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Preface

This volume contains the proceedings of the 24th Conference on Concurrency
Theory (CONCUR 2013) held in Buenos Aires, Argentina, during August 27–30,
2013. CONCUR 2013 was organized by the Universidad de Buenos Aires and
the Universidad Nacional de Córdoba.

The purpose of the CONCUR conference is to bring together researchers,
developers, and students in order to advance the theory of concurrency and pro-
mote its applications. The principal topics include basic models of concurrency
such as abstract machines, domain theoretic models, game theoretic models,
process algebras, and Petri nets; logics for concurrency such as modal logics,
probabilistic and stochastic logics, temporal logics, and resource logics; models
of specialized systems such as biology-inspired systems, circuits, hybrid systems,
mobile and collaborative systems, multi-core processors, probabilistic systems,
real-time systems, service-oriented computing, and synchronous systems; ver-
ification and analysis techniques for concurrent systems such as abstract in-
terpretation, atomicity checking, model checking, race detection, pre-order and
equivalence checking, run-time verification, state-space exploration, static anal-
ysis, synthesis, testing, theorem proving, and type systems; related programming
models such as distributed, component-based, object-oriented, and Web services.

This edition of the conference attracted 115 submissions. We would like to
thank all their authors for their interest in CONCUR 2013. After careful review-
ing and discussions, the Program Committee selected 34 papers for presentation
at the conference. Each submission was reviewed by at least three reviewers, who
wrote detailed evaluations and gave insightful comments. The Conference Chairs
would like to thank the Program Committee members and all the additional re-
viewers for their excellent work, as well as for the constructive discussions. We
are grateful to the authors for having revised their papers so as to address the
comments and suggestions by the referees.

The conference program was greatly enriched by the invited talks by Lorenzo
Alvisi (joint invited speaker with QEST 2013), Joost-Pieter Katoen, Philippe
Schnoebelen, and Reinhard Wilhelm (joint invited speaker with FORMATS
2013).

This year the conference was jointly organized with the 10th International
Conference on Quantitative Evaluation of Systems (QEST 2013), the 11th In-
ternational Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS 2013), and the 8th International Symposium on Trustworthy Global
Computing (TGC 2013).

In addition, CONCUR 2013 included six satellite events:

– Combined 20th International Workshop on Expressiveness in Concurrency
and 10th Workshop on Structural Operational Semantics (EXPRESS/SOS
2013), organized by Bas Luttik and Johannes Borgström
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– 9th International Workshop on Developments in Computational Models
(DCM 2013), organized by Mauricio Ayala-Rincón, Eduardo Bonelli, and
Ian Mackie

– Latin American Workshop on Formal Methods (LAFM 2013), organized by
Leila Ribeiro and Nazareno Aguirre

– IFIP WG 1.8 Workshop on Trends in Concurrency Theory (TRENDS 2013),
organized by Bas Luttik and Jos Baeten

– Young ResearchersWorkshop on Concurrency Theory (YR-CONCUR 2013),
organized by Nicolás D’Ippolito

– MEALS Momentum Gathering, organized by Marcelo Frias

We would like to thank everybody who contributed to the organization of CON-
CUR 2013, especially the Workshop Organization Chairs Eduardo Bonelli and
Diego Garbervetsky, the Proceedings Chair Nicolás Wolovick, the Publicity Chair
Damián Barsotti, as well as the Organizing Committee, including Renata
D’Amore, Daniela Bonomo, Silvia Pelozo, and Mat́ıas D. Lee. We also thank the
Facultad de Ciencias Económicas of the Universidad de Buenos Aires for pro-
viding the venue location. Furthermore, we gratefully acknowledge the financial
support of the Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CON-
ICET), the Agencia Nacional de Promoción Cient́ıfica y Tecnológica (through
the RC program of FONCYT and FONSOFT), and the EU FP7 grant agree-
ment 295261 MEALS (Mobility between Europe and Argentina applying Logics
to Systems).

We are also grateful to Andrei Voronkov for providing us with his confer-
ence software system EasyChair, which was extremely helpful for the Program
Committee discussions and the production of the proceedings.

August 2013 Pedro R. D’Argenio
Hernán Melgratti
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Jos Baeten CWI, The Netherlands
Eike Best Universität Oldenburg, Germany
Kim G. Larsen Aalborg University, Denmark
Ugo Montanari Università di Pisa, Italy
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Reasoning with MAD Distributed Systems

Lorenzo Alvisi and Edmund L. Wong

Laboratory for Advanced Systems Research (LASR)
Department of Computer Science, The University of Texas at Austin

2317 Speedway, 2.302
Austin, TX 78712 USA

{lorenzo,elwong}@cs.utexas.edu

How does one reason about and build dependable distributed systems in
which no component is guaranteed to follow the specified protocol?

While the setting of this question may appear implausible, this is precisely the en-
vironment in which services that span multiple administrative domains (MAD)
must function. In such services—which include applications such as content dis-
semination (e.g.., [2]),, file backup (e.g., [6]), volunteer computing (e.g., [5]), multi-
hop wireless networking (e.g., [4]), and Internet routing—resources are not under
the control of a single administrative domain, so the necessary cooperation cannot
simply be achieved by fiat. Instead, it is imperative that the service be structured
so that nodes—which are administered by different, potentially selfish entities—
have an incentive to help sustain it. Indeed, such issues are not imaginary: ample
evidence suggests that a large number of peers will free-ride or deviate from the
assigned protocol if it is in their interest to do so (e.g., [3,9,16,21]).

The presence of rational nodes challenges all approaches to dependability that
rely on a clean separation between correct and faulty nodes. The standard ap-
proach to fault tolerance that relies on correct nodes to take appropriate action
to mask or tolerate faulty nodes no longer applies when nodes that are not faulty
may nonetheless selfishly deviate from their correct specification. Even the basic
question of deciding on a failure model appropriate for reasoning about depend-
able MAD systems does not offer an obvious answer. Of course one could model
all deviations, whether due to faults or to selfishness, as Byzantine faults [17],
but many interesting problems in distributed computing become unsolvable once
the number of Byzantine nodes exceeds a third of the total [17]—and there is
no inherent reason why the combined number of faulty and selfish node should
conveniently stay below that threshold. Alternatively, one could apply classic
notions from game theory to model selfish behavior, but these typically only ac-
count for rational behavior, and become brittle if some (faulty) nodes behave in a
seemingly irrational fashion. This is particularly the case in cooperative services,
where the nodes themselves are often unreliable personal machines riddled with
malware and other exploits [1,11]. The natural way forward, then, is to somehow
combine insight from game theory and fault-tolerant distributed computing.

One strategy is to specify a notion of equilibrium that draws inspiration from
traditional Byzantine fault tolerance and to aim for a solution concept in which
rational nodes prefer the specified strategy despite the presence of a thresh-
old of arbitrary failures [7,8,15]. This is the approach adopted by the elegant

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 1–4, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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(k, t)-robustness solution concept [7]. Rational nodes have no incentive to deviate
from a (k, t)-robust equilibrium despite up to t Byzantine nodes; further, unlike
Nash equilibria, which are robust only against unilateral deviations, (k, t)-robust
equilibria can tolerate collusions of up to k rational nodes. Unfortunately, the
elegance of (k, t)-robustness comes at the cost of strong assumptions, which in
principle can limit the practical applicability of this solution concept in realistic
scenarios (more on this later).

An alternative strategy, explored in the BAR approach [10,14] is to classify
nodes as belonging to one of three classes (Byzantine, Acquiescent, and Ratio-
nal) and to model explicitly the expectations held by rational nodes concerning
the behavior of Byzantine nodes. On the positive side, the BAR model has been
successfully applied to build several real systems [10,18,19] that tolerate both
malicious and rational deviations; however, these systems, as well as other work
that has relied on models similar to BAR [20], suffer from several limitations of
their own. First, they assume that rational nodes always model that Byzantine
behavior as malicious, with Byzantine nodes hell-bent on producing the worst
possible outcome for every other node; second, while they do not rely on acquies-
cent nodes to provide their guarantees, they also do not take advantage of their
presence; finally, they do not explicitly handle collusion among rational nodes:
at best, colluding rational nodes are modeled as Byzantine [10,19].

What should then be the basis for a rigorous treatment of cooperative ser-
vices? How should participating nodes be modeled and what guarantees should
we aim for? And can these models and guarantees be applied to real systems?
This talk reviews our recent progress in trying to answer these questions.

Which solution concept can offer rigorous and practical basis for dependable
cooperative services? To answer this question, we introduce a communication
game that captures the key characteristics of most distributed systems that tol-
erate arbitrary faults. Specifically, our game models systems in which (a) some
node-to-node communication is necessary to achieve some desired functional-
ity (b) bandwidth is not free; and (c) the desired functionality is achievable
despite t Byzantine failures. We find that notions of equilibrium inspired by
traditional Byzantine fault-tolerant techniques, such as (k, t)-robustness, are ca-
pable of achieving equilibrium in communication games only under very limited
circumstances, severely limiting their practical usefulness [22,24]. Our findings
suggest that practical solution concepts must explicitly model the beliefs of ra-
tional nodes when it comes to Byzantine behavior.

What is the role of acquiescent nodes in cooperative services? Although real
MAD systems include a sizable fraction of acquiescent (correct and unselfish)
nodes, their impact on the incentive structure of MAD services is not well under-
stood. In particular, systems built under the BAR model have sidestepped the
challenge by designing protocols that neither depend on nor leverage the pres-
ence of acquiescent nodes—indeed, it seems possible that the very presence of
acquiescent nodes may demotivate selfish rational nodes from contributing their
share of resources, in the hope of free-riding off the acquiescent nodes’ good will.
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Can that good will be leveraged without imperiling rational participation? By
distilling this question to a rational peer’s last opportunity to cooperate, we find
that not only is the good will of acquiescent nodes not antithetical to rational
cooperation, but that, in a fundamental way, rational cooperation can only be
achieved in the presence of the scintilla of altruism that acquiescent nodes bring
to the system [23].

How should collusion be managed? The literature offers two approaches to guar-
antee that deviations resulting from collusion do not affect the incentives pro-
vided to rational nodes. The first is to model collusion as a fault and col-
luding nodes as Byzantine—which, similar to modeling rational deviations as
Byzantine, forces an artificially low cap on the number of colluders. The second
approach—taken by strong Nash [12], k-resilient equilibria [7,8], and coalition-
proof Nash equilibria [13], to name a few—is to deny any benefit to colluders:
if the equilibrium is a best response not just to every individual, but also to ev-
ery possible coalition, then collusion poses no harm to the equilibrium’s stability,
since nodes gain no benefit by colluding. However, nodes that collude are likely to
trust each other more and, more generally, be able to hold stronger assumptions
about one another. Since stronger assumptions typically lead to more efficient
protocols, identifying a single strategy that is a best response both inside and
outside of every possible coalition is in practice very hard.

To overcome this challenge, we propose a fundamentally different approach
to dealing with coalitions, based on the observation that while finding a sin-
gle best response between all nodes is sufficient to prevent nodes from de-
viating, it is not necessary to achieve such stability. We introduce two new
notions of equilibrium that leverage the observation that coalitions (includ-
ing the trivial singleton coalition of one non-colluding node) will not deviate
from an equilibrium as long as the equilibrium specifies a best-response strat-
egy for every coalition. We thus allow the strategy a node follows to depend
on whom the node is colluding with, thereby enabling the equilibrium to ex-
plicitly account for the advantages of coalition members while guaranteeing
that nodes have no incentive to deviate from the specified equilibrium [22].

∼ ∗ ∼
We are working on the design and implementation of a new hybrid (in that it
relies on both servers and peer-to-peer cooperation) content distribution sys-
tem that aims to apply these insights towards building a scalable, robust, and
dependable method for distributing content.
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Abstract. Well-structured systems, aka WSTS, are computational
models where the set of possible configurations is equipped with a well-
quasi-ordering which is compatible with the transition relation between
configurations. This structure supports generic decidability results that
are important in verification and several other fields.

This paper recalls the basic theory underlying well-structured systems
and shows how two classic decision algorithms can be formulated as an
exhaustive search for some “bad” sequences. This lets us describe new
powerful techniques for the complexity analysis of WSTS algorithms. Re-
cently, these techniques have been successful in precisely characterizing
the power, in a complexity-theoretical sense, of several important WSTS
models like unreliable channel systems, monotonic counter machines, or
networks of timed systems.

Introduction

Well-Structured (Transition) Systems, aka WSTS, are a family of computational
models where the usually infinite set of states is equipped with a well-quasi-
ordering that is “compatible” with the computation steps. The existence of this
well-quasi-ordering allows for the decidability of some important behavioural
properties like Termination or Coverability.

Historically, the idea can be traced back to Finkel [21] who gave a first defi-
nition for WSTS abstracting from Petri nets and fifo nets, and who showed the
decidability of Termination and Finiteness (aka Boundedness). Then Finkel [22]
applied the WSTS idea to Termination of lossy channel systems, while Abdulla
and Jonsson [4] introduced the backward-chaining algorithm for Coverability.
One will find a good survey of these early results, and a score of WSTS exam-
ples, in [2, 24, 1, 8].

The basic theory saw several important developments in recent years, like the
study of comparative expressiveness for WSTS [3], or the completion technique
for forward-chaining in WSTS [23]. Simultaneously, many new WSTS models
have been introduced (in distributed computing, software verification, or other
fields), using well-quasi-orderings based on trees, sequences of vectors, or graphs
(see references in [41]), rather than the more traditional vectors of natural num-
bers or words with the subword relation.
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Another recent development is the complexity analysis of WSTS models and
algorithms. New techniques, borrowing notions from proof theory and ordinal
analysis, can now precisely characterize the complexity of some of the most
widely used WSTS [13, 42, 27]. The difficulty here is that one needs complexity
functions, complexity classes, and hard problems, with which computer scientists
are not familiar.

The aim of this paper is to provide a gentle introduction to the main ideas
behind the complexity analysis of WSTS algorithms. These complexity questions
are gaining added relevance: more and more recent papers rely on reductions to
(or from) a known WSTS problem to show the decidability (or the hardness) of
problems in unrelated fields, from modal and temporal logic [31, 38] to XPath-
like queries [29, 7].

Outline of the paper. Section 1 recalls the definition of WSTS, Sec. 2 illustrates it
with a simple example, while Sec. 3 presents the two main verification algorithms
for WSTS. Section 4 bounds the running time of these algorithms by studying
the length of bad sequences using fast-growing functions. Section 5 explains how
lower bounds matching these enormous upper bounds have been established in
a few recent works, including the Fε0-completeness result in this volume [26].

1 What Are WSTS?

A simple, informal way to define WSTS is to say that they are transition systems
whose behaviour is monotonic w.r.t. a well-ordering. Here, monotonicity of be-
haviour means that the states of the transition system are ordered in a way such
that larger states have more available steps than smaller states. Requiring that
the ordering of states is a well-ordering (more generally, a well-quasi-ordering)
ensures that monotonicity translates into decidability for some behavioural prop-
erties like Termination or Coverability.

Let us start with monotonicity. In its simplest form, a transition system (a
TS) is a structure S = (S,→) where S is the set of states (typical elements
s1, s2, . . .) and→ ⊆ S×S is the transition relation. As usual, we write “s1 → s2”
rather than “(s1, s2) ∈ →” to denote steps. A TS is ordered when it is further
equipped with a quasi-ordering of its states, i.e., a reflexive and transitive relation
≤ ⊆ S × S.

Definition 1.1 (Monotonicity). An ordered transition system S = (S,→,≤)
is monotonic

def⇔ for all s1, s2, t1 ∈ S(
s1 → s2 and s1 ≤ t1

)
implies ∃t2 ∈ S :

(
t1 → t2 and s2 ≤ t2

)
.

This property is also called “compatibility” (of the ordering with the transi-
tions) [24]. Formally, is just means that ≤ is a simulation relation for S, in
precisely the classical sense of Milner [37]. The point of Def. 1.1 is to ensure that
a “larger state” can do “more” than a smaller state. For example, it entails the
following Fact that plays a crucial role in Sec. 3.
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Given two finite runs s = (s0 → s1 → · · · → sn) and t = (t0 → t1 → · · · →
tm), we say that s simulates t from below (and t simulates s from above) if
n = m and si ≤ ti for all i = 0, . . . , n.

Fact 1.2. Any run s = (s0 → s1 → · · · → sn) in a WSTS S can be simulated
from above, starting from any t ≥ s0.

Remark 1.3. Definition 1.1 comes in many variants. For example, Finkel and
Schnoebelen [24] consider strict compatibility (when <, the strict ordering un-
derlying ≤, is a simulation), transitive compatibility (when ≤ is a weak simula-
tion), and the definition can further extend to labeled transition systems. These
are all inessential variations of the main idea.

Now to the wqo ingredient.

Definition 1.4 (Wqo). A quasi-order (S,≤) is well (“is a wqo”) if every
infinite sequence s0, s1, s2, . . . over S contains an increasing pair si ≤ sj for
some i < j. Equivalently, (S,≤) is a wqo if, and only if, every infinite sequence
s0, s1, s2, . . . over S contains an infinite increasing subsequence si0 ≤ si1 ≤ si2 ≤
· · · , where i0 < i1 < i2 < · · ·

We call good a sequence that contains an increasing pair, otherwise it is bad.
Thus in a wqo all infinite sequences are good, all bad sequences are finite.

Definition 1.4 offers two equivalent definitions. Many other characterisations
exist [30], and it is an enlightening exercise to prove their equivalence [see 41,
Chap. 1]. Let us illustrate the usefulness of the alternative definition: for a di-
mension k ∈ N, write Nk for the set of k-tuples, or vectors, of natural numbers.

For two vectors a = (a1, . . . , ak) and b = (b1, . . . , bk) in Nk, we let a ≤× b
def⇔

a1 ≤ b1 ∧ · · · ∧ ak ≤ bk.

Example 1.5 (Dickson’s Lemma). (Nk,≤×) is a wqo.

Proof (of Dickson’s Lemma). Consider an infinite sequence a1,a2,a3, . . . over
Nk and write ai = (ai,1, . . . , ai,k). One can extract an infinite subsequence
ai1 ,ai2 ,ai3 , . . . that is increasing over the first components, i.e., with ai1,1 ≤
ai2,1 ≤ ai3,1 ≤ · · · , since (N,≤) is a wqo (easy to prove, here the first definition
suffices). From this infinite subsequence, one can further extract an infinite sub-
sequence that is also increasing on the second components (again, using that N
is wqo). After k extractions, one has an infinite subsequence that is increasing
on all components, i.e., that is increasing for ≤× as required.

We can now give the central definition of this paper:

Definition 1.6 (WSTS). An ordered transition system S = (S,→,≤) is a

WSTS
def⇔ S is monotonic and (S,≤) is a wqo.
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Fig. 1. A broadcast protocol

2 A Running Example: Broadcast Protocols

As a concrete illustration of the principles behind WSTS, let us consider dis-
tributed systems known as broadcast protocols [16, 17]. Such systems gather an
unbounded number of identical finite-state processes running concurrently, able
to spawn new processes, and communicating either via rendez-vous—where two
processes exchange a message—or via broadcast—where one process sends the
same message to every other process. While this may seem at first sight rather
restricted for modeling distributed algorithms, broadcast protocols have been
employed for instance to verify the correction of cache coherence protocols with-
out fixing a number of participating processes.1

Formally, a broadcast protocol is defined as a triple B = (Q,M,R) where Q is
a finite set of locations, M a finite set of messages, and R is a set of rules, that
is, tuples (q, op, q′) in Q × Op × Q, each describing an operation op available
in the location q and leading to a new location q′, where op can be a sending
(denoted m!) or a receiving (m?) operation of a rendez-vous message m from
M , or a sending (m!!) or receiving (m??) operation of a broadcast message m
from M , or a spawning (sp(p)) of a new process that will start executing from

location p. As usual, we write q
op−→B q′ if (q, op, q′) is in R.

Figure 1 displays a toy example where Q = {r, c, a, q,⊥} and M = {d,m}:
processes in location c can spawn new “active” processes in location a, while
also moving to location a (a rule depicted as a double arrow in Fig. 1). These
active processes are flushed upon receiving a broadcast of either m (emitted by
a process in location q) or d (emitted by a process in location r); location ⊥ is
a sink location modeling process destruction.

The operational semantics of a broadcast protocol is expressed as a transi-
tion system SB = (S,→), where states, here called configurations, are (finite)
multisets of locations in Q, hence S = NQ. Informally, the intended semantics
for a configuration s in NQ is to record for each location q in Q the number of
processes s(q) currently in this location. We use a “sets with duplicates” nota-
tion, like s = {q1, . . . , qn} where some qi’s might be identical, and feel free to
write, e.g., {q3, q′4} instead of {q, q, q, q′, q′, q′, q′}. A natural ordering for NQ is

the inclusion ordering defined by s ⊆ s′
def⇔ ∀q ∈ Q, s(q) ≤ s′(q). For instance,

{q, q, q′} ⊆ {q, q, q, q′} but {q, q′, q′} ⊆ {q, q, q′} if q = q′. We further write

1 See also the up-to-date survey of parameterized verification problems in [18].
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s = s1 + s2 for the union (not the lub) of two multisets, in which case s − s1
denotes s2.

It remains to define how the operations of B update such a configuration
through transitions s→ s′ of SB:

rendez-vous step: if q1
m!−−→B q′1 and q2

m?−−→B q′2 for some m ∈ M , then s +
{q1, q2} → s+ {q′1, q′2} for all s in NQ,

spawn step: if q
sp(p)−−−→B q′, then s+ {q} → s+ {q′, p} for all s in NQ,

broadcast step: if q0
m!!−−→B q′0 and qi

m??−−→B q′i for all 1 ≤ i ≤ k (and some m),
then s + {q0, q1, . . . , qk} → s + {q′0, q′1, . . . , q′k} for all s in NQ that do not
contain a potential receiver for the broadcast, i.e., such that s(q) = 0 for all

rules of the form q
m??−−→B q′.

With the protocol of Fig. 1, the following steps are possible (with the spawned
location or exchanged messages indicated on the arrows):

{c2, q, r} a−→ {a2, c, q, r} a−→ {a4, q, r} m−→ {c4, r,⊥} d−→ {c, q4,⊥}.

We have just associated an ordered transition system SB = (NQ,→,⊆) with
every broadcast protocol B and are now ready to prove the following fact.

Fact 2.1. Broadcast protocols are WSTS.

Proof. First, (NQ,⊆) is a wqo: since Q is finite, this is just another instance of
Dickson’s Lemma.

There remains to check that SB is monotonic. Formally, this is done by con-
sidering an arbitrary step s1 → s2 (there are three cases) and an arbitrary pair
s1 ⊆ t1. It is enough to assume that t1 = s1 + {q}, i.e., t1 is just one location
bigger that s1, and to rely on transitivity. If s1 → s2 is a rendez-vous step with
s2 = s1 − {q1, q2} + {q′1, q′2}, then t1 = s1 + {q} also has a rendez-vous step
t1 → t2 = t1 − {q1, q2} + {q′1, q′2} and one sees that s2 ⊆ t2 as required. If now
if s1 → s2 is a spawn step, a similar reasoning proves that s1 + {q} → s2 + {q}.
Finally, when s1 = s + {q1, . . .} → s2 = s + {q′1, . . .} is a broadcast step, one

proves that s1 + {q} → s2 + {q′} when there is a rule q
m??−−→B q′, or when q is

not a potential receiver and q′ = q.

Remark 2.2. One can show that the protocol depicted in Fig. 1 always termi-
nates, this from any initial configuration sinit. Recall that, for a TS S, Termina-
tion is the question, given a state sinit ∈ S, whether all runs starting from sinit
are finite, i.e., whether there are no infinite runs from sinit.

A first remark is that the processes in location ⊥ can safely be ignored, since
they have terminated. Then, consider any sequence of steps s0 → s1 → · · · →
si → · · · with each configuration of form si = {ana,i , cnc,i , qnq,i , rnr,i}, and let
us compare two configurations indexed by i < j:

– either only spawn steps occur between si and sj , thus nc,j < nc,i,
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– or at least one m has been broadcast but no d has been broadcast, thus
nq,j < nq,i,

– or at least one d has been broadcast, and then nr,j < nr,i.

Thus in all cases, si ⊆ sj , i.e. the sequence of successive configurations is bad.
Since (NQ,⊆) is a wqo, there is no infinite bad sequence, hence no infinite run.

3 Verification of WSTS

In this section we present the two main generic decision algorithms for WSTS.
We strive for a presentation that abstracts away from implementation details,
and that can directly be linked to the complexity analysis we describe in the
following sections. The general idea is that these algorithms can be seen as an
exhaustive search for some kind of bad sequences.

3.1 Termination

There is a generic algorithm deciding Termination on WSTS. The algorithm has
been adapted and extended to show decidability of Inevitability (of which Termi-
nation is a special case), Finiteness (aka Boundedness), or Regular Simulation,
see [2, 24].

Lemma 3.1 (Finite Witnesses for Infinite Runs). A WSTS S has an in-
finite run from sinit if, and only if, it has a finite run from sinit that is a good
sequence.

Proof. Obviously, any infinite run sinit = s0 → s1 → s2 → · · · is a good sequence
by property of ≤ being a wqo (see Def. 1.4). Once a pair si ≤ sj is identified,
the finite prefix that stops at sj is both a finite run and a good sequence.

Reciprocally, given a finite run s0 → s1 → · · · → si → · · · → sj with i < j
and si ≤ sj , Fact 1.2 entails the existence of a run sj → sj+1 → · · · → s2j−i
that simulates si → · · · → sj from above. Hence the finite run can be extended
to some s0 → · · · → si → · · · → sj → · · · → s2j−i with si ≤ s2j−i. Repeating
this extending process ad infinitum, one obtains an infinite run.

Very little is needed to turn Lemma 3.1 into a decidability proof for Termination.
We shall make some minimal effectiveness assumptions : (EA1) the set of states
S is recursive; (EA2) the function s �→ Post(s), that associates with any state its
image by the relation→, is computable (and image-finite, aka finitely branching);
and (EA3) the wqo ≤ is decidable. We say that S is an effective WSTS when all
three assumptions are fulfilled. Note that (EA1–2) hold of most computational
models, starting with Turing machines and broadcast protocols, but we have to
spell out these assumptions at some point since Def. 1.6 is abstract and does not
provide any algorithmic foothold.

We can now prove the decidability of Termination for effective WSTS. Assume
S = (S,→,≤) is effective. We are given some starting state sinit ∈ S. The exis-
tence of an infinite run is semi-decidable since infinite runs admit finite witnesses



The Power of Well-Structured Systems 11

by Lemma 3.1. (Note that we rely on all three effectiveness assumptions to guess
a finite sequence (sinit =)s0, . . . , si, . . . , sj of states, check that it is indeed a run
of S, and that it is indeed a good sequence.) Conversely, if all runs from sinit are
finite, then there are only finitely many of them (by Kőnig’s Lemma, since S is
finitely branching), and it is possible to enumerate all these runs by exhaustive
simulation, thanks to (EA2). Thus Termination is semi-decidable as well. Finally,
since the Termination problem and its complement are both semi-decidable, they
are decidable.

3.2 Coverability

After Termination, we turn to the decidability of Coverability, a slightly more
involved result that is also more useful for practical purposes: the decidability
of Coverability opens the way to the verification of safety properties and many
other properties defined by fixpoints, see [8].

Recall that, for an ordered TS S, Coverability is the question, given a starting
state sinit ∈ S and a target state t ∈ S, whether there is a run from sinit that
eventually covers t, i.e., whether there is some s reachable from sinit with s ≥ t.
We call any finite run s0 → s1 → · · · → sn s.t. sn ≥ t a covering run (for t).

Rather than using covering runs to witness Coverability, we shall use “pseu-
doruns”. Formally, a pseudorun is a sequence s0, . . . , sn such that, for all i =
1, . . . , n, si−1 can cover si in one step, i.e., si−1 → ti for some ti ≥ si. In partic-
ular, any run is also a pseudorun. And the existence of a pseudorun s0, . . . , sn
with sn ≥ t witnesses the existence of covering runs from any sinit ≥ s0 (proof:
by repeated use of Fact 1.2).

A pseudorun s0, . . . , sn is minimal if, for all i = 1, . . . , n, si−1 is minimal
among all the states from where si can be covered in one step (we say that si−1

is a minimal pseudopredecessor of si).

Lemma 3.2 (Minimal Witnesses for Coverability). If S has a covering
run from sinit, it has in particular a minimal pseudorun s0, s1, . . . , sn with s0 ≤
sinit, sn = t, and such that the reverse sequence sn, sn−1, . . . , s0 is bad (we say
that s0, . . . , sn is “revbad”).

Proof. Assume that sinit = s0 → s1 → · · · → sn is a covering run. Replacing sn
by t gives a pseudorun ending in t. We now show that if the pseudorun is not
minimal or not revbad, then there is a “smaller” pseudorun.

First, assume that sn, sn−1, . . . , s0 is not bad. Then si ≥ sj for some 0 ≤
i < j ≤ n and s0, s1, . . . , si−1, sj , sj+1, . . . , sn is again a pseudorun, shorter in
length (note that sn = t is unchanged, while s0 may have been replaced by a
smaller sj in the case where i = 0). If now s0, s1, . . . , sn is not minimal, i.e.,
if some si−1 is not a minimal pseudopredecessor of si, we may replace si−1

by some other pseudopredecessor s′i−1 ≤ si−1 that is minimal (since (S,≤) is
wqo, hence well-founded, its non-empty subsets do have minimal elements) and
s0, . . . , si−2, s

′
i−1, si, . . . , sn is again a pseudorun (where sn = t as before and

where s0 may have been replaced by a smaller s′0). Repeating such shortening and
lowering replacements as long as possible is bound to terminate (after at most



12 S. Schmitz and P. Schnoebelen

polynomially many replacements). The pseudorun we end up with is minimal,
revbad, has s0 ≤ sinit and sn = t as claimed.

Turning Lemma 3.2 into a decidability proof is similar to what we did for Termi-
nation. This time we make the following effectiveness assumptions: (EA1) and
(EA3) as above, with (EA2’) the assumption that the function MinPPre—that
associates with any state its finite set of minimal pseudopredecessors—is com-
putable.2 The set of all minimal revbad pseudoruns ending in t is finite (Kőnig’s
Lemma again: finite branching of the tree is ensured by minimality of the pseu-
doruns, while finite length of the branches is ensured by the restriction to revbad
pseudoruns). This set of pseudoruns can be built effectively, starting from t and
applying MinPPre repeatedly, but it is enough to collect the states that occur
along them, using a standard backward-chaining scheme. We write MinPPre∗(t)
to denote the set of all these states: once they have been computed, it only re-
mains to be checked whether sinit is larger than one of them, using (EA3) once
more.

We conclude by observing that assumption (EA2’), though less natural-looking
than (EA2), is satisfied in most computational models. As Ex. 4.1 shows for the
case of broadcast protocols, computing MinPPre(s) is often a simple case of
finding the minimal solutions to a simple inverse problem on rewrite rules.

3.3 What Is the Complexity of WSTS Verification?

One aspect of the algorithms given in this section we have swept under the rug
is how expensive they can be. This will be the topic of the next two sections,
but as an appetizer, let us consider how long the Termination algorithm can run
on the broadcast protocol of Fig. 1.

Let us ignore the number of processes in the sink location ⊥. The protocol
from Fig. 1 allows the following steps when spawn steps are performed as long
as possible before broadcasting m:

{cn, q} an

−−→ {a2n, q} m−→ {c2n} .

Such a greedy sequence of message thus doubles the number of processes in c
and removes one single process from q. Iterating such sequences as long as some
process is in q before broadcasting d then leads to:

{c20 , qn, r} a20m−−−→ {c21 , qn−1, r} a21m−−−→ {c22 , qn−2, r}

· · · → {c2n−1

, q, r} a2n−1
m−−−−−→ {c2n , r} d−→ {c20 , q2n} .

2 Recall that any subset of a wqo has only finitely many minimal elements up to the

equivalence given by s ≡ s′
def⇔ s ≤ s′ ≤ s.
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Such iterations thus implement an exponentiation of the number of processes in
q in exchange for decrementing the number of processes in r by one. Repeating
this kind of sequences therefore allows:

{c, q, rn} →∗ {c, qtower(n)} ,

where tower(0)
def
= 1 and tower(n+1)

def
= 2tower(n): although it always terminates,

the broadcast protocol of Fig. 1 can exhibit sequences of steps of non-elementary
length. This also entails a non-elementary lower bound on the Termination algo-
rithm when run on this protocol: since the system terminates, all the runs need
to be checked, including this particular non-elementary one.

4 Upper Bounds on Complexity

Although the theory of well-structured systems provides generic algorithms for
numerous verification problems, it might seem rather unclear, what the com-
putational cost of running these algorithms could be—though we know their
complexity can be considerable (recall Sec. 3.3). Inspecting the termination ar-
guments in Sec. 3, we see that the critical point is the finiteness of bad sequences.
Unfortunately, the wqo definition does not mention anything about the length
of such sequences, but merely asserts that they are finite.

It turns out that very broadly applicable hypotheses suffice in order to define
a maximal length for bad sequences (Sec. 4.1), which then gives rise to so-called
length function theorems bounding such lengths using ordinal-indexed functions
(Sec. 4.2). These upper bounds allow for a classification of the power of many
WSTS models in complexity-theoretic terms (Sec. 4.3), and also lead to simplified
WSTS algorithms that take advantage of the existence of computable upper
bounds on the length of bad sequences (Sec. 4.4).

4.1 Controlled Sequences

The Length of Bad Sequences. If we look at a very simple quasi-order, namely
(Q,=) with a finite support Q and equality as ordering—which is a wqo by the
pigeonhole principle—, we can only exhibit bad sequences with length up to #Q,
the cardinality of Q. But things start going awry as soon as we consider infinite
wqos; for instance

n, n− 1, n− 2, . . . , 0 (S1)

is a bad sequence over (N,≤) for every n in N, i.e. the length of a bad sequence
over (N,≤) can be arbitrary. Even if we restrict ourselves to bad sequences where
the first element is not too large, we can still build arbitrarily long sequences:
for instance, over (NQ,⊆) with Q = {p, q},

{p}, {qn}, {qn−1}, . . . , {q}, ∅ (S2)

is a bad sequence of length n+ 2.
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Controlling Sequences. Here is however a glimpse of hope: the sequence (S2)
cannot be the run of a broadcast protocol, due to the sudden “jump” from {p} to
an arbitrarily large configuration {qn}. More generally, the key insight is that, in
an algorithm that relies on a wqo for termination, successive states cannot jump
to arbitrarily large sizes, because these states are constructed algorithmically:
we call such sequences controlled.

Let (A,≤A) be a wqo. Formally, we posit a norm |.|A:A→ N on the elements
of our wqo, which we require to be proper, in that only finitely many elements

have norm n: put differently, A≤n
def
= {x ∈ A | |x|A ≤ n} must be finite for every

n. For instance, |s|NQ
def
= maxq∈Q s(q) is a proper norm for NQ.

Given an increasing control function g:N → N, we say that a sequence
x0, x1, . . . over A is (g, n0)-controlled if the norm of xi is no larger that the
ith iterate of g applied to n0: |xi|A ≤ gi(n0) for all i. Thus g bounds the growth
of the elements in the sequence, and n0 is a bound on the initial norm |x0|A.

Example 4.1 (Controlled Successors in a Broadcast Protocol). Let us see how
these definitions work on broadcast protocols. First, on the sequences of succes-
sors built in the Termination algorithm: If s → s′ is a rendez-vous step, then
|s′|NQ ≤ 2 + |s|NQ , corresponding to the case where the two processes involved
in the rendez-vous move to the same location. If s→ s′ is a broadcast step, then
|s′|NQ ≤ #Q · |s|NQ , corresponding to the case where all the processes in s (of
which there are at most #Q · |s|NQ) enter the same location. Finally, spawn steps

only incur |s′|NQ ≤ |s|NQ + 2. Thus g(n)
def
= #Q · n defines a control function

for any run in a broadcast protocol with #Q ≥ 2 locations, provided the initial
norm n0 is chosen large enough.

Example 4.2 (Controlled Minimal Pseudopredecessors in a Broadcast Protocol).
Now for the minimal pseudopredecessors built in the course of the Coverability
algorithm: Assume |t|NQ ≤ n and s→ s′ ≥ t is a step from some minimal s:

rendez-vous step: If s′ = (s− {q1, q2}+ {q′1, q′2}) in a rendez-vous, then
– either {q′1, q′2} ⊆ t and thus s = t− {q′1, q′2}+ {q1, q2} and |s|NQ ≤ n,
– or q′i ∈ t for exactly one i among {1, 2}, hence s = t− {q1−i} + {q1, q2}

and |s|NQ ≤ n+ 1,
– or q′i ∈ t for any i ∈ {1, 2} and |s|NQ ≤ n + 2 (note however that s ⊆ t

in this case and the constructed sequence would not be bad).

broadcast step: Assume s′= (s−{q0, q1, . . . , qk}+{q′0, q′1, . . . , q′k}) with q0
m!!−−→B

q′0the corresponding broadcast send rule. Because s is minimal, {q′1, . . . , q′k}⊆
t, as otherwise a smaller s could be used. Hence,
– either q′0 ∈ t, and then s = t − {q′0, q′1, . . . , q′k} + {q0, q1, . . . , qk} and
|s|NQ ≤ n,

– or q′0 ∈ t, and then s = t−{q′1, . . . , q′k}+{q0, q1, . . . , qk} and |s|NQ ≤ n+1.
spawn step: similar to a rendez-vous step, |s|NQ ≤ n+ 1.

Therefore, g(n)
def
= n+ 2 defines a control function for any sequence of minimal

pseudopredecessor steps in any broadcast protocol.
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Length Functions. The upshot of these definitions is that, unlike in the uncon-
trolled case, there is a longest (g, n0)-controlled bad sequence over any normed
wqo (A,≤A): indeed, we can organize such sequences in a tree by sharing com-
mon prefixes; this tree has

– finite branching, bounded by the cardinal of A≤gi(n0) for a node at depth i,
and

– no infinite branches thanks to the wqo property.

By Kőnig’s Lemma, this tree of bad sequences is therefore finite, of some height
Lg,n0,A representing the length of the maximal (g, n0)-controlled bad sequence(s)
overA. In the following, since we are mostly interested in this length as a function
of the initial norm n0, we will see this as a length function Lg,A(n); our purpose
will then be to obtain complexity bounds on Lg,A depending on g and A.

4.2 Length Function Theorems

Now that we are empowered with a suitable definition for the maximal length
Lg,A(n) of (g, n)-controlled bad sequences overA, we can try our hand at proving
length function theorems, which provide constructible functions bounding Lg,A

for various normed wqos (A,≤). Examples of length function theorems can be
found

– in [36, 15, 20, 5, 41] for Dickson’s Lemma, i.e. for (NQ,⊆) for some finite Q,
which is isomorphic to (N#Q ,≤×),

– in [5] for (Pf (Nd),�) the set of finite subsets of Nd with the majoring ordering

defined by X � Y
def⇔ ∀x ∈ X, ∃y ∈ Y, x ≤× y,

– in [45, 14, 40] for Higman’s Lemma, i.e. for (Σ∗,≤∗) the set of finite sequences
over a finite alphabet Σ with the subword embedding ≤∗,

– in [45] for Kruskal’s Tree Theorem, i.e. for (T,≤T ) the set of finite unranked
ordered trees with the homeomorphic embedding ≤T .

These theorems often differ in the hypotheses they put on g, the tightness of
the upper bounds they provide, and on the simplicity of their proofs (otherwise
the results of Weiermann [45] for Kruskal’s Tree Theorem would include all the
others). We will try to convey the flavour of the theorems from [40, 41] here.

Starting again with the case of a finite wqo (Q,=), and setting |x|Q def
= 0 for

all x in Q as the associated norm, we find immediately that, for all g and n,

Lg,Q(n) = #Q (1)

by the pigeonhole principle. Another easy example is (N,≤) with norm |k|N def
= k:

Lg,N(n) = n+ 1 , (2)

the bad sequence (S1) being maximal.
We know however from Sec. 3.3 that very long bad sequences can be con-

structed, so we should not hope to find such simple statements for (NQ,⊆) and
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more complex wqos. The truth is that the “tower” function we used in Sec. 3.3
is really benign compared to the kind of upper bounds provided by length func-
tion theorems. Such functions of enormous growth have mainly been studied in
the context of subrecursive hierarchies and reverse mathematics (see e.g. [43,
Chap. 4] for further reference); let us summarily present them.

Ordinal Indexed Functions. An idea in order to build functions of type
N→ N with faster and faster growths is to iterate smaller functions a number of
times that depends on the argument—this is therefore a form of diagonalisation.
In order to keep track of the diagonalisations, we can index the constructed
functions with ordinals, so that diagonalisations occur at limit ordinals.

Ordinal Terms. First recall that ordinals α below ε0 can be denoted as terms in
Cantor Normal Form, aka CNF:

α = ωβ1 · c1 + · · ·+ ωβn · cn where α > β1 > · · · > βn and ω > c1, . . . , cn > 0 .

In this representation, α = 0 if and only if n = 0. An ordinal with CNF of
the form α′ + 1 (i.e. with n > 0 and βn = 0) is called a successor ordinal, and
otherwise if α > 0 it is called a limit ordinal, and can be written as γ + ωβ by
setting γ = ωβ1 · c1 + · · · + ωβn · (cn − 1) and β = βn. We usually write “λ” to
denote a limit ordinal.

A fundamental sequence for a limit ordinal λ is a sequence (λ(x))x<ω of ordi-
nals with supremum λ, with a standard assignment defined inductively by

(γ + ωβ+1)(x)
def
= γ + ωβ · (x+ 1) , (γ + ωλ)(x)

def
= γ + ωλ(x) . (3)

This is one particular choice of a fundamental sequence, which verifies e.g. 0 <
λ(x) < λ(y) for all x < y. For instance, ω(x) = x + 1, (ωω4

+ ωω3+ω2

)(x) =

ωω4

+ ωω3+ω·(x+1).

Hardy Hierarchy. Let h:N→ N be an increasing function. The Hardy hierarchy
(hα)α<ε0 controlled by h is defined inductively by

h0(x)
def
= x , hα+1(x)

def
= hα (h(x)) , hλ(x)

def
= hλ(x)(x) . (4)

Observe that hk for some finite k is the kth iterate of h (by using the first
two equations solely). This intuition carries over: hα is a transfinite iteration
of the function h, using diagonalisation to handle limit ordinals. For instance,

starting with the successor function H(x)
def
= x+ 1, we see that a first diagonal-

isation yields Hω(x) = Hx+1(x) = 2x + 1. The next diagonalisation occurs at
Hω·2(x) = Hω+x+1(x) = Hω(2x+1) = 4x+3. Fast-forwarding a bit, we get for

instance a function of exponential growth Hω2

(x) = 2x+1(x+1)− 1, and later a

non elementary function Hω3

, an “Ackermannian” non primitive-recursive func-

tion Hωω

, and an “hyper-Ackermannian” non multiply-recursive function Hωωω

.
Hardy functions are well-suited for expressing large iterates of a control function,
and therefore for bounding the norms of elements in a controlled bad sequence.
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Cichoń Hierarchy. A variant of the Hardy functions is the Cichoń hierarchy
(hα)α<ε0 controlled by h [14], defined by

h0(x)
def
= 0 , hα+1(x)

def
= 1 + hα (h(x)) , hλ(x)

def
= hλ(x)(x) . (5)

For instance, hd(x) = d for all finite d, thus hω(x) = x+1 regardless of the choice
of the function h. One can check that Hα(x) = Hα(x) + x when employing the
successor function H ; in general hα(x) ≥ hα(x) + x since h is assumed to be
increasing.

This is the hierarchy we are going to use for our statements of length function
theorems: a Hardy function hα is used to bound the maximal norm of an element
in a bad sequence, and the corresponding Cichoń function hα bounds the length
of the bad sequence itself, the two functions being related for all h, α, and x by

hα(x) = hhα(x)(x) . (6)

Length Functions for Dickson’s Lemma. We can now provide an example
of a length function theorem for a non-trivial wqo: Consider (NQ,⊆) and some
control function g. Here is one of the parametric bounds proved in [41, Chap. 2]:3

Theorem 4.3 (Parametric Bounds for Dickson’s Lemma). If x0, . . . , xL
is a (g, n)-controlled bad sequence over (NQ,⊆) for some finite set Q, then L ≤
Lg,NQ(n) ≤ hω#Q (n) for the function h(x)

def
= #Q · g(x).

By Equation (6), we also deduce that the norm of the elements xi in this bad

sequence cannot be larger than hω
#Q

(n).
A key property of such bounds expressed with Cichoń and Hardy functions is

that they are constructible with negligible computational overhead (just apply
their definition on a suitable encoding of the ordinals), which means that we can
employ them in algorithms (see Sec. 4.4 for applications).

Given how enormous the Cichoń and Hardy functions can grow, it is reason-
able at this point to ask how tight the bounds provided by Thm. 4.3 really are.
At least in the case #Q = 1, we see these bounds match (2) since hω(n) = n+1.
We will show in Sec. 5 that similarly enormous complexity lower bounds can be
proven for Termination or Coverability problems on WSTS, leaving only inessen-
tial gaps with the upper bounds like Thm. 4.3. In fact, we find such parametric
bounds to be overly precise, because we would like to express simple complexity
statements about decision problems.

4.3 Fast Growing Complexy Classes

As witnessed in Sec. 3.3 and the enormous upper bounds provided by Thm. 4.3,
we need to deal with non-elementary complexities. The corresponding non-
elementary complexity classes are arguably missing from most textbooks and

3 A more general version of Thm. 4.3 in [40] provides ho(A)(n) upper bounds for (g, n)-
controlled bad sequences over wqos (A,≤) constructed through disjoint unions, carte-
sian products, and Kleene star operations, where o(A) is the maximal order type
of (A,≤), i.e. the order type of its maximal linearization, and h is a low-degree
polynomial in g. This matches Thm. 4.3 because o(NQ) = ω#Q .
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references on complexity. For instance, the Complexity Zoo4, an otherwise very
richly populated place, features no intermediate steps between Elementary

and the next class, namely Primitive-Recursive (aka PR), and a similar gap
occurs between PR and Recursive (aka R). If we are to investigate the com-
plexity of decision problems on WSTSs, much more fine-grained hierarchies are
required.

Here, we present a hierarchy of ordinal-indexed fast growing complexity
classes (Fα)α tailored to completeness proofs for non-elementary problems [see
41, App. B]. When exploring larger complexities, the hierarchy includes non
primitive-recursive classes, for which quite a few complete problems have arisen
in the recent years, e.g. Fω in [35, 28, 44, 42, 19, 10, 33], Fωω in [13, 38, 32, 6,
12, 7], Fωωω in [27], and Fε0 in [26].

Let us define the classes of reductions and of problems we will consider:

Fα
def
=
⋃
c<ω

FDTime

(
Hωα·c(n)

)
, Fα

def
=

⋃
p∈

⋃
β<α Fβ

DTime

(
Hωα

(p(n))
)

. (7)

The hierarchy of function classes (Fα)α≥2 is the extended Grzegorczyk hier-
archy [34], and provides us with classes of non-elementary reductions: for in-
stance F2 is the set of elementary functions,

⋃
β<ω Fβ that of primitive-recursive

functions, and
⋃

β<ωω Fβ that of multiply-recursive functions. The hierarchy of
complexity classes (Fα)α≥3 features for instance a class Fω of Ackermannian
problems closed under primitive-recursive reductions, and a class Fωω of hyper-
Ackermannian problems closed under multiply-recursive reductions. Intuitively,
Fω-complete problems are not primitive-recursive, but only barely so, and simi-
larly for the other levels.

4.4 Combinatory Algorithms

Theorem 4.3 together with Ex. 4.1 (resp. 4.2) provides complexity upper bounds
on the Termination (resp. Coverability) algorithm when applied to broadcast
protocols. Indeed, a nondeterministic program can guess a witness of (non-)
Termination (resp. Coverability), which is of length bounded by Lg,NQ(n) + 1,
where g was computed in Ex. 4.1 (resp. 4.2) and n is the size of the initial
configuration sinit (resp. target configuration t). By Thm. 4.3 such a witness has
length bounded by hω#Q (n) for h(n) = #Q · g(n), and by (6), the norm of the

elements along this sequence is bounded by hω
#Q

(n). Thus this non-deterministic

program only needs space bounded by #Q · log(hω
#Q

(n)) ≤ Hωω

(p(n+#Q)) for
some primitive-recursive function p. Hence:

Fact 4.4. Termination and Coverability of broadcast protocols are in Fω.

Thanks to the upper bounds on the length of bad sequences, the algorithms
sketched above are really combinatory algorithms: they compute a maximal
length for a witness and then nondeterministically check for its existence. In

4 https://complexityzoo.uwaterloo.ca

https://complexityzoo.uwaterloo.ca
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the case of Termination, we can even further simplify the algorithm: if a run
starting from sinit has length > Lg,A(n), this run is necessarily a good sequence
and the WSTS does not terminate.

5 Lower Bounds on Complexity

When considering the mind-numbling complexity upper bounds that come with
applications of the Length Function Theorems from Sec. 4 to the algorithms
of Sec. 3, a natural question that arises is whether this is the complexity one
gets when using the rather simplistic Coverability algorithm from Sec. 3.2, or
whether it is the intrinsic complexity of the Coverability problem for a given
WSTS model.

There is no single answer here: for instance, on Petri nets, a breadth-first back-
ward search for a coverability witness actually works in 2ExpTime [9] thanks
to bounds on the size of minimal witnesses due to Rackoff [39]; on the other
hand, a depth-first search for a termination witness can require Ackermannian
time [11], this although both problems are ExpSpace-complete.

Nevertheless, in many cases, the enormous complexity upper bounds pro-
vided by the Length Function Theorems are matched by similar lower bounds
on the complexity of the Coverability and Termination problems, for instance
for reset/transfer Petri nets [Fω-complete, see 42], lossy channel systems [Fωω -
complete, see 13], timed-arc Petri nets [Fωωω -complete, see 27], or priority chan-
nel systems [Fε0-complete, see 26].

Our goal in this section is to present the common principles behind these
Fα-hardness proofs. We will avoid most of the technical details, relying rather
on simple examples to convey the main points: the interested readers will find
all details in the references.

Let us consider a WSTS model like broacast protocols or lossy channel sys-
tems. Without a rich repertoire of Fα-complete problems, one provesFα-hardness
by reducing, e.g., from the acceptance problem for a Hωα

-space bounded Minsky
machine M . In order to simulate M in the WSTS model at hand, the essential
part is to design a way to compute Hωα

(n0) reliably and store this number as a
WSTS state, where it can be used as a working space for the simulation of M . In
all the cases we know, these computations cannot be performed directly (indeed,
our WSTS are not Turing-powerful), but SM , the constructed WSTS, is able to
weakly compute such values. This means that SM may produce the correct value
for Hωα

(n0) but also (nondeterministically) some smaller values. However, the
reduction is able to include a check that the computation was actually correct,
either at the end of the simulation [42, 13, 27, 26]—by weakly computing the
inverse of Hωα

and testing through the coverability condition whether the final
configuration is the one we started with—, or continuously at every step of the
simulation [33].
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5.1 Hardy Computations

As an example, when α < ωk, one may weakly compute Hα and its inverse using
a broadcast protocol with k + O(1) locations. In order to represent an ordinal
α = ωk−1 · ck−1 + · · · + ω0 · c0 in CNF, one can employ a configuration sα =
{pc00 , . . . , p

ck−1

k−1 } in a broadcast protocol having locations p0, . . . , pk−1 among
others.

There remains other issues with ordinal representations in a WSTS state (see
Sec. 5.2), but let us first turn to the question of computing some Hα(n). The
definition of the Hardy functions is based on very fine-grained steps, and this
usually simplifies their implementations. We can reformulate (4) as a rewrite
system over pairs (α, x) of an ordinal and an argument:

(α+ 1, x)→ (α, x + 1) , (λ, x)→ (λ(x), x) . (4’)

A sequence (α0, x0) → (α1, x1) → · · · → (α�, x�) of such “Hardy steps” imple-
ments (4) and maintains Hαi(xi) invariant. It must terminates since α0 > α1 >
· · · is decreasing. When eventually α� = 0, the computation is over and the
result is x� = Hα0(x0).

Example 5.1 (Hardy Computations in Broadcast Protocols). Implementing (4’)
in a broadcast protocol requires us to consider two cases. Recognizing whether
αi is a successor boils down to checking that c0 > 0 in the CNF. In that case, and
assuming the above representation, (4’) is implemented by moving one process
from location p0 to a location x where the current value of xi is stored. The

broadcast protocol will need a rule like p0
sp(x)−−−→ ⊥.

Alternatively, αi is a limit γ + ωb when c0 = c1 = . . . = cb−1 = 0 < cb.
In that case, (4’) is implemented by moving one process out of the pb location,
and adding to pb−1 as many processes as there are currently in x. This can be
implemented by moving temporarily all processes in x to some auxiliary xtmp

location, then putting them back in x one by one, each time spawning a new
process in pb−1.

The difficulty with these steps (and with recognizing that αi is a limit) is
that one needs to test that some locations are empty, an operation not provided
in broadcast protocols (adding emptiness tests would make broadcast protocols
Turing-powerful, and would break the monotonicity of behaviour). Instead of
being tested, these locations can be forcefully emptied through broadcast steps.
This is where the computation of Hαi(xi) may err and end up with a smaller
value, if the locations were not empty. We refer to [42] or [41, Chap. 3] for
a detailed implementation of this scheme using lossy counters machines: the
encoding therein can easily be reformulated as a broadcast protocol:

Fact 5.2. Termination and Coverability of broadcast protocols are Fω-hard.

5.2 Robust Encodings

The above scheme for transforming pairs (α, x) according to Eq. (4’) can be
used with ordinals higher than ωk. Ordinals up to ωωω

have been encoded as
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configurations of lossy channel systems [13], of timed-arc nets (up to ωωωω

,
see [27]), and of priority channel systems (up to ε0, see [26]). The operations one
performs on these encodings are recognizing whether an ordinal is a successor
or a limit, transforming an α+ 1 in α, and a λ in λ(x). Such operations can be
involved, depending on the encoding and the facilities offered by the WSTS: see
[27] for an especially involved example.

It is usually not possible to perform Hardy steps exactly in the WSTS under
consideration. Hence one is content with weak implementations that may err
when realizing a step (αi, xi) → (αi+1, xi+1). One important difficulty arises
here: it is not enough to guarantee that any weak step (αi, xi) → (α′, x′) has
α′ ≤ αi+1 and x ≤ xi+1. One further needs Hα′

(x′) ≤ Hαi+1(xi+1), a property
called “robustness”. Since Hardy functions are in general not monotone in the α
exponent (see [41]), extra care is needed in order to control what kinds of errors
are acceptable when ending up with (α′, x′) instead of (αi+1, xi+1). We invite
the reader to have a look at the three above-mentioned papers for examples of
how these issues can be solved in each specific case.

6 Concluding Remarks

As the claim Well-Structured Transition Systems Everywhere! made in the title
of [24] has been further justified by twelve years of applications of WSTS in
various fields, the need to better understand the computational power of these
systems has also risen. This research program is still very new, but it has already
contributed mathematical tools and methodological guidelines for

– proving upper bounds, based on length functions theorems that provide
bounds on the length of controlled bad sequences. We illustrated this on
two algorithms for Coverability and Termination in Sec. 4, but the same
ideas are readily applicable to many algorithms that rely on a wqo for their
termination—and thus not only in a WSTS context—: one merely has to
find out how the bad sequences constructed by the algorithm are controlled.

– establishing matching lower bounds: here our hope is for the problems we
have proven hard for some complexity class Fα to be reused as convenient
“master” problems in reductions. Failing that, such lower bound proofs can
also rely on a reusable framework developed in Sec. 5: our reductions from
Turing or Minsky machines with bounded resources construct the machine
workspace as the result of a Hardy computation, thanks to a suitable robust
encoding of ordinals.

There are still many open issues that need to be addressed to advance this
program: to develop length function theorems for more wqos, to investigate dif-
ferent wqo algorithms (like the computation of upward-closed sets from oracles
for membership and vacuity by Goubault-Larrecq [25]), and to populate the cat-
alog of master Fα-hard problems, so that hardness proofs do not have to proceed
from first principles and can instead rely on simpler reductions.
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We hope that this paper can be used as an enticing primer for researchers
who have been using WSTS as a decidability tool only, and are now ready to
use them for more precise complexity analyses.

Acknowledgments. We thank Christoph Haase and Prateek Karandikar for
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are of course entirely ours.
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Abstract Multi-core processors are increasingly considered as execu-
tion platforms for embedded systems because of their good performance/
energy ratio. However, the interference on shared resources poses several
problems. It may severely reduce the performance of tasks executed on
the cores, and it increases the complexity of timing analysis and/or de-
creases the precision of its results. In this paper, we survey recent work on
the impact of shared buses, caches, and other resources on performance
and performance prediction.

1 Introduction

Multi-core processors are increasingly considered as execution platforms for em-
bedded systems since they offer a good energy-performance tradeoff and seem to
support transitions from federated to integrated system architectures in the auto-
motive and avionics domains. Many applications implemented on such multi-core
platforms are safety- and some also time-critical. A critical issue is the reduced pre-
dictability of such systems resulting from the interference of different applications
on shared resources. These interferences can be at least of two kinds: Several appli-
cations may request a resource at the same time, but the resource can only admit
one access at a time. As a consequence, an arbitration mechanism may delay the
request of all but one application, thus slowing down the other applications. This is
the case of resources like buses, typically called bandwidth resources. On the other
hand, one application may also change the state of a shared resource such that an-
other application using that resource will suffer from a slowdown. This is the case
with shared caches, which fall into the class of storage resources. Most of the treat-
ments of the interferences on shared resources found in the literature consider the
detrimental effect of interferences. In the case of shared caches, however, the in-
terference of one application A1 on another co-running application A2 could even
speed up A2 if A1 would perform the right cache prefetching for A2.

Interference on shared resources makes worst-case execution time (WCET)
analysis of applications more difficult since a task or a thread can no longer be
analyzed for its timing behavior in isolation. All potential interferences slowing
down (or speeding up) the task under analysis have to be considered. This leads
to a combinatorial explosion of the analysis complexity, as all possible interleav-
ings of different threads have to be analyzed. For that reason, currently, no sound
timing-analysis method for multi-core platforms with shared resources exists.
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This survey considers several aspects of the execution of sets of tasks on
multi-core platform that have to do with the interference of the tasks on shared
resources. One question is how the actual performance of tasks is slowed down by
other co-running tasks. The other is how to compute bounds on the slow-down
in order to derive guarantees for the timing behavior. A major problem is the
increased complexity of this task compared to the single-task single-core case.

Caches are a particular case of storage resources. Several approaches exist
for the treatment of shared caches in attempts to derive timing guarantees.
Cache partitioning eliminates the interference between tasks. Static analysis of
non-partitioned shared caches attempts to safely bound the interference. The
definite comparison between these two approaches has yet to be done.

Buses are instances of bandwidth resources. Several protocols exist for the
arbitration of shared buses, which can be classified as either time-driven, event-
driven, or hybrid combinations of both. Static analysis can be used to determine
good slot assignments in time-driven protocols like TDMA, and it can be used
to determine bounds on the access delays in event-driven state-based protocols
like FCFS and round robin.

1.1 Ways to Derive Guarantees

In order to guarantee the timeliness of tasks in a hard real-time system, one
needs upper bounds on the execution times of the tasks.

As long as a task executes in isolation on a multi-core system (without co-
running tasks), existing techniques for timing estimation could be applied. In
case of parallel workloads (with co-running tasks), a sound approach for timing
analysis of multi-core systems has to take into account the interferences, as
described in detail in Sections 2 and 3.

Approaches to determine upper bounds on execution times of tasks on multi-
core processors can be classified into two groups:

– Approaches achieving performance isolation by hardware and/or software
techniques, e.g. by employing TDMA arbitration of busses. Performance iso-
lation implies timing composability and permits the use of standard single-
core timing analysis techniques with minor modifications. While this makes
timing analysis comparatively easy, the challenge in such approaches is to
make efficient use of shared resources by partitioning them appropriately for
the given workload.

– Approaches analyzing the mutual effects of co-running tasks on each other’s
execution time. Such approaches require new timing analysis techniques that
differ greatly from those employed in the single-core single-task case.

Different methods have been proposed or are pursued to derive guarantees for
the timeliness of sets of tasks in a parallel workload setting when performance
isolation is not given. First, there is the classification according to whether the
software is analyzed or executed.
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– The static analysis of a whole set of concurrently executed applications may
deliver a sound and precise guarantee for the timing behavior. The problem
is the huge complexity of this approach.

– Measurement-based methods are in general not able to derive guarantees,
neither in the single-core nor in the multi-core case.

The particular contribution to the execution-time bounds of the interference on
shared resources can be dealt with in different ways:

– The Murphy approach assumes maximal interference on each access to a
shared resource [1]. This assumption can be easily integrated into existing
single-core timing analysis techniques. The Murphy approach will clearly
give sound, but the most pessimistic execution-time bounds.

– The slowdown factor approach attempts to explicitly quantify the worst-
case impact of the interferences in shared resources on the timing of a task
caused by co-running tasks. The obtained slowdown factor can then be used
to obtain an estimate on the execution times of a task in a parallel workload
from an estimate in the isolated case. Existing approaches aim at quan-
tifying the slowdown of a task in the worst case by measurement-based
techniques. These measurement-based approaches employ so-called resource-
stressing benchmarks, which are constructed for particular resources to pro-
duce the maximal slowdown on co-running tasks due to conflicts on this
resource. In Section 4, we will see that attempts in this direction may be
both unsound and overly pessimistic. Resource-stressing benchmarks are, in
general, independent of the application that is slowed down by co-running
these benchmarks. Therefore, one single resource-stressing benchmark can
hardly slow down the application in the worst way. The fact that resource-
stressing benchmarks might not be sound is demonstrated by an imaginary
application-specific worst companion (see Section 4).

– Finally, the static analysis of a whole set of concurrently executed applica-
tions may deliver a sound and precise guarantee for the timing behavior. The
problem is the huge complexity of this approach. To reduce analysis complex-
ity, existing static analysis approaches separate analysis into two phases: The
first phase determines a bound on the execution time of each task in isolation
and a characterization of its resource-access behavior. The second analysis
phase then uses this characterization to bound the impact of interference on
the execution times of all tasks. The sum of the two bounds for each task then
yields an estimate of the task’s worst-case execution time. Such approaches
are discussed in Section 2. For soundness, all of these approaches rely on tim-
ing compositional hardware architectures [2], which permit to account for the
cost of interference in such a compositional way. Unfortunately, many exist-
ing hardware architectures exhibit domino effects and timing anomalies and
are thus out of the scope of such an approach.

1.2 Terminology

We will need a few terms for this survey. The (individual) access delay is the
interval between the time of an individual access request and the time when
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this request is granted. This can sometimes be determined by measurement.
The worst-case access delay is the access delay in a worst-case scenario. It is
typically derived from the arbitration protocol and some system parameters,
e.g. the number of concurrently executed tasks and the slot size in bus protocols.
The overall access delay is the sum of all the access delays encountered during a
task’s execution. An upper bound on the overall access delay is sometimes used
in combination with a WCET estimate to compute a worst-case response time
(WCRT) estimate.

2 Bandwidth Resources, in Particular Shared Buses

In computer architectures, buses are used to transfer data between different
components of a computer. The components allowed to access a particular bus
are called the accessors of the bus. In order to reduce cost and complexity of the
overall system, often only one accessor is allowed to access the bus at a time. In
this case, the limited bandwidth of such a shared bus is shared solely along the
dimension of time. We only consider such buses in the following.

Several accessors may attempt to access the bus at the same time and thus
cause a bus conflict. Arbitration mechanisms resolve bus conflicts by only grant-
ing access to one accessor at a time. There are three main classes of resource
arbitration mechanisms. Time-driven arbitration uses a predefined bus schedule,
which assigns time slots of fixed size to particular accessors. This is commonly
referred to as TDMA (Time Division Multiple Access). Event-driven arbitra-
tion mechanisms decide at runtime, which accessor is granted resource access
next. These decisions usually depend on the access histories of all accessors.
Prominent examples are Round Robin or FCFS (First-Come-First-Serve) re-
source arbitrations. Hybrid arbitration mechanisms split their arbitration period
into segments of fixed length. Static segments use time-driven resource arbitra-
tion and dynamic segments use event-driven resource arbitration. A member of
this class is the FlexRay [3] bus protocol used in the automotive industry [4,5].

One can distinguish between synchronous and asynchronous bus accesses.
Requests for asynchronous access to a shared bus can be buffered until they
are finally granted by the arbiter. This way, the requesting application can im-
mediately continue its execution. Applications that only rely on asynchronous
resource accesses can achieve the same performance as in combination with a
dedicated bus provided sufficient buffer sizes, enough bandwidth, and sufficiently
delayed accesses to the results. In contrast, requests for synchronous access, e.g.
memory load requests, block the requesting application until they are granted
by the arbiter. The blocking of requests for synchronous bus accesses leads to
additional stalls of the requesting processing unit. Such bus interference effects
may decrease the performance of a processing unit compared to a dedicated bus
scenario on average as well as in the worst case.
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In a multiprocessing environment, a processing unit may access a shared bus
explicitly or implicitly. Explicit accesses are performed by commands occurring
in the program, and can therefore be more easily analyzed than implicit accesses.
A first-level cache, private to a processing unit, for example, accesses a shared
memory bus for cache reloads. The cache-coherence protocol for private caches
also accesses the shared bus. Implicit accesses are harder to track by static
analysis than explicit accesses since they are subject to more uncertainty.

2.1 Analysis Approaches and Task Model

Naive bounds on the WCET and WCRT of tasks assume bus access requests to
always be granted immediately. They are obviously not sound in the presence
of bus interferences. A common approach is to first derive naive bounds on the
WCET and to account for possible interference effects in an additional analysis
step focussed on the bus interference.

Literature on worst-case timing analysis for systems with shared bus resources
and synchronous bus accesses is mainly concerned with this additional analysis
step. The common assumption is that adding the access delays to the naive
timing bounds will lead to sound WCET bounds. This can only be guaranteed
for compositional timing models of hardware platforms [2].

To simplify the analysis of bus interference, all surveyed approaches adopt a
task model based on so-called superblocks. Each task is described as a sequence
of superblocks (see Figure 1). Upper bounds on the amount of computation
time (execi) and the number of resource accesses (μi) per superblock (si) serve
as input and are used as common abstraction of tasks [6]. The bounds on the
amount of computation time are assumed to be the result of a naive WCET
analysis ignoring completely the time needed to access the bus. For simplicity,
our figures assume that a bus access always takes one time unit to be served once
it is granted. In the presence of implicit bus accesses it can be a major challenge
to derive tight bounds on the number of resource accesses of a superblock. This
is an open research problem.

s0

exec0 = 4

μ0 = 2

s1

exec1 = 6

μ1 = 3

s2

exec2 = 3

μ2 = 3

Fig. 1. A task consisting of three superblocks

The approaches in the literature differ in the class of resource arbitration
considered. While Pellizzoni et al. [7,8] are concerned with event-driven resource
arbitration mechanisms, Schranzhofer et al. [6] treat TDMA resource arbitration.
The determination of safe timing bounds in the presence of a shared bus and a
hybrid arbitration mechanisms is described in Schranzhofer et al. [9].
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Time-driven Resource Arbitration. An inherent property of time-driven
resource arbitration is that the overall access delay experienced by a task on
one processing unit is independent of the access requests issued by concurrent
accessors. Thus, current approaches for worst-case timing analysis of systems
with shared TDMA buses bound the overall access delay of a given task by
considering its bus accesses and their possible distributions across a known bus
schedule [6]. Optimization approaches try to find a pair of task assignment and
bus schedule leading to a low WCRT bound [10].

The overall access delay of the processor under consideration (PuC) is max-
imized when it is blocked as long as possible by the bus arbitration. The PuC
is blocked whenever it tries to access the bus in a time slot assigned to another
accessor. Furthermore, it is blocked in a time slot assigned to itself if its access
request is released too late to be completed in the current time slot.

The amount of overall blocking experienced by a superblock depends on how
its bus accesses and its computation time are distributed within the superblock.
Possible distributions are restricted by the given upper bounds on the number of
bus accesses and the computation time per superblock. Intuitively, a bus access
released early enough in a time slot assigned to the PuC does not lead to any
blocking of the PuC. In order to maximize the overall blocking, a distribution
of accesses and computation time in the superblock should avoid such access
releases as far as possible.

Algorithms to calculate a WCRT bound for a superblock run through a se-
quence of points in time starting with the worst-case release time of the su-
perblock. For each point in time, they decide if a bus access or a certain amount
of computation time could lead to a globally maximized blocking. This decision
determines which point in time has to be considered next. Uncertainty in this de-
cision may lead to case splits. Termination is guaranteed as the maximal amount
of resource accesses and computation time of a superblock will be consumed at
some point in time. Such algorithms construct a distribution of bus accesses and
computation time leading to a tight bound on the WCRT. To avoid case dis-
tinction and thereby reduce the complexity of the problem, it is possible to use
coarse under- and overapproximations as intermediate result. This interval can
be further refined using a binary search that excludes candidates guaranteed to
be infeasible [6].

A superblock with its upper bounds on the computation time and the number
of bus accesses is an abstraction of a fragment of a task. Obviously, these upper
bounds may allow for different distributions of bus accesses and computation
time across the superblock than those found in the original task. As a conse-
quence, the worst-case distribution of accesses determined by an algorithm may
actually be infeasible. The amount of pessimism introduced by the superblock
abstraction remains to be evaluated.

In order to decrease the upper bounds on the WCRT of a task, it is bene-
ficial to split it up into superblocks in a way that each superblock either only
performs computations or only performs bus accesses. This is referred to as dedi-
cated access model [6]. A deterministic execution model for time-critical systems
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introduced by Boniol et al. [11] distinguishes between execution and communica-
tion slices in a similar way. The reason for the observed improvement is that the
bounds on the WCRT of a superblock are the consequence of very unbeneficial
interleavings of its bus accesses and its computation time with respect to the
bus schedule’s time slots.

However, it is not clear at which granularity superblocks should be abstracted
from a task’s code. Furthermore, it remains unclear which restrictions a task’s
code has to fulfill in order to be abstracted to superblocks following the dedicated
access model. A simple possibility is to enforce a strict separation of computa-
tion and bus accesses by the programmer. This is, however, not possible in the
presence of implicit bus accesses, which are not visible to the programmer and
have to be detected by a consecutive static analysis.

Event-Driven Resource Arbitration. It is a common assumption in the
literature that the latency of an individual resource access of the PuC can be
bounded. Either an arbitration protocol provides this property to all accessors,
or at least to the PuC. In the presence of event-driven resource arbitration, there
are two approaches to bound the effect of interference, discussed in more detail
below:

1. By taking into account the arbitration logic.
2. By taking into account the amount of competing resource accesses.

In both approaches, the common principle is to construct the worst-case sce-
nario, that is the scenario that maximizes the latency of a request based on the
knowledge about the interference.

Knowledge about the maximum number of bus accesses in a superblock of
the PuC allows to bound its overall access delay: For round-robin arbitration,
the worst-case scenario is that all other processing units are allowed to perform
one access before the PuC is allowed to do so [7]. In FCFS arbitration, an
interference bound has to additionally take into account the maximum number
of access requests that can be released at the same time by concurrent processing
units if this number is greater than one [8]. We call this delay bounding based
on the arbitration logic. Of course these bounds are only tight provided that the
concurrent processing units can really issue this number of bus requests while
the superblock is executed. This remark leads us to the second bounding factor
on the interference.

It is an inherent property of event-driven arbitration mechanisms, that a pro-
cessing unit can only be blocked if and when another processing unit is requesting
bus access. Furthermore, many event-driven arbitration mechanisms do not al-
low to interrupt and restart a bus access once it is granted. Provided that these
two properties hold, a superblock on the PuC cannot experience more overall ac-
cess delay than the time needed to perform all the accesses concurrent accessors
might release while the superblock is executed [7,8]. We refer to this as delay
bounding based on the amount of concurrently requested access time.

In order to bound the amount of concurrently requested access time for a
given superblock, all possible interleavings of its bus accesses with concurrent
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access sequences have to be taken into account. As this may be computationally
infeasible in general, arrival curves [12,13] are introduced as an abstraction of the
concurrent access behavior. They bound the maximal amount of access time that
concurrent accessors might request in a time interval of given length. It is pos-
sible to obtain them from the superblock abstractions of the task on concurrent
processing units [8]. Let function R(t) describe the cumulative amount of ac-
cess time requested by a concurrent accessor until time t. An arrival curve α(Δ)
bounds the amount of access time that can be requested in any time interval of
length Δ:

∀t1 : ∀t0 ≤ t1 : R(t1)−R(t0) ≤ α(t1 − t0)

The use of arrival curves for more than one concurrent accessor inherently over-
approximates the experienced blocking. A longer running superblock can poten-
tially suffer from more delay caused by a particular concurrent accessor than a
quickly executed superblock. Therefore, the involved fixed point iteration has
to pessimistically assume for each concurrent accessor that it can already profit
from the delay caused by all other concurrent accessors. Yet, this loss of precision
is bearable regarding the complexity of considering all possible interleavings of
bus access sequences of the concurrent accessors.

In addition, arrival curves also incorporate concurrent access sequences that
can possibly never be executed in parallel with a particular superblock. There-
fore, arrival curves may introduce additional pessimism with respect to the con-
current access request behavior if that behavior exhibits a heterogenous structure
along the dimension of time.

Hybrid Resource Arbitration. For hybrid resource arbitration, it is more
challenging to find a distribution pattern of bus accesses and computation time
across the bus arbitration segments that leads to a globally worst response time.
When constructing worst-case scenarios, the static and dynamic segments need
to be taken into consideration jointly.

While it would be feasible to derive worst-case scenarios considering only the
static or only the dynamic segments with the methods described above, the
derived bounds would likely be very pessimistic.

To avoid high over-estimation, a dynamic programming approach presented
by Schranzhofer et al. [9] enumerates all possible distributions of accesses in
a superblock and interfering accesses of concurrent processing units across the
segments of the bus arbitration.

2.2 Summary of the State of the Art and Open Problems

It is possible to determine safe bounds on the WCRTs of tasks for systems with
synchronous accesses to a shared bus. Upper bounds on the naive WCETs and
the number of bus accesses for each superblock are assumed as input. Approaches
described in the literature treat different classes of bus-arbitration mechanisms.
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Each of the approaches is backed by its own separate, rigorous formalism.
It would be beneficial to identify more generic approaches to reason about all
classes of arbitration mechanisms treated so far as well as possible future ones.

Furthermore, the current level of abstraction (superblock-based task model,
arrival curves) is quite high and possibly results in severe overestimation of the
actual interference. It would be valuable to examine the tradeoff between analysis
efficiency and precision by studying more precise task characterizations.

All presented approaches require the bounds on the amount of computation
time and the access times and delays to be compositional. Therefore most authors
assume a timing-compositional hardware platform [2]. Such a platform allows for
a precise description of its temporal behavior by a compositional timing model.
Future work should consider the treatment of hardware platforms that currently
only allow for a precise timing analysis in combination with models exhibiting
timing anomalies.

3 Storage Resources, in Particular Shared Caches

Caches are used to bridge the large latency gap between modern processor
pipelines and main memory. They are small, low-latency on-chip memories that
buffer a subset of the contents of the main memory. Cache replacement logic
decides at runtime which memory blocks to store in the cache. Sequential pro-
grams running on single-core machines usually exhibit high spatial and temporal
locality and thus experience a high cache-hit ratio. As a consequence, the av-
erage memory access latency is close to that of the cache in such a scenario.
Precise and efficient static analysis of the behavior of a private cache is pos-
sible if the memory accesses of the application and the replacement logic are
predictable [14].

Current and upcoming multi-core processors feature private first- and some-
times second-level caches and shared higher-level caches. In theory, large shared
caches promise a more efficient use of expensive die area than an array of small
private caches of the same aggregate capacity: their capacity can be shared flex-
ibly according to the needs of the programs running on the connected cores. In
addition, if applications running on different cores share data, they can commu-
nicate more efficiently through the shared cache than through main memory.

Unfortunately, the behavior of current shared caches is hard to predict stat-
ically. The reason for their unpredictability is the interference between accesses
originating from different cores. As with buses, caches cannot serve multiple
memory accesses completely in parallel. Pipelining of accesses is possible, but
some “bandwidth interference” remains. However, the main challenge with shared
caches is that the state of the cache depends on the precise interleaving of ac-
cesses from multiple cores. Accesses from different cores are typically served
on a first-come first-served basis. Their interleaving thus depends on the rela-
tive execution speeds of the applications running on these cores, which—among
other things—depend on their cache performance, which in turn depends on
the cache state. This cyclic dependency between the interleaving of the accesses
and the cache state makes precise and efficient analysis hard or even impossible
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in general. Additional complications—not detailed in this survey—arise from
coherence protocols, which need to be employed when applications running on
different cores share memory. Now, even if a shared-cache analysis taking into
account the interactions of multiple applications would exist, such an analysis
would have to have precise knowledge of all applications, their mapping, and
their scheduling. This would render independent and incremental certification
impossible.

Maybe unsurprisingly, it has been observed that uncontrolled sharing of caches
that does not take into account that cached memory blocks belong to different
cores or applications is also detrimental from an average-case performance per-
spective. For example, an application with low temporal and spatial locality that
generates many first-level cache misses can acquire a large portion of the shared
cache without any benefit to system performance.

A common approach found in recent literature is to take into account the core
or application a cache block belongs to when deciding which block to replace.
Typically, the cache is conceptually partitioned among the cores, so that memory
blocks compete for cache space only with other memory blocks of the same core.
Within each partition a common replacement policy such as least-recently used
is applied. The partition sizes are chosen with different objectives in mind, such
as aggregate performance and fairness. In addition or even instead of varying
partition sizes, some approaches also adapt the schedule of applications with
these objectives in mind. Both decisions about scheduling and partition sizes
can happen either statically or dynamically and are taken based on a static or
dynamic characterization of the different core’s memory access behavior.

3.1 Cache Partitioning

In the following, we provide a non-exhaustive survey of the vast existing litera-
ture on

– methods to partition caches,
– approaches to determine good partition sizes, and
– methods to schedule tasks taking into account a shared cache.

How to Partition a Cache.
There are various approaches to partition caches. They can be distinguished by

– the partitioning scheme: set-based [15,16] or way-based [17,18], and by
– their implementation: in software [15,16] or in hardware [19,17,18].

In set-based partitioning, each core is given exclusive access to a subset of all
cache sets. This can be realized both in hardware and in software. Hardware-
based solutions can realize set-based partitioning by adapting the mapping of
memory blocks to cache sets depending on the core that issued the memory ac-
cess. If virtual memory is employed and the shared cache is physically-indexed,
set-based partitioning can also be realized in software by page coloring [20]:
In page coloring, physical pages mapping to the same set of cache sets are as-
signed the same color. Then, the set of colors is partitioned among the different
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processes. Virtual pages belonging to a particular process are only mapped to
physical pages of the colors assigned to that process.

In way-based partitioning, the cache is partitioned along the cache ways: each
core is given exclusive access to a subset of all cache ways. This can only be
realized in hardware, by accordingly adapting the cache replacement logic.

Both schemes have their advantages and drawbacks: In particular in low-
associativity caches, way-based partitioning only allows for a coarse-grained al-
location of the cache space. Set-based partitioning, in particular its hardware-
based variant, allows for a more fine-grained allocation of the cache space as
the number of ways usually exceeds a cache’s associativity. The main drawback
of set-based partitioning is that changing partition sizes is expensive. Changing
the coloring of pages or changing the mapping of memory blocks to cache sets
implies that the cached data needs to either be invalidated or moved to their
new locations in the cache. As a consequence, hardware-based solutions usu-
ally rely on way-based partitioning, in which changing partition sizes is cheap.
Software-based solutions are forced to rely on set-based partitioning.

How to Determine Sizes of Partitions. The choice of partition sizes has a strong
effect on the performance of each corunning task, and thus the system perfor-
mance. Multiple metrics have been proposed to measure system performance,
the most common metric being throughput, i.e. the sum of the IPCs (instruc-
tions per cycle) of all corunning tasks. Other metrics combine performance with
fairness goals.

To arrive at a good partition in terms of a particular performance metric, the
effect of a partition size on each corunning task needs to be characterized in some
form. The following characterizations have been used to drive the partitioning
choice:

– Miss ratio curves [15] capture the miss ratio of a task in terms of the task’s
cache partition size. Unfortunately, miss ratios, i.e., ratios between cache
misses and memory accesses, are not directly correlated with execution times.
A high miss ratio does not imply that the task spends much time waiting for
memory accesses. Thus, minimizing miss ratios does not necessarily maxi-
mize system throughput. A related metric proposed by Tam et al. [21] are
stall-rate curves, which capture the share of overall execution time a task is
stalled for memory.

– Misses per 1000 instruction (MPKI) in terms of cache size [18]. This metric
is much more closely tied to the cache’s impact on execution times. Still, it
may not be perfectly correlated with the resulting performance in terms of
cycles per instruction.

– Cycles per instruction (CPI) in terms of cache size [18]. This would be the
ideal metric when optimizing throughput. However, in contrast to MPKI, it
is hard to determine efficiently.

The vast majority of the literature is concerned with general-purpose computing,
in which the set of tasks changes dynamically and is not known in advance.
In this scenario, the characterization of the tasks needs to be performed at
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runtime. Qureshi et al. [18] propose dynamic set sampling as an efficient and
fairly accurate mechanism to estimate the MPKI. The idea is to focus on a
small subset of all cache sets and to extrapolate from the observations in this
subset to the entire cache. On this small subset, the cache is augmented with
additional tags, which are used to dynamically evaluate the effect of providing
more cache ways to a particular task. With these additional tags, the hardware
is able to count the potential number of cache hits due to each additional cache
way.

In a hard real-time context, the task set is known in advance, and a reasonable
characterization would be bounds on the WCET of each task in terms of its
partition size.

Given the characterization of each of the tasks, dynamic approaches then pre-
dict from the past behavior of the tasks, which choice of partitioning is likely to
maximize the chosen performance metric in the future. Depending on the parti-
tioning scheme, a reconfiguration overhead needs to be taken into account. This
may be particularly severe in case of software-based partitioning. Zhang et al. [15]
discuss tradeoffs in a page coloring approach.

Scheduling Approaches. In addition to choosing good partition sizes for a given
workload, system performance may be improved by optimizing the schedule.
This has been considered for general-purpose tasks and his particularly relevant
in the hard real-time case, as all the necessary information is present at design
time.

Zhao et al. [22] present an approach to dynamic scheduling that is based on
their CacheScouts monitoring architecture. This architecture provides hardware
performance counters for shared caches that can detect how much cache space
individual tasks use, and how much sharing and contention there is between
individual tasks. The authors describe three dynamic scheduling heuristics that
utilize this architecture:

– Schedule a waiting task that has significant sharing with other already run-
ning tasks.

– Schedule a task that still has its working set left in the cache.
– Co-schedule tasks with a small and a large working set.

An approach to static scheduling in a hard real-time context is presented by
Guan et al. [23]. They extend the classical real-time scheduling problem by
associating with each task a required cache partition size. They propose an
associated scheduling algorithm, Cache-Aware Non-preemptive Fixed Priority
Scheduling, FPCA. FPCA schedules a job Ji, if

– Ji is the job of highest priority among all waiting jobs,
– there is at least one idle core, and
– enough cache partitions to execute Ji are available.

They propose a linear programming formulation that determines whether a given
task set is schedulable under FPCA. For higher efficiency, they also introduce a
more efficient heuristic schedulability test that may reject schedulable task sets.
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3.2 Summary of the State of the Art and Open Problems

Much work has been done in general-purpose computing to optimize average-
case performance by cleverly partitioning shared caches. Much less has been
done in the context of hard real-time systems. However, in the case of cache
partitioning, hard real-time systems may in fact present a simpler problem: A
major remaining challenge is that no real-time scheduling policy taking into
account cache space demands is established. The work of Guan et al. [23] is a
step in this direction. However, it takes the required cache partition size of each
task as an input. Choosing partition sizes to optimize schedulability is an open
problem.

In this survey, we have focussed on shared caches. Other storage resources
that are increasingly shared in embedded systems are DRAMs and Flash mem-
ory. Recently, real-time memory controllers for SDRAM have been proposed that
provide bandwidth and latency guarantees to their clients [24,25,26]. These con-
trollers are based on a combination of predictable arbitration mechanisms, such
as TDMA, and DRAM-specific access patterns that eliminate the dependence
of latencies on the execution history.

4 Assessing the Impact of Resource Sharing on
Performance by Measurements

As described earlier in Section 1.1, one possibility to estimate the timing behavior
of tasks is by measurements. In this section, we discuss existing measurement-
based approaches that aim at quantifying the slowdown a task experiences when
different tasks are executed in parallel.

In a single-core setting, a measurement-based estimate is obtained by multi-
plying the longest observed execution time by a safety margin. However, it is
not possible to directly extend such measurement-based timing analyses from
the single-core to the multi-core setting.

First, consider timing analysis before tasks have been mapped to cores and
scheduled. Given a set of k tasks executing on a system with n cores (k > n),
there exist

(
k
n

)
possible workloads that could be executed in parallel. Hence,

without additional knowledge about the mapping and the schedule, it would be
necessary to measure the slowdown of a task in each possible workload in order
to determine its worst-case timing. This is very expensive by means of analysis
time, especially as all measurements have to be repeated in case the task set
changes. Therefore, it is desirable to determine workload-independent estimates
of the slowdown. In case of timing analysis after the mapping process, this is not
a problem.

Second, the choice of a proper safety margin becomes harder due to the in-
creased variance in execution times. The safety margin is needed to compensate
for the potential difference between the highest measured execution time and
the actual WCET. With increasing variance, the safety margin must thus be in-
creased as well. Thus the application of the safety margin might lead to a strong
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overestimation of the WCET in case the highest measured execution time is
close to the actual WCET.

To obtain a workload-independent estimate of the slowdown, so-called re-
source-stressing benchmarks are employed as co-runners during the measure-
ments. A resource-stressing benchmark is a synthetic program that tries to max-
imize the load on a resource or a set of resources. The interference a resource-
stressing benchmark causes on a certain resource is meant to be an upper bound
to the interference any real co-runner could cause. Therefore the slowdown a
program experiences due to interferences on a certain resource when co-running
with a resource-stressing benchmark bounds the slowdown that could occur with
respect to this resource in any real workload.

Typically, resource-stressing benchmarks are independent of the application
under consideration, but specific to an architecture. They are independent of
the application so they can be reused for the analysis of different programs.
The architecture under consideration must be taken into account for properly
constructing e.g. a benchmark that maximally stresses the bandwidth to main
memory: it must be guaranteed that none of the loads performed by the bench-
mark can be served by any of the caches. Thus the offset between the addresses
has to be chosen in such a way that no cache line is accessed twice. For the
proper choice of this parameter, architectural information about the width of a
cache line is needed.

As an additional aspect, the obtained slowdowns can be used to estimate the
timing predictability of an architecture. A significant slowdown implies a possibly
high variance in the execution times of a task and thus disallows accurate timing
analysis. Hence, it is also a measure for the suitability of a multi-core architecture
for time-critical embedded systems.

In the context of hard real-time embedded systems, measurement-based ap-
proaches are inappropriate because they cannot derive safe, analytical guaran-
tees. This is because it cannot be guaranteed that the actual WCET is en-
countered during the measurements. Even the highest measured execution time
together with the safety margin is not necessarily an upper bound to the WCET.
However, no static analysis that soundly accounts for all interferences in a multi-
core architecture, has been proposed so far.

In Section 4.1, we present the existing approaches in more detail. In Sec-
tion 4.2, we discuss the shortcomings of the measurement-based approaches and
pose open questions.

4.1 Resource-Stressing Benchmarks

Radojković et al. [27], Nowotsch et al. [28] and Fernandez et al. [29] all employ
resource-stressing benchmarks in order to quantify the slowdown of tasks in
a multi-core architecture. In all three approaches, the respective benchmarks
are systematically constructed based on the characteristics of the resource to be
stressed. A benchmark that aims at stressing, e.g. parts of the memory hierarchy
should almost only involve memory operations and avoid local computations.
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The approaches differ in the resources and architectures under consideration
as well as in the respective evaluation techniques.

Radojković et al. [27] propose benchmarks that stress a variety of possibly
shared resources, including functional units, the memory hierarchy, especially the
caches at different levels and the bandwidth to the main memory. Experiments
are carried out on three architectures with different shared resources in order
to show the varying timing predictability, depending on the degree of resource
sharing. One architecture offers hyperthreading, i.e. all resources including the
pipeline are shared. For the second architecture, only the bandwidth to the main
memory is shared between two cores whereas for the third architecture, the L2
cache is shared as well. In order to show the variance of the possible slowdown,
measurements are taken for three different scenarios. In the first scenario, only
resource-stressing benchmarks are executed concurrently to estimate the worst
possible slowdown independently of the application. In the other cases, the ap-
plication is either executed with another co-running application or with different
co-running resource-stressing benchmarks.

Unsurprisingly, the more resources are shared, the larger is the possible impact
of resource sharing on execution times. This makes techniques like hyperthread-
ing impractical for systems with hard real-time constraints. The measurements
for the different scenarios reveal that the slowdown due to co-running resource-
stressing benchmarks drastically exceeds the slowdown measured in workloads
only consisting of real applications. This implies that the workload-independent
slowdown determined with co-running resource-stressing benchmarks yields a
very imprecise upper bound to the slowdown in any real workload. Therefore,
the analysis result might be not very useful in practice.

Nowotsch et al. [28] present benchmarks that stress the memory hierarchy,
i.e. the bus to main memory and the caches. The slowdown is measured for
workloads exclusively consisting of resource-stressing benchmarks. Several sce-
narios are considered, testing the influence of different memory configurations
(static RAM vs. dynamic RAM) and cache coherency settings on the variance of
the observed slowdowns. The overhead due to static coherency (i.e. only checks
whether memory blocks in the local caches are coherent) is determined by en-
abling the coherency flag during measurements although there are no coherent
accesses. The overhead due to dynamic coherency (i.e. not only checks, but also
explicit memory operations enforcing coherency) is assessed by enabling the co-
herency flag during measurements in a setting where coherent accesses occur.
Measurements are carried out on the Freescale P4080 multi-core processor which
is used in avionics.

The outcomes show that the time for concurrent accesses to DDR-SDRAM
memory scales very badly with the number of concurrent cores, in contrast to
SRAM. Concerning the different cache coherency settings, the results show that
even without coherent accesses, static coherency induces an overhead in execu-
tion time that should be considered in timing analysis. The impact of dynamic
coherency strongly depends on the type of memory operation (read or write).
In case of read with concurrent read, dynamic coherency does not cause any
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slowdown compared to static coherency. For write operations, the execution is
slowed down significantly in case of dynamic coherency, regardless of the concur-
rent operation. This can be explained by the fact that after a write operation,
coherency actions are required to keep the memory hierarchy consistent.

The benchmarks used by Fernandez et al. [29] focus on the memory hierarchy
of the system, including the caches at different levels as well as the memory
controller. In order to evaluate the influence of the underlying operating system
on the slowdown due to shared resources, the measurements are performed once
on Linux and once on the real-time operating system RTEMS. The overhead in
execution time is determined for two types of workloads: task sets exclusively
composed of resource-stressing benchmarks and task sets with one application
and one co-running resource-stressing benchmark.

The outcomes of the experiments with benchmarks that exclusively stress the
private L1 cache through store operations show that a considerable slowdown
is produced. This is due to the fact that the L1 cache is write-through, thus
store operations lead to bus traffic, L2 cache interference and memory controller
accesses. The number of store instructions within an application is identified to
be the dominant metric for slowdowns in this architecture. Employing write-back
caches reduces this overhead but introduces new overhead arising from cache
coherency protocols, as it has been described in [28]. The results produced for the
different operating systems show that they have a non-negligible influence as well.
For example, whereas the estimated miss rate is 11% for a certain application
in a Linux environment, the same application shows a miss-rate of near zero on
the RTEMS operating system. Similar to the outcomes of the other papers, the
application-independent slowdown measured in workloads with only resource-
stressing benchmarks exceeds the application-dependent one.

4.2 Summary of the State of the Art and Open Problems

The state of the art approaches provide measurement-based estimates on the
slowdown of a task due to interferences on shared resources caused by co-
running tasks. These estimates are then used to roughly classify components
of a multi-core architecture with respect to timing predictability. There are two
main concerns about the soundness of the measurement-based approaches em-
ploying resource-stressing benchmarks.

First, there is neither a proof nor a formal argument why a specific benchmark
puts maximal load on a resource. For the storage resources in particular, it is
very difficult to argue why their state is affected in the worst possible way. In
case of several possible co-runners, these arguments become even more difficult
because of the combined interferences.

Second, a resource-stressing benchmark is typically application-independent.
An application with memory-intensive as well as computation-intensive parts is
neither slowed down maximally by a cache-stressing nor by a functional-unit-
stressing co-runner. To account for this behavior, either a sound combination of
slowdowns obtained by different benchmarks or an application-specific bench-
mark is needed. Obtaining a sound combination of slowdowns, which we call
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compositionality issue, is hard because resources are not independent of each
other. For example, a program that stresses the memory bus does also nec-
essarily stress the last-level-cache. But, a benchmark that stresses several re-
sources simultaneously cannot stress one particular resource in the worst possible
way at the same time. We call the application-specific benchmark that causes
the maximal slowdown worst companion. In general, the construction of this
worst companion might be infeasible due to limited control over the hardware
itself. Nevertheless, application-specific benchmarks might produce worse slow-
downs than application-independent benchmarks which disproves the soundness
of these measurement-based techniques.

Beyond the open questions concerning the soundness of the approaches, the
usefulness of the obtained slowdowns is questionable. While a resource-stressing
benchmark can cause slowdown factors of up to 20, in reality, applications are
co-located with other applications that typically cause much less interferences
on shared resources. Radojković et al. [27] demonstrate that the slowdown an
application experiences with co-running resource-stressing benchmarks is signif-
icantly higher compared to other co-running applications.

An orthogonal research problem is the construction of supporting benchmarks
that e.g. use cache prefetching to speed up the application. Analogously to the
worst companion, one could aim at the construction of a best companion.

5 Conclusions

This survey has given an overview of the impact of the interference on shared
resources on performance and performance estimation. Goals of the described
approaches were performance estimation or performance improvement. Mainly,
two types of resources were considered, bandwidth resources, e.g. buses, and
storage resources, e.g. caches.

Performance estimation methods for multi-core systems with shared buses at-
tempt to derive bounds on the overall access delays under different arbitration
protocols. All use cumulative abstractions such as the number of bus accesses
during bounded-length phases in tasks in a simplified task model. Different ar-
bitration protocols have different worst-case scenarios in which bounds on the
access delays are computed.

Static analysis of the cache behavior of shared caches is highly complex due to
the large number of potential interleavings to be considered. Cache partitioning
among the different tasks on different cores is used instead. Methods known
from the single-core case can then be used. Performance of statically shared
caches will suffer for systems with dynamically varying demands on memory.
Dynamic cache partitioning is the answer. Existing approaches consider shared
caches in isolation and ignore the effect cache reloads and write backs have on
the necessarily shared bus.

Several approaches attempt to construct resource-stressing benchmarks. Such
a benchmark for a specific resource is meant to cause the maximal slowdown on
a co-running application. In an interval of bounded length any resource can only
be stressed to a degree that is a function of the interval length. The presented
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ways to design resource-stressing benchmarks do this in an intuitive, but ad-hoc
way. They are independent of any particular application. It seems clear that a
larger slowdown of a particular application can be achieved by an application-
specific worst companion, which better exploits the available time to exercise
stress on shared resources. Thus the existing resource-stressing benchmarks do
not exhibit upper bounds on the interference. On the other hand, they are overly
pessimistic: a co-running application will seldom exercise such a large stress on
a shared resource.
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Treating random phenomena in concurrency theory has a long tradition. Petri
nets [18,10] and process algebras [14] have been extended with probabilities. The
same applies to behavioural semantics such as strong and weak (bi)simulation [1],
and testing pre-orders [5]. Beautiful connections between probabilistic bisimula-
tion [16] and Markov chain lumping [15] have been found. A plethora of proba-
bilistic concurrency models has emerged [19]. Over the years, the focus shifted
from covering discrete to treating continuous stochastic phenomena [12,13].

We argue that both aspects can be elegantly combined with non-determinism,
yielding the Markov automata model [8]. This model has nice theoretical char-
acteristics. It is closed under parallel composition and hiding. Conservative ex-
tensions of (bi)simulation are congruences [8,4]. It has a simple process algebraic
counterpart [20]. On-the-fly partial-order reduction yields substantial state-space
reductions [21]. Their quantitative analysis largely depends on (efficient) linear
programming and scales well [11].

More importantly though: Markov automata serve an important practical
need. They are the obvious choice for providing semantics to the Architecture
Analysis & Design Language (AADL [9]), an industry standard for the auto-
motive and aerospace domain. As experienced in several ESA projects, this
holds in particular for the AADL annex dealing with error models [3]. They
provide a compositional semantics to dynamic fault trees [6], a key model for
reliability engineering [2]. Finally, they give a natural semantics to every gen-
eralised stochastic Petri net (GSPN [17]), a prominent model in performance
analysis. This conservatively extends the existing GSPN semantics that is re-
stricted to “well-defined” nets, i.e., nets without non-determinism [7]. Powerful
software tools support this and incorporate efficient analysis and minimisation
algorithms [11].

This substantiates our take-home message: Markov automata bridge the gap
between an elegant theory and practical engineering needs.
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Abstract. Transition rules with negative premises are needed in the
structural operational semantics of programming and specification con-
structs such as priority and interrupt, as well as in timed extensions
of specification languages. The well-known proof-theoretic semantics for
transition system specifications involving such rules is based on well-
supported proofs for closed transitions. Dealing with open formulae by
considering all closed instances is inherently non-modular – proofs are
not necessarily preserved by disjoint extensions of the transition system
specification.
Here, we conservatively extend the notion of well-supported proof to

open transition rules. We prove that the resulting semantics is modular,
consistent, and closed under instantiation. Our results provide the foun-
dations for modular notions of bisimulation such that equivalence can be
proved with reference only to the relevant rules, without appealing to all
existing closed instantiations of terms.

