
Expand, Enlarge, and Check

for Branching Vector Addition Systems

Rupak Majumdar and Zilong Wang

MPI-SWS, Germany

Abstract. Expand, enlarge, and check (EEC) is a successful heuristic
for the coverability problem of well-structured transition systems. EEC
constructs a sequence of under- and over-approximations with the prop-
erty that the presence of a bug is eventually exhibited by some under-
approximation and the absence of a bug is eventually exhibited by some
over-approximation.

In this paper, we consider the application of EEC to the coverabil-
ity problem for branching vector addition systems (BVAS), an expres-
sive model that subsumes Petri nets. We describe an EEC algorithm
for BVAS, and prove its termination and correctness. We prove an upper
bound on the number of iterations for our EEC algorithm, both for BVAS
and, as a special case, vector addition systems (or Petri nets). We show
that in addition to practical effectiveness, the EEC heuristic is asymp-
totically optimal. For BVAS, it requires at most doubly-exponentially
many iterations, thus matching the optimal 2EXPTIME upper bound.
For Petri nets, it can be implemented in EXPSPACE, again matching
the optimal bound. We have implemented our algorithm and used it to
verify safety properties of concurrent programs with asynchronous tasks.

1 Introduction

Branching vector addition systems (BVAS) are an expressive model that gen-
eralize vector addition systems (VAS, or Petri nets) with branching structures.
Intuitively, one can consider a VAS as producing a linear sequence of vectors
using unary rewrite rules, where a rewrite rule takes a vector v and adds a con-
stant δ to it, as long as the sum v + δ remains non-negative on all co-ordinates.
A branching VAS adds a second, binary rewrite rule that takes two vectors v1
and v2 and rewrites them to v1+ v2+ δ for a constant δ, again provided the sum
is non-negative on all co-ordinates. Thus, a BVAS generates a derivation tree
of vectors, starting with a multiset of initial vectors, or axioms, at the leaves
and generating a vector at the root of a derivation, where each internal node in
the tree applies a unary or a binary rewrite rule. The reachability problem for
BVAS is to check if a given vector can be derived, and the coverability problem
asks, given a vector v, if a vector v′ ≥ v can be derived. These generalize the
corresponding problems for VAS. Several verification problems, such as the anal-
ysis of recursively parallel programs [1] and the analysis of some cryptographic
protocols [17], have been shown to reduce to the coverability problem for BVAS.

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 152–166, 2013.
© Springer-Verlag Berlin Heidelberg 2013



Expand, Enlarge, and Check for Branching Vector Addition Systems 153

Coverability for BVAS is known to be decidable, both through a generalized
Karp-Miller construction [16] as well as through a bounding argument [5]. Fur-
ther, the bounding argument characterizes the complexity of the problem: cover-
ability is 2EXPTIME-complete [5] (contrast with the EXPSPACE-completeness
for VAS [15]). The Karp-Miller construction is non-primitive recursive, since
BVAS subsume VAS [11].

Despite potential applications, the study of BVAS has so far remained in
the domain of theoretical results, and to the best of our knowledge, there have
not been any attempts to build analysis tools for coverability. In contrast, tools
for VAS coverability have made steady progress and can now handle quite large
benchmarks derived from the analysis of multi-threaded programs [10,13]. In our
view, one reason is that a direct implementation of the algorithms from [16,5]
are unlikely to perform well: Karp-Miller trees for VAS do not perform well in
practice, and Demri et al.’s complexity-theoretically optimal algorithm performs
a non-deterministic guess and enumeration by an alternating Turing machine.

In this paper, we apply the expand, enlarge, and check paradigm (EEC) [7]
to the analysis of BVAS. EEC is a successful heuristic for checking coverability
of well-structured transition systems such as Petri nets. It constructs a sequence
of under- and over-approximations of the state space of a system such that,
for a target state t, (1) if t is coverable, then a witness is found by an under-
approximation, (2) if t is not coverable, then a witness for un-coverability is
found by an over-approximation, and (3) eventually, one of the two outcomes
occur and the algorithm terminates.

EEC offers several nice features for implementation. First, each approximation
it considers is finite-state, thus opening the possibility of applying model checkers
for finite-state systems. Second, EEC is goal-directed: it computes abstractions
that are precise enough to prove or disprove coverability of a target, unlike a
Karp-Miller procedure that computes the exact coverability set independent of
the target. Third, it allows a forward abstract exploration of the state space,
which is often more effective in practice.

Our first contribution is to port the EEC paradigm to the coverability analysis
of BVAS.We show how to construct a sequence of under- and over-approximations
of derivations such that if a target is coverable, an under-approximation derives a
witness for coverability, and if a target is not coverable, an over-approximation
derives a witness for un-coverability. We generalize the proof of correctness of
EEC for well-structured systems. Since there is no BVAS analogue of a backward-
reachability algorithm for VAS, our proofs instead use induction on derivations
and the Karp-Miller construction of [16].

A natural question is how well EEC performs in the worst case compared to
asymptotically optimal algorithms. For example, even for VAS, it is unknown if
the EEC algorithm can match the known EXPSPACE upper bound for cover-
ability, or if it matches the non-primitive recursive lower bound for Karp-Miller
trees. Our second contribution is to bound the number of iterations of the EEC
algorithm in the worst case. We show that we can compute a constant c of size
doubly exponential in the size of the BVAS and the target vector such that the



154 R. Majumdar and Z. Wang

EEC algorithm is guaranteed to terminate in c iterations. In each iteration, the
algorithm explores approximate state spaces of derivations, that correspond to
exploring AND-OR trees of size doubly exponential in the input. In other words,
if each exploration is performed optimally, we get an optimal asymptotic upper
bound for EEC. Specifically, for VAS, we get an EXPSPACE upper bound, since
there are doubly exponential iterations and each iteration checks two reachabil-
ity problems over doubly-exponential state spaces. (In practice though, model
checkers do not implement space-optimal reachability procedures.) While our
proof uses Rackoff-style bounds [15,5], our implementation does not require any
knowledge of these bounds. A similar argument was used in [2] to show a doubly
exponential bound on the backward reachability algorithm for VAS.

