
A Theory of Name Boundedness

Reiner Hüchting1, Rupak Majumdar2, and Roland Meyer1

1 University of Kaiserslautern
2 MPI-SWS

Abstract. We develop a theory of name-bounded π-calculus processes,
which have a bound on the number of restricted names that holds for all
reachable processes. Name boundedness reflects resource constraints in
practical reconfigurable systems, like available communication channels
in networks and address space limitations in software.

Our focus is on the algorithmic analysis of name-bounded processes.
First, we provide an extension of the Karp-Miller construction that ter-
minates and computes the coverability set for any name-bounded pro-
cess. Moreover, the Karp-Miller tree shows that name-bounded processes
have a pumping bound as follows. When a restricted name is distributed
to a number of sequential processes that exceeds this bound, the name
may be distributed arbitrarily. Second, using the bound, we construct a
Petri net bisimilar to the name-bounded process. The Petri net keeps a
reference count for each restricted name, and recycles names that are no
longer in use. The pumping property ensures that bounded zero tests are
sufficient for recycling. With this construction, name-bounded processes
inherit decidability properties of Petri nets. In particular, reachability is
decidable for them. We complement our decidability results by a non-
primitive recursive lower bound.

1 Introduction

The π-calculus is an established formalism for modeling and reasoning about
reconfigurable systems that dynamically create and destroy communication links
at runtime. While Turing complete in general, there are interesting subclasses
of π-calculus where important verification problems remain decidable. In this
paper, we propose and investigate a natural subclass of π-calculus processes:
name-bounded processes. These are processes that have a bound on the number
of restricted names that holds for all reachable processes.

Name-bounded processes are interesting for various reasons. First, from a the-
oretical perspective, they form a natural subclass of π-calculus that is expressive
enough to subsume many other classes, but for which, as we will show, analysis
questions remain decidable. Second, from a practical perspective, name bound-
edness captures natural constraints on an implementation that limit the total
number of physical resources used at any point without constraining the num-
ber of processes. For example, a networked system can use a limited number
of IP addresses or communication ports, but allow many clients to multiplex
these resources. Finally, name boundedness is useful in verification as an ap-
proximate model for Turing-complete systems. For example, a finite abstraction
of the shared heap in a concurrent program leads to a name-bounded model.

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 182–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Theory of Name Boundedness 183

Motivated by these applications in modeling, synthesis, and verification, we
focus on the algorithmic analysis of name-bounded systems. Coverability is de-
cidable for the model using generic well-structuredness arguments. Our main
contributions, listed below, show effectiveness and decidability results beyond
coverability. We also outline the theoretical tools we develop for the proofs.

Contribution 1: Synthesis Given an arbitrary π-calculus process P and a
bound b ∈ N, we prove it decidable to check whether P is name-bounded by b.
Phrased differently, given a system P and a resource constraint b on the execution
environment, one can decide if all executions of P use at most b resources.
Note that the result is non-trivial since 0-bounded systems may already have an
infinite state space (they can simulate Petri nets). It should rather be contrasted
with the general name boundedness problem, which of course is undecidable.
Tool 1: Karp and Miller algorithm Behind this result is a novel extension of
the Karp and Miller construction [9]. Given a process, our algorithm computes
a finite representation of the downward closure of the reachability set; and the
computation terminates precisely for name-bounded processes. Extending the
Karp and Miller construction for Petri nets to name-bounded processes is non-
trivial, since it is not sufficient to merely compare two limit elements (as for Petri
nets). We extend the construction by tracking names instantiated in intermediary
transitions to decide when a transition sequence can be accelerated.

Contribution 2: Petri net construction As second contribution we show
that every name-bounded processes can be translated into a bisimilar Petri net.
As a result, even subtle verification problems like reachability are decidable for
name-bounded systems.
Tool 2: Pumping constant The idea behind the Petri net construction is to
provide a finite set of instances (a, 0), . . . , (a, b−1) that can be used to represent
the restricted name a. If we encounter a restriction νa in a run, we represent
it by an instance that is not present in the current process. To check that an
instance is not used, we keep a reference count. The instance is not used if and
only if this count is zero.

Unfortunately, Petri nets cannot perform zero-tests. Instead, we show that the
reference counts can be bounded using a pumping constant p ∈ N such that once
an instance (a, k) is known to more than p processes, it can be distributed to
arbitrarily many processes. This has the following consequence. If the reference
counter of an instance (a, k) exceeds p, the instance cannot be reused. Phrased
differently, we only need to keep the precise reference count up to p. This bound
allows us to implement zero-tests with a Petri net. We show that the pumping
constant can be computed from the Karp-Miller tree.

Contribution 3: Lower bound We show that verification problems for name-
bounded processes, be it coverability or reachability, have non-primitive recur-
sive space complexity. In contrast, reachability for the related model of Petri
nets is only known to be EXPSpace-hard [10], and coverability is EXPSpace-
complete [18]. Moreover, most known extensions of Petri nets with non-primitive
recursive lower bounds for coverability have undecidable reachability problems.

184 R. Hüchting, R. Majumdar, and R. Meyer

Tool 3: Space-bounded Turing machine simulation To establish the lower
bound result, we show how to simulate Turing machines where the tape-size is
bounded by the Ackermann-function A(n) with name-bounded processes. Our
construction combines a classical result for Petri nets with the expressiveness of
π-calculus as follows. With the construction of Mayr and Meyer [11], we obtain
a process that generates up to A(n) waiting processes and terminates. We then
use a π-calculus modeling trick to arrange these processes into a list representing
the Turing tape, and simulate the machine by communicating the state of the
machine between tape cells.