1 Introduction

The main goal of this paper is to provide modular proof theory for structural
operational semantics when transition rules with negative premises are allowed.
The main technical contributions are a notion of well-supported proof for open
transition rules, together with theorems that establish various essential proper-
ties of this notion. This is part of our larger research effort in defining a modular
semantic framework, including machinery such as bisimulation proof techniques
[15], and rule formats for the operational semantics of programming and specifi-
cation languages which ensure that bisimilarity is a congruence [7].

When Plotkin introduced structural operational semantics (SOS) in his sem-
inal Aarhus lecture notes in 1981 [17], he used only positive transition rules:
the possibility of a transition for a programming construct depended on the
possibility of transitions for its sub-constructs – never on their impossibility. In
that context, the transition relation defined by a set of SOS rules is always
well-defined, and the proof theory of transitions is quite straightforward (except
regarding modularity of bisimilarity; see [15]). Positive transition rules are ade-
quate for specifying the SOS of many programming and specification language
constructs.

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 46–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Modular Semantics for TSSs with Negative Premises 47

Nevertheless, negative premises have been found useful in SOS. For example,
when termination can be conflated with deadlock (as in some process algebras)
the following transition rules specify sequential execution of the construct (x; y):

x
l−→ x′

(x; y)
l−→ (x′; y)

x
l′� y

l−→ y′

(x; y)
l−→ y′

This avoids the need to introduce distinguished terminal states, or a termination
predicate.

More significantly, it has been shown [3] that transition rules with negative
premises are actually necessary for the SOS of some programming and speci-
fication constructs, such as priority operators: SOS is strictly more expressive
when negative premises are allowed. Related examples where negative premises
are needed include interrupts and timed extensions of specification languages.

The model- and proof-theoretic semantics for SOS specifications involving neg-
ative premises is considerably less obvious than in the positive case; see [13,2,12]
for detailed discussions and comparison of alternative definitions. A widely ac-

cepted definition is based on well-supported proofs for transition formulae p
l−→ q

where p (and q) are closed terms [12,5]. Well-supported-proofs for open formulae
has remained an open problem since 1995 [11] (and the task was characterised
as ‘somewhat problematic’ by Van Glabbeek [12]). In the negative setting, the

usual closed-instance semantics for open formulae would allow r
l� to be inferred

whenever it is impossible to infer r
l−→u for any u (corresponding to ‘negation

as failure’ in logic programming [8]). But this is inherently non-modular : proofs
are not generally preserved when the transition system specification is extended
with new constructs and with rules defining the transitions of the new constructs.
The non-modularity stems from defining the notion of well-supported proof with
respect to the set of all closed terms in a language: extensions of the specified
language increase that set.

In this paper, we conservatively extend the notion of well-supported proof to
open transition rules, in contrast to closed-instance semantics. We prove that
the resulting semantics is modular, consistent, and closed under instantiation.

The conservativeness of our semantics requires a mild condition on the format
of transition rules: source-dependency, which (informally stated) ensures that
each variable in a rule can be traced back to variables that occur in the source of
the conclusion (via transitions in the premises of the rule). Source-dependency
was also required to show that disjoint extensions are operationally conservative
with respect to closed transition formulae in [10]. Our other results (including
modularity) apply to arbitrary specifications.

The work here provides foundations for modular notions of bisimulation for
systems with negative premises, whereby equivalence between two terms can be
proved with reference only to the rules that define transitions for the constructs
occurring in those terms (independently of the presence or absence of other
constructs and their defining rules). Modular bisimulation proofs correspond
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closely to conventional proofs which appeal to the fact that ‘no further rules
need to be considered’.

The rest of this paper is organised as follows. In Section 2, we recall some
standard notions. In Section 3, we generalise the notion of well-supported proof
to open transition rules. We show that our notion of well-supported proof is
consistent (i.e., does not lead to proofs of denying formulae) and closed under
instantiation of formulae and transition rules. In Section 4, we study the issue
of modularity. First, we show that the usual notion of closed instance semantics
is not modular, in general. Second, we show that our approach to assigning
semantics to open formulae is indeed modular. In Section 5, we show that our
notion of semantics is a conservative extension of the existing notion for closed
terms (i.e., it leads to the same set of provable transitions for closed terms),
and that disjoint extensions are conservative. This requires the mild condition of
source-dependency. We conclude the paper and present some direction for future
work in Section 6.

2 Preliminaries

We begin by recalling some standard definitions regarding SOS specifications
from the literature (see [2,16] for further details).

Definition 1 (Signatures, Terms and Substitutions). We assume a count-
able set V of variables. A signature Σ is a set of function symbols with fixed
arities; the arity of f is a non-negative integer denoted by ar(f). The set of
terms on signature Σ, denoted by T(Σ) and ranged over by s, t, s0, t0, . . ., is de-
fined inductively as follows: variables and function symbols of arity zero (also
called constants) are terms; given a list of terms, their composition using a func-
tion symbol (while respecting the arity of the function symbol) is a term. Terms
are also called open terms; the set of variables in t is denoted by vars(t). Closed
terms on signature Σ, denoted by C(Σ) and ranged over by p, q, . . ., are those
terms in T(Σ) that do not contain any variable. A substitution σ : V → T(Σ)
is a function from variables to terms; it is closing if it maps variables to closed
terms. These are lifted to functions on terms in the usual manner. We write ι
for the identity substitution, and if σ is a substitution, write σ[x �→ s] for the
substitution that sends x to s and other variables y to σ(y).

Transition System Specifications (TSSs), introduced in [14,6], are formalisations
of SOS specifications. Here, we consider TSSs where positive formulae are re-

stricted to labelled transitions s
l−→ t; extension to allow multiple transition

relations and other predicates would be straightforward.

Definition 2 (Transition System Specification). A transition system spec-
ification T is a tuple (Σ,L,D) where Σ is a signature, L is a set of labels (with
typical members a, b, a0, . . .) and D is a set of deduction rules. For all l ∈ L, and

t, t′ ∈ T(Σ) we define that t
l−→ t′ is a positive formula and t

l� is a negative
formula; t is the source of both formulae and t′ is the target of the former. A
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formula is either a positive or a negative formula. For each t, t′, the formula
t

a� denies t
a−→ t′ and vice versa. A formula is closed when all terms appearing

in it are closed. A deduction rule d ∈ D is a pair (H,φ), where H is a set of
formulae and φ is a positive formula; φ is called the conclusion and the formulae
in H are called premises. A deduction rule is f -defining when the source of its
conclusion is of the form f(s1, . . . , sn). A deduction rule is an axiom when it
has no premises, and closed when all formulae appearing in it are closed.

We sometimes refer to a TSS by its set of deduction rules. A deduction rule

(H,φ) is also written as H
φ ; in the latter syntax, if H is empty then it may be

omitted.
We next recall the standard notion of proofs in TSSs with negative premises

[12], to be generalised to open terms in the rest of this paper.

Definition 3 (Derivation). A derivation π for H
φ in a TSS T is a well-founded

upwardly branching tree with nodes labelled by formulae of T and of which

– the root is labelled by φ;

– if a node is labelled by ψ and the nodes immediately above it form the set K
then:

• ψ ∈ H and K = ∅, or
• ψ is a positive formula and K

ψ is a substitution instance of a deduction

rule in T .

A derivation is closed if all nodes are labelled with a closed formula. A formula
occurs in a derivation if it labels a node in that derivation. We lift the application
of substitutions to derivations in the usual way.

Definition 4 (Provable Rule). A closed deduction rule H
φ is a provable rule

if it has a closed derivation π.

Definition 5 (Ground Well-Supported Proof). If φ is a closed formula,
a ground well-supported proof for φ in a TSS T is a well-founded upwardly
branching tree with nodes labelled by closed formulae and of which

– the root is labelled by φ;

– if a node is labelled by ψ and the nodes immediately above it form the set K
then:

• ψ is a positive formula and K
ψ is an instance of a deduction rule in T ,

or

• ψ is a negative formula and, for each set N of closed negative formulae

and each ψ′ denying ψ such that N
ψ′ is a provable rule, there is a formula

in N denying a formula in K.

The above definition corresponds to Definition 12 in [12].
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3 Well-Supported Proofs

In this section, we generalise the notion of well-supported proof from closed
formulae to open rules.

3.1 Provable Ruloids and Well-Supported Proofs

In order to build up a proof tree for H
φ , one must provide justification for the to-

be-proven formulae, until reaching a premise in H . For the positive formulae in
such a proof tree, we require them to be justified using the deduction rules in the
TSS. For the negative formulae, we consider provable ruloids : a generalisation of
the notion of provable rule from closed to open rules.

Definition 6 (Provable Ruloid). A context is a set {xi
li−→ si, tj

lj� | i ∈ I,
j ∈ J} of formulae (for possibly empty sets of indices I and J). A deduction rule
H
φ is a provable ruloid if H is a context and H

φ has a derivation π. We say that

π witnesses the provable ruloid H
φ . A derivation π is a provable ruloid derivation

if it witnesses some provable ruloid, i.e., each leaf with a positive formula has a
variable as its source.

The arbitrary negative formulae appearing in contexts and leaf positions of prov-
able ruloid derivations correspond to the set N in Definition 5.

We next generalise the definition of well-supported proof to the open setting,
in the presence of a set of hypotheses asserting the possibility or impossibility of
transitions from variables (so-called GSOS [4] contexts). We may discharge proof
obligations for a negative formula by appealing to an appropriate hypothesis or
by denying its possible proofs. In the open setting, such possible proofs may
conclude substitutive instances of the formula in question.

Definition 7 (Well-Supported Proof). A context H is called a GSOS con-
text if the source of each formula in H (in particular, the negative ones) is a

variable. For a GSOS context H and formula φ, a well-supported proof for H
φ

in a TSS T is a well-founded upwardly branching tree with nodes labelled by
formulae and of which

– the root is labelled by φ;
– if a node is labelled by ψ and the nodes immediately above it form the set K

then:
• ψ ∈ H and K = ∅, or
• ψ is a positive formula and K

ψ is an instance of a deduction rule in T ,
or

• ψ is a negative formula and for each substitution σ, ψ′ denying σ(ψ)
and provable ruloid derivation π concluding ψ′, there exists κ ∈ K and
κ′ occurring in π such that κ′ denies σ(κ).
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If H
φ has a well-supported proof, we write that H

φ is (ws-)provable. A well-

supported proof is closed if it contains only closed formulae.

Remark 8. In any TSS, x
l� does not have a well-supported proof. For suppose

it did, and consider the smallest such proof, with conclusion x
l� and immediate

premises K. Then x
l−→x denies ι(x

l� ), and x
l−→ x

x
l−→ x

is a provable ruloid, wit-

nessed by a derivation π with a single node x
l−→x. Hence there exists κ ∈ K

and κ′ denying ι(κ) = κ occurring in π. But the only formula κ′ occurring in π is

x
l−→x and we must have κ = x

l� . Hence, there exists another (smaller) proof

for x
l� in the original proof; this contradicts the assumption that we started

from the smallest such proof.

The above fact is crucial for modularity: the TSS may be extended with new

constructs (and rules for them) which violate the general formula x
l� , and

we wish the old proofs to remain valid as the TSS is extended. The notion of
negative proof search used in our notion of well-supported proof does not admit
exhaustive case analysis on the possible instantiations of the variables.

Our definition of well-supported proof (Definition 7) differs from the closed
notion (Definition 5) in some important respects, as illustrated by the following
examples. However, in Section 5 we will show that for closed φ in a source-
dependent TSS, φ is ws-provable if and only if φ has a ground well-supported
proof.

Example 9. Consider a TSS with unary symbols f , g; constants 0 and 1; label

a; and deduction rules
f(x)

a�
g(x)

a−→ x
, f(0)

a−→ 0. Then:

– f(1)
a� is provable as there are no provable ruloids concluding σ(f(1)

a−→ y).

Thus, g(1)
a−→ 1 is also provable.

– Since f(0)
a−→ 0 is a provable ruloid derivation, neither f(0)

a� nor g(0)
a−→ 0

are provable.

– f(x)
a� is not provable, due to the provable ruloid derivation f(0)

a−→ 0 con-

cluding ι[x �→ 0](f(x)
a−→ 0). Thus, g(x)

a−→x is not provable.

The above example demonstrates why we must consider counterexamples up

to substitution: otherwise, f(x)
a� and g(x)

a−→x would indeed be provable,

but g(0)
a−→ 0 unprovable – provability would not be closed under instantiation,

which is counter-intuitive.

Example 10. Consider a TSS with constant 0, unary f , labels a and b, and de-

duction rule x
a−→ 0

f(x)
b−→ 0

. Then x
a�

f(x)
b�

is provable. Each φ that denies σ(f(x)
b� )

is of the form σ(f(x)
b−→ s) and the only provable ruloid derivation concluding
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this is
σ(x)

a−→ 0
f(σ(x))

b−→ 0
. But σ(x

a−→ 0) occurs in this derivation, denying σ(x
a� ),

as required.

If we extend the TSS with an additional symbol 1 with 1
a−→ 0 then x

a�
f(x)

b�
remains provable. This time, if σ(x) = 1, there is an additional provable ruloid

derivation concluding σ(f(x)
b−→ s) to consider: 1

a−→ 0
f(1)

b−→ 0
. But 1

a−→ 0 occurs

in this provable ruloid, which denies σ(x
a� ), as required.

The above example demonstrates why in Definition 7 we must allow κ′ to occur

in a non-leaf position of π. Otherwise, the proof of x
a�

f(x)
a�

would become invalid

after extending by an unrelated constant 1, and modularity would fail.
Unlike the closed case, the provable ruloid derivations we consider may have

positive leaves whose source is a variable. This is to allow negative information
about variables to pass from the well-supported proofs to the provable ruloids.
One might consider restricting negative leaves to those whose source is a variable
(i.e., to GSOS contexts), but this would lead to an inconsistent notion of proof,
as the next example shows.

Example 11. Consider the TSS with the signature containing constant 0, unary

function symbol f , label a, and deduction rule x
a�

f(x)
a−→ f(x)

.

Then f2n+1(0)
a−→ f2n+1(0) is provable for each n ∈ N , by a simple induction

on n.
Now, consider the formula f3(0)

a� ; in order to prove it, one needs to find all

provable ruloid derivations concluding f3(0)
a−→ t (for some term t) and deny

an occurring formula in each and every derivation. The only provable ruloid

derivation with f3(0)
a−→ t as its conclusion is

f2(0)
a�

f3(0)
a−→ f3(0)

. Thus, if one only

allowed provable ruloid derivations from GSOS contexts, f3(0)
a� would be prov-

able as well as f3(0)
a−→ f3(0), and consistency would fail.

In the rest of this paper, we show that Definition 7 supports instantiation closure,
consistency, modularity, and that (under the mild but necessary condition of
source-dependency) disjoint extensions are conservative.

3.2 Basic Results

We first show that our notion of well-supported proof is consistent: it cannot be
the case that both φ and φ′ have well-supported proofs for denying φ and φ′.
Since proofs for open formulae occur with respect to GSOS contexts, we gener-
alise this notion of consistency to “consistent” contexts, i.e., contexts that do not
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themselves contain a contradiction. In addition, the TSS should satisfy a sanity
condition: it should not induce non-trivial deduction rules concluding formulae
whose conclusion source is a variable. If it did, this can lead to contradiction
when combined with GSOS contexts as proof hypotheses. For example, in a TSS

with deduction rule x
l−→x, any assumption of the form x

l� yields inconsis-

tency – both x
l�

x
l�

and x
l�

x
l−→ x

have well-supported proofs. (In such pathological

systems, consistency can still be recovered under positive GSOS contexts.) These
requirements are captured in the following two definitions.

Definition 12 (Consistent Contexts). A GSOS context is consistent if for

each x, l, s, it does not contain both x
l−→ s and x

l� .

Definition 13 (Lean TSSs). A TSS is lean if for variables x, H

x
l−→ s

is only

provable when x
l−→ s ∈ H.

Now, we have the ingredients to recast the consistency result in the setting with
open terms.

Theorem 14 (Consistency). Consider a TSS T = (Σ,L,D) and consistent
GSOS context H. Suppose further that T is lean, or H contains only positive

formulae. Let φ and φ′ be denying formulae. Then it is not the case that both H
φ

and H
φ′ have well-supported proofs.

Proof. Assume that both φ and φ′ are provable from H by well-supported proofs
π and π′ respectively. Assume without loss of generality that φ′ is a negative
formula. We will seek a contradiction, proceeding by induction on the total depth
of π and π′.

If π′ appeals to a hypothesis, then φ′ ∈ H and so T must be lean. Then φ′

is of the form x
l� and φ of the form x

l−→ s. But π is a proof of H
φ , and so by

leanness φ ∈ H . This contradicts consistency of H .
Otherwise, the root of π′ is a negative deduction step. Now, construct a prov-

able ruloid derivation π1 from π by replacing all subtrees concluding negative

t
l� by the leaf t

l� . Then π1 is a provable ruloid derivation concluding φ, which
denies ι(φ′). Hence, there is a formula ψ occurring in π1 and ψ′ a premise of
φ′ in π′, such that ψ denies ι(ψ′) = ψ′. Let π2 denote the subproof of π rooted
at ψ, and π3 the subproof of π′ rooted at ψ′. But then π2 and π3 are proofs of
denying formulae, and are smaller than π and π′ respectively; by the Inductive
Hypothesis, this is impossible. ��

The following result shows that the set of provable formulae is closed under
instantiation.
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Theorem 15 (Closure under Instantiating Formulae). Consider a for-

mula φ, contexts H and K, and substitution σ. Suppose H
φ has a well-supported

proof and that for each ψi ∈ H, K
σ(ψi)

has a well-supported proof. Then K
σ(φ)

has a well-supported proof.

Corollary 16 (i) If φ is ws-provable, then so is σ(φ). (ii) If φ is provable and
φ is closed, then φ has a closed well-supported proof.

The following theorem states that our notion of well-supported proof is preserved
under instantiation of deduction rules in the TSS.

Theorem 17 (Closure under Instantiating Deduction Rules). Consider
a TSS T = (Σ,L,D) and a set of deduction rules D′ ⊆ D; let T ′ be (Σ,L,D ∪
{σd(d) | d ∈ D′}), where σd is an arbitrary substitution for each d ∈ D′. Then

a deduction rule H
φ is provable with respect to T if and only it is provable with

respect to T ′.

The proofs are omitted due to lack of space, but an appendix with full proofs
can be found online at www.plancomps.org/churchill2013c/.

4 Modularity

4.1 Closed Instance Semantics

One can assign meaning to open formulae in a TSS via closed-instance semantics.
This instantiates the deduction rules by all possible closed substitutions and
considers the resulting formulae provable from the closed TSS.

Definition 18 (Closed-Instance Semantics). Given a TSS T = (Σ,L,D),
closed(T ) is defined as (Σ,L, {σ(d) | d ∈ D, σ : V → C(Σ)}), i.e., the set of
deduction rules obtained by applying all closed substitutions on the deduction
rules in D. The closed-instance semantics of a TSS T is the set of all closed
formulae φ that have a ground well-supported proof with respect to closed (T ).

In such a setting, an open formula φ holds in T if and only if for all closed sub-
stitutions σ, σ(φ) has a ground well-supported proof in closed(T ). The following
example demonstrates that this does not coincide with φ having a well-supported
proof in our setting.

Example 19 (Closed-Instance Semantics). Consider TSS T0 with constant

0, unary function f , labels a, b and deduction rule x
b�

f(x)
a−→x

. For each closed

term p, there is a ground well-supported proof in closed (T0) for the deduction rule

f(p)
a−→ p; hence, according to the closed-instance semantics, f(x)

a−→x holds.

However, by Remark 8 there is no well-supported proof for x
b� in T0, and so no

well-supported proof of f(x)
a−→x.

www.plancomps.org/churchill2013c/
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For closed-instance semantics, a formula φ may hold in T0 while failing in some
disjoint extension [15] T0 � T1 – closed-instance semantics is not modular.

Definition 20 (Disjoint Extension). Consider two TSSs T0 = (Σ0, L0, D0)
and T1 = (Σ1, L1, D1) of which the signatures agree on the arity of the shared
function symbols. The extension of T0 with T1, denoted by T0 ∪ T1, is defined
as (Σ0 ∪Σ1, L0 ∪L1, D0 ∪D1). T0 ∪ T1 is a disjoint extension of T0 when each
deduction rule in T1 is f -defining for some f ∈ Σ1 \Σ0.

Example 21 (Non-modularity of Closed-Instance Semantics). Consider
the TSS given in Example 19 and extend it by constant 1 with deduction rule

1
b−→ 1. Then there is no (ground) well-supported proof for f(1)

a−→ 1 and hence,

f(x)
a−→x no longer holds for closed-instance semantics.

4.2 Modularity for Well-Supported Proofs

In contrast, we can show that well-supported proofs are modular: well-supported
proofs in T0 remain so in T0 � T1.

In the following results, by abusing the notation, we write s ∈ T to mean
s is a term in the signature of TSS T . Similarly, we write φ ∈ T to denote
that φ is a formula comprising terms and labels from T . For a substitution σ,
σ ∈ T indicates that for all x, σ(x) ∈ T . We will require the following lemma for
factorising substitutions:

Lemma 22. Let T0 � T1 be a disjoint extension of T0. Let φ be a formula in
T0 �T1, and ψ, ω be formulae in T0. Let σ, τ ∈ T0 �T1 be substitutions such that
σ(ψ) = τ(ω) = φ. Then there exists substitutions σ̂ ∈ T0, τ̂ ∈ T0 and ρ ∈ T0�T1

such that σ = ρ ◦ σ̂, τ = ρ ◦ τ̂ and σ̂(ω) = τ̂ (ψ).

We first show that each provable ruloid deduction in T0 �T1 whose conclusion is
an instance of a T0-formula can be approximated by a provable ruloid deduction
in T0. We do this using the following definition of “at the root” derivation, which
approximates another derivation by proving the same conclusion from a possibly
richer context.

Definition 23 (At The Root Derivation). A derivation φ is at the root of
a derivation ψ if the root node of φ is the root node of ψ, and any immediate
subproof of φ is at the root of an immediate subproof of ψ.

For example, x
a−→w

f(x, y)
b−→ g(w, z)

is at the root of x
a−→w y

a−→ z

f(x, y)
b−→ g(w, z)

.

Lemma 24 (Provable Ruloid Approximation). Let T0 � T1 be a disjoint
extension of T0. Suppose π is a provable ruloid derivation in T0 � T1 concluding
φ with φ = σ(ψ) for σ ∈ T0 � T1 and ψ ∈ T0. Then there exists substitutions
τ ∈ T0, τ ∈ T0 � T1 with σ = τ ◦ τ , and a provable ruloid derivation π′ ∈ T0

concluding τ(ψ) such that τ (π′) is at the root of π.
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To obtain an approximating derivation in easy: let π′ consist of a single hypoth-
esis node ψ and set τ = ι and τ = σ. But this is not a provable ruloid derivation:
its hypothesis ψ may be positive but not have a variable at its source. The next
lemma shows that given such an approximating derivation, one can improve it.
Repeated application of this lemma then yields a provable ruloid derivation.

Lemma 25. Under the hypotheses of Lemma 24, suppose further that σ = τ ◦ τ
with τ ∈ T0 and π′ ∈ T0 concludes τ(ψ) with τ (π′) at the root of π. Suppose
that π′ has a positive hypothesis (leaf) whose source is not a variable. Then there
exists τ1 ∈ T0, τ1 with σ = τ1 ◦τ1 and π′1 ∈ T0 concluding τ1(ψ) such that τ1(π

′
1)

is at the root of π, with π′1 strictly larger than π′.

Proof. By assumption, there exists a hypothesis χ in π′ at position P of the

form s
l−→ s′ where s is not a variable. Then τ (χ) = τ (s

l−→ s′) appears in π. This
cannot be a hypothesis of π, as τ (s) is not a variable and π is a provable ruloid
derivation. Hence, τ (χ) must appear in π as the conclusion of a deduction rule
d under substitution ρ (from premises φi). Rule d must occur in T0 since T0�T1

is a disjoint extension of T0 and the head symbol of τ (s) is the head symbol of s

and so in T0. Suppose d =
{ωi : i ∈ I}

ω with τ (χ) = ρ(ω) and φi = ρ(ωi). Since ω
and χ are both in T0 we may apply Lemma 22 to obtain τ̂ , ρ̂ ∈ T0 and τ1 with
τ = τ1 ◦ τ̂ , ρ = τ1 ◦ ρ̂ and τ̂ (χ) = ρ̂(ω). Let π′1 be τ̂ (π′) attached to ρ̂(d) at P
and let τ1 = τ̂ ◦ τ . Then π′1 concludes τ1(ψ) = τ̂ ◦ τ(ψ). Also, τ1(π

′
1) is at the

root of π, as τ1(τ̂ (π
′)) = τ (π′) and τ1(ρ̂(ωi)) = ρ(ωi) = φi. ��

Proof of Lemma 24. First, set τ0 = ι, τ0 = σ and π′0 the derivation consisting
of a single (hypothesis) node ψ. We then repeatedly apply Lemma 25 obtaining
τi, τ i, π

′
i until some π′j is a provable ruloid. This process terminates, as each πi

strictly increases in size, but does not exceed the size of π. We then set π′ = π′j ,
τ = τj and τ = τ j . ��

Using Lemma 24, we next show that well-supported proofs are preserved by
disjoint extensions.

Theorem 26 (Modularity for Well-Supported Proofs). Suppose T0 � T1

is a disjoint extension of T0 and let π be a well-supported proof (resp. derivation)

for H
φ in T0. Then π is a well-supported proof (resp. derivation) for H

φ in T0�T1.

Proof. We first consider derivations. Each derivation in T0 is also one in T0 �T1.
This follows from a straightforward induction, as each deduction rule in T0 is
also a deduction rule in T0 � T1.

We now consider the case for well-supported proofs. We proceed by induction
on π. If the derivation just appeals to a hypothesis, then it is also valid in
T0 � T1. If the root formula φ is positive and the derivation applies an instance
of a deduction rule of T0 to obtain sub-derivations {πi : i ∈ I} above φ, then we
may apply the inductive hypothesis to the nodes above φ and apply the same
instance of the deduction rule to see that π is a proof in T0 � T1.
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If φ is negative and π has root
{ψi : i ∈ I}

s
l�

, then we must show that for each

provable ruloid derivation π′ ∈ T0 �T1 concluding σ(s)
l−→ s′, there is a formula

occurring in π′ denying some σ(ψi). Consider such a π′ and fresh x occurring in

no ψi, and let σ′ = σ[x �→ s′]. Then π′ concludes σ′(s
l−→x). Since s

l−→x is a
formula in T0, we may apply Lemma 24 to construct τ , τ and π′′ as described

with τ (π′′) at the root of π′. Derivation π′′ is in T0 and concludes τ(s
l−→x),

which denies τ(s
l� ). Since π is a well-supported proof there is a formula ψ′

occurring in π′′ denying some τ(ψi). Then τ (ψ′) occurs in τ (π′′) and so in π′,
and denies τ (τ(ψi)) = σ′(ψi) = σ(ψi), as required. ��

5 Conservativeness

5.1 Conservativeness for Disjoint Extensions

We next show that for source-dependent TSSs, a disjoint extension of a TSS does
not introduce additional provable formulae from the original TSS. In [10], an anal-
ogous result is presented for closed terms in the more abstract setting of three-
valued stable models. From there, we recall the notion of source-dependency:

Definition 27 (Source-Dependency). Given a proof rule, the source-
dependent variables are defined inductively as follows:

– All variables in the source of the conclusion are source-dependent.
– If all variables in the source of a premise are source-dependent, so are those

in the conclusion of that premise.

A rule is source-dependent if all variables it mentions are. A TSS is source-
dependent if all of its rules are.

Theorem 28 (Conservativeness for Disjoint Extensions). Let T0 � T1 be
a disjoint extension of T0, where T0 is source-dependent, and let φ ∈ T0. Let

π be a well-supported proof (resp. derivation) for H
φ in T0 � T1. Then π is a

well-supported proof (resp. derivation) for H
φ in T0.

Proof. (Sketch) For derivations and positive steps in well-supported proofs, we
proceed by an outer induction on the proof and an inner induction on the source-
dependence measure. For negative steps in well-supported proofs, we can use
Theorem 26 to see that any denying derivation in T0 is also one in T0 � T1. ��

The following example demonstrates why source-dependency is necessary for the
above result (it is violated by the occurrence of x):

Example 29. Consider a TSS T0 with constants 0 and 1, labels a and b, and

rule x
b−→ 1

0
a−→ 1

. Let T0�T1 extend T0 with constant 2 and rule 2
b−→ 1. Then 0

a−→ 1

is provable in T0 � T1 but not in T0, while 0
a−→ 1 is a formula of T0.
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5.2 Conservativeness over Closed-Instance Semantics

We next consider how our notion of well-supported-proof relates to the original
notion of ground well-supported proof [12]. We first show that if a closed formula
has a well-supported proof in T , then it has a ground well-supported proof in
closed(T ). To do this, we define the notion of strict proof, which requires that the
premises of a negative formula may not involve negative non-GSOS formulae.

Definition 30 (Strict Well-Supported Proof). A strict well-supported
proof is one in which if a negative formula φ occurs above a negative formula ψ
then the source of φ is a variable.

Lemma 31. If Γ
φ has a (closed) well-supported proof, then it has a strict (closed)

well-supported proof.

Theorem 32 (Soundness w.r.t. ground well-supported proofs). For each
closed formula φ, if φ has a well-supported proof in T , then φ has a ground well-
supported proof in closed (T ).

Proof. If φ has a well-supported proof, then by Corollary 16 it has a closed well-
supported proof, and by Lemma 31 a strict closed well-supported proof π. We
claim that π is a ground well-supported proof of φ in closed(T ).

Each positive step in π is a closed instance of a deduction rule in T . This is
a valid step in a ground well-supported proof in closed(T ).

For the negative case, suppose the root is K
φ . Let π′ witness provable rule H

φ′

in closed(T ) where φ′ denies φ. Then π′ is also a provable ruloid derivation in
T , concluding φ′ which denies ι(φ). Since π is a well-supported proof in T , there
is some χ ∈ K and χ′ occurring in π′ where χ′ denies ι(χ) = χ. Since χ′ occurs
in π′ it must be closed, and so the source of χ must be closed. Since the source
of χ is not a variable, strictness of π ensures that it is positive, and χ′ negative.
Since negative χ′ occurs in provable ruloid derivation π′, it must occur as a leaf,
with χ′ ∈ H . Thus we have found χ ∈ K and χ′ ∈ H denying χ, as required. ��

For the converse, we will require source-dependency. The following example show
that without source-dependency, the converse implication does not hold.

Example 33. Consider TSS T with constants 0 and 1, labels a and b, and deduc-

tion rule x
b−→ 1

0
a−→ 1

. In closed(T ), 0
a� has a ground well-supported proof as there

are no provable rules concluding 0
a−→ s. But it does not have a well-supported

proof in T : the provable ruloid derivation x
b−→ 1

0
a−→ 1

would require a well-supported

proof of x
b� 1, which does not exist by Remark 8.

The following proposition and subsequent theorem show that in source-dependent
systems the converse of Theorem 32 holds.
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Proposition 34 Consider a source-dependent TSS T . Let φ be a formula whose
source is closed and let π be a derivation in T concluding φ. Then π is a deriva-
tion in closed(T ).

Theorem 35 (Conservativeness over Closed-Instance Semantics).
Consider a source-dependent TSS T . For each closed formula φ, if φ has a ground
well-supported proof with respect to closed(T ), then φ has a well-supported proof
with respect to T .

Proof. Let π be the derivation in closed(T ) witnessing φ. We show that π is also
a well-supported proof in T . Since there are no hypotheses to appeal to, the only
cases we need to consider are the positive and negative deduction steps. For the
positive steps, any instance of a proof rule in closed(T ) is an instance of a proof
rule in T .

For the negative case, suppose K
φ occurs in π with φ negative. Let π′ witness

a provable ruloid H
φ′ where φ′ denies σ(φ). Then φ is closed since π is a deduction

in closed(T ), and so σ(φ) and the source of φ′ are closed. By Proposition 34, π′ is
a derivation in closed(T ). Each leaf of π′ is in context H and closed, so must be

a negative formula. Thus π′ witnesses the provable rule H
φ′ . Since φ′ denies σ(φ)

and the source of φ is closed, φ′ denies φ. Since π is a ground well-supported
proof, there is a hypothesis χ ∈ K with negative χ′ ∈ H where χ′ denies χ.
Since χ is closed, χ′ also denies σ(χ). Thus χ′ occurs in π′ and denies σ(χ) with
χ ∈ H , as required. ��

6 Conclusions

In this paper, we introduced a notion of semantics for open terms with respect
to transition system specifications with negative premises. This notion extends
the traditional notions [6,12] (which were confined to closed terms) and enjoys a
number of intuitive properties: consistency, closure under instantiation, modular-
ity and conservativeness. Consistency means that no two denying formulae are
provable. Closure under instantiation means that firstly, instantiating deduction
rules does not change the set of provable formulae and secondly, the set of prov-
able formulae is closed under applying substitutions. Modularity means that all
provable open formulae remain provable under disjoint extensions of the transi-
tion system specification. Conservativeness means that firstly, disjoint extensions
do not introduce new provable formulae from the original TSS and secondly, our
notion of semantics leads to the same set of provable closed transition formulae
as the traditional notion.

This research was initiated by our study of bisimulation for open terms, in
particular with regards to congruence (compositionality) and preservation under
disjoint extensions (modularity). Earlier results consider open notions of bisimi-
larity purely positive TSSs (e.g., [7,15,1,18,19]). We hope to use the results here
to extend these results to the systems with negative premises (such as those in
the (n)tyft/(n)tyxt [13], ntree [9] or PANTH [20] formats).
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Abstract. In the standard testing theory of DeNicola-Hennessy one
process is considered to be a refinement of another if every test guar-
anteed by the former is also guaranteed by the latter. In the domain of
web services this has been recast, with processes viewed as servers and
tests as clients. In this way the standard refinement preorder between
servers is determined by their ability to satisfy clients.
But in this setting there is also a natural refinement preorder between

clients, determined by their ability to be satisfied by servers. In more
general settings where there is no distinction between clients and servers,
but all processes are peers, there is a further refinement preorder based
on the mutual satisfaction of peers.
We give a uniform account of these three preorders. In particular we

give two characterisations. The first is behavioural, in terms of traces
and ready sets. The second, for finite processes, is equational.

1 Introduction

The DeNicola-Hennessy theory of testing [NH84, DH87, Hen88] considers a pro-
cess p to be a refinement of process q if every test passed by p is also passed
by q. Recently, in papers such as [LP07, Bd10, CGP09, Pad10], this refinement
preorder has been recast with a view to providing theoretical foundations for
web services. Here processes are viewed as servers and tests viewed as clients. In
this terminology the standard (must) testing preorder is a refinement preorder
between servers, which we denote by p �∼svr

q; this is determined by the ability
of the servers p, q to satisfy clients. However in this framework there are many
other natural behavioural preorders between processes. In this paper we investi-
gate two; the first, p �∼clt

q, is determined by the ability of the clients p, q to be
satisfied by servers. For the second we drop the distinction between clients and
servers. Instead all processes are viewed as peers of each other and the purpose
of interaction between two peers is the mutual satisfaction of both. The resulting
refinement preorder is denoted by p �∼p2p

q. We give a uniform behavioural char-
acterisation of all three refinement preorders in terms of traces and acceptances
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sets [NH84, Hen88]. We also give equational characterisations for a finite process
calculus for servers/clients/peers.

We use an infinitary version of CCS [Mil89] augmented by a success constant
1, to describe processes, be they servers, clients or peers. Thus p = τ.a.(b. 0 +
c. 0) + τ.a.c. 0 is a server which offers the action a followed by either b and c
depending on how choices are made, and then terminates, denoted by 0. On the
other hand r = a.c. 1 is a test or a client which seeks a synchronisation on a
followed by one on c; as usual [Mil89] communication or cooperation consists of
the simultaneous occurrence of an action a and its complement a. Thus when
the server p is executed in parallel with the client r, the latter will always be
satisfied, in that it is guaranteed to reach the successful state 1 regardless of how
the various choices are made. But if the client is executed with the alternative
server q = τ.a.b. 0 + τ.a.c. 0 there is a possibility of the client remaining unhappy;
for this reason p  �∼svr

q. However it turns out that q �∼svr
p because every client

satisfied by q will also be satisfied by p.
The client preorder p �∼clt

q compares the processes as clients, and their ability
to be satisfied by servers. This refinement preorder turns out to be incomparable
with the server preorder. For example a. 1 + b. 0  �∼svr

a. 1 because of the client

b. 1. But a. 1 + b. 0 �∼clt
a. 1 because every server satisfying the former also

satisfies a. 1; intuitively the extra component of the client b. 0 puts no further
demands on servers, because the execution of b will never lead to satisfaction.
Conversely a. 1 �∼svr

a. 0 because 1 plays no role for processes acting a servers,
while a. 1  �∼clt

a. 0; a. 1 as a client is satisfied by the server a. 0 while a. 0 can
never be satisfied as a client by any server. Behaviour relative to the client
preorder �∼clt

is very sensitive to the presence of 1 and 0; for example 0 is a least
element, that is 0 �∼clt

r for any process r.1 However in general the precise role
these constants play is difficult to discern; for example, rather surprisingly we
have a.(b. 0 + c. 1) + a.(b. 1 + c. 0) �∼clt

0.
If we ignore the distinction between servers and clients then every process

plays an independent role as a peer to all other processes in its environment.
This point of view leads to another behavioural preorder. Intuitively, we say
that the process p satisfies its peer q if whenever they are executed in parallel
both are guaranteed to be satisfied; in some sense both peers test their partner.
Then p1 �∼p2p

p2 means that every peer satisfied by p1 is also satisfied by p2.
This third refinement preorder is different from the server and client preorders.

In fact we will show that p1 �∼p2p
p2 implies p1 �∼clt

p2; but the converse is not true
in general. For example 1 + b. 0 �∼clt

1 but 1 + b. 0  �∼p2p
1 because of the peer

b. 1. In our formulation 1 + b. 0 and b. 1 mutually satisfy each other, whereas the
peers 1 and b. 1 do not.

The aim of the paper is to show that the theory of the standard (must) testing
preorder [NH84, Hen88], here formulated as the server refinement preorder �∼svr

,
can be extended to both the client and the peer refinement preorders.

1 Note in passing that this is not the case for the server preorder; 0 as a server guar-
antees the client b. 0 + τ. 1 but the server b. 0 does not.
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It is well-known that the behaviour of processes relative to �∼svr
can be charac-

terised in terms of the traces they can perform followed by ready or acceptance
sets; intuitively each ready set A after a trace s captures a possibility for the
process to deadlock when interacting with a client. For example the process
q = τ.a.b. 0 + τ.a.c. 0 has the ready set { b } after the (weak) sequence of actions
a; this represents the possibility of q deadlocking if servicing a client which re-
quests an action a but then is not subsequently interested in the action b. The
process p = a.(b. 0 + c. 0) + a.c. 0, also discussed above, has no comparable
ready set and for this reason p �∼svr

q.
The first main result of the paper is a similar behavioural characterisation

of both the client and the peer refinement preorders, in terms of certain kinds
of traces and ready sets. However the details are intricate. It turns out that
unsuccessful traces, those which can be performed without reaching a successful
state, play an essential role. We also need to parametrise these concepts, relative
to usable actions and usable processes; the exact meaning of usable will depend
on the particular refinement preorder being considered.

It is also well-known that the standard testing preorders over finite processes
can be characterised by a collection of (in-)equations over the process operators,
[NH84, Hen88]. The second main result of the paper is a similar character-
isation of the new refinement preorders. In fact there is a complication here,
as these preorders are not in general preserved by the external operator +. A
similar complication occurred in Section 7.2 of [Mil89] in the axiomatisation of
weak bisimulation equivalence, and in the axiomatisations of the must testing
preorder in [NH84], and we adopt the same solution. We give sound and com-
plete (in-)equational theories for the largest pre-congruences �∼

c
clt
, �∼

c
p2p

contained
in the refinement preorders �∼clt

, �∼p2p
respectively, over a finite version of CCS.

The presence of the success constant 1 in this language complicates the axioma-
tisations considerably, as the behaviour of clients and peers is very dependent
on their ability to immediately report success. For this reason we reformulate
the axiomatisation of must testing preorder from [NH84], which in this paper
coincides with the server preorder �∼

c
svr
, as a two-sorted equational theory. The

characterisation of the client and server preorders, �∼
c
clt
,�∼

c
svr
respectively, requires

extra equations to capture the behaviour of the special processes 1 and 0. For
example one of the inequations required by the client preorder is x ≤ 1, while
those for the peer preorder include μ.(1+x) ≤ 1 + μ.x.

The remainder of this extended abstract is organised as follows. Section 2
is devoted to definitions and notation. We introduce a language for describing
processes, an infinitary version of the CCS used in [Mil89], and give the standard
intensional interpretation of it as a labelled transition system, LTS. For the
remainder of the paper, processes will then be considered to be states in the
resulting LTS. We also formally define the three different refinement preorders
discussed informally in the Introduction, by generalising the standard notion
from [NH84] of applying tests to processes. We begin Section 3 by recalling
the well-known characterisation of the must preorder (Theorem 1) for finite
branching LTSs from [NH84] in terms of traces and ready sets. To adapt this for
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the client preorder we need some extra technical notation. This is motivated by
a series of examples, until we finally obtain a statement of the characterisation
(Theorem 2).

The notation used in this characterisation of the client preorder can be modi-
fied in a uniform manner to give an analogous characterisation of the server pre-
order, (Theorem 3), which applies even in LTSs which are not finite-branching.
Finally by combining these we get an analogous characterisation (Theorem 5)
for the peer preorder.

In Section 4 we restrict our attention to a finite sub-language CCSf and address
the question of equational characterisations. We first show why the client and
peer refinement preorders are not preserved by the external choice operator +,
and give a simple behavioural characterisation of the associated pre-congruences
�∼

c
svr
, �∼

c
clt

and�∼
c
p2p
; this simply involves taking into account the initial behaviour of

processes. We then explain the equations which need to be added to the standard
set in order to obtain completeness (Theorem 9 and Theorem 8). The paper ends
with Section 5, where we present a summary of our results, a comparison with
the existing work, and a series of open questions.

In this extended abstract all proofs are omitted. The proofs of the various
behavioural characterisations from Section 3 will appear in [Ber13].

2 Testing Processes

Let Act be a set of actions, ranged over by a, b, c, . . . and let τ, � be two distinct
actions not in Act; the first will denote internal unobservable activity while the
second will be used to report the success of an experiment. To emphasise their
distinctness we use Actτ to denote the set Act ∪ { τ }, and similarly for Actτ �;
we use μ to range over the former and λ to range over the latter. We assume
Act has an idempotent complementation function, with a being the complement
to a. A labelled transition system, LTS, consists of a triple 〈P, Actτ �, −→〉,
where P is a set of processes and −→⊆ P × Actτ � × P is a transition relation
between processes decorated with labels drawn from the set Actτ �. We use the

infix notation p
λ−→ q in place of (p, λ, q) ∈−→. An LTS is finite-branching if

for all p ∈ P and for all λ ∈ Actτ �, the set { q | p
λ−→ q } is finite. Single

transitions p
λ−→ q are extended to sequences of transitions p

t−→ q, where
t ∈ (Actτ �)	, in the standard manner. For s ∈ (Act�)	 we also have the standard
weak transitions, p

s
=⇒ q, defined by ignoring the occurrences of τs. Somewhat

nonstandard is the use of infinite weak transitions, p
u

=⇒, for u ∈ (Act)∞.
It will be convenient to have a notation for describing LTSs; we use an infini-

tary version of CCS, [Mil89], augmented with a success operator, 1. The syntax
of the language is depicted in Figure 1. We use 0 to denote the empty external
sum

∑
i∈∅ pi and p1 + p2 for the binary sum

∑
i∈{ 1,2 } pi. If I is a non-empty set,

we use
⊕

i∈I pi to denote the sum
∑

i∈I τ.pi. For the remainder of the paper we

use the LTS whose states are the terms in CCS and where the relations p
λ−→ q

are the least ones determined by the (standard) rules in Figure 2. We use finite
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p, q, r ::= 1 | A | μ.p |
∑
i∈I

pi | p || q

where I is a countable index set, and A ranges over a set of definitional constants each

of which has an associated definition A
def
= pA.

Fig. 1. Syntax of infinitary CCS

1
�−→ 0

(a-Ok)

μ.p
μ−→ p

(a-Pre)

p
λ−→ p′

p + q
λ−→ p′

(r-Ext-l)

q
λ−→ q′

p + q
λ−→ q′

(r-Ext-r)

q
λ−→ q′

q || p λ−→ q′ || p
(p-Left)

p
λ−→ p′

q || p λ−→ q || p′
(p-Right)

q
a−→ q′ p

a−→ p′

q || p τ−→ q′ || p′
(p-Synch)

p
λ−→ p′

A
λ−→ p′

A
def
= p; (r-Const)

Fig. 2. The operational semantics of CCS

branching CCS to refer to the LTS which consists only of terms from CCS which
generate finite branching structures.

A computation consists of series of τ actions of the form

p || r = p0 || r0 τ−→ p1 || r1 τ−→ . . .
τ−→ pk || rk τ−→ . . . (1)

It is maximal if it is infinite, or whenever pn || rn is the last state then pn ||
rn

τ

−→. A computation may be viewed as two processes p, r, one a server and
the other a client, co-operating to achieve individual goals, which may or may
not be independent. We say (1) is client-successful if there exists some k ≥ 0

such that rk
�−→. It is successful if it is client-successful and there exists an l ≥ 0

such that pl
�−→. In a client-successful computation the client can report success

while in a successful one both the client and the server can report success; note
however that they are not required to do so at the same time.

Definition 1 ( Passing tests ). We write p must r if every maximal com-
putation from p || r is client-successful. We write p mustp2p r if every such
computation is successful. ��

Intuitively, p must r means that the client r is satisfied by the server p, as r
always reaches a state where it can report success. On the other hand, p mustp2p r
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means that p passes r and r also passes p; so p and r have to collaborate in order
to pass each other. Thus, when using the testing relation mustp2p we think of p
and r as two peers rather than a server and a client.

Definition 2 ( Testing preorders ). In an arbitrary LTS we write

(1) p1 �∼svr
p2 if for every r, p1 must r implies p2 must r

(2) r1 �∼clt
r2 if for every p, p must r1 implies p must r2

(3) p �∼p2p
q if for every r, p mustp2p r implies q mustp2p r.

We use the obvious notation for the kernel of these preorders; for instance p1 �p2p

p2 means that p1 �∼p2p
p2 and p2 �∼p2p

p1. ��

The preorder �∼svr
is meant to compare servers, as p1 �∼svr

p2 ensures that all the
clients passed (wrt must) by p1 are passed also by p2. The preorder �∼clt

relates
processes seen as clients, because r1 �∼clt

r2 means that all the servers that satisfy
r1 satisfy also r2. The third preorder, �∼p2p

, relates processes seen as peers; this
follows from the fact that p mustp2p r is true only if p and r mutually satisfy each
other.

3 Semantic Characterisations

The standard (must) testing preorder from [NH84, Hen88] has been characterised
for finite-branching LTSs using two behavioural predicates. The first, p ⇓s, says
that p can never come across a divergent residual while executing the sequence of
actions s ∈ Act	. We use the notation p ⇓, p converges, to mean that there is no
infinite sequence p

τ−→ p1
τ−→ . . .

τ−→ pk
τ−→ . . .. Then the general convergence

predicate is defined inductively as follows:

(a) p ⇓ε whenever p ⇓
(b) p ⇓a.s whenever p ⇓ and p

a
=⇒ implies

⊕
(p after a) ⇓s

where (p after s) denotes the set { p′ | p
s

=⇒ p′ }. Note that p
a

=⇒ ensures that
(p after a) is non-empty; thus

⊕
(p after a) represents a (well-formed) process

consisting of the choice between the elements of the non-empty set (p after a),
which may in general be infinite. The second predicate codifies the possible
deadlocks which may occur when a process p attempts to execute the trace of
actions s ∈ Act	:

Acc(p, s) = {S(q) | p s
=⇒ q

τ

−→} (2)

where S(q) = { a ∈ Act | q
a−→}. The sets S(q) are called ready sets, while

we say that Acc(p, s) is the acceptance set of p after a trace s. Ready sets are
essentially the complements of the refusal sets used in [Hoa85]. The sets in
Acc(p, s) describe the interactions that can lead p out of a possible deadlock,
reached by executing the trace s of external actions.
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Theorem 1. [DH87, Hen88] In finite branching CCS, p �∼svr
q if and only if, for

every s ∈ Act	, if p ⇓s then (i) q ⇓s, (ii) for every B ∈ Acc(q, s) there exists

some A ∈ Acc(p, s) such that A ⊆ B, and (iii) if q
s

=⇒ then p
s

=⇒. ��

As might be expected, this behavioural characterisation does not work for �∼clt
:

Example 1. One can prove that b.a. 1 �∼clt
q, where q denotes b.(c. 0 + 1). How-

ever their acceptance sets are not related as required by Theorem 1. Calculations
show that Acc(b.a. 1, b) = { { a } }. But { c } ∈ Acc(q, b) and so there is no set B
in Acc(b.a. 1, b) satisfying B ⊆ { c }. ��

In Example 1 we should not require the ready set { c } ∈ Acc(q, b) to be matched
by one in Acc(b.a. 1, b) because q can report success immediately after performing

b. We formalise this intuition. For every s ∈ Act	 let p
s

=⇒
�q be the least relation
satisfying

(1) p
�
−→ implies p

ε
=⇒
�p

(2) if p′
s

=⇒
�q and p
�
−→ then

– p
a−→ p′ implies p

as
=⇒
�q

– p
τ−→ p′ implies p

s
=⇒
�q

Intuitively, p
s

=⇒
�q means that p can perform the sequence of external actions s
ending up in state q without passing through any state which can report success;
in particular neither p nor q can report success. This notation is extended to
infinite traces, u ∈ Act∞, by letting p

u
=⇒
� whenever there exists a t ∈ (Actτ )

∞

such that t = μ1μ2 . . ., (a) p = p0
μ1−→ p1

μ2−→ p2
μ3−→ . . . implies that pi

�
−→

for every pi, and (b) for every n ∈ N and some k ∈ N, un = 〈tk〉\τ ; where 〈t〉\τ
removes the τs from the string t.

Definition 3. For every process p and trace s ∈ Act	, let

Acc 
�(p, s) = {S(q) | p s
=⇒
�q

τ

−→}

We call the set Acc 
�(p, s) the unsuccessful acceptance set of p after s. ��

We can now try to adapt the characterisation for servers in Theorem 1 to clients
as follows:

Definition 4. Let r1 �bad r2 if for every s ∈ Act	, if r1 ⇓ s then (i) r2 ⇓ s,
and (ii) for every B ∈ Acc 
�(r2, s), there exists some A ∈ Acc 
�(r1, s) such that
A ⊆ B. ��

Example 2. One can show that r �∼clt
c.a. 1 where r denotes the client c.(a. 1+

b. 0). However they are not related by the proposed �bad in Definition 4. Obvi-
ously r ⇓c and { a } ∈ Acc 
�(c.a. 1, c). But there is no B ∈ Acc 
�(r, c) such that
B ⊆ { a }; this is because Acc 
�(r, c) = { { a, b } }. The problem is the presence
of b in the ready set of a. 1 + b. 0. ��
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Intuitively, the action b is unusable for r after having performed the unsuccessful
trace c; this is because performing b leads to a client, 0, which is unusable, in the
sense that it can never be satisfied by any server. When comparing ready sets
after unsuccessful traces in Definition 4 we should ignore occurrences of unusable
actions.

Let Uclt = { r | p must r, for some server p }. The set Uclt contains the
usable clients, those satisfied by at least one server. We also need to consider
the residuals of a client r only after unsuccessful traces: for any process r and
s ∈ Act	 let

(r after 
� s) = { q | r s
=⇒
�q }

Now the set of usable actions for a client after s can be defined as

uaclt(r, s) = { a ∈ Act |
⊕

(r after 
� sa) ∈ Uclt } (3)

Thus if a ∈ uaclt(r, s) we know that the set of clients (r after 
� sa) is non-empty,
and the client given by the choice among those clients is usable; that is, there is
some server which satisfies it.

Example 3. We revisit Example 2. Although r can perform the sequence cb, b is
not in uaclt(r, c) because (r after 
� cb) is the singleton set containing 0, which is
not in Uclt. Instead we have uaclt(r, c) = { a }.

If we amend Definition 4 by replacing the set inclusion A ⊆ B with the more
relaxed condition A ∩ uaclt(r1, s) ⊆ B, it follows that r �bad c.a. 1; thereby
correctly reflecting the fact that r �∼clt

c.a. 1. ��
Example 4. In (3) above we must consider only the unsuccessful traces rather
than all the traces. Consider the client r = b.(τ.(1 + a. 0) + τ.a.τ. 1). First note
that b.a. 0 must r while b.a. 0 must b. 0 and therefore r �∼clt

b. 0.
Now consider the consequences of using after rather than after 
� in the defini-

tion (3) above. The amendment to the definition of �bad suggested in Example 3
would no longer be sound, as r �bad b. 0 would be true.

This is because (r after ba) is the set { 0, 1 } and so
⊕

(r after ba) is the
client τ. 0 + τ. 1 , which is not in Uclt. This leads to uaclt(r, b) being ∅, from
which r �bad b. 0 would follow. The incorrect reasoning involves the unsuccessful
acceptance set after the trace b. Acc 
�(b. 0, b) = { ∅ } and the unique ready set it
contains, ∅, can be matched by A∩∅ for some A ∈ Acc 
�(r, b), namely A = { a }.

However with the correct definition (3) this reasoning no longer works as
uaclt(r, b) = { a }. ��
Unfortunately the amendment to Definition 4 suggested in Example 3 is still not
sufficient to obtain a complete characterisation of the client preorder.

Example 5. Consider the clients r1 = a.(b.d. 0+b. 1) and r2 = a.c.d. 1. As r1
is not usable r1 �∼clt

r2, although r1 �bad r2, even when �bad is amended as
suggested in Example 3. To see this first note { d } ∈ Acc 
�(r2, ac), and r1 ⇓ac,
although r1 can not actually perform the sequence of actions ac; r1 ⇓ac merely
says that if r1 can perform any prefix of the sequence ac to reach r′ then r′ must
converge. Consequently Acc 
�(r1, ac) is empty and thus no ready set B can be
found to match the ready set { d }. ��
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To fix this problem we need to reconsider when ready sets are to be matched.
In Definition 4 this matching is moderated by the predicate ⇓ s; for example
a.(τ∞ + b. 1) �bad a.c.d. 1, where τ∞ denotes some process which does not
converge. This is because a.(τ∞ + b. 1) ⇓a is false and therefore the ready set
{ c } ∈ Acc 
�(a.c.d. 1, a) does not have to be matched by a.(τ∞ + b. 1). However
the client preorder is largely impervious to convergence/divergence. For example
1 �clt (1+τ∞).

It turns out that we have to moderate the matching of ready sets, not via the
convergence predicate, but instead via usability.

For every s ∈ Act	, the client usability after an unsuccessful trace s, denoted
usbl
� s, is defined by induction on s:

– r usbl
� ε if r ∈ Uclt
– r usbl
� a.s if r ∈ Uclt, and if r

a
=⇒
� then

⊕
(r after 
� a) usbl
� s

It is extended to infinite traces u ∈ Act∞ in the obvious manner. Intuitively
r usbl
� s means that any state reachable from r by performing any subsequence
of s is usable. Note that only unsuccessful traces have to be taken into the
account.

One can show that if r1 �∼clt
r2 and r1 usbl
� s then r2 usbl 
� s. In fact this

predicate describes precisely when we expect ready sets of clients to be compared.

Definition 5 ( Semantic client-preorder ). In any LTS, let r1 �clt r2 if
(1) for every s ∈ Act	 such that r1 usbl 
� s, (a) r2 usbl
� s, and (b) for every
B ∈ Acc 
�(r2, s) there exists some A ∈ Acc 
�(r1, s) such that

A ∩ uaclt(r1, s) ⊆ B

(2) for w ∈ Act	 ∪ Act∞ such that r1 usbl
� w, r2
w

=⇒
� implies r1
w

=⇒
�. ��

Example 6. Let us revisit the clients r1, r2, in Example 5. The client b.d. 0+b. 1
is not usable; that is b.d. 0+b. 1 ∈ Uclt because it cannot be satisfied by any
server. Consequently r1 usbl 
� ac does not hold, and therefore when checking
whether r1 �clt r2 holds the ready set { d } ∈ Acc 
�(r2, ac) does not have to be
matched by r1.

Indeed it is now straightforward to check that r1 �clt r2; the only s ∈ Act	 for
which Acc 
�(r2, s) is non-empty and r1 usbl
� s is the empty sequence ε. ��

In general, and in particular in LTSs which are not finite branching, the condition
on the existence of infinite computations in (2) does not follow from the condition
on finite computations.

Example 7. Consider the process q from Figure 3, where qk denotes a process
which performs a sequence of k a actions followed by 1. Let p be a similar process,
but without the self loop. Then p usbl 
� s and q usbl 
� s for every s, and the
pair (p, q) satisfies condition (1) of �clt, and condition (2) on finite ws. However
condition (2) on infinite ws is not satisfied: if u denotes the infinite sequence of

as then q
u

=⇒
� but p
u

=⇒
�.
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q

q2q1q0 q3 . . .

a
a

a
a

a

a

Fig. 3. Infinite traces

In fact p �∼clt
q. For consider the process A

def
= a.A. When p is run as a test on

A, or as a client using the server A, every computation is finite and successful;
A must p. However when q is run as a test, there is the possibility of an infi-
nite computation, the indefinite synchronisation on a, which is not successful;
A must q. ��

Theorem 2. In CCS, r1 �∼clt
r2 if and only if r1 �clt r2. ��

The server-preorder �∼svr
can be characterised behaviourally in manner dual

to that of Definition 5, using the set of usable servers Usvr = { p | p must
r, for some client r }, the usable actions uasvr(p, s) = { a ∈ Act |

⊕
(p after

sa) ∈ Usvr }, and the server convergence predicate p ⇓svr s, defined as the con-
junction of p ⇓s and a server usability predicate p usbl s. This latter predicate is
defined inductively in a manner similar to usbl
� s, but over all traces s, rather
than simply the unsuccessful ones.

Definition 6 ( Semantic server-preorder ). In any LTS, let p �svr q if (1)
for every s ∈ Act	 such that p ⇓svr s, (a) q ⇓svr s, and (b) for every B ∈ Acc(q, s)
there exists some A ∈ Acc(p, s) such that

A ∩ uasvr(p, s) ⊆ B

(2) for every w ∈ Act	 ∪ Act∞ such that p ⇓svr w, q
w

=⇒ implies p
u

=⇒. ��

Theorem 3. In CCS, p �∼svr
q if and only if p �svr q. ��

This can be seen to be a generalisation of Theorem 1, as the server usability
predicate Usvr is degenerate; it holds for every process, since any process used
as a server trivially satisfies the degenerate client 1.

Let us now consider the peer preorder. The following result is hopeful:

Proposition 4 In CCS, p �∼p2p
q implies p �∼clt

q. ��

Unfortunately, the peer preorder is not contained in the server preorder:
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(S1a) μ.x�� + μ.y = μ.(τ.x�� + τ.y)
(S1b) τ.x ≤ τ.τ.x
(S2) x�� + τ.y = τ.(x�� + y) + τ.y

(S3) μ.x + τ.(μ.y + z) = τ.(μ.x+ μ.y + z)
(S4) τ.x+ τ.y ≤ x
(S5) Ω ≤ x

Fig. 4. Standard inequations

Example 8. It is easy to see that a. 0 �∼p2p
b. 0. This is true because a. 0 can never

be satisfied, for it offers no � at all. However, a. 0 �∼svr
b. 0, as the client a. 1 is

satisfied by a. 0, whereas b. 0 must a. 1. ��

Intuitively, the reason why �∼p2p
⊆ �∼svr

is that the server preorder does not take
into account the requirement that servers should now act as peers; they should
also be satisfied by their interactions with clients. To take this into account we
introduce the usability of peers and amend the definition of �svr accordingly.
In principle we should introduce the set of usable peers, Up2p = { p | p mustp2p

r for some peer r }. However, since Up2p turns out to coincide with Uclt, instead
we define the peer convergence predicate by using the usability predicate of
clients. For every w ∈ Act	 ∪ Act∞, let p ⇓p2p w whenever p ⇓w and p usbl
� w.

Definition 7. Let p �usvr q whenever (1) for every s ∈ Act	, if p ⇓p2p s then
(a) q ⇓p2p s, and (b) for every B ∈ Acc(q, s) there exists some A ∈ Acc(p, s)
such that

A ∩ uaclt(p, s) ⊆ B

(2) for every w ∈ Act	 ∪ Act∞, if p ⇓p2p w, and q
w

=⇒, then p
w

=⇒. ��

Definition 8 ( Semantic peer-preorder ). Let p �p2p q if p �clt q and
p �usvr q.

Note that the definition of p �p2p q is not simply the conjunction of the client
and server preorders from Definition 5 and Definition 6. It is essential that the
usable set of peers Up2p be employed.

Theorem 5. In CCS, p �∼p2p
q if and only if p �p2p q. ��

4 Equational Characterisation

We use CCSf to denote the finite sub-language of CCS; this consists of all finite
words constructed from the operators 0, 1,+, μ.− for each μ ∈ Actτ , together
with the special operator Ω; this last denotes the term τ∞ from CCS and its
inclusion enables us to consider the algebraic properties of divergent processes.
Our intention is to use equations, or more generally inequations, to characterise
the three behavioural preorders p �∼�

q over this finite algebra, where � ranges
over svr, clt and p2p. Minor variations on standard equations, [Mil89], can be
used for the other operators, such as parallel and hiding. For a given set of
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(Za) τ. 0 ≤ Ω

(CLT1a) x ≤ 1
(CLT1b) 1 ≤ x+ 1
(CLT1c) 0 ≤ μ. 1

(Zb) μ. 0 ≤ 0

(P2P1) 0 ≤ 1
(P2P2) μ.(1+x) ≤ 1 + μ.x
(P2P3) μ.(1+x) + μ.(1+y) ≤ μ.(1+τ.x+ τ.y)

Fig. 5. Client and peer inequations

inequations E we will use p �E q to denote the fact that the inequation p ≤ q
can be derived from E using standard equational reasoning, while p =E q means
that both p �E q and q �E p can be derived.

There are two immediate obstacles. The first is that these preorders are not
pre-congruences for the language CCSf; specifically they are not preserved by the
choice operator +.

Example 9. Using the behavioural characterisation in Definition 8 it is easy to
check that 0 �∼p2p

b. 0; in fact this is trivial because 0 ∈ Up2p. However a. 1 +

0 �∼p2p
a. 1+b. 1 because a. 1 + b. 0 mustp2p a. 1 + 0 while a. 1 + b. 0 mustp2p

a. 1 + b. 0; the latter follows because of the possible communication on b.
The same counter-example also shows that the other preorders are also not

preserved. ��

So in order to discuss equational reasoning we focus on the largest CCSf pre-
congruence contained in�∼�

which we denote by�∼
c
�
; by definition this is preserved

by all the operators. But it is convenient to have alternative more amenable
characterisations. To this end we let p �∼

+
�

q to mean that a. 1 + p �∼�
a. 1 + q

for some fresh action name a.

Proposition 6 In CCS, p �∼
c
�
q if and only if p �∼

+
�

q. ��

Note that this is similar to the characterisation of observation-congruence in
Section 7.2 of [Mil89]; the same technique is also used in [NH84].

The second obstacle is that the behavioural preorders are very sensitive to
the ability of processes to immediately report success, with the result that many
of the expected equations are not in general valid. For example the innocuous

a.τ.x = a.x,

valid in the theories of [Mil89, NH84], is not in general satisfied by two of our

behavioural theories. For example a. 1 �∼
+
p2p

a.τ. 1 because of the peer a.(1 + Ω).
In order to have a more elegant presentation of the axioms we will use two

sorts of variables, the standard x, y, . . . which may be instantiated with any pro-
cess from CCSf, and x
�, y
�, . . . which may only be instantiated by a process p
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satisfying p  �−→; in CCSf such processes p in fact have a simple syntactic charac-
terisation. With this convention in mind consider the five standard inequations
given in Figure 4, which are satisfied by all three behavioural preorders �∼

+
�
.

We also assume the standard equations for (CCSf,+, 0) being a commutative
monoid. Let SVR denote the set of inequations obtained by adding

(SVR1) 1 = 0

Intuitively 1 has no significance for server behaviour; this extra equation captures
this intuition and is sufficient to characterise the server preorder:

Theorem 7 [Soundness and completeness for server-testing] In CCSf, p �∼
c
svr

q if
and only p �SVR q. ��

In order to characterise the client and peer preorders we need to replace the
equation SVR1 with inequations which capture the significance of the operators
1 and 0 for clients and peers respectively. A sufficient set of inequations for clients
is also given in Figure 4. Thus the client preorder has both a least element Ω
from (S5), which by (Za) is also equivalent to τ. 0, and a greatest element 1
from (CLT1a). Let CLT denote the resulting set of inequations.

Theorem 8 [Soundness and Completeness for client-testing] In CCSf, p �∼
c
clt

q
if and only p �CLT q. ��

Both the inequations (Za) and (Zb) remain valid for the peer preorder, but
none of the unit inequations (CLT1a) - (CLT1c) are. They need to be replaced
by unit inequations appropriate to peers. Let P2P denote the set obtained by
replacing them with (P2P1) - (P2P3).

Theorem 9 [Soundness and Completeness for peer-testing] In CCSfwτ , p �∼
c
p2p

q
if and only p �P2P q. ��

5 Conclusions

Much of the recent work on behavioural preorders for processes has been carried
out using formalisms for contracts for web-services, proposed first in [CCLP06].
Spurred on by the recasting of the standard must preorder from [NH84] as a
server-preorder between contracts, these ideas have been developed further in
[LP07, CGP09, Bd10, Pad10].

In these publications the standard refinements are referred to as subcontracts
or sub-server relations and [LP07, CGP09, Pad10, Bd10] contain a range of
alternative characterisations. For example in [LP07, CGP09] the characterisa-
tions are coinductive and essentially rely on traces and ready sets; in [Bd10] the
characterisation is coinductive and syntax-oriented.

To the best of our knowledge, the first paper to use a preorder for clients
is [Bd10]. But their setting is much more restricted; they use so-called session
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behaviours which correspond to a much smaller class of processes than our lan-
guage CCS. As there are fewer contexts, their sub-server preorder differs from
our server preorder: a1. 1 �s a1. 1 + a2. 1, whereas a1. 1 �∼svr

a1. 1 + a2. 1.
The refinements in the papers mentioned above depend on a compliance re-

lation, rather than must testing; this is also why in [Bd10] the peer preorder �:
coincides with the intersection of the client and the server preorders; this is not
the case for the must preorders (Example 8 can be tailored to the setting of ses-
sion behaviours). Moreover, in a general infinite branching and non-deterministic
LTS the refinements in the above papers differ from the preorder �∼svr

. The sub-
contract relation of [LP07] turns out to be not comparable with �∼svr

, whereas the
strong subcontract � of [Pad10] is strictly contained in �∼svr

, as the LTS there
is convergent and finite branching. The comparison of �∼svr

with the refinement
preorder of [CGP09] is complicated by their use of a non-standard LTS.

In [BMPR09] a symmetric refinement due to the compliance, �ds, is studied;
it differs from our peer preorder (�∼p2p

⊆ �ds), and its characterisation does not
mention usability. This is because of the restrictions of the LTS in [BMPR09]. In
more general settings the usability of contracts/services is crucial; [Pad11] talks
of viability, while [MSV10] talks of controllability.

Also subcontracts/subtyping for peers inspired by the should/fair-testing of
[RV07] have been proposed in [BZ09, BMPR09, Pad11]. In [BZ09] the fair-testing
preorder is used as proof method for relating contracts, but no characterisation
of their refinement preorder is given. A sound but incomplete characterisation is
given in [BMPR09]. The focus of [Pad11] is on multi-party session types which,
roughly speaking, cannot express all the behaviours of our language CCS. In
view of the restricted form of session types, they can give a syntax-oriented
characterisation of their subtyping relation, �; this is in general incomparable
with our �∼p2p

.

Future work: The most obvious open question about our two new refinement
preorders �∼clt

and �∼p2p
is the development of algorithms for finite-state systems.

The ability to check efficiently whether a process is usable will play an important
role.

Another interesting question would be to characterise in some equational man-
ner the refinement preorders �∼clt

, �∼p2p
themselves rather than their associated

pre-congruences �∼
+
clt

and �∼
+
p2p
. In the resulting equational theory we would have

to restrict in some way the form of reasoning allowed under the external choice
operator − + −, but the extra inequations needed in such a proof system might
be simpler.

We have confined our attention to refinement preorders based on must test-
ing. But one can also define client and peer preorders based on the standard
may testing of [NH84]. We believe that these refinement preorders can be com-
pletely characterised using a modified notion of trace, which takes into account
the usability of residuals. Other variations on client and peer preorders are worth
investigating: a “synchronous” formulation of �∼p2p

where a computation is suc-
cessful only if the peers report success at the same time; the client preorders for
fair settings [Pad11, BZ09], or the ones based on the compliance [Pad10].
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Abstract. There are two fundamentally different approaches to spec-
ifying and verifying properties of systems. The logical approach makes
use of specifications given as formulae of temporal or modal logics and
relies on efficient model checking algorithms; the behavioural approach
exploits various equivalence or refinement checking methods, provided
the specifications are given in the same formalism as implementations.

In this paper we provide translations between the logical formalism
of Hennessy-Milner logic with greatest fixed points and the behavioural
formalism of disjunctive modal transition systems. We also introduce a
new operation of quotient for the above equivalent formalisms, which is
adjoint to structural composition and allows synthesis of missing specifi-
cations from partial implementations. This is a substantial generalisation
of the quotient for deterministic modal transition systems defined in ear-
lier papers.

1 Introduction

There are two fundamentally different approaches to specifying and verifying
properties of systems. Firstly, the logical approach makes use of specifications
given as formulae of temporal or modal logics and relies on efficient model check-
ing algorithms. Secondly, the behavioural approach exploits various equivalence
or refinement checking methods, provided the specifications are given in the same
formalism as implementations.

In this paper, we discuss different formalisms and their relationship. As an
example, let us consider labelled transition systems and the property that “at all
time points after executing request, no idle nor further requests but only work is
allowed until grant is executed”. The property can be written in e.g. CTL [14] as

AG(request⇒ AX(work AW grant))
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request

grant,work, idle

workgrant

request grant request
work

idle
idle

Fig. 1. DMTS specification corresponding to AG(request⇒ AX(work AW grant)), and
its implementation

or as a recursive system of equations in Hennessy-Milner logic [29] as

X = [grant, idle,work]X ∧ [request]Y

Y = (〈work〉Y ∨ 〈grant〉X) ∧ [idle, request]ff

where the solution is given by the greatest fixed point.
As formulae of modal logics can be difficult to read, some people prefer

automata-based behavioural specifications to logical ones. One such behavioural
specification formalism is the one of disjunctive modal transition systems (DMTS)
[26]. Fig. 1 (left) displays a specification of our example property as a DMTS.
Here the dashed arrows indicate that the transitions may or may not be present,
while branching of the solid arrow indicates that at least one of the branches
must be present. An example of a labelled transition system that satisfies our
logical specifications and implements the behavioural one is also given in Fig. 1.

The alternative between logical and behavioural specifications is not only
a question of preference. Logical specification formalisms put a powerful logical
language at the disposal of the user, and the logical approach to model check-
ing [14,34] has seen a lot of success and tool implementations. Automata-based
specifications [12,27], on the other hand, have a focus on compositional and in-
cremental design in which logical specifications are somewhat lacking, with the
trade-off of generally being less expressive than logics.

To be more precise, automata-based specifications are, by design, composi-
tional in the sense that they support structural composition of specifications
and, in most cases, its adjoint, quotient. This is useful, even necessary, in practi-
cal verification, as it means that (1) it is possible to infer properties of a system
from the specifications of its components, and (2) the problem of correctness for
a system can be decomposed into verification problems for its components. We
refer to [28] for a detailed account on composition and decomposition.

It is thus desirable to be able to translate specifications from the logical realm
into behavioural formalisms, and vice versa from behavioural formalisms to logic-
based specifications. This is, then, the first contribution of this paper: we show
that Hennessy-Milner logic with greatest fixed points (νHML) and DMTS (with
several initial states) are equally expressive, and we provide translations forth
and back. For doing this, we introduce an auxiliary intermediate formalism NAA
(a nondeterministic extension of acceptance automata [22, 35]) which is equiva-
lent in expressiveness to both νHML and DMTS.

We also discuss other desirable features of specification formalisms, namely
structural composition and quotient. As an example, consider a specification S
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of the final system to be constructed and T either an already implemented
component or a specification of a service to be used. The task is to construct the
most general specification of the rest of the system to be implemented, in such
a way that when composed with any implementation of T , it conforms with the
specification S. This specification is exactly the quotient S/T .

Contribution. Firstly, we show that the formalisms of νHML, NAA and DMTS
have the same expressive power, and provide the respective translations. As a re-
sult, the established connection allows for a graphical representation of νHML as
DMTS. This extends the graphical representability of HML without fixed points
as modal transition systems [10,27]. In some sense this is optimal, as due to the
alternation of least and greatest fixed points, there seems to be no hope that the
whole μ-calculus could be drawn in a similarly simple way.

Secondly, we show that there are natural operations of conjunction and dis-
junction for NAA which mimic the ones of νHML. As we work with multiple
initial states, disjunction is readily defined, and conjunction extends the one for
DMTS [6]. Thirdly, we introduce structural composition on NAA. For simplicity
we assume CSP-style synchronisation of labels, but the construction can easily
be generalised to other types of label synchronisation.

Finally, we provide a solution to the open problem of the general quotient.
We extend the quotient constructions for deterministic modal transition systems
(MTS) and acceptance automata [35] to define the quotient for the full class of
(possibly nondeterministic) NAA. We also provide a more efficient procedure for
(possibly nondeterministic) MTS. These constructions are the technically most
demanding parts of the paper.

With the operations of structural composition and quotient, NAA, and hence
also DMTS and νHML, are fully compositional behavioural specification theories
and form a commutative residuated lattice [21,39] up to equivalence. This makes
a rich algebraic theory available for compositional reasoning about specifications.
Most of the constructions we introduce are implemented in a prototype tool [8].
Due to space constraints, some of the proofs had to be omitted from the paper
and can be found in [3].

Related Work. Hennessy-Milner logic with recursion [29] is a popular logical
specification formalism which has the same expressive power as μ-calculus [25].
It is obtained from Hennessy-Milner logic (HML) [23] by introducing variables
and greatest and least fixed points. Hennessy-Milner logic with greatest fixed
points (νHML) is equivalent to ν-calculus, i.e. μ-calculus with greatest fixed
points only.

DMTS have been proposed as solutions to algebraic process equations in [26]
and further investigated also as a specification formalism [6, 28]. The DMTS
formalism is a member of the modal transition systems (MTS) family and as
such has also received attention recently. The MTS formalisms have proven to
be useful in practice. Industrial applications started as early as [11] where MTS
have been used for an air-traffic system at Heathrow airport. Besides, MTS
classes are advocated as an appropriate base for interface theories in [36] and
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for product line theories in [31]. Further, an MTS based software engineering
methodology for design via merging partial descriptions of behaviour has been
established in [38] and methods for supervisory control of MTS shown in [15].
Tool support is quite extensive, e.g. [2, 6, 9, 16].

Over the years, many extensions of MTS have been proposed. While MTS can
only specify whether or not a particular transition is required, some extensions
equip MTS with more general abilities to describe what combinations of tran-
sitions are possible. These include DMTS [26], 1-MTS [17] allowing to express
exclusive disjunction, OTS [4] capable of expressing positive Boolean combina-
tions, and Boolean MTS [5] covering all Boolean combinations. The last one is
closely related to our NAA, the acceptance automata of [22,35], as well as hybrid
modal logic [7, 33].

Larsen has shown in [27] that any finite MTS is equivalent to a HML formula
(without recursion or fixed points), the characteristic formula of the given MTS.
Conversely, Boudol and Larsen show in [10] that any consistent and prime HML
formula is equivalent to a MTS. Here we extend these results to νHML formulae,
and show that any such formula is equivalent to a DMTS, solving a problem left
open in [26]. Hence νHML supports full compositionality and decomposition in
the sense of [28]. This finishes some of the work started in [10, 27, 28].

Quotients are related to decomposition of processes and properties, an issue
which has received considerable attention through the years. In [26], a solution
to bisimulation C(X) ∼ P for a given process P and context C is provided (as
a DMTS). This solves the quotienting problem P/C for the special case where
both P and C are processes. This is extended in [30] to the setting where the
context C can have several holes and C(X1, . . . , Xn) must satisfy a propertyQ of
νHML. However, C remains to be a process context, not a specification context.
Our specification context allows for arbitrary specifications, representing infinite
sets of processes and process equations. Another extension uses infinite conjunc-
tions [19], but similarly to the other approaches, generates partial specifications
from an overall specification and a given set of processes. This is subsumed by
a general quotient.

Quotient operators, or guarantee or multiplicative implication as they are
called there, are also well-known from various logical formalisms. Indeed, the
algebraic properties of our parallel composition ‖ and quotient / resemble closely
those of multiplicative conjunction & and implication � in linear logic [20],
and of spatial conjunction and implication in spatial logic [13] and separation
logic [32, 37]. For these and other logics, proof systems have been developed
which allow one to reason about expressions containing these operators.

In spatial and separation logic, & and � (or the operators corresponding
to these linear-logic symbols) are first-class operators on par with the other
logical operators, and their semantics are defined as certain sets of processes. In
contrast, for NAA and hence, via the translations, also for νHML, ‖ and / are
derived operators, and we provide constructions to reduce any expression which
contains them, to one which does not. This is important from the perspective of
reuse of components and useful in industrial applications.
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2 Specification Formalisms

In this section, we define the specification formalisms νHML, DMTS and NAA
and show that they are equivalent.

For the rest of the paper, we fix a finite alphabet Σ. In each of the formalisms,
the semantics of a specification is a set of implementations, in our case always
a set of labelled transition systems (LTS) over Σ, i.e. structures (S, s0,−→)
consisting of a set S of states, an initial state s0 ∈ S, and a transition relation
−→ ⊆ S × Σ × S. We assume that the transition relation of LTS is always
image-finite, i.e. that for every a ∈ Σ and s ∈ S the set {s′ ∈ S | s a−→ s′} is
finite.

2.1 Hennessy-Milner Logic with Greatest Fixed Points

We recap the syntax and semantics of HML with variables developed in [29].
A HML formula φ over a set X of variables is given by the abstract syntax
φ ::= tt | ff | x | φ ∧ φ | φ ∨ φ | 〈a〉φ | [a]φ, where x ranges over X and a over
Σ. The set of such formulae is denoted H(X). Notice that instead of including
fixed point operators in the logic, we choose to use declarations with a greatest
fixed point semantics, as explained below.

A declaration is a mapping Δ : X → H(X). We shall give a greatest fixed
point semantics to declarations. Let (S, s0,−→) be an LTS, then an assignment
is a mapping σ : X → 2S . The set of assignments forms a complete lattice with
σ1 � σ2 iff σ1(x) ⊆ σ2(x) for all x ∈ X and

(⊔
i∈I σi

)
(x) =

⋃
i∈I σi(x).

The semantics of a formula is a subset of S, given relative to an assignment σ,
defined as follows: �tt�σ = S, �ff�σ = ∅, �x�σ = σ(x), �φ ∧ ψ�σ = �φ�σ ∩ �ψ�σ,

�φ∨ψ�σ = �φ�σ ∪ �ψ�σ, �〈a〉φ�σ = {s ∈ S | ∃s a−→ s′ : s′ ∈ �φ�σ}, and �[a]φ�σ =

{s ∈ S | ∀s a−→ s′ : s′ ∈ �φ�σ}. The semantics of a declaration Δ is then the
assignment defined by �Δ� =

⊔
{σ : X → 2S | ∀x ∈ X : σ(x) ⊆ �Δ(x)�σ}: the

greatest (pre)fixed point of Δ.
An initialised HML declaration, or νHML formula, is a structure (X,X0, Δ),

with X0 ⊆ X finite sets of variables and Δ : X → H(X) a declaration. We say
that an LTS (S, s0,−→) implements (or models) the formula, and write S |= Δ,
if it holds that there is x0 ∈ X0 such that s0 ∈ �Δ�(x0). We write �Δ� for the
set of implementations (models) of a νHML formula Δ.

2.2 Disjunctive Modal Transition Systems

A DMTS is essentially a labelled transition system (LTS) with two types of
transitions, may transitions which indicate that implementations are permitted
to implement the specified behaviour, and must transitions which proclaim that
any implementation is required to implement the specified behaviour. Addition-
ally, must transitions may be disjunctive, in the sense that they can require that
at least one out of a number of specified behaviours must be implemented. We
now recall the syntax and semantics of DMTS as introduced in [26]. We modify
the syntax slightly to permit multiple initial states and, in the spirit of later
work [6, 18], ensure that all required behaviour is also allowed:
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A disjunctive modal transition system (DMTS) over the alphabet Σ is a struc-
ture (S, S0, ��	,−→) consisting of a set of states S, a finite subset S0 ⊆ S of
initial states, a may-transition relation ��	 ⊆ S×Σ×S, and a disjunctive must -
transition relation −→ ⊆ S × 2Σ×S. It is assumed that for all (s,N) ∈ −→ and

all (a, t) ∈ N , (s, a, t) ∈ ��	. We usually write s
a��	 t instead of (s, a, t) ∈ ��	

and s −→ N instead of (s,N) ∈ −→. We also assume that the may transition re-
lation is image-finite. Note that the two assumptions imply that −→ ⊆ S×2Σ×SFin

where 2XFin denotes the set of all finite subsets of X .
A DMTS (S, S0, ��	,−→) is an implementation if S0 = {s0} is a singleton

and −→ = {(s, {(a, t)} | s a��	 t}, hence if N is a singleton for each s −→ N
and there are no superfluous may-transitions. Thus DMTS implementations are
precisely LTS.

We proceed to define the semantics of DMTS. First, a relation R ⊆ S1×S2 is
a modal refinement between DMTS (S1, S

0
1 , ��	1,−→1) and (S2, S

0
2 , ��	2,−→2)

if it holds for all (s1, s2) ∈ R that

– for all s1
a��	 t1 there is s2

a��	 t2 for some t2 ∈ S2 with (t1, t2) ∈ R, and
– for all s2 −→ N2 there is s1 −→ N1 such that for each (a, t1) ∈ N1 there is

(a, t2) ∈ N2 with (t1, t2) ∈ R.

Such a modal refinement is initialised if it is the case that, for each s01 ∈ S0
1 ,

there is s02 ∈ S0
2 for which (s01, s

0
2) ∈ R. In that case, we say that S1 refines S2

and write S1 ≤m S2. We write S1 ≡m S2 if S1 ≤m S2 and S2 ≤m S1.
We say that an LTS I implements a DMTS S if I ≤m S and write �S� for

the set of implementations of S. Notice that the notions of implementation and
modal refinement agree, capturing the essence of DMTS as a specification theory:
A DMTS may be gradually refined, until an LTS, in which all behaviour is fully
specified, is obtained.

For DMTS S1, S2 we say that S1 thoroughly refines S2, and write S1 ≤t S2,
if �S1� ⊆ �S2�. We write S1 ≡t S2 if S1 ≤t S2 and S2 ≤t S1. By transitivity,
S1 ≤m S2 implies S1 ≤t S2.

Example 1. Figs. 2 and 3 show examples of important basic properties expressed
both as νHML formulae, NAA (see below) and DMTS. For DMTS, may transi-
tions are drawn as dashed arrows and disjunctive must transitions as branching
arrows. States with a short incoming arrow are initial (the DMTS in Fig. 3 has
two initial states).

X = 〈a〉tt ∧ [a]X ∧ [b]X

({s0}, {s0},Tran)
Tran(s0) =

{
{(a, s0)}, {(a, s0), (b, s0)}

}
a

b

Fig. 2. νHML formula, NAA and DMTS for the invariance property “there is always
an ‘a’ transition available”, with Σ = {a, b}
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X = 〈b〉tt ∨
(
〈a〉tt ∧ [a]X ∧ [b]X ∧ [c]X

)
({s0, s1}, {s0},Tran)
Tran(s0) =

{
{(b, s1)}, {(b, s1), (a, s1)}, {(b, s1), (c, s1)},
{(b, s1), (a, s1), (c, s1))}, {(a, s0)}, {(a, s0), (c, s0)}

}
Tran(s1) = 2{s1}×{a,b,c}

a

a

b
a, c

b, c

b, c

a, b, c

Fig. 3. νHML formula, NAA and DMTS for the (“weak until”) property “there is
always an ‘a’ transition available, until a ‘b’ transition becomes enabled”, with Σ =
{a, b, c}

a

b

Modal Transition Systems. An interesting
subclass of DMTS are modal transition systems
(MTS) [27]. A DMTS (S, S0, ��	,−→) is said to be
a MTS if (1) S0 = {s0} is a singleton, (2) for every s −→ N , the set N is a
singleton. Hence, for each transition, we specify whether it must, may, or must
not be present; no disjunctions can be expressed. It is easy to see that MTS are
less expressive than DMTS, i.e. there are DMTS S for which no MTS S′ exists
so that �S� = �S′�. One example is provided on the right. Here any implemen-
tation must have an a or a b transition from the initial state, but then any MTS
which permits all such implementations will also allow implementations without
any transition from the initial state.

2.3 NAA

We now define NAA, the nondeterministic extension to the formalism of ac-
ceptance automata [35]. We shall use this formalism to bridge the gap between
νHML and DMTS. A nondeterministic acceptance automaton over the alphabet
Σ is a structure (S, S0,Tran) where S and S0 are the states and initial states as

previously, and Tran : S → 22
Σ×S
Fin assigns admissible transition sets.

A NAA (S, S0,Tran) is an implementation if S0 = {s0} is a singleton and
Tran(s) = {M} is a singleton for every s ∈ S; clearly, NAA implementations are
precisely LTS. We also define the inconsistent NAA to be ⊥ = (∅, ∅, ∅) and the

universal NAA by  = ({s}, {s}, 22Σ×{s}
).

A relation R ⊆ S1 × S2 is a modal refinement between NAA (S1, S
0
1 ,Tran1),

(S2, S
0
2 ,Tran2) if it holds for all (s1, s2) ∈ R and all M1 ∈ Tran1(s1) that there

exists M2 ∈ Tran2(s2) such that

– ∀(a, t1) ∈M1 : ∃(a, t2) ∈M2 : (t1, t2) ∈ R,
– ∀(a, t2) ∈M2 : ∃(a, t1) ∈M1 : (t1, t2) ∈ R.

We define and use the notions of initialised modal refinement, ≤m, ≡m, imple-
mentation, ≤t, and ≡t the same way as for DMTS.

Proposition 2. The class of NAA is preordered by modal refinement ≤m, with
bottom element ⊥ and top element  .
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Note that as implementations of all our three formalisms νHML, DMTS and
NAA are LTS, it makes sense to use thorough refinement ≤t and equivalence ≡t

across formalisms, so that we e.g. can write S ≤t Δ for a NAA S and a νHML
formula Δ.

2.4 Equivalences

We proceed to show that νHML, DMTS and NAA are equally expressive:

Theorem 3. For any set S of LTS, the following are equivalent:

1. There exists a νHML formula Δ with �Δ� = S.
2. There exists a finite NAA S with �S� = S.
3. There exists a finite DMTS S with �S� = S.

Furthermore, the latter two statements are equivalent even if we drop the finite-
ness constraints.

Note that we could drop the finiteness assumption about the set of variables
of νHML formulae, while retaining the fact that Δ(x) is a finite HML formula.
The result of Theorem 3 could then be extended with the statement that these
possibly infinite νHML formulae are equivalent to general DMTS/NAA.

For a DMTS S = (S, S0, ��	,−→), let Tran(s) = {M ⊆ Σ × S | ∃N : s −→
N,N ⊆M ; ∀(a, t) ∈M : s

a��	 t} and define the NAA dn(S) = (S, S0,Tran).
Conversely, for an NAA (S, S0,Tran), define the DMTS nd(S) = (T, T 0, ��	,

−→) as follows:

– T = {M ∈ Tran(s) | s ∈ S}, T 0 = {M ∈ Tran(s0) | s0 ∈ S0},
– −→ = {(M, {(a,M ′) |M ′ ∈ Tran(s′)} | (a, s′) ∈M},
– ��	 = {(t, a, t′) | t ∈ T, ∃(t, N) ∈ −→ : (a, t′) ∈ N}.

Note that both nd and dn preserve finiteness. Both translation are exponential
in their respective arguments.

Lemma 4. For every DMTS S, S ≡t dn(S). For every NAA S, S ≡t nd(S).

For a set of pairs of actions and states M we use Ma to denote the set {s |
(a, s) ∈M}. Let (S, S0,Tran) be a finite NAA and let s ∈ S, we then define

ΔTran(s) =
∨

M∈Tran(s)

( ∧
(a,t)∈M

〈a〉t ∧
∧
a∈Σ

[a]
( ∨
u∈Ma

u
))

We then define the νHML formula nh(S) = (S, S0, ΔTran). Notice that variables
in nh(S) are states of S.

Lemma 5. For all NAA S, S ≡t nh(S).

Our translation from νHML to DMTS is based on the constructions in [10].
First, we need a variant of a disjunctive normal form for HML formulae:
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Lemma 6. For any νHML formula (X1, X
0
1 , Δ1), there exists another formula

(X2, X
0
2 , Δ2) with �Δ1� = �Δ2� and such that any formula Δ2(x), for x ∈ X2, is

tt or of the form Δ2(x) =
∨

i∈I
(∧

j∈Ji
〈aij〉xij ∧

∧
a∈Σ [a]yi,a

)
for finite (possibly

empty) index sets I and Ji, i ∈ I, and all xij , yi,a ∈ X2. Additionally we can
assume that for all i ∈ I, j ∈ Ji, a ∈ Σ, aij = a implies �xij� ⊆ �yi,a�.

Let now (X,X0, Δ) be a νHML formula in the form introduced above, then we
define a DMTS hd(Δ) = (S, S0, ��	,−→) as follows:

– S = {(x, k) | x ∈ X,Δ(x) =
∨

i∈I φi, k ∈ I = ∅} ∪ {⊥, },
– S0 = {(x0, k) | x0 ∈ X0}.
– For each (x, k) ∈ S with Δ(x) =

∨
i∈I(
∧

j∈Ji
〈aij〉xij ∧

∧
a∈Σ [a]yi,a) and

I = ∅,
• for each j ∈ Ji, let Mustj(x, k) = {(aij , (xij , i′)) ∈ Σ × S},
• for each a ∈ Σ, let Maya(x, k) = {(x′, i′) ∈ S | �x′� ⊆ �yi,a�}.

– Let ��	 = {(s, a, s′) | s ∈ S, a ∈ Σ, s′ ∈ Maya(s)} ∪ {( , a, ) | a ∈ Σ} and
−→ = {(s,Mustj(s)) | s = (x, i) ∈ S, j ∈ Ji} ∪ {(⊥, ∅)}.

Lemma 7. For all νHML formulae Δ, Δ ≡t hd(Δ).

Further, we remark that the overall translation from DMTS to νHML is quadratic
and in the other direction inevitably exponential.

Example 8. Consider the νHML formula X = (〈a〉(〈b〉X ∧ [a]ff) ∧ [b]ff) ∨ [a]ff .
Changing the formula into the normal form of Lemma 6 introduces a new vari-
able Y as illustrated below; X remains the sole initial variable. The translation
hd then gives a DMTS with two initial states (the inconsistent state ⊥ and re-

dundant may transitions such as x1
a��	 x2, x2

b��	 x1, etc. have been omitted):

X = (

x1︷ ︸︸ ︷
〈a〉Y ∧ [a]tt ∧ [b]ff)

∨ ([a]ff ∧ [b]tt︸ ︷︷ ︸
x2

)

Y = 〈b〉X ∧ [a]ff ∧ [b]tt︸ ︷︷ ︸
y1

x1

�x2

y1

a
a

b

b

b

b

a, b

3 Specification Theory

In this section, we introduce operations of conjunction, disjunction, structural
composition and quotient for NAA, DMTS and νHML. Together, these opera-
tions yield a complete specification theory in the sense of [1], which allows for
compositional design and verification using both logical and structural opera-
tions. We remark that conjunction and disjunction are straightforward for log-
ical formalisms such as νHML, whereas structural composition is more readily
defined on behavioural formalisms such as (D)MTS. For the mixed formalism of
NAA, disjunction is trivial as we permit multiple initial states, but conjunction
requires some work. Note that our construction of conjunction works for nonde-
terministic systems in contrast to all the work in this area except for [6, 26].
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3.1 Disjunction

The disjunction of NAA S1 = (S1, S
0
1 ,Tran1) and S2 = (S2, S

0
2 ,Tran2) is S1 ∨

S2 = (S1 ∪ S2, S
0
1 ∪ S0

2 ,Tran1 ∪ Tran2). Similarly, the disjunction of two DMTS
S1 = (S1, S

0
1 , ��	1,−→1) and S2 = (S2, S

0
2 , ��	2,−→2) is S1∨S2 = (S1∪S2, S

0
1∪

S0
2 , ��	1 ∪ ��	2,−→1 ∪−→2). It follows that disjunction respects the translation

mappings dn and nd from the previous section.

Theorem 9. Let S1, S2, S3 be NAA or DMTS. Then �S1 ∨ S2� = �S1� ∪ �S2�.
Further, S1 ∨ S2 ≤m S3 iff S1 ≤m S3 and S2 ≤m S3.

s01 s02

a a

b bWe point out one important distinction be-
tween NAA and DMTS: NAA with a single
initial state are equally expressive as general
NAA, while for DMTS, this is not the case.
The example on the right shows a DMTS (S, S0, ��	,−→), with S = S0 =
{s01, s02}, s01 −→ {(a, s01), (a, s02)} and s01 −→ {(b, s01), (b, s02)} (and the correspond-
ing may-transitions). Two initial states are necessary for capturing �S�.

Lemma 10. For any NAA S there is a NAA T = (T, T 0, Ψ) with T 0 = {t0}
a singleton and S ≡m T .

3.2 Conjunction

Conjunction for DMTS is an extension of the construction from [6] for multi-
ple initial states. Given two DMTS (S1, S

0
1 , ��	1,−→1), (S2, S

0
2 , ��	2,−→2), we

define S1 ∧ S2 = (S, S0, ��	,−→) with S = S1 × S2, S
0 = S0

1 × S0
2 , and

– (s1, s2)
a��	 (t1, t2) iff s1

a��	1 t1 and s2
a��	2 t2,

– for all s1 −→ N1, (s1, s2) −→ {(a, (t1, t2)) | (a, t1) ∈ N1, (s1, s2)
a��	 (t1, t2)},

– for all s2 −→ N2, (s1, s2) −→ {(a, (t1, t2)) | (a, t2) ∈ N2, (s1, s2)
a��	 (t1, t2)}.

To define conjunction for NAA, we need auxiliary projection functions πi :
Σ × S1 × S2 → Σ × Si. These are defined by

π1(M) ={(a, s1) | ∃s2 ∈ S2 : (a, s1, s2) ∈M}
π2(M) ={(a, s2) | ∃s1 ∈ S1 : (a, s1, s2) ∈M}

Given NAA (S1, S
0
1 ,Tran1), (S2, S

0
2 ,Tran2), define S1 ∧S2 = (S, S0,Tran), with

S = S1 × S2, S
0 = S0

1 × S0
2 and Tran((s1, s2)) = {M ⊆ Σ × S1 × S2 | π1(M) ∈

Tran1(s1), π2(M) ∈ Tran2(s2)}.
Lemma 11. For DMTS S1, S2, dn(S1 ∧ S2) = dn(S1) ∧ dn(S2).

For the translation from NAA to DMTS, nd(S1∧S2) = nd(S1)∧nd(S2) does not
necessarily hold, as the translation changes the state space. However, Theorem 12
below will ensure that nd(S1 ∧ S2) ≡t nd(S1) ∧ nd(S2).

Theorem 12. Let S1, S2, S3 be NAA or DMTS. Then �S1 ∧S2� = �S1�∩ �S2�.
Further, S1 ≤m S2 ∧ S3 iff S1 ≤m S2 and S1 ≤m S3.

Theorem 13. With operations ∧ and ∨, the sets of DMTS and NAA form
bounded distributive lattices up to ≡m.
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3.3 Structural Composition

We define structural composition for NAA. For NAA S1 = (S1, S
0
1 ,Tran1), S2 =

(S2, S
0
2 ,Tran2), we define S1‖S2 = (S, S0,Tran) with S = S1×S2, S

0 = S0
1×S0

2 ,
and for all (s1, s2) ∈ S, Tran((s1, s2)) = {M1‖M2 | M1 ∈ Tran1(s1),M2 ∈
Tran2(s2)}, where M1‖M2 = {(a, (t1, t2)) | (a, t1) ∈M1, (a, t2) ∈M2}.

Lemma 14. Up to ≡m, the operator ‖ on NAA is associative and commutative,

distributes over ∨, and has unit U, where U is the LTS ({s}, s,−→) with s
a−→ s

for all a ∈ Σ.

Theorem 15. For all NAA S1, S2, S3, S4, S1 ≤m S3 and S2 ≤m S4 imply
S1‖S2 ≤m S3‖S4.

We remark that structural composition on MTS [27] coincides with our NAA
composition, so that for MTS S1, S2, dn(S1)‖dn(S2) = dn(S1‖S2). On the
other hand, structural composition for DMTS (with single initial states) as
defined in [6] is weaker than NAA composition, i.e. for DMTS S1, S2, and
denoting by ‖′ the composition from [6], only dn(S1)‖dn(S2) ≤t dn(S1‖′S2)
holds. Consider for example the DMTS S and S′ in the figure below. When
considering their NAA composition, the initial state is the pair (s0, t0) with
Tran((s0, t0)) = {∅, {(a, (s2, t1)), (a, (s2, t2))}. Since this constraint cannot be
represented as a disjunctive must, there is no DMTS with a single initial state
which can represent the NAA composition precisely.

s0

s1

s2a

b

t0

t1

t2a

a

Hence the DMTS composition of [6] is a DMTS over-approximation of the NAA
composition, and translating from DMTS to NAA before composing (and back
again) will generally give a tighter specification. However, as noted already
in [24], MTS composition itself is an over-approximation, in the sense that there
will generally be implementations I ∈ �S1‖S2� which cannot be written I = I1‖I2
for I1 ∈ �S1� and I2 ∈ �S2�; the same is the case for NAA and DMTS.