We have implemented the EEC-based procedure for BVAS coverability. Our
motivation for analyzing BVAS came from the analysis of recursively parallel
programs [6,1]. It is known that the analysis of asynchronous programs, a co-
operatively scheduled concurrency model, can be reduced to coverability of VAS
[6], and there have been EEC-based tools for these programs [9]. However, some
asynchronous programs use features such as posting a set of tasks in a handler
and waiting on the first task to return, that are not reducible to asynchronous
programs. Bouajjani and Emmi [1] define a class of recursively parallel programs
that can express such constructs, and show that the safety verification problem
for this class is equivalent to coverability of BVAS. We applied this reduction
in our implementation, and used our tool to model check safety properties of
recursively parallel programs. We coded the control flow of tasks in a simple web
server [4] and showed that our tool can successfully check for safety properties
and find bugs. On our examples, the EEC algorithm terminates in one iteration,
that is, with a {0, 1,∞} abstraction. While our evaluations are preliminary, we
believe there is a potential for model checking tools for complex concurrent
programs based on BVAS coverability.

2 Preliminaries

Well Quasi Ordering. A quasi ordering (X,�) is a reflexive and transitive
binary relation on X . A quasi ordering (X,�) is a well quasi ordering iff for
every infinite sequence x0, x1, . . . of elements from X , there exists i < j with
xi � xj . A subset X ′ of X is upward closed if for each x ∈ X , if there is an
x′ ∈ X ′ with x′ � x then x ∈ X ′. A subset X ′ of X is downward closed if for
each x ∈ X , if there is an x′ ∈ X ′ with x � x′ then x ∈ X ′. Given x ∈ X ,
we write x↓ and x↑ for the downward closure {x′ ∈ X | x′ � x} and upward
closure {x′ ∈ X | x � x′} of x respectively. Downward and upward closures are
naturally extended to sets, i.e., X ↓ =

⋃
x∈X x↓ and X ↑ =

⋃
x∈X x↑. A subset

S ⊆ X is minimal iff for every two elements x, x′ ∈ S, we have x 	� x′.

Numbers and Vectors. We write N, N+ and Z for the set of non-negative,
positive and arbitrary integers, respectively. Given two integers a and b, we write
[a, b] for {n ∈ Z | a ≤ n ≤ b}.

For a vector v ∈ Z
k and i ∈ [1, k], we write v[i] for the ith component of v.

Given two vectors v, v′ ∈ Z
k, v ≤ v′ iff for all i ∈ [1, k], v[i] ≤ v′[i]. Moreover,



Expand, Enlarge, and Check for Branching Vector Addition Systems 155

v < v′ iff v ≤ v′ and v′ 	≤ v. It is well-known that (Nk,≤) is a well quasi ordering.
We write 0 for the zero vector.

Given a finite set S ⊆ Z of integers, we write max(S) for the greatest in-
teger in the set. We define max(∅) = 0. Given a vector v ∈ Z

k, let max(v) =
max({v[1], . . . , v[k]}). When k = 0, we have max(〈〉) = 0. We define min(S) anal-
ogously. We write min(0, v) for the vector 〈min({0, v[1]}), . . . ,min({0, v[k]})〉.
The vector max(0, v) is defined analogously. For simplicity, we write v− for the
vector −min(0, v) and v+ for the vector max(0, v). Given a finite set of vec-
tors R ⊆ Z

k, let R−/+ be the set {v−/+ | v ∈ R} respectively. We define
max(R) = max({max(v+) | v ∈ R}). The size of a vector is the number of bits
required to encode it, all numbers being encoded in binary.

Trees. A finite binary tree T , which may contain nodes with one child, is a
non-empty finite subset of {1, 2}∗ such that, for all n ∈ {1, 2}∗ and i ∈ {1, 2},
n · 2 ∈ T implies n · 1 ∈ T , and n · i ∈ T implies n ∈ T . The nodes of T are its
elements. The root of T is ε, the empty word. All notions such as parent, child,
subtree and leaf, have their standard meanings. The height of T is the number
of nodes in the longest path from the root to a leaf.

BVAS, Derivations, and Coverability. A branching vector addition system
(BVAS) [16,5] is a tuple B = 〈k,A,R1, R2〉, where k ∈ N is the dimension,
A ⊆ N

k is a non-empty finite set of axioms, and R1, R2 ⊆ Z
k are finite sets of

unary and binary rules, respectively. The size of a BVAS, size(B) is the number
of bits required to encode a BVAS, where numbers are encoded in binary.

The semantics of a BVAS B is captured using derivations. Intuitively, a deriva-
tion starts with a number of axioms from A, proceeds by applying rules from
R1 ∪R2, and ends with a single vector. Applying a unary rule means adding it
to a derived vector, and applying a binary rule means adding it to the sum of
two derived vectors. While applying rules, all derived vectors are required to be
non-negative. Formally, a derivation D of B is defined inductively as follows.

