
Compositional Verification and Optimization

of Interactive Markov Chains�

Holger Hermanns1, Jan Krčál2, and Jan Křet́ınský2,3

1 Saarland University – Computer Science, Saarbrücken, Germany
2 Faculty of Informatics, Masaryk University, Czech Republic

3 Institut für Informatik, Technical University Munich, Germany

Abstract. Interactive Markov chains (IMC) are compositional
behavioural models extending labelled transition systems and continuous-
time Markov chains. We provide a framework and algorithms for compo-
sitional verification and optimization of IMC with respect to
time-bounded properties. Firstly, we give a specification formalism for
IMC. Secondly, given a time-bounded property, an IMC component and
the assumption that its unknown environment satisfies a given speci-
fication, we synthesize a scheduler for the component optimizing the
probability that the property is satisfied in any such environment.

1 Introduction

The ever increasing complexity and size of systems together with software reuse
strategies naturally enforce the need for component based system development.
For the same reasons, checking reliability and optimizing performance of such
systems needs to be done in a compositional way. The task is to get useful
guarantees on the behaviour of a component of a larger system. The key idea
is to incorporate assumptions on the rest of the system into the verification
process. This assume-guarantee reasoning is arguably a successful divide-and-
conquer technique in many contexts [MC81, AH96, HMP01].

In this work, we consider a continuous-time stochastic model called interactive
Markov chains (IMC). First, we give a language for expressing assumptions
about IMC. Second, given an IMC, an assumption on its environment and a
property of interest, we synthesize a controller of the IMC that optimizes the
guarantee, and we compute this optimal guarantee, too.

Interactive Markov chains are behavioural models of probabilistic systems
running in continuous real time appropriate for the component-based approach
[HK09]. IMC have a well-understood compositional theory rooted in process alge-
bra, and are in use as semantic backbones for dynamic fault trees, architectural

� The work has received support from the Czech Science Foundation, project
No. P202/12/G061, from the German Science Foundation DFG as part of
SFB/TR 14 AVACS, and by the EU FP7 Programme under grant agreement no.
295261 (MEALS) and 318490 (SENSATION).

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 364–379, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Compositional Verification and Optimization of IMC 365

description languages, generalized stochastic Petri nets and Statemate exten-
sions, see [HK09] for a survey. IMC are applied in a large spectrum of practical
applications, ranging from water treatment facilities [HKR+10] to ultra-modern
satellite designs [EKN+12].

init s

u

v goal

a

ττ 2

1
3

IMC arise from classical labelled transition systems
by incorporating the possibility to change state accord-
ing to a random delay governed by a negative expo-
nential distribution with a given rate, see transitions
labelled 1, 2 and 3 in the figure. Apart from delay ex-
pirations, state transitions may be triggered by the ex-
ecution of internal (τ) actions or external (synchronization) actions. Internal
actions are assumed to happen instantaneously and therefore take precedence
over delay transitions. External actions are the process algebraic means for in-
teraction with other components, see a in the figure. By dropping the delay
transitions, labelled transition systems are regained in their entirety. Dropping
action-labelled transitions instead yields continuous-time Markov chains – one
of the most used performance and reliability models.

The fundamental problem in the analysis of IMC is that of time-bounded
reachability. It is the problem to approximate the probability that a given set of
states is reached within a given deadline. We illustrate the compositional setting
of this problem in the following examples.

Examples. In the first example, consider the IMC C from above and an unknown
environment E with no assumptions. Either E is initially not ready to synchronize
on the external action a and thus one of the internal actions is taken, or E is
willing to synchronize on a at the beginning. In the latter case, whether τ or a
happens is resolved non-deterministically. Since this is out of control of C, we
must assume the worst case and let the environment decide which of the two
options will happen. For more details on this design choice, see [BHK+12]. If
there is synchronization on a, the probability to reach goal within time t = 1.5
is 1− e−2t ≈ 0.95. Otherwise, C is given the choice to move to u or v. Naturally,
v is the choice maximizing the chance to get to goal on time as it has a higher
rate associated. In this case the probability amounts to 1− e−3t ≈ 0.99, while if
u were chosen, it would be only 0.78. Altogether, the guaranteed probability is
95% and the strategy of C is to choose v in init .

init proc ret goal
req τ resp

τ

The example depicted on the
right illustrates the necessity of as-
sumptions on the environment: As
it is, the environment can drive the
component to state ret and let it get stuck there by not synchronising on resp
ever. Hence no better guarantee than 0 can be derived. However, this changes if
we know some specifics about the behaviour of the environment: Let us assume
that we know that once synchronization on req occurs, the environment must
be ready to synchronise on resp within some random time according to, say,
an exponential distribution with rate 2. Under this assumption, we are able to
derive a guarantee of 95%, just as in the previous example.

366 H. Hermanns, J. Krčál, and J. Křet́ınský

Observe the form of the time constraint we imposed in the last example:
“within a random time distributed according to Exp(2)” or symbolically ♦≤Exp(2)

ϕ. We call this a continuous time constraint. If a part of the environment is e.g. a
model of a communication network, it is clear we cannot impose hard bounds
(discrete time constraints) such as “within 1.5” as in e.g. a formula of MTL
♦≤1.5ϕ. Folklore tells us that messages might get delayed for longer than that.
Yet we want to express high assurance that they arrive on time. In this case
one might use e.g. a formula of CSL Pr≥0.95(♦≤1.5ϕ). However, consider now a
system with two transitions labelled with resp in a row. Then this CSL formula
yields only a zero guarantee. By splitting the time 1.5 in halves, the respective
Pr≥0.77(♦≤0.75ϕ) yields only the guarantee 0.772 = 0.60. The actual guarantee
0.80 is given by the convolution of the two exponential distributions and as such
can be exactly obtained from our continuous time constraint ♦≤Exp(2)ϕ.