3.4 Quotient

We now present one of the central contributions of this paper, the construction
of quotient. The quotient S/T is to be the most general specification that, when
composed with T , refines S. In other words, it must satisfy the property that
for all specifications X , X ≤m S/T iff X ‖ T ≤m S. Quotient has been defined
for deterministic MTS and for deterministic acceptance automata in [35]; here
we extend it to the nondeterministic case (i.e. NAA). The construction incurs
an exponential blow-up, which however is local and depends on the degree of
nondeterminism. We also provide a quotient construction for nondeterministic
MTS; this is useful because MTS encodings for NAA can be very compact.
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Let (S, S0,TranS), (T, T 0,TranT ) be two NAA. We define the quotient S/T =
(Q, {q0},TranQ). Let Q = 2S×TFin and q0 = {(s0, t0) | s0 ∈ S0, t0 ∈ T 0}. States in
Q will be written {s1/t1, . . . , sn/tn} instead of {(s1, t1), . . . , (sn, tn)}.

In the following, we use the notation x ∈∈ z as a shortcut for the fact that
there exists y with x ∈ y ∈ z. We first define TranQ(∅) = 2Σ×{∅}. This means
that the empty set of pairs is the universal state  . Now let q = {s1/t1, . . . ,
sn/tn} ∈ Q. We first define the auxiliary set of possible transitions pt(q) as
follows. For x ∈ S ∪ T , let α(x) = {a ∈ Σ | ∃y : (a, y) ∈∈ Tran(x)} and
γ(q) =

⋂
i

(
α(si) ∪ (Σ \ α(ti))

)
. Let further πa(X) = {x | (a, x) ∈ X}.

Let now a ∈ γ(q). For all i ∈ {1, . . . , n}, let {ti,1, . . . , ti,mi} = πa(
⋃

TranT (ti))
be the possible next states from ti after an a-transition, and define

pta(q) =
{
{si,j/ti,j | i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}} |

∀i ∈ {1, . . . , n} : ∀j ∈ {1, . . . ,mi} : (a, si,j) ∈∈ TranS(si)
}

and pt(q) =
⋃

a∈Σ({a} × pta(q)). Hence pta(q) contains sets of possible next
quotient states after an a-transition, each obtained by combining the ti,j with
some permutation of possible next a-states in S. We then define

TranQ(q) = {X ⊆ pt(q) | ∀i : ∀Y ∈ TranT (ti) : X � Y ∈ TranS(si)},

where the operator � is defined by {s1/t1, . . . , sk/tk} � t� = s� and X � Y =
{(a, x�y) | (a, x) ∈ X, (a, y) ∈ Y }. Hence TranQ(q) contains all sets of (possible)
transitions which are compatible with all ti in the sense that (the projection of)
their parallel composition with any set Y ∈ TranT (ti) is in TranS(si).

Theorem 16. For all NAA S, T and X, X‖T ≤m S iff X ≤m S/T .

Theorem 17. With operations ∧, ∨, ‖ and /, the set of NAA forms a commu-
tative residuated lattice up to ≡m.

This theorem makes clear the relation of NAA to linear logic [20]: except for
completeness of the lattice induced by ∧ and ∨ (cf. Theorem 13), NAA form
a commutative unital Girard quantale [40], the standard algebraic setting for
linear logic. Completeness of the lattice can be obtained by allowing infinite
conjunctions and disjunctions (and infinite NAA).

3.5 Quotient for MTS

We now give a quotient algorithm for the important special case of MTS, which
results in a much more compact quotient than the NAA construction in the
previous section. However, MTS are not closed under quotient; cf. [28, Thm. 5.5].
We show that the quotient of two MTS will generally be a DMTS.

Let (S, s0, ��	S ,−→S) and (T, t0, ��	T ,−→T ) be nondeterministic MTS. We
define the quotient S/T = (Q, {q0}, ��	Q,−→Q). We let Q = 2S×TFin as before,

and q0 = {(s0, t0)}. The state ∅ ∈ Q is again universal, so we define ∅ a��	 ∅ for
all a ∈ Σ. There are no must transitions from ∅.
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s0
s1a

s2a

•b

t0
t1a

t2a

•b

•
c s0/t0

{s1/t1, s2/t2}
a

{s2/t1, s2/t2}
a

�

b

a

a
b, c

a, b, c

Fig. 4. Two nondeterministic MTS and their quotient

Let α(s), γ(q) be as in the previous section. For convenience, we work with
sets Maya(s), for a ∈ Σ and states s, instead of may transitions, i.e. we have

Maya(s) = {t | s
a��	 t}.

Let q = {s1/t1, . . . , sn/tn} ∈ Q and a ∈ Σ. First we define the may transitions.
If a ∈ γ(q) then for each i ∈ {1, . . . , n}, write Maya(ti) = {ti,1, . . . , ti,mi}, and
define

Maya(q) =
{
{si,j/ti,j | i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}} |

∀i ∈ {1, . . . , n} : ∀j ∈ {1, . . . ,mi} : si,j ∈ Maya(si)
}
.

For the (disjunctive) must-transitions, we let, for every si
a−→ s′,

q −→ {(a,M) ∈ {a} ×Maya(q) | ∃t′ : s′/t′ ∈M, ti
a−→ t′}.

Example 18. We illustrate the construction on an example. Let S and T be the
MTS in the left part of Fig. 4. We construct S/T ; the end result is displayed in
the right part of the figure.

First we construct the may-successors of s0/t0. Under b and c there are no con-
straints, hence we go to  . For a, we have all permutations of assignments of suc-
cessors of s to successors of t, namely {s1/t1, s1/t2}, {s1/t1, s2/t2}, {s2/t1, s1/t2}
and {s2/t1, s2/t2}. Since there is a must-transition from s (to s1), we create a
disjunctive must-transition to all successors that can be used to yield a must-
transition when composed with the must-transition from t to t1. These are all suc-
cessors where t1 is mapped to s1, hence the first two. However, {s1/t1, s1/t2} will
turn out inconsistent, as it requires to refine s1 by a composition with t2. As t2 has
no must under b, the composition has none either, hence the must of s1 can never
be matched. As a result, after pruning, the disjunctive must from {s0/t0} leads
only to {s1/t1, s2/t2}. Further, {s2/t1, s1/t2} is inconsistent for the same reason,
so that we only have one other may-transition under a from {s0/t0}.

Now {s1/t1, s2/t2} is obliged to have a must under b so that it refines s1 when
composed with t1, but cannot have any c in order to match s2 when composed
with t2. Similarly, {s2/t1, s2/t2} has neither c nor b. One can easily verify that
T ‖(S/T ) ≡m S in this case.

Note that the constructions may create inconsistent states, which have no im-
plementation. In order to get a consistent system, it needs to be pruned. This
is standard and the details can be found in [3]. The pruning can be done in
polynomial time.

Theorem 19. For all MTS S, T and X, X ≤m S/T iff T ‖X ≤m S.
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4 Conclusion and Future Work

In this paper we have introduced a general specification framework whose basis
consists of three different but equally expressive formalisms: one of a graphical
behavioural kind (DMTS), one logic-based (νHML) and one an intermediate
language between the former two (NAA). We have shown that the framework
possesses a rich algebraic structure that includes logical (conjunction, disjunc-
tion) and structural operations (parallel composition and quotient). Moreover,
the construction of the quotient solves an open problem in the area of MTS.
As for future work, we hope to establish the exact complexity of the quotient
constructions. We conjecture that the exponential blow-up of the construction
is in general unavoidable.
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Abstract. Modal transition systems (MTSs) and their variants such as
Disjunctive MTSs (DMTSs) have been extensively studied as a formalism
for partial behaviour model specification. Their semantics is in terms of
implementations, which are fully specified behaviour models in the form
of Labelled Transition Systems. A natural operation for these models is
that of merge, which should yield a partial model which characterizes
all common implementations. Merging has been studied for models with
the same vocabularies; however, to enable composition of specifications
from different viewpoints, merging of models with different vocabularies
must be supported as well. In this paper, we first prove that DMTSs
are not closed under merge for models with different vocabularies. We
then define an extension to DMTS called rDMTS, for which we describe
a first exact algorithm for merging partial models, provided they satisfy
an easily checkable compatibility condition.

1 Introduction

Behaviour models such as Labelled Transition Systems [10] and Statecharts [8]
have been extensively studied as a means to formally describe and analyze be-
haviour of software systems. These models partition the space of behaviours in
two, typically interpreted as required behaviour and prohibited behaviour. Al-
though notions of refinement for these models have also been studied, limitations
in terms of expressiveness have been shown to exist when behavior information
is incomplete (e.g., [14]).

Partial behaviour models [3,11,12] allow distinguishing between required, pos-
sible and prohibited behaviour, hence supporting partial heterogeneous specifi-
cations that include existential (e.g., use-cases) and universal (e.g., safety prop-
erties) quantification of behaviour [13]. Refinement involves progressively elimi-
nating possible behaviour until all behaviour is either required or prohibited, as
in traditional behaviour models. Indeed, the semantics of partial behaviour mod-
els is defined in terms of implementations, i.e., two-valued models that provide
all the required behaviour of the partial model, and any additional exhibited
behaviour is defined as possible.

A key operation on partial models is composition as conjunction [16]. That
is, given two partial models, it is often desirable to compute a new partial model
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that captures their common implementations. Such an operation, which we re-
fer to as model merging, supports independent development of multiple partial
viewpoints that cover different aspects of the intended behavior and subsequent
composition into a single model that accurately captures all of these viewpoints.

Partial behaviour model merging has been studied extensively for the case
where the models to be merged are defined on the same vocabulary. Fischbein
and Uchitel [7] showed that Modal Transition Systems (MTSs) [11] are not closed
under merge, although the set of common implementations can be represented
by a finite set of MTSs. A tool for computing such a merge is described in [4].
Benes et al. [1] showed that a variant of MTSs, known as Disjunctive MTSs
(DMTSs) [12], is closed under merge and provided a constructive algorithm for
computing such a merge for a set of DMTSs.

Yet, often the partial models to be merged do not completely share their
vocabularies. This is especially true in the software engineering context, where
different viewpoints are expected to have different scopes and hence different
vocabularies. Restricting the merge operation to work only for same-vocabulary
models hinders the use of partial models in software engineering contexts.

Attempts at merging partial models defined on different vocabularies have
mostly been unsuccessful so far. In [2], Chechik et al. examined the possibility
of embedding for MTS models. Their idea was to embed each of the models to
be merged into a common vocabulary, and then use the same-vocabulary merge
algorithm on the results. They show that the embedding idea does not work for
MTSs. In [6], Fischbein et al. suggested an approximation algorithm to merge
MTSs defined on different vocabularies. They present several examples showing
that their algorithm is incomplete, but do not try to characterize the subset of
models for which the algorithm gives correct results.

In this paper, we approach again the problem of merging partial models de-
fined on different vocabularies. We first prove that DMTSs (and thus MTSs as
well) are not closed under such merge, which explains why previous attempts
were not successful. We then introduce a variant of DMTSs, called restricted
disjunctive modal transition systems (rDMTSs). Using rDMTSs, we provide the
first exact algorithm for merging partial models (independently of whether they
have the same vocabulary or not). While our algorithm is not complete, we are
able to characterize the condition under which the algorithm produces the exact
merge. In addition to the standard requirement that the partial models to be
merged must be consistent (have a common implementation), we also require
that they are compatible, i.e., all loops of length greater than one in one model
must share some vocabulary with the other model.

Our approach is based on embedding [2]. We show how to embed a model M
into a larger vocabulary A, resulting in an rDMTS MA that preserves the set of
implementations ofM . Thus, when merging modelsM andN defined on different
vocabularies, we first embed each of them in the union of the vocabularies, and
then apply an existing DMTS merge algorithm [1] adapted for rDMTSs. We
prove that under the consistency and compatibility conditions, our algorithm
produces the exact merge.
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The rest of the paper is organized as follows. Sec. 2 gives the background on
partial behaviour models. Sec. 3 presents a simple example of two consistent
MTSs with a single-letter difference in their vocabularies, and proves that no
DMTS can represent exactly the set of their common implementations. Sec. 4
and 5 present the main results of the paper – the rDMTS extension and the new
merging algorithm, respectively. We summarize our results and discuss future
research directions in Sec. 6. The proofs of most theorems are omitted due to
space limitations.

2 Preliminaries

Transition Systems. We start with the concept of Labelled Transition Systems
(LTSs) [10] which are commonly used for modeling concurrent systems.

Definition 1 (LTS [10]). A Labeled Transition System (LTS) is a structure
(S,L, δ, s0), where S is a set of states, L is a set of labels, δ ⊆ (S × L × S) is
the transition relation, and s0 ∈ S is the initial state.

Disjunctive Modal Transition Systems (DMTS) [12] are used to specify sets of
LTSs. A DMTS distinguishes between two types of transitions – the possible
and the disjunctive must. Transitions that do not appear at all are considered as
prohibited. Using a DMTS, one can explicitly model behaviors that are possible
in the system and those that the system must exhibit.

Definition 2 (DMTS [12]). A Disjunctive Modal Transition System (DMTS)
M is a structure (SM , L, δp, Δr,m0), where S is a set of states, L is a set of
labels, δp ⊆ (SM × L × SM ) is the possible (or maybe) transition relation,
Δr ⊆ (SM × 2L×SM ) is the disjunctive must transition relation, and m0 ∈ SM

is the initial state.

Modal Transition Systems (MTSs) [11] are a special case of DMTSs where every
disjunctive must has exactly one transition.

We use the notation m
�−→p m′ to denote a possible transition (m, �,m′) ∈ δp

(s
�−→ s′ if the model is an LTS). We use 〈m,V 〉 to denote a disjunctive must

transition in Δr, where V is a set of pairs V = {(l1,m1), ..., (ln,mn)} with
l1, ..., ln ∈ L and m1, ...,mn ∈ SM . A disjunct (li,mi) ∈ V is sometimes called
a leg, and the entire disjunctive transition – a DT. Legs in a DT can also be
self-loops. That is, for a DT 〈s, V 〉, there can be legs (�,m′) ∈ V s.t. m′ = m.

We follow [1] to require also that (1) if 〈m,V 〉 ∈ Δr then V is not empty,
and (2) for all 〈m,V 〉 ∈ Δr and (�,m′) ∈ V , we have that (m, �,m′) ∈ δp. That
is, there exists a possible transition for every leg in a DT. Graphically, possible

transitions are depicted by a question mark: m
�?−→ m′.

A DMTS specifies a set of LTSs – its implementations. An LTS I is considered
to be a strong implementation of a DMTS M if every transition in I is possible
in M , and for every DT in M , at least one leg exists in I.
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Fig. 1. A DMTS D and some of its possible implementations. L1 and L2 are strong
implementations, L3 is an observational implementation, and L4 is an alphabet imple-
mentation.

Definition 3 (Strong Implementation of DMTSs [12]). Let M = (SM , L,
δpM , Δr

M ,m0) be a DMTS and I = (SI , L, δI , i0) be an LTS. We say that I
strongly implements M if (m0, i0) is contained in some strong implementation

relation R ⊆ SM × SI , s.t. if (m, i) ∈ R then (1) ∀(i �−→ i′), ∃(m �−→p m′)

s.t. (m′, i′) ∈ R; and (2) ∀〈m,V 〉 ∈ Δr
M , ∃(�,m′) ∈ V and ∃(i �−→ i′) s.t.

(m′, i′) ∈ R.

Example 1. Model D in Fig. 1 presents a DMTS with one DT on labels b and
c and another on a, b and c. Recall that maybe transitions exist for every leg,
although they are not explicitly shown. In addition, there is a maybe transition
on label a from state 2 to state 4. The LTS L1 is a strong implementation of D
through the implementation relation R1 = {(1, 5), (1, 6), (2, 7), (3, 8)}, and L2 is
also an implementation through R2 = {(1, 9), (1, 10), (1, 11)}.
The set of strong implementations of a DMTS M is denoted by [[M ]]. Two
DMTSs M and N are consistent if they have a common implementation, that
is, if [[M ]] ∩ [[N ]] = ∅. The merge (or “conjunction”) of consistent models M
and N is a model P s.t. [[P ]] = [[M ]] ∩ [[N ]].

Observational and Alphabet Implementations of DMTSs. Hüttel and
Larsen [9] were the first to examine MTSs in the presence of unobservable labels,
denoted by τ , and introduced the notion of observational implementations of
MTSs. That is, they defined conditions under which an LTS is an implementation
of an MTS with unobservable (τ) transitions. Fischbein et al. [5] introduced a
more restrictive definition for implementations in the presence of τ ’s, inspired
by branching refinement. This definition was given for MTSs, and we adapt
it here to apply to DMTSs. Informally, instead of requiring that a transition
from a DT in a DMTS is immediately present in the implementation, as in
Def. 3, the observational definition requires that such a transition exists in the
implementation, but possibly after a finite (although unbounded) number of τ
transitions.

Definition 4 (Observational Implementation of DMTSs). Let M = (SM ,
L, δpM , Δr

M ,m0) be a DMTS and I = (SI , L, δI , i0) be an LTS. We say that
I is an observational implementation of M if (m0, i0) is contained in some
observational implementation relation R ⊆ SM × SI for which the following
holds for all (m, i) ∈ R:
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1. ∀i �−→ i′, there exists a sequence of possible transitions m
τ−→p m1

τ−→p

...
τ−→p mj

�−→p m′, (mk, i
′) ∈ R for 1 ≤ k ≤ j, and (m′, i′) ∈ R.

2. ∀(m,V ) ∈ Δr
m, there exists a sequence of must transitions i

τ−→ i1
τ−→

...
τ−→ ij

�−→ i′ s.t. (m, ik) ∈ R for 1 ≤ k ≤ j, and ∃(�,m′) ∈ V s.t.
(m′, i′) ∈ R.

In an observational implementation, DMTS and LTS are both defined over the
same alphabet, with the addition of the label τ that gets a special treatment.
To compare models defined over different alphabets, i.e., to define observational
alphabet implementations, we follow [15,6], and hide labels that are not in the
intersection of these alphabets. Hiding is done by replacing such labels by τ ’s,
thus making them unobservable. The resulting models can then be compared
using the observational implementation relation (Def. 4).

The definition of hiding in [15] was given for MTSs, and we adapt it to apply
to DMTSs, considering every leg of a DT separately.

Definition 5 (Hiding). Let M = (SM , αM, δp, Δr,m0) be a DMTS and X
be a set of labels. M with the labels of X hidden, denoted M\X, is a DMTS
(SM , αM\X, δp

′
, Δr′ , m0), where Δr′ is derived from Δr by replacing every leg

(�,m′) ∈ V in a DT 〈m,V 〉 ∈ Δr, with a leg (τ,m′) if � ∈ X. The set δp
′
is

derived from δp in the same way, replacing possible transitions m
�−→p m′ by

m
τ−→p m′ if � ∈ X. For a set of labels Y , we use M@Y to denote M\(αM\Y ).

Definition 6 (Alphabet Implementation of DMTSs). An LTS I = (SI , αI,
δI , i0) is an alphabet implementation of a DMTS M = (SM , αM, δpM , Δr

M ,m0)
if αM ⊆ αI and I@αM is an observational implementation of M .

Example 2. Consider again DMTS D in Fig. 1. LTS L3 is an observational im-
plementation of D, via the relation {(1, 16), (2, 17), (2, 18), (4, 19)}. LTS L4 is
defined on the alphabet {a, b, c, d}; hiding d results in the model L3. Thus, L4

is an alphabet implementation of D.
For a model M with an alphabet αM , let A be an alphabet such that αM ⊆
A. We denote by [[M ]]A the set of implementations over A that are alphabet
implementations of M .

3 DMTSs Are Not Closed under Alphabet Merge

Our first result explains why the previous attempts to find an alphabet merge
algorithm for MTSs have failed. We prove that DMTSs (and thus MTSs as well)
are not closed under alphabet merge by analyzing the following simple example.

Consider the models in Fig. 2. Model I has a single must transition labelled
c, and we assume its vocabulary is {c}. We want to merge it with model J
defined over the vocabulary {b, c}. Thus, we seek a DMTS that specifies exactly
all the implementations over the vocabulary {b, c} that are common to I and
J . These implementations would be considered “strong” for J , since they share
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Fig. 2. Models I and J do not have a merge in terms of a DMTS. Model L1 is an
example of a common implementation of I and J . Model Q is almost the merge of I
and J , but the LTS L2 in an implementation of Q while not of I. The rDMTS B is
the merge of I and J . State 4 of model K is an example of a single-b-allowed state,
while state 18 of model O is not.

the same vocabulary, and “alphabet” for I. The LTS L1 in Fig. 2 is an example
of a possible common implementation: it has a sequence of b transitions followed
by one c transition, and then another b transition. It is a strong implementation
of J since J allows any combination of b’s and c’s. When all of the b transitions
are hidden, it is an observational implementation of I.

Note that the set of common implementations includes all of the implemen-
tations that have a finite sequence of b’s followed by a c (and possibly more b’s
after that). Since the length of the b sequence is unbounded (though finite), the
number of such implementations is infinite. We show that a finite-state DMTS
cannot represent such a set.

For our proof, we need the notion of a state from which a single b transition
is allowed in an implementation: Let N = (SN ,A, δpN , Δr

N , n0) be a DMTS. A
state s ∈ SN is a single-b-allowed state if there exists an LTS I = (SI ,A, δI , i0)
strongly implementing N with an implementation relation R, and there exists

a state i ∈ SI , s.t. (1) (s, i) ∈ R; (2) there exists i
b−→ i′ ∈ δI ; and (3) no other

transitions from i exist.
That is, for a state s in N to be a single-b-allowed state, we examine the

possible implementations of N . If a legal implementation exists, with a state
i corresponding to s (according to the implementation relation), from which a
single b transition is departing, then we say that s is a single-b-allowed state.
State 4 of model K in Fig. 2 is a single-b-allowed state, while state 18 of model
O is not, since in every implementation the corresponding state must have a
transition on c departing from it.

We now return to prove that no DMTS merge exists for I and J . Assume by
way of contradiction that there exists a DMTS M such that its implementations
are exactly all of the implementations common to I and J . Consider the initial
state m0 of M . The transitions from m0 must allow an implementation with a
single b transition leaving m0 (such as L1). This can be achieved, e.g., by a DT
as in model K, also allowing an implementation with a single c transition leaving
m0 (such as I itself, which is a common implementation of I and J ). Note that
m0 is a single-b-allowed state, as defined above.

Let us now examine paths in M that contain possible b transitions (we ignore
must b transitions, if exist). Let π be the longest path in M , starting from m0,
such that (1) π contains only possible transitions on label b; (2) π does not visit
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Fig. 3. L3 is a legal implementation of I and J of Fig. 2, showing that a DMTS merge
does not exist

a state more than once; and (3) all the states on π are single-b-allowed states.
Note that there must be at least one state on π (even if no transition), since
the initial state m0 is a single-b-allowed state. Since M is finite-state, π must be
finite. Let n, n ≥ 1, be the number of states on π and let mn−1 denote its final
state. Thus, mn−1 is a single-b-allowed state, but all the states reachable from
mn−1 via a transition on b are either not single-b-allowed, or already appear on
π. We consider both cases below.

(1) If a b transition from mn−1 leads to a state that is already on π, then
[[M ]] includes an implementation L with a loop on b transitions. But L is not
an implementation of I (since c never appears in L)! Thus, M cannot be the
merge of I and J .

(2) If a b transition from mn−1 leads to a state mn that is not a single-b-
allowed state, then either (a) no b transitions can be taken from mn, or (b) a b
transition can be taken from mn, but only together with another transition (on
c or on b or on both). In either case, the implementation L3 in Fig. 3 does not
exist in [[M ]], since it includes a path with n+1 different single-b-allowed states,
while we assumed that the longest such path in M has only n single-b-allowed
states. Note though that L3 is a legal implementation of I and J . Thus, M
cannot be the merge of I and J .

Based on the above discussion, we conclude the following:

Theorem 1. DMTSs are not closed under alphabet merge.

4 Restricted Disjunctive MTS and Embedding

In Sec. 3 we have given a simple example for which an alphabet merge does not
exist in the form of a DMTS. This can be fixed by making a small extension to
DMTSs.

Consider again models I and J of Fig. 2. Model Q of Fig. 2 is almost their
merge: it defines all of the legal common implementations of I and J , but allows
one additional implementation, shown as model L2, with a self-loop on b in the
initial state. L2 is an implementation of J but not of I (since no c is ever
reached), and thus it is not a common implementation. What if we restrict b in
Q such that the implementation L2 is ruled out?

In this section, we introduce a new formalism, called restricted disjunctive
MTS (rDMTS), that does exactly this. It allows self-looped transition in a DT
to be marked as ‘restricted’. Model B in Fig. 2 marks the self-loop on b as
restricted. We define a strong implementation relation for rDMTSs that rules
out the unwanted implementations, by restricting marked transitions to appear
in an implementation only a finite number of times.
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Fig. 4. Model D′ is an rDMTS, L1 is a strong implementation of it while L2 is not

We then define the notion of embedding that is a key element in our algorithm.
Using rDMTS, a modelM with an alphabet αM can be embedded (or re-defined)
into a larger alphabet A, in a way that preserves alphabet implementations. The
embedding procedure is simple: for every DT in M , we add self-looped legs on
every letter from A\αM , and mark them as ‘restricted’. Model B in Fig. 2 is the
embedding of model I in the alphabet {b, c}. We prove that this process preserves
implementations, that is, if we let MA be the re-defined rDMTS, we have that
[[MA]] = [[M ]]A. In our example, all of the alphabet implementations of I over
{b, c} are also strong implementations of B and vice versa. Thus, [[B]] = [[I]]{b,c}.

Using rDMTS and the notion of the embedding, we can present our alphabet
merge algorithm. Let M and N be models defined over the alphabets αM and
αN , respectively, and let A be the union of the alphabets: A = αM ∪ αN .
Embedding each model into A results in rDMTSs MA and NA over the same
alphabet. Two same-alphabet DMTSs can be merged using the algorithm in
[1]; we extend it to apply to rDMTSs and prove that if models satisfy a simple
compatibility condition, our algorithm produces the exact merge.

Our method consists of three main components described below. In Sec. 4.1,
we formally define the new formalism, rDMTS, together with a strong imple-
mentation relation for it. In Sec. 4.2, we give the embedding procedure that
preserves alphabet implementations. Finally in Sec. 5, we present an adaptation
of the existing strong merge procedure of [1] to work for rDMTSs.

4.1 Restricted Disjunctive MTS

An rDMTS differs from a DMTS in two ways: syntactically – some of the legs
of every DT in an rDMTS can be marked as “restricted”, and semantically –
implementations of a given rDMTS must fulfill additional requirements.

Definition 7 (Restricted DMTS (rDMTS)). M = (S,L, δp, Δr,m0, T ) is
a restricted DMTS if (S,L, δp, Δr,m0) is a DMTS and T : Δr −→ 2L×S is a
restricting marking function, such that for 〈m,V 〉 ∈ Δr, T (〈m,V 〉) � V , and if
(�,m′) ∈ T (〈m,V 〉) then m′ = m. That is, every restricted leg is a self-loop.

For an rDMTSM , we denote byM↓ its DMTS part (without the restrictionmark-
ing). For aDT 〈m,V 〉, we useVT to denote the set T (〈m,V 〉), and call the legs inVT
the restricted legs. The non-restricted legs, those in V \VT , are called the eventual
legs and are denoted by VE . Note that since T (〈m,V 〉) � V , VE cannot be empty.

Example 3. Model D′ in Fig. 4 is an example of an rDMTS. Restricted legs
are marked with a small line. Note that (a) not all self-loops are necessarily
restricted, (b) there can be eventual legs labelled the same way as restricted
ones, and (c) different DTs may have differently labelled restricted legs.
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We define implementations of rDMTSs by preventing restricted legs from always
being picked in a disjunctive transition. That is, we want to ensure that eventual
legs, that belong to VE , are eventually picked in every implementation.

Definition 8 (Strong Eventual Implementation). Let M = (SM , L, δpM ,
δrM ,m0, T ) be an rDMTS and I = (SI , L, δI , i0) be an LTS. I is a strong even-
tual implementation of M if (m0, i0) is contained in some strong eventual imple-
mentation relation R ⊆ SM × IM , where R is a strong implementation relation
on M↓ and I (Def. 3), and for all (m, i) ∈ R and 〈m,V 〉 ∈ Δr

m, there exists a

sequence of transitions (called an eventuality path) i
�1−→ i1

�2−→ ...
�j−→ ij

�−→ i′

in I, s.t. (1) ∀1 ≤ k ≤ j, (�k,m) ∈ VT and (m, ik) ∈ R; (2) there exists m′ with
(�,m′) ∈ VE; and (3) (m′, i′) ∈ R.

Example 4. LTS L1 in Fig. 4 is an implementation of rDMTS D′ via the relation
R1 = {(1, 5), (1, 6), (2, 7), (3, 8)}. In L1, a self-loop on state 7 on the restricted
a-transition is allowed since an eventuality path from state 7 exists. L2 is an
implementation of (D′)↓ via the relation R2 = {(1, 9), (1, 10), (1, 11)}, but it is
not a strong eventual implementation of D′ since there is no eventuality path
from state 11.

4.2 rDMTS Embedding

In order to embed a model M into a larger alphabet A, we add self-loop maybe
transitions on every label from A \ αM to every state of M . In addition, we
add self-loop legs on every label from A \ αM to every DT in M . We use the
restriction function to mark all new legs as restricted. An input to the embedding
procedure, formalized in Def. 9, is an rDMTS rather than a DMTS, indicating
that an rDMTS can also be embedded into a larger alphabet.

Note that a DMTS can be easily converted into an rDMTS by defining the
restriction function T as T (〈m,V 〉) = ∅ for every 〈m,V 〉 ∈ Δr.

Definition 9 (Embedding in a Larger Alphabet). Let M = (S, αM, δp, Δr,
m0, T ) be an rDMTS, and A be an alphabet s.t. αM ⊆ A. For each state m ∈ S,
we define a set of “legs” to be added: R(m) = {(�,m) | � ∈ A \ αM}. An
embedding of M into A is an rDMTS MA = (S,A, δp

′
, Δr′ ,m0, T

′) s.t. (1)
δp

′
= δp ∪ {(m, �,m) | � ∈ A \ αM}; (2) Δr′ = {〈m,V ∪R(m)〉| 〈m,V 〉 ∈ Δr};

and (3) T ′(〈m,V ∪R(m)〉) = T (〈m,V 〉) ∪R(m).

Note that (a) the embedding operation adds restricted legs but does not touch
existing legs, whether restricted or not, and (b) (MA)↓ = M since the embedding
procedure adds disjunctive legs as well as maybe transitions, but those are not
removed when looking at the DMTS part (MA)↓. The ↓ operator removes only
the restricting markings, leaving the transitions themselves unchanged.

Example 5. Model I in Fig. 2 is embedded in the alphabet {b, c} to get model
B of the same figure. In Fig. 6, B is further embedded in the alphabet {a, b, c}
to get model B′.
The above definitions establish that the rDMTS embedding is compositional:
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Proposition 1. Let M be a model and A1,A2 be alphabets s.t. αM ⊆ A1 ⊆ A2.
Then, (MA1)A2 = MA2 .

The proof follows directly from Def. 9.
The following theorem guarantees that the embedding procedure constructs

an rDMTS such that all alphabet implementations of the original model are
strong eventual implementations of the rDMTS. Thus, alphabet implementations
of the original DMTS are preserved.

Theorem 2. Let M be a DMTS and I be an LTS s.t. αM ⊆ αI. I is an alphabet
implementation of M iff I is a strong eventual implementation of MαI .

Having defined an embedding operation for rDMTSs, models with different vo-
cabularies can be lifted to models with the same vocabularies and merged using
a strong merge operator.

5 Merge Using rDMTSs

The merge algorithm for rDMTSs is based on the algorithm of Benes et al. [1]
for merging DMTSs defined on the same alphabet. We first review the algorithm
given in [1] and then discuss the modifications we need to make so that it applies
to rDMTSs.

5.1 Strong Merge of DMTSs

In order for two DMTSs to be merged, the models must be consistent, that is,
they must have at least one common implementation. The algorithm of [1] is
based on a consistency relation between the states of the DMTSs to be merged.
States m and n are in a consistency relation if for each DT 〈m,V 〉, at least one
leg in V has a corresponding possible transition from n and vice versa:

Definition 10 (DMTSs Consistency Relation [1]). A strong consistency
relation betweenDMTSsM = (SM , L, δpM , Δr

M ,m0) andN = (SN , L, δpN , Δr
N , n0)

is a relation C ⊆ SM × SN s.t. (m0, n0) ∈ C and ∀(m,n) ∈ C, the following holds:

1. ∀〈m,V 〉 ∈ Δr
M , ∃(l,m′) ∈ V and n

�−→p n′ in N s.t. (m′, n′) ∈ C.
2. ∀〈n, U〉 ∈ Δr

N , ∃(q, n′) ∈ U and m
q−→p m′ in M s.t. (m′, n′) ∈ C.

Based on a consistency relation C between M and N , we can now compose
them into a single DMTS. The composition is done by constructing, for each
DT 〈m,V 〉 in M (or N), a corresponding DT 〈p,W 〉 in the composed model P ,

where a leg (�, p′) exists in W whenever (�,m′) exists in V , a leg n
�−→p n′ is

possible in N , and (m′, n′) ∈ C.

Definition 11 (Compose [1]). Let M and N be DMTSs with the same vo-
cabulary L, and let C be a consistency relation between them. The + operator
between M and N is defined as [M + N ]C = (C, L, δpM+N , Δr

M+N , (m0, n0)),
where δpM+N and Δr

M+N are defined to be the smallest relations that satisfy the
following rules:
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Fig. 5. DMTS H and G, and their strong merge K

(RM)
〈m,V 〉

〈(m,n),W 〉 , where W = {(l, (m′, n′)) | (l,m′) ∈ V ∧ n
�−→p n′ ∧ (m′, n′) ∈ C}

(MR)
〈n,U〉

〈(m,n),W 〉 , where W = {(l, (m′, n′)) | (l, n′) ∈ U ∧m
�−→p m′ ∧ (m′, n′) ∈ C}

(MM)
m

�−→pm
′, n �−→pn

′

(m,n)
�−→p(m′,n′)

When C is the largest consistency relation between M and N , the composition
w.r.t. C becomes the merge of M and N .

Theorem 3 (Correctness of Strong DMTS Merge [1]). Let M and N be
DMTSs with the same vocabulary. If C is the largest consistency relation between
the states of M and N then [M +N ]C is the merge of M and N .

Example 6. Consider the DMTSs H and G in Fig. 5, defined over the alphabet
{a, b, c, d, e}. Model H has one DT with three legs, and G has two DTs. Rules
MR and RM produce one DT in the merged model K for each DT in the original
models, resulting in three altogether. H’s DT contributes a four-legged DT in
K; three of the legs are labelled by a and the fourth – by b. The merged DT is
constructed by taking all a-labelled maybe transitions in G that reach a state
consistent with the state 2 of H. In G, there are three such transitions, leading
to states 6, 8, and 9 (recall that there is a maybe transition for every leg of a
DT), all of which are consistent with state 2 of H. The three-legged DT in G (on
labels a, d and e) results in a DT with a single transition labelled a in K that
reaches the state (2,9) since model H has no maybe transitions on d or e.

Note that every DT 〈p,W 〉 in the composition P of DMTSs M and N has a
source DT 〈m,V 〉 in either N or M , and every leg in W has a source leg in V .
As discussed above, a DT in P is introduced either by a rule RM or MR, based
on a DT that exists in either M or N . The notions of a source DT and source
leg are needed in the sequel, and we formalize them below.

Definition 12 (Source DT, Source Leg). Let M and N be consistent
DMTSs, C be a consistency relation on their states and P be their composition
with relation to C. Let 〈p,W 〉 ∈ Δr

P be a DT in P . We say that 〈m,V 〉 ∈ Δr
M

is the source DT of 〈p,W 〉 if (1) p = (m,n) and (2) (�, p′) ∈ W iff there exist

(�,m′) ∈ V and n
�−→p n′ in N s.t. (m′, n′) ∈ C. We say that a leg (�,m′) ∈ V

is the source leg of (�, p′) ∈ W if p′ = (m′, n′).

5.2 Composition of rDMTSs

We now define the composition of two rDMTSs, M and N . This composition
is not necessarily their merge, i.e., the set of implementations represented by it
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can sometimes include implementations that are not common to M and N . In
Sec. 5.3, we characterize the cases for which the composition algorithm yields
exactly the merge of M and N .

The composition is obtained by modifying the algorithm given in Def. 11, mak-
ing it applicable to rDMTSs.We first modify the consistency relation on which the
composition is based: we define eventual consistency relation, to comply with the
definition of strong eventual implementations of rDMTS (Def. 8). We modify the
composition itself by adding restriction markings on legs of the composed model.

Definition 13 (Eventual Consistency Relation). Let M = (SM , L, δmM ,
Δr

M , m0, TM ) and N = (SN , L, δmN , Δr
N , n0, TN) be rDMTSs. C is an eventual

consistency relation between M and N if it is a strong consistency relation be-
tween M↓ and N↓, and for all (m,n) ∈ C, the following holds:

1. ∀〈m,V 〉 ∈ Δr
M , there exists a sequence of possible transitions in N (called a

possible eventuality path): n
�1−→p n1

�2−→p ...
�j−→p nj

�−→p n′ s.t. (i) ∀1 ≤
i ≤ j, (�i,m) ∈ VT and (m,ni) ∈ C; (ii) there exists m′ with (�,m′) ∈ VE,
and (iii) (m′, n′) ∈ C.

2. ∀〈n, U〉 ∈ Δr
N , there exists a sequence of possible transitions in M : m

q1−→p

m1
q2−→p ...

qi−→p mi
q−→p m′ with the same conditions as above.

This relation requires the existence of a consistency relation between the DMTS
partsM↓ andN↓ (Def. 10). In addition, we need to make sure that for every DT in
M (orN), at least onenon-restricted leg is eventually allowedonapath inN , andall
the transitions inbetweenare restricted.This guarantees the existence of a common
implementation. The following theorem states that the opposite is also correct: if a
common implementation exists then so does an eventual consistency relation.

Theorem 4. Let M and N be rDMSTs. An eventual consistency relation exists
between M and N if and only if there exists an LTS I that is a strong eventual
implementation of both M and N .

The composition of rDMTSs can now be defined. We base it on the largest
eventual consistency relation C on the rDMTSs at hand (Def. 13), and use the
source DT (Def. 12) to mark restricted legs: a self-looped leg in a DT of the
composed model is marked as restricted if and only if its source leg is restricted.

Definition 14 (Composition of rDMTSs). Let M = (SM , L, δmM , Δr
M , m0,

TM ) and N = (SN , L, δmN , Δr
N , n0, TN) be rDMTSs and let C be the largest even-

tual consistency relation between them. We define P = (SP , L, δmP , Δr
P , p0, TP ),

to be the composition of M and N , where P↓ = [M↓ + N↓]C (Def. 11). For
each 〈p,W 〉 ∈ Δr

P , let 〈m,V 〉 ∈ Δr
M be its source DT. We define TP (〈p,W 〉) =

{(l, p) ∈W | ∃(l,m) ∈ TM (〈m,V 〉)}.
The rDMTS composition inherits the restriction markings of each DT from its
source DT. Note that the rDMTS resulting from a compose operation can be
composed again, if desired. We demonstrate this in the example below.

Example 7. ModelB of Fig. 6, defined over the alphabet {b, c}, is themerge ofmod-
els I andJ of Fig 2.We want to compose it further withmodelM of Fig. 6, defined
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Fig. 6. rDMTSs M′ and F are consistent with B′ but F is not compatible with B′.
Model P is the merge of B′ andM′.

over {a, b}. We thus embed each of the models in the alphabet {a,b,c}: we add a
self-loop leg labelled a to the single DT of B, as well as a self-loop possible tran-
sition labelled a to state 6. The result is shown as model B′ of Fig. 6. In the same
way, we add self-loop transitions labelled c to M, to get model M′. In order to
compose them, we find their largest consistency relation C = {(1, 5), (1, 6), (2, 6)}.
The composition according to Def. 14 is shown in model P .

5.3 Characterizing rDMTS Merge

The composition algorithm given in Def. 14 does not always construct the merge
of the input rDMTS. In this section, we define the notion of compatibility of two
models, and prove that the composition of two compatible rDMTSs is guaranteed
to be their merge.

In terms of the original models (before embedding), compatibility means that
all loops in one model share some vocabulary with the other model. In the
rDMTS terms, it means that there are no loops (of size larger than one) in one
model, on labels that are restricted in the other model.

More specifically, let M and N be the rDMTSs to be merged, and let C be
their largest consistency relation. For (m,n) ∈ C, we require that m does not
participate in a loop consisting of labels that are all restricted in some DT from
n, and vice versa. Presence of the consistency relation C allows us to limit this
requirement only to pairs of states in C, and thus it is easier to check on rDMTSs
rather than on the original models.

We begin by defining a loop on a set of labels.

Definition 15 (A-loops). Let M = (SM , L, δmM , Δr
M ,m0, TM ) be an rDMTS,

m ∈ SM be a state, and A be a set of labels. An A-loop from m is a sequence of

maybe transitions, m
�1−→p m1

�2−→p ...
�j−→p m, s.t. �1, ..., �j ∈ A and m1 = m.

Example 8. Model F in Fig. 6 has an {a, b}-loop from state 7.

Using the concept of an A-loop, we now define compatibility between states.

Definition 16 (State Compatibility). Let M = (SM , L, δmM , Δr
M ,m0, TM )

and N = (SN , L, δmN , Δr
N , n0, TN ) be rDMTSs, and m ∈ SM , n ∈ SN be states.

Let 〈m,V 〉 ∈ Δr
M , and AT be the set of restricted labels in V . If there are no

AT -loops from n then n is 〈m,V 〉-compatible. If for all V s.t. 〈m,V 〉 ∈ Δr
M , n

is 〈m,V 〉-compatible, then n is compatible with m.
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Example 9. Consider models M′ and B′ in Fig. 6. From state 5 of B′, there is
only one DT: (5, {(a, 5), (b, 5), (c, 6)}), with AT = {a, b}. State 1 of M′ has no
{a, b}-loops. Therefore, state 1 of M′ and state 5 of B′ are compatible.

Definition 17 (Model Compatibility). Let M and N be consistent rDMTSs,
with a consistency relation C. M and N are compatible models with respect to
C if for all (m,n) ∈ C, m is compatible with n, and n is compatible with m.

Example 10. Models M′ and F in Fig. 6 are consistent with model B′. Yet, F
is not compatible with B′. To see this, note that (5, 7), representing the initial
states, must exist in every consistency relation between F and B′. Now consider
the loop on labels a and b from state 7 of F . This is an {a, b}-loop (see Exam-
ple 8). But {a, b} is exactly the set AT of the single DT of B′ (see Example 9).
Thus, by Def. 17, F and B′ are not compatible. M′ has no {a, b}-loops at all
and thus is compatible with B′.

The theorem below is one of the main results of our paper, stating correctness
of our rDMTS composition operation given in Def. 14.

Theorem 5. Let M and N be rDMTSs over the same vocabulary and C be the
largest eventual consistency relation between them. Assume that M and N are
compatible w.r.t. C and let P be their composition, as defined by Def. 14. Then
P is the strong merge of M and N .

5.4 Alphabet Merge of Partial Behavioral Models

We now combine the results of Sec. 4 and 5, to form an algorithm for the merge
of two models, whether they are LTSs, MTSs, DMTSs or rDMTSs, and whether
they are defined on the same alphabet or not.

Algorithm 1 (Alphabet Merge) Let M and N be models with alphabets αM
and αN , respectively, and let A = αM ∪αN . The alphabet merge of M and N ,
denoted by M +α N , is an rDMTS constructed by the following algorithm:

1. Construct the embedded models MA and NA (Def. 9).
2. Compute the largest consistency relation C on MA and NA (Def. 13).
3. If C = ∅, or if MA and NA are not compatible w.r.t. C, return NULL.
4. Return the composition of MA and NA as defined in Def. 14.

Theorem 6. Let P be the result of Algorithm 1 when called on M and N . If
P is not NULL, then the set of strong eventual implementations of P is exactly
the set of alphabet implementations common to M and N .

The proof follows immediately from Theorems 2 and 5.

6 Discussion and Future Work

The difficulty in merging models defined over different vocabularies stems from
the fact that a common implementation might have to be considered a strong
implementation of one model and at the same time an observational implemen-
tation of the other. Restricted DMTSs, introduced in this paper, bridge the
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gap between the immediate nature of a strong implementation and the eventual
nature of an observational implementation.

A key result of this paper is that rDMTSs are closed under merge for com-
patible models, which is an important step forward in providing a framework for
merging operational yet partial models of system behaviour. We believe the com-
patibility requirement is sensible from an engineering point of view (models are
required to represent viewpoints in which there is a certain degree of overlap).
However, experimentation on whether this limitation is inconvenient in practice
is necessary. Furthermore, we believe that the compatibility requirement can be
relaxed at the cost of making the “restriction marking” function more complex;
investigating this further is left for future work.

Acknowledgements. Shoham Ben-David is grateful to the Azrieli Foundation
for the award of an Azrieli Fellowship. This work was partially supported by ERC
StG PBM-FIMBSE and by the Ontario Ministry of Research and Innovation.

References
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Abstract. We consider parity games on infinite graphs where configurations
are represented by control-states and integer vectors. This framework subsumes
two classic game problems: parity games on vector addition systems with states
(VASS) and multidimensional energy parity games. We show that the multidimen-
sional energy parity game problem is inter-reducible with a subclass of single-
sided parity games on VASS where just one player can modify the integer coun-
ters and the opponent can only change control-states. Our main result is that the
minimal elements of the upward-closed winning set of these single-sided parity
games on VASS are computable. This implies that the Pareto frontier of the min-
imal initial credit needed to win multidimensional energy parity games is also
computable, solving an open question from the literature. Moreover, our main
result implies the decidability of weak simulation preorder/equivalence between
finite-state systems and VASS, and the decidability of model checking VASS with
a large fragment of the modal µ-calculus.

1 Introduction

In this paper, we consider integer games: two-player turn-based games where a color
(natural number) is associated to each state, and where the transitions allow increment-
ing and decrementing the values of a finite set of integer-valued counters by constants.
We refer to the players as Player 0 and Player 1.

We consider the classical parity condition, together with two different semantics for
integer games: the energy semantics and the VASS semantics. The former corresponds
to multidimensional energy parity games [7], and the latter to parity games on VASS (a
model essentially equivalent to Petri nets [8]). In energy parity games, the winning ob-
jective for Player 0 combines a qualitative property, the classical parity condition, with
a quantitative property, namely the energy condition. The latter means that the values
of all counters stay above a finite threshold during the entire run of the game. In VASS

parity games, the counter values are restricted to natural numbers, and in particular
any transition that may decrease the value of a counter below zero is disabled (unlike
in energy games where such a transition would be immediately winning for Player 1).
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So for VASS games, the objective consists only of a parity condition, since the energy
condition is trivially satisfied.

We formulate and solve our problems using a generalized notion of game configu-
rations, namely partial configurations, in which only a subset C of the counters may
be defined. A partial configuration γ denotes a (possibly infinite) set of concrete con-
figurations that are called instantiations of γ. A configuration γ′ is an instantiation of γ
if γ′ agrees with γ on the values of the counters in C while the values of counters out-
side C can be chosen freely in γ′. We declare a partial configuration to be winning (for
Player 0) if it has an instantiation that is winning. For each decision problem and each
set of counters C, we will consider the C-version of the problem where we reason about
configurations in which the counters in C are defined.

Previous Work. Two special cases of the general C-version are the abstract version
in which no counters are defined, and the concrete version in which all counters are
defined. In the energy semantics, the abstract version corresponds to the unknown ini-
tial credit problem for multidimensional energy parity games, which is coNP-complete
[6,7]. The concrete version corresponds to the fixed initial credit problem. For energy
games without the parity condition, the fixed initial credit problem was solved in [4] (al-
though it does not explicitly mention energy games but instead formulates the problem
as a zero-reachability objective for Player 1). It follows from [4] that the fixed initial
credit problem for d-dimensional energy games can be solved in d-EXPTIME (resp.
(d− 1)-EXPTIME for offsets encoded in unary) and even the upward-closed winning
sets can be computed. An EXPSPACE lower bound is derived by a reduction from Petri
net coverability. The subcase of one-dimensional energy parity games was considered
in [5], where both the unknown and fixed initial credit problems are decidable, and the
winning sets (i.e., the minimal required initial energy) can be computed. The assump-
tion of having just one dimension is an important restriction that significantly simplifies
the problem. This case is solved using an algorithm which is a generalization of the
classical algorithms of McNaughton [13] and Zielonka [16].

However, for general multidimensional energy parity games, computing the winning
sets was an open problem, mentioned, e.g., in [6].

In contrast, under the VASS semantics, all these integer game problems are shown to
be undecidable for dimensions≥ 2 in [1], even for simple safety/coverability objectives.
(The one-dimensional case is a special case of parity games on one-counter machines,
which is PSPACE-complete). A special subcase are single-sided VASS games, where
just Player 0 can modify counters while Player 1 can only change control-states. This
restriction makes the winning set for Player 0 upward-closed, unlike in general VASS

games. The paper [14] shows decidability of coverability objectives for single-sided
VASS games, using a standard backward fixpoint computation.

Our Contribution. First we show how instances of the single-sided VASS parity game
can be reduced to the multidimensional energy parity game, and vice-versa. I.e., energy
games correspond to the single-sided subcase of VASS games. Notice that, since parity
conditions are closed under complement, it is merely a convention that Player 0 (and
not Player 1) is the one that can change the counters.

Our main result is the decidability of single-sided VASS parity games for general
partial configurations, and thus in particular for the concrete and abstract versions
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described above. The winning set for Player 0 is upward-closed (wrt. the natural multi-
set ordering on configurations), and it can be computed (i.e., its finitely many minimal
elements). Our algorithm uses the Valk-Jantzen construction [15] and a technique sim-
ilar to Karp-Miller graphs, and finally reduces the problem to instances of the abstract
parity problem under the energy semantics, i.e., to the unknown initial credit problem
in multidimensional energy parity games, which is decidable by [7].

From the above connection between single-sided VASS parity games and multidi-
mensional energy parity games, it follows that the winning sets of multidimensional
energy parity games are also computable. I.e., one can compute the Pareto frontier of
the minimal initial energy credit vectors required to win the energy parity game. This
solves the problem left open in [6,7].

Our results imply further decidability results in the following two areas: semantic
equivalence checking and model-checking. Weak simulation preorder between a finite-
state system and a general VASS can be reduced to a parity game on a single-sided
VASS, and is therefore decidable. Combined with the previously known decidability of
the reverse direction [2], this implies decidability of weak simulation equivalence. This
contrasts with the undecidability of weak bisimulation equivalence between VASS and
finite-state systems [11]. The model-checking problem for VASS is decidable for many
linear-time temporal logics [10], but undecidable even for very restricted branching-
time logics [8]. We show the decidability of model-checking for a restricted class of
VASS with a large fragment of the modal µ-calculus. Namely we consider VASS where
some states do not perform any updates on the counters, and these states are used to
guard the for-all-successors modal operators in this fragment of the µ-calculus, allowing
us to reduce the model-checking problem to a parity game on single-sided VASS.

2 Integer Games
Preliminaries. We use N and Z to denote the sets of natural numbers (including 0)
and integers respectively. For a set A, we define |A| to be the cardinality of A. For a
function f : A �→ B from a set A to a set B, we use f [a← b] to denote the function f ′

such that f (a) = b and f ′(a′) = f (a′) if a′ = a. If f is partial, then f (a) =⊥means that
f is undefined for a. In particular f [a←⊥] makes the value of a undefined. We define
dom( f ) := {a| f (a) =⊥}.
Model. We assume a finite set C of counters. An integer game is a tuple G = 〈Q,T,κ〉
where Q is a finite set of states, T is a finite set of transitions, and κ : Q �→ {0,1,2, . . . ,k}
is a coloring function that assigns to each q ∈ Q a natural number in the interval [0..k]
for some pre-defined k. The set Q is partitioned into two sets Q0 (states of Player 0)
and Q1 (states of Player 1). A transition t ∈ T is a triple 〈q1,op,q2〉 where q1,q2 ∈ Q
are states and op is an operation of one of the following three forms (where c ∈ C is
a counter): (i) c++ increments the value of c by one; (ii) c- - decrements the value of c
by one; (iii) nop does not change the value of any counter. We define source(t) = q1,
target(t) = q2, and op(t) = op. We say that G is single-sided in case op = nop for all
transitions t ∈ T with source(t) ∈ Q1. In other words, in a single-sided game, Player
1 is not allowed to changes the values of the counters, but only the state.

Partial Configurations. A partial counter valuation ϑ : C �→Z is a partial function from
the set of counters to Z. We also write ϑ(c) =⊥ if c /∈ dom(ϑ). A partial configuration
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γ is a pair 〈q,ϑ〉 where q ∈ Q is a state and ϑ is a partial counter valuation. We will
also consider nonnegative partial configurations, where the partial counter valuation
takes values in N instead of Z. We define state(γ) := q, val(γ) := ϑ, and κ(γ) :=
κ(state(γ)). We generalize assignments from counter valuations to configurations by
defining 〈q,ϑ〉 [c← x] = 〈q,ϑ[c← x]〉. Similarly, for a configuration γ and c ∈ C we let
γ(c) := val(γ)(c), dom(γ) := dom(val(γ)) and |γ| := |dom(γ)|. For a set of counters
C ⊆ C , we define ΘC := {γ| dom(γ) =C}, i.e., it is the set of configurations in which
the defined counters are exactly those in C. We use ΓC to denote the restriction of ΘC

to nonnegative partial configurations. We partition ΘC into two sets ΘC
0 (configurations

belonging to Player 0) and ΘC
1 (configurations belonging to Player 1), such that γ ∈

ΘC
i iff dom(γ) = C and state(γ) ∈ Qi for i ∈ {0,1}. A configuration is concrete if

dom(γ) = C , i.e., γ ∈ΘC (the counter valuation val(γ) is defined for all counters); and
it is abstract if dom(γ) = /0, i.e., γ ∈Θ/0 (the counter valuation val(γ) is not defined for
any counter). In the sequel, we occasionally write Θ instead of ΘC , and Θi instead of ΘC

i
for i ∈ {0,1}. The same notations are defined over nonnegative partial configurations
with Γ, and ΓC

i and Γi for i∈ {0,1}. For a nonnegative partial configuration γ = 〈q,ϑ〉 ∈
Γ, and set of counters C ⊆ C we define the restriction of γ to C by γ′ = γ|C = 〈q′,ϑ′〉
where q′ = q and ϑ′(c) = ϑ(c) if c ∈C and ϑ′(c) =⊥ otherwise.

Energy Semantics. Under the energy semantics, an integer game induces a transition
relation −→E on the set of partial configurations as follows. For partial configurations
γ1 = 〈q1,ϑ1〉, γ2 = 〈q2,ϑ2〉, and a transition t = 〈q1,op,q2〉 ∈ T , we have γ1

t−→E γ2

if one of the following three cases is satisfied: (i) op = c++ and either both ϑ1(c) = ⊥
and ϑ2(c) = ⊥ or ϑ1(c) = ⊥, ϑ2(c) = ⊥ and ϑ2 = ϑ1[c← ϑ1(c)+ 1]; (ii) op = c- -,
and either both ϑ1(c) = ⊥ and ϑ2(c) = ⊥ or ϑ1(c) = ⊥, ϑ2(c) = ⊥ and ϑ2 = ϑ1[c←
ϑ1(c)− 1]; (iii) op = nop and ϑ2 = ϑ1. Hence we apply the operation of the transition
only if the relevant counter value is defined (otherwise, the counter remains undefined).
Notice that, for a partial configuration γ1 and a transition t, there is at most one γ2 with
γ1

t−→E γ2. If such a γ2 exists, we define t(γ1) := γ2; otherwise we define t(γ1) :=⊥. We
say that t is enabled at γ if t(γ) =⊥. We observe that, in the case of energy semantics, t
is not enabled only if state(γ) = source(t).

VASS Semantics. The difference between the energy and VASS semantics is that coun-
ters in the case of VASS range over the natural numbers (rather than the integers), i.e.
the VASS semantics will be interpreted over nonnegative partial configurations. Thus,
the transition relation −→V induced by an integer game G = 〈Q,T,κ〉 under the VASS

semantics differs from the one induced by the energy semantics in the sense that coun-
ters are not allowed to assume negative values. Hence −→V is the restriction of −→E
to nonnegative partial configurations. Here, a transition t = 〈q1,c- -,q2〉 ∈ T is enabled
from γ1 = 〈q1,ϑ1〉 only if ϑ1(c) > 0 or ϑ1(c) = ⊥. We assume without restriction that
at least one transition is enabled from each partial configuration (i.e., there are no dead-
locks) in the VASS semantics (and hence also in the energy semantics). Below, we use
sem ∈

{
E ,V

}
to distinguish the energy and VASS semantics.

Runs. A run ρ in semantics sem is an infinite sequence γ0
t1−→sem γ1

t2−→sem · · · of
transitions between concrete configurations. A path π in sem is a finite sequence

γ0
t1−→sem γ1

t2−→sem · · ·γn of transitions between concrete configurations. We say that
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ρ (resp. π) is a γ-run (resp. γ-path) if γ0 = γ. We define ρ(i) := γi and π(i) := γi. We as-
sume familiarity with the logic LTL. For an LTL formula φ we write ρ |=G φ to denote
that the run ρ in G satisfies φ. For instance, given a set β of concrete configurations, we
write ρ |=G �β to denote that there is an i with γi ∈ β (i.e., a member of β eventually
occurs along ρ); and write ρ |=G ��β to denote that there are infinitely many i with
γi ∈ β (i.e., members of β occur infinitely often along ρ).

Strategies. A strategy of Player i ∈ {0,1} in sem (or simply an i-strategy in sem) σi is

a mapping that assigns to each path π = γ0
t1−→sem γ1

t2−→sem · · ·γn with state(γn) ∈
Qi, a transition t = σi(π) with t(γn) = ⊥ in sem. We use Σsem

i to denote the sets of
i-strategies in sem. Given a concrete configuration γ, σ0 ∈ Σsem

0 , and σ1 ∈ Σsem
1 , we

define run(γ,σ0,σ1) to be the unique run γ0
t1−→sem γ1

t2−→sem · · · such that (i) γ0 = γ,

(ii) ti+1 = σ0(γ0
t1−→sem γ1

t2−→sem · · ·γi) if state(γi)∈Q0, and (iii) ti+1 = σ1(γ0
t1−→sem

γ1
t2−→sem · · ·γi) if state(γi)∈Q1. For σi ∈Σsem

i , we write [i,σi,sem] : γ |=G φ to denote
that run(γ,σi,σ1−i) |=G φ for all σ1−i ∈ Σsem

1−i. In other words, Player i has a winning
strategy, namely σi, which ensures that φ will be satisfied regardless of the strategy
chosen by Player 1− i. We write [i,sem] : γ |=G φ to denote that [i,σi,sem] : γ |=G φ for
some σi ∈ Σsem

i .

Instantiations. Two nonnegative partial configurations γ1,γ2 are said to be disjoint if
(i) state(γ1) = state(γ2), and (ii) dom(γ1)∩ dom(γ2) = /0 (notice that we require
the states to be equal). For a set of counters C ⊆ C , and disjoint partial configura-
tions γ1,γ2, we say that γ2 is a C-complement of γ1 if dom(γ1)∪ dom(γ2) = C, i.e.,
dom(γ1) and dom(γ2) form a partitioning of the set C. If γ1 and γ2 are disjoint then
we define γ1⊕ γ2 to be the nonnegative partial configuration γ := 〈q,ϑ〉 such that q :=
state(γ1) = state(γ2), ϑ(c) := val(γ1) (c) if val(γ1)(c) =⊥, ϑ(c) := val(γ2)(c)
if val(γ2) (c) = ⊥, and ϑ(c) := ⊥ if both val(γ1)(c) = ⊥ and val(γ2) (c) = ⊥. In
such a case, we say that γ is a C-instantiation of γ1. For a nonnegative partial config-
uration γ we write �γ�C to denote the set of C-instantiations of γ. We will consider the
special case where C = C . In particular, we say that γ2 is a complement of γ1 if γ2 is
a C -complement of γ1, i.e., state(γ2) = state(γ1) and dom(γ1) = C − dom(γ2). We
use γ to denote the set of complements of γ. If γ2 ∈ γ1, we say that γ = γ1⊕ γ2 is an
instantiation of γ1. Notice that γ in such a case is concrete. For a nonnegative partial
configuration γ we write �γ� to denote the set of instantiations of γ. We observe that
�γ� = �γ�C and that �γ� = {γ} for any concrete nonnegative configuration γ.

Ordering. For nonnegative partial configurations γ1,γ2, we write γ1∼ γ2 if state(γ1)=
state(γ2) and dom(γ1) = dom(γ2). We write γ1 � γ2 if state(γ1) = state(γ2)
and dom(γ1) ⊆ dom(γ2). For nonnegative partial configurations γ1 ∼ γ2, we write
γ1 � γ2 to denote that state(γ1) = state(γ2) and val(γ1)(c) ≤ val(γ2)(c) for all
c ∈ dom(γ1) = dom(γ2). For a nonnegative partial configuration γ, we define γ ↑:=
{γ′| γ� γ′} to be the upward closure of γ, and define γ↓:= {γ′| γ′ � γ} to be the down-
ward closure of γ. Notice that γ↑= γ↓= {γ} for any abstract configuration γ. For a set
β⊆ ΓC of nonnegative partial configurations, let β↑:=∪γ∈βγ↑. We say that β is upward-
closed if β ↑= β. For an upward-closed set β ⊆ ΓC, we use min(β) to denote the (by
Dickson’s Lemma unique and finite) set of minimal elements of β.
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Winning Sets of Partial Configurations. For a nonnegative partial configuration
γ, we write [i,sem] : γ |=G φ to denote that ∃γ′ ∈ �γ� .[i,sem] : γ′ |=G φ, i.e.,
Player i is winning from some instantiation γ′ of γ. For a set C ⊆ C of coun-
ters, we define W [G ,sem, i,C](φ) :=

{
γ ∈ ΓC| [sem, i] : γ |=G φ

}
. If W [G ,sem, i,C](φ)

is upward-closed, we define the Pareto frontier as Pareto[G ,sem, i,C](φ) :=
min(W [G ,sem, i,C](φ)).

Properties. We show some useful properties of the ordering on nonnegative partial
configurations. Note that for nonnegative partial configurations, we will not make dis-
tinctions between the energy semantics and the VASS semantics; this is due to the fact
that in nonnegative partial configurations and in their instantiations we only consider
positive values for the counters. For the energy semantics, as we shall see, this will not
be a problem since we will consider winning runs where the counter never goes below 0.
We now show monotonicity and (under some conditions) “reverse monotonicity” of the
transition relation wrt. �. We write γ1 −→sem γ2 if there exists t such that γ1

t−→sem γ2.

Lemma 1. Let γ1, γ2, and γ3 be nonnegative partial configurations. If (i) γ1 −→V γ2,
and (ii) γ1 � γ3, then there is a γ4 such that γ3 −→V γ4 and γ2 � γ4. Furthermore, if (i)
γ1 −→V γ2, and (ii) γ3 � γ1, and (iii) G is single-sided and (iv) γ1 ∈ Γ1, then there is a
γ4 such that γ3 −→V γ4 and γ4 � γ2.

We consider a version of the Valk-Jantzen lemma [15], expressed in our terminology.

Lemma 2. [15] Let C ⊆ C and let U ⊆ ΓC be upward-closed. Then, min(U) is com-
putable if and only if, for any nonnegative partial configuration γ with dom(γ)⊆C, we
can decide whether �γ�C ∩U = /0.

3 Game Problems

Here we consider the parity winning condition for the integer games defined in the
previous section. First we establish a correspondence between the VASS semantics when
the underlying integer game is single-sided, and the energy semantics in the general
case. We will show how instances of the single-sided VASS parity game can be reduced
to the energy parity game, and vice-versa. Figure 1 depicts a summary of our results. For
either semantics, an instance of the problem consists of an integer game G and a partial
configuration γ. For a given set of counters C⊆ C , we will consider the C-version of the
problem where we assume that dom(γ) =C. In particular, we will consider two special
cases: (i) the abstract version in which we assume that γ is abstract (i.e., dom(γ) = /0),
and (ii) the concrete version in which we assume that γ is concrete (i.e., dom(γ) = C ).
The abstract version of a problem corresponds to the unknown initial credit problem
[6,7], while the concrete one corresponds to deciding if a given initial credit is sufficient
or, more generally, computing the Pareto frontier (left open in [6,7]).

Winning Conditions. Assume an integer game G = 〈Q,T,κ〉 where κ : Q �→
{0,1,2, . . . ,k}. For a partial configuration γ and i : 0 ≤ i ≤ k, the relation γ |=G
(color = i) holds if κ(state(γ)) = i. The formula simply checks the color of
the state of γ. The formula γ |=G neg holds if val(γ) (c) ≥ 0 for all c ∈ dom(γ).
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The formula states that the values of all counters are nonnegative in γ. For i : 0 ≤
i ≤ k, the predicate even(i) holds if i is even. Define the path formula Parity :=∨

(0≤i≤k)∧even(i)

(
(��(color= i))∧

(∧
i< j≤k��¬(color= j)

))
. The formula states

that the highest color that appears infinitely often along the path is even.

Abstract Energy
decidable [7]

C-version
Single-Sided VASS

decidable, Corollary 2

Concrete
Single-Sided VASS

decidable

C-version Energy
decidable, Corollary 3

Concrete Energy
decidable

Pareto
Single-Sided VASS

computable, Theorem 3

Pareto Energy
computable, Theorem 4

Algorithm 1

Lemma 5Lemma 4

Trivial

Trivial

Section 4
Section 4

Lemma 5

Fig. 1. Problems considered in the paper and their relations.
For each property, we state the lemma that show its de-
cidability/computability. The arrows show the reductions of
problem instances that we show in the paper.

Energy Parity. Given an
integer game G and a par-
tial configuration γ, we
ask whether [0,E ] : γ |=G
Parity ∧ (�neg), i.e.,
whether Player 0 can force a
run in the energy semantics
where the parity condition is
satisfied and at the same time
the counters remain nonneg-
ative. The abstract version
of this problem is equivalent
to the unknown initial credit
problem in classical energy
parity games [6,7], since it
amounts to asking for the
existence of a threshold for
the initial counter values from
which Player 0 can win. The nonnegativity objective (�neg) justifies our restriction to
nonnegative partial configurations in our definition of the instantiations and hence of
the winning sets.

Theorem 1. [7] The abstract energy parity problem is decidable.

The winning set W [G ,E ,0,C](Parity∧�neg) is upward-closed for C ⊆ C . Intu-
itively, if Player 0 can win the game with a certain value for the counters, then any
higher value for these counters also allows him to win the game with the same strategy.
This is because both the possible moves of Player 1 and the colors of configurations
depend only on the control-states.

Lemma 3. For any C ⊆ C , the set W [G ,E ,0,C](Parity∧�neg) is upward-closed.

Since this winning set is upward-closed, it follows from Dickson’s Lemma that it
has finitely many minimal elements. These minimal elements describe the Pareto
frontier of the minimal initial credit needed to win the game. In the sequel
we will show how to compute this set Pareto[G ,E ,0,C](Parity∧�neg)) :=
min(W [G ,E ,0,C](Parity∧�neg)); cf. Theorem 4.

VASS Parity. Given an integer game G and a nonnegative partial configuration γ, we
ask whether [0,V ] : γ |=G Parity, i.e., whether Player 0 can force a run in the VASS

semantics where the parity condition is satisfied. (The condition �neg is always triv-
ially satisfied in VASS.) In general, this problem is undecidable as shown in [1], even
for simple coverability objectives instead of parity objectives.
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Theorem 2. [1] The VASS Parity Problem is undecidable.

We will show that decidability of the VASS parity problem is regained under the as-
sumption that G is single-sided. In [14] it was already shown that, for a single-sided
VASS game with reachability objectives, it is possible to compute the set of winning
configurations. However, the proof for parity objectives is much more involved.

Correspondence of Single-Sided VASS Games and Energy Games. We show that single-
sided VASS parity games can be reduced to energy parity games, and vice-versa. The
following lemma shows the direction from VASS to energy.

Lemma 4. Let G be a single-sided integer game and let γ be a nonnegative partial
configuration. Then [0,V ] : γ |=G Parity iff [0,E ] : γ |=G Parity∧�neg.

Hence for a single-sided G and any set C ⊆ C , we have W [G ,V ,0,C](Parity) =
W [G ,E ,0,C](Parity∧�neg). Consequently, using Lemma 3 and Theorem 1, we ob-
tain the following corollary.

Corollary 1. Let G be single-sided and C ⊆ C .

1. W [G ,V ,0,C](Parity) is upward-closed.
2. The C-version single-sided VASS parity problem is reducible to the C-version en-

ergy parity problem.
3. The abstract single-sided VASS parity problem (i.e., where C = /0) is decidable.

The following lemma shows the reverse reduction from energy parity games to single-
sided VASS parity games.

Lemma 5. Given an integer game G = 〈Q,T,κ〉, one can construct a single-sided in-
teger game G ′ = 〈Q′,T ′,κ′〉 with Q ⊆ Q′ such that [0,E ] : γ |=G Parity∧�neg iff
[0,V ] : γ |=G ′ Parity for every nonnegative partial configuration γ of G .

Proof sketch. Since G ′ needs to be single-sided, Player 1 cannot change the counters.
Thus the construction forces Player 0 to simulate the moves of Player 1. Whenever a
counter drops below zero in G (and thus Player 0 loses), Player 0 cannot perform this
simulation in G ′ and is forced to go to a losing state instead. ��
Computability Results. The following theorem (shown in Section 4) states our main
computability result. For single-sided VASS parity games, the minimal elements of the
winning set W [G ,V ,0,C](Parity) (i.e., the Pareto frontier) are computable.

Theorem 3. If G is single-sided then Pareto[G ,V ,0,C](Parity) is computable.

In particular, this implies decidability.

Corollary 2. For any set of counters C ⊆ C , the C-version single-sided VASS parity
problem is decidable.

From Theorem 3 and Lemma 5 we obtain the computability of the Pareto frontier of the
minimal initial credit needed to win general energy parity games.

Theorem 4. Pareto[G ,E ,0,C](Parity∧�neg) is computable for any game G .

Corollary 3. The C-version energy parity problem is decidable.
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4 Solving Single-Sided VASS Parity Games (Proof of Theorem 3)

Consider a single-sided integer game G = 〈Q,T,κ〉 and a set C ⊆ C of counters. We
will show how to compute the set Pareto[G ,V ,0,C](Parity). We reduce the problem
of computing the Pareto frontier in the single-sided VASS parity game to solving the
abstract energy parity game problem, which is decidable by Theorem 1.

We use induction on k = |C|. As we shall see, the base case is straightforward. We
perform the induction step in two phases. First we show that, under the induction hy-
pothesis, we can reduce the problem of computing the Pareto frontier to the problem of
solving the C-version single-sided VASS parity problem (i.e., we need only to consider
individual nonnegative partial configurations in ΓC). In the second phase, we introduce
an algorithm that translates the latter problem to the abstract energy parity problem.

Base Case. Assume that C = /0. In this case we are considering the ab-
stract single-sided VASS parity problem. Recall that γ ↑= {γ} for any γ
with dom(γ) = /0. Since C = /0, it follows that Pareto[G ,V ,0,C](Parity) ={

γ| (dom(γ) = /0)∧
(
[0,V ] : γ |=G Parity

)}
. In other words, computing the Pareto

frontier in this case reduces to solving the abstract single-sided VASS parity problem,
which is decidable by Corollary 1.

From Pareto Sets to VASS Parity. Assuming the induction hypothesis, we reduce the
problem of computing the set Pareto[G ,V ,0,C](Parity) to the C-version single-
sided VASS parity problem, i.e., the problem of checking whether [0,V ] : γ |=G Parity

for some γ ∈ ΓC when the underlying integer game is single-sided. To do that, we will
instantiate the Valk-Jantzen lemma as follows. We instantiate U ⊆ ΓC in Lemma 2 to
be W [G ,V ,0,C](Parity) (this set is upward-closed by Corollary 1 since G is single-
sided). Take any nonnegative partial configuration γ with dom(γ) ⊆ C. We consider
two cases. First, if dom(γ) = C, then we are dealing with the C-version single-sided
VASS parity game which will show how to solve in the sequel. Second, consider the
case where dom(γ) =C′ ⊂C. By the induction hypothesis, we can compute the (finite)
set Pareto[G ,V ,0,C′](Parity) = min(W [G ,V ,0,C′](Parity)). Then to solve this
case, we use the following lemma.

Lemma 6. For all nonnegative partial configurations γ such that dom(γ) =C′ ⊂C, we
have �γ�C ∩W [G ,V ,0,C](Parity) = /0 iff γ ∈W [G ,V ,0,C′](Parity).

Hence checking �γ�C ∩ W [G ,V ,0,C](Parity) = /0 amounts to simply compar-
ing γ with the elements of the finite set Pareto[G ,V ,0,C′](Parity), because
W [G ,V ,0,C′](Parity) is upward-closed by Corollary 1.

From VASS Parity to Abstract Energy Parity. We introduce an algorithm that uses the
induction hypothesis to translate an instance of the C-version single-sided VASS parity
problem to an equivalent instance of the abstract energy parity problem.

The following definition and lemma formalize some consequences of the induction
hypothesis. First we define a relation that allows us to directly classify some nonnega-
tive partial configurations as winning for Player 1 (resp. Player 0).

Definition 1. Consider a nonnegative partial configuration γ and a set of nonnegative
partial configurations β. We write β� γ if: (i) for each γ̂ ∈ β, dom(γ̂) ⊆ C and |γ| =
|γ̂|+ 1, and (ii) for each c ∈ dom(γ) there is a γ̂ ∈ β such that γ̂� γ[c←⊥].
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Lemma 7. Let β=
⋃

C′⊆C,|C′|=|C|−1 Pareto[G ,V ,0,C′](Parity) be the Pareto frontier
of minimal Player 0 winning nonnegative partial configurations with one counter in C
undefined. Let {ci, . . . ,c j}= C −C be the counters outside C.

1. For every γ̂ ∈ β with {c} = C− dom(γ̂) there exists a minimal finite number v(γ̂)
s.t. �γ̂[c← v(γ̂)]�∩W [G ,V ,0,C ](Parity) = /0.

2. For every γ̂ ∈ β there is a number u(γ̂) s.t. γ̂[c← v(γ̂)][ci ← u(γ̂), . . . ,c j ← u(γ̂)] ∈
W [G ,V ,0,C ](Parity), i.e., assigning value u(γ̂) to counters outside C is suffi-
cient to make the nonnegative configuration winning for Player 0.

3. If γ ∈ ΓC is a Player 0 winning nonnegative partial configuration, i.e., �γ� ∩
W [G ,V ,0,C ](Parity) = /0, then β� γ.

The third part of this lemma implies that if ¬(β� γ) then we can directly conclude that
γ is not winning for Player 0 (and thus winning for Player 1) in the parity game.

Now we are ready to present the algorithm (Algorithm 1).

Input and output of the algorithm. The algorithm inputs a single-sided integer game
G = 〈Q,T,κ〉, and a nonnegative partial configuration γ where dom(γ) = C. To check
whether [0,V ] : γ |=G Parity, it constructs an instance of the abstract energy par-
ity problem. This instance is defined by a new integer game Gout = 〈Qout,Tout,κout〉
with counters in C −C, and a nonnegative partial configuration γout. Since we are
considering the abstract version of the problem, the configuration γout is of the form
γout = 〈qout,ϑout〉 where dom(ϑout) = /0. The latter property means that γout is uniquely
determined by the state qout (all counter values are undefined). Lemma 9 relates G with
the newly constructed Gout.

Algorithm 1. Building an instance of the abstract energy parity problem.
Input: G = 〈Q,T,κ〉: Single-Sided Integer Game; γ ∈ ΓC with |C|= k > 0.
Output: Gout = 〈Qout,T out,κout〉: integer game;

qout ∈Qout; γout = 〈qout,ϑout〉 where dom (ϑout) = /0; λ : Qout ∪Tout �→ ΓC ∪T
1 β←⋃

(C′⊆C)∧|C′|=|C|−1Pareto[G ,V ,0,C ′ ](Parity) ;
2 T out ← /0; new(qout); κ(qout)← κ(γ); λ(qout)← γ; Qout ←{qout};
3 if λ(qout) ∈ Γ0 then Qout

0 ←{qout}; Qout
1 ← /0 else Qout

1 ←{qout}; Qout
0 ← /0 ;

4 ToExplore←{qout} ;
5 while ToExplore = /0 do
6 Pick and remove a q ∈ ToExplore;
7 if ¬(β�λ(q)) then
8 κout (q)← 1; T out ← T out ∪{〈q,nop,q〉}
9 else if ∃q′.(q′,q) ∈ (T out)∗ ∧ (λ(q′)≺ λ(q)) then

10 κout (q)← 0; T out ← T out ∪{〈q,nop,q〉}
11 else for each t ∈ T with t(λ(q)) =⊥ do
12 if ∃q′.(q′,q) ∈ (T out)∗ .λ(q′) = t(λ(q)) then
13 T out ← T out ∪{〈q,op(t) ,q′〉}; λ(〈q,op (t) ,q′〉)← t

14 else
15 new(q′); κ(q′)← κ(t(λ(q))); λ(q′)← t(λ(q));
16 if λ(q′) ∈ Γ0 then Qout

0 ← Qout
0 ∪{q′} else Qout

1 ← Qout
1 ∪{q′} ;

17 T out ← T out ∪{〈q,op(t) ,q′〉}; λ(〈q,op (t) ,q′ 〉)← t;
18 ToExplore← ToExplore∪{q′};
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Operation of the algorithm. The algorithm performs a forward analysis similar to the
classical Karp-Miller algorithm for Petri nets. We start with a given nonnegative par-
tial configuration, explore its successors, create loops when previously visited config-
urations are repeated and define a special operation for the case when configurations
strictly increase. The algorithm builds the graph of the game Gout successively (i.e., the
set of states Qout, the set of transitions T out, and the coloring of states κ). Additionally,
for bookkeeping purposes inside the algorithm and for reasoning about the correctness
of the algorithm, we define a labeling function λ on the set of states and transitions in
Gout such that each state in Gout is labeled by a nonnegative partial configuration in ΓC,
and each transition in Gout is labeled by a transition in G .

The algorithm first computes the Pareto frontier Pareto[G ,V ,0,C′](Parity) for all
counter sets C′ ⊆ C with |C′|= |C|− 1. This is possible by the induction hypothesis. It
stores the union of all these sets in β (line 1). At line 2, the algorithms initializes the
set of transitions T out to be empty, creates the first state qout, defines its coloring to be
the same as that of the state of the input nonnegative partial configuration γ, labels it by
γ, and then adds it to the set of states Qout. At line 3 it adds qout to the set of states of
Player 0 or Player 1 (depending on where γ belongs), and at line 4 it adds qout to the
set ToExplore. The latter contains the set of states that have been created but not yet
analyzed by the algorithm.

After the initialization phase, the algorithm starts iterating the while-loop starting at
line 5. During each iteration, it picks and removes a new state q from the set ToExplore
(line 6). First, it checks two special conditions under which the game is made immedi-
ately losing (resp. winning) for Player 0.

Condition 1: If ¬(β � λ(q)) (line 7), then we know by Lemma 7 (item 3) that the
nonnegative partial configuration λ(q) is not winning for Player 0 in G .

Therefore, we make the state q losing for Player 0 in Gout. To do that, we change the
color of q to 1 (any odd color will do), and add a self-loop to q. Any continuation of a
run from q is then losing for Player 0 in Gout.

Condition 2: If Condition 1 did not hold then the algorithm checks (at line 9) whether
there is a predecessor q′ of q in Gout with a label λ(q′) that is strictly smaller than the
label λ(q) of q, i.e., λ(q′)≺ λ(q). (Note that we are not comparing q to arbitrary other
states in Gout, but only to predecessors.) If that is the case, then the state q is made
winning for Player 0 in Gout. To do that, we change the color of q to 0 (any even color
will do), and add a self-loop to q. The intuition for making q winning for Player 0 is as
follows. Since λ(q′)≺ λ(q), the path from λ(q′) to λ(q) increases the value of at least
one of the defined counters (those in C), and will not decrease the other counters in C
(though it might have a negative effect on the undefined counters in C −C). Thus, if a
run in G iterates this path sufficiently many times, the value of at least one counter in C
will be pumped and becomes sufficiently high to allow Player 0 to win the parity game
on G , provided that the counters in C −C are initially instantiated with sufficiently high
values. This follows from the property β�λ(q) and Lemma 7 (items 1 and 2).

If none of the tests for Condition1/Condition2 at lines 7 and 9 succeeds, the algo-
rithm continues expanding the graph of Gout from q. It generates all successors of q by
applying each transition t ∈ T in G to the label λ(q) of q (line 11). If the result t(λ(q))
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is defined then there are two possible cases. The first case occurs if we have previously
encountered (and added to Qout) a state q′ whose label equals t(λ(q)) (line 12). Then
we add a transition from q back to q′ in Gout, where the operation of the new transition
is the same operation as that of t, and define the label of the new transition to be t. Oth-
erwise (line 15), we create a new state q′, label it with the nonnegative configuration
t(λ(q)) and assign it the same color as t(λ(q)). At line 16 qout is added to the set of
states of Player 0 or Player 1 (depending on where γ belongs). We add a new transition
between q and q′ with the same operation as t. The new transition is labeled with t.
Finally, we add the new state q′ to the set of states to be explored.

Lemma 8. Algorithm 1 will always terminate.

Lemma 8 implies that the integer game Gout is finite (and hence well-defined). The
following lemma shows the relation between the input and output games G ,Gout.

Lemma 9. [0,V ] : γ |=G Parity iff [0,E ] : γout |=Gout Parity∧�neg .

Proof sketch. The left to right implication is easy. Given a Player 0 winning strategy in
G , one can construct a winning strategy in Gout that uses the same transitions, modulo
the labeling function λ(). The condition �neg in Gout is satisfied since the configura-
tions in G are always nonnegative and the parity condition is satisfied since the colors
seen in corresponding plays in Gout and G are the same.

For the right to left implication we consider a Player 0 winning strategy σ0 in Gout

and construct a winning strategy σ′0 in G . The idea is that a play π in G induces a
play π′ in Gout by using the same sequence of transitions, but removing all so-called
pumping sequences, which are subsequences that end in Condition 2. Then σ′0 acts on
history π like σ0 on history π′. For a play according to σ′0 there are two cases. Either it
will eventually reach a configuration that is sufficiently large (relative to β) such that a
winning strategy is known by induction hypothesis. Otherwise it contains only finitely
many pumping sequences and an infinite suffix of it coincides with an infinite suffix of
a play according to σ0 in Gout. Thus it sees the same colors and satisfies Parity. ��

Since γout is abstract and the abstract energy parity problem is decidable (Theorem 1)
we obtain Theorem 3.

The termination proof in Lemma 8 relies on Dickson’s Lemma, and thus there is
no elementary upper bound on the complexity of Algorithm 1 or on the size of the
constructed energy game Gout. The algorithm in [4] for the fixed initial credit problem
in pure energy games without the parity condition runs in d-exponential time (resp.
(d− 1)-exponential time for offsets encoded in unary) for dimension d, and is thus not
elementary either. As noted in [4], the best known lower bound is EXPSPACE hardness,
easily obtained via a reduction from the control-state reachability (i.e., coverability)
problem for Petri nets.

5 Applications to Other Problems

5.1 Weak Simulation Preorder between VASS and Finite-State Systems

Weak simulation preorder [9] is a semantic preorder on the states of labeled transition
graphs, which can be characterized by weak simulation games. A configuration of the



118 P.A. Abdulla et al.

game is given by a pair of states (q1,q0). In every round of the game, Player 1 chooses a
labeled step q1

a−→ q′1 for some label a. Then Player 0 must respond by a move which is

either of the form q0
τ∗aτ∗−→ q′0 if a = τ, or of the form q0

τ∗−→ q′0 if a= τ (the special label τ
is used to model internal transitions). The game continues from configuration (q′1,q

′
0).

A player wins if the other player cannot move and Player 0 wins every infinite play.
One says that q0 weakly simulates q1 iff Player 0 has a winning strategy in the weak
simulation game from (q1,q0). States in different transition systems can be compared
by putting them side-by-side and considering them as a single transition system.

We use 〈Q,T,Σ,λ〉 to denote a labeled VASS where the states and transitions are de-
fined as in Section 2, Σ is a finite set of labels and λ : T �→ Σ assigns labels to transitions.

It was shown in [2] that it is decidable whether a finite-state labeled transition system
weakly simulates a labeled VASS. However, the decidability of the reverse direction was

open. (The problem is that the weak
τ∗aτ∗−→ moves in the VASS make the weak simulation

game infinitely branching.) We now show that it is also decidable whether a labeled
VASS weakly simulates a finite-state labeled transition system. In particular this implies
that weak simulation equivalence between a labeled VASS and a finite-state labeled tran-
sition system is decidable. This is in contrast to the undecidability of weak bisimulation
equivalence between VASS and finite-state systems [11].

Theorem 5. It is decidable whether a labeled VASS weakly simulates a finite-state la-
beled transition system.

Proof sketch. Given a labeled VASS and a finite-state labeled transition system, one
constructs a single-sided VASS parity game s.t. the VASS weakly simulates the finite
system iff Player 0 wins the parity game. The idea is to take a controlled product of the
finite system and the VASS s.t. every round of the weak simulation game is encoded by
a single move of Player 1 followed by an arbitrarily long sequence of moves by Player
0. The move of Player 1 does not change the counters, since it encodes a move in
the finite system, and thus the game is single-sided. Moreover, one enforces that every
sequence of consecutive moves by Player 0 is finite (though it can be arbitrarily long),
by assigning an odd color to Player 0 states and a higher even color to Player 1 states.

5.2 µ-Calculus Model Checking VASS

While model checking VASS with linear-time temporal logics (like LTL and linear-time
µ-calculus) is decidable [8,10], model checking VASS with most branching-time logics
(like EF, EG, CTL and the modal µ-calculus) is undecidable [8]. However, we show
that Theorem 3 yields the decidability of model checking single-sided VASS with a
guarded fragment of the modal µ-calculus. We consider a VASS 〈Q,T 〉 where the states,
transitions and semantics are defined as in Section 2, and reuse the notion of partial
configurations and the transition relation defined for the VASS semantics on integer
games. We specify properties on such VASS in the positive µ-calculus Lpos

µ whose atomic
propositions q refer to control-states q ∈ Q of the input VASS.

The syntax of the positive µ-calculus Lpos
µ is given by the following grammar: φ ::=

q | X | φ∧ φ | φ∨ φ | �φ | �φ | µX .φ | νX .φ where q ∈ Q and X belongs to
a countable set of variables X . The semantics of Lpos

µ is defined as usual (see [3]). To
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each closed formula φ in Lpos
µ (i.e., without free variables) it assigns a subset of concrete

configurations �φ�.
The model-checking problem of VASS with Lpos

µ can then be defined as follows.
Given a VASS S = 〈Q,T 〉, a closed formula φ of Lpos

µ and an initial configuration γ0

of S , do we have γ0 ∈ �φ�? If the answer is yes, we will write S ,γ0 |= φ. The more
general global model-checking problem is to compute the set �φ� of configurations that
satisfy the formula. The general unrestricted version of this problem is undecidable.

Theorem 6. [8] The model-checking problem of VASS with Lpos
µ is undecidable.

One way to solve the µ-calculus model-checking problem for a given Kripke structure
is to encode the problem into a parity game [12]. The idea is to construct a parity
game whose states are pairs, where the first component is a state of the structure and
the second component is a subformula of the given µ-calculus formula. States of the
form 〈q,�φ〉 or 〈q,φ∧ψ〉 belong to Player 1 and the remainder belong to Player 0. The
colors are assigned to reflect the nesting of least and greatest fixpoints. We can adapt
this construction to our context by building an integer game from a formula in Lpos

µ and
a VASS S , as stated by the next lemma.

Lemma 10. Let S be a VASS, γ0 a concrete configuration of S and φ a closed formula in
Lpos

µ . One can construct an integer game G(S ,φ) and an initial concrete configuration
γ′0 such that [0,V ] : γ′0 |=G(S ,φ) Parity if and only if S ,γ0 |= φ.

Now we show that, under certain restrictions on the considered VASS and on the formula
from Lpos

µ , the constructed integer game G(S ,φ) is single-sided, and hence we obtain the
decidability of the model-checking problem from Theorem 3. First, we reuse the notion
of single-sided games from Section 2 in the context of VASS, by saying that a VASS

S = 〈Q,T 〉 is single-sided iff there is a partition of the set of states Q into two sets Q0

and Q1 such that op = nop for all transitions t ∈ T with source(t) ∈ Q1. The guarded
fragment Lsv

µ of Lpos
µ for single-sided VASS is then defined by guarding the � operator

with a predicate that enforces control-states in Q1. Formally, the syntax of Lsv
µ is given

by the following grammar: φ ::= q | X | φ∧φ | φ∨φ | �φ | Q1∧�φ | µX .φ | νX .φ,
where Q1 stands for the formula

∨
q∈Q1

q. By analyzing the construction of Lemma 10
in this restricted case, we obtain the following lemma.

Lemma 11. If S is a single-sided VASS and φ∈ Lsv
µ then the game G(S ,φ) is equivalent

to a single-sided game.

By combining the results of the last two lemmas with Corollary 1, Theorem 3 and
Corollary 2, we get the following result on model checking single-sided VASS.

Theorem 7.

1. Model checking Lsv
µ over single-sided VASS is decidable.

2. If S is a single-sided VASS and φ is a formula of Lsv
µ then �φ� is upward-closed and

its set of minimal elements is computable.
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6 Conclusion and Outlook

We have established a connection between multidimensional energy games and single-
sided VASS games. Thus our algorithm to compute winning sets in VASS parity games
can also be used to compute the minimal initial credit needed to win multidimensional
energy parity games, i.e., the Pareto frontier.

It is possible to extend our results to integer parity games with a mixed semantics,
where a subset of the counters follow the energy semantics and the rest follow the VASS

semantics. If such a mixed parity game is single-sided w.r.t. the VASS counters (but not
necessarily w.r.t. the energy counters) then it can be reduced to a single-sided VASS

parity game by our construction in Section 3. The winning set of the derived single-
sided VASS parity game can then be computed with the algorithm in Section 4.
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Abstract. Pushdown systems (PDSs) model single-thread recursive pro-
grams, and well-structured transition systems (WSTSs), such as vec-
tor addition systems, are useful to represent non-recursive multi-thread
programs. Combining these two ideas, our goal is to investigate well-
structured pushdown systems (WSPDSs), pushdown systems with well-
quasi-ordered control states and stack alphabet.
This paper focuses on subclasses of WSPDSs, in which the cover-

ability becomes decidable. We apply WSTS-like techniques on classical
P-automata. A Post∗-automata (resp. Pre∗-automata) construction is
combined with Karp-Miller acceleration (resp. ideal representation) to
characterize the set of successors (resp. predecessors) of given configu-
rations. As examples, we show that the coverability is decidable for re-
cursive vector addition system with states, multi-set pushdown systems,
and a WSPDS with finite control states and well-quasi-ordered stack
alphabet.

1 Introduction

There are two directions of infinite (discrete) state systems. A pushdown system
(PDS) consists of finite control states and finite stack alphabet, where a stack
stores the context. It is often used to models single-thread recursive programs.A
well-structured transition system (WSTS) [1,10] consists of a well-quasi-ordered
set of states. A vector addition system (VAS, or Petri Net) is its typical example.
It often works for modeling dynamic thread creation of multi-thread program [2].
Our naive motivation comes from what happens when we combine them as a
general framework for modeling recursive multi-thread programs.

A 3-thread boolean-valued recursive program with synchronization is enough
to encode Post-correspondence-problem [19]. Thus, its reachability is undecid-
able. There are several decidable subclasses, which are typically reduced to single
stack PDSs with infinite control states and stack alphabet.

– Restrict the number of context switching (bounded reachability): Context-
bounded concurrent pushdown systems [18], and their extensions with dy-
namic thread creation [2].

– Restrict interleaves among stack operations: Multi-set pushdown systems
(Multi-set PDSs) to model multi-thread asynchronous programs [20,13], and
Recursive Vector Addition System with States (RVASS) to model multi-
thread programs with fork/join synchronizations [3].
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A popular decidable property of ordinary PDSs is the configuration reachability,
i.e., whether a target configuration is reachable from an initial configuration.
A P-automaton construction [9,4,7] is its classical technique such that a Post∗

automaton accepts the set of successors of an initial configuration, and a Pre∗

automaton accepts the set of predecessors of a target configuration.
A popular decidable property of WSTSs is coverability, i.e., whether an initial

configuration reaches to that covers a target configuration. There are forward
and backward techniques. As the former, Karp-Miller acceleration [8] for VASs
is well-known, which was generalized in [11,12]. As the latter, an ideal (i.e., an
upward closed set) representation is immediate [1,10], though less efficient. Note
that the reachability of WSTSs is not easy. For instance, the reachability of VASs
stays decidable, but it requires deep insight on Presburger arithmetic [16,15].

Our ultimate goal is to study well-structured pushdown systems (WSPDSs),
pushdown systems with well-quasi-ordered control states and stack alphabet.
This paper focuses on subclasses of WSPDSs, in which the coverability becomes
decidable. We apply WSTS-like techniques on classical P-automata. A Post∗-
automata (resp. Pre∗-automata) construction is combined with Karp-Miller ac-
celeration (resp. ideal representation) to characterize the set of successors (resp.
predecessors) of given configurations. As examples, we show that the coverabil-
ity is decidable for RVASSs, Multi-set PDSs, and a WSPDS with finite control
states and WQO stack alphabet. The first one extends the decidability of the
state reachability of RVASSs [3] to the coverability, and the second one relaxes
finite stack alphabet of Multi-set PDSs [20,13] to being well-quasi-ordered.

Related Work

Combining PDSs and VASs is not new. Process rewrite system (PRS) [17] is a
pioneer work on such combination. A PRS is a(n AC) ground term rewriting
system, consisting of the sequential composition “.”, the parallel composition
“|| ”, and finitely many constants, which can be regarded as a PDS with finite
control states and vector stack alphabet. The decidability of the reachability
between ground terms was shown based on the reachability of a VAS. However,
a PRS is rather weak to model multi-thread programs, since it cannot describe
vector additions between adjacent stack frames during push/pop operations.

An RVASS [3] allows vector additions during pop rules. The state reachability
was shown by reducing an RVASS to a Branching VASS [21]. Our WSPDS ex-
tends it to the coverability. A more general framework is a WQO automaton [5],
which is a WSTS with auxiliary storage (e.g., stacks and queues). Although in
general undecidable, its coverability becomes decidable under the compatibility
of rank functions with a WQO. A Multi-set PDS [13,20] is a such instance.

Our drawback is difficulty to estimate complexity, due to the nature of well-
quasi-ordering. s For instance, the coverability of a Branching VAS (BVAS)
is 2EXPTIME-complete [6], and accordingly RVASS will be. Lower bounds of
various VAS are reported by reduction to fragments of first-order logic [14].
However, we cannot directly conclude such estimations.
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2 Preliminaries

2.1 Well-Structured Transition System

A quasi-order (D,≤) is a reflexive transitive binary relation on D. An upward
closure of X ⊆ D, denoted by X↑, is the set of elements in D larger than those in
X , i.e., X↑ = {d ∈ D | ∃x ∈ X.x ≤ d}). A subset I is an ideal if I = I↑. Similarly,
a downward closure of X ⊆ D is denoted by X↓ = {d ∈ D | ∃x ∈ X.x ≥ d}. We
denote the set of all ideals by I(D). A quasi-order (D,≤) is a well-quasi-order
(WQO) if, for each infinite sequence a1, a2, a3, · · · in D, there exist i, j with i < j
and ai ≤ aj.

Definition 1. A well-structured transition system (WSTS) is a triplet M =
〈(P,�),→〉 where (P,�) is a WQO, and → (⊆ P × P ) is monotonic, i.e.,
for each p1, q1, p2 ∈ P , p1 → q1 and p1 � p2 imply that there exists q2 with
p2 → q2 ∧ q1 � q2.

Given two states p, q ∈ P , the coverability problem is to determine whether there
exists q′ with q′ ) q and p→∗ q′.

Vector addition systems (VAS) (equivalently, Petri net) are WSTSs with Nk

as the set of states and a subtraction followed by an addition as a transition rule.
The reachability problem of VAS is decidable, but its proof is complex [16,15].
The coverability also attracts attentions and is implemented, such as in Pep. 1

Karp-Miller acceleration is an efficient technique for the coverability. If there is
a descendant vector (wrt transitions) strictly larger than one of its ancestors on
coordinates, values at these coordinates are accelerated to ω.

There is an alternative backward method to decide coverability for a general
WSTS. Starting from an ideal {q}↑, where q is the target state to be covered,
its predecessors are repeatedly computed. Note that, for a WSTS and an ideal
I(⊆ P ), the predecessor set pre(I) = {p ∈ P | ∃q ∈ I.p → q} is also an ideal
from the monotonicity. Its termination is obtained by the following lemma.

Lemma 1. [10] (D,≤) is a WQO, if, and only if, any infinite sequence I0 ⊆
I1 ⊆ I2 ⊆ · · · in I(D) eventually stabilize.

From now on, we denote N (resp. Z) for the set of natural numbers (resp. in-
tegers), and Nk (resp. Zk) is the set of k-dimensional vectors over N (resp. Z).
As notational convention, n,m are for vectors in Nk, z, z′ are for vectors in Zk,
ñ, m̃ are for sequences of vectors.

2.2 Pushdown System

We define a pushdown system (PDS) with extra rules, simple-push and
nonstandard-pop. These rules do not appear in the standard definition since
they are encoded into standard rules. For example, a non-standard pop rule

1 http://theoretica.informatik.uni-oldenburg.de/~pep/
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(p, αβ → q, γ) is split into (p, α → pα, ε) and (pα, β → q, γ) by adding a fresh
state pα. However, later we will consider a PDS with infinite stack alphabet,
and this encoding may change the context. For instance, for a PDS with finite
control states and infinite stack alphabet, this encoding may lead infinite control
states.