D1: If v ∈ A, then v is a derivation.
D2: If D1 is a derivation with a derived vector v1 ∈ N

k, then for each unary rule
δ1 ∈ R1 with 0 ≤ v1 + δ1,

... D1

v1D : δ1v

is a derivation, where v = v1 + δ1.
D3: If D1 and D2 are derivations with derived vectors v1, v2 ∈ N

k respectively,
then for each binary rule δ2 ∈ R2 with 0 ≤ v1 + v2 + δ2,

... D1

v1

... D2

v2D : δ2v

is a derivation, where v = v1 + v2 + δ2.



156 R. Majumdar and Z. Wang

A derivation D can be represented as a finite binary tree whose nodes are labelled
by non-negative vectors. Therefore, all notions of trees can be naturally applied
to derivations. For a derivation D and its node n, we write D(n) for the non-
negative vector labelled at n. We say D derives a vector v iff D(ε) = v.

A derivation D is compact iff for each node n and for each its ancestor n′, we
have D(n) 	= D(n′). Given a derivation D with a node n and an ancestor n′ of n
with D(n) = D(n′), a contraction D[n′ ← n] over D is obtained by replacing the
subtree rooted at n′ with the subtree rooted at n in D. We write compact(D) for
the compact derivation computed by a finite sequence of contractions over D.

Given a BVAS B = 〈k,A,R1, R2〉, we say a vector v is reachable in B iff there
is a derivation D with D(ε) = v. We write Reach(B) = {v | ∃D. D(ε) = v} for
the set of reachable vectors in B. We say a vector v is coverable in B iff there is
a derivation D with v ≤ D(ε). We call a derivation D a covering witness of v iff
v ≤ D(ε). The coverability problem asks, given a BVAS B and a vector t ∈ N

k,
whether t is coverable in B. Equivalently, t is coverable iff t ∈ Reach(B)↓.

3 Under-and Over-Approximation

We give two approximate analyses for BVAS: an under-approximation that fixes
a finite set of vectors and only considers those vectors in that finite set, and an
over-approximation that introduces limit elements. The under-approximation
can show that a vector is coverable and the over-approximation can prove that
a vector is not coverable.

3.1 Underapproximation

Truncated Derivations. Given a BVAS B = 〈k,A,R1, R2〉 and an i ∈ N,
define Ci ⊆ N

k as A∪{0, . . . , i}k. Given a vector v ∈ N
k and an i ∈ N, We write

under(v, i) for a truncated vector such that for all j ∈ [1, k], under(v, i)[j] = v[j]
if v[j] ≤ i, under(v, i)[j] = i otherwise. For all vector v ∈ N

k and for all i ∈ N,
under(v, i) ≤ v. A truncated derivation F w.r.t. i is defined inductively as follows.

T1: If v ∈ A, then v is a truncated derivation.
T2: If F1 is a truncated derivation with a derived truncated vector v1 ∈ N

k,
then for each unary rule δ1 ∈ R1 with 0 ≤ v1 + δ1,

... F1

v1F : δ1v
is a truncated derivation, where v = under(v1 + δ1, i).

T3: If F1 and F2 are truncated derivations with derived truncated vectors
v1, v2 ∈ N

k respectively, then for each binary rule δ2 ∈ R2 with 0 ≤
v1 + v2 + δ2,

... F1

v1

... F2

v2F : δ2v
is a truncated derivation, where v = under(v1 + v2 + δ2, i).



Expand, Enlarge, and Check for Branching Vector Addition Systems 157

Analogously to derivations, a truncated derivation F is a finite binary tree whose
nodes are labelled by truncated vectors. We say F derives a truncated vector v
iff F(ε) = v. We naturally extend the notions of compactness, covering witness,
and coverability to truncated derivations w.r.t. ≤.

Lemma 1. Let B = 〈k,A,R1, R2〉 be a BVAS and i ∈ N. For any h ∈ N
+, there

are finitely many truncated derivations of a BVAS of height h.

Given a BVAS B, we define a total ordering� on truncated derivations according
to their heights as follows. Since for each h ∈ N

+ there are only finitely many, say
kh, truncated derivations of height h, we can enumerate them without repetition,
arbitrarily as Fh1, . . . ,Fhkh

. We define Fmi � Fnj iffm < n, orm = n and i ≤ j.

The Forest Under(B, Ci). Given a BVAS B = 〈k,A,R1, R2〉 and i ∈ N, we
construct a forest Under(B, Ci) whose nodes are compact truncated derivations
by the following rules:

U1: For each axiom v ∈ A, the truncated derivation v is a root.
U2: Let F1 be a compact truncated derivation in the forest. Let F be a truncated

derivation obtained by applying a unary rule δ1 ∈ R1 to F1 (as in rule T2).
If compact(F) has not been added to the forest then add compact(F) as a
child of F1 in the forest.

U3: Suppose compact truncated derivations F1,F2 are in the forest. Let F be a
truncated derivation obtained by applying a binary rule δ2 ∈ R2 to F1 and
F2 (as in rule T3). If compact(F) has not been added to the forest then we
add compact(F) to the forest as a child of F ′ where F ′ is the greater one
between F1 and F2 w.r.t. the total order �.

The following lemma shows that the construction of Under(B, Ci) eventually
terminates, and that it can be used to prove coverability.

Theorem 1 (Underapproximation). Let B be a BVAS.

1. For any i ∈ N, the forest Under(B, Ci) is finite.
2. Given an i ∈ N, for any truncated derivation F , there is a derivation D in
B such that F(ε) ≤ D(ε).