Our contribution is the following:

1. We introduce a specification formalism to express assumptions on continuous-
time stochastic systems. The novel feature of the formalism are the continu-
ous time constraints, which are vital for getting guarantees with respect to
time-bounded reachability in IMC.

2. We incorporate the assume-guarantee reasoning to the IMC framework. We
show how to synthesize ε-optimal schedulers for IMC in an unknown en-
vironment satisfying a given specification and approximate the respective
guarantee.

In our recent work [BHK+12] we considered a very restricted setting of the sec-
ond point. Firstly, we considered no assumptions on the environment as the
environment of a component might be entirely unknown in many scenarios. Sec-
ondly, we were restricted to IMC that never enable internal and external tran-
sitions at the same state. This was also a severe limitation as this property is
not preserved during the IMC composition process and restricts the expressivity
significantly. Both examples above violate this assumption. In this paper, we lift
the assumption.

Each of the two extensions shifts the solution methods from complete informa-
tion stochastic games to (one-sided) partial observation stochastic games, where
we need to solve the quantitative reachability problem. While this is undecidable
in general, we reduce our problem to a game played on an acyclic graph and show
how to solve our problem in exponential time. (Note that even the qualitative
reachability in the acyclic case is PSPACE-hard [CD10].)

Related Work. The synthesis problem is often stated as a game where the
first player controls a component and the second player simulates an envi-
ronment [RW89]. Model checking of open systems, i.e. operating in an un-
known environment, has been proposed in [KV96]. There is a body of work
on assume-guarantee reasoning for parallel composition of real-time systems
[TAKB96, HMP01]. Lately, games with stochastic continuous-time have gained
attention, for a very general class see [BF09]. While the second player mod-
els possible schedulers of the environment, the structure of the environment

Compositional Verification and Optimization of IMC 367

is fixed there and the verification is thus not compositional. The same holds
for [Spr11, HNP+11], where time is under the control of the components.

A compositional framework requires means for specification of systems. A
specification can be also viewed as an abstraction of a set of systems. Three
valued abstractions stemming from [LT88] have also been applied to the timed
setting, namely in [KKLW07] to continuous-time Markov chains (IMC with no
non-determinism), or in [KKN09] to IMC. Nevertheless, these abstractions do
not allow for constraints on time distributions. Instead they would employ ab-
stractions on transition probabilities. Further, a compositional framework with
timed specifications is presented in [DLL+12]. This framework explicitly allows
for time constraints. However, since the systems under consideration have non-
deterministic flow of time (not stochastic), the natural choice was to only allow
for discrete (not continuous) time constraints.

Although IMC support compositional design very well, analysis techniques
for IMC proposed so far (e.g. [KZH+11, KKN09, ZN10, GHKN12] are not com-
positional. They are all bound to the assumption that the analysed IMC is a
closed system, i.e. it does not depend on interaction with the environment (all
actions are internal). Some preliminary steps to develop a framework for syn-
thesis of controllers based on models of hardware and control requirements have
been taken in [Mar11]. The first attempt at compositionality is our very recent
work [BHK+12] discussed above.

Algorithms for the time-bounded reachability problem for closed IMC have
been given in [ZN10, BS11, HH13] and compositional abstraction techniques to
compute it are developed in [KKN09]. In the closed interpretation, IMC have
some similarities with continuous-time Markov decision processes. For this for-
malism, algorithms for time-bounded reachability are developed in
[BHKH05, BS11].

2 Interactive Markov Chains

In this section, we introduce the formalism of interactive Markov chains together
with the standard way to compose them. We denote by N, R>0, and R≥0 the
sets of positive integers, positive real numbers and non-negative real numbers,
respectively. Further, let D(S) denote the set of probability distributions over
the set S.

Definition 1 (IMC). An interactive Markov chain (IMC) is a quintuple C =
(S,Actτ , ↪→,�, s0) where S is a finite set of states, Actτ is a finite set of actions
containing a designated internal action τ , s0 ∈ S is an initial state,

– ↪→ ⊆ S × Actτ × S is an interactive transition relation, and
– � ⊆ S × R>0 × S is a Markovian transition relation.

Elements of Act := Actτ �{τ} are called external actions. We write s
a
↪→ t when-

ever (s, a, t) ∈ ↪→, and s
λ� t whenever (s, λ, t) ∈ � where λ is called a rate

of the transition. We say that an external action a, or internal τ , or Markovian
transition is available in s, if s

a
↪→ t, s

τ
↪→ t or s

λ� t for some t (and λ), respectively.

368 H. Hermanns, J. Krčál, and J. Křet́ınský

IMC are well suited for compositional modelling, where systems are built
out of smaller ones using standard composition operators. Parallel composition
‖A over a synchronization alphabet A produces a product of two IMC with
transitions given by the rules

(PC1) (s1, s2)
a
↪→ (s′1, s

′
2) for each s1

a
↪→ s′1 and s2

a
↪→ s′2 and a ∈ A,

(PC2, PC3) (s1, s2)
a
↪→ (s′1, s2) for each s1

a
↪→ s′1 and a �∈ A, and symmetrically,

(PC4, PC5) (s1, s2)
λ� (s′1, s2) for each s1

λ� s′1, and symmetrically.