Definition 2. A pushdown system (PDS) is a triplet 〈P, Γ,Δ〉 where

– P is a finite set of states,
– Γ is finite stack alphabet, and
– Δ ⊆ P × Γ≤2 × P × Γ≤2 is a finite set of transitions, where (p, v, q, w) ∈ Δ

is denoted by (p, v → q, w).

We use α, β, γ, · · · to range over Γ , and w, v, · · · over words in Γ ∗. A configuration
〈p, w〉 is a pair of a state p and a stack content (word) w. As convention, we denote
configurations by c1, c2, · · ·. One step transition ↪→ between configurations is
defined as follows. ↪→∗ is the reflexive transitive closure of ↪→.

inter
(p, γ → p′, γ′) ∈ Δ

〈p, γw〉 ↪→ 〈p′, γ′w〉
push

(p, γ → p′, αβ) ∈ Δ

〈p, γw〉 ↪→ 〈p′, αβw〉
pop

(p, γ → p′, ε) ∈ Δ

〈p, γw〉 ↪→ 〈p′, w〉

simple-push
(p, ε→ p′, α) ∈ Δ

〈p, w〉 ↪→ 〈p′, αw〉
nonstandard-pop

(p, αβ → p′, γ) ∈ Δ

〈p, αβw〉 ↪→ 〈p′, γw〉

A PDS enjoys decidable configuration reachability, i.e., given configurations
〈p, w〉, 〈q, v〉 with p, q ∈ P and w, v ∈ Γ ∗, decide whether 〈p, w〉 ↪→∗ 〈q, v〉.

3 WSPDS and P-Automata Technique

3.1 P-Automaton

A P-automaton is an automaton that accepts the set of reachable configurations
of a PDS. P-automata are classified into Post∗-automata and Pre∗-automata,

Definition 3. Given a PDS M = 〈P, Γ,Δ〉, a P-automaton A is a quadruplet
(S, Γ,∇, F ) where

– F is the set of final states, and P ⊆ S \ F , and
– ∇ ⊆ S × (Γ ∪ {ε})× S.

We write s
γ�→ s′ for (s, γ, s′) ∈ ∇ and �⇒ for the reflexive transitive closure

of �→; It accepts 〈p, w〉 for p ∈ P and w ∈ Γ ∗ if p
w

�=⇒ f ∈ F . We use L(A)
to denote the set of configurations that A accepts. We assume that an initial

P-automaton has no transitions s
γ�→ s′ with s′ ∈ P .

Let C0 be a regular set of configurations of a PDS, and let A0 be an initial P-
automaton that accepts C0. The procedure to compute post∗(C0) starts fromA0,
and repeatedly adds edges according to the rules of a PDS until convergence. We
call this procedure saturation. Post∗-saturation rules are given in Definition 4,
which are illustrated in the following figure.
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Definition 4. For a PDS 〈P, Γ,Δ〉, let A0 be an initial P-automaton accepting
C0. Post∗(A0) is constructed by repeated applications of the following Post∗-
saturation rules.

(S, Γ,∇, F ), (p
w

�=⇒ q) ∈ ∇
(S ∪ {p′}, Γ,∇ ∪ {p′ γ�→ q}, F )

(p, w → p′, γ) ∈ Δ, |w| ≤ 2

(S, Γ,∇, F ), (p
γ�→ q) ∈ ∇

(S ∪ {p′, qp′,α}, Γ,∇∪ {p′ α�→ qp′,α
β�→ q}, F )

(p, γ → p′, αβ) ∈ Δ

p, γ → p′, αβ p, ε → p′, γ p, γ → p′, γ′ p, γ → p′, ε p, αβ → p′, γ

p
⇓add

γ �� q

p′
α ��qp′,α

β

��

p′ γ

⇓add �� p

p
⇓add

γ �� q

p′
γ′

�� p
⇓add
α �� q

p′
ε

�� p
⇓add

α �� β �� q

p′
γ

��

For instance, consider a push rule (p, γ → p′, αβ). If p
γ�→ q is in ∇, then p′

α�→
qp′,α

β�→ q is added to ∇. The intuition is, if, for v ∈ Γ ∗, 〈p, γv〉 is in post∗(C0),
then 〈p′, αβv〉 is also in post∗(C0) by applying rule (p, γ → p′, αβ). The Pre∗-
saturation rules to construct pre∗(C0) are similar, but in the reversal.

Remark 1. Post∗- (resp. Pre∗-) saturation introduces ε-transitions when apply-
ing standard pop rules (resp. simple push rules). ε-transitions make arguments
complicated, and we assume preprocessing on PDSs.

1. The bottom symbol ⊥ of the stack is explicitly prepared in Γ .
2. For Post∗-saturation, each standard pop rule p, α → q, ε is replaced with

(p, αγ → q, γ) for each γ ∈ Γ .
3. For Pre∗-saturation, each simple push rule p, ε → q, α is replaced with

(p, γ → q, αγ) for each γ ∈ Γ .

Lemma 2. Let 〈P, Γ,Δ〉 be a PDS, and let A0 be an initial P-automaton ac-

cepting C0. Assume that p
w

�=⇒ q in Post∗(A0) and p ∈ P .

1. If q ∈ P , 〈q, ε〉 ↪→∗ 〈p, w〉;
2. If q ∈ S(A0)\P , there exists q′

v
�=⇒ q in A0 with q′ ∈ P and 〈q′, v〉 ↪→∗ 〈p, w〉.

Its proof is a folklore (also in [23]). Lemma 2 shows that each accepted configu-
ration is in post∗(C0) during the saturation process (soundness). On the other
hand, Post∗ saturation rules put immediate successor configurations, and all
configurations in post∗(C0) are finally accepted by Post∗(A0) (completeness).

Theorem 1. post∗(C0) = L(Post∗(A0)), and pre∗(C0) = L(Pre∗(A0)).

For an ordinary PDS (i.e., with finite control states and stack alphabet),
Post∗(A0) and Pre∗(A0) have bounded numbers of states. (Recall that each
newly added state qp,γ has an index of a pair of a state and a stack symbol.)
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Thus, the saturation procedure finitely converges. For a PDS with infinite control
states and stack alphabet, although Post∗(A0) and Pre∗(A0) may not finitely
converge, they converge as limits (of set unions). The same statement to The-
orem 1 holds by Lemma 2’ (a generalized Lemma 2) in [23]. In later sections
(Section 4 and 5), we show when and how the finite convergence holds.

3.2 P-Automata for Coverability

We denote the set of partial functions from X to Y by PFun(X,Y ). Let +, the
quasi-ordering2 on Γ ∗, be the element-wise extension of ≤ on Γ , i.e., α1 · · ·αn +
β1 · · ·βm if and only if m = n and αi ≤ βi for each i.

Definition 5. A well-structured pushdown system (WSPDS) is a triplet M =
〈(P,�), (Γ,≤), Δ〉 where

– (P,�) and (Γ,≤) are WQOs, and
– Δ ⊆ PFun(P, P ) × PFun(Γ≤2, Γ≤2) is the finite set of monotonic transi-

tions rules (wrt � and +). We denote (p, w → φ(p), ψ(w)) if (φ, ψ) ∈ Δ,
p ∈ Dom(φ), and w ∈ Dome(ψ) hold.

A PDS is a WSPDS with finite P and finite Γ , and WSTS is a WSPDS with a
single control state and internal transition rules only (i.e., no push/pop rules).
Note thatDom(ψ) andDome(φ) are upward-closed sets from their monotonicity.
Instead of reachability, we consider the coverability on WSPDSs.

– Coverability: Given configurations 〈p, w〉, 〈q, v〉 with p, q ∈ P and w, v ∈
Γ ∗, we say 〈p, w〉 covers 〈q, v〉 if there exist q′ ) q and v′,v s.t. 〈p, w〉 ↪→∗

〈q′, v′〉. Coverability problem is to decide whether 〈p, w〉 covers 〈q, v〉.

Remark 2. Thanks to an anonymous referee, the coverability of a WSPDS is
reduced to the state reachability. Let v = αn · · ·α1⊥ and v′ = βn · · ·β1⊥. For
fresh states qn, · · · , q1, q0 (incomparable wrt �), add transition rules

{(q′, x→ qn, ε) if x ≥ αn and q′ � q, (qi+1, x→ qi, ε) if x ≥ αi, (q1,⊥ → q0,⊥)}.

Then, the coverability (from 〈p, w〉 to 〈q, v〉) is reduced to the state reachability
(from 〈p, w〉 to q0). Note that the same technique (replacing ≥ and ) with =)
does not work for the configuration reachability, since it violates the monotonic-
ity. Nevertheless, we keep focusing on the coverability, since

– Transition rules above are not permitted as an RVASS and a Multi-set PDS.
Thus, the coverability is still more than the state reachability at the level of
RVASSs and Multi-set PDSs.

– Proofs are mostly by induction on the saturation steps of P-automata con-
struction. The coverability fits for describing their inductive invariants.

2 In general, � is not a well-quasi-ordering, even if ≤ is.
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There are two ways to decide the coverability. The forward method starts from an
initial configuration 〈p, w〉, and computes the downward closure of its successor
configurations. The backward method starts from a target configuration 〈q, v〉,
and computes the downward closure of its predecessor configurations.

– (Post) A accepts the downward closure of successors of C0, i.e., L(A) =⋃
i≥0(post

i(C0)
↓) = (

⋃
i≥0 post

i(C0))
↓ = (post∗(C0))

↓.

– (Pre) A accepts predecessors of the upward closure C↑0 of C0, i.e., L(A) =⋃
i≥0 pre

i(C↑0 ) = pre∗(C↑0 ).

Remark 3. As in Remark 1, we preprocess WSPDSs to eliminate standard pop
rules for Post∗-saturation and simple push rules for Pre∗-saturation. In later
decidability results on WSPDSs, the finiteness of transition rules is crucial. The
following replacement keeps the monotonicity and the finiteness.

- In Post∗-saturation, a standard pop rule ψ(γ) = ε is replaced with ψ′(γγ′) = γ′.
- In Pre∗-saturation, a simple push rule ψ(ε) = γ is replaced with ψ′(γ′) = γγ′.

4 Post∗-automata for Coverability

Coverability is decidable if either Post∗ or Pre∗-saturation finitely converges. In
this section, we consider a strictly monotonic WSPDS with finitely many control
states, with Nk as stack alphabet, and without standard push rules. Such a PDS
is a Pushdown Vector Addition Systems. Our choice comes from that Post∗-
saturation for standard push rules introduce fresh states (which lead infinite
exploration), and the strict monotonicity validates Karp-Miller acceleration.

We write Nω for N∪{ω}. Let us fix the dimension k > 0 and let j(n) be the j-
th element of a vector n ∈ Nk

ω. The zero-vector is denoted by 0 with j(0) = 0 for
each j ≤ k. A sequence of vectors is denoted with a tilde, like ñ. For J ⊆ [1..k],
we define the following orderings on vectors:

– n <J n′ if j(n) < j(n′) for j ∈ J and j(n) = j(n′) for j ∈ J .
– n ≤J n′ if j(n) ≤ j(n′) for j ∈ J and j(n) = j(n′) for j ∈ J .
– n1 · · ·nl +J n′1 · · ·n′l′ if l = l′ and ni ≤J n′i for each i ≤ l.
– n1 · · ·nl +J n′1 · · ·n′l′ if n1 · · ·nl +J n′1 · · ·n′l′ and ni <J n′i for some i.

For example, (1, 2) <{2} (1, 3), (1, 2) ≤{1,2} (1, 3), (1, 2)(1, 1)+{1,2} (1, 3)(1, 1),

and (1, 2)(1, 1) +{1,2} (1, 3)(1, 1). We will omit J of ≤J if J = {1..k}.
If n <J n′, an acceleration n 
 n′ is given by n↑J where j(n↑J ) = ω if j ∈ J ,

and j(n↑J) = j(n) otherwise. For example, (1, 2) 
 (2, 2) = (1, 2)↑{1} = (ω, 2).

Definition 6. Fix k ∈ N. A Pushdown Vector Addition Systems (PDVAS) is a
WSPDS 〈P, (Nk,≤), Δ〉 where

– P is finite.
– Δ ∈ P × P × PFun((Nk)≤2,Nk) is finite and without standard push rules.
– ψ is effectively computed and strictly monotonic wrt+J for each rule (p, q, ψ)
∈ Δ and J ⊆ [1..k].
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Strict monotonicity wrt +J is crucial for acceleration, which naturally holds in
VASs. A VAS transition n ↪→ n + z holds n′ + z >J n + z for each n′ >J n.
A WSPDS may have a non-standard pop rule (p,n1n2 → q,m), and we require
that the growth of either n1 or n2 leads the growth of m.

4.1 Dependency

Acceleration for a VAS occurs when a descendant is strictly larger than some
of its ancestors. However, for a PDVAS, such descendant-ancestor relation is
not obvious in a P-automaton. We introduce dependency � on P-automata
transitions �→. The dependency is generated during Post∗-saturation steps.

Definition 7. For a PDS 〈P, Γ,Δ〉, a dependency � over transitions of a
Post∗-automaton is generated during the saturation procedure, starting from ∅.

1. If a transition p′
β�→ q is added from a rule (p, α → p′, β) and transition

p
α�→ q, then (p

α�→ q) � (p′
β�→ q).

2. If a transition p′
γ�→ q is added from a rule (p, αβ → p′, γ) and transitions

p
α�→ q′

β�→ q, then (p
α�→ q′) � (p′

γ�→ q) and (q′
β�→ q) � (p′

γ�→ q).

3. Otherwise, we do not update �.

We denote the reflexive transitive closure of � by �∗. Strict monotonicity leads
to the following lemma, which guarantees the soundness of accelerations.

Lemma 3. For a Post∗-automaton A of a PDVAS, if p
n�→ q �∗ p′

m�→ q′ and

p
n′
�→ q ∈ ∇(A) for n′ >J n hold, there exists m′ >J m such that p′

m′
�=⇒ q′ ∈

∇(A) and p
n′
�→ q �∗ p′

m′
�=⇒ q′.

Note that, if (p
n�→ q) �∗ (p

n1�→ q) and n <J n1 hold, Lemma 3 concludes

(p
n�→ q) �∗ (p

n1�→ q) �∗ (p
n2�→ q) �∗ · · ·�∗ (p

ni�→ q) �∗ · · ·

with ni <J ni+1 for each i. Thus, we can safely apply the acceleration on J .

4.2 Post∗F -saturation

As in Section 4.1, accelerations will occur when p
n�→ q �∗ p

n′
�→ q and n <J n′

is found for some p, q and J during the Post∗-saturation steps. We combine
dependency generation and accelerations into the post saturation rules for a
PDVAS. This new saturation procedure is denoted by Post∗F , and a resulting
P-automaton is called a Post∗F -automaton.

We conservatively extend ψ in a PDVAS, from (Nk)≤2 → Nk to (Nk
ω)
≤2 → Nk

ω

by ψ(ñ) = sup{ψ(ñ′) | ñ′ ∈ (Nk)≤2, ñ′ + ñ} for ñ ∈ (Nk
ω)
≤2,
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Definition 8. For a PDVAS 〈P, (Nk,≤), Δ〉, let A0 = (S0, (Nk
ω ,≤), (∇0, ∅), F )

be an initial P-automaton accepting C0. Post∗F (A0) is the result of repeated ap-
plications of the following Post∗F saturation rules.

(S, Γ, (∇,�), F ), p
ñ

�=⇒ q

(S ∪ {p′}, Γ, (∇,�)⊕ (p′
n�→ q,�′), F )

(p, p′, ψ) ∈ Δ, ψ(ñ) = n

where �′ is the dependency newly added by Definition 7.3 The operation ⊕ is
defined as (∇,�)⊕ (p′

n�→ q,�′) =⎧⎪⎨⎪⎩
(∇ ∪ {p′ n

′�n�−→ q},� ∪�′
�) if there exists p′

n′
�→ q ∈ ∇ such that

p′
n′
�→ q �∗ ·�′ p′

n�→ q and n′ <J n for J = φ

(∇ ∪ {p′ n�→ q},� ∪�′) otherwise

where �′
� is obtained from �′ by replacing its destination p′

n�→ q with p′
n′�n�−→ q.

Example 1. The following figure shows a Post∗-automaton A′ and a Post∗F -
automaton A of a PDVAS with transition rules ψ1, ψ2, ψ3, ψ4. An initial con-

figuration C0 = {〈p0,⊥〉} is accepted by A0. In A′, p2 1�→ p0 is generated from

p1
0�→ p0

1�→ p0 by ψ3, and p1
2�→ p0 is generated from p2

1�→ p0 by ψ4. Sim-

ilarly, infinitely many p1
2k

�=⇒ p0’s (and others) are generated. In A, we have

(p1
0�→ p0) � (p2

1�→ p0) � (p1
2�→ p0). An acceleration adds (p1

ω�→ p0) instead of

(p1
2�→ p0). Then, p2

ω�→ p0 and p0
ω�→ p0 are added by ψ3 and ψ2, respectively. This

shows finitely convergence to A, and we obtain (post∗(C0))
↓ = L(A)↓ ∩ (Nk)∗.

ψ1 : p0, ε → p1, 0
ψ2 : p1,n → p0,n+ 1
ψ3 : p1,n1n2 → p2,n1 + n2

ψ4 : p2,n → p1,n+ 1

A0 : p0
⊥ �� f

A′ :

p0
⊥ ��

1,3,···
ψ2 ��

f

p1

0

ψ1

��

2

ψ4

��

···,6,4

ψ4

��

p2

1

ψ3

		

3

ψ3




5,7,···

ψ3

��

A :

p0
⊥ ��

1,ω

ψ2 ��
f

p1

0

ψ1

��

ω

ψ4

��

p2

1

ψ3

		

ω

ψ3





An immediate observation is that each configuration in L(Post∗(A0)) is covered
by some in L(Post∗F (A0)). The opposite follows from Lemma 4, which says that
the downward closure (in Nk) of a transition in Post∗F (A0) is included in the
downward closure of transitions in Post∗(A0). Its proof is found in [23].

Lemma 4. For a PDVAS, let A0 be an initial P-automaton. If p
n�→ q is in

Post∗F (A0), for each n′ ≤ n with n′ ∈ Nk, there exists n′′ such that p
n′′
�=⇒ q is

in Post∗(A0) and n′ ≤ n′′ ≤ n.

3 �′= ∅ if (p, p′, ψ) is a push rule; otherwise, the destination of �′ is p′
n�→ q.
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Since a PDVAS does not have standard-push rules, the saturation procedure does
not add new states. Thus, the sets of states in Post∗F (A0) and Post∗(A0) are the
same. From Lemma 4, we can obtain L(Post∗F (A0))

↓ ∩ (Nk)∗ = (post∗(C0))
↓.

Finite convergence of Post∗F -saturation follows from that {(p,n, q) | p, q ∈
S,n ∈ Nk

ω} is well-quasi-ordered. Thus, since accelerations can occur only finitely
many times on a path of �∗, the length of �∗ is finite. Since �∗ is finitely
branching, König’s lemma concludes that the �-tree is finite.

Theorem 2. For a PDVAS, if an initial P-automaton A0 with L(A0) = C0 is
finite, Post∗F (A0) finitely converges with L(Post∗F (A0))

↓∩(Nk)∗ = (post∗(C0))
↓.

4.3 Coverability of RVASS

In this section, we show that Recursive Vector Addition Systems with States
(RVASSs) [3] are special cases of PDVASs, and Theorem refthm:termination
implies decidability of its coverability.

Definition 9. [3] Fix k ∈ N. An RVASS 〈Q, δ〉 consists of finite sets Q and δ
of states and transitions, respectively. We denote

– q
z→ q′ if (q, q′, z) ∈ δ for z ∈ Zk, and

– q
q1q2−→ q′ if (q, q1, q2, q

′) ∈ δ.

The configuration c ∈ (Q × Nk)∗ represents a stack of pairs 〈p,n〉 where p ∈ Q
and n ∈ Nk. The semantics is defined by following rules:

q
z−→ q′ n+ z ∈ Nk

〈q,n〉c↪→〈q′,n+ z〉c
q

q1q2−→ q′

〈q,n〉c↪→〈q1,0〉〈q,n〉c
q

q1q2−→ q′

〈q2,n′〉〈q,n〉c↪→〈q′,n +n′〉c

The state-reachability problem of an RVASS is, given two states q0, qf , whether
there exist a vector n and a configuration c such that 〈q0,0〉 ↪→∗ 〈qf ,n〉c. Lemma
3 in [3] showed its decidability by a reduction to a Branching VASS [6]. Below,
Corollary 1 shows the decidability of the coverability. Note that the state reach-
ability is the coverability from 〈q0,0〉 to {〈qf ,0↑〉 any∗}.

The encoding from an RVASS to a PDVAS is straightforward by regarding a
configuration of an RVASS as a stack content in a PDVAS with a single control
state •, where 〈qi, (n1, · · · , nk)〉 ∈ Q×Nk is regarded as an element in Γ = N|Q|k

(0, · · · , 0︸ ︷︷ ︸
(i−1)k

, n1, · · · , nk, 0, · · · , 0︸ ︷︷ ︸
(|Q�i)k

)

Definition 10. For k ∈ N and an RVASS R = 〈Q, δ〉, a PDVAS MR =
({•}, Γ,Δ) consists of Γ = N|Q|k and Δ ⊆ {•} × {•} × PFun(Γ≤2, Γ ) with

1. if (q, q′, z) ∈ δ, then (•, 〈q,n〉 → •, 〈q′,n+ z〉) ∈ Δ.
2. if (q, q1, q2, q

′) ∈ δ, then
(a) (•, 〈q, ε〉 → •, 〈q1,0〉) ∈ Δ and (b) (•, 〈q2,n〉〈q,m〉 → •, 〈q′,n+m〉) ∈ Δ.

Corollary 1. The coverability of an RVASS is decidable.
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5 Pre∗-automata for Coverability

When Δ has no non-standard pop rules, Pre∗ does not introduce any fresh
states, and we will show that ideal representations leads finite convergence. In
this section, we assume that Δ has no non-standard pop rules.

5.1 Ideal Representation of Pre∗-automata

As mentioned in Section 3.2, we need to construct a Pre∗-automaton that ac-
cepts predecessors of an ideal C↑0 . A naive representation of such upward closures
may be infinite. Therefore, we use an ideal representation Pre∗F -automaton in
which transition labels and states are ideals. Thanks to WQO, an ideal is char-
acterized by its finitely many minimal elements, and ideals are well founded wrt
set inclusion.

Definition 11. For a WSPDS 〈(P,�), (Γ,≤), Δ〉, by replacing Γ with I(Γ ) and
P ⊆ S \F with I(P ) ⊆ S \F in Definition 3, we obtain the definition of a Pre∗F -
automaton A = (S, I(Γ ),∇, F ).

As notational convention, let s, t to range over S, idealsK,K ′ to range over I(P ),

and I, I ′ over I(Γ ). We denote w ∈ Ĩ for Ĩ = I1I2 · · · In, if w = α1α2 · · ·αn and
αi ∈ Ii for each i. We say that A accepts a configuration 〈p, w〉, if there is a

path K
Ĩ

�=⇒ f ∈ F in A and p ∈ K, w ∈ Ĩ. The ideal representation of an
initial P-automaton accepting C↑0 is obtained from a P-automaton accepting C0

by replacing each state p with {p}↑ and each transition label α with {α}↑.

Definition 12. Let A0 be an initial Pre∗F -automaton accepting C↑0 . Pre∗F (A0)
is the result of repeated applications of the following Pre∗F -saturation rules

(S, I(Γ ),∇, F ), K
Ĩ

�=⇒ s

(S, I(Γ ),∇, F ) ⊕ {φ−1(K)
ψ−1(Ĩ)�−→ s}

if Ĩ ∈ I(Γ≤2) and (φ, ψ) ∈ Δ

where φ−1(K) = ∅, ψ−1(Ĩ) = ∅, and (S,Σ,∇, F )⊕ {K I�→ s} is⎧⎪⎪⎨⎪⎪⎩
(S,Σ,∇, F ) if (K′ I′�→ s) ∈ ∇ with K ⊆ K′ and I ⊆ I ′

(S,Σ, (∇ \ {K I′�→ s}) ∪ {K I′∪I�−→ s}, F ) if (K I′�→ s) ∈ ∇
(S ∪ {K}, Σ,∇∪ {K I�→ s}, F ) otherwise

The ⊕ operator merges ideals associated to transitions. Assume that a new

transition K
I�→ s is generated. If there is a transition K ′ I′�→ s with the same s,

K ⊆ K ′, and I ⊆ I ′, the ideal of configurations starting from K
I�→ s is included

in that from K ′ I′�→ s. Thus, no needs to add it. If there is a transition K
I′�→ s

between the same pair K, s, then take the union I ∪I ′. Otherwise, we add a new
transition.
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It is easy to see that if φ ∈ PFun(X,Y ) is monotonic, then, for any I ∈ I(Y ),

φ−1(I) is an ideal in I(X). Completeness pre∗(C↑0 ) ⊆ L(Pre∗F (A0)) follows im-

mediately by induction on saturation steps. Soundness pre∗(C↑0 ) ⊇ L(pre∗(A0))
is guaranteed by Lemma 5, which is an invariant during the saturation procedure.

Lemma 5. Assume K
Ĩ

�=⇒ s in Pre∗F (A0). For each p ∈ K, w ∈ Ĩ,

– if s = K ′ ∈ I(P ), then 〈p, w〉 ↪→∗ 〈q, ε〉 for some q ∈ K ′.

– if s ∈ I(P ), there exists K ′ Ĩ′
�=⇒ s in A0 such that 〈p, w〉 ↪→∗ 〈p′, w′〉 for

some p′ ∈ K ′ and w′ ∈ Ĩ ′.

Theorem 3. For an initial P-automaton A0 accepting C↑0 , L(Pre∗F (A0)) =

pre∗(C↑0 ).

Note that Theorem 3 only shows the correctness of Pre∗F -saturation. We do not
assume its finite convergence, which will be discussed in next two subsections.

5.2 Coverability of Multi-set PDS

As an example of the finite convergence, we show Multi-set pushdown system
(Multi-set PDS) proposed in [20,13], which is an extension of PDS by attaching
a multi-set into the configuration. We directly give the definition of a Multi-set
PDS as a WSPDS. Note that, although a Multi-set PDS has infinitely many
control states, it finitely converges because of restrictions on decreasing rules.

Definition 13. A Multi-set pushdown system (Multi-set PDS) is a WSPDS
((Q × Nk,�), Γ, δ), where

– Q, Γ are finite and k = |Γ |,
– δ is a finite set of transition rules consisting of two kinds:

1. Increasing rules δ1 : (p, γ, q, w,n) for n ∈ Nk;
2. Decreasing rules δ2: (p,⊥, q,⊥,n) for n ∈ Nk.

Configuration transitions are defined by:

(p, γ, q, w,n) ∈ δ1

〈(p,m), γw′〉 ↪→ 〈(q,n +m), ww′〉
(p,⊥, q,⊥,n) ∈ δ2,m ≥ n

〈(p,m),⊥〉 ↪→ 〈(q,m− n),⊥〉

Note the decreasing rules are applied only when the stack is empty. A state in
Pre∗F -automata is in I(Q × Nk). Since Q is finite, we can always separate one
state into finitely many states such that each of which has the form of Q×I(Nk).
From Definition 12, we have two observations.

1. If transition (p,K)
γ�→ s is added from (q,K ′)

w
�=⇒ s by an increasing rule in

δ1, then K ⊇ K ′.

2. If transition (p,K)
⊥�→ s is added from (q,K ′)

⊥�→ s by a decreasing rule in
δ2, then K ⊆ K ′ and s is a final state.



Well-Structured Pushdown Systems 133

Pre∗F -saturation steps by increasing rules always enlarge ideals of vectors. By
Lemma 1, eventually such ideals become maximal. Since stack alphabet is (fi-
nite thus) well-quasi-ordered, newly generated transitions by increasing rules
are eventually caught by the first case of the ⊕ operator (in Definition 12). A
worrying case is by decreasing rules, which shrink ideals. Since WQO does not
guarantee the stabilization for I0 ⊃ I1 ⊃ · · ·, it may continue infinitely. For in-
stance, Pre∗F -saturation steps by decreasing pop rules may expand a path �→∗

endlessly. Fortunately, decreasing rules of a Multi-set PDS occur only when the
stack is empty. In such cases, destination states of �→ are always final states,
which are finitely many. Therefore, again they are eventually caught by the first
case of the ⊕ operator. Note that this argument works even if we relax finite
stack alphabet in Definition 13 to being well-quasi-ordered.

Corollary 2. The coverability problem for a Multi-set PDS (with well-quasi-
ordered stack alphabet) is decidable.

Example 2. Let 〈({a, b, c} × N,�), {α}, δ〉 be a Multi-set PDS with transition
rules given below. The set of configurations covering 〈c0,⊥〉 is computed by
Pre∗F -automaton A. We abbreviate ideal {pn}↑ by pn for p ∈ {a, b, c} and n ≥ 0.

A transition c1
⊥�→ f is generated from a1

α⊥
�=⇒ f by ψ3. However, it is not added

since we already have c0
⊥�→ f and {c1}↑ ⊆ {c0}↑.

δ1 = { ψ1 : (bn, α → an+1, α),
ψ2 : (an, α → bn, ε),
ψ3 : (cn, ε → an, α)}

δ2 = { ψ0 : (bn,⊥ → cn−1,⊥)}

A0 : c0
⊥ �� f

A : c0
⊥ �� f c1

⊥
ψ3

��

a1 α

ψ2 �� b1

⊥
ψ0

��

c0
α

ψ3

��
α ψ3


a0 α

ψ2 �� b0
α

ψ1

��

α
ψ1

��

5.3 Finite Control States

Assume that, for a monotonic WSPDS M = 〈P, (Γ,≤), Δ〉, P is finite and Δ
does not contain nonstandard-pop rules. Then, we observe that, in the Pre∗F -
saturation for M , i) the set of states is bounded by the state in A0 and P , and
ii) transitions between any pair of states are finitely many by Lemma 1. Hence,
Pre∗F saturation procedure finitely converges.

Theorem 4. Let 〈P, (Γ,≤), Δ〉 be a WSPDS such that P is finite and ψ−1(I)
is computable for any (p, p′, ψ) ∈ Δ. Then, its coverability is decidable.

Example 3. Let M = 〈{pi},N2, Δ〉 be a WSPDS with Δ = {ψ1, ψ2, ψ3, ψ4} given
in the figure. An automatonA illustrates the pre∗-saturation starting from initial
A0 that accepts C = 〈p2, (0, 0)↑〉.

For instance, p1
(3,0)↑�−→ p1 in A is generated by ψ2, and p0

(3,2)↑�−→ p1 is added by

ψ3. Then repeatedly apply ψ1 twice to p0
(3,2)↑�−→ p1

(3,0)↑�−→ p1, we obtain p0
(3,0)↑�→ p1.
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ψ1 : 〈p0,n〉 → 〈p0, (n+ (1, 1))n〉
ψ2 : 〈p1,n〉 → 〈p1, ε〉 if n ≥ (3, 0)
ψ3 : 〈p0,n〉 → 〈p1,n − (0, 2)〉 if n ≥ (0, 2)
ψ4 : 〈p1,n〉 → 〈p2, ε〉 if n ≥ (1, 0)

A0 : p2
(0,0)↑ �� f

A :

p1
(1,0)↑ψ4 ��

(3,0)↑

ψ2

��
p2

(0,0)↑

��
p0

(2,0)↑ ∪ (1,2)↑

ψ1,3

��

(3,0)↑

ψ1,3

��

(1,0)↑ ∪ (0,1)↑ψ1

�� f

6 Conclusion

This paper investigated well-structured pushdown systems (WSPDSs), pushdown
systems with well-quasi-ordered control states and stack alphabet, and devel-
oped two proof techniques to investigate the coverability based on extensions of
classical P-automata techniques. They are,

– when a WSPDS has no standard push rules, the forward P-automata con-
struction Post∗ with Karp-Miller acceleration, and

– when a WSPDS has no non-standard pop rules, the backward P-automata
construction Pre∗ with ideal representations.

We showed decidability results of coverability under certain conditions, which
include recursive vector addition system with states [3], multi-set pushdown sys-
tems [20,13], and a WSPDS with finite control states and WQO stack alphabet.
The first one extended the decidability of the state reachability in [3] to that of
the coverability, and the second one relaxed finite stack alphabet of Multi-set
PDSs [20,13] to being well-quasi-ordered.

Our current results just opened the possibility of WSPDSs. Among lots of
things to do, we list few for future works.

– Currently, we have few examples of WSPDSs. For instance, parameterized
systems would be good candidates to explore.

– Currently, we are mostly investigating with finite control states. However,
we also found that a naive extension to infinite control states weakens the
results a lot. We are looking for alternative conditions.

– Our decidability proofs contain algorithms to compute, however the estima-
tion of their complexity is not easy due to the nature of WQO. We hope
that a general theoretical observation [22] would give some hints.

– Our current forward method is restricted to VASs. We also hope to apply
Finkel and Goubault-Larrecq’s work on ω2-WSTS [11,12] to generalize.
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A Relational Trace Logic for Vector Addition

Systems with Application to Context-Freeness�
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Abstract. We introduce a logic for specifying trace properties of vector
addition systems (VAS). This logic can express linear relations among
pumping segments occurring in a trace. Given a VAS and a formula in
the logic, we investigate the question whether the VAS contains a trace
satisfying the formula. Our main contribution is an exponential space
upper bound for this problem. The proof is based on a small model
property for the logic. Compared to similar logics that are solvable in
exponential space, a distinguishing feature of our logic is its ability to
express non-context-freeness of the trace language of a VAS. This allows
us to show that the context-freeness problem for VAS, whose complexity
was not established so far, is ExpSpace-complete.

1 Introduction

Vector addition systems (VAS), or equivalently Petri nets, are well-studied for
the modeling and analysis of concurrent systems. Despite their fairly large ex-
pressive power, many verification problems for VAS are decidable: coverability,
boundedness, reachability, liveness, regularity, etc. [4]. The complexity of many
of these decision problems has also been established.

Known decidable problems for VAS can be broadly classified into two classes.
The first one, that we call CRP, consists of those problems that are equivalent
to the reachability problem in terms of computational complexity. Examples of
problems in CRP include reachability, liveness, model checking some fragments of
linear temporal logic, etc. The exact complexity of these problems is still open.
The best known lower bound is ExpSpace-hardness [9]. There is no known
upper bound, except that these problems are decidable [10,6].

The second class of problems, that we call CKM, are those that can be de-
cided using the Karp&Miller coverability graph [5]. Examples of problems in
CKM include coverability, boundedness, regularity, etc. In general, the size of the
coverability graph can be Ackermann in the size of the VAS. Still, most of the
problems in CKM can be decided in exponential space, by applying a technique
introduced by Rackoff [13], or extending this technique [1,2,3].

The question whether the set of traces of a VAS is context-free is also in the
class CKM. It was shown to be decidable by Schwer in [14], based on the cover-
ability graph. Recently, we showed in [8] that non-context-freeness of the set of
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traces can always be witnessed by a regular bounded language u1σ
∗
1 · · ·ukσ∗k that

has a non-context-free intersection with the set of traces. Like context-freeness,
for most of the properties in CKM, we can find violating witnesses that are given
by regular bounded languages of the form u1σ

∗
1 · · ·ukσ∗k. Equivalently, we con-

sider, in this paper, witnesses that are given as traces satisfying an iterability
condition. Intuitively, a self-covering sequence is a trace u1σ1 · · ·ukσk such that,
for every n ≥ 0, there is a trace in u1σ

≥n
1 · · ·ukσ≥nk . The words σ1, . . . , σk are

called pumping segments, as they can be iterated. To witness the violation of
a given property, the displacements of the pumping segments are required to
additionally satisfy some linear relations depending on the property under con-
sideration.

Contributions. We introduce a relational logic over self-covering sequences. This
logic can express positive Boolean combinations of linear relations among the
displacements of pumping segments. We show that many properties in CKM can
be expressed by the logic, in particular: coverability, boundedness, simultaneous
unboundedness, regularity, and recurrence. Our main technical result is a small
model property: we show that if there is a self-covering sequence satisfying a for-
mula of the logic, then there is one of size at most doubly-exponential. This gives
an exponential space upper bound for the problem whether a given VAS satisfies
a given formula. Then, we focus on the context-freeness problem. We prove that
the presence of self-covering sequences witnessing non-context-freeness can be
expressed in our logic. We thus derive an exponential space upper bound for the
context-freeness problem, whose complexity was still open.

Extensions of the technique introduced by Rackoff [13] are not enough for
proving the small model property mentioned above. Our approach is based on
reversibility domains [7]. The reversibility domain of an action is the set of
configurations from which the effect of the action can be canceled by a word of
actions. A doubly exponential bound on the minimal elements of these upward
closed sets is derived in [7]. This result is central in our approach.

Related Work. Other logics that can be checked in exponential space have been
investigated before. The fragment of Yen’s path logic [17] introduced by Atig
and Habermehl [1], the fragment of computational tree logic by Blockelet and
Schmitz [2] and the generalized unboundedness properties of Demri [3] are in
this category. All of these impose conditions that are incompatible with context-
freeness. We provide a more detailed comparison with related work at the end
of the paper.

Outline. We recall in Section 2 some basic notions on VAS and define self-
covering sequences. Section 3 introduces our relational trace logic. We show in
Section 4 that many classical problems on VAS can be expressed in this logic. We
establish in Sections 5, 6, and 7 the exponential space complexity of the problem
whether a given VAS satisfies a given formula. Section 8 applies the results of
the previous sections to the context-freeness problem for VAS. We conclude in
Section 9 with a detailed comparison with related work.
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2 Vector Addition Systems

We let N and Z denote the sets of natural numbers and integers respectively.
For X ∈ {N, Z} and # ∈ {<,≤,≥, >}, we write X#0 = {x ∈ X | x#0}. Vectors
and sets of vectors are typeset in bold face. The ith component of a vector v is
written v(i). The zero vector is written 0. We let ei denote the ith unit vector,
defined by ei(i) = 1 and ei(j) = 0 for every index j = i. Given a vector v, we
write ‖v‖+, ‖v‖− and ‖v‖0 for the sets of indices i such that v(i) > 0,v(i) < 0
and v(i) = 0, respectively. We denote by ‖v‖∞ the infinite norm maxi |v(i)|.
Given a finite set V of vectors, we introduce ‖V ‖∞ = maxv∈V ‖v‖∞. A word is
a finite sequence σ = v1 · · ·vn of vectors in Zd. We let |σ| denote the length n
of the word σ. The displacement of σ is the sum

∑n
j=1 vj , denoted by Δ(σ).

We now recall the main concepts of vector addition systems (VAS). Consider
a dimension d ∈ N, with d > 0. A configuration is a vector c ∈ Nd, and an
action is a vector a ∈ Zd. Informally, a vector addition system moves from
one configuration to the next by adding an action. This operational semantics
is formalized by the labeled transition relation → ⊆ Nd × Zd × Nd defined by
c

a−→ c′ if c′ = c + a. In particular, notice that an action a is enabled in a
configuration c if, and only if, c+a ≥ 0. A run is a finite, alternating sequence
(c0,a1, c1, . . . ,an, cn) of configurations and actions, satisfying ci−1

ai−→ ci for

all i. We write c0
a1···an−−−−−→ cn when the intermediate configurations are not

important. The word a1 · · ·an is called the label of the run. A trace from a
configuration c is the label of some run that starts with c. Given an initial
configuration cinit ∈ Nd, we let T (cinit) denote the set of all traces from cinit.

A vector addition system is a pair 〈A, cinit〉 where A is a finite subset of Zd

and cinit ∈ Nd is an initial configuration. Its operational semantics is obtained
by restricting the labeled transition relation → to actions in A. Accordingly, a
trace of a VAS 〈A, cinit〉 is a trace from cinit that is contained in A∗. The set
of all traces of 〈A, cinit〉, written T (A, cinit) = T (cinit) ∩A∗, is called the trace
language of 〈A, cinit〉.

In this paper, we consider verification properties that can be checked through
witnesses that are traces satisfying some pumping conditions. These are called
self-covering sequences, and defined as follows.

Definition 2.1. A self-covering sequence for a VAS 〈A, cinit〉 is a non-empty
sequence (u1, σ1, . . . , uk, σk) of words such that u1σ1 · · ·ukσk is a trace and

‖Δ(σh)‖− ⊆
⋃h−1

j=1 ‖Δ(σj)‖+ for all h ∈ {1, . . . , k}.

The words σ1, . . . , σk are called pumping segments, k is the number of pumping
segments, and |u1|+|σ1|+· · ·+|uk|+|σk| is the size of the self-covering sequence.
If k = 1 in the above definition and ‖Δ(σ1)‖+ = ∅, we get the standard self-
covering sequences, which are known to witness unboundedness of VAS [5]. The
next lemma states a property of self-covering sequences that explains the name
given to the words σ1, . . . , σk.



140 J. Leroux, M. Praveen, and G. Sutre

Lemma 2.2. A sequence (u1, σ1, . . . , uk, σk) of words is self-covering for a VAS
〈A, cinit〉 if, and only if, u1σ1 . . . ukσk is a trace and for every n ∈ N, there exist
n1, . . . , nk ≥ n such that u1σ

n1
1 · · ·ukσnk

k is a trace.

3 A Relational Logic to Express Properties of Traces

In this section, we introduce a logic that can express properties of VAS such
as unboundedness, place unboundedness, and non-regularity (see Section 4 for
examples). The logic has terms t and formulas φ of the following syntax:

t ::= zδj(i) | t+ t, z ∈ Z, j ≥ 1, 1 ≤ i ≤ d

φ ::= t ≥ n | φ ∨ φ | φ ∧ φ, n ∈ N

In the above syntax, δj are variables that have to be interpreted. The norm
‖t‖1 of a term t is defined inductively as follows: ‖zδj(i)‖1 = |z|, ‖t1 + t2‖1 =
‖t1‖1 + ‖t2‖1. The norm ‖φ‖1 of a formula φ is defined by ‖t ≥ n‖1 = ‖t‖1 + n,
‖φ1 ∨ φ2‖1 = ‖φ1 ∧ φ2‖1 = ‖φ1‖1 + ‖φ2‖1.

Definition 3.1. A self-covering sequence (u1, σ1, . . . , uk, σk) satisfies a formula
φ if φ is true according to the usual laws of arithmetic when δj is set to Δ(σj)
for j ≤ k and δj is set to 0 for j > k.

A VAS satisfies a formula φ if it admits a self-covering sequence satisfying φ.
The model-checking problem for this logic asks whether a given VAS satisfies a
given formula.

Remark 3.2. The satisfaction of the formula does not depend on the words
u1, . . . , uk. However, without these words, the reachability problem for vector
addition systems can be easily reduced to the model-checking problem for the
logic. Recall that the reachability problem consists in deciding if a given con-
figuration is the last configuration of a run starting from the initial one. This
problem is known to be decidable[10,6] but no complexity upper-bound is known.
An adaptation of the proof of [1, Theorem 3] shows that the reachability prob-
lem for VAS can be reduced to the model-checking problem for our logic by
additionally requiring that u1, . . . , uk are empty words. ��

The model-checking problem for our logic can be solved by constructing the
Karp&Miller coverability graph [5]. However, the size of the coverability graph
can be Ackermann in the size of the VAS. We will show in Sections 5 up to 7
that this problem can be solved in exponential space. Before that, let us present
some applications of our logic.

4 Examples and Short Extensions

In this section, we show that classical problems can be reduced to the model-
checking problem for our logic. We prove that unboundedness, place unbounded-
ness and non-regularity can be directly encoded with formulas. We also provide
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short extensions of the logic based on simple encodings that can express recur-
rence and coverability. All these problems are recalled in this section.

We first present problems that can be directly reduced to the model-checking
problem for our logic. Recall that a configuration c is reachable if there is a
run from the initial configuration to c. The set of reachable configurations is
called the reachability set. A vector addition system is bounded if its reachabil-
ity set is finite. The boundedness problem was proved to be decidable by Karp
and Miller in [5]. The decidability comes from a characterization of unbounded
vector addition systems; a vector addition system is unbounded if, and only if,
there exists a self-covering sequence (u1, σ1) such that ‖Δ(σ1)‖+ = ∅. Karp and
Miller provided a way for deciding this property based on the computation of
a tree (the Karp&Miller coverability tree). The complexity of this algorithm is
non-primitive recursive [11]. Lipton proved in [9] that the boundedness problem
requires exponential space. In [13], Rackoff provided an exponential space upper
bound based on a doubly-exponential bound on self-covering sequences witness-
ing unboundedness. We observe that a vector addition system is unbounded if,
and only if, it satisfies the following formula:

d∨
i=1

δ1(i) ≥ 1

The boundedness problem was generalized by introducing variants like the place
boundedness problem that asks which components (also called places for Petri
nets) are unbounded. The place boundedness problem requires exponential space.
The proof is by a simple reduction from the boundedness problem. Whereas the
place boundedness problem was considered in different papers, no upper bound
of complexity was published until recently in [3]. In that paper, Demri intro-
duced a more general problem, useful for reducing different problems, called the
simultaneous unboundedness problem. A vector addition system is simultane-
ously unbounded on a set I ⊆ {1, . . . , d} of indexes, if, for every bound b ∈ N,
there exists a reachable configuration c such that c(i) ≥ b for every i ∈ I. Demri
proved that a vector addition system is simultaneously unbounded on I if, and
only if, it satisfies the following formula:

∧
i∈I

d∨
j=1

δj(i) ≥ 1

A vector addition system is called regular when its trace language is regular.
In [16], Valk and Vidal-Naquet provided a characterization of non-regularity for
vector addition systems. Since the characterization is based on the Karp&Miller
coverability graph [5], the Valk and Vidal-Naquet algorithm is non-primitive re-
cursive. In [1], Atig and Habermehl observed that the regularity problem cannot
be expressed in their fragment of Yen’s path logic that is decidable in exponen-
tial space, and left the complexity open. Based on the simultaneous unbound-
edness approach, Demri proved in [3] that the regularity problem is decidable in
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exponential space. This upper bound is obtained by observing that the trace
language of a VAS is non-regular if, and only if, the VAS satisfies the following
formula:

d∨
i=1

−δd+1(i) ≥ 1

Till now, we proved that some classical problems can be reduced to the model-
checking problem for our logic. For other problems, we need short extensions
that require simple encodings. In the remainder of this section, we show the
kind of extensions that can be useful for deciding recurrence and coverability
problems.

A set of actions T of a vector addition system is said to be recurrent if
there exists a self-covering sequence (u1, σ1) such that T is the set of actions
occurring in σ1. The verification of LTL properties and some other properties
like promptness detection (see, e.g., [1,15]) can be reduced to the recurrence
problem. The latter problem can be reduced to the model-checking problem for
our logic by introducing extra components, one for each action, counting the
number of times an action is executed. Let us consider a VAS 〈A, cinit〉 and a
subset T ⊆ A. We assume that A = {a1, . . . ,an}. Recall that e� is the unit
vector defined by e�(�) = 1 and e�(i) = 0 if i = �. We introduce the VAS
〈A′, c′init〉 of dimension d + n defined by A′ = {(a�, e�) | 1 ≤ � ≤ n} and
c′init = (cinit,0). Observe that T is recurrent for the VAS 〈A, cinit〉 if, and only
if, 〈A′, c′init〉 satisfies the following formula:∧

j|aj∈T
δ1(d+ j) ≥ 1 ∧

∧
j|aj 
∈T

−δ1(d+ j) ≥ 0

The same transformation provides a simple way for encoding more complex
relations between numbers of occurrences in different pumping segments of self-
covering sequences. For instance, the strong promptness detection (see, e.g., [1])
can be encoded with the previous formula by replacing δ1 by δd.

One can also check coverability properties with the help of an additional
component. Recall that a configuration c ∈ Nd is coverable if there exists a
reachable configuration larger than or equal to c, i.e., a reachable configuration in
c+Nd. The coverability problem asks whether a given configuration is coverable
in a given VAS. Lipton derived an exponential space lower bound in [9] and
Rackoff provided an exponential space upper bound in [13]. The coverability
problem can be reduced to the place boundedness problem as follows. Given a
vector addition system 〈A, cinit〉 and a configuration c, we consider the vector
addition system 〈A′, c′init〉 defined by A′ = (A × {0}) ∪ {(−c, 2), (c,−1)} and
c′init = (cinit, 0). Just observe that c is coverable in 〈A, cinit〉 if, and only if, the
last component of the VAS 〈A′, c′init〉 is unbounded. Therefore, the coverability
problem can be reduced to the model-checking problem for our logic. With a
similar transformation, we can encode more complex properties that require
multiple coverings along the pumping segments of a self-covering sequence.
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5 Small Model Property

In this section, we show that if there is a self-covering sequence satisfying a
formula, there is one whose length is bounded in terms of the sizes of the VAS and
the formula. As a consequence, we get ExpSpace-completeness for the model-
checking problem for our logic.

The bound we give for the size of satisfying self-covering sequences depends
in a specific way on how conjunctions are distributed in a formula. We define
below two measures of formulas that will be used in our bound.

Definition 5.1. For a formula φ, the conjunction rank r(φ) is defined induc-
tively as follows: r(t ≥ n) = 1, r(φ1 ∨φ2) = max{r(φ1), r(φ2)} and r(φ1 ∧φ2) =
r(φ1) + r(φ2). By k(φ) we denote the maximal j such that δj occurs in φ.

Intuitively, r(φ) is a bound on the number of terms that need to be satisfied
simultaneously to satisfy φ.

Theorem 5.2. If there is a self-covering sequence in 〈A, cinit〉 satisfying φ,

there is one of size at most (‖A‖∞ + ‖φ‖1)r(φ)c
(d·k(φ))3

where c is a constant.

The proof is in two parts. The first part is bounding the lengths of u1, . . . , uk
that occur in between the pumping segments σ1, . . . , σk. We will make use of the
following result, which is an easy consequence of some proofs given in [13].

Lemma 5.3. Suppose that cinit
σ−→ c1 and c1 ≥ c. Then there is a sub-word σ′

of σ such that cinit
σ′
−→ c′1, c

′
1 ≥ c and |σ′| ≤ (‖A‖∞ + ‖c‖∞)(d+1)!.

Proof. Follows easily from a close observation of [13, Proof of Lemma 3.4]. ��

Lemma 5.4. Consider a run cinit
u1−→ c1

σ1−→ c′1 −→ · · · uk−→ ck
σk−→ c′k of

〈A, cinit〉, with |σ1| + · · · + |σk| ≤ l. Then there are words u′1, . . . , u
′
k such that

u′1σ1 · · ·u′kσk is a trace and |u′1|+ · · ·+ |u′k| ≤ (2l‖A‖∞)((d+1)k+1)!.

Proof (Sketch). For any word σ, let cσ be the unique minimal configuration
that enables σ. Since cj ≥ cσj for all j, 1 ≤ j ≤ k, cσj are all coverable
from cinit. Let ckinit be the vector obtained by adjoining k copies of cinit and
let c′′ be the vector obtained by adjoining cσ1 , . . . , cσk

. We can now think of a
suitably defined new VAS where c′′ is coverable from the initial configuration
ckinit. From Lemma 5.3, we infer that there is a sub-word of the original covering
sequence that also covers c′′, whose length is bounded. From this short covering
sequence, we extract words u′1, . . . , u

′
k of the original VAS satisfying the length

requirements. ��

Now it is enough to bound the length of the pumping segments. Suppose cinit
u1−→

c1
σ1−→ c′1 −→ · · · uk−→ ck

σk−→ c′k. Indices in ‖σ1‖+ can potentially reach arbitrarily
high values (by repeating σ1 many times). We want to momentarily forget the
exact value of these indices and emphasize that they can be as large as needed.
This is done by allowing values to be ω.



144 J. Leroux, M. Praveen, and G. Sutre

Definition 5.5. Let Nω = N ∪ {ω}. Let ω ≥ n and ω − n = ω + n = ω for all
n ∈ N. An extended configuration is a vector x ∈ Nd

ω. The labeled transition

relation → is extended to →⊆ Nd
ω × Zd × Nd

ω defined by x
a−→ x′ if x′ = x + a.

We denote by ‖x‖ω the set of indices i such that x(i) = ω.

Let x1 be the extended configuration that is the same as c1 except in indices that
are increased by σ1, where x1 has ω. That is, let x1(i) = ω for i ∈ ‖Δ(σ1)‖+ and
x1(i) = c′1(i) = c1(i) for i ∈ ‖Δ(σ1)‖0 (‖Δ(σ1)‖− = ∅). Similarly, let x2(i) = ω
for i ∈ ‖σ1‖+ ∪ ‖σ2‖+ and x2(i) = c′2(i) = c2(i) for i ∈ ‖Δ(σ2)‖0 \ ‖σ1‖+
(‖Δ(σ2)‖− ⊆ ‖Δ(σ1)‖+). The extended configurations x3, . . . ,xk are similar.

We have xj
σj−→ xj for all j, 1 ≤ j ≤ k, which can be thought of as x

σ−→ x in a
suitably defined (kd)-dimensional VAS. Hence, σ is a cycle on x in this new VAS.
Note that Δ(σ) is not necessarily 0, since x may have some omega components.
The fact that σ1, . . . , σk are pumping segments satisfying φ can be encoded into a
linear system of the form ZΔ(σ) ≥ n. We prove in the next section that if there
are cycles satisfying such a condition, there will be similar cycles of bounded
length. From such a short cycle, we can extract words σ′1, . . . , σ

′
k of the original

VAS meeting the length requirements of Theorem 5.2.

6 Short Cycles via Reversibility Domains

In this section, we show that for every cycle x
σ−→ x satisfying a linear system,

there exists a similar short cycle x
σ′
−→ x. The proof is based on the following two

theorems providing bounds related to reversible words. These results are proved
in [7]. Given an implicit VAS 〈A, cinit〉, a word u ∈ A∗ is said to be reversible

on an extended configuration c if there exists a word v ∈ A∗ such that c
uv−→ c

and such that Δ(uv) = 0. The domain of reversibility of an action a ∈ A is the
set of extended configurations c on which a is reversible.

Theorem 6.1 ([7, Theorem 10.1]). Let u ∈ A∗ be a reversible word on an
extended configuration c. There exists u′ ∈ A∗ reversible on c such that Δ(u) =

Δ(u′) and |u′| ≤ 17d2x15dd+2

, where x = (1 + ‖A‖∞)(1 + ‖c‖∞ + ‖Δ(u)‖∞).

Theorem 6.2 ([7, Theorem 11.1]). For every extended configuration c in the
domain of reversibility of an action a ∈ A, there exists a configuration c′ ≤ c

in the domain of reversibility of a such that ‖c′‖∞ ≤ (102d2‖A‖2∞)(15d
d+2)d+2

.

To show the existence of such short cycles, we need to introduce some nota-
tions and a technical result regarding minimal solutions of linear diophantine
systems. For an integer vector v, let ‖v‖1 denote the sum

∑
i |v(i)|. For a finite

set of vectors V , ‖V ‖1 denotes maxv∈V {‖v‖1}. For an integer matrix Z, let
‖Z‖1,∞ denote maxi{

∑
j |Z(i, j)|}. For z ∈ Z, let zv denote the vector such

that (zv)(i) = z · v(i) for all i. Let Nv denote the set of vectors {nv | n ∈ N}.
For two sets of vectors V 1,V 2 of the same dimension, let V 1 + V 2 denote the
set of vectors {v1 + v2 | v1 ∈ V 1,v2 ∈ V 2}.

Based on [12], one can easily derive the following lemma.
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Lemma 6.3. Let Z be a r × d integer matrix and let b ∈ Zr be a vector. The
set of all integer vectors ρ such that Zρ ≥ b is a finite union of sets of the form
p0 +Np1 + · · ·+Npm, where m ∈ N and p0,p1, . . . ,pm are integer vectors such
that ‖p0‖1, ‖p1‖1, . . . , ‖pm‖1 ≤ (2 + ‖Z‖1,∞ + ‖b‖∞)r.

Now we are ready to prove the existence of short cycles.

Lemma 6.4. Let A ⊆ Zd be a finite set and x ∈ Nd
ω be an extended configura-

tion. Suppose there is a word σ ∈ A∗ such that x
σ−→ x and ZΔ(σ) ≥ n, where

Z ∈ Zr×d is an integer matrix with r rows, d columns and n ∈ Nr is a vector of

natural numbers. Then there is a word σ′ ∈ A∗ such that x
σ′
−→ x, ZΔ(σ′) ≥ n

and |σ′| ≤ (‖Z‖1,∞ + ‖A‖∞ + ‖n‖∞)rc
d3

2 for some constant c2.

Proof. Since x
σ−→ x, Δ(σ)(i) = 0 for all i /∈ ‖x‖ω. We can encode these con-

ditions as additional inequalities in ZΔ(σ) ≥ n, by adding at most 2d rows to
Z and n. Let Z ′Δ(σ) ≥ n′ be the resulting system. By Lemma 6.3, the set
of all vectors ρ ∈ Zd satisfying Z ′ρ ≥ n′ is a finite union of sets of the form
p0 +Np1 + · · ·+Npm, where m ∈ N and p0,p1, . . . ,pm are integer vectors such
that ‖p0‖1, ‖p1‖1, . . . , ‖pm‖1 ≤ (2 + ‖Z‖1,∞ + ‖n′‖∞)r+2d. Since Z ′p0 ≥ n′

and n′ is a vector of natural numbers, we have Z ′(ip0) ≥ n′ for all i ≥ 1.
Hence, we can assume without loss of generality that the sets are of the form
p0 + Np0 + Np1 + · · · + Npm. Since Z ′p0 ≥ n′, p0(i) = 0 for i /∈ ‖x‖ω. Since
Z ′(p0 + pj) ≥ n′ for all j ∈ {1, . . . ,m}, (p0 + pj)(i) = 0 for i /∈ ‖x‖ω. Hence,
pj(i) = 0 for i /∈ ‖x‖ω and j ∈ {1, . . . ,m}. In words, this means that vectors
p0,p1, . . . ,pm have value 0 in indices that are not ω in x.

SupposeΔ(σ) = p0+i0p0+· · ·+impm. Let Ã = A∪{−p0, . . . ,−pm}. We have

x
−p0−−−→ x

(−p0)
i0 ···(−pm)imσ−−−−−−−−−−−−−→ x, written as x

−p0−−−→ x
u−→ x for simplicity. By our

choice of i0, . . . , im, we get Δ(u) = p0. This means the action−p0 is reversible on
the extended configuration x. Hence, by Theorem 6.2, there exists a configuration

c′ ≤ x such that −p0 is reversible on c′ and ‖c′‖∞ ≤ (102d2ã2)(15d
d+2)d+2

, where

ã = ‖Ã‖∞. Now we have c′
−p0−−−→ c′′

u′
−→ c′, so Δ(u′) = p0. The word u′ is

reversible on the configuration c′′. By Theorem 6.1, there exists another word

u′′ reversible on c′′ such that Δ(u′′) = Δ(u′) = p0 and |u′′| ≤ 17d2x15dd+2

, where

x = (1 + 2‖Ã‖∞)(1 + ‖c′′‖∞ + ‖Δ(u′)‖∞).
Let σ′ be the word obtained from u′′ by retaining only the actions in A. We

get Δ(u′′) = Δ(σ′)− i′0p0 − · · · − i′mpm by introducing i′j , the number of times
−pj occurs in u′′. Hence Δ(σ′) = p0 + i′0p0 + · · ·+ i′mpm, since Δ(u′′) = p0.

It follows that Z′Δ(σ′) ≥ n′ and so ZΔ(σ′) ≥ n. Recall that c′ ≤ c ≤ x

and that c′
−p0−−−→ c′′

u′′
−−→ c′. Since σ′ is obtained from u′′ by removing some

actions in Ã \ A and since those actions have value 0 in indices where x is

not ω, we infer that x
−p0−−−→ x

σ′
−→ x. It remains to bound the length of

σ′ to conclude the proof. We have x = (1 + 2‖Ã‖∞)(1 + ‖c′′‖∞ + ‖Δu′‖∞)

and |σ′| ≤ |u′′| ≤ 17d2x15dd+2

. After some simplifications, it can be infered

that |σ′| ≤ (‖Z‖1,∞ + ‖A‖∞ + ‖n‖∞)rc
d3

2 for a suitably chosen constant c2.
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The simplification involves calculations that are a bit tedious and can be found
in the full version. ��

In Lemma 6.4 above, n is a vector of natural numbers in the linear system
ZΔ(σ) ≥ n. It is unlikely that a similar result about short cycles can be proved
when n is an integer vector, since that would imply short witnesses for reacha-
bility, as shown by the following remark.

Remark 6.5. Let cinit
u−→ c be a run in a VAS 〈A, cinit〉. We associate to every

action a the action ã = (a, 0) with an extra component equal to zero. We also
introduce the set Ã = {ã | a ∈ A} ∪ {(cinit, 2), (−c, 3)}. From the word u =
a1 . . .ak we get the word ũ = ã1 . . . ãk. Now observe that σ = (cinit, 2)ũ(−c, 3)
and x = (0, ω) satisfies x

σ−→ x and Δ(σ)(d + 1) = 5, which can be encoded
by two inequalities provided that we allow comparisons with negative integers

(as we only permit ≥). Moreover from any word σ′ ∈ Ã
∗
such that x

σ′
−→ x

and Δ(σ′)(d + 1) = 5 we derive a word u′ ∈ A∗ such that |u′| = |σ′| − 2 and

cinit
u′
−→ c. In fact, we observe that u′ contains one occurrence of (cinit, 2) and

one occurrence of (−c, 3). By removing these occurrences from σ′, we get u′. ��

7 Small Pumping Segments through Short Cycles

In this section, we use the result of the previous section to prove Theorem 5.2.
We first provide a bound on the pumping segments.

Lemma 7.1. Suppose there is a self-covering sequence (u1, σ1, . . . , uk, σk) sat-
isfying φ. Then there is a self-covering sequence (u′1, σ

′
1, . . . , u

′
k, σ

′
k) satisfying φ

such that |σ′1|+ · · ·+ |σ′k| ≤ (‖A‖∞ + ‖φ‖1)r(φ)c
(d·k(φ))3

1 where c1 is a constant.

Proof (Sketch). A self-covering sequence (u1, σ1, . . . , uk, σk) satisfies a formula
t ≥ n if, and only if, z / (Δ(σ1), . . . , Δ(σk)) ≥ n, where z ∈ Zd·k is an inte-
ger vector that only depends on t, / is the usual dot product. The conditions
‖Δ(σj)‖− ⊆ ∪1≤j′<j‖Δ(σj′ )‖+ can also be expressed as a set of inequalities of
the previous form. By suitably defining a (kd)-dimensional VAS, we can think
of a word σ whose displacement is (Δ(σ1), . . . , Δ(σk)). The combination of all
the satisfied terms of φ and the condition for self-covering sequences gives rise
to a linear system ZΔ(σ) ≥ n, where Z is an integer matrix and n is a vector
of natural numbers.

Using the result of the previous section, we find a short cycle labeled by σ′

whose displacement also satisfies ZΔ(σ′) ≥ n. From this short cycle, we can
extract words of the original VAS which are pumping segments satisfying the
length requirements of the lemma. ��

We now have the necessary ingredients to prove our main result, Theorem 5.2.
Assume that 〈A, cinit〉 admits a self-covering sequence (u1, σ1, . . . , uk, σk) satis-
fying φ. By Lemma 7.1, there exists a self-covering sequence (u′1, σ

′
1, . . . , u

′
k, σ

′
k)

satisfying φ such that |σ′1| + · · ·+ |σ′k| ≤ (‖A‖∞ + ‖φ‖1)r(φ)c
(k(φ)·d)3
1 . We derive
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from Lemma 5.4 that there exists a self-covering sequence (u′′1 , σ
′
1, . . . , u

′′
k, σ

′
k)

such that |u′′1 |+· · ·+|u′′k| ≤ (2‖A‖∞(‖A‖∞+‖φ‖1)r(φ)c
(k(φ)·d)3
1 )((d+1)k(φ)+1)!. Sim-

plifying this, we get |σ′1|+· · ·+|σ′k|+|u′′1 |+· · ·+|u′′k| ≤ (‖A‖∞+‖φ‖1)r(φ)c
(k(φ)·d)3

for a suitably chosen constant c, which concludes the proof of the theorem.
We now define the size of a VAS and a formula and state a complexity theoretic

consequence of the small model property obtained above. The size of a VAS is
the obvious one, where integers are encoded in binary. The size |t| of a term t is
defined inductively as follows: |zδj(i)| = log(|z|+1) and |t1+ t2| = 1+ |t1|+ |t2|.
The size |φ| of a formula φ is defined by |t ≥ n| = |t|+1+ log(n+1), |φ1∨φ2| =
|φ1|+ 1 + |φ2| and |φ1 ∧ φ2| = |φ1|+ 1 + |φ2|.

Corollary 7.2. Given a VAS 〈A, cinit〉 and a formula φ, the problem of checking
whether there is a self-covering sequence satisfying φ is ExpSpace-complete.

Proof. For the exponential space lower bound, we have seen in Section 4 that we
can reduce the boundedness problem to checking a formula of our logic. Since the
boundedness problem is ExpSpace-hard [9], checking whether a given formula
is satisfied by a given VAS is ExpSpace-hard.

For the exponential space upper bound, a non-deterministic Turing machine
can guess and verify the existence of a self-covering sequence of length at most

(‖A‖∞ + ‖φ‖1)r(φ)c
(d·k(φ))3

. The Turing machine needs to maintain a counter

to count (in binary) up to a maximum of (‖A‖∞ + ‖φ‖1)r(φ)c
(d·k(φ))3

and store
at most 2k intermediate configurations. The memory requirement is therefore
O(r(φ)c(d·k(φ))3 (log ‖A‖∞ + log ‖φ‖1)). It is easy to see that the size of the
VAS is an upper bound on log ‖A‖∞ and the size |φ| of the formula φ is an
upper bound on log ‖φ‖1. Hence, the well-known Savitch’s theorem then gives a
deterministic Turing machine that works in exponential space. ��

8 Complexity of the Context-Freeness Problem for VAS

We have shown in the previous sections that the model-checking problem for our
logic can be solved in exponential space. As an application, we now focus on the
context-freeness problem for VAS, and characterize its complexity.

The context-freeness problem asks whether the trace language of a given VAS
is context-free. This problem was shown to be decidable by Schwer in [14]. Since
it is based on the coverability graph, the resulting algorithm’s complexity is
non-primitive recursive. Recently, we revisited the context-freeness problem for
VAS, and gave a simpler proof of decidability [8]. Our approach is based on
regular bounded languages having a non-context free intersection with the set
of traces. In this section, we briefly recall this characterization. Then, we show
how to express it by a formula in our logic, thereby providing an exponential
space upper bound for the context-freeness problem.

A pair (v1,v2) of vectors in Zd such that v1 ≥ 0 and v2 ≥ 0 is called a
matching pair. For every matching pair (v1,v2), there exists a maximal non-
negative rational number λ ≥ 0 such that v1 + λv2 ≥ 0. We call this rational
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number the ratio of the matching pair (v1,v2), and we denote it by rat(v1,v2).
We define the excess of (v1,v2) as the vector exc(v1,v2) = v1 + rat(v1,v2) · v2.
Note that exc(v1,v2) ≥ 0.

A matching scheme is a tuple (σ1, . . . , σk, U) where σ1, . . . , σk are words in
(Zd)∗ and U is a nested binary relation on {1, . . . , k} such that (Δ(σs), Δ(σt))
is a matching pair for every (s, t) ∈ U . Here, by nested, we mean that U satisfies
the two following conditions:

(s, t) ∈ U ⇒ s ≤ t (1)

(r, t) ∈ U ∧ (s, u) ∈ U ⇒ ¬(r < s < t < u) (2)

The excess of a matching scheme (σ1, . . . , σk, U) is the vector exc(σ1, . . . , σk, U) =∑
(s,t)∈U exc(Δ(σs), Δ(σt)).

Definition 8.1. A witness of non-context-freeness for a VAS 〈A, cinit〉 is a tu-
ple (u1, σ1, . . . , uk, σk, U), where ui, σi are words in A∗ and (σ1, . . . , σk, U) is a
matching scheme, such that:

1. The word u1σ1 · · ·ukσk is a trace of 〈A, cinit〉,
2. It holds that Δ(σk) ≥ 0 and ‖Δ(σk)‖− ⊆ ‖exc(σ1, . . . , σk, U)‖+, and
3. For every (s, t) ∈ U with t < k, there exists (r, t) ∈ U such that r ≤ s and
‖Δ(σt)‖− ⊆ ‖Δ(σr)‖+.

Theorem 8.2 ([8]). The trace language of a VAS 〈A, cinit〉 is not context-free
if, and only if, 〈A, cinit〉 admits a witness of non-context-freeness.

Our objective is to express non-context-freeness by a formula in our relational
trace logic. However, the conditions of Definition 8.1 cannot be translated, as
is, in the logic. Firstly, the number k of pumping segments is not, a priori,
bounded. Secondly, the sequence (u1, σ1, . . . , uk, σk) need not be a self-covering
sequence. Lastly, membership of a given index in the set ‖exc(σ1, . . . , σk, U)‖+
is not linear1 in Δ(σ1), . . . , Δ(σk) since it requires comparing ratios between
components. To overcome this difficulty, we show that it is enough to look for
witnesses of non-context-freeness satisfying additional, simplifying requirements.

Formally, a witness of non-context-freeness (u1, σ1, . . . , uk, σk, U) is called per-
fect if k ≤ 3d + 1, the tuple (u1, σ1, . . . , uk, σk) is a self-covering sequence, and
rat(Δ(σs), Δ(σt)) ∈ {0, 1} for every (s, t) ∈ U .

Proposition 8.3. The trace language of a VAS 〈A, cinit〉 is not context-free if,
and only if, 〈A, cinit〉 admits a perfect witness of non-context-freeness.

Proof (Sketch). We show that every witness of non-context-freeness can be
transformed into a perfect one. The proposition then follows from Theorem 8.2.
Consider a witness of non-context-freeness (u1, σ1, . . . , uk, σk, U), and assume,
w.l.o.g., that U is minimal with respect to inclusion. We can show that U contains

1 Given a matching pair (v1,v2) and an index i such that v2(i) ≤ 0, it holds that
i ∈ ‖exc(v1,v2)‖+ if, and only if, v1(i) · v2(j) < v1(j) · v2(i) for some index j �= i.
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at most two pairs for each index i ∈ ‖exc(σ1, . . . , σk, U)‖+, hence, the support
S = {s, t | (s, t) ∈ U} of U has a cardinality of at most 3d. Obviously, we may
transform the witness by keeping only the pumping segments σi for i ∈ S ∪{k}.
The remaining pumping segments are merged together with the words ui that
surround them. By construction, the resulting witness of non-context-freeness is
a self-covering sequence with at most 3d + 1 pumping segments since |S| ≤ 3d.
It remains to enforce the ratios to be in {0, 1}. Pick a pair (s, t) ∈ U such that
rat(Δ(σs), Δ(σt)) is a positive rational number, written p

q . Observe that

rat(n1v1, n2v2) =
n1

n2
· rat(v1,v2)

exc(n1v1, n2v2) = n1 · exc(v1,v2)

for every matching pair (v1,v2) and positive natural numbers n1 and n2. So
we define σ′s = σqs , σ′t = σpt and σ′i = σni for i ∈ {s, t}, where n is equal
to p or q. We derive from Lemma 2.2 that there exists u′1, . . . , u

′
k such that

(u′1, σ
′
1, . . . , u

′
k, σ

′
k, U) is a witness of non-context-freeness. This transformation

guarantees that rat(Δ(σ′s), Δ(σ′t)) = 1, however, it may also change the ratios
of other pairs involving s (if n = p) or t (if n = q). Still, as (σ1, . . . , σk, U) is a
matching scheme, it is possible to process the pairs (s, t) ∈ U in an appropriate
order that prevents such conflicts. ��

Example 8.4. Consider the VAS 〈A, cinit〉 given by A = {a, b} and cinit = (2, 2),
where a = (−2, 3) and b = (3,−2). The tuple (ε,ab, ε,a, ε, b, U), with U =
{(1, 2), (1, 3)}, is a witness of non-context-freeness. This witness is not perfect
since rat(Δ(ab), Δ(a)) = rat((1, 1), (−2, 3)) = 1

2 . Replacing ab by abab in the
witness makes it perfect. ��

We now explain how to encode by a formula in our logic the conditions of perfect
witnesses of non-context-freeness. Consider a positive natural number k and a
nested relation U on {1, . . . , k}. Firstly, we express that (Δ(σs), Δ(σt)) is a
matching pair with ratio in {0, 1} for every (s, t) ∈ U , by the following formula:

∧
(s,t)∈U

(
d∧

i=1

δs(i) ≥ 0 ∧
d∨

i=1

−δt(i) ≥ 1 ∧ (ρ0(s, t) ∨ ρ1(s, t))

)

where ρ0(s, t) and ρ1(s, t) are formulas, expressible in our logic, specifying that
the matching pair (Δ(σs), Δ(σt)) has ratio 0 and 1, respectively.
Secondly, we encode the requirements of Definition 8.1. The condition that
Δ(σk) ≥ 0 is expressed by the formula

∨d
i=1−δk(i) ≥ 1. For the encoding of the

condition ‖Δ(σk)‖− ⊆ ‖exc(σ1, . . . , σk, U)‖+, we exploit the property that the
ratio of each matching pair (Δ(σs), Δ(σt)) is either 0 or 1, as follows:

d∧
i=1

⎛⎝ δk(i) ≥ 0 ∨
∨

(s,t)∈U
(ρ0(s, t) ∧ δs(i) ≥ 1) ∨ (ρ1(s, t) ∧ δs(i) + δt(i) ≥ 1)

⎞⎠
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The last condition of Definition 8.1 is expressed by the following formula:

∧
(s,t)∈U,t<k

⎛⎝ ∨
(r,t)∈U,r≤s

d∧
i=1

δt(i) ≥ 0 ∨ δr(i) ≥ 1

⎞⎠
Let ϕ(k, U) be the conjunction of the above formulas, and let ψ denote the
disjunction of all ϕ(k, U) where 1 ≤ k ≤ 3d + 1 and U is a nested relation
on {1, . . . , k}. As intended, the formula ψ expresses non-context-freeness of the
trace language. We derive the complexity of the context-freeness problem for
VAS from the analysis of our logic developed in the previous sections.

Theorem 8.5. The context-freeness problem for VAS is ExpSpace-complete.

Proof. By construction, 〈A, cinit〉 admits a perfect witness of non-context-freeness
if, and only if, 〈A, cinit〉 satisfies ψ. It follows from Proposition 8.3 that the trace
language of 〈A, cinit〉 is not context-free if, and only if, 〈A, cinit〉 satisfies ψ. It is
readily seen that |ψ| is at most exponential in the dimension d, and that the con-
junction rank of ψ is bounded by a polynomial in d. We derive from Theorem 5.2,
with the same arguments as in Corollary 7.2, that the context-freeness problem
for VAS can be solved in exponential space. The exponential space lower bound
is obtained by a reduction from the boundedness problem for VAS. ��

9 Discussion and Future Work

We introduced a logic that can express positive Boolean combinations of lin-
ear relations among the displacements of pumping segments in self-covering
sequences. We showed that if a VAS satisfies a formula, there are witnessing
self-covering sequences whose size is at most doubly-exponential in the size of
the VAS and the formula. This gives an exponential space upper bound for the
model-checking problem for our logic, which in turn gives an exponential space
upper bound for the context-freeness problem.

Yen introduced a logic similar to ours in [17], interpreted over all traces instead
of self-covering sequences like we do. Atig and Habermehl showed in [1] that the
problem of checking whether there is a trace satisfying a given formula in Yen’s
path logic is in the class CRP (i.e., equivalent to the reachability problem). They
also give a fragment of Yen’s path logic that can be checked in exponential space.
This fragment imposes the condition that the total displacement of the words
under consideration is greater than or equal to 0, which is incomparable with
our restriction to self-covering sequences and also incompatible with witnesses
of non-context-freeness.

A logic similar to ours was introduced by Demri in [3], interpreted over self-
covering sequences. In place of t ≥ n in our logic, the conditions allowed in [3]
can constrain a variable to be inside any interval of integers. However, we al-
low combining Δ(σ1), . . . , Δ(σk) in a single term, which is not allowed in [3].
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Hence, the two logics are incomparable. The inability of the logic in [3] to combine
Δ(σ1), . . . , Δ(σk) in a single term renders it unable to express the presence of
witnesses of non-context-freeness.

Blockelet and Schmitz introduced in [2] a fragment of computational tree
logic enriched with formulas in Presburger arithmetic for expressing properties of
coverability graphs. An exponential space upper bound is provided for a fragment
of this logic by imposing a so-called eventually increasing condition that is similar
to the one imposed in [1], but for trees instead of paths. Again, this condition is
incompatible with witnesses of non-context-freeness.

It will be interesting to see if the techniques used in the above collection of
incomparable logics can be unified to define a logic that extends all of them and
that can still be checked in exponential space.
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Abstract. Expand, enlarge, and check (EEC) is a successful heuristic
for the coverability problem of well-structured transition systems. EEC
constructs a sequence of under- and over-approximations with the prop-
erty that the presence of a bug is eventually exhibited by some under-
approximation and the absence of a bug is eventually exhibited by some
over-approximation.

In this paper, we consider the application of EEC to the coverabil-
ity problem for branching vector addition systems (BVAS), an expres-
sive model that subsumes Petri nets. We describe an EEC algorithm
for BVAS, and prove its termination and correctness. We prove an upper
bound on the number of iterations for our EEC algorithm, both for BVAS
and, as a special case, vector addition systems (or Petri nets). We show
that in addition to practical effectiveness, the EEC heuristic is asymp-
totically optimal. For BVAS, it requires at most doubly-exponentially
many iterations, thus matching the optimal 2EXPTIME upper bound.
For Petri nets, it can be implemented in EXPSPACE, again matching
the optimal bound. We have implemented our algorithm and used it to
verify safety properties of concurrent programs with asynchronous tasks.

1 Introduction

Branching vector addition systems (BVAS) are an expressive model that gen-
eralize vector addition systems (VAS, or Petri nets) with branching structures.
Intuitively, one can consider a VAS as producing a linear sequence of vectors
using unary rewrite rules, where a rewrite rule takes a vector v and adds a con-
stant δ to it, as long as the sum v + δ remains non-negative on all co-ordinates.
A branching VAS adds a second, binary rewrite rule that takes two vectors v1
and v2 and rewrites them to v1+ v2+ δ for a constant δ, again provided the sum
is non-negative on all co-ordinates. Thus, a BVAS generates a derivation tree
of vectors, starting with a multiset of initial vectors, or axioms, at the leaves
and generating a vector at the root of a derivation, where each internal node in
the tree applies a unary or a binary rewrite rule. The reachability problem for
BVAS is to check if a given vector can be derived, and the coverability problem
asks, given a vector v, if a vector v′ ≥ v can be derived. These generalize the
corresponding problems for VAS. Several verification problems, such as the anal-
ysis of recursively parallel programs [1] and the analysis of some cryptographic
protocols [17], have been shown to reduce to the coverability problem for BVAS.

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 152–166, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Coverability for BVAS is known to be decidable, both through a generalized
Karp-Miller construction [16] as well as through a bounding argument [5]. Fur-
ther, the bounding argument characterizes the complexity of the problem: cover-
ability is 2EXPTIME-complete [5] (contrast with the EXPSPACE-completeness
for VAS [15]). The Karp-Miller construction is non-primitive recursive, since
BVAS subsume VAS [11].

Despite potential applications, the study of BVAS has so far remained in
the domain of theoretical results, and to the best of our knowledge, there have
not been any attempts to build analysis tools for coverability. In contrast, tools
for VAS coverability have made steady progress and can now handle quite large
benchmarks derived from the analysis of multi-threaded programs [10,13]. In our
view, one reason is that a direct implementation of the algorithms from [16,5]
are unlikely to perform well: Karp-Miller trees for VAS do not perform well in
practice, and Demri et al.’s complexity-theoretically optimal algorithm performs
a non-deterministic guess and enumeration by an alternating Turing machine.

In this paper, we apply the expand, enlarge, and check paradigm (EEC) [7]
to the analysis of BVAS. EEC is a successful heuristic for checking coverability
of well-structured transition systems such as Petri nets. It constructs a sequence
of under- and over-approximations of the state space of a system such that,
for a target state t, (1) if t is coverable, then a witness is found by an under-
approximation, (2) if t is not coverable, then a witness for un-coverability is
found by an over-approximation, and (3) eventually, one of the two outcomes
occur and the algorithm terminates.

EEC offers several nice features for implementation. First, each approximation
it considers is finite-state, thus opening the possibility of applying model checkers
for finite-state systems. Second, EEC is goal-directed: it computes abstractions
that are precise enough to prove or disprove coverability of a target, unlike a
Karp-Miller procedure that computes the exact coverability set independent of
the target. Third, it allows a forward abstract exploration of the state space,
which is often more effective in practice.

Our first contribution is to port the EEC paradigm to the coverability analysis
of BVAS.We show how to construct a sequence of under- and over-approximations
of derivations such that if a target is coverable, an under-approximation derives a
witness for coverability, and if a target is not coverable, an over-approximation
derives a witness for un-coverability. We generalize the proof of correctness of
EEC for well-structured systems. Since there is no BVAS analogue of a backward-
reachability algorithm for VAS, our proofs instead use induction on derivations
and the Karp-Miller construction of [16].

A natural question is how well EEC performs in the worst case compared to
asymptotically optimal algorithms. For example, even for VAS, it is unknown if
the EEC algorithm can match the known EXPSPACE upper bound for cover-
ability, or if it matches the non-primitive recursive lower bound for Karp-Miller
trees. Our second contribution is to bound the number of iterations of the EEC
algorithm in the worst case. We show that we can compute a constant c of size
doubly exponential in the size of the BVAS and the target vector such that the
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EEC algorithm is guaranteed to terminate in c iterations. In each iteration, the
algorithm explores approximate state spaces of derivations, that correspond to
exploring AND-OR trees of size doubly exponential in the input. In other words,
if each exploration is performed optimally, we get an optimal asymptotic upper
bound for EEC. Specifically, for VAS, we get an EXPSPACE upper bound, since
there are doubly exponential iterations and each iteration checks two reachabil-
ity problems over doubly-exponential state spaces. (In practice though, model
checkers do not implement space-optimal reachability procedures.) While our
proof uses Rackoff-style bounds [15,5], our implementation does not require any
knowledge of these bounds. A similar argument was used in [2] to show a doubly
exponential bound on the backward reachability algorithm for VAS.

We have implemented the EEC-based procedure for BVAS coverability. Our
motivation for analyzing BVAS came from the analysis of recursively parallel
programs [6,1]. It is known that the analysis of asynchronous programs, a co-
operatively scheduled concurrency model, can be reduced to coverability of VAS
[6], and there have been EEC-based tools for these programs [9]. However, some
asynchronous programs use features such as posting a set of tasks in a handler
and waiting on the first task to return, that are not reducible to asynchronous
programs. Bouajjani and Emmi [1] define a class of recursively parallel programs
that can express such constructs, and show that the safety verification problem
for this class is equivalent to coverability of BVAS. We applied this reduction
in our implementation, and used our tool to model check safety properties of
recursively parallel programs. We coded the control flow of tasks in a simple web
server [4] and showed that our tool can successfully check for safety properties
and find bugs. On our examples, the EEC algorithm terminates in one iteration,
that is, with a {0, 1,∞} abstraction. While our evaluations are preliminary, we
believe there is a potential for model checking tools for complex concurrent
programs based on BVAS coverability.

2 Preliminaries

Well Quasi Ordering. A quasi ordering (X,�) is a reflexive and transitive
binary relation on X . A quasi ordering (X,�) is a well quasi ordering iff for
every infinite sequence x0, x1, . . . of elements from X , there exists i < j with
xi � xj . A subset X ′ of X is upward closed if for each x ∈ X , if there is an
x′ ∈ X ′ with x′ � x then x ∈ X ′. A subset X ′ of X is downward closed if for
each x ∈ X , if there is an x′ ∈ X ′ with x � x′ then x ∈ X ′. Given x ∈ X ,
we write x↓ and x↑ for the downward closure {x′ ∈ X | x′ � x} and upward
closure {x′ ∈ X | x � x′} of x respectively. Downward and upward closures are
naturally extended to sets, i.e., X ↓ =

⋃
x∈X x↓ and X ↑ =

⋃
x∈X x↑. A subset

S ⊆ X is minimal iff for every two elements x, x′ ∈ S, we have x � x′.

Numbers and Vectors. We write N, N+ and Z for the set of non-negative,
positive and arbitrary integers, respectively. Given two integers a and b, we write
[a, b] for {n ∈ Z | a ≤ n ≤ b}.

For a vector v ∈ Zk and i ∈ [1, k], we write v[i] for the ith component of v.
Given two vectors v, v′ ∈ Zk, v ≤ v′ iff for all i ∈ [1, k], v[i] ≤ v′[i]. Moreover,
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v < v′ iff v ≤ v′ and v′ ≤ v. It is well-known that (Nk,≤) is a well quasi ordering.
We write 0 for the zero vector.

Given a finite set S ⊆ Z of integers, we write max(S) for the greatest in-
teger in the set. We define max(∅) = 0. Given a vector v ∈ Zk, let max(v) =
max({v[1], . . . , v[k]}). When k = 0, we have max(〈〉) = 0. We define min(S) anal-
ogously. We write min(0, v) for the vector 〈min({0, v[1]}), . . . ,min({0, v[k]})〉.
The vector max(0, v) is defined analogously. For simplicity, we write v− for the
vector −min(0, v) and v+ for the vector max(0, v). Given a finite set of vec-
tors R ⊆ Zk, let R−/+ be the set {v−/+ | v ∈ R} respectively. We define
max(R) = max({max(v+) | v ∈ R}). The size of a vector is the number of bits
required to encode it, all numbers being encoded in binary.

Trees. A finite binary tree T , which may contain nodes with one child, is a
non-empty finite subset of {1, 2}∗ such that, for all n ∈ {1, 2}∗ and i ∈ {1, 2},
n · 2 ∈ T implies n · 1 ∈ T , and n · i ∈ T implies n ∈ T . The nodes of T are its
elements. The root of T is ε, the empty word. All notions such as parent, child,
subtree and leaf, have their standard meanings. The height of T is the number
of nodes in the longest path from the root to a leaf.

BVAS, Derivations, and Coverability. A branching vector addition system
(BVAS) [16,5] is a tuple B = 〈k,A,R1, R2〉, where k ∈ N is the dimension,
A ⊆ Nk is a non-empty finite set of axioms, and R1, R2 ⊆ Zk are finite sets of
unary and binary rules, respectively. The size of a BVAS, size(B) is the number
of bits required to encode a BVAS, where numbers are encoded in binary.

The semantics of a BVAS B is captured using derivations. Intuitively, a deriva-
tion starts with a number of axioms from A, proceeds by applying rules from
R1 ∪R2, and ends with a single vector. Applying a unary rule means adding it
to a derived vector, and applying a binary rule means adding it to the sum of
two derived vectors. While applying rules, all derived vectors are required to be
non-negative. Formally, a derivation D of B is defined inductively as follows.

D1: If v ∈ A, then v is a derivation.
D2: If D1 is a derivation with a derived vector v1 ∈ Nk, then for each unary rule

δ1 ∈ R1 with 0 ≤ v1 + δ1,

... D1

v1D : δ1v

is a derivation, where v = v1 + δ1.
D3: If D1 and D2 are derivations with derived vectors v1, v2 ∈ Nk respectively,

then for each binary rule δ2 ∈ R2 with 0 ≤ v1 + v2 + δ2,

... D1

v1

... D2

v2D : δ2v

is a derivation, where v = v1 + v2 + δ2.
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A derivation D can be represented as a finite binary tree whose nodes are labelled
by non-negative vectors. Therefore, all notions of trees can be naturally applied
to derivations. For a derivation D and its node n, we write D(n) for the non-
negative vector labelled at n. We say D derives a vector v iff D(ε) = v.

A derivation D is compact iff for each node n and for each its ancestor n′, we
have D(n) = D(n′). Given a derivation D with a node n and an ancestor n′ of n
with D(n) = D(n′), a contraction D[n′ ← n] over D is obtained by replacing the
subtree rooted at n′ with the subtree rooted at n in D. We write compact(D) for
the compact derivation computed by a finite sequence of contractions over D.

Given a BVAS B = 〈k,A,R1, R2〉, we say a vector v is reachable in B iff there
is a derivation D with D(ε) = v. We write Reach(B) = {v | ∃D. D(ε) = v} for
the set of reachable vectors in B. We say a vector v is coverable in B iff there is
a derivation D with v ≤ D(ε). We call a derivation D a covering witness of v iff
v ≤ D(ε). The coverability problem asks, given a BVAS B and a vector t ∈ Nk,
whether t is coverable in B. Equivalently, t is coverable iff t ∈ Reach(B)↓.

3 Under-and Over-Approximation

We give two approximate analyses for BVAS: an under-approximation that fixes
a finite set of vectors and only considers those vectors in that finite set, and an
over-approximation that introduces limit elements. The under-approximation
can show that a vector is coverable and the over-approximation can prove that
a vector is not coverable.

3.1 Underapproximation

Truncated Derivations. Given a BVAS B = 〈k,A,R1, R2〉 and an i ∈ N,
define Ci ⊆ Nk as A∪{0, . . . , i}k. Given a vector v ∈ Nk and an i ∈ N, We write
under(v, i) for a truncated vector such that for all j ∈ [1, k], under(v, i)[j] = v[j]
if v[j] ≤ i, under(v, i)[j] = i otherwise. For all vector v ∈ Nk and for all i ∈ N,
under(v, i) ≤ v. A truncated derivation F w.r.t. i is defined inductively as follows.

T1: If v ∈ A, then v is a truncated derivation.
T2: If F1 is a truncated derivation with a derived truncated vector v1 ∈ Nk,

then for each unary rule δ1 ∈ R1 with 0 ≤ v1 + δ1,

... F1

v1F : δ1v
is a truncated derivation, where v = under(v1 + δ1, i).

T3: If F1 and F2 are truncated derivations with derived truncated vectors
v1, v2 ∈ Nk respectively, then for each binary rule δ2 ∈ R2 with 0 ≤
v1 + v2 + δ2,

... F1

v1

... F2

v2F : δ2v
is a truncated derivation, where v = under(v1 + v2 + δ2, i).



Expand, Enlarge, and Check for Branching Vector Addition Systems 157

Analogously to derivations, a truncated derivation F is a finite binary tree whose
nodes are labelled by truncated vectors. We say F derives a truncated vector v
iff F(ε) = v. We naturally extend the notions of compactness, covering witness,
and coverability to truncated derivations w.r.t. ≤.

Lemma 1. Let B = 〈k,A,R1, R2〉 be a BVAS and i ∈ N. For any h ∈ N+, there
are finitely many truncated derivations of a BVAS of height h.

Given a BVAS B, we define a total ordering� on truncated derivations according
to their heights as follows. Since for each h ∈ N+ there are only finitely many, say
kh, truncated derivations of height h, we can enumerate them without repetition,
arbitrarily as Fh1, . . . ,Fhkh

. We define Fmi � Fnj iff m < n, or m = n and i ≤ j.

The Forest Under(B, Ci). Given a BVAS B = 〈k,A,R1, R2〉 and i ∈ N, we
construct a forest Under(B, Ci) whose nodes are compact truncated derivations
by the following rules:

U1: For each axiom v ∈ A, the truncated derivation v is a root.
U2: Let F1 be a compact truncated derivation in the forest. Let F be a truncated

derivation obtained by applying a unary rule δ1 ∈ R1 to F1 (as in rule T2).
If compact(F) has not been added to the forest then add compact(F) as a
child of F1 in the forest.

U3: Suppose compact truncated derivations F1,F2 are in the forest. Let F be a
truncated derivation obtained by applying a binary rule δ2 ∈ R2 to F1 and
F2 (as in rule T3). If compact(F) has not been added to the forest then we
add compact(F) to the forest as a child of F ′ where F ′ is the greater one
between F1 and F2 w.r.t. the total order �.

The following lemma shows that the construction of Under(B, Ci) eventually
terminates, and that it can be used to prove coverability.

Theorem 1 (Underapproximation). Let B be a BVAS.

1. For any i ∈ N, the forest Under(B, Ci) is finite.
2. Given an i ∈ N, for any truncated derivation F , there is a derivation D in
B such that F(ε) ≤ D(ε).

3. For any vector v ∈ Nk, we have v ∈ Reach(B)↓ iff there exists i ∈ N such
that there is a truncated derivation F in Under(B, Ci) with v ≤ F(ε).

Proof. Part (1). Fix i. It is easy to see that there are finitely many trees in the
forest and each tree is finitely branching, since there are at most finitely many
trees of a given height. If the forest is not finite, then by König’s lemma, there is
an infinite simple path of compact truncated derivations F1,F2, . . . in the forest
such that for every i ≥ 1, Fi is a sub-compact truncated derivation of Fi+1. This
induces an infinite sequence of truncated vectors F1(ε),F2(ε) . . . such that for
every i = j, Fi(ε) = Fj(ε). However, since for all F in the forest, F(ε) ∈ Ci and
Ci is finite, such infinite sequence of truncated vectors does not exist.

Part (2). By induction on the height of F .
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Part (3). ⇒: Since Reach(B)∩ v↑ = ∅, there is a derivation D in B such that
v ≤ D(ε). Let S be the union of the set of axioms A and the set of all vectors in
compact(D). Because both sets are finite, let i be max(S). Then compact(D) is
in Under(B, Ci) and v ≤ D(ε) = compact(D)(ε).
⇐: By Part (2), there is a derivation D in B such that F(ε) ≤ D(ε). Since

D(ε) ∈ Reach(B) and v ≤ F(ε), v ∈ Reach(B)↓.

3.2 Overapproximation

To define over-approximation of derivations, we introduce extended derivations
which consider vectors over N∪ {∞}. We then present an algorithm that builds
a forest overapproximating the downward closure of reachable vectors of a given
BVAS and prove termination and correctness.

Let N∞ = N ∪ {∞} be the extension of the natural numbers with infinity.
An extended vector is an element of Nk

∞. For extended vectors u, u′ ∈ Nk
∞, we

write u ≤e u′ iff for all i ∈ [1, k], we have u[i] ≤ u′[i] or u′[i] = ∞. We write
u <e u′ iff u ≤e u′ and u′ ≤e u. We always use words starting with the letter
u to denote an extended vector (e.g. u, u′, u1 etc.) and words starting with the
letter v to denote a vector in Zk (e.g. v, v′, v1 etc.). Extended vectors describe

sets of vectors: we define γ : Nk
∞ → 2N

k

as γ(u) = {v ∈ Nk | v ≤e u}, and
naturally extend γ to sets of extended vectors.

Proposition 1. [7] (1) Given an extended vector u ∈ Nk
∞ and a finite set of

extended vectors S ⊆ Nk
∞, γ(u) ⊆ γ(S) iff there is u′ ∈ S such that u ≤e u′.

(2) Given two finite and minimal sets S1, S2 ⊆ Nk
∞, S1 = S2 if and only if

γ(S1) = γ(S2).

Given a BVAS B = 〈k,A,R1, R2〉, there exists a finite and minimal subset
CS(B) ⊆ Nk

∞ such that γ(CS(B)) = Reach(B)↓. We shall call CS(B) the finite
representation of Reach(B)↓.
Extended Derivations. Given a BVAS B = 〈k,A,R1, R2〉 and an i ∈ N, let
Ci = {0, . . . , i}k∪A and Li = {0, . . . , i,∞}k\{0, . . . , i}k. Given two sets S1 ⊆ Nk

and S2 ⊆ Nk
∞, we say that S2 is an overapproximation of S1 iff S1 ⊆ γ(S2).

Moreover, we say that S2 is the most precise overapproximation of S1 in Li ∪Ci

iff there is no finite and minimal subset S ⊆ Li∪Ci such that S1 ⊆ γ(S) ⊂ γ(S2).
In the following, in case S2 is a singleton set {u}, we write that u is (the most
precise) overapproximation of S1 for simplicity.

Given an extended vector u ∈ Nk
∞ and an i ∈ N, We write over(u, i) for

the extended vector such that for all j ∈ [1, k], over(u, i)[j] = u[j] if u[j] ≤ i,
over(u, i)[j] =∞ otherwise. Note that over(u, i) is an overapproximation of γ(u),
and interestingly, is the most precise overapproximation of γ(u) in Li ∪ Ci [7].

We can naturally extend the addition of vectors to the addition of extended
vectors by assuming that ∞+∞ =∞ and ∞+ c =∞ for all c ∈ Z.

Given a BVAS B = (k,A,R1, R2) and i ∈ N, an extended derivation E is
defined inductively as follows.
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E1: If v ∈ A, then v is an extended derivation.
E2: If E1 is an extended derivation with a derived extended vector u1 ∈ Nk

∞,
then for each unary rule δ1 ∈ R1 with 0 ≤e u1 + δ1,

... E1
u1E : δ1u

is an extended derivation, where u = over(u1 + δ1, i).
E3: If E1 and E2 are extended derivations with derived extended vectors u1, u2 ∈

Nk
∞ respectively, then for each binary rule δ2 ∈ R2 with 0 ≤e u1 + u2 + δ2,

... E1
u1

... E2
u2E : δ2u

is an extended derivation, where u = over(u1 + u2 + δ2, i).

Analogously to derivations, an extended derivation E is a finite binary tree whose
nodes are labelled by extended vectors. For an extended derivation E and its
node n, we write E(n) for the extended vector labelled at n. We say E derives an
extended vector u iff E(ε) = u. We naturally extend the notions of compactness,
covering witness, and coverability to extended derivations w.r.t. ≤e. Similar to
derivations, the following lemma shows that there are finitely many extended
derivations of a given height.

Lemma 2. Given a BVAS B = 〈k,A,R1, R2〉 and i ∈ N, for each h ∈ N+, there
are finitely many extended derivations of height h.

Given a BVAS B, we define a total ordering�e on extended derivations according
to their heights. Since for each h ∈ N+ there are only finitely many, say kh,
extended derivations of height h, we can enumerate them without repetition,
arbitrarily as Eh1, . . . , Ehkh

. We define Emi �e Enj iff m < n, or m = n and
i ≤ j.