3. For any vector v ∈ N
k, we have v ∈ Reach(B)↓ iff there exists i ∈ N such

that there is a truncated derivation F in Under(B, Ci) with v ≤ F(ε).

Proof. Part (1). Fix i. It is easy to see that there are finitely many trees in the
forest and each tree is finitely branching, since there are at most finitely many
trees of a given height. If the forest is not finite, then by König’s lemma, there is
an infinite simple path of compact truncated derivations F1,F2, . . . in the forest
such that for every i ≥ 1, Fi is a sub-compact truncated derivation of Fi+1. This
induces an infinite sequence of truncated vectors F1(ε),F2(ε) . . . such that for
every i 	= j, Fi(ε) 	= Fj(ε). However, since for all F in the forest, F(ε) ∈ Ci and
Ci is finite, such infinite sequence of truncated vectors does not exist.

Part (2). By induction on the height of F .



158 R. Majumdar and Z. Wang

Part (3). ⇒: Since Reach(B)∩ v↑ 	= ∅, there is a derivation D in B such that
v ≤ D(ε). Let S be the union of the set of axioms A and the set of all vectors in
compact(D). Because both sets are finite, let i be max(S). Then compact(D) is
in Under(B, Ci) and v ≤ D(ε) = compact(D)(ε).
⇐: By Part (2), there is a derivation D in B such that F(ε) ≤ D(ε). Since

D(ε) ∈ Reach(B) and v ≤ F(ε), v ∈ Reach(B)↓.

3.2 Overapproximation

To define over-approximation of derivations, we introduce extended derivations
which consider vectors over N∪ {∞}. We then present an algorithm that builds
a forest overapproximating the downward closure of reachable vectors of a given
BVAS and prove termination and correctness.

Let N∞ = N ∪ {∞} be the extension of the natural numbers with infinity.
An extended vector is an element of Nk

∞. For extended vectors u, u′ ∈ N
k
∞, we

write u ≤e u′ iff for all i ∈ [1, k], we have u[i] ≤ u′[i] or u′[i] = ∞. We write
u <e u′ iff u ≤e u′ and u′ 	≤e u. We always use words starting with the letter
u to denote an extended vector (e.g. u, u′, u1 etc.) and words starting with the
letter v to denote a vector in Z

k (e.g. v, v′, v1 etc.). Extended vectors describe

sets of vectors: we define γ : Nk
∞ → 2N

k

as γ(u) = {v ∈ N
k | v ≤e u}, and

naturally extend γ to sets of extended vectors.

Proposition 1. [7] (1) Given an extended vector u ∈ N
k
∞ and a finite set of

extended vectors S ⊆ N
k∞, γ(u) ⊆ γ(S) iff there is u′ ∈ S such that u ≤e u′.

(2) Given two finite and minimal sets S1, S2 ⊆ N
k
∞, S1 = S2 if and only if

γ(S1) = γ(S2).

Given a BVAS B = 〈k,A,R1, R2〉, there exists a finite and minimal subset
CS(B) ⊆ N

k∞ such that γ(CS(B)) = Reach(B)↓. We shall call CS(B) the finite
representation of Reach(B)↓.
Extended Derivations. Given a BVAS B = 〈k,A,R1, R2〉 and an i ∈ N, let
Ci = {0, . . . , i}k∪A and Li = {0, . . . , i,∞}k\{0, . . . , i}k. Given two sets S1 ⊆ N

k

and S2 ⊆ N
k
∞, we say that S2 is an overapproximation of S1 iff S1 ⊆ γ(S2).

Moreover, we say that S2 is the most precise overapproximation of S1 in Li ∪Ci

iff there is no finite and minimal subset S ⊆ Li∪Ci such that S1 ⊆ γ(S) ⊂ γ(S2).
In the following, in case S2 is a singleton set {u}, we write that u is (the most
precise) overapproximation of S1 for simplicity.

Given an extended vector u ∈ N
k
∞ and an i ∈ N, We write over(u, i) for

the extended vector such that for all j ∈ [1, k], over(u, i)[j] = u[j] if u[j] ≤ i,
over(u, i)[j] =∞ otherwise. Note that over(u, i) is an overapproximation of γ(u),
and interestingly, is the most precise overapproximation of γ(u) in Li ∪ Ci [7].

We can naturally extend the addition of vectors to the addition of extended
vectors by assuming that ∞+∞ =∞ and ∞+ c =∞ for all c ∈ Z.

Given a BVAS B = (k,A,R1, R2) and i ∈ N, an extended derivation E is
defined inductively as follows.



Expand, Enlarge, and Check for Branching Vector Addition Systems 159

E1: If v ∈ A, then v is an extended derivation.
E2: If E1 is an extended derivation with a derived extended vector u1 ∈ N

k∞,
then for each unary rule δ1 ∈ R1 with 0 ≤e u1 + δ1,

... E1
u1E : δ1u

is an extended derivation, where u = over(u1 + δ1, i).
E3: If E1 and E2 are extended derivations with derived extended vectors u1, u2 ∈

N
k∞ respectively, then for each binary rule δ2 ∈ R2 with 0 ≤e u1 + u2 + δ2,

... E1
u1

... E2
u2E : δ2u

is an extended derivation, where u = over(u1 + u2 + δ2, i).

Analogously to derivations, an extended derivation E is a finite binary tree whose
nodes are labelled by extended vectors. For an extended derivation E and its
node n, we write E(n) for the extended vector labelled at n. We say E derives an
extended vector u iff E(ε) = u. We naturally extend the notions of compactness,
covering witness, and coverability to extended derivations w.r.t. ≤e. Similar to
derivations, the following lemma shows that there are finitely many extended
derivations of a given height.