Further, hiding �A an alphabet A, yields a system, where each s
a
↪→ s′ with

a /∈ A is left as it is, and each s
a
↪→ s′ with a ∈ A is replaced by internal s

τ
↪→ s′.

Hiding �Act thus yields a closed IMC, where external actions do not appear
as transition labels (i.e. ↪→ ⊆ S × {τ} × S). A closed IMC (under a scheduler
σ, see below) moves from state to state and thus produces a run which is an
infinite sequence of the form s0 t1 s1 t2 s2 · · · where sn is the n-th visited state
and tn is the time of arrival to sn. After n steps, the scheduler resolves the non-
determinism among internal τ transitions based on the path p = s0 t1 · · · tn sn.

Definition 2 (Scheduler). A scheduler of an IMC C = (S,Actτ , ↪→,�, s0)
is a measurable function σ : (S × R≥0)

∗ × S → D(S) such that for each path
p = s0 t1 s1 · · · tn sn with sn having τ available, σ(p)(s) > 0 implies sn

τ
↪→ s. The

set of all schedulers for C is denoted by S(C).

The decision of the scheduler σ(p) determines tn+1 and sn+1 as follows. If sn
has available τ , then the run proceeds immediately, i.e. at time tn+1 := tn, to a
state sn+1 randomly chosen according to the distribution σ(p). Otherwise, only
Markovian transitions are available in sn. In such a case, after waiting for a
random time t chosen according to the exponential distribution with the rate
R(sn) =

∑

sn
λ�s′

λ, the run moves at time tn+1 := tn + t to a randomly chosen

next state sn+1 with probability λ/r where sn
λ� sn+1. This defines a probability

space (Runs,F ,Pσ
C) over the runs in the standard way [ZN10].

3 Time-Bounded Reachability

In this section, we introduce the studied problems. One of the fundamental
problems in verification and performance analysis of continuous-time stochastic
systems is time-bounded reachability. Given a closed IMC C, a set of goal states
G ⊆ S and a time bound T ∈ R≥0, the value of time-bounded reachability is
defined as supσ∈S(C) Pσ

C
[
♦≤TG

]
where Pσ

C
[
♦≤TG

]
denotes the probability that

a run of C under the scheduler σ visits a state of G before time T . We have
seen an example in the introduction. A standard assumption over all analy-
sis techniques published for IMC [KZH+11, KKN09, ZN10, GHKN12] is that
each cycle contains a Markovian transition. It implies that the probability of
taking infinitely many transitions in finite time, i.e. of Zeno behaviour, is zero.
One can ε-approximate the value and compute the respective scheduler in time
O(λ2T 2/ε) [ZN10] recently improved to O(

√
λ3T 3/ε) [HH13].

Compositional Verification and Optimization of IMC 369

For an open IMC to be put in parallel with an unknown environment, the
optimal scheduler is computed so that it optimizes the guarantee against all
possible environments. Formally, for an IMC C = (C,Actτ , ↪→,�, c0) and an
environment IMC E with the same action alphabet Actτ , we introduce a compo-
sition C|E = (C ‖Act E)�Act where all open actions are hidden, yielding a closed
system. In order to compute guarantees on C|E provided we use a scheduler σ
in C, we consider schedulers π of C|E that respect σ on the internal actions of C,
written π ∈ Sσ(C|E); the formal definition is below. The value of compositional
time-bounded reachability is then defined in [BHK+12] as

sup
σ∈S(C)

inf
E∈ENV

π∈Sσ(C|E)
Pπ
C|E

[
♦≤TG

]

where ENV denotes the set of all IMC with the action alphabet Actτ and ♦≤TG
is the set of runs that reach G in the first component before T . Now π respects
σ on internal actions of C if for every path p = (c0, e0) t1 · · · tn(cn, en) of C|E
there is p ∈ [0, 1] such that for each internal transition cn

τ
↪→ c of C, we have

π(p)(c, en) = p ·σ(pC)(c). Here pC is the projection of p where σ can only see the
path of moves in C and not in which states E is. Formally, we define observation
of a path p = (c0, e0) t1 · · · tn(cn, en) as pC = c0t1 · · · tncn where each maximal
consecutive sequence ti ci · · · tj cj with ck = ci for all i ≤ k ≤ j is rewritten to
ti ci. This way, σ ignores precisely the internal steps of E .

3.1 Specifications of Environments

In the second example in the introduction, without any assumptions on the envi-
ronment only zero guarantees could be derived. The component was thus indis-
tinguishable from an entirely useless one. In order to get a better guarantee, we
introduce a formalism to specify assumptions on the behaviour of environments.

Example 1. In the mentioned example, if we knew that after an occurrence of req
the environment is ready to synchronize on resp in time distributed according to
Exp(3) or faster, we would be able to derive a guarantee of 0.26. We will depict
this assumption as shown below.

resp reqreq

req

resp

	

≤ Exp(3)
The dashed arrows denote may transitions,

which may or may not be available, whereas
the full arrows denote must transitions, which
the environment is ready to synchronize on.
Full arrows are further used for time transi-
tions.

Although such a system resembles a timed automaton, there are several fun-
damental differences. Firstly, the time constraints are given by probability dis-
tributions instead of constants. Secondly, there is only one clock that, moreover,
gets reset whenever the state is changed. Thirdly, we allow modalities of may
and must transitions. Further, as usual with timed or stochastic specifications,
we require determinism.

