010)

8. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley (2003)

http://www.cmap.polytechnique.fr/~gaubert/MaxplusToolbox.html


The BisimDist Library: Efficient Computation

of Bisimilarity Distances for Markovian Models�

Giorgio Bacci, Giovanni Bacci, Kim Guldstrand Larsen, and Radu Mardare

Department of Computer Science, Aalborg University, Denmark
{grbacci,giovbacci,kgl,mardare}@cs.aau.dk

Abstract. This paper presents a library for exactly computing the
bisimilarity Kantorovich-based pseudometrics between Markov chains
and between Markov decision processes. These are distances that mea-
sure the behavioral discrepancies between non-bisimilar systems. They
are computed by using an on-the-fly greedy strategy that prevents the
exhaustive state space exploration and does not require a complete
storage of the data structures. Tests performed on a consistent set of
(pseudo)randomly generated instances show that our algorithm improves
the efficiency of the previously proposed iterative algorithms, on aver-
age, with orders of magnitude. The tool is available as a Mathematica
package library.

1 Introduction

Probabilistic bisimulation of Larsen and Skou [7] plays a central rôle in the ver-
ification of discrete-time Markov Chains (MCs), and this notion has been later
extended to Markov Decision Processes with rewards (MDPs) [6]. Bisimulation
equivalences may be used for comparing systems to a given model specifica-
tion, or to make feasible the analysis of large systems by reducing their size by
means of bisimilarity quotients. However, when the numerical values of prob-
abilities are based on statistical samplings or subject to error estimates, any
behavioral analysis based on a notion of equivalence is too fragile, as it only re-
lates processes with identical behaviors. These problems motivated the study of
behavioral distances (pseudometrics) for probabilistic systems, firstly developed
for MCs [4,9,8] and later extended to MDPs [5]. The proposed pseudometrics
are parametric in a discount factor λ ∈ (0, 1] that controls the significance of
the future in the measurement. These distances provide a way to measure the
behavioral similarity between states and allow one to analyze models obtained
as approximations of others, more accurate but less manageable, still ensuring
that the obtained solution is close to the real one. These reasons motivate the
development of algorithms for computing bisimilarity distances.

In [2] we proposed an efficient on-the-fly algorithm for computing the be-
havioral pseudometrics of Desharnais et al. [4] on MCs. Our method has been

� Work supported by the VKR Center of Excellence MT-LAB and the Sino-Danish
Basic Research Center IDEA4CPS.

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 278–281, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



The BisimDist Library: Efficient Computation of Bisimilarity Distances 279

1

a

2

b1

2
3

1
3 tm = MCtm[{{1,2}->1, {2,2}->1/3, {2,1}->2/3},2];

mc = MC[tm, {"a","b"}]

Fig. 1. Encoding of a Markov Chain as a data term in BisimDist

inspired by an alternative characterization of the pseudometric given in [3], that
relates the pseudometric to the least solutions of a set of equation systems in-
duced by a collection transportation schedules. The pseudometric is computed
by successive refinements of over-approximations of the actual distance using
a greedy strategy that always chooses a transportation schedule that better
improves the current approximation. This strategy avoids the exhaustive explo-
ration of the state space, and has the practical advantage that allows one to focus
only on computing the distances between states that are of particular interest.
Experimental results have shown that this technique performs, on average, or-
ders of magnitude better then the corresponding iterative algorithms proposed
in the literature, e.g., in [3]. The algorithm in [2] has been recently adapted in
order to compute the bisimilarity pseudometric introduced by Ferns et al. in [5]
for MDPs with rewards (see [1] for a detailed account on this extension).

In this paper, we present the BisimDist library, composed of two Mathe-
matica packages which implement our on-the-fly algorithm for computing the
bisimilarity distances for MCs and MDPs, respectively. BisimDist is available
at http://people.cs.aau.dk/~giovbacci/tools.html together with simple
tutorials presenting use case examples that show all the features of the library.

2 The BisimDist Library

The BisimDist library consists of two Mathematica packages: MCDist and
MDPDist providing data structures and primitives for creating, manipulating,
and computing bisimilarity distances for MCs and MDPs respectively. It also
has methods to identify bisimilarity classes and to solve lumpability problems.

The MCDist Package: An MC with n states is represented as a term of the
form MC[<tm>, <lbl>], where <tm> is an n × n probability transition matrix
(<tm> [[i,j]] denotes the probability of going from the state i to the state j) and
<lbl> is a vector of strings of length n (<lbl> [[i]] is the label associated with
the state i). Note that states are implicitly represented as indices 1 ≤ i ≤ n.

The probability transition matrices can be defined explicitly as a matrix,
or implicitly by listing only the transitions which have nonzero probability by
means of the function MCtm (see Fig. 1). Given a list trRules of rules of the
form {i, j} → pi,j , the function MCtm[trRules, n] returns an n × n matrix
where each pair (i, j) is associated with the value pi,j , otherwise 0. An MC mc

is displayed by calling PlotMC[mc]. Given a sequence mc1, . . . , mck of MCs,

http://people.cs.aau.dk/~giovbacci/tools.html


280 G. Bacci et al.

JoinMC[mc1,...,mck] yields an MC representing their disjoint union. The in-
dices representing the set of states are obtained shifting the indices of the states
of the arguments according to their order in the sequence (e.g. if mc1 has n states,
the index corresponding to the i-th state of mc2 in JoinMC[mc1,mc2] is n+ i).

Given an MC mc with n states, a list Qpairs of pairs of indices 1 ≤ i, j ≤ n,
and a rational discount factor λ ∈ (0, 1], BDistMC[mc, λ, Qpairs] returns the
list of all λ-discounted bisimilarity distances calculated between the pairs of
states in Qpairs as list of rules of the form {i, j} → di,j . The alias All is used
for indicating the list of all pairs of states. BDistMC has the following options:

Verbose: (default False) displays all intermediate approximations steps;
ConsistencyCheck: (default True) checks that the term mc is a proper MC;
Estimates: (default None) takes a list of rules of the form {i, j} → di,j and

computes the least over-approximation of the bisimilarity distance assuming
di,j to be the actual distance between the states i and j.

The package MCDist provides also the functions BisimClassesMC, which cal-
culates the bisimilarity classes of an MC, and BisimQuotientMC that, for a given
an MC, yields its quotient w.r.t. probabilistic bisimilarity.

The MDPDist Package: An MDP with n states and m action labels is rep-
resented as a term of the form MPD[<tm>, <rw>, <act>], where <tm> is an
n × m × n labelled probability transition matrix (<tm> [[i,a,j]] is the proba-
bility of going from the state i to the state j, known that the action a as been
chosen), <rw> is a n × m real-valued matrix representing a reward function,
and <act> is a string-valued list of length m specifying the names of the action
labels. States and action labels are implicitly encoded as indices.

Probability transition matrices of size n × m × n can be defined by giv-
ing the nonzero transition probabilities as a list trRules of rules of the form
{i, a, j} → pi,a,j and calling MDPtm[trRules, n, m]. Analoguosly, n×m reward
matrices can be defined by calling MDPrm[<rwRules>, n, m], where <rwRules>
is a list of rules of the form {i, a} → ri,a.

The MDPDist package is provided with an interface similar to MCDist

with analogous semantics: PlotMDP, JoinMDP, BDistMDP, BisimClassesMDP, and
BisimQuotientMDP.

3 Results and Conclusions

BisimDist is a research tool still undergoing development. While not yet mature
enough to handle industrial case studies, the on-the-fly algorithm for computing
the bisimilarity distance performs, on average, better than the iterative method
proposed in [3]. Table 1 reports the average execution times of the on-the-fly al-
gorithm run with discount factor λ = 1/2 on a collection of randomly generated
MCs. We executed the iterative method on the same input instances, interrupt-
ing it as soon as it exceeded the running time of our method. The on-the-fly
approach leads to a significant improvement in the performances: it yields the
exact solution before the iterative method can under-approximate it with an



The BisimDist Library: Efficient Computation of Bisimilarity Distances 281

Table 1. Comparison between the on-the-fly and the iterative methods on MCs

# States
On-the-Fly (exact) Iterative (approximated) Approximation

Time (sec) Time (sec) # Iterations Error

10 1.003 1.272 3.111 0.0946
12 4.642 5.522 4.042 0.0865
14 6.336 7.188 4.914 0.1189
20 34.379 38.205 7.538 0.1428

error of ≈ 0.1, which is a non-negligible error for a value in the interval [0, 1]. A
more detailed analysis of the performances and scalability can be found in [2].

The BisimDist library provides primitives that aid the analysis on probabilis-
tic systems by reasoning in terms of approximate behaviors. In [1], we further
improved the efficiency of the implemented on-the-fly algorithm on MDPs, also
in relation to the addition of primitives for handling algebraic operations over
probabilistic systems, such as synchronous/asynchronous parallel composition.
We plan to apply similar on-the-fly techniques for computing bisimilarity dis-
tances on continuous-time probabilistic systems and timed automata.

References

1. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: Computing behavioral distances,
compositionally. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087,
pp. 74–85. Springer, Heidelberg (2013)

2. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-Fly Exact Computation of
Bisimilarity Distances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS,
vol. 7795, pp. 1–15. Springer, Heidelberg (2013)

3. Chen, D., van Breugel, F., Worrell, J.: On the Complexity of Computing Probabilis-
tic Bisimilarity. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 437–451.
Springer, Heidelberg (2012)

4. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled
Markov processes. Theoretical Computer Science 318(3), 323–354 (2004)

5. Ferns, N., Panangaden, P., Precup, D.: Metrics for finite Markov Decision Processes.
In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI,
pp. 162–169. AUAI Press (2004)

6. Givan, R., Dean, T., Greig, M.: Equivalence notions and model minimization in
Markov decision processes. Artificial Intelligence 147(1-2), 163–223 (2003)

7. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and
Computation 94(1), 1–28 (1991)

8. van Breugel, F., Sharma, B., Worrell, J.: Approximating a Behavioural Pseudo-
metric without Discount for Probabilistic Systems. Logical Methods in Computer
Science 4(2), 1–23 (2008)

9. van Breugel, F., Worrell, J.: Approximating and computing behavioural distances
in probabilistic transition systems. Theoretical Computer Science 360(1-3), 373–385
(2006)



Möbius Shell:

A Command-Line Interface for Möbius

Ken Keefe and William H. Sanders

University of Illinois, Urbana, IL 61801, USA
kjkeefe@illinois.edu whs@illinois.edu

https://www.mobius.illinois.edu

Abstract. The Möbius modeling environment is a mature, multi-formal-
ism modeling and solution tool. Möbius provides a user-friendly graphical
interface for creating discrete-event models, defining metrics, and solving
for the metrics using a variety of solution techniques. For certain research
needs, the graphical interface can become a limiting use pattern. This
paper describes recent work that adds a comprehensive text-based inter-
face for interacting with the Möbius tool, called the Möbius Shell. The
Möbius Shell provides an interactive command shell and scriptable com-
mand language that can leverage all the existing and future features of
Möbius.

Keywords: text-based interface, multi-formalism modeling, simulation,
analytical solution, discrete-event systems.

1 The Möbius Modeling Environment

The Möbius Modeling Environment is an extensible modeling and solution tool.
It offers a variety of existing modeling formalisms, including compositional
modeling formalisms, a metric specification formalism that allows for time- and
event-based rewards, global model parameterization with several means of defin-
ing experiments, and a set of analytical and simulation solution methods [1][2].
Until recently, Möbius has provided only a graphical user interface for working
with each of its components. With the addition of the Möbius Shell, Möbius
now offers a text-based user interface that enables an interactive or scriptable
method of performing actions in the top-level tool or within one of the Möbius
components.

2 Using the Möbius Shell

In the Möbius installation directory, the mobius executable launches the graph-
ical version of the tool. The text-based, interactive version of Möbius can be
launched using the mobius-shell executable:

$ mobius-shell
Welcome to Mobius 2.4.1!

Enter "help" for a list of commands.
Mobius>

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 282–285, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Möbius Shell: A Command-Line Interface for Möbius 283

Commands can then be executed at the Mobius> prompt. Each time a com-
mand is executed, text feedback is provided. Long-running jobs, such as the
execution of a simulation, will provide continuous feedback and can be inter-
rupted by hitting Ctrl+C.

Alternatively, the Möbius Shell can execute a script either by using a command
pipe or by passing the script file path using a command switch:

$ cat myScript.txt | mobius-shell
$ mobius-shell -s myScript.txt

3 Key Möbius Shell Commands

The Möbius Shell is intended to be a full-fledged alternative to the traditional
graphical user interface. Because of space limitations, here we detail only a few
important commands. For a full treatment of the Möbius Shell command lan-
guage, see the 2.4.1 (or later) version of the Möbius Manual [3].

3.1 Help

The Möbius Shell provides a comprehensive, integrated help system. Users can
obtain a list of all available commands by executing the help command.

Mobius> help
Mobius Shell Command Help
Further help can be found for each command by executing:

help <command>
archive - Archive a project
clean - Clean a project or model component
...

Detailed help for each command can be accessed by including the command
as an argument to the help command:

Mobius> help save
Generate and compile a model component command:

save <project name> (a|c|r|y|t|s) <component name>
a - Atomic model type
c - Composed model type
r - Reward model type
y - Study type
t - Transformer type
s - Solver type

3.2 Generate, Compile, and Save

When a user saves a model component in Möbius, the first step that Möbius
performs is generation of a C++ representation of the model component. That
typically consists of a set of classes that derive from base classes in the Möbius
code library[1]. Next, Möbius compiles those classes and links them to code
library archives that come with Möbius.



284 K. Keefe and W.H. Sanders

In the Möbius Shell, those steps can be performed individually or combined, as
in the graphical tool. To generate the C++ representation of a model component,
use the generate command. To compile the C++ representation, use the compile
command. To do both, use the save command. For example, the below commands
generate and compile the reward model called “perfEx” in the “satRelay” model.

Mobius> generate satRelay r perfEx
Generating code...............Done!
Mobius> compile satRelay r perfEx
make: Entering directory ‘/home/kjkeefe/MobiusProject/satRelay/Reward/perfEx’
make lib TARGET=libperfExPV_debug.a OBJS="perfExPVNodes.o perfExPVModel.o "
...
make: Leaving directory ‘/home/kjkeefe/MobiusProject/satRelay/Reward/perfEx’
Compile completed: SUCCESS

3.3 Run

The run command begins the execution of a transformer, analytical solver, or
simulator. When a transformer or analytical solver is run, the feedback in the
Möbius Shell is a summary, and the results are stored in a file in the component’s
directory. However, when a simulator runs, an aggregation of reward variable
statistics is reported on the fly until all variables have converged within their
defined confidence intervals, or until some other ending condition has been met
(e.g., max number of iterations simulated). Those behaviors mirror those of the
graphical version of the tool.

Mobius> run satRelay t AvNumSSG
Building State Space Generator for Linux architecture
Building for Linux systems on darboux
...
Generated: 8190 states
Computation Time (user + system): 2.160100e-01 seconds
State Generation of Experiment_3 on model AvNumSSG finished at Wed Mar 06 21:13:11
CST 2013.

3.4 Edit

The edit command allows the user to step into project components. For model
components that have nested child elements (e.g., a Stochastic Activity Network
(SAN) [4] model containing input gates and activities), the edit command can
further step into those elements to make changes to their attributes (e.g., input
predicate, firing distribution).

In the following example, we start by editing the “cpu module” SAN model
in the “Multi-Proc” project (which is included in the standard set of examples
that come with Möbius). On line 3 we execute the show command to get a brief
summary of this atomic model. Next, on line 10, we ask for further details on
the activities in this SAN model. We could get a complete description of the
“cpu failure” activity by using the show activity command. On line 13 we begin
editing the “cpu failure” activity. We start by showing the details of the timing
distribution. Next, on lines 19, 21, and 23, we alter the timing distribution type,
mean, and variance, respectively. Having made the desired changes, we close



Möbius Shell: A Command-Line Interface for Möbius 285

that activity on line 25. Finally, we close the “cpu module” SAN model. Möbius
Shell then asks us if we would like to save our changes, which we do, and the
model compiles successfully.

1 Mobius> edit Multi-Proc a cpu_module
2 Now editing the cpu_module SAN Atomic Model (enter the "close" command when finished)...
3 Multi-Proc/Atomic/cpu_module> show
4 Model contains 10 elements and 18 connections:
5 1 activity (0 instantaneous, 1 timed)
6 0 extended places
7 1 input gate
8 3 output gates
9 5 places

10 Multi-Proc/Atomic/cpu_module> show activities
11 Model contains 1 activity:
12 cpu_failure (timed, incoming: Input_Gate1, outgoing: Case 1: OG1, Case 2: OG2, Case 3: OG3)
13 Multi-Proc/Atomic/cpu_module> edit cpu_failure
14 Now editing the cpu_failure Timed Activity (enter the "close" command when finished)...
15 Multi-Proc/Atomic/cpu_module/cpu_failure> show timing
16 Timing distribution: Exponential
17 Parameters:
18 Rate: 6.0 * failure_rate * cpus->Mark()
19 Multi-Proc/Atomic/cpu_module/cpu_failure> set timing distribution Normal
20 Timing distribution set to Normal (Mean: , Variance: )
21 Multi-Proc/Atomic/cpu_module/cpu_failure> set timing Mean "failure_rate * cpus->Mark()"
22 Timing distribution set to Normal (Mean: failure_rate * cpus->Mark(), Variance: )
23 Multi-Proc/Atomic/cpu_module/cpu_failure> set timing Variance "0.1"
24 Timing distribution set to Normal (Mean: failure_rate * cpus->Mark(), Variance: 0.1)
25 Multi-Proc/Atomic/cpu_module/cpu_failure> close
26 Closing the cpu_failure Timed Activity (changes will not be saved until atomic model is saved)...
27 Multi-Proc/Atomic/cpu_module> close
28 You have unsaved changes, would you like to save? (Y|n) y
29 Generating code...............Done!
30 make: Entering directory ‘/home/kjkeefe/MobiusProject/Multi-Proc/Atomic/cpu_module’
31 ...
32 Compile completed: SUCCESS
33 Mobius>

Acknowledgments. The authors would like to acknowledge the current and
former members of the Möbius team and the outside contributors to the Möbius
project. The authors would also like to thank Jenny Applequist for her editorial
work.

References

1. Deavours, D.D., Clark, G., Courtney, T., Daly, D., Derisavi, S., Doyle, J.M., Sanders,
W.H., Webster, P.G.: The Möbius framework and its implementation. IEEE Trans-
actions on Software Engineering 28(10), 956–969 (2002)

2. Doyle, J.M.: Abstract model specification using the Möbius modeling tool. Master’s
thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois (January 2000)

3. Möbius Team: The Möbius Manual. University of Illinois at Urbana-Champaign,
Urbana, IL (2013), http://www.mobius.illinois.edu

4. Sanders, W.H., Meyer, J.F.: Stochastic activity networks: Formal definitions and
concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) FMPA 2000. LNCS,
vol. 2090, pp. 315–343. Springer, Heidelberg (2001)

http://www.mobius.illinois.edu


A CTL Model Checker

for Stochastic Automata Networks�

Lucas Oleksinski, Claiton Correa, Fernando Lúıs Dotti, and Afonso Sales��

PUCRS - FACIN, Porto Alegre, Brazil
{lucas.oleksinski,claiton.correa}@acad.pucrs.br,

{fernando.dotti,afonso.sales}@pucrs.br

Abstract. Stochastic Automata Networks (SAN) is a Markovian for-
malism devoted to the quantitative evaluation of concurrent systems.
Unlike other Markovian formalisms and despite its interesting features,
SAN does not count with the support of model checking. This paper dis-
cusses the architecture, the main features and the initial results towards
the construction of a symbolic CTL Model Checker for SAN. A parallel
version of this model checker is also briefly discussed.

1 Introduction

Stochastic Automata Networks (SAN) was proposed by Plateau [12], being de-
voted to the quantitative evaluation of concurrent systems. It is a Markovian
formalism that allows modeling a system into several subsystems which can
interact with each other. Subsystems are represented by automata and inter-
actions by synchronizing transitions of cooperating automata on same events.
Dependencies among automata can also be defined, using functions. Functions
evaluate on the global state of the automata network and can be used to specify
the behavior of specific automata. The use of functions allows the description
of complex behaviors in a very compact way [1]. Quantitative analysis of SAN
models is possible using specialized software tools (e.g., PEPS [13] or SAN Lite-
Solver [14]), fundamentally allowing one to associate probabilities to the states
of the model, using a steady state or transient analysis.

While developing models for involved situations it is highly desirable to reason
about their computation histories and thus model checking becomes important.
Indeed, many formalisms for quantitative analysis count with the support of
specialized model checking tools. In the context of CTMC-based model checking,
we can mention PRISM [8], SMART [4] and CASPA [7]. Such support however
is lacking for SAN. In this paper we report our results towards the construction
of the first SAN model checker. In this initial version, the tool is restricted to
CTL model checking opposed to the stochastic verification as offered by the
aforementioned tools.
� Paper partially sponsored by CNPq (560036/2010-8) and FAPERGS (PqG 1014867).

�� Afonso Sales receives grant from PUCRS (Edital 01/2012 – Programa de Apoio à
Atuação de Professores Horistas em Atividades de Pesquisa na PUCRS).

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 286–289, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A CTL Model Checker for SAN 287

2 Tool Overview

Fig. 1 illustrates the main processing steps of the SAN model checker. It has as
input a model written in the SAN modeling language [13], a CTL (Computation
Tree Logic) property, and an additional information if a witness or a counterex-
ample to the property is desired. As output it offers the answer whether the
property is true or false, and a witness or counterexample as chosen. The tool
supports the standard CTL where atomic propositions are assertions about the
global state of the automata network according to the SAN language [13].

The compilation of the SAN model generates a Markovian descriptor which
is used as the system transition relation, i.e., a set of tensors which operated by
generalized Kronecker algebra allows the achievement of next states. The initial
states of the model are those considered as reachable in the reachability decla-
ration of the SAN model. Multi-valued Decision Diagrams (MDD) are used to
encode the Reachable State Space (RSS) of the SAN model, which is calculated
using an extension [15] of the saturation based approach [3]. The satisfaction
sets calculation (SAT in Fig. 1) follows a breadth-first search algorithm. During
this process, the RSS is labelled with all subformulas of the input formula.

(MDD)
RSS

Descriptor
Markovian

generation
RSS

Model
SAN

State(s)
Initial

or Witness
Couterexamples

CTL
Property

RSS Labeled w/
Atomic Propositions

ENF−CTL

End

RSS Labeled w/

(sub)formulas
Witness

generation
Witness

Compilation Labeling

CTL Handling

SAT

yes

no

Fig. 1. The tool architecture

Whenever a counterexample is desired, the tool negates the input formula
to generate a witness. The witness generator supports ENF-CTL operators and
generates trace structured witnesses. To enrich witness information, whenever
a branching is avoided the respective state of the trace is annotated with the
subformula that holds from that state.

A parallel approach was proposed that replicates the entire RSS and assigns
specific partitions of the state space to be computed by different nodes. Each
node may locally compute successor states even these cross partition borders,
without requiring communication. Communication is only required for fix-point
calculation, which is executed as rounds of synchronization between nodes.

3 Experiments

We report CTL model checking results1 on both sequential and parallel imple-
mentations of the model checker through set of experiments with two different
models: the dining philosophers (DP) problem [15] and a model for an ad hoc

1 As mentioned, our tool does not perform stochastic verification and thus numerical
analysis is not carried out.



288 L. Oleksinski et al.

wireless network protocol (WN) [6]. For the DP model, starvation, mutual exclu-
sion, deadlock presence and deadlock absence were checked for model variations
with and without deadlock, respectively. Considering the DP model with 15
philosophers, corresponding to RSS of 470,832, all mentioned properties needed
about 500 MB memory and 240 CPU seconds (using one core of a Intel Xeon
Quad-Core E5520 2.27 GHz machine). For some properties, such as deadlock
absence, the tool allows verification of a model with 20 philosophers which has
38,613,965 reachable states requiring around 600 MB memory and 1,650 CPU
seconds. We experienced the parallel version in a cluster with 15 processors for
the same DP model above with 15 philosophers. The worst speed-up took place
with the “deadlock absence” property and the best speed-up took place with the
“starvation” property, with speed-ups of 6 and 11, respectively. The verification
of the deadlock absence property took a peak of 330 MB per node memory while
the sequential solution took 500 MB. The starvation property took a peak of 140
MB per node memory while the sequential execution took 660 MB.

The WN model was build to obtain the end-to-end throughput traversing a
route of ad hoc nodes, taking into consideration the interference range among
nodes. Thus the model is build such that no two interferring nodes transmit at
the same time, resulting in no packet losses. Properties assuring this behavior
have been shown. With 28 ad hoc nodes the model resulted in a RSS of 568,518
and the property assuring that no two interfering nodes transmit at the same
time required verification time around 130 CPU seconds and 361.46 MB memory.
Using the parallel approach for the same WN case, for the same property as
above reported, models with 24, 26 and 28 ad hoc nodes were verified with 15
processors, leading to speed-ups of 4.91; 4.40 and 7.40, respectively. For models
with 28 ad hoc nodes, the verification had a peak of 289.08 MB per node memory
while the sequential solution 361.46 MB.

To assess the tool correctness we have carried out experiments with the
NuSMV tool. More specifically, a set of SAN models have been translated to
the NuSMV, generating transition systems equivalent to the SAN model’s un-
derlying Markov Chains, and have been checked for the same CTL properties,
leading to same results.

4 Conclusions and Future Works

In this paper we presented, at the authors’ best knowledge, the first tool for
model checking SAN models. We have discussed its key features, performance
results and also initial results on a parallel version. As a first version of the
SAN model checker, it has shown coherent results leading to a high confidence
in its correctness, however with low performance. Even considering hardware
differences, the results reported by PRISM [2], CASPA [7] and SMART [5] can
be clearly considered much superior.

In this version we have adopted a Kronecker-based representation of the tran-
sition relation due to the usage of functional elements in the transition matrices
which are necessary to represent SAN abstractions. The use of Kronecker repre-
sentation has a considerable impact since the computation of next states implies



A CTL Model Checker for SAN 289

that several tensors have to be operated, in a meaningful order, according to the
number of submodels (automata) and synchronizing events. Moreover, whenever
functions are used, they have to be evaluated in this process. In contrast, decision
diagram based representation [11,10] would result in a more direct computation
of transitions. This aspect is to be addressed in future works. Another aspect
that we want to address is the use of saturation based model checking algo-
rithms. A first step in this directed has been made in [15] where the reachable
state space generation of SAN models is computed in a saturated way using both
decision diagrams and Kronecker representations. Related works using decision
diagrams, such as in [9], can contribute in relation to this aspect and must be
more closely investigated.

References

1. Brenner, L., Fernandes, P., Sales, A.: The Need for and the Advantages of Gen-
eralized Tensor Algebra for Structured Kronecker Representations. Int. Journal of
Simulation: Systems, Science & Technology (IJSIM) 6(3-4), 52–60 (2005)

2. PRISM (Probabilistic Model Checker), http://www.prismmodelchecker.org/
3. Ciardo, G., Lüttgen, G., Siminiceanu, R.I.: Saturation: An Efficient Iteration Strat-
egy for Symbolic State-Space Generation. In: Margaria, T., Yi, W. (eds.) TACAS
2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001)

4. Ciardo, G., Miner, A.S., Wan, M.: Advanced features in SMART: the stochastic
model checking analyzer for reliability and timing. SIGMETRICS Performance
Evaluation Review 36(4), 58–63 (2009)

5. Ciardo, G., Zhao, Y., Jin, X.: Ten Years of Saturation: A Petri Net Perspective.
Transactions Petri Nets and Other Models of Concurrency 5, 51–95 (2012)

6. Dotti, F.L., Fernandes, P., Sales, A., Santos, O.M.: Modular Analytical Perfor-
mance Models for Ad Hoc Wireless Networks. In: WiOpt 2005, pp. 164–173 (2005)

7. Kuntz, M., Siegle, M., Werner, E.: Symbolic Performance and Dependability Eval-
uation with the Tool CASPA. In: Núñez, M., Maamar, Z., Pelayo, F.L., Pousttchi,
K., Rubio, F. (eds.) FORTE 2004. LNCS, vol. 3236, pp. 293–307. Springer, Hei-
delberg (2004)

8. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

9. Lampka, K., Siegle, M.: Activity-local symbolic state graph generation for high-
level stochastic models. In: 13th MMB, pp. 245–264. VDE Verlag (2006)

10. Lampka, K., Siegle, M.: Analysis of Markov reward models using zero-suppressed
multi-terminal BDDs. In: VALUETOOLS, p. 35 (2006)

11. Miner, A., Parker, D.: Symbolic Representations and Analysis of Large Probabilis-
tic Systems. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M.
(eds.)AUTONOMY2003.LNCS, vol. 2925, pp. 296–338. Springer,Heidelberg (2004)

12. Plateau, B.: On the stochastic structure of parallelism and synchronization models
for distributed algorithms. In: ACM SIGMETRICS Conf. on Measurements and
Modeling of Computer Systems, Austin, USA, pp. 147–154. ACM Press (1985)

13. PEPS Project, http://www-id.imag.fr/Logiciels/peps/userguide.html
14. Sales, A.: SAN lite-solver: a user-friendly software tool to solve SAN models. In:

SpringSim (TMS-DEVS), Orlando, FL, USA, vol. 44, pp. 9–16. SCS/ACM (2012)
15. Sales, A., Plateau, B.: Reachable state space generation for structured models which

use functional transitions. In: QEST 2009, Budapest, Hungary, pp. 269–278 (2009)

http://www.prismmodelchecker.org/
http://www-id.imag.fr/Logiciels/peps/userguide.html


The Steady-State Control Problem
for Markov Decision Processes

S. Akshay1,2, Nathalie Bertrand1, Serge Haddad3, and Loı̈c Hélouët1

1 Inria Rennes, France
2 IIT Bombay, India

3 LSV, ENS Cachan & CNRS & INRIA, France

Abstract. This paper addresses a control problem for probabilistic models in the
setting of Markov decision processes (MDP). We are interested in the steady-state
control problem which asks, given an ergodic MDP M and a distribution δgoal,
whether there exists a (history-dependent randomized) policy πππ ensuring that the
steady-state distribution of M under πππ is exactly δgoal . We first show that station-
ary randomized policies suffice to achieve a given steady-state distribution. Then
we infer that the steady-state control problem is decidable for MDP, and can be
represented as a linear program which is solvable in PTIME. This decidability
result extends to labeled MDP (LMDP) where the objective is a steady-state dis-
tribution on labels carried by the states, and we provide a PSPACE algorithm. We
also show that a related steady-state language inclusion problem is decidable in
EXPTIME for LMDP. Finally, we prove that if we consider MDP under partial
observation (POMDP), the steady-state control problem becomes undecidable.

1 Introduction

Probabilistic systems are frequently modeled as Markov chains, which are composed
of a set of states and a probabilistic transition relation specifying the probability of
moving from one state to another. When the system interacts with the environment, as
is very often the case in real-life applications, in addition to the probabilistic moves,
non-deterministic choices are possible. Such choices are captured by Markov Deci-
sion Processes (MDP), which extend Markov chains with non-determinism. Finally,
in several applications, the system is not fully observable, and the information about
the state of a system at a given instant is not precisely known. The presence of such
uncertainty in observation can be captured by Partially Observable Markov Decision
Processes (POMDP).

In all these settings, given a probabilistic system one is often interested in knowing
whether, in the long run, it satisfies some property. For instance, one may want to make
sure that the system does not, on an average, spend too much time in a faulty state. In
the presence of non-deterministic choices (as in an MDP) or partial observation (as in a
POMDP), a crucial question is whether we can always “control” these choices so that
a long run property can be achieved.

In this paper, we are interested in control problems for Markov decision processes
(MDP) and partially observable Markov decision processes (POMDP) with respect to
long-run objectives. Given a Markov chain, it is well known [5,7] that one can compute

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 290–304, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



The Steady-State Control Problem for Markov Decision Processes 291

its set of steady-state distributions, depending on the initial distribution. In an open set-
ting, i.e., when considering MDP, computing steady-state distributions becomes more
challenging. Controlling an MDP amounts to defining a policy, that is, a function that
associates, with every history of the system, a distribution on non-deterministic choices.

We tackle the steady-state control problem: given an MDP with a fixed initial dis-
tribution, and a goal distribution over its state space, does there exist a policy realizing
the goal distribution as its steady-state distribution? (1) We prove decidability of the
steady-state control problem for the class of so-called ergodic MDP, and provide a
PTIME algorithm using linear programming techniques. (2) We next lift the problem
to the setting of LMDP, where we add labels to states and check if a goal distribution
over these labels can be reached by the system under some policy. For LMDP we show
decidability of the steady-state control problem and provide a PSPACE algorithm. (3)
Finally, for POMDP, we establish that the steady-state control problem becomes unde-
cidable.

We also consider the steady-state language inclusion problem for LMDP. Namely,
given two LMDP the question is whether any steady-state distribution over labels re-
alizable in one process can be realized in the other. Building on our techniques for the
steady-state control problem, we show that the language inclusion problem for LMDP
is decidable in EXPTIME.

As already mentionned, steady-state control can be useful to achieve a given error
rate, and in general to enforce quantitative fairness in a system. Steady-state language
inclusion is a way to guarantee that a refinement of a system does not affect its long term
behaviors. The problem of controlling a system such that it reaches a steady-state has
been vastly studied in control theory for continuous models, e.g. governed by differen-
tial equations and where reachability should occur in finite time. There is a large body
of work which addresses control problems for Markov decision processes. However,
the control objectives are usually defined in terms of an optimization of a cost function
(see e.g. [8,10]). On the contrary, in this work, the control objective is to achieve a given
steady-state distribution. In a recent line of work [3, 6], the authors consider transient
properties of MDP viewed as transformers of probability distributions. Compared to
that setting, we are interested rather in long run properties. Finally, in [4], the authors
consider the problem of language equivalence for labeled Markov chains (LMC) and
LMDP. For LMC, this problem consists of checking if two given LMC have the same
probability distribution on finite executions (over the set of labels) and is shown to be
decidable in PTIME. The equivalence problem for LMDP is left open. As we are only
interested in long run behaviors, we tackle a steady-state variant of this problem.

The paper is organized as follows. Section 2 introduces notations and definitions.
Section 3 formalizes and studies the steady-state control problem: MDP are considered
in Subsection 3.1; Subsection 3.2 extends the decidability results to LMDP and also
deals with the steady-state language inclusion problem; and Subsection 3.3 establishes
that partial observation entails undecidability of the steady-state control problem. We
conclude with future directions in Section 4.



292 S. Akshay et al.

2 Preliminaries

In what follows, we introduce notations for matrices and vectors, assuming the ma-
trix/vector size is understood from the context. We denote the identity matrix by Id, the
(row) vector with all entries equal to 1 by 1 and the (row) vector with only 0’s by 0.
The transpose of a matrix M (possibly a vector) is written Mt. Given a square matrix
M, det(M) is its determinant.

2.1 Markov Chains

We recall some definitions and results about Markov chains. Given a countable set
T , we let Dist(T ) denote the set of distributions over T , that is, the set of functions
δ : T → [0, 1] such that

∑
t∈T δ(t) = 1.

Definition 1. A discrete time Markov chain (DTMC) is a tuple A = (S,Δ, s0) where:

– S is the finite or countable set of states.
– Δ : S → Dist(S) is the transition function describing the distribution over states

reached in one step from a state.
– s0 ∈ Dist(S) is the initial distribution.

As usual the transition matrix P of the Markov chain A is the |S| × |S| row-stochastic

matrix defined by P[s, s′]
def
= Δ(s)(s′), i.e., the (s, s′)th entry of the matrix P gives the

value defined byΔ of the probability to reach s′ from s in one step. When the DTMCA
is finite, one defines an directed graphGA whose vertices are states of A and such that
there is an arc from s to s′ if P[s, s′] > 0. A is said to be recurrent if GA is strongly
connected. The periodicity of a graph p is the greatest integer such that there exists a
partition of S =

⊎p−1
i=0 Si such that for all s ∈ Si and s′ ∈ S, there is an arc from s to s′

only if s′ ∈ S(i+1 mod p). When the periodicity of GA is 1, A is said to be aperiodic.
Finally A is said to be ergodic if it is recurrent and aperiodic.

Now, consider the sequence of distributions s0, s1, . . . such that si = s0 · Pi. This
sequence does not necessarily converge (if the Markov chain is periodic)1. We write
sd(A) when the limit exists and call it the steady-state distribution of A. In case of an
ergodic DTMCA, (1) sd(A) exists, (2) it does not depend on s0 and, (3) it is the unique
distribution s which fulfills s ·P = s. When A is only recurrent, there is still a single
distribution, called the invariant distribution, that fulfills this equation, and it coincides
with the Cesàro limit. However it is a steady-state distribution only for a subset of initial
distributions.

Labeled Markov Chains. LetL = {l1, l2, . . .} be a finite set of labels. A labeled Markov
chain is a tuple (A, �) where A = (S,Δ, s0) is a Markov chain and � : S → L is
a function assigning a label to each state. Given (A, �) a labeled Markov chain, the
labeled steady-state distribution, denoted by lsd(A, �) or simply lsd(A) when � is clear

1 But it always admits a Cesàro-limit: the sequence cn =
1
n
(s0 + · · · + sn−1) converges (see

e.g. [8, p.590]).



The Steady-State Control Problem for Markov Decision Processes 293

from the context, is defined when sd(A) exists and is its projection onto the labels in L,
via �. More formally, for every l ∈ L,

lsd(A)(l) =
∑

s∈S | �(s)=l

sd(A)(s)

2.2 Markov Decision Processes

Definition 2. A Markov decision process (MDP) M = (S, {As}s∈S, p, s0) is defined
by:

– S, the finite set of states;
– For every state s, As, the finite set of actions enabled in s.
– p : {(s, a) | s ∈ S, a ∈ As} → Dist(S) is the transition function. The conditional

probability transition p(s′|s, a) denotes the probability to go from s to s′ if a is
selected.

– s0 ∈ Dist(S) is the initial distribution.

To define the semantics of an MDPM, we first define the notion of history: a possible
finite or infinite execution of the MDP.

Definition 3. Given an MDP M, a history is a finite or infinite sequence alternating
states and actions σ = (s0, a0, . . . , si, ai, . . .). The number of actions of σ is denoted
lg(σ), and if σ is finite, we write last(σ) for this last state. One requires that for all
0 ≤ i < lg(σ), p(si+1|si, ai) > 0.

Compared to Markov chains, MDP contain non-deterministic choices. From a state s,
when an action a ∈ As is chosen, the probability to reach state s′ is p(s′|s, a). In
order to obtain a stochastic process, we need to fix the non-deterministic features of
the MDP. This is done via (1) decision rules that select at some time instant the next
action depending on the history of the execution, and (2) policies which specify which
decision rules should be used at any time instant. Different classes of decision rules and
policies are defined depending on two criteria: (1) the information used in the history
and (2) the way the selection is performed (deterministically or randomly).

Definition 4. Given an MDP M and t ∈ N, a decision rule dt associates with every
history σ of length t = lg(σ) <∞ ending at a state st, a distribution dt(σ) over Ast .

– The set of all decision rules (also called history-dependent randomized decision
rules) at time t is denotedDHR

t .
– The subset of history-dependent deterministic decision rules at time t, denoted
DHD

t , consists of associating a single action (instead of a distribution) with each
history σ of length t <∞ ending at a state st. Thus, in this case dt(σ) ∈ Ast .

– The subset of Markovian randomized decision rules at time t, denoted DMR
t only

depends on the final state of the history. So one denotes dt(s) the distribution that
depends on s.

– The subset of Markovian deterministic decision rules at time t,DMD
t only depends

on the final state of the history and selects a single action. So one denotes dt(s)
this action belonging to As.



294 S. Akshay et al.

When the time t is clear from context, we will omit the subscript and just write DHR,
DHD , DMD andDMR.

Definition 5. Given an MDPM, a policy (also called a strategy)πππ is a finite or infinite
sequence of decision rules πππ = (d0, . . . , dt, . . .) such that dt is a decision rule at time
t, for every t ∈ N.

The set of policies such that for all t, dt ∈ DK
t is denoted ΠK for each

K ∈ {HR,HD ,MR,MD}.
When decisions dt are Markovian and all equal to some rule d, πππ is said stationary and
denoted d∞. The set of stationary randomized (resp. deterministic) policies is denoted
ΠSR (resp.ΠSD ).

A Markovian policy only depends on the current state and the current time while a
stationary policy only depends on the current state. Now, once a policy πππ is chosen, for
each n, we can compute the probability distribution over the histories of length n of
the MDP. That is, under the policy πππ = d0, d1, . . . dn, . . . and with initial distribution
s0, then, for any n ∈ N, the probability of the history σn = s0a0 . . . sn−1an−1sn, is
defined inductively by:

pπππ(σn) = dn(σn−1)(an−1) · p(sn|sn−1, an−1) · pπππ(σn−1) ,

and pπππ(σ0) = s0(s0). Then, by summing over all histories of length n ending in the
same state s, we obtain the probability of reaching state s after n steps. Formally, letting
Xn denote the random variable corresponding to the state at time n, we have:

Pπππ(Xn = s) =
∑

σ|lg(σ)=n∧last(σ)=s

pπππ(σ)

Observe that once a policy πππ is chosen, an MDP M can be seen as a discrete-time
Markov chain (DTMC), written Mπππ, whose states are histories. The Markov chain
Mπππ has infinitely many states in general. When a stationary policy d∞ is chosen, one
can forget the history of states except for the last one, and thus consider the states of the
DTMCMπππ to be those of the MDPM and the transition matrix Pd is defined by:

Pd[s, s
′]

def
=

∑
a∈As

d(s)(a)p(s′|s, a).

Thus, in this case the probability of being in state s at time n is just given by
P(Xn = s) = (s0 ·Pn

d )(s).

Recurrence and Ergodicity. A Markov decision process M is called recurrent (resp.
ergodic) if for every πππ ∈ ΠSD,Mπππ is recurrent (resp. ergodic). Recurrence and ergod-
icity of an MDP can be effectively checked, as the set of graphs {GMπππ | πππ ∈ ΠSD} is
finite. Observe that whenM is called recurrent (resp. ergodic) then for everyπππ ∈ ΠSR,
Mπππ is recurrent (resp. ergodic).



The Steady-State Control Problem for Markov Decision Processes 295

Steady-State Distributions. We fix a policy πππ of an MDPM. Then, for any n ∈ N,
we define the distribution reached by Mπππ at the n-th stage, i.e., for any state s ∈ S
as: δπππn(s) = Pπππ(Xn = s). Now when it exists, the steady-state distribution sd(Mπππ)
of the MDP M under policy πππ is defined as: sd(Mπππ)(s) = limn→∞ δ

πππ
n(s). Observe

that whenM is ergodic, for every decision rule d,Md∞ is ergodic and so sd(Md∞) is
defined.

Now, as we did for Markov chains, given a set of labels L, a labeled MDP, is a tuple
(M, �) where M is an MDP and � : S → L is a labeling function. Then, for M an
MDP, � a labeling function, and πππ a strategy, we define lsd(Mπππ, �) or simply lsd(Mπππ)
for the projection of sd(Mπππ) (when it exists) onto the labels in L via �.

3 The Steady-State Control Problem

3.1 Markov Decision Processes

Given a Markov decision process, the steady-state control problem asks whether one
can come up with a policy to realize a given steady-state distribution. In this paper, we
only consider ergodic MDP. Formally,

Steady-state control problem for MDP
Input: An ergodic MDPM = (S, {As}s∈S , p, s0), and a distribution δgoal ∈
Dist(S).
Question: Does there exist a policy πππ ∈ ΠHR s.t. sd(Mπππ) exists and is
equal to δgoal?