Thus, our results resolve —positively— the algorithmic landscape of a natural
and expressive fragment of the π-calculus.

Related Work. We recall the translations of reconfigurable systems into
place/transition Petri nets that have been proposed in the literature. None of
them can handle the name-bounded processes we consider here. Translations for
restriction-bounded processes (where restrictions do not occur inside recursion)
can be found in [14,3]. These works propose an identity-aware semantics similar
to the one we use here, but do not introduce reference counters and pumping
constants. The reason we need these tools is the generality of name-bounded
processes. Our new class strictly subsumes restriction-bounded and, at the same
time, finite control processes (FCPs) [5]. We are thus faced with unbounded
parallelism combined with unboundedly many names. FCPs are translated into
polynomial-sized safe Petri nets in [15]. We show that such a compact encoding
cannot exist for name-bounded processes. In the worst case, the Petri nets have
to be non-primitive recursive. The structural translation [13] identifies groups of
processes that share restricted names. It yields a finite representation precisely
for the class of structurally stationary processes, which are incomparable with
name-bounded processes.

There are alternative translations of reconfigurable systems into higher-level
Petri nets. Due to the expressive target formalism, it is not possible to deduce
decidability results for properties like reachability from them. The class in [1]
restricts the processes that can receive on a generated name. A translation into
transfer nets yields decidability of control reachability. A translation of π-calculus
into high-level Petri nets is given in [6]. In [17], FCPs are encoded into history
dependent automata where states are labelled by names to represent restrictions.

Decidability of reachability in related process models, such as a fragment of
mobile ambients [4] and a variant of CCS [8], has been shown by reduction to
Petri net reachability. Unlike these papers, our construction gives a stronger
correspondence: a Petri net that is bisimilar to a name-bounded process.

Name-bounded processes are bounded in depth in the sense that the nesting of
restrictions is limited [12]. Therefore, positive results for depth-bounded systems,
like decidability of coverability [20], carry over to name boundedness. However,
reachability is undecidable for depth-bounded systems [14], and the coverability
set is not computable [2]. This motivated our search for subclasses of depth
boundedness and we show here that both problems, reachability and coverability

A Theory of Name Boundedness 185

set computation, can be solved for name-bounded models. Further, we can decide
whether an arbitrary process is name-bounded by a given b ∈ N.

Our results rely on an adaptation of the Karp-Miller construction [9]. Finkel
and Goubault-Larrecq [7] extend the same algorithm to compute coverability
sets for general well-structured systems. There are two reasons why we propose
a specific variant. First, we want our algorithm to be sound and complete for
general, Turing-complete systems, but terminate only for name-bounded ones.
This is needed to decide name boundedness when b ∈ N is given. The approach
in [7] is always guaranteed to terminate, and hence does not handle Turing-
complete models. Second, soundness requires an acceleration that depends on
the labels along the path. It is unclear how to encode this into [7].

2 Name-bounded Processes

The π-Calculus. We recall the basics on π-calculus [16,19]. The π-calculus en-
codes computation using processes that exchange messages over channels. Mes-
sages and channels are untyped: a message that is received may serve as channel
in further interactions. Formally, messages and channels are names a, b, x, y from
a countable set of names N . Processes communicate by synchronizing on prefixes
π that are sending x〈y〉 or receiving x(z). From these elementary communica-
tions, we build models of reconfigurable systems using non-deterministic choice
+, parallel composition | , restriction νa, and parameterized recursion K�ã�. To
implement recursion, we introduce process identifiers, ranging over K, together
with defining equations K(x̃) := P , where P is again a process and x̃ is a se-
quence of distinct names so that |ã| = |x̃|. Every process relies on finitely many
defining equations.

Formally, processes P,Q,R from the set of processes P are defined by

M ::= 0 � π.P � M1 +M2 P ::= M � K�ã� � P1 | P2 � νa.P

ProcessesM and K�ã� are called sequential as they are the basic building blocks
for parallel compositions. We also use syntax S to indicate that the given process
is sequential, and write S for the set of all sequential processes. We abbreviate
k-fold parallel compositions of the same process P by P k, where P 0 := 0.

The intended semantics of a call K�ã� is that the process behaves like P ,
but with x̃ replaced by ã. This replacement is formalized by the application of
substitutions. A substitution {ã/x̃} is a function from N to N that maps x̃ to ã
and leaves all names outside x̃ unchanged. The application of {ã/x̃} to process
P is denoted by P{ã/x̃} and defined in the standard way [19].

Receive prefixes x(y) and restrictions νa bind the names y and a. A name
that is not bound in a process is free. We assume free and bound names to be
disjoint, and that every name is bound at most once. We use F to denote the
names that can occur free in processes, and F(P) for the set of free names in
P . Similarly, R is the set of names that can occur in restrictions, and R(P) the
restricted names in P . In a defining equation K(x̃) := P , we require F(P) ⊆ x̃
to avoid the invention of free names in a recursive call.

186 R. Hüchting, R. Majumdar, and R. Meyer

To ease the definition of the π-calculus semantics, we define a structural
congruence relation ≡ ⊆ P × P . It is the smallest congruence that allows for
α-conversion of bound names, requires choice + and parallel | to be associative
and commutative with 0 as neutral element, and where restrictions satisfy

νa.0 ≡ 0 νa.νb.P ≡ νb.νa.P νa.(P | Q) ≡ P | νa.Q if a /∈ F(P).