370 H. Hermanns, J. Krčál, and J. Křet́ınský

Definition 3 (MCA syntax). A continuous time constraint is either 	 or of
the form
� d with
� ∈ {≤,≥} and d a continuous distribution.We denote the set
of all continuous time constraints by CT C. A modal continuous-time automaton
(MCA) over Σ is a tuple S = (Q, q0, ���,−→,�), where
– Q is a non-empty finite set of locations and q0 ∈ Q is an initial location,
– −→, ��� : Q× Σ → Q are must and may transition functions, respectively,

satisfying −→ ⊆ ���,
– � : Q → CT C ×Q is a time flow function.

We have seen an example of an MCA in the previous example. Note that upon
taking req from the first state, the waiting time is chosen and the waiting starts.
On the other hand, when req self-loop is taken in the middle state, the waiting
process is not restarted, but continues on the background independently.(1) We
introduce this independence as a useful feature to model properties as “response
follows within some time after request” in the setting with concurrently running
processes. Further, we have transitions under 	 corresponding to “> 0”, mean-
ing there is no restriction on the time distribution except that the transition
takes non-zero time. We formalize this in the following definition. With other
respects, the semantics of may and must transitions follows the standards of
modal transition systems [LT88].

Definition 4 (MCA semantics). An IMC E = (E,Actτ , ↪→,�, e0) conforms
to an MCA specification S = (Q, q0, ���,−→,�), written E |= S, if there is
a satisfaction relation R ⊆ E × Q containing (e0, q0) and satisfying for each
(e, q) ∈ R that whenever

1. q
a−→ q′ then there is some e

a
↪→ e′ and if, moreover, q �= q′ then e′Rq′,

2. e
a
↪→ e′ then there is (unique) q

a��� q′ and if, moreover, q �= q′ then e′Rq′,
3. e

τ
↪→ e′ then e′Rq,

4. q
ctc� q′ then for every IMC C and every scheduler π ∈ S(C|e),(2) there is a

random variable Stop : Runs → R>0 on the probability space (Runs,F ,Pπ
C|e)

such that
– if ctc is of the form
� d then the cumulative distribution function of

Stop is point-wise
� cumulative distribution function of d (there are no
constraints when ctc =), and

– for every run ρ of C|e under π, either a transition corresponding to syn-

chronization on action a with q
a��� q′ �= q is taken before time Stop(ρ),

or
• the state (c, e′) visited at time Stop(ρ) satisfies e′Rq′, and
• for all states (c̄, ē) visited prior to that, whenever

(a) q
a−→ q′ then there is e

a
↪→ e′,

(b) e
a
↪→ e′ then there is q

a��� q′.
The semantics of S is the set �S� = {E ∈ IMC | E |= S} of all conforming IMC.

(1) This makes no difference for memoryless exponential distributions, but for all other
distributions it does.

(2) Here e stands for the IMC E with the initial state e.

Compositional Verification and Optimization of IMC 371

b
≤ Er(3, 1)

a

1 1

a
a

b

Example 2. We illustrate this definition. Consider
the MCA on the right above specifying that a is
ready and b will be ready either immediately after
taking a or within the time distributed accord-
ing to the Erlang distribution Er(3, 1), which is
a convolution of three Exp(1) distributions. The
IMC below conforms to this specification (here,
Stop ∼ Er(2, 1) can be chosen). However, observe that it would not conform, if
there was no transition under a from the middle to the right state. Satisfying
the modalities throughout the waiting is namely required by the last bullet of
the previous definition.

3.2 Assume-Guarantee Optimization

We can now formally state what guarantees on time-bounded reachability we
can derive provided the unknown environment conforms to a specification S.
Given an open IMC C, a set of goal states G ⊆ C and a time bound T ∈ R≥0,
the value of compositional time-bounded reachability conditioned by an MCA S
is defined as

vS(C) := sup
σ∈S(C)

inf
E∈ENV:E|=S
π∈Sσ(C|E)

Pπ
C|E

[
♦≤TG

]

In this paper, we pose a technical assumption on the set of schedulers of C. For
some clock resolution δ > 0, we consider only such schedulers σ that take the
same decision for any pair of paths c0t1 . . . tncn and c0t

′
1 . . . t

′
ncn with ti and

t′i equal when rounded down to a multiple of δ for all 1 ≤ i ≤ n. This is no
practical restriction as it is not possible to achieve arbitrary resolution of clocks
when implementing the scheduler. Observe this is a safe assumption as it is not
imposed on the unknown environment.

We consider specifications S where distributions have differentiable density
functions. In the rest of the paper we show how to approximate vS(C) for such S.
Firstly, we make a product of the given IMC and MCA. Secondly, we transform
the product to a game. This game is further discretized into a partially observable
stochastic game played on a dag where the quantitative reachability is solved.
For full proofs, see [HKK13].

4 Product of IMC and Specification

In this section, we first translate MCA S into a sequence of IMC (Si)i∈N. Second,
we combine the given IMC C with the sequence (Si)i∈N into a sequence of product
IMC (C × Si)i∈N that will be further analysed. The goal is to reduce the case
where the unknown environment is bound by the specification to a setting where
we solve the problem for the product IMC while quantifying over all possible
environments (satisfying only a simple technical assumption discussed at the end
of the section), denoted ENV′. The reason why we need a sequence of products

372 H. Hermanns, J. Krčál, and J. Křet́ınský

instead of one product is that we need to approximate arbitrary distributions
with more and more precise and detailed hyper-Erlang distributions expressible
in IMC. Formally, we want to define the sequence of the products C ×Si so that

vproduct(C × Si) := sup
σ∈S(C)

inf
E∈ENV′

π∈Sσ((C×Si)|E)
Pπ
(C×Si)|E

[
♦≤TG

]

approximates the compositional value:

Theorem 1. For every IMC C and MCA S, vS(C) = lim
i→∞

vproduct(C × Si).