The main contribution of this paper is to prove that, the above decision problem is
decidable and belongs to PTIME for ergodic MDP. Furthermore it is effective: if the
answer is positive, one can compute a witness policy. To establish this result we show
that if there exists a witness policy, then there is a simple one, namely a stationary
randomized policy πππ ∈ ΠSR. We then solve this simpler question by reformulating it
as an equivalent linear programming problem, of size polynomial in the original MDP.
More formally,

Theorem 1. Let M be an ergodic MDP. Assume there exists πππ ∈ ΠHR such that
limn→∞ δπn = δgoal. Then there exists d∞ ∈ ΠSR such that limn→∞ δ

d∞
n = δgoal.

The following folk theorem states that Markovian policies (that is, policies based only
on the history length and the current state) are as powerful as general history-dependent
policies to achieve marginal distributions for {(Xn, Yn)}n∈N where {Yn}n∈N to denote
the family of random variables corresponding to the chosen actions at time n. Observe
that this is no more the case when considering joint distributions.

Theorem 2 ( [8], Thm. 5.5.1). Let πππ ∈ ΠHR be a policy of an MDP M. Then there
exists a policy πππ′ ∈ ΠMR such that for all n ∈ N, s ∈ S and a ∈ As:

Pπππ
′
(Xn = s, Yn = a) = Pπππ(Xn = s, Yn = a)



296 S. Akshay et al.

Hence for an history-dependent randomized policy, there exists a Markovian random-
ized one with the same transient distributions and so with the same steady-state tran-
sient distribution if the former exists. It thus suffices to prove Theorem 1 assuming that
πππ ∈ ΠMR. To this aim, we establish several intermediate results.

Let d ∈ DMR be a Markovian randomized decision rule. d can be expressed as a
convex combination of the finitely many Markovian deterministic decision rules: d =∑

e∈DMD λee. We say that a sequence dn ∈ DMR admits a limit d, denoted dn →n→∞
d, if, writing dn =

∑
e∈DMD λe,ne and d =

∑
e∈DMD λee, then for all e ∈ DMD ,

limn→∞ λe,n = λe.

Lemma 1. Let M be an ergodic MDP and (dn)n∈N ∈ ΠMR. If the sequence dn has
a limit d, then limn→∞ sd(Md∞

n
) exists and is equal to sd(Md∞).

In words, Lemma 1 states that the steady-state distribution under the limit policy d
coincides with the limit of the steady-state distributions under the dn’s. The steady-state
distribution operator is thus continuous over Markovian randomized decision rules.

Proof (of Lemma 1). Consider the following equation system with parameters
{λe}e∈DMD , and a vector of variables X , obtained from

X · (Id−
∑

e∈DMD

λePe) = 0

by removing one equation (any of them), and then adding X · 1t = 1. This system
can be rewritten in the form X ·M = b. Using standard results of linear algebra,
the determinant det(M) is a rational fraction in the λe’s. Moreover due to ergodicity
of M, M is invertible for any tuple (λe)e∈DMD with

∑
e∈DMD λe = 1. Thus the

denominator of this fraction does not cancel for such values. As a result, the function f :
(λe)e∈DMD �→ sd(M(

∑
λee)∞), which is a vector of rational functions, is continuous

which concludes the proof. ��

Note that Lemma 1 does not hold if we relax the assumption that M is ergodic. In-
deed, consider an MDP with two states s0, s1 and two actions a, b, where action a
loops with probability 1 on the current state, whereas action b moves from both states
to state q1, with probability 1. According to the terminology in [8, p. 348] this example
models a multichain, not weakly communicating MDP. We assume the initial distri-
bution to be the Dirac function in q0. On this example, only the decision in state q0 is
relevant, since q1 is a sink state. For every n ∈ N, let dn ∈ DMR be the Markovian
randomized decision rule defined by dn(a) = 1 − 1

n+1 and dn(b) = 1
n+1 . On one

hand, the steady-state distribution in M under the stationary randomized policy d∞n is
sd(M, d∞n ) = (0, 1). On the other hand, the sequence (dn)n∈N of decision rules admits
a limit: limn→∞ dn = d with d(a) = 1 and d(b) = 0, and sd(M, d∞) = (1, 0).

For the next lemma, we introduce further notations. For d a decision rule, we define
its greatest acceptable radius, denoted rd, as

rd = max{r ∈ R | ∀v ∈ R|S|, ||v − sd(Md∞)|| = r =⇒ ∀s ∈ S, v(s) ≥ 0} ,

where || · || is the Euclidean norm. Intuitively, rd is the greatest radius of a neighborhood
aroundMd∞ such that no element inside it has negative coordinates.



The Steady-State Control Problem for Markov Decision Processes 297

q0 q1
b

a a, b

Clearly enough, for a fixed decision rule d ∈ DMR, rd > 0. Indeed, since M is
ergodic, M equipped with the stationary policy d∞ is a Markov chain consisting of a
single recurrent class; hence, every state has a positive probability in the steady-state
distribution sd(Md∞). We also define the following set of distributions, that are r-away
from a distribution w:

N=r(w) = {v | v ∈ Dist(S) and ||v − w|| = r}.

Lemma 2. LetM be an ergodic MDP. Define

α
def
= inf

d∈DMR
inf

v∈N=rd
(sd(Md∞))

||v · (Id−Pd)||
rd

Then, α > 0.

Proof (of Lemma 2). First observe that for fixed d ∈ DMR and v ∈ N=rd(sd(Md∞)),
||v·(Id−Pd)||

rd
> 0. Indeed, if v ∈ Dist(S) and ||v − sd(Md∞)|| = rd > 0, then v is not

the steady-state distribution under d∞, so that v = v ·Pd.
Towards a contradiction, let us assume that the infimum is 0:

inf
d∈DMR

inf
v∈N=rd

(sd(Md∞))

||v · (Id−Pd)||
rd

= 0.

In this case, there exists a sequence of decisions (dn)n∈N ∈ DMR and a sequence
of distributions (vn)n∈N, such that for each n ∈ N, vn ∈ N=rdn (sd(Mdn

∞)) and

limn→∞
||vn·(Id−Pdn )||

rdn
= 0. From these sequences (dn) and (vn), we can extract

subsequences, for simplicity still indexed by n ∈ N such that:

(i) (dn) converges, and we write d for its limit, and
(ii) (vn) converges, and we write v for its limit.

Thanks to Lemma 1, limn→∞ sd(Mdn
∞) = sd(Md∞). Moreover, using the continuity

of the norm function || · ||, limn→∞ rdn = rd, and v ∈ N=rd(sd(Md∞)). Still by
continuity, we derive ||v·(Id−Pd)||

rd
= 0, a contradiction. ��

||v · (Id − Pd)|| is the distance between a distribution v and the resulting distribution
after applying the decision rule d from v. Since we divide it by rd, α roughly represents
the minimum deviation “rate” (w.r.t. all d’s) between v and its image when going away
from sd(Md∞).

Lemma 3. Let M be an ergodic MDP. Assume there exists a policy πππ ∈ ΠMR such
that sd(Mπππ) exists and is equal to δgoal. Then for every ε > 0, there exists d ∈ DMR

such that ||sd(Md∞)− δgoal|| < ε.



298 S. Akshay et al.

The above lemma states that if there is a Markovian randomized policy which at steady-
state reaches the goal distribution δgoal, then there must exist a stationary randomized
policy d∞ which at steady-state comes arbitrarily close to δgoal.

Proof. Let us fix some arbitrary ε > 0. Since we assume that sd(Mπππ) = δgoal, for all
γ > 0, there exists n0 ∈ N such that for every n ≥ n0, ||δπππn − δgoal|| < γ. Let us choose
γ = min{αε4 ,

ε
2}.

Define d ∈ DMR as the decision made by πππ at the n0-th step. That is, if πππ =
((di)i∈N), then dn0 = d. Now, if δπππn0

= sd(Md∞) we are done since we will have
||sd(Md∞) − δgoal|| < ε/2 < ε. Otherwise, we let Θ = rd

||δπππn0
−sd(Md∞ )|| and v =

Θδπππn0
+ (1 − Θ)sd(Md∞). Note that, under these definitions, v ∈ N=rd(sd(Md∞)).

Observe also that v · (Id − Pd) = Θδπππn0
· (Id − Pd), by definition of v and since

sd(Md∞) ·Pd = sd(Md∞).
Thus we have

||v · (Id−Pd)|| = ||Θδπππn0
· (Id−Pd)||

= Θ||δπππn0
− δπππn0

·Pd|| = Θ||δπππn0+1 − δπππn0
||

≤ Θ(||δπππn0+1 − δgoal||+ ||δπππn0
− δgoal||) <

Θαε

2
.

By definition of α, we have α ≤ ||v·(Id−Pd)||
rd

. Then, combining this with the above
equation and using the fact that rd > 0, we obtain:

rd · α ≤ ||v · (Id−Pd)|| <
Θαε

2

By Lemma 2 we have α > 0 which implies that rd < Θε
2 . Substituting the definition of

Θ we get after simplification:

||δπππn0
− sd(Md∞)|| < ε

2

Thus, finally:

||sd(Md∞)− δgoal|| ≤ ||sd(Md∞)− δπππn0
||+ ||δπππn0

− δgoal||

<
ε

2
+
ε

2
= ε

which proves the lemma. ��

Theorem 1 is a consequence of Lemma 3 because stationary randomized policies form
a closed set due to Lemma 1. Thanks to Theorems 2 and 1 a naive algorithm to de-
cide the steady-state control problem for MDP is the following: build a linear program
whose non negative variables {λe} are indexed by each e ∈ DSD and check whether
δgoal · (

∑
e λePe) = δgoal admits a solution with

∑
e λe = 1. This algorithm runs in

exponential time w.r.t. the size of M since there are exponentially many stationary de-
terministic policies. Yet, a better complexity can be obtained as stated in the following
theorem.



The Steady-State Control Problem for Markov Decision Processes 299

Theorem 3. The steady-state control problem for ergodic MDP is effectively decidable
in PTIME.

Proof. According to Theorem 1, finding a policy with steady-state distribution δgoal
can be brought back to finding such a policy in ΠSR. Now, on the one hand, defining
a randomized stationary policy for an MDP M consists in choosing decision rules
ds ∈ DSR, or equivalently real numbers λs,a ∈ [0, 1] for each pair (s, a) of states
and action, and such that for every s,

∑
a∈As

λs,a = 1. Intuitively, λs,a represent the
probability to choose action a when in state s. Note that the set Λ = {λs,a | s ∈
S, a ∈ As} is of polynomial size (in the size of M). Note also that once we have
defined Λ, we have defined at the same time a policy πππΛ ∈ ΠSR, and that MπππΛ

is
a Markov chain with state space S. The transition matrix PΛ of MπππΛ

is such that
PΛ[s, s

′] =
∑

a∈As
λs,a · p(s|s′, a).

Due to ergodicity of M, one only has to check whether δgoal · PΛ = δgoal. Putting
this altogether, we can derive a polynomial size linear programming specification of our
problem: there exists a stationary randomized policy to achieve δgoal if and only if we
can find a set of non negative reals Λ = {λs,a | s ∈ S, a ∈ As} such that

∀s ∈ S,
∑

s′∈S,a∈As′

δgoal(s
′).p(s|s′, a).λs′,a = δgoal(s) and

∑
a∈As

λs,a = 1

Solving this linear program can be done in polynomial time, using techniques such
as the interior point methods (see for instance [9] for details). This proves the overall
PTIME complexity. ��

Discussion. Observe that Lemmas 1, 2 and 3 hold when M is only recurrent substi-
tuting the steady-state distribution of Md∞ by the (single) invariant distribution of this
DTMC. Unfortunately, combining these lemmas in the recurrent case only provides a
necessary condition namely: “If δgoal is the steady-state distribution of some policy then
it is the invariant distribution of some ofMd∞”.

3.2 Labeled Markov Decision Processes

The steady-state control problem for MDP describes random processes in which in-
teractions with users or with the environment drive the system towards a desired dis-
tribution. However, the goal distribution is a very accurate description of the desired
objective and, in particular, this assumes that the controller knows each state of the sys-
tem. Labeling an MDP is a way to define higher-level objectives: labels can be seen
as properties of states, and the goal distribution as a distribution over these properties.
For instance, when resources are shared, a set of labels L = {l1, . . . , lk} may indicate
which user (numbered from 1 to k) owns a particular resource. In such an example,
taking δgoal as the discrete uniform distribution over L encodes a guarantee of fairness.

In this section, we consider Markov decision processes in which states are labeled.
Formally, let M be a Markov decision process, L be a finite set of labels and � : S →
L a labeling function. We consider the following decision problem. Given (M, �) a



300 S. Akshay et al.

labeled Markov decision process and δgoal ∈ Dist(L) a distribution over labels, does
there exist a policy πππ such that lsd(Mπππ) = δgoal.

The steady-state control problem for LMDP is a generalization of the same problem
for MDP: any goal distribution δgoal ∈ Dist(L) represents the (possibly infinite) set of
distributions in Dist(S) that agree with δgoal when projected onto the labels in L.

Theorem 4. The steady-state control problem for ergodic LMDP is decidable in
PSPACE.

Proof. Given an ergodic MDP M labeled with a labeling function � : S → L and a
distribution δgoal ∈ Dist(L), the question is whether there exists a policy πππ forM such
that the steady-state distribution sd(Mπππ) ofM under πππ projected on labels equals δgoal.

First, let us denote by Δgoal = �−1(δgoal) the set of distributions in Dist(S) that
agree with δgoal. If x = (xs)s∈S ∈ Dist(S) is a distribution, then x ∈ Δgoal can be
characterized by the constraints:

∀l ∈ L,
∑

s∈S|�(s)=l

xs = δgoal(l) .

We rely on the proof idea from the unlabeled case: If there is a policy πππ ∈ ΠHR

with steady-state distribution in Dist(S), then, there is a policy πππ′ ∈ ΠSR with the
same steady-state distribution (thanks to Lemmas and Theorems from Subsection 3.1).
This policy πππ′ hence consists in repeatedly applying the same decision rule d ∈ DSR:
πππ′ = d∞. As the MDP M is assumed to be ergodic, there is exactly one distribution
x ∈ Dist(S) that is invariant underPd. The question then is: Is there a policy d ∈ ΠSR,
and a distribution x = (xs)s∈S ∈ Δgoal such that x ·Pd = x?

We thus derive the following system of equations, over non negative variables {xs |
s ∈ S} ∪ {λs,a | s ∈ S, a ∈ As}:

∀l ∈ L,
∑

s∈S|�(s)=l

xs = δgoal(l)

∀s ∈ S,
∑

s′∈S,a∈As′

xs′ .p(s | s′, a).λs′,a = xs and
∑
a∈As

λs,a = 1

The size of this system is still polynomial in the size of the LMDP. Note that the distri-
bution x and the weights λs,a in the decision rule d are variables. Therefore, contrary to
the unlabeled case, the obtained system is composed of quadratic equations (i.e. equa-
tions containing products of two variables). We conclude by observing that quadratic
equation systems as particular case of polynomial equation systems can be solved in
PSPACE [2]. ��

Note that the above technique can be used to find policies enforcing a set of dis-
tributions Δgoal. Indeed, if expected goals are defined through a set of constraints
of the form δgoal(s) ∈ [a, b] for every s ∈ S, then stationnary randomized policies
achieving a steady-state distribution in Δgoal are again the solutions for a polynomial
equation system. Another natural steady-state control problem can be considered for
LMDP. Here, the convergence to a steady-state distribution is assumed, and belongs



The Steady-State Control Problem for Markov Decision Processes 301

to Δgoal = �−1(δgoal). Alternatively, we could consider whether a goal distribution on
labels can be realized by some policy πππ even when the convergence of the sequence
(δπππn)n∈N is not guaranteed. This problem is more complex than the one we consider,
and is left open.

Finally we study a “language inclusion problem”. As mentioned in the introduc-
tion, one can define the steady-state language inclusion problem similar to the language
equivalence problem for LMDP defined in [4]. Formally the steady-state
language inclusion problem for LMDP asks whether given two LMDPM,M′, for ev-
ery policyπππ ofM such that lsd(Mπππ) is defined there exists a policyπππ′ ofM′ such that
lsd(Mπππ) = lsd(M′

πππ′). The following theorem establishes its decidability for ergodic
LMDP.

Theorem 5. The steady-state language inclusion problem for ergodic LMDP is decid-
able in EXPTIME.

3.3 Partially Observable Markov Decision Processes

In the previous section, we introduced labels in MDP. As already mentioned, this allows
us to talk about groups of states having some properties instead of states themselves.
However, decisions are still taken according to the history of the system and, in par-
ticular, states are fully observable. In many applications, however, the exact state of a
system is only partially known: for instance, in a network, an operator can only know
the exact status of the nodes it controls, but has to rely on partial information for other
nodes that it does not manage.

Thus, in a partially observable MDP, several states are considered as similar from the
observer’s point of view. As a consequence, decisions apply to a whole class of similar
states, and have to be adequately chosen so that an objective is achieved regardless of
which state of the class the system was in.

Definition 6. A partially observable MDP (POMDP for short) is a tuple
M = (S, {As}s∈S , p, s0,Part) where (S, {As}s∈S , p, s0) is an MDP, referred to as
the MDP underlyingM and Part is a partition of S.

The partition Part of S induces an equivalence relation over states of S. For s ∈ S, we
write [s] for the equivalence class s belongs to, and elements of the set of equivalence
classes will be denoted c, c0, etc. We assume that for every s, s′ ∈ S, [s] = [s′] implies
As = As′ , thus we write A[s] for this set of actions.

Definition 7. LetM = (S, {As}s∈S, p, s0,Part) be a POMDP.

– A history inM is a finite or infinite sequence alternating state equivalence classes
and actions σ = (c0, a0, · · · , ci, ai · · · ) such that there exists a history
(s0, a0, · · · , si, ai · · · ) in the underlying MDP with for all 0 ≤ i ≤ lg(σ), ci = [si].

– A decision rule in M associates with every history of length t < ∞ a distribution
dt(σ) over A[st].

– A policy of M is finite or infinite a sequence πππ = (d0, · · · , dt, · · · ) such that dt is
a decision rule at time t.



302 S. Akshay et al.

Given a POMDP M = (S, {As}s∈S, p, s0,Part), any policy πππ for M induces a
DTMC written Mπππ. The notion of steady-state distributions extends from MDP to
POMDP trivially, the steady-state distribution in the POMDP M under policy πππ is
written sd(Mπππ). Contrary to the fully observable case, the steady-state control prob-
lem cannot be decided for POMDP.

Theorem 6. The steady-state control problem is undecidable for POMDP.

Proof. The proof is by reduction from a variant of the emptiness problem for probabilis-
tic finite automata. We start by recalling the definition of probabilistic finite automata
(PFA). A PFA is a tuple B = (Q,Σ, τ, F ), where Q is the finite set of states, Σ the
alphabet, τ : Q×Σ → Dist(Q) defines the probabilistic transition function and F ⊆ Q
is the set of final states. The threshold language emptiness problem asks if there exists
a finite word over Σ accepted by B with probability exactly 1

2 . This problem is known
to be undecidable [1].

From a PFA B = (Q,Σ, τ, F ), we define a POMDPM = (S, {As}s∈S , p,Part):

– S = Q ∪ {good , bad}
– As = Σ ∪ {#}, for all s ∈ S
– p(s′|s, a) = τ(s, a)(s′) if a ∈ Σ; p(good |s,#) = 1 if s ∈ F ; p(bad |s,#) = 1 if
s ∈ Q \ F ; p(good |good , a) = 1 for any a ∈ Agood and p(bad |bad , a) = 1 for any
a ∈ Abad .

– Part = S, that is Part consists of a single equivalence class, S itself.

The construction is illustrated below.

B
s f

goodbad

# #

Σ∪{#} Σ∪{#}

Assuming states in S are ordered such that good and bad are the last states, we then
let δgoal = (0, · · · , 0, 1/2, 1/2) be the goal distribution (thus assigning probability mass
1/2 to both good and bad ). This construction ensures that the answer to the steady-state
control problem onM with δgoal is yes if and only if there exists a word w ∈ Σ∗ which
is accepted in B with probability 1/2.

Observe that in the POMDPM we built, all states are equivalent, so that a policy in
M can only base its decision on the number of steps so far, and thus simply corresponds
to a word on A = Σ ∪ {#}. Let us now prove the correctness of the reduction.

(⇐=) Given a word w such that PB(w) = 1/2, in M we define a policy πππ such that
πππ = w#ω . Then we can infer that sd(Mπππ) = (0, · · · , 0, 1/2, 1/2).

(=⇒) First observe that πππ must contain a #-action, otherwise sd(Mπππ) = ( , · · · ,
, 0, 0). Thus we may write πππ = w#ρ with w ∈ Σ∗ and ρ ∈ Aω. So we obtain

that sd(Mπππ) = (0, · · · , 0,PB(w), 1 − PB(w)). From the assumption sd(Mπππ) =
(0, · · · , 0, 1/2, 1/2), this implies that PB(w) = 1/2.



The Steady-State Control Problem for Markov Decision Processes 303

This completes the undecidability proof. ��

Remark 1. In the above undecidability proof, the constructed POMDP is not ergodic.
Further, to the best of our knowledge, the undecidability proofs (see for e.g., [1]) for
the emptiness of PFA with threshold do not carry over to the ergodic setting. Thus, the
status of the steady-state control problem for ergodic POMDP and ergodic PFA are left
open in this paper.

4 Conclusion

In this paper, we have defined the steady-state control problem for MDP, and shown that
this question is decidable for (ergodic) MDP in polynomial time, and for labeled MDP
in polynomial space, but becomes undecidable when observation of states is restricted.
It is an open question whether our algorithms are optimal and to establish matching
lower-bounds or improve the complexities. Further, implementing our decision algo-
rithm is an interesting next step to establish the feasibility of our approach on case
studies. We would also like to extend the results to MDP that are not necessarily er-
godic, and treat the case of ergodic POMDP. Another possible extension is to consider
the control problem with a finite horizon: given an MDP M, a goal distribution δgoal,
and a threshold ε, does there exist a strategy πππ and k ∈ N such that ||δπππk − δgoal|| ≤ ε?

Finally, the results of this paper can have interesting potential applications in diag-
nosability of probabilistic systems [11]. Indeed, we would design strategies forcing the
system to exhibit a steady-state distribution that depends on the occurrence of a fault.

Acknowledgments. We warmly thank the anonymous reviewers for their useful
comments.

References

1. Bertoni, A.: The solution of problems relative to probabilistic automata in the frame of the
formal languages theory. In: Siefkes, D. (ed.) GI 1974. LNCS, vol. 26, pp. 107–112. Springer,
Heidelberg (1975)

2. Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: 20th ACM Symp.
on Theory of Computing, pp. 460–467 (1988)

3. Chadha, R., Korthikanti, V., Vishwanathan, M., Agha, G., Kwon, Y.: Model checking MDPs
with a unique compact invariant set of distributions. In: QEST 2011 (2011)

4. Doyen, L., Henzinger, T.A., Raskin, J.-F.: Equivalence of labeled Markov chains. Int. J.
Found. Comput. Sci. 19(3), 549–563 (2008)

5. Kemeny, J.G., Snell, J.L.: Finite Markov chains. Princeton University Press (1960)
6. Korthikanti, V.A., Viswanathan, M., Agha, G., Kwon, Y.: Reasoning about MDPs as trans-

formers of probability distributions. In: QEST. IEEE Computer Society (2010)
7. Norris, J.R.: Markov chains. Cambridge series on statistical and probabilistic mathematics,

vol. 2. Cambridge University Press (1997)
8. Puterman, M.L.: Markov decision processes: discrete stochastic dynamic programming. John

Wiley & Sons (1994)



304 S. Akshay et al.

9. Roos, C., Terlaky, T., Vial, J.-P.: Theory and Algorithms for Linear Optimization: An interior
point approach. John Wiley & Sons (1997)

10. Sigaud, O., Buffet, O. (eds.): Markov decision processes in artifical intelligence. John Wiley
& Sons (2010)

11. Thorsley, D., Teneketzis, D.: Diagnosability of stochastic discrete-event systems. IEEE
Trans. Automat. Contr. 50(4), 476–492 (2005)



Symbolic Control of Stochastic Switched Systems
via Finite Abstractions�

Majid Zamani and Alessandro Abate��

Delft Center for Systems and Control
Delft University of Technology, The Netherlands

{m.zamani,a.abate}@tudelft.nl

Abstract. Stochastic switched systems are a class of continuous-time dynami-
cal models with probabilistic evolution over a continuous domain and control-
dependent discrete dynamics over a finite set of modes. As such, they represent a
subclass of general stochastic hybrid systems. While the literature has witnessed
recent progress in the dynamical analysis and controller synthesis for the sta-
bility of stochastic switched systems, more complex and challenging objectives
related to the verification of and the synthesis for logic specifications (properties
expressed as formulas in linear temporal logic or as automata on infinite strings)
have not been formally investigated as of yet. This paper addresses these complex
objectives by constructively deriving approximately equivalent (bisimilar) sym-
bolic models of stochastic switched systems. More precisely, a finite symbolic
model that is approximately bisimilar to a stochastic switched system is con-
structed under some dynamical stability assumptions on the concrete model. This
allows to formally synthesize controllers (switching signals) over the finite sym-
bolic model that are valid for the concrete system, by means of mature techniques
in the literature.

1 Introduction

Stochastic hybrid systems are general dynamical systems comprising continuous
and discrete dynamics interleaved with probabilistic noise and stochastic events [4].
Because of their versatility and generality they carry great promise in many safety
critical applications [4], including power networks, automotive and financial engineer-
ing, air traffic control, biology, telecommunications, and embedded systems. Stochastic
switched systems are a relevant class of stochastic hybrid systems: they consist of a fi-
nite set of modes of operation, each of which is associated to a probabilistic dynamical
behavior; further, their discrete dynamics, in the form of mode changes, are governed
by a deterministic control signal. However, unlike general stochastic hybrid systems,

� This work is supported by the European Commission STREP project MoVeS 257005, by the
European Commission Marie Curie grant MANTRAS 249295, by the European Commission
IAPP project AMBI 324432, by the European Commission NoE Hycon2 257462, and by the
NWO VENI grant 016.103.020. A. Abate is also with the Department of Computer Science,
University of Oxford.

�� Corresponding author.

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 305–321, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



306 M. Zamani and A. Abate

they do not present probabilistic discrete dynamics (random switch of modes), nor con-
tinuous resets upon mode change.

It is known [12] that switched systems can be endowed with global dynamics that
are not characteristic of the behavior of any of their single modes: for instance, global
instability can arise by proper choice of the discrete switches between a set of stable
dynamical modes. This global emergent behavior is one of the many features that makes
switched systems theoretically interesting. With focus on stochastic switched systems,
despite recent progress on basic dynamical analysis focused on stability properties [6],
there are no notable results in terms of more complex objectives, such as those dealing
with verification or (controller) synthesis for logical specifications. Specifications of
interest are expressed as formulas in linear temporal logic or via automata on infinite
strings, and as such they are not amenable to be handled by classical techniques for
stochastic processes.

A promising direction to investigate these general properties is the use of symbolic
models. Symbolic models are abstract descriptions of the original dynamics, where each
abstract state (or symbol) corresponds to an aggregate of states in the concrete sys-
tem. When a finite symbolic model is obtained and formally is in relationship with the
original system, one can leverage mature techniques for controller synthesis over the
discrete model [14] to automatically synthesize controllers for the original system. To-
wards this goal, a relevant approach is the construction of finite-state symbolic models
that are bisimilar to the original system. Unfortunately, the class of continuous (time
and space) dynamical systems admitting exactly bisimilar finite-state symbolic mod-
els is quite restrictive and in particular it covers mostly non-probabilistic models. The
results in [5] provide a notion of exact stochastic bisimulation for a class of stochas-
tic hybrid systems, however [5] does not provide any abstraction algorithm, nor looks
at the synthesis problem. Therefore, rather than requiring exact equivalence, one can
resort to approximate bisimulation relations [8], which introduce metrics between the
trajectories of the abstract and the concrete models, and further require boundedness in
time of these distances.

The construction of approximately bisimilar symbolic models has been recently
studied for non-probabilistic continuous control systems, possibly endowed with non-
determinism [13,18, and references therein], as well as for non-probabilistic switched
systems [9]. However stochastic systems, particularly when endowed with switched dy-
namics, have only been partially explored. With focus on these models, only a few exist-
ing results deal with abstractions of discrete-time processes [2, and references therein].
Results for continuous-time models cover models with specific dynamics: probabilistic
rectangular hybrid automata [20] and stochastic dynamical systems under contractivity
assumptions [1]. Further, the results in [10] only check the (approximate) relationship
between an uncountable abstraction and a class of stochastic hybrid systems via a no-
tion of stochastic (bi)simulation function, however, these results do not provide any
construction of the approximation, nor do they deal with finite abstractions, and ap-
pear to be computationally tractable only in the case of no inputs. In summary, to the
best of our knowledge, there is no comprehensive work on the construction of finite
bisimilar abstractions for continuous-time stochastic systems with control actions or



Symbolic Control of Stochastic Switched Systems via Finite Abstractions 307

with switched dynamics. A recent result [22] by the authors investigates this goal over
stochastic control systems, however without any hybrid dynamics.

The main contribution of this work consists in showing the existence and the con-
struction of approximate bisimilar symbolic models for incrementally stable stochastic
switched systems. Incremental stability is a stability assumption applied to the stochas-
tic switched systems under study: it can be described in terms of a so-called Lyapunov
function (which can either be a single global function or correspond to a set of mode-
dependent ones). It is an extension of a similar notion developed for non-probabilistic
switched systems [9] in the sense that the results for non-probabilistic switched systems
represent a special case of the results in this paper when the continuous dynamics are
degenerate (they present no noise). The effectiveness of the results is illustrated with
the synthesis of a controller (switching signal) for a room temperature regulation prob-
lem (admitting a global – or common – Lyapunov function), which is further subject
to a constraint expressed by a finite automaton. More precisely, we display a switched
controller synthesis for the purpose of temperature regulation toward a desired level,
subject to the discrete constraint.

2 Stochastic Switched Systems

2.1 Notation

The identity map on a set A is denoted by 1A. If A is a subset of B, we de-
note by ıA : A ↪→ B or simply by ı the natural inclusion map taking any a ∈ A
to ı(a) = a ∈ B. The symbols N, N0, Z, R, R+, and R+

0 denote the set of natu-
ral, nonnegative integer, integer, real, positive, and nonnegative real numbers, respec-
tively. The symbols In, 0n, and 0n×m denote the identity matrix, the zero vector,
and the zero matrix in Rn×n, Rn, and Rn×m, respectively. Given a vector x ∈ Rn,
we denote by xi the i–th element of x, and by ‖x‖ the infinity norm of x, namely,
‖x‖ = max{|x1|, |x2|, ..., |xn|}, where |xi| denotes the absolute value of xi. Given
a matrix M = {mij} ∈ Rn×m, we denote by ‖M‖ the infinity norm of M , namely,
‖M‖ = max1≤i≤n

∑m
j=1 |mij |, and by ‖M‖F the Frobenius norm of M , namely,

‖M‖F =
√

Tr (MMT ), where Tr(P ) =
∑n

i=1 pii for any P = {pij} ∈ Rn×n. The
notations λmin(A) and λmax(A) stand for the minimum and maximum eigenvalues of
matrix A, respectively.

The closed ball centered at x ∈ Rn with radius ε is defined by
Bε(x) = {y ∈ Rn | ‖x− y‖ ≤ ε}. A set B ⊆ Rn is called a box if B =

∏n
i=1[ci, di],

where ci, di ∈ R with ci < di for each i ∈ {1, . . . , n}. The span of a box
B is defined as span(B) = min {|di − ci| | i = 1, . . . , n}. By defining [Rn]η =
{a ∈ Rn | ai = kiη, ki ∈ Z, i = 1, · · · , n}, the set

⋃
p∈[Rn]η

Bλ(p) is a countable cov-

ering of Rn for any η ∈ R+ and λ ≥ η. For a box B and η ≤ span(B), define the
η-approximation [B]η = [Rn]η ∩ B. Note that [B]η = ∅ for any η ≤ span(B). Ge-
ometrically, for any η ∈ R+ with η ≤ span(B) and λ ≥ η, the collection of sets
{Bλ(p)}p∈[B]η is a finite covering of B, i.e., B ⊆

⋃
p∈[B]η

Bλ(p). We extend the no-

tions of span and approximation to finite unions of boxes as follows. LetA =
⋃M

j=1 Aj ,



308 M. Zamani and A. Abate

where each Aj is a box. Define span(A) = min {span(Aj) | j = 1, . . . ,M}, and for
any η ≤ span(A), define [A]η =

⋃M
j=1[Aj ]η.

Given a set X , a function d : X ×X → R+
0 is a metric on X if for any x, y, z ∈

X , the following three conditions are satisfied: i) d(x, y) = 0 if and only if x = y;
ii) d(x, y) = d(y, x); and iii) (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z). A
continuous function γ : R+

0 → R+
0 , is said to belong to classK if it is strictly increasing

and γ(0) = 0; γ is said to belong to class K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A
continuous function β : R+

0 × R+
0 → R+

0 is said to belong to classKL if, for each fixed
s, the map β(r, s) belongs to class K∞ with respect to r and, for each fixed nonzero
r, the map β(r, s) is decreasing with respect to s and β(r, s) → 0 as s→∞. We
identify a relation R ⊆ A×B with the map R : A→ 2B defined by b ∈ R(a) iff
(a, b) ∈ R. Given a relation R ⊆ A×B, R−1 denotes the inverse relation defined by
R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}.

2.2 Stochastic Switched Systems

Let (Ω,F ,P) be a probability space endowed with a filtration F = (Fs)s≥0 satisfying
the usual conditions of completeness and right-continuity [11, p. 48]. Let (Ws)s≥0 be a
q̂-dimensional F-Brownian motion [17].

Definition 1. A stochastic switched system is a tupleΣ = (Rn,P,P , F,G), where

– Rn is the continuous state space;
– P = {1, · · · ,m} is a finite set of modes;
– P is a subset of S(R+

0 ,P), which denotes the set of piecewise constant functions
(by convention continuous from the right) from R+

0 to P, and characterized by a
finite number of discontinuities on every bounded interval in R+

0 ;
– F = {f1, · · · , fm} such that, for all p ∈ P, fp : Rn → Rn is a continuous function

satisfying the following Lipschitz assumption: there exists a constant L ∈ R+ such
that, for all x, x′ ∈ Rn: ‖fp(x) − fp(x′)‖ ≤ L‖x− x′‖;

– G = {g1, · · · , gm}, such that for all p ∈ P, gp : Rn → Rn×q̂ is a continuous
function satisfying the following Lipschitz assumption: there exists a constant Z ∈
R+ such that for all x, x′ ∈ Rn: ‖gp(x) − gp(x′)‖ ≤ Z‖x− x′‖.

Let us discuss the semantics of model Σ. For any given p ∈ P, we denote by Σp the
subsystem ofΣ defined by the stochastic differential equation

d ξ = fp(ξ) d t+ gp(ξ) dWt, (1)

where fp is known as the drift, gp as the diffusion, and again Wt is Brownian motion.
A solution process of Σp exists and is uniquely determined owing to the assumptions
on fp and on gp [17, Theorem 5.2.1, p. 68].

For the global model Σ, a continuous-time stochastic process ξ : Ω × R+
0 → Rn is

said to be a solution process of Σ if there exists a switching signal υ ∈ P satisfying

d ξ = fυ(ξ) d t+ gυ(ξ) dWt, (2)



Symbolic Control of Stochastic Switched Systems via Finite Abstractions 309

P-almost surely (P-a.s.) at each time t ∈ R+
0 when υ is constant. Let us emphasize

that υ is a piecewise constant function defined over R+
0 and taking values in P, which

simply dictates which mode the solution process ξ is in at any time t ∈ R+
0 . Notice that

the mode changes are non-probabilistic in that they are fully encompassed by a given
function υ in P and that, whenever a mode is changed (discontinuity in υ), the value of
the process ξ is not reset on Rn – thus ξ is a continuous function of time.

We further write ξaυ(t) to denote the value of the solution process at time t ∈ R+
0

under the switching signal υ from initial condition ξaυ(0) = a P-a.s., in which a is a
random variable that is measurable in F0. Note that in general the stochastic switched
system Σ may start from a random initial condition.

Finally, note that a solution process ofΣp is also a solution process ofΣ correspond-
ing to the constant switching signal υ(t) = p, for all t ∈ R+

0 . We also use ξap(t) to
denote the value of the solution process ofΣp at time t ∈ R+

0 from the initial condition
ξap(0) = a P-a.s.

3 Notions of Incremental Stability

This section introduces some stability notions for stochastic switched systems, which
generalize the concepts of incremental global asymptotic stability (δ-GAS) [3] for dy-
namical systems and of incremental global uniform asymptotic stability (δ-GUAS) [9]
for non-probabilistic switched systems. The main results presented in this work rely on
the stability assumptions discussed in this section.

Definition 2. The stochastic subsystem Σp is incrementally globally asymptotically
stable in the qth moment (δ-GAS-Mq), where q ≥ 1, if there exists a KL function
βp such that for any t ∈ R+

0 , and any Rn-valued random variables a and a′ that are
measurable in F0, the following condition is satisfied:

E [‖ξap(t)− ξa′p(t)‖q] ≤ βp
(
E
[
‖a− a′‖q

]
, t
)
. (3)

Intuitively, the notion requires (a higher moment of) the distance between trajectories to
be bounded and decreasing in time. It can be easily checked that a δ-GAS-Mq stochas-
tic subsystem Σp is δ-GAS [3] in the absence of any noise. Further, note that when
fp(0n) = 0n and gp(0n) = 0n×q̂ (drift and diffusion terms vanish at the origin), then
δ-GAS-Mq implies global asymptotic stability in the qth moment (GAS-Mq) [6], which
means that all the trajectories of Σp converge in the qth moment to the (constant) tra-
jectory ξ0np(t) = 0n, for all t ∈ R+

0 , (the equilibrium point). We extend the notion of
δ-GAS-Mq to stochastic switched systems as follows.

Definition 3. A stochastic switched system Σ = (Rn,P,P , F,G) is incrementally
globally uniformly asymptotically stable in the qth moment (δ-GUAS-Mq), where q ≥ 1,
if there exists a KL function β such that for any t ∈ R+

0 , any Rn-valued random vari-
ables a and a′ that are measurable inF0, and any switching signal υ ∈ P , the following
condition is satisfied:

E [‖ξaυ(t)− ξa′υ(t)‖q] ≤ β
(
E
[
‖a− a′‖q

]
, t
)
. (4)



310 M. Zamani and A. Abate

Essentially Definition 3 extends Definition 2 uniformly over any possible switching
signal υ. As expected, the notion generalizes known ones in the literature: it can be
easily seen that a δ-GUAS-Mq stochastic switched system Σ is δ-GUAS [9] in the
absence of any noise and that, whenever fp(0n) = 0n and gp(0n) = 0n×q̂ for all
p ∈ P, then δ-GUAS-Mq implies global uniform asymptotic stability in the qth moment
(GUAS-Mq) [6].

For non-probabilistic systems the δ-GAS property can be characterized by scalar
functions defined over the state space, known as Lyapunov functions [3]. Similarly, we
describe δ-GAS-Mq in terms of the existence of incremental Lyapunov functions.

Definition 4. Define the diagonal set Δ as: Δ = {(x, x) | x ∈ Rn}. Consider a
stochastic subsystem Σp and a continuous function Vp : Rn × Rn → R+

0 that is twice
continuously differentiable on {Rn × Rn}\Δ. Function Vp is called an incremental
global asymptotic stability in the qth moment (δ-GAS-Mq) Lyapunov function for Σp,
where q ≥ 1, if there exist K∞ functions αp, αp, and a constant κp ∈ R+, such that

(i) αp (resp. αp) is a convex (resp. concave) function;
(ii) for any x, x′ ∈ Rn, αp

(
‖x− x′‖q

)
≤ Vp(x, x′) ≤ αp

(
‖x− x′‖q

)
;

(iii) for any x, x′ ∈ Rn, such that x = x′,

LVp(x, x′) := [∂xVp ∂x′Vp]

[
fp(x)
fp(x

′)

]
+

1

2
Tr

([
gp(x)
gp(x

′)

] [
gTp (x) g

T
p (x

′)
] [∂x,xVp ∂x,x′Vp
∂x′,xVp ∂x′,x′Vp

])
≤ −κpVp(x, x′).

The operator L is the infinitesimal generator associated to the stochastic subsystem (1)
[17, Section 7.3], which characterizes the derivative of the expected value of functions
of the process with respect to time. For non-probabilistic systems, L allows computing
the conventional functional derivative with respect to time. The symbols ∂x and ∂x,x′

denote first- and second-order partial derivatives with respect to x and x′, respectively.
Note that condition (i) is not required in the context of non-probabilistic systems [3].

The following theorem describes δ-GAS-Mq in terms of the existence of a δ-GAS-
Mq Lyapunov function.

Theorem 1. A stochastic subsystem Σp is δ-GAS-Mq if it admits a δ-GAS-Mq Lya-
punov function.

As qualitatively stated in the Introduction, it is known that a non-probabilistic switched
system, whose subsystems are all δ-GAS, may exhibit some unstable behaviors under
fast switching signals [9] and, hence, may not be δ-GUAS. The same occurrence can
affect stochastic switched systems endowed with δ-GAS-Mq subsystems. The δ-GUAS
property of non-probabilistic switched systems can be established by using a common
(or global) Lyapunov function, or alternatively via multiple functions that are mode
dependent [9]. This leads to the following extensions for δ-GUAS-Mq of stochastic
switched systems.

Assume that for any p ∈ P, the stochastic subsystem Σp admits a δ-GAS-Mq Lya-
punov function Vp, satisfying conditions (i)-(iii) in Definition 4 with K∞ functions αp,



Symbolic Control of Stochastic Switched Systems via Finite Abstractions 311

αp, and a constant κp ∈ R+. Let us introduce functions α and α and constant κ for
use in the rest of the paper. Let the K∞ functions α, α, and the constant κ be defied as
α = min {α1, · · · , αm}, α = max {α1, · · · , αm}, and κ = min {κ1, · · · , κm}. First
we show a result based on the existence of a common Lyapunov function, characterized
by functions α = α1 = · · · = αm and α = α1 = · · · = αm, and parameter κ.

Theorem 2. Consider a stochastic switched system Σ = (Rn,P,P , F,G). If there ex-
ists a function V that is a common δ-GAS-Mq Lyapunov function for all the subsystems
{Σ1, · · · , Σm}, then Σ is δ-GUAS-Mq.

The condition conservatively requires the existence of a single function V that is valid
for all the subsystems Σp, where p ∈ P. When this common δ-GAS-Mq Lyapunov
function V fails to exist, the δ-GUAS-Mq property of Σ can still be established by
resorting to multiple δ-GAS-Mq Lyapunov functions (one per mode) over a restricted
set of switching signals. More precisely, from Definition 1, let Sτd

(
R+

0 ,P
)

denote the
set of switching signals υ with dwell time τd ∈ R+

0 , meaning that υ ∈ S
(
R+

0 ,P
)

has
dwell time τd if the switching times t1, t2, . . . (occurring at the discontinuity points of
υ) satisfy t1 > τd and ti − ti−1 ≥ τd, for all i ≥ 2. We now show a result based on
multiple Lyapunov functions.