We also use a quasi-ordering 	 ⊆ P × P among processes called embedding. It
is the smallest relation that satisfies νã.Q 	 νã.(Q | R) and that is closed under
structural congruence: Q ≡ Q′ 	 R′ ≡ R entails Q 	 R. It can be shown that
	 is indeed reflexive and transitive, and thus a quasi-ordering [12]. For a set of
processes P ′ ⊆ P , we define P ′ ↓ := {Q | ∃P ∈ P ′ : Q 	 P}.

The behavior of processes is given by the reaction relation → ⊆ P × P . It is
the smallest relation that satisfies

x(z).P +M | x〈y〉.Q +N → P{y/z} | Q K�ã� → P{ã/x̃} with K(x̃) := P,

and that is closed under parallel composition, restriction, as well as structural
congruence. A process Q is reachable from P if P →∗ Q, where →∗ is the
reflexive transitive closure of →. The reachability set of P , written Reach(P),
is the set of all processes reachable from P . The transition system of a process
is the quotient of the reachable processes along structural congruence: T (P) :=
(Reach(P)/≡, ↪→, P), where P ↪→ Q iff P → Q.

We shall use Milner’s standard form of processes [16], which maximizes the
scope of restrictions. The formal definition is inductive. A parallel composition
of sequential processes S is in standard form. If Psf is in standard form then
also νa.Psf is, provided a ∈ F(Psf).

Name Boundedness. Process P ∈ P is name-bounded if there is a bound on the
number of restricted names that holds for all reachable processes Q ∈ Reach(P).
However, restricted names that do not occur free can be removed by structural
congruence: νa.P ≡ P provided a /∈ F(P). This motivates the definition of the
number of active restrictions: arn(S) := 0, arn(P | Q) := arn(P)+ arn(Q), and
arn(νa.P) := 1 + arn(P) if a ∈ F(P) and arn(νa.P) := arn(P) otherwise.

Definition 1. Process P ∈ P is b-name-bounded with b ∈ N if for all processes
Q ∈ Reach(P) we have arn(Q) ≤ b. Process P is name-bounded if it is b-name-
bounded for some b ∈ N.

For example, process νa.K1�a� with K1(x) := K1�x�2 is 1-name-bounded,
whereas νb.K2�b� with K2(y) := νb.(K2�b�2) is not name-bounded.

The definition of name boundedness refers to all reachable processes. This mo-
tivates the following decision problems. The name boundedness problem (NB)
asks, given P ∈ P , is P name-bounded? The restricted name boundedness prob-
lem (RNB) asks, given P ∈ P and b ∈ N, if P is b-name-bounded.

A Theory of Name Boundedness 187

Theorem 1. (1) NB is r.e.-complete and (2) RNB is decidable.

Decidability of RNB, from which the recursive enumerability of NB follows, is
not obvious, as 0-name-bounded systems can already simulate Petri nets. We
prove the result using an algorithm for effectively constructing coverability sets
for name-bounded processes that we describe next.

3 Coverability and the Karp-Miller Construction

A processQ is said to be coverable from P if there exists some R ∈ Reach(P) such
that Q 	 R. The coverability set of P is the set of all processes coverable from P .
Equivalently, the coverability set is the downward closure, with respect to the
embedding order, of the reachability set: Reach(P) ↓. Given a name-bounded
process P , our next goal is to compute a finite representation for Reach(P)↓.

We construct the coverability set by unfolding the reachability tree of P , and
accelerating reaction sequences that can be repeated. The acceleration procedure
takes a sequence Q1 →∗ Q2 and constructs a closed-form representation of all
processes that are coverable with any number of iterations of the sequence. We
call the procedure a Karp-Miller tree, since it closely resembles the data structure
used for the coverability analysis of Petri nets [9,7].

3.1 Identity-aware Processes

In the Karp-Miller tree construction, restricted names have to be handled with
care. To see the problem, reconsider K1(x) := K1�x�2 and K2(y) := νb.(K2�b�2)
from above. Then νa.K1�a� is name-bounded, but νb.K2�b� is not. In their
reachability trees, reaction νa.K1�a� → νa.(K1�a�2) uses copies of the same
name a, while νb.K2�b� → νb.(K2�b�2) forgets name b and re-creates it again.

The examples suggest that we have to track the identities of names over
transitions. Inspired by [14], we introduce a notion of identity-aware processes.
They replace restricted names νa by free names of the form (a, i) taken from
a set of instances. Since free names are not subject to α-conversion, instances
are preserved by transitions. To mimic name boundedness, transitions among
identity-aware processes do not choose instances (a, i) arbitrarily, but compute
the least index i that is not present in the target process. Moreover, identity-
aware transitions are labelled by the newly generated instances, which allows us
to distinguish them from old ones. In the example above, we obtain

K1�(a, 0)� ∅−→ia K1�(a, 0)�2 as opposed to K2�(b, 0)�
{(b,0)}−−−−→ia K2�(b, 0)�2.

Formally, an instance of a restricted name a ∈ R is a pair (a, i) from the set of
instances I := R× N. A process is called identity-aware if it has the form

Pia = S1 | . . . | Sn with F(Pia) ⊆ F ∪ I.

As it is a parallel composition of choices and calls, there are no active restrictions.
Moreover, and different from ordinary processes, Pia is allowed to have some

188 R. Hüchting, R. Majumdar, and R. Meyer

instances free. We use Pia to refer to the set of all identitiy-aware processes. We
let I(Pia) := F(Pia) ∩ I return the instances in process Pia .