Lemma 2. Given a BVAS B = 〈k,A,R1, R2〉 and i ∈ N, for each h ∈ N
+, there

are finitely many extended derivations of height h.

Given a BVAS B, we define a total ordering�e on extended derivations according
to their heights. Since for each h ∈ N

+ there are only finitely many, say kh,
extended derivations of height h, we can enumerate them without repetition,
arbitrarily as Eh1, . . . , Ehkh

. We define Emi �e Enj iff m < n, or m = n and
i ≤ j.

The Forest Over(B, Li, Ci). Given a BVAS B = 〈k,A,R1, R2〉 and an i ∈ N, we
construct a forest Over(B, Li, Ci) whose nodes are compact extended derivations
by following the rules below.

O1: For each axiom v ∈ A, the extended derivation v is a root.
O2: If a compact extended derivation E1 is already in the forest and compact(E)

has not been added in the forest where E is computed by applying a unary
rule to E1 as in Rule E2, then add compact(E) as a child of E1 in the forest.

O3: If compact extended derivations E1, E2 are already in the forest and
compact(E) has not been added in the forest where E is computed by ap-
plying a binary rule to E1 and E2 as in Rule E3, then we add compact(E)
to the forest as a child of E ′ where E ′ is the greater one between E1 and E2
w.r.t. the total order �e.



160 R. Majumdar and Z. Wang

Algorithm 1. EEC Algorithm to decide the coverability problem of BVAS.

Input: A BVAS B = 〈k,A,R1, R2〉 and a vector t ∈ N
k.

Output: “Cover” if t is coverable in B, “Uncover” otherwise.
begin

i←− 0
while true do

Compute Under(B, Ci) // Expand

Compute Over(B, Li, Ci) // Enlarge

// Check

if ∃F ∈ Under(B, Ci). t ≤ F(ε) then
return “Cover”

else if ∀E ∈ Over(B, Li, Ci). t 	≤e E(ε) then
return “Uncover”

i←− i+ 1

Theorem 2 (Overapproximation). Let B be a BVAS.

1. For each i ∈ N, the forest Over(B, Li, Ci) is finite.
2. Given i ∈ N, for any derivation D, there is a compact extended derivation E

in Over(B, Li, Ci) with D(ε) ≤e E(ε).
3. For v ∈ N

k, Reach(B) ∩ v↑ = ∅ iff there exists an i ∈ N such that for any
compact extended derivation E in Over(B, Li, Ci), we have γ(E(ε))∩ v↑ = ∅.

Proof. The proof of Part (1) is similar to the proof of Theorem 1(1), because
Li ∪ Ci is finite.

The proof of Part (2) is by induction on the height of D.
Part (3). ⇐: Suppose Reach(B) ∩ v↑ 	= ∅. Then there is a derivation D in B

such that D(ε) ∈ v↑. Using Part (2), we can find E in Over(B, Li, Ci) such that
D(ε) ≤e E(ε). For E , we have D(ε) ∈ γ(E(ε)) and thus γ(E(ε)) ∩ v↑ 	= ∅.
⇒: Since Reach(B)∩v↑ = ∅ iff Reach(B)↓∩v↑ = ∅, γ(CS(B))∩v↑ = ∅. Take

i ∈ N such that CS(B) ⊆ Li ∪Ci. For every extended derivation E in B, we have
γ(E(ε)) ⊆ γ(CS(B)). This can be proved by induction on the height of E .

For every compact extended derivation E in Over(B, Li, Ci), we therefore have
that γ(E(ε)) ⊆ γ(CS(B)). Hence γ(E(ε)) ∩ v↑ = ∅.

3.3 EEC Algorithm

Algorithm 1 shows the schematic of the EEC algorithm. It takes as input a
BVAS B and a target vector t. It uses an abstraction parameter i, initially 0,
and defines the family of abstractions Ci and Li. It iteratively computes the
under-approximation Under and over-approximation Over w.r.t. i. If the under-
approximation covers t, it returns “Cover”; if the over-approximation shows t
cannot be covered, it returns “Uncover.” Otherwise, it increments i and loops
again. From Theorems 1 and 2, we conclude that this algorithm eventually ter-
minates with the correct result.



Expand, Enlarge, and Check for Branching Vector Addition Systems 161

We briefly remark on two optimizations. First, instead of explicitly keeping
forests of derivations in Over and Under, we can only maintain the vectors that
label the roots of the derivations. The structure of the forest was required to
prove termination in [16], but can be reconstructed using only the vectors and
the timestamps at which the vectors were added. Second, in Under (resp. Over),
we can only keep maximal vectors (resp. extended vectors): if two vectors v1 ≤ v2
(resp. extended vectors u1 ≤e u2), we can omit v1 (resp. u1) and only keep v2
(resp. u2). Indeed, if t ≤ v1 in Under, we also have t ≤ v2, and so the cover check
succeeds in the EEC algorithm. Further, if t 	≤e u2 in Over, we have t 	≤e u1,
and so the uncover check succeeds as well. We thank Sylvain Schmitz for these
observations.

4 Complexity Analysis

We now give an upper bound on the number of iterations of the EEC algorithm.
Given a BVAS B = 〈k,A,R1, R2〉 and a derivation D, for each internal node
n, we write δ(n) ∈ Z

k for the rule δ ∈ R1 ∪ R2 that is applied to derive D(n).
We extend this notation to truncated and extended derivations as well. Given
a derivation D and an i ∈ N

k, we define a truncated derivation under(D, i)
inductively as follows:

1. If n is a leaf, then under(D, i)(n) = D(n).
2. If n has a child n′ and D(n) = D(n′) + δ(n), then under(D, i)(n) =

under(under(D, i)(n′) + δ(n), i).
3. If n has two children n′, n′′ and D(n) = D(n′) + D(n′′) + δ(n), then

under(D, i)(n) = under(under(D, i)(n′) + under(D, i)(n′′) + δ(n), i).