Theorem 3. Let τd ∈ R+
0 , and consider a stochastic switched system Στd =

(Rn,P,Pτd , F,G) with Pτd ⊆ Sτd
(
R+

0 ,P
)
. Assume that for any p ∈ P, there ex-

ists a δ-GAS-Mq Lyapunov function Vp for subsystem Στd,p and that in addition there
exits a constant μ ≥ 1 such that

∀x, x′ ∈ Rn, ∀p, p′ ∈ P, Vp(x, x
′) ≤ μVp′(x, x′). (5)

If τd > logμ/κ, then Στd is δ-GUAS-Mq.

The above result can be practically interpreted as the following fact: global stability is
preserved under subsystem stability and enough time spent in each mode. Theorems 1,
2, and 3 provide sufficient conditions for certain stability properties, however they all
hinge on finding proper Lyapunov functions.

For stochastic switched systemsΣ (resp.Στd ) with fp and gp of the form of polyno-
mials, for any p ∈ P, one can resort to available software tools, such as SOSTOOLS
[19], to search for appropriate δ-GAS-Mq Lyapunov functions.

We look next into special instances where these functions are known explicitly or
can be easily computed based on the model dynamics. The first result provides a suffi-
cient condition for a particular function Vp to be a δ-GAS-Mq Lyapunov function for a
stochastic subsystem Σp, when q = 1, 2 (first or second moment).

Lemma 1. Consider a stochastic subsystem Σp. Let q ∈ {1, 2}, Pp ∈ Rn×n be a
symmetric positive definite matrix, and the function Vp : Rn ×Rn → R+

0 be defined as
follows:

Vp(x, x
′) :=

(
Ṽ (x, x′)

) q
2

=

(
1

q
(x− x′)T Pp (x− x′)

) q
2

, (6)



312 M. Zamani and A. Abate

and satisfies

(x− x′)TPp(fp(x)− fp(x
′))+

1

2

∥∥∥√Pp

(
gp(x)− gp(x

′)
)∥∥∥2

F
≤ −κp

(
Vp(x, x

′)
) 2

q , (7)

or, if fp is differentiable, satisfies

(x− x′)TPp∂xfp(z)(x− x′)+
1

2

∥∥∥√Pp

(
gp(x)− gp(x

′)
)∥∥∥2

F
≤ −κp

(
Vp(x, x

′)
) 2

q , (8)

for all x, x′, z in Rn, and for some constant κp ∈ R+. Then Vp is a δ-GAS-Mq Lya-
punov function for Σp.

The next result provides a condition that is equivalent to (7) or to (8) for affine stochastic
subsystems Σp (that is, for subsystems with affine drift and linear diffusion terms) in
the form of a linear matrix inequality (LMI), which can be easily solved numerically.

Corollary 1. Consider a stochastic subsystem Σp, where for any x ∈ Rn, fp(x) :=
Apx + bp for some Ap ∈ Rn×n, bp ∈ Rn, and gp(x) :=

[
σ1,px σ2,px . . . σq̂,px

]
for some σi,p ∈ Rn×n, where i = 1, . . . , q̂. Then, function Vp in (6) is a δ-GAS-Mq

Lyapunov function for Σp if there exists a positive constant κ̂p ∈ R+ satisfying the
following LMI:

PpAp +A
T
p Pp +

q̂∑
i=1

σTi,pPpσi,p ≺ −κ̂pPp. (9)

Notice that Corollary 1 allows obtaining tighter upper bounds for the inequalities (3)
and (4) for any p ∈ P, by selecting appropriate matrices Pp satisfying the LMI in (9).

4 Symbolic Models and Approximate Equivalence Relations

We employ the notion of system [21] to provide (in Sec. 5) an alternative description of
stochastic switched systems that can be later directly related to their symbolic models.

Definition 5. A system S is a tuple S = (X,X0, U,−→, Y,H), where X is a set of
states, X0 ⊆ X is a set of initial states, U is a set of inputs, −→⊆ X × U × X is a
transition relation, Y is a set of outputs, andH : X → Y is an output map.

We write x
u� x′ if (x, u, x′) ∈−→. If x

u� x′, we call state x′ a u-successor, or
simply a successor, of state x. For technical reasons, we assume that for each x ∈ X ,
there is some u-successor of x, for some u ∈ U – let us remark that this is always the
case for the considered systems later in this paper. A system S is said to be

– metric, if the output set Y is equipped with a metric d : Y × Y → R+
0 ;

– finite, ifX is a finite set;
– deterministic, if for any state x ∈ X and any input u, there exists at most one
u-successor.



Symbolic Control of Stochastic Switched Systems via Finite Abstractions 313

For a system S = (X,X0, U,−→, Y,H) and given any state x0 ∈ X0, a finite state run
generated from x0 is a finite sequence of transitions:

x0
u0� x1

u1� x2
u2� · · · un−2� xn−1

un−1� xn, (10)

such that xi
ui� xi+1 for all 0 ≤ i < n. A finite state run can be trivially extended

to an infinite state run as well. A finite output run is a sequence {y0, y1, . . . , yn} such
that there exists a finite state run of the form (10) with yi = H(xi), for i = 1, . . . , n. A
finite output run can also be directly extended to an infinite output run as well.

Now, we recall the notion of approximate (bi)simulation relation, introduced in [8],
which is useful when analyzing or synthesizing controllers for deterministic systems.

Definition 6. Let Sa = (Xa, Xa0, Ua,
a

� , Ya, Ha) and Sb =

(Xb, Xb0, Ub,
b
� , Yb, Hb) be metric systems with the same output sets Ya = Yb

and metric d. For ε ∈ R+
0 , a relation R ⊆ Xa ×Xb is said to be an ε-approximate

simulation relation from Sa to Sb if the following three conditions are satisfied:

(i) for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with (xa0, xb0) ∈ R;
(ii) for every (xa, xb) ∈ R we have d(Ha(xa), Hb(xb)) ≤ ε;

(iii) for every (xa, xb) ∈ R we have that xa
ua

a
� x′a in Sa implies the existence of

xb
ub

b
� x′b in Sb satisfying (x′a, x

′
b) ∈ R.

A relation R ⊆ Xa ×Xb is said to be an ε-approximate bisimulation relation between
Sa and Sb if R is an ε-approximate simulation relation from Sa to Sb and R−1 is an
ε-approximate simulation relation from Sb to Sa.

System Sa is ε-approximately simulated by Sb, or Sb ε-approximately simulates Sa,
denoted by Sa �ε

S Sb, if there exists an ε-approximate simulation relation from Sa to
Sb. System Sa is ε-approximate bisimilar to Sb, denoted by Sa ∼=ε

S Sb, if there exists an
ε-approximate bisimulation relation between Sa and Sb.

Note that when ε = 0, the condition (ii) in the above definition is changed to (xa, xb) ∈
R if and only if Ha(xa) = Hb(xb), and R becomes an exact simulation relation, as
introduced in [16]. Similarly, when ε = 0 and whenever applicable, R translates into
an exact bisimulation relation.

5 Symbolic Models for Stochastic Switched Systems

This section contains the main contributions of this work. We show that for any stochas-
tic switched system Σ (resp. Στd as in Theorem 3), admitting a common (resp. mul-
tiple) δ-GAS-Mq Lyapunov function(s), and for any precision level ε ∈ R+, we can
construct a finite system that is ε-approximate bisimilar to Σ (resp. Στd). In order
to do so, we use systems as an abstract representation of stochastic switched sys-
tems, capturing all the information contained in them. More precisely, given a stochas-
tic switched system Σ = (Rn,P,P , F,G), we define an associated metric system
S(Σ) = (X,X0, U, � , Y,H), where:



314 M. Zamani and A. Abate

– X is the set of all Rn-valued random variables defined on the probability space
(Ω,F ,P);

– X0 is the set of all Rn-valued random variables that are measurable over the trivial
sigma-algebra F0, i.e., the system starts from a non-probabilistic initial condition,
which is equivalently a random variable with a Dirac probability distribution;

– U = P× R+;
– x

p,τ� x′ if x and x′ are measurable in Ft and Ft+τ , respectively, for some
t ∈ R+

0 , and there exists a solution process ξ : Ω × R+
0 → Rn of Σ satisfying

ξ(t) = x and ξxp(τ) = x′ P-a.s.;
– Y is the set of all Rn-valued random variables defined on the probability space
(Ω,F ,P);

– H = 1X .

We assume that the output set Y is equipped with the natural metric d(y, y′) =(
E
[
‖y − y′‖q

]) 1
q , for any y, y′ ∈ Y and some q ≥ 1. Let us remark that the set of

states of S(Σ) is uncountable and that S(Σ) is a deterministic system in the sense of
Definition 5, since (cf. Subsection 2.2) its solution process is uniquely determined.

In subsequent developments, we will work with a sub-system of S(Σ) obtained
by selecting those transitions of S(Σ) describing trajectories of duration τ , where
τ is a given sampling time. This can be seen as a time discretization or a sam-
pling of S(Σ). This restriction is practically motivated by the fact that the switch-
ing in the original model Σ has to be controlled by a digital platform with a
given clock period (τ ). More precisely, given a stochastic switched system Σ =
(Rn,P,P , F,G) and a sampling time τ ∈ R+, we define the associated system

Sτ (Σ) =
(
Xτ , Xτ0, Uτ ,

τ
� , Yτ , Hτ

)
, where Xτ = X , Xτ0 = X0, Uτ = P,

Yτ = Y ,Hτ = H , and

– xτ
p

τ
� x′τ if xτ and x′τ are measurable, respectively, in Fkτ and F(k+1)τ for

some k ∈ N0, and there exists a solution process ξ : Ω×R+
0 → Rn ofΣ satisfying

ξ(kτ) = xτ and ξxτp(τ) = x′τ P-a.s..

Note that a finite state run x0
u0

τ
� x1

u1

τ
� ...

uN−1

τ
� xN of Sτ (Σ), where ui ∈ P

and xi = ξxi−1ui−1(τ) for i = 1, · · · , N , captures the trajectory of the stochastic
switched system Σ at times t = 0, τ, · · · , Nτ , started from the non-probabilistic initial
condition x0 and resulting from a switching signal υ obtained by the concatenation of
the modes ui

(
i.e. υ(t) = ui−1 for any t ∈ [(i − 1)τ, i τ [

)
, for i = 1, · · · , N .

Before introducing the symbolic model for the stochastic switched system, we pro-
ceed with the next lemma, borrowed from [22], which provides an upper bound on the
distance (in the qth moment metric) between the solution processes of Σp and the cor-
responding non-probabilistic system obtained by disregarding the diffusion term (gp).

Lemma 2. Consider a stochastic subsystem Σp such that fp(0n) = 0n and gp(0n) =
0n×q̂. Suppose there exists a δ-GAS-Mq Lyapunov function Vp for Σp such that its
Hessian is a positive semidefinite matrix in R2n×2n and q ≥ 2. Then for any x in a
compact set D ⊂ Rn and any p ∈ P, we have



Symbolic Control of Stochastic Switched Systems via Finite Abstractions 315

E
[∥∥ξxp(t)− ξxp(t)∥∥q] ≤ hp(gp, t), (11)

where ξxp is the solution of the ordinary differential equation (ODE) ξ̇xp = fp
(
ξxp

)
starting from the initial condition x, and the nonnegative valued function hp tends to
zero as t→ 0, t→ +∞, or as Z → 0, where Z is the Lipschitz constant, introduced in
Definition 1.

Although the result in [22, Lemma 3.7] is based on the existence of δ-ISS-Mq Lya-
punov functions, one can similarly show the result in Lemma 2 by using δ-GAS-
Mq Lyapunov functions. In particular, one can compute explicitly function hp us-
ing [22, Equation (9.4)] with slight modifications. Moreover, we refer the interested
readers to [22, Lemma 3.9 and Corollary 3.10], providing explicit forms of the func-
tion hp for (affine) stochastic subsystems Σp admitting a δ-GAS-Mq Lyapunov func-
tion Vp as in (6), where q ∈ {1, 2}. Note that one does not require the condi-
tion fp(0n) = 0n for affine subsystems Σp. For later use, we introduce function
h(G, t) = max {h1(g1, t), · · · , hm(gm, t)} for all t ∈ R+

0 .
In order to show the main results, we raise the following supplementary assumption

on the δ-GAS-Mq Lyapunov functions Vp: for all p ∈ P, there exists a K∞ and concave
function γ̂p such that

|Vp(x, y)− Vp(x, z)| ≤ γ̂p (‖y − z‖) , (12)

for any x, y, z ∈ Rn. This assumption is not restrictive, provided the function Vp is
limited to a compact subset of Rn×Rn. For all x, y, z ∈ D, whereD is a compact subset
of Rn, by applying the mean value theorem to the function y → Vp(x, y), one gets

|Vp(x, y)− Vp(x, z)| ≤ γ̂p (‖y − z‖) , where γ̂p(r) =
(
max(x,y)∈D\Δ

∥∥∥∂Vp(x,y)
∂y

∥∥∥) r.
In particular, for the δ-GAS-M1 Lyapunov functionVp defined in (6), we obtain γ̂p(r) =
λmax(Pp)√
λmin(Pp)

r [21, Proposition 10.5]. For later use, let us define the K∞ function γ̂ such

that γ̂ = max {γ̂1, · · · , γ̂m}. (Note that, for the case of a common Lyapunov function,
we have: γ̂ = γ̂1 = · · · = γ̂m.) We proceed presenting the main results of this work.

5.1 Common Lyapunov Function

We first show a result based on the existence of a common δ-GAS-Mq Lyapunov
function for subsystems Σ1, · · · , Σm. Consider a stochastic switched system Σ =
(Rn,P,P , F,G) and a pair q = (τ, η) of quantization parameters, where τ is the sam-
pling time and η is the state space quantization. Given Σ and q, consider the following
system: Sq(Σ) = (Xq, Xq0, Uq,

q
� , Yq, Hq), where Xq = [Rn]η, Xq0 = [Rn]η ,

Uq = P, and

– xq
p

q
� x′q if there exists a x′q ∈ Xq such that

∥∥∥ξxqp(τ)− x′q
∥∥∥ ≤ η, where

ξ̇xqp = fp

(
ξxqp

)
;



316 M. Zamani and A. Abate

– Yq is the set of all Rn-valued random variables defined on the probability space
(Ω,F ,P);

– Hq = ı : Xq ↪→ Yq.

In order to relate models, the output set Yq is taken to be that of the stochastic switched
system Sτ (Σ). Therefore, in the definition of Hq, the inclusion map ı is meant, with
a slight abuse of notation, as a mapping from a grid point to a random variable with a
Dirac probability distribution centered at the grid point. There is no loss of generality
to alternatively assume that Yq = Xq andHq = 1Xq .

The transition relation of Sq(Σ) is well defined in the sense that for every xq ∈ [Rn]η

and every p ∈ P there always exists x′q ∈ [Rn]η such that xq
p

q
� x′q. This can be seen

since by definition of [Rn]η, for any x̂ ∈ Rn there always exists a state x̂′ ∈ [Rn]η such
that ‖x̂− x̂′‖ ≤ η. Hence, for ξxqp(τ) there always exists a state x′q ∈ [Rn]η satisfying∥∥∥ξxqp(τ) − x′q

∥∥∥ ≤ η.

We can now present one of the main results of the paper, which relates the existence
of a common δ-GAS-Mq Lyapunov function for the subsystems Σ1, · · · , Σm to the
construction of a finite symbolic model that is approximately bisimilar to the original
system.

Theorem 4. Let Σ = (Rn,P,P , F,G) be a stochastic switched system admitting a
common δ-GAS-Mq Lyapunov function V , of the form of (6) or the one explained in
Lemma 2, for subsystems Σ1, · · · , Σm. For any ε ∈ R+, and any double q = (τ, η) of
quantization parameters satisfying

α (ηq) ≤ α (εq) , (13)

e−κτα (εq) + γ̂
(
(h(G, τ))

1
q + η

)
≤ α (εq) , (14)

we have that Sq(Σ) ∼=ε
S Sτ (Σ).

It can be readily seen that when we are interested in the dynamics ofΣ, initialized on a
compact D ⊂ Rn of the form of finite union of boxes and for a given precision ε, there
always exist a sufficiently large value of τ and a small value of η such that η ≤ span(D)
and the conditions in (13) and (14) are satisfied. For a given fixed sampling time τ , the
precision ε is lower bounded by:

ε >

⎛
⎝α−1

⎛
⎝ γ̂

(
(h(G, τ ))

1
q

)
1− e−κτ

⎞
⎠
⎞
⎠

1
q

. (15)

One can easily verify that the lower bound on ε in (15) goes to zero as τ goes to infinity
or asZ → 0, whereZ is the Lipschitz constant, introduced in Definition 1. Furthermore,
one can try to minimize the lower bound on ε in (15) by appropriately choosing a
common δ-GAS-Mq Lyapunov function V .

Note that the results in [9, Theorem 4.1] for non-probabilistic models are fully recov-
ered by the statement in Theorem 4 if the stochastic switched system Σ is not affected
by any noise, implying that hp(gp, t) is identically zero for all p ∈ P, and that the
δ-GAS-Mq common Lyapunov function simply reduces to being the δ-GAS one.



Symbolic Control of Stochastic Switched Systems via Finite Abstractions 317

5.2 Multiple Lyapunov Functions

If a common δ-GAS-Mq Lyapunov function does not exist, one can still attempt com-
puting approximately bisimilar symbolic models by seeking mode-dependent Lyapunov
functions and by restricting the set of switching signals using a dwell time τd. For sim-
plicity and without loss of generality, we assume that τd is an integer multiple of τ , i.e.
there existsN ∈ N such that τd = Nτ .

Given a stochastic switched system Στd = (Rn,P,Pτd , F,G) and a sampling time
τ ∈ R+, we define the system Sτ (Στd) = (Xτ , Xτ0, Uτ ,

τ
� , Yτ , Hτ ), where:

– Xτ = X × P × {1, . . . , N − 1}, where X is the set of all Rn-valued random
variables defined on the probability space (Ω,F ,P);

– Xτ0 = X0 × P × {0}, where X0 is the set of all Rn-valued random variables
that are measurable with respect to the trivial sigma-algebra F0, i.e., the stochastic
switched system starts from a non-probabilistic initial condition;

– Uτ = P;

– (xτ , p, i)
p

τ
� (x′τ , p

′, i′) if xτ and x′τ are measurable, respectively, in Fkτ and

F(k+1)τ for some k ∈ N0, and there exists a solution process ξ : Ω×R+
0 → Rn of

Σ satisfying ξ(kτ) = xτ and ξxτp(τ) = x′τ P-a.s. and one of the following holds:
• i < N − 1, p′ = p, and i′ = i + 1: switching is not allowed because the time

elapsed since the latest switch is strictly smaller than the dwell time;
• i = N − 1, p′ = p, and i′ = N − 1: switching is allowed but no mode switch

occurs;
• i = N − 1, p′ = p, and i′ = 0: switching is allowed and a mode switch occurs.

– Yτ = X is the set of all Rn-valued random variables defined on the probability
space (Ω,F ,P);

– Hτ is the map taking (xτ , p, i) ∈ X × P× {1, · · · , N − 1} to xτ ∈ X .

We assume that the output set Yτ is equipped with the natural metric d(y, y′) =(
E
[
‖y − y′‖q

]) 1
q , for any y, y′ ∈ Yτ and some q ≥ 1. One can readily verify that the

(in)finite output runs of Sτ (Στd) are the (in)finite output runs of Sτ (Σ) corresponding
to switching signals with dwell time τd = Nτ .

Consider a stochastic switched system Στd = (Rn,P,Pτd , F,G) and a pair q =
(τ, η) of quantization parameters, where τ is the sampling time and η is the state
space quantization. Given Στd and q, consider the following system: Sq (Στd) =
(Xq, Xq0, Uq,

q
� , Yq, Hq), where Xq = [Rn]η × P × {0, · · · , N − 1}, Xq0 =

[Rn]η × P× {0}, Uq = P, and

– (xq, p, i)
p

q
� (

x′q, p
′, i′

)
if there exists a x′q ∈ Xq such that

∥∥∥ξxqp(τ)− x′q
∥∥∥ ≤ η,

where ξ̇xqp = fp

(
ξxqp

)
and one of the following holds:

• i < N − 1, p′ = p, and i′ = i+ 1;
• i = N − 1, p′ = p, and i′ = N − 1;
• i = N − 1, p′ = p, and i′ = 0.

– Yq = X is the set of all Rn-valued random variables defined on the probability
space (Ω,F ,P);



318 M. Zamani and A. Abate

– Hq is the map taking (xq, p, i) ∈ [Rn]η×P×{1, · · · , N − 1} to a random variable
with a Dirac probability distribution centered at xq.

Similar to what we showed in the case of a common Lyapunov function, the transition
relation of Sq (Στd) is well defined in the sense that for every (xq, p, i) ∈ [Rn]η × P×
{0, · · · , N − 1} there always exists

(
x′q, p

′, i′
)
∈ [Rn]η × P × {0, · · · , N − 1} such

that (xq, p, i)
p

q
� (

x′q, p
′, i′

)
.

We present the second main result of the paper, which relates the existence of mul-
tiple Lyapunov functions for a stochastic switched system to that of a symbolic model.

Theorem 5. Consider τd ∈ R+
0 , and a stochastic switched system Στd =

(Rn,P,Pτd , F,G) such that τd = Nτ , for some N ∈ N. Let us assume that for any
p ∈ P, there exists a δ-GAS-Mq Lyapunov function Vp, of the form in (6) or as the one
in Lemma 2, for subsystem Στd,p. Moreover, assume that (5) holds for some μ ≥ 1. If
τd > logμ/κ, for any ε ∈ R+, and any pair q = (τ, η) of quantization parameters
satisfying

α (ηq) ≤ α (εq) , (16)

γ̂
(
(h(G, τ))

1
q + η

)
≤

1
μ − e−κτd

1− e−κτd

(
1− e−κτ

)
α (εq) , (17)

we have that Sq (Στd)
∼=ε

S Sτ (Στd).

It can be readily seen that when we are interested in the dynamics of Στd , initialized
on a compact D ⊂ Rn of the form of finite union of boxes, and for a precision ε, there
always exist sufficiently large value of τ and small value of η such that η ≤ span(D)
and the conditions in (16) and (17) are satisfied. For a given fixed sampling time τ , the
precision ε is lower bounded by:

ε ≥

⎛
⎝α−1

⎛
⎝ γ̂

(
(h(G, τ ))

1
q

)
1− e−κτ

· 1− e−κτd

1
μ
− e−κτd

⎞
⎠
⎞
⎠

1
q

. (18)

The properties of the bound in (18) are analogous to those of the case of a com-
mon Lyapunov function. Similarly, Theorem 5 subsumes [9, Theorem 4.2] over non-
probabilistic models.

6 Case Study

We experimentally demonstrate the effectiveness of the results. In the example below,
the computation of the abstraction Sq(Σ) has been performed via the software tool
Pessoa [15] on a laptop with CPU 2GHz Intel Core i7. Controller enforcing the speci-
fication was found by using standard algorithms from game theory [14], as implemented
in Pessoa. The terms W i

t , i = 1, 2, denote the standard Brownian motion.



Symbolic Control of Stochastic Switched Systems via Finite Abstractions 319

The stochastic switched system Σ is a simple thermal model of a two-room build-
ing, borrowed from [7], affected by noise and described by the following stochastic
differential equations:{

d ξ1 = (α21 (ξ2 − ξ1) + αe1 (Te − ξ1) + αf (Tf − ξ1) (p− 1)) d t+ σ1ξ1 dW
1
t ,

d ξ2 = (α12 (ξ1 − ξ2) + αe2 (Te − ξ2)) d t+ σ2ξ2 dW
2
t ,

(19)

where ξ1 and ξ2 denote the temperature in each room, Te = 10 (degrees Celsius) is the
external temperature and Tf = 50 is the temperature of a heater that can be switched
off (p = 1) or on (p = 2): these two operations correspond to the modes P of the model,
whereas the state space is R2. The drifts fp and diffusion terms gp, p = 1, 2, can be
simply written out of (19) and are affine. The parameters of the drifts are chosen based
on the ones in [7] as follows:α21 = α12 = 5×10−2,αe1 = 5×10−3, αe2 = 3.3×10−3,
and αf = 8.3 × 10−3. We work on the subset D = [20, 22] × [20, 22] ⊂ R2 of the
state space of Σ. Within D one can conservatively overapproximate the multiplicative
noises in (19) as additive noises with variance between 0.02 and 0.022.

It can be readily verified that the function V (x1, x2) =
√
(x1 − x2)T (x1 − x2) is

a common δ-GAS-M1 Lyapunov function forΣ, satisfying the LMI condition (9) with
Pp = I2, and κ̂p = 0.0083, for p ∈ {1, 2}.

For a given sampling time τ = 20 time units, using inequality (15), the precision
ε is lower bounded by the quantity 1.09. While one can reduce this lower bound by
increasing the sampling time, as discussed later the empirical bound computed in the
experiments is significantly lower than the theoretical bound ε = 1.09. For a selected
precision ε = 1.1, the discretization parameter η of Sq(Σ), computed from Theorem 4,
equals to 0.003. This has lead to a symbolic system Sq(Σ) with a resulting number of
states equal to 895122. The CPU time employed to compute the abstraction amounted
to 506.32 seconds.

Consider the objective to design a controller (switching policy) forcing the first mo-
ment of the trajectories ofΣ to stay within D. This objective can be encoded via the LTL
specification �D. Furthermore, to add an additional discrete component to the problem,
we assume that the heater has to stay in the off mode (p = 1) at most one time slot in
every two slots. A time slot is an interval of the form [kτ, (k + 1)τ [, with k ∈ N and
where τ is the sampling time. Possible switching policies are for instance:

|12|12|12|12|12|12|12| · · · , |21|21|21|21|21|21|21| · · · , |12|21|22|12|12|21|22| · · · ,

where 2 denotes a slot where the heater is on (p = 2) and 1 denotes a slot where
heater is off (p = 1). This constraint on the switching policies can be represented
by the finite system (labeled automaton) in Figure 1, where the allowed initial states
are distinguished as targets of a sourceless arrow. The CPU time for synthesizing the
controller amounted to 21.14 seconds. In Figure 2, we show several realizations of
closed-loop trajectory ξx0υ stemming from initial condition x0 = (21, 21) (left panel),
as well as the corresponding evolution of switching signal υ (right panel), where the
finite system is initialized from state q1. Furthermore, in Figure 2 (middle panels), we
show the average value over 100 experiments of the distance in time of the solution
process ξx0υ to the set D, namely ‖ξx0υ(t)‖D, where the point-to-set distance is defined
as ‖x‖D = infd∈D ‖x− d‖. Notice that the average distance is significantly lower than
the precision ε = 1.1, as expected since the conditions based on Lyapunov functions



320 M. Zamani and A. Abate

q1

1

q2

2

Fig. 1. Finite system describing the constraint over the switching policies. The lower part of the
states are labeled with the outputs (2 and 1) denoting whether heater is on (p = 2) or off (p = 1).

20 21 22
19.5

20

20.5

21

21.5

22

22.5

x
1

x 2

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
E
[|
|
x 0
(t
)|
| D
]

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

time

E
[|
|
x 0
(t
)|
| D
]

0 100 200 300 400 500
0.5

1

1.5

2

2.5

time

D

Fig. 2. Several realizations of the closed-loop trajectory ξx0υ with initial condition x0 = (21, 21)
(left panel). Average values (over 100 experiments) of the distance of the solution process ξx0υ

to the set D, in different vertical scales (middle panels). Evolution of the synthesized switching
signal υ (right panel), where the finite system initialized from state q1.

can lead to conservative bounds. (As discussed in Corollary 1, bounds can be improved
by seeking optimized Lyapunov functions.)

References

1. Abate, A.: A contractivity approach for probabilistic bisimulations of diffusion processes. In:
Proceedings of 48th IEEE Conference on Decision and Control, pp. 2230–2235 (December
2009)

2. Abate, A., D’Innocenzo, A., Di Benedetto, M.D.: Approximate abstractions of stochastic
hybrid systems. IEEE Transactions on Automatic Control 56(11), 2688–2694 (2011)

3. Angeli, D.: A Lyapunov approach to incremental stability properties. IEEE Transactions on
Automatic Control 47(3), 410–421 (2002)

4. Blom, H.A.P., Lygeros, J.: Stochastic Hybrid Systems: Theory and Safety Critical Applica-
tions. LNCIS, vol. 337. Springer, Heidelberg (2006)

5. Bujorianu, M.L., Lygeros, J., Bujorianu, M.C.: Bisimulation for General Stochastic Hybrid
Systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 198–214.
Springer, Heidelberg (2005)

6. Chatterjee, D., Liberzon, D.: Stability analysis of deterministic and stochastic switched sys-
tems via a comparison principle and multiple Lyapunov functions. SIAM Journal on Control
and Optimization 45(1), 174–206 (2006)



Symbolic Control of Stochastic Switched Systems via Finite Abstractions 321

7. Girard, A.: Low-complexity switching controllers for safety using symbolic models. In: Pro-
ceedings of 4th IFAC Conference on Analysis and Design of Hybrid Systems, pp. 82–87
(2012)

8. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. IEEE
Transactions on Automatic Control 25(5), 782–798 (2007)

9. Girard, A., Pola, G., Tabuada, P.: Approximately bisimilar symbolic models for incremen-
tally stable switched systems. IEEE Transactions on Automatic Control 55(1), 116–126
(2010)

10. Julius, A.A., Pappas, G.J.: Approximations of stochastic hybrid systems. IEEE Transaction
on Automatic Control 54(6), 1193–1203 (2009)

11. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Graduate
Texts in Mathematics, vol. 113. Springer, New York (1991)

12. Liberzon, D.: Switching in Systems and Control. Systems & Control: Foundations & Appli-
cations. Birkhäuser (2003)

13. Majumdar, R., Zamani, M.: Approximately bisimilar symbolic models for digital control
systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 362–377.
Springer, Heidelberg (2012)

14. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed sys-
tems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer,
Heidelberg (1995)

15. Mazo Jr., M., Davitian, A., Tabuada, P.: PESSOA: A tool for embedded controller synthe-
sis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 566–569.
Springer, Heidelberg (2010)

16. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)
17. Oksendal, B.K.: Stochastic differential equations: An introduction with applications, 5th edn.

Springer (November 2002)
18. Pola, G., Tabuada, P.: Symbolic models for nonlinear control systems: Alternating approxi-

mate bisimulations. SIAM Journal on Control and Optimization 48(2), 719–733 (2009)
19. Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A.: SOSTOOLS: Control applications

and new developments. In: Proceedings of IEEE International Symposium on Computer
Aided Control Systems Design, pp. 315–320 (2004)

20. Sproston, J.: Discrete-time verification and control for probabilistic rectangular hybrid au-
tomata. In: Proceedings of 8th International Conference on Quantitative Evaluation of Sys-
tems, pp. 79–88 (2011)

21. Tabuada, P.: Verification and Control of Hybrid Systems, A symbolic approach, 1st edn.
Springer (June 2009)

22. Zamani, M., Mohajerin Esfahani, P., Majumdar, R., Abate, A., Lygeros, J.: Symbolic con-
trol of stochastic systems via approximately bisimilar finite abstractions. arXiv: 1302.3868
(2013)



Synthesis for Multi-objective Stochastic Games:

An Application to Autonomous Urban Driving

Taolue Chen, Marta Kwiatkowska, Aistis Simaitis, and Clemens Wiltsche

Department of Computer Science, University of Oxford, United Kingdom

Abstract. We study strategy synthesis for stochastic two-player games
with multiple objectives expressed as a conjunction of LTL and expected
total reward goals. For stopping games, the strategies are constructed
from the Pareto frontiers that we compute via value iteration. Since, in
general, infinite memory is required for deterministic winning strategies
in such games, our construction takes advantage of randomised mem-
ory updates in order to provide compact strategies. We implement our
methods in PRISM-games, a model checker for stochastic multi-player
games, and present a case study motivated by the DARPA Urban Chal-
lenge, illustrating how our methods can be used to synthesise strategies
for high-level control of autonomous vehicles.

1 Introduction

The increasing reliance on sensor-enabled smart devices in a variety of appli-
cations, for example, autonomous parking and driving, medical devices, and
communication technology, has called for software quality assurance technolo-
gies for the development of their embedded software controllers. To that end,
techniques such as formal verification, validation and synthesis from specifica-
tions have been advocated, see e.g. [17,3]. One advantage of synthesis is that
it guarantees correctness of the controllers by construction. This technique has
been successfully demonstrated for LTL (linear temporal logic) specifications in
robotic control and urban driving [19,21], where it can be used to synthesise
controllers that maximise the probability of the system behaving according to
its specification, which is expressed as an LTL formula. As a natural continua-
tion of the aforementioned studies, one may wish to synthesise controllers that
satisfy several objectives simultaneously. These objectives might be LTL formu-
lae with certain probabilities, or a broader range of quantitative, reward-based
specifications. Such multi-objective specifications enable the designers to choose
the best controller for the given application by exploiting the Pareto trade-offs
between objectives, such as increasing the probability of reaching a goal, while
at the same time reducing the probability of entering an unsafe state or keeping
the expected value of some reward function above a given value.

The majority of research in (discrete) controller synthesis from LTL specifica-
tions has centred on modelling in the setting of Markov chains or Markov decision
processes (MDPs). In this paper, we focus on stochastic two-player games, which

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 322–337, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Synthesis for Multi-objective Stochastic Games 323

generalise MDPs, and which provide a natural view of the system (represented
as Player 1) playing a game against an adversarial environment (Player 2). In
the setting of multi-objective stochastic games, several challenges for controller
synthesis need to be overcome that we address in this paper. Firstly, the games
are not determined, and thus determinacy cannot be leveraged by the synthesis
algorithms. Secondly, the winning strategies for such games require both mem-
ory and randomisation; previous work has shown that the number of different
probability distributions required by the winning strategy may be exponential
or even infinite, and so one needs to adopt a representation of strategies which
allows us to encode such distributions using finitely many memory elements.

Modelling via multi-objective stochastic games is well suited to navigation
problems, such as urban driving, where the environment makes choices to which
the system has to react by selecting appropriate responses that, for example,
avoid obstacles or minimise the likelihood of accidents. The choices of the envi-
ronment can be nondeterministic, but can also be modelled probabilistically, e.g.
where statistical observations about certain hazards are available. In addition to
probabilities, one can also annotate the model with rewards, to evaluate vari-
ous quantities by means of expectations. For instance, we can model a trade-off
between the probability p of the car reaching a certain position without an acci-
dent, and the expected quality r of the roads it drives over to get there. While
both (p, r) = (0.9, 4) and (p′, r′) = (0.8, 5) might be achievable, the combination
(p′′, r′′) = (0.9, 5) could be unattainable by any controller, since (p, r) and (p′, r′)
are already Pareto optimal.

In this paper we extend the results of [9], where verification techniques for
multi-objective stochastic games were proposed. We focus here on quantitative
multi-objective conjunctions for stochastic two-player games, where each prop-
erty in the conjunction can be either an LTL formula or a reward function. We
formulate a value iteration method to compute an approximation of the Pareto
frontiers for exploring the trade-offs between different controllers and show how
to construct control strategies. We also develop a prototype implementation as
an extension of PRISM-games [7] using the Parma Polyhedra Library [1], and
apply it to a case study of urban driving inspired by the 2007 DARPA Urban
Challenge [11]. We construct and evaluate strategies for autonomous driving
based on OpenStreetMap [16] data for a number of English villages.

Contributions. The paper makes the following contributions:

– We show how to solve stopping games with conjunctions of LTL objectives
by reduction to reachability reward objectives.

– We formulate and implement algorithms for computing Pareto frontiers for
reachability games using value iteration.

– We construct strategies from the results of the value iteration algorithm and
evaluate their respective trade-offs.

– We present a case study of urban driving demonstrating all of the above.

Related Work. Multi-objective optimisation has been applied in the context
of formal verification, mainly for MDPs and (non-stochastic) games, where it



324 T. Chen et al.

is usually referred to as multidimensional optimisation. For MDPs, [5,2] intro-
duced multiple discounted objectives and multiple long-run objectives, respec-
tively, whereas [13] studied the problem of Boolean combinations of quantitative
ω-regular objectives, which were extended in [15] with total rewards. In the set-
ting of non-stochastic games, multidimensional energy games were introduced,
including their complexity and the strategy synthesis problem [4,14,6,18]. In [8]
stochastic games, where the objective of Player 1 is to achieve the expectation of
an objective function “precisely p”, were introduced. This problem is a special
case of the problem that we study.

Our case study is inspired by the DARPA Urban Challenge [11], whose guide-
lines and technical evaluation criteria we use, and particularly the report by the
winning team, which encourages the use of formal verification of urban driving
systems [17]. Team Caltech suggested the use of temporal logic synthesis for
high level planning [3]. This was later formulated for MDPs and LTL goals for
autonomous vehicles in adversarial environments (pedestrians crossing a street)
[19]. Receding horizon control [20] and incremental approaches [21] have been
suggested to alleviate the computational complexity by leveraging structure spe-
cific to the autonomous control problems.

2 Preliminaries

Given a vector x ∈ Rn
≥0 and a scalar z ∈ R, we write xi for the i-th component

of x where 1 ≤ i ≤ n, and x+z for the vector (x1+z, . . . , xn+z). Moreover, the

dot product of vectors x and y is defined by x · y def
=
∑n

i=1 xi · yi and the sum of

two sets of vectors X,Y ⊆ Rn
≥0 is defined by X + Y

def
= {x+ y | x ∈ X,y ∈ Y }.

Given a set X ⊆ Rn
≥0, we define the downward closure of X as dwc(X)

def
= {y |

∃x . x ∈ X and y ≤ x}, and its convex hull as conv(X)
def
= {x | ∃x1, x2 ∈ X,α ∈

[0, 1] . x = αx1 + (1 − α)x2}.
A discrete probability distribution over a (countable) set S is a function μ :

S → [0, 1] such that
∑

s∈S μ(s) = 1. We write D(S) for the set of all discrete

distributions over S. Let supp(μ)
def
= {s ∈ S | μ(s) > 0} be the support of μ ∈

D(S). A distribution μ ∈ D(S) is a Dirac distribution if μ(s) = 1 for some
s ∈ S. Sometimes we identify a Dirac distribution μ with the unique element in
supp(μ). We represent a distribution μ ∈ D(S) on a set S = {s1, . . . , sn} as a
map [s1 �→ μ(s1), . . . , sn �→ μ(sn)] ∈ D(S), and we usually omit the elements of
S outside supp(μ) to simplify the presentation.

Definition 1 (Stochastic two-player game). A stochastic two-player game
(called game henceforth) is a tuple G = 〈S, (S�, S♦, S©), Δ〉, where
– S is a countable set of states partitioned into sets S�, S♦, and S©; and
– Δ : S × S → [0, 1] is a transition function such that Δ(〈s, t〉) ∈ {0, 1} if
s ∈ S� ∪ S♦, and

∑
t∈S Δ(〈s, t〉) = 1 if s ∈ S©.

S� and S♦ represent the sets of states controlled by players Player 1 and Player 2,
respectively, while S© is the set of stochastic states. For a state s ∈ S, the set



Synthesis for Multi-objective Stochastic Games 325

of successor states is denoted by Δ(s)
def
= {t ∈ S | Δ(〈s, t〉)>0}. We assume

that Δ(s) = ∅ for all s ∈ S. Moreover, we denote a set of terminal states

Term
def
= {s ∈ S | Δ(〈s, t〉)=1 iff s = t}.

An infinite path λ of a stochastic game G is an infinite sequence s0s1 . . . of
states such that si+1 ∈ Δ(si) for all i ≥ 0. A finite path is a finite such sequence.
For a finite or infinite path λ we write len(λ) for the number of states in the
path. For i < len(λ) we write λi to refer to the i-th state si of λ, and we denote

the suffix of the path λ starting at position i by λi
def
= sisi+1 . . .. For a finite path

λ = s0s1 . . . sn we write last(λ) for the last state of the path, i.e., last(λ) = sn.
We write ΩG,s for the set of infinite paths starting in state s.

Strategy. In this paper we use an alternative formulation of strategies [2] that
generalises the concept of strategy automata [12].

Definition 2. A strategy of Player 1 in a game G = 〈S, (S�, S♦, S©), Δ〉 is a
tuple π = 〈M, πu, πn, α〉, where:

– M is a countable set of memory elements,

– πu : M× S → D(M) is a memory update function,

– πn : S� ×M → D(S) is a next move function s.t. πn(s,m)[s′]>0 only if
s′∈Δ(s),

– α : S → D(M) defines for each state of G an initial memory distribution

A strategy σ for Player 2 is defined in an analogous manner. We denote the set
of all strategies for Player 1 and Player 2 by Π and Σ, respectively.

A strategy is memoryless if |M| = 1. We say that a strategy requires finite
memory if |M| < ∞ and infinite memory if |M| = ∞. We also classify the
strategies based on the use of randomisation. A strategy π = 〈M, πu, πn, α〉 is
pure if πu, πn, and α map to Dirac distributions; deterministic update if πu and
α map to Dirac distributions, while πn maps to an arbitrary distributions; and
stochastic update where πu, πn, and α can map to arbitrary distributions.

Markov Chain Induced by Strategy Pairs.Given a game G with initial state
distribution ς ∈ D(S), a Player 1 strategy π = 〈M1, πu, πn, α1〉 and a Player 2
strategy σ = 〈M2, σu, σn, α2〉 induce a countable Markov chain G(ς, π, σ) =
〈S′, (∅, ∅, S′), Δ′〉 with initial state distribution ς(π, σ) ∈ D(S′), where

– S′ = S ×M1 ×M2,

– Δ′ : S′ × S′→[0, 1] is such that for all (s,m1,m2), (s
′,m′

1,m
′
2) ∈ S′ we have

(〈(s,m1,m2), (s
′,m′

1,m
′
2)〉) �→⎧⎪⎨⎪⎩

πn(s,m1)[s
′] · πu(m1, s

′)[m′
1] · σu(m2, s

′)[m′
2] if s ∈ S�

σn(s,m2)[s
′] · πu(m1, s

′)[m′
1] · σu(m2, s

′)[m′
2] if s ∈ S♦

Δ(〈s, s′〉) · πu(m1, s
′)[m′

1] · σu(m2, s
′)[m′

2] if s ∈ S©,

– ς(π, σ) : S′ → [0, 1] is defined such that for all (s,m1,m2) ∈ S′ we have that
ς(π, σ)[s,m1,m2] = ς [s] · α1(s)[m1] · α2(s)[m2].



326 T. Chen et al.

Probability Measure. A stochastic game G together with a strategy pair
(π, σ) ∈ Π × Σ and a starting state s induces a (possibly infinite) Markov
chain on the game. We define the probability measure over the set of paths ΩG,s
and a strategy pair (π, σ) in the following way. The basic open sets of ΩG,s are

the cylinder sets Cyl(λ)
def
= λ · Sω for every finite path λ = s0s1 . . . sk of G, and

the probability assigned to Cyl(λ) equals
∏k

i=0Δ(〈si, si+1〉)·pi(s0, . . . , si), where
pi(λ) = π(λ) if last(λ) ∈ S�, pi = σ(λ) if last(λ) ∈ S♦ and 1 otherwise. This def-
inition induces a probability measure on the algebra of cylinder sets, which can
be extended to a unique probability measure Prπ,σG,s on the σ-algebra generated
by these sets. The expected value of a measurable function f : Sω→R ∪ {∞}
under a strategy pair (π, σ) ∈ Π × Σ is defined as Eπ,σ

G,s [f ]
def
=

∫
f dPrπ,σG,s . We

say that a game G is a stopping game if for every pair of strategies π and σ a
terminal state is reached with probability 1.