We now define a transition relation among identity-aware processes. The idea
is to compute instances that represent restricted names, rather than choosing
them non-deterministically. For each restriction a ∈ R, we introduce the function

mina(Pia) := (a, k) where k = min {i ∈ N | (a, i) /∈ I(Pia)} .

It determines the least instance that is not free in Pia . With this function, we
can turn processes in standard form Psf into identity-aware processes:

ia(S1 | . . . | Sn) := S1 | . . . | Sn ia(νa.Psf) := ia(Psf){mina(ia(Psf))/a}.

The identity-aware transition relation →ia ⊆ Pia × 2I × Pia is now defined by

Pia
FI(Pia ,Qia)−−−−−−−−→ia Qia iff Pia → Qsf and Qia = ia(Qsf).

Here, FI(Pia , Qia) is the set of fresh instances that are determined by ia(Qsf).
We usually write Pia →ia Qia and only mention FI(Pia , Qia) where it is needed.
When we consider transition sequences, we form the union of the instances:
Pia →ia Qia →ia Ria yields FI(Pia , Ria) := FI(Pia , Qia) ∪ FI(Qia , Ria).
We denote the set of all identity-aware processes that are reachable from Pia

via the identity-aware transition relation by Reach ia(Pia). The corresponding
identity-aware transition system is Tia(Pia) := (Reach ia(Pia)/≡, ↪→ia , Pia),
where Qia ↪→ia Ria iff Qia →ia Ria . This is indeed well-defined. The identity-
aware transition system is bisimilar to the original one.

Proposition 1. T (Psf) ≈ Tia (ia(Psf)).

The bisimulation that relates the transition systems of Psf and Pia = ia(Psf)
is B ⊆ Reach ia(Pia)/≡ × Reach(Psf)/≡ defined by Qia B ν I(Qia).Qia . We
call an identity-aware process Pia name-bounded if νI(Pia).Pia is. Equivalently,
there is a finite set of instances that are used in any reachable process.

We elaborate on the shape of processes Qia ∈ Reachia (Pia), making use of
derivatives as introduced in [13]. Intuitively, process Qia consists of subterms of
Pia to which substitutions are applied. The idea of subterms is formalized by the
notion of derivatives D(P). Function D : P → 2P returns the set of processes
that can be found by removing prefixes, restrictions, and splitting up parallel
compositions — in P and in its defining equations:

D(0) := ∅ D(K�ã�) := {K�ã�} ∪ D(Q) if K(x̃) := Q

D(π.P) := {π.P} ∪ D(P) D(M +N) := {M +N} ∪ D(M) ∪ D(N)

D(P | Q) := D(P) ∪ D(Q) D(νa.P) := D(P).

Since processes rely on finitely many defining equations, the set remains finite.
Derivatives do not keep track of what names are instantiated, nor what names
are received in input prefixes. To correctly represent Qia , we map the names

A Theory of Name Boundedness 189

Algorithm 1. Karp & Miller Tree Construction

procedure KM(Pia)
V := {root :Pia}; −→KM := ∅; Work := root :Pia ;
while Work not empty do

Pop n1 :L1 from Work ;
for all L1 →ia L2 up to ≡ do

if there is n :L →∗
KM n1 :L1 such that L2 ≡ L | Lrem and

I(Lrem) ∩ FI(L, L2) = ∅ then
L2 := L | Lω

rem ;

let n2 be a new node

V := V ∪ {n2 :L2}; −→KM := −→KM ∪ {n1 :L1
FI(L1,L2)−−−−−−−→KM n2 :L2};

Work := Work · (n2 :L2) provided L2 does not occur from root to n1;

return (V,→KM , root :Pia).
end procedure

occurring in derivatives to either free names in Pia or to instances of restricted
names. The corresponding set of substitutions is

Σ(Pia) := F(D(Pia)) → F(Pia) ∪ (R(Pia)× N).

Lemma 1. For every Qia ∈ Reachia (Pia) there are D1, . . . , Dn ∈ D(Pia) and
σ1, . . . , σn ∈ Σ(Pia) so that Qia ≡ D1σ1 | . . . | Dnσn.

Note that a name-bounded Pia only uses a finite number of instances from
R(Pia)× N, and therefore σ1 to σn are taken from a finite subset of Σ(Pia).

3.2 Karp and Miller Trees

The Karp-Miller tree for a process Pia is a rooted, directed tree. The nodes of
the tree are labeled with either a single process reachable from Pia , or a limit
process, representing a set of processes summarizing the effect of repeating a
reaction sequence. The root is labeled with Pia .

The definition of limits is inspired by replication in π-calculus, and similar
to [20]. A limit is either a sequential process S, a process of the form Lω, or a
parallel composition L1 | L2 of limit processes. Intuitively, limit Sω represents
an unbounded set of processes Sj for arbitrarily large j. We extend structural
congruence to limit processes with the following rules:

Sω | S ≡ Sω Sω | Sω ≡ Sω (Sω)ω ≡ Sω (L1 | L2)
ω ≡ Lω

1 | Lω
2

While decidability of structural congruence for processes with replication is prob-
lematic, it is not an issue here since ω distributes over parallel composition.

By associativity and commutativity of parallel composition and the above
laws for limit processes, we can bring each limit process L into the standard
form L ≡ Sk1

1 | . . . | Skn
n , where Si �≡ Sj for i �= j and ki ∈ N ∪ {ω}. Thus,

we order the sequential processes into groups of structurally congruent ones

190 R. Hüchting, R. Majumdar, and R. Meyer

L1 L3 L1

L0 L1 L3

L2 L3 L1 L3

L0 L3 L1

{(y, 0)}

{(y, 0)} {(y, 0)}

L0 := K1�(a, 0)� | K3 L2 := K1�(a, 0)� | (y, 0) | (y, 0).K3

L1 := K1�(a, 0)�ω | K3 L3 := K1�(a, 0)�ω | (y, 0) | (y, 0).K3.