The Forest Over(B, Li, Ci). Given a BVAS B = 〈k,A,R1, R2〉 and an i ∈ N, we
construct a forest Over(B, Li, Ci) whose nodes are compact extended derivations
by following the rules below.

O1: For each axiom v ∈ A, the extended derivation v is a root.
O2: If a compact extended derivation E1 is already in the forest and compact(E)

has not been added in the forest where E is computed by applying a unary
rule to E1 as in Rule E2, then add compact(E) as a child of E1 in the forest.

O3: If compact extended derivations E1, E2 are already in the forest and
compact(E) has not been added in the forest where E is computed by ap-
plying a binary rule to E1 and E2 as in Rule E3, then we add compact(E)
to the forest as a child of E ′ where E ′ is the greater one between E1 and E2
w.r.t. the total order �e.
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Algorithm 1. EEC Algorithm to decide the coverability problem of BVAS.

Input: A BVAS B = 〈k,A,R1, R2〉 and a vector t ∈ Nk.
Output: “Cover” if t is coverable in B, “Uncover” otherwise.
begin

i←− 0
while true do

Compute Under(B, Ci) // Expand

Compute Over(B, Li, Ci) // Enlarge

// Check

if ∃F ∈ Under(B, Ci). t ≤ F(ε) then
return “Cover”

else if ∀E ∈ Over(B, Li, Ci). t �≤e E(ε) then
return “Uncover”

i←− i+ 1

Theorem 2 (Overapproximation). Let B be a BVAS.

1. For each i ∈ N, the forest Over(B, Li, Ci) is finite.
2. Given i ∈ N, for any derivation D, there is a compact extended derivation E

in Over(B, Li, Ci) with D(ε) ≤e E(ε).
3. For v ∈ Nk, Reach(B) ∩ v↑ = ∅ iff there exists an i ∈ N such that for any

compact extended derivation E in Over(B, Li, Ci), we have γ(E(ε))∩ v↑ = ∅.

Proof. The proof of Part (1) is similar to the proof of Theorem 1(1), because
Li ∪ Ci is finite.

The proof of Part (2) is by induction on the height of D.
Part (3). ⇐: Suppose Reach(B) ∩ v↑ = ∅. Then there is a derivation D in B

such that D(ε) ∈ v↑. Using Part (2), we can find E in Over(B, Li, Ci) such that
D(ε) ≤e E(ε). For E , we have D(ε) ∈ γ(E(ε)) and thus γ(E(ε)) ∩ v↑ = ∅.
⇒: Since Reach(B)∩v↑ = ∅ iff Reach(B)↓∩v↑ = ∅, γ(CS(B))∩v↑ = ∅. Take

i ∈ N such that CS(B) ⊆ Li ∪Ci. For every extended derivation E in B, we have
γ(E(ε)) ⊆ γ(CS(B)). This can be proved by induction on the height of E .

For every compact extended derivation E in Over(B, Li, Ci), we therefore have
that γ(E(ε)) ⊆ γ(CS(B)). Hence γ(E(ε)) ∩ v↑ = ∅.

3.3 EEC Algorithm

Algorithm 1 shows the schematic of the EEC algorithm. It takes as input a
BVAS B and a target vector t. It uses an abstraction parameter i, initially 0,
and defines the family of abstractions Ci and Li. It iteratively computes the
under-approximation Under and over-approximation Over w.r.t. i. If the under-
approximation covers t, it returns “Cover”; if the over-approximation shows t
cannot be covered, it returns “Uncover.” Otherwise, it increments i and loops
again. From Theorems 1 and 2, we conclude that this algorithm eventually ter-
minates with the correct result.
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We briefly remark on two optimizations. First, instead of explicitly keeping
forests of derivations in Over and Under, we can only maintain the vectors that
label the roots of the derivations. The structure of the forest was required to
prove termination in [16], but can be reconstructed using only the vectors and
the timestamps at which the vectors were added. Second, in Under (resp. Over),
we can only keep maximal vectors (resp. extended vectors): if two vectors v1 ≤ v2
(resp. extended vectors u1 ≤e u2), we can omit v1 (resp. u1) and only keep v2
(resp. u2). Indeed, if t ≤ v1 in Under, we also have t ≤ v2, and so the cover check
succeeds in the EEC algorithm. Further, if t ≤e u2 in Over, we have t ≤e u1,
and so the uncover check succeeds as well. We thank Sylvain Schmitz for these
observations.

4 Complexity Analysis

We now give an upper bound on the number of iterations of the EEC algorithm.
Given a BVAS B = 〈k,A,R1, R2〉 and a derivation D, for each internal node
n, we write δ(n) ∈ Zk for the rule δ ∈ R1 ∪ R2 that is applied to derive D(n).
We extend this notation to truncated and extended derivations as well. Given
a derivation D and an i ∈ Nk, we define a truncated derivation under(D, i)
inductively as follows:

1. If n is a leaf, then under(D, i)(n) = D(n).
2. If n has a child n′ and D(n) = D(n′) + δ(n), then under(D, i)(n) =

under(under(D, i)(n′) + δ(n), i).
3. If n has two children n′, n′′ and D(n) = D(n′) + D(n′′) + δ(n), then

under(D, i)(n) = under(under(D, i)(n′) + under(D, i)(n′′) + δ(n), i).

We can also define an extended derivation over(D, i) inductively by following the
above rules except that we replace all under(�, i) by over(�, i).

We start with some intuition in the special case of vector addition systems. A
vector addition system (VAS) V is a BVAS 〈k, {a}, R, ∅〉. For simplicity, we write
a VAS as just 〈k, a,R〉. Note that a derivation D of a VAS V is degenerated to a
sequence of non-negative vectors. In the following, we say the length of D instead
of the height of D for convenience in the VAS context. For VAS, Rackoff [15]
proved the coverability problem is EXPSPACE-complete by showing that if a
covering witness (derivation) exists, then there must exist one whose length h
is at most doubly exponential in the size of the VAS V and the target vector
t. Further, there is a derivation of length at most h in which the maximum
constant is bounded by i := h · size(V) + max(t). This is because in h steps,
a vector can decrease at most h · size(V), so if any co-ordinate goes over i, it
remains higher than max(t) after executing the path. By the same argument, if
there is an extended derivation of length at most h and constant i covering t,
then we can find a derivation for t.

If t is coverable, using the above argument and Theorem 1, we see that
Under(V , Ci) will contain a covering witness of t. If t is not coverable, then the
above argument shows that all extended derivations of Over(V , Li, Ci) of length
at most h will not cover t. However, there may be longer extended derivations
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in Over(V , Li, Ci). For these, we can show that Over(V , Li, Ci) also contains a
contraction of that extended derivation of length at most h. In both cases, EEC
terminates in i iterations, which is doubly exponential in the size of the input.

We now show the bound for BVAS. The following lemma is the key observation
in the optimal algorithm of [5].

Lemma 3. [5] Given a BVAS B = 〈k,A,R1, R2〉 and a vector t ∈ Nk, if t is
coverable in B, then there is a covering witness (derivation) D whose height is
at most (max((R1 ∪R2)

−) + max(t) + 2)(3k)!.

Moreover, the following lemma shows that the maximum constant appearing in
a height-bounded derivation can remain polynomial in the height.

Lemma 4. Given a BVAS B = 〈k,A,R1, R2〉, a vector t ∈ Nk and a derivation
D whose height is at most h, for any bound i ≥ h ·max((R1 ∪R2)

−) + max(t),
D is a covering witness of t iff under(D, i) is a covering witness of t.

Proof. Fix an i such that i ≥ h ·max((R1 ∪R2)
−) + max(t).

⇐: It holds by Theorem 1.
⇒: Given a derivation D, we say that an index j is marked iff during the

construction of under(D, i), there is a vector v, which is computed after applying
a rule and before comparing to i, such that v[j] > i.

Given a derivation D, during the construction of under(D, i), for each in-
dex j ∈ [1, k], we check the following: If j is marked, then there is a node n
such that under(D, i)(n)[j] = i. Since height(under(D, i)) = height(D) ≤ h, we
know that the length of the path from n to the root ε is at most h. Hence
under(D, i)(ε)[j] ≥ under(D, i)(n)[j] − h ·max((R1 ∪R2)

−) = i − h ·max((R1 ∪
R2)

−) ≥ max(t) ≥ t[j]. On the other hand, if j is not marked, we have that for
all node n, under(D, i)(n)[j] = D(n)[j]. Hence under(D, i)(ε)[j] = D(ε)[j] ≥ t[j].
Hence under(D, i) is a covering witness of t.

We now prove the case where the target vector t is coverable. We show that
Under(B, Ci) contains a truncated derivation covering t, where i is bounded by
a doubly exponential function of the input.

Lemma 5. Given a BVAS B = 〈k,A,R1, R2〉 and a vector t ∈ Nk, if t is
coverable in B, then there exists F ∈ Under(B, Ci) such that t ≤ F(ε) for some

i = 22
O(n log n)

, where n = size(B) + size(t).

Proof. Let h be the bound from Lemma 3. Clearly, h = 22
O(nlogn)

. Pick i = h2.
By Lemma 3, there is a derivation D that covers t and whose height is at most
h. Since i = h2 ≥ h · max((R1 ∪ R2)

−) + max(t), by Lemma 4, there is a
truncated derivation under(D, i) that covers t. Moreover, compact(under(D, i)) is
in Under(B, Ci).

Assume now that the target vector t ∈ Nk is not coverable. Lemma 6, from [5],
connects derivations of “small” height to extended derivations for high enough
constants. Lemma 7 shows that extended derivations of “large” height can be
contracted. The proof of this lemma mimicks the proof for (ordinary) derivations.
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Lemma 6. [5] Given a BVAS 〈k,A,R1, R2〉, a vector t ∈ Nk, and a derivation
D whose height is at most h, for any bound i ≥ h ·max((R1 ∪R2)

−) + max(t),
D is a covering witness of t iff over(D, i) is a covering witness of t.

Lemma 7. Let B = 〈k,A,R1, R2〉 be a BVAS and i ∈ N. If there is an extended
derivation E that covers t ∈ Nk, then there is a contraction of E whose height is
at most (max((R1 ∪R2)

−) + max(t) + 2)(3k)!.

Finally, we prove that if t is not coverable, then Over(B, Li, Ci) does not find an
extended derivation covering t, for i as above.

Lemma 8. Given a BVAS B = 〈k,A,R1, R2〉 and t ∈ Nk, there is an i =

22
O(n log n)

, where n = size(B)+ size(t), such that if t is not coverable in B, then
for all extended derivations E ∈ Over(B, Li, Ci), we have E does not cover t.

Proof. Suppose not. Then there is an E ∈ Over(B, Li, Ci) so that E covers t. Let
h be the bound from Lemma 7, and let i = h2. We consider two cases: (1) The
height of E is at most h. Then since i = h2 ≥ h ·max((R1 ∪R2)

−) +max(t), by
Lemma 6, t is coverable in B. Contradiction. (2) The height of E is greater than
h. By Lemma 7, there is a contraction of E that covers t and whose height is at
most h. Following the arguments in case (1), we again get a contradiction.

Our main theorem follows from Lemmas 5 and 8.

Theorem 3. Given a BVAS B = 〈k,A,R1, R2〉 and a vector t ∈ Nk, the EEC

algorithm terminates in 22
O(n log n)

iterations, where n = size(B) + size(t).

The bound on the number of iterations also provides a bound on the overall
asymptotic complexity of the algorithm. For BVAS, each iteration of the EEC
algorithm performs two instances of AND-OR reachability to perform the cover
and the uncover checks. Moreover, the size of the graph is at most doubly ex-
ponential in the size of the BVAS, since the finite component of each vector is
bounded by a doubly exponential function of the input. Since AND-OR reach-
ability can be performed in time linear in the size of the graph, this gives a
2EXPTIME algorithm. For VAS, each iteration of the EEC algorithm performs
two instances of reachability to perform the checks. Thus, if reachability is im-
plemented in a space optimal (NLOGSPACE) way, we get an EXPSPACE upper
bound. (In practice, reachability is implemented using a linear time algorithm,
which leads to a 2EXPTIME upper bound.)

5 Implementation and Evaluation

We have implemented the EEC algorithm for BVAS and used our implementa-
tion to model check safety properties of single-wait recursively parallel programs
[1]. Our programs are written in the syntax of [1], and we assume all program
variables range over finite domains. In the following, we briefly recall recursively
parallel programs with a wait construct. We then describe the performance of
our tool on a web server example.
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Recursively Parallel Programs. Single-wait recursively parallel pro-
grams (see [1] for details) are a concurrent programming model in which compu-
tations are hierarchically organized into isolated parallelly executing tasks. Each
task executes sequentially, and maintains regions of handles to other tasks. A
task t can post subtasks and store their handles in one of its regions. A subtask
posted by t executes in parallel with the task t. A task can create unboundedly
many subtasks in a single region and each subtask may also recursively create
additional parallel tasks, storing their handles in its own regions. At some later
point, when the task t requires the results computed by its subtasks, t has to
wait until a posted subtask completes. A wait is implemented with an “ewait”
construct: when task t executes ewait(r) for a region r, its execution is sus-
pended until some task whose handle is stored in r completes execution. The
return value of the completed subtask is combined with the current state of t
via a programmer-supplied return-value handler, and t continues executing from
this point with the updated state.

The state reachability problem for a recursively parallel program P , is to deter-
mine, given an initial valuation l0 of variables of the program P and a valuation
l, if there is an execution of P such that the valuation l is reachable.

Single-wait programs capture many constructs in modern structural parallel
programming languages, such as pruning in Orc [12], futures in Multilisp [8],
task-parallel libraries [3,14], asynchronous programs [9,6], etc. The state reacha-
bility problem for single-wait programs is equivalent to the coverability problem
for BVAS [1].1

Web Server Case Study. We implemented the EEC algorithm for BVAS and
a reduction from recursively parallel programs with ewait to BVAS. We used
our implementation to verify safety properties of a model of a web server taken
from [4]. Our model executes asynchronous calls to serve requests, and waits on
multiple concurrent requests to implement DNS lookup.

We model a server main that helps clients upload files. Given a provider’s
domain name and files, the servermain simulates arbitrarily many client requests
by posting unboundedly many dns requests. The server waits on the first DNS
server to return. The DNS server returns the provider’s real IP address, which
is stored in a variable x.

Each task dns waits for DNS lookup requests, and returns either an ip if the
lookup succeeds, or not found if the provided domain name is not valid. If the
domain name is valid, dns then either returns ip if it already has an IP address
for the requested domain name by looking up its local database, or posts a task
serveri to ask other servers to resolve an IP address. Before asking a remote server
serveri, dns first allocates a buffer buf that is used for the communication between
itself and serveri, in particular, used for storing an ip returned from serveri. When
dns receives an ip stored in the buffer buf from some remote server, it returns the
contents of buf . dnsmay ask multiple remote servers at the same time, and accept

1 The authors of [1] state that the 2EXPTIME algorithm of Demri et al. will be hard
to implement. They propose an alternate algorithm, without any upper bound on
the running time. However, that algorithm has not been implemented either.
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Table 1. Results of the DNS example

#server #dimension #axiom #urule #brule #iter result time

2 19 20 9153 6950 1 Uncover 31.25s

3 22 23 14832 11664 1 Uncover 79.16s

4 25 26 22640 18326 1 Uncover 151.46s

5 28 29 33070 27392 1 Uncover 279.56s

6 31 32 46638 39366 1 Uncover 463.71s

6 (buggy) 31 32 40077 32805 1 Cover 63.58s

the very first ip returned from some server. We model this scenario precisely by
posting all server tasks into a single region and waiting for the first one to return its
result (using ewait). A task serveri can either return a timeout to model the cases
where serveri encounters a problem, or an ip when serveri successfully completes
a lookup. Since serveri can produce timeout, the task dns contains error handling
mechanism: if it receives a timeout, it de-allocates the buffer buf .

The first property we check is that the value stored in x when task dns returns
always equals either an ip or a not found.

If the server main gets the provider’s IP address successfully, then it uploads
the file on the client’s behalf by allocating and using a buffer for the transmission.
Since errors may occur during the transmission, the server provides a block
of code for error handling: whenever an error happens, the server does some
cleaning work such as de-allocating the buffer. Once the transmission is over, the
server main receives an acknowledgement in the buffer and returns this buffer to
the client, informing the client that the file has been successfully uploaded. The
second property we check is if the buffer is always de-allocated properly after
the error handling block completes.

Since any task can create subtasks and moreover the task main creates un-
boundedly many subtasks, by the classification from [1], this example falls into
the general case of single-wait programs which are equivalent to BVAS.

Results. We have run our tool to verify the two properties above. All experi-
ments were performed on a 2 core Intel Xeon X5650 CPU machine with 64GB
memory and 64bit Linux (Debian/Lenny). Table 1 lists the analysis results of
both cases. We report: (1) the size of the generated BVAS (the dimension, the
number of axioms, unary rules, and binary rules), (2) the number of iterations i
for EEC, and (3) the answer, “Cover” or “Uncover,” and the execution time.

We modeled a bug found in [4] where the task main can receive a value in the
variable x that is neither ip nor not found from dns. In the buggy version, in the
error handling code of the task dns, the programmer forgot to return to its caller
on an error after de-allocating a buffer. Therefore, after the de-allocation of the
buffer, the dns lookup continued to execute and returned the value of the buffer
(in the normal case, the buffer contains an ip). After we added an immediate
return to dns, our tool proved the model is correct.

To explore the scalability of our implementation, we increased the number
of remote servers (as shown in the first column of the table) which a task dns
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posts to a single region in parallel. The “Uncover” instances in Table 1 use the
corrected version of dns and increase the number of servers from 2 to 6. As the
size of the BVASs becomes larger, the EEC algorithm takes more time to verify
instances. However, the largest example, with 31 dimensions, still finishes within
a few minutes. We present the run time of the unsafe case when the number
of servers is six. For fewer servers, the bug is found quicker. Additionally, for
these examples, one iteration of the EEC algorithm (i.e., the counter value is in
{0, 1,∞}) is sufficient to prove or disprove the property.
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Abstract. We study the behavioural theory of a higher-order
distributed calculus with private names and locations that can be passi-
vated. For this language, we present a novel Labelled Transition System
where higher-order inputs are symbolic agents that can perform a lim-
ited number of transitions, capturing the nature of passivation. Standard
first-order weak bisimulation over this LTS coincides with contextual
equivalence, and provides the first useful proof technique without a uni-
versal quantification over contexts for an intricate distributed language.

1 Introduction

Higher-order concurrency naturally arises from the combination of functional
and concurrent programming. In many concurrency scenarios, processes have
the ability to exchange values over communication channels; in languages with
functional characteristics, besides constants of base type, these values include
code in the form of function closures of higher types.

The behaviour of processes in simple higher-order concurrency has been stud-
ied in the setting of Higher-Order π-calculus (HOπ) [11] and CHOCS [1]. The
former work showed that higher-order systems can be translated and studied in
first-order π-calculus [12]. The translation is based on the notion of a trigger, a
simple value representing a function which, when run within a process, triggers
the execution of the function in another part of the system. This translation
gave rise to normal bisimulation, a first-order bisimulation method in which the
observer need only examine a process using finite trigger values, enabling sim-
ple proofs of equivalence. This proof method is both sound and complete with
respect to a natural contextual equivalence, called barbed congruence [12, 4, 6].

For distributed systems, however the approach of the trigger translation is
generally not applicable [15, 7]. The intuition is that in many distributed sce-
narios, the observable runtime behaviour of a higher-order value depends on the
location in which it is run. One of the simplest extensions to HOπ where this
location-dependent behaviour becomes apparent is when passivation is added to
the language, as in HOπP [7] which uses transparent locations whose contents
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can be passivated and restarted in a different context. This simple construct
is sufficient to demonstrate the intricacies arising when communication is loca-
tion dependent; for example, processes can become temporarily isolated from
the external observer, or indeed from other components of the system, essen-
tially encoding communication barriers. The resulting behavioural complexity is
emphasised by the results for HOπP, which show that extensions of triggers to
include arbitrary finite values do not capture contextual equivalence [7, Sec. 6].

The purpose of this paper is to demonstrate that contextual equivalence for
distributed systems exhibiting location-dependent behaviour can be captured
by a first-order bisimulation semantics in which triggers are replaced by simple
symbolic agents. We give the first sound and complete first-order bisimulation
technique for equivalence in a higher-order distributed language with passivation
and private names, which avoids universal quantification over contexts.

The starting point is the labelled transition system (LTS) semantics in previ-
ous work for HOπ [6], encoding Sangiorgi’s triggers as symbolic constants. These
constants represent the actual higher-order values transmitted between the ob-
server and the system under observation. This limits the size and complexity
of the resulting LTS as these constants can only be subsequently used by the
observer to run code produced by the system, and by the system to signal the
execution of observer-generated symbolic code. However, for location-dependent
behaviour the repertoire of symbolic constants has to be enlarged to what we
call symbolic agents, a small collection of probes designed to facilitate two kinds
of observations capturing the nature of passivation and more generally location-
dependent behaviour. The first is to discover if locations in systems where agents
are running can communicate with other locations and the observer. The other
is to examine the system when system-emitted code runs at agent locations.

The language we consider is a minor variation of HOπP in which, because
of lazy scope extrusion of π-calculus names, contextual equivalence can distin-
guish between systems solely on the basis of their free names [7, Sec. 2.4]. This
infelicity is avoided in a variant called HOπPn [10] in which π-calculus restric-
tion is replaced by name allocation; however, this sacrifices expressiveness since
basic programming constructs such as recursion and internal choice are not pro-
grammable (see Thm. 3.4). In this paper we opt for a passivation language
HOPass which, like HOπPn, avoids the complications with free names of HOπP,
but also can encode useful programming constructs. Our language essentially
adds CCS-style local communication ports to HOπPn solely for the purpose of
programmability.

Both HOπP and HOπPn have coinductive characterisations of contextual
equivalence, in terms of weak context bisimulation [7] and weak environmen-
tal bisimulation [10], respectively. However, the former does not provide a viable
proof technique for equivalence because of a significant universal quantification
over contexts. The latter also contains a similar quantification; however, powerful
up-to techniques [13] can certainly help with constructing witness bisimulations.

The symbolic agent LTS in this paper avoids any quantification over contexts
and provides a viable proof technique relying only on standard (weak) first-order
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a, . . . , t ∈ GName pL ∈ LPort x, y, z ∈ Var
u, v ∈ GName ∪ LPort û, v̂ ∈ Var ∪ GName ∪ LPort

Val : V ::= a
∣∣ λP V̂ ∈ Var ∪ Val

Proc : P,Q ::= 0
∣∣ û!V̂ .P

∣∣ û?(x:T ).P ∣∣ (P | P ) ∣∣ if V̂ = V̂ thenP elseP∣∣ new x.P
∣∣ P\pL

∣∣ run V̂
∣∣ û�P �

Sys : M,N ::=P
∣∣ νa.M Type : T ::= Nm

∣∣ Pr
Fig. 1. Syntax of HOPass

bisimulation. The usefulness of first-order techniques have been demonstrated
for HOπ [12, 4–6], and are equally useful for HOPass. Additionally, our proof
technique reduces the size of bisimulations in proofs of equivalence by minimising
the number of symbolic transitions that need to be considered. Moreover, we
believe that our symbolic agent semantics can be adapted to other distributed
languages with location-dependent behaviour, including HOπP.

We continue with the description of HOPass (Sect. 2) and contextual equiv-
alence (Sect. 3). We then explain the intuitions of our LTS (Sect. 4) and detail
its symbolic agent transitions (Sect. 5). The sound and complete bisimulation
technique and an example equivalence are given in Sect(s). 6 and 7, respectively.

2 The Language HOPass

The abstract syntax of HOPass is shown in Fig. 1. Generated names (GName)
are used for general communication channels between processes, and local ports
(LPort) for programming via CCS-style locally scoped communication. Values
(Val) are the objects transmitted over channels which can be first-order generated
names of type Nm or higher-order code thunks of type Pr. Terms in HOPass are
constructed in two levels: the inner level of processes (Proc) and the outer level
of systems (Sys). A process can be one of the usual π-calculus inert (0), output
(c!V.P ), input (c?(x:T ).P ), parallel (P | Q), and conditional process. Because
channels can carry two types of values, we use the type annotation T at input
processes and a simple dynamic type system to rule out stuck processes (see [6]).

Processes can also create at runtime a fresh generated name (new x.P ), and
restrict local ports which are CCS channels used for programmability (P\pL).
We will only reason about closed processes with no free local ports or variables
but can have free generated names. Finally, a process can execute a code thunk
(runV ) and run a process within a location u (u�P �). As we will see, P can
reduce inside u and can be passivated by an input on u. A system takes the form
νn1. . . . νni.P , consisting of a single process P with a number of bound names.
We use the Barendregt convention for bound generated names. Free generated
names and local ports are given by fn(−) and flp(−), respectively; we use (− � −)
to mean “have disjoint names and ports”.

The reduction semantics of systems, M → N , is defined in terms of labelled

transitions of processes P
λ−→ N (Fig. 2). A process transition is annotated with

a label indicating an output (u!V ), input (u?V ), internal transition (τ), or fresh
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Process Transitions

RPin

�V V : T

u?(x:T ).P
u?V−−−→ P{V/x}

RPout

flp(V ) = ∅

c!V.P
c!V−−→ P

RPcommL

P
u!V−−→ P ′ Q

u?V−−−→ Q′

P | Q τ−→ P ′ | Q′

RPnew

n � P

new x.P
new n−−−→ P{n/x}

RPpass

flp(V ) = ∅

c�P �
c!λP−−−→ 0

RPmatch

if a= a thenP elseQ
τ−→ P

RPport

P
λ−→ Q pL � λ

P\pL

λ−→ Q\pL

RPoutPort

pL!V.P
pL!V−−−→ P

RPmismatch

a �= b

if a= b thenP elseQ
τ−→ Q

RPrun

run λP
τ−→ P

RPloc

P
λ−→ Q

u�P �
λ−→ u�Q�

RPparL

P
λ−→ P ′ new(λ) � Q

P | Q λ−→ P ′ | Q
System Reductions

RSnew

P
new n−−−→ P ′

P → νn.P ′

RSτ
P

τ−→ P ′

P → P ′

RSν
M →M ′

νn.M → νn.M ′

Fig. 2. Reduction semantics of HOPass (omitting symmetric rules and RPpassPort)

name generation (newn). Output (RPout) and passivation (RPpass) over gener-
ated names transmit closed values; over local ports (RPoutPort, RPpassPort)
they can transmit values with free local ports, enabling the encoding of useful
programming idioms (see Thm. 3.4) while avoiding the extrusion of local ports.
Input (RPin) receives values of the appropriate type; here 2V λP : Pr (for any P )
and 2V n : Nm, and P{V/x} is capture-avoiding substitution. A new generated
name is fresh because of the side-conditions in RPnew and RPparL; in the latter
rule new(λ) denotes {n}, when λ = newn, and ∅ otherwise. The rest are standard
rules for running a code thunk (RPrun), communication (RPcommL), equality
testing (RPmatch, RPmismatch), and propagating transitions over evaluation
contexts (RPparL, RPloc, RPport). System reductions simply bind freshly gen-
erated names and propagate internal process transitions. In the following we will
use usual syntactic abbreviations from CCS and π-calculus.

3 Contextual Equivalence

In this paper we study barbed congruence [8], the contextual equivalence asso-
ciated with weak bisimulation, which is reduction-closed, preserves weak barbs,
and is a congruence. A weak barb is the ability of a system to perform an output
on a free channel after a number of reductions.

Definition 3.1 (Weak Barb). M has a weak barb b, written as M ⇓b, when
M →∗ νñ.P and P

b!V−−→ Q, for some ñ, P , Q, and V with b � ñ.
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We use standard, single-hole contexts derived from the language grammar, adding
a process hole. We use the Barendregt convention only for bound names whose
scope does not extend over the hole. We write K[P ] to mean the system obtained
by replacing the hole of K with process P , and K[M ] to mean νñ.νm̃.K[P ] when
K = νñ.K and M = νm̃.P . Due to the convention for the bound names m̃ we
have m̃ � K, ñ; however, ñ may appear in P .

Definition 3.2 (Contextual Equivalence (∼=cxt)). The relation (∼=cxt) on
systems is the largest relation such that if M ∼=cxt M ′ then

1. For all b, M ⇓b iff M ′ ⇓b.
2. If M → N then there exists N ′ such that M ′ →∗ N ′ and N ∼=cxt N ′.
3. If M ′ → N ′ then there exists N such that M →∗ N and N ∼=cxt N

′.
4. For any context KS, KS[M ] ∼=cxt KS[M

′].

If we remove passivation from this language we obtain a language similar to
HOπ [11]. It is known that for such a language (∼=cxt) coincides with the version
of contextual equivalence which only requires preservation of the relation under
parallel contexts (cf. Thm. 3.2). As the following example shows, this is not the
case in the presence of passivation.

Example 3.3 (Passivation). Consider the systems

M3.3 = a!(λb!).0 M ′
3.3 = new k. (a!(λk!). ∗(k?b!))

These systems are indistinguishable if we consider only parallel contexts. The
intuition is that both systems output a code thunk to any parallel context.
The former outputs λb!, becoming 0, and the latter outputs λk!, leaving behind
∗(k?b!), a replicated process defined in Thm. 3.4. In the case of M3.3, the parallel
context can essentially only run λb! producing a b-barb (possibly multiple times).
Because k is never revealed to the context, in the case of M ′

3.3 whenever the
parallel context runs λk! it will again trigger a b-barb. Thus, no parallel context
is able to induce an observable difference between M3.3 and M ′

3.3.
However, (∼=cxt) considers contexts that run M3.3 and M ′

3.3 in a location l,
enabling the passivation of process ∗(k?b!) and distinguishing the behaviour of
the two systems. The distinguishing context K3.3 = l� [·] � | a?(x). l?. runx can
input the code from channel a, passivate location l, and run the received code.
Thus, K3.3[M3.3]⇓b but K3.3[M

′
3.3] ��⇓b because the latter reduces to νk.k!. ��

Example 3.4 (Derived programming constructs). Consider an extension of
HOPass with standard operation of internal choice (− ⊕ −) with the non-
deterministic reduction semantics: P ⊕Q→ P and P ⊕Q→ Q. In this extended
language the definition of (∼=cxt) (Thm. 3.2) still applies. We can implement
the internal choice operator correctly using local ports. Using the bisimulation
technique developed in Sect. 6, one can show that

P ⊕Q ∼=cxt (pL! | pL?.P | pL?.Q)\pL
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An implementation using generated names

P ⊕new Q
def
= new x.(x! | x?.P | x?.Q)

would be incorrect because in general P⊕Q ∼=cxt P⊕newQ. To see this consider a
particular instance when P,Q are a!, b!, respectively; we show that a!⊕newb! ∼=cxt

a!⊕b!. The idea is to place the processes in a location l� � which can be passivated
and duplicated. Consider Rl = l�a! ⊕ b!�. If we run Rl in parallel with process
K1 = l?(x). (l′�runx� | l′�runx�) the code in location l will be passivated and
duplicated giving us Rl′ | Rl′ . Moreover, process K2 = l′?.a?.b?.c! blocks when
run in parallel with Rl′ | Rl′ . By putting the above processes together we have
Rl | K1 | K2 ��⇓c.

However, when R′l = l�a! ⊕new b!� runs, a fresh name k is generated and we
obtain νk.l�k! | k?.a! | k?.b!�. Thus R′l | K1 | K2 ⇓c because it can evolve to

νk. l′�k! | k?.a! | k?.b!� | l′�k! | k?.a! | k?.b!� | l′?.a?.b?.c!
→∗ νk. l′� k?.a! | k?.b!� | l′� a! | b!� | l′?.a?.b?.c!
→ νk. l′� a! | b!� | a?.b?.c!→ c!

Local ports can also be used to implement other standard programming con-
structs, such as various forms of recursion. Consider the operator ∗(P ) (omitted
from our language) with reduction semantics ∗(P ) → P | ∗(P ). This operator
can be encoded correctly using local ports and higher-order communication:

Rec(P )
def
= (δ(pL) | pL!λ(P | δ(pL)).0)\pL δ(pL)

def
= pL?(x:Pr).(runx | pL!x.0)

Again, an encoding Recnew using generated names would not be correct. The
process l�Recnew(a!)� | K1 | l′?.a?.c! can reduce to νk.l�δ(k)� | a?.c! ��⇓c, but
l�∗(a!)� | K1 | l′?.a?.c! cannot reduce to a system that does not have a barb on c.

Using only generated names, as in HOπPn [10] discussed in the introduction,
internal choice and general recursion are not encodable (∗(P ) is a primitive). ��

Example 3.5. In the last example of this section we show that passivation of
observer-generated code is observable; we will return to this example when mo-
tivating our LTS for HOPass (Thm. 4.1). Let M3.5 = a?(x).∗(l�run x�) and
M ′
3.5 = a?(x).∗(run x | l!). In HOPass these two systems are distinguished by

contextual equivalence. This is achieved by the context testing if instances of
the code bound to x are passivated after an output on l. For example con-
sider the context K3.5 = [·] | a!(λb?.c!).b!.l?; we have: K3.5[M3.5] →∗ l�c!� |
∗(l�run(λb?.c!)�) | l? = N3.5 ��⇓b ⇓c. This can be matched by K3.5[M

′
3.5] by

performing at least the reductions K3.5[P
′
3.5] →

∗ c! | l! | ∗(run(λb?.c!) | l!) |
l? = N ′

3.5 ��⇓b ⇓c. However, N3.5 ∼=cxt N ′
3.5 because the passivation of l,

N3.5 → ∗(l�run(λb?.c!)�) ��⇓c, cannot be matched by N ′
3.5. ��

4 From HOπ to HOPass

The goal of this paper is to give a first-order, symbolic LTS for HOPass in
which standard weak bisimilarity fully captures contextual equivalence; i.e., weak
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bisimulation is sound and complete with respect to (∼=cxt). Moreover, we seek
an LTS with a small set of transitions to simplify bisimulation proofs. In this
section we motivate this new LTS by starting from a previous first-order LTS
for a version of HOπ [6]—essentially HOPass without locations—and examining
the additional observational power needed to add to the LTS in order to achieve
a sound bisimulation for HOPass.

As in our previous work, there are two basic ingredients to this LTS. The
first is the extension of the syntax with symbolic higher-order inputs that the
observer provides to the system. We thus extend the syntax of processes with
symbolic agents α ∈ Agent representing observer-generated processes.

P ::= . . .
∣∣ α EProc V ::= . . .

∣∣ λP EValue

The second ingredient in the construction of the LTS is the explicit recording of
the knowledge of the observer interrogating a system using a knowledge environ-
ment Δ. Any value sent from the system to the observer is recorded in Δ; if this
value is a code thunk it has a unique associated output index κ ∈ OIdx. These
constants provide an indirect way for referring to outputs and only appear in Δ
and on transitions of the LTS; they do not appear in processes and values. We
extend the freshness operator � to α’s and κ’s. A knowledge environment Δ has
the following components:

1. names(Δ) ⊂fin Name : a finite set of names known to the observer;
2. agents(Δ) ⊂fin Agent : a finite set of observer-generated symbolic agents;
3. fun(Δ) ∈ OIdx →fin EValue : a finite function mapping output indices to

system-generated code thunks.

Our LTS contains transitions over configurations of the form:

C ::= νã
〈
Δ � P

〉
Conf

The names in the vector ã are generated by the system but are not known to
the observer; they can appear in P and in the codomain of fun(Δ). We consider
only configurations that are well-formed. That is, configurations νã

〈
Δ � P

〉
recording all names and constants used in P and in the codomain of fun(Δ),
whose names ã are distinct pairwise and with respect to names(Δ). We also
identify configurations up to alpha-renaming of ã.

As with our LTS for HOπ, our LTS for HOPass will contain one higher-order
input rule in which the input value is a fresh λα and two higher-order output
rules that that extend fun(Δ) (one for output and one for passivation):〈

Δ � c?(x:Pr).P
〉 c?λα−−−→

〈
Δ,α � P{λα/x}

〉
if α � Δ (TIn-Pr)〈

Δ � c!λP .Q
〉 c!κ−−→

〈
Δ,κ �→λP � Q

〉
if κ � Δ (Tout-Pr)〈

Δ � c�P�
〉 c!κ−−→

〈
Δ,κ �→λP � 0

〉
if κ � Δ (Tpass)

The LTS also has fairly standard rules for internal steps, to propagate transitions
over evaluation contexts, and for first-order input and output; we omit these
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transitions in this extended abstract (see [6]). Transitions in this LTS are labelled
either with τ (internal transition), with one of the I/O actions over generated
names μ ::= c?n

∣∣ c?λα ∣∣ c!n ∣∣ c!κ, or, purely for producing internal transitions,
with the corresponding I/O actions over local ports.

Two important transitions in the LTS for HOπ [6] are those implementing the
notion of triggers. When a HOπ system runs a symbolic input λα (removing the
λ) it enables the transition

νã
〈
Δ � α

〉 runα−−−→ νã
〈
Δ � 0

〉
(1)

indicating the execution of some code within the observer. Conversely, the ob-
server can run at any point system code stored under the index κ:

νã
〈
Δ � P

〉 runκ−−−→ νã
〈
Δ � P | runΔ(κ)

〉
(2)

Similarly, in HOPass we need to give the observer the ability to run system-
generated code and detect the execution of observer code. However, the above
two transitions are not adequate to give us soundness of weak bisimulation. In
the rest of this section we give example inequivalent processes that can be distin-
guished by (∼=cxt) and motivate sufficient additions to the LTS of symbolic agents
we have described so far. The following section contains the precise definitions
of these additions and the relevant bisimulation.

We first show that (1) is no longer adequate in the presence of passivation. The
observer should not just forget α after it has been run once; instead it requires
the power to repeatedly ping α to ensure that the code implicitly represented
by this symbolic agent is still alive and can communicate.

Example 4.1 (Example 3.5 revisited). Let us reconsider the systems M3.5 =
a?(x).∗(l�run x�). and M ′

3.5 = a?(x).∗(run x | l!), which we have already seen
are distinguished by (∼=cxt) using the context K3.5 = [·] | a!(λb?.c!).b!.l? testing
whether an output c! is possible after the sequence of reductions a?(λb?.c!), b?, l?.

The LTS transitions we have seen so far cannot perform such a test; M3.5 and
M ′
3.5 are not distinguishable in the current LTS. Let us see how we might try to

mimic the distinguishing tests performed by K3.5. This context first sends in on
the channel a the actual code λb?.c! but our transitions are only allowed to send
in a symbolic agent λα. Next, K3.5 communicates with the sent code on b—in
the LTS this can only be translated to a transition of the form (1) above. Then,
it passivates l and tries to communicate on c with the sent code. The passivation
of l can be performed in the LTS, but we cannot translate the communication
on c because the previous use of (1) has replaced α with 0.

What is required is the ability to repeatedly check if the symbolic agent α
is still alive; i.e., that the system has not introduced a communication barrier
between α and the observer by passivating the former. In our LTS for HOPass
the single use transition (1) will be replaced by a more general ping transition
αα′ which “updates” an α at evaluation position within the system to a
fresh α′. The observer can keep performing this indefinitely. In effect, in our
new LTS α’s represent the state of symbolic agents inside configurations, which
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changes after an agent performs a transition. The transition αα′ is a symbolic
communication of an agent at state α with the observer, updating the state to
a fresh α′, which can be probed further (see Thm. 5.1). ��

These ping transitions αα′ discover communication barriers between sym-
bolic agents and the external observer throughout the interrogation of a system.
However, they are not sufficient to discover all of the intricacies of HOPass.
Transparent locations together with passivation and reactivation can be used
to create communication barriers between parts of the system, creating a form
of opaque locations. We believe the ability to encode communication barriers
captures the essence of location-dependent behaviour expressible in HOPass.

To crystallise this phenomenon we introduce a trampoline operator (��) which
can be encoded in HOPass (as well as in HOπP [7]). Consider the process P �� Q
with reduction rules:

P �� Q
λ−→ P ′ �� Q if P

λ−→ P ′ P �� Q
λ−→ P �� Q′ if Q

λ−→ Q′

Essentially, P �� Q represents a communication barrier between the processes P
and Q: they can communicate with their environment but not with each other.
Provided pL, pL

′ � P,Q, trampoline can be encoded in a fully-abstract manner:

P �� Q ∼=cxt

(
pL�P � | pL

′!(λQ).0 | ∗
(
pL?(x).pL

′?(y).(pL�run y� | pL
′!x.0)

))
\pL, pL

′

We prove an instance of this equivalence in Sect. 7 and use this operator exten-
sively when motivating further symbolic transitions.

Example 4.2 (Communication barriers). Let us consider the systems M4.2 =
a?(x).(run x �� b!) and M ′

4.2 = a?(x).(run x | b!). These systems can be distin-

guished byK4.2 = [·] | a!(λb?c!).0 becauseK4.2[M4.2] ��⇓c whereasK4.2[M
′
4.2]⇓c.

However, combinations of all LTS transitions we discussed so far are not able to
distinguish them. We need to give agents the ability to communicate with the
system, which in the next section we achieve by adding a transition μ/αα′

with which an agent transition αα′ synchronises with a parallel action μ.
We also need a synchronisation transition between two running symbolic agents

in order to observe the different behaviour ofN4.2 = a?(x).b?(y).(run x �� run y)
and N ′

4.2 = a?(x).b?(y).(run x | run y). These are distinguished by K ′
4.2 = [·] |

a!(λc!).b!(λc?.d!).0 sinceK ′
4.2[N4.2] ��⇓d whereasK ′

4.2[N
′
4.2]⇓d. However, they are

not distinguished by the transitions discussed so far. They will be distinguishable
with a new synchronisation action α1|α2 α′1|α′2, signalling that two agents α1

and α2 can communicate and become α′1 and α′2 (see Thm. 5.2). ��

As we discussed, in HOπ the observer can use the transition runκ (2) to run
system code indexed by κ in the knowledge environment of a configuration;
this code runs in parallel with the system after the transition. Because again of
the communication barriers encodable in HOPass, code run in parallel with the
system may exhibit different behaviour than if it were run at the position of an
agent; in the presence of passivation we need a more general symbolic transition.
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Moreover, an adequate LTS for HOPass needs to enable the passivation of the
entire system and any code executed by the observer. The former is motivated
by the fact that (∼=cxt) is closed under the context a?(x).P | a![·].0; thus, any
related systems M ∼=cxt M ′, possibly obtained after a number of reductions and
context closures of (∼=cxt), can be entirely passivated and reused as code thunks
in P . The need for the latter is motivated in the next example.

To allow the observer to passivate running code we will use a set of special
location names only as a namespace for observer-generated locations. We call
these abstract locations γ ∈ Aloc, and extend the syntax of HOPass once more
to include such locations; we adjust (�) to abstract locations and record γ’s
in knowledge environments: P ::= . . .

∣∣ γ�P�. Intuitively, γ�P� represents an
agent that is currently running in a new location γ process P , obtained from the
observer’s knowledge environment.

Remark 4.3. We use abstract locations instead of ordinary fresh names to limit
the possible LTS transitions: these names need not be used as inputs or elsewhere
in the system, considerably simplifying proofs of equivalence. ��

Example 4.4 (Code execution and passivation). Consider the systems

M4.4 = new t.a!(λt?.c!).b?(x).(run x �� t!) M ′
4.4 = new t.a!(λt?.c!).b?(x).(run x | t!)

distinguished by the context K4.4 = [·] | a?(y).b!y.0 which simply relays a value
from a to b. In K4.4[M4.4] this leads to system νt.((t?.c!) �� t!) ��⇓c; however,
K4.4[M

′
4.4] reduces to νt.((t?.c!) | t!)⇓c. Thus, this context distinguishes the two

systems by running (λt?.c!) at the only position of M4.4 where communication
with the t! is impossible (in the LHS of the ��). Contexts that do not cause the
execution of (λt?.c!) at that position cannot distinguish M4.4 from M ′

4.4. The
transitions we have discussed so far encode observations made by such contexts
and therefore fail to distinguish the two systems.

To see that, we consider the interrogation of a configuration where λM4.4 is
in Δ, from which the observer, using the previously discussed transitions, can
only reach configurations of the form νt̃

〈
Δ �

∏
αi �� ti!

〉
, with Δ(κi) = λti?.c!.

The only way for the observer to run a κi without enabling a communication
on ti (and thus an observable c! transition) is to run κi at αi (as the context
K4.4 above did). The preceding LTS transitions do not capture such a move.
Therefore we introduce a separate transition α γ�κ� which replaces a symbolic
agent α with γ�Δ(κ)�, for a fresh γ.

Now consider the systems:

N4.4 = new t.a!(λt?c!).b!(λt!).0 N ′
4.4 = new t.a!(λt!).b!(λt?c!).0

To distinguish them, the observer needs to input both code thunks on a and b, run
both, and passivate one of them after they communicate on t. The last move is
not possible with the transitions we have seen so far. A context that performs this
scenario and distinguishes N4.4 from N ′

4.4 is K ′
4.4 = [·] | a?(x).b?(y).(l�run x� |

run y | l?.c?.d!). We have K ′
4.4[N4.4] ��⇓d but K ′

4.4[N
′
4.4]⇓d.

In our new LTS, transitions a!κ1, b!κ2, α1  γ1�κ1�, α2  γ2�κ2� let the ob-
server receive and run the code emitted from the systems (provided there are
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Trun-κ
Δ(κ) = λP γ � Δ〈

Δ � α
〉 α� γ�κ�−−−−−−→

〈
Δ, γ � γ�P�

〉
Tpass-γ

κ, α � Δ〈
Δ � γ�P�

〉 γ�κ� �α−−−−−−→
〈
Δ,α, κ �→λP � α

〉
TioL@α〈

Δ � P
〉 α1 �α2−−−−−→

〈
Δ′ � P ′〉〈

Δ′ � Q
〉 μ−→

〈
Δ′′ � Q′〉〈

Δ � P | Q
〉 μ/α1 �α2−−−−−−−→

〈
Δ′′ � P ′ | Q′〉

Tsync 〈
Δ � P

〉 α1 �α2−−−−−→
〈
Δ′ � P ′〉〈

Δ′ � Q
〉 α3 �α4−−−−−→

〈
Δ′′ � Q′〉〈

Δ � P | Q
〉 α1|α3 �α2|α4−−−−−−−−−→

〈
Δ′′ � P ′ | Q′〉

Tsig

α2 � Δ〈
Δ � α1

〉 α1 �α2−−−−−→
〈
Δ,α2 � α2

〉
Textr@α

νã
〈
Δ,n � P

〉 c!n/α1 �α2−−−−−−−−→ νb̃
〈
Δ′ � P ′〉 c �= n

νn, ã
〈
Δ � P

〉 c!n/α1 �α2−−−−−−−−→ νb̃
〈
Δ′ � P ′〉

Fig. 3. LTS: symbolic agent transitions (omitting symmetric rules)

running symbolic agents α1 and α2). However, to enable further passivation of
this code, we introduce transitions of the form γ1�κfr�αfr which let the ob-
server passivate the code running in γ1, replacing it with a fresh symbolic agent
αfr, and indexing it by a fresh κfr in the knowledge environment. With the ad-
dition of this last LTS transition the observer can distinguish the above systems
in the same way as K ′

4.4 does (see Thm. 5.3 for details). ��

5 First-Order Symbolic Agent Transitions

The previous section briefly described internal (τ) and communication (μ) tran-
sitions and focused on motivating a set of new symbolic (ζ) transitions for an ad-
equate LTS for HOPass. Here we give the precise rules of the new ζ-transitions,
all of which describe a limited symbolic execution of agents running in a con-
figuration. An agent is an observer-generated process represented simply by
α ∈ PConst, or an abstract location γ�P� running a single system-generated
code thunk (γ ∈ LConst). The result is an LTS with first-order transitions
(η ::= τ

∣∣ μ ∣∣ ζ) simplifying bisimulation proofs.
Observer transitions are generated by the rules shown in Fig. 3 and are an-

notated with one of the following labels:

ζ ::= αα
∣∣ μ/αα

∣∣ α|αα|α
∣∣ α γ�κ�

∣∣ γ�κ�α

These transitions encode symbolic moves performed by agents, visible to the
overall observer, in order to reconfigure agents and interrogate the system. They
fall naturally into two groups, the first concerned with communication barriers
and the second with code execution and passivation. The first three involve
communication barriers.

Ping: α1 α2. This transition, produced by rule Tsig, allows the observer to
determine if an agent α1 is running. There is a communication barrier between
the observer and α1 only if α1 is not running in the configuration. As a result of
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this transition, a running instance of α1 is replaced by a fresh α2, distinguishing
it from other instances of α1 in the configuration. In this way this transition can
be used to distinguish the processes in Thm. 4.1.

Example 5.1 (Thm. 4.1 continued). Let us see howM3.5 andM ′
3.5 can be distin-

guished. Consider an observer examining configurations such as
〈
Δ � M3.5

〉
and〈

Δ � M ′
3.5

〉
, where Δ = {a, l}. After a transition a?λα1 we get the configura-

tions
〈
Δ,α1 � ∗(l�runλα1�)

〉
and

〈
Δ,α1 � ∗(runλα1 | l!)

〉
. After τ -transitions

and transitions α1 α2 and l!κ we get
〈
Δ, α̃, κ �→λα2 � ∗(l�runλα1�)

〉
and〈

Δ, α̃, κ �→λ0 � α2 | ∗ (runλα1 | l!)
〉
. The latter configuration has an α2 α3

transition but the former does not. ��
I/O from a Symbolic Agent: μ/α1 α2. Because of the communication
barriers encodable in HOPass, an agent may or may not be running at the
same time as an observable μ action in a configuration. This transition, due to
rule TioL@α and its symmetric one, allows the observer to detect this situation
and distinguish systems M4.2 and M ′

4.2 in Thm. 4.2. As with standard name
output, a name output detected by an agent can extrude a private name, moving
it from the list of bound names into the knowledge environment (rule Textr@α).
Note the chaining of the knowledge environments in the two premises of the rule
that accumulates the effects of the two transitions in the final Δ′′.

Agent Synchronisation: α1|α3 α2|α4. For the same reason as above, this
transition allows the observer to detect whether two symbolic agents are simul-
taneously running and can thus communicate. As before, the effects of the two
transitions in the premises (i.e., the extension of Δ with fresh α2 and α4) are
accumulated in the final Δ′′ by chaining. Such a transition, generated by Tsync,
can be used to distinguish the systems N4.2 and N ′

4.2 in Thm. 4.2.

Example 5.2 (Thm. 4.2 continued). An observer can distinguish configurations
such as

〈
Δ � M4.2

〉
and

〈
Δ � M ′

4.2

〉
because the latter can perform the tran-

sition sequence a?α1, b!/α1α2 but the former cannot. Similarly, the observer
can distinguish

〈
Δ � N4.2

〉
from

〈
Δ � N ′

4.2

〉
because the latter can perform the

transition sequence a?α1, b?α3, α1|α3 α2|α4 but the former cannot. ��

We now detail the symbolic transitions concerned with code execution and pas-
sivation. These only use fresh abstract locations γ, not generated names, sim-
plifying the LTS and the construction of witness bisimulations. We also ensure
that at each abstract location γ only one system-generated process is executing
at any time, further simplifying the LTS.

Code Execution: α γ�κ�. With this transition (due to Trun-κ) the observer
sends a system-generated code thunk, indexed in the knowledge environment by
κ, to the location of a running agent α to be executed. The agent originates
from a higher-order input transition (rule TIn-Pr in Sect. 4) and the thunk from
a higher-order system output (rule Tout-Pr), before or after the input. After the
transition, α is replaced by a fresh abstract location γ in which the code in Δ(κ)
runs (and only that).



Symbolic Bisimulation for a H-O Distributed Language with Passivation 179

Abstract Location Passivation: γ�κ�α. This transition (due to Tpass-γ)
allows the observer to passivate an abstract location γ, which has previously
been introduced by the symbolic transition just described, α γ�κ�.

Example 5.3 (Thm. 4.4 revisited). We have seen that systems N4.4 and N ′
4.4

are not contextually equivalent. Here we show how an observer can use the
above two symbolic transitions to distinguish them, when examining the con-
figurations

〈
Δ1 � α1 | α2

〉
and

〈
Δ′1 � α1 | α2

〉
, where Δ1 = Δ,κ �→λN4.4,

Δ′1 = Δ,κ �→λN ′
4.4, and Δ = {a, b, c, α̃}. After transition α1  γ1�κ� we get

νt
〈
Δ1, γ1 � γ1�N4.4� | α2

〉
νt
〈
Δ′1, γ1 � γ1�N

′
4.4� | α2

〉
and after a sequence of weak transitions a!κ1, b!κ2, γ3�κ3�α3:

νt
〈
Δκ1,κ2 � α3 | α2

〉
νt
〈
Δκ2,κ1 � α3 | α2

〉
where Δx,y = Δ1, α̃, γ̃, (x �→λt?c!), (y �→λt!), (κ3 �→λ0). The observer can now run
both κ1 and κ2 (with the transitions α3  γ3�κ1� and α2  γ2�κ2�) and obtain:

νt
〈
Δκ1,κ2 , γ̃ � γ3�t?c!� | γ2�t!�

〉
νt
〈
Δκ2,κ1 , l̃ � γ3�t!� | γ2�t?c!�

〉
Only the left configuration can now perform a weak sequence of transitions
(γ2�κ3�α4), c!. Hence the original systems are differentiated by the observer.
Note that the passivation of γ1 in this example re-introduced a new symbolic
agent α3 in its place, allowing the observer to continue the interrogation of the
configuration. This is why Tpass-γ introduces a new constant in our LTS. ��

6 Weak Bisimulation Theory

We employ the standard bisimulation theory, applied to the LTS of configu-
rations generated by our first-order agent semantics outlined in the previous
sections. This is then restricted to a subset of configurations. Weak bisimilarity
over this subset is sound and complete with respect to contextual equivalence

(Thm. 3.2). We use the standard notation (
η
=⇒) to mean the reflexive transitive

closure of (
τ−→), when η = τ , and (

τ
=⇒ η−→ τ

=⇒) otherwise.

Definition 6.1 (Weak Bisimulation). �: Conf × Conf is a weak bisimula-
tion when for all C1 � C′1 the following condition and its converse are satisfied:

If C1
η−→ C2 then there exists C′2 such that C′1

η
=⇒ C′2 and C′1 � C′2.

The largest weak bisimulation, weak bisimilarity (≈), is the union of all weak
bisimulations; it is straightforward to show that this is an equivalence relation.

We have deliberately restricted the number and form of symbolic transitions,
so as to facilitate the description of witness bisimulations when proving systems
equivalent. For example there is no direct way in which the observer can execute
at top-level code received from the system, indexed by a κ; this was even neces-
sary in the simpler language of HOπ [6]. In the current framework, the observer
interrogating a system, needs to have already executing within the system sym-
bolic agents, represented either by occurrences of α’s or γ’s. Because of this, we
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let the observer interrogate a system νã.P by transitions in the agent LTS by
starting in the configuration νã

〈
Δ,κ �→λP �

∏
αi

〉
. Here each symbolic agent αi

allows the observer to initiate the interrogation, by executing one of the symbolic
actions from Fig. 3. In fact only two such symbolic agents are necessary.

Theorem 6.2 (Soundness and Completeness of (≈)). Let M = νm̃.P ,
N = νñ.Q be closed systems. Then for Δ = {c̃, α̃} ⊇ fn(M), fn(N), α1, α2:
M ∼=cxt N iff νm̃

〈
Δ,κ �→λP � α1 | α2

〉
≈ νñ

〈
Δ,κ �→λQ � α1 | α2

〉
.

7 Example Equivalence

The encoding in HOPass of internal choice (⊕), replication (∗( )), and the tram-
poline operator (��) are fully abstract. Here we prove an instance of the last: in
HOPass extended with (��) and replication, M = a?(x, y).(runx �� run y) ∼=cxt

a?(x, y).(run x ��enc run y) = M ′, where (��enc) is the encoding on page 175.
Soundness of (≈) holds for the extended language. Thus, from Thm. 6.2, it suf-
fices to show

〈
Δ,κ �→λM � α1 | α2

〉
≈
〈
Δ,κ �→λM ′ � α1 | α2

〉
. To reduce the size

of the proof we make use of a standard up-to beta steps technique, similar to that
in our previous work for HOπ [6], and observe that internal run transitions and
all transitions involving communication on pL and pL

′ in (��enc) are beta steps.
We construct the following relation on well-formed configurations and prove it
is a weak bisimulation up to beta steps by induction on the construction and
enumeration of the possible LTS transitions.〈
Δ, κ̃1 �→λM, κ21 �→λα11 �� α12, . . . κ2m �→λα1m �� α2m � α3 | α4

〉
�
〈
Δ, κ̃1 �→λM ′, κ21 �→λα11 ��enc α12, . . . κ2m �→λα1m ��enc α2m � α3 | α4

〉
(C, γ){{γ�runC(κ)/α�}} � (C′, γ){{γ�runC′(κ)/α�}} if C � C′

(C, α̃){{α1 �� α2/M}} � (C′, α̃){{α1 ��enc α2/M}} if C � C′

Here {{P/Q}} replaces one occurrence of Q with P in a configuration, and (C, Δ)
extends the knowledge environment of C with a fresh Δ; C(κ) denotes the code
indexed by κ in the environment of C. In the base case of the construction,
related knowledge environments contain an arbitrary number of indices to the
initial systems (κ1i �→λM and κ1i �→λM ′), as well as an arbitrary number of
κ2i �→λα1i �� α2i and κ2i �→λα1i ��enc α2i, where the α1i’s are not necessarily
pairwise distinct (similarly for the α2i’s).

8 Conclusions

We presented the first first-order bisimulation proof technique for a distributed
language with passivation and private names, which is sound and complete with
respect to weak barbed congruence, the contextual equivalence associated with
weak bisimulation. In our language, code behaviour is location-dependent, the
usual encodings of useful systems are possible, and unnecessary complexities with
free names are avoided. We believe that our technique can be adapted to other
distributed languages with location-dependent behaviour, and indeed to HOπP
[7], a passivation language where free names are observable for which the only
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available proof technique is context bisimulation. Normal and environmental
bisimulation are sound only for sublanguages of HOπP [7, 9], and the latter
technique is sound and complete for a language with generative names [10].
These language variations, however, cannot express many useful systems, such
as those with internal choice, replication, or higher-order values containing input
processes. In other languages with passivation, context bisimulation is only sound
for the weak case [2, 3] or sound and complete for only the strong case [14].
Unlike context and environmental bisimulation, our proof technique avoids any
universal quantification over contexts. This is achieved by a labelled transition
system in which higher-order input values are replaced by abstract agents which
can perform limited symbolic transitions within systems, simplifying proofs.
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Abstract. We develop a theory of name-bounded π-calculus processes,
which have a bound on the number of restricted names that holds for all
reachable processes. Name boundedness reflects resource constraints in
practical reconfigurable systems, like available communication channels
in networks and address space limitations in software.
Our focus is on the algorithmic analysis of name-bounded processes.

First, we provide an extension of the Karp-Miller construction that ter-
minates and computes the coverability set for any name-bounded pro-
cess. Moreover, the Karp-Miller tree shows that name-bounded processes
have a pumping bound as follows. When a restricted name is distributed
to a number of sequential processes that exceeds this bound, the name
may be distributed arbitrarily. Second, using the bound, we construct a
Petri net bisimilar to the name-bounded process. The Petri net keeps a
reference count for each restricted name, and recycles names that are no
longer in use. The pumping property ensures that bounded zero tests are
sufficient for recycling. With this construction, name-bounded processes
inherit decidability properties of Petri nets. In particular, reachability is
decidable for them. We complement our decidability results by a non-
primitive recursive lower bound.

1 Introduction

The π-calculus is an established formalism for modeling and reasoning about
reconfigurable systems that dynamically create and destroy communication links
at runtime. While Turing complete in general, there are interesting subclasses
of π-calculus where important verification problems remain decidable. In this
paper, we propose and investigate a natural subclass of π-calculus processes:
name-bounded processes. These are processes that have a bound on the number
of restricted names that holds for all reachable processes.

Name-bounded processes are interesting for various reasons. First, from a the-
oretical perspective, they form a natural subclass of π-calculus that is expressive
enough to subsume many other classes, but for which, as we will show, analysis
questions remain decidable. Second, from a practical perspective, name bound-
edness captures natural constraints on an implementation that limit the total
number of physical resources used at any point without constraining the num-
ber of processes. For example, a networked system can use a limited number
of IP addresses or communication ports, but allow many clients to multiplex
these resources. Finally, name boundedness is useful in verification as an ap-
proximate model for Turing-complete systems. For example, a finite abstraction
of the shared heap in a concurrent program leads to a name-bounded model.

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 182–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Motivated by these applications in modeling, synthesis, and verification, we
focus on the algorithmic analysis of name-bounded systems. Coverability is de-
cidable for the model using generic well-structuredness arguments. Our main
contributions, listed below, show effectiveness and decidability results beyond
coverability. We also outline the theoretical tools we develop for the proofs.

Contribution 1: Synthesis Given an arbitrary π-calculus process P and a
bound b ∈ N, we prove it decidable to check whether P is name-bounded by b.
Phrased differently, given a system P and a resource constraint b on the execution
environment, one can decide if all executions of P use at most b resources.
Note that the result is non-trivial since 0-bounded systems may already have an
infinite state space (they can simulate Petri nets). It should rather be contrasted
with the general name boundedness problem, which of course is undecidable.
Tool 1: Karp and Miller algorithm Behind this result is a novel extension of
the Karp and Miller construction [9]. Given a process, our algorithm computes
a finite representation of the downward closure of the reachability set; and the
computation terminates precisely for name-bounded processes. Extending the
Karp and Miller construction for Petri nets to name-bounded processes is non-
trivial, since it is not sufficient to merely compare two limit elements (as for Petri
nets). We extend the construction by tracking names instantiated in intermediary
transitions to decide when a transition sequence can be accelerated.

Contribution 2: Petri net construction As second contribution we show
that every name-bounded processes can be translated into a bisimilar Petri net.
As a result, even subtle verification problems like reachability are decidable for
name-bounded systems.
Tool 2: Pumping constant The idea behind the Petri net construction is to
provide a finite set of instances (a, 0), . . . , (a, b−1) that can be used to represent
the restricted name a. If we encounter a restriction νa in a run, we represent
it by an instance that is not present in the current process. To check that an
instance is not used, we keep a reference count. The instance is not used if and
only if this count is zero.

Unfortunately, Petri nets cannot perform zero-tests. Instead, we show that the
reference counts can be bounded using a pumping constant p ∈ N such that once
an instance (a, k) is known to more than p processes, it can be distributed to
arbitrarily many processes. This has the following consequence. If the reference
counter of an instance (a, k) exceeds p, the instance cannot be reused. Phrased
differently, we only need to keep the precise reference count up to p. This bound
allows us to implement zero-tests with a Petri net. We show that the pumping
constant can be computed from the Karp-Miller tree.

Contribution 3: Lower bound We show that verification problems for name-
bounded processes, be it coverability or reachability, have non-primitive recur-
sive space complexity. In contrast, reachability for the related model of Petri
nets is only known to be EXPSpace-hard [10], and coverability is EXPSpace-
complete [18]. Moreover, most known extensions of Petri nets with non-primitive
recursive lower bounds for coverability have undecidable reachability problems.
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Tool 3: Space-bounded Turing machine simulation To establish the lower
bound result, we show how to simulate Turing machines where the tape-size is
bounded by the Ackermann-function A(n) with name-bounded processes. Our
construction combines a classical result for Petri nets with the expressiveness of
π-calculus as follows. With the construction of Mayr and Meyer [11], we obtain
a process that generates up to A(n) waiting processes and terminates. We then
use a π-calculus modeling trick to arrange these processes into a list representing
the Turing tape, and simulate the machine by communicating the state of the
machine between tape cells.

Thus, our results resolve —positively— the algorithmic landscape of a natural
and expressive fragment of the π-calculus.

Related Work. We recall the translations of reconfigurable systems into
place/transition Petri nets that have been proposed in the literature. None of
them can handle the name-bounded processes we consider here. Translations for
restriction-bounded processes (where restrictions do not occur inside recursion)
can be found in [14,3]. These works propose an identity-aware semantics similar
to the one we use here, but do not introduce reference counters and pumping
constants. The reason we need these tools is the generality of name-bounded
processes. Our new class strictly subsumes restriction-bounded and, at the same
time, finite control processes (FCPs) [5]. We are thus faced with unbounded
parallelism combined with unboundedly many names. FCPs are translated into
polynomial-sized safe Petri nets in [15]. We show that such a compact encoding
cannot exist for name-bounded processes. In the worst case, the Petri nets have
to be non-primitive recursive. The structural translation [13] identifies groups of
processes that share restricted names. It yields a finite representation precisely
for the class of structurally stationary processes, which are incomparable with
name-bounded processes.

There are alternative translations of reconfigurable systems into higher-level
Petri nets. Due to the expressive target formalism, it is not possible to deduce
decidability results for properties like reachability from them. The class in [1]
restricts the processes that can receive on a generated name. A translation into
transfer nets yields decidability of control reachability. A translation of π-calculus
into high-level Petri nets is given in [6]. In [17], FCPs are encoded into history
dependent automata where states are labelled by names to represent restrictions.

Decidability of reachability in related process models, such as a fragment of
mobile ambients [4] and a variant of CCS [8], has been shown by reduction to
Petri net reachability. Unlike these papers, our construction gives a stronger
correspondence: a Petri net that is bisimilar to a name-bounded process.

Name-bounded processes are bounded in depth in the sense that the nesting of
restrictions is limited [12]. Therefore, positive results for depth-bounded systems,
like decidability of coverability [20], carry over to name boundedness. However,
reachability is undecidable for depth-bounded systems [14], and the coverability
set is not computable [2]. This motivated our search for subclasses of depth
boundedness and we show here that both problems, reachability and coverability
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set computation, can be solved for name-bounded models. Further, we can decide
whether an arbitrary process is name-bounded by a given b ∈ N.

Our results rely on an adaptation of the Karp-Miller construction [9]. Finkel
and Goubault-Larrecq [7] extend the same algorithm to compute coverability
sets for general well-structured systems. There are two reasons why we propose
a specific variant. First, we want our algorithm to be sound and complete for
general, Turing-complete systems, but terminate only for name-bounded ones.
This is needed to decide name boundedness when b ∈ N is given. The approach
in [7] is always guaranteed to terminate, and hence does not handle Turing-
complete models. Second, soundness requires an acceleration that depends on
the labels along the path. It is unclear how to encode this into [7].

2 Name-bounded Processes

The π-Calculus. We recall the basics on π-calculus [16,19]. The π-calculus en-
codes computation using processes that exchange messages over channels. Mes-
sages and channels are untyped: a message that is received may serve as channel
in further interactions. Formally, messages and channels are names a, b, x, y from
a countable set of names N . Processes communicate by synchronizing on prefixes
π that are sending x〈y〉 or receiving x(z). From these elementary communica-
tions, we build models of reconfigurable systems using non-deterministic choice
+, parallel composition | , restriction νa, and parameterized recursion K4ã5. To
implement recursion, we introduce process identifiers, ranging over K, together
with defining equations K(x̃) := P , where P is again a process and x̃ is a se-
quence of distinct names so that |ã| = |x̃|. Every process relies on finitely many
defining equations.

Formally, processes P,Q,R from the set of processes P are defined by

M ::= 0 � π.P � M1 +M2 P ::= M � K4ã5 � P1 | P2 � νa.P

ProcessesM and K4ã5 are called sequential as they are the basic building blocks
for parallel compositions. We also use syntax S to indicate that the given process
is sequential, and write S for the set of all sequential processes. We abbreviate
k-fold parallel compositions of the same process P by P k, where P 0 := 0.

The intended semantics of a call K4ã5 is that the process behaves like P ,
but with x̃ replaced by ã. This replacement is formalized by the application of
substitutions. A substitution {ã/x̃} is a function from N to N that maps x̃ to ã
and leaves all names outside x̃ unchanged. The application of {ã/x̃} to process
P is denoted by P{ã/x̃} and defined in the standard way [19].

Receive prefixes x(y) and restrictions νa bind the names y and a. A name
that is not bound in a process is free. We assume free and bound names to be
disjoint, and that every name is bound at most once. We use F to denote the
names that can occur free in processes, and F(P ) for the set of free names in
P . Similarly, R is the set of names that can occur in restrictions, and R(P ) the
restricted names in P . In a defining equation K(x̃) := P , we require F(P ) ⊆ x̃
to avoid the invention of free names in a recursive call.
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To ease the definition of the π-calculus semantics, we define a structural
congruence relation ≡ ⊆ P × P . It is the smallest congruence that allows for
α-conversion of bound names, requires choice + and parallel | to be associative
and commutative with 0 as neutral element, and where restrictions satisfy

νa.0 ≡ 0 νa.νb.P ≡ νb.νa.P νa.(P | Q) ≡ P | νa.Q if a /∈ F(P ).

We also use a quasi-ordering � ⊆ P × P among processes called embedding. It
is the smallest relation that satisfies νã.Q � νã.(Q | R) and that is closed under
structural congruence: Q ≡ Q′ � R′ ≡ R entails Q � R. It can be shown that
� is indeed reflexive and transitive, and thus a quasi-ordering [12]. For a set of
processes P ′ ⊆ P , we define P ′ ↓ := {Q | ∃P ∈ P ′ : Q � P}.

The behavior of processes is given by the reaction relation → ⊆ P × P . It is
the smallest relation that satisfies

x(z).P +M | x〈y〉.Q +N → P{y/z} | Q K4ã5 → P{ã/x̃} with K(x̃) := P,

and that is closed under parallel composition, restriction, as well as structural
congruence. A process Q is reachable from P if P →∗ Q, where →∗ is the
reflexive transitive closure of →. The reachability set of P , written Reach(P ),
is the set of all processes reachable from P . The transition system of a process
is the quotient of the reachable processes along structural congruence: T (P ) :=
(Reach(P )/≡, ↪→, P ), where P ↪→ Q iff P → Q.

We shall use Milner’s standard form of processes [16], which maximizes the
scope of restrictions. The formal definition is inductive. A parallel composition
of sequential processes S is in standard form. If Psf is in standard form then
also νa.Psf is, provided a ∈ F(Psf ).

Name Boundedness. Process P ∈ P is name-bounded if there is a bound on the
number of restricted names that holds for all reachable processes Q ∈ Reach(P ).
However, restricted names that do not occur free can be removed by structural
congruence: νa.P ≡ P provided a /∈ F(P ). This motivates the definition of the
number of active restrictions: arn(S) := 0, arn(P | Q) := arn(P )+ arn(Q), and
arn(νa.P ) := 1 + arn(P ) if a ∈ F(P ) and arn(νa.P ) := arn(P ) otherwise.

Definition 1. Process P ∈ P is b-name-bounded with b ∈ N if for all processes
Q ∈ Reach(P ) we have arn(Q) ≤ b. Process P is name-bounded if it is b-name-
bounded for some b ∈ N.

For example, process νa.K14a5 with K1(x) := K14x52 is 1-name-bounded,
whereas νb.K24b5 with K2(y) := νb.(K24b52) is not name-bounded.

The definition of name boundedness refers to all reachable processes. This mo-
tivates the following decision problems. The name boundedness problem (NB)
asks, given P ∈ P , is P name-bounded? The restricted name boundedness prob-
lem (RNB) asks, given P ∈ P and b ∈ N, if P is b-name-bounded.
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Theorem 1. (1) NB is r.e.-complete and (2) RNB is decidable.

Decidability of RNB, from which the recursive enumerability of NB follows, is
not obvious, as 0-name-bounded systems can already simulate Petri nets. We
prove the result using an algorithm for effectively constructing coverability sets
for name-bounded processes that we describe next.

3 Coverability and the Karp-Miller Construction

A processQ is said to be coverable from P if there exists some R ∈ Reach(P ) such
that Q � R. The coverability set of P is the set of all processes coverable from P .
Equivalently, the coverability set is the downward closure, with respect to the
embedding order, of the reachability set: Reach(P ) ↓. Given a name-bounded
process P , our next goal is to compute a finite representation for Reach(P )↓.

We construct the coverability set by unfolding the reachability tree of P , and
accelerating reaction sequences that can be repeated. The acceleration procedure
takes a sequence Q1 →∗ Q2 and constructs a closed-form representation of all
processes that are coverable with any number of iterations of the sequence. We
call the procedure a Karp-Miller tree, since it closely resembles the data structure
used for the coverability analysis of Petri nets [9,7].

3.1 Identity-aware Processes

In the Karp-Miller tree construction, restricted names have to be handled with
care. To see the problem, reconsider K1(x) := K14x52 and K2(y) := νb.(K24b52)
from above. Then νa.K14a5 is name-bounded, but νb.K24b5 is not. In their
reachability trees, reaction νa.K14a5 → νa.(K14a52) uses copies of the same
name a, while νb.K24b5 → νb.(K24b52) forgets name b and re-creates it again.

The examples suggest that we have to track the identities of names over
transitions. Inspired by [14], we introduce a notion of identity-aware processes.
They replace restricted names νa by free names of the form (a, i) taken from
a set of instances. Since free names are not subject to α-conversion, instances
are preserved by transitions. To mimic name boundedness, transitions among
identity-aware processes do not choose instances (a, i) arbitrarily, but compute
the least index i that is not present in the target process. Moreover, identity-
aware transitions are labelled by the newly generated instances, which allows us
to distinguish them from old ones. In the example above, we obtain

K14(a, 0)5 ∅−→ia K14(a, 0)52 as opposed to K24(b, 0)5
{(b,0)}−−−−→ia K24(b, 0)52.

Formally, an instance of a restricted name a ∈ R is a pair (a, i) from the set of
instances I := R× N. A process is called identity-aware if it has the form

Pia = S1 | . . . | Sn with F(Pia ) ⊆ F ∪ I.

As it is a parallel composition of choices and calls, there are no active restrictions.
Moreover, and different from ordinary processes, Pia is allowed to have some
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instances free. We use Pia to refer to the set of all identitiy-aware processes. We
let I(Pia ) := F(Pia ) ∩ I return the instances in process Pia .

We now define a transition relation among identity-aware processes. The idea
is to compute instances that represent restricted names, rather than choosing
them non-deterministically. For each restriction a ∈ R, we introduce the function

mina(Pia ) := (a, k) where k = min {i ∈ N | (a, i) /∈ I(Pia )} .

It determines the least instance that is not free in Pia . With this function, we
can turn processes in standard form Psf into identity-aware processes:

ia(S1 | . . . | Sn) := S1 | . . . | Sn ia(νa.Psf ) := ia(Psf ){mina(ia(Psf ))/a}.

The identity-aware transition relation →ia ⊆ Pia × 2I × Pia is now defined by

Pia
FI(Pia ,Qia )−−−−−−−−→ia Qia iff Pia → Qsf and Qia = ia(Qsf ).

Here, FI(Pia , Qia) is the set of fresh instances that are determined by ia(Qsf ).
We usually write Pia →ia Qia and only mention FI(Pia , Qia) where it is needed.
When we consider transition sequences, we form the union of the instances:
Pia →ia Qia →ia Ria yields FI(Pia , Ria ) := FI(Pia , Qia) ∪ FI(Qia , Ria).
We denote the set of all identity-aware processes that are reachable from Pia

via the identity-aware transition relation by Reach ia(Pia ). The corresponding
identity-aware transition system is Tia(Pia ) := (Reach ia(Pia )/≡, ↪→ia , Pia),
where Qia ↪→ia Ria iff Qia →ia Ria . This is indeed well-defined. The identity-
aware transition system is bisimilar to the original one.

Proposition 1. T (Psf ) ≈ Tia (ia(Psf )).

The bisimulation that relates the transition systems of Psf and Pia = ia(Psf )
is B ⊆ Reach ia(Pia )/≡ × Reach(Psf )/≡ defined by Qia B ν I(Qia).Qia . We
call an identity-aware process Pia name-bounded if νI(Pia ).Pia is. Equivalently,
there is a finite set of instances that are used in any reachable process.

We elaborate on the shape of processes Qia ∈ Reachia (Pia ), making use of
derivatives as introduced in [13]. Intuitively, process Qia consists of subterms of
Pia to which substitutions are applied. The idea of subterms is formalized by the
notion of derivatives D(P ). Function D : P → 2P returns the set of processes
that can be found by removing prefixes, restrictions, and splitting up parallel
compositions — in P and in its defining equations:

D(0) := ∅ D(K4ã5) := {K4ã5} ∪ D(Q) if K(x̃) := Q

D(π.P ) := {π.P} ∪ D(P ) D(M +N) := {M +N} ∪ D(M) ∪ D(N)

D(P | Q) := D(P ) ∪ D(Q) D(νa.P ) := D(P ).

Since processes rely on finitely many defining equations, the set remains finite.
Derivatives do not keep track of what names are instantiated, nor what names
are received in input prefixes. To correctly represent Qia , we map the names
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Algorithm 1. Karp & Miller Tree Construction

procedure KM(Pia)
V := {root :Pia}; −→KM := ∅; Work := root :Pia ;
while Work not empty do
Pop n1 :L1 from Work ;
for all L1 →ia L2 up to ≡ do

if there is n :L→∗
KM n1 :L1 such that L2 ≡ L | Lrem and

I(Lrem ) ∩ FI(L, L2) = ∅ then
L2 := L | Lω

rem ;

let n2 be a new node

V := V ∪ {n2 :L2}; −→KM := −→KM ∪ {n1 :L1
FI(L1,L2)−−−−−−−→KM n2 :L2};

Work :=Work · (n2 :L2) provided L2 does not occur from root to n1;

return (V,→KM , root :Pia ).
end procedure

occurring in derivatives to either free names in Pia or to instances of restricted
names. The corresponding set of substitutions is

Σ(Pia ) := F(D(Pia ))→ F(Pia ) ∪ (R(Pia )× N).

Lemma 1. For every Qia ∈ Reachia (Pia ) there are D1, . . . , Dn ∈ D(Pia ) and
σ1, . . . , σn ∈ Σ(Pia ) so that Qia ≡ D1σ1 | . . . | Dnσn.

Note that a name-bounded Pia only uses a finite number of instances from
R(Pia )× N, and therefore σ1 to σn are taken from a finite subset of Σ(Pia).

3.2 Karp and Miller Trees

The Karp-Miller tree for a process Pia is a rooted, directed tree. The nodes of
the tree are labeled with either a single process reachable from Pia , or a limit
process, representing a set of processes summarizing the effect of repeating a
reaction sequence. The root is labeled with Pia .

The definition of limits is inspired by replication in π-calculus, and similar
to [20]. A limit is either a sequential process S, a process of the form Lω, or a
parallel composition L1 | L2 of limit processes. Intuitively, limit Sω represents
an unbounded set of processes Sj for arbitrarily large j. We extend structural
congruence to limit processes with the following rules:

Sω | S ≡ Sω Sω | Sω ≡ Sω (Sω)ω ≡ Sω (L1 | L2)
ω ≡ Lω

1 | Lω
2

While decidability of structural congruence for processes with replication is prob-
lematic, it is not an issue here since ω distributes over parallel composition.

By associativity and commutativity of parallel composition and the above
laws for limit processes, we can bring each limit process L into the standard
form L ≡ Sk1

1 | . . . | Skn
n , where Si ≡ Sj for i = j and ki ∈ N ∪ {ω}. Thus,

we order the sequential processes into groups of structurally congruent ones
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L1 L3 L1

L0 L1 L3

L2 L3 L1 L3

L0 L3 L1

{(y, 0)}

{(y, 0)}
{(y, 0)}

L0 := K1�(a, 0)� | K3 L2 := K1�(a, 0)� | (y, 0) | (y, 0).K3

L1 := K1�(a, 0)�ω | K3 L3 := K1�(a, 0)�ω | (y, 0) | (y, 0).K3.

Fig. 1. Algorithm 1 on K1�(a, 0)� | K3 with K1(x) := K1�x�2 and K3 := νy.(y | y.K3)

and join them if we find ω. With this normal form, we can understand limit
L as a multiset L : S → N ∪ {ω} that assigns L(Si) := ki. If process S ∈ S
does not occur in the parallel composition above, it is assigned zero. We use
Fin(L) := {S ∈ S | 1 ≤ L(S) ∈ N} for the sequential processes that occur finite
in L, and Inf (L) := {S ∈ S | L(S) = ω} for those that are ω. We also extend �
to limits in the natural way, and note that it coincides with multiset inclusion.

Algorithm 1 shows a worklist algorithm to construct the Karp-Miller tree
for a process Pia . The construction starts with a root node labeled with Pia

and unrolls the reachability tree by executing enabled reactions. This means
the edges n1 : L1 →KM n2 : L2 of the Karp-Miller tree mimic identity-aware
reactions, and so are labeled with sets of fresh instances. Additionally, reaction
sequences leading to repeating limits L � L | Lrem are accelerated, provided
Lrem does not remember newly generated instances. We define KM (Pia ) :=
{L | there is some node labeled with L in the tree}. Figure 1 gives the execution
of the algorithm on an example process.

To understand the subtle acceleration condition in the if-statement, consider
process K24(b, 0)5 with K2(y) := νb.(K24b52):

K24(b, 0)5
{(b,0)}−−−−→ia K24(b, 0)52

{(b,1)}−−−−→ia K24(b, 1)52 | K24(b, 0)5.

After the first transition, we find K24(b, 0)5 � K24(b, 0)52. But the intersection
I(K24(b, 0)5) ∩ {(b, 0)} = ∅ forbids us to accelerate K24(b, 0)52 to K24(b, 0)5ω.
That this is indeed correct can be seen in the third process. It is not true that
arbitrarily many processes will get to know (b, 0).

The following lemmas encode the correctness of the construction.

Lemma 2 (Completeness). For every Qia ∈ Reach ia(Pia ) there is a limit
L ∈ KM (Pia ) and an injective substitution σ : I(Qia )→ I(L) so that Qiaσ � L.

Lemma 3 (Soundness). For every L ∈ KM (Pia ) and every k ∈ N there is
Qia ∈ Reachia (Pia ) with Qia(S) = L(S) for all S ∈ Fin(L), Qia(S) ≥ k for all
S ∈ Inf (L), and Qia(S) = 0 otherwise.
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Note that the previous two lemmas do not assume Pia to be name-bounded.
This is important in proving Theorem 1(2) below.

Lemma 4 (Termination). Algorithm 1 terminates with input Pia ∈ Pia if and
only if Pia is name-bounded.

If the input process is not name-bounded, completeness in Lemma 2 implies that
Algorithm 1 cannot terminate. The converse direction comes with two problems.

First, we have to guarantee that we find repeating limits n1 : L1 →∗
KM n2 :

L2 →ia L with L ≡ L1 | Lrem . The trick is to understand limits as multisets over
a finite set, and then resort to the theory of well-quasi orderings. Lemma 1 shows
that we can restrict ourselves to derivatives plus substitutions: Dσ and (Dσ)ω .
This means limits of Pia are multisets over the finite set D(Pia )×Σ(Pia)×{ε, ω}.
With this finiteness, multiset inclusion and hence � is a well-quasi ordering by
Dickson’s lemma. This guarantees repetitions.

Second, acceleration has a side condition which additionally requires I(Lrem)∩
FI(L1, L) = ∅: the processes to be accelerated should not contain instances that
were generated along the way. The following lemma shows that a failure of the
side condition would contradict name boundedness.

Lemma 5. Consider Algorithm 1 with Pia ∈ Pia as input. If the execution
encounters n1 : L1 →∗

KM n2 : L2 →ia L with L ≡ L1 | Lrem and such that
I(Lrem) ∩ FI(L1, L) = ∅, then Pia is not name-bounded.

Note that the lemma correctly predicts name unboundedness in the example
K24(b, 0)5 above. Applied in contraposition, the lemma shows that for name-
bounded processes the side condition always holds: if we find repeating elements
L1 and L ≡ L1 | Lrem , then we are already sure that I(Lrem) ∩ FI(L1, L) = ∅.

Theorem 2. Consider a name-bounded process P ∈ P with P ≡ νI(Pia ).Pia .
Then Reach(P )↓ = {νI(L).L | L ∈ KM (Pia )}↓ and the latter set is finite.

Proof of Theorem 1(2). The Karp and Miller tree allows us to prove Theorem 1.
To check whether P ∈ P is b-name-bounded, we execute Algorithm 1 until it
either terminates or we find a limit with more than b instances. In the former
case, we report that the process is b-name-bounded, in the latter that it is not.

Assume P is b-name-bounded. Then Algorithm 1 terminates by Lemma 4. By
Lemma 3, it only constructs limits with up to b instances. Therefore, the second
termination condition will not apply and we report P to be b-name-bounded. If P
is not b-name-bounded, there is a reachable process with more than b instances.
By completeness, Algorithm 1 will construct a limit with more than b instances.
Then, we report P is not b-name-bounded. ��

4 From Name-bounded Processes to Petri Nets

4.1 Process Bounds

To give a reduction to Petri nets, we require a notion of “pumping” instances.
We introduce process bounds as a pumping mechanism.
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Consider a sequence ρ = Pia →ia . . .→ia Qia and some p ∈ N. We use I>p(ρ)
to denote the instances that were known to more than p sequential processes at
some moment during ρ. As instances can be reused, I>p(ρ) is a multiset. It is
divided into I>p(ρ) = Iactive>p (ρ) + Idead>p (ρ). The instances that once exceeded

the bound and are still active in the final process Qia are given by Iactive>p (ρ).

Note that Iactive>p (ρ) is indeed a set, not just a multiset. The instances that have

been forgotten along the way is the multiset Idead>p (ρ).
The definitions are by induction on the length of the sequence, where the

induction step is as follows:

Idead>p (ρ.Q1
ia →ia Q2

ia ) := Idead>p (ρ) + Idead
Iactive>p (ρ.Q1

ia →ia Q2
ia ) := Iactive>p (ρ) \ Idead ∪ Iact .

The auxiliary set Idead contains the instances that once exceeded the bound and
were active up to Q1

ia , but that are forgotten in the transition Q1
ia →ia Q2

ia .
The set Iact contains the instances that occur in more than p ∈ N sequential
processes of Q2

ia . We use |Q2
ia |(a,i) to denote the number of sequential processes

in Q2
ia that have (a, i) as instance:

Idead :=
{
(a, i) ∈ Iactive>p (ρ) | (a, i) /∈ I(Q2

ia ) or (a, i) ∈ FI(Q1
ia , Q

2
ia)
}

Iact :=
{
(a, i) ∈ I(Q2

ia ) | |Q2
ia |(a,i) > p

}
.

Choose p to be the largest number of sequential processes that know an instance
(a, i) in a limit of the Karp-Miller tree:

p := max
{
|L|(a,i) | L ∈ KM (Pia ) and (a, i) /∈ I(Inf (L))

}
.

This p, called the process bound, has an interesting property. Consider a reaction
sequence ρ from Pia to Qia . If we replay it on the Karp-Miller tree, then an
instance (a, k) ∈ I>p(ρ) that is distributed to more than p sequential processes
leads to Sω. Since accelerated processes are never removed, the limit L that
dominates Qia will contain Sω. Thus, the limit not only contains the instances
I(Qia ) but also the instances from Idead>p (ρ). Since there are reachable processes
Ria that correspond to L, we get a lower bound on the name bound of Pia .

Lemma 6. Let Pia ∈ Pia be b-name-bounded and let p be its process bound. For
every ρ from Pia to Qia we have |Idead>p (ρ)|+ |I(Qia )| ≤ b.

Phrased differently, instances which exceeded process bound p do not need to
be reused by the identity-aware semantics to meet name bound b.

4.2 Petri Net Construction

Given a b-name-bounded process Pia ∈ Pia that has p ∈ N as a process bound,
we construct a Petri net N (Pia , b, p) that simulates the identity-aware semantics
of Pia in a strong sense: there is a bisimulation between the transition systems of
N (Pia , b, p) and Pia . We use the standard notion of place-transition Petri nets
of the form (S, T,W,M0) with the standard firing semantics.
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We describe the construction of N (Pia , b, p) as a composition of two parts:

N (Pia , b, p) := Syn(Ctrl (Pia , b))×Ref (Pia , b, p) .

Petri net N (Pia , b, p) maintains a finite set of instances {(a, 0), . . . , (a, b − 1)}
to represent each restriction a ∈ R(Pia ). Petri net Ref (Pia , b, p) implements
reference counters for these instances in order to correctly allocate them when
restrictions are encountered. The control flow of Pia is captured by Ctrl (Pia , b).
While this net only models the consumption of prefixes, the synchronisation
operation Syn(·) joins send and receive transitions with complementary labels.
Finally, the × operator co-ordinates the distribution and generation of instances
between Syn(Ctrl (Pia , b)) and Ref (Pia , b, p). We turn to the details.

Petri net Ctrl (Pia , b) maintains a place for each possible sequential process.
These places count the number of occurrences of the corresponding process. Since
there are finitely many restrictions, each with finitely many instances, as well as
finitely many derivatives, the number of places in Ctrl (Pia , b) is finite.

The transitions are derived from the places. Consider a receive

S ≡ x(y).νã.Qia + . . . with νã = νa1 . . . νam and Qia ≡ So1
1 | . . . | Son

n .

The receive operation is implemented by a set of transitions, one transition t for
each z in F(Pia )∪(R(Pia )× [0, b−1]) that we can receive for y and each m-tuple
of instances (a1, k1) to (am, km) that we may use to represent a1 to am. The post
set of t is the set of sequential processes in Qiaσ. In the above case, this is S1σ
to Snσ. Substitution σ maps y to z and ai to (ai, ki) for i ∈ [1,m]. The weight
of the arc from t to Siσ is given by Qiaσ(Siσ) = oi, the number of occurrences
of Siσ in Qiaσ. Additionally, the transition is labeled with information used to
synchronize with the reference counters.

The synchronisation operation Syn(Ctrl (Pia , b)) joins transitions with com-
plementary send and receive labels. Finally, the × connects the synchronized
control flow net with the reference counters.

To limit the number of instances to b ∈ N, we reinstantiate an instance (a, k)
that was present in Q1

ia in a later process Q2
ia , provided it has been forgotten on

the path Q1
ia →+

ia Q2
ia . The Petri net Ref (Pia , b, p) maintains reference counters

that track the number of sequential processes S with (a, k) ∈ I(S). An instance
(a, k) can be reinstantiated in case the reference counter is zero.

To check that a reference counter is zero, we use the process bound p. (Recall
that Petri nets cannot implement zero-tests.) Consider a sequence ρ from Pia to
Qia . An instance (a, k) in ρ that, at some moment, is distributed to more than p
sequential processes and that has been forgotten in Qia is a member of Idead>p (ρ).
Lemma 6 ensures this instance need not be reinstantiated. The name bound is
high enough so that there is another instance that is currently not in use and
that can represent the restriction. As a result, once a reference count goes beyond
p, the name is never recycled. The net Ref (Pia , b, p) has three places for each
instance (a, k): a place (a, k)ω denoting this name cannot be recycled, a place
(a, k) keeping the current reference count (provided the reference count has never
exceeded p), and a complementary place (a, k) that ensures the sum of tokens
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in (a, k) and (a, k) together is p while the name is bounded. We implement the
zero-test by checking (a, k) has p tokens.

Now, a step of the process is simulated by a sequence of steps of the Petri
net that update the tokens in Ctrl (Pia , b), but at the same time, instantiate
required names and update the reference counts.

4.3 Bisimilarity

To obtain a clean bisimulation between a name-bounded process and its Petri
net semantics, we use an idea from [15]: we define distinguished stable markings
that will actually correspond to processes, as opposed to intermediary markings
that occur when we amend reference counters and allocate instances.

Consider N (Pia , b, p) = (S, T,W,M0). The set of places in Syn(Ctrl (Pia , b))
is the disjoint union Sproc�Sinter ⊆ S where Sproc contains the process places of
Ctrl (Pia , b) while Sinter contains intermediary places that we added to allocate
instances and update reference counters. Now, a marking M ∈ NS is called stable
if M(s) = 0 for all s ∈ Sinter . We use Rstbl (N (Pia , b, p)) to denote the set of
stable markings that are reachable in N (Pia , b, p).

We are interested in transition sequences of N (Pia , b, p) that correspond to
one communication or identifier-call, rather than interleavings of reactions. For-

mally, a transition sequence M1 t1...tn−−−−→ M2 between stable markings is called
race-free if there is a single transition t of Syn(Ctrl (Pia , b)) that is unfolded
into t1 . . . tn in the composition N (Pia , b, p). We write M1 ⇒ M2 if there is a
race-free transition sequence between the two markings. With this, the stable
transition system is Tstbl (N (Pia , b, p)) := (Rstbl (N (Pia , b, p)),⇒,M0).

To define a bisimulation relation, we have to decide which instances to mark
as unbounded in the marking of N (Pia , b, p). Unfortunately, a single process Qia

does not carry enough information to define the related markings. We need the
full transition sequence ρ = Pia →ia . . . →ia Qia that leads to Qia . We there-
fore extend the identity-aware transition system Tia (Pia ) to a history-preserving
identity-aware transition system T h

ia (Pia ) in which states are such sequences ρ
from Pia to Qia . Clearly, the identity-aware transition system and its history-
preserving variant are bisimilar. The history-preserving transition system carries
enough information to establish a bisimulation result.

Lemma 7. Tia (Pia ) ≈ T h
ia (Pia ) ≈ Tstbl (N (Pia , b, p)).

Assume Pia has name bound b ∈ N and process bound p ∈ N. Then B relates
transition sequence ρ from Pia to Qia with marking M = Mctr + Mref if the
following holds.

For the control-flow marking, we require that there is an injective substitution
σ : I(Qia )→ I(supp(Mctr )) so that Mctr ≡ Qiaσ.

For marking Mref of the reference counter, consider (a, i) ∈ Iactive>p (ρ). We

require Mref ( [(a, i)σ]
ω ) = 1. For an instance (a, i) ∈ I(Qia )\Iactive>p (ρ), we need

Mref ( (a, i)σ ) = |Qia |(a,i). With Lemma 6, there are b − |I(Qia )| ≥ |Idead>p (ρ)|
instances (a, k) outside the range of σ. We have Mref ( (a, k)

ω ) = 1 for |Idead>p (ρ)|
such instances. All other instances carry p tokens on the complement place.
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The above constraints describe a marking that is partial in that, for each
instance, the token count of only one place (a, k), (a, k), or (a, k)ω is given.
The tokens for the remaining places are uniquely determined by the following
invariants. Places (a, i) and (a, i) are complements with bound p. Also places
{(a, i), (a, i)} and (a, i)ω are complements. This means, if (a, i)ω carries a token,
the other two are empty and vice versa. Place (a, i)ω is safe. We can now state
our second main result.

Theorem 3. Let P ≡ νI(Pia ).Pia be name-bounded by b ∈ N and let p ∈ N be
the process bound. Then T (P ) ≈ Tstbl (N (Pia , b, p)).

Proof. T (P ) ≈ Tia(Pia ) ≈ T h
ia (Pia ) ≈ Tstbl (N (Pia , b, p)), with Proposition 1

and Lemma 7. ��
Corollary 1. Reachability is decidable for name-bounded processes.

5 Ackermann Lower Bound

We give a polynomial-time reduction from Turing machines operating on a tape
of non-primitive recursive size to name-bounded processes. As a consequence,
verification problems for name-bounded systems have non-primitive recursive
complexity.

We give the construction of process P (TM ) for Turing machine TM . The
behavior of P (TM ) is divided into three stages. In the first stage, P (TM ) gen-
erates up-to A(n) parallel processes W 4p,Q5 that are waiting. Here, Q is the
set of states in the Turing machine that we deliberately understand as channels.
Moreover, there is a single process νc.νr.G4p, c, r, q05:

P (TM )→∗ W 4p,Q5A(n) | νc.νr.G4p, c, r, q05.
For this generation phase, we rely on a result from Petri net theory [11]. There is
a sequence of Petri nets (Ni)i∈N where the size grows linearly and that produce
up to (A(i))i∈N tokens on a designated place. Such a Petri net Ni can be turned
into a restriction-free process creating A(i) copies of W 4p,Q5.

In the second stage, process G4p, c, r, q05 aligns the waiting W 4p,Q5 into a
list of processes C04l, c, r, Q5 representing cells in the Turing tape with content
0, input channel c, and pointers l and r to the input channels of their left and
right neighbor. The process G4p, c, r, q05 recursively converts W 4p,Q5 to cells,
and can non-deterministically decide that the current cell with input channel c
is the last one in the list. In this case it sends the initial state q0 of TM to the
cell, which starts the simulation of the Turing machine.

The simulation of the Turing machine is the third stage in the behavior of
P (TM ). Each process Ci(l, c, r, Q), with i ∈ {0, 1} as current content, waits to re-
ceive the head pointer and the current state ofTM . On receiving the current state,
the process executes one transition of the machine and updates its content, while
sending the successor state to its left or right neighbor, based on the transition.

Theorem 4. (1) Reachability and coverability are non-primitive recursive
for name-bounded processes. (2) There is no primitive recursive translation of
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name-bounded processes into Petri nets that preserves coverability. (3) There is
no primitive recursive bound on the size of name and process bounds.

Theorem 4 shows the Karp-Miller procedure is asymptotically optimal.
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Abstract. We give separation results, in terms of expressiveness, con-
cerning all the concurrent extensions of interaction nets defined so far in
the literature: we prove that multirule interaction nets (of which Ehrhard
and Regnier’s differential interaction nets are a special case) are strictly
less expressive than multiwire interaction nets (which include Beffara
and Maurel’s concurrent nets and Honda and Laurent’s version of polar-
ized proof nets); these, in turn, are strictly less expressive than multiport
interaction nets (independently introduced by Alexiev and the second au-
thor), although in a milder way. These results are achieved by providing a
notion of barbed bisimilarity for interaction nets which is general enough
to adapt to all systems but is still concrete enough to allow (hopefully)
convincing separation results. This is itself a contribution of the paper.

Keywords: Interaction nets, Expressiveness in concurrency, Behavioral
equivalences.

1 Introduction

Interaction nets were introduced by Yves Lafont [10] as a model of distributed
and deterministic computation, inspired by proof nets of multiplicative linear
logic [11]. To this date, they have earned a prominent place in the theory of
the optimal implementation of the λ-calculus (as sharing graphs [13,2]) and
functional programming languages in general [15,16], as well as in the related
field known as the geometry of interaction [7], for which they are the most natural
syntax.