Winning Objectives. In this paper we study objectives which are conjunctions
of LTL and expected total reward goals. This section provides definitions of these
concepts, as well as that of Pareto frontiers representing the possible trade-offs.

LTL. To specify the LTL goals, we use the following standard notation:

Ξ ::= T | ¬Ξ | Ξ1 ∧ Ξ2 | XΞ | Ξ1 UΞ2,

where T ⊆ S. Given a path λ and a LTL formula Ξ, we define λ |= Ξ as:

λ |= T ⇔ λ0 ∈ T
λ |= ¬Ξ ⇔ λ |= Ξ
λ |= Ξ1 ∧Ξ2 ⇔ λ |= Ξ1 and λ |= Ξ2

λ |= XΞ ⇔ λ1 |= Ξ
λ |= Ξ1 UΞ2 ⇔ λi |= Ξ2 for some i ∈ N0

and λj |= Ξ1 for 0 ≤ j < i .

Operators FΞ
def
= S UΞ and GΞ

def
= ¬F¬Ξ have their usual meaning. We use a

formula and the set of paths satisfying the formula interchangeably, e.g. the set
of paths reaching a state in T ⊆ S is denoted by FT = {ω ∈ ΩG | ∃i . ωi ∈ T }.

Expected total reward. To specify the reward goals, we define a (k-dimensional)
reward function r : S → Rk

≥0, which for each state s of the game G assigns a

reward vector r(s) ∈ Rk
≥0. We define a vector of total reward random variables

rew(r) as rew(r)(λ)
def
=

∑
j≥0 r(λj) for any path λ. Under a fixed strategy pair

(π, σ) for both players, the expected total reward is the expected value of the
total reward random variable, i.e.,

Eπ,σ
G,s [rew(r)] =

∫
ΩG,s

rew(r) dPrπ,σG,s .

We require the expected total rewards to be bounded. Hence, due to the self-
loops in terminal states, in particular we require r(s) = 0 for all s ∈ Term.

Conjunctive queries. A conjunctive query (CQ) is a tuple of LTL formulae,
reward functions, and their respective lower bounds,

ϕ = (Ξ, r,v) = ((Ξ1, . . . , Ξm), (r1, . . . , rn−m), (v1, . . . , vm, vm+1, . . . , vn)),



Synthesis for Multi-objective Stochastic Games 327

where m is the number of LTL objectives, n−m is the number of expected total
reward objectives, vi ∈ [0, 1] for 1 ≤ i ≤ m and vi ∈ R for m+ 1 ≤ i ≤ n, Ξi is
an LTL formula, and ri is a reward function. We call v the target vector of the
CQ. Additionally, we define a reward conjunctive query (rCQ) to be a CQ with
m = 0. Player 1 achieves a CQ ϕ at state s if there exists a strategy π ∈ Π such
that, for any strategy σ ∈ Σ of Player 2, it holds that

m∧
i=1

(Prπ,σG,s (Ξi) ≥ vi) ∧
n∧

i=m+1

(Eπ,σ
G,s [rew(r)i−m] ≥ vi).

Pareto Frontiers. A Pareto frontier for objectives Ξ and r is a set of points
P ⊆ Rn such that for any p ∈ P the following hold:

(a) for all ε > 0 the query (Ξ, r,p− ε) is achievable, and
(b) for all ε > 0 the query (Ξ, r,p+ ε) is not achievable.

Given ε > 0, an ε-approximation of the Pareto frontier P is a set of points Q
satisfying that for any q ∈ Q there is a point p ∈ P such that ‖p− q‖ ≤ ε, and
for every p ∈ P there is a vector q ∈ Q such that ‖p− q‖ ≤ ε, where ‖ · ‖ is the
Manhattan distance of two points in R.

3 Computing the Pareto Frontiers

We now turn our attention to the computation of Pareto frontiers for the states
of the game, which will be required for the strategy construction. First, we recall
from our work in [9] how to compute them for rCQs, and then extend this by
showing how a stopping game G with a general CQ ϕ can be reduced to a
stopping game G′ with a rCQ ϕ′, such that there exists a strategy for Player 1
in G to satisfy ϕ if and only if there is a strategy for Player 1 in G′ to satisfy ϕ′.

Value iteration. To compute the successive approximations of the Pareto fron-
tiers we iteratively apply the functional from the theorem below. For stopping
games this is guaranteed to compute an ε-approximation of the Pareto frontiers.

Theorem 1 (Pareto frontier approximation). For a stopping game G and
a rCQ ϕ = (r,v), an ε−approximation of the Pareto frontiers for all states can

be computed in k = |S|+ /|S| · ln(ε·(n·M)−1)
ln(1−δ) 0 iterations of the operator F : (S →

P(Rn
≥0))→ (S → P(Rn

≥0)) defined by

F (X)(s)
def
=

⎧⎪⎨⎪⎩
dwc(conv(

⋃
t∈Δ(s)Xt)+r(s)) if s ∈ S�

dwc(
⋂

t∈Δ(s)Xt+r(s)) if s ∈ S♦
dwc(

∑
t∈Δ(s)Δ(〈s, t〉) ×Xt+r(s)) if s ∈ S©,

where initially X0
s

def
= {x ∈ Rn

≥0 |x ≤ r(s)} for all s ∈ S, M = |S| · maxs∈S,i ri(s)
δ

for δ = p
|S|
min, and pmin is the smallest positive probability in G.



328 T. Chen et al.

Xk−1
t1

Xk−1
t2

Xk
s

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

(a) Player 1 state s∈S�.

Xk−1
t1

Xk−1
t2

Xk
s

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

(b) Player 2 state s∈S♦.

Xk−1
t1

Xk−1
t2

Xk
s

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

(c) Stochastic state s∈S©.
Δ(〈s, t1〉) = Δ(〈s, t2〉) = 1

2
.

Fig. 1. Illustration of value iteration operations for rCQs. We plot the polytopes of s
and its successors t1 and t2 on the same graph. The reward at s is r(s) = (0, 0.1) and
Δ(s) = {t1, t2}. The dashed (green) polytope is the result before adding the reward,
which is shown in the dash-dotted (red) polytope.

The value iteration computes a sequence of polytopes Xk
s for each state s that

converges to the Pareto frontiers. It starts with the bottom element ⊥ : S →
P(Rn

≥0) defined by ⊥(s) def
= X0

s . The operations in the operator F are illustrated
in Figure 1. We assume that the expected reward for the game is bounded under
any pair of strategies, which in particular implies that, for any terminal state
t ∈ Term, r(t) = 0.

Strategy Iteration. We use the sets Xk computed using the above iteration to
obtain the memory elements of the stochastic update strategy (see Section 4).
Thus, the iteration performed above can be regarded as a strategy iteration
algorithm: it generates strategies that are optimal for achieving the goal in k
steps (initially k = 1). After performing another iteration, we obtain the optimal
strategy for k + 1 steps, etc. Since all rewards are non-negative, F is monotone,
i.e. Xk

s ⊆ Xk+1
s for all states s, and thus in every step the strategy either

improves or it has converged to the optimal one. The strategy iteration can be
performed either until the objective vector v is in Xk

s , or until it is within the
required accuracy determined by the stopping criterion.

LTL to Expected Reward. We present a reduction from LTL objectives to
expected total reward objectives for stopping games. The reduction is based
on a similar reduction for Markov decision processes ([10,13]) which relies on
constructing a deterministic Rabin automaton for each LTL formula and then
building their product with the game G. As the game G is stopping, almost all
runs reach some terminal state with a positive probability. Hence, it is sufficient
to analyse the outcomes of the formulae in the terminal states of the product
game in order to establish whether the runs ending in them satisfy the formula.

Definition 3 (Rabin automaton). A deterministic Rabin automaton is a tu-
ple 〈Q,Σ, τ, q0, ((L1, R1), . . . , (Lj , Rj))〉, where Q are the states of the automaton
with initial state q0 ∈ Q, Σ = S is the alphabet, τ : Q × Σ → Q is a transition
function and Ll, Rl ⊆ Q are Rabin pairs.

Theorem 2 (LTL to expected reward). Given a stopping game G, a state
s and a CQ ϕ = ((Ξ1, . . . , Ξm), (r1 . . . rn−m),v), there exists a game G′, a state



Synthesis for Multi-objective Stochastic Games 329

s′, and a rCQ ϕ′ = ((r′1 . . . r
′
n),v) such that there is a Player 1 strategy to satisfy

ϕ in s of G if and only if there is a Player 1 strategy to satisfy ϕ′ in s′ of G′.

For each LTL formula Ξi, we construct a deterministic Rabin automaton Ai =
〈Qi, Σi, τi, q

0
i , ((L

1
i , R

1
i ), . . . , (L

j
i , R

j
i ))〉 with Σi = S, such that any path λ satis-

fies Ξi iff λ is accepted by Ai. W.l.o.g. we assume each DRA is complete.
We index elements of tuples by subscripts, e.g., for a tuple s′ = (s, q0), s′0 = s

and s′1 = q0. Given a stopping game G = 〈S, (S�, S♦, S©), Δ〉 and DRAs Ai for
1 ≤ i ≤ m, we construct a stopping game G′ = 〈S′, (S′

�, S
′
♦, S

′
©), Δ′〉, where:

– S′ = S×Q1×· · ·×Qm∪{term}, S′
# = {s′ ∈ S′ | s′0 ∈ S#} for # ∈ {�,♦, ◦};

– for states s′, t′ ∈ S′, using T ′ def
= {t′ ∈ S′ | t′0 ∈ Term},

Δ′(s′, t′) =

⎧⎪⎨⎪⎩
Δ(s′0, t

′
0) if s′ ∈ T ′ and ∀ . 1 ≤ i ≤ m, τi(s

′
i, t

′
0) = t′i

1 if s′ ∈ T ′ ∪ {term} and t′ = term

0 otherwise;

– the initial state is s′ ∈ S′ s.t. s′0 = s and, for all 1 ≤ i ≤ m, τi(q
0
i , s) = s′i.

The new multi-objective query is ϕ′ = ((r′1, . . . , r
′
n), (v1, . . . , vn)), where each r′i

for 1 ≤ i ≤ m is defined as

r′i(s
′) =

{
1 if s′ ∈ T ′ and s′0

ω
is accepted by Ai with initial state s′i

0 otherwise,

and for m + 1 ≤ i ≤ n, r′i(s′) = ri−m(s′0) for s′ = term and r′i(term) = 0, i.e.,
the reward functions of ϕ for m + 1 ≤ i ≤ n stay unchanged with respect to
S. Correctness follows by the standard argument of one-to-one correspondence
between strategies in G′ and G for both players, see e.g. [15].

4 Strategy Synthesis

In this section we present a construction of the strategy for Player 1, which, given
a stopping game G, the sets Xk computed using the iteration from Section 3,
and a state s, achieves the rCQ ϕ = (r,v), where v ∈ Xk

s . The resulting strategy
uses random updates on its memory elements to ensure that at every step the
expected total reward is kept above the target vector v. The assumption that
the game G is stopping implies that G terminates with probability 1, and thus
the target vector is achieved. Note that the stochastic memory update is crucial
to provide a compact representation of the strategy, as our previous work has
demonstrated the need for exponential (Proposition 3 in [8]), or even infinite
(Theorem 2 in [9]) memory if the strategy is only allowed to use randomisation
in Player 1 states.

We denote the set of vertices (corner points) of a polytope X as Cnr(X). The
strategy π = 〈M, πu, πn, α〉 is defined as follows.



330 T. Chen et al.

– M =
⋃

t′∈S′{(t′,p) |p ∈ Cnr(Xk
t′)}.

– πu((t
′,p), u) = [(u′, qu

′
0 ) �→ βu0 , . . . , (u

′, qu
′

l ) �→ βul ], where t
′, u′ ∈ S′ such

that t′0 = t, u′0 = u for t, u ∈ S, and such that Δ′(t′, u′) > 0 (note that
because DRAs are deterministic, such u′ is unique), and where for all 0 ≤
i ≤ l, qu′

i ∈ Cnr(Xk
u′ ), βui ∈ [0, 1], and

∑
i β

u
i = 1, such that

• for t′ ∈ S′
� ∪ S′

♦ we have
∑

i β
u
i · qu

′
i ≥ p− r′(t),

• for t′ ∈ S′
©, qu

′
i and βui have to be chosen together with the respective

values qv
′

i , and βvi assigned by πu((t
′,p), v) for the remaining successors

v ∈ S \ {u} of t, so that they satisfy

Δ(t, u) ·
∑
i

βui · qu
′

i +
∑

v∈S\{u}
Δ(t, v) ·

∑
i

βvi · qv
′

i ≥ p− r′(t′),

which ensures that the expected total reward is kept larger than the
current memory element.

– πn(t, (t
′,p)) = [u �→ 1] for some u ∈ S such thatΔ′(t′, u′) > 0 (where u′ ∈ S′,

u′0 = u), and for all 0 ≤ i ≤ l there exist qu
′

i ∈ Cnr(Xk
u′ ), βui ∈ [0, 1], such

that
∑

i β
u
i = 1 and

∑
i β

u
i · qu

′
i ≥ p− r′(t′).

– α(s) = [(s′, qs
′

0 ) �→ βs0 , . . . , (s
′, qs

′
l ) �→ βsl ], where s

′ is the respective initial

state of G′, and qs
′
i ∈ Cnr(Xk

s′ ), β
s
i ∈ [0, 1] (for all 0 ≤ i ≤ l), and

∑
i β

s
i = 1

such that
∑

i β
s
i · qs

′
i ≥ v′.

Note that, for all u′ ∈ S′, it is always possible to choose l ≤ n, i.e. the number
of points qu

′
i and respective coefficients βui may be less than the number of

objectives. Also, the points qt
′
i can indeed be picked from Xk

t′ because they exist
both in Xk−1

t′ , and Xk
t′ ⊇ Xk−1

t′ due to the monotonicity of F .

Theorem 3. The strategy constructed above achieves the expectation for the
total reward functions which is greater than or equal to v for the rCQ ϕ.

The proof follows the structure from [8], establishing, by induction on the length
of finite prefixes, that the expectation of the vector held in memory is always
between the target vector v and the expected total reward.

5 Case Study

We implement a prototype multi-objective strategy synthesis engine in PRISM-
games, a model checking and synthesis tool for stochastic games [7], and present
a case study applying our value iteration and strategy synthesis methods to per-
form control tasks. Our case study is motivated by the DARPA Urban Challenge
2007 (henceforth referred to as the Challenge), a competition for autonomous
cars to navigate safely and effectively in an urban setting [11]. In the Challenge,
cars were exposed to a set of traffic situations, and had to plan routes, avoid
hazards, and cope with the presence of other vehicles.



Synthesis for Multi-objective Stochastic Games 331

Table 1. Model parameters for our prototype

Hazard Abbreviation λ Reaction Accident Probability

Pedestrian p 0.05 Brake 0.01
Honk 0.04
Change Lane 0.03

Jam j 0.1 Honk 0.01
U-Turn 0.02

Obstacle o 0.02 Change Lane 0.02
U-Turn 0.02

5.1 Problem Setting

We identify desired functions of vehicle controllers from the Challenge, and model
a scenario of a car driving through a map imported from OpenStreetMap [16].

We model the problem as a two-player stochastic game, where Player 1 rep-
resents the car navigating through the map and Player 2 represents the envi-
ronment. The game setting allows us to model the nondeterministic, adversarial
nature of hazards selected by the environment, and the car’s reaction to each
hazard is represented by the Player 1 strategy. Probabilities are used to model the
relative likelihood of events in a given road segment and between different road
segments, and are understood to be the parameters obtained from statistical
observations; for example, certain road types are more prone to accidents. Fi-
nally, considering multiple objectives enables the exploration of trade-offs when
constructing controllers.

Each road segment is modelled as part of a stochastic game between the
environment (Player 2) that selects from a set of available hazards, and the car
(Player 1) that selects reactions to the hazards, as well as making route selection
(steering) decisions. Hazards occur with certain probabilities depending on the
properties of the road segment the car is on, and each reaction the car takes is
only successful with a given probability. We also model other parameters of the
road, e.g. we use rewards for road quality. In our autonomous driving scenario,
we consider three types of hazards with the corresponding reactions the car can
take (see Table 1). These hazards, as well as the reactions, are chosen according
to the Challenge event guidelines and technical evaluation criteria [11].

5.2 Model

We model the road network as a directed graph G = (V,E), where each edge
e ∈ E represents a road segment, see Figure 2(a). To each edge e ∈ E, we
associate a subgame Ge, parameterised by the properties of the corresponding
road segment (e.g., length, quality, number of lanes).

An example illustrating a subgame Ge is shown in Figure 3. The states have
labels of the form 〈s, e〉; when the context is clear, we simply use s. In state s0, a
set of at most two hazards is selected probabilistically, from which Player 2 can
then choose. To each hazard h ∈ {p, j, o} we associate a tuning parameter λ, and



332 T. Chen et al.

f

e

f1

f2

einit

efinal

(a) Map of Charlton-on-Otmoor,
UK, with overlaid graph (only par-
tially shown).

〈s0, einit〉
.
.
.

〈sink, einit〉

Geinit

〈s0, e〉
.
.
.

〈sink, e〉
Ge

〈s0, f2〉
.
.
.

〈sink, f2〉

Gf2

〈s0, f1〉
.
.
.

〈sink, f1〉

Gf1

〈s0, f〉
.
.
.

〈sink, f〉

Gf

〈s0, efinal〉
.
.
.

〈sink, efinal〉

Gefinal

U
-t
u
rn

(b) Connection of subgames. All roads that are
not one ways have U-turn connections, but only
one is shown for the sake of clarity. The dashed
arrow abstracts several intermediate subgames.

Fig. 2. Illustrating the graph G = (V,E) and the corresponding subgame connections

let the probability of a set of hazards {h1, h2} be ph1h2

def
= tanh(λ1λ2len(e))/k,

where len(e) is the length of the road corresponding to e in meters, and k = 6
is the number of sets of hazards.1 For a single hazard h, ph is defined similarly,
and the empty set of hazards is chosen with the residual probability pnone. The
parameters for our prototype model are given in Table 1.

Once a set of possible hazards is chosen in s0, and Player 2 has selected a
specific one in s1, s2 and s3, Player 1 must select an appropriate reaction in s4,
s5 and s6. Then the game enters either the terminal accident state “acc”, or a
Player 1 state “sink”, where the next edge can be chosen. If the reaction is not
appropriate in the given road segment (e.g., changing lane in a single lane road),
a “violation” terminal is entered with probability 1 (not shown in Figure 3).

From the subgames Ge and the graph G a game G is constructed that connects
the games Ge as shown in Figure 2(b). In a local sink, e.g. 〈sink, e〉, Player 1makes
the decision as to which edge to go to next and enters the corresponding local
initial state, e.g. 〈s0, f1〉. Also, in a U-turn, the subgame Gf of the reverse edge f
of e is entered at its initial state, e.g. 〈s0, f〉. If a road segment does not have any
successors, or is the goal, the local sink for the corresponding game is made into
a terminal state. Note that the above construction results in a stopping game.

5.3 Objectives

We study three objectives for the autonomous driving scenario. Formally, we
consider the CQ ϕ = ((FT1,G¬T2), (r), (v1, v2, v3)), where T1 = {〈s0, efinal〉},
T2 = {〈acc, e〉 | e ∈ E}, and r is a reward function explained below.

1 The use of the sigmoid tanh achieves a valid probability distribution independently of
the road length, while the weights λ tune the relative frequency of hazard occurrence.



Synthesis for Multi-objective Stochastic Games 333

s0

〈s0, e〉

s1

s4

jam

acc

s′0
〈s0, f〉

s2

s5pedestrian

acc

s3

s6

obstacle

acc

sink

pj

pjp

honk
U-turn

brake honk
change
lane1

100 2
100

1
100

4
100

3
100

2
100

2
100

poppp

pnone

poj

po

U-turn
change
lane

Fig. 3. Subgame Ge with reverse edge f of e. The reward in sink is rval(e)len(e).
Hazards and reactions are indicated as annotations.

Target location reachability. From the initial location, reach a target at a
particular orientation with probability v1, i.e. achieve Prπ,σG,〈s0,einit〉(FT1) ≥
v1. Note that the orientation of the car is implicit, as two-way streets are
modelled as separate edges. On a high level, reachability at a correct orien-
tation is a primary goal also in the Challenge.

Accident avoidance. Achieve a probability v2 to never make an accident, that
is, achieve Prπ,σG,〈s0,einit〉(G¬T2) ≥ v2. Note that a traffic rule violation, rep-

resented by the “violation” state is not considered an accident. This safety
goal represents the other primary goal of the Challenge.

Road quality. Achieve a certain road quality v3 over the duration of driving,
i.e. achieve Eπ,σ

G,〈s0,einit〉[rew((r))] ≥ v3. The road quality is determined ac-

cording to the road type and length extracted from the map data. Hence,
each edge e is assigned a value rval(e), and the reward function r is defined

by r(〈e, sink〉) def
= rval(e) · len(e). In the Challenge, cars must be able to

navigate over different road types, and select adequate roads.

5.4 Implementation

We now give the details of our prototype implementation, focusing on how to
make the computation of strategies achieving CQs more efficient. Since the sets
Cnr(Xk

s ) can be represented as convex polytopes, we use the Parma Polyhedra
Library [1] to perform the value iteration operations.



334 T. Chen et al.

Reach
Goal

Avoid Accident

R
o
a
d

Q
u
a
li
ty

10

20

30

0.2

0.2

0.6
0.6

1 1

(a) Iteration 10

Reach
Goal

Avoid Accident

R
o
a
d

Q
u
a
li
ty

10

20

30

0.2

0.2

0.6
0.6

1 1

(b) Iteration 20

Reach
Goal

Avoid Accident

R
o
a
d

Q
u
a
li
ty

10

20

30

0.2

0.2

0.6
0.6

1 1

(c) Iteration 40

Reach
Goal

Avoid Accident

R
o
a
d

Q
u
a
li
ty

10

20

30

0.2

0.2

0.6
0.6

1 1

(d) Iteration 150

Fig. 4. Successive (under-)approximations of the Pareto frontier in 〈s0, einit〉 of G for
Charlton-on-Otmoor, UK

Gauss-Seidel update. Optionally, in-place updates can be used when computing
Xk+1 from Xk. That is, when Xk+1

s is computed from Xk, the result is stored in
the same memory location as Xk

s . Subsequently, if X
k+1
t is computed for t = t,

and s ∈ Δ(t), then Xk+1
s is used instead of Xk

s . Correctness of this method, also
called Gauss-Seidel update, follows from the monotonicity of the functional F
from Theorem 1.

Dynamic Accuracy Adaptation. During value iteration, |Cnr(Xk
s )| may increase

exponentially with k. To mitigate this, for each step k, we fix a baseline accuracy
ak + 1, and round down each coordinate i of each corner of Xk

s to a multiple of
Mi

ak
, where Mi is of the same order of magnitude as the maximum reward in di-

mension i. The resulting polytopes are denoted by X̃k
s . Note that we must round

down in order to maintain safe under-approximations of the Pareto frontiers.2

Starting from a0, we dynamically increase the accuracy ak by some factor
λ > 1 after Nk steps, while at the same time increasing the number Nk of
steps until the next increase by the same factor λ. In the long run, this yields

an additive increase in the accuracy of a0(λ−1)
N0

per step. With this approach,
we obtain under-approximations of the Pareto frontiers with a small number
of points that are gradually refined by allowing more points in the polytopes.

2 C.f. the induction hypothesis in the proof of Theorem 1, see [9].



Synthesis for Multi-objective Stochastic Games 335

4.5

 

 

ti
m
e
p
e
r
it
e
ra

ti
o
n

[m
in
]

a
c
c
u
ra

c
y
1
/
a
k

m
a
x
#

p
o
in
ts

in
a
n
y
p
o
ly
to

p
e

iteration k

time p. iter

max # pts
accuracy

0.5

1

1.5

2

2.5

3

3.5

4

50

100

100 150

200

200 250

300

300 350

400

400 450

0.005

0.01

0.015

0.02

Fig. 5. Performance indicators for Charlton-on-Otmoor, cf. Figure 4. Note the changes
in the number of points and time to complete an iteration as the accuracy changes.

Note that, while Xk
s ⊆ F (Xk)(s), it is no longer true that Xk

s ⊆ X̃ ′, where
X ′ = F (Xk)(s). Therefore we use X̃k+1

s ∪ X̃k
s to preserve monotonicity.

Stopping criterion. Given a rCQ ϕ = (r,v), a strategy which achieves v is
sufficient, even if the Pareto frontier contains a point w > v. It is therefore
possible to terminate value iteration prematurely after iteration k, and yet apply
the strategy construction in Section 4 to achieve any points in the polytopes Xk

s .

5.5 Results

In this section we present the experimental results of the case study, which are
computed using the CQ ϕ from Section 5.3.

Value Iteration. We visualise the results of the value iteration, providing the
intuition behind the trade-offs involved. In Figure 4 we show the polytopes com-
puted for the initial state of the game for Charlton-on-Otmoor for several values
of k. Rounding decreases the number of corner points, and Gauss-Seidel updates
increase the convergence speed, albeit not the time per iteration. In Figure 5 we
show performance indicators of the value iteration of Figure 4.

Strategy Evaluation. For v = (0.7, 0.7, 6.0), we evaluate the constructed strategy
π for an adversary σ that picks hazards uniformly at random, build the induced
Markov chain G(π, σ, [〈s0, einit〉 �→ 1]), and illustrate the resulting strategies for
two villages in the UK in Figure 6. In Figure 6(b), one can observe that roads are
picked that do not lead towards the goal. This is due to the strategy achieving a
point on (or below) the Pareto frontier representing a trade-off between the three
objectives, as opposed to maintaining a hard constraint of having to reach the



336 T. Chen et al.

(a) Charlton-on-Otmoor: 43
edges in G, 501 states in G.

(b) Islip: 125 edges in G, 1527 states in
G.

Fig. 6. Resulting strategies for the target vector (0.7, 0.7, 6.0). The start and the goal
are shown by a plus (+) and a cross (×) respectively. The thickness of the lines repre-
sents the expected proportion of trip time spent on the respective road by the car.

goal. Moreover, since maximising road quality is traded off against other goals,
it may be suboptimal to take roads several times to improve the expectation
while possibly incurring accidents and violations.

6 Conclusion

In this paper we have provided the first application of multi-objective stochastic
two-player games. We have proposed algorithms for strategy synthesis and ex-
tended the approach to support important classes of LTL objectives. To evaluate
the applicability of our techniques, we have developed a prototype implementa-
tion of the algorithms in the PRISM-games model checker and conducted a case
study, synthesising and evaluating strategies for autonomous urban driving using
real map data. There are many directions for future work, including extending
the approach to support minimisation of the reward functions, application to
assume-guarantee synthesis, and handling more complex multi-objective queries
(e.g., combinations of conjunctions and disjunctions of objectives).

Acknowledgments. The authors thank Vojtěch Forejt, Mateusz Ujma and
Klaus Dräger for helpful discussions and comments. The authors are partially
supported by ERC Advanced Grant VERIWARE, the Institute for the Future
of Computing at the Oxford Martin School, EPSRC grant EP/F001096, and the
German Academic Exchange Service (DAAD).

References

1. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1-2), 3–21 (2008)



Synthesis for Multi-objective Stochastic Games 337

2. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kučera, A.: Two views on mul-
tiple mean-payoff objectives in Markov decision processes. In: LICS, pp. 33–42
(2011)

3. Campbell, M., Egerstedt, M., How, J.P., Murray, R.M.: Autonomous driving
in urban environments: approaches, lessons and challenges. Phil. Trans. R. Soc.
A 368(1928), 4649–4672 (2010)

4. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Generalized mean-payoff
and energy games. In: FSTTCS. LIPIcs, vol. 8, pp. 505–516 (2010)

5. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with
multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 325–336. Springer, Heidelberg (2006)

6. Chatterjee, K., Randour, M., Raskin, J.-F.: Strategy synthesis for multi-
dimensional quantitative objectives. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 115–131. Springer, Heidelberg (2012)

7. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: A
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013)

8. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Trivedi, A., Ummels, M.:
Playing stochastic games precisely. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 348–363. Springer, Heidelberg (2012)

9. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic
games with multiple objectives. In: MFCS (accepted, 2013)

10. Courcoubetis, C., Yannakakis, M.: Markov decision processes and regular events.
IEEE Trans. Autom. Control 43(10), 1399–1418 (1998)

11. DARPA. Urban Challenge (2007) (online accessed March 8, 2013)
12. Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is needed to

win infinite games? In: LICS, pp. 99–110 (1997)
13. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective

model checking of Markov decision processes. LMCS 4(4) (2008)
14. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted

automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916,
pp. 95–115. Springer, Heidelberg (2011)

15. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011)

16. OpenStreetMap (2013) (online; accessed March 8, 2013)
17. Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M.N., Dolan,

J., Duggins, D., Galatali, T., Geyer, C., et al.: Autonomous driving in urban envi-
ronments: Boss and the urban challenge. J. Field Robot. 25(8), 425–466 (2008)

18. Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A., Raskin,
J.F.: The complexity of multi-mean-payoff and multi-energy games. CoRR,
abs/1209.3234 (2012)

19. Wongpiromsarn, T., Frazzoli, E.: Control of probabilistic systems under dynamic,
partially known environments with temporal logic specifications. In: CDC, pp.
7644–7651 (2012)

20. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon temporal logic
planning. IEEE Trans. Automat. Contr. 57(11), 2817–2830 (2012)

21. Wongpiromsarn, T., Ulusoy, A., Belta, C., Frazzoli, E., Rus, D.: Incremental syn-
thesis of control policies for heterogeneous multi-agent systems with linear temporal
logic specification. In: ICRA (accepted, 2013)



Stochastic Parity Games on Lossy Channel Systems

Parosh Aziz Abdulla1, Lorenzo Clemente2, Richard Mayr3, and Sven Sandberg1

1 Uppsala University
2 LaBRI, University of Bordeaux I

3 University of Edinburgh

Abstract. We give an algorithm for solving stochastic parity games with almost-
sure winning conditions on lossy channel systems, for the case where the players
are restricted to finite-memory strategies. First, we describe a general framework,
where we consider the class of 2 1

2 -player games with almost-sure parity winning
conditions on possibly infinite game graphs, assuming that the game contains a
finite attractor. An attractor is a set of states (not necessarily absorbing) that is
almost surely re-visited regardless of the players’ decisions. We present a scheme
that characterizes the set of winning states for each player. Then, we instantiate
this scheme to obtain an algorithm for stochastic game lossy channel systems.

1 Introduction
Background. 2-player games can be used to model the interaction of a controller (player
0) who makes choices in a reactive system, and a malicious adversary (player 1) who
represents an attacker. To model randomness in the system (e.g., unreliability; random-
ized algorithms), a third player ‘random’ is defined who makes choices according to a
predefined probability distribution. The resulting stochastic game is called a 2 1

2 -player
game in the terminology of [15]. The choices of the players induce a run of the system,
and the winning conditions of the game are expressed in terms of predicates on runs.

Most classic work on algorithms for stochastic games has focused on finite-state
systems (e.g., [24,17,19,15]), but more recently several classes of infinite-state systems
have been considered as well. Stochastic games on infinite-state probabilistic recursive
systems (i.e., probabilistic pushdown automata with unbounded stacks) were studied in
[21,22,20]. A different (and incomparable) class of infinite-state systems are channel
systems, which use unbounded communication buffers instead of unbounded recursion.

Channel Systems consist of finite-state machines that communicate by asynchronous
message passing via unbounded FIFO communication channels. They are also known
as communicating finite-state machines (CFSM) [13].

A Lossy Channel System (LCS) [7] consists of finite-state machines that commu-
nicate by asynchronous message passing via unbounded unreliable (i.e., lossy) FIFO
communication channels, i.e., messages can spontaneously disappear from channels.

A Probabilistic Lossy Channel System (PLCS) [10,8] is a probabilistic variant of
LCS where, in each computation step, messages are lost from the channels with a given
probability. In [5], a game extension of PLCS was introduced where the players control
transitions in the control graph and message losses are probabilistic.

The original motivation for LCS and PLCS was to capture the behavior of communi-
cation protocols; such protocols are designed to operate correctly even if the communi-
cation medium is unreliable (i.e., if messages can be lost). However, Channel Systems

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 338–354, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Stochastic Parity Games on Lossy Channel Systems 339

(aka CFSM) are a very expressive model that can encode the behavior of Turing ma-
chines, by storing the content of a Turing tape in a channel [13]. The only reason why
certain questions are decidable for LCS/PLCS is that the message loss induces a quasi-
order on the configurations, which has the properties of a simulation. Similarly to Turing
machines and CFSM, one can encode many classes of infinite-state probabilistic tran-
sition systems into a PLCS. The only requirement is that the system re-visits a certain
finite core region (we call this an attractor; see below) with probability one, e.g.,

– Queuing systems where waiting customers in a queue drop out with a certain prob-
ability in every time interval. This is similar to the well-studied class of queuing
systems with impatient customers which practice reneging, i.e., drop out of a queue
after a given maximal waiting time; see [26] section II.B. Like in some works cited
in [26], the maximal waiting time in our model is exponentially distributed. In basic
PLCS, unlike in [26], this exponential distribution does not depend on the current
number of waiting customers. However, an extension of PLCS with this feature
would still be analyzable in our framework (except in the pathological case where
a high number of waiting customers increases the customers patience exponentially,
because such a system would not necessarily have a finite attractor).

– Probabilistic resource trading games with probabilistically fluctuating prices. The
given stores of resources are encoded by counters (i.e., channels), which exhibit a
probabilistic decline (due to storage costs, decay, corrosion, obsolescence).

– Systems modeling operation cost/reward, which is stored in counters/channels, but
probabilistically discounted/decaying over time.

– Systems which are periodically restarted (though not necessarily by a deterministic
schedule), due to, e.g., energy depletion or maintenance work.

Due to this wide applicability of PLCS, we focus on this model in this paper. How-
ever, our main results are formulated in more general terms referring to infinite Markov
chains with a finite attractor; see below.

Previous work. Several algorithms for symbolic model checking of PLCS have been
presented [1,23]. Markov decision processes (i.e., 1 1

2 -player games) on infinite graphs
induced by PLCS were studied in [9], which shows that 1 1

2 -player games with almost-
sure Büchi objectives are pure memoryless determined and decidable. This result was
later generalized to 2 1

2 -player games [5], and further extended to generalized Büchi ob-
jectives [11]. On the other hand, 1 1

2 -player games on PLCS with positive probability
Büchi objectives (i.e., almost-sure co-Büchi objectives from the (here passive) oppo-
nent’s point of view) can require infinite memory to win and are also undecidable [9].
(Undecidability and infinite memory requirement are separate results, since decidabil-
ity does not imply the existence of finite-memory strategies in infinite-state games).
If players are restricted to finite-memory strategies, the 1 1

2 -player game with positive
probability parity objectives (even the more general Streett objectives) becomes decid-
able [9]. Note that the finite-memory case and the infinite-memory one are a priori
incomparable problems, and neither subsumes the other. Cf. Section 7.

Non-stochastic (2-player) parity games on infinite graphs were studied in [27], where
it is shown that such games are determined, and that both players possess winning mem-
oryless strategies in their respective winning sets. Furthermore, a scheme for computing



340 P.A. Abdulla et al.

the winning sets and winning strategies is given. Stochastic games (2 1
2-player games)

with parity conditions on finite graphs are known to be memoryless determined and
effectively solvable [18,15,14].

Our contribution. We give an algorithm to decide almost-sure parity games for prob-
abilistic lossy channel systems in the case where the players are restricted to finite
memory strategies. We do that in two steps. First, we give our result in general terms
(Section 4): We consider the class of 2 1

2 -player games with almost-sure parity win-
ing conditions on possibly infinite game graphs, under the assumption that the game
contains a finite attractor. An attractor is a set A of states such that, regardless of the
strategies used by the players, the probability measure of the runs which visit A in-
finitely often is one.1 Note that this means neither that A is absorbing, nor that every
run must visit A. We present a general scheme characterizing the set of winning states
for each player. The scheme is a non-trivial generalization of the well-known scheme for
non-stochastic games in [27] (see the remark in Section 4). In fact, the constructions are
equivalent in the case that no probabilistic states are present. We show correctness of the
scheme for games where each player is restricted to a finite-memory strategy. The cor-
rectness proof here is more involved than in the non-stochastic case of [27]; we rely on
the existence of a finite attractor and the restriction of the players to use finite-memory
strategies. Furthermore, we show that if a player is winning against all finite-memory
strategies of the other player then he can win using a memoryless strategy. In the sec-
ond step (Section 6), we show that the scheme can be instantiated for lossy channel
systems. The instantiation requires the use of a much more involved framework than
the classical one for well quasi-ordered transition systems [3] (see the remark in Sec-
tion 6). The above two steps yield an algorithm to decide parity games in the case when
the players are restricted to finite memory strategies. If the players are allowed infinite
memory, then the problem is undecidable already for 1 1

2 -player games with co-Büchi
objectives (a special case of 2-color parity objectives) [9]. Note that even if the players
are restricted to finite memory strategies, such a strategy (even a memoryless one) on
an infinite game graph is still an infinite object. Thus, unlike for finite game graphs, one
cannot solve a game by just guessing strategies and then checking if they are winning.
Instead, we show how to effectively compute a finite, symbolic representation of the
(possibly infinite) set of winning states for each player as a regular language.

Full proofs are available in the technical report [4].

2 Preliminaries

Notation. Let O andN denote the set of ordinal resp. natural numbers. We use f : X →Y
to denote that f is a total function from X to Y , and use f : X ⇀ Y to denote that f is
a partial function from X to Y . We write f (x) = ⊥ to denote that f is undefined on x,
and define dom( f ) := {x| f (x) =⊥}. We say that f is an extension of g if g(x) = f (x)
whenever g(x) = ⊥. For X ′ ⊆ X , we use f |X ′ to denote the restriction of f to X ′. We

1 In the game community (e.g., [27]) the word attractor is used to denote what we call a force
set in Section 3. In the infinite-state systems community (e.g., [1,6]), the word is used in the
same way as we use it in this paper.



Stochastic Parity Games on Lossy Channel Systems 341

will sometimes need to pick an arbitrary element from a set. To simplify the exposition,
we let select(X) denote an arbitrary but fixed element of the nonempty set X .

A probability distribution on a countable set X is a function f : X → [0,1] such that
∑x∈X f (x) = 1. For a set X , we use X∗ and Xω to denote the sets of finite and infinite
words over X , respectively. The empty word is denoted by ε.

Games. A game (of rank n) is a tuple G = (S,S0,S1,SR,−→,P,Col) defined as follows.
S is a set of states, partitioned into the pairwise disjoint sets of random states SR, states
S0 of Player 0, and states S1 of Player 1. −→ ⊆ S× S is the transition relation. We
write s−→s′ to denote that (s,s′) ∈ −→. We assume that for each s there is at least one
and at most countably many s′ with s−→s′. The probability function P : SR×S→ [0,1]
satisfies both ∀s ∈ SR.∀s′ ∈ S.(P(s,s′)> 0 ⇐⇒ s−→s′) and ∀s ∈ SR.∑s′∈S P(s,s′) = 1.
(The sum is well-defined since we assumed that the number of successors of any state
is at most countable.) Col : S → {0, . . . ,n}, where Col(s) is called the color of state
s. Let Q ⊆ S be a set of states. We use G

¬ Q := S−Q to denote the complement of Q.
Define [Q]0 := Q∩ S0, [Q]1 := Q∩ S1, [Q]0,1 := [Q]0 ∪ [Q]1, and [Q]R := Q∩ SR. For
n ∈ N and ∼ ∈ {=,≤}, let [Q]Col∼n := {s ∈ Q| Col(s)∼ n} denote the sets of states in
Q with color∼ n. A run ρ in G is an infinite sequence s0s1 · · · of states s.t. si−→si+1 for
all i≥ 0; ρ(i) denotes si. A path π is a finite sequence s0 · · · sn of states s.t. si−→si+1 for
all i : 0≤ i< n. We say that ρ (or π) visits s if s = si for some i. For any Q⊆ S, we use
ΠQ to denote the set of paths that end in some state in Q. Intuitively, the choices of the
players and the resolution of randomness induce a run s0s1 · · · , starting in some initial
state s0 ∈ S; state si+1 is chosen as a successor of si, and this choice is made by Player 0
if si ∈ S0, by Player 1 if si ∈ S1, and it is chosen randomly according to the probability
distribution P(si, ·) if si ∈ SR.

Strategies. For x ∈ {0,1}, a strategy of Player x is a partial function f x : ΠSx ⇀ S s.t.
sn−→ f x(s0 · · ·sn) if f x(s0 · · · sn) is defined. The strategy f x prescribes for Player x the
next move, given the current prefix of the run. A run ρ = s0s1 · · · is said to be consistent
with a strategy f x of Player x if si+1 = f x(s0s1 · · ·si) whenever f x(s0s1 · · ·si) = ⊥. We
say that ρ is induced by (s, f x, f 1−x) if s0 = s and ρ is consistent with both f x and f 1−x.
We use Runs(G ,s, f x, f 1−x) to denote the set of runs in G induced by (s, f x, f 1−x).
We say that f x is total if it is defined for every π ∈ ΠSx . A strategy f x of Player x is
memoryless if the next state only depends on the current state and not on the previous
history of the run, i.e., for any path s0 · · ·sn ∈ΠSx , we have f x(s0 · · ·sn) = f x(sn).

A finite-memory strategy updates a finite memory each time a transition is taken,
and the next state depends only on the current state and memory. Formally, we de-
fine a memory structure for Player x as a quadruple M = (M,m0,τ,µ) satisfying the
following properties. The nonempty set M is called the memory and m0 ∈M is the ini-
tial memory configuration. For a current memory configuration m and a current state
s, the next state is given by τ : Sx ×M → S, where s−→τ(s,m). The next memory
configuration is given by µ : S×M → M. We extend µ to paths by µ(ε,m) = m and
µ(s0 · · · sn,m) = µ(sn,µ(s0 · · · sn−1,m)). The total strategy stratM : ΠSx → S induced by
M is given by stratM (s0 · · · sn) := τ(sn,µ(s0 · · · sn−1,m0)). A total strategy f x is said to
have finite memory if there is a memory structure M = (M,m0,τ,µ) where M is finite
and f x = stratM . Consider a run ρ = s0s1 · · · ∈ Runs(G ,s, f x, f 1−x) where f 1−x is in-
duced by M . We say that ρ visits the configuration (s,m) if there is an i such that si = s



342 P.A. Abdulla et al.

and µ(s0s1 · · · si−1,m0) = m. We use Fx
all(G), Fx

finite(G), and Fx
/0 (G) to denote the set of

all, finite-memory, and memoryless strategies respectively of Player x in G . Note that
memoryless strategies and strategies in general can be partial, whereas for simplicity
we only define total finite-memory strategies.

Probability Measures. We use the standard definition of probability measures for a set
of runs [12]. First, we define the measure for total strategies, and then we extend it to
general (partial) strategies. Let Ωs = sSω denote the set of all infinite sequences of states
starting from s. Consider a game G = (S,S0,S1,SR,−→,P,Col), an initial state s, and
total strategies f x and f 1−x of Players x and 1− x. For a measurable set R ⊆ Ωs, we
define PG ,s, f x, f 1−x(R) to be the probability measure of R under the strategies f x, f 1−x.