Fig. 1. Algorithm 1 on K1�(a, 0)� | K3 with K1(x) := K1�x�2 and K3 := νy.(y | y.K3)

and join them if we find ω. With this normal form, we can understand limit
L as a multiset L : S → N ∪ {ω} that assigns L(Si) := ki. If process S ∈ S
does not occur in the parallel composition above, it is assigned zero. We use
Fin(L) := {S ∈ S | 1 ≤ L(S) ∈ N} for the sequential processes that occur finite
in L, and Inf (L) := {S ∈ S | L(S) = ω} for those that are ω. We also extend 	
to limits in the natural way, and note that it coincides with multiset inclusion.

Algorithm 1 shows a worklist algorithm to construct the Karp-Miller tree
for a process Pia . The construction starts with a root node labeled with Pia

and unrolls the reachability tree by executing enabled reactions. This means
the edges n1 : L1 →KM n2 : L2 of the Karp-Miller tree mimic identity-aware
reactions, and so are labeled with sets of fresh instances. Additionally, reaction
sequences leading to repeating limits L 	 L | Lrem are accelerated, provided
Lrem does not remember newly generated instances. We define KM (Pia) :=
{L | there is some node labeled with L in the tree}. Figure 1 gives the execution
of the algorithm on an example process.

To understand the subtle acceleration condition in the if-statement, consider
process K2�(b, 0)� with K2(y) := νb.(K2�b�2):

K2�(b, 0)�
{(b,0)}−−−−→ia K2�(b, 0)�2

{(b,1)}−−−−→ia K2�(b, 1)�2 | K2�(b, 0)�.

After the first transition, we find K2�(b, 0)� 	 K2�(b, 0)�2. But the intersection
I(K2�(b, 0)�) ∩ {(b, 0)} �= ∅ forbids us to accelerate K2�(b, 0)�2 to K2�(b, 0)�ω.
That this is indeed correct can be seen in the third process. It is not true that
arbitrarily many processes will get to know (b, 0).

The following lemmas encode the correctness of the construction.

Lemma 2 (Completeness). For every Qia ∈ Reach ia(Pia) there is a limit
L ∈ KM (Pia) and an injective substitution σ : I(Qia) → I(L) so that Qiaσ 	 L.

Lemma 3 (Soundness). For every L ∈ KM (Pia) and every k ∈ N there is
Qia ∈ Reachia (Pia) with Qia(S) = L(S) for all S ∈ Fin(L), Qia(S) ≥ k for all
S ∈ Inf (L), and Qia(S) = 0 otherwise.

A Theory of Name Boundedness 191

Note that the previous two lemmas do not assume Pia to be name-bounded.
This is important in proving Theorem 1(2) below.

Lemma 4 (Termination). Algorithm 1 terminates with input Pia ∈ Pia if and
only if Pia is name-bounded.

If the input process is not name-bounded, completeness in Lemma 2 implies that
Algorithm 1 cannot terminate. The converse direction comes with two problems.

First, we have to guarantee that we find repeating limits n1 : L1 →∗
KM n2 :

L2 →ia L with L ≡ L1 | Lrem . The trick is to understand limits as multisets over
a finite set, and then resort to the theory of well-quasi orderings. Lemma 1 shows
that we can restrict ourselves to derivatives plus substitutions: Dσ and (Dσ)ω .
This means limits of Pia are multisets over the finite set D(Pia)×Σ(Pia)×{ε, ω}.
With this finiteness, multiset inclusion and hence 	 is a well-quasi ordering by
Dickson’s lemma. This guarantees repetitions.

Second, acceleration has a side condition which additionally requires I(Lrem)∩
FI(L1, L) = ∅: the processes to be accelerated should not contain instances that
were generated along the way. The following lemma shows that a failure of the
side condition would contradict name boundedness.

Lemma 5. Consider Algorithm 1 with Pia ∈ Pia as input. If the execution
encounters n1 : L1 →∗

KM n2 : L2 →ia L with L ≡ L1 | Lrem and such that
I(Lrem) ∩ FI(L1, L) �= ∅, then Pia is not name-bounded.

Note that the lemma correctly predicts name unboundedness in the example
K2�(b, 0)� above. Applied in contraposition, the lemma shows that for name-
bounded processes the side condition always holds: if we find repeating elements
L1 and L ≡ L1 | Lrem , then we are already sure that I(Lrem) ∩ FI(L1, L) = ∅.

Theorem 2. Consider a name-bounded process P ∈ P with P ≡ νI(Pia).Pia .
Then Reach(P)↓ = {νI(L).L | L ∈ KM (Pia)}↓ and the latter set is finite.

Proof of Theorem 1(2). The Karp and Miller tree allows us to prove Theorem 1.
To check whether P ∈ P is b-name-bounded, we execute Algorithm 1 until it
either terminates or we find a limit with more than b instances. In the former
case, we report that the process is b-name-bounded, in the latter that it is not.