We can also define an extended derivation over(D, i) inductively by following the
above rules except that we replace all under(�, i) by over(�, i).

We start with some intuition in the special case of vector addition systems. A
vector addition system (VAS) V is a BVAS 〈k, {a}, R, ∅〉. For simplicity, we write
a VAS as just 〈k, a,R〉. Note that a derivation D of a VAS V is degenerated to a
sequence of non-negative vectors. In the following, we say the length of D instead
of the height of D for convenience in the VAS context. For VAS, Rackoff [15]
proved the coverability problem is EXPSPACE-complete by showing that if a
covering witness (derivation) exists, then there must exist one whose length h
is at most doubly exponential in the size of the VAS V and the target vector
t. Further, there is a derivation of length at most h in which the maximum
constant is bounded by i := h · size(V) + max(t). This is because in h steps,
a vector can decrease at most h · size(V), so if any co-ordinate goes over i, it
remains higher than max(t) after executing the path. By the same argument, if
there is an extended derivation of length at most h and constant i covering t,
then we can find a derivation for t.

If t is coverable, using the above argument and Theorem 1, we see that
Under(V , Ci) will contain a covering witness of t. If t is not coverable, then the
above argument shows that all extended derivations of Over(V , Li, Ci) of length
at most h will not cover t. However, there may be longer extended derivations



162 R. Majumdar and Z. Wang

in Over(V , Li, Ci). For these, we can show that Over(V , Li, Ci) also contains a
contraction of that extended derivation of length at most h. In both cases, EEC
terminates in i iterations, which is doubly exponential in the size of the input.

We now show the bound for BVAS. The following lemma is the key observation
in the optimal algorithm of [5].

Lemma 3. [5] Given a BVAS B = 〈k,A,R1, R2〉 and a vector t ∈ N
k, if t is

coverable in B, then there is a covering witness (derivation) D whose height is
at most (max((R1 ∪R2)

−) + max(t) + 2)(3k)!.

Moreover, the following lemma shows that the maximum constant appearing in
a height-bounded derivation can remain polynomial in the height.

Lemma 4. Given a BVAS B = 〈k,A,R1, R2〉, a vector t ∈ N
k and a derivation

D whose height is at most h, for any bound i ≥ h ·max((R1 ∪R2)
−) + max(t),

D is a covering witness of t iff under(D, i) is a covering witness of t.

Proof. Fix an i such that i ≥ h ·max((R1 ∪R2)
−) + max(t).

⇐: It holds by Theorem 1.
⇒: Given a derivation D, we say that an index j is marked iff during the

construction of under(D, i), there is a vector v, which is computed after applying
a rule and before comparing to i, such that v[j] > i.

Given a derivation D, during the construction of under(D, i), for each in-
dex j ∈ [1, k], we check the following: If j is marked, then there is a node n
such that under(D, i)(n)[j] = i. Since height(under(D, i)) = height(D) ≤ h, we
know that the length of the path from n to the root ε is at most h. Hence
under(D, i)(ε)[j] ≥ under(D, i)(n)[j] − h ·max((R1 ∪R2)

−) = i − h ·max((R1 ∪
R2)

−) ≥ max(t) ≥ t[j]. On the other hand, if j is not marked, we have that for
all node n, under(D, i)(n)[j] = D(n)[j]. Hence under(D, i)(ε)[j] = D(ε)[j] ≥ t[j].
Hence under(D, i) is a covering witness of t.

We now prove the case where the target vector t is coverable. We show that
Under(B, Ci) contains a truncated derivation covering t, where i is bounded by
a doubly exponential function of the input.

Lemma 5. Given a BVAS B = 〈k,A,R1, R2〉 and a vector t ∈ N
k, if t is

coverable in B, then there exists F ∈ Under(B, Ci) such that t ≤ F(ε) for some

i = 22
O(n log n)

, where n = size(B) + size(t).

Proof. Let h be the bound from Lemma 3. Clearly, h = 22
O(nlogn)

. Pick i = h2.
By Lemma 3, there is a derivation D that covers t and whose height is at most
h. Since i = h2 ≥ h · max((R1 ∪ R2)

−) + max(t), by Lemma 4, there is a
truncated derivation under(D, i) that covers t. Moreover, compact(under(D, i)) is
in Under(B, Ci).

Assume now that the target vector t ∈ N
k is not coverable. Lemma 6, from [5],

connects derivations of “small” height to extended derivations for high enough
constants. Lemma 7 shows that extended derivations of “large” height can be
contracted. The proof of this lemma mimicks the proof for (ordinary) derivations.



Expand, Enlarge, and Check for Branching Vector Addition Systems 163

Lemma 6. [5] Given a BVAS 〈k,A,R1, R2〉, a vector t ∈ N
k, and a derivation

D whose height is at most h, for any bound i ≥ h ·max((R1 ∪R2)
−) + max(t),

D is a covering witness of t iff over(D, i) is a covering witness of t.

Lemma 7. Let B = 〈k,A,R1, R2〉 be a BVAS and i ∈ N. If there is an extended
derivation E that covers t ∈ N

k, then there is a contraction of E whose height is
at most (max((R1 ∪R2)

−) + max(t) + 2)(3k)!.