This measure is well-defined [12]. For (partial) strategies f x and f 1−x of Players x
and 1− x, ∼ ∈ {<,≤,=,≥,>}, a real number c ∈ [0,1], and any measurable set R ⊆
Ωs, we define PG ,s, f x, f 1−x(R) ∼ c iff PG ,s,gx,g1−x(R) ∼ c for all total strategies gx and

g1−x that are extensions of f x resp. f 1−x.

Winning Conditions. The winner of the game is determined by a predicate on infinite
runs. We assume familiarity with the syntax and semantics of the temporal logic CTL∗

(see, e.g., [16]). Formulas are interpreted on the structure (S,−→). We use �ϕ�s to
denote the set of runs starting from s that satisfy the CT L∗ path-formula ϕ. This set is
measurable [25], and we just write PG ,s, f x, f 1−x(ϕ)∼ c instead of PG ,s, f x, f 1−x(�ϕ�s)∼ c.

We will consider games with parity winning conditions, whereby Player 1 wins if
the largest color that occurs infinitely often in the infinite run is odd, and Player 0 wins
if it is even. Thus, the winning condition for Player x can be expressed in CT L∗ as
x-Parity :=

∨
i∈{0,...,n}∧(i mod 2)=x(��[S]Col=i∧��[S]Col≤i).

Winning Sets. For a strategy f x of Player x, and a set F1−x of strategies of Player 1− x,
we define W x( f x,F1−x)(G ,ϕ∼c) := {s| ∀ f 1−x ∈ F1−x.PG ,s, f x, f 1−x(ϕ)∼ c}. If there is a

strategy f x such that s ∈W x( f x,F1−x)(G ,ϕ∼c), then we say that s is a winning state
for Player x in G wrt. ϕ∼c (and f x is winning at s), provided that Player 1− x is re-
stricted to strategies in F1−x. Sometimes, when the parameters G , s, F1−x, ϕ, and ∼ c
are known, we will not mention them and may simply say that “s is a winning state”
or that “ f x is a winning strategy”, etc. If s ∈W x( f x,F1−x)(G ,ϕ=1), then we say that
Player x almost surely (a.s.) wins from s. If s ∈W x( f x,F1−x)(G ,ϕ>0), then we say
that Player x wins with positive probability (w.p.p.). We define V x( f x,F1−x)(G ,ϕ) :=
{s| ∀ f 1−x ∈ F1−x. Runs(G ,s, f x, f 1−x)⊆ �ϕ�s}. If s ∈V x( f x,F1−x)(G ,ϕ), then we say
that Player x surely wins from s. Notice that any strategy that is surely winning from a
state s is also winning from s a.s., i.e., V x( f x,F1−x)(G ,ϕ)⊆W x( f x,F1−x)(G ,ϕ=1).

Determinacy and Solvability. A game is called determined, wrt. a winning condition
and two sets F0,F1 of strategies of Player 0, resp. Player 1, if, from every state, one
of the players x has a strategy f x ∈ Fx that wins against all strategies f 1−x ∈ F1−x of
the opponent. By solving a determined game, we mean giving an algorithm to compute
symbolic representations of the sets of states which are winning for either player.

Attractors. A set A ⊆ S is said to be an attractor if, for each state s ∈ S and strategies
f 0, f 1 of Player 0 resp. Player 1, it is the case that PG ,s, f 0, f 1(�A) = 1. In other words,
regardless of where we start a run and regardless of the strategies used by the players,



Stochastic Parity Games on Lossy Channel Systems 343

we will reach a state inside the attractor a.s.. It is straightforward to see that this also
implies that PG ,s, f 0, f 1(��A) = 1, i.e., the attractor will be visited infinitely often a.s..

Transition Systems. Consider strategies f x ∈ Fx
/0 and f 1−x ∈ F1−x

finite of Player x resp.

Player 1− x, where f x is memoryless and f 1−x is finite-memory. Suppose that f 1−x

is induced by memory structure M = (M,m0,τ,µ). We define the transition system T
induced by G , f 1−x, f x to be the pair (SM, ) where SM = S×M, and ⊆ SM×SM

such that (s1,m1) (s2,m2) if m2 = µ(s1,m1), and one of the following three condi-
tions is satisfied: (i) s1 ∈ Sx and either s2 = f x(s1) or f x(s1) = ⊥, (ii) s1 ∈ S1−x and
s2 = τ(s1,m1), or (iii) s1 ∈ SR and P(s1,s2) > 0. Consider the directed acyclic graph
(DAG) of maximal strongly connected components (SCCs) of the transition system T .
An SCC is called a bottom SCC (BSCC) if no other SCC is reachable from it. Observe
that the existence of BSCCs is not guaranteed in an infinite transition system. However,
if G contains a finite attractor A and M is finite then T contains at least one BSCC,
and in fact each BSCC contains at least one element (sA,m) with sA ∈ A. In particular,
for any state s ∈ S, any run ρ ∈ Runs(G ,s, f x, f 1−x) will visit a configuration (sA,m)
infinitely often a.s. where sA ∈ A and (sA,m) ∈ B for some BSCC B.

3 Reachability

In this section we present some concepts related to checking reachability objectives in
games. First, we define basic notions. Then we recall a standard scheme (described e.g.
in [27]) for checking reachability winning conditions, and state some of its properties
that we use in the later sections. Below, fix a game G = (S,S0,S1,SR,−→,P,Col).

Reachability Properties. Fix a state s ∈ S and sets of states Q,Q′ ⊆ S. Let PostG (s) :=
{s′ : s−→s′} denote the set of successors of s. Extend it to sets of states by PostG (Q) :=⋃

s∈Q PostG (s). Note that for any given state s ∈ SR, P(s, ·) is a probability distribution
over PostG (s). Let PreG (s) := {s′ : s′−→s} denote the set of predecessors of s, and

extend it to sets of states as above. We define P̃reG (Q) :=G
¬ PreG

(
G
¬ Q

)
, i.e., it de-

notes the set of states whose successors all belong to Q. We say that Q is sink-free if
PostG (s)∩Q = /0 for all s ∈ Q, and closable if it is sink-free and PostG (s) ⊆ Q for all
s ∈ [Q]R. If Q is closable then each state in [Q]0,1 has at least one successor in Q, and
all the successors of states in [Q]R are in Q.

If G
¬ Q is closable, we define the subgame G � Q :=

(Q′, [Q′]0, [Q′]1, [Q′]R,−→′,P′,Col′), where Q′ :=G
¬ Q is the new set of states,

−→′ := −→∩ (Q′ ×Q′), P′ := P|([Q′]R×Q′), Col′ := Col|Q′. Notice that P′(s) is a
probability distribution for any s ∈ SR since G

¬ Q is closable. We use G �Q1�Q2 to
denote (G �Q1)�Q2.

For x ∈ {0,1}, we say that Q is an x-trap if it is closable and PostG (s) ⊆ Q for all
s ∈ [Q]x. Notice that S is both a 0-trap and a 1-trap, and in particular it is both sink-free
and closable. The following lemma (adapted from [27]) states that, starting from a state
inside a set of states Q that is a trap for one player, the other player can surely keep the
run inside Q.



344 P.A. Abdulla et al.

Lemma 1. If Q is a (1− x)-trap, then there exists a memoryless strategy f x ∈ Fx
/0 (G)

for Player x such that Q⊆V x( f x,F1−x
all (G))(G ,�Q).

Scheme. Given a set Target⊆ S, we give a scheme for computing a partitioning of S
into two sets Forcex(G ,Target) and Avoid1−x(G ,Target) that are winning for Play-
ers x and 1− x. More precisely, we define a memoryless strategy that allows Player x
to force the game to Target w.p.p.; and define a memoryless strategy that allows
Player 1− x to surely avoid Target.

First, we characterize the states that are winning for Player x, by defining an increas-
ing set of states each of which consists of winning states for Player x, as follows:

R 0 := Target;

R i+1 := R i∪ [PreG (R i)]
R∪ [PreG (R i)]

x ∪ [P̃reG (R i)]
1−x if i+1 is a successor ordinal;

R i :=
⋃
j<i

R j if i> 0 is a limit ordinal;

Forcex(G ,Target) :=
⋃
i∈O

R i; Avoid1−x(G ,Target) := G
¬ Forcex(G ,Target).

First, we show that the iteration above converges (possibly in infinitely many steps). To
this end, we observe that R i ⊆ R i+1 if i+1 is a successor ordinal and R j ⊆ R i if j < i
and i is a limit ordinal. Therefore R 0 ⊆R 1 ⊆ ·· · . Since the sequence is non-decreasing
and since the sequence is bounded by S, it will eventually converge. Define α to be the
smallest ordinal such that R α =R i for all i≥α. This gives the following lemma, which
also implies that the Avoid1−x set is a trap for Player x. (Lemmas 2 and 3 are adapted
from [27], where they are stated in a non-probabilistic setting.)

Lemma 2. There is an α ∈O such that R α =
⋃

i∈O R i.

Lemma 3. Avoid1−x(G ,Target) is an x-trap.

The following lemma shows correctness of the construction. In fact, it shows that a
winning player also has a memoryless winning strategy.

Lemma 4. There is a memoryless strategy forcex(G ,Target) ∈ Fx
/0 (G) such that

Forcex(G ,Target)⊆W x(forcex(G ,Target),F1−x
all (G))(G ,�Target>0); and a mem-

oryless strategy avoid1−x(G ,Target) ∈ F1−x
/0 (G) such that

Avoidx(G ,Target)⊆V 1−x(avoid1−x(G ,Target),Fx
all(G))(G ,�(G

¬ Target)).

The first claim of the lemma can be proven using transfinite induction on i to show that
it holds for each state s ∈ R i. The second claim follows from Lemma 3 and Lemma 1.

4 Parity Conditions

We describe a scheme for solving stochastic parity games with almost-sure winning
conditions on infinite graphs, under the conditions that the game has a finite attractor
(as defined in Section 2), and that the players are restricted to finite-memory strategies.

By induction on n, we define two sequences of functions C0,C1, . . . and D0,D1, . . .
s.t., for each n ≥ 0 and game G of rank at most n, Cn(G) characterizes the states from



Stochastic Parity Games on Lossy Channel Systems 345

which Player x is winning a.s., where x = n mod 2, and Dn(G) characterizes the set of
states from which Player x is winning w.p.p.. The scheme for Cn is related to [27]; cf.
the remark at the end of this section. In both cases, we provide a memoryless strategy
that is winning for Player x; Player 1− x is always restricted to finite-memory.

For the base case, let C0(G) := S and D0(G) := S for any game G of rank 0. Indeed,
from any configuration Player 0 trivially wins a.s./w.p.p. because there is only color 0.

For n≥ 1, let G be a game of rank n. Cn(G) is defined with the help of two auxiliary
transfinite sequences {Xi}i∈O and {Yi}i∈O. The construction ensures that X0 ⊆ Y0 ⊆
X1 ⊆ Y1 ⊆ ·· · , and that the elements of Xi,Yi are winning w.p.p. for Player 1− x. The
construction alternates as follows. In the inductive step, we have already constructed X j

and Y j for all j < i. Our construction of X j and Y j is in three steps:

1. Xi is the set of states where Player 1− x can force the run to visit
⋃

j<i Y j w.p.p..
2. Find a set of states where Player 1− x wins w.p.p. in G�Xi.
3. Take Yi to be the union of X j and the set constructed in step 2.

We next show how to find the winning states in G �Xi in step 2. We first compute the
set of states where Player x can force the play in G �Xi to reach a state with color
n w.p.p.. We call this set Zi. The subgame G �Xi�Zi does not contain any states of
color n. Therefore, this game can be completely solved, using the already constructed
function Dn−1(G �Xi �Zi). We will prove that the states where Player 1− x wins
w.p.p. in G �Xi�Zi are winning w.p.p. also in G . We thus take Yi as the union of Xi

and Dn−1(G �Xi�Zi). We define the sequences formally:

Xi := Force1−x(G ,
⋃

j<i Y j),

Zi := Forcex(G �Xi, [
G
¬ Xi]

Col=n),
Yi := Xi∪Dn−1(G �Xi�Zi),

Cn(G) :=G
¬ (

⋃
i∈O Xi).

Notice that the subgames G�Xi and G�Xi�Zi are well-defined since (by Lemma 3)
G
¬ Xi is closable in G , and G�Xi¬ Zi is closable in G �Xi.

We now construct Dn(G). Assume that we can construct Cn(G). We will define the
transfinite sequence {Ui}i∈O and the auxiliary transfinite sequence {Vi}i∈O. We again
precede the formal definition with an informal explanation of the idea. The construction
ensures that U0 ⊆ V0 ⊆ U1 ⊆ V1 ⊆ ·· · , and that all Ui, Vi are winning w.p.p. for
Player x in G . The construction alternates in a similar manner to the construction of Cn.
In the inductive step, we have already constructed V j for all j < i. We first compute the
set of states where Player x can force the play to reach V j w.p.p. for some j < i. We call
this set Ui. It is clear that Ui is winning w.p.p. for Player x in G , given the induction
hypothesis that all V j are winning. Then, we find a set of states where Player x wins
w.p.p. in G �Ui. It is clear that Cn(G �Ui) is such a set. This set is winning w.p.p. for
Player x, because a play starting in Cn(G�Ui) either stays in this set and Player x wins
with probability 1, or the play leaves Cn(G �Ui) and enters Ui which, as we already
know, is winning w.p.p.. We thus take Vi as the union of Ui and Cn(G�Ui). We define
the sequences formally by

Ui := Forcex(G ,
⋃

j<i V j),
Vi := Ui∪Cn(G �Ui),

Dn(G) :=
⋃

i∈O Ui.



346 P.A. Abdulla et al.

By the definitions, for j < i we get Y j ⊆ Xi ⊆ Yi and V j ⊆Ui ⊆ Vi. As in Lemma 2,
we can prove that these sequences converge.

Lemma 5. There are α,β ∈O such that (i) Xα = Yα =
⋃

i∈O Yi, (ii) Cn(G) =G
¬ Xα, (iii)

Uβ = Vβ =
⋃

i∈O Vi, and (iv) Dn(G) = Uβ.

The following lemma shows the correctness of the construction. Recall that we assume
that G is of rank n and that it contains a finite attractor. Let x = n mod 2.

Lemma 6. There are memoryless strategies f x
c , f x

d ,∈ Fx
/0 (G) and f 1−x

c , f 1−x
d ∈F1−x

/0 (G)
such that the following properties hold:
(i) Cn(G) ⊆ W x( f x

c ,F
1−x
finite(G))(G ,x-Parity=1).

(ii) G
¬ Cn(G) ⊆ W 1−x( f 1−x

c ,Fx
finite(G))(G ,(1− x)-Parity>0).

(iii) Dn(G) ⊆ W x( f x
d ,F

1−x
finite(G))(G ,x-Parity>0).

(iv) G
¬ Dn(G) ⊆ W 1−x( f 1−x

d ,Fx
finite(G))(G ,(1− x)-Parity=1).

Proof. Using induction on n, we define the strategies f x
c , f x

d , f 1−x
c , f 1−x

d , and prove that
the strategies are indeed winning.

f x
c . For n≥ 1, let α be as defined in Lemma 5. Let Xα :=G

¬ Xα and Zα :=G
¬ Zα. We know

that Cn(G) = Xα. For a state s ∈ Cn(G), we define f x
c (s) depending on the membership

of s in one of the following three partitions of Cn(G): (1) Xα∩Zα, (2) Xα ∩ [Zα]
Col<n,

and (3) Xα∩ [Zα]
Col=n.

1. s ∈ Xα ∩Zα. Define G ′ := G �Xα�Zα. From Lemma 5, we have that Xα+1−
Xα = /0. By the construction of Yi we have, for arbitrary i, that Dn−1(G �Xi�
Zi) = Yi−Xi, and by the construction of Xi+1, we have that Yi−Xi ⊆ Xi+1−Xi.
By combining these facts we obtain Dn−1(G ′) ⊆ Xα+1−Xα = /0. Since G �Xi�
Zi does not contain any states of color n (or higher), it follows by the induction
hypothesis that there is a memoryless strategy f1 ∈Fx

/0 (G
′) such that G ′

¬ Dn−1(G ′) ⊆
W x( f1,F

1−x
finite(G

′))(G ′,x-Parity=1). We define f x
c (s) := f1(s).

2. s ∈ Xα∩ [Zα]
Col<n. Define f x

c (s) := forcex(G �Xα, [Zα]
Col=n)(s).

3. s ∈ Xα∩ [Zα]
Col=n. By Lemma 3 we know that PostG (s)∩Xα = /0. Define f x

c (s) :=
select(PostG (s)∩Xα).

Let f 1−x ∈ F1−x
finite(G) be a finite-memory strategy for Player 1− x. We show that

PG ,s, f x
c , f 1−x(x-Parity) = 1 for any state s ∈ Cn(G). First, we show that, any run s0s1 · · · ∈

Runs(G ,s, f x
c , f 1−x) will always stay inside Xα, i.e., si ∈ Xα for all i≥ 0. We use induc-

tion on i. The base case follows from s0 = s ∈ Xα. For the induction step, we assume
that si ∈ Xα, and show that si+1 ∈ Xα. We consider the following cases:

– si ∈ [Xα]
1−x∪[Xα]

R. The result follows since Xα is a (1− x)-trap in G (by Lemma 3).
– si ∈ [Xα∩Zα]

x. We know that si+1 = f1(si). Since f1 ∈ Fx
/0 (G�Xα�Zα) it follows

that si+1 ∈ Xα∩Zα and in particular si+1 ∈ Xα.
– si ∈ [Xα∩ [Zα]

Col<n]x. We know that si+1 = forcex(G�Xα, [Zα]
Col=n)(si). The re-

sult follows by the fact that forcex(G �Xα, [Zα]
Col=n) is a strategy in G�Xα.

– si ∈ [Xα∩ [Zα]
Col=n]x. We have si+1 ∈ PostG (si)∩Xα and in particular si+1 ∈ Xα.



Stochastic Parity Games on Lossy Channel Systems 347

Let us again consider a run ρ ∈ Runs(G ,s, f x, f 1−x). We show that ρ is a.s. winning
for Player x with respect to x-Parity in G . Let f 1−x be induced by a memory structure
M = (M,m0,τ,µ). Let T be the transition system induced by G , f x, and f 1−x. As
explained in Section 2, ρ will a.s. visit a configuration (sA,m) ∈ B for some BSCC B in
T . This implies that each state that occurs in B will a.s. be visited infinitely often by ρ.
There are two possible cases: (i) There is a configuration (sB,m) ∈ B with Col(sB) =
n. Since each state in G has color at most n, Player x will a.s. win. (ii) There is no
configuration (sB,m) ∈ B with Col(sB) = n. This implies that {sB| (sB,m) ∈ B} ⊆ Z,
and hence Player x uses the strategy f1 to win the game.

f 1−x
c . We define a strategy f 1−x

c such that Xi ⊆ Yi ⊆
W 1−x( f 1−x

c ,Fx
finite(G))(G ,(1− x)-Parity>0) for all i. The result follows then from

the definition of Cn(G). The inclusion Xi ⊆ Yi holds by the definition of Yi. For
any state s ∈ Cn(G), we define f 1−x

c (s) as follows. Let β be the smallest ordi-
nal such that s ∈ Yβ. Such a β exists by the well-ordering of ordinals and since

Cn(G) =
⋃

i∈O Xi =
⋃

i∈O Yi. Now there are two cases:

– s ∈ Xβ−
⋃

j<β Y j. Define f 1−x
c (s) := f1(s) := force1−x(G ,

⋃
j<β Y j)(s).

– s ∈ Dn−1(G �Xβ�Zβ). By the induction hypothesis (on n), there is a memory-
less strategy f2 ∈ F1−x

/0 (G) of Player 1− x such that s ∈W 1−x( f2,Fx
finite(G �Xβ�

Zβ))(G �Xβ�Zβ,(1− x)-Parity>0). Define f 1−x
c (s) := f2(s).

Let f x ∈ Fx
finite(G) be an arbitrary finite-memory strategy for Player x. We now use

induction on i to show that PG ,s, f 1−x
c , f x((1− x)-Parity) > 0 for any state s ∈ Yi. There

are three cases:

1. If s ∈⋃
j<i Y j then the result follows by the induction hypothesis (on i).

2. If s ∈ Xi−
⋃

j<i Y j then we know that Player 1− x, can use f1 to force the game to⋃
j<i Y j from which she wins w.p.p..

3. If s ∈ Dn−1(G �Xi�Zi) then Player 1− x uses f2. There are now two sub-cases:
either (i) there is a run from s consistent with f x and f 1−x

c that reaches Xi; or (ii)
there is no such run. In sub-case (i), the run reaches Xi w.p.p. and then by cases 1
and 2 Player 1− x wins w.p.p.. In sub-case (ii), any run stays forever outside Xi.
So the game is in effect played on G �Xi. Notice then that any run from s that is
consistent with f x and f 1−x

c stays forever in G �Xi�Zi. The reason is that (by
Lemma 3) G�Xi¬ Zi is an x-trap in G�Xi. Since any run remains inside G�Xi�Zi,
Player 1− x wins w.p.p. wrt. (1− x)-Parity using f2.

f x
d . For any state s, let β be the smallest ordinal such that s ∈ Yβ. We define f x

d (s) by
two cases:

– s ∈Uβ−
⋃

j<β V j. Define f x
d (s) := f1(s) := forcex(G ,

⋃
j<β V j)(s).

– s ∈ Cn(G �Uβ). By the induction hypothesis (on n), Player x has a winning mem-
oryless strategy f2 inside G�Ui. Define f x

d (s) := f2(s).

Let f 1−x ∈ F1−x
all (G) be an arbitrary strategy for Player 1− x. We now use induction on

i to show that PG ,s, f x
d , f

1−x(x-Parity)> 0 for any state s ∈ Vi. There are three cases:



348 P.A. Abdulla et al.

1. If s ∈⋃
j<i V j then the result follows by the induction hypothesis (on i).

2. If s ∈ Ui−
⋃

j<i V j then we know that Player x can use f1 to force the game to⋃
j<i V j from which she wins w.p.p. by the previous case.

3. If s∈Cn(G�Ui) then Player x uses f2. There are now two sub-cases: either (i) there
is a run from s consistent with f x

d and f 1−x that reaches Ui; or (ii) there is no such
run. In sub-case (i), the run reaches Ui w.p.p. and then by cases 1 and 2 Player x
wins w.p.p.. In sub-case (ii), any run stays forever outside Ui. Hence, Player x wins
a.s. wrt. x-Parity using f2.

f 1−x
d . By the definition of Ui we know that

⋃
j<i V j ⊆Ui, and by the definition of Vi we

know that Ui ⊆Vi. Thus, U0 ⊆V0 ⊆U1 ⊆V1 ⊆ ·· · , and hence there is an α ∈O such
that Ui = Vi = Uα for all i≥ α. This means that Dn(G) = Uα and hence by Lemma 3
we know that G

¬ Dn(G) is an x-trap. Furthermore, since Vα = Uα∪Cn(G�Uα), where
the union is disjoint, it follows that Cn(G�Uα) = /0 and hence, by the induction hypoth-
esis, Player 1− x has a memoryless strategy f ∈ F1−x

/0 (G) that is winning w.p.p. against
all finite memory strategies f x ∈ Fx

finite(G) on all states in G
¬ Uα =G

¬ Dn(G). Below, we
show that f indeed allows Player 1− x to win almost surely.

Fix a finite-memory strategy f x ∈Fx
finite(G). Let f x be induced by a memory structure

M = (M,m0,τ,µ). Consider a run ρ ∈ Runs(G ,s, f , f x). Then, ρ will surely stay inside
G �Uα. The reason is that G

¬ Uα is a trap for Player x by Lemma 3, and that f is
a strategy defined inside G �Uα. Let T be the transition system induced by G , f x,
and f . As explained in Section 2, ρ will a.s. visit a configuration (sA,m) ∈ B for some
BSCC B in T . This implies that each configuration in B will a.s. be visited infinitely
often by ρ. Let n be the maximal color occurring among the states of B. Then, either
(i) n mod 2 = x in which case all states inside B are almost sure losing for Player 1− x;
or (ii) n mod 2 = 1− x in which case all states inside B are almost sure winning for
Player 1− x. The result follows from the fact that case (i) gives a contradiction since
all states in G

¬ Uα =G
¬ Dn(G) (including those in B) are winning for Player 1− x w.p.p..

Define f 1−x
d (s) := f (s).

The following theorem follows immediately from the previous lemmas.

Theorem 1. Stochastic parity games with almost sure winning conditions on infinite
graphs are memoryless determined, provided there exists a finite attractor and the play-
ers are restricted to finite-memory strategies.

Remark. The scheme for Cn is adapted from the well-known scheme for non-stochastic
games in [27]; in fact, the constructions are equivalent in the case that no probabilistic
states are present. Our contribution to the scheme is: (1) Cn is a non-trivial extension
of the scheme in [27] to handle probabilistic states; (2) we introduce the alternation
between Cn and Dn; (3) the construction of Dn is new and has no counterpart in the
non-stochastic case of [27].

5 Lossy Channel Systems

A lossy channel system (LCS) [7] is a finite-state machine equipped with a finite number
of unbounded fifo channels (queues). The system is lossy in the sense that, before and



Stochastic Parity Games on Lossy Channel Systems 349

after a transition, an arbitrary number of messages may be lost from the channels. We
consider stochastic game-LCS (SG-LCS): each individual message is lost independently
with probability λ in every step, where λ > 0 is a parameter of the system. The set of
states is partitioned into states belonging to Player 0 and 1. The player who owns the
current control-state chooses an enabled outgoing transition. Formally, a SG-LCS of
rank n is a tuple L = (S,S0,S1,C,M,T,λ,Col) where S is a finite set of control-states
partitioned into states S0,S1 of Player 0 and 1; C is a finite set of channels, M is a finite
set called the message alphabet, T is a set of transitions, 0 < λ < 1 is the loss rate,
and Col : S → {0, . . . ,n} is the coloring function. Each transition t ∈ T is of the form
s

op−→s′, where s,s′ ∈ S and op is one of the following three forms: c!m (send message
m∈ M in channel c∈ C), c?m (receive message m from channel c), or nop (do not modify
the channels). The SG-LCS L induces a game G = (S,S0,S1,SR,−→,P,Col), where
S = S× (M∗)C×{0,1}. That is, each state in the game consists of a control-state, a
function that assigns a finite word over the message alphabet to each channel, and one of
the symbols 0 or 1. States where the last symbol is 0 are random: SR = S× (M∗)C×{0}.
The other states belong to a player according to the control-state: Sx = Sx×(M∗)C×{1}.
Transitions out of states of the form s = (s,x,1) model transitions in T leaving state s.
On the other hand, transitions leaving states of the form s = (s,x,0) model message
losses. If s = (s,x,1),s′ = (s′,x′,0) ∈ S, then there is a transition s−→s′ in the game

iff one of the following holds: (i) s
nop−→s′ and x = x′; (ii) s

c!m−→s′, x′(c) = x(c)m, and

for all c′ ∈ C−{c}, x′(c′) = x(c′); and (iii) s
c?m−→s′, x(c) = mx′(c), and for all c′ ∈ C−

{c}, x′(c′) = x(c′). Every state of the form (s,x,0) has at least one successor, namely
(s,x,1). If a state (s,x,1) does not have successors according to the rules above, then
we add a transition (s,x,1)−→(s,x,0), to ensure that the induced game is sink-free. To
model message losses, we introduce the subword ordering � on words: x � y iff x is a
word obtained by removing zero or more messages from arbitrary positions of y. This
is extended to channel states x,x′ : C→ M∗ by x � x′ iff x(c) � x′(c) for all channels
c ∈ C, and to game states s = (s,x, i),s′ = (s′,x′, i′) ∈ S by s� s′ iff s= s′, x� x′, and
i= i′. For any s= (s,x,0) and any x′ such that x′ � x, there is a transition s−→(s,x′,1).
The probability of random transitions is given by P((s,x,0),(s,x′,1)) = a ·λb ·(1−λ)c,
where a is the number of ways to obtain x′ by losing messages in x, b is the total number
of messages needed to be lost in all channels in order to obtain x′ from x, and c is the
total number of messages in all channels of x′ (see [1] for details). Finally, for a state
s = (s,x, i), we define Col(s) := Col(s). Notice that the graph of the game is bipartite,
in the sense that a state in SR has only transitions to states in [S]0,1, and vice versa.

In the qualitative parity game problem for SG-LCS, we want to characterize the sets
of configurations where Player x can force the x-Parity condition to hold a.s., for both
players.

6 From Scheme to Algorithm

We transform the scheme of Section 4 into an algorithm for deciding the a.s. parity
game problem for SG-LCS. Consider an SG-LCS L = (S,S0,S1,C,M,T,λ,Col) and the
induced game G = (S,S0,S1,SR,−→,P,Col) of some rank n. Furthermore, assume that
the players are restricted to finite-memory strategies. We show the following.



350 P.A. Abdulla et al.

Theorem 2. The sets of winning states for Players 0 and 1 are effectively computable
as regular languages. Furthermore, from each state, memoryless strategies suffice for
the winning player.

We give the proof in several steps. First, we show that the game induced by an SG-
LCS contains a finite attractor (Lemma 7). Then, we show that the scheme in Section 3
for computing winning states wrt. reachability objectives is guaranteed to terminate
(Lemma 9). Furthermore, we show that the scheme in Section 4 for computing winning
states wrt. a.s. parity objectives is guaranteed to terminate (Lemma 15). Notice that
Lemmas 9 and 15 imply that for SG-LCS our transfinite constructions stabilize below
ω (the first infinite ordinal). Finally, we show that each step in the above two schemes
can be performed using standard operations on regular languages (Lemmas 16 and 17).

Finite attractor. In [1] it was shown that any Markov chain induced by a Probabilistic
LCS contains a finite attractor. The proof can be carried over in a straightforward man-
ner to the current setting. More precisely, the finite attractor is given by A = (S×εεε×
{0,1}) where εεε(c) = ε for each c ∈ C. In other words, A is given by the set of states
in which all channels are empty. The proof relies on the observation that if the number
of messages in some channel is sufficiently large, it is more likely that the number of
messages decreases than that it increases in the next step. This gives the following.

Lemma 7. G contains a finite attractor.

Termination of Reachability Scheme. For a set of states Q ⊆ S, we define the upward
closure of Q by Q ↑:= {s| ∃s′ ∈ Q.s′ � s}. A set U ⊆ Q ⊆ S is said to be Q-upward-
closed (or Q-u.c. for short) if (U ↑)∩Q = U . We say that U is upward closed if it is
S-u.c.

Lemma 8. If Q0 ⊆ Q1 ⊆ ·· · , and for all i it holds that Qi ⊆ Q and Qi is Q-u.c., then
there is an α ∈ N such that Qi = Qα for all i≥ α.

Now, we can show termination of the reachability scheme.

Lemma 9. There exists an α ∈ N such that R i = R α for all i≥ α.

Proof. First, we show that [R i− Target]R is (G
¬ Target)-u.c. for all i ∈ N. We use

induction on i. For i = 0 the result is trivial since R i−Target= /0. For i> 0, suppose
that s = (s,x,0) ∈ [R i]

R − Target. This means that s−→(s,x′,1) ∈ R i−1 for some
x′ � x, and hence s′−→(s,x′,1) for all s� s′.

By Lemma 8, there is an α′ ∈ N such that [R i]
R− Target= [R α′ ]

R− Target for
all i≥ α′. Since R i ⊇ Target for all i≥ 0 it follows that [R i]

R = [R α′ ]
R for all i≥ α′.

Since the graph of G is bipartite (as explained in Section 5), we have [PreG (R i)]
x =

[PreG
(
[R i]

R
)
]x and [P̃reG (R i)]

1−x = [P̃reG
(
[R i]

R
)
]1−x. Since [R i]

R = [R α′ ]
R for all

i ≥ α′, we thus have [PreG (R i)]
x = [PreG

(
[R ]Rα′

)
]x ⊆ R α′+1 and [P̃reG (R i)]

1−x =

[P̃reG
(
[R ]Rα′

)
]1−x ⊆ R α′+1. It then follows that R i = R α for all i≥ α := α′+ 1.

Termination of Parity Scheme. We use several auxiliary lemmas. The following lemma
states that sink-freeness is preserved by the reachability scheme.

Lemma 10. If Target is sink-free then Forcex(G ,Target) is sink-free.



Stochastic Parity Games on Lossy Channel Systems 351

Lemma 11. If Target is sink-free then [Forcex(G ,Target)]R is upward closed.

Lemma 12. Let {Qi}i∈O and {Q′i}i∈O be sequences of sets of states such that (i) Each
Q′i is sink-free; (ii) Qi = Q′i ∪Forcex(G ,

⋃
j<i Q j); (iii) Q′i and Forcex(G ,

⋃
j<i Q j) are

disjoint for all i. Then, there is an α ∈ N such that Qi = Qα for all i≥ α.

To apply Lemma 12, we prove the following two lemmas.

Lemma 13. Cn(G) is a (1− x)-trap.

Proof. C0(G) is trivially a (1− x)-trap. For i≥ 1, the result follows immediately from
Lemma 5 and Lemma 3.

Lemma 14. For any game of rank n both Cn(G) and Dn(G) are sink-free.

Proof. If n = 0, then by definition Cn(G) = Dn(G) = S, which is sink-free by assump-
tion. Next, assume n≥ 1. By Lemma 13 we know that Cn(G) is a (1− x)-trap and hence
also sink-free. To prove the claim for Dn(G), we use induction on i and prove that both
Ui and Vi are sink-free. Assume U j and V j are sink-free for all j < i. Then

⋃
j<i V j

is sink-free, and hence Ui is sink-free by Lemma 10. Since Cn(G �Ui) and Ui are
sink-free, it follows that Vi is sink-free.

Now, we apply Lemma 12 to prove that the sequences {Xi}i∈O and {Ui}i∈O terminate.
First, by Lemma 14 we know that Dn−1(G�Xi�Zi) is sink-free. We know that Xi and
Dn−1(G �Xi�Zi) are disjoint since Dn−1(G �Xi�Zi) ⊆G

¬ (Xi∪Zi). Hence, we can
apply Lemma 12 with Qi = Yi, Q′i = Dn−1(G �Xi�Zi), and conclude that {Yi}i∈O
terminates, and hence {Xi}i∈O terminates. Second, by Lemma 14 we know that Cn(G�
Ui) is sink-free. Since Cn(G�Ui)⊆G

¬ Ui, we know that Ui and Cn(G�Ui) are disjoint.
Hence, we can apply Lemma 12 with Qi = Vi, Q′i = Cn−1(G �Ui), and conclude that
{Vi}i∈O terminates, and hence {Ui}i∈O terminates. This gives the following lemma.

Lemma 15. There is an α ∈ N such that Xi = Xα for all i ≥ α. There is a β ∈ N such
that Ui = Uβ for all i≥ β.

Computability. For a given regular set R , the set PreG (R ) is effectively regular [2], i.e.,
computable as a regular language. The following lemma then follows from the fact that
the other operations used in computing Forcex(G ,Target) are those of set complement
and union, which are effective for regular languages.

Lemma 16. If Target is regular then Forcex(G ,Target) is effectively regular.

Lemma 17. For each n, both Cn(G) and Dn(G) are effectively regular.

Proof. The set S is regular, and hence C0(G) = D0(G) = S is effectively regular. The
result for n> 0 follows from Lemma 16 and from the fact that the rest of the operations
used to build Cn(G) and Dn(G) are those of set complement and union.

Remark. Although we use Higman’s lemma for showing termination of our fixpoint
computations, our proof differs significantly from the standard ones for well quasi-
ordered transition systems [3]. For instance, the generated sets are in general not up-
ward closed wrt. the underlying ordering �. Therefore, we need to use the notion of
Q-upward closedness for a set of states Q. More importantly, we need to define new
(and much more involved) sufficient conditions for the termination of the computations
(Lemma 12), and to show that these conditions are satisfied (Lemma 14).



352 P.A. Abdulla et al.

7 Conclusions and Discussion

We have presented a scheme for solving stochastic games with a.s. parity winning con-
ditions under the two requirements that (i) the game contains a finite attractor and (ii)
both players are restricted to finite-memory strategies. We have shown that this class of
games is memoryless determined. The method is instantiated to prove decidability of
a.s. parity games induced by lossy channel systems. The two above requirements are
both necessary for our method. To see why our scheme fails if the game lacks a finite
attractor, consider the game in Figure 1 (a) (a variant of the Gambler’s ruin problem).
All states are random, i.e., S0 = S1 = /0, and Col(s0) = 1 and Col(si) = 0 when i > 0.

s0 s1 s2 s3 · · ·

(a)

0.3
0.7

0.3

0.7

0.3

0.7

0.3

s0

s2s1 s3 s4 · · ·

(b)

1 0.5 0.5

0.5

0.50.50.5

Fig. 1. (a) Finite attractor requirement. (b) Finite strategy requirement.

The probability to go right from any state is 0.7 and the probability to go left (or to
make a self-loop in s0) is 0.3. This game does not have any finite attractor. It can be
shown that the probability to reach s0 infinitely often is 0 for all initial states. How-
ever, our construction will classify all states as winning for player 1. More precisely,
the construction of C1(G) converges after one iteration with Zi = S,Xi = /0 for all i
and C1(G) = S. Intuitively, the problem is that even if the force-set of {s0} (which is
the entire set of states) is visited infinitely many times, the probability of visiting {s0}
infinitely often is still zero, since the probability of returning to {s0} gets smaller and
smaller. Such behavior is impossible in a game graph that contains a finite attractor.

We restrict both players to finite-memory strategies. This is a different problem
from when arbitrary strategies are allowed (not a sub-problem). In fact, it was shown
in [9] that for arbitrary strategies, the problem is undecidable. Figure 1 (b) gives an
example of a game graph where the two problems yield different results (see also [9]).
Player 1 controls s0, whereas s1,s2, . . . are random; Col(s0) = 0,Col(s1) = 2,Col(si) =
1 if i≥ 2. The transition probabilities are P(s1,s1) = 1 and P(sn,sn−1) = P(sn,s0) =

1
2

when n≥ 2. Player 1 wants to ensure that the highest color that is seen infinitely often is
odd, and thus wants to avoid state s1 (which has color 2). If the players can use arbitrary
strategies, then although player 1 cannot win with probability 1, he can win with a
probability arbitrarily close to 1 using an infinite-memory strategy: player 1 goes from
s0 to sk+i when the play visits s0 for the i’th time. Then player 1 wins with probability
∏∞

i=1(1− 2−k−i+1), which can be made arbitrarily close to 1 for sufficiently large k. In
particular, player 0 does not win a.s. in this case. On the other hand, if the players are
limited to finite-memory strategies, then no matter what strategy player 1 uses, the play



Stochastic Parity Games on Lossy Channel Systems 353

visits s1 infinitely often with probability 1, so player 0 wins almost surely; this is also
what our algorithm computes.

As future work, we will consider extending our framework to (fragments of) proba-
bilistic extensions of other models such as Petri nets and noisy Turing machines [6].

References

1. Abdulla, P.A., Bertrand, N., Rabinovich, A., Schnoebelen, P.: Verification of probabilistic
systems with faulty communication. Information and Computation 202(2), 105–228 (2005)

2. Abdulla, P.A., Bouajjani, A., d’Orso, J.: Deciding monotonic games. In: Baaz, M.,
Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 1–14. Springer, Heidelberg (2003)

3. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of programs with
well quasi-ordered domains. Information and Computation 160, 109–127 (2000)

4. Abdulla, P.A., Clemente, L., Mayr, R., Sandberg, S.: Stochastic parity games on lossy
channel systems. Technical Report EDI-INF-RR-1416, University of Edinburgh (2013),
http://arxiv.org/abs/1305.5228, http://www.inf.ed.ac.uk/publications/
report/1416.html

5. Abdulla, P.A., Henda, N.B., de Alfaro, L., Mayr, R., Sandberg, S.: Stochastic games with
lossy channels. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 35–49.
Springer, Heidelberg (2008)

6. Abdulla, P.A., Henda, N.B., Mayr, R.: Decisive Markov chains. Logical Methods in Com-
puter Science 3 (2007)

7. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: LICS,
pp. 160–170 (1993)

8. Abdulla, P.A., Rabinovich, A.: Verification of probabilistic systems with faulty commu-
nication. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 39–53. Springer,
Heidelberg (2003)

9. Baier, C., Bertrand, N., Schnoebelen, P.: Verifying nondeterministic probabilistic channel
systems against ω-regular linear-time properties. ACM Trans. on Comp. Logic 9 (2007)

10. Bertr, N., Schnoebelen, P.: Model checking lossy channels systems is probably decidable. In:
Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 120–135. Springer, Heidelberg
(2003)

11. Bertrand, N., Schnoebelen, P.: Solving stochastic büchi games on infinite arenas with a finite
attractor. In: Proceedings of the 11th International Workshop on Quantitative Aspects of
Programming Languages (QAPl 2013), Roma, Italy (to appear March 2013)

12. Billingsley, P.: Probability and Measure, 2nd edn. Wiley, New York (1986)
13. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the ACM 2(5),

323–342 (1983)
14. Chatterjee, K., de Alfaro, L., Henzinger, T.: Strategy improvement for concurrent reachability

games. In: QEST, pp. 291–300. IEEE Computer Society Press (2006)
15. Chatterjee, K., Jurdziński, M., Henzinger, T.: Simple stochastic parity games. In: Baaz, M.,

Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100–113. Springer, Heidelberg
(2003)

16. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (December 1999)
17. Condon, A.: The complexity of stochastic games. Information and Computation 96(2),

203–224 (1992)
18. de Alfaro, L., Henzinger, T.: Concurrent omega-regular games. In: LICS, Washington - Brus-

sels - Tokyo, pp. 141–156. IEEE (2000)

http://arxiv.org/abs/1305.5228
http://www.inf.ed.ac.uk/publications/report/1416.html
http://www.inf.ed.ac.uk/publications/report/1416.html


354 P.A. Abdulla et al.

19. de Alfaro, L., Henzinger, T., Kupferman, O.: Concurrent reachability games. In: FOCS, pp.
564–575. IEEE Computer Society Press (1998)

20. Etessami, K., Wojtczak, D., Yannakakis, M.: Recursive stochastic games with positive re-
wards. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 711–723. Springer,
Heidelberg (2008)

21. Etessami, K., Yannakakis, M.: Recursive markov decision processes and recursive stochastic
games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 891–903. Springer, Heidelberg (2005)

22. Etessami, K., Yannakakis, M.: Recursive concurrent stochastic games. LMCS 4 (2008)
23. Rabinovich, A.: Quantitative analysis of probabilistic lossy channel systems. In: Baeten,

J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719,
pp. 1008–1021. Springer, Heidelberg (2003)

24. Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sciences 39(10),
1095–1100 (1953)

25. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In:
FOCS, pp. 327–338 (1985)

26. Wang, K., Li, N., Jiang, Z.: Queueing system with impatient customers: A review. In: IEEE
International Conference on Service Operations and Logistics and Informatics (SOLI), pp.
82–87. IEEE (2010)

27. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on
infinite trees. TCS 200, 135–183 (1998)



Transient Analysis of Networks of Stochastic

Timed Automata Using Stochastic State Classes

Paolo Ballarini1, Nathalie Bertrand2, András Horváth3,
Marco Paolieri4, and Enrico Vicario4

1 École Centrale Paris, France
2 Inria Rennes, France

3 Università di Torino, Italy
4 Università di Firenze, Italy

Abstract. Stochastic Timed Automata (STA) associate logical loca-
tions with continuous, generally distributed sojourn times. In this paper,
we introduce Networks of Stochastic Timed Automata (NSTA), where
the components interact with each other by message broadcasts. This
results in an underlying stochastic process whose state is made of the
vector of logical locations, the remaining sojourn times, and the value of
clocks. We characterize this general state space Markov process through
transient stochastic state classes that sample the state and the abso-
lute age after each event. This provides an algorithmic approach to tran-
sient analysis of NSTAmodels, with fairly general termination conditions
which we characterize with respect to structural properties of individual
components that can be checked through straightforward algorithms.