Assume P is b-name-bounded. Then Algorithm 1 terminates by Lemma 4. By
Lemma 3, it only constructs limits with up to b instances. Therefore, the second
termination condition will not apply and we report P to be b-name-bounded. If P
is not b-name-bounded, there is a reachable process with more than b instances.
By completeness, Algorithm 1 will construct a limit with more than b instances.
Then, we report P is not b-name-bounded. ��

4 From Name-bounded Processes to Petri Nets

4.1 Process Bounds

To give a reduction to Petri nets, we require a notion of “pumping” instances.
We introduce process bounds as a pumping mechanism.

192 R. Hüchting, R. Majumdar, and R. Meyer

Consider a sequence ρ = Pia →ia . . . →ia Qia and some p ∈ N. We use I>p(ρ)
to denote the instances that were known to more than p sequential processes at
some moment during ρ. As instances can be reused, I>p(ρ) is a multiset. It is
divided into I>p(ρ) = Iactive

>p (ρ) + Idead
>p (ρ). The instances that once exceeded

the bound and are still active in the final process Qia are given by Iactive
>p (ρ).

Note that Iactive
>p (ρ) is indeed a set, not just a multiset. The instances that have

been forgotten along the way is the multiset Idead
>p (ρ).

The definitions are by induction on the length of the sequence, where the
induction step is as follows:

Idead
>p (ρ.Q1

ia →ia Q2
ia) := Idead

>p (ρ) + Idead
Iactive
>p (ρ.Q1

ia →ia Q2
ia) := Iactive

>p (ρ) \ Idead ∪ Iact .

The auxiliary set Idead contains the instances that once exceeded the bound and
were active up to Q1

ia , but that are forgotten in the transition Q1
ia →ia Q2

ia .
The set Iact contains the instances that occur in more than p ∈ N sequential
processes of Q2

ia . We use |Q2
ia |(a,i) to denote the number of sequential processes

in Q2
ia that have (a, i) as instance:

Idead :=
{
(a, i) ∈ Iactive

>p (ρ) | (a, i) /∈ I(Q2
ia) or (a, i) ∈ FI(Q1

ia , Q
2
ia)

}

Iact :=
{
(a, i) ∈ I(Q2

ia) | |Q2
ia |(a,i) > p

}
.

Choose p to be the largest number of sequential processes that know an instance
(a, i) in a limit of the Karp-Miller tree:

p := max
{
|L|(a,i) | L ∈ KM (Pia) and (a, i) /∈ I(Inf (L))

}
.

This p, called the process bound, has an interesting property. Consider a reaction
sequence ρ from Pia to Qia . If we replay it on the Karp-Miller tree, then an
instance (a, k) ∈ I>p(ρ) that is distributed to more than p sequential processes
leads to Sω. Since accelerated processes are never removed, the limit L that
dominates Qia will contain Sω. Thus, the limit not only contains the instances
I(Qia) but also the instances from Idead

>p (ρ). Since there are reachable processes
Ria that correspond to L, we get a lower bound on the name bound of Pia .

Lemma 6. Let Pia ∈ Pia be b-name-bounded and let p be its process bound. For
every ρ from Pia to Qia we have |Idead

>p (ρ)|+ |I(Qia)| ≤ b.

Phrased differently, instances which exceeded process bound p do not need to
be reused by the identity-aware semantics to meet name bound b.

4.2 Petri Net Construction

Given a b-name-bounded process Pia ∈ Pia that has p ∈ N as a process bound,
we construct a Petri net N (Pia , b, p) that simulates the identity-aware semantics
of Pia in a strong sense: there is a bisimulation between the transition systems of
N (Pia , b, p) and Pia . We use the standard notion of place-transition Petri nets
of the form (S, T,W,M0) with the standard firing semantics.

A Theory of Name Boundedness 193

We describe the construction of N (Pia , b, p) as a composition of two parts:

N (Pia , b, p) := Syn(Ctrl (Pia , b))×Ref (Pia , b, p) .

Petri net N (Pia , b, p) maintains a finite set of instances {(a, 0), . . . , (a, b − 1)}
to represent each restriction a ∈ R(Pia). Petri net Ref (Pia , b, p) implements
reference counters for these instances in order to correctly allocate them when
restrictions are encountered. The control flow of Pia is captured by Ctrl (Pia , b).
While this net only models the consumption of prefixes, the synchronisation
operation Syn(·) joins send and receive transitions with complementary labels.
Finally, the × operator co-ordinates the distribution and generation of instances
between Syn(Ctrl (Pia , b)) and Ref (Pia , b, p). We turn to the details.

Petri net Ctrl (Pia , b) maintains a place for each possible sequential process.
These places count the number of occurrences of the corresponding process. Since
there are finitely many restrictions, each with finitely many instances, as well as
finitely many derivatives, the number of places in Ctrl (Pia , b) is finite.

The transitions are derived from the places. Consider a receive

S ≡ x(y).νã.Qia + . . . with νã = νa1 . . . νam and Qia ≡ So1
1 | . . . | Son

n .

The receive operation is implemented by a set of transitions, one transition t for
each z in F(Pia)∪(R(Pia)× [0, b−1]) that we can receive for y and each m-tuple
of instances (a1, k1) to (am, km) that we may use to represent a1 to am. The post
set of t is the set of sequential processes in Qiaσ. In the above case, this is S1σ
to Snσ. Substitution σ maps y to z and ai to (ai, ki) for i ∈ [1,m]. The weight
of the arc from t to Siσ is given by Qiaσ(Siσ) = oi, the number of occurrences
of Siσ in Qiaσ. Additionally, the transition is labeled with information used to
synchronize with the reference counters.

The synchronisation operation Syn(Ctrl (Pia , b)) joins transitions with com-
plementary send and receive labels. Finally, the × connects the synchronized
control flow net with the reference counters.