Finally, we prove that if t is not coverable, then Over(B, Li, Ci) does not find an
extended derivation covering t, for i as above.

Lemma 8. Given a BVAS B = 〈k,A,R1, R2〉 and t ∈ N
k, there is an i =

22
O(n log n)

, where n = size(B)+ size(t), such that if t is not coverable in B, then
for all extended derivations E ∈ Over(B, Li, Ci), we have E does not cover t.

Proof. Suppose not. Then there is an E ∈ Over(B, Li, Ci) so that E covers t. Let
h be the bound from Lemma 7, and let i = h2. We consider two cases: (1) The
height of E is at most h. Then since i = h2 ≥ h ·max((R1 ∪R2)

−) +max(t), by
Lemma 6, t is coverable in B. Contradiction. (2) The height of E is greater than
h. By Lemma 7, there is a contraction of E that covers t and whose height is at
most h. Following the arguments in case (1), we again get a contradiction.

Our main theorem follows from Lemmas 5 and 8.

Theorem 3. Given a BVAS B = 〈k,A,R1, R2〉 and a vector t ∈ N
k, the EEC

algorithm terminates in 22
O(n log n)

iterations, where n = size(B) + size(t).

The bound on the number of iterations also provides a bound on the overall
asymptotic complexity of the algorithm. For BVAS, each iteration of the EEC
algorithm performs two instances of AND-OR reachability to perform the cover
and the uncover checks. Moreover, the size of the graph is at most doubly ex-
ponential in the size of the BVAS, since the finite component of each vector is
bounded by a doubly exponential function of the input. Since AND-OR reach-
ability can be performed in time linear in the size of the graph, this gives a
2EXPTIME algorithm. For VAS, each iteration of the EEC algorithm performs
two instances of reachability to perform the checks. Thus, if reachability is im-
plemented in a space optimal (NLOGSPACE) way, we get an EXPSPACE upper
bound. (In practice, reachability is implemented using a linear time algorithm,
which leads to a 2EXPTIME upper bound.)

5 Implementation and Evaluation

We have implemented the EEC algorithm for BVAS and used our implementa-
tion to model check safety properties of single-wait recursively parallel programs
[1]. Our programs are written in the syntax of [1], and we assume all program
variables range over finite domains. In the following, we briefly recall recursively
parallel programs with a wait construct. We then describe the performance of
our tool on a web server example.



164 R. Majumdar and Z. Wang

Recursively Parallel Programs. Single-wait recursively parallel pro-
grams (see [1] for details) are a concurrent programming model in which compu-
tations are hierarchically organized into isolated parallelly executing tasks. Each
task executes sequentially, and maintains regions of handles to other tasks. A
task t can post subtasks and store their handles in one of its regions. A subtask
posted by t executes in parallel with the task t. A task can create unboundedly
many subtasks in a single region and each subtask may also recursively create
additional parallel tasks, storing their handles in its own regions. At some later
point, when the task t requires the results computed by its subtasks, t has to
wait until a posted subtask completes. A wait is implemented with an “ewait”
construct: when task t executes ewait(r) for a region r, its execution is sus-
pended until some task whose handle is stored in r completes execution. The
return value of the completed subtask is combined with the current state of t
via a programmer-supplied return-value handler, and t continues executing from
this point with the updated state.

The state reachability problem for a recursively parallel program P , is to deter-
mine, given an initial valuation l0 of variables of the program P and a valuation
l, if there is an execution of P such that the valuation l is reachable.

Single-wait programs capture many constructs in modern structural parallel
programming languages, such as pruning in Orc [12], futures in Multilisp [8],
task-parallel libraries [3,14], asynchronous programs [9,6], etc. The state reacha-
bility problem for single-wait programs is equivalent to the coverability problem
for BVAS [1].1

Web Server Case Study. We implemented the EEC algorithm for BVAS and
a reduction from recursively parallel programs with ewait to BVAS. We used
our implementation to verify safety properties of a model of a web server taken
from [4]. Our model executes asynchronous calls to serve requests, and waits on
multiple concurrent requests to implement DNS lookup.

We model a server main that helps clients upload files. Given a provider’s
domain name and files, the servermain simulates arbitrarily many client requests
by posting unboundedly many dns requests. The server waits on the first DNS
server to return. The DNS server returns the provider’s real IP address, which
is stored in a variable x.

Each task dns waits for DNS lookup requests, and returns either an ip if the
lookup succeeds, or not found if the provided domain name is not valid. If the
domain name is valid, dns then either returns ip if it already has an IP address
for the requested domain name by looking up its local database, or posts a task
serveri to ask other servers to resolve an IP address. Before asking a remote server
serveri, dns first allocates a buffer buf that is used for the communication between
itself and serveri, in particular, used for storing an ip returned from serveri. When
dns receives an ip stored in the buffer buf from some remote server, it returns the
contents of buf . dnsmay ask multiple remote servers at the same time, and accept

1 The authors of [1] state that the 2EXPTIME algorithm of Demri et al. will be hard
to implement. They propose an alternate algorithm, without any upper bound on
the running time. However, that algorithm has not been implemented either.