1 Introduction

Timed Automata (TA) extend standard automata by adding real-time clocks to
states and clock constraints to transitions [4]. While this produces a continuous,
infinite state-space, various finite abstractions based on regions [4], zones [17], or
clock difference diagrams [7] were developed to allow the solution of verification
problems in a qualitative perspective, i.e., with reference to possible or neces-
sary behaviors. Various probabilistic extensions were then proposed to enable
quantitative evaluation of the probability of feasible behaviors, or to restrain
qualitative verification to behaviors with non-null probability.

In Probabilistic Timed Automata (PTA) [24], non-deterministic continuous-
time delays are mixed with discrete distributions over actions, and models are
checked against PTCTL [22]. In real-time probabilistic processes [2,3], also event
durations are randomized. The underlying stochastic process becomes continuous
time and may fall in the class of Generalized Semi-Markov Processes (GSMPs).
Model-checking can be performed with respect to PTCTL by relying on finite-
state abstraction. Continuous Probabilistic Timed Automata (CPTA) [23] ex-
tend PTA with randomized clock updates and enable approximate checking
against PTCTL.

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 355–371, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



356 P. Ballarini et al.

Stochastic Timed Automata (STA) [5] were proposed with the aim of re-
laxing the idealized aspects of TA through a semantics that distinguishes null-
probability behaviors. To this end, STA associate locations with sojourn time
distributions and transition edges with weights for the probabilistic choice among
multiple enabled transitions. In the most general formulation, both of these
quantities may depend on clock valuations. For single-clock STA, almost-sure
verification of LTL specifications was shown decidable [6] and an approximated
technique for quantitative model-checking was proposed [8]. Decidability of al-
most sure verification was also shown for reactive timed automata [10], even with
multiple-clocks but under restrictions on sojourn times.

Combination of qualitative real-time constraints with quantitative probabilis-
tic information was also largely addressed on the ground of various classes of
Stochastic Petri Nets (SPNs) with generally distributed transitions. In general,
the underlying stochastic process of such models belongs to the class of GSMPs
[18], for which simulation or statistical model checking are the only general vi-
able approaches to quantitative evaluation. Analytic treatment becomes possible
under the so-called enabling restriction that basically requires that no more than
one generally distributed transition be enabled at the same time [15,9].

More recently, the method of stochastic state classes addressed models with
multiple generally distributed transitions possibly supported over bounded do-
mains, through the symbolic characterization of supports and distributions of
remaining times to fire after each transition firing. This was first proposed for
steady state analysis [12,26], and then extended to transient analysis [20] and
probabilistic model checking [19]. A similar approach was developed for the
analysis of Duration Probabilistic Automata (DPA) [25], which compose a set
of acyclic semi-Markov processes under control of a non-deterministic scheduler.
Symbolic derivation of probability density functions over equivalence classes was
proposed also in [1] with a calculus similar to that of [12] but leveraging finite
state-space abstractions based on regions rather than zones.

In this paper, we extend the STA formalism by introducing the so-called Net-
works of Stochastic Timed Automata (NSTA), where multiple STA may syn-
chronize through message passing over a broadcast channel (Sect. 2). We then
propose an analytic approach to transient analysis of NSTA models based on
the method of stochastic state classes. To this end, we describe the construction
of stochastic state classes that sample the state after each transition, we show
how these classes provide transient probabilities, and we characterize conditions
for termination of the analysis (Sect. 3). An example is then discussed to high-
light modeling patterns of NSTA, and analysis results are provided through a
preliminary tool-chain implemented on top of the oris tool [11,14] (Sect. 4).

2 Model Definition and Semantics

2.1 Timed Automata

Timed automata were introduced in the 90’s as a model for real-time systems [4].
Given a finite set of clocksX , we write G(X) for the set of guards, i.e., conjunctions



Transient Analysis of Networks of STA Using Stochastic State Classes 357

of atomic constraints of the form x ∼ c where x ∈ X , ∼∈ {<,≤,=,≥, >} and
c ∈ N. For a clock valuation v ∈ RX

≥0 and a guard g ∈ G(X), we write v |= g when
v satisfies g.

Definition 1 (Timed automaton). A timed automaton is a tuple 〈L, �0,
Σ,X,E〉 where L is a finite set of locations, �0 ∈ L is the initial location, Σ
is the action alphabet, X is a set of clocks and E ⊆ L× Σ × G(X)× 2X × L is
a set of edges.

The semantics of a timed automaton is a transition system where the states are
pairs (�, v) of a location � ∈ L and a valuation v ∈ RX

≥0 for the clocks. From
any state (�, v) and for any delay τ ∈ R≥0, there is a delay transition leading
to the state (�, v + τ), where v + τ is a notation for the valuation defined by
(v+τ)(x) = v(x)+τ for all x ∈ X . Also, for every edge e = (�, a, g, r, �′) ∈ E and
from every state (�, v) such that v |= g, there exists a discrete transition leading
to (�′, v[r←0]) where v[r←0] denotes the valuation defined by v[r←0](x) = 0 if
x ∈ r, and v[r←0](x) = x otherwise. In this case, we say that edge e is enabled

in (�, v) and we write (�, v)
e−→ (�′, v′) or e(�, v) = (�′, v′), with v′ = v[r←0].

2.2 Stochastic Timed Automata

We consider stochastic timed automata, a continuous-time probabilistic model
associating locations with sojourn time probability density functions (PDFs) and
edges with probabilistic choices based on weights [6].

Definition 2 (Stochastic timed automaton). A stochastic timed au-
tomaton is a tuple A = 〈L, �0, Σ,X,E, μ, w〉 consisting of a timed automaton
〈L, �0, Σ,X,E〉 equipped with sojourn time probability density functions μ =
(μ�)�∈L and natural weights w = (we)e∈E .

Transitions of a STA are determined as follows. When a location l is entered
with clock valuation v, then (1) the sojourn time T is chosen according to the
PDF μ�, (2) after the delay T has elapsed, denoting by E(�, v + T ) the set of
edges enabled in state (�, v+T ), edge e ∈ E(�, v+T ) is selected with probability
we/
�

f∈E(�,v+T )wf , (3) assuming e was selected, and if (�′, v′) = e(�, v + T ),

then a transition to �′ with clock valuation v′ occurs.
The underlying stochastic process of STA ranges from CTMCs to GSMPs,

and it will be discussed in Sect. 2.4. In general, the underlying process of a STA
is a general state space Markov chain whose state is composed of a discrete
component (the location) and a continuous one (the clock valuation and the
remaining sojourn times). In this Markov process, if the current state is (�, v, T ),

the probability to fire an edge e ∈ E(�, v+T ) with (�, v+T )
e−→ (�′, v′) and sample

a new sojourn time T ′ ≤ t is given by (we/
�

f∈E(�,v+T )wf ) ·
� t
0 μ�′(τ) dτ .

Remark 1 (Comparison with the model from [6]). Note that we consider a re-
stricted class of stochastic timed automata where the sojourn time probability



358 P. Ballarini et al.

density functions only depend on the current location, and not on the clock val-
uation when entering that location. This has consequences on the PDFs that are
possible in a location, but also on the structure of the underlying timed automa-
ton itself. However, natural large classes of stochastic timed automata such as
reactive STA [10] are covered in our framework.

Also, differently from the traditional approach, we choose a slightly alternative
view of STA by considering states (�, v, T ) where the sojourn time has already
been sampled, rather than states (�, v). This choice is motivated by the extension
to networks that we propose in the following section.

2.3 Networks of Stochastic Timed Automata

We now introduce a model where several stochastic timed automata form a
network and interact by broadcasting messages. Therefore, in each component,
the set of actions is partitioned into sending and receiving actions.

Definition 3 (Network of STA). A network of STA is a tuple 〈A1, . . . ,An〉
of n stochastic timed automata associated with global weights w(A1), . . . , w(An)
and sharing an alphabet Σ = Σb ∪ Σr partitioned into broadcasts (Σb) and
receptions (Σr). Broadcasts are of the form !m and receptions of the form ?m,
for some message m from a fixed alphabet M, i.e., Σb = !M and Σr =?M.

The intuitive semantics of a network is as follows. The network starts in a con-
figuration where each STA is in its initial location and samples an initial sojourn
time. When the minimum sampled sojourn time elapses, say for STA Ai, the
component Ai performs an action selected according to the weights of its enabled
edges, and broadcasts the associated message (races among equal, determinis-
tic times to fire are solved by the global weights w(Ai)). When Ai performs a
broadcast (sending action), then all other components for which the correspond-
ing receiving action is enabled must synchronize and perform the corresponding
reception. On occurrence of such inter-process communication, all components
involved in the exchange (the sender and the receivers) update their locations
and sample new sojourn times, and then the execution in the network proceeds.

Formally, states of the network 〈A1, . . . ,An〉 are n-tuples of triplets (�i, vi, Ti),
one for each component, consisting of current location (�i), clock valuation (vi),
and remaining sojourn time (Ti). Given the current state of the network s =
〈(�1, v1, T1), . . . , (�n, vn, Tn)〉, the next transition is determined by selecting the
componentAi with lowest remaining sojourn time Ti; deterministically, the delay
Ti is elapsed from s and a broadcast edge ei enabled in (�i, vi + Ti) is selected
according to weights (as in STA), resulting in the local transition (�′i, v

′
i) =

ei(�i, vi + Ti). For every other component Aj with j = i, an enabled matching
receiving edge ej (if any) is selected according to the weights, and the state
of components with a selected (synchronizing) action is updated as (�′j , v

′
j) =

ej(�j, vj+Ti). New sojourn times are sampled for components that performed an
action: T ′

i according to μ�′
i
, and possibly T ′

j according to μ�′
j
; the resulting state

is then s′ = 〈(�′1, v′1, T ′
1), · · · (�′n, v′n, T ′

n)〉 where (�′k, v′k, T ′
k) = (�k, vk+Tk, T

′
k−Ti)

for components Ak that did not take an action.



Transient Analysis of Networks of STA Using Stochastic State Classes 359

a
[1, 2]A1

b
[1, 4]

c
[1, 2] d

e
[7, 8]A2

x := 0

x ≥ 2

x ≤ 3 ?end
!end

Fig. 1. Network of STA

Example. Consider the NSTA depicted in Fig. 1, where all sojourn times of A1

and A2 are uniformly distributed over the depicted supports. Automaton A2

broadcasts an end message at each termination of its computation: if A1 is in b
at the moment of the broadcast, its current computation is interrupted by the
receiving edge (b, d) and the network reaches the absorbing state #� = (d, e). The
clock x in A1 tracks the time elapsed since the last transition from a to b.

2.4 Underlying Stochastic Process of STA and NSTA

The underlying stochastic process of a STA is a CTMC only under severe re-
strictions: (1) the (non-null) sojourn times of locations must be exponentially
distributed and (2) the choice of the next location cannot depend on the value
of clocks, so that clocks do not have an impact on the behavior (i.e., the control-
flow) of the STA. Under these conditions, the STA is memoryless in every lo-
cation and every time instant is a regeneration point, i.e., the current location
alone determines the future of the process in a stochastic sense.

If clocks are reset at every transition, or those that are not reset cannot affect
future choices of the next location (i.e., they do not appear in guards), then every
transition constitutes a regeneration point and the underlying stochastic process
is a semi-Markov process (SMP). When clocks can carry memory from a location
to another and influence the behavior of the STA, then there can be transitions
that do not result in a regeneration point. If regeneration points are guaranteed
to appear infinitely often, the process is Markov regenerative (MRP); otherwise,
we have a generalized semi-Markov process (GSMP). Regeneration points can
be exploited in the analysis of the process [21]; if regeneration is not guaranteed,
two general analysis techniques can be adopted: the so-called supplementary
variable approach [16] and the method of stochastic state classes [20].

In the case of a NSTA, the underlying process is a CTMC if all STA are
memoryless in every location, i.e., their underlying process is also a CTMC.
If this condition does not hold, we can still have regeneration points when (1)
all automata are memoryless in the current location, or (2) some automata are
memoryless in the current location and the others “lost memory” at the same
time due to one or more receiving transitions, i.e., they performed a transition
that reset all clocks except those that cannot have an impact on the future



360 P. Ballarini et al.

behavior. The way regeneration points occur determines if the underlying process
of the NSTA is a SMP, a MRP or a GSMP. The classification cannot be based on
the analysis of the automata in isolation because their interplay can be decisive.
The transient analysis we propose in this paper can be easily modified to provide
information on the underlying process and compute the kernels of the MRP
required in calculations exploiting regeneration points (see [20]).

3 Transient Analysis

3.1 Stochastic State Classes for NSTA

Stochastic state classes characterize the underlying stochastic process by repre-
senting explicitly, for each state transition, the resulting logical state and joint
probability density function of the continuous random variables that govern the
evolution of the system (clocks and remaining sojourn times). To support tran-
sient analysis, we include an additional clock xage to encode the absolute time
of the last transition [20]. Let us formalize the concept of stochastic state class.

Definition 4 (Stochastic state class). A stochastic state class for the STA
network 〈A1, . . . ,An〉 is a tuple 〈�,D, f〉 where � = (�1, . . . , �n) specifies the
current location of each automaton and f : D → [0, 1] is the probability density
function of the random remaining sojourn times #τ = (τ1, . . . , τn) and clocks
〈xage, #x〉, with #x = (x1, . . . , xm), on the support D ⊆ Rn

≥0 × Rm+1
≤0 .

Note that the support of remaining sojourn times τi is R≥0, while that of clock
random variables xi is R≤0; this is required to allow an efficient representation
of the joint support D. In fact, stochastic state classes were originally developed
in the context of Stochastic Time Petri Nets (STPNs), where times to fire of
transitions decrease with unitary rate and the support of joint PDFs can be
represented as a Difference Bounds Matrix zone (DBM zone), i.e., the set of
solutions of a system of linear inequalities τi−τj ≤ bij for all i = j ∈ {∗, 1, . . . , n}
with bij ∈ R ∪ {+∞} and τ∗ = 0. This form allows a compact representation
of the state space, and it is preserved by all the operations required in the
computation of successor state classes through the firing of a transition; these
operations include: reducing all the variables of a stochastic class by one of
them, marginalizing variables, and adding new variables in product form. In
STA, sojourn time random variables can be managed with the same operations:
they can be reduced by the minimum one, or marginalized and added in product
form for the automata performing the transition. In contrast, clocks should be
increased by the minimum sojourn time; in order to preserve the DBM form
for the support of PDFs of random variables, we thus encode clocks as negative
variables that are initially set to zero and decreased at each transition. In so
doing, all the random variables of the stochastic state class (sojourn times and
clocks) are simply decreased by one of them, as in STPNs.

We now define the stochastic state classes of a NSTA, starting from the initial
class, and then describing the derivation of successor classes.



Transient Analysis of Networks of STA Using Stochastic State Classes 361

Initial class. In the initial class Σ0, all the clocks are set to zero and each
automaton Ai is in its initial location �i with a sojourn time independently
distributed according to the probability density function μ�i . Hence, we have

Σ0 = 〈#�0, D0, f0〉 with #�0 = (�1, . . . , �n) and

D0 = ([a0, b0]× · · · × [an, bn])× [0, 0]× [0, 0]m

f0(#τ , xage, #x) =
n�

i=0

μ�i(τi) · δ(xage) ·
m�
i=0

δ(xi)

where δ is the Dirac delta function, μ�i is the PDF associated with location �i,
and [ai, bi] its support (we indicate the Cartesian product of supports by ×).

Computation of successor classes. The computation of successor classes charac-
terizes the set of states (locations, remaining sojourn times and clock valuations)
that can be reached after a state transition in the STA network, their probability
density function, and the probability of the state transition itself.
In general, a transition is identified by the automaton Ai with minimum remain-
ing sojourn time, an edge e in Ai, and a possible set E of receiving edges for
the message broadcast by e. In addition, a transition also depends on the clock
valuation, which may restrict the set of enabled edges because of the guards (in
Ai or in the rest of the network). This partitions the space of clock valuations
in decision domains, such that any two valuations in the same domain satisfy
the same guards and thus result in a probabilistic choice within the same set
of enabled edges. Since guards are expressed by conjunctions of simple inequal-
ities, each guard is satisfied within a hyper-rectangular domain, but a decision
domain may be the difference among different hyper-rectangles. When guards
on the outgoing edges of a location involve multiple clocks, decision domains are
not hyper-rectangular, but they can be anyway partitioned into a set of hyper-
rectangular subdomains, which we call decision zones. We denote with R(#�) the

set of decision zones r associated with location #� of the network.

Example. For the NSTA depicted in Fig. 1, A1 has outgoing edges in location
b with guards on x that are both satisfied for x ∈ [2, 3], and exclusively satis-
fied for x /∈ [2, 3]. The decision zones in b are thus rb,1 = [0, 2), rb,2 = [2, 3],
rb,3 = [3,+∞), while any other location is associated with a single decision zone
[0,+∞). If x ∈ rb,2, assuming equally weighted edges w(b, a) = w(b, c), either
enabled edge (b, a) or (b, c) is selected with probability 1/2.

Definition 5 (Succession relation). We say that Σ′ = 〈#�′, D′, f ′〉 is the suc-

cessor of Σ = 〈#�,D, f〉 through the edge e of Ai, for a decision zone r ∈ R(#�)

and a set of receiving edges E, with probability p (and we write Σ
ξ,p
=⇒ Σ′ with

ξ = (Ai, r, e, E)), if, given that the location of the NSTA is #� and the sojourn
times and clocks are random variables distributed over D according to f , then:

(i) with non-null probability p, Ai is the automaton with minimum remaining
sojourn time in Σ, the random clock valuation #x belongs to the decision zone



362 P. Ballarini et al.

r ∈ R(#�), the sender edge e and the receiving edges E are enabled by r, and
they are selected as outgoing event;

(ii) conditioned to (i), the state transition yields the location #�′ with sojourn
times and clock random variables distributed over D′ according to f ′.

Given this definition, the successors of a stochastic state class can be derived
through the following steps.

1. Conditioning on the minimum sojourn time. For each automaton of the
network, we compute the probability that its remaining time to fire is the
minimum, and we condition the sojourn time and clock random variables
by this event. Up to a renaming of the components, we assume that the
automaton A1 has minimum remaining time to fire with probability

pτ1 =

�
{〈 τ,xage, x〉∈D | τ1≤τj ∀j}

f(#τ , xage, #x) d#τ dxage d#x .

By conditioning on this event, we obtain the random vector of sojourn
times and clocks #va = 〈#τ , xage, #x | {τ1 ≤ τj ∀j}〉 distributed over Da =
{〈#τ, xage, #x〉 ∈ D | τ1 ≤ τj ∀j} according to fa = f/pτ1. Note that races
among equal deterministic times to fire are resolved by the global weights
w(A1), . . . , w(An) associated with the automata.

2. Shifting all the variables by the minimum sojourn time and marginalizing
the minimum sojourn time. In order to account for the time elapsed in the
previous state, all the variables are decreased by the minimum sojourn time
τ1, that is in turn marginalized. This leads to a random vector of sojourn
times and clocks #vb = 〈τ2− τ1, . . . , τn− τ1, xage− τ1, #x− τ1〉 distributed over

Db = {(τ2, . . . , τn, xage, #x) ∈ Rn−1
≥0 × Rm+1

≤0 |
∃τ1 ∈ R≥0 : (τ1, τ2 + τ1, . . . , τn + τ1, xage + τ1, #x+ τ1) ∈ Da}

according to

fb(τ2, . . . , τn, xage, #x) =

� U1

L1

fa(τ1, τ2 + τ1, . . . , τn + τ1, xage + τ1, #x+ τ1) dτ1

where

L1(τ2, . . . , τn, xage, #x) = min
j �=τ1

{bτ1,j + j}

U1(τ2, . . . , τn, xage, #x) = max
i�=τ1

{−bi,τ1 + i}

are the piecewise linear functions of the minimum and maximum constraints
on the variable τ1 within the DBM zone Da of coefficients bij and variables
i, j ∈ {τ1, . . . , τn, xage, x1, . . . , xm, ∗}. Because of this piecewise dependency
of integration bounds on different expressions of the form bτ1,j+j or−bi,τ1+i,
the result of the symbolic integration is in general a piecewise continuous
function on a partitioning of Db in DBM subzones [13]. In this case, all of
the following steps have to be performed individually on each subzone.



Transient Analysis of Networks of STA Using Stochastic State Classes 363

3. Conditioning on a decision zone. In order to analyze fixed sets of enabled
edges, each decision zone r ∈ R(#�) is taken into account separately by impos-
ing that the clock variables #x belong to r ⊆ Rm

≤0. This event has probability

pr =

�
{〈 τ,xage, x〉∈Db |  x∈r}

fb(#τ , xage, #x) d#τ dxage d#x

and, by conditioning on it, we obtain the vector of sojourn times and clocks
#vc = 〈#vb | {#x ∈ r}〉 distributed over Dc = {〈#τ, xage, #x〉 ∈ Db | #x ∈ r}
according to fc = fb/pr.

4. Selection of a sender edge. Since the set of enabled edges W is fixed within
the decision zone r, the edge e ∈ W is selected by automaton A1 in r with
probability pe = w(e)/

�
e′∈W w(e′).

5. Selection of receiving edges. For each automaton with more than one receiv-
ing edge for the symbol broadcast by the edge e and enabled in r, the choice
is resolved with weights, so that the probability pE of each distinct set E of
receiving edges is determined.

6. Locations update. The locations are updated according to the transitions
performed by the automaton with minimum sojourn time and by those with
receiving edges in E. A new locations vector #�′ is computed.

7. Variables removal. For automata that updated their locations, remaining
sojourn time variables and reset clocks are marginalized. As an example,
marginalization of a variable τ2 is performed as

fd(τ3, . . . , τn, xage, #x) =

� L2

E2

fc(τ2, . . . , τn, xage, #x) dτ2.

Similarly to shift and project operations, subzones can be introduced by the
piecewise integration bounds L2 and E2.

8. Variables addition. Similarly to the definition of the initial stochastic state
class, new Dirac deltas are added in product form for all reset clocks, and so-
journ time PDFs are added in product form to fd for automata that updated
their locations. This results in the final domain D′ and PDF f ′.

Given a stochastic classΣ = 〈#�,D, f〉, the probability associated with the succes-
sor resulting from the transition given by the sender edge e of A1 and receiving
edges E within the decision zone r ∈ R(#�) is thus p = pτ1prpepE . Note that,
in general, the automaton with minimum time to fire can select different edges,
and same edge e can result in several stochastic successors with distinct sets of
receiving edges or distinct decision zones.

Moreover, if no edge is enabled in the current location of A1 when the clocks
belong to the decision zone r ∈ R(#�), the remaining sojourn time variable τ1 is
marginalized (step 1) but not reintroduced in product form (step 8). According
to the semantics of NSTA, A1 reaches (with probability p = pτ1pr) a state from



364 P. Ballarini et al.

which it can perform a transition only by receiving a broadcast symbol; if all of
the automata are in such receive-only condition, a deadlock has occurred.

3.2 Transient Tree Enumeration and Transient Measures

The transient evolution of the logical state #� in a NSTA can be analyzed through
the probability and time distribution of discrete events representing the end
of sojourn times sampled according to the PDFs μ�. We consider as discrete
event abstraction the tuple (Ai, r, e, E): given the current locations #�, the event
(Ai, r, e, E) is the next event of the network if

– the sojourn time of Ai is the minimum;
– the clock valuation #v belongs to the decision zone r ∈ R(#�);
– the sender and receiving edges e and E (respectively) are randomly selected

(e = nil and E = ∅ if no edge is enabled for Ai in �i when #v ∈ r).

Since decision zones represent a partition of the space of clock valuations, the
events (Ai, r, e, E) for each automaton, decision zone, and distinct enabled sender
and receiving edges, are mutually exclusive and collectively exhaustive. More-
over, given a PDF and support for clocks and remaining sojourn times in the
current locations, the computation of successor classes presented in Sect. 3.1
allows to compute the probability of an event (Ai, r, e, E) and the PDF and sup-
port conditioned to it. Successive events can then be evaluated independently
after conditioning, since a stochastic state class is a full characterization of the
future evolution of the probabilistic model.

This construction leads to the enumeration of a tree in which each node is
labeled with a stochastic state class, and where each edge carries an event ξ =
(Ai, r, e, E) and a probability p.

Definition 6 (Transient tree). The transient tree from an initial stochastic
state class Σ0 is a tuple Transient-Tree(Σ0) = 〈N,A, n0, Σ, p, ξ〉 where

– N is a set of nodes and n0 ∈ N is the root of the tree;
– the labeling function Σ associates each node n ∈ N with a stochastic state

class Σ(n), with Σ(n0) = Σ0;
– A is the smallest set of edges (n, n′) with n, n′ ∈ N such that Σ(n′) is a

successor of Σ(n), i.e., Σ(n)
ξ,p
=⇒ Σ(n′); in such a case, the edge is labeled

with the probability p(n, n′) and the event ξ(n, n′) that it bears.

The transient tree from an initial stochastic state class Σ0 can be enumerated
by repeatedly computing the successor classes of a leaf node until some stopping
criterion is satisfied. A node nk in the transient stochastic tree can thus be
associated with a sequence of events ξ1, ξ2, . . . , ξk such that

Σ(n0)
ξ1,p1
=⇒ Σ(n1)

ξ2,p2
=⇒ · · · ξk,pk=⇒ Σ(nk) .

The probability that the sequence of events ξ1, ξ2, . . . , ξk happens, leading
from the initial node n0 to the node nk, is given by the reaching probability



Transient Analysis of Networks of STA Using Stochastic State Classes 365

η(nk) =
�k

i=1 pi. The stochastic state class Σ(nk) defines the PDF of remaining
sojourn times and clocks after the sequence of events ξ1, ξ2, . . . , ξk. This informa-
tion allows to impose additional constraints on the execution time and compute
more specific measures. Notably, if Σ(nk) = 〈#�,D, f〉, the probability that the
system has performed, at time t, all and only the events ξ1, ξ2, . . . , ξk is given by

π(nk, t) = η(nk) ·
�
D(t)

f(#τ, xage, #x) d#τ dxage d#x

with D(t) = {〈#τ , xage, #x〉 ∈ D | −xage ≤ t and − xage + τi > t for i = 1, . . . , n}.
The reaching probability η(n) accounts for the probability of performing the
sequence of events, while the restricted domain D(t) imposes that the last
event happened at a time −xage ≤ t and the next one will happen at a time
mini{−xage+τi} greater than t. By definition of the PDF f , integrating over this
restricted set of remaining sojourn time and age values results in the required
measure.

Transient probabilities for a specific vector of locations #�∗ can then be defined
as the sum of measures π(n, t) for all nodes associated with a stochastic state

class Σ(n) = 〈#�,D, f〉 with #� = #�∗:

π(#�∗, t) =
�

n∈N :Σ(n)=〈 �∗,D,f〉

π(n, t) .

Events associated with the measures π(n, t) are in fact mutually exclusive for
distinct n: at any given time instant t, a node n uniquely identifies a sequence of
transitions performed by the system and π(n, t) is the probability that all and
only the transitions in the sequence have been performed.

Note that, in the enumeration of the transient tree, each decision zone has to
be taken into account separately and, moreover, the piecewise partition of PDFs
in DBM subzones requires that the derivation of density functions be repeated
on each subdomain. In the worst case, the number of successors and subdomains
within each successor grows exponentially with the depth of the transient tree,
comprising the dominating factor of complexity in practical implementations.

3.3 Termination

The exact evaluation of transient probabilities up to a given time bound T
requires the enumeration of all and only the stochastic state classes that can
be reached within T , i.e., all classes where the support of xage includes values
greater or equal to −T . If an approximation bound ε ≥ 0 is allowed, construction
of the tree can be halted as soon as the total probability of reaching any leaf node
before T is lower than ε; such probability, indicated as ηT (n), can be computed

for any node n associated with Σ(n) = 〈#�,D, f〉 as

ηT (n) = η(n) ·
�
{〈 τ,xage, x〉∈D | −xage≤T}

f(#τ , xage, #x) d#τ dxage d#x .



366 P. Ballarini et al.

For both exact and approximate evaluation, termination involves two orthogonal
aspects pertaining to: (1) the cyclic behaviors arising in the composition of mul-
tiple automata; (2) the guarantee of time progression in each cyclic execution,
in certainty (i.e., surely) or in probability (i.e., almost surely). We characterize
termination through sufficient conditions that can be checked on the structure
of individual STA, relaxing on aspect (1) so as to obtain conditions that can
be easily checked by the designer in the construction of a model without resort-
ing to state space analysis. Necessary and sufficient conditions require instead a
non-deterministic analysis of the state class graph of the NSTA, with concepts
analogous to those applied in [19] and without affecting the conditions given in
the following for the advancement of time along cyclic behaviors.

Termination in exact analysis depends on necessarily tangible and possibly
vanishing locations, i.e., locations where the minimum sojourn time is strictly
greater than zero or equal to zero, respectively.

Theorem 1 (Exact time-bounded termination). Given an initial stochas-
tic state class Σ0, the enumeration of the transient tree Transient-Tree(Σ0)
within any time bound T terminates in a finite number of steps provided that
every cycle of each automaton visits at least one necessarily tangible location
that cannot be preempted by messages broadcast on exit from possibly vanishing
locations.

Proof. Since the NSTA has a finite number of locations and the branching factor
of Transient-Tree(Σ0) is bounded, an infinite path would traverse some cycle
within some automaton infinitely often. In so doing, at least one necessarily
tangible location is visited infinitely often; at each visit, the minimum time to
complete the path would increase by at least the minimum sojourn time of the
location or the minimum sojourn time of the location in some other automaton
that broadcasts a preempting message, thus exceeding T in a finite number of
steps. ��

When a cycle can be traversed in a time arbitrarily close to zero, termination can
still be guaranteed if we exclude cycles that are bound to complete in zero time.
In this case, termination depends on possibly tangible and necessarily vanishing
locations, i.e., locations where the maximum sojourn time is strictly greater than
zero or equal to zero, respectively.

Theorem 2 (Time-bounded termination with ε-error). Given an initial
stochastic state class Σ0, a time bound T and an allowed error ε, if the transient
tree is enumerated in breadth first order, there exists a number N(Σ0, T, ε) such
that, after N(Σ0, T, ε) classes have been traversed, the probability of reaching
any leaf node before T is lower than ε, provided that every cycle within each
automaton visits at least one possibly tangible location that cannot be preempted
by a message broadcast on exit from a necessarily vanishing location.

Proof. Since each cycle of the NSTA visits at least some possibly tangible loca-
tion of a STA, there exists a finite number m ∈ N such that the sojourn time of
a possibly tangible location elapses every m state transitions of the NSTA. For



Transient Analysis of Networks of STA Using Stochastic State Classes 367

every number n, after n ·m state transitions, at least n tangible sojourn times
have been completed and the total elapsed time Tn·m is at least

�n
i=1 τi, where

τi denotes the i-th sojourn time completed in a possibly tangible location. Since
the random variables τi are independent and distributed according to a finite
number of PDFs with supports [ai, bi] with bi > 0, for all ε > 0 there exists
k(ε, T ) ∈ N such that Prob{Tk(ε,T ) < T } < ε. According to the construction
of the transient tree, Prob{Tk(ε,T ) < T } is the total probability obtained by
summing up the quantity ηT (·) over all nodes at depth k(ε, T ). Since the tree is
constructed in breadth first order, for any allowed approximation ε, there exists
k(ε, T ) such that, when the tree reaches depth k(ε, T ), the sum of probabilities
ηT (·) over all the nodes of the frontier of the tree is lower than ε. ��

4 Example

Fig. 2 shows the NSTA model of a flexible manufacturing system where one
consumer C alternates between two producers A and B, scheduling optional ac-
tivities when time laxity occurs. In so doing, the consumer uses time observations
to reduce the probability of performing an optional task while the next producer
is waiting for the consumption of the previously produced item: two clocks (a
and b) keep memory of the time elapsed since the last task accepted from the
two producers. An optional activity is scheduled when the time elapsed since the
last synchronization with the next producer is lower than a given threshold. For
simplicity of the model, sojourn times are assumed to be uniformly distributed
on the supports (but any expolynomial probability density function could be
managed as well).

The synchronization between the STA occurs through symmetric handshakes:
after the end of a production, producer A broadcasts a message A and waits
for the echo AA; on reception of the echo, it immediately broadcasts a new
A message. With this protocol, the first A message (indicating the end of a
production phase of A) can be lost if C is still consuming the item produced by
producer B, forcing producer A to wait for the end of consumption signaled by
C with message AA; the availability of a produced unit is then communicated
again with the second A message (the protocol for producer B is analogous).

The example is intended to point out some basic modeling patterns of the
NSTA formalism: (1) clock values do not affect the distribution of location so-
journ times, but they can be used to restrict the choice of the next location; (2)
reception of a broadcast preempts the sojourn time in the location; (3) broadcast
is non-blocking for the sender, and it is relevant only for receivers in an accepting
location; (4) on completion of the sojourn time in any location, if no outgoing
edge is enabled, an automaton remains blocked until some accepted action is
received or clocks reach a value that satisfy some guard on an outgoing edge.

Structural complexities with relevant impact on the analysis are also illus-
trated by this example: (1) the overall state is composed of the vector of (dis-
crete) locations in the three automata, and of the (continuous) values of the two
consumer clocks and three remaining sojourn times; (2) the two consumer clocks



368 P. Ballarini et al.

wait AC rcvd A
[0, 0]

cons A
[4, 8]

opt A
[1, 2]

wait B
rcvd B
[0, 0]

cons B
[4, 8]

opt B
[1, 2]

?A !AA,{a} b ≤ 14

!BBb > 14, !BB

?B!BB,{b}a ≤ 14

!AA a > 14, !AA

prod A
[5, 9]A wait AA

rcvd AA
[0, 0]

!A

?AA
!A

prod B
[5, 9]B wait BB

rcvd BB
[0, 0]

!B

?BB
!B

Fig. 2. An alternating producer/consumer scheme

(a) Producer A (b) Producer B

(c) Consumer C (d) Consumer causing a wait with optional
tasks

Fig. 3. Transient analysis of the producer/consumer example



Transient Analysis of Networks of STA Using Stochastic State Classes 369

are independent and overlap their activity cycles between reset points and guard
usage; (3) automata include both tangible and vanishing states, and broadcast
actions can also be issued on exit from vanishing locations.

For any given time bound T , termination of transient analysis is guaranteed
by Theorem 1: every cycle in every automaton visits at least one location with
minimum sojourn time greater than zero that cannot be preempted by any
broadcast issued on exit from some vanishing state. If sojourn times of all the
locations included a minimum sojourn equal to zero, then termination would be
guaranteed by Theorem 2 for any allowed error ε > 0.

Fig. 3 reports, for each automaton, the transient state probabilities derived
through a preliminary implementation of the analysis algorithm of Sect. 3 based
on the symbolic calculus library of the oris tool [11,14]. As an example of
relevant measure, we consider also the probability (for each time instant) that
the consumer is performing an optional task while the next producer is waiting.

5 Conclusions

In this paper, we introduced the model of networks of stochastic timed automata,
an extension of timed automata with stochastic semantics and message broad-
casts between its components. We provided a characterization of the underlying
stochastic process of STA and NSTA, identifying the conditions corresponding
to each family of stochastic processes (i.e., CTMCs, SMPs, MRPs and GSMPs).

A technique for the transient analysis of NSTA based on stochastic state
classes was proposed. We defined an iterative procedure for the construction
of the transient tree of stochastic state classes, and identified sufficient condi-
tions for its termination. Modeling examples were presented in order to illustrate
common design patterns of the formalism, providing transient state probabilities
computed analytically with the oris tool (and validated through simulation).
Notably, this result constitutes the basis for the application of time-bounded
probabilistic model checking techniques based on stochastic state classes to net-
works of STA.

References

1. Alur, R., Bernadsky, M.: Bounded model checking for GSMP models of stochas-
tic real-time systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS,
vol. 3927, pp. 19–33. Springer, Heidelberg (2006)

2. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for Probabilistic Real-time
Systems. In: Leach Albert, J., Monien, B., Rodŕıguez-Artalejo, M. (eds.) ICALP
1991. LNCS, vol. 510, pp. 115–126. Springer, Heidelberg (1991)

3. Alur, R., Courcoubetis, C., Dill, D.L.: Verifying Automata Specifications of Prob-
abilistic Real-time Systems. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de
Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 28–44. Springer, Heidelberg
(1992)

4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)



370 P. Ballarini et al.

5. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Probabilistic and topo-
logical semantics for timed automata. In: Arvind, V., Prasad, S. (eds.) FSTTCS
2007. LNCS, vol. 4855, pp. 179–191. Springer, Heidelberg (2007)

6. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Almost-sure model
checking of infinite paths in one-clock timed automata. In: LICS 2008, pp. 217–226.
IEEE CS (2008)

7. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reach-
ability analysis using clock difference diagrams. In: Halbwachs, N., Peled, D.A.
(eds.) CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)

8. Bertrand, N., Bouyer, P., Brihaye, T., Markey, N.: Quantitative model-checking
of one-clock timed automata under probabilistic semantics. In: QEST 2008, pp.
55–64. IEEE CS (2008)

9. Bobbio, A., Telek, M.: Markov regenerative SPN with non-overlapping activity
cycles. In: IPDS 1995, pp. 124–133. IEEE CS (1995)

10. Bouyer, P., Brihaye, T., Jurdzinski, M., Menet, Q.: Almost-sure model-checking of
reactive timed automata. In: QEST 2012, pp. 138–147. IEEE CS (2012)

11. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, veri-
fication and evaluation of real-time systems. Int. J. on Softw. Tools for Techn.
Transfer 12(5), 391–403 (2010)

12. Bucci, G., Piovosi, R., Sassoli, L., Vicario, E.: Introducing probability within state
class analysis of dense time dependent systems. In: QEST 2005, pp. 13–22. IEEE
CS (2005)

13. Carnevali, L., Grassi, L., Vicario, E.: State-density functions over DBM domains
in the analysis of non-Markovian models. IEEE Trans. Softw. Eng. 35(2), 178–194
(2009)

14. Carnevali, L., Ridi, L., Vicario, E.: A framework for simulation and symbolic state
space analysis of non-Markovian models. In: Flammini, F., Bologna, S., Vittorini,
V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 409–422. Springer, Heidelberg
(2011)

15. Ciardo, G., German, R., Lindemann, C.: A characterization of the stochastic pro-
cess underlying a stochastic Petri net. IEEE Trans. Softw. Eng. 20(7), 506–515
(1994)

16. Cox, D.R.: The analysis of non-Markovian stochastic processes by the inclusion of
supplementary variables. Math. Proc. Cambridge 51, 433–441 (1955)

17. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990)

18. Haas, P.J.: Stochastic Petri Nets: Modelling, Stability, Simulation. Springer (2002)
19. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Probabilistic model checking of non-

Markovian models with concurrent generally distributed timers. In: QEST 2011,
pp. 131–140. IEEE CS (2011)

20. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian
models using stochastic state classes. Perform. Eval. 69(7-8), 315–335 (2012)

21. Kulkarni, V.: Modeling and analysis of stochastic systems. Chapman & Hall (1995)
22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic

real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

23. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative
properties of continuous probabilistic timed automata. In: Palamidessi, C. (ed.)
CONCUR 2000. LNCS, vol. 1877, pp. 123–137. Springer, Heidelberg (2000)



Transient Analysis of Networks of STA Using Stochastic State Classes 371

24. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verifica-
tion of real-time systems with discrete probability distributions. Theor. Comput.
Sci. 282(1), 101–150 (2002)

25. Maler, O., Larsen, K.G., Krogh, B.H.: On zone-based analysis of duration proba-
bilistic automata. In: INFINITY, pp. 33–46 (2010)

26. Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative
evaluation of dense-time reactive systems. IEEE Trans. Softw. Eng. 35(5), 703–719
(2009)



Automated Rare Event Simulation

for Stochastic Petri Nets

Daniël Reijsbergen, Pieter-Tjerk de Boer,
Werner Scheinhardt, and Boudewijn Haverkort

Center for Telematics & Information Technology,
University of Twente, Enschede, The Netherlands

Abstract. We introduce an automated approach for applying rare event
simulation to stochastic Petri net (SPN) models of highly reliable sys-
tems. Rare event simulation can be much faster than standard simulation
because it is able to exploit information about the typical behaviour
of the system. Previously, such information came from heuristics, hu-
man insight, or analysis on the full state space. We present a formal
algorithm that obtains the required information from the high-level SPN-
description, without generating the full state space. Essentially, our algo-
rithm reduces the state space of the model into a (much smaller) graph in
which each node represents a set of states for which the most likely path
to failure has the same form. We empirically demonstrate the efficiency
of the method with two case studies.

1 Introduction

The first step towards the analysis of a highly dependable system is its specifica-
tion as a state transition system. When the behaviour of the system is stochastic,
a common model is the (discrete- or continuous-time) Markov chain. The state
space of the Markov chain can be very large (even infinite), but the chain of-
ten has enough structure to allow for implicit specification using a high-level
description language. Classical examples of such languages are stochastic Petri
nets (SPNs) [1], and stochastic activity networks [24].

Given an SPN, one specifies a measure for the performance of the highly de-
pendable system in terms of its stochastic properties. The measure that we focus
on in this paper is the probability that one reaches a certain uncommon set of
states (the goal set) before reaching a more typical set (the taboo set). This prob-
ability can be interesting by itself, but is particularly interesting as it appears
in expressions for, e.g., the Mean Time To Failure, the time-bounded unreliabil-
ity and the steady-state unavailability. Numerical methods for computing this
probability are well-established, but since they operate mostly on the complete
state space, which is often very large, they can be computationally infeasible (an
issue commonly referred to as the state space explosion problem).

A remedy is then to use stochastic (discrete-event) simulation [16], i.e., repeat-
edly generating random executions of the system model and using the average
behaviour observed in the executions to obtain an estimate of the probability of

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 372–388, 2013.
© Springer-Verlag Berlin Heidelberg 2013



Automated Rare Event Simulation for Stochastic Petri Nets 373

interest. Discrete-event simulation can be carried out on the level of the SPN and
only requires that, overall, the current state in the system is stored instead of
the entire state space. A common problem is that when the goal set is rare (like
failure states in a highly reliable system) one needs an infeasibly large number
of executions to obtain an accurate estimate.

In order to reduce the number of executions needed, several efficient sim-
ulation methods have been proposed in the past few decades. They can be
largely divided into two main categories: importance sampling methods [10],
and RESTART and multilevel splitting [8,27] methods. Both can use knowledge
of the typical paths toward or the distance to the goal set to their advantage. Sev-
eral techniques have been implemented in the past two decades [4,12,21,26,28],
but all of these rely on user input or the adequacy of heuristics in order to
perform well.

In this paper we show that the required information can be obtained in an
automated way from the SPN and the description of the goal and taboo sets.
As such, we present a formal algorithm that achieves this. It uses the structure
of the SPN to divide the implied state space into zones, in each of which the
distance to the goal set can be expressed using the same distance function. In
this way we can find the overall distance function, which can then be used in an
efficient simulation procedure. We demonstrate the potential gain of the method,
both for a simple example (which is also used as a running example throughout
the paper), and a more demanding model of a multicomponent system with
interdependent component types.