To limit the number of instances to b ∈ N, we reinstantiate an instance (a, k)
that was present in Q1

ia in a later process Q2
ia , provided it has been forgotten on

the path Q1
ia →+

ia Q2
ia . The Petri net Ref (Pia , b, p) maintains reference counters

that track the number of sequential processes S with (a, k) ∈ I(S). An instance
(a, k) can be reinstantiated in case the reference counter is zero.

To check that a reference counter is zero, we use the process bound p. (Recall
that Petri nets cannot implement zero-tests.) Consider a sequence ρ from Pia to
Qia . An instance (a, k) in ρ that, at some moment, is distributed to more than p
sequential processes and that has been forgotten in Qia is a member of Idead

>p (ρ).
Lemma 6 ensures this instance need not be reinstantiated. The name bound is
high enough so that there is another instance that is currently not in use and
that can represent the restriction. As a result, once a reference count goes beyond
p, the name is never recycled. The net Ref (Pia , b, p) has three places for each
instance (a, k): a place (a, k)ω denoting this name cannot be recycled, a place
(a, k) keeping the current reference count (provided the reference count has never
exceeded p), and a complementary place (a, k) that ensures the sum of tokens

194 R. Hüchting, R. Majumdar, and R. Meyer

in (a, k) and (a, k) together is p while the name is bounded. We implement the
zero-test by checking (a, k) has p tokens.

Now, a step of the process is simulated by a sequence of steps of the Petri
net that update the tokens in Ctrl (Pia , b), but at the same time, instantiate
required names and update the reference counts.

4.3 Bisimilarity

To obtain a clean bisimulation between a name-bounded process and its Petri
net semantics, we use an idea from [15]: we define distinguished stable markings
that will actually correspond to processes, as opposed to intermediary markings
that occur when we amend reference counters and allocate instances.

Consider N (Pia , b, p) = (S, T,W,M0). The set of places in Syn(Ctrl (Pia , b))
is the disjoint union Sproc�Sinter ⊆ S where Sproc contains the process places of
Ctrl (Pia , b) while Sinter contains intermediary places that we added to allocate
instances and update reference counters. Now, a marking M ∈ N

S is called stable
if M(s) = 0 for all s ∈ Sinter . We use Rstbl (N (Pia , b, p)) to denote the set of
stable markings that are reachable in N (Pia , b, p).

We are interested in transition sequences of N (Pia , b, p) that correspond to
one communication or identifier-call, rather than interleavings of reactions. For-

mally, a transition sequence M1 t1...tn−−−−→ M2 between stable markings is called
race-free if there is a single transition t of Syn(Ctrl (Pia , b)) that is unfolded
into t1 . . . tn in the composition N (Pia , b, p). We write M1 ⇒ M2 if there is a
race-free transition sequence between the two markings. With this, the stable
transition system is Tstbl (N (Pia , b, p)) := (Rstbl (N (Pia , b, p)),⇒,M0).

To define a bisimulation relation, we have to decide which instances to mark
as unbounded in the marking of N (Pia , b, p). Unfortunately, a single process Qia

does not carry enough information to define the related markings. We need the
full transition sequence ρ = Pia →ia . . . →ia Qia that leads to Qia . We there-
fore extend the identity-aware transition system Tia (Pia) to a history-preserving
identity-aware transition system T h

ia (Pia) in which states are such sequences ρ
from Pia to Qia . Clearly, the identity-aware transition system and its history-
preserving variant are bisimilar. The history-preserving transition system carries
enough information to establish a bisimulation result.

Lemma 7. Tia (Pia) ≈ T h
ia (Pia) ≈ Tstbl (N (Pia , b, p)).

Assume Pia has name bound b ∈ N and process bound p ∈ N. Then B relates
transition sequence ρ from Pia to Qia with marking M = Mctr + Mref if the
following holds.

For the control-flow marking, we require that there is an injective substitution
σ : I(Qia) → I(supp(Mctr)) so that Mctr ≡ Qiaσ.

For marking Mref of the reference counter, consider (a, i) ∈ Iactive
>p (ρ). We

requireMref ([(a, i)σ]
ω) = 1. For an instance (a, i) ∈ I(Qia)\Iactive

>p (ρ), we need

Mref ((a, i)σ) = |Qia |(a,i). With Lemma 6, there are b − |I(Qia)| ≥ |Idead
>p (ρ)|

instances (a, k) outside the range of σ. We have Mref ((a, k)
ω) = 1 for |Idead

>p (ρ)|
such instances. All other instances carry p tokens on the complement place.

A Theory of Name Boundedness 195

The above constraints describe a marking that is partial in that, for each
instance, the token count of only one place (a, k), (a, k), or (a, k)ω is given.
The tokens for the remaining places are uniquely determined by the following
invariants. Places (a, i) and (a, i) are complements with bound p. Also places
{(a, i), (a, i)} and (a, i)ω are complements. This means, if (a, i)ω carries a token,
the other two are empty and vice versa. Place (a, i)ω is safe. We can now state
our second main result.

Theorem 3. Let P ≡ νI(Pia).Pia be name-bounded by b ∈ N and let p ∈ N be
the process bound. Then T (P) ≈ Tstbl (N (Pia , b, p)).

Proof. T (P) ≈ Tia(Pia) ≈ T h
ia (Pia) ≈ Tstbl (N (Pia , b, p)), with Proposition 1

and Lemma 7. ��
Corollary 1. Reachability is decidable for name-bounded processes.