The main interest of interaction nets lies in the fact that they provide a simple
yet extremely powerful paradigm for representing a vast variety of computational
models, ranging from Turing machines to functional languages, passing through
cellular automata and term-graphs, all this by respecting the essential idea that
computation is local and the cost of elementary steps is bounded by a constant.
Additionally, interaction nets provide a pleasant and intuitive graphical repre-
sentation of programs, similar in style and spirit to string diagrams for monoidal
categories.
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Let us define interaction nets in a nutshell. We start with an alphabet, i.e.,
a set of symbols, α, β, . . ., each with a given arity. Given a denumerable set of
ports x, y, z, . . ., the atomic components of interaction nets are:
– agents (or cells), of the form α(x; ỹ), where x, ỹ are ports, with the length

of the list ỹ matching the arity of α, and x being the principal port of the
cell;

– wires, which are multisets of exactly two ports, written [x, y].
A net is a multiset of agents and wires, in which every port appears at most
twice. We write nets as

α1(x1; ỹ1) | · · · | αm(xm; ỹm) | [z1, u1] | · · · | [zn, un],

using a notation reminiscent of process calculi (especially the solos calculus [14]).
A port appearing exactly once in a net μ is free, and fp(μ) is the set of free ports
of μ; all other ports are bound, and may be renamed as usual by α-equivalence.
We also equate nets obtained by “fusing” or “absorbing” wires:

[x, y] | [y, z] ≡ [x, z], μ | [y, x] ≡ μ{x/y} if y ∈ fp(μ)

(note that [x, y] | [y, x] ≡ [x, x] are legitimate nets, that is why nets and wires
are multisets, not just sets).

An interaction net system is obtained by choosing an alphabet and fixing a
set of interaction rules of the form

α(x; ỹ) | β(x; z̃) → ν{ỹ, z̃},

where ν{ỹ, z̃} is a net whose free ports are exactly ỹ, z̃. An essential requirement
is that there is at most one interaction rule for every unordered pair of symbols
α, β in the alphabet. For instance, if we take 0, s and + as symbols, of respective
arities 0, 1 and 2, and if we fix the rules

0(x) | +(x; y, z)→ [y, z], s(x;u) | +(x; y, z)→ +(u; v, z) | s(y; v),

we obtain a simple system for unary arithmetic with sum. Indeed, if we set
n{x} = 0(v1) | s(v2; v1) | · · · | s(x; vn), we invite the reader to check that
m{x} | n{z} | +(x; y, z) →∗ m+ n{y} in m + 1 reduction steps. Although
this particular example does not exhibit any parallelism (there is at most one
reduction possible at each step), it is easy to imagine situations in which an
arbitrary number of reductions may be fired at the same time.

We mentioned above that interaction nets have a simple and natural graph-
ical representation, owing to their kinship with proof nets. Actually, in the ex-
isting literature nets are usually presented primarily in that way [10,15,16]. For
instance, the rules for the above system for unary arithmetic would be defined
graphically as in Fig. 1. In this paper, we stick to a textual representation, which
has the advantage of being more concise and, we feel, more easily formalizable
(although, arguably, much less visually appealing).

As a rewriting system, interaction nets are strongly confluent: this is because
rewriting only acts on nets of the form α(x; ỹ) | β(x; z̃), called active pairs,
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Fig. 1. The interaction rules for sum in unary arithmetic

and these can never overlap (i.e., there are no critical pairs) because x already
appears twice and hence nowhere else. Strong confluence implies that Lafont’s
model is strictly deterministic. However, the parallelism of interaction nets sug-
gests that, by endowing them with some form of non-determinism, it may be
possible to obtain interesting models of concurrent computation.

The first to study such non-deterministic extensions was Vladimir Alexiev [1],
who immediately realized that there are essentially three independent ways of
altering Lafont’s definition so as to inject non-determinism in the model:1

multirules: relaxing the requirement that there be at most one rule for every
active pair;

multiwires: up to equivalence, an active pair has the form α(x, s̃) | β(y; t̃) |
[x, y]; if we allow wires connecting more than two ports, we obtain nets such
as α(x; s̃) | β(y; t̃) | γ(z; ũ) | [x, y, z], in which active pairs overlap;

multiports: a further alternative is allowing agents to have more than one
principal port, i.e., more than one port on which they may interact with
other cells. We thus obtain nets such as α(x, y; s̃) | β(x; t̃) | γ(y; ũ), in which
x and y are both principal for α, so one cell belongs to two active pairs.

Alexiev studied, to some extent, the inter-encodability of the various extensions,
and exhibited an encoding of the replication-free π-calculus in the multiport
variant, as proof that concurrent computation becomes possible in such extension
of interaction nets.

In the ensuing years, other people independently defined or used similar non-
deterministic variants of interaction nets, always in connection with concurrency:
Ehrhard and Regnier’s differential interaction nets [5] are in fact a special case
of multirule interaction nets, in which Ehrhard and Laurent proposed an en-
coding of the π-calculus [4]; Beffara and Maurel’s concurrent nets [3] use the
multiwire extension, which is also mentioned by Yoshida in her work on concur-
rent combinators [22] and is implicit in the formulation of polarized proof nets
used by Honda and Laurent to provide a correspondence with the asynchronous
π-calculus [9]; and multiport interaction nets were shown by the second author
to be able to encode the full π-calculus [17], improving Alexiev’s result.

This leaves us with a natural question: are all these concurrent extensions of
interaction nets equally expressive? Although, as mentioned above, encodings of
the π-calculus were proposed for each one of these extensions, such encodings

1 Actually, Alexiev considered four extensions, but the fourth one has never been used
in the literature.
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are so different in nature and their correctness is proved using such ad hoc
arguments that, up to date, the relative expressiveness of each concurrent variant
of interaction nets with respect to the others is far from clear.

The situation is further complicated by the absence, in concurrent interaction
nets, of a notion of behavioral equivalence, an essential tool for comparing con-
current calculi. This is the ultimate reason why correctness proofs must resort
to somewhat contrived arguments: in [4], correctness crucially depends on the
definition of a labelled transition system on differential interaction nets which
is quite ad hoc (if not highly questionable, see [18]); in [17], an operational
correspondence between π-calculus reduction and interaction nets reduction is
achieved through a notion of readback in interaction nets, which heavily depends
on the encoding. Finally, although the authors of [9] do not need to address the
problem because their operational correspondence is exact (i.e., it is close to an
“operational isomorphism”), the π-calculus they consider is asynchronous, while
the other two encodings consider the synchronous one, and after Palamidessi’s
work [19] we know that the difference is not anodyne.

A comparison between the various non-deterministic extensions of interaction
nets is attempted in the already mentioned work of Alexiev [1]. His conclusion
is that the multiwire and multiport extensions are equivalent, whereas multir-
ules are strictly less expressive. However, we feel that Alexiev’s approach is not
technically satisfactory: for the positive results, the question of defining a be-
havioral equivalence on interaction nets is not addressed and the correctness of
the encodings is left unproven;2 and the negative result is based on a severely
constrained definition of translation (the nature principal/auxiliary of free ports
must be preserved), which makes it less convincing than what one would hope.
Finally, Alexiev never considers divergence, which is, as we will see, a key notion
to capture the difference between multiwire and multiport nets.

In light of the above discussion, our starting point will be to propose a notion
of behavioral equivalence for concurrent interaction nets, which is based in turn
on giving a definition of “barb” in interaction nets. Our solution is to adopt a
sort of “may testing” approach: we write μ↓x if there exists a net o such that
fp(o) ∩ fp(μ) = {x} and such that μ | o generates an “observable” computation.
Since reduction rules in interaction net systems may be virtually anything, it is
hopeless to define once and for all which computations are observable, regard-
less of the specific system. So we stipulate that observability comes with the
definition of interaction net system itself: there is a non-empty set of “observ-
able” interaction rules and an observable computation is a reduction sequence
containing an observable reduction step (furthermore, we must require that, in
μ | o, such a sequence truly comes from the interaction of μ and o and is not
already present in μ or o alone). In other words, our barbs are parametric in a
choice of observable reduction rules.

2 At p. 64 of [1], Alexiev states “[W]e don’t prove formally the faithfulness of our
translations, but we introduce them gradually and give comprehensive examples, so
we hope that we have made their faithfulness believable”.
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Once barbs are given, barbed bisimulation and barbed congruence are defined
in the standard way. Then, we proceed to introduce the notion of translation
which will be the subject of our separation results. This is based on an almost
straightforward reformulation, in interaction nets, of fairly standard properties
which are asked of encodings between process algebras.We take as main reference
Gorla’s work [8], whose thorough analysis of the literature on encoding and
separation results approaches exhaustiveness. Among other papers which are a
guideline to our work we mention [20,19].

In synthesis, the most important properties of our translations are the preser-
vation of the degree of distribution, operational correspondence (completeness
and correctness with respect to reductions, up to barbed congruence) and a
bisimulation condition which excludes trivial encodings (such as those mapping
every source net to the empty net).

Finally, our separation results technically take the the following form:

– there is a system of multiwire (or multiport) interaction net which cannot be
translated into any interaction net system using only multirules (Theorem 1);

– there is a system of multiport interaction nets which cannot be translated
into any interaction net system using only multirules and multiwires, without
introducing divergence (Theorem 2).

The key to the first result is formalizing the fact that the multirule extension
only provides interaction nets with “internal” non-determinism. For this, we
introduce must observability μ �x, which is defined by the fact that, for all μ′

such that μ →∗ μ′, we have μ′ →∗ μ′′↓x. In other words, whatever happens
inside μ, the port x will always be observable. Then, we verify that, in multirule
systems, must observability may not be altered by interaction with contexts: if
μ �x and ν does not contain x, then (μ | ν) � x. This is false in multiwire and
multiport systems, and gives easily a separation argument.

The second result owes virtually everything to Palamidessi’s idea for separat-
ing asynchrony from synchrony in the π-calculus [19]. Indeed, the proof is more
or less a reformulation, in multiport interaction nets, of a simple leader election
problem in a symmetric network, which we show to be translatable in multiwire
systems only introducing divergence, because multiwires (and multirules) alone
are not able to synchronously “break the symmetry”.

2 Concurrent Interaction Nets

Throughout the paper, we fix a denumerably infinite set of ports, ranged over by
lowercase Latin letters. We write x̃ to denote a finite sequence of ports x1, . . . , xn
such that every port appears at most twice in the sequence; n is said to be the
length of x̃. If ports appear at most once, we say that x̃ is repetition-free.

Definition 1 (Net). An alphabet is a pair Σ = (|Σ|, deg), where |Σ| is a set
and deg : |Σ| → N is the degree function.

A cell, or agent, on the alphabet Σ is an expression of the form α(x̃), where
α ∈ |Σ| and x̃ is of length deg(α).



202 A. Dorman and D. Mazza

A k-connector is a multiset of cardinality k ∈ N of ports, containing at most
two occurrences of every port, denoted by [x̃]. A 2-connector is called a wire; a
k-connector with k = 1 or k ≥ 3 is called a multiwire.

A net on an alphabet Σ is a finite multiset of connectors and agents on Σ in
which every port appears at most twice. A net is simply-wired if it contains no
multiwire.

The set of free ports of a net μ, denoted by fp(μ), is the set of ports appearing
exactly once in μ. The ports appearing twice in a net are called bound. We
identify any two nets which may be obtained one from the other by an injective
renaming of their bound ports (this is α-equivalence).

We denote by μ{y/x} the net μ in which the only free occurrence of x is
replaced by y. The notation is extended to sequences (i.e., μ{ỹ/x̃}) with the
obvious meaning.

Definition 2 (Juxtaposition). Given two nets μ, ν, we denote by μ | ν the net
obtained by renaming (using α-equivalence) the bound ports of μ and ν so that
the two nets have no bound name in common, and by taking then the standard
multiset union.

Note that, unlike usual process calculi, the symbol | is not part of the syntax, it
is an operation defined on nets. It is obviously commutative and has the empty
net, denoted by 0, as neutral element. It is not associative in general; however,
for μ | (ν | ρ) and (μ | ν) | ρ to be equal, it is enough that fp(μ)∩ fp(ν)∩ fp(ρ) =
∅. More in general, if μ1, . . . , μn are such that, for all pairwise distinct i, j, k,
fp(μi) ∩ fp(μj) ∩ fp(μk) = ∅, then the expression μ1 | · · · | μn is not ambiguous.
Such a notation will always be used under this assumption in the sequel.

In the rest of the paper, by congruence on nets we mean an equivalence relation
∼ such that μ ∼ ν implies that for every net ρ, ρ | μ ∼ ρ | ν.
Definition 3 (Structural congruence). Structural congruence, denoted by
≡, is the smallest congruence on nets satisfying the following:

0-connector: μ | [] ≡ μ
Fusion: [x̃, a] | [a, ỹ] ≡ [x̃, ỹ]
Wire: μ | [a, x] ≡ μ{x/a} if a ∈ fp(μ)

In the wire rule, we may further suppose that a appears in a cell (and not a
connector) of μ, otherwise the rule is already subsumed by fusion.

It is sometimes useful to consider the “pure” structure of a net, abstracting
from the specific names of its free ports. This is the reason behind the following
notion.

Definition 4 (Mask). We fix two infinite sequences of reserved ports (pi)i∈N
and (qi)i∈N. Any net on the alphabet Σ whose free ports are all reserved is called
a mask. We suppose that no net other than a mask has reserved free ports. By
p̃ and q̃ we will mean the sequences p1, . . . , pm and q1, . . . , qn, resp., with m and
n depending on the context.

Quite obviously, every net μ whose free ports are in the repetition-free sequence
x̃ may be seen as the “instantiation” of a mask μ0, which is nothing but μ with
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its free ports suitably renamed: μ = μ0{x̃/p̃}. The reason why we need a second
sequence of reserved ports (qi)i∈N will be clarified shortly.

In what follows, we denote by M̃(Σ) the set of finite repetition-free sequences
of masks on Σ. We denote by ‖ξ‖ the length of such a sequence ξ.

Definition 5 (Interaction scheme). An interaction scheme on an alphabet

Σ is a function �� : |Σ| × N× |Σ| × N→ M̃(Σ) such that:
1. if ‖ ��(α, i, β, j)‖ > 0, then 1 ≤ i ≤ m = degα and 1 ≤ j ≤ n = deg β, and

α = β implies i = j;

2. in that case, the k-th mask in the sequence ��(α, i, β, j) is denoted by αi
k
�� βj

and, for all k, its free ports are exactly p1, . . . , pi−1, pi+1, pm, q1, . . . , qj−1,
qj+1, . . . , qn;

3. furthermore, for all (α, i, β, j), ‖ ��(β, j, α, i)‖ = ‖ ��(α, i, β, j)‖ and, for all

1 ≤ k ≤ ‖ ��(α, i, β, j)‖, βj
k
�� αi = αi

k
�� βj{q̃/p̃, p̃/q̃}.

An interaction scheme defines rules to reduce active pairs. There may be several
interaction rules for the same active pair, this is why ��(α, i, β, j) is a list of nets,
not just a net. Condition 2 says that the ports not partipating in the interaction
are preserved by the rules. Condition 3 states that rules are symmetric when we
swap symbols. Note that condition 1 stipulates that interaction rules are defined
only between cells carrying different symbols or between different principal ports.
This condition, which is present in the original definition of [10], was later relaxed
by Lafont himself [12]. However, in this paper we adopt the more restrictive
version, on the grounds that it is verified by all systems relevant to our work
[5,3,9,17].

Definition 6 (Interaction net system). An interaction net system (INS)
is a triple S = (ΣS , ��S ,OS) where ΣS is an alphabet, ��S is an interaction
scheme on ΣS and OS ⊆ |ΣS | × N× |ΣS | × N× N is non-empty and such that
(α, i, β, j, k) ∈ OS implies that ‖ ��(α, i, β, j)‖ = l > 0 and 1 ≤ k ≤ l, and that
(β, j, α, i, k) ∈ OS . Subscripts are omitted when clear from the context.

The set OS specifies the observable rules of S: (α, i, β, j, k) ∈ OS means that the
k-th rule for the interaction between port i of an α cell and port j of a β cell is
observable. The meaning of observable rules will be explained in Sect. 3.

Definition 7 (Reduction). The reduction relation→S of an INS S is defined
as follows:

αi
k
�� βj defined

α(x̃) | β(ỹ) | [xi, yj , z] →S αi
k
�� βj{x̃/p̃, ỹ/q̃} | [z]

interaction

μ→S μ′

μ | ν →S μ′ | ν context
μ ≡ μ′ μ′ →S ν′ ν′ ≡ ν

μ→S ν struct
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We denote by →∗
S the reflexive-transitive closure of →S . A net structurally con-

gruent to the net on the left side of the interaction rule is called an (αi, βj)-
active pair. Clearly, μ →S ν only if some (αi, βj)-active pair is reduced, using

the k-th rule for (α, i, β, j). When we need to specify it, we write μ
αiβj−→k ν.

In an INS S, given α ∈ |ΣS |, we say that the i-th port of α is principal if
‖ ��S(α, i, β, j)‖ > 0 or ‖ ��S(β, j, α, i)‖ > 0 for some β ∈ |ΣS |. Otherwise, it is
called auxiliary.

To improve readability, it is convenient to assume principal ports to be al-
ways the “leftmost” in the list of ports of a cell, and to use the notation
α(x1, . . . , xm; y1, . . . , yn) for a cell whose symbol α is of degree m + n and has
m principal ports. If all ports are principal, the semicolon is omitted.

In practice, when defining an interaction net system it is convenient to specify
the interaction scheme directly by giving rewriting rules of the form

α(x̃) | β(ỹ)→ ν1 + · · ·+ νl

where x̃, ỹ are repetition-free, xi = yj = z for some i, j, and fp(νk) = {x̃, ỹ}\{z}.
It is then intended that αi

k
�� βj is defined and equal to νk{p̃/x̃, q̃/ỹ} (and this

automatically defines also βj
k
�� αi).

We conclude the section by introducing some terminology. An INS is:

– multiport if it has a symbol with more than one principal port; otherwise, it
is uniport ;

– simply-wired if all reduction rules introduce simply-wired nets (in that case,
one usually restricts to simply-wired nets);

3 Barbs and Translations

In the following, we fix an arbitrary INS.

Definition 8 (Residue, interreduction). Given an active pair φ of a net μ
and a reduction μ → μ′ reducing an active pair ψ, we have two possibilities:
either φ and ψ share a cell (the extreme case being φ = ψ), or they are disjoint.
In the first case, φ has no residue in μ′; in the second case, the cells of φ are left
untouched by the reduction, and μ′ contains an active pair φ′ which is “the same”
as φ. This is its residue in μ′. The notion of residue is extended to reductions
of arbitrary length in the obvious way.

Let μ be a net, and let F be a set of active pairs of μ. We say that a reduction
μ→∗ μ′ is F -legal if it reduces no active pair of F nor any of their residues.

Let μ, ν be two nets, and let F,G be the set of all of their respective active
pairs. An interreduction of μ | ν is a reduction which is F∪G-legal (juxtaposition
may create active pairs not in F ∪G; this is why the definition is sensible).

Definition 9 (Barbed bisimilarity). Let S be an INS. We say that a reduc-

tion step μ
αiβj−→k ν is observable if (α, i, β, j, k) ∈ OS .
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We write μ↓x if there exists a net o such that fp(μ) ∩ fp(o) = {x} and an
interreduction of μ | o containing an observable step. We write μ⇓x if μ→∗ μ′↓x
and we say that o is an observer of x in μ.

Let S, T be two INSs. A (weak) barbed (S, T )-bisimulation is a binary relation
B ⊆ S × T on nets s.t. B(μ, ν) implies
– for every port x, μ↓x implies ν⇓x and ν↓x implies μ⇓x;
– μ→S μ′ implies that there exists ν′ s.t. ν →∗

T ν′ and B(μ′, ν′);
– ν →T ν′ implies that there exists μ′ s.t. μ→∗

S μ′ and B(μ′, ν′).
If there exists a barbed (S, T )-bisimulation B such that B(μ, ν), we say that μ

and ν are barbed bisimilar and write μ S
�≈T ν (we drop the subscripts when the

context is clear).
Barbed congruence for S, denoted by 6c

S , is the greatest congruence contained

in S
�≈S .

The above definition of barb may be applied to standard name-passing calculi:
there is only one reduction rule (i/o synchronization), which must be observable
(by the definition, the set of observable rules is non-empty), and we thus obtain
the usual barbs. The concept of interreduction is necessary to guarantee that
the observable reduction step does not come from active pairs already present
in μ or, worse, in the observer o.

In the following definition, by “net” we mean “net or mask”.

Definition 10 (Translation). Let S, T be INSs. A translation from S to T is
a map �·� from nets of S to nets of T s.t., for all nets μ, μ′ of S:
Homomorphism: �0� = 0 and �μ | μ′� = �μ� | �μ′�;
Port Invariance: for every mask μ0 of S, fp(�μ0�) = fp(μ0), and if μ =

μ0{x̃/p̃} (cf. observation after Definition 4), we have �μ� = �μ0�{x̃/p̃};
Operational Correspondence: – μ→S μ′ implies �μ� →∗

T 6c
T �μ′�;

– �μ� →∗
T ν implies ∃ a net μ′ of S s.t. μ→∗

S μ′ and ν →∗
T 6c

T �μ′�;

Bisimulation: μ S
�≈T �μ�.

A translation does not introduce divergence if, whenever �μ� diverges, μ diverges.

All three properties defining translations are more or less standard [8,20]. The
homomorphism condition guarantees that the degree of distribution is preserved
by translations and is common in separation results [19]. Port invariance simply
states that the interface of a net is preserved by a translation, and that the
translation itself does not depend on the actual names of ports. Operational
correspondence is a natural property to ask of an encoding, although we will
not use it. On the contrary, the bisimulation condition will be essential. It corre-
sponds to what Gorla [8] calls “success sensitiveness”, in that it excludes trivial
translations which would otherwise be validated by the other three conditions
(such as an encoding mapping every net with free ports x1, . . . , xn to the net
[x1], . . . , [xn]). Furthermore, bisimulation (with the homomorphism property)
implies the adequacy and relative completeness of translations with respect to
barbed congruence (of the respective systems):
adequacy: �μ� 6c

T �μ′� implies μ 6c
S μ′;
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relative completeness: μ 6c
S μ′ implies ∀ net ρ of S, �ρ� | �μ� T

�≈T �ρ� | �μ′�.
This is a consequence of the (easy to verify) fact that, for any three INSs S, T ,U ,
μ S

�≈T ν and ν T
�≈U ρ implies μ S

�≈U ρ.

4 Multirules Alone Do Not Give Concurrency

In the following, we fix an arbitrary INS S.

Definition 11 (Must observability). A port x is said to be must-observable
in the net μ if, for all μ′ s.t. μ→∗ μ′, we have μ′⇓x. In that case, we write μ �x.

Observe that, by definition, must observability is preserved by reduction.

Lemma 1. Let x be a port and let μ ≡ μ′ | α(y; z̃) be a net of S, with x different
from y and all of the ports in z̃, and y ∈ fp(μ′). Then, μ �x iff μ′ �x.

Proof. The cell α(y; z̃) may react only on y, but y is free in μ, so the cell does
not participate in any reduction of μ. ��

For technical reasons, we introduce the following restricted notion of barbed
bisimulation:

Definition 12 (x-bisimulation). Let x be a port. An x-bisimulation is a bi-
nary relation B on nets of S such that, whenever B(μ, ν), μ↓x implies ν⇓x and
ν↓x implies μ⇓x, plus the usual reduction properties required by barbed bisimu-
lations (last two points of Definition 9).

In other words, an x-bisimulation is a usual barbed bisimulation in which we
content ourselves with simulating barbs on x only.

Lemma 2. Let B be an x-bisimulation, and let B(μ, ν). Then, μ � x iff ν � x.

Proof. Immediate. ��

Lemma 3. Suppose that S is uniport and simply-wired, and let μ be a simply-
wired net of S such that μ �x. Then, for every simply-wired net ν such that
x ∈ fp(ν), (μ | ν) � x.

Proof. By definition, OS = ∅, so let (α, 1, α′, 1, k) ∈ OS . Let ỹ be a repetition-
free sequence not containing x, of length equal to the number of auxiliary ports
of α, and consider the relation

B = {(μ | ν, α(x; ỹ)) ; μ, ν simply-wired, μ �x, x ∈ fp(ν)}.

We claim that B is an x-bisimulation. Let (μ | ν, α(x; ỹ)) ∈ B. First of all, μ �x
implies μ⇓x which implies (μ | ν)⇓x, and by hypothesis α(x; ỹ)↓x, so the first
two properties are met. Since α(x; ỹ) does not reduce, it is enough to show how
α(x; ỹ) simulates a reduction μ | ν → ρ. Such a reduction necessarily comes
from an active pair φ. If φ is entirely contained in μ or ν, the definition of B
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allows us to conclude immediately. So we suppose that φ is an active pair created
by the juxtaposition of μ and ν, i.e., we may assume that

μ ≡ μ′ | β(z; t̃),
ν ≡ γ(z; s̃) | ν′,

with z free both in μ and ν, because both nets are simply-wired. Then, if ρ′ is

either β1
k
�� γ1{t̃/p̃, ũ/q̃} or γ1

k
�� β1{ũ/p̃, t̃/q̃} (for some irrelevant k), we have

ρ = μ′ | ρ′ | ν′. But by Lemma 1, μ′ �x, so (ρ, α(x; ỹ)) ∈ B by definition of B.
Now, obviously α(x; ỹ) �x (as already observed, we have α(x; ỹ)↓x and the net

does not reduce), so we may conclude by Lemma 2. ��

Lemma 3 is false in presence of multiwires or multiports. For instance, consider
an INS in which there are two symbols α, β, of degree 1 and 2, respectively, with
the following interaction rule (which is observable, since it is the only one):

α(x) | β(x; y)→ α(y).

If we set μ = α(x) | [x, y, z], we obviously have μ � y and μ � z. However, for
example, although still observable, z is no longer must-observable in μ | β(y; s),
because μ | β(y; s) → α(s) | [z], in which there is no way to observe z. Similar
examples may be built with multiports.

Theorem 1. There exists an INS S which cannot be translated into any simply-
wired, uniport INS T using only simply-wired nets.

Proof. Take as S the system defined above, in which we allow nets containing
multiwires, and suppose there exists a translation �·� into a simply-wired, uniport
INS T whose image consists of simply-wired nets only. Let μ = α(x) | [x, y, z].
Since μ

�≈ �μ�, we must have �μ� � z . Consider now the net ρ = μ | β(y; s). By
the homomorphism property, �ρ� = �μ� | �β(y; s)�. By port preservation, x ∈
fp(�β(y; s)�), so we may apply Lemma 3 (all nets in the image of the translation
are simply wired) and infer that �ρ� � z. But we saw above that we do not have

ρ � z, contradicting the fact that ρ
�≈ �ρ�. ��

As already mentioned, although the system S used in the proof is uniport and
uses multiwires, there is no difficulty in finding a simply-wired but multiport
system S ′ for which Theorem 1 holds (with basically the same proof).

5 Comparing Multiwire and Multiport Concurrency

Definition 13 (Symmetric net). A net μ is strictly symmetric if there exists
a net ν whose free ports contain (but do not necessarily coincide with) s̃, t̃, ũ such
that

μ = ν{ã/s̃, ã′/t̃, x̃/ũ} | ν{ã′/s̃, ã/t̃, x̃′/ũ}.
In that case, the free ports of μ are x̃, x̃′, and the pairs of ports xi, x

′
i are said to

be exchanged by the symmetry. We say that μ is symmetric if μ ≡ μ0 with μ0

strictly symmetric.
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Symmetric nets enjoy the following three fundamental properties: they are pre-
served by translations (if they are strict), their barbs always “come in pairs”
and, if we are in a uniport system, there is no way of irreversibly breaking the
symmetry in just one reduction step.

Lemma 4. If μ is a strictly symmetric net and �·� is a translation, �μ� is strictly
symmetric too.

Proof. An immediate consequence of the homomorphism and port invariance
properties of translations. ��

Lemma 5. Let μ be a symmetric net and let x, x′ ∈ fp(μ) be exchanged by the
symmetry. Then:
– μ↓x iff μ↓x′ ;
– μ⇓x iff μ⇓x′ .

Proof. If ỹ, ỹ′ are the free ports of μ, with yi, y
′
i exchanged by the symmetry,

then μ = μ{ỹ′/ỹ, ỹ/ỹ′}. The result then follows immediately. ��

Lemma 6. Let μ be a symmetric net in a uniport INS and let μ → ν. Then,
there exists a symmetric net ν′ s.t. ν → ν′.

Proof. Let μ ≡ ρ | ρ′, with ρ, ρ′ instances of the same net ρ0 as in Definition 13.
If the active pair φ reduced to obtain ν is entirely in one of the two symmetric
components of μ, it has a counterpart φ′ in the other component, which obviously
has a residue in ν (cf. Definition 8), by reducing which, in the same way as φ,
we obtain a symmetric net ν′. Otherwise, the active pair φ is created by the
juxtaposition of the two copies of ρ0, so we have ρ = ρ1 | α(a; b̃), ρ′ = β(a; b̃′) | ρ′1
and φ is composed by the α and β cells. But α = β (condition 1 of Definition 5)
so we must actually have ρ0 = π | α(s; ũ) | β(t; ṽ), i.e., there is a β cell in ρ1 and
an α cell in ρ′1. By symmetry, these form an active pair φ′ in μ which is of the
same nature as φ. Again, φ′ has a residue in ν by reducing which (in the same
way as φ) we obtain a symmetric net ν′. ��

Lemma 6 is false in multiport systems. Consider the INS S defined as follows: its
alphabet consists of two symbols α, with two principal ports and one auxiliary
port, and υ, with one principal and one auxiliary port; the reduction rules are

α(a, s;x) | α(t, a; y)→ υ(x; s) | [t, y],

and any rule for α(a, t;x) | υ(a; y), which is observable. The idea is that when
two α cells “meet”, one on its first and the other on its second principal port,
the one which interacts on the first principal port “wins”. Victory is represented
by the fact that its auxiliary port becomes the principal port of a υ cell, which is
observable by virtue of the (otherwise irrelevant) observable rule for (α, 1, υ, 1).

Let now
� = α(a, b;x) | α(b, a; y),

which is obviously strictly symmetric. We have � → υ(x; y) = μx and � →
υ(y;x) = μy, both of μx and μy do not reduce further and neither of them is
symmetric. In fact, they are such that μx↓x but μx ⇓y, whereas μy↓y but μy ⇓x.
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Theorem 2. There exists an INS S which cannot be translated into any uniport
INS without introducing divergence.

Proof. We take as S the multiport system just introduced above and we consider
the net we denoted by �. Let �·� be a translation of S into a uniport INS and let
ν0 = ���. By Lemma 4, ν0 is symmetric and x, y are exchanged by its symmetry.
By the bisimulation property, we know that there exists a barbed bisimulation B
such that B(�, ν0). Since �→ μx, we must have ν0 →∗ νx such that B(μx, νx).
Since μx↓x but μx ⇓y, by Lemma 5 we must have νx = ν0, which means that at
least one reduction step is possible from ν0. Then, we may apply Lemma 6 and
infer that ν0 →∗ ν1 in at least one reduction step, with ν1 symmetric. But this
implies that � →∗ μ1 such that B(μ1, ν1). Now, μ1 can only be one of μx, μy
or � itself, but the symmetry of ν1 and Lemma 5 rule out the first two cases,
hence B(�, ν1).

The reader is invited to check that, in the above reasoning, we deduced
B(�, ν1) starting from B(�, ν0) using only the fact that ν0 is symmetric and
that its two free ports are x, y (and must therefore be exchanged by its symme-
try). These properties still hold for ν1, so we may apply the reasoning again and
again, obtaining a reduction sequence ��� = ν0 →∗ ν1 →∗ ν2 →∗ · · · , in which
every reduction νi →∗ νi+1 is of length at least 1, so ��� diverges. ��

6 Discussion

Significance. A potentially controversial point of our definition of barb is its
parametricity, which makes barbed congruence somewhat arbitrary. A possible
answer is the following: there is always a default choice, which consists in deeming
every rule observable. Concretely, a default barb μ↓x is equivalent to the fact
that x is a free principal port in μ, i.e., μ = α(x̃; ỹ) | μ′ with x = xi for some i
and α.

Default barbed congruence is analogous to usual barbed congruence in stan-
dard process calculi, including the solos calculus [14], of which interaction nets
are strongly reminiscent.3 The possibility of using smaller sets of observable rules
should only be considered in encodings: if an INS S, with its default barbed con-
gruence, is to be encoded in an INS T , it may be reasonable to consider instead
(ΣT , ��T ,O), where we exclude from O the “administrative” rules of T , thus
weakening barbed congruence (in the extreme case O = ∅, which is not allowed
by our definition, barbed congruence would equate everything).

It is also interesting to consider default barbed congruence in Lafont inter-
action nets systems, i.e., the strictly deterministic kind, for which definitions of
observational equivalences already exist [6]. In this setting, we are able to prove
that, if we ignore the notion of “constructor symbol” used by Fernández and
Mackie (which has no counterpart in our definitions), default barbed congru-
ence coincides with their observational equivalence. So, at least in the simple

3 In fact, by considering two families of symbols ιn, on with the rules ιn(x; ỹ) |
on(x; z̃) → [y1, z1] | · · · | [yn, zn], one basically obtains the replication-free solos
calculus with explicit fusions [21], with names represented by multiwires.
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deterministic case, our definitions fall back on something already known to be
meaningful.

As far as our notion of translation is concerned, it is based on properties
which are mostly agreed upon in the literature [8,20]. The only other existing
notion of translation for interaction nets is the one mentioned above, formulated
by Lafont for his deterministic systems [10]. It is possible to show that, if we
consider default barbed congruence, a Lafont’s translation induces a translation
in our sense. Conversely, thanks to determinism, our definition does not differ
from Lafont’s one in an essential way, although it is more permissive.

Turning to our separation results, as they are technically formulated, Theo-
rem 1 and Theorem 2 may be easily criticized: even if we agree on the reasonabil-
ity of our notion of translation, the sole existence of an untranslatable system
may not be enough to convincingly separate two extensions; it all depends on
the relevance of such a system.

We believe that the relevance of the untranslatable systems is given by
Lemma 3, for Theorem 1, and Lemma 6, for Theorem 2. In both cases, there
is one “limiting” property which always holds in one extension of interaction
nets but fails in the “more expressive” ones. In the first case, the limitation
is so severe that we are led to conclude that multirules alone cannot express
concurrency: indeed, Lemma 3 is false in any standard process calculus. On the
other hand, Lemma 6 shows the same limitation pointed out by Palamidessi
for the asynchronous π-calculus: in absence of multiports, interaction nets are
unable to make certain irreversible choices in just one step (i.e., synchronously).
Instead, such choices must always involve a reversible “pre-commitment” phase.
Only once such a phase is successfully concluded may the choice be irreversibly
committed. Theorem 2 shows this for an “electoral system” with only two nodes,
but the argument scales up to arbitrarily large “leader-election” nets, as in [19].

Concluding Remarks. We observe that our first separation result casts doubts on
the value of the encoding of the π-calculus in differential interaction nets (which
are a multirule INS) given in [4]. As already pinpointed by the second author
[18], that encoding supposes a labelled semantics of differential interaction nets
which is not “realistic” in terms of concurrency.

We are also left with an interesting open question concerning the relaxation
of condition 1 of Definition 5, allowing “self-interaction”, as considered by La-
font [12]. We know that Lemma 6 fails in presence of such a relaxation. In process
calculi, this would correspond to introducing “neutral” prefixes, neither input
nor output, which may synchronously interact with each other. Palamidessi’s
symmetry argument then does not apply straightforwardly and “neutral” syn-
chronization might be as expressive as input/output synchronization.
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Abstract. Consistency properties of concurrent computations, e.g., se-
quential consistency, linearizability, or eventual consistency, are essential
for devising correct concurrent algorithms. In this paper, we present a
logical formalization of such consistency properties that is based on a
standard logic of knowledge. Our formalization provides a declarative
perspective on what is imposed by consistency requirements and pro-
vides some interesting unifying insight on differently looking properties.

1 Introduction

Writing correct distributed algorithms is notoriously difficult. While in the se-
quential case, various techniques for proving algorithms correct exist [14,17], in
the concurrent setting, due to the nondeterminism induced by scheduling deci-
sions and transmission failures, it is not even obvious what correctness actually
means. Over the years, a variety of different consistency properties restricting
the amount of tolerated nondeterminism have been proposed [10–12, 16, 18, 19].
These properties range from simple properties like sequential consistency [16]
or linearizability [10, 12] to complex conditions like eventual consistency [19], a
distributed systems condition. Reasoning about these properties is a difficult,
yet important task since their implications are often surprising.

Currently, the study of consistency properties and the development of reason-
ing tools and techniques for such properties [4, 6, 20] is done for each property
individually, i.e., on a per property basis. To some extent, this trend might be
traced back to the way consistency properties are formulated. Typically, they
explicitly require existence of certain computation traces that are obtained by
rearrangement of the trace that is to be checked for consistency, i.e., these de-
scriptions of consistency properties do not rely on a logical formalism. While such
an approach provides fruitful grounds for the design of specialized algorithms
and efficient tools, it leaves open important questions such as how various prop-
erties relate to each other or whether advances in dealing with one property can
be leveraged for dealing with other properties.

In contrast to the trace based definitions found in literature, we propose to
study consistency conditions in terms of epistemic logic [7, 9]. Here we can rely
on a distributed knowledge modality [7], which is a natural fit for describing
distributed computation. In this logic, an application DG(ϕ) of the distributed
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knowledge modality to a formula ϕ denotes the fact that a group G knows that
a formula ϕ holds.

We present a logical formalization of three consistency properties: the classical
sequential consistency [16] and linearizability [10, 12], as well as a recently pro-
posed formulation [5] of eventual consistency for distributed databases [19]. Our
characterizations show that moving the viewpoint from reasoning about traces
(models) to reasoning about knowledge (logic) can lead to new insights. When
formulated in the logic of knowledge, these differently looking properties agree
on a common schematic form: ¬DG(¬correct). According to this schematic form,
a computation satisfies a consistency property if and only if a group G of its par-
ticipants, i.e., threads or distributed nodes, do not know that the computation
violates a specification correct that describes computations from the sequential
perspective, i.e., without referring to permutations thereof. For example, when
formalising sequential consistency of a concurrent register correct only states
that the first read operation returns zero and any subsequent read operation
returns the value written by the latest write operation.

The common form of our characterizations exposes the differences between
the consistency properties in a formal way. A key difference lies in the group
of participants that provides knowledge for validating the specification correct .
For example, a computation is sequentially consistent if it satisfies the for-
mula ¬DThreads(¬correct), i.e., the group G of agents needed to validate the
sequential specification comprises the group of threads Threads accessing
the shared memory. Surprisingly, the same group of agents is needed to vali-
date eventual consistency, since in our logic it is characterized by the formula
¬DThreads(¬correctEVC ). This reveals an insight that eventual consistency is
actually not an entirely new consistency condition, but rather an instance of
sequential consistency that is determined by a particular choice of correct . In
contrast to the two above properties, the threads’ knowledge is not enough to
validate linearizability. To capture linearizability, the set of participants G needs
to go beyond the participating threads Threads and include an additional ob-
server thread obs as well. The observer only acquires knowledge of the relative
order between returns and calls. As logical characterization of linearizability, we
obtain ¬DThreads∪{obs}(¬correct).

We show that including the observer induces a different kind of knowledge,
i.e., it weakens the modal system from S5 to S4 [21]. As a consequence, the
agents lose certainty about their decision whether or not a trace is consistent.
For sequential consistency (seqCons) the agents know whether or not a trace
is sequentially consistent, i.e., the formula (seqCons ↔ DThreads(seqCons)) ∧
(¬seqCons ↔DThreads(¬seqCons)) is valid. In contrast, for linearizability (Lin)
the threads cannot be sure whether a trace they validate as linearizable is indeed
linearizable, i.e., there exists a trace that satisfies Lin ∧ ¬DThreads⊎{obs}(Lin).

The discovery that eventual consistency can be reduced to sequential consis-
tency is facilitated by a generalization of classical sequential consistency that
follows naturally from taking the epistemic perspective. Our formalization of
correct for eventual consistency is given by correctEVC that requires nodes to
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keep consistent logs, i.e., whenever a transaction is received by a distributed
node, the transaction must be inserted into the node’s logs in a way that is con-
sistent with the other nodes’ recordings. We allow correctEVC not only to refer
to events that are performed by the nodes that take part in the computation, but
also to auxiliary events that model the environment that interacts with nodes.
We use the environment to model transmission of updates from one distributed
node to another. Our knowledge characterization then implicitly quantifies over
the order of occurrence of such events, which serves as a correctness certificate
for a given trace.

Contributions. In summary, our paper makes the following contributions. We
provide characterizations for sequential consistency (Section 4), eventual con-
sistency (Section 5) and linearizability (Section 6) which we prove correct wrt.
their standard definitions. Our characterizations reveal a remarkable similarity
between consistency properties that is not apparent in their standard formu-
lations. Through our characterizations, we identify a natural generalization of
sequential consistency that allows us to reduce eventual consistency, a complex
property usually defined by the existence of two partial-ordering relations, to
sequential consistency. In contrast to this reduction, we show that linearizability
requires a different kind of knowledge than sequential consistency and prove a
theorem (Section 7) illustrating the ramifications of this difference.

2 Examples

In this section, before providing technical details, we give an informal overview
of our characterizations.

2.1 Sequential Consistency

Trace-Based Definition. The most fundamental consistency condition that con-
current computations are intuitively expected to satisfy is sequential consis-
tency [16]. Its original definition reads:

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in the sequence in the order specified
by its program.

Equivalently, this more formal version can be found in the literature (cf., [1]):
For a trace E to be sequentially consistent, it needs to satisfy two conditions:
(1) E must be equivalent to a witness trace E′ and (2) trace E′ needs to be
correct with respect to some specification. To be equivalent, two traces need to
be permutations that preserve the local order of events for each thread.

Example 1. Consider the following traces representing threads t1 and t2 storing
and loading values on a shared register. For the purpose of this example, we
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assume the register to be initialized with value 0. We use “∶=” to abbreviate
“equals by definitions”.

E1 ∶= (t2, ld(0)) (t2, ld(1)) (t1, st(1))

E2 ∶= (t2, ld(0)) (t1, st(1)) (t2, ld(1))

E3 ∶= (t2, ld(0)) (t1, st(1)) (t2, ld(2)) .

Trace E1 is sequentially consistent, because it is equivalent to E2 and E2 meets
the specification of a shared register, i.e., each load returns the last value stored.
In contrast, E3 is not sequentially consistent, because no appropriate witness
can be found. In no equivalent trace, t2’s load of 2 is preceded by an appropriate
store operation.

Logic. In this paper, in contrast to the above trace-based formulation, we in-
vestigate consistency from the perspective of epistemic logic. Epistemic logic is
a formalism used for reasoning about the knowledge distributed nodes/threads
acquire in a distributed computation. For example, in trace E1 thread t2 knows
it first loaded value 0 and then value 1 while t1 knows it stored 1. When we
consider the knowledge acquired by the threads t1 and t2 together as a group,
we say that the group of threads {t1, t2} jointly knows t2 first loaded 0 and
then 1 while t1 stored 1. We denote the fact that a group G jointly knows
that a formula ϕ holds by DG(ϕ), which is an application of the distributed
knowledge modality. According to our logical characterization of sequential con-
sistency: ¬DThreads(¬correct), a trace is sequentially consistent, if the group of
all threads accessing the shared data-structure does not jointly know that the
trace is not correct.

Example 1 (continued). This means trace E1 is sequentially consistent. In trace
E1, the threads know that t2 first loaded 0 and then 1 and that t1 stored 1,
however they do not know in which order these events were scheduled. This
means, for all they know t1 could have stored 1 before t2 loaded it and after t2
loaded 1, which would meet the specification. In contrast, E3 is not sequentially
consistent. The threads know that t2 loaded 2, however they also know that no
thread stored this value. This means E3 cannot have met the specification.

Indistinguishability. We formalize this notion of knowledge in terms of the local
perspective individual threads have on the computation. We extract this per-
spective by a function ↓ such that E ↓ t projects trace E onto the local events
of thread t. If two traces do not differ from the local perspective of thread t, we
say that they are indistinguishable for t. We write E ∼t E′ to denote that for
thread t, trace E is indistinguishable from trace E′. Combining their abilities to
distinguish traces, a group of threads can distinguish two traces whenever there
is a thread in the group that can. We write E ∼G E′ to denote that for for every
member of group G trace E is indistinguishable from trace E′. Indistinguisha-
bility allows us to define the knowledge of a group. A group G knows a fact ϕ
if this fact holds on all traces that the threads in G cannot distinguish from the
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actual trace. We write E ⊧ ϕ to say that trace E satisfies formula ϕ. Formally
(see Section 3.3): E ⊧ DG(ϕ) :iff for all E′ s.t. E ∼G E′: E′ ⊧ ϕ, where we use
“:iff” to abbreviate “equals by definition”.

Example 1 (continued). For trace E1, the thread-local projections are: E1 ↓ t1 =
(t1, st(1)) and E1 ↓ t2 = (t2, ld(0))(t2, ld(1)). We get the same projections for
E2, and E3 ↓ t1 = (t1, st(1)) and E3 ↓ t2 = (t2, ld(0))(t2, ld(2)). From these
projections, we get: E1 ∼t1 E2 ∼t1 E3 and E1 ∼t2 E2 but E1 /∼t2 E3 and E2 /∼t2
E3. For groups of threads, we have: E1 ∼{t1,t2} E2 but E2 /∼{t1,t2} E3, because
E2 /∼t2 E3. We write E ⊧ correctREG to say E is correct with respect to the
specification of a shared register. Then E1 ⊧ ¬DThreads(¬correctREG), E2 ⊧
¬DThreads(¬correctREG) and E3 ⊧DThreads(¬correctREG).

Knowledge in the Trace-Based Formulation. Interestingly, the notion of equiv-
alence found in the trace-based formulation of sequential consistency precisely
corresponds to ∼Threads, the indistinguishability relation of all threads accessing
the shared data-structure. This suggests that the knowledge-based formulation
of consistency lies already buried in the original definition. Similarly, the formu-
lation “The result of any execution is the same as if ...”, found in the original
definition alludes to the possibility of a fact ϕ, which, in epistemic logic, is rep-
resented by the dual modality of knowledge ¬DG(¬ϕ).

2.2 Eventual Consistency

Eventual consistency [19] is a correctness condition for distributed database sys-
tems, as those employed in modern geo-replicated internet services. In such sys-
tems, threads (distributed nodes) keep local working-copies (repositories) of the
database which they may update by performing a commit operation. Queries
and updates have revision ids, representing the current state of the local copy.
Whenever a thread commits, it broadcasts local changes to its repository and
receives changes made by other threads. After the commit, a new revision id
is assigned. As the underlying network is unreliable, committed changes may
however be delayed or lost before reaching other threads.

In this setting, weaker guarantees on consistency than in a multi-processor en-
vironment are required, as network partitions are unavoidable, causing updates
to be delayed or lost. Consequently, eventual consistency is a prototypical ex-
ample for what is called “weak”-consistency. We present a recent, partial-order
based definition drawn from the literature [5] in Section 5.

Taking the knowledge perspective on eventual consistency reveals a remark-
able insight. Eventual consistency is actually not an entirely new, weaker con-
sistency condition, but sequential consistency – with an appropriate sequential
specification.

In our logical characterization, eventual consistency is defined by the for-
mula: E ⊧ ¬DThreads(¬correctEVC ). That is, to be eventually consistent, a
trace needs to be sequentially consistent with respect to a sequential specifi-
cation correctEVC . Our formula for correctEVC uses the past time modality
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⊟(ϕ) (see Section 3.3), representing the fact that so far, formula ϕ was true. We
specify correctEVC by:

correctEVC ∶= ∀t∀q∀r(⊟(query(t, q, r) → ∃L(L validLog t ∧ result(q,L, r))))

∧ atomicTrans ∧ alive ∧ fwd .

This formula says that for all threads, queries and results, so far, whenever a
thread t posed a query q to its local repository, producing result r, thread t
must be able to present a valid log L, such that the result of posing query q
on a machine that performed only the operations logged in log L matches the
recorded result r. The additional conjuncts atomicTrans , alive and fwd specify
further requirements on the way updates may be propagated in the network.

In our characterization, a log L is a sequence of actions (i.e., queries, updates
and commits). The formula validLog describes the conditions a log has to satisfy
to be valid for a thread t:

L validLog t ∶= ∀a(a in L ↔ t klog a) ∧ consistent(L) .

This formula requires that for all actions a, a is logged in L (represented by
the infix-predicate in) if and only if thread t knows about action a. A thread
knows about all the actions that it performed itself and the actions performed
in revisions that were forwarded to it. The formula consistent(L) ensures that
all actions in the log L appear in an order consistent with the actual order of
events.

Environment Events. To make this result possible, we make a generalization
that comes naturally in the knowledge setting. We allow traces to contain en-
vironment events that represent actions that are not controlled by the threads
that participate in the computation. In our characterization, environment events
are used to mark positions where updates were successfully forwarded from one
client to another. By allowing correctEVC to refer to those events, we implicitly
encode an existential quantification over all possible positions for these events.
That means a trace is eventually consistent if any number of such events could
have occurred such that the specification correctEVC is met.

Example 2. Consider the following traces of a simple database that allows clients
to update and query the integer variable x:

E4 ∶= (t1,up(0, x ∶= 0)) (t1, com(0)) (t1,up(1, x ∶= 1))(t1, com(1))

(t2, qu(0, x,0))(t2, com(0)) (t2, qu(1, x,1))

E5 ∶= (t1,up(0, x ∶= 0)) (t1, com(0)) (env , fwd(t1, t2,0))(t1,up(1, x ∶= 1))

(t1, com(1)) (t2, qu(0, x,0))(t2, com(0)) (env , fwd(t1, t2,1))

(t2, qu(1, x,1)) .

Updates are of the form up(id , u), where id is the revision-id and u the actual
update. In our example, updates are variable assignments x ∶= v meaning that
a variable x is assigned value v. Queries are of the form qu(id , q, r), where id
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stands for the revision-id, q for the query, and r for the result. Queries in our
example consist only of variables, i.e., a query returns the current value assigned.
The action com(id) represents the act of committing, that is, sending revision id
over the network and checking for updates. Forwarding actions are performed by
the environment env . The event (env , fwd(t , t ′, id)) represents the environment
forwarding the changes made in revision id from thread t to thread t′.

In trace E5, when thread t2 queries the value of x in revision 0, thread t2
can present the log L ∶= up(0, x ∶= 0) com(0) qu(0, x,0) as an evidence of the
correctness of the result 0. As by the time of t’s query, only revision 0 has been
forwarded from t1 to t2, thread t2 only knows about t1’s first update and its own
query. Querying x after the update x ∶= 0 yields 0, so result(x,L,0) holds.

When thread t2 queries x in revision 1, thread t1’s second update has been
forwarded, so t2 can present the log L ∶= up(0, x ∶= 0) com(0) up(1, x ∶=
1) com(1) qu(0, x,0) com(0) qu(1, x,1). Since t2 received the t1’s revision 1 the
log contains the second update x ∶= 1 and t2’s query of x returns 1. This means
E5 ⊧ correctEVC . As a consequence, we have E4 ⊧ ¬DThreads(¬correctEVC ),
because E4 ∼Threads E5 and E5 ⊧ correctEVC . The forwarding events in E5

mark positions where the transmission of updates through the network could
have occurred to make the computation meet correctEVC .

2.3 Linearizability

While the threads’ knowledge characterizes sequential consistency and eventual
consistency, their knowledge is not strong enough to define linearizability. Lin-
earizability extends sequential consistency by the requirement that method calls
must effect all visible change of the shared data at some point between their
invocation and their return. Such a point is called the linearization points of the
method.

To characterize linearizability, we introduce another agent called the observer
that tracks the available information on linearization points. To do this, the
observer monitors the order of non-overlapping (sequential) method calls in a
trace. The observer’s view of a trace is the order of non-overlapping method
calls. This order is represented by a set of pairs of return and invoke events,
such that the return took place before the invocation. We extract this order by
a projection function obs(⋅).

Example 3. Consider the following traces where method calls are split into
invocation- and return events:

E6 ∶= (t2, inv ld()) (t2, ret ld(1)) (t1, inv st(1)) (t1, ret st(true))

E7 ∶= (t2, inv ld()) (t1, inv st(1)) (t2, ret ld(1)) (t1, ret st(true))

E8 ∶= (t1, inv st(1)) (t1, ret st(true)) (t2, inv ld()) (t2, ret ld(1)) .

For trace E6, the observer’s projection function obs(⋅) yields: obs(E6) =
{( (t2, ret ld(1)), (t1, inv st(1)) )}. This means the observer sees that t2’s load
returned before t1’s store was invoked. In trace E7, the method calls overlap.
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Consequently, the observer knows nothing about this trace: obs(E7) ∶= ∅. For
E8, we get obs(E8) = {( (t1, ret st(true)), (t2, inv ld()) )}.

The observer’s view tracks the available information on linearization points. In
trace E6, thread t2’s linearization point for the call to load must have occurred
before the linearization point of t1’s call to store. This follows from the fact
that t2’s load returned before t1’s call to store and that linearization point must
occur somewhere between a method’s invocation and its return. In trace E7

linearization points may have occurred in any order as the method calls overlap.
To the observer, a trace E is indistinguishable from a trace E′ if the order

of linearization points in E is preserved in E′ and maybe an order between
additional linearization points is fixed (see Section 3.1): E ⪯obs E′ :iff obs(E) ⊆
obs(E′). A trace E is linearizable if the threads together with the observer do
not know that the trace is incorrect: E ⊧ ¬DThreads⊎{obs}(¬correct).

Example 3 (Continued). We have E6 /⪯obs E7 , but E7 ⪯obs E6. Trace E7 is
linearizable since E7 ∼Threads⊎{obs} E8 and E8 ⊧ correctREG . However, trace
E6 is not linearizable since there is no indistinguishable trace that meets the
specification. Note that the threads without the observer could not have detected
this violation of the specification, i.e., E6 ⊧ ¬DThreads¬correctREG.

2.4 Knowledge about Consistency

As we describe sequential consistency in a standard logic of knowledge,
corresponding axioms apply (see, e.g. [21, chapter 2.2]). For example, ev-
erything a group of threads knows is also true: (T) ∶= ⊧ DG(ϕ) →
ϕ (Truth axiom), groups of threads know what they know: (4) ∶= ⊧ DG(ϕ) →
DG(DG(ϕ)) (positive introspection) and groups of threads know what they do
not know: (5) ∶= ⊧ ¬DG(ϕ) → DG(¬DG(ϕ)) (negative introspection). For a
complete axiomatization of a similar epistemic logic with time see [3].

Interestingly, adding the observer not only strengthens the threads’ ability
to distinguish traces but changes the kind of knowledge agents acquire about a
computation. Whereas ∼Threads is an equivalence relation, ∼

Threads⊎{obs} is only
a partial order. As a consequence, DThreads corresponds to the modal system S5,
whereas DThreads⊎{obs} corresponds to the weaker system S4 [21]. This means,
that D

Threads⊎{obs} does not satisfy the axiom of negative introspection (5).
It seems natural to ask if the differences in the type of knowledge between

sequential consistency and linearizability affect the ability to detect violations
of the specification. In Section 7, we show that the difference the lack of axiom
(5) makes, lies in the certainty threads have about their decision. Whereas for
sequentially consistent (seqCons ∶= ¬DThreads(¬correct)), whenever the threads
decide that a trace is sequentially consistent, they can be sure that the trace is
indeed sequentially consistent: (seqCons ↔DThreads(seqCons)) for linearizabil-
ity (Lin ∶= ¬D

Threads⊎{obs}(¬correct)), it can occur that the threads together
with the observer decide that a trace is linearizable, however, they cannot be
sure that it really was: Lin ∧ ¬DThreads⊎{obs}(Lin).



220 K. von Gleissenthall and A. Rybalchenko

3 Logic of Knowledge

In this section we present a standard logic of knowledge (see [9]) that we use
for our characterizations. We follow the exposition of [15]. We define the set E
of events as E ∋ e ∶= (t,act), representing t ∈ Threads ⊎ {env} performing an
action act ∈ A. The environment env can perform synchronization events that
go unseen by the threads. In our characterization of eventual consistency, the
environment forwards transactions from one node to the other. We define the
generic set of actions: A ∋ act ∶= inv(m,v) ∣ ret(m,v). Threads can invoke or
return from methods m ∈Methods with v ∈ Values. For our characterization
of eventual consistency, we instantiate A with application-specific actions. These
can easily be translated back into the generic form by splitting up events into
separate invocation- and return-parts.

3.1 Preliminaries

We denote by E∗ the set of finite-, and by E∞ the set of infinite sequences over
E . We denote the empty sequence by ε. Let Eω ∶= E∗ ⊎ E∞ and E ∈ Eω . Then
E ⇂ i denotes the finite prefix up to- and including i. We let E@i be the element
of sequence E at position i. We define len(E) to be the length of E, where
len(ε) = 0, and len(E) = ω, if E ∈ E∞. For e ∈ E , we say that pos(e,E) = j, if
E@j = e and pos(e,E) = ω otherwise. Hence, we write e ∈ E if pos(e,E) < ω. We
make the assumption that each event occurs only once in a trace. This is not a
restriction as we could add a unique time-stamp or a sequence number to each
event.

We formally define projection functions and indistinguishability relations. A
thread’s view of a computation trace is the part of the trace it can observe. We
define this part by a projection function that extracts the respective events. We
use this projection function to define an indistinguishability relation for each
thread.

Thread Indistinguishability Relation. For a thread t ∈ Threads the indistin-
guishability relation ∼t ⊆ (E

ω × (N ⊎ {ω)})2 is defined such that: (E, i) ∼t
(E′, i′) :iff (E ⇂ i) ↓ t = (E′ ⇂ i′) ↓ t where ↓∶ (Eω × Threads) → Eω desig-
nates a projection function onto t’s local perspective. E ↓ t is the projection
on events in the set {(t,act) ∣ act ∈ A}, i.e., the sequence obtained from E by
erasing all events that are not in the above set.

Observer Indistinguishability Relations. The observer’s view of a trace is the
order of non-overlapping method calls. We let Inv ∋ in ∶= (t, inv(m,v)) and
Ret ∋ r ∶= (t, ret(m,v)). The indistinguishability relation of the observer
⪯obs ⊆ (E

ω × N)2 is given by: for all (E, i), (E′, i′) ∈ Eω × N: (E, i) ⪯obs
(E′, i′) :iff obs(E, i) ⊆ obs(E′, i′) where obs: (Eω × N) → P(E2) designates a
projection onto the observer’s local view, such that: obs(E, i) = {(r, in) ∈ Ret

× Inv ∣ pos(r,E) < pos(in,E) ≤ i}. We abbreviate obs(E) ∶= obs(E, len(E)).
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Joint Indistinguishability Relations. Joint indistinguishability relations link pairs
of traces that a group of threads can distinguish if they share their knowledge.
Whenever a thread in the group can tell the difference between two traces, the
group can. Let G ⊆ Threads. We define the joint indistinguishability relation of
groupG to be ∼G∶= (⋂t∈G ∼t) and ∼G⊎{obs}∶=∼G ∩ ⪯obs . For any indistinguishabil-
ity relation ∼, we write E ∼ E′ as an abbreviation for (E, len(E)) ∼ (E, len(E′)).

3.2 Syntax

A formula in the logic takes the form:

ϕ,ψ ∶∶= ϕ ∧ ψ ∣ ¬ϕ ∣ ϕSψ ∣ ϕUψ ∣DG(ϕ) ∣ ∀x(ϕ) .

with G ⊆ Threads⊎{obs} and p ∈ Predicates, which we instantiate for each of
our characterizations. The logic provides the temporal modalities ϕSψ represent-
ing the fact that since ψ occurred, ϕ holds and the modality ϕUψ representing
the fact that until ψ occurrs, ϕ holds. Additionally, it provides the distributed
knowledge modality DG and first order quantification. Let Φ denote the set of
all formulae in the logic.

3.3 Semantics

We now define the satisfaction relation ⊧ ⊆ (Eω × (N ⊎ ω)) × Φ. We let:

(E, i)⊧ϕ ∧ ψ :iff (E, i) ⊧ ϕ and (E, i) ⊧ ψ
(E, i)⊧¬ϕ :iff not (E, i) ⊧ ϕ .

We define the temporal modalities by:

(E, i)⊧ϕSψ :iff there is j ≤ i s.t. (E, j) ⊧ ψ and
for all j < k ≤ i ∶ (E,k) ⊧ ϕ

(E, i)⊧ϕUψ :iff there is j ≤ i s.t. (E, j) ⊧ ψ and
for all 1 ≤ k < j ∶ (E,k) ⊧ ϕ .

We define distributed knowledge as: (E, i) ⊧DG(ϕ) :iff for all (E′, i′): if (E, i) ∼G
(E′, i′) then (E′, i′) ⊧ ϕ, with G ⊆ Threads ⊎ {obs}. Let D be the domain of
quantification. We define first-order quantification: (E, i) ⊧ ∀x(ϕ) :iff for all
d ∈D ∶ (E, i) ⊧ ϕ[d/x]. By ϕ[d/x], we denote the term ϕ with all occurrences of
x replaced by d. We define D as the disjoint union of all quantities used in the
definition of a condition. We write E ⊧ ϕ as an abbreviation for (E, len(E)) ⊧ ϕ.

Additional Definitions. For convenience, we define the following standard oper-
ators in terms of our above definitions: ϕ ∨ ψ ∶= ¬(¬ϕ ∧ ¬ψ), ϕ → ψ ∶= ¬ϕ ∨ ψ,
⊺ ∶= (p ∨ ¬p) for some atomic predicate p, �ϕ ∶= ⊺Sϕ (“once ϕ”), ⊟ϕ ∶= ¬ � ¬ϕ
(“so far ϕ”), ◇ϕ ∶= ⊺Uϕ (“eventually ϕ”), ◻ϕ ∶= ¬ ◇ ¬ϕ (“always ϕ”),
ϕWψ ∶= ϕUψ ∨ ◻ϕ (“weak until”), ∃x(ϕ) ∶= ¬∀x(¬ϕ).
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4 Sequential Consistency

We present a trace-based definition of sequential consistency (cf., [1]) and prove
our logical characterization equivalent. Our definition of sequential consistency
generalizes the original definition [16] by allowing non-sequential specifications.

Definition 1 (Sequential Consistency). Let Spec ⊆ E∗ be a specification of
the shared data-structure. A trace E ⇂ i is sequentially consistent seqCons(E, i)
if and only if there is (E′, i′) ∈ Eω ×N s.t. for all t ∈ Threads:

(E ⇂ i) ↓ t = (E′ ⇂ i′) ↓ t and E′ ⇂ i′ ∈ Spec .

Basic Predicates. For our logical characterization, we define the predicate correct
representing the fact that a trace meets the specification:

(E, i) ⊧ correct :iff E ⇂ i ∈ Spec .

Theorem 1 (Logical Characterization of Sequential Consistency). A
trace E ⇂ i is sequentially consistent if and only if the threads do not jointly
know that it is incorrect: seqCons(E, i) iff (E, i) ⊧ ¬DThreads(¬correct).

5 Eventual Consistency

We define the set of actions for eventual consistency as:

A ∋ act ∶= qu(id , q, r) ∣ up(id , u) ∣ com(id) ∣ fwd(t, t′, id) .

Threads may pose a query (qu) q ∈ Queries with result r ∈ Values, issue
an update (up) u ∈ Updates, or commit (com) their local changes. Queries,
updates and commits get assigned a revision-id id ∈ Identifiers, representing
the current state of the local database copy. We assume that if a thread commits,
the committed revision id matches the revision id of the previous queries and
updates i.e., those performed since the last commit, and that thread-revision-id
pairs (t, id) are unique. Again, this is no restriction. To fulfil the requirement,
the threads can just increment their local revision id whenever they commit. As
updates may get lost in the network, we represent by fwd(t, t′, id) the successful
forwarding of the updates made by thread t in revision id to thread t′.

Preliminaries. We let set(E) = {e ∣ e ∈ E}, i.e., the set of events in trace E. On
a fixed trace E, we define the program order ≺p as e ≺p e′ :iff if there is t such
that pos(e,E ↓ t) < pos(e′,E ↓ t). We let “ ” represent irrelevant, existential
quantification. Let e ≡t e′ if and only if there is id ∈ Identifiers such that
e = (t, (id , )) and e′ = (t, (id , )), i.e., if the events belong to the same revision
of thread t. A relation ⪯ factors over ≡t if x ⪯ y, x ≡t x

′ and y ≡t y
′ imply x′ ⪯ y′.

Updates are interpreted in terms of a set of states States, i.e., we assume there
is an interpretation function u# ∶ States → States, for each u ∈ Updates, and
a designated initial state s0 ∈ States. For each query q ∈ Queries, there is an
interpretation function q# ∶ States → Values. For a finite set of events ES , a
total order ≺ over the events in ES , and a state s we let apply(Es,≺, s) be the
result of applying all updates in Es to s, in the order specified by ≺.
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Definition 2 (Eventual Consistency). We use the definition presented in
[5]. A trace E ∈ Eω is eventually consistent (evCons(E)) if and only if there
exist a partial order ≺v (visibility order), and a total order ≺a (arbitration order)
on the events in set(E) such that:

– ≺v⊆≺a (arbitration extends visibility).
– ≺p⊆≺v (visibility is compatible with program-order).
– for each eq = (t, qu(id , q, r)) ∈ E, we have r = q#(apply({e ∣ e ≺v eq},≺a, s0))

(consistent query results).
– ≺a and ≺v factor over ≡t ( atomic revisions).
– if (t, com(id)) /∈ E and (t, (id , )) ≺v (t

′, ) then t = t′ (uncommitted up-
dates).

– if e = (t, com(id)) ∈ E then there are only finitely many e′ ∶= (t′, com(id ′))
such that e′ ∈ E and e /≺v e′ (eventual visibility).

5.1 Logical Characterization

Basic Predicates. We represent queries and updates by predicates
query(t, q, r, id) and update(t, u, id), representing t ∈ Threads, issuing q ∈
Queries with result r ∈ Values on revision id ∈ Identifiers, and t perform-
ing u ∈ Updates on revision id , respectively. As threads work on their local
copies, revision ids mark the version of data the threads work with. We repre-
sent commits by the predicate commit(t, id), representing t committing its state
in revision id. After performing a commit, a new revision id is assigned. We
define:

(E, i)⊧query(t, q, r, id) :iff E@i = (t, qu(id , q, r))

(E, i)⊧update(t, u, id) :iff E@i = (t,up(id , u))

(E, i)⊧commit(t, id) :iff E@i = (t, com(id)) .

We let query(t, q, r) ∶= ∃id(query(t, q, r, id)). Upon commit, a thread forwards
all the information from its local repository to the database system and receives
updates from other threads. Committed updates may however be delayed or
lost by the network. By the predicate forward(t, t′, id) we mark the event that
the environment forwarded the updates t performed in revision id to t′. We let:
(E, i) ⊧ forward(t, t′, id) :iff E@i = (env , fwd(t, t′, id)). Eventual consistency
requires all threads to keep valid logs. Logs are finite sequences of actions, i.e.,
L ∈ A∗. We let: (E, i) ⊧ a in L ∶iff a ∈ L. By t klog a we denote the fact that t
knows about action a. The predicate klog represents individual knowledge, i.e.,
knowledge in the sense of knowing about an action in contrast to knowing that
a fact is true [15]. We let:

(E, i) ⊧ t klog a :iff there is j ≤ i ∶ (E@j = (t, a) or

((E, j) ⊧ forward(t′, t, id) and there is l < j ∶ (E, l) ⊧ commit(t′, id)

and (E, l) ⊧ t′ klog a)) .

That is, threads know an action if they performed it themselves, or they received
an update containing it. Upon commits, threads pass on all actions they know
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about. We represent log validity by the formula: L validLog t ∶= ∀a(t klog a ↔
a in L) ∧consistent(L). That is, to be a valid log for thread t, log L must contain
exactly the actions that t knows of and these actions must be arranged in an
order consistent with respect to the other threads logs. A log L is consistent if the
actions in the log occur in the same order as the actions in the real trace. This
means the sequence of actions in L must be a subsequence of the actions in the
real trace. A sequence a = a1a2 . . . an is a subsequence of a sequence b = b1b2 . . . bm
(a ⪯ b), if and only if there exist 1 ≤ i1 < i2 < . . . < in ≤ m such that for all
1 ≤ j ≤ n ∶ aj = bij . We project a sequence of events to a sequence of actions by the
function act ∶ E∗ → A∗, such that act((t1, a1)(t2, a2) . . . (tn, an)) = a1a2 . . . an.
We define: (E, i) ⊧ consistent(L) ∶iff L ⪯ act(E ⇂ i).

Query Results. All queries that threads issue must return the correct result
with respect to the logged operations. That is, the query’s result must match
the result the query would yield when issued on a database that performed all
the updates in the log. We represent the fact that query q would yield result r
on log L by the predicate result(q,L, r). We define the order of actions in a log
L by the relation <L. We let a <L a′ :iff pos(a,L) < pos(a′,L) < ω. We define:
(E, i) ⊧ result(q,L, r) ∶iff r = q#(apply(set(L),<L, s0)).

Network Assumptions. We pose additional requirements on the network: up-
dates in the same revision must be sent as atomic bundles (atomicTrans).
Only committed updates can be forwarded (fwd). Active threads must even-
tually receive all committed update (alive). We define the helper predicate:
rev(t, id) := ∃q∃r(query(t, q, r, id)) ∨ ∃u(update(t, u, id)) representing the fact,
that the current action belongs to revision id of thread t. We specify the re-
quirements that updates made in the same revision must be sent bundled as
indivisible transactions by the formula : atomicTrans ∶= ∀t∀id(⊟(rev(t, id) →
rev(t, id) W commit(t, id))). That is, queries and updates from revision id
are only followed by other queries and updates from the same revision, or
a commit. We enforce that only committed revisions can be forwarded by:
fwd ∶= ∀t∀t′∀id(⊟(fwd(t, t′, id) → ◻(¬commit(t, id)))). Threads that makes
progress, i.e. that commit infinitely often must eventually receive all committed
updates. We formalize this as:

alive ∶= ∀t∀t′∀id
(⊟(commit(t, id) ∧ ◻◇ (∃id ′(commit(t′, id′))) →

◇forward(t, t′, id))) .

We represent correctEVC by the formula:

correctEVC ∶= ∀t∀q∀r

(⊟(query(t, q, r) → ∃L(L validLog t ∧ result(q,L, r))))

∧atomicTrans ∧ alive ∧ fwd .
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Theorem 2 (Logical Characterization of Eventual Consistency). A
trace is eventually consistent if and only if the threads do not know that it violates
correctEVC. For all traces E ∈ Eω:

evCons(E) if and only if E ⊧ ¬DThreads¬(correctEVC ) .

6 Linearizability

Linearizability refines sequential consistency by guaranteeing that each method
call takes its effect at exactly one point between its invocation and its return.

For our definition of linearizability, we follow [8]. As for sequential consistency,
our definition generalizes the original notion [10, 12] by allowing non-sequential
specifications. We define the real-time precedence order ⪯real ⊆ (E

ω ×N)2: (E, i)
⪯real (E

′, i′) :iff i = i′ and there is a bijection π ∶ {1, . . . , i} → {1, . . . , i} s.t for all
j ∈ N such that j ≤ i ∶ E@j = E′@π(j), i.e., E′ is a permutation of E, and for
all j, k ∈ N such that j < k ≤ i ∶ if E@j ∈ Ret and E@k ∈ INV then π(j) < π(k),
i.e., when permuting the events in E, calls are never pulled before returns.

Definition 3 (Linearizability). A trace (E, i) is linearizable (lin(E, i)) if and
only if there is (E′, i′) ∈ Eω ×N such that (1) for all t ∈ Threads: (E ⇂ i) ↓ t =
(E′ ⇂ i′) ↓ t (2) (E, i) ⪯real (E

′, i′) and (3) E′ ⇂ i′ ∈ Spec.

Theorem 3 (Logical Characterization of Linearizability). A trace E ⇂
i ∈ E∗ is linearizable if and only if the threads together with the observer do not
know that it is incorrect:

lin(E, i) iff (E, i) ⊧ ¬DThreads⊎{obs}¬correct .

7 Knowledge about Consistency

We write ⊧ ϕ as an abbreviation for: for all E ∈ Eω : E ⊧ ϕ. Let seqCons ∶=
¬DThreads(¬correct).

Theorem 4 (Detection Sequential Consistency). Threads can de-
cide whether a trace is sequentially consistent or not: ⊧ (seqCons ↔
DThreads(seqCons)) ∧ (¬seqCons ↔DThreads(¬seqCons)).

Let Lin ∶= ¬DThreads⊎{obs}¬correct .

Theorem 5 (Detection Linearizability). There is E ∈ Eω such that
(E, i) ⊧ Lin ∧ ¬DThreads⊎{obs}(Lin). As in sequential consistency, the threads
together with the observer can spot if a trace is not linearizable: ⊧ ¬Lin ↔
DThreads⊎{obs}(¬Lin).

8 Related Work

The only applications of epistemic logic to concurrent computations that we are
aware of are a logical characterization of wait-free computations by Hirai [13]
and a knowledge based analysis of cache-coherence by Baukus et al. [2].
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Abstract. Implementations of concurrent objects should guarantee lin-
earizability and a progress property such as wait-freedom, lock-freedom,
obstruction-freedom, starvation-freedom, or deadlock-freedom. Conven-
tional informal or semi-formal definitions of these progress properties
describe conditions under which a method call is guaranteed to com-
plete, but it is unclear how these definitions can be utilized to formally
verify system software in a layered and modular way.

In this paper, we propose a unified framework based on contextual
refinements to show exactly how progress properties affect the behaviors
of client programs. We give formal operational definitions of all common
progress properties and prove that for linearizable objects, each progress
property is equivalent to a specific type of contextual refinement that
preserves termination. The equivalence ensures that verification of such
a contextual refinement for a concurrent object guarantees both lineariz-
ability and the corresponding progress property. Contextual refinement
also enables us to verify safety and liveness properties of client programs
at a high abstraction level by soundly replacing concrete method imple-
mentations with abstract atomic operations.

1 Introduction

A concurrent object consists of shared data and a set of methods that provide
an interface for client threads to manipulate and access the shared data. The
synchronization of simultaneous data access within the object affects the progress
of the execution of the client threads in the system.

Various progress properties have been proposed for concurrent objects. The
most important ones are wait-freedom, lock-freedom and obstruction-freedom for
non-blocking implementations, and starvation-freedom and deadlock-freedom for
lock-based implementations. These properties describe conditions under which
method calls are guaranteed to successfully complete in an execution. For exam-
ple, lock-freedom guarantees that “infinitely often some method call finishes in
a finite number of steps” [9].

Nevertheless, the common informal or semi-formal definitions of the progress
properties are difficult to use in a modular and layered program verification be-
cause they fail to describe how the progress properties affect clients. In a modular
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verification of client threads, the concrete implementation Π of the object meth-
ods should be replaced by an abstraction (or specification) ΠA that consists of
equivalent atomic methods. The progress properties should then characterize
whether and how the behaviors of a client program will be affected if a client
uses Π instead of ΠA. In particular, we are interested in systematically study-
ing whether the termination of a client using the abstract methods ΠA will be
preserved when using an implementation Π with some progress guarantee.

Previous work on verifying the safety of concurrent objects (e.g., [4,12]) has
shown that linearizability—a standard safety criterion for concurrent objects—
and contextual refinement are equivalent. Informally, an implementation Π is
a contextual refinement of a (more abstract) implementation ΠA, if every ob-
servable behavior of any client program using Π can also be observed when the
client uses ΠA instead. To obtain equivalence to linearizability, the observable
behaviors include I/O events but not divergence (i.e., non-termination). Re-
cently, Gotsman and Yang [6] showed that a client program that diverges using
a linearizable and lock-free object must also diverge when using the abstract
operations instead. Their work reveals a connection between lock-freedom and
a form of contextual refinement which preserves termination as well as safety
properties. It is unclear how other progress guarantees affect termination of
client programs and how they are related to contextual refinements.

This paper studies all five commonly used progress properties and their rela-
tionships to contextual refinements. We propose a unified framework in which
a certain type of termination-sensitive contextual refinement is equivalent to
linearizability together with one of the progress properties. The idea is to iden-
tify different observable behaviors for different progress properties. For example,
for the contextual refinement for lock-freedom we observe the divergence of the
whole program, while for wait-freedom we also need to observe which threads in
the program diverge. For lock-based progress properties, e.g., starvation-freedom
and deadlock-freedom, we have to take fair schedulers into account.

Our paper makes the following new contributions:

– We formalize the definitions of the five most common progress properties:
wait-freedom, lock-freedom, obstruction-freedom, starvation-freedom, and
deadlock-freedom. Our formulation is based on possibly infinite event traces
that are operationally generated by any client using the object.

– Based on our formalization, we prove relationships between the progress
properties. For example, wait-freedom implies lock-freedom and starvation-
freedom implies deadlock-freedom. These relationships form a lattice shown
in Figure 1 (where the arrows represent implications). We close the lattice
with a bottom element that we call sequential termination, a progress prop-
erty in the sequential setting. It is weaker than any other progress property.

– We develop a unified framework to characterize progress properties via con-
textual refinements. With linearizability, each progress property is proved
equivalent to a contextual refinement which takes into account divergence of
programs. A companion TR [14] contains the formal proofs of our results.
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Wait-freedom

Lock-freedom Starvation-freedom

Obstruction-freedom Deadlock-freedom

Sequential termination

Fig. 1. Relationships between Progress Properties

By extending earlier equivalence results on linearizability [4], our contextual
refinement framework can serve as a new alternative definition for the full cor-
rectness properties of concurrent objects. The contextual refinement implied by
linearizability and a progress guarantee precisely characterizes the properties at
the abstract level that are preserved by the object implementation. When prov-
ing these properties of a client of the object, we can soundly replace the concrete
method implementations by its abstract operations. On the other hand, since the
contextual refinement also implies linearizability and the progress property, we
can potentially borrow ideas from existing proof methods for contextual refine-
ments, such as simulations (e.g., [13]) and logical relations (e.g., [2]), to verify
linearizability and the progress guarantee together.

In the remainder of this paper, we first informally explain our framework
in Section 2. We then introduce the formal setting in Section 3; including the
definition of linearizability as the safety criterion of objects. We formulate the
progress properties in Section 4 and the contextual refinement framework in
Section 5. We discuss related work and conclude in Section 6.

2 Informal Account

In this section, we informally describe our results. We first give an overview of
linearizability and its equivalence to the basic contextual refinement. Then we
explain the progress properties and summarize our new equivalence results.

Linearizability and Contextual Refinement. Linearizability is a standard
safety criterion for concurrent objects [9]. Intuitively, linearizability describes
atomic behaviors of object implementations. It requires that each method call
should appear to take effect instantaneously at some moment between its invo-
cation and return.

Linearizability intuitively establishes a correspondence between the object
implementation Π and the intended atomic operations ΠA. This correspondence
can also be understood as a contextual refinement. Informally, we say that Π is a
contextual refinement of ΠA, Π � ΠA, if substituting Π for ΠA in any context
(i.e., in a client program) does not add observable behaviors. External observers
cannot tell that ΠA has been replaced by Π from monitoring the behaviors of
the client program.
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It has been proved [4,12] that linearizability is equivalent to a contextual refine-
ment in which the observable behaviors are finite traces of I/O events. Thus this
basic contextual refinement can be used to distinguish linearizable objects from
non-linearizable ones. But it cannot characterize progress properties of objects.

Progress Properties. Figure 2 shows several implementations of a counter
with different progress guarantees that we study in this paper. A counter object
provides the two methods inc and dec for incrementing and decrementing a
shared variable x. The implementations given here are not intended to be prac-
tical but merely to demonstrate the meanings of the progress properties. We
assume that every command is executed atomically.

Informally, an object implementation is wait-free, if it guarantees that every
thread can complete any started operation of the data structure in a finite num-
ber of steps [7]. Figure 2(a) shows an ideal wait-free implementation in which the
increment and the decrement are done atomically. This implementation is obvi-
ously wait-free since it guarantees termination of every method call regardless of
interference from other threads. Note that realistic implementations of wait-free
counters are more complex and involve arrays and atomic snapshots [1].

Lock-freedom is similar to wait-freedom but only guarantees that some thread
will complete an operation in a finite number of steps [7]. Typical lock-free imple-
mentations (such as the well-known Treiber stack, HSY elimination-backoff stack
and Harris-Michael lock-free list) use the atomic compare-and-swap instruction
cas in a loop to repeatedly attempt an update until it succeeds. Figure 2(b)
shows such an implementation of the counter object. It is lock-free, because
whenever inc and dec operations are executed concurrently, there always exists
some successful update. Note that this object is not wait-free. For the following
program (2.1), the cas instruction in the method called by the left thread may
continuously fail due to the continuous updates of x made by the right thread.

inc(); ‖ while(true) inc(); (2.1)

Herlihy et al. [8] propose obstruction-freedom which “guarantees progress for any
thread that eventually executes in isolation” (i.e., without other active threads in
the system). They present two double-ended queues as examples. In Figure 2(c)
we show an obstruction-free counter that may look contrived but nevertheless
illustrates the idea of the progress property.

The implementation introduces a variable i, and lets inc perform the atomic
increment after increasing i to 10 and dec do the atomic decrement after decreas-
ing i to 0. Whenever a method is executed in isolation (i.e., without interference
from other threads), it will complete. Thus the object is obstruction-free. It is
not lock-free, because for the client

inc(); ‖ dec(); (2.2)

which executes an increment and a decrement concurrently, it is possible that
neither of the method calls returns. For instance, under a specific schedule, every
increment over i made by the left thread is immediately followed by a decrement
from the right thread.
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1 inc() { x := x + 1; }

2 dec() { x := x - 1; }

(a) Wait-Free (Ideal) Impl.

1 inc() {

2 local t, b;

3 do {

4 t := x;

5 b := cas(&x,t,t+1);

6 } while(!b);

7 }

(b) Lock-Free Impl.

1 inc() {

2 while (i < 10) {

3 i := i + 1;

4 }

5 x := x + 1;

6 }

7 dec() {

8 while (i > 0) {

9 i := i - 1;

10 }

11 x := x - 1;

12 }

(c) Obstruction-Free Impl.

1 inc() {

2 TestAndSet_lock();

3 x := x + 1;

4 TestAndSet_unlock();

5 }

(d) Deadlock-Free Impl.

1 inc() {

2 Bakery_lock();

3 x := x + 1;

4 Bakery_unlock();

5 }

(e) Starvation-Free Impl.

Fig. 2. Counter Objects with Methods inc and dec

Wait-freedom, lock-freedom, and obstruction-freedom are progress properties
for non-blocking implementations, where a delay of a thread cannot prevent other
threads from making progress. In contrast, deadlock-freedom and starvation-
freedom are progress properties for lock-based implementations. A delay of a
thread holding a lock will block other threads which request the lock.

Deadlock-freedom and starvation-freedom are often defined in terms of locks
and critical sections. Deadlock-freedom guarantees that some thread will succeed
in acquiring the lock, and starvation-freedom states that every thread attempting
to acquire the lock will eventually succeed [9]. For example, a test-and-set spin
lock is deadlock-free but not starvation-free. In a concurrent access, some thread
will successfully set the bit and get the lock, but there might be a thread that
is continuously failing to get the lock. Lamport’s bakery lock is starvation-free.
It ensures that threads can acquire locks in the order of their requests.

However, as noted by Herlihy and Shavit [10], the above definitions based on
locks are unsatisfactory, because it is often difficult to identify a particular field
in the object as a lock. Instead, they suggest defining them in terms of method
calls. They also notice that the above definitions implicitly assume that every
thread acquiring the lock will eventually release it. This assumption requires fair
scheduling, i.e., every thread gets eventually executed.

Following Herlihy and Shavit [10], we say an object is deadlock-free, if in
each fair execution there always exists some method call that can finish. As
an example in Figure 2(d), we use a test-and-set lock to synchronize the incre-
ments of the counter. Since some thread is guaranteed to acquire the test-and-set
lock, the method call of that thread is guaranteed to finish. Thus the object is
deadlock-free. Similarly, a starvation-free object guarantees that every method
call can finish in fair executions. Figure 2(e) shows a counter implemented with
Lamport’s bakery lock. It is starvation-free since the bakery lock ensures that
every thread can acquire the lock and hence every method call can eventually
complete.
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Table 1. Characterizing Progress Properties via Contextual Refinements Π � ΠA

Wait-Free Lock-Free Obstruction-Free Deadlock-Free Starvation-Free

ΠA (t, Div.) Div. Div. Div. (t, Div.)

Π (t, Div.) Div. Div. if Isolating Div. if Fair (t, Div.) if Fair

Our Results. None of the above definitions of the five progress properties
describes their guarantees regarding the behaviors of client code. In this paper,
we define several contextual refinements to characterize the effects over client
behaviors when the client uses objects with some progress properties. We show
that linearizability together with a progress property is equivalent to a certain
termination-sensitive contextual refinement. Table 1 summarizes our results.

For each progress property, the new contextual refinement Π � ΠA is de-
fined with respect to a divergence behavior and/or a specific scheduling at the
implementation level (the third row in Table 1) and at the abstract side (the
second row), in addition to the I/O events in the basic contextual refinement for
linearizability.

– For wait-freedom, we need to observe the divergence of each individual thread
t, represented by “(t, Div.)” in Table 1, at both the concrete and the abstract
levels. We show that, if the thread t of a client program diverges when the
client uses a linearizable and wait-free object Π , then thread t must also
diverge when using ΠA instead.

– The case for lock-freedom is similar, except that we now consider the diver-
gence behaviors of the whole client program rather than individual threads
(denoted by “Div.” in Table 1). If a client diverges when using a linearizable
and lock-free object Π , it must also diverge when it uses ΠA instead.

– For obstruction-freedom, we consider the behaviors of isolating executions
at the concrete side (denoted by “Div. if Isolating” in Table 1). In those
executions, eventually only one thread is running. We show that, if a client
diverges in an isolating execution when it uses a linearizable and obstruction-
free object Π , it must also diverge in some abstract execution.

– For deadlock-freedom, we only care about fair executions at the concrete
level (denoted by “Div. if Fair” in Table 1).

– For starvation-freedom, we observe the divergence of each individual thread
at both levels and restrict our considerations to fair executions for the con-
crete side (“(t, Div.) if Fair” in Table 1). Any thread using Π can diverge in
a fair execution, only if it also diverges in some abstract execution.

These new contextual refinements can characterize linearizable objects with
progress properties. We will formalize the results and give examples in Section 5.

3 Formal Setting and Linearizability

In this section, we formalize linearizability and show its equivalence to a contex-
tual refinement that preserves safety properties only. This equivalence is the basis
of our new results that relate progress properties and contextual refinements.
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(Expr) E ::= . . . (BExp) B ::= . . . (Instr) c ::= print(E) | . . .

(Stmt) C ::= skip | c | x := f(E) | return E | end
| 〈C〉 | C;C | if (B) C else C | while (B){C}

(Prog) W ::= skip | let Π in C ‖ . . .‖C

(ODecl) Π ::= {f1 � (x1, C1), . . . , fn � (xn, Cn)}

Fig. 3. Syntax of the Programming Language

(State) S ::= . . . (ThrdID) t ∈ Nat

(Evt) e ::= (t, f, n) | (t, ret, n) | (t,obj) | (t,obj, abort)
| (t,out, n) | (t, clt) | (t, clt,abort) | (t, term) | (spawn, n)

(ETrace) T ::= ε | e ::T (co-inductive)

Fig. 4. States and Event Traces

Language and Semantics. We use a similar language as in previous work of
Liang and Feng [12]. As shown in Figure 3, a program W consists of several
client threads that run in parallel. Each thread could call the methods declared
in the object Π . A method f is defined as a pair (x,C), where x is the formal
argument and C is the method body. The object Π could be either concrete
with fine-grained code that we want to verify, or abstract (usually denoted as
ΠA in the following) that we consider as the specification. For the latter case,
each method body should be an atomic operation of the form 〈C〉 and it should
be always safe to execute it. For simplicity, we assume there is only one object
in the program W and each method takes one argument only.

Most commands are standard. Clients can use print(E) to produce observable
external events. We do not allow the object’s methods to produce external events.
To simplify the semantics, we also assume there are no nested method calls. To
discuss progress properties later, we introduce an auxiliary command end. It is a
special marker that can be added at the end of a thread, but is not supposed to be
used directly by programmers. The skip statement plays two roles here: a state-
ment that has no computation effects or a flag to show the end of an execution.

We use S for a program state. Program transitions (W,S) e�−→ (W ′,S ′) gener-
ate events e defined in Figure 4. A method invocation event (t, f, n) is produced
when thread t executes x := f(E), where n is the value of the argument E. A
return (t, ret, n) is produced with the return value n. print(E) generates an out-
put (t,out, n), and end generates a termination marker (t, term). Other steps
generate either normal object actions (t,obj) (for steps inside method calls) or
silent client actions (t, clt) (for client steps other than print(E)). For transi-
tions leading to the error state abort (e.g., invalid memory access), fault events
are produced: (t,obj, abort) by the object method code and (t, clt, abort) by
the client code. We also introduce an auxiliary event (spawn, n), saying that n
threads are spawned. It will be useful later when defining fair scheduling (in Sec-
tion 4). We write tid(e) for the thread ID in the event e. The predicate is clt(e)
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T �W,S�
def
= {T | ∃W ′,S ′. (W,S) T�−→∗ (W ′,S ′) ∨ (W,S) T�−→∗ abort}

H�W,S�
def
= {get hist(T ) | T ∈ T �W,S� }

O�W,S�
def
= {get obsv(T ) | T ∈ T �W,S�}

Fig. 5. Generation of Finite Event Traces

states that the event e is either a silent client action, an output, or a client
fault. We write is inv(e) and is ret(e) to denote that e is a method invocation
and a return, respectively. The predicate is abt(e) denotes a fault of the object
or the client. Method invocations, returns and object faults are called history
events, which will be used to define linearizability below. Outputs, client faults
and object faults are called observable events.

An event trace T is a finite or infinite sequence of events. We write T (i) for
the i-th event of T . last(T ) is the last event in a finite T . The trace T (1..i) is the
sub-trace T (1), . . . , T (i) of T , and |T | is the length of T (|T | = ω if T is infinite).
The trace T |t represents the sub-trace of T consisting of all events whose thread
ID is t. We can use get hist(T ) to project T to the sub-trace consisting of all the
history events, and get obsv(T ) for the sub-trace of all the observable events.
Finite traces of history events are called histories.

In Figure 5, we define T �W,S� for the prefix-closed set of finite traces pro-

duced by the executions of (W,S). We use (W,S) T�−→ ∗ (W ′,S ′) for zero or
multiple-step program transitions that generate the trace T . We also define
H�W,S� and O�W,S� to get histories and finite observable traces produced by
the executions of (W,S). The TR [14] contains more details about the language.

Linearizability and Basic Contextual Refinement. We formulate lineariz-
ability following its standard definition [11]. Below we sketch the basic concepts.
Detailed formal definitions can be found in the companion TR [14].

Linearizability is defined using histories. We say a return e2 matches an invo-
cation e1, denoted as match(e1, e2), iff they have the same thread ID. An invo-
cation is pending in T if no matching return follows it. We can use pend inv(T )
to get the set of pending invocations in T . We handle pending invocations in
a history T in the standard way [11]: we append zero or more return events
to T , and drop the remaining pending invocations. The result is denoted by
completions(T ). It is a set of histories, and for each history in it, every invoca-
tion has a matching return event.

Definition 1 (Linearizable Histories). T �lin T ′ iff
1. ∀t. T |t = T ′|t;
2. there exists a bijection π : {1, . . . , |T |} → {1, . . . , |T ′|} such that ∀i. T (i) =

T ′(π(i)) and ∀i, j. i < j ∧ is ret(T (i)) ∧ is inv(T (j)) =⇒ π(i) < π(j).

That is, T is linearizable w.r.t. T ′ if the latter is a permutation of the former,
preserving the order of events in the same threads and the order of the non-
overlapping method calls. Then an object is linearizable iff each of its concurrent
histories after completions is linearizable w.r.t. some legal sequential history.
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We use ΠA � (Sa, T ′) to mean that T ′ is a legal sequential history generated by
any client using the specification ΠA with an abstract initial state Sa.

Definition 2 (Linearizability of Objects). The object’s implementation Π
is linearizable w.r.t.ΠA under a refinement mapping ϕ, denoted by Π�ϕΠA, iff
∀n,C1, . . . , Cn,S ,Sa, T. T ∈ H�(let Π in C1‖ . . .‖Cn),S� ∧ (ϕ(S) = Sa)
=⇒ ∃Tc, T

′. Tc ∈ completions(T ) ∧ΠA � (Sa, T ′) ∧ Tc �lin T ′ .
Here the partial mapping ϕ :State⇀State relates concrete states to abstract ones.

The side condition ϕ(S) = Sa in the above definition requires the initial concrete
state S to be well-formed in that it represents a valid abstract state Sa. For
instance, ϕ may need S to contain a linked list and relate it to an abstract
mathematical set in Sa for a set object. Besides, ϕ should always require the
client states in S and Sa to be identical.

Next we define a contextual refinement between the concrete object and its
specification, which is equivalent to linearizability.

Definition 3 (Basic Contextual Refinement). Π �ϕ ΠA iff
∀n,C1, . . . , Cn,S ,Sa. (ϕ(S) = Sa)
=⇒ O�(let Π in C1‖ . . .‖Cn),S� ⊆ O�(let ΠA in C1‖ . . .‖Cn),Sa� .

Remember that O�W,S� represents the prefix-closed set of observable event
traces generated during the executions of (W,S), which is defined in Figure 5.

Following Filipović et al. [4], we can prove that linearizability is equivalent to
this contextual refinement. We give the proofs in the TR [14].

Theorem 4 (Basic Equivalence). Π �ϕ ΠA ⇐⇒ Π �ϕ ΠA.

Theorem 4 allows us to use Π �ϕ ΠA to identify linearizable objects. However,
we cannot use it to characterize progress properties of objects. For the following
example, Π �ϕ ΠA holds although no concrete method call of f could finish (we
assume this object contains a method f only).

Π(f) : while(true) skip; ΠA(f) : skip; C : print(1); f(); print(1);

The reason is that Π �ϕ ΠA considers a prefix-closed set of event traces at the
abstract side. For the above client C, the observable behaviors of let Π in C
can all be found in the prefix-closed set of behaviors produced by let ΠA in C.

4 Formalizing Progress Properties

We define progress in Figure 6 as properties over both event traces T and object
implementations Π . We say an object implementation Π has a progress property
P iff all its event traces have the property. Here we use Tω to generate the event
traces. Its definition in Figure 6 is similar to T �W,S� of Figure 5, but Tω�W,S�
is for the set of finite or infinite event traces produced by complete executions.

We use (W,S) T�−→ω · to denote the existence of a T -labelled infinite execution.

(W,S) T�−→ ∗ (skip, ) represents a terminating execution that produces T . By
using 4W 5, we append end at the end of each thread to explicitly mark the
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Definition. An object Π satisfies P under a refinement mapping ϕ, Pϕ(Π), iff
∀n,C1,. . . ,Cn,S , T. T ∈ Tω�(letΠ in C1‖. . .‖Cn),S� ∧ (S∈dom(ϕ)) =⇒ P (T ) .

Tω�W,S�
def
= {(spawn, |W |) ::T |

(�W �,S) T�−→ω · ∨ (�W �,S) T�−→∗(skip, ) ∨ (�W �,S) T�−→∗abort}
�let Π in C1‖ . . .‖Cn� def

= let Π in (C1; end)‖ . . .‖(Cn; end)

|let Π in C1 ‖ . . . ‖ Cn| def
= n tnum((spawn, n) ::T )

def
= n

pend inv(T )
def
= {e | ∃i. e=T (i)∧ is inv(e) ∧ ¬∃j. (j > i ∧match(e, T (j)))}

prog-t(T ) iff ∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧match(e, T (j))

prog-s(T ) iff ∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧ is ret(T (j))

abt(T ) iff ∃i. is abt(T (i))

sched(T ) iff |T | = ω ∧ pend inv(T ) �= ∅ =⇒ ∃e. e ∈ pend inv(T ) ∧ |(T |tid(e))| = ω

fair(T ) iff |T | = ω =⇒ ∀t ∈ [1..tnum(T )]. |(T |t)| = ω ∨ last(T |t) = (t, term)
iso(T ) iff |T | = ω =⇒ ∃t, i. (∀j. j ≥ i =⇒ tid(T (j)) = t)

wait-free iff sched =⇒ prog-t ∨ abt starvation-free iff fair =⇒ prog-t ∨ abt

lock-free iff sched =⇒ prog-s ∨ abt deadlock-free iff fair =⇒ prog-s ∨ abt

obstruction-free iff sched ∧ iso =⇒ prog-t ∨ abt

Fig. 6. Formalizing Progress Properties

lock-free ⇐⇒ wait-free ∨ prog-s starvation-free ⇐⇒ wait-free ∨ ¬fair
obstruction-free ⇐⇒ lock-free ∨ ¬iso deadlock-free ⇐⇒ lock-free ∨ ¬fair

Fig. 7. Relationships between Progress Properties

termination of the thread. We also insert the spawning event (spawn, n) at the
beginning of T , where n is the number of threads in W . Then we can use tnum(T )
to get the number n, which is needed to define fairness, as shown below.

Before formulating each progress property over event traces, we first define
some auxiliary properties in Figure 6. prog-t(T ) guarantees that every method
call in T eventually finishes. prog-s(T ) guarantees that some pending method
call finishes. Different from prog-t, the return event T (j) in prog-s does not have
to be a matching return of the pending invocation e. abt(T ) says that T ends
with a fault event.

There are three useful conditions on scheduling. The basic requirement for a
good schedule is sched. If T is infinite and there exist pending calls, then at least
one pending thread should be scheduled infinitely often. In fact, there are two
possible reasons causing a method call of thread t to pend. Either t is no longer
scheduled, or it is always scheduled but the method call never finishes. sched
rules out the bad schedule where no thread with an invoked method is active.
For instance, the following infinite trace does not satisfy sched.
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div tids(T )
def
= {t | ( |(T |t)| = ω ) }

Oω�W,S�
def
= {get obsv(T ) | T ∈ Tω�W,S� }

Oiω�W,S�
def
= {get obsv(T ) | T ∈ Tω�W,S� ∧ iso(T )}

Ofω�W,S�
def
= {get obsv(T ) | T ∈ Tω�W,S� ∧ fair(T )}

Otω�W,S�
def
= {(get obsv(T ), div tids(T )) | T ∈ Tω�W,S� }

Oftω�W,S�
def
= {(get obsv(T ),div tids(T )) | T ∈ Tω�W,S� ∧ fair(T )}

Fig. 8. Generation of Complete Event Traces

(t1, f1, n1) :: (t2, f2, n2) :: (t1,obj) :: (t3, clt) :: (t3, clt) :: (t3, clt) :: . . .