Expand, Enlarge, and Check for Branching Vector Addition Systems 165

Table 1. Results of the DNS example

#server #dimension #axiom #urule #brule #iter result time

2 19 20 9153 6950 1 Uncover 31.25s

3 22 23 14832 11664 1 Uncover 79.16s

4 25 26 22640 18326 1 Uncover 151.46s

5 28 29 33070 27392 1 Uncover 279.56s

6 31 32 46638 39366 1 Uncover 463.71s

6 (buggy) 31 32 40077 32805 1 Cover 63.58s

the very first ip returned from some server. We model this scenario precisely by
posting all server tasks into a single region and waiting for the first one to return its
result (using ewait). A task serveri can either return a timeout to model the cases
where serveri encounters a problem, or an ip when serveri successfully completes
a lookup. Since serveri can produce timeout, the task dns contains error handling
mechanism: if it receives a timeout, it de-allocates the buffer buf .

The first property we check is that the value stored in x when task dns returns
always equals either an ip or a not found.

If the server main gets the provider’s IP address successfully, then it uploads
the file on the client’s behalf by allocating and using a buffer for the transmission.
Since errors may occur during the transmission, the server provides a block
of code for error handling: whenever an error happens, the server does some
cleaning work such as de-allocating the buffer. Once the transmission is over, the
server main receives an acknowledgement in the buffer and returns this buffer to
the client, informing the client that the file has been successfully uploaded. The
second property we check is if the buffer is always de-allocated properly after
the error handling block completes.

Since any task can create subtasks and moreover the task main creates un-
boundedly many subtasks, by the classification from [1], this example falls into
the general case of single-wait programs which are equivalent to BVAS.

Results. We have run our tool to verify the two properties above. All experi-
ments were performed on a 2 core Intel Xeon X5650 CPU machine with 64GB
memory and 64bit Linux (Debian/Lenny). Table 1 lists the analysis results of
both cases. We report: (1) the size of the generated BVAS (the dimension, the
number of axioms, unary rules, and binary rules), (2) the number of iterations i
for EEC, and (3) the answer, “Cover” or “Uncover,” and the execution time.

We modeled a bug found in [4] where the task main can receive a value in the
variable x that is neither ip nor not found from dns. In the buggy version, in the
error handling code of the task dns, the programmer forgot to return to its caller
on an error after de-allocating a buffer. Therefore, after the de-allocation of the
buffer, the dns lookup continued to execute and returned the value of the buffer
(in the normal case, the buffer contains an ip). After we added an immediate
return to dns, our tool proved the model is correct.

To explore the scalability of our implementation, we increased the number
of remote servers (as shown in the first column of the table) which a task dns



166 R. Majumdar and Z. Wang

posts to a single region in parallel. The “Uncover” instances in Table 1 use the
corrected version of dns and increase the number of servers from 2 to 6. As the
size of the BVASs becomes larger, the EEC algorithm takes more time to verify
instances. However, the largest example, with 31 dimensions, still finishes within
a few minutes. We present the run time of the unsafe case when the number
of servers is six. For fewer servers, the bug is found quicker. Additionally, for
these examples, one iteration of the EEC algorithm (i.e., the counter value is in
{0, 1,∞}) is sufficient to prove or disprove the property.

References

1. Bouajjani, A., Emmi, M.: Analysis of recursively parallel programs. In: POPL,
pp. 203–214 (2012)

2. Bozzelli, L., Ganty, P.: Complexity analysis of the backward coverability algo-
rithm for VASS. In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS, vol. 6945,
pp. 96–109. Springer, Heidelberg (2011)

3. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. SIGPLAN Not. 40(10), 519–538 (2005)

4. Cunningham, R.: Eel: Tools for debugging, visualization, and verification of event-
driven software. Master’s thesis, UCLA (2005)

5. Demri, S., Jurdzinski, M., Lachish, O., Lazic, R.: The covering and boundedness
problems for branching vector addition systems. J. Comput. Syst. Sci. 79(1), 23–38
(2013)

6. Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs. In:
ACM Transactions on Programming Languages and Systems (2012)

7. Geeraerts, G., Raskin, J.-F., Begin, L.V.: Expand, enlarge and check:Newalgorithms
for the coverability problem of wsts. J. Comput. Syst. Sci. 72(1), 180–203 (2006)

8. Halstead, R.H.: Multilisp: a language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems 7, 501–538 (1985)

9. Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In:
POPL 2007, pp. 339–350. ACM Press (2007)

10. Kaiser, A., Kroening, D., Wahl, T.: Efficient coverability analysis by proof mini-
mization. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454,
pp. 500–515. Springer, Heidelberg (2012)

11. Karp, R., Miller, R.: Parallel program schemata. Journal of Comput. Syst. Sci. 3(2),
147–195 (1969)

12. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc programming language. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522,
pp. 1–25. Springer, Heidelberg (2009)

13. Kloos, J., Majumdar, R., Niksic, F., Piskac, R.: Incremental, inductive coverabil-
ity. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 158–173.
Springer, Heidelberg (2013)

14. Leijen, D., Schulte, W., Burckhardt, S.: The design of a task parallel library. In:
OOPSLA 2009, pp. 227–242. ACM (2009)

15. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theoretical Computer Science 6(2), 223–231 (1978)

16. Verma, K., Goubault-Larrecq, J.: Karp-Miller trees for a branching extension of
VASS. Discrete Mathematics & Theoretical Computer Science 7(1), 217–230 (2005)

17. Verma, K.N., Goubault-Larrecq, J.: Alternating two-way AC-tree automata. Inf.
Comput. 205(6), 817–869 (2007)


	Expand, Enlarge, and Check for Branching Vector Addition Systems
	1 Introduction
	2 Preliminaries
	3 Under-and Over-Approximation
	3.1 Underapproximation
	3.2 Overapproximation
	3.3 EEC Algorithm

	4 Complexity Analysis
	5 Implementation and Evaluation
	References