The structure of the rest of this paper is as follows: in Section 2, we explain the
position of this paper in the context of the earlier scientific literature. In Section 3
we discuss the exact definition of an SPN that we will use throughout this paper,
and explain the foundations of (rare event) simulation. The core algorithm that
determines the distance function in an automated way is the topic of Section 4.
Section 5 contains a simulation study involving the simple model and a more
realistic model. In Section 6, we discuss a few challenges associated with the new
method and ways to overcome them, before we conclude the paper.

2 Context within the Literature

One way to obtain knowledge about the way the system progresses toward the
goal set is to divide the transitions in the SPN into failure and repair transitions
that respectively take the system towards or away from the goal set. One can
then apply failure biasing [25]. This has been implemented in, among others,
SAVE (see [4]) and in UltraSAN [21], the predecessor to the tool Möbius [6].

One variation of failure biasing that is especially noteworthy in the context
of this paper is distance failure biasing [5]. It is based on a notion of distance
similar to the one we introduce in Section 3. However, the technique presented
in [5] can only be applied to a very narrow class of models (namely models with
independent component types) and the gains compared to failure biasing may
not justify the numerical effort of the minimal cut algorithm that is used (see
also the discussion in [20]).



374 D. Reijsbergen et al.

Another technique is to split the simulation effort into two different stages:
one to obtain information about the typical behaviour to the rare set and one
to use this knowledge in an importance sampling scheme. This idea forms the
basis of the cross-entropy method for importance sampling [23] [11] and Kelling’s
framework for RESTART in SPN [14]. The cross entropy method has recently
been implemented in the PLASMA-platform [12].

For RESTART and splitting, one implicitly divides the state space of the
model in several level sets. Some examples of how to determine these level sets are
to let the user specify them by hand [18,26], or to use a two-step approach similar
to the one underlying the cross-entropy method [14]. The splitting framework
has been implemented in the Stochastic Petri Net Package [26] and the tool
TimeNet [28]. The methods based on this principle are largely heuristic in nature.

3 Model and Preliminaries

The outline of this section is as follows. In Section 3.1, we describe the type of
Petri nets we consider throughout the paper. In Section 3.2, we illustrate this
with an example that we use throughout this paper. In Section 3.3, we discuss
the performance property of interest, and we discuss simulation in Section 3.4.

3.1 Discrete-Time Stochastic Petri Nets

We assume that the reader is familiar with the general concept of a Petri net
(if not, see e.g. [19]). We use Multi-Guarded Petri Nets as in [13], although we
extend the net with marking-dependent firing rates for the transitions. We define
a Petri net to be (P, T, Pre, Post,G), where

– P = {1, 2, . . . , |P |} denotes the set of places,
– T = {t1, . . . , t|T |} denotes the set of transitions,
– Pre : P × T → N and Post : P × T → N are the pre- and post - incidence

functions.1

– G denotes the set of guards (more details are given below).

We are interested in the (embedded) discrete-time behaviour of the Petri net;
let Xi(n) be the number of tokens in place i after the n-th time a transition is
fired, n ∈ N. Let X(n) = (X1(n), . . . , X|P |(n))

T be the marking (or state) of

the net at time n. Let X = N|P | be the set of all possible markings; then we let
transition ti have exponential rate λi(x) with x ∈ X . Importantly, although we
allow the rates λi to depend on the marking x we assume that these rates are
functions of ε (see below) and that numbers ri exist such that for all x ∈ X ,
λi(x) = Θ(εri), i.e.,

0 < lim
ε↓0

λi(x)

εri
<∞

1 We use N = {0, 1, 2, . . .}.



Automated Rare Event Simulation for Stochastic Petri Nets 375

The rate λi(x(n)) determines the relative likelihood of the transition to fire at
step n. The number ε is the so-called rarity parameter, which is typically a small
number that signifies how rare the event of interest is.

When transition t fires, the marking changes as follows: Pre(p, t) tokens are
removed from place p while Post(p′, t) tokens are added to place p′. A transition
cannot fire if this would result in a negative number of tokens in a place, nor can
it fire when one of its guards is not enabled (as discussed below). The guards
can be described in terms of constraints, a concept that we will use often in
Section 4. A constraint c = (α, β, ��) is an element of Z|P | × Z × {≤,≥}, and
we say that marking x satisfies constraint c if αTx �� β. A guard g is then a
4-tuple (p, t, β, ��) that imposes upon a transition t the necessary condition that
it can only fire in x if the number of tokens in place p satisfies the inequality
xp(·) �� β. Let

1i(x) =

{
1 if ∀(p, ti, β, ��) ∈ G : xp(·) �� β,
0 otherwise,

(1)

If 1i(x(n)) = 1, we say that transition ti is enabled at time n. If there are
no guards g ∈ G such that g = (·, t, ·, ·) then the transition t is always en-
abled. Let the total incidence vector ui = (ui1, . . . , ui|P |) of transition ti be
the vector that describes the effect of firing ti on the marking. It is defined by
uij = Post(j, i)− Pre(j, i). Then the probability measure governing the marking
process X(n) is uniquely characterised by

P(x(n)→ x(n+ 1)) = P (X(n+ 1) = x(n+ 1) |X(n) = x(n) )

=

∑
i∈I λi(x(n))1i(x(n))∑|T |
j=1 λj(x(n))1j(x(n))

,
(2)

where I = {i ∈ N : ti ∈ T, x(n+ 1) = x(n) + ui}.

3.2 Running Example

The running example that we use throughout this paper is a reliability model
equivalent to a two-node M/M/1 tandem queue. It can be seen as a single
component with an infinite number of hot spares; when a component or a spare
breaks down, two repair phases have to be completed consecutively. Component
and spares fail according to a Poisson process with rate λ = Θ(ε2). The times
between first phase repairs are exponentially distributed with rate μ = Θ(ε).
The times between second phase repairs are exponentially distributed with rate
ν = Θ(1). We assume that none of the rates depend on the marking, and that
both queues will be empty most of the time. This system can be modelled using
an SPN as depicted in Figure 1. The typical rare event that we are interested in
is having n or more components awaiting the second phase of repair before all
components have been repaired, starting from the first break-down of the main
component. This rare event can be cast in the more general framework outlined
in Section 3.3.



376 D. Reijsbergen et al.

λ μ ν

1
1

1
1

≥ 1 ≥ 1
place

transition

token

pre-incidence

post-incidence

guard arcs

Fig. 1. Tandem queue, depicted in the form of a stochastic Petri net

3.3 Problem Setting

From now on, we will call elements of the taboo set a-markings and elements of
the goal set b-markings. We then seek to estimate the probability of reaching a
b-marking before reaching an a-marking starting from an initial marking x0. Let

Ga = {g1a, . . . , g
|Ga|
a } ⊂ P × (N ∪ 0)× {≤,≥} be the set of a-constraints, and let

1g(x) =

{
1 if g = (p, c, ��) and xp �� c,
0 otherwise.

for all x ∈ X . Let X ⊂ X be a a-based hyperrectangle if ∀g ∈ Ga: ∀x ∈ X :
1g(x) ≡ c(g,X), where c(g,X) ∈ {0, 1}∀g ∈ Ga. Then let the taboo set Xa be
any union of a-based hyperrectangles. The goal set Xb are defined similarly for
Gb. If a marking is both an a- and b-marking, we will consider it to be a b-marking
only. In LTL-notation [3], the event of interest can be written as ¬aU b; in this
paper we will denote the event of interest by Ψx0

= {(ω0, . . . ,ωm) : m ∈ N :
ω0 = x0,ωm ∈ Xb, ωk /∈ Xa ∀k = 0, . . . ,m − 1} in order to emphasise the de-
pendence on the initial state, and denote its probability of interest as P(Ψx0).

3.4 Efficient Simulation

We will estimate the probability P(Ψx0
) using a series of N simulation runs, for

some constant N ∈ N. In each run, we initialise the marking to be x0. We then
iteratively fire transitions using the probability measure P as defined in (2) until
we reach an a- or b-marking. When we terminate, we can set wi = 1 if the event
Ψx0

occurred on run i (i.e. if we ended in Xb) and to wi = 0 otherwise, and then
obtain the standard Monte Carlo (MC) estimator p̂ for P(Ψx0) as

p̂ P =
1

N

N∑
i=1

wi.

A confidence interval for p̂ can be constructed for large N using the Central
Limit Theorem [16].

Our focus will be the case where P(Ψx0) is small, as this is typically the case
in a highly reliable system setting. In this situation, N needs to be very large
to obtain a reasonable estimate for p̂. To remedy this, we apply importance
sampling.2 Instead of sampling directly from P, we use a different probability

2 We note here that the distance function d could also be used to construct level sets
for RESTART/splitting.



Automated Rare Event Simulation for Stochastic Petri Nets 377

measure Q; after sampling the runs (xi(0),xi(1), . . . ,xi(ni)), i = 1, . . . , N , we
use the importance sampling (IS) estimator

p̂Q =
1

N

N∑
i=1

wi

ni−1∏
j=0

P(xi(j)→ xi(j + 1))

Q(xi(j)→ xi(j + 1))
. (3)

If a suitable new measure Q is chosen, the number of runs required to obtain a
reasonable estimate can be reduced dramatically. The choice of the new measure
Q is non-trivial, however. Typically, good simulation measures Q increase the
likelihood of Ψx0

occurring, albeit not too strongly. In order to make Ψx0
more

likely, Q must in some way push the marking in the direction of the goal set and
away from the taboo set. The first challenge that arises is then to determine how
far a marking is from the goal set, so that the simulation Q can increase the
likelihood of moving to a marking with lower distance. For this paper, we define
the distance function d(x) as

d(x) = min{r : ∃ω ∈ Ψx s.t. P(ω) = Θ(εr)}, (4)

where we use the fact that, in essence, the event Ψx is simply a set of sequences of
markings. In words, d(x) is the minimal distance or cost in terms of the ε-order
of the path from x to the goal set. If the set over which the minimum is taken
is empty, we let d(x) =∞. Given d(x), we use the following measure Q:

Q(x(j)→ x(j + 1)) =
P(x(j)→ x(j + 1))εd(x(j+1))∑

x′ P(x(j)→ x′)εd(x′) . (5)

This estimator can be proven to have so-called bounded relative error under
some assumptions (more on this in Section 6.2). The remaining problem is then
to find d(x) for each possible marking x. This will be the topic of Section 4.

4 An Algorithm for Determining the Distance Function

In this section we discuss an automated algorithm for finding the function d as
defined in (4). The algorithm is executed during a pre-processing phase, before
the actual simulation phase starts. Since d is the solution to a shortest path
problem in a weighted graph,3 we could apply Dijkstra’s algorithm to find d
explicitly for each state (i.e. marking) in the state space X . However, since
Dijkstra’s algorithm uses the complete state space, it is not better than standard
numerical algorithms. Hence, our aim will be to partition X into zones such that
for each zone, all the states in this zone have a similar cost function d in a sense
to be detailed below. Formally, let a zone z be a set of constraints {cz1, . . . , cz|z|},
as defined in Section 3.1. Let the zone set Xz be the set of states that satisfy

3 Namely one which corresponds to the underlying Markov chain and with the costs of
the transitions in terms of ε-orders as weights. For another application of Dijkstra’s
algorithm to finding the most likely paths in a Markov chain, see [9].



378 D. Reijsbergen et al.

all constraints in z. The idea is then to find a set of zones Z such that the sets
Xz, z ∈ Z, form a partition of X and that we can find functions dz(x) that give
an easy expression for the distance to Xb of all states x ∈ z.

Particularly, we aim to construct a zone graph; a graph where the nodes
correspond to the zones of Z and in which there is an arc from zones z to z′ if
for each state x ∈ Xz we can reach some state in z′ through repeated firing of a
single transition. We will call such a repeated firing a stutter step, as in, e.g., [2].
Furthermore, we want the shortest path from any state in z to Xb to correspond
to the same path through the zone graph. Finally, we want the cost in terms of
ε-orders of firing the transition of the stutter step to be the same in all states
in the same zone set. If all these conditions hold, then for each zone z we can
find a function dz that is the same affine function for all x ∈ Xz (a function f
is affine if f(x) = αTx + β for some α ∈ R|P | and β ∈ R). In this section, we
will clarify how this can be done.

To make the preceding concrete, consider the running example. The first two
zone sets that we create are Xa and Xb; in particular, Xb consists of the states
in which x2 ≥ n; we assume n ≥ 3. In the state (1, n− 1), t2 needs to fire once
to reach Xb, and the distance of this step is 1 (because t2 needs to ‘win the race’
from t3, which fires ε−1 times faster). In (2, n − 2), we need to fire t2 twice,
giving a total distance of 2. The same holds for all states (x, n − x), x ≥ 1; we
fire t2 x times and the total distance is x. It then makes sense to group all these
states together in a zone set. However, for (n, 0), we need to fire t2 n times,
but the total cost is n − 1 as t2 does not need to compete against t3 in the first
step. Hence, (n, 0) and (n − 1, 1) will not be in the same zone. The complete
set of zones, with their distance functions and shortest paths to the taboo set, is
illustrated in Figure 2.

Algorithm 1. Main loop.

1: initZoneGraph()
2: while S �= ∅ do
3: s = (zo, ti, z

d) := some element from S
4: possibilitySplit(s)
5: if dzo �= unassigned then costSplit(s)
6: update(s); S := S\s
7: end while

In Section 4.1, we will outline
the main algorithm. As in the pre-
vious example, an initial parti-
tioning is always necessary, as we
will discuss in Section 4.2. How-
ever, this initialisation alone is
not sufficient. It may be that it is
not possible for all markings in an
initial zone to reach another zone

by the same stutter step; this is the topic of Section 4.3. Also, there may exist
markings within a single zone for which the shortest path follows a different
sequence of stutter steps; more on that in Section 4.4.

4.1 Main Loop

Let a stutter step s be a triple (zo, ti, z
d), where zo is the source/origin zone,

zd is the destination zone and ti is the transition that is repeatedly fired. The
algorithm works as follows: we keep a list S of stutter steps that could be part
of shortest paths. After initialising the list, we repeatedly take stutter steps s
out of S and check whether for all markings in the origin zone of s it holds that



Automated Rare Event Simulation for Stochastic Petri Nets 379

1) we can indeed reach the destination zone of s using only the given stutter
step, and

2) the new distance function indeed gives shorter distance than what was known
before.

If not, we split up the source zone and (potentially) add new stutter steps to S.
Finally, we discard s, pick a new stutter step, and repeat until S is empty. The
precise way in which this is done is given by Algorithm 1.

z5

...

n−1

n

1

0

x2 ↑

...

...

0 1 n. . . → x1. . . . . .

d(x) = 0

d
=
0

z31

d(x) = n− x2

z
30

d(x) =
n−
x
2

d(x) = 2n− 1− x1

d(x) = 3n− 3x2 − 2x1

z321

d(x) = 2n− 1− x1

λ = Θ(ε2)

ν = Θ(ε0)

μ = Θ(ε1)

d = n−1
d
(x

)
=

3n−
3x

2
d
(x

)=
2
n

z320

Fig. 2. The final result of a call to the algorithm, excluding lines 2 and 3 of
initZoneGraph()

4.2 Initialisation Phase (initZoneGraph())

During the initialisation phase, the state space is divided into zones such that

a) from all states in the same zone set the same transitions are enabled, and
b) all states in a zone set are either in Xa, all in Xb or all in neither.

Condition a) implies that the cost of firing a transition is always the same in a
zone (because the cost depends on which other transitions can be fired). During
the initialisation we can already assign distance ∞ to the states in Xa and 0 to
the states in Xb. Furthermore, we initialise the stutter step list S during this
phase; its initial elements will be those stutter steps that directly lead into Xb.
The precise way in which all this is done is given in Algorithm 2.

Lines 2 and 3 deal with a technical obstacle; when for a stutter step (zo, ti, z
d)

it holds that zo = zd, line 1 of possibilitySplit()will fail. However, we cannot



380 D. Reijsbergen et al.

exclude these ‘self-loops’ in the zone graph; there exist cases in which the shortest
path moves to the edge of an initial zone without crossing it. To remedy this,
we also create ‘edges’ around the initial zones of line 1.

In line 4 of Algorithm 2, we use the negation ¬c of a constraint c. If c =
(α, β,≤), then its negation is given by ¬c = (α, β + 1,≥), and if c = (α, β,≥)
then ¬c = (α, β − 1,≤). If all elements of α are at least 1, then the resulting
zone sets X{c} and X{¬c} are each other’s complements with respect to X .

Algorithm 2. initZoneGraph()

1: C′ := {c = (p, β, ��) : (p, ·, β, ��) ∈ G ∨ c ∈ Ga ∪Gb}
2: umax := maxi=1,...,|T |maxk=1,...,|P | |uik|
3: C := {c = (p, β, ��) : (p, β + k, ��) ∈ C′, k ∈ Z, |k| ≤ umax}
4: Z := {z ∈ Z : ∀c ∈ C : c ∈ z ∨ ¬c ∈ z,Xz �= ∅} � Z = set of all zones
5: V := {(zo, ti, zd) : ∃x ∈ X : x ∈ Xzo ,x+ ui ∈ Xzd}
6: Za := {z ∈ Z : ∀x ∈ Xz : x ∈ Xa}
7: ∀z ∈ Za : dz :=∞
8: Zb := {z ∈ Z : ∀x ∈ Xz : x ∈ Xb}
9: ∀z ∈ Zb : dz = 0
10: S := {v ∈ V : v = (z, ·, z′), z /∈ Za, z

′ ∈ Zb}

For the running example as displayed in Figure 1, the transition structure
first gives us four initial zones: z0 where only t1 can fire, z1 for t1 and t2, z2
for t1 and t3, and z3 for all three. The zone structure resulting from a call to
initZoneGraph() is displayed in Figure 3(a). In fact, for the running example
the algorithm would also work well if we would not include margins, i.e. omit
lines 2 and 3, resulting in Figure 3(b). For the sake of clarity, we will continue
based on the latter, even though our implementation does include the margins.
We get two additional zones, z4 and z5, to distinguish Xb. S is initialised with
all stutter steps leading into these two zones; the only stutter steps satisfying this
requirement are the two t2-stutter steps going from z3 into z4 and z5.

4.3 Divide Zones According to Possibility of Firing
(possibilitySplit())

To determine the cost of a stutter step s = (zo, ti, z
d), we need to determine

the number of times y that ti must fire to take a marking in zo to zd. This is
done by findNumberOfTransitions(). The main idea is to find a function y(x)
(written as y for brevity) such that after firing ti y−1 times, the marking is still
in zo, and after firing one more time the marking is in zd. In order to find this
number, we choose any constraint c1 from zo and c2 from zd that exclude each
other, i.e., Xzo ∩ Xzd = ∅, and chooses y to be the smallest number of firings to
enable c2. Since all constraints are non-strict inequalities, y is chosen such that
x+ yui exactly satisfies the constraint. The remaining constraints in zo and zd

then impose restrictions on x that must be satisfied in order for this stutter step
to be carried out.



Automated Rare Event Simulation for Stochastic Petri Nets 381

z0 z11 z10 z12

z21
z32

z30 z31

z20

z4 z5

(c)

z0 z1

z3z2

z4 z5

(a)

z0 z1

z32

z30 z31z2

z4 z5

(b)

(d)

Fig. 3. Figure (a) illustrates the result of a call to initZoneGraph() when lines 2 and 3
are included (we only show the margins around the axes). Figures (b-d) depict the zones
after several iterations of the algorithm, without lines 2 and 3 of initZoneGraph().

Algorithm 3. possibilitySplit().

Require: stutter step s
1: (c1, c2) := some two constraints such that

1) c1 ∈ zo, 2) c2 ∈ zd and 3) X{c1} ∩ X{c2} = ∅
2: y := findNumberOfTransitions(c2,ui)
3: C1 := {c : c = a(x+ (y − 1)ui) �� b ∧ ax �� b ∈ zo\c1}
4: C2 :=

{
c : c = a(x+ yui) �� b ∧ ax �� b ∈ zd\c2

}
5: C := C1 ∪ C2

6: Znew := {z : ∀c ∈ C : c ∈ z ∨ ¬c ∈ z ∧ ∀c ∈ zo : c ∈ z ∧ ∃x ∈ X : x ∈ Xz}
7: zn := z ∈ Znew : ∀c ∈ C : c ∈ z
8: dzn(x) := dzd(x+ yui) + yκi(x) � where κi(x) =

1i(x)ri∑|T |
j=1 1j(x)rj



382 D. Reijsbergen et al.

Assume that we happen to first consider the μ-stutter step from z3 to z4. After
the initialisation phase, there are two pairs of constraints from z3 and z4 that
exclude each other; the pair x1 ≥ 1 and x1 ≤ 0, and the pair x2 ≤ n − 1 and
x2 ≥ n. If we consider the first pair, we end up with y = x1. The two constraints
that we end up through lines 4 and 5 of Algorithm 3 are x1 + x2 − 1 ≤ n − 1
and x1 + x2 ≥ n. If we would consider the second pair, we would have found
y = n− x2, leading to the same restrictions on x1 + x2.

Given the set C of constraints that must be satisfied for the stutter step s to
be taken, the zone zo may need to be subdivided such that one zone remains in
which the stutter step s is always possible. This is done in line 6 of Algorithm 3;
all zones that consist of combinations of constraints in C or their negations
are considered. If such a zone is non-empty (which is checked using an Integer
Linear Programming-solver, although this can be computationally expensive), it
is added to Znew, the set of new zones. The zone zn is the subzone (i.e. a subset
in terms of constraints) of zo for which s was possible.

Since we obtained the additional constraints x1 + x2 ≤ n and x1 + x2 ≥ n for
the running example, we obtain three new non-empty zones; z30, z31 and z32,
all depicted in Figure 3(c). Of those, z30 has cost dz30(x) = x1 or, equivalently,
dz30(x) = n − x2, depending on which of the two constraint pairs was consid-
ered. The other two zones do not have any cost assigned yet. When the function
update() in Algorithm 1 is called, the stutter steps from z1, z2, z31 and z32 to
z30 are added to S. Furthermore, the stutter step from z3 to z5 is removed, as
z3 no longer exists. It is replaced by the μ-stutter step from z31 to z5.

Algorithm 4. costSplit()

Require: step s
1: cn := dzn(x)− dzd(x) < 0
2: z′ := zn ∪ {cn}
3: z′′ := zn ∪ {¬cn}
4: dz′(x) := dzn(x)
5: dz′′(x) := dzd(x)
6: if ∃x ∈ X : x ∈ Xz′ then
7: if �x ∈ X : x ∈ Xz′′ then
8: Znew := Znew\zn ∪ z′

9: else
10: Znew := Znew\zn ∪ z′ ∪ z′′

11: end if
12: end if

Upon further calls to possibilitySplit(),
the zone z1 is subdivided into three
new zones and z2 into two new zones,
and distance functions are assigned to
all. This is displayed in Figure 3(d).
Furthermore, zones z31 and z32 have
distance assigned to them. In particu-
lar, we mention the distance function
of z32: dz32(x) = 3n − 2x1 − 3x2. In
the next section, z32is split into two
zones, only one of which retains this
distance function.

4.4 Divide Zones According to
Costs (costSplit())

When the algorithm as described so far is executed, it will consecutively consider
zones to which no distance function has yet been assigned yet, split them and
assign costs to them. However, when a zone is considered that already has a
distance function assigned to it, the new path may be the shortest only for a
subset of the zone. We need costSplit() for these situations.

Say that, after running Algorithm 3, one has found a subzone zn of zo

for which the stutter step under consideration can be applied, and for which



Automated Rare Event Simulation for Stochastic Petri Nets 383

dzn is the distance function. If dzo has already been assigned, then the stut-
ter step under consideration is only interesting for those markings x for which
dzn(x) < dzo(x). This constraint is exactly the one constructed in line 1. The
zone zn is then divided into two new zones: z′, for which this constraint holds,
and z′′, for which it does not. If z′ is empty, the stutter step under consideration
has been irrelevant, and the list S should not be updated. If only z′′ is empty,
then z′ fully replaces zn. However, if both z′ and z′′ are non-empty, the two of
them are added to Znew instead of zn.

For the running example, the distance function dz32(x) = 3n− 2x0− 3x1 had
already been assigned to the zone z32 as depicted in Figure 3(d). Assume that
the next stutter step to be considered is the t3-stutter step from z32 to z11. Since
the distance function in z11 is 2n − 1 − x1, and the cost of firing t3 in z32 is
zero, the new zones z320 and z321 are separated by the line 3x2 ≤ n− x1. In the
next and final iteration z21 is further divided into the zones z210 and z211 by
possibilitySplit().

5 Empirical Results

We present numerical results obtained using the algorithm to find d in Sec-
tion 5.1, while in Section 5.2 we use d to apply simulation.

Case Description. We use two case studies. The first is the running example
from Section 3.2, where the system is failed if x2 > n, n ∈ N. The second is a more
realistic multicomponent system with interdependent component types, taken
from [22]. For the latter we have six component types, with ni components of type
i and (n1, . . . , n6) = (n+2, n+1, n+3, n, n+4, n+2). In the benchmark setting,
n = 3. If k components of type i have failed, the rate at which the next compo-
nent of type i fails is (ni−k)λiε, where (λ1, . . . , λ6) = (2.5, 1, 5, 3, 1, 5). There is a
single repairman who repairs components following a preemptive priority repair
strategy, where components of type i have priority over components of type j if
i < j. The repair rate for type i is always μi, (μ1, . . . , μ6) = (1, 1.5, 1, 2, 1, 1.5).
The system is said to have failed when all components of any type are down.
We estimate the probability that, after the first component failure (drawn ran-
domly), the system fails before all components are repaired.

5.1 Results of the Distance Finding Algorithm

A summary of the results of our algorithm is displayed in Table 1. The number
of initial constraints is the main factor that determines the runtime of the algo-
rithm. For the initial zones, we distinguish between the (a∪b)- and ¬(a∪b)-zones
because only the latter have an impact on the runtime of the rest of the algo-
rithm. A few things to mention: the number of zones may depend on n because
for small n some zones will be empty, which are discarded. Also, the final number
of zones may depend on the way stutter steps are chosen from S in the main loop,
because if a zone is split by a stutter step that later turns out to be insignificant,



384 D. Reijsbergen et al.

Table 1. Results of the numerical analysis for the running example

Running Example Multicomponent System
n 3 10 3 5
# initial constraints 5 5 18 18
# initial zones 15 18 38880 46656
# initial ¬(a ∪ b)-zones 8 11 3071 4095
# final ¬(a ∪ b)-zones 14 27 3557 5477
# iterations in main loop 57 114 26421 42189
# markings in X ∞ ∞ 40320 241920
time to construct (sec) 1.77 1.78 41.38 194.79

these zones are not recombined by our implementation, so both the number of
zones and the number of iterations are implementation-dependent. For the mul-
ticomponent system, for small n the number of zones is almost equal to the size
of the state space. This is a (for this case study unnecessary) consequence of the
margins defined in lines 2 and 3 of initZoneGraph().

5.2 Simulation Results

The simulation results are summarised in Tables 2 and 3. In both tables, we
display the results for three simulation methods: standard Monte Carlo (MC),
importance sampling (IS) using Balanced Failure Biasing (BFB) and IS based
on our distance finding algorithm (Zone-IS). Under BFB, the total probability
of firing a failure transition is set to 1

2 , uniformly distributed over the individual
failure transitions (and similarly for the repairs — for more information, see
[25]). In our implementation, we only consider the ν-transition t3 to be a repair
transition. Next to the simulation results, we display numerical approximations
obtained using the model checking tool PRISM [15].

For the efficiency of the methods we look at the relative error (r. error) of
the estimates, defined as the ratio of the estimator’s standard deviation to the
estimate. A lower value generally means a better estimate; however, if a change of
measure is poorly suited for the system, IS may suffer from underestimation [7].
An example of this are the results for BFB for n = 10 and ε = 0.01 in Table 2. For
the sake of consistency with [22], we used 200 000 000 runs per MC-estimate and
10 000 000 runs per IS-estimate. In all cases Zone-IS outperforms BFB, except
for n = 5 in Table 3. The reason is that BFB needs a clear distinction between
failures and repairs to work well.

6 Discussion and Conclusions

6.1 Conclusions

We have presented a novel method to automatically construct a change of mea-
sure for speeding up the simulation of rare events in stochastic Petri nets. Our



Automated Rare Event Simulation for Stochastic Petri Nets 385

Table 2. Results of the simulation analysis for the running example

MC BFB Zone-IS PRISM
n ε p̂ r. error p̂ r. error p̂ r. error p̂

3

10−1 1.11·10−4 0.007 1.096·10−4 0.007 1.100·10−4 6.31·10−4 1.100·10−4

10−2 1.50·10−8 0.577 1.007·10−8 0.011 1.010·10−8 2.21·10−4 1.010·10−8

10−3 — — 1.026·10−12 0.011 1.001·10−12 7.16·10−5 1.001·10−12

10−4 — — 1.003·10−16 0.011 1.000·10−16 2.39·10−5 1.000·10−16

5
10−1 1.00·10−8 0.707 1.140·10−8 0.040 1.098·10−8 0.001 1.100·10−8

10−2 — — 9.843·10−17 0.083 1.010·10−16 5.09·10−4 1.010·10−16

10
10−1 — — 1.638·10−18 0.970 1.109·10−18 0.006 1.100·10−18

10−2 — — 3.144·10−42 0.865 1.017·10−36 0.003 1.010·10−36

Table 3. Results of the simulation analysis for the multicomponent system

MC BFB Zone-IS
n ε p̂ r. error p̂ r. error p̂ r. error

3
10−3 7.25·10−7 0.083 7.535·10−7 0.019 7.283·10−7 0.007
10−4 1.0·10−8 0.707 4.815·10−9 0.027 4.861·10−8 0.002

5
10−3 — — 1.155·10−10 0.123 4.368·10−11 0.288
10−4 — — 1.901·10−15 0.288 1.381·10−15 0.351

approach uniquely combines two characteristics: it uses a high-level description
of the model with much flexibility and expressivity (a Petri net) and it works
without generating the entire state-space.

The heart of our method is an algorithm which automatically partitions the
state-space into a collection of zones. Each zone comprises states in which the
same so-called change of measure is needed in the rare-event simulation scheme.
The zones are demarcated by a set of affine inequalities, thus avoiding enumera-
tion of all states. The number of zones in typical models does not need to increase
as the model’s size increases.

We have demonstrated that our algorithm works well in two examples. More
experimentation will be needed to fully understand its possibilities and limita-
tions and to optimise the implementation, and some extensions of the algorithm
may be needed to handle certain classes of models (see below).

6.2 Discussion

In order to mathematically prove that the method always performs well, it re-
mains to deal with three issues. The first is the correctness of the algorithm;
i.e., whether the returned distance function really satisfies the definition in (4).
The second is termination of the algorithm within finite time. The third is the
efficiency of the resulting importance sampling estimator. The first issue can be
dealt with using a suitable invariant statement. For the latter two, we give a
short discussion.



386 D. Reijsbergen et al.

Termination. If the state space is infinite, it is possible that the (current)
algorithm will not terminate. For example, if transition t1 takes the system
closer to the goal states and enables a transition t2 with a very high firing
rate, but firing the t2 disables itself and does not negate the firing of t1, then
a shortest path might alternate between firing t1 and t2. This may result in
the algorithm constructing an infinite number of zones. A possible solution is to
broaden the concept of a stutter step. If a shortest path alternates between a
tuple of transitions, the repeated firing of this tuple could be seen as a stutter
step in itself, and the sum of the incidence vectors of the individual transitions
as the net effect on the marking. Under such a restriction, the space of zones
could well be bounded; this is part of ongoing research.

Importance Sampling Efficiency. The importance sampling measure as de-
fined in (5) is inspired by the change of measure proposed in [17], where also the
notion of bounded relative error comes up. This notion says that as ε approaches
0, the ratio of the standard deviation of the estimator to the standard mean
remains bounded. This is desirable: since the accuracy of a simulation result is
directly linked to this relative error, this means that the time to reach some level
of accuracy never crosses a certain threshold value as ε becomes smaller. This
behaviour is observed in Table 2 of Section 5, so we believe that our method will
have bounded relative error, after a slight refinement.

The authors of [17] show that bounded relative error is guaranteed in their
setting under the assumption that the state space is finite and that no high-
probability cycles exist. Essentially, these assumptions imply that the number
of paths ω with P(ω) = Θ(εd(x)) is finite. If this does not hold, it may be that
P(Ψx) = Θ(εd(x)). A possible remedy would then be to perform a loop-detection
algorithm on the initial graph returned by Algorithm 2 in order to detect the
high-probability cycles, and remove them. This is also part of ongoing research.

References

1. Ajmone Marsan, M., Balbo, G., Donatelli, S., Franceschinis, G., Conte, G.: Mod-
elling with generalized stochastic Petri nets. John Wiley & Sons, Inc. (1994)

2. Baier, C., D’Argenio, P., Groesser, M.: Partial order reduction for probabilistic
branching time. Electronic Notes in Theoretical Computer Science (2006)

3. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
4. Blum, A.M., Goyal, A., Heidelberger, P., Lavenberg, S.S., Nakayama, M.K.,
Shahabuddin, P.: Modeling and analysis of system dependability using the sys-
tem availability estimator. In: Twenty-Fourth International Symposium on Fault-
Tolerant Computing, pp. 137–141. IEEE (1994)

5. Carrasco, J.A.: Failure distance based simulation of repairable fault-tolerant
systems. In: Proceedings of the 5th International Conference on Modeling Tech-
niques and Tools for Computer Performance Evaluation, pp. 351–365 (1992)

6. Clark, G., Courtney, T., Daly, D., Deavours, D., Derisavi, S., Doyle, J.M., Sanders,
W.H., Webster, P.: The Möbius modeling tool. In: Proceedings of the 9th Interna-
tional Workshop on Petri Nets and Performance Models. IEEE (2001)



Automated Rare Event Simulation for Stochastic Petri Nets 387

7. Devetsikiotis, M., Townsend, J.K.: An algorithmic approach to the optimization
of importance sampling parameters in digital communication system simulation.
IEEE Transactions on Communications 41(10), 1464–1473 (1993)

8. Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: Multilevel splitting
for estimating rare event probabilities. Operations Research 47(4), 585–600 (1999)

9. Han, T., Katoen, J.-P.: Counterexamples in probabilistic model checking. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 72–86. Springer,
Heidelberg (2007)

10. Heidelberger, P.: Fast simulation of rare events in queueing and reliability models.
In: Donatiello, L., Nelson, R. (eds.) SIGMETRICS 1993 and Performance 1993.
LNCS, vol. 729, pp. 165–202. Springer, Heidelberg (1993)

11. Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of importance
sampling parameters for statistical model checking. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer, Heidelberg (2012)

12. Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance statisti-
cal model checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012)

13. Júlvez, J.: Basic qualitative properties of Petri nets with multi-guarded transitions.
In: American Control Conference, ACC 2009. IEEE (2009)

14. Kelling, C.: A framework for rare event simulation of stochastic Petri nets us-
ing “RESTART”. In: Proceedings of the 28th Winter Simulation Conference, pp.
317–324. IEEE Computer Society (1996)

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

16. Law, A., Kelton, W.: Simulation modeling and analysis. McGraw-Hill, New York
(1991)

17. L’Ecuyer, P., Tuffin, B.: Approximating zero-variance importance sampling in a
reliability setting. Annals of Operations Research 189(1), 277–297 (2011)

18. Miretskiy, D., Scheinhardt, W., Mandjes, M.: On efficiency of multilevel splitting.
Communications in Statistics – Simulation and Computation 41(6), 890–904 (2012)

19. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

20. Nicola, V., Shahabuddin, P., Nakayama, M.: Techniques for fast simulation of mod-
els of highly dependable systems. IEEE Transactions on Reliability 50(3), 246–264
(2001)

21. Obal, W., Sanders, W.: An environment for importance sampling based on stochas-
tic activity networks. In: Proceedings of the 13th Symposium on Reliable Dis-
tributed Systems, pp. 64–73. IEEE (1994)

22. Ridder, A.: Importance sampling simulations of Markovian reliability systems using
cross-entropy. Annals of Operations Research 134(1), 119–136 (2005)

23. Rubinstein, R., Kroese, D.: The cross-entropy method: a unified approach to com-
binatorial optimization, Monte-Carlo simulation and machine learning. Springer
(2004)

24. Sanders, W.H., Meyer, J.F.: Stochastic activity networks: Formal definitions and
concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) FMPA 2000. LNCS,
vol. 2090, pp. 315–343. Springer, Heidelberg (2001)

25. Shahabuddin, P.: Importance sampling for the simulation of highly reliable Marko-
vian systems. Management Science 40(3), 333–352 (1994)



388 D. Reijsbergen et al.

26. Tuffin, B., Trivedi, K.S.: Implementation of importance splitting techniques in
stochastic Petri net package. In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U.
(eds.) TOOLS 2000. LNCS, vol. 1786, pp. 216–229. Springer, Heidelberg (2000)

27. Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: A method for accelerat-
ing rare event simulations. In: Queueing, Performance and Control in ATM, pp.
71–76. Elsevier Science Publishers (1991)

28. Zimmermann, A., Freiheit, J., German, R., Hommel, G.: Petri net modelling and
performability evaluation with TimeNET 3.0. In: Haverkort, B.R., Bohnenkamp,
H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 188–202. Springer,
Heidelberg (2000)



Topology-Based Mobility Models

for Wireless Networks

Ansgar Fehnker1, Peter Höfner2,3, Maryam Kamali4,5, and Vinay Mehta1

1 University of the South Pacific, Fiji
2 NICTA�, Australia

3 University of New South Wales, Australia
4 Turku Centre for Computer Science (TUCS), Finland

5 Åbo Akademi University, Finland

Abstract. The performance and reliability of wireless network proto-
cols heavily depend on the network and its environment. In wireless
networks node mobility can affect the overall performance up to a point
where, e.g. route discovery and route establishment fail. As a consequence
any formal technique for performance analysis of wireless network proto-
cols should take node mobility into account. In this paper we propose a
topology-based mobility model, that abstracts from physical behaviour,
and models mobility as probabilistic changes in the topology. We demon-
strate how this model can be instantiated to cover the main aspects of
the random walk and the random waypoint mobility model. The model
is not a stand-alone model, but intended to be used in combination with
protocol models. We illustrate this by two application examples: first we
show a brief analysis of the Ad-hoc On demand Distance Vector (AODV)
routing protocol, and second we combine the mobility model with the
Lightweight Medium Access Control (LMAC).

1 Introduction

The performance and reliability of network protocols heavily depend on the
network and its environment. In wireless networks node mobility can affect the
overall performance up to a point where e.g. route discovery and route establish-
ment fail. As a consequence any formal technique for analysis of wireless network
protocols should take node mobility into account.

Traditional network simulators and test-bed approaches usually use a detailed
description of the physical behaviour of a node: models include e.g. the location,
the velocity and the direction of the mobile nodes. In particular changes in
one of these variables are mimicked by the mobility model. It is common for
network simulators to use synthetic models for protocol analysis [15]. In this
class of models, a mobile node randomly chooses a direction and speed to travel
from its current location to a new location. As soon as the node reaches the

� NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

K. Joshi et al. (Eds.): QEST 2013, LNCS 8054, pp. 389–404, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



390 A. Fehnker et al.

new location, it randomly chooses the next direction. Although these models
abstract from certain characteristics such as acceleration, they still cover most
of the physical attributes of the mobile node. Two well-known synthetic mobility
models are the random walk (e.g. [1]) and the random waypoint model (e.g. [2]).

However, a physical mobility model is often incompatible with models of pro-
tocols, in particular protocols in the data link and network layers, due to lim-
itations of the used modeling language and analysis tools. Even if it could be
included, it would add a high complexity and make automatic analysis infeasible.
From the point of view of the protocol it is often sufficient to model changes on
the topology (connectivity matrix) rather than all physical behaviour.

In this paper we propose a topology-based mobility model that abstracts
from physical behaviour, and models mobility as probabilistic changes in the
topology. The main idea is to identify the position of a node with its current set
of neighbours and determine changes in the connectivity matrix by adding or
deleting nodes probabilistically to this set. The probabilities are distilled from
the random walk or the random waypoint model. The resulting model is not
meant to be a stand-alone model, but to be used in combination with protocol
models. For this, we provide an Uppaal template for our model, which can easily
be added to existing protocol models. The paper illustrates the flexibility of our
model by two application examples: the first analyses quantitative aspects of
the Ad hoc On-Demand Distance Vector (AODV) protocol [14], a widely used
routing protocol, particularly tailored for wireless networks; the second example
presents an analysis of the Lightweight Media Access Control (LMAC) [12], a
protocol designed for sensor networks to schedule communication, and targeted
for distributed self-configuration, collision avoidance and energy efficiency.

The rest of the paper is organised as follows: after a short overview of re-
lated work (Sect. 2), we develop the topology-based mobility model in Sect. 3.
In Sect. 4 we present a simulator that is used to compute the transition prob-
abilities for two common mobility models. In Sect. 5, we combine the distilled
probabilities with our topology-based model to create an Uppaal model. Before
concluding in Sect. 7, we illustrate how the model can be used in conjunction
with protocol models. More precisely we present a short analysis of AODV and
LMAC.

2 Related Work

Mobility models are part of most network simulators such as ns-2. In contrast to
this, formal models used for verification or performance analysis usually assume
a static topology, or consider a few scenarios with changing topology only. For
the purpose of this section, we distinguish two research areas: mobility models
for network simulators and models for formal verification methods.

Mobility models for network simulators either replay traces obtained from real
world, or they use synthetic models, which abstract from some details and gen-
erate mobility scenarios. There are roughly two dozen different synthetic models
(see [15,4] for an overview), starting from well-known models such as the random



Topology-Based Mobility Models for Wireless Networks 391

walk model (e.g. [1]) and the random way point model (e.g. [2]), via (partially)
deterministic models and Manhattan models to Gauss-Markov and gravity mo-
bility models. All these models are based on the physical behaviour of mobile
nodes, i.e. each node has a physical location (in 2D or 3D1), a current speed
and a direction it is heading to. As these models cover most of the physical be-
haviour, they are most often very complex (e.g. [13,10]) and include for example
mathematics for Brownian motion. Due to this complexity these models cannot
be incorporated directly into formal models for model-checking. This paper de-
scribes how two of these models, the random waypoint, and the random walk
model, can be used to distill transition probabilities for a mobility model, which
can easily be combined with formal protocol models.

Including mobility into a model for formal verification is not as common as
it is for network simulators. If they are included, then typically in the protocol
specification and therefore can rarely be reused for the analysis of different pro-
tocols. Moreover, formal verification often abstracts entirely from the underlying
mobility model and allows arbitrary topology changes [9,5,8]. Other approaches
allow only random, but very limited changes in the topology, often in the form of
a scenario that involves deletion or creation of links [6,18,17]. Song and Godske-
sen propose in [16] a framework for modelling mobility; it models connectivity
by distributions and propose a probabilistic mobility function to model mobility,
without any specifics. This paper takes a similar approach, but adjacency matri-
ces to model connectivity, and works out and analyses the transition probabilities
obtained for two mobility models.

Our contribution is the following: we take the idea that the position of a
mobile node can be characterised by a set of neighbours, which determines the
topology, and we then define mobility as transitions between these sets. We then
analyse the geometry of mobile nodes in a grid and determine which parameters
actually influence the transition probabilities. In fact we found that some pa-
rameters, such as the step size of the random walk model have no influence on
the transition probabilities. Based on this observation we build a topology-based
mobility model which can easily be combined with protocol models.