Note that in vproduct , σ is a scheduler over C, not the whole product C × Si.
(3)

Constructing a product with the specification intuitively corresponds to adding
a known, but uncontrollable and unobservable part of the environment to C. We
proceed as follows: We translate the MCA S into a sequence of IMC Si and then
the product will be defined as basically a parallel composition of C and Si.

There are two steps in the translation of S to Si. Firstly, we deal with the
modal transitions. A may transition under a is translated to a standard external
transition under a that has to synchronize with a in both C and E simultane-
ously, so that the environment may or may not let the synchronization occur.
Further, each must transition under a is replaced by an external transition, that
synchronizes with a in C, but is hidden before making product with the environ-
ment. This way, we guarantee that C can take a and make progress no matter if
the general environment E would like to synchronize on a or not.

Formally, the must transitions are transformed into special “barred” tran-
sitions that will be immediately hidden in the product C × Si as opposed to
transitions arising from may transitions. Let Act = {ā | a ∈ Act} denote a fresh
copy of the original alphabet. We replace all modal transitions as follows

– whenever q
a��� r set q

a
↪→ r,

– whenever q
a−→ r set q

ā
↪→ r.

The second step is to deal with the timed transitions, especially with the con-
straints of the form
� d. Such a transition is, roughly speaking, replaced by a
phase-type approximation of d. This is a continuous-time Markov chain (an IMC
with only timed transitions) with a sink state such that the time to reach the
sink state is distributed with d′. For any continuous distribution d, we can find
such d′ arbitrarily close to d.

Example 3. Consider the following MCA on the left. It specifies that whenever
ask is taken, it cannot be taken again for at least the time distributed by Er(2, λ)
and during all that time, it is ready to synchronize on answer. This specifies
systems that are allowed to ask, but not too often, and whenever they ask, they
must be ready to receive (possibly more) answers for at least the specified time.

(3) Here we overload the notation Sσ((C × Si)|E) introduced for pairs in a straightfor-
ward way to triples, where σ ignores both the second and the third components.

Compositional Verification and Optimization of IMC 373

r q

answer

ask

≥ Er(2, λ)

1 2 0
λ λ

r q=1 2 0

answer answer answer

ask λ λ

Now

After performing the first step of replacing the modal transitions as described
above, we proceed with the second step as follows. We replace the timed tran-
sition with a phase-type, e.g. the one represented by the IMC in the middle.
Observe that while the Markovian transitions are taken, answer must still be
available. Hence, we duplicate the corresponding self-loops on all the new states.
Further, since the time constraint is of the form ≥, getting to the state (q, 0)
does not guarantee that we already get to the state r. It can possibly take longer.
To this end, we connect the states (q, 0) and r by a special external action Now.
Since this action is synchronized with E ∈ ENV′, the environment can block the
progress for arbitrarily long time. Altogether, we obtain the IMC on the right.

In the case of “≤” condition, we would instead add the Now transition from
each auxiliary state to the sink, which could instead shorten the waiting time.

When constructing Si, we replace each distribution d with its hyper-Erlang
phase-type approximation di with i branches of lengths 1 to i and rates

√
i in

each branch. For formal description, see [HKK13]. Formally, letNow /∈ Act∪Act
be a fresh action. We replace all timed transitions as follows:

– whenever q
	� r such that q �= r set q

Now
↪→ r,

– whenever q
��d� r where the phase-type di corresponds to a continuous-time

Markov chain (IMC with only timed transitions) with the set of states D,
the initial state 1 and the sink state 0 , then
1. identify the states q and 1 ,
2. for every u ∈ D and q

α
↪→ q, set u

α
↪→u,

3. for every u ∈ D and q
α
↪→ p with p �= q, set u

α
↪→ p,

4. if
� = ≤, then identify r and 0 , and set u
Now
↪→ r for each u ∈ D,

5. if
� = ≥, then set 0
Now
↪→ r.

Intuitively, the new timed transitions model the delays, while in the “≤” case,
the action Now can be taken to speed up the process of waiting, and in the
“≥” case, Now can be used to block further progress even after the delay has
elapsed.

The product is now the parallel composition of C and Si, where each action ā
synchronizes with a and the result is immediately hidden. Formally, the product
C × S is defined as C ‖PC6

Act∪Act
Si , where ‖PC6

Act∪Act
is the parallel composition

with one additional axiom:

(PC6) s1
a
↪→ s′1 and s2

ā
↪→ s′2 implies (s1, s2)

τ
↪→ (s′1, s′2),

saying that a synchronizes also with ā and, in that case, is immediately hidden
(and any unused ā transitions are thrown away).

The idea of Now is that it can be taken in arbitrarily short, but non-zero
time. To this end, we define ENV′ in the definition of vproduct(C ×Si) to denote

374 H. Hermanns, J. Krčál, and J. Křet́ınský

all environments where Now is only available in states that can be entered by
only a Markovian transition. Due to this requirement, each Now can only be
taken after waiting for some time.