If T is infinite, fair(T ) requires every non-terminating thread be scheduled in-
finitely often; and iso(T ) requires eventually only one thread be scheduled. We
can see that a fair schedule is a good schedule satisfying sched.

At the bottom of Figure 6 we define the progress properties formally. We
omit the parameter T in the formulae to simplify the presentation. An event
trace T is wait-free (i.e., wait-free(T ) holds) if under the good schedule sched, it
guarantees prog-t unless it ends with a fault. lock-free(T ) is similar except that
it guarantees prog-s. Starvation-freedom and deadlock-freedom guarantee prog-t
and prog-s under fair scheduling. Obstruction-freedom guarantees prog-t if some
pending thread is always scheduled (sched) and runs in isolation (iso).

Figure 7 contains lemmas that relate progress properties. For instance, an
event trace is starvation-free, iff it is wait-free or not fair. These lemmas give us
the relationship lattice in Figure 1. To close the lattice, we also define a progress
property in the sequential setting. Sequential termination guarantees that every
method call must finish in a trace produced by a sequential client. The formal
definition is given in the companion TR [14], and we prove that it is implied by
each of the five progress properties for concurrent objects.

5 Equivalence to Contextual Refinements

We extend the basic contextual refinement in Definition 3 to observe progress
as well as linearizability. For each progress property, we carefully choose the
observable behaviors at the concrete and the abstract levels.

5.1 Observable Behaviors

In Figure 8, we define various observable behaviors for the termination-sensitive
contextual refinements.

We use Oω�W,S� to represent the set of observable event traces produced
by complete executions of (W,S). Recall that get obsv(T ) gets the sub-trace
of T consisting of all the observable events only. Unlike the prefix-closed set
O�W,S�, this definition utilizes Tω�W,S� (see Figure 6) whose event traces are
all complete and could be infinite. Thus it allows us to observe divergence of the
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Table 2. Contextual Refinements Π �P
ϕ ΠA for Progress Properties P

P wait-free lock-free obstruction-free deadlock-free starvation-free

Π �P
ϕ ΠA Otω ⊆ Otω Oω ⊆ Oω Oiω ⊆ Oω Ofω ⊆ Oω Oftω ⊆ Otω

whole program. Oiω and Ofω take the complete observable traces of isolating
and fair executions respectively. Here iso(T ) and fair(T ) are defined in Figure 6.

We could also observe divergence of individual threads rather than the whole
program. We define div tids(T ) to collect the set of threads that diverge in the
trace T . Then we write Otω�W,S� to get both the observable behaviors and the
diverging threads in the complete executions. Oftω�W,S� is defined similarly but
considers fair executions only.

More on divergence. In general, divergence means non-termination. For example,
we could say that the following two-threaded program (5.1) must diverge since
it never terminates.

x := x + 1; ‖ while(true) skip; (5.1)

But for individual threads, divergence is not equivalent to non-termination, since
a non-terminating thread may either have an infinite execution or simply be not
scheduled from some point due to unfair scheduling. We view only the former
case as divergence. For instance, in an unfair execution, the left thread of (5.1)
may never be scheduled and hence it has no chance to terminate. It does not
diverge. Similarly, for the following program (5.2),

while(true) skip; ‖ while(true) skip; (5.2)

the whole program must diverge, but it is possible that a single thread does not
diverge in an execution.

5.2 New Contextual Refinements and Equivalence Results

In Table 2, we summarize the definitions of the termination-sensitive contextual
refinements. Each new contextual refinement follows the basic one in Definition 3
but takes different observable behaviors as specified in Table 2. For example, the
contextual refinement for wait-freedom is formally defined as follows:

Π �wait-free
ϕ ΠA iff ( ∀n,C1, . . . , Cn,S ,Sa. (ϕ(S) = Sa) =⇒

Otω�(letΠ in C1‖ . . .‖Cn),S)� ⊆ Otω�(letΠA in C1‖ . . .‖Cn),Sa� ).

Theorem 5 says that linearizability with a progress property P together is equiv-
alent to the corresponding contextual refinement �P

ϕ .

Theorem 5 (Equivalence). Π �ϕ ΠA ∧ Pϕ(Π) ⇐⇒ Π �P
ϕ ΠA , where P is

wait-free, lock-free, obstruction-free, deadlock-free or starvation-free.

Here we assume the object specification ΠA is total, i.e., the abstract operations
never block. We provide the proofs of our equivalence results in the TR [14].

The contextual refinement for wait-freedom takes Otω at both the concrete
and the abstract levels. The divergence of individual threads as well as I/O
events are treated as observable behaviors. The intuition of the equivalence is as
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follows. Since a wait-free object Π guarantees that every method call finishes,
we have to blame the client code itself for the divergence of a thread using Π .
That is, even if the thread uses the abstract object ΠA, it must still diverge.

As an example, consider the client program (2.1). Intuitively, for any execution
in which the client uses the abstract operations, only the right thread t2 diverges.
Thus Otω of the abstract program is a singleton set {(ε, {t2})}. When the client
uses the wait-free object in Figure 2(a), its Otω set is still {(ε, {t2})}. It does not
produce more observable behaviors. But if it uses a non-wait-free object (such as
the one in Figure 2(b)), the left thread t1 does not necessarily finish. The Otω set
becomes {(ε, {t2}), (ε, {t1, t2})}. It produces more observable behaviors than the
abstract client, breaking the contextual refinement. Thanks to observing div tids
that collects the diverging threads, we can rule out non-wait-free objects which
may cause more threads to diverge.

Π �lock-free
ϕ ΠA takes coarser observable behaviors. We observe the divergence

of the whole client program by using Oω at both the concrete and the abstract
levels. Intuitively, a lock-free object Π ensures that some method call will finish,
thus the client using Π diverges only if there are an infinite number of method
calls. Then it must also diverge when using the abstract object ΠA.

For example, consider the client (2.1). The whole client program diverges in
every execution both when it uses the lock-free object in Figure 2(b) and when
it uses the abstract one. The Oω set of observable behaviors is {ε} at both levels.
On the other hand, the following client must terminate and print out both 1 and
2 in every execution. The Oω set is {1::2 ::ε, 2::1 ::ε} at both levels.

inc(); print(1); ‖ dec(); print(2); (5.3)

Instead, if the client (5.3) uses the non-lock-free object in Figure 2(c), it may
diverge and nothing is printed out. The Oω set becomes {ε, 1 :: 2 :: ε, 2 :: 1 :: ε},
which contains more behaviors than the abstract side. Thus Π �lock-free

ϕ ΠA fails.
Obstruction-freedom ensures progress for isolating executions in which even-

tually only one thread is running. Correspondingly, Π �obstruction-free
ϕ ΠA restricts

our considerations to isolating executions. It takes Oiω at the concrete level and
Oω at the abstract level.

To understand the equivalence, consider the client (5.3) again. For isolating
executions with the obstruction-free object in Figure 2(c), it must terminate and
print out both 1 and 2. The Oiω set at the concrete level is {1::2 ::ε, 2::1 ::ε}, the
same as the set Oω of the abstract side. Non-obstruction-free objects in general
do not guarantee progress for some isolating executions. If the client uses the
object in Figure 2(d) or (e), the Oiω set is {ε, 1 :: 2 :: ε, 2 :: 1 :: ε}, not a subset of
the abstract Oω set. The undesired empty observable trace is produced by unfair
executions, where a thread acquires the lock and gets suspended and then the
other thread would keep requesting the lock forever (it is executed in isolation).

Π �deadlock-free
ϕ ΠA uses Ofω at the concrete side, ruling out undesired di-

vergence caused by unfair scheduling. For the client (5.3) with the object in
Figure 2(d) or (e), its Ofω set is same as the set Oω at the abstract level.

For Π �starvation-free
ϕ ΠA, we still consider only fair executions at the concrete

level (similar to deadlock-freedom), but observe the divergence of individual
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threads rather than the whole program (similar to wait-freedom). It uses Oftω

at the concrete side and Otω at the abstract level. For the client (5.3) with the
starvation-free object in Figure 2(e), no thread diverges in any fair execution.
Then the set Oftω of observable behaviors is {(1 ::2 ::ε, ∅), (2 ::1 ::ε, ∅)}, which is
same as the set Otω at the abstract level.

Observing threaded divergence allows us to distinguish starvation-free objects
from deadlock-free objects. Consider the client (2.1). Under fair scheduling, we
know only the right thread t2 would diverge when using the starvation-free ob-
ject in Figure 2(e). The set Oftω is {(ε, {t2})}. It coincides with the abstract
behaviors Otω . But when using the deadlock-free object of Figure 2(d), the Oftω

set becomes {(ε, {t2}), (ε, {t1, t2})}, breaking the contextual refinement.

6 Related Work and Conclusion

There is a large body of work discussing the five progress properties and the con-
textual refinements individually. Our work in contrast studies their relationships,
which have not been considered much before.

Gotsman and Yang [6] propose a new linearizability definition that preserves
lock-freedom, and suggest a connection between lock-freedom and a termination-
sensitive contextual refinement. We do not redefine linearizability here. Instead,
we propose a unified framework to systematically relate all the five progress
properties plus linearizability to various contextual refinements.

Herlihy and Shavit [10] informally discuss all the five progress properties.
Our definitions in Section 4 mostly follow their explanations, but they are more
formal and close the gap between program semantics and their history-based
interpretations. We also notice that their obstruction-freedom is inappropriate
for some examples (see TR [14]), and propose a different definition that is closer
to the common intuition [9]. In addition, we relate the progress properties to
contextual refinements, which consider the extensional effects on client behaviors.

Fossati et al. [5] propose a uniform approach in the π-calculus to formulate
both the standard progress properties and their observational approximations.
Their technical setting is completely different from ours. Also, their observational
approximations for lock-freedom and wait-freedom are strictly weaker than the
standard notions. Their deadlock-freedom and starvation-freedom are not formu-
lated, and there is no observational approximation given for obstruction-freedom.
In comparison, our framework relates each of the five progress properties (plus
linearizablity) to an equivalent contextual refinement.

There are also formulations of progress properties based on temporal logics.
For example, Petrank et al. [15] formalize the three non-blocking properties and
Dongol [3] formalize all the five progress properties, using linear temporal logics.
Those formulations make it easier to do model checking (e.g., Petrank et al. [15]
also build a tool to model check a variant of lock-freedom), while our contextual
refinement framework is potentially helpful for modular Hoare-style verification.

Conclusion. We have introduced a contextual refinement framework to unify
various progress properties. For linearizable objects, each progress property is
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equivalent to a specific termination-sensitive contextual refinement, as summa-
rized in Table 1. The framework allows us to verify safety and liveness properties
of client programs at a high abstraction level by replacing concrete method im-
plementations with abstract operations. It also makes it possible to borrow ideas
from existing proof methods for contextual refinements to verify linearizability
and a progress property together, which we leave as future work.
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Abstract. Linearizability of concurrent data structures is usually proved by
monolithic simulation arguments relying on identifying the so-called lineariza-
tion points. Regrettably, such proofs, whether manual or automatic, are often
complicated and scale poorly to advanced non-blocking concurrency patterns,
such as helping and optimistic updates.

In response, we propose a more modular way of checking linearizability
of concurrent queue algorithms that does not involve identifying linearization
points. We reduce the task of proving linearizability with respect to the queue
specification to establishing four basic properties, each of which can be proved
independently by simpler arguments. As a demonstration of our approach, we
verify the Herlihy and Wing queue, an algorithm that is challenging to verify by
a simulation proof.

1 Introduction

Linearizability [8] is widely accepted as the standard correctness requirement for con-
current data structure implementations. It amounts to showing that all methods are
atomic and obey the high-level sequential specification of the data structure. For ex-
ample, an unbounded queue must support the following two methods: enqueue, which
extends the queue by appending one element to its end, and dequeue, which removes
and returns the first element of the queue.

The standard way to prove that a concurrent queue implementation is linearizable
is to prove an invariant which relates the state of the implementation to the state of
the specification. A well-established approach (e.g. [1–5, 11, 13–15]) is to identify the
linearization points, which when performed by the implementation change the state of
the specification, and to then construct a forward or backward simulation.

While for a number of concurrent algorithms, spotting the linearization points may
be straightforward (and has even been automated to some extent [15]), in general speci-
fying the linearization points can be very difficult. For instance, in implementations us-
ing a helping mechanism, they can lie in code not syntactically belonging to the thread
and operation in question, and can even depend on future behavior. There are numer-
ous examples in the literature, where this is the case; to mention only a few concurrent
queues: the Herlihy and Wing queue [8], the optimistic queue [10], the elimination
queue [12], the baskets queue [9], the flat-combining queue [6].
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1: var q.back : int← 0
2: var q.items : array of val

← {NULL, NULL, . . .}

3: procedure enq(x : val)
4:

〈
i← INC(q.back)

〉
� E1

5:
〈
q.items[i]← x

〉
� E2

6: procedure deq() : val
7: while true do
8:

〈
range← q.back − 1

〉
� D1

9: for i = 0 to range do
10:

〈
x← SWAP(q.items[i], NULL)

〉
� D2

11: if x �= NULL then return x

Fig. 1. Herlihy and Wing queue [8]

The HW Queue. In this paper, we focus on the Herlihy and Wing queue [8] (henceforth,
HW queue for short) that illustrates nicely the difficulties encountered when defining a
simulation relation based on linearization points. The code is given in Fig. 1. The queue
is represented as a pre-allocated unbounded array, q.items, initially filled with NULLs,
and a marker, q.back, pointing to the end of the used part of the array. Enqueuing
an element is done in two steps: the marker to the end of the array is incremented
(E1), thereby reserving a slot for storing the element, and then the element is stored at
the reserved slot (E2). Dequeue is more complex: it reads the marker (D1), and then
searches from the beginning of the array up to the marker to see if it contains a non-
NULL element. It removes and returns the first such element it finds (D2). If no element
is found, dequeue starts again afresh. Each of the four statements surrounded by 〈〉
brackets and annotated by Ei or Di for i = 1, 2 is assumed to execute in isolation.

Consider the following execution fragment, where · denotes context switches be-
tween concurrent threads,

(t : E1) · (u : E1) · (v : D1, D2) · (u : E2) · (t : E2) · (w : D1)

which have threads t and u executing enqueue instances, v and w executing dequeue
instances. At the end of this fragment, v is ready to dequeue the element enqueued
by u, and w is ready to dequeue the element enqueued by t. In order to define a sim-
ulation relation from this interleaving sequence to a valid sequential queue behavior,
where operations happen in isolation, we have to choose the linearization points for the
two completed enqueue instances. The difficulty lies in the fact that no matter which
statements are chosen as the linearization points for the two enqueue instances, there is
always an extension to the fragment inconsistent with the particular choice of lineariza-
tion points. For instance, if we choose (t : E1) as the linearization point for t, then the
extension

(v : D2, return) · (z : D1, D2, return)

requiring u’s element be enqueued before that of t’s, will be inconsistent. If on the other
hand, any statement which makes u linearize before t, then the extension

(w : D2, return) · (z : D1, D2, D2, return)

requiring the reverse order of enqueueing will be inconsistent. This shows not only that
finding the correct linearization sequence can be challenging, but also that the simula-
tion proofs will require to reason about the entire state of the system, as the local state
of one thread can affect the linearization of another.
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Our Contribution. In our experience, this and similar tricks for reducing synchroniza-
tion among threads so as to achieve better performance, make concurrent algorithms
extremely difficult to reason about when one is constrained to establishing a simula-
tion relation. However, if two methods overlap in time, then the only thing enforced by
linearizability is that their effects are observed in some and same order by all threads.
For instance, in the example given above, the simple answer for the particular order-
ing between the linearization points of the enqueue instances of t and u, is that it does
not matter! As long as enqueue instances overlap, their values can be dequeued in any
order.

Building on this observation, our contribution is to simplify linearizability proofs by
modularizing them. We reduce the task of proving linearizability to establishing four
relatively simple properties, each of which may be reasoned about independently. In
(loose) analogy to aspect-oriented programming, we are proposing “aspect-oriented”
linearizability proofs for concurrent queues, where each of these four properties will be
proved independently.

So what are these properties? A correct (i.e., linearizable) concurrent queue:

(1) must not allow dequeuing an element that was never enqueued;
(2) it must not allow the same element to be dequeued twice;
(3) it must not allow elements to be dequeued out of order; and
(4) it must correctly report whether the queue is empty or not.

Although similar properties were already mentioned by Herlihy and Wing [8], we for
the first time prove that suitably formalized versions of these four properties are not only
necessary, but also sufficient, conditions for linearizability with respect to the queue
specification, at least for what we call purely-blocking implementations. This is a rather
weak requirement satisfied by all non-blocking methods, as well as by possibly blocking
methods, such as HW deq() method, whose blocking executions do not modify the
global state.

The rest of the paper is structured as follows: Section 2 recalls the definition of
linearizability in terms of execution histories; Section 3 formalizes the aforementioned
four properties, and proves that they are necessary and sufficient conditions for proving
linearizability of queues; Section 4 returns to the HW queue example and presents a
detailed manual proof of its correctness; and Section 5 explains how the bulk of this
proof was also performed automatically by an adaptation of CAVE [15]. Finally, in
Sec. 6 we discuss related work, and in §7 we conclude.

2 Technical Background

In this section, we introduce common notations that will be used throughout the paper
and recall the definition of linearizability.

Histories, Linearizability. For any function f from A to B and A′ ⊆ A, let f(A′)
def
=

{f(a) | a ∈ A′}. Given two sequences x and y, let x · y denote their concatenation, and
let x ∼perm y hold if one is a permutation of the other.

A data structure D is a pair (D,ΣD), where D is the data domain and ΣD is the
method alphabet. An event of D is a triple (m, di, do), for some m ∈ ΣD , d1, d2 ∈ D.
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Intuitively, (m, di, do) denotes the application of method m with input argument di
returning the output value do. A sequence over events of D is called a behavior. The
semantics of data structure D is a set of behaviors, called legal behaviors.

Each event a = (m, di, do) generates two actions: the invocation of a, written as
inv(a), and the response of a, written as res(a). We will also use mi(di) and mr(do) to
denote the invocation and the response actions, respectively. When a particular method
m does not have an input (resp., output) parameter, we will write (m,⊥, x) (resp.,
(m,x,⊥)), and mi() (resp., mr()) for the corresponding invocation (resp., response)
action.

In this paper, a history ofD is a sequence of invocation and response actions ofD. We
will assume the existence of an implicit identifier in each history c that uniquely pairs
each invocation with its corresponding response action, if the latter also occurs in c. A
history c is well-formed if every response action occurs after its associated invocation
action in c. We will consider only well-formed histories. An event is completed in c,
if both of its invocation and response actions occur in c. An event is pending in c, if
only its invocation occurs in c. We define remPending(c) to be the sub-sequence of c
where all pending events have been removed. An event e precedes another event e′ in
c, written e ≺c e′, if the response of e occurs before the invocation of e′ in c. For event
e, Before(e, c) denotes the set of all events that precede e in c. Similarly, After(e, c)
denotes the set of all events that are preceded by e in c. Formally,

Before(e, c)
def
= {e′ | e′ ≺c e} and After(e, c)

def
= {e′ | e ≺c e′} .

History c is called complete if it does not have any pending events. For a possibly incom-
plete history c, a completion of c, written ĉ, is a (well-formed) complete history such
that ĉ = remPending(c · c′) where c′ contains only response events. Let Compl (c)
denote the set of all completions of c.

A history is called sequential if all invocations in c are immediately followed by their
matching responses, with the possible exception of the very last action which can only
be the invocation of a pending event. We identify complete sequential histories with
behaviors of D by mapping each consecutive pair of matching actions in the former to
its event constructing the latter. A sequential history s is a linearization of a history c, if
there exists ĉ ∈ Compl (c) such that ĉ ∼perm s and whenever e ≺ĉ e′ we have e ≺s e′.

Definition 1 (Linearizability [8]). A set of histories C is linearizable with respect to
a data structure D, if for any c ∈ C, there exists a linearization of c which is a legal
behavior of D.

Queues. The method alphabet ΣQ of a queue is the set {enq, deq}. We will take the
data domain to be the set of natural numbers, N, and a distinguished symbol NULL
not in N. Events are written as enq(x), short for (enq, x,⊥), and deq(x), short for
(deq,⊥, x). Events with enq are called enqueue events, and those with deq are called
dequeue events.

Let c be a history. Enq(c) denotes the set of all enqueue events invoked (and not
necessarily completed) in c. Similarly, Deq(c) denotes the set of all dequeue events
invoked in c. A set A ⊆ Enq(c)∪Deq(c) is closed under≺c if a ∈ A and b ≺c a, then
b ∈ A.
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For an enq event e in c, Valc(e) denotes the value to be inserted by e in c. For-
mally, Valc(enq(x)) = x. Similarly, for a completed deq event d in c, Valc(d) denotes
the value removed by d in c. Formally, Valc(deq(x)) = x. For a pending deq event,
Valc(deq(x)) is undefined.

We will use a labelled transition system, LTSQ, to define the queue semantics. The
states of LTSQ are sequences over N, the initial state is the empty sequence ε. There is
a transition from q to q′ with action a, written q

a−→ q′, if (i) a = enq(x) and q′ = q · x,
or (ii) a = deq(x) and q = x′ · q′, or (iii) a = deq(NULL) and q = q′ = ε. A queue is
partial if the last transition (NULL returning dequeue event) is not allowed.

A run of LTSQ is an alternating sequence q0l1q1 . . . lnqn of states and queue events

such that for all 1 ≤ i ≤ n, we have qi−1
li−→ qi. The trace of a run is the sequence

l1 . . . ln of the events occurring on the run. A queue behavior b is legal iff there is a run
of LTSQ with trace b.

We find it useful to express the queue semantics in an alternative formulation.

Definition 2. A queue behavior b has a sequential witness if there is a total mapping
μseq from Deq(b) to Enq(b) ∪ {⊥} such that

– μseq(d) = e implies Val b(d) = Valb(e),
– μseq(d) = ⊥ iff Val b(d) = NULL,
– μseq(d) = μseq(d

′) = ⊥ implies d = d′,
– e ≺b e′ and there exists d′ with μseq(d

′) = e′ imply μ−1
seq(e) ≺b d′,

– μseq(d) = ⊥ implies that
|{e ∈ Enq(b) | e ≺b d}| = |{d′ ∈ Deq(b) | d′ ≺b d ∧ μseq(d

′) = ⊥}|.

Proposition 1. A queue behavior b is legal iff b has a sequential witness.

Proof (Sketch). If b is legal, then, by definition, it has a run r in LTSQ with trace b. Let d

be a dequeue event occurring in b. Then there is a transition q
d−→ q′ in r. If d = deq(x)

for some x ∈ N, then set μseq(d) = e where e is the enqueue event enq(x) which has
inserted x into the state sequence. If d = deq(NULL), then set μseq(d) = ⊥. Then, it is
easy to check that μseq satisfies all the conditions of being a sequential witness for b.

For the other direction, let μseq be a sequential witness for b. We observe that i) an
element x is in state q iff an enqueue event enq(x) has happened on the prefix of the
run ending at q and the dequeue event with μseq(d) = e has not happened on the same
prefix, ii) for any two enqueue events e, e′ with e ≺b e′, Valb(e) occurs in a state
before Valb(e′), iii) the relative ordering of inserted elements in a state does not change
as long as both are in the state, iv) each enqueue event inserts exactly one element to
the state, v) each dequeue event deq(x) with x = NULL removes exactly one element
from the state, and vi) the dequeue event deq(NULL) does not change the state. Then,
by induction on the length of b, we show that b has a run in LTSQ. ��

3 Conditions for Queue Linearizability

3.1 Generic Necessary and Sufficient Conditions

We start by reducing the problem of checking linearizability of a given history, c, with
respect to the queue specification to finding a mapping from its dequeue events to its
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enqueue events satisfying certain conditions. Intuitively, we map each dequeue event to
the enqueue event whose value the dequeue removed, or to nothing if the dequeue event
returns NULL. We say that the mapping is safe if it pairs each deq event with a proper
enq event, implying that elements are inserted exactly once and removed at most once.
A safe mapping is ordered if it additionally respects precedence induced by c. Finally,
an ordered mapping is a linearizability witness if all NULL returning deq events see at
least one state where the queue is logically empty. Below, we formalize these notions.

Definition 3 (Safe Mapping). A mapping Match from Deq(c) to Enq(c)∪{⊥} is safe
for c if
(1) for all d ∈ Deq(c), if Match(d) = ⊥, then Valc(d) = Valc(Match(d));
(2) for all d ∈ Deq(c), Match(d) = ⊥ iff Valc(d) = NULL; and
(3) for all d, d′ ∈ Deq(c), if Match(d) = Match(d′) = ⊥, then d = d′.

Definition 4 (Ordered Mapping). A safe mapping Match for c is ordered if
(1) for all d ∈ Deq(c), we have d ≺c Match(d); and
(2) for all d ∈ Deq(c) and e′ ∈ Enq(c), if e′ ≺c Match(d), then there exists d′∈Deq(c)
such that e′ = Match(d′).

Definition 5 (Linearization Witness). An ordered mappingMatch for c is a lineariza-
tion witness if for any d ∈ Deq(c) with Valc(d) = NULL, there exists a subset D′ ⊆
Deq(c) such that Match(D′) is closed under ≺c and D′ ∩ After(d, c) = ∅ and
Before(d, c) ∩ Enq(c) ⊆ Match(D′).

The main result of this section is stated below.

Theorem 1. A set of histories C is linearizable with respect to queue iff every c ∈ C
has a completion ĉ ∈ Compl (c) that has a linearization witness.

Proof. (⇒) If c ∈ C is linearizable with respect to queue, then there is a linearization
s of c which is a legal queue behavior. By Prop. 1, s has a sequential witness μseq. The
mapping μseq satisfies the conditions of a linearization witness since all ≺c orderings
are preserved in s.

(⇐) Pick a c ∈ C and let ĉ ∈ Compl (c) be its completion that has a linearization
witness Match . Let < be some arbitrary total order on the events of ĉ. We construct the
linearization of ĉ inductively as follows:

Let c′ be the prefix of ĉ that has been processed, and let s′ be the resulting sequential
history. All events in s′ are placed. Events that are not placed but are pending after c′

are called candidate. We extend c′ until the first response action that happens after c′ in
ĉ. Formally, let c′ · ce · ar be a prefix of ĉ such that ce contains only invocation actions
and ar is a response action. Let A denote the set of all candidate events after c′ · ce · ar.
The new s′ is obtained by appending some a ∈ A as the next event if
(1) a is an enqueue event, and there does not exist another enqueue event e such that
Match−1(e) ≺ĉ Match−1(a) and e is not placed in s′; or
(2) a is a dequeue event with Val ĉ(a) = NULL, Match(a) is placed in s′, and there does
not exist another dequeue event d such that Match(d) ≺ĉ Match(a) and d is not placed
in s′; or
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(3) a is a dequeue event with Val ĉ(a) = NULL and the number of enqueue events in s′

is equal to the number of dequeue events d with Val ĉ(d) = NULL in s′.
In case both first and second conditions are satisfied, the candidate element minimal
with respect to < is appended to s′. This iteration is repeated until there are no candidate
events that satisfy any of the conditions, at which point the inductive step ends with
setting c′ to c′ · ce · ar. The existence of Match guarantees that such a sequence can
be constructed. The constructed sequence s has Match also as a sequential witness,
completing the proof. ��

3.2 Necessary and Sufficient Conditions for Complete Histories

We now focus on complete histories, namely ones with no pending events. We observe
that their linearizability violations can always be manifested in terms of the dequeued
values. Intuitively, the possible violations are:

(VFresh). A dequeue event returns a value not inserted by any enqueue event.
(VRepet). Two dequeue events return the value inserted by the same enqueue event.
(VOrd). Two values are enqueued in a certain order, and either they are dequeued in

the reverse order or only the later value is dequeued.
(VWit). A dequeue event returning NULL even though the queue is never logically

empty during the execution of the dequeue event.

We have the following result which ties the above violation types to linearizable queues.

Proposition 2. A complete history c has a linearization which is a legal queue behavior
iff it has none of the VFresh, VRepet, VOrd, VWit violations.

Proof (Sketch). First, note that as c has no pending events, Compl (c) = {c}. If c has a
linearization which is a legal queue behavior, then by Theorem 1, c has a linearization
witness Match , and so none of the violations can happen. As Match is safe, (VFresh)
and (VRepet) cannot happen; as it is ordered, (VOrd) cannot occur; and as it is a lin-
earization witness, likewise (VWit) cannot happen. Similarly, in the other direction, the
absence of all the violations ensures the existence of a linearizability witness. ��

We remark that none of the violations mentions the possibility of an element inserted
by an enqueue being lost forever. This is intentional, as such histories are ruled out by
the following proposition.

Proposition 3. Given an infinite sequence of complete histories c1, c2, . . . not contain-
ing any of the violations above, where for every i, ci is a prefix of ci+1, and the number
of dequeue events in ci is less than that of ci+1, if c1 contains an enqueue event enq(x),
then exists some cj containing deq(x).

Proof. We prove this by contradiction. If there is no deq(x) event, then enq(x) is al-
ways in the queue, and so, from the absence of VWit violations, none of the dequeue
events following enq(x) can return NULL. Also, since dequeue events cannot return
values that were not previously enqueued (VFresh) and cannot return the same value
multiple times (VRepet), and since the number of dequeue events is increasing, then
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there must also be new enqueue events. However, only finitely many of those are not
preceded by enq(x) which completes in c1. This means that eventually one dequeue
event has to return an element inserted by enq(y) such that enq(x) ≺cj enq(y), which
is VOrd. ��

For checking purposes, we find it useful to re-state the third violation as the following
equivalent proof obligation.

(POrd). For any enqueue events e1 and e2 with e1 ≺c e2 and Valc(e1) = Valc(e2),
a dequeue event d2 cannot return Valc(e2) if Valc(e1) is not removed in c or is
removed by d1 with d2 ≺c d1.

Thus, we need an invariant which specifies all those executions satisfying the premise
of POrd, and prove that such an execution cannot end with a dequeue event (in the sense
that no other method is preceded by that dequeue event) returning the value of e2.

3.3 Necessary and Sufficient Conditions for Purely-Blocking Queues

There is a subtle complication in the statement of Theorem 1. The witness mapping
is chosen relative to some completion of the concurrent history under consideration.
However, because implementations may become blocked, such completions may ac-
tually never be reached. This means that one cannot reason about the correctness of
a queue implementation by considering only reachable states. What we would ideally
like to do is to claim that if the implementation violates linearizability, then there is a
finite complete history of the implementation which has no witness. In other words, if
the implementation contains an incomplete history with no witness, then that execution
is the prefix of a complete history of the implementation.

Let C be the set of all possible execution histories of a library implementation.
We call a library implementation completable iff for every history c ∈ C, we have
Compl (c)∩C = ∅. For completable implementations, it suffices to consider only com-
plete executions.

Theorem 2. A completable queue implementation is linearizable iff all its complete
histories have none of the VFresh, VRepet, VOrd and VWit violations.

Proof. (⇒) If some complete history has a violation, by Prop. 2, it has no linearization,
contradicting the assumption that the implementation is linearizable.

(⇐) Consider an arbitrary history c of the implementation. As the implementation
is completable, there exists a completion ĉ ∈ Compl (c) that is a valid history of the
implementation. From our assumptions, ĉ cannot have a violation, and so by Prop. 2, ĉ
has a linearization, and therefore so does c. ��

Since it may not be obvious how to easily prove that an implementation is completable,
we introduce the stronger notion of purely-blocking implementations, that is straightfor-
ward to check. We say that an implementation is purely-blocking when at any reachable
state, any pending method, if run in isolation will terminate or its entire execution does
not modify the global state.
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Proposition 4. Every purely-blocking implementation is completable.

Proof. Given a history c ∈ C, we will construct ĉ ∈ Compl (c) ∩ C. We fix a total
order of pending events, and consider them in that order. For a pending method e, if
running it in isolation terminates, then extend c with the corresponding response for e.
Otherwise, the execution of e does not modify any global state and so can be removed
from the history without affecting its realizability. ��

We remark that our new notion of purely-blocking is a strictly weaker requirement
than the standard non-blocking notions: obstruction-freedom, which requires all pend-
ing methods to terminate when run in isolation, as well as the stronger notions of lock-
freedom and wait-freedom. (See [7] for an in depth exposition of these three notions.)

4 Manually Verifying the Herlihy-Wing Queue

Let us return to the HW queue presented in §1 and prove its correctness manually fol-
lowing our aspect-oriented approach.

First, observe that HW queue is purely-blocking:enq() always terminates, and deq()
can update the global state only by reading x = NULL at E2, in which case it imme-
diately terminates. So from Prop. 4 and Theorem 2, it suffices to show that it does not
have any of the four violations. The last one, VWit, is trivial as the HW deq() never
returns NULL. So, we are left with three violations whose absence we have to verify:
VFresh, VRepet, and VOrd.

Intuitively, there are no VFresh violations because deq() can return only a value that
has been stored inside the q.items array. The only assignments to q.items are E1 and
D2: the former can only happen by an enq(x), which puts x into the array; the latter
assigns NULL.

Likewise, there are no VRepet violations because whenever in an arbitrary history
two calls to deq() return the same x, then at least twice there was an element of the
q.items array holding the value x and was updated to NULL by the SWAP instruction
at D2. Therefore, at least two assignments of the form q.items[ ] ← x happened; i.e.
there were at least two enq(x) events in the history.

We move on to the more challenging third condition, VOrd. We actually consider its
equivalent reformulation, POrd. Fix a value v2 and consider a history c where every
method call enqueuing v2 is preceded by some method call enqueuing some different
value v1 and there are no deq() calls returning v1 (there may be arbitrarily many con-
current enq() and deq() calls enqueuing or dequeuing other values). The goal is to
show that in this history, no deq() return v2.

Let us suppose there is a dequeue d returning v2, and try to derive a contradiction.
For d to return v2, it must have read range ≥ i2 such that q.items[i2] = v2. So, d must
have read q.back at D1 after enq(v2) incremented it at E1.

Since, enq(v1) ≺c enq(v2), it follows that enq(v2) will have read a larger value
of q.back at E1 than enq(v1). So, in particular, once enq(v1) finishes, the following
assertion will hold:

∃i1 < q.back. q.items[i1] = v1 ∧ (∀j < i1. q.items[j] = v2) (∗)
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procedure deq(v : val)
while true do〈

range← q.back − 1
〉

for i = 0 to range do⎛⎜⎜⎝
〈x← q.items[i];
assume(x = v ∧ x �= NULL);
q.items[i]← NULL

〉
;

return x

⎞⎟⎟⎠ !
〈x← q.items[i];
assume(x = NULL);
q.items[i]← NULL

〉

Fig. 2. The HW dequeue method instrumented with the prophecy variable v guessing its return
value, where ! stands for non-deterministic choice

Note that since, by assumption, v1 can never be dequeued, and any later enq(v2) can
only affect the q.items array at indexes larger than i1, (∗) is an invariant.

Given this invariant, however, it is impossible for d to return v2, as in its loop it will
necessarily first have encountered v1.

5 Automation

As can be seen from our previous informal argument, establishing absence of VFresh
andVRepet violations was relatively straightforward, whereas provingPOrd was some-
what more involved. Therefore, in this section, we will focus on automating the proof of
the third property, POrd. Towards the end of the section, we will discuss the automatic
verification of the absence of VWit violations for queue implementations, where deq

may return NULL.

Prophetic Instrumentation of Dequeues. Our proof technique relies heavily on instru-
menting the deq() function with a prophecy variable ‘guessing’ the value that will be
returned when calling it. Essentially, we construct a method, deq(v), such that the set
of traces of

⊔
x∈N∪{NULL} deq(x) is equal to the set of traces of deq(), where � stands

for non-deterministic choice. Figure 2 shows the resulting automatically-generated in-
strumented definition of deq(v) for the HW queue.

Our implementation of the instrumentation performs a sequence of simple rewrites,
each of which does not affect the set of traces produced:

return E  assume(v = E); return E

if B then C else C′  (assume(B);C) � (assume(¬B);C ′)

C; assume(B)  assume(B);C provided fv(B) ⊆ Locals \ writes(C)

C; (C1 � C2) � (C;C1) � (C;C2)

(C1 �C2);C � (C1;C) � (C2;C)

In general, the goal of applying these rewrite rules is to bring the introduced assume(v =
E) statements as early as possible without unduly duplicating code.

Proving Absence of VOrd Violations. It turns out that our automated technique for prov-
ing POrd also establishes absence of VFresh violations as a side-effect. We reduce the
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problem of proving absence of VFresh and VOrd violations to the problem of checking
non-termination of non-deterministic programs with an unbounded number of threads.
The reduction exploits the instrumented deq(v) definition: deq() cannot return a result
x in an execution precisely if deq(x) cannot terminate in that same execution.

Theorem 3. A completable queue implementation has no VFresh and VOrd violations
iff for all n ∈ N and forall v1 and v2 such that v1 = v2, the program1

Prg
def
= b← false; (deq(v2) ‖

n times︷ ︸︸ ︷
C‖ . . . ‖C)

does not terminate, where

C
def
= (enq(v1); b← true) � (assume(b); enq(v2)) �

⊔
x 
=v2

enq(x) �
⊔
x 
=v1

deq(x) .

Proof. (⇒) We argue by contradiction. Consider a terminating history c of Prg . If
enq(v2) is not invoked in c, then as there are no VFresh violations, we know that no
deq() in c can return v2, contradicting our assumption that c is a terminating history of
Prg . Otherwise, if enq(v2) is invoked in c, then at some earlier point assume(b) was
executed, and since initially b was set to false, this means that b ← true was executed
and therefore enq(v1) ≺c enq(v2). Consequently, from POrd, if there is deq() in c
returns v2, there must be a deq() in c that can be completed to return v1, contradicting
our assumption that c is a terminating history of Prg .

(⇐) We have two properties to prove. ForVFresh, it suffices to consider the restricted
parallel context that never chooses to execute the first two of the non-deterministic
choices. In this restricted context, namely one that never enqueues v2, deq(v2) does not
terminate, and so deq() cannot return v2. For VOrd, consider a history in which every
enq(v2) happens after some enqueue of a different value, say enq(v1), and in which
there is no deq(v1). Such a history can easily be produced by the unbounded parallel
composition of C, and so deq(v2) also does not terminate, as required. ��

To prove non-termination, we essentially prove the partial-correctness Hoare triple,
{true} Prg {false}. Given a sound program logic, the only way for such a triple to
hold is for the program to always diverge.

Implementation within CAVE. To prove such triples, we have mildly adapted the imple-
mentation of CAVE [15], a sound but incomplete thread-modular concurrent program
verifier that can handle dynamically allocated linked list data structures, fine-grained
concurrency. The tool takes as its input a program consisting of some initialization code
and a number of concurrent methods, which are all executed in parallel an unbounded

1 For simplicity, we assume that the methods cannot distinguish the thread in which they are
running (i.e., they do not use thread-local storage or thread identifiers). Handling thread iden-
tifiers properly is not difficult: we have to record a set of thread identifiers that are not currently
in use. Before each method invocation, we have to atomically pick and remove an identifier
from that set, and on returning from the method, we have to add the current identifier back the
set of unused identifiers.
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number of times each. When successful, it produces a proof in RGSep that the program
has no memory errors and none of its assertions are violated at runtime. Internally, it
performs RGSep action inference [16] with a rich shape-value abstract domain [14] that
can remember invariants of the form that value v1 is inside a linked list. CAVE also has
a way of proving linearizability by a brute-force search for linearization points (see [15]
for details), but this is not applicable to the HW queue and therefore irrelevant for our
purposes.

The main modifications we had to perform to the tool were: (1) to add code that
instruments deq() methods with a prophecy argument guessing its return value, thereby
generating deq(v); (2) to improve the abstraction function so that it can remember
properties of the form v2 /∈ X , which are needed to express the (∗) invariant of the
proof in §4; and (3) to add some glue code that constructs the Prg verification condition
and runs the underlying prover to verify it.

As CAVE does not support arrays (it only supports linked lists), we gave the tool a
linked-list version of the HW queue, for which it successfully verified that there are no
VFresh and VOrd violations.

Showing Absence of VWit Violations. Here, we have to show that any dequeue event
cannot return empty if it never goes through a state where the queue is logically empty.
This in turn means that we have to express non-emptiness using only the actions of the
history (and not referring to the linearization point or the gluing invariant which relates
the concrete states of the implementation to the abstract states of the queue). For the
following let us fix a (complete) concurrent history c and a dequeue of interest d which
returns NULL and does not precede any other event in c.

Let c′ be some prefix of c and let e ∈ Enq(c′) be a complete enqueue event in c′.
We will call e alive after c′ if there is no completion of c′ in which the dequeue event
deq(Valc′(e)) occurs. Let di denote the dequeue event which removes the element
inserted by the enqueue event ei; that is, di = deq(Valc(ei)). A sequence e0e1 . . . en
of enqueue events in Enq(c) is covering for d in c if the following holds:

– e0 is alive at c′ where c′ is the maximal prefix of c such that d /∈ Deq(c′).
– For all i ∈ [1, n], ei starts before d completes.
– For all i ∈ [1, n], we have ei ≺c di−1.
– en is alive at c.

Note that all di must exist by the third condition and that dn does not exist by the last
condition. Then, the sequence is covering for d if d0 does not start before d starts, and
every enqueue event ei completes before the dequeue event di−1 starts. Intuitively, this
means that at every state visited during the execution of d, the queue contains at least
one element. The property corresponding to the last violation (VWit) then becomes the
following:

(PWit). A dequeue event d cannot return NULL if there is a covering for d.

We will actually re-state the same property in a simpler way by making the following
observation.
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Proposition 5. There is a covering for d in c iff at every prefix c′ of c such that d is
running, there is at least one alive enqueue event.

Then, we can alternatively state PWit as follows:

(PWit′). A dequeue event d cannot return NULL if for every prefix c′ at which d is
pending there exists an alive enqueue event.

Note that POrd can also be stated in terms of alive enqueue events.

(POrd′). For any enqueue events e1 and e2 with e1 ≺c e2 and Valc(e1) = Valc(e2), a
dequeue event cannot return Valc(e2) if e1 is alive at c.

6 Related Work

Linearizability was first introduced by Herlihy and Wing [8], who also presented the
HW queue as an example whose linearizability cannot be proved by a simple forward
simulation where each method performs its effects instantaneously at some point during
its execution. The problem is, as we have seen, that neither of E1 or E2 can be given
as the (unique) linearization point of enq events, because the way in which two concur-
rent enqueues are ordered may depend on not-yet-completed concurrent deq events. In
other words, one cannot simply define a mapping from the concrete HW queue states
to the queue specification states. Nevertheless, Herlihy and Wing do not dismiss the
linearization point technique completely, as we do, but instead construct a proof where
they map concrete states to non-empty sets of specification states.

This mapping of concrete states to non-empty sets of abstract states is closely related
to the method of backward simulations, employed by a number of manual proof ef-
forts [3, 5, 13], and which Schellhorn et al. [13] recently showed to be a complete proof
method for verifying linearizability. Similar to forward simulation proofs, backward
simulation proofs, are monolithic in the sense that they prove linearizability directly by
one big proof. Sadly, they are also not very intuitive and as a result often difficult to
come up with. For instance, although the definition of their backward simulation rela-
tion for the HW queue is four lines long, Schellhorn et al. [13] devote two full pages to
explain it.

As a result, most work on automatically verifying linearizability (e.g. [1, 2, 14, 15])
has relied on the simpler technique of forward simulations, even though it is known to
be incomplete. The programmer is typically required to annotate each method with its
linearization points and then the verifier uses some kind of shape analysis that auto-
matically constructs the simulation relation. This approach seems to work well for sim-
ple concurrent algorithms such as the Treiber stack and the Michael and Scott queues,
where finding the linearization points may be automated by brute-force search [15],
but cannot handle more challenging examples such as the ones mentioned in the
introduction.

Among this line of work, the most closely related one to this paper is the recent
work by Abdulla et al. [1], who verify linearizability of stack and queue algorithms
using observer automata that report specification violations such as our VOrd. Their
approach, however, still requires users to annotate methods with linearization points,
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because checker automata are synchronized with the linearization points of the imple-
mentation.

We would also like to point out that the use of forward simulations is not limited to
automated verifications of linearizability. Several manual verification efforts have also
used forward simulations (e.g. [3, 4]).

To the best of our knowledge, there exist only two earlier published proofs of the
HW queue: (1) the original pencil-and-paper proof by Herlihy and Wing [8], and (2) a
mechanized backward simulation proof by Schellhorn et al. [13].

Both proofs are manually constructed. In comparison, our new proof is simpler, more
modular, and largely automatically generated.2 This is largely due to the fact that we
have decomposed the goal of proving linearizability into proving four simpler proper-
ties, which can be proved independently. This may allow one to adapt the HW queue
algorithm, e.g. by checking emptiness of the queue and allowing deq to return NULL,
and affecting only the proof of absence of VWit violations without affecting the cor-
rectness arguments of the other properties.

Our violation conditions are arguably closer to what programmers have in mind when
discussing concurrent data structures. Informal specifications written by programmers
and bug reports do not mention that some method is not linearizable, but rather things
like that values were dequeued in the wrong order.

7 Conclusion

We have presented a new method for checking linearizability of concurrent queues. In-
stead of searching for the linearization points and doing a monolithic simulation proof,
we verify four simple properties whose conjunction is equivalent to linearizability with
respect to the atomic queue specification. By decomposing linearizability proofs in this
way, we obtained a simpler correctness proof of the Herlihy and Wing queue [8], and
one which can be produced automatically.

We believe that our new property-oriented approach to linearizability proofs will be
equally applicable to other kinds of concurrent shared data structures, such as stacks,
sets, and maps. In the future, we would like to build tools that will automate this kind
of reasoning for such data structures.
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Abstract. We present a new model checking procedure for concurrent
systems against safety properties such as data races or atomicity vi-
olations. Our analysis sidesteps the state space explosion problem by
inferring causal dependencies for concurrent traces instead of searching
over a space of reachable states, and can be understood as an interplay
between local trace inference and termination analysis based on causal
loops. Local trace inference introduces new actions anywhere in the trace
if they causally follow from the context. Our procedure terminates if we
either find a complete error trace or the whole space of potential er-
ror traces is covered by causal loops. The causality-based verification of
multi-threaded programs can be dramatically faster than the standard
state space traversal. In particular, we show that the complexity of ver-
ifying multi-threaded programs with locks reduces from exponential to
polynomial.

1 Introduction

Causality, the relationship between two events where the first event is recognized
as a necessary requirement for the occurrence of the second, is a key concept
in our understanding of complex computer systems. Processes in a concurrent
system proceed independently until they establish causal dependence through
synchronization. Modeling formalisms like Petri nets [10] explicitly capture the
causal dependence between transitions through the flow of tokens.

Not surprisingly, causality has also proven useful in the automatic verifica-
tion of concurrent systems. Petri net unfoldings [4], for example, avoid a total
temporal ordering of the events and instead unwind the causality relation. In
partial order reduction [5], causally independent events are forced into a fixed
temporal order. Traditionally, however, the role of causality in automatic ver-
ification has always been secondary compared to the state-based reachability
analysis: in Petri net unfoldings, we unwind the causality relation forward until
we are certain that no more reachable markings can be found; in partial order
reduction, we avoid the exploration of computation paths that lead to the same
states that have already been seen on some other path with a different ordering
of the causally independent events.

� This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 257–272, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



258 A. Kupriyanov and B. Finkbeiner

In this paper, we upgrade the role of causality in automatic verification to that
of a first-class citizen. The approach is based on the observation that reaching
an error state often causally depends on a small number of certain key events,
which, in a correct system, contradict each other. For example, a violation of
mutual exclusion between two processes requires that previously both processes
have entered the critical section and, during one of these events, the other pro-
cess was already in the critical section. Intuitively, our verification procedure
identifies such necessary steps on a trace from initial to error states and then
either completes the partial trace into a full error trace or proves that no such
completion exists.

In our algorithm, we capture the causal dependencies as Mazurkiewicz-style
concurrent traces. Starting with a default initial trace, which only captures the
initial and error states, we capture, step by step, more dependencies by applying
special graph transformations, which we call causal transitions : the causal tran-
sitions include, for example, the necessary action transition, which uses Craig
interpolation to find a necessary intermediate action. A full exploration of the
causal dependencies leads to an in general infinite tree, which we call the causal
trace unwinding. If all branches of the causal trace unwinding are either contra-
dictory (meaning that the causal requirements of reaching the error cannot be
satisfied) or infinite (meaning that no finite number of actions suffices to reach
the error), we can conclude that the error is, in fact, unreachable. The verifica-
tion algorithm builds finite prefixes of the causal trace unwinding and terminates
as soon as the two conditions can be established for the full tree.

The causality-based verification of multi-threaded programs can be dramati-
cally faster than the standard state space traversal. In the paper, we demonstrate
this effect for multi-threaded programs with locks. It turns out that our algo-
rithm verifies the most general class of these programs in polynomial time. This
answers an open question originally posed by Alexander Malkis [7].

The remainder of the paper is structured as follows. After a brief discussion of
related work, we consider a motivating example from the class of multi-threaded
programs with locks in Section 2. We discuss the necessary preliminaries in Sec-
tion 3 and define the central structure of our approach, causal trace unwinding,
in Section 4. The causality-based verification algorithm, which allows us to ex-
plore only a finite prefix of the unwinding, is described in Section 5. Finally,
in Section 6 we show how our verification algorithm settles the open question
regarding the verification of multi-threaded programs with locks, reducing the
complexity from exponential to polynomial.

Related Work. Causality-based verification can be understood as a general-
ization of standard model checking [1], because the next-state relation usually
explored in model checking captures the causal dependencies between successor
states: a trace from some arbitrary non-error state to an error state can only
exist if there is a trace from one of the state’s successors. However, it is usually
easy to obtain additional elements of the causality relation, for example based on
a cheap analysis of the control flow graph. Such additional elements are exploited
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by our procedure, but not by standard model checking based on a forward or
backward traversal of the state space.

Our method is related to approaches based on partial orders, such as partial
order reduction [5], Mazurkiewicz traces [9], and Petri net theory [10]. Similar
to causality-based verification, these approaches exploit the independence that
results from the combination of separate processes. Unlike these approaches, we
do not require, however, that the system is given a-priori as a partial order.
Our rules extract causal dependencies from the system description and use such
dependencies to contradict the existence of an error trace. Finally, causality-
based verification is a tableau-based decision procedure, related to the tableau-
based approaches for modal and temporal logics [8].

2 Motivating Example

As a motivating example we consider the class of multithreaded programs with
critical sections protected by shared lock variables, which is described in [7]. A
program in this class consists of n threads, executing in the interleaved fashion,
and m shared boolean lock variables. Each thread contains some finite number
of critical sections, protected by the “acquire lck i” and “release lck i” statements
for one of the lock variables. Critical sections may be arbitrarily nested or in-
tersected, and a thread may have an arbitrary control structure via the use of
“if (ϕ) goto j” statements, where ϕ is any formula over the shared variables.
The only restriction for a correct program is that the control flow may enter one
of the critical sections for the lck i variable only via the “acquire lck i” statement,
and may exit it either by jumping to another critical section for the same lock
variable, or by executing the “release lck i” statement. The syntax and semantics
of such programs are shown in the left part of Figure 1; they can be used to ana-
lyze systems with built-in “test-and-set” primitive. In the following we consider
the example program depicted on the right of Figure 1; we want to verify that
threads 1 and 2 cannot be simultaneously at their critical sections 2, protected
by lock l1.

Our algorithm operates on a causal trace unwinding, where vertices are labeled
with abstract traces. In Figure 2 we depict the unwinding in the center, and the
labels of its vertices on the left or on the right from a corresponding vertex (we
do not draw some trace edges, which follow from transitivity).

Step 1: We start with an unwinding, containing a single vertex 1, and labeled
with the abstract trace representing all concrete traces from initial state to error
state (initial action i is labeled with pc′1 = 1∧pc′2 = 1∧pc′3 = 1, and error action
e is labeled with pc1 = 2 ∧ pc2 = 2).

Step 2: We check whether the abstract trace of vertex 1 is concretizable. It
is not, for example because of the of the conflict pc′1 = 1 � pc1 = 2 between
actions i and e. We conclude that in between of initial and error actions a
necessary action, characterized by the transition predicate pc1 = 2 ∧ pc′1 = 2,
should happen. There is only one system transition, a1, satisfying this predicate,
and we introduce new vertex 2 in the unwinding, labeled with the abstract trace
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Syntax Semantics

acquire li li = 0 ∧ l′i = 1 ∧
pc′ = pc + 1

release li l′i = 0 ∧
pc′ = pc + 1

if (ϕ) goto j (ϕ ∧ pc′ = j) ∨
(¬ϕ∧pc ′ = pc+1)

1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

Fig. 1. General class of multithreaded programs with binary locks. Left: Syntax and
semantics. Right: Example system consisting of 3 threads with critical sections over 3
lock variables. Initial state vector is (1, 1, 1), and error state vector is (2, 2, ).

where transition a1 is inserted. We require that thread 1 does not leave location 2,
and mark the edge a1 → e with the predicate pc1 = 2.

Step 3: is similar to step 2: there is a conflict pc′2 = 1 � pc2 = 2, and a single
necessary action, a2, satisfying the transition predicate pc2 = 2 ∧ pc′2 = 2. We
introduce new vertex 3, where actions a1 and a2 are concurrent: they are both
necessary, but the order of their occurrence is unspecified.

Step 4: We try to linearize the abstract trace from vertex 3; it contains two
concurrent actions, and we choose an arbitrary order between them, for example
a1 before a2. The linear trace contains the conflict l′ = 1 � l = 0 (a1 has the
postcondition l = 1, while a2 has the precondition l = 0). But, because the order
between a1 and a2 is not dictated by the abstract trace, we make an order split,
considering both alternatives (vertices 4 and 5).

Step 5: We consider only vertex 5 from the previous step; vertex 4 is analyzed
analogously. The conflict l′ = 1 � l = 0 between a1 and a2 is now dictated by the
trace; so a new necessary action, satisfying the predicate l = 0∧ l′ = 0 should be
inserted. We instantiate this abstract action with all concrete actions, satisfying
the predicate, namely r1, r2, r3, and r5. Here, for the picture clarity, we show
only vertices 6 (with r1) and 7 (with r2).

Step 6: Consider first the trace of vertex 6: it contains a contradiction, namely
action r1 (labeled with pc1 = 4 ∧ pc′1 = 5 ∧ l′ = 0) lies in the scope of the edge
a1 → e (labeled with pc1 = 2), and their labels are unsatisfiable together. Thus,
we close this branch as contradictory.

Step 7: For each leaf vertex we try to find whether a “similar” concurrent trace
was already encountered before. For the case of vertex 7, its label is, indeed,
similar to the label of vertex 1: we can find a mapping from all nodes and edges
of the latter to the nodes and edges of the former. More precisely, we can map
node i to node i, and node e to node r2. Moreover, the label of node r2, which
equals to pc2 = 2 ∧ pc′2 = 3 ∧ l′ = 0 ∧ pc1 = 2 due to the restriction from the
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11i e

2i a1 e
pc1 = 2

3i

a1

a2

e

pc1 = 2

pc2 = 2

4i

a1

a2

e

pc1 = 2

pc2 = 2

5 i

a1

a2

e

pc1 = 2

pc2 = 2

6 i

a1

a2

r1 e

pc1 = 2

pc2 = 2

7 i

a1

a2

r2 e

pc1 = 2

pc2 = 2

. . . . . .

⊥

Fig. 2. First steps of the causal trace unwinding for the example multi-threaded pro-
gram with binary locks

edge a1 → e, implies the label of node e. Thus, the trace of vertex 7 is more
restrictive than the trace of vertex 1, and we can cover vertex 7 by vertex 1.
Also, there is node a2 on the right of r2, which the covering “forgets”. The path
1→ 2→ 3→ 5→ 7→ 1 in the unwinding constitutes a causal loop: as long as
we follow the loop, we keep introducing new and new actions a2 on the right.

Continuing the process, we would find out that all leaf nodes in the trace
unwinding are either contradictory, as in step 6, or are covered by such causal
loops as in step 7. This implies that our system is correct, because any possible
error trace would have infinite length. We will return to the verification of multi-
threaded programs with locks in Section 6.

3 Preliminaries

Transition Systems. We consider concurrent systems described in some first-
order assertion language. For a set of variables V , we denote by Φ(V) the set of
first-order formulas over V . For each variable x ∈ V we define a primed variable
x′ ∈ V ′, which denotes the value of x in the next state. We call formulas from the
sets Φ(V) and Φ(V ∪ V ′) state predicates and transition predicates, respectively.

A transition system is a tuple S = 〈V , T, init, error〉 where V is a finite set of
system variables; T ⊆ Φ(V ∪ V ′) is a finite set of system transitions; init ∈ Φ(V)
and error ∈ Φ(V) are state predicates, characterizing initial and error states.

A state of S is a valuation of system variables V . We call an alternating
sequence of states and transitions s0, t1, s1, t2, . . . , tn, sn a trace, if init(s0) holds,
and for all 1 ≤ i ≤ n, ti(si−1, si) holds. We call a trace s0, t1, s1, t2, . . . , tn, sn
an error trace if it ends in some error state, i.e. the predicate error(sn) holds.
We say that the system is safe if there does not exist any error trace for that
system; otherwise the system is unsafe. For a system S we denote the set of its
traces by L(S), and the set of its error traces by Le(S) ⊆ L(S).
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Transition systems are well suited for the representation of multi-threaded
programs with interleaving semantics: in this case the set of system transitions
is simply a union of transitions of individual processes.

Graph Transformations. We follow [2,3] and use the so-called single-pushout
(SPO) and double-pushout (DPO) approaches to describe graph transformations.
All graph transformations that we use are non-erasing and lie at the intersection
of both approaches; the definitions below are adapted from [2].

A graph is a tuple G = 〈N,E〉, where N is a set of nodes, and E ⊆ N ×N is
a set of edges. The source and target functions s, t : E → N map each edge to
its first and second component, respectively.

Given two graphs G = 〈N,E〉 and G′ = 〈N ′, E′〉, a graph morphism f : G→
G′ is a pair f = 〈fN : N → N ′, fE : E → E′〉 of functions, preserving sources
and targets: fN ◦ t = t′ ◦ fE , and fN ◦ s = s′ ◦ fE.

For our purposes, a graph production p : (L
r−→ R) is an injective graph

morphism r : L → R. The graphs L and R are called the left-hand side and
the right-hand side of p, respectively. A given production p : (L

r−→ R) can be
applied to a graph G if there is an occurrence of L in G, i.e. an injective graph
morphism m : L → G, called a match. In this case the resulting graph H can
be obtained from G by adding all elements of R with no pre-image in L. The
application of a production p to a graph G with a match m is called a direct

derivation; we will denote it interchangeably with G
p,m
===⇒ H and H = pm(G).

4 Causal Trace Unwindings

4.1 Concurrent Traces

We follow the theory of Mazurkiewicz traces, and define concurrent traces
through their dependence graphs. A concurrent trace is a labeled, directed, acyclic
graph A = 〈N,E, ν, η〉, where 〈N,E〉 is a graph with nodes N , called actions,
and edges E; ν : N → Φ(V ∪ V ′), η : E → Φ(V ∪ V ′) are labelings of nodes and
edges with transition predicates. We denote the set of concurrent traces by A.

A concurrent trace describes a set of system traces. For a particular concurrent
trace its actions specify which transitions should necessarily occur in a system
trace, while its edges represent the (partial) ordering between such transitions
and constraint the intermediate ones.

Trace Language. For a transition system S = 〈V , T, init, error〉, the language
of a concurrent trace A = 〈N,E, ν, η〉 is defined as a set L(A) of system traces
such that for each trace s0, t1, s1, t2, . . . , tn, sn ∈ L(A) there exists an injective
mapping σ : N → {t1, . . . , tn} such that:
1. for each action a ∈ N and ti = σ(a) the formula ν(a)

(
si−1, si

)
holds.

2. for each edge e = (a1, a2) ∈ E, and ti = σ(a1), tj = σ(a2), we have that
a) i < j, and b) for all i < k < j, the formula η(e)

(
sk−1, sk

)
holds.

We call a concurrent trace A = 〈N,E, ν, η〉 contradictory if some of its actions is
labeled with an unsatisfiable predicate, i.e. if there exists n ∈ N such that ν(n)
implies ⊥. Obviously, the language of such a trace is empty.
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Trace Inclusion. For any two concurrent traces A = 〈N,E, ν, η〉 and A′ =
〈N ′, E′, ν′, η′) we define the trace inclusion relation ⊆ as follows: A ⊆ A′ iff
1. there exists a graph morphism λ = 〈λN : N ′ → N, λE : E′ → E〉.
2. for all n′ ∈ N ′ . ν(λN (n′)) =⇒ ν′(n′).
3. for all e′ ∈ E′ . η(λE(e

′)) =⇒ η′(e′).

Proposition 1. if A ⊆ A′ then L(A) ⊆ L(A′).
We write A ⊆λ A′, if trace inclusion holds for a particular graph morphism λ.
Let λN be the image of λN : λN = {n ∈ N | (n′, n) ∈ λN}. We call the trace
inclusion A ⊆λ A′ left-forgetful (resp. right-forgetful), if for all n ∈ λN there
exists n× ∈ N \ λN such that (n×, n) ∈ E (resp. (n, n×) ∈ E). We call the trace
inclusion forgetful if it is either left- or right-forgetful. Intuitively, when A ⊆λ A′

is a forgetful trace inclusion, we “forget” some action on the left or on the right
when moving from A to A′.

Our intention is to find causal consequences from the information about error
traces, represented in the form of concurrent traces. For that purpose we start
with a single concurrent trace, containing two actions: initial action i, marked
with init ′, and error action e, marked with error , connected with an unrestricted
edge. The marking ensures that all possible error traces are preserved.

Initial Abstraction. For a transition system S = 〈V , T, init, error〉 we
define InitialAbstraction(S) as a concurrent trace A = 〈N,E, ν, η〉, where
N = {i, e}, E = {(i, e)}, ν = {(i, init ′), (e, error)}, η = {((i, e), true)}.
Proposition 2. Le(S) ⊆ L(InitialAbstraction(S)).
Trace Productions. We lift graph morphisms to traces with the same mean-
ing (mappings for nodes and edges of one trace to those of another), and call
them trace morphisms. We generalize graph productions to concurrent traces:
a trace production τ : (L

r−→ R), where L,R are concurrent traces and r is a
trace morphism, describes a transformation of trace L into trace R. The graph-
ical part is transformed by the corresponding graph production, and labels are
transformed by the operations of boolean algebra. Formally trace productions
can be described as graph productions on attributed graphs ; for details we refer
the interested reader to [3], pp. 284-288. In the following we denote the set of
trace productions by Π .

4.2 Causal Transitions

Starting from the initial abstraction, we find, step by step, further causal depen-
dencies. For this purpose we introduce in the following special graph productions,
which we call causal transitions :

Causal Transition. For a given transition system S, a causal transition τ :
{τ1, . . . , τn} is a set of trace productions τi : (L

ri−→ Ri), where all productions
share the same left-hand side L; we will denote L by τ�, and call transition
premise. We say that causal transition τ is sound if the condition below holds:

∀A ∈ A . A ⊆m τ� =⇒ L(A) ⊆
⋃
τi∈τ

L
(
τmi (A)

)
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The above condition says that if the transition premise τ� can be matched to
some concurrent trace A, then the application of the transition should preserve
all possible concrete traces, contained in A. Please note, that causal transitions
can be interpreted both operationally (as transformations of concurrent traces),
and logically (as language inclusion); we employ both interpretations. In the
following we denote the set of causal transitions by Δ.

Below we describe some examples of causal transitions, shown in Figure 3.
Order Split (Figure 3a). The order split causal transition considers alterna-

tive interleavings of two previously concurrent events.
Action Split (Figure 3b). The action split causal transition, given some

action a in the trace, and a transition predicate ψ, considers two alternatives:
either a satisfies ψ or not.

Transitivity (Figure 3c). The transitivity causal transition, given two se-
quential edges a → b and b → c, allows to introduce edge a → c, which follows
from transitivity, and label it with the disjunction of the constraints in its scope.

Necessary Action (Figure 3d). The necessary action causal transition, given
two ordered actions a and b in a concurrent trace, and a transition predicate φ,
such that the label of a implies φ′, and the label of b implies ¬φ, i.e. there is a
contradiction between these actions (a “ends” in the region φ, while b “starts” in
the region ¬φ), introduces a new “bridging” action x in between. The predicate
φ may be obtained by Craig interpolation between the labels of a and b. The
application condition for this causal transition ensures that there is no other
action y in the trace already, that could play the role of x.

Figure 3d shows three causal transitions, which have the

φ
¬φ

a

b

x

u

v

w

same left-hand-side L, but different right-hand sides R,
Rfirst, and Rlast (separated by vertical bars in the figure).
In R we simply insert action x in the concurrent trace. In
Rfirst (resp. Rlast) we require, additionally, that action x
is the first (resp. last) action, that crosses the boundary
between φ and ¬φ (see picture on the right). This can be
achieved by marking the corresponding edge with the predi-
cate ¬(φ∧¬φ′) = ¬φ∨φ′; but we can easily strengthen this requirement. Indeed,
suppose we want action x to be the last in the sequence of possible necessary
actions; the only actions allowed by the above predicate are of the type u (φ∧φ′),
v (¬φ ∧ ¬φ′), or w (¬φ ∧ φ′). But, if an action of type u or w happens, then an
action of type x becomes necessary again, and it is not allowed: a contradiction.
Thus, we can safely allow only actions of type v to happen, and strengthen the
above predicate to ¬φ ∧ ¬φ′.

Action/Edge Restriction (Figures 3e, 3f). The action restriction (resp.
edge restriction) causal transition allows us to restrict the label of an action
(resp. edge), if it happens to be in the scope of some edge (for example, as a
result of order split application).

Forward/Backward Unrolling (Figures 3g, 3h). The forward unrolling
(resp. backward unrolling) causal transition, given two actions in a concur-
rent trace, which cannot follow immediately one after another and do not have
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L

a

b

R1

a

b

a) Order Split: a ‖ b

R2

a

b

L

a
{φ}

R1

a
{φ ∧ ψ}

b) Action Split

R2

a
{φ ∧ ¬ψ}

L

a

b

c

{χ}
{φ}

{ψ}

R

a

b

c

{χ}
{φ}

{ψ}

{φ∨
χ∨
ψ}

c) Transitivity

L

a{φ′}

b{¬φ}

R

a{φ′}

b{¬φ}

x{φ ∧ ¬φ′}

Rfirst

a{φ′}

b{¬φ}

x{φ ∧ ¬φ′}

{φ ∧ φ′}

Rlast

a{φ′}

b{¬φ}

x{φ ∧ ¬φ′}
{¬φ
∧¬φ′}

d) Necessary Action: 	y . y ‖ a→ b ∧ sat(η(y)∧ φ ∧ ¬φ′)

L

a

b

{φ} x{ψ}

R

a

b

{φ} x{ψ ∧ φ}

e) Action Restriction

L

a

b

{φ}
x

y
{ψ}

R

a

b

{φ}
x

y
{ψ ∧ φ}

f) Edge Restriction

L

a{φ}

b{ψ}

R

a{φ}

b{ψ}

x{postT (
postφ("))′}

{⊥}

g) Forward Unrolling:

L

a{φ}

b{ψ}

R

a{φ}

b{ψ}

x{preT (
preψ("))}

{⊥}

h) Backward Unrolling:

unsat(φ ∧ ψ′) ∧ 	y . y ‖ a→ b

Fig. 3. Examples of causal transitions

any other actions in between, unrolls the transition relation one step forward
or backward. Let φ[V/V′] denote the substitution of V ′ variables in formula φ

by corresponding variables V . Then postτ (φ) =
(
∃V φ(V) ∧ τ(V ∪ V ′)

)
[V/V′]

is a post-image of φ with respect to transition relation τ , while preτ (φ) =
∃V′ τ(V ∪ V ′) ∧ φ(V)[V′/V] is a pre-image of φ with respect to τ . For the case of
forward unrolling, to calculate the label of the newly introduced action x, we first
compute the post-image of the preceding action a, and then the post-image of
the result with respect to the whole transition relation T (treated here, by abuse
of notation, as a disjunction of all transitions from T ). The label ⊥ on the edge
a→ x ensures that there are no other actions between a and x. Calculations for
the case of backward unrolling are done similarly.

Proposition 3. The defined above causal transitions are sound.
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4.3 Causal Trace Unwindings

Causal Trace Unwinding. For a transition system S, we define a (causal)
trace unwinding as a tuple Υ = 〈V, F, γ, δ, λ〉, where:
– (V, F ) is a directed tree with vertices V , root vertex v0 ∈ V , and edges

F . Vertices are partitioned into internal vertices and leaves: V = VN � VL,
VN = {v ∈ V | ∃(v, v′) ∈ F}, VL = {v ∈ V | 	(v, v′) ∈ F}.

– γ : V → A is a labeling of vertices with concurrent traces.
– δ : F → Π is a labeling of edges with trace productions. We require that

for all edges with the same source v, the labeling productions have the same
left-hand side. Thus, we have an induced labeling of internal vertices v ∈ VN
with causal transitions: δ(v) = {δ((v, v′)) | (v, v′) ∈ F}.

– λ is a labeling of internal vertices with trace morphisms:
∀v ∈ VN . λ(v) : δ(v)� → γ(v).

A trace unwinding is said to be correct if it satisfies the following criteria:

1. InitialAbstraction(S) ⊆ γ(v0).
2. for all internal vertices v ∈ VN we have: a) δ(v) is sound, b) γ(v) ⊆λ(v) δ(v)�,

and c) for all (v, v′) ∈ F it holds that δ
(
(v, v′)

)λ(v)(
γ(v)

)
⊆ γ(v′).

A trace unwinding is a tree, which can be seen as an unwinding of the trace
causality relation. The label γ(v) of the vertex v represents all possible error
traces for that vertex; the first condition above ensures that the root vertex v0
contains all error traces of the given system. The second condition guarantees
the applicability of the causal transition δ(v) of a vertex v to its label γ(v) and
full exploration of the causal transition consequences, thus preserving the set of
concrete traces. Indeed, we have:

γ(v) ⊆λ(v) δ(v)� =⇒ L
(
γ(v)

)
⊆
⋃

(v,v′)∈F
L
(
δ
(
(v, v′)

)λ(v)(
γ(v)

))
⊆
⋃

(v,v′)∈F
L
(
γ(v′)

)
We call causal path a finite or infinite sequence v0, v1, v2, . . . of vertices, starting
from the root v0, such that for all i ≥ 0, (vi, vi+1) ∈ F . We call a causal path
contradictory if it is finite and ends in a vertex labeled with a contradictory
trace. We call a causal path unbounded if it is infinite and the number of actions
in the labeling of its vertices increases beyond any bound: for any n ∈ N there
exists i ≥ 0 such that |γ(vi)| > n.

Theorem 1 (Soundness of Trace Unwinding). If there exists a correct
causal trace unwinding for a transition system S, where every causal path is
either contradictory or unbounded, then S is safe.

5 Causality-Based Verification Algorithm

The causal trace unwinding, described in the preceding section, is easy to con-
struct, but in most cases it will be infinite. In this section we provide an algo-
rithm that explores only a finite prefix of an infinite unwinding and, based on
that prefix, establishes the desired properties for the whole unwinding.
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The idea behind the finite unwinding prefix is simple: as soon as we encounter
a new vertex, labeled with some concurrent trace we have seen before, we would
like to cut the unwinding at that vertex and loop back. There are two problems
with this simple-minded approach. First, the exact match of one trace to another,
like in step 7 of the motivating example, is rarely achievable. We solve this
problem by tracking for each vertex the most general trace, sufficient to repeat all
causal transitions in the subtree of that vertex; in that way we significantly relax
the matching requirement. Second, we should ensure that every infinite path in
the unwinding is unbounded; we achieve that by requiring that a forgetful trace
inclusion holds between the trace of the leaf vertex and the most general trace of
the vertex where the back loop leads to. We call such a finite unwinding prefix
causal trace tableau, and such back loops covering.

Causal Trace Tableau. A (causal) trace tableau for a transition system S is a
tuple 〈Υ,, α, μ, σ〉 where:
– Υ = 〈V, F, γ, δ, λ〉 is a causal trace unwinding.
– : VL �→ VN is a partial covering function; for (v, v′) ∈ we call v a covered

vertex, and v′ a covering vertex.
– α : V → A is a labeling of vertices with (abstract) concurrent traces.
– μ and σ are labelings of vertices with trace morphisms: μ(v) : δ(v)� → α(v)

and σ(v) : α(v)→ γ(v) such that σ(v) ◦ μ(v) = λ(v).

We call a trace tableau 〈Υ,, α, μ, σ〉 complete if all its leaf vertices are either
contradictory or covered. We call it correct if Υ is correct and, additionally:

1. for all vertices v ∈ V we have γ(v) ⊆σ(v) α(v) ⊆μ(v) δ(v)�.

2. for all (v, v′) ∈ F we have δ
(
(v, v′)

)μ(v)(
α(v)

)
⊆ α(v′).

3. for all (v, v′) ∈ we have that α(v) ⊆μ(v) α(v′) is a forgetful trace inclusion.
4. for all v ∈ VL such that γ(v) is contradictory, α(v) is also contradictory.

Theorem 2 (Soundness of Trace Tableau). If there exists a correct and
complete causal trace tableau for a transition system S, then S is safe.

Theorem 3 (Completeness of Trace Tableau). If a transition system S
with finite-state quotient is safe, then there exists a correct and complete causal
trace tableau for S.
Our causality-based verification algorithm (see Algorithm 1), operates on the
trace tableau defined above. Each vertex v in the tableau is labeled with two
concurrent traces: a concrete trace γ(v), and an abstract trace α(v); we always
have that γ(v) ⊆σ(v) α(v). Initially the unwinding contains only the root v0,
labeled with the concrete trace InitialAbstraction(S). Concrete label γ(v) is ob-
tained as a result of a chain of applications of causal transitions on the path from
v0 to v. Abstract label α(v), on the other hand, represents conditions, sufficient
to repeat all unwinding steps in the subtree, originating at v; it is obtained by
propagating up the premises of causal transitions, applied at the subtree vertices.

At each iteration of the algorithm main loop we select some vertex v from
the queue Q of unexplored tableau leaves. First, we try to cover v by some



268 A. Kupriyanov and B. Finkbeiner

Algorithm 1. Causality-based Verification

Input : Transition system S = 〈V, T, init, error〉
Output: safe/unsafe
Data: Trace tableau 〈Υ,, α, μ, σ〉, where Υ = 〈V, F, γ, δ, λ〉, queue Q ⊆ VL,

premise of last causal transition τ� ∈ A, trace morphism ξ : τ� → A
begin

set V ←− {v0}, γ(v0)←− InitialAbstraction(S)
set Q←− {v0}, all of {F,, α, μ, σ, δ, λ} ←− ∅
while Q not empty do

take some v from Q
if ∃ v′ ∈ VN , σ′ : α(v′)→ γ(v) . γ(v) ⊆σ′ α(v′) is forgetful then

add (v, v′) to 
set δ(v)� ←− α(v′), τ� ←− α(v′), ξ ←− σ′

else
set L←− Linearize(γ(v))
if Concretizable(L) then

return unsafe
else

set 〈τ�, ξ〉 ←− Refine(v, L)

put children of v into Q
PropagateUp(v, τ�, ξ)

return safe

In: vertex v, linear trace L = 〈N,E, ν, η〉
Out: 〈premise τ�, trace morphism ξ〉
begin
〈N ′ ⊆ N,E′ ⊆ E〉 ←−

ExtractConflict (L)
if ∃ o1, o2 ∈ N ′ ∪ E′ . o1‖o2 then
OrderSplit(o1, o2)

else
switch |N ′| do
case 1
Contradiction(v, n1)

case 2
φ = Interpolate(η(n1) ; η(n2)

′)
NecessaryAction(v, n1, n2, φ)

otherwise
φ = Interpolate(η(n1) ∧ . . .

. . . ∧ η(nk−1)
k−1 ; η(nk)

k)
ActionSplit(v, nk−1, φ)

return 〈premise τ� of used causal
transition, trace morphism ξ : τ�→L〉

Function Refine

In: vertex v, premise τ�,
trace morphism ξ : τ� → γ(v)

begin
if 	χ = 〈χN , χE〉 :τ� → α(v) . ξ = σ ◦ χ
then
foreach o ∈ γ(v) . ∃ o′ ∈ τ� . o = ξ(o′)
∧ 	 o′′ ∈ α(v) . o = σ(o′′) do
add o′ to α(v), and (o′, o) to σ(v)

let χ = 〈χN , χE〉 : τ� → α(v) . ξ = σ ◦ χ
if α(v) �⊆ χτ� then
foreach n . η(χN (n)) �=⇒ η(n) do
set η(χN (n))←−η(χN (n))∧η(n)

foreach e . ν(χE(e)) �=⇒ ν(e) do
set ν(χE(e))←−ν(χE(e))∧ν(e)

foreach (vc, v) ∈ do
if α(vc) ⊆μ(vc) α(v) not forgetful
then remove (vc, v) from 

put vc into Q

if ∃ parent v′ . (v′, v) ∈ F then
let δ′ : γ(v′)→ γ(v)
set 〈τ�, ξ〉 ←− Pullback(δ′, ξ)
PropagateUp(v′, τ�, ξ)

Procedure PropagateUp
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other vertex v′: this can be done if the concrete trace of v is included in the
abstract trace of v′ (thus, all causal transitions at v′ subtree can be repeated),
and, moreover, the inclusion is forgetful, i.e. it “forgets” some action on the left
or on the right from the trace.

If the covering attempt was unsuccessful, we linearize the concrete trace of v.
If the linear trace L is concretizable - we have found a concrete error trace, and
the algorithm terminates with unsafe; otherwise there is a conflict in L, and we
proceed to the refinement phase, where some causal transition is applied to v.

At the end of each iteration we put into queue Q all children of v, added
during the refinement phase, and propagate the premise of the applied causal
transition up the unwinding tree. We finish the main loop of the algorithm as
soon as queue Q becomes empty: in that case the only uncovered leaf vertices
left are contradictory, and the tableau is complete; the algorithm returns safe.

The refinement function Refine is the main point of application of a wide
spectrum of optimizations and specializations possible for causalty-based veri-
fication. Here we show one possible instantiation for Refine, which operates on
a non-linearizable concurrent trace. First, it extracts a conflict from the trace
(for example, by computing an unsatisfiable core): a minimal subtrace, which is
still non-linearizable. If the subtrace contains some unordered actions or edges,
an order split is applied, which forces a particular order. Otherwise we consider
different cases with respect to the number of actions in the non-linearizable sub-
trace. If there is only one action, the trace is surely contradictory. If there are
two actions, we apply the necessary action, which tries to repair the conflict by
introducing new action in the middle. For that purpose we compute the Craig
interpolant between contradictory actions. Finally, if there are more than two
actions in the subtrace we shorten the subtrace by splitting the last but one
action with the Craig interpolant between the last action and the rest of them.
Each of the causal transitions applied returns its premise and the mapping of it
into the concrete trace of the vertex: they are used later for propagation.

The propagation of premises is done in procedure PropagateUp, and explained
graphically in the left part of Figure 4. Given as input the premise τ� and the
mapping ξ of it to the concrete label γ(v), the procedure adds missing compo-
nents to the abstract label α(v). This is done in two stages: first, the objects
(actions or edges), which are present in τ�, but missing in α(v) are inserted into
α(v), producing such α(v)′ that there is a mapping χ : τ� → α(v)′; second, their
labels in α(v)′ are adjusted in such a way, that γ(v) ⊆χ α(v)′′ holds. Because
the abstract label α(v) becomes more concrete, previous covering by that vertex
may stop to hold; they are checked and uncovered as needed. Finally, the premise
is propagated up in the tableau to vertex v′, by constructing the premise τ ′� and
the mapping ξ′ : τ ′� → γ(v′) as a pullback object and arrow of two arrows ξ
and δ′, where δ′ is a direct transformation of γ(v′) to γ(v). Then PropagateUp is
called recursively with this new premise and mapping; the propagation process
terminates either when the root vertex is reached, or when the abstract label
α(v) already contains all objects used in the premise, i.e. when the inclusion
α(v) ⊆ τ� holds.



270 A. Kupriyanov and B. Finkbeiner

(pc′1 = 1)2
(pc′2 = 1)3
(pc′3 = 1)

i

(pc1 = 2)2
(pc2 = 2)3

e

(pc′1 = 1)7
(pc′2 = 1)3
(pc′3 = 1)

i

(pc1 = 1) ∧ (pc′1 = 2)
(l = 0) ∧ (l′ = 1)5

a1

(pc1 = 2)
(pc2 = 2)3

e
(pc1 = 2)6

(pc′1 = 1)7
(pc′2 = 1)7
(pc′3 = 1)

i
(pc1 = 1) ∧ (pc′1 = 2)
(l = 0) ∧ (l′ = 1)5

(pc2 = 1) ∧ (pc′2 = 2)
(l = 0)5 ∧ (l′ = 1)

(pc1 = 2)
(pc2 = 2)

e(pc1 = 2)6

(pc2 = 2)

a1

a2

τ�

γ(v)

α(v)ξ
×××

σ(v)

α(v)′

χ �⊇

σ(v)′

α(v)′′

χ
⊇

σ(v)′′

τ ′′
�

γ(v′′)

τ ′
�

γ(v′)

τ�

γ(v)

. . .. . .. . . ξξ′ξ′′

δ′δ′′

Fig. 4. Upward propagation of premises in trace tableau. Top left : calculation of ab-
stract label α(v) in procedure PropagateUp . Bottom left : pullback construction, propa-
gation of premise τ� to parent vertices. Right : abstract labels for the first three vertices
of the tableau from motivating example.

The right part of Figure 4 depicts the abstract labels of the first three vertices
of the tableau, obtained after the execution of seven steps from the motivating
example. Each conjunct of action or edge labels is marked with the number,
showing at which step of the execution this conjunct was included into the
abstract label; the undescore sign means that this conjunct is not present in
the abstract label after all seven steps. For example, for the top right trace in
Figure 4, the conjuncts (pc′1 = 1) and (pc1 = 2) were included in the abstract
label in the second step, the conjuncts (pc′2 = 1) and (pc2 = 2) in the third step,
and the conjunct (pc′3 = 1) was never used for all seven execution steps.

6 Polynomial-Time Verification for Programs with Locks

To demonstrate the advantages of causality-based verification, let us return again
to the class of multi-threaded programs with locks, which we considered as a mo-
tivating example in Section 2. Standard model checking approaches require ex-
ponential, with respect to the number of threads, time and space to prove safety
of such programs. In [7], a counterexample-guided refinement algorithm based
on cartesian abstraction with exception sets is developed, which is capable to
solve in polynomial time the safety problem for the restricted class of programs
with locks. The restricted class allows only one lock variable, prohibits nest-
ing/intersection of critical sections, and disallows control flow transfers. Alexan-
der Malkis posed the following:

Open Problem ([7], p.65). Is the most general locks class polynomi-
ally verifiable for a fixed number of locks?
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Fig. 5. Part of the causal trace tableau for the example multi-threaded program with
locks

Here we settle this question affirmatively; moreover, our trace refinement algo-
rithm finds safety proofs for the most general class of programs with locks using
only polynomial time and space with respect both to the number of threads and
to the number of locks.

Our algorithm starts its computation as shown in Section 2. After several
initial steps, the causal tableau starts looping in the repetitions of the same
concurrent scenario, shown in Figure 5: two threads enter (actions a1, a3) and
stay (restrictions pc1 ∈ [2, 3, 4] and pc3 ∈ [2, 3]) in their critical sections for the
same lock variable. Because all acquire actions satisfy the constrain l = 0∧l′ = 1,
any ordering of them produces the conflict l′ = 1 � l = 0. The algorithm applies
the necessary action causal transition, and inserts a release action, which can
be instantiated to transitions r1, r2, r3, and r5; in the example we consider only
transition r5. Now the trace contains the conflict pc′2 = 1 � pc2 = 4 between
actions i and r5. There are two possible paths between locations 2 and 4 of the
second trace; by inserting necessary actions on both alternative paths, we finally
introduce actions a2 and a5 respectively. Both are acquire actions and we again
repeat the concurrent scenario with two threads trying to enter critical sections;
thus, the new tableau vertices are covered. Moreover, there is an action (a3 in
this case), which the covering forgets; thus, the covering is forgetful.

It is easy to check, that the number of vertices in the tableau is proportional to
the cubic power of the number of critical sections, while the size of the concurrent
traces, labeling the vertices, is independent of the number of threads, critical
sections, and locks. The execution of our algorithm takes at most quadratic time
with respect to the number of vertices; thus, we have the following:

Theorem 4. Causality-based verification algorithm proves the safety of the most
general class of multi-threaded programs with binary locks in deterministic poly-
nomial time and space with respect to the number of threads and locks.
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7 Conclusion

We have presented a new verification procedure for concurrent systems, which
analyzes causal chains in the system behavior. In our procedure, we capture the
causal dependencies as Mazurkiewicz-style concurrent traces, and explore the
unwinding tree of the causally related traces. Our procedure terminates as soon
as all the paths in the unwinding tree are either contradictory, or are covered by
other tree vertices, where the same concurrent situation was already examined.

The key ingredient that distinguishes our approach from techniques based on
state space exploration or Petri net unfoldings, is that we do not restrict ourselves
to only forward or backward analysis of all the transitions available at the current
analysis stage. Instead, we try to build a minimal concurrent error trace, which
contains only the necessary transitions on the way from initial to error states.
We have demonstrated that in some cases, such as multi-threaded programs
with locks, our approach reduces the verification complexity from exponential
to polynomial.

The full version of the present paper with all proofs is available in [6].

Acknowledgements. The authors thank the anonymous reviewers for their
valuable comments and suggestions.
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From Model Checking to Model Measuring�

Thomas A. Henzinger and Jan Otop
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Abstract. We define the model-measuring problem: given a model M
and specification ϕ, what is the maximal distance ρ such that all models
M ′ within distance ρ from M satisfy (or violate) ϕ. The model mea-
suring problem presupposes a distance function on models. We concen-
trate on automatic distance functions, which are defined by weighted
automata. The model-measuring problem subsumes several generaliza-
tions of the classical model-checking problem, in particular, quantitative
model-checking problems that measure the degree of satisfaction of a
specification, and robustness problems that measure how much a model
can be perturbed without violating the specification. We show that for
automatic distance functions, and ω-regular linear-time and branching-
time specifications, the model-measuring problem can be solved. We use
automata-theoretic model-checking methods for model measuring, re-
placing the emptiness question for standard word and tree automata by
the optimal-weight question for the weighted versions of these automata.
We consider weighted automata that accumulate weights by maximizing,
summing, discounting, and limit averaging. We give several examples of
using the model-measuring problem to compute various notions of ro-
bustness and quantitative satisfaction for temporal specifications.

1 Introduction

Model-checking techniques have proved to be very useful in automatic verifica-
tion. Typically, the verified system is modeled as a transition system, the desired
properties are specified by a formula in a temporal language (Linear Temporal
Logic [LTL], Computation Tree Logic[CTL]) or an ω-automaton, and a model-
checking algorithm decides whether the model is correct with respect to the
specification. However, knowing whether the model is correct or not, is often
insufficient.

Consider the TCP handshake protocol, which is used to establish a connection
between a client and a server. First, the client sends a SYN packet to the server,
which replies with a SYN-ACK packet. Then, the client responds with an ACK
packet. A TCP connection is established, provided that the protocol terminated.

Termination of the protocol can be verified by the standard model-checking
techniques, when the communication channel is assumed to be reliable, that is,
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Reactive Modeling).
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every sent packet is delivered in the next step. Certain faults, such as “the first
server response SYN-ACK gets lost”can be encoded in the model. But, this raises
doubts whether the model includes all communication faults. Another approach
would be to use fairness assumptions, for example “if infinitely many packets are
sent, infinitely many packets will be delivered”. But, such assumptions may be
too weak to guarantee termination of the protocol. We propose a more refined,
quantitative approach.

We assume that any packet may get lost, but we ask quantitative questions:
What is the maximal number of lost packets tolerated by the protocol? What is
the maximal ratio of lost packets that guarantees liveness of the system? Such
questions are instances of the model-measuring problem.

The model-measuring problem asks, given a model M and specification ϕ,
what is the maximal distance ρ such that all models M ′ within that distance
from M satisfy (or violate) ϕ. That distance ρ is called the stability radius.
Figure 1 presents a geometric interpretation of the stability radius in two cases,
a model M that satisfies the specification and a model N that violates it.

To determine the stability radius, it suffices to have a unary function that,
for a given transition system M ′, specifies its distance from M . Such a function,
called a similarity measure, is a sole input to the model-measuring problem.
As inputs are required to be finite, we are interested in automatic similarity
measures that are represented by weighted automata.

M

M ′
r1

N

r2

Fig. 1. A geometric interpretation of stability radii r1 of a model M and r2 of a model
N . The shaded area represents the family of models satisfying the specification.

In the TCP handshake protocol example, a model N encodes all executions
of the protocol over a reliable channel. Next, we define a similarity measure
dN so that dN (M) = k if M encodes the TCP handshake protocol that loses
(up to) k packets during its execution. Then, for the specification “the protocol
terminates”, the model-measuring problem answers the question, what is the
maximal number of lost packets that guarantees termination of the protocol?

We represent similarity measures by weighted automata; the representation
depends on the type of the specification. For example, in the branching-time
case, every transition system (model) M ′ admits the unique unrolling to a tree
tM ′ . Then, a weighted automaton Adist represents a similarity measure dM , if
for every transition system M ′, dM (M ′) equals to Adist(tM ′), the weight of tM ′

assigned by Adist.
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Similarity measures represented by weighted automata are invariant with re-
spect to bisimilarity. This design choice is not accidental as we think that two
systems should be considered similar when their outputs are similar rather than
when the internal structures are similar. After all, we would consider two dif-
ferent implementations of the same algorithm as similar rather than two similar
programs that implement different algorithms.

Having an automatic representation of dM , we can solve the model-measuring
problem. Returning to the branching-time case, a (qualitative) automata-
theoretic CTL model-checking procedure works as follows. It translates ¬ϕ and
M to ω-tree automata A¬ϕ,AM , where A¬ϕ recognizes the set of all trees that
satisfy ¬ϕ and AM accepts only a single tree, the unrolling of M . Then, it
asks for emptiness of L(A¬ϕ×AM ) = L(A¬ϕ)∩L(AM ). In our approach, we re-
place AM by a weighted ω-tree automaton Adist representing dM , and generalize
the emptiness question to its weighted counterpart, the optimal-weight question.
That question asks for the infimum over weights of all ω-trees (ω-words) ac-
cepted by a weighted ω-tree automaton. Now, let ρ be the answer to the optimal
weight question for A¬ϕ ×Adist. It follows that for every ρ′ > ρ, there is a tree
accepted by A¬ϕ of weight at most ρ′, and every M ′, whose distance from M is
less than ρ, satisfies ϕ. Thus, ρ is the stability radius of ϕ in M . Virtually the
same argument can be repeated in the linear-time case using ω-automata and
ω-words.

The contribution of this paper is two-fold. First, we define the model-
measuring framework (Section 3) and show that several problems studied in
the literature are special cases of the model-measuring problem. Second, we give
a systematic approach to modeling similarity measures using weighted automata,
and corresponding algorithms based on the optimal-weight question for comput-
ing them.

The paper is organized as follows. In Section 2 we recall the standard notions
of weighted and unweighted automata, define the optimal weight question and
discuss its complexity in various cases. In Section 3 we define the stability radius
of a model w.r.t. a specification and the model-measuring problem. We start with
general definitions of these notions, which are then specialized to the ω-regular
linear-time and branching-time settings, based on weighted automata. Finally,
in Section 4 we discuss in depth the modeling of similarity measures and give
several examples in each case.

Related work. In recent years, much attention has been given to quantitative1

generalizations of the Boolean notion of correctness and the corresponding quan-
titative verification questions [2,3,14,15,18]. Here we attempt to define a unifying
automata-theoretic framework to capture and compute various ways of measur-
ing model quantities. In particular, we have succeed in subsuming the following
approaches.

The robust satisfaction of an open system has been studied in [14,18]. An
open system M robustly satisfies a CTL specification ϕ (according to [14]) if

1 Note that we use the attribute “quantitative” in a non-probabilistic sense. We there-
fore restrict ourselves to list only non-probabilistic references.
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and only if for every environment, given as an open system M ′, the composition
M ‖ M ′ satisfies ϕ (refer to [14] for the formal definition of composition). The
model-measuring problem subsumes this notion of robustness (cf. Section 4).

The model-measuring problem can express mutations on circuits [17]. Indeed,
all mutations considered in [17] just modify transition relations of automata,
therefore they can be expressed by our hypervisor approach (cf. Example 24).
In consequence, the model-measuring problem subsumes vacuity [19], coverage
[10], and certain cases of fault tolerance [11].

Another approach to robustness of discrete systems has been presented in [3],
where the robustness distance has been defined. This robustness distance can be
expressed in our framework as well (cf. Example 25).

2 Preliminaries

A tree (ω-tree) t over Γ labeled by Σ is a pair (τ, L), where τ is a finite (infinite
for ω-trees) prefix-closed subset of Γ ∗ and L : τ �→ Σ is a labeling function. For
σ ∈ τ , every extension σ · g of σ, where g ∈ Γ and σ · g ∈ τ , is a successor of σ in
(τ, L). We write σ ∈ t and t(σ) instead of σ ∈ τ and L(σ). We usually omit Γ .

A labeled transition system is a quadruple 〈S,Σ,E, s0〉, where S is a (finite or
infinite) set of states, Σ is an alphabet, E is a relation on S×Σ×S and s0 is an
initial state. All models considered in this paper are (finite or infinite) transition
systems. A word (or ω-word) w = a1a2 . . . is a trace of a labeled transition system
M if there is an (unlabeled) path s0s1 . . . in M such that for every i ∈ [1, |w|],
(si−1, ai, si) ∈ E. We say that an (ω-)tree (τ, L) (over S × (Σ ∪ {ε})) labeled
by Σ ∪ {ε} is the unrolling of a transition system M = 〈S,Σ,E, s0〉 if τ is the
union of all finite labeled paths 〈s0, ε〉〈s1, a1〉 . . . 〈sk, ak〉 through M such that
for every i ∈ [1, k], (si−1, ai, si) ∈ E, and L(〈s0, ε〉 . . . 〈sk, ak〉) = ak.

2.1 Automata

A (nondeterministic) automaton is a tuple (Σ,Q,Q0, δ, F ), where Σ is an alpha-
bet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ ⊆ Q × Σ ×Q
is a transition relation and F is an acceptance condition (finite, Büchi, . . . ).

A run π of an automaton A on w = a1a2 . . . is a sequence of states such that
π(0) ∈ Q0 and for every i ∈ [1, |w|], (qi−1, ai, qi) ∈ δ. A run π is accepting if it
satisfies the acceptance condition F , e.g., in the Büchi case: there is q ∈ F that
occurs infinitely often in π.

A (nondeterministic) (ω-)tree automaton with varying degree (bounded by N)
[20] is a tuple (Σ,Q,Q0, δ, F ), where Σ is an alphabet, Q is a finite set of states,

Q0 ⊆ Q is a set of initial states, δ ⊆
⋃N

k=1(Q× Σ)×Qk is a transition relation
and F is an acceptance condition (finite, Büchi, parity, . . . ).

A run π of an automaton A on an (ω-)tree t = (τ, L) is an (ω-)tree (τ, L′)
labeled by Q such that π(ε) ∈ Q0 and for every σ ∈ t, if deg(σ) = k and σ · g1,
. . . , σ ·gk are all successors of σ in t, then (π(σ), t(σ), 〈π(σ ·g1), . . . , π(σ ·gk)〉) ∈ δ.
A run π is accepting if it satisfies the acceptance condition F , e.g., in the Büchi
case: along every infinite path there is a state from F that occurs infinitely often.
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A weighted (Büchi, parity, Büchi-tree, . . . ) automaton is an automaton whose
transitions are labeled by natural numbers called weights. Formally, a weighted
automaton A is a tuple (Σ,Q,Q0, δ, F, C) such that (Σ,Q,Q0, δ, F ) is an au-
tomaton and C : δ �→ N.

A weighting scheme is a function that maps runs to real numbers, called
weights. The weight of an ω-word w (ω-tree t) assigned by the automaton A
according to a weighting scheme f , denoted by Lf

A(w), is the infimum of the set
of weights of all accepting runs ofA on the ω-word w (the ω-tree t) weighted by f .
ω-words (ω-trees) that are rejected by A have infinite weight. Often, a particular
weighting scheme is irrelevant in reasoning, as long as it is fixed through a proof;
in such cases we shall omit it.

The emptiness question for non-weighted automata extends to the following
question in the weighted case:

Definition 1. Let f be a weighting scheme. The optimal-weight question for f
asks, given a weighted automaton A, to compute the infimum of Lf

A(w) over all
ω-words (ω-trees).

Remark 2. The dual to the optimal-weight question is to find the supremum
of Lf

A(w) over all ω-words w. Its decision versions have been referred to as
the limitedness problem [21] or the universality problem for weighted automata
[7]. They are usually much harder than the optimal-weight problem (see [5] for
undecidability results).

2.2 Weighting Schemes for ω-words

Let A be a weighted automaton and π be its run. Denote by wt(π, i) the weight
of the ith transition in π. We consider the following weighting schemes:

1. Sum(π) =
∑∞

i=1 wt(π, i), the sum,
2. Max(π) = max∞i=1 wt(π, i), the maximum,
3. Discλ(π) = (1− λ)

∑∞
i=1 λ

iwt(π, i), the discounted sum, where λ ∈ (0, 1) is
a discount factor,

4. LimAvg(π) = lim infk→∞
1
k

∑k
i=1 wt(π, i), the limit average.

These weighting schemes admit efficient algorithms computing the optimal-
weight question:

Theorem 3. ([13,22]) Let f be one of Sum,Max,Discλ,LimAvg. The optimal-
weight question for f and a weighted Büchi automaton A can be computed in
polynomial time in |A|.