3 Topology-Based Mobility Model

Our model takes up the position of the protocol: for a protocol it only matters
whether data packets can be sent to a node, i.e. whether the node is within
transmission range. The speed, the direction and other physical attributes are
unimportant and irrelevant for the protocol. Hence the topology-based mobility
model we introduce abstracts from all physical description of a node, and also
largely abstracts from time. It models the node as a set of one-hop neighbours,
i.e. nodes that are within transmission range of the node. Movement is modelled
as a transition from one set of neighbours to another.

We assume that the node to be modelled moves within a quadratic N ×N -
grid of stationary nodes. For simplicity we assume that nodes in the grid have a

1 3D is required when nodes model aerospace vehicles, such as UAVs.



392 A. Fehnker et al.

R=
1

R=
1.1
2

R=
1.1
8

R=
1.2
5

R=
1.4
1

Fig. 1. Transmission ranges 1,
√

5
2

≈ 1.12, 5
6

√
2≈ 1.18, 1.25 and

√
2≈ 1.41

distance of 1, and that both the stationary and the mobile node have the same
transmission range R. Obviously, the model depends on the grid size and the
transmission range. We further assume that the transition range R is larger than
1 and strictly smaller than

√
2. If it were smaller than 1 nodes in the grid would

be outside of the range of all neighbours, if it were larger than
√
2 nodes could

communicate diagonally in the grid.
The network topology of all nodes, including the mobile node, can be repre-

sented by an adjacency or connectivity matrix A with

Ai,j =

{
1 if D(i, j) ≤ R
0 otherwise ,

where D(i, j) is the distance between the nodes i and j using some kind of
metric, such as the Euclidean distance. While the connectivity matrix has theo-
retically 2N

2

possible configurations, with N the number of nodes, a network
with one mobile node will only reach a small fraction of those. First, the matrix
is symmetric. Second, all nodes, except for one, are assumed static, and the
connectivity Ai,j between two static nodes i and j will be constant. Third, due
to the geometry of the plane, even the mobile node can only have a limited
number of configurations. For example, neither a completely connected node,
nor a completely disconnected node is possible given the transmission range.

The possible topologies depend on the transmission range: the larger the range
the larger the number of possible nodes that can be connected to the mobile node.
Within the right-open interval [1,

√
2), the set of possible topologies changes at

values
√
5
2 , 5

6

√
2 and 1.25. These values can be computed with basic trigonometry.

Fig. 1 illustrates which topologies become possible at those transmission ranges.
By considering the transmission range of the stationary nodes, one can par-

tition the plane into regions in which mobile nodes will have the same set of
neighbours. The boundaries of these regions are defined by circles with radius R
around the stationary nodes. Fig. 2 depicts three possible regions and a trans-
mission range R = 1.25; stationary nodes that are connected to the mobile node
(located somewhere in the coloured area) are highlighted. As convention we will
number nodes from the top left corner, starting with node 0. This partitioning
abstracts from the exact location of the mobile node. Mobility can now be ex-
pressed as a change from one region to the next. The topology-based model will
capture the changing topology as a Markovian transition function, that assigns
to a pair of topologies a transition probability.



Topology-Based Mobility Models for Wireless Networks 393

(a)

121110

765

210

(b)

121110

765

210

(c)

121110

765

210

Fig. 2. Three regions and the corresponding set of neighbours for range R = 1.25

The number of possible transitions is also limited by the partition, as every
region is bounded by a small number of arcs. If a mobile node transits an arc, a
static node has to be added to or deleted from its set of neighbours. Consider,
for example, the region that corresponds to set {1, 2, 6, 7, 12} in Fig. 2(a). If the
mobile node crosses the arc to the bottom left, node 11 will be added (Fig. 2(b)).
The other two arcs of {1, 2, 6, 7, 12} define the only two other transitions that
are possible from this set.

We call a mobility model locally defined if congruent regions yield the same
transition probabilities. Regions are congruent if they can be transformed into
each other by rotation, reflection and translation. By extension we call transitions
that correspond to congruent arcs in such regions also congruent. The movement
of a node in a locally defined mobility model is independent from its exact
position in the grid. The changes that can occur depend only on the topology
of the current neighbours. For example, the congruent sets {1, 2, 6, 7, 12} and
{0, 1, 5, 6, 7} in Fig. 2(a) and (c), would have the same transition probabilities.

In some cases this principle will uniquely determine the transition probability:
the set {1, 2, 6, 7, 11, 12} in Fig. 2(b) is bounded by 4 identical arcs. This means
that all of them should correspond to a probability of 1

4 . For other regions the
partition implies a relation/equation between some probabilities, but does not
determine them completely. Considering only transitions in a single cell of the
grid yields just a few and very symmetric transitions between possible topologies.
Fig. 3 depicts the transitions as transitions between topologies.

One way to assign probabilities is to require that they are proportional to the
length of the arc. Alternatively, probabilities may be estimated by simulations
of a moving node in the plane. Note, that the resulting probabilistic transition
system will be memoryless, i.e. the probability of the next transition depends
only on the current region (set of neighbours). In the next section, we will see
that the common random waypoint model is not locally defined, i.e. the local
topology is not sufficient to determine the transition probabilities.

4 Simulations of Two Mobility Models

In the previous section we proposed a topology-based mobility model, based
on transition probabilities; the exact values for the probabilities, however, were



394 A. Fehnker et al.

Fig. 3. Possible transitions within a single grid cell for R=1.25

not specified. In this section we use a simulator to compute it for two common
mobility models, a random walk model, and a random waypoint model.

4.1 Simulator

The simulator considers a single mobile node in an N ×N grid of stationary
nodes. As before, we assume a distance of 1 between the nodes on the grid. The
initial position (x0, y0) of the mobile node is determined by a uniform distribution
over [0, N − 1]×[0, N − 1], i.e. x0∼U([0, N − 1]) and y0∼U([0, N − 1]). Depending
on the mobility model chosen, the simulator then selects a finite number of
waypoints (x1, y1), . . . , (xn, yn), and moves along a straight line from waypoint
(xi, yi) to the next (xi+1, yi+1).

The random waypoint model uses a uniform distribution over the grid to
select the next way point, i.e. for all xi, we have yi, xi ∼ U([0, N − 1]) and
yi ∼ U([0, N − 1]). The choice of the next waypoint is independent of the pre-
vious waypoint. This model is the most common model of mobility for network
simulators, even if its merits have been debated [19]. A consequence of the way-
point selection is that the direction of movement is not uniformly distributed;
nodes tend to move more towards the centre of the square interval.

As an alternative we are using a simple random walk model. Given way point
(xi, yi) the next way point is computed by (xi, yi) + (xΔ, yΔ) where both xΔ
and xΔ are drawn from a normal distribution N (0, σ). This also means that the
Euclidean distance between waypoints ||(xΔ, yΔ)|| has an expected value of σ,
which defines the average step size in the random walk model. By this definition,
the model is unbounded, i.e. the next waypoint may lie outside the grid. If this
happens the simulator computes the intersection of the line segment with the
grid’s boundary and reflects the waypoint at that boundary. In this model the
mobile node moves from the first waypoint to the boundary, and from there to
the reflected waypoint. For the purposes of this paper the intersections with the
boundary do not count as waypoints.

Since the topology-based mobility model introduced in Sect. 3 abstracts from
acceleration and speed, these aspects are not included in the simulation ei-
ther. The simulator checks algebraically for every line segment from (xi, yi) to



Topology-Based Mobility Models for Wireless Networks 395

(a)
0

100000
200000
300000
400000
500000
600000

Fr
eq

0 1 2 3 4 5 6 7 8 9 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

0 1 2 3 4 5 6 7 8 9 10

Sigma

Set: 0, 1,5,6,7, Radius 1.2

Adds 11
Adds 2
Deletes 7
Deletes 0

(b)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

T
ra
ns
iti
on

s/
(w

ay
po

in
t*
ra
ng

e)

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Range

Transitions vs transmission range

Random waypoint
Random walk

Fig. 4. (a) Transition probabilities and occurrences of set {0, 1, 5, 6, 7}. (b) The relation
between number of transitions, the number of waypoints, and the transmission range.

(xi+1, yi+1) if it intersects with a node’s transmission range R (given by a circle
with radius R and the node in its centre). The simulator sorts all the events of
nodes entering and leaving the transmission range and computes a sequence of
sets of neighbours. This sequence is then used to count occurrences of transitions
between these sets that are used to compute relative transition probabilities.

4.2 Simulation Results

The simulator is implemented in C++, and used to generate transition probabil-
ities for the topology-based mobility model of Section 3. The simulator allows
also a more detailed analysis of these two mobility models, in particular how the
choice of parameters (grid size, transmission range, and standard deviation of
the normal distribution σ) affects the transition probabilities. In this section we
discuss some results for scenarios with a single mobile node on a 5× 5 grid.

The simulation of the random walk model demonstrates a few important
invariants. One observation is that the transition probabilities do not depend on
the size of σ. This fact is illustrated by Fig. 4(a). The top part of this figure
shows the probabilities that certain nodes are added or deleted from the set
{0, 1, 5, 6, 7}. While σ ranges from 1

8 to 8 the probabilities remain constant. The
bottom part of the figure depicts the frequency with which the set occurs. Here
there is a linear relation between σ and the total number of times that the set
is visited. This is explained by the fact that σ is also the average step size, and
doubling it means that twice as many transitions should be taken along the path.

Another linear relation exists between the total number of transitions along a
path and the transmission range (cf. Fig. 4(b)). This relation is explained by the
fact that the length of the boundary of each transmission area is linear to the
range. For σ=1, and R=1, approximately 5 transitions will occur between any
two waypoints. The ratio transition/range is constant for an increasing range.
Note, that this number is independent of the grid size, and grows linearly with σ.



396 A. Fehnker et al.

Random Walk Random Waypoint

0
5000

10000
15000
20000
25000
30000
35000

Fr
eq

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

Set: 1,2,6,7,11,12,

Adds 5
Adds 8
Deletes 2
Deletes 11
Deletes 12
Deletes 1

(a)
0

10000
20000
30000
40000
50000
60000
70000
80000
90000

Fr
eq

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

Set: 1,2,6,7,11,12,

Adds 5
Adds 8
Deletes 2
Deletes 11
Deletes 12
Deletes 1

(b)

0

5000

10000

15000

20000

25000

Fr
eq

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

Set: 2,6,7,12,

Adds 8
Adds 11
Adds 1
Deletes 2
Deletes 12

(c)
0

10000

20000

30000

40000

50000

60000

Fr
eq

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

Set: 2,6,7,12,

Adds 8
Adds 11
Adds 1
Deletes 2
Deletes 12

(d)

0

5000

10000

15000

20000

25000

Fr
eq

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

Set: 1,5,6,7,

Adds 2
Adds 11
Adds 0
Deletes 5
Deletes 7

(e)
0

5000
10000
15000
20000
25000
30000
35000
40000

Fr
eq

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Radius

Set: 1,5,6,7,

Adds 2
Adds 11
Adds 0
Deletes 5
Deletes 7

(f)

Fig. 5. Selected simulation results of the random walk and the random waypoint model



Topology-Based Mobility Models for Wireless Networks 397

These invariants do not hold for the random waypoint model. The ratio of
transitions to range is not constant, as illustrated in Fig. 4(b). This is because
transitions are not evenly distributed but cluster towards the center of the grid.
The ratio is also dependent on the size of the grid. In a larger grid the distance
between waypoints will be larger, and more transitions occur per waypoint.

For the random walk model we found that the step size σ has no effect on
the actual transition probabilities. The effect of the transmission range on the
transition probabilities is less trivial. Fig. 5 shows a few illustrative examples.
Similar result were obtained for all possible sets of neighbours.

Fig. 5(a) depicts the results for {1, 2, 6, 7, 11, 12}, a set of six nodes that form
a rectangle. This set cannot occur if the transmission ranges are smaller than

√
5
2

(cf. Sect. 3). For transmission ranges R ∈ [
√
5
2 , 1.25] the only possible transitions

are to delete one of the four vertices located at the corners of the rectangle. In
the random walk model the probability for these four transitions is 1

4 . Fig. 5(a)
also illustrates that for transmission ranges R≥ 1.25, it is possible to add one
additional node (either 5 or 8), reaching a set with 7 one-hop neighbours. As the
range increases, the probability of this happening increases. At the same time
the probability of deleting a vertex decreases.

Fig. 5(b) consider the same set of neighbours as Fig. 5(a), but under the
random waypoint model. It demonstrates that this model is not locally defined,
as congruent transitions, e.g. deleting vertices, do not have the same probability.
The probability also depends of the distance of a node to the centre of the grid.

Fig. 5(c–f) show the transition probabilities for sets of neighbours that occur
only if R∈[1, 1.25]: if R< 1, the transmission range is too small to cover the
sets {2, 6, 7, 12} and {1, 5, 6, 7}, resp.; if R> 1.25 the transmission range of the
mobile will always contain more than four nodes. The observation is that as the
transmission range increases, the probability of deleting a node decreases, while
the probability of adding nodes increases. The sets {2, 6, 7, 12} and {1, 5, 6, 7}
have the same basic “�” shape; one is congruent to the other. Hence, for the
random walk model both sets have essentially the same transition probability;
but also the frequency with which the sets occur is the same. This confirms that
the position or orientation in the grid does not matter.

For the random waypoint model this no longer holds. The transition proba-
bilities of similarly shaped neighbourhoods are not similar, but also determined
by the position relative to the centre: the closer the set is to the centre the often
it occurs in paths. Note, Fig. 1(d) and (f) use different scales for the frequency.

To conclude this section, we summarise our findings:

Random walk model:

– The transition probabilities are independent of σ and the grid size;

– The number of transitions per waypoint path grows linear with the range;

– The transition probabilities of congruent transitions are the same;

– The probabilities depend only locally on the set of nodes within range.

Random waypoint model: None of the above observations hold.



398 A. Fehnker et al.

Table 1. Number of possible topologies, in relation to the range and the grid size2

Transmission range
[1, 1] (1, 1.12) (1.12, 1.18) (1.18, 1.25) [1.25, 1.25] (1.25, 1.41)

G
ri
d

si
z
e

2× 2 9 9 5 5 5 5
3× 3 32 41 49 49 37 41
4× 4 69 97 133 133 101 117
5× 5 120 177 257 257 197 233
6× 6 185 281 421 421 325 389
7× 7 264 409 625 625 485 585
8× 8 357 561 869 869 677 821
9× 9 464 737 1153 1153 901 1097
10× 10 585 937 1477 1477 1157 1413

5 Uppaal Model

This section describes an Uppaal model that implements the topology-based
mobility model described in Sect. 3, and uses the transition probabilities ob-
tained in Sect. 4. The model is not meant to be stand-alone, but meant to
be used within other protocol models. It assumes that an adjacency matrix
bool topoloy[N][N] is used. The constant N is the size of the grid plus the mo-
bile node. Depending on whether the random walk or random waypoint model
is used, the model includes parameters for grid size and transmission range.

The template provides a list of all possible sets of neighbours. Table 1 shows
the numbers of possible sets depending on the size of the grid and the transmis-
sion range. The results show that even for relatively large grids the number of
possible sets of neighbors of the mobile node is limited. They will increase the
potential state space only by three order of magnitude. The reachable space may
increase by more when a template for mobility is added, because the protocol
might reach more states than it did for static topologies.

The Uppaal template of Fig. 6 implements a lookup table of transition proba-
bilities. After initialisation the template loops through a transition that changes
the topology probabilistically. It contains a clock t, a guard t>=minframe and an
invariant t<=maxframe to ensure that the change happens once in the interval
[minframe,maxframe]. The values of minframe and maxframe determine the
frequency of topology changes, and hence simulate the speed of a node.

The lookup is implemented by functions updatemapindex, changeprob and
changenode. After every topology change, the function updatemapindex main-
tains the index (mapindex); this index into the list of possible sets is used to look
up transition probabilities for a smaller set of representative sets of neighbours.
Every set of neighbours is congruent to one of these representative sets. This
information is used by changeprob to look up for a given node i the probability
that it will be added or deleted from the current set of neighbours. Function
changenode implements that change.

2 Results for the point intervals containing
√

5
2
and 5

6

√
2 are omitted.



Topology-Based Mobility Models for Wireless Networks 399

t<=maxframe t>=minframe
&& mapindex>=0 
&& numnodes<=MAXLENGTH

intitialiseN(),
updatemapindex()

changenode(i),
updatemapindex()

changeprob(i)
i: int[0,NODES-2]

t=0

Fig. 6. Uppaal template for the mobility model

6 Application Examples

In this section we illustrate how the topology-based model can be used in com-
bination with protocol models: first we briefly present an analysis of the Ad-hoc
On demand Distance Vector (AODV) routing protocol, and second we combine
the mobility model with the Lightweight Medium Control (LMAC). A detailed
study of these protocols is out of the scope of the paper; we only show the
applicability and power of the introduced mobility model.

Since we are interested in quantitative properties of the protocols, we are
not using “classical” Uppaal, but SMC-Uppaal, the statistical extension of Up-
paal [3]. Statistical Model Checking (SMC) [20] combines ideas of model checking
and simulation with the aim of supporting quantitative analysis as well as ad-
dressing the size barrier that currently prevents useful analysis of large models.
SMC trades certainty for approximation, using Monte Carlo style sampling, and
hypothesis testing to interpret the results. Parameters setting thresholds on the
probability of false negatives and on probabilistic uncertainty can be used to
specify the statistical confidence on the result. For this paper, we choose a con-
fidence level of 95%.

6.1 The Ad-Hoc on Demand Distance Vector (AODV) Protocol

AODV is a reactive routing protocol, which means that routes are only estab-
lished on demand. If a node S needs to send a data packet to node D, but cur-
rently does not know a route, it buffers the packet and initiates a route discovery
process by broadcasting a route request message in the network. An intermediate
node A that receives this message stores a route to S, and re-broadcasts the re-
quest. This is repeated until the message reaches D, or alternatively a node with
a route to D. In both cases, the node replies to the route request by unicasting
a route reply back to the source S, via the previously established route.

An Uppaal model of AODV is proposed in [6]. The analysis performed on this
model was done for static topologies and for topologies with very few changes.
This limits the scope of the performance analysis. Here, the mobility automaton
is added to the model of AODV. Since the mobility automaton is an almost
independent component, it can be easily integrated into any Uppaal model that
model topologies by adjacency matrices.



400 A. Fehnker et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ili
ty

380 400 420 440 460 480 500 520

runtime

Random Walk

R=1.1 P [0.84,0.94]
R=1.2 P [0.59,0.69]
R=1.3 P [0.62,0.72]
Not mobile P [0.95,1]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ili
ty

380 400 420 440 460 480 500 520

runtime

Random Waypoint

R=1.1 P [0.80,0.90]
R=1.2 P [0.38,0.48]
R=1.3 P [0.41,0.51]
Not mobile P [0.95,1]

Fig. 7. AODV: probability of packet delivery within a certain time

Our experiments consider scenarios with a single mobile node moving within
a 4× 4 grid. A data packet destined for a randomly chosen stationary node is
injected at a different stationary node. During route discovery the mobile node
will receive and forward route requests and replies, as any other node will do.

The experiment determines the probability that the originator of the route
request learns a route to the destination within 2000 time units. This time bound
is chosen as a conservative upper bound to ensure that the analyser explores
paths to a depth where the protocol is guaranteed to have terminated. In (SMC-)
Uppaal syntax this property can be expressed as

Pr[<=2000](<> node(OIP).rt[DIP].nhop!=0) . (1)

The variable node(OIP).rt denotes the routing table of the originator OIP, and
the field node(OIP).rt[DIP].nhop represents the next hop on the stored route
to the destination DIP. In case it is not 0, a route to DIP was successfully estab-
lished. The property was analysed for the random walk and the random waypoint
model with three different transmission ranges R: 1.1, 1.2, and 1.3. SMC-Uppaal
returns a probability interval for the property (1), as well as a histogram of the
probabilities of the runtime needed until the property is satisfied.

The results are presented in Fig. 7. The legend contains, besides the name of
the model, the probability interval. For example, the random walk model with
R=1.1 satisfies property (1) with a probability P ∈ [0.84, 0.94]. In contrast to
that the probability of route establishment in a scenario without a mobile node
is [0.95, 1], which indicates that the property is always satisfied. The probability
intervals show that all scenarios with a mobile node have a lower probability for
route discovery, some dramatically so. The random waypoint model with R=1.2
has a probability interval of [0.38, 0.48], which means that more than half of all
route discovery processes fail. It is also notable that the random walk models
have better results than the corresponding random waypoint models. Finally, the
mobility models with R=1.1 have a significantly higher probability to succeed
than the other four models with R=1.2 and R=1.3.



Topology-Based Mobility Models for Wireless Networks 401

The histograms show another interesting finding. The time it takes for a route
reply to be delivered, if it is delivered, can be shorter for the models with the
mobile node. Apparently, the mobile node can function as a messenger between
originator and destination; not just by forwarding messages, but also by physi-
cally creating shortcuts.

6.2 The Lightweight Medium Access Control (LMAC) Protocol

LMAC [11] is a lightweight time division medium access protocol designed for
sensor networks to schedule communication, and targeted for distributed self-
configuration, collision avoidance and energy efficiency. It assumes that time is
divided into frames with a fixed number of time slots. The purpose of LMAC is to
assign to every node a time slot different from its one- and two-hop neighbours.
If it fails to do so, collisions may occur, i.e. a node receives messages from
two neighbours at the same time. However, LMAC contains a mechanism to
detect collisions and report them to the nodes involved, such that they choose
(probabilistically) a new time slot.

A (non-probabilistic) Uppaal model for LMAC was developed in [7], where
it was also used to study static topologies. Based on this model a probabilistic
model was developed [11]. This model was then used to study the performance
of LMAC for heuristically generated topologies with 10 nodes [3]. The model we
use for this paper differs in one aspect from [3]: it uses a smaller frame, with
only six time slots, rather than 20. The purpose of LMAC is to assign time slots
such that collisions are avoided or resolved, even if the number of time slots is
restricted. For a 3× 3 grid, it is possible to find a suitable assignment with only
five time slots; six time slots should therefore be sufficient to cover a network
with 10 nodes (one mobile node), although it might be challenging.

We check the following two properties:
Pr[<=2000](<> forall (i: int[0,9]) slot no[i]>=0) (2)

Pr[collisions<=2000](<> time>=2000) . (3)

The first property holds if, at some time point (before time 2000), all nodes are
able to select a time slot. While this does not guarantee the absence of collisions,
it does guarantee that all nodes have been able to participate in the protocol.
The second property checks whether it is possible to reach 2000 time units, with
less than 2000 collisions. This property is true for all runs. It is used merely to
obtain a histogram of the number of collisions.

The results are illustrated in the histogram of Fig. 8: for all models with a
mobile node, the property (2) is satisfied (the probability interval is [0.95, 1],
by a confidence level of 95%). The detailed results show that all runs reach a
state in which all nodes have chosen a time slot. For the model without a mobile
node, the probability interval is [0.80, 0.90]. This means that in at least 10% of
all cases LMAC is not able to assign a time slot to all nodes; the histogram
shows runs with 80–90, 160–170, and 240–250 collisions. These are runs in which
one, or more nodes are engaged in a perpetual collision. Interestingly, this type
of perpetual collisions do not occur in models with a mobile node. The mobile



402 A. Fehnker et al.

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili
ty

0 50 100 150 200 250 300

collisions

Random Walk

Not mobile
R=1.1
R=1.2
R=1.3

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili
ty

0 50 100 150 200 250 300

collisions

Random Waypoint

Not mobile
R=1.1
R=1.2
R=1.3

Fig. 8. LMAC: number of collisions within 2000 time units

node functions as an arbiter, which, as it moves around, detects and reports
collisions that static nodes could not resolve.

The histograms reveal a few other interesting findings. In the model without
mobility about 40% of the runs have no collisions. For both mobility models
with transmission range R=1.1 this drops to about 30%. For larger transmission
ranges this drops even further to close to 0%, which means that almost all runs
have at least some collisions. The differences between range R=1.1, R=1.2 and
R=1.3 is explained by the fact that the mobile node for R=1.1 will have at most
5 neighbours, while for R=1.3 it may be 7 neighbours. A larger neighbourhood
makes choosing a good time slot more difficult. This is confirmed by another
observation, namely that for R=1.1 only a few runs have more than 20 collisions
(approx. 12% of the runs, both random walk and random waypoint), while for
a range of 1.2 and 1.3 it is in the range from 25% to 45%.

Both application examples show that introducing mobility can change the
behaviour of network protocols significantly. As mentioned above, the purpose
of these application examples was not to analyse these protocols in detail, but
to show that the topology-based mobility models can be used to improve the
scope of performance analyses of such protocols.



Topology-Based Mobility Models for Wireless Networks 403

7 Conclusion

In this paper we have proposed an abstract, reusable, topology-based mobility
model for wireless networks. The model abstracts from all physical aspects of a
node as well as from time, and hence results in a simple probabilistic model. To
choose a right level of abstraction, we have studied possible transitions and con-
figurations of network topologies. To determine realistic transition probabilities
regarding existing mobility models, we have performed simulation-based exper-
iments. In particular, we have distilled probabilities for the random walk and
the random waypoint model (using different transition ranges). We have then
combined the topology-based model with the distilled probabilities and have cre-
ated a (SMC-)Uppaal model3. The generated model is small and can easily be
combined with other Uppaal models specifying arbitrary protocols. To illustrate
this claim we have combined our model with a model of AODV and LMAC,
resp. By this we were able to demonstrate that topology-based mobility models
can be used to improve the scope of performance analysis of such protocols.

There are several possible directions for future work. First, we hope that our
model is combined with a variety of protocols. Anybody who has some experience
with the model checker Uppaal should be able to integrate our model easily.
Second, we want to extend our mobility model to more than one mobile node.
Having many mobile nodes will most likely increase the state space significantly,
but statistical model checking should overcome this drawback. Last, but not
least, we plan to use the mobility model to perform a thorough and detailed
analysis of AODV and LMAC. In this paper we have only scratched the surface
of the analysis; we expect to find unexpected behaviour in both protocols.

References

1. Basu, P., Redi, J., Shurbanov, V.: Coordinated flocking of UAVs for improved
connectivity of mobile ground nodes. In: MILCOM 2004, pp. 1628–1634. IEEE
(2004)

2. Bettstetter, C., Hartenstein, H., Pérez-Costa, X.: Stochastic properties of the ran-
dom waypoint mobility model. Wireless Networks 10(5), 555–567 (2004)

3. Bulychev, P., David, A., Larsen, K., Mikučionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: UPPAAL-SMC: Statistical model checking for priced timed automata.
In: Wiklicky, H., Massink, M. (eds.) Quantitative Aspects of Programming Lan-
guages and Systems. EPTCS, vol. 85, pp. 1–16. Open Publishing Association (2012)

4. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. In: Wireless Communications & Mobile Computing (WCMC 2002), pp.
483–502 (2002)

5. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
A process algebra for wireless mesh networks. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 295–315. Springer, Heidelberg (2012)

6. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012)

3 The models are available at http://repository.usp.ac.fj/5880

http://repository.usp.ac.fj/5880


404 A. Fehnker et al.

7. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC
protocol for wireless sensor networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007)

8. Ghassemi, F., Ahmadi, S., Fokkink, W., Movaghar, A.: Model checking mANETs
with arbitrary mobility. In: Arbab, F., Sirjani, M. (eds.) FSEN 2013. LNCS,
vol. 8161. Springer, Heidelberg (2013)

9. Godskesen, J.C.: A calculus for mobile ad hoc networks. In: Murphy, A.L., Vitek, J.
(eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidelberg
(2007)

10. Groenevelt, R., Altman, E., Nain, P.: Relaying in mobile ad hoc networks: the
Brownian motion mobility model. Wireless Networks 12(5), 561–571 (2006)

11. van Hoesel, L., Havinga, P.: A lightweight medium access protocol (LMAC) for
wireless sensor networks: Reducing preamble transmissions and transceiver state
switches. In: Networked Sensing Systems, INSS 2004, pp. 205–208. Society of In-
strument and Control Engineers (SICE) (2004)

12. van Hoesel, L.: Sensors on speaking terms: schedule-based medium access control
protocols for wireless sensor networks. Ph.D. thesis, University of Twente (2007)

13. McGuire, M.: Stationary distributions of random walk mobility models for wireless
ad hoc networks. In: Mobile Ad Hoc Networking and Computing (MobiHoc 2005),
pp. 90–98. ACM (2005)

14. Perkins, C., Royer, E.: Ad-hoc On-Demand Distance Vector Routing. In: 2nd IEEE
Workshop on Mobile Computing Systems and Applications, pp. 90–100 (1999)

15. Roy, R.R.: Handbook of Mobile Ad Hoc Networks for Mobility Models. Springer
(2011)

16. Song, L., Godskesen, J.C.: Probabilistic mobility models for mobile and wireless
networks. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp.
86–100. Springer, Heidelberg (2010)

17. Tschirner, S., Xuedong, L., Yi, W.: Model-based validation of qos properties of
biomedical sensor networks. In: Embedded Software (EMSOFT 2008), pp. 69–78.
ACM (2008)

18. Wibling, O., Parrow, J., Pears, A.N.: Automatized verification of ad hoc routing
protocols. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235,
pp. 343–358. Springer, Heidelberg (2004)

19. Yoon, J., Liu, M., Noble, B.: Random waypoint considered harmful. In: Joint Con-
ference of the IEEE Computer and Communications (INFOCOM 2003). IEEE
(2003)

20. Younes, H.: Verification and Planning for Stochastic Processes with Asynchronous
Events. Ph.D. thesis, Carnegie Mellon University (2004)



Author Index

Abate, Alessandro 274, 305
Abdulla, Parosh Aziz 338
Ábrahám, Erika 39
Adzkiya, Dieky 274
Akshay, S. 290
Anastasiou, Nikolas 169
Aspirot, Laura 139

Bacci, Giorgio 278
Bacci, Giovanni 278
Ballarini, Paolo 355
Barthe, Gilles 1
Becker, Bernd 39
Bertrand, Nathalie 290, 355
Bortolussi, Luca 89, 123
Boyer, Benôıt 160

Chen, Taolue 322
Clemente, Lorenzo 338
Corre, Kevin 160
Correa, Claiton 286

Dayarathna, Miyuru 225
de A. Rocha, Antonio A. 3
de Boer, Pieter-Tjerk 372
Delahaye, Benôıt 22
Deng, Yi 165
de Souza e Silva, Edmundo 3
Dotti, Fernando Lúıs 286

Eisentraut, Christian 72

Fahrenberg, Uli 22
Fehnker, Ansgar 389

Gretz, Friedrich 193
Guck, Dennis 55
Guldstrand Larsen, Kim 22, 278

Haddad, Serge 290
Happ, Daniel 258
Hatefi, Hassan 55
Haverkort, Boudewijn 372
Hélouët, Löıc 290
Hermanns, Holger 55, 72

Höfner, Peter 389
Horváth, András 355

Iliadis, Ilias 241

Jansen, David N. 209
Jansen, Nils 39
Julius, A. Agung 165

Kamali, Maryam 389
Katoen, Joost-Pieter 39, 55, 193
Keefe, Ken 282
Klebanov, Vladimir 177
Knottenbelt, William 169
Kordy, Barbara 173
Kordy, Piotr 173
Krämer, Julia 72
Kwiatkowska, Marta 322

Lanciani, Roberta 123
Leão, Rosa M.M. 3
Legay, Axel 22, 160
Lenhardt, Rastislav 155

Manthey, Norbert 177
Mardare, Radu 278
Mauw, Sjouke 173
Mayr, Richard 338
McIver, Annabelle 193
Mehta, Vinay 389
Mordecki, Ernesto 139
Muise, Christian 177

Oleksinski, Lucas 286

Paolieri, Marco 355

Rajhans, Akshay 165
Reijsbergen, Daniël 372
Reinecke, Philipp 258
Rubino, Gerardo 139

Sadoc Menasché, Daniel 3
Sales, Afonso 286
Sandberg, Sven 338



406 Author Index

Sanders, William H. 282
Sanguinetti, Guido 89
Scheinhardt, Werner 372
Schweitzer, Patrick 173
Sedwards, Sean 160
Simaitis, Aistis 322
Song, Lei 209
Spieler, David 106
Suzumura, Toyotaro 225

Timmer, Mark 55
Turrini, Andrea 72

Venkatesan, Vinodh 241

Vicario, Enrico 355

Vorpahl, Andreas 39

Wiltsche, Clemens 322

Wimmer, Ralf 39

Wolter, Katinka 258

Zamani, Majid 305

Zhang, Lijun 72, 209


	Preface
	Organization
	Table of Contents
	Session 1: Invited Talks
	Computer-Aided Security Proofs
	References

	On the Interplay between Content Popularityand Performance in P2P Systems
	1Introduction
	2Fairness
	2.1Unfairness Observed through an Experiment
	2.2Why Unfairness?

	3Content Availability and Self-sustainability
	3.1 Single Content
	3.2Multiple Contents

	4Scalability
	4.1Missing Piece Syndrome and the Most Deprived Peer Selection First
	4.2Closed System Analysis

	5Conclusion
	References


	Session 2: Probabilistic Automataand Markov Automata
	Refinement and Difference for Probabilistic Automata
	1Introduction
	2Background
	3Refinement and Distances between APAs
	4Difference Operators for Deterministic APAs
	4.1 Over-Approximating Difference
	4.2Under-Approximating Difference
	4.3Properties

	5Conclusion
	References

	High-Level Counterexamples for Probabilistic Automata
	1Introduction
	2Foundations
	3Computing Counterexamples
	4Simplification of Counterexamples
	5Experiments
	6Conclusion
	References

	Modelling, Reduction and Analysisof Markov Automata
	1Introduction
	2Preliminaries
	3Efficient Modeling of Markov Automata
	4Expected Time Objectives
	5 Long Run Objectives
	6Timed Reachability Objectives
	7Tool-Chain and Case Studies
	7.1MaMa Tool Chain
	7.2Case Studies

	8Conclusion
	References

	Deciding Bisimilarities on Distributions
	1Introduction
	2Preliminaries
	3Probabilistic Bisimulations
	4Correctness of the Characterisation
	5Decision Procedure
	5.1Matching Weak Transitions, Consistency Checking, and Splitting

	6Related Work
	7�Concluding Remarks
	References


	Session 3: Population Models
	Learning and Designing Stochastic Processesfrom Logical Constraints
	1Introduction
	2Problem Definition
	2.1Metric Interval Temporal Logic
	2.2Likelihood Function
	2.3Statistical Model Checking

	3Global Optimisation
	3.1Gaussian Processes
	3.2GP Regression and Prediction
	3.3Upper Confidence Bound Optimisation
	3.4Estimating Uncertainty
	3.5Model Design

	4Experiments
	4.1 Poisson Process
	4.2Network Epidemics
	4.3System Design

	5Conclusions
	References

	Characterizing Oscillatory and Noisy Periodic Behavior in Markov Population Models
	1Introduction
	2Preliminaries
	2.1Markov Population Models
	2.2Markov Population Models of Chemical Reaction Networks
	2.3Steady State Analysis for Infinite MPM
	2.4Transient Analysis for Infinite MPM

	3Defining and Analyzing Oscillatory Behavior
	3.1Continuous-Deterministic Solution
	3.2Discrete-Stochastic Approach
	3.3Oscillatory Behavior and Noisy Periodicity
	3.4Period Detector Expansion
	3.5Analysis of the PDMPM

	4Numerical Results
	4.1 Three-Way Oscillator
	4.2Repressilator

	5Conclusion
	References

	Model Checking Markov Population Models by Central Limit Approximation
	1 Introduction
	2 Population Models
	2.1 Running Example

	3 Individual and Collective Properties
	4 Synchronisation of Agents and Properties
	5 Central Limit Approximation
	6 Computing the Probability of Collective Properties
	7 Experimental Analysis
	8 Conclusions
	References

	Fluid Limit for the Machine Repairman Model with Phase-Type Distributions
	1Introduction
	2Model
	3Drift Computation and Description of the Limit
	4Main Results
	5Numerical Examples
	6Conclusions
	7Proofs
	References


	Session 4: Tool Demos I
	Tulip: Model Checking Probabilistic SystemsUsing Expectation Maximisation Algorithm
	1Introduction
	2Tulip
	3Experiments
	4Conclusions and Future Work
	References

	PLASMA-lab: A Flexible, DistributableStatistical Model Checking Library
	References

	STRONG: A Trajectory-Based VerificationToolbox for Hybrid Systems
	1Introduction
	2Features and Functionalities
	3Examples
	References

	PEPERCORN: Inferring Performance Modelsfrom Location Tracking Data
	1Introduction
	2PEPERCORN
	3Conclusion
	References

	ADTool: Security Analysiswith Attack–Defense Trees
	1Background and Motivation
	2Main Features of ADTool
	3Implementation Characteristics
	4Conclusion and Future Work
	References


	Session 5: Model Checking and Systems
	SAT-Based Analysis and Quantificationof Information Flow in Programs
	1Introduction
	2QIF Basics and Technical Preliminaries
	3Analysis, Abstractly
	4From Program to Transition Relation with Bounded Model Checking
	5Model Enumeration and Counting
	5.1Iterative Model Enumeration/Counting
	5.2Model Counting via Compilation to d-DNNF
	5.3Boosting Counting Performance with Formula Preprocessing

	6Benchmarks and Evaluation
	6.1Synthetic Benchmarks
	6.2Linux Kernel
	6.3Image Anonymization

	7Related Work
	8Conclusion
	References

	Prinsys—On a Quest for Probabilistic LoopInvariants
	1Introduction
	2 Background
	3Our Approach
	4Applications
	5Evaluation
	6Conclusion
	References

	Revisiting Weak Simulationfor Substochastic Markov Chains
	1 Introduction
	2 Preliminaries
	2.1 Substochastic Discrete-Time Markov Chains
	2.2 Probabilistic CTL

	3 Weak Bisimulation and Divergence
	4 Defects of Original Weak Simulation
	5 A New Notion of Weak Simulation
	6 Soundness and Completeness
	6.1 A Sound and Complete Variant

	7 Conclusion
	References

	A Performance Analysis of System S, S4,and Esper via Two Level Benchmarking
	1Introduction
	2�Related Work
	3An Overview of Stream Processing Software
	4Methodology and Performance Metrics
	4.1Sample Programs and Data Sets
	4.2Experimental Setup
	4.3Performance Metrics
	4.4Objectives and Methodology

	5Performance Evaluation
	5.1Job Throughput
	5.2CPU Usage
	5.3Memory Usage
	5.4Network I/O

	6Discussion
	7Conclusion
	References


	Session 6: Systems
	Effect of Codeword Placement on the Reliabilityof Erasure Coded Data Storage Systems
	1Introduction
	2Related Work
	3System Model
	3.1Storage Node
	3.2Redundancy
	3.3Codeword Placement
	3.4Node Failure
	3.5Node Rebuild
	3.6Failure and Rebuild Time Distributions

	4Reliability Analysis
	4.1Mean Time to Data Loss (MTTDL)
	4.2Probability of Data Loss in Rebuild Mode (PDL)
	4.3Probability of the Direct Path to Data Loss (PDL,direct)

	5Effect of Codeword Placement on Reliability
	6Numerical Results
	7Simulations
	8Conclusion
	References

	Fault-Impact Models Based on Delayand Packet Loss for IEEE 802.11g
	1Introduction
	2Motivating Examples
	3Related Work
	4Experiment Setup and Methodology
	4.1Packet-Loss Measurements
	4.2Delay Measurements

	5Results
	5.1Packet-Loss Measurements
	5.2Delay Measurements

	6Fault-Impact Modelling
	6.1Loss Models
	6.2Delay Models

	7Conclusion
	References


	Session 7: Tools Demos II
	VeriSiMPL: Verification via biSimulationsof MPL Models
	1Motivations and Goals
	2Nuts and Bolts of Max-Plus-Linear Models
	3From MPL Models to Labeled Transition Systems
	3.1LTS States: Partitioning of MPL Space
	3.2LTS Transitions: Forward-Reachability Analysis
	3.3LTS Labels: Fast Manipulation of DBM

	4Computational Benchmark and Case Study
	References

	The BisimDist Library: Efficient Computationof Bisimilarity Distances for Markovian Models
	1Introduction
	2The BisimDist Library
	3Results and Conclusions
	References

	M\"{o}bius Shell:A Command-Line Interface for M\"{o}bius
	1The Möbius Modeling Environment
	2Using the Möbius Shell
	3Key Möbius Shell Commands
	3.1Help
	3.2Generate, Compile, and Save
	3.3Run
	3.4Edit

	References

	A CTL Model Checkerfor Stochastic Automata Networks
	1Introduction
	2Tool Overview
	3Experiments
	4Conclusions and Future Works
	References


	Session 8: Control and Games
	The Steady-State Control Problemfor Markov Decision Processes
	1Introduction
	2Preliminaries
	2.1Markov Chains
	2.2Markov Decision Processes

	3The Steady-State Control Problem
	3.1Markov Decision Processes
	3.2Labeled Markov Decision Processes
	3.3Partially Observable Markov Decision Processes

	4Conclusion
	References

	Symbolic Control of Stochastic Switched Systemsvia Finite Abstractions
	1Introduction
	2Stochastic Switched Systems
	2.1Notation
	2.2Stochastic Switched Systems

	3Notions of Incremental Stability
	4Symbolic Models and Approximate Equivalence Relations
	5Symbolic Models for Stochastic Switched Systems
	5.1Common Lyapunov Function
	5.2Multiple Lyapunov Functions

	6Case Study
	References

	Synthesis for Multi-objective Stochastic Games:An Application to Autonomous Urban Driving
	1Introduction
	2Preliminaries
	3Computing the Pareto Frontiers
	4Strategy Synthesis
	5Case Study
	5.1Problem Setting
	5.2Model
	5.3Objectives
	5.4Implementation
	5.5Results

	6Conclusion
	References

	Stochastic Parity Games on Lossy Channel Systems
	1Introduction
	2Preliminaries
	3Reachability
	4Parity Conditions
	5Lossy Channel Systems
	6From Scheme to Algorithm
	7Conclusions and Discussion
	References


	Session 9: Timed Automata and Simulation
	Transient Analysis of Networks of StochasticTimed Automata Using Stochastic State Classes
	1Introduction
	2Model Definition and Semantics
	2.1Timed Automata
	2.2Stochastic Timed Automata
	2.3Networks of Stochastic Timed Automata
	2.4Underlying Stochastic Process of STA and NSTA 

	3Transient Analysis
	3.1Stochastic State Classes for NSTA
	3.2Transient Tree Enumeration and Transient Measures
	3.3Termination

	4Example
	5Conclusions
	References

	Automated Rare Event Simulationfor Stochastic Petri Nets
	1Introduction
	2Context within the Literature
	3Model and Preliminaries
	3.1Discrete-Time Stochastic Petri Nets
	3.2Running Example
	3.3Problem Setting
	3.4Efficient Simulation

	4An Algorithm for Determining the Distance Function
	4.1Main Loop 
	4.2Initialisation Phase (initZoneGraph())
	4.3Divide Zones According to Possibility of Firing (possibilitySplit())
	4.4Divide Zones According to Costs (costSplit())

	5Empirical Results
	5.1Results of the Distance Finding Algorithm
	5.2Simulation Results

	6Discussion and Conclusions
	6.1Conclusions
	6.2Discussion

	References

	Topology-Based Mobility Modelsfor Wireless Networks
	1Introduction
	2Related Work
	3Topology-Based Mobility Model
	4Simulations of Two Mobility Models
	4.1Simulator
	4.2Simulation Results

	5Uppaal Model
	6Application Examples
	6.1The Ad-Hoc on Demand Distance Vector (AODV) Protocol
	6.2The Lightweight Medium Access Control (LMAC) Protocol

	7Conclusion
	References


	Author Index