5 Controller-Environment Games

So far, we have reduced our problem to computing limi→∞ vproduct(C × Si).
Note that we are still quantifying over unknown environments. Further, the
behaviour of each environment is limited by the uncontrollable stochastic flow of
time caused by its Markovian transitions. This setting is still too difficult to be
solved directly. Therefore, in this section, we reduce this setting to one, where
the stochastic flow of time of the environment (limited in an unknown way) is
replaced by a free non-deterministic choice of the second player.

We want to turn the product IMC C × Si into a two-player controller–
environment game (CE game) Gi, where player con controls the decisions over
internal transitions in C; and player env simulates the environment including
speeding-up/slowing-down S using Now transitions. In essence, con chooses in
each state with internal transitions one of them, and env chooses in each state
with external (and hence synchronizing) transitions either which of them should
be taken, or a delay d ∈ R>0 during which no synchronization occurs. The inter-
nal and external transitions take zero time to be executed if chosen. Otherwise,
the game waits until either the delay d elapses or a Markovian transition occurs.

This is the approach taken in [BHK+12] where no specification is considered.
However, there is a catch. This construction is only correct under the assump-
tion of [BHK+12] that there are no states of C with both external and internal
transitions available.

i ?

yes

no

win

fail

λ

a

τ

τ

τ

a

Example 4. Consider the IMC C on the right (for
instance with a trivial specification not restrict-
ing the environment). Note that there are both
internal and external actions available in no.

As τ transitions take zero time, the environment E must spend almost all the
time in states without τ . Hence, when ? is entered, E is almost surely in such a
state e. Now τ form ? is taken and E cannot move to another state when yes/no
is entered. Since action a either is or is not available in e, the environment
cannot choose to synchronize in no and not to synchronize in yes. As a result,
the environment “commits” in advance to synchronize over a either in both
yes and no or in none of them. Therefore, in the game we define, env cannot
completely freely choose which external transition is/is not taken. Further, note
that the scheduler of C cannot observe whether a is currently available in E ,
which intrinsically induces imperfect information.

In order to transfer these “commitments” to the game, we again make use of
the compositionality of IMC and put the product C ×Si in parallel with an IMC
Commit and then define the game on the result.

Compositional Verification and Optimization of IMC 375

com. now?

{a}

∅

a

τ

τ

Change

Chang
e

τ

Now

The action alphabet of Commit is
Act ∪ {Now,Change} and the state
space is 2Act ∪ {commit , now?} (in the
figure, Act = {a}; for formal descrip-
tion, see [HKK13]). State A ⊆ Act cor-
responds to E being committed to the
set of currently available actions A. Thus A

a
↪→ commit for each a ∈ A. This

commitment must be respected until the state of E is changed: either (1) by an
external transition from the commitment set (which in Commit leads to the state
commit where a new commitment is immediately chosen); or (2) by a Change
transition (indicating the environment changed its state due to its Markovian
transition).

The game Gi is played on the arena
(
C × Si ‖Act∪{Now} Commit

)

�
(
Act ∪ {Now}

)
with its set of states denoted by Gi. Observe that external

actions have either been hidden (whenever they were available in the commit-
ment), or discarded (whenever not present in the current commitment). The
only external action that remains is Change. The game Gi is played as follows.
There are two types of states: immediate states with some τ transitions available
and timed states with no τ available. The game starts in v0 = (c0, q0, commit).

– In an immediate state vn = (c, q, e), con chooses a probability distribution
over transitions corresponding to the internal transitions in C (if there are
any). Then, env either approves this choice (chooses �) and vn+1 is chosen
randomly according to this distribution, or rejects this choice and chooses a
τ transition to some vn+1 such that the transition does not correspond to
any internal transitions of C. Then the game moves at time tn+1 = tn to
vn+1.

– In a timed state vn = (c, q, e), env chooses a delay d > 0. Then Markovian
transitions (if available) are resolved by randomly sampling a time t accord-
ing to the exponential distribution with rate R(vn) and randomly choosing
a target state vn+1 where each vn

λ� v is chosen with probability λ/R(vn).

• If t < d, Gi moves at time tn+1 = tn + t to vn+1, (Markovian transition wins)

• else Gi moves at time tn+1 = tn + d to (c, q, now?). (E takes Change)

This generates a run v0t1v1t1 · · · . The set (Gi × R≥0)
∗ × Gi of prefixes of

runs is denoted Histories(G). We formalize the choice of con as a strategy
σ : Histories(Gi) → D(Gi). We further allow the env to randomize and thus
his strategy is π : Histories(Gi) → D({�} ∪Gi) ∪ D(R>0). We denote by Σ and
Π the sets of all strategies of the players con and env, respectively.

Since con is not supposed to observe the state of the specification and the
state of Commit , we consider in Σ only those strategies that satisfy σ(p) =
σ(p′), whenever observations of p and p′ are the same. Like before, the observa-
tion of (c0, q0, e0)t1 · · · tn(cn, qn, en) ∈ Histories(G) is a sequence obtained from
c0t1 · · · tncn by replacing each maximal consecutive sequence ti ci · · · tj cj with
all ck the same, by ti ci. This replacement takes place so that the player cannot
observe transitions that do not affect C. Notice that now S(C) is in one-to-one

376 H. Hermanns, J. Krčál, and J. Křet́ınský

correspondence with Σ. Further, in order to keep CE games out of Zeno be-
haviour, we consider in Π only those strategies for which the induced Zeno runs
have zero measure, i.e. the sum of the chosen delays diverges almost surely no
matter what con is doing. The value of Gi is now defined as

vGi := sup
σ∈Σ

inf
π∈Π

Pσ,π
Gi

[
♦≤TG

]

where Pσ,π
Gi

[
♦≤TG

]
is the probability of all runs of Gi induced by σ and π and

reaching a state with the first component in G before time T . We now show that
it coincides with the value of the ith product:

Theorem 2. For every IMC C, MCA S, i ∈ N, we have vGi = vproduct(C ×Si).