5 Ackermann Lower Bound

We give a polynomial-time reduction from Turing machines operating on a tape
of non-primitive recursive size to name-bounded processes. As a consequence,
verification problems for name-bounded systems have non-primitive recursive
complexity.

We give the construction of process P (TM) for Turing machine TM . The
behavior of P (TM) is divided into three stages. In the first stage, P (TM) gen-
erates up-to A(n) parallel processes W �p,Q� that are waiting. Here, Q is the
set of states in the Turing machine that we deliberately understand as channels.
Moreover, there is a single process νc.νr.G�p, c, r, q0�:

P (TM) →∗ W �p,Q�A(n) | νc.νr.G�p, c, r, q0�.
For this generation phase, we rely on a result from Petri net theory [11]. There is
a sequence of Petri nets (Ni)i∈N where the size grows linearly and that produce
up to (A(i))i∈N tokens on a designated place. Such a Petri net Ni can be turned
into a restriction-free process creating A(i) copies of W �p,Q�.

In the second stage, process G�p, c, r, q0� aligns the waiting W �p,Q� into a
list of processes C0�l, c, r, Q� representing cells in the Turing tape with content
0, input channel c, and pointers l and r to the input channels of their left and
right neighbor. The process G�p, c, r, q0� recursively converts W �p,Q� to cells,
and can non-deterministically decide that the current cell with input channel c
is the last one in the list. In this case it sends the initial state q0 of TM to the
cell, which starts the simulation of the Turing machine.

The simulation of the Turing machine is the third stage in the behavior of
P (TM). Each process Ci(l, c, r, Q), with i ∈ {0, 1} as current content, waits to re-
ceive the head pointer and the current state ofTM . On receiving the current state,
the process executes one transition of the machine and updates its content, while
sending the successor state to its left or right neighbor, based on the transition.

Theorem 4. (1) Reachability and coverability are non-primitive recursive
for name-bounded processes. (2) There is no primitive recursive translation of

196 R. Hüchting, R. Majumdar, and R. Meyer

name-bounded processes into Petri nets that preserves coverability. (3) There is
no primitive recursive bound on the size of name and process bounds.

Theorem 4 shows the Karp-Miller procedure is asymptotically optimal.

References

1. Amadio, R., Meyssonnier, C.: On decidability of the control reachability problem
in the asynchronous π-calculus. Nord. J. Comp. 9(1), 70–101 (2002)

2. Bansal, K., Koskinen, E., Wies, T., Zufferey, D.: Structural counter abstraction.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 62–77.
Springer, Heidelberg (2013)

3. Busi, N., Gorrieri, R.: Distributed semantics for the π-calculus based on Petri nets
with inhibitor arcs. J. Log. Alg. Prog. 78(1), 138–162 (2009)

4. Busi, N., Zavattaro, G.: Deciding reachability problems in Turing-complete frag-
ments of Mobile Ambients. Math. Struct. Comp. Sci. 19(6), 1223–1263 (2009)

5. Dam, M.: Model checking mobile processes. Inf. Comp. 129(1), 35–51 (1996)
6. Devillers, R., Klaudel, H., Koutny, M.: A compositional Petri net translation of

general π-calculus terms. For. Asp. Comp. 20(4-5), 429–450 (2008)
7. Finkel, A., Goubault-Larrecq, J.: The theory of WSTS: The case of com-

plete WSTS. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS,
vol. 7347, pp. 3–31. Springer, Heidelberg (2012)

8. He, C.: The decidability of the reachability problem for CCS! In: Katoen, J.-P.,
König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 373–388. Springer, Heidel-
berg (2011)

9. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

10. Lipton, R.J.: The reachability problem requires exponential space. Technical re-
port, Yale University, Department of Computer Science (1976)

11. Mayr, E.W., Meyer, A.R.: The complexity of the finite containment problem for
Petri nets. JACM 28(3), 561–576 (1981)

12. Meyer, R.: On boundedness in depth in the π-calculus. In: IFIP TCS. IFIP, vol. 273,
pp. 477–489. Springer, Heidelberg (2008)

13. Meyer, R.: A theory of structural stationarity in the π-calculus. Acta Inf. 46(2),
87–137 (2009)

14. Meyer, R., Gorrieri, R.: On the relationship between π-calculus and finite
place/transition Petri nets. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.
LNCS, vol. 5710, pp. 463–480. Springer, Heidelberg (2009)

15. Meyer, R., Khomenko, V., Hüchting, R.: A polynomial translation of π-calculus
(FCP) to safe Petri nets. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012.
LNCS, vol. 7454, pp. 440–455. Springer, Heidelberg (2012)

16. Milner, R.: Communicating and Mobile Systems: the π-Calculus. CUP (1999)
17. Montanari, U., Pistore, M.: Checking bisimilarity for finitary π-calculus. In: Lee,

I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 42–56. Springer, Hei-
delberg (1995)

18. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comp. Sci. 6(2), 223–231 (1978)

19. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. CUP
(2001)

20. Wies, T., Zufferey, D., Henzinger, T.A.: Forward analysis of depth-bounded pro-
cesses. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 94–108. Springer,
Heidelberg (2010)

	A Theory of Name Boundedness
	1 Introduction
	2 Name-bounded Processes
	3 Coverability and the Karp-Miller Construction
	3.1 Identity-aware Processes
	3.2 Karp and Miller Trees

	4 From Name-bounded Processes to Petri Nets
	4.1 Process Bounds
	4.2 Petri Net Construction
	4.3 Bisimilarity

	5 Ackermann Lower Bound
	References