This result allows for approximating vS(C) through computing vGi ’s. However,
from the algorithmic point of view, we would prefer approximating vS(C) by
solving a single game G whose value vG we could approximate directly. This is
indeed possible. But first, we need to clarify, why the approximation sequence Si

was crucial even in the case where all distributions of S are already exponential.

q r
≥ Exp(1)

a b
Consider the MCA on the right and a conforming

environment E , in which a is available iff b becomes
available within 0.3 time units. If Player env wants to
simulate this behaviour, he needs to know how long the
transition to r is going to take so that he can plan his behaviour freely, only
sticking to satisfying the specification. If we translate Exp(1) directly to a single
Markovian transition (with no error incurred), env knows nothing about this
time as exponential distributions are memoryless. On the other hand, with finer
hyper-Erlang, he knows how long the current branch of hyper-Erlang is roughly
going to take. In the limit, he knows the precise waiting time right after coming
to q.

To summarize, env is too weak in Gi, because it lacks the information about
the precise time progress of the specification. The environment needs to know
how much time is left before changing the location of S. Therefore, the game
G is constructed from G1 by multiplying the state space with R≥0 where we
store the exact time to be waited. After the product changes the state so that
the specification component switches to a state with
� d constraint, this last
component is overwritten with a number generated according to d. This way, the
environment knows precisely how much time is left in the current specification
location. This corresponds to the infinitely precise hyper-Erlang, where we at the
beginning randomly enter a particular branch, which is left in time with Dirac
distribution. For more details, see [HKK13].

Denoting the value of G by vG := sup
σ∈Σ

inf
π∈Π

Pσ,π
G

[
♦≤TG

]
, we obtain:

Theorem 3. For every IMC C and MCA S, we have vG = lim
i→∞

vGi .

6 Approximation Using Discrete-Time PO Games

In this section, we briefly discuss the approximation of vG by a discrete time
turn-based partial-observation stochastic game Δ. The construction is rather

Compositional Verification and Optimization of IMC 377

standard; hence, we do not treat the technical difficulties in great detail (see
[HKK13]). We divide the time bound T into N intervals of length κ = T/N such
that the clock resolution δ (see Section 3.2) satisfies δ = nκ for some n ∈ N.

1. We enhance the state space with a counter i ∈ {0, . . . , N} that tracks that
i · κ time has already elapsed. Similarly, the R≥0-component of the state
space is discretized to κ-multiples. In timed states, time is assumed to pass
exactly by κ. In immediate states, actions are assumed to take zero time.

2. We let at most one Markovian transition occur in one step in a timed state.
3. We unfold the game into a tree until on each branch a timed state with

i = N is reached. Thereafter, Δ stops. We obtain a graph of size bounded
by b≤N ·|G| where b is the maximal branching and G is the state space of G.

Let ΣΔ and ΠΔ denote the set of randomized history-dependent strategies of
con and env, respectively, where player con observes in the history only the
first components of the states, i.e. the states of C, and the elapsed time �i/n�
up to the precision δ. Then vΔ := supσ∈ΣΔ

infπ∈ΠΔ Pσ,π
Δ (♦G) denotes the value

of the game Δ where Pσ,π
Δ (♦G) is the probability of the runs of Δ induced by

σ and π and reaching a state with first component in G. Let b be a constant
bounding (a) the sum of outgoing rates for any state of C, and (b) densities and
their first derivative for any distribution in S.

Theorem 4. For every IMC C and MCA S, vG is approximated by vΔ:

|vG − vΔ| ≤ 10κ(bT)2 ln 1
κ .

A strategy σ∗ optimal in Δ defines a strategy (10κ(bT)2 ln 1
κ)-optimal in G. Fur-

ther, vΔ and σ∗ can be computed in time polynomial in |Δ|, hence in time 2O(|G|).

The proof of the error bound extends the technique of the previous bounds
of [ZN10] and [BHK+12]. Its technical difficulty stems from partial observa-
tion and from semi-Markov behaviour caused by the arbitrary distributions in
the specification. The game is unfolded into a tree in order to use the result
of [KMvS94]. Without the unfolding, the best known (naive) solution would be
a reduction to the theory of reals, yielding an EXPSPACE algorithm.

7 Summary

We have introduced an assume-guarantee framework for IMC. We have consid-
ered the problem to approximate the guarantee on time-bounded reachability
properties in an unknown environment E that satisfies a given assumption. The
assumptions are expressed in a new formalism, which introduces continuous time
constraints. The algorithmic solution results from Theorems 1 to 4:

Corollary 1. For every IMC C and MCA S and ε > 0, a value v and a scheduler
σ can be computed in exponential time such that |vS(C) − v| ≤ ε and σ is ε-
optimal in vS(C).

378 H. Hermanns, J. Krčál, and J. Křet́ınský

In future work, we want to focus on identifying structural subclasses of IMC
allowing for polynomial analysis.

Acknowledgement. We thank Tomáš Brázdil and Vojtěch Řehák for fruitful
discussions and for their feedback.

References
[AH96] Alur, R., Henzinger, T.A.: Reactive modules. In: LICS, pp. 207–218

(1996)
[BF09] Bouyer, P., Forejt, V.: Reachability in stochastic timed games. In: Albers,

S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 103–114. Springer,
Heidelberg (2009)

[BHK+12] Brázdil, T., Hermanns, H., Krčál, J., Křet́ınský, J., Řehák, V.: Verifica-
tion of open interactive markov chains. In: FSTTCS, pp. 474–485 (2012)

[BHKH05] Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.R.: Efficient compu-
tation of time-bounded reachability probabilities in uniform continuous-
time Markov decision processes. Theor. Comp. Sci. 345(1), 2–26 (2005)

[BS11] Buchholz, P., Schulz, I.: Numerical Analysis of Continuous Time Markov
Decision processes over Finite Horizons. Computers and Operations Re-
search 38, 651–659 (2011)

[CD10] Chatterjee, K., Doyen, L.: The complexity of partial-observation par-
ity games. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS,
vol. 6397, pp. 1–14. Springer, Heidelberg (2010)

[DLL+12] David, A., Larsen, K.G., Legay, A., Møller, M.H., Nyman, U., Ravn, A.P.,
Skou, A., Wasowski, A.: Compositional verification of real-time systems
using ECDAR. STTT 14(6), 703–720 (2012)

[EKN+12] Esteve, M.-A., Katoen, J.-P., Nguyen, V.Y., Postma, B., Yushtein, Y.:
Formal correctness, safety, dependability and performance analysis of a
satellite. In: Proc. of ICSE. ACM and IEEE Press (2012)

[GHKN12] Guck, D., Han, T., Katoen, J.-P., Neuhäußer, M.R.: Quantitative timed
analysis of interactive markov chains. In: Goodloe, A.E., Person, S. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 8–23. Springer, Heidelberg (2012)

[HH13] Hatefi, H., Hermanns, H.: Improving time bounded reachability compu-
tations in interactive Markov chains. In: Arbab, F., Sirjani, M. (eds.)
FSEN 2013. LNCS, vol. 8161. Springer, Heidelberg (2013)

[HK09] Hermanns, H., Katoen, J.-P.: The how and why of interactive Markov
chains. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M.
(eds.) FMCO 2009. LNCS, vol. 6286, pp. 311–338. Springer, Heidelberg
(2010)

[HKK13] Hermanns, H., Krčál, J., Křet́ınský, J.: Compositional verification and
optimization of interactive markov chains. CoRR, abs/1305.7332 (2013)

[HKR+10] Haverkort, B.R., Kuntz, M., Remke, A., Roolvink, S., Stoelinga, M.I.A.:
Evaluating repair strategies for a water-treatment facility using Arcade.
In: Proc. of DSN, pp. 419–424 (2010)

[HMP01] Henzinger, T.A., Minea, M., Prabhu, V.S.: Assume-guarantee reasoning
for hierarchical hybrid systems. In: Di Benedetto, M.D., Sangiovanni-
Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 275–290.
Springer, Heidelberg (2001)

Compositional Verification and Optimization of IMC 379

[HNP+11] Hahn, E.M., Norman, G., Parker, D., Wachter, B., Zhang, L.: Game-
based abstraction and controller synthesis for probabilistic hybrid sys-
tems. In: QEST, pp. 69–78 (2011)

[KKLW07] Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction
for continuous-time Markov chains. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 311–324. Springer, Heidelberg (2007)

[KKN09] Katoen, J.-P., Klink, D., Neuhäußer, M.R.: Compositional abstraction for
stochastic systems. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS
2009. LNCS, vol. 5813, pp. 195–211. Springer, Heidelberg (2009)

[KMvS94] Koller, D., Megiddo, N., von Stengel, B.: Fast algorithms for finding
randomized strategies in game trees. In: STOC, pp. 750–759 (1994)

[KV96] Kupferman, O., Vardi, M.: Module checking. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 75–86. Springer, Heidelberg
(1996)

[KZH+11] Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.:
The ins and outs of the probabilistic model checker MRMC. Performance
Evaluation 68(2), 90–104 (2011)

[LT88] Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210
(1988)

[Mar11] Markovski, J.: Towards supervisory control of interactive Markov chains:
Controllability. In: ACSD, pp. 108–117 (2011)

[MC81] Misra, J., Mani Chandy, K.: Proofs of networks of processes. IEEE Trans.
Software Eng. 7(4), 417–426 (1981)

[RW89] Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems.
Proceedings of the IEEE 77(1) (1989)

[Spr11] Sproston, J.: Discrete-time verification and control for probabilistic rect-
angular hybrid automata. In: QEST, pp. 79–88 (2011)

[TAKB96] Tasiran, S., Alur, R., Kurshan, R.P., Brayton, R.K.: Verifying abstrac-
tions of timed systems. In: Sassone, V., Montanari, U. (eds.) CONCUR
1996. LNCS, vol. 1119, pp. 546–562. Springer, Heidelberg (1996)

[ZN10] Zhang, L., Neuhäußer, M.R.: Model checking interactive Markov chains.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 53–68. Springer, Heidelberg (2010)

	Compositional Verification and Optimization
of Interactive Markov Chains
	1 Introduction
	2 Interactive Markov Chains
	3 Time-Bounded Reachability
	3.1 Specifications of Environments
	3.2 Assume-Guarantee Optimization

	4 Product of IMC and Specification
	5 Controller-Environment Games
	6 Approximation Using Discrete-Time PO Games
	7 Summary
	References