2.3 Weighting Schemes for ω-trees

In the ω-tree case, we consider two families of weighting schemes, Sup and Acc.
The Sup weighing schemes are derived from ω-words weighting schemes; every
path in a run on an ω-tree is weighted according to an ω-words weighting scheme,
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and the weight of the run is supremum over weights of its all paths. We con-
sider the following Sup weighting schemes: SupSum, SupMax, SupDiscλ and
SupLimAvg.

The Acc family is obtained by accumulating weights over all paths. Given
a run π over an ω-tree t and σ ∈ t, we define: (i) wt(π, σ) as the weight of a
transition at σ in the run π, (ii) the contribution of σ in π, denoted by μ(π, σ), as
follows: μ(π, ε) = 1, and for every successor σ · g of σ, μ(π, σ · g) = 1

deg(σ)μ(π, σ).

We define the following weighting schemes:

1. AccSum(π) =
∑

σ∈π μ(π, σ)wt(π, σ), the accumulated sum,

2. AccDiscλ(π) = (1 − λ)
∑

σ∈π λ|σ|μ(π, σ)wt(π, σ), the accumulated
discounted sum, where λ ∈ (0, 1) is a discount factor,

3. AccLimAvg(π) = lim infk→∞
1
k

∑
σ∈π,|σ|≤k μ(π, σ)wt(π, σ), the

accumulated limit average.

Theorem 4. ([1,4,6,8,9,23]) Let f be one of SupSum,SupMax,SupDiscλ,
SupLimAvg,AccSum, AccDiscλ or AccLimAvg. The optimal-weight ques-
tion for f and a weighted Büchi-tree automaton A can be computed in polynomial
time in |A|.

Table 1. The complexity of the optimal-weight question for weighted Büchi and Büchi-
tree automata. (∗) indicates that the algorithm work in polynomial time under assump-
tion that the weights are given in unary notation.

ω-words
ω-trees

Sup Acc

Sum O(n log n) PTIME PTIME

Max O(n log n) PTIME —

Discλ PTIME PTIME(∗) PTIME

LimAvg PTIME PTIME(∗) PTIME

Remark 5. The optimal-weight question can be solved for parity ω-word and ω-
tree automata with all weighting schemes from Theorems 3 and 4. However, its
complexity in the parity case increases from PTIME to the complexity of solving
parity games.

2.4 Automatic (Weighted) Relations

The convolution of ω-words w1, w2, denoted by w1⊗w2, is an ω-word over Σ×Σ
such that the ith letter of w1 ⊗ w2 is a pair of the ith letters of w1, w2.

A weighted relation is a generalization of the usual relation by allowing the
characteristic function to range over R+ ∪ {∞}. A (binary) weighted relation
S is an automatic weighted relation if there is a weighted automaton AS that
computes S, i.e., for all w1, w2 ∈ Σ∗, w1Sw2 = AS(w1 ⊗ w2).

The notion of automatic weighted relations straightforwardly extends on ω-
trees.
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3 The Model-Measuring Framework

Correctness of a system w.r.t. a specification is, like membership, a qualitative
property; the system is correct or not. However, membership of a point p in a
region R has a natural quantitative extension called the stability radius. It is
defined as the distance between p and the border of R (cf. Fig. 1). It has been
widely used in the decision-making community [16]. Assuming that we are given
a distance function d defined on transition systems, we adapt the stability radius
to the model-checking setting. Basically, we ask for stability radius of a transition
system in the region of all transition systems satisfying a specification.

The definitions in this section are independent of a particular logic. They refer
to a specification which is not yet instantiated. It will be instantiated in Sections
3.1 and 3.2.

Definition 6. Let d be a distance defined on transition systems. For a transition
system M and a specification P , the stability radius of P in M (w.r.t. the
distance d), denoted by srd(M,P ), is defined as follows:

(i) if M |= P , srd(M,P ) = sup{ρ ≥ 0 : ∀M ′(d(M,M ′) < ρ⇒M ′ |= P )},
(ii) if M |= ¬P , srd(M,P ) = srd(M,¬P ),
(iii) otherwise, srd(M,P ) = 0.

In order to determine the stability radius of P in M we only need to know
distances between a (fixed) M and other transition systems; it suffices to have
a unary function dM , defined as dM (M ′) = d(M,M ′), which encodes essential
information about M and d. We call such a function dM a similarity measure.
Observe that any function satisfying dM (M) = 0 and dM (M ′) ≥ 0 is a valid
similarity measure as we can find a distance d defining it. However, we are
interested only in similarity measures that are semantically defined, i.e., those
that depend only on the behavior of the transition system (the set of traces),
not on its structure.

We define the stability radius of P in M w.r.t. a similarity measure dM ,
srdM (M,P ), as the stability radius w.r.t. any distance compatible with dM .

We define the model-measure on the basis of the stability radius by scaling
the value the stability radius from [0,∞] to [ 12 , 1] if M |= P , and [0, 1

2 ] otherwise.

Definition 7. The model-measuring problem is defined as follows: given a sim-
ilarity measure dM and a specification P , compute [P ]dM defined as follows:

(i) if M |= P , [P ]dM = 1− 2−srdM (M,P )−1 (∈ [ 12 , 1]),
(ii) if M |= ¬P , [P ]dM = 1− [¬P ]dM (∈ [0, 1

2 ]),
(iii) otherwise, [P ]dM = 1

2 .

Consider a specification given by a temporal (LTL or CTL) formula ϕ. The
model-measure is compatible with conjunction and implication, i.e., [ϕ1∧ϕ2]dM =
min([ϕ1]dM , [ϕ2]dM ) and ϕ1 ⇒ ϕ2 implies [ϕ1]dM ≤ [ϕ2]dM . Observe that for ev-
ery similarity measure dM , [ϕ]dM = 1 if ϕ is a tautology, as srdM (M,ϕ) =∞ and
1 − 2−∞−1 = 1, and [ϕ]dM = 0 if ϕ is inconsistent. Values of formulae that are
neither tautologies nor inconsistent depend on the choice of a similarity measure.
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Example 8. Consider a transition system M modeling two parties communicat-
ing through a channel, where every sent packet is delivered in the next state.
We define a similarity measure dM , such that dM (M ′) = k if M ′ models two
parties that follow the same protocol as in M , but up to k packets sent through
the channel get lost. We shall return to this example in Section 4.

In the following, we discuss specialization of the model-measuring problem for
ω-regular linear-time and branching-time specifications.

3.1 Model Measuring ω-regular Linear-Time Specifications

An ω-regular linear-time specification P is a subset of Σω, the set of all cor-
rect traces. We assume that P is given by a Büchi automaton AP recognizing
its complement, i.e., an ω-word w violates P iff AP accepts w. E.g. a Linear
Temporal Logic (LTL) formula ϕ can be translated to a Büchi automaton A¬ϕ
recognizing ω-words that satisfy ¬ϕ. The automaton AP can be regarded as a
weighted automaton with all weights 0. Next, we say that a transition system M
satisfies a linear-time specification P if all its traces satisfy P , or equivalently,
the language of all traces of M and L(AP ) are disjoint.

We proceed alike with similarity measures. We define similarity measures on
ω-words, then we extend the definition to transition systems.

Definition 9. A (linear-time) similarity measure dM is automatic iff there is
a weighted automaton Adist and a weighting scheme f ∈ {Sum,Max,Discλ,

LimAvg} such that for every transition system M ′, dM (M ′) = sup{Af
dist(w) : w

is a trace of M ′}.

Example 10. Consider a finite transition system M . Let Adist be a weighted
automaton that contains M and has a single additional state q⊥ /∈M . There are
transitions, labeled by every letter, from every state of Adist to q⊥; each such
transition has the weight 1. The state q⊥ is accepting, but it has only self-loops of
weight 1. All transitions of M are weighted by 0. The automaton Adist weighted
by Discλ (with λ ∈ (0, 1)) assigns the weight 0 to all traces of M . If w is not
a trace of M , ADiscλ

dist (w) = (1 − λ)
∑∞

i=k λi = λk, where k is the length of the
longest common prefix of w and any trace of M . Observe that for a transition
system M ′, dM (M ′) is equal to λK , where K is the maximal number such that
every trace of M ′ agree on the first K letters with some trace of M .

We discuss constructions of automatic similarity measures in Section 4. Now, we
assume that a weighted automaton Adist computing dM is given and we show
how to use it to compute [P ]dM .

Consider the usual model-checking problem for LTL specifications: given a
transition system M and an LTL formula ϕ, decide whether M |= ϕ. An
automata-based model-checking procedure constructs two ω-automata: AM ac-
cepting all traces of M , and A¬ϕ accepting all ω-words that violate ϕ. ω-
words accepted by both, AM and A¬ϕ, are counterexamples to the statement
M |= ϕ. Thus, the model-checking problem M |= ϕ reduces to emptiness of
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L(AM ×A¬ϕ) = L(AM )∩L(A¬ϕ). In order to compute the model-measure, we
follow the same scheme.

Since the specification is already given by the automaton AP recognizing its
complement, we simply replace AM with Adist and compute the optimal-weight
of the cross product Adist × AP . This automaton is defined as the usual cross
product of Büchi automata, but the weight of every transition is the weight of its
first component in Adist. Observe that Adist ×AP (w) = Adist(w) if w ∈ L(AP )
and Adist×AP (w) =∞ otherwise. The optimal-weight of Adist×AP is precisely
the value of srdM (M,P ). Indeed, assume that M |= P and consider, for every
ρ > 0, an (infinite) transition systems Mρ, such that the traces of Mρ are all
ω-words w with Adist(w) ≤ ρ. Clearly, dM (Mρ) = ρ. Observe that if an ω-word
w has the weight ρ assigned by Adist, i.e., Adist(w) = ρ, and AP accepts w,
then Mρ violates P and srdM (M,P ) ≤ ρ. Conversely, if AP rejects all ω-words
w with Adist(w) < ρ, then for every ρ′ < ρ, Mρ′ |= P and srdM (M,P ) ≥ ρ. The
case where M |= ¬P is symmetric, and the case M |= P and M |= ¬P is trivial.

Theorem 11. Assume that (linear-time) similarity measures and ω-regular
linear-time specifications are given by weighted Büchi automata with one of
the weighting schemes Sum,Max,Discλ or LimAvg. Then, the model-measure
[P ]dM can be computed in polynomial time in the size of both automata repre-
senting dM and P .

The size of Adist ×AP is quadratic in |Adist| + |AP |. Since the optimal-weight
question for Discλ,LimAvg weighting schemes is equivalent to computing the
value of the optimal strategy in a Markov decision process, and the latter is solved
by linear programming, the optimal-weight questions for Discλ and LimAvg

are solved in polynomial time assuming that arithmetical operations have con-
stant costs. The question, whether linear programming, and in consequence the
optimal-weight questions for Discλ and LimAvg, admit polynomial-time algo-
rithms when costs of arithmetic operations are proportional to lengths of their
arguments, is still open.

3.2 Model Measuring ω-regular Branching-Time Specifications

An ω-regular branching-time specification P is a subset of ω-trees labeled by Σ,
the set of all valid computation trees. We assume that P is given by a Büchi-tree
automaton AP recognizing the set of all ω-trees that violate P . The automaton
AP is an automaton over trees with varying (but bounded) degree. It can be
regarded as a weighted automaton with all weights 0. Next, we proceed as in the
linear-time case.

Surprisingly, the definition of similarity measure is simpler in the branching-
time than in the linear-time case. Since every transition system M ′ has the
unique unrolling to an ω-tree tM ′ , the similarity measure of a transition system
M ′ is defined directly as the weight of its unrolling tM ′ .

Definition 12. A (branching-time) similarity measure dM is automatic iff there
is a weighted ω-tree automaton Adist and a weighting scheme f from Theorem
4 such that for every transition system M ′, dM (M ′) = Af

dist(tM ′).
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Again, by virtually the same argument as in the linear-time case, the optimal
weight of Adist ×AP is equal to srdM (M,P ).

Theorem 13. Assume that (branching-time) similarity measures and ω-regular
branching-time specifications are given by weighted Büchi-tree automata. Then,
the model-measure [P ]dM can be computed in polynomial time in the size of both
automata representing dM and P .

Remark 14. Recall that we assume that weights are given in unary notation. It
is an open problem whether mean-payoff and discounted-payoff games, and in
consequence the optimal-weight question for SupDiscλ and SupLimAvg, admit
polynomial-time algorithms if weights are given in binary notation.

Remark 15. Let ϕ be a CTL formula. In order to compute the model-measure of
ϕ, ϕ has to be translated to a non-deterministic Büchi-tree automaton A¬ϕ rec-
ognizing all ω-trees (of bounded degree) that violate it. Such an automaton has
exponential size in |ϕ|. Thus, Theorem 13 yields an exponential-time algorithm
computing the model-measure of a CTL formula, whereas CTL model checking
has a linear-time algorithm. Unfortunately, the exponential blow-up cannot be
avoided as the satisfiability problem for CTL, which is EXPTIME-complete,
reduces to model-measuring for CTL (even with a fixed dM ). Consider a simi-
larity measure dM , which is finite for every transition system based on the full
binary ω-tree. Observe that [ϕ]dM < 1 iff ¬ϕ is satisfiable over the class of mod-
els based on the full binary ω-tree. The satisfiability problem for CTL, even
restricted to models based on the full binary ω-tree, is EXPTIME-complete.

Remark 16. Theorem 13 can be generalized to parity tree automata. The
optimal-weight question can be solved for parity automata over the same weight-
ing schemes as in the Büchi case. The complexity of those algorithms is higher,
but it matches the complexity of solving parity games.

3.3 Undecidable Model Measuring

We have shown that the model-measure of a linear (or branching-time) specifi-
cation can be computed for automatic similarity measures. It may seem to be a
narrow class of similarity measures, but even slight extensions of this class make
the model-measuring problem undecidable.

Let Σ be an alphabet and let S be a relation on Σ × Σ denoting admissible
pairs of letters. Consider a function fSM such that fSM (w) is the minimal number
of transpositions of admissible adjunct letters of w necessary to transform w to
a trace of M . The function fSM is a variant of sorting, where some letters cannot
be swapped. Although fSM cannot be computed by an automaton, as it requires
unbounded memory, for every ω-word w, fSM (w) is computable in polynomial
time.

Theorem 17. There exist M,S such that for the similarity measure defined as
dM (M ′) = sup{fSM (u) : u is a trace of M ′}, the problem: given an LTL formula
ϕ, decide whether [ϕ]dM = 1, is undecidable.
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4 Similarity Measures for ω-regular Specifications

In this section we present a systematic approach to the construction of automatic
similarity measures. They will be constructed from the transition system M by
relatively simple adjustments rather than modifications of M itself. The system
M is usually complex, therefore modifying its internal structure is a complicated
and error-prone task.

One way to construct similarity measures without modifying M itself is to
employ automatic weighted relations. Let AM be an automaton that recognizes
the set of traces of M and let R be an automatic weighted relation computed by
AR. A similarity measure dM , defined by dM (w) = inf{vRw : v is a trace of M}
on ω-words, and dM (M ′) = sup{dM (w) : w is a trace of M ′}, is an automatic
similarity measure. Indeed, consider a weighted automaton Adist that, while
running on the ω-word w, guesses a trace w of M on the fly and computes R by
simulating AR. Since the weight of an ω-word is the infimum over the weights
of its runs, Adist(w) = inf{vRw : v is a trace of M} and Adist computes dM .

Observe that Adist can be constructed from automata AM and AR in a uni-
form way, i.e., independently of their internal structure. This is the main advan-
tage of that approach, but this also makes it unsuitable. To see that, suppose

that an automatic weighted relation RE8 computes the similarity measure from
Example 8. After the first packet is lost, the system (from Example 8) is in the
state that is not reachable in a valid execution and a corrupt trace is not related

to any valid trace of M . Thus, an automaton computing RE8 would have to
simulate M . In consequence, it would have to remember all states of M , which
is precisely what we want to avoid.

We suggest a compromise between uniformity and expressiveness. In our ap-
proach the structure of AM is unaffected, but its execution is governed by an
external component, called the hypervisor.

Definition 18. Let AM = (Σ,QM , Q0,M , δM , FM , CM ) be a weighted automa-
ton. A hypervisor H for AM is a triple (AH , τH , ΓH) such that

• AH = (Σ,QH , Q0,H , δH , FH , CH) is a weighted automaton,
• τH : QH �→ 2QM×Σ×QM ,
• ΓH : QH �→ NQM×Σ×QM ,
• AH has an initial qI ∈ Q0,H , an idle state, such that τH [qI ] = δM , ΓH [qI ] =

CM and for every a ∈ Σ, AH has a transition (qI , a, qI) of weight 0.

The functions τH , ΓH determine the transition relation and cost function for AM

at each step. Intuitively, they should encode modifications applied to the tran-
sition relation and cost function of AM rather than their complete descriptions.
E.g. blind a-transitions τH [qa] = {(q, b, q′) : (q, a, q′) ∈ δM , b ∈ Σ}, i.e., the
automaton moves as it would read a, regardless of the actual letter. Having δM ,
τH [qa] can be simply defined regardless of complexity of δM .

Let AM = (Σ,QM , Q0,M , δM , FM , CM ) be a weighted automaton. For a hy-
pervisor H = (AH , τH , ΓH) with AH = (Σ,QH , Q0,H , δH , FH , CH), the semi-
direct product AM 
 H is a weighted generalized Büchi automaton (Σ,QH ×
QM , Q0,H ×Q0,M , δ, C, {F1, F2}) defined as follows:
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• δ = {(〈q1, q2〉, a, 〈q′1, q′2〉) : a ∈ Σ, (q1, a, q
′
1) ∈ δH , (q2, a, q

′
2) ∈ τH [q1]},

• F1 = FH × QM and F2 = QH × FM , that is the automaton should visit
infinitely often accepting states of AM and those of AH ,

• C(〈q1, q2〉, a, 〈q′1, q′2〉) = CH(q1, a, q
′
1) + ΓH [q1](q2, a, q

′
2).

Observe that for every hypervisor H , and every AM recognizing the set of traces
of M , AM 
 H defines an automatic similarity measure related to M . Indeed,
due to existence of the idle state, the automaton AM 
 H can just simulate
AM , therefore for every trace of M , AM 
H(w) = 0. Conversely, the hypervisor
method is complete, i.e., every automatic similarity measure dM is computed by
an automaton which is the semi-product of AM and some H .

Let dM be an automatic similarity measure and let Adist be an automaton
computing it. Consider a hypervisor H = (AH , τH , ΓH) such that AH can either
begin in qI and stay there forever, or it can begin in q0,dist, simulate the execution
of Adist, and neglect the automatonAM , i.e., for every q ∈ QH \{qI}, τH [q] is the
full relation and ΓH [q] is always 0. Then, for every w, AM 
H(w) = Adist(w),
therefore AM 
H computes dM .

However, this is a degenerate case. We rather focus on showing that the
hypervisor-based approach is a convenient and reasonably uniform (w.r.t. AM )
way of modeling similarity measures. In the following we shall give several ex-
amples supporting this thesis.

Observe that using aforementioned blind a-transitions one can simply define a
similarity measure dM (w) = inf{vRw : v is a trace of M} based on an automatic
weighted relation R. We leave that as an exercise for the reader.

Since the semi-direct product of a weighted automaton AM and H is again
a weighted automaton, this construction can be iterated ((AM 
 H) 
 H ′).
Although iteration can be avoided (Lemma 19), iterated definitions are often
simpler (cf. Example 20).

Lemma 19. Let A be a weighted automaton and H1, H2 be hypervisors for A
and A 
 H1. There effectively exists a hypervisor H3 such that for every w,
(A
H1)
H2(w) = A
H3(w).

Example 20. (Edit distance)We define the hypervisorDel = (ADel, τDel, ΓDel)
computing deletions of letters. The automaton ADel has two states, the idle
state qI , and the state qD responsible for deletion. In the deletion state qD, the
automaton AM ignores the input letter and remains in its current state, i.e.,
τDel[qD] = {(q, a, q) : q ∈ Q, a ∈ Σ}. The cost functions ΓH [qI ], ΓH [qL] assign
0 weight to every transition of AM . Both, qI , qD, are initial states in AH and
δH is the full relation, i.e., δH = {(q1, a, q2) : q1, q2 ∈ QH , a ∈ Σ}. Transitions
from qI have weight 0 (in AH), whereas those from qD have weight 1. Clearly,
AM 
 Del computes a similarity measure such that the weight of an ω-word
w is the least number of deletions necessary to transform w to a trace of M .
AM 
Del extends from ω-words to transition systems by taking supremum over
all traces of a transition system.

Similarly, one can define hypervisors Ins, Sub, T ra computing insertions, a
single letter substitutions or transpositions of adjacent letters necessary to trans-
form a given ω-word to an ω-word accepted by the hypervised automaton. Then,
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the automaton Aedit, defined as (((M 
Del)
Sub)
Tra)
 Ins, computes the
edit distance between w and the set of traces of M . Indeed, if v, a trace of M ,
can be obtained from w by applying deletions, substitution, transpositions and
insertions, it can be obtained by applying the same number of these operations
in precisely that order, i.e., first deletions, next substitutions etc.

Example 21. (An unreliable channel) Consider the similarity measure dM
from Example 8. Assume that those parties, P1, P2, communicate through a
sheared variable a. Suppose that the transition relation for M is given symboli-
cally by a propositional formula N (p1p2a,p

′
1p

′
2a

′), where p1,p2,a are vectors
of propositional variables that represent the current state of P1, P2 and a, and
p′
1,p

′
2,a

′ represent their next state. All transitions in M have weight 0.
Consider a hypervisor H = (AH , τH , ΓH) such that AH has two states:

the idle state qI , and qL, the state of a packet being lost. The cost functions
ΓH [qI ], ΓH [qL] assign 0 weight to every transition, which can be easily expressed
symbolically. Then τ [qI ], τ [qL] are represented by N , and NL(p1p2a,p

′
1p

′
2a

′) ≡
∃a′′(N (p1p2a,p

′
1p

′
2a

′′) ∧ a = a′). Thus, when AH is in the state qD, AM ex-
ecutes the usual transition, but immediately after that a is being reset to its
previous value. Clearly, AM 
H defines the similarity measure from Example 8.

Now, by employing different weighting schemes, we can ask a whole range of
questions. For Sum weighting scheme, the stability radius is the maximal number
of lost packets tolerated by the system, whereas for LimAvg weighting scheme
it gives the maximal average ratio of lost packets tolerated by the system.

Example 22. (Active environment) We can extend the idea from Example 21
to many processes where content of packets may be altered during communica-
tion. It is possible, as in the Dolev-Yao model for verification of cryptographic
protocols [12], to simulate a scenario where all communication channels are con-
trolled by the intruder who can intercept and forge packets. As it is unlikely that
the system is immune to arbitrary actions of the intruder, the model-measure
tells us how vulnerable the system is. E.g. the system works correctly as long as
no more than 5 packets are forged.

The hypervisor approach can be straightforwardly adapted to the branching-time
case. A (tree) hypervisor H is a triple (AH , τH , ΓH) such that AH is a weighted
automaton over ω-trees with varying (but bounded) degree and τH , ΓH associate
with each state of AH a (tree) transition relation and cost function.

Now, we shall present examples of branching-time similarity measures. The
first example is a class of measures inherited from the linear-time case. In the
linear-time case, dM (M ′) is defined as the supremum over weights of all traces of
M ′, therefore linear-time similarity measures naturally translate to branching-
time similarity measures over Supweighting schemes. Indeed, consider an ω-word
automaton Aw

M . By extending the labeling of M to Σ ×Q, we can assume that
Aw
M is deterministic. Then, it can be transformed to an ω-tree automaton At

M

that accepts precisely those ω-trees whose paths are accepted by Aw
M . This idea

can be generalized to weighted tree automata over Sup weighting schemes to get
the following:
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Proposition 23. Let M be a transition system and let Aw
M ,At

M be a word and
tree automata representing M . Every word hypervisor Hw can be translated to a
tree hypervisor Ht such that the similarity measures defined by Aw

M 
 Hw and
by At

M 
Ht agree on every transition system M ′ labeled by Σ ×Qw
H ×Qw

M .

In particular, Examples 20, 21, 22 can be adapted to the branching-time case.
Another feature of tree hypervisors, which is incompatible with the linear-

time case, is the ability to clone (or prune) a transition. Transition cloning at
a state can be easily implemented as follows. For every j ∈ {1, . . . , k}, the hy-

pervisor has a cloning state qc,j such that τH [qc,j] changes q0
a→ 〈q1, . . . , qk〉,

an original transition of AM , to q0
a→ 〈q1, . . . , qk, qj〉. In a similar way one can

define transition pruning. By combining cloning and pruning one can implement
the robustness notion from [14]. Indeed, the language of all execution trees of
M ‖ M ′, where branching degree of M ′ is bounded by B, can be obtained by
the combination of transition cloning (where each transition is cloned at most B
times), and arbitrary pruning. Thus, robustness of open systems defined in [14]
is a special case of model measuring.

Example 24. (Mutations) Removal of behaviors according to [17] is a special
case of our transition pruning. Generally, mutations that modify or add behaviors
can be straightforwardly implemented using the hypervisor approach. Thus, all
mutations considered in [17] can be expressed by similarity measures.

Finally, the model-measuring problem subsumes the robustness distance [3]:

Proposition 25. Let M be a transition system. There (effectively) exists a sim-
ilarity measure dM such that for every transition system M ′, the value of the
robustness distance from M to M ′ equals to 1− [M ′]dM .

5 Conclusions

We have defined the model-measuring problem, which generalizes several pre-
viously studied notions of robustness in verification. We have shown a way to
express several distances (edit distance; semantic distance: the number of lost
packets; etc.) in a convenient way, based on weighted automata, which admits a
succinct symbolic representation.

The algorithms computing the model measure follow the same basic scheme
as standard automata-based model-checking algorithms. This suggests that our
method can be implemented on the basis of existing model-checking tools.

The model-measuring problem can be extended to the real-time case. It
remains to construct a variety of similarity measures in the timed case.
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Safety Verification of Asynchronous Pushdown Systems
with Shaped Stacks

Jonathan Kochems and C.-H. Luke Ong

University of Oxford

Abstract. In this paper, we study the program-point reachability problem of con-
current pushdown systems that communicate via unbounded and unordered mes-
sage buffers. Our goal is to relax the common restriction that messages can only
be retrieved by a pushdown process when its stack is empty. We use the notion
of partially commutative context-free grammars to describe a new class of asyn-
chronously communicating pushdown systems with a mild shape constraint on
the stacks for which the program-point coverability problem remains decidable.
Stacks that fit the shape constraint may reach arbitrary heights; further a process
may execute any communication action (be it process creation, message send or
retrieval) whether or not its stack is empty. This class extends previous computa-
tional models studied in the context of asynchronous programs, and enables the
safety verification of a large class of message passing programs.

Keywords: Pushdown systems, asynchronous message passing, verification.

1 Introduction

The safety verification of concurrent and distributed systems, such as client-server en-
vironments, peer-to-peer networks and the myriad web-based applications, is an impor-
tant topic of research. We consider asynchronously communicating pushdown systems
(ACPS), a model of computation for such systems suitable for the algorithmic analysis
of the reachability problem. Each process of the model is a pushdown system; processes
may be spawned dynamically and they communicate asynchronously via a number of
unbounded message buffers which may be ordered or unordered. In order to obtain a
decision procedure for reachability, some models restrict the retrieval (or, dually, the
sending) of messages or the scheduling of tasks, allowing it to take place only when the
call stack is empty.

Can these restrictions on call stacks be relaxed? Unfortunately1 some form of con-
straint on the call stacks in relation to the communication actions is unavoidable. In-
spired by the work on asynchronous procedure calls [30, 22, 17], we consider processes
that communicate asynchronously via a fixed number of unbounded and unordered mes-
sage buffers which we call channels. Because channels are unordered, processes cannot
observe the precise sequencing of such concurrency actions as message send and pro-
cess creation; however, the sequencing of other actions, notably blocking actions such
as message retrieval which requires synchronisation, is observable. If the behaviour of a

1 Any analysis that is both context-sensitive and synchronisation-sensitive is undecidable [29].

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 288–302, 2013.
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process is given by its action sequences, then we may postulate that certain actions com-
mute with each other (over sequential composition) while others do not. To formalise
these assumptions, we make use of partially commutative context-free grammars (PC-
CFG) [7], introduced recently by Czerwinski et al. as a study in process algebra. A
PCCFG is just a context-free grammar equipped with an irreflexive symmetric relation,
called independence, over an alphabet Σ of terminal symbols, which precisely captures
the symbols that commute with each other. In our model, a process is described by a
PCCFG that generates the set of its action sequences; terminal symbols represent con-
currency and communication actions, while the non-terminal symbols represent proce-
dure calls; and there is an induced notion of commutative procedure calls. With a view
to deciding reachability, a key innovation of our work is to summarise the effects of the
commutative procedure calls on the call stack. Rather than keeping track of the contents
of the stack, we precompute the actions of those procedure calls that produce only com-
mutative side-effects, and store them in caches on the call stack. The non-commutative
procedure calls, which are left on the stack in situ, act as separators for the caches of
commutative actions. As soon as the top non-commutative non-terminal on the stack
is popped, which may be triggered by a concurrency action, the cache just below it is
unlocked, and all the cached concurrency actions are then despatched at once.

In order to obtain a decision procedure for (a form of reachability called) coverabil-
ity, we place a natural constraint on the shape of call stacks: at all times, no more than an
a priori fixed number of non-commutative non-terminals may reside in the stack. Note
that because the constraint does not apply to commutative non-terminals, call stacks
can grow to arbitrary heights. Thanks to the shape constraint, we can prove that the
coverability problem is decidable by an encoding into well-structured transition sys-
tems. To our knowledge, this class extends previous computational models studied in
the context of asynchronous programs. Though our shape constraint is semantic, we
give a simple sufficient condition which is expressed syntactically, thus enabling the
safety verification of a large class of message-passing programs.

Example 1. In Figures 1 and 2 we give an example program written in a version of Er-
lang that employs channels (as opposed to Actor-style mailboxes), implementing a sim-
ple replicated workers pattern. It consists of a distributor process that initially spawns a
number of workers, sets up a single shared resource, and distributes one task per worker
over a one-to-many channel. Each worker runs a task-processing loop. Upon reception
of a task, the worker recursively decomposes it, which involves communicating with
the shared resource at each step. Note that the communication of each worker with the
resource is protected by a lock. For the worker, the decomposition has two possible
outcomes: (i) the task is partially solved, generating one subtask and an intermediate
result or (ii) the task is broken down into one subtask and one new distributable task. In
case (i) the worker recursively solves the subtask and combines the result with the inter-
mediate result. In case (ii) the worker recursively solves the subtask and subsequently
dispatches the newly generated distributable task before returning. When a worker has
finished processing a task, it relays the result to the server and awaits a new task to
process. We have left the implemention of the functions decompose task and combine
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1 main()→ setup network(),
2 redistribute () .
3

4 setup network()→
5 spawn(worker),
6 case (∗) of
7 true → setup network();
8 false →
9 spawn(res start(init ) ) ,

10 toResource ! isReady,
11 receive toDistributor :
12 ready→ ()
13 end;
14 end, toWorkers ! task.
15

16 redistribute () →
17 receive toDistributor :
18 redist (Task)→ toWorkers ! Task;
19 result (Result) → print (Result);
20 end, redistribute () .

21 % Resource
22 res start (S) =
23 fun() → toDistributor ! ready,
24 resource(S)
25 end.
26 resource(S)→
27 receive toResource:
28 lock req →
29 toWorkers ! locked,
30 resource locked(S)
31 end.
32

33 resource locked(S)→
34 receive toResource:
35 unlock req→ resource(S);
36 getState →
37 toWorkers ! state(S),
38 resource locked(S);
39 update(X) → resource locked(X)
40 end.

Fig. 1. A resource and a task distributor

open; for the purpose of this example we only assume that they do not perform any
concurrency actions, but they may be recursive functions.

Note that the call stacks of both the distributor and the workers may reach arbitrary
heights, and communication actions may be performed by a process at any stage of
the computation, regardless of stack height. For example the worker sends and receives
messages at every decomposition, and each recursive call increases the height of the
call stack.

An interesting verification question for this example program is whether the locking
mechanism for the shared resource guarantees exclusive access to the shared resource
for each worker process in its critical section.

A Computational Model. To verify programs such as the above we need a computa-
tional model that allows us to model recursive procedure calls, message passing concur-
rency actions and process creation. Once the obvious abstractions are applied to make
the data and message space finite, we arrive at a network of pushdown systems (equiv-
alently context-free grammars) which can communicate asynchronously over a finite
number of channels with unbounded capacity. Since we are interested in a class of such
systems with decidable verification problems we assume that channels are unordered
(FIFO queues with finite control are already Turing powerful [5]).

Outline. The rest of the paper is organised as follows. In Section 2 we present our model
of asynchronous partially commutative pushdown systems (APCPS), its (standard) se-
mantics and a verification problem. In Section 3 we investigate an alternative semantics
for APCPS, a corresponding verification problem, and relate it to the verification prob-
lem of Section 2. In Section 4 we introduce the class of APCPS with shaped stacks and
show that the verification problems are decidable for this class. In Section 5 we discuss
related work and then conclude.Owing to space constraints proofs are omitted and can
be found in the long version of the paper [24].
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1 worker() →
2 receive toWorkers:
3 Task→
4 result = do task(Task),
5 toDistributor ! result ;
6 end, worker().
7

8 do task(Task)→
9 case decompose(Task) of

10 local (Task’, Int result ) →
11 Result = do task(Task’),
12 Result’ =
13 combine(Result,Int result )
14 return Result’;
15 redist (Task’, Task’’) →
16 Result = do task(Task’),
17 toDistributor ! Redist(Task’’) ,
18 return Result;
19 end.
20

21 combine(res,res’) → . . .

22 decompose(Task)→
23 lock( toResource),
24 toResource ! getState,
25 ?label( ”critical ” ) ,
26 receive toWorkers:
27 state(State) →
28 (Result,Update) =
29 decompose task(Task, State)
30 end,
31 toResource ! update(Update),
32 unlock(toResource),
33 return Result.
34

35 lock(C)→
36 C ! lock req,
37 receive toWorkers:
38 locked→ ()
39 end.
40 unlock(C)→ C ! unlock req.
41

42 decompose task(Task,State)→. . .

Fig. 2. A worker that recursively solves tasks and shares its workload

Notation. We write M[U ] for the set of multisets over the set U , and we use [·] to
denote multisets explicitly e.g. we write [u, u, v, v] to mean the multiset containing two
occurrences each of u and v. Given multisets M1 and M2, we write M1 ⊕M2 for the
multiset union of M1 and M2. We write U∗ for the set of finite sequences over U , and
let α, β, γ, μ, ν, . . . range over U∗. We define the Parikh image of α ∈ U∗ to be the
multiset over U , MU (α) : u �→ |{i | α(i) = u}|; we drop the subscript and write M(α)
whenever it is clear from the context. We order multisets in the usual way: M1 ≤M M2

just if for all u, M1(u) ≤M2(u). Let M ∈ M[U ] and U0 ⊆ U . We define M 
 U0 to be
the multiset M restricted to U0 i.e. (M 
 U0) : u �→M(u) if u ∈ U0, and 0 otherwise.
We write U � V for the disjoint union of sets U and V .

2 Asynchronous Communicating Pushdown Systems

In this section we introduce our model of concurrency, asynchronous partially commu-
tative pushdown systems. Processes are modelled by a variant of context-free grammars,
which distinguish commutative and non-commutative concurrency actions. Communi-
cation between processes is asynchronous, via a fixed number of unbounded and un-
ordered message buffers, which we call channels.

Preliminaries. An independence relation I over a set U is a symmetric irreflexive
relation over U . It induces a congruence relation 6I on U∗ defined as the least equiv-
alence relation R containing I and satisfying: (μ, μ′) ∈ R ⇒ ∀ν0, ν1 ∈ U∗ :
(ν0 μ ν1, ν0 μ

′ ν1) ∈ R.
Let I be an independence relation over U . An element a ∈ U is non-commutative

(with respect to I) just if ∀b ∈ U : (a, b) /∈ I i.e. a does not commute with any other
element. An element b is commutative (with respect to I) just if for each c ∈ U , if c
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is not non-commutative then (c, b) ∈ I; intuitively it means that b commutes with all
elements of U except those that are non-commutative. We call an independence relation
I unambiguous if just every element of U is either commutative or non-commutative.

Definition 1. Let Σ be an alphabet of terminal symbols and I ⊆ Σ × Σ an indepen-
dence relation over Σ. A partially commutative context-free grammar (PCCFG) is a
quintuple G = (Σ, I,N ,R, S) where S ∈ N is a distinguished start symbol, andR is
a set of rewrite rules of the following types:2 let A ∈ N (i) A→ a where a ∈ Σ ∪ {ε},
(ii) A→ aB where a ∈ Σ, B ∈ N , (iii) A→ BC where B,C ∈ N . We refer to each
ρ ∈ R as a G-rule.

The (leftmost) derivation relation→seq is a binary relation over (Σ ∪ N )∗/6I defined
as X α →seq β α if X → β is a G-rule. Note the derivation relation is defined over the
quotient by6I , so the words generated are congruence classes induced by6I . As usual
we denote the n-step relation as→n

seq and reflexive, transitive closure as→∗
seq.

We further define a k-index derivation to be a derivation in which every term contains
at most k occurrences of non-terminals. Recent work [14, 12] has shown that for every
commutative context-free grammar G there exists k ≥ 1 such that the entire language
of G can be generated by derivations of index k.

PCCFG was introduced by Czerwinski et al. as a study in process algebra. They in-
vestigated [7] the decidability of bisimulation for a class of processes described by
PCCFG where the commutativity of the sequential composition is constrained by an in-
dependence relation on non-terminals. We propose to use words generated by PCCFGs
to represent the sequence of concurrency actions of processes.

2.1 Asynchronous Partially Commutative Pushdown Systems

Our model of computation, asynchronous partially commutative pushdown systems,
are in essence PCCFGs equipped with an independence relation over an alphabet Σ of
terminal symbols, which represent the concurrency actions and program point labels.
First some notation. Let Chan be a finite set of channel names ranged over by c, Msg
be a finite message alphabet ranged over by m, and L be a finite set of program point
labels ranged over by l, l′, l1, etc. Further letN be a finite set of non-terminal symbols.
We derive an alphabet Σ of terminal symbols

Σ := L ∪ {c ! m, c ? m | c ∈ Chan ,m ∈ Msg} ∪ {νX | X ∈ N}. (1)

An action of the form c ! m denotes the sending of the message m to channel c, c ? m
denotes the retrieval of message m from channel c, and νX denotes the spawning of a
new process that begins execution from X . We will use a, a′, b, etc. to range over Σ.
Our computational model will emit program point labels in its computation, allowing
us to pose questions of reachability. We will now define the computational power of our
processes in terms of PCCFGs.

2 Identifying rules of type (ii), which is a special case of type (iii), allows us to distinguish tail-
recursive and non-tail recursive calls, which will be handled differently in the sequel, beginning
with Definition 4.
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The words that are generated by a process qua PCCFG represent its action sequences.
Because channels are unordered, processes will not be able to observe the precise se-
quencing of concurrency actions such as message send and process creation; however
the sequencing of other actions such as message retrieval is observable. Using the lan-
guage of partially commutative context-free grammar, we can make this sensitivity to
sequencing precise by an independence relation on actions.

An Independence Relation for the Concurrency Actions. Let Ξ ⊆ Σ, we define the
independence relation over Σ generated by Ξ as

IndRelΣ(Ξ) := {(a, a′), (a′, a) | a, a′ ∈ Ξ, a = a′}

Now let Σ� := L ∪ {c ! m | c ∈ Chan ,m ∈ Msg} ∪ {νX | X ∈ N} be the subset of
Σ consisting of the program point labels and the send and spawn actions. It is straight-
forward to see that IndRelΣ(Σ�) is, by construction, an unambiguous independence
relation over Σ. Thus IndRelΣ(Σ�) allows us to commute all concurrency actions ex-
cept receive. Further we allow program point labels to commute. This is harmless, since
our goal is to analyse (a form of) control-state reachability, i.e. the question whether a
particular label can be reached, as opposed to questions that require sequential reason-
ing such as whether label l1 will be reached before l2 is reached.

We can now lift the independence relation to the non-terminals of a PCCFG G. Let
I be the least subset of (N ∪ Σ)2 such that (i) IndRelΣ(Σ

�) ⊆ I , and (ii) for all
b ∈ Σ ∪ N and A ∈ N , if ∀a ∈ RHS(A) : (a, b) ∈ I then {(A, b), (b, A)} ⊆ I ,
where RHS(A) := {a ∈ N ∪Σ | A→ α ∈ G, a occurs in α}. We note that I , which
is well-defined, is an unambiguous independence relation over N ∪ Σ. Thus we can
partition both Σ andN into Σcom andN com, the commutative actions and non-terminals
respectively, and Σ¬com andN¬com their non-commutative counterparts respectively.

We can now define our model of computation.

Definition 2. Assume L,Chan ,Msg and N as introduced earlier, and the derived al-
phabet Σ of terminals as defined in (1). An asynchronous partially commutative push-
down system (APCPS) is just a PCCFG G = (Σ, I,N ,R, S).

Henceforth we fix L,Chan ,Msg and N , and the derived (1) alphabet Σ of terminals.

2.2 Standard Semantics

The operational semantics is given as a transition system. A configuration of the system
is a pair, consisting of a parallel composition of processes and a set of channels. We
represent the state of a single process as an element of Control := (Σ ∪ N )∗/6I . The
derivation relation of PCCFGs, →seq, defines how processes make sequential transi-
tions. Processes interact concurrently by message passing via a fixed set of unbounded
and unordered channels.

Definition 3 (Standard Concurrent Semantics). The configurations are elements of
M[Control ] × (Chan → M[Msg ]). For simplicity, we write a configuration (say)
([α, β] , {c1 �→ [ma,mb,mb] , c2 �→ []}) as α ‖ β � [ma,mb,mb]

c1 , []
c2 . We abbre-

viate a set of processes running in parallel as Π and a set of channels by Γ with names
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in Chan . The operational semantics for APCPS, a binary relation→con over configura-
tions, is then defined by induction over the rule:

α→seq α′

α ‖ Π � Γ →con α′ ‖ Π � Γ
(2)

and the following axioms: let m ∈ Msg , c ∈ Chan , l ∈ L and X ∈ N

(c ? m)α ‖ Π � ([m]⊕ q)
c
, Γ →con α ‖ Π � qc, Γ (3)

(c ! m)α ‖ Π � qc, Γ →con α ‖ Π � ([m]⊕ q)
c
, Γ (4)

l α ‖ Π � Γ →con α ‖ Π � Γ (5)

(νX)α ‖ Π � Γ →con α ‖ X ‖ Π � Γ. (6)

The start configuration is S � ∅. We define a partial order on configurations:Π � Γ ≤
Π ′ � Γ ′ just if Π ≤M Π ′ and for every c ∈ Chan , Γ (c) ≤M Γ ′(c).

2.3 Program-Point Coverability

In the sequential setting of (ordinary) pushdown systems, the control-state reachability
problem is of central interest. In our notation, it asks, given a control-state A, if it is
possible to reach a process-configuration Aα where A is the control-state and α is
some call stack. It should be clear that an equivalent problem is to ask whether l α is
reachable, where l is a program-point label. We prefer a formulation that uses program-
point labels because it simplifies our argument (and is equi-expressive).

In the concurrent setting, we wish to know whether, given an APCPS and program-
point labels l1, . . . , ln, there exist call stacks α1, . . . , αn and channel contents Γ such
that the configuration l1 α1 ‖ · · · ‖ ln αn � Γ is →con-reachable, possibly in parallel
with some other processes. Note that this question allows us to express not just control-
state reachability queries but also mutual exclusion properties. We state the problem of
program-point coverability more formally as follows.

Verification Problem 1 (Program-Point Coverability). Given an APCPS G and pro-
gram point labels l1, . . . , ln, a tuple (G; l1, . . . , ln) is a yes-instance of the program-
point coverability problem just if there exist a configuration Π � Γ and α1, . . . , αn ∈
(Σ ∪ N )∗/6I such that Π � Γ is →con-reachable and l1α1|| · · · || lnαn � ∅ ≤ Π
� Γ .

The program-point coverability problem allows us to characterise “bad-configurations”
cbad in terms of program-point labels. We regard a configuration c that covers cbad, in the
sense that (cbad ≤ c), also as “bad”. Using program-point coverability, we can express
whether any such configuration is reachable

Example 2. Consider the program in Figures 1 and 2 and call it P . The problem of
whether each worker has exclusive access to the shared resource in its critical section
is expressible as a program-point coverability problem. A bad configuration is one in
which two worker processes are executing the line marked by ?label( ” critical ” ). We
can thus see that (P ;?label( ” critical ” ),?label( ” critical ” )) is an instance of the program-
point coverability problem; a no answer implies mutual exclusion, a yes answer tells us
that two worker processes can be simultaneously within their critical section.



Verifying Asynchronous Pushdown Systems with Shaped Stacks 295

The program-point coverability problem is undecidable for unconstrained APCPS. In
fact APCPS is Turing powerful: it is straightforward to simulate a system with two
synchronising pushdown systems.

3 An Alternative Semantics for APCPS

In this section we present an alternative semantics for APCPS which captures enough
information to solve the program-point coverability problem. The key idea is to sum-
marise the effects of the commutative non-terminals. In the alternative semantics, rather
than keeping track of the contents of the call stack, we precompute the actions of those
procedure calls that produce only commutative side-effects, i.e. sends, spawns and pro-
gram point labels, and store them in caches on the call stack. The non-commutative
procedure calls, which are left on the call stack, then act as separators for the caches
of commutative side-effects. As soon as the top non-commutative non-terminal on the
stack is popped, which may be triggered by a concurrency action, the cache just below
it is unlocked. The cached actions are made effective instantaneously. This is enough to
ensure a precise correspondence between the program-point coverability problem for
APCPS and a corresponding coverability problem for our alternative semantics.

An Alternative Semantics. First we introduce a representation of the states of a pro-
cess. Let k ∈ N ∪ {∞}.

TermCache :=M[Σcom] MixedCache := M[Σcom ∪ N com]

NonTermCache :=M[N com] Cache := TermCache �MixedCache

CallStack≤k := (N¬com · Cache)≤k

DelayedControl :=TermCache �MixedCache � NonTermCache

NormalControl := (N · Cache) � (Σ · N · Cache) � (Σ · Cache)
ControlState :=NormalControl �DelayedControl

γ, δ ∈ Control≤k :=ControlState · CallStack≤k

Queue :=M[Msg ] Queues := Chan → Queue

Config≤k :=M
[
Control≤k

]
×Queues

Note that we assume the equality ε = ∅ to simplify notation. We write ControlM :=
Control≤∞ and CallStackM := CallStack≤∞. 3

Definition 4 (Alternative Sequential Semantics). Let G be a PCCFG. We define a
transition relation→seq′ on ControlM by induction over the following rules:

If A→ BC is a G-rule, C commutative and C →∗
seq w ∈ (N com ∪Σcom)∗ then

AM γ →seq′ B (M(w) ⊕ M) γ (7)

3 Defining Cache as a distjoint union enables a definition by cases according to the type of
cache, thus rendering→con′ monotone with respect to an ordering.
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If A→ BC is a G-rule and C non-commutative then

AM γ →seq′ BC M γ (8)

If A→ aB is a G-rule and a ∈ Σ and B ∈ N then

AM γ →seq′ aBM γ (9)

If A→ a is a G-rule where a ∈ Σ ∪ {ε} then

AM γ →seq′ aM γ (10)

where γ ∈ CallStackM, M ∈ Cache , and A,B and C range over non-terminals.

From the alternative sequential semantics, we derive a corresponding alternative con-
current semantics, using the following notation: for M ∈ M[Σcom] and w ∈ (Σcom)∗

Γ ⊕ Γ ′ := {c �→ Γ (c)⊕ Γ ′(c) | c ∈ Chan}
Γ (M) :=

{
c �→

∑
c!m∈M M(c ! m) | c ∈ Chan

}
Γ (w) := Γ (M(w))

Π(M) := {X �→M(νX) | X ∈ N} Π(w) := Π(M(w))

Definition 5 (Alternative Concurrent Semantics). We define a binary relation→con′

over M[ControlM]× (Chan → M[Msg ]) by induction over the following rules:

If γ ∈ NormalControl · CallStackM, γ →seq′ γ
′ then

γ ‖ Π � Γ →con′ γ
′ ‖ Π � Γ (11)

If (c ? m) γ ∈ NormalControl · CallStackM, m ∈ Msg then

(c ? m) γ ‖ Π � ([m]⊕ q)c, Γ →con′ γ ‖ Π � qc, Γ (12)

If X ∈ N , (νX) γ ∈ NormalControl · CallStackM then

(νX) γ ‖ Π � Γ →con′ γ ‖ X ‖ Π � Γ (13)

If (c ! m) γ ∈ NormalControl · CallStackM, m ∈ Msg then

(c ! m) γ ‖ Π � qc, Γ →con′ γ ‖ Π � ([m]⊕ q)
c
, Γ (14)

If l γ ∈ NormalControl · CallStackM, l ∈ L then

l γ ‖ Π � Γ →con′ γ ‖ Π � Γ (15)

If M X γ ∈ DelayedControl · CallStackM, M ∈ TermCache , Γ ′ = Γ ⊕ Γ (M),
Π ′ = Π ⊕Π(M) then

M X γ ‖ Π � Γ →con′ X γ ‖ Π ′ � Γ ′ (16)

If M γ ∈ DelayedControl · CallStackM, M ∈ MixedCache , Γ ′ = Γ ⊕ Γ (M),
Π ′ = Π ⊕Π(M) and M ′ = M 
 (N com ∪ L) then

M γ ‖ Π � Γ →con′ M
′ γ ‖ Π ′ � Γ ′ (17)

The alternative semantics precomputes the actions of commutative non-terminals on the
call stacks. This is achieved by rule (7) in the alternative sequential semantics. The rules
(16) and (17) are the concurrent counterparts; they ensure that the precomputed actions
are rendered effective at the appropriate moment. Rule (16) is applicable when the pre-
computed cache M contains exclusively commutative actions; such a cache denotes a
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sequence of commutative non-terminals whose computation terminates and generates
concurrency actions. Rule (17), on the other hand, handles the case where the cache
M contains non-terminals. An interpretation of such a cache is a partial computation
of a sequence of commutative non-terminals. In this case rule (17) dispatches all com-
mutative actions and then blocks. It is necessary to consider this case since not all
non-terminals have terminating computations. Thus rule (7) may non-deterministically
decide to abandon the pre-compution of actions.

We give a variant of the program-point coverability problem tailored to the alterna-
tive semantics and show its equivalence with the program-point coverabilily problem.

Verification Problem 2 (Alternative Program-Point Coverability). Given an APCPS
G and a set of program point labels l1, . . . , ln, a tuple (P ; l1, ..., ln) is a yes-instance of
the alternative program-point coverability problem just if there exist a→con′ -reachable
configuration Π � Γ such that for every i ∈ {1, . . . , n} there exists λi γi ∈ Π such
that either λi = li, or λi = Mi and li ∈Mi?

In the long version of this paper [24] we show that the standard semantics weakly simu-
lates the alternative semantics for APCPS. Thus for every configuration reachable in the
alternative semantics there is a corresponding configuration reachable in the standard
semantics. Owing to the nature of precomputations and caches, it is more difficult to
relate runs of the standard semantics to those of the alternative semantics. However, for
every run in the standard semantics reaching a configuration, there exists a run in the
alternative semantics reaching a corresponding configuration.

Theorem 1 (Reduction of Program-Point Coverability). A tuple (P ; l1, . . . , ln) is a
yes-instance of the program-point coverabililty problem if, and only if, (P ; l1, . . . , ln)
is a yes-instance of the alternative program-point coverability problem.

4 APCPS with Shaped Stacks

In this section we present a natural restriction on the shape of the call stacks of APCPS
processes. This shape restriction says that, at all times, at most an a priori fixed number
of non-commutative non-terminals may reside in the call stack. Because the restriction
does not apply to commutative non-terminals, call stacks can grow to arbitrary heights.
We show that the alternative semantics for such shape-constrained APCPS gives rise
to a well-structured transition system, thus allowing us to show the decidability of the
alternative program-point coverability problem.

Definition 6. Define Reach→con′ := {Π � Γ | [S] � ∅ →∗
con′ Π � Γ}. Let k ∈ N,

we say an APCPS G has k-shaped stacks just if Reach→con′ ⊆ Config≤k. An APCPS
G has shaped stacks just if G has k-shaped stacks for some k ∈ N.

It follows from the definition that, in the alternative semantics, processes of an APCPS
with k-shaped stacks have the form: γ X1 M1 X2 M2 · · ·Xj Mj where γ ∈
ControlState, Xi ∈ N¬com and j ≤ k. Relating this to the standard semantics, pro-
cesses of an APCPS with k-shaped stacks are always of the form αX1 β1 X2 β2 · · ·
Xj βj where α ∈ (N ∪ (Σ · N ) ∪ (Σ ∪ {ε})) · N com∗ and βi ∈ N com∗. It is this
shape that lends itself to the name APCPS. Even though the shaped stacks constraint is
semantic, we can give a syntactic sufficient condition: (the simple proof is omitted.)
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Proposition 1. Let G be an APCPS. If there is a well-founded partial order≥shape such
that for every A ∈ N and B ∈ RHS(A) ∩ N : (i) A ≥shape B, and (ii) ∃C ∈ N¬com :
A→ BC is a G-rule ⇒ A >shape B, then G has shaped stacks.

Example 3. Proposition 1 tells us that the program in Figures 1 and 2 can be modelled
by an APCPS with shaped stacks. Non-tail recursive calls are potentially problematic.
In our example the recursive call to setup network() in the definition of setup network is
non-tail recursive, but only places a send action on the call stack, thus causing no harm.
The only other non-tail recursive calls occur in do task: the call to decompose task poses
no threat since decompose task does not invoke do task again. The two recursive calls
to do task either place procedure calls with send or no concurrent actions on the stack.

4.1 APCPS with Shaped Stacks and Well-Structured Transition Systems

We will now show the decidability of the alternative program-point coverability prob-
lem for APCPS with shaped stacks. First we recall the definition of well-structured tran-
sition systems [15]. Let ≤ be an ordering over a set U ; we say ≤ is a well-quasi-order
(wqo) just if for all infinite sequences u1, u2, . . . there exists i, j such that ui ≤ uj .
A well-structured transition system (WSTS) is a quadruple (S,→,≤, s0) such that
s0 ∈ S, ≤ is a wqo over S and → ⊆ S × S is monotone with respect to ≤, i.e. if
s→ s′ and s ≤ t then there exists t′ such that t→ t′.

WSTS are an expressive class of infinite state systems that enjoy good model check-
ing properties. A decision problem for WSTS of particular interest to verification is the
coverability problem i.e. given a state s is it the case that s0 →∗ s′ and s ≤ s′. For U ⊆
S define the sets Pred(U) := {s | s → u, u ∈ U} and ↑ U := {u′ | u ≤ u′, u ∈ U}.
For WSTS the coverability problem is decidable [15] provided that for any given s ∈ S
the set ↑ Pred(↑ {s}) is effectively computable. Wqos can be composed in various
ways which makes decision results for WSTS applicable to a wide variety of infinite
state models. In the following we recall a few results on the composition of wqos.

(WQO-a) If (Ai,≤i) are wqo sets for i = 1, ..., k then (A1 × · · · × Ak,≤1 × · · · × ≤k) is a
wqo set. (Dickson’s Lemma)

(WQO-b) If A is a finite set then (A,=) is a wqo set.
(WQO-c) If (A,≤) is a wqo then (M[A],≤M[A]) is a wqo set where M1 ≤M[A] M2 just if for

all a ∈ A there exists an a′ ≥ a such that M1(a) ≤M2(a
′) [33].

(WQO-d) If (A,≤A) and (B,≤B) are wqo sets, then (A · B,≤A · ≤B) is a wqo set, where
γ · γ′ ≤A · ≤B δ · δ just if γ ≤A δ and γ′ ≤B δ′.

(WQO-e) If (A,≤A) and (B,≤B) are wqo set, then (A & B,≤A & ≤B) is a wqo set, where
a ≤A & ≤B b just if a, b ∈ A and a ≤A b or a, b ∈ B and a ≤B b.

4.2 A Well-Quasi-Order for the Alternative Semantics

Fix a k. Our goal is to construct a well-quasi-order for Config≤k as a first step to
showing the alternative semantics gives rise to a WSTS for APCPS with shaped stacks.

We order the multi-sets TermCache , NonTermCache , MixedCache and Queue
with the multi-set inclusion ≤M which is a well-quasi-order. Since Chan is a finite
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set and Queues = Chan → M[Msg ] ∼= M[Msg ]|Chan| we obtain a well-quasi-
order for Chan → M[Msg ] using a generalisation of Dickson’s lemma. We then com-
pose the wqo of TermCache and MixedCache to obtain a wqo ≤Cache :=≤TermCache

� ≤MixedCache for Cache . For each j ∈ {1 . . . k} we define

X1 M1 X2 M2 · · ·Xj Mj ≤ X1 M
′
1 X2 M

′
2 · · ·Xj M

′
j iff ∀i : Mi ≤Cache M ′

i

which gives a well-quasi-order for CallStack≤k. We obtain a wqo for DelayedControl
by composing the wqos of TermCache , NonTermCache and MixedCache :

≤DelayedControl :=≤TermCache � ≤NonTermCache � ≤MixedCache .

Since Σ and N are finite sets, (Σ,=Σ) and (N ,=N ) are wqo sets, and so, we can
compose a wqo for NormalControl :

≤NormalControl := (=Σ · ≤Cache) � (=Σ ·=N · ≤Cache) � (=N · ≤Cache) .

Similarly we can construct wqos for ControlState and Control≤k by composition:

≤ControlState :=≤NormalControl � ≤DelayedControl

≤Control≤k :=≤ControlState · ≤CallStack≤k .

As a last step we use (WQO-c) to construct a wqo for M
[
Control≤k

]
which then

allows us to define a wqo for Config≤k by ≤Config≤k :=≤
M[Control≤k] × ≤Queues .

To prove the decidability of the coverability problem for APCPS with shaped stacks,
it remains to show that→con′ is monotonic and ↑ Pred(↑ {γ}) is computable.

Lemma 1 (Monotonicity). The transition relation →con′ is monotone with respect to
the well-order ≤Config≤k .

Corollary 1. The transition system
(
Config≤k,→con′ ,≤Config≤k

)
is a well-structured

transition system.

To see that ↑ Pred(↑ {γ}) is computable is mostly trivial; only predecessors
generated by rule (7) are not immediately obvious. Given M ′ ∈ Cache we observe that
it is enough to be able to compute the set PM ′ := ↑ {(C,M) | C ∈ N com,
C →∗

seq w,M ′′ = M ⊕M(w),M ′ ≤M M ′′}. Now C →∗
seq w is a computation of a

commutative context-free grammar (CCFGs) for which an encoding into Petri nets has
been shown by Ganty and Majumdar [17]. Their encoding builds on work by Esparza
[11] modelling CCFG in Petri nets. Their translation leverages a recent result [14]: ev-
ery word of a CCFG has a bounded-index derivation i.e. every term of the derivation
uses no more than an a priori fixed number of occurrences of non-terminals. A budget
counter constrains the Petri net encoding of a CCFG to respect boundedness of index;
termination of a CCFG computation can be detected by a transition that is only enabled
when the full budget is available. This result allows us to compute the set PM ′ using a
backwards coverability algorithm for Petri nets.

Theorem 2. The alternative program-point coverability problem, and hence the
program-point coverability problem, for APCPS with k-shaped stacks are decidable
for every k ≥ 0.
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5 Related Work and Discussion

Partially Commutative Context-Free Grammars (PCCFG). Czerwinski et al. introduced
PCCFG as a study in process algebra [7]. They proved that bisimulation is NP-complete
for a class of processes extending BPA and BPP [11] where the sequential composition
of certain processes is commutative. Bisimulation is defined on the traces of such pro-
cesses, although there is no synchronisation between processes. In [8] the problem of
word reachability for partially commutative context-free languages was shown to be
NP-complete.

Asynchronous Procedure Calls. Petri net models for finite state machines that commu-
nicate asynchronously via unordered message buffers were first investigated by
Mukund et al. [27, 28]. In an influential paper [30] in 2006, Sen and Viswanathan
showed that safety verification is decidable for first-order programs with atomic asyn-
chronous methods. Building on this, Jhala and Majumdar [22] constructed a VAS that
models such asynchronous programs on-the-fly. Liveness properties, such as fair termi-
nation and starvation, of asynchronous programs were extensively studied by
Ganty et al. in [18, 17]. In our more general APCPS framework, we may view the asyn-
chronous programs considered by Ganty and Majumdar in [17] as APCPS running a
single “scheduler” process. Task bags can be modelled as channels in our setting and
the posting of a task can be modelled by sending a message; the scheduling of a pro-
cedure call can be simulated as a receive of a non-deterministically selected channel
which unlocks a commutative procedure call defined by rules of types (i) and (ii) and
rules of type (iii) where C ∈ N com, in the sense of Definition 2. It is thus easy to see that
APCPS with shaped stacks subsume programs with asynchronous procedure calls. In
light of the fact that their safety verification is EXPSPACE-complete we can infer that the
program-point coverability problem for APCPS with shaped stacks is EXPSPACE-hard.

Various extensions of Sen and Viswanathan’s model [6] and applications to real-
world asynchronous task scheduling systems [19] have been investigated. From the
standpoint of message-passing concurrency, a key restriction of many of the models
considered is that messages may only be retrieved by a communicating pushdown pro-
cess when its stack is empty. The aim of this paper is to relax this restriction while
retaining decidability of safety verification.

Communicating Pushdown Systems. The literature on communicating pushdown sys-
tems is vast. Numerous classes with decidable verification problems have been discov-
ered. Heußner et al. [21] studied a restriction on pushdown processes that communicate
asynchronously via FIFO channels: a process may send a message only when its stack
is empty, while message retrieval is unconstrained. Several other communicating push-
down systems have been explored: parallel flow graph systems [13], visibly pushdown
automata that communicate over FIFO-queues [1], pushdown systems communicating
over locks [23], and recursive programs with hierarchical communication [4, 2].

Verification techniques that over-approximate correctness properties of concurrent
pushdown systems have been studied [16, 20]. Under-approximation techniques typ-
ically impose constraints, such as bounding the number of context switches [32, 25],
bounding the number of times a process can switch from a send-mode to receive-mode
[3], or allowing symbols pushed onto the stack to be popped only within a bounded
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number of context switches [31]. Another line of work focuses on pushdown systems
that communicate synchronously over channels, restricting model checking to synchro-
nisation traces that fall within a restricted regular language [12]; this approach has been
developed into an effective CEGAR method [26].

Future Directions and Conclusion. We have introduced a new class of asynchronously
communicating pushdown systems, APCPS, and shown that the program-point cov-
erability problem is decidable and EXPSPACE-hard for the subclass of APCPS with
shaped stacks. We plan to investigate the precise complexity of the program-point cov-
erability problem, construct an implementation and integrate it into SOTER [9, 10], a
safety verifier for Erlang programs, to study APCPS empirically.
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Abstract. Reversible computation has attracted increasing interest in
recent years, with applications in hardware, software and biochemistry.
We introduce reversible forms of prime event structures and asymmetric
event structures. In order to control the manner in which events are re-
versed, we use asymmetric conflict on events. We discuss, with examples,
reversing in causal order, where an event is only reversed once all events
it caused have been reversed, as well as forms of non-causal reversing.

1 Introduction

Causal reversibility in concurrent systems means that events that cause other
events can only be undone after the caused events are undone first, and that
events which are independent of each other can be reversed in an arbitrary order.
The last decade has produced a good understanding of how causal reversibility
can be achieved in the settings of operational semantics and process calculi.
Research on reversing process calculi can be traced back perhaps to Berry and
Boudol’s Chemical Abstract Machine [2]. Danos and Krivine reversed CCS [5,6],
a general method for reversing process calculi was proposed in [13], and reversible
structures that compute forwards and backwards asynchronously were developed
by Cardelli and Laneve [4]. Mechanisms for controlling reversibility based on a
rollback construct were devised by Lanese, Mezzina, Schmitt and Stefani [9] for
a reversible higher-order π calculus [10], and an alternative mechanism based on
the execution control operator was proposed in [15].

Perhaps with the exception of [15] and [16], other common forms of reversibil-
ity, such as inverse causal reversibility, have not been studied yet. In [16] we
present an initial study of a form of reversible event structure based on a gener-
alisation of Winskel’s enabling relation [19]. In this paper we propose reversible
event structures which are strongly contrasted to those of [16], as we here fo-
cus on analysing conflict and causation as first-class notions in the setting of
reversible computation, rather than maximising expressive power.

We here take the view that reversing an event a means that a is removed
from the current configuration (a set of events which have occurred and have
not been reversed), and it is as if a had never occurred, apart possibly from
indirect effects, such as a having caused another event b before a was reversed.

Our motivating example is the basic catalytic cycle for protein substrate phos-
phorylation by a kinase. We describe how bonds are created and dissolved in
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Fig. 1. Basic catalytic cycle for substrate phosphorylation by a kinase

the cycle as presented in [18, Figure 1a]. A kinase K aims to transfer a phos-
phate group P from a nucleotide Adenosine TriPhospate (ATP), which has three
phosphate groups, to a protein substrate S. After the transfer ATP will become
Adenosine DiPhosphate (ADP), and so we denote ATP as A2 − P , where the
bond between A2 and P is a, and ADP as A2. Firstly, A2−P and then S bind to
the active site of K. We denote the bonds thus created as b and c respectively;
see Figure 1, which should be read from left to right. Then phosphorylation takes
place: P is transferred from A2−P to a Ser, Thr or Tyr residue of S by creating
the bond d and then dissolving a. Finally A2 and then S is released from the
active site of K, so b and then c is broken. We note that the order in which bonds
are created and broken differs for different kinases in such catalytic cycles [18];
hence we seek a general method for reversing events in an arbitrary order. Let
events a, b, c, d represent the bonds a, b, c, d. The order in which bonds are cre-
ated can be defined by the causality relation < of prime event structures (PES)
[12,19]: a < b < c < d. To express undoing of events we shall add to PES a new
reverse causality relation ≺: here a ≺ a, b ≺ b and c ≺ c mean that a, b, c can be
reversed (notation a, b, c) as long as they have happened, and d ≺ a, d ≺ b, d ≺ c
force undoing of a, b, c only after d. We do not include d ≺ d, since d is irreversible
here. We force that a is undone before b is undone by extending PES further with
a prevention relation �: a � b prevents undoing of b while a is present; similarly
b � c. Thus, we obtain a reversible PES (RPES). The resulting forward tran-
sitions between configurations are (∅ →){a} → {a, b} → {a, b, c} → {a, b, c, d}
and reverse transitions are {a, b, c, d} → {b, c, d} → {c, d} → {d}. This is an ex-
ample of inverse causal reversibility: a is reversed before undoing b even though
a causes b, similarly for b and c. See [15,16] for other examples of non-causal
reversibility.

There is a deficiency in the RPES solution in that, for example, a can occur
again (so to speak) in configurations {b, c, d}, {c, d}, {d}. A general remedy is to
add forwards prevention e � e′ to the reverse prevention e � e′ already present
in RPESs to obtain reversible asymmetric event structures (RAES). These are a
reversible version of the asymmetric event structures (AES) of Baldan, Corradini
and Montanari [1]. Prevention e � e′ is asymmetric conflict, where both e and
e′ can happen, but only if e′ occurs before e. This generalises the symmetric
conflict relation e � e′ of PESs. If we add d � a (d prevents a from taking place)
to our example then this disallows a in {b, c, d}, {c, d} and {d}.

There are two standard ways of explaining causation. Event a causes event
b (a < b) means either (1) in any run (computation), if b occurs then a occurs
earlier or (2) if b is enabled at configurationX then we must have a ∈ X . The two
views are equivalent if there is no reversing. Suppose that we have three events



Reversibility and Asymmetric Conflict in Event Structures 305

with a < b < c. On view (1) we deduce that a < c. On view (2) we also deduce
that a < c, provided that X is left-closed (downwards closed under <), which
will be the case for forward-only computation. Thus causation is transitive, as
is the case in PESs and AESs.

In the context of reversible computation the second view of causation is sim-
pler, and that is the one that we adopt. If all reversing is causal then all con-
figurations will still be left-closed, and so it is still natural to require < to be
transitive. However once we admit the possibility of non-causal reversing, which
leads to non-left-closed configurations (such as {b, c, d} and {c, d} in our exam-
ple), it is no longer reasonable to insist on < being transitive; if a < b < c
then a may have been reversed after b occurs, and before c occurs. Therefore,
when defining RAESs we allow causation to be non-transitive. This extension is
somewhat orthogonal to the move from symmetric to asymmetric conflict. We
introduce the concept of sustained causation, where a << b means that a causes b
and a cannot reverse until b reverses. This is the analogue of standard causation
for forwards computation, and we take sustained causation to be transitive.

We also consider the issue of conflict inheritance (if a < b and a � c then b � c)
in the reversible setting. If a < b and a � c and a is reversible, then we can undo
a in {a, b} to reach {b}. Now there is nothing in {b} to prevent c from taking
place, and so we expect that {b, c} is a configuration, and b and c are not in
conflict. Hence, there is no conflict inheritance with <. However, we still have
conflict inheritance with respect to sustained causality a << b.

We assign meaning to the structures we consider by defining configuration
systems, which are transition systems with configurations as states and sets
of concurrent events as labels. It is natural to allow mixed transitions, which
perform both forward and reverse moves. We are not aware of models with
mixed transitions having been considered previously.

In this paper we present an account of conflict and causation in the reversible,
and not necessarily causal, setting. We define RPESs and RAESs, and relate
them to their respective forward-only counterparts. We prove a number of results
about reachable configurations. We show under what conditions reachable con-
figurations which are finite are reachable by purely finite means (Theorems 3.16
and 4.15). We show that under causal reversing any reachable configuration is
forwards reachable (Theorem 3.22), and we propose conditions for configura-
tions to be reachable under inverse causal reversing (Theorems 3.25 and 4.20).
We define mappings between our event structures and show that they preserve
configuration systems or reachable configurations (Theorem 5.1).

2 Configuration Systems

In this section we describe the model of concurrency we shall use for assigning
meaning to the event structures considered in this paper. An event structure
will be interpreted as a configuration system. Configuration systems are closely
related to another model of concurrency, namely configuration structures, which
have a notion of configuration and a notion of concurrent or step transition.
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These were introduced by van Glabbeek and Goltz, and later generalised by van
Glabbeek and Plotkin.

Let P(E) denote the powerset of a set E.

Definition 2.1 ([8,7]). A configuration structure is a pair C = (E,C) where E
is a set of events and C ⊆ P(E). For X,Y ∈ C, we let X → Y if X ⊆ Y and
for every Z, if X ⊆ Z ⊆ Y then Z ∈ C.

The idea is that all the (possibly infinitely many) events in Y \X are independent,

and so can happen as a single step. Instead of X → Y , we can write X
A→ Y

where A = Y \X . Note that if Y = X ∪ {a} and X,Y ∈ C then X → Y . This
may no longer hold in the reversible setting. As an example, let E = {a, b}.
Suppose that a causes b, so that b cannot occur unless a has already occurred.
Then {b} is not a possible configuration using forwards computation. However if
a is reversible, we can do a followed by b, followed by reversing a, and we reach

{b}. Thus both ∅ and {b} are configurations, but we do not have ∅ b→ {b}.
We propose a new definition appropriate for the reversible setting. We first

establish our notation. We let e, a, b, c, . . . range over events, and A,B,X, Y, Z, . . .
range over sets of events. If an event e is reversible, we have a corresponding
reverse event e. We write B for {e : e ∈ B}. We let α, . . . range over events or
reverse events, and Δ, . . . range over sets of events or reverse events.

Definition 2.2. A configuration system is a quadruple C = (E,F,C,→) where
E is a set of events, F ⊆ E are the reversible events, C ⊆ P(E) is the set of
configurations and → ⊆ C×P(E ∪ F )× C is a labelled transition relation such

that if X
A∪B→ Y then:

– A ∩X = ∅ and B ⊆ X ∩ F and Y = (X \B) ∪ A;

– for every A′ ⊆ A and B′ ⊆ B we have X
A′∪B′
→ Z

(A\A′)∪(B\B′)
→ Y (where

Z = (X \B′) ∪ A′ ∈ C).

We say that A ∪ B is enabled at X if there is Y such that X
A∪B→ Y . We say

that a transition X
A∪B→ Y is mixed if both A and B are non-empty. If B = ∅

we say the transition is forwards, and if A = ∅ the transition is reverse.

The labels on the transitions are optional since they can be deduced from the

configurations: if X
Δ→ Y then Δ = (Y \X) ∪ (X \ Y ).

We define various kinds of configuration (cf. [8, Definition 3.5]):

Definition 2.3. Let C = (E,F,C,→) be a configuration system and let X ∈ C.

– X is a forwards secured configuration if there is an infinite sequence of
configurations Xi ∈ C (i = 0, . . .) with X =

⋃∞
i=0 Xi and X0 = ∅ and

Xi
Ai+1→ Xi+1 with Ai+1 ⊆ E;

– X is a reachable configuration if there is some sequence ∅ A1∪B1→ · · · An∪Bn→ X
where Ai ⊆ E and Bi ⊆ F for each i = 1, . . . , n;
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– X is a forwards reachable configuration if there is some sequence ∅ A1→ · · · An→
X where Ai ⊆ E for each i = 1, . . . , n;

– X is a finitely reachable configuration if there is some sequence ∅ α1→ · · · αn→ X
where αi ∈ E ∪ F for each i = 1, . . . , n.

Note that mixed transitions X
A∪B→ Y do not yield new reachable sets compared

to forward and reverse transitions, since if X
A∪B→ Y then there is Z such that

X
A→ Z

B→ Y . However mixed transitions allow us to express the independence
of forward and reverse events.

It is clear that the finitely reachable configurations are finite and are reachable
configurations. However we shall see that it is not necessarily the case that finite,
reachable configurations are finitely reachable (Example 3.15).

3 Reversing in Prime Event Structures

In this section we recall the definition of prime event structure, and formulate
the slightly weaker notion of pre-prime event structure, which is more suitable
for reversing events, since it does not require conflict to be hereditary. These pre-
PESs will form the forward component of reversible PESs. We then introduce
reversible prime event structures and study their properties.

We shall see that pre-PESs and PESs can be used interchangeably in forward-
only computation, since they yield the same forwards secured configurations. On
the other hand, when reverse computation is considered, then pre-PESs allow
us to reach configurations that are not reachable with PESs.

Prime Event Structures. We start by recalling the definition of unlabelled
prime event structures with binary conflict:

Definition 3.1 ([12]). A prime event structure (PES) is a triple E = (E,<, �)
where E is a set of events, < ⊆ E × E is the causality relation, which is an
irreflexive partial order such that for every e ∈ E, {e′ ∈ E : e′ < e} is finite, and
� ⊆ E×E is the conflict relation, which is irreflexive, symmetric and hereditary
with respect to <: if a < b and a � c then b � c (all a, b, c ∈ E).

When we generalise this definition to the reversible setting, we shall see that
conflict heredity with respect to < no longer necessarily holds. We therefore
formulate a weaker form of prime event structure, as follows.

Definition 3.2. A pre-prime event structure (pre-PES) is a triple E = (E,<, �)
where E is a set of events and

1. � ⊆ E × E is irreflexive and symmetric;
2. < ⊆ E × E is an irreflexive partial order such that for every e ∈ E, {e′ ∈

E : e′ < e} is finite and conflict-free;
3. if a < b then not a � b (all a, b ∈ E).

Here X is conflict-free means that for all a, b ∈ X, it is not the case that a � b.
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It is straightforward to check that any PES is also a pre-PES. Note that if X is
conflict-free and Y ⊆ X then Y is also conflict-free.

Definition 3.3. Let E = (E,<, �) be a pre-PES. We define the associated con-
figuration system C(E) = (E, ∅,C,→) as follows. Let C = {X ⊆ E : X is
conflict-free}. For X ∈ C and A ⊆ E, we say that A is enabled at X if A∩X = ∅,
X ∪ A is conflict-free, and for every a ∈ A, {b ∈ E : b < a} ⊆ X. We define

X
A→ Y iff X,Y ∈ C and Y = X ∪A and A is enabled at X.

It can be checked that if E = (E,<, �) is a pre-PES then C(E) satisfies the
definition of a configuration system.

Definition 3.4. Let E = (E,<, �) be a pre-PES. We define the causal depth
of an event e ∈ E by cdepth(e) = max{cdepth(e′) + 1 : e′ < e}, where we
conventionally let max(∅) = 0.

Causal depth is always finite, since each event has only finitely many causes.
Events with no causes have depth zero.

Let E = (E,<, �) be a pre-PES and let X ⊆ E. We say that X is left-closed
(under <) if for any a ∈ X , if b < a then b ∈ X .

Proposition 3.5. Let E = (E,<, �) be a pre-PES and let C(E) = (E, ∅,C,→).

1. The forwards secured configurations in C are precisely those which are left-
closed.

2. X ∈ C is (forwards) reachable iff X is left-closed and there is k ∈ N such
that for all e ∈ X, cdepth(e) < k.

Pre-PESs are no more expressive than PESs as far as configuration systems are
concerned. Any pre-PES E can be converted into a corresponding PES hc(E)
by taking the hereditary closure of the conflict relation, in such a way that the
configuration systems have the same forwards secured configurations and the
same transitions on the reachable portion:

Example 3.6. Let E = (E,<, �) where E = {a, b, c} and a < b, a � c. Then E is
a pre-PES with configurations ∅, {a}, {c}, {a, b}, {b, c}. The corresponding PES
hc(E) is the same, except that we have b � c by conflict heredity, and therefore
{b, c} is not a configuration. However E and hc(E) have the same reachable
configurations, as {b, c} is not reachable in E .

Note that in Example 3.6, if a were to become reversible we could reach {b, c}
in E (but not in hc(E)) by performing a, b, a, c, and the two structures would no
longer be equivalent.

Reversible Prime Event Structures. We now introduce reversible PESs.

Definition 3.7. A reversible prime event structure (RPES) is a sextuple E =
(E,F,<, �,≺, �) where (E,<, �) is a pre-PES, F ⊆ E are those events of E which
are reversible, with reverse events being denoted by F = {e : e ∈ F} and
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1. � ⊆ E × F is the prevention relation;
2. ≺ ⊆ E×F is the reverse causality relation, where we require a ≺ a for each

a ∈ F , and also that {a : a ≺ b} is finite and conflict-free for every b ∈ F ;
3. if a ≺ b then not a � b;
4. � is hereditary with respect to sustained causation <<: if a << b and a � c

then b � c, where we define a << b to mean that a < b and if a ∈ F then
b � a;

5. << is transitive.

The intended meaning of a ≺ b is that for b to be reversed, a must be present
in the current configuration. This is a similar concept to forward causation.
The intended meaning of a � b is that b cannot occur while a is in the current
configuration. This has similarities with asymmetric conflict [11,17,1].

Note that a << b, which prevents a from being reversed once b has occurred
(and until b is reversed), has something of the force of normal irreversible cau-
sation. Items (4) and (5) of Definition 3.7 could be replaced by stating that
(E,<<, �) is a PES.

Definition 3.8. Let E = (E,F,<, �,≺, �) be an RPES. Let X ⊆ E be conflict-
free. For A ⊆ E, B ⊆ F , we say that A ∪B is enabled at X if

– A ∩X = ∅, B ⊆ X and X ∪ A is conflict-free;
– for every a ∈ A, if c < a then c ∈ X \B;
– for every b ∈ B, if d ≺ b then d ∈ X \ (B \ {b});
– for every b ∈ B, if d � b then d ∈ X ∪ A.

Definition 3.9. Let E = (E,F,<, �,≺, �) be an RPES. We define the associ-
ated configuration system C(E) = (E,F,C,→) as follows. Let C = {X ⊆ E :

X is conflict-free}. For X ∈ C and A ⊆ E, B ⊆ F , we define X
A∪B→ Y iff

X,Y ∈ C and Y = (X \B) ∪ A and A ∪B is enabled at X.

Proposition 3.10. Let E be an RPES. Then C(E) is a configuration system.

Example 3.11. Consider E with E = F = {a, b, c} and a << b << c (where <<
is sustained causation), and a ≺ a, b ≺ b and c ≺ c. Note that we can deduce
a << c by transitivity of <<. When we are in a configuration that contains b we
cannot undo a, and we cannot undo a and b when c is present. All subsets of
E are the configurations of C(E); the reachable ones are ∅, {a}, {a, b}, {a, b, c}.
On reachable configurations, the forwards transitions are ∅ a→ {a} b→ {a, b} c→
{a, b, c} and the reverse transitions are {a, b, c} c→ {a, b} b→ {a} a→ ∅. Hence, the
events are reversed in causal order.

Reachable Configurations. We now explore how adding reversibility changes
what configurations are reachable. Sustained causation << in the reversible set-
ting behaves somewhat like standard causation < in the forwards-only setting.

Proposition 3.12. Let E be an RPES and C(E) = (E,F,C,→).
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1. The forwards secured configurations in C are precisely those which are left-
closed under <.

2. X ∈ C is forwards reachable iff X is left-closed under < and there is k ∈ N
such that for all e ∈ X, cdepth(e) < k.

3. If X ∈ C is reachable then X is left-closed under << and there is k ∈ N such
that for all e ∈ X, cdepth(e) < k.

The converse to Proposition 3.12(3) is false in view of the following example.

Example 3.13. Let E = (E,F,<, �,≺, �) be given by E = {a, b, c} and F = {a},
with a < b < c and a ≺ a, c ≺ a (and empty � and �). Then {b} is not a reachable
configuration, although it is left-closed under <<.

It is sometimes useful to see the reverse causation relation ≺ as between pairs of
events, rather than events and reverse events, as this reveals chains of causality.

Definition 3.14. Let E = (E,F,<, �,≺, �) be an RPES. For a ∈ E, b ∈ F , let
a ≺• b iff a ≺ b and a = b. We also write b 8• a iff a ≺• b.

The next example shows that, unlike in the forwards-only setting, we can have
reachable configurations which are finite but not finitely reachable.

Example 3.15. Let E = F = {ai : i ∈ N}. Suppose also that ai ≺ ai, a2i+1 < a2i
and a2i+2 ≺ a2i+1 (i ∈ N). There is no � or �. Then E = (E,F,<, ∅,≺, ∅) is an
RPES. The configuration {a0} is reachable in four steps as follows:

∅ {a1,a3,...}→ {a1, a3, . . .}
{a0,a2,...}→ E

{a1,a3,...}
→ {a0, a2, . . .}

{a2,a4,...}
→ {a0}

However with single-event transitions we can reach {a0, a2i+1} for any i ∈ N,
but not {a0}. Note that there is an infinite descending causal chain a0 > a1 8•
a2 > a3 8• . . ..

To ensure that every finite, reachable configuration is finitely reachable, we need
to impose an extra condition on RPESs.

Theorem 3.16. Let E = (E,F,<, �,≺, �) be an RPES. Suppose that for every
e ∈ E, {e′ ∈ E : e′(< ∪ ≺•)∗e} is finite. Then every finite, reachable configura-
tion in C(E) is finitely reachable.

Proposition 3.17. Let E be a RPES such that C(E) has a reachable configura-

tion X with X
b→ (some b ∈ F ). Then C(E) has a non-terminating computation.

Reversing Disciplines. Many patterns of common biochemical reactions in-
volve breaking of previously established bonds out-of-causal order [18]. We now
consider several particular disciplines for reversing events out of many possible
disciplines. The most usual is where we require that an event cannot be reversed
until all events it has caused have also been reversed; we call this cause-respecting.
A stronger notion is causal, where in addition to cause-respecting a reversible
event can be reversed freely if all events it has caused have been reversed.
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Definition 3.18. Let E = (E,F,<, �,≺, �) be an RPES. We say that E is cause-
respecting if for any a, b ∈ E, if a < b then a << b, so that all causation is
sustained causation. We say that E is causal if for any a ∈ E, b ∈ F , we have
(1) a ≺ b iff a = b and (2) a � b iff b < a.

We have already seen a causal RPES in Example 3.11. Any PES can be converted
into a causal RPES, once we decide which events are to be reversible.

Proposition 3.19. Let E = (E,<, �) be a PES and let F ⊆ E. Define κ(E , F ) =
(E,F,<, �,≺, �), where a ≺ a (all a ∈ F ) and a � b for every a ∈ E, b ∈ F such
that b < a. Then κ(E , F ) is a causal RPES.

Next we investigate reachable configurations in cause-respecting RPESs.

Proposition 3.20. Let E be a cause-respecting RPES and C(E) = (E,F,C,→).
If X ∈ C is reachable then X is left-closed.

If an RPES is causal then any mixed transition can be inverted on left-closed
configurations, provided that the events in the transition are reversible.

Proposition 3.21. Let E be an RPES and let C(E) = (E,F,C,→). Let X ∈ C

be left-closed and let A,B ⊆ F . Then: 1. If E is cause-respecting and X
B→ X ′

then X ′ B→ X. 2. If E is causal and X
A∪B→ X ′ then X ′ B∪A→ X.

The second statement of Proposition 3.21 is related to the Loop Lemma for
RCCS [5, Lemma 6], which states that every forward transition has a corre-
sponding reverse transition, and conversely.

Theorem 3.22. Let E be a cause-respecting RPES and let C(E) = (E,F,C,→).
If X ∈ C is reachable then X is forwards reachable.

Theorem 3.22 is related to a result of Danos and Krivine for RCCS [5, Cor. 1].
We now consider a second reversing discipline.

Definition 3.23. Let E = (E,F,<, �,≺, �) be an RPES. We say that E is in-
verse cause-respecting if for any a ∈ E, b ∈ F , if a < b then a � b. We say that
E is inverse causal if for any a ∈ E, b ∈ F , we have (1) a ≺ b iff a = b and (2)
a � b iff a < b.

This allows reversing to start at any time with a <-minimal element of a config-
uration belonging to F . Plainly we can reach new configurations which are not
forwards reachable.

Example 3.24. Let E = (E,F,<, �,≺, �) be an inverse causal RPES with E =
F = {a, b, c} and a < b < c and no conflict. We also have a ≺ a, b ≺ b and
c ≺ c, and a � b, a � c and b � c since E is inverse causal. The forwards reachable
configurations are ∅, {a}, {a, b} and {a, b, c}. Reversing from {a, b} we can reach
{b}. Reversing from {a, b, c} we can reach {b, c} followed by {c}, from which we
can reach {a, c}. Thus every subset of E is a reachable configuration. The empty
configuration is reachable from all configurations.

Theorem 3.25. Let E be an inverse causal RPES with all events reversible and
let C(E) = (E,E,C,→). Let X ∈ C be such that there is a finite bound k such
that for any e ∈ X, cdepth(e) < k. Then X is reachable.
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4 Reversing in Asymmetric Event Structures

In this section we increase the expressiveness of RPESs by modifying conflict
to be asymmetric rather than symmetric, and also dropping the requirement
that causation is transitive. The extra expressive power allows us to model more
faithfully different forms of reversing events as exemplified in the Introduction.

Asymmetric Event Structures. We recall the definition of asymmetric event
structures:

Definition 4.1 ([1, Definition 2.4]). An asymmetric event structure (AES)
is a triple E = (E,<, �) where E is a set of events and for all a, b ∈ E

1. � ⊆ E × E is the precedence relation (where we write b � a iff a � b);
2. < ⊆ E × E is the causality relation, which is an irreflexive partial order,

such that {e ∈ E : e < a} is finite and � is acyclic on {e ∈ E : e ≤ a};
3. if a < b then a � b;
4. if a � c and a < b then b � c, where � is defined to be � ∩ �.

What we write as a � b was a↗ b in [1]. The precedence relation has a dual
interpretation. Thus a � b says that event a weakly causes, or precedes event b,
meaning that if both a and b occur then a occurred first. Dually, b � a says that
b prevents a, meaning that if b is present in a configuration then a cannot occur.
We have already used prevention b � a on reverse events with RPESs.

Definition 4.2. Let E = (E,<, �) be an AES. We define the associated config-
uration system C(E) = (E, ∅,C,→) as follows. Let C consist of those X ⊆ E
such that � is well-founded on X. For X ∈ C and A ⊆ E, we say that A is
enabled at X if A ∩X = ∅, and for every a ∈ A, both {b ∈ E : b < a} ⊆ X and

{b ∈ E : b � a} ∩ (X ∪ A) = ∅. We define X
A→ Y iff X,Y ∈ C and Y = X ∪ A

and A is enabled at X.

It can be checked that if E is an AES then C(E) is a configuration system.
Moving from symmetric to asymmetric conflict increases expressive power:

Example 4.3. Consider the AES E = (E,<, �) with E = {a, b} and a � b. Then

C(E) consists of all subsets of E and we have ∅ a→ {a} b→ {a, b} and ∅ b→ {b}.
There is no pre-PES for this configuration system.

Definition 4.4. Let E = (E,<, �) be an AES with C(E) = (E, ∅,C,→). Let
X ∈ C. We define the precedence depth of events in X by a mapping from X
to the ordinals given by pdepthX(e) = sup{pdepthX(e′) + 1 : e′ ∈ X and e′ � e}.

Note that pdepthX(e) will be a (not necessarily finite) ordinal number by well-
foundedness of � on X in C.

Proposition 4.5. Let E be an AES with C(E) = (E, ∅,C,→). Let X ∈ C. Then
X is a forwards secured configuration iff X is left-closed and for all e ∈ X,
pdepthX(e) is finite.
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Reversible Asymmetric Event Structures. We now introduce the gener-
alisation of RPESs to the setting of asymmetric conflict and not necessarily
transitive causation.

Definition 4.6. A reversible asymmetric event structure (RAES) is a quadruple
E = (E,F,≺, �) where E is a set of events and F ⊆ E are those events of E
which are reversible, and for any a, b, c, e ∈ E and α ∈ E ∪ F :

1. � ⊆ (E ∪ F ) × E is the precedence relation (with a � b iff b � a), which is
irreflexive;

2. ≺ ⊆ E × (E ∪ F ) is the direct causation relation, which is irreflexive and
well-founded, and such that {e ∈ E : e ≺ α} is finite and � is acyclic on
{e ∈ E : e ≺ α};

3. a ≺ a for all a ∈ F ;
4. if a ≺ α then not a � α;
5. a ≺≺ b implies a � b, where sustained direct causation a ≺≺ b means that

a ≺ b and if a ∈ F then b � a;
6. ≺≺ is transitive;
7. if a � c and a ≺≺ b then b � c, where � is defined to be � ∩ �.

We have combined the forwards causation < of (R)PESs and reverse causation
≺ of RPESs into a single direct causation relation ≺; similarly we have combined
the forwards precedence � of AESs and the reverse prevention � of RPESs into
a single precedence relation �. We remark that direct (or immediate) causation
≺ was used in flow event structures [3] (with symmetric conflict �).

If we set F = ∅ in Definition 4.6 we get an AES, since all causation is sustained
causation. However if F = ∅ then the forwards-only part of an RAES is a proto-
AES, which is like an AES, except that causation is not transitive and conflict
is not hereditary. We discussed the reasons for this in the Introduction. We
also drop the requirement that if a < b then a � b (though that appears in
its sustained causation form in item 5 of Definition 4.6). This does not hold in
general in the reversible context. Let E = {a, b} and F = {a}, with a ≺ b and
a ≺ a. Then we can perform a, b, a to reach {b}. At this point a is enabled. Thus
it is not the case that a � b, since that means a is disabled when b is present.

Definition 4.7. Let E = (E,F,≺, �) be an RAES. Let X ⊆ E be such that � is
well-founded on X. For A ⊆ E, B ⊆ F , we say that A ∪B is enabled at X if

– A ∩X = ∅, B ⊆ X;
– for every a ∈ A, if c ≺ a then c ∈ X \B;
– for every a ∈ A, if c � a then c ∈ X ∪ A;
– for every b ∈ B, if d ≺ b then d ∈ X \ (B \ {b});
– for every b ∈ B, if d � b then d ∈ X ∪ A.

Definition 4.8. Let E = (E,F,≺, �) be an RAES. We define the associated
configuration system C(E) = (E,F,C,→) as follows. Let C consist of those X ⊆
E such that � is well-founded on X. For X ∈ C and A ⊆ E, B ⊆ F , we define

X
A∪B→ Y iff X,Y ∈ C and Y = (X \B) ∪ A and A ∪B is enabled at X.
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If E is an RAES then C(E) is a configuration system. We now give examples
involving asymmetric conflict and non-transitive causation.

Example 4.9. We illustrate how asymmetric conflict can be used to control re-
versing. Let E = (E,F,≺, �) be defined as follows. Let E = {a1, . . . , an} and
F = {a1, . . . , an−1}. We have ai ≺ ai+1 and ai ≺ ai (1 ≤ i ≤ n − 1); also
ai � ai+1 (1 ≤ i ≤ n− 2). So far E is inverse causal (Definition 3.23), and events
which have already been reversed can re-occur. We now add asymmetric conflict
ai � aj (1 ≤ i < j ≤ n), which prevents such re-occurrences, and also ai+1 ≺ ai
(1 ≤ i ≤ n− 1), which ensures that we make progress towards the goal of the fi-
nal configuration {an}. Non-empty reachable configurations of E are of the form
{ai, ai+1, . . . , aj} (1 ≤ i ≤ j ≤ n). At {ai, . . . , aj} we see that aj+1 is enabled
if j < n and ai is enabled if i < j; in fact the mixed {aj+1, ai} is concurrently
enabled if i < j < n. Thus we have a kind of FIFO queue which must be non-
empty (apart from the initial empty configuration). All computations terminate,
showing that Proposition 3.17 does not apply to RAESs.

Example 4.10. Let E = (E,≺, �) with E = {a, b, c, d} and a ≺ b ≺ c, d ≺ c and
a � d � a. Also let F = {a} and a ≺ a. Then E = (E,F,≺, �) is an RAES.
Note that a and d are in conflict (a � d) and they are both (direct or indirect)

causes of c. The configuration system C(E) has ∅ a→ {a} b→ {a, b} a→ {b} d→
{b, d} c→ {b, c, d}, {a} a→ ∅ and ∅ d→ {d}, together with various unreachable
configurations. So the example illustrates how in the reversible setting an event
can have conflicting indirect causes and still occur.

Remark 4.11. The forward-only part of E in Example 4.10 forms a proto-AES
E ′, and we can use it as an example of how a proto-AES can be converted into an
AES. In E ′ of course c cannot ever occur. To get a corresponding AES (E′, <, �′),
we must eliminate c, as it has conflicting causes. This gives E′ = {a, b, d}. We
then let a < b and a �′ b (in a more elaborate example we would have to take
the transitive closure of ≺). Finally we set a �′ d �′ a, b �′ d �′ b so that conflict
is inherited. This gives an AES htc(E ′). Its configuration system has the same
forward secured configurations as C(E ′), with some unreachable configurations
eliminated.

Reachable Configurations. As with RPESs, sustained causation in the re-
versible setting behaves like standard causation in the forwards-only setting. The
next result is the analogue of Proposition 3.12 for RPESs.

Definition 4.12. Let E = (E,<, �) be an RAES with C(E) = (E, ∅,C,→). Let
X ∈ C, and suppose that � ∪ ≺ is well-founded on X. We define the precedence
causal depth of events in X by a mapping from X to the ordinals given by
pcdepthX(e) = sup{pcdepthX(e′) + 1 : e′ ∈ X and e′ � e or e′ ≺ e}.

Proposition 4.13. Let E be an RAES, C(E) = (E,F,C,→) and X ∈ C. Then:

1. X is a forwards secured configuration iff X is left-closed, � ∪ ≺ is well-
founded on X and for all e ∈ X, pcdepthX(e) is finite.
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2. X is forwards reachable iff X is left-closed, � ∪ ≺ is well-founded on X and
there is k ∈ N such that for all e ∈ X, pcdepthX(e) < k.

3. If X is reachable then X is left-closed under ≺≺ and there is k ∈ N such that
for all e ∈ X, cdepth(e) < k.

It is not necessarily the case that � ∪ ≺ is well-founded on reachable configura-
tions, as the next example shows.

Example 4.14. Let E = {a, b, c}, F = {a} with a ≺ b ≺ c � a and a ≺ a.
Then (E,F,≺, �) is an RAES. By Proposition 4.13 we know that {a, b, c} is not
forwards reachable, since it contains a � ∪ ≺-cycle. However it is reachable by

the computation ∅ a→ b→ {a, b} a→ {b} c→ a→ {a, b, c}.

As in the case of RPESs, we can have reachable configurations which are finite
but not finitely reachable; the RPES E = (E,F,<, ∅,≺, ∅) of Example 3.15 is
easily converted into an RAES E ′ = (E,F,< ∪ ≺, ∅) with an empty precedence
relation. As with RPESs, to ensure that every finite, reachable configuration is
finitely reachable, we shall need to impose extra conditions on RAESs.

Definition 3.14 for≺• carries over to RAESs and the next result is the analogue
of Theorem 3.16.

Theorem 4.15. Let E = (E,F,≺, �) be an RAES. Suppose that for every e ∈ E,
{e′ ∈ E : e′(≺ ∪ ≺•)∗e} is finite. Then every finite, reachable configuration in
C(E) is finitely reachable.

Reversing Disciplines. We can define what it means for an RAES to be cause-
respecting or causal by a straightforward adaptation of Definition 3.18. As with
RPESs, causal implies cause-respecting. Also as with RPESs (Theorem 3.22), in
a cause-respecting RAES, we can show that reachable configurations are forwards
reachable.

We would like to prove a version of Proposition 3.21, which states that if
an RPES is causal then any mixed transition can be inverted on left-closed
configurations, provided that the events of the transition are reversible. However
that no longer holds in the setting of RAESs, as the next example shows.

Example 4.16. Let E = F = {a, b} and let a � b, a ≺ a and b ≺ b. Then
E = (E,F,≺, �) is a causal RAES. All configurations are forwards reachable and
left-closed. Note that a cannot occur after b going forwards, but we can reverse

a and b in either order. In particular, we have {a, b} a→ {b} but not {b} a→ {a, b}.

Thus we need a different notion than causal (or cause-respecting).

Definition 4.17. Let E = (E,F,≺, �) be an RAES. We say that E is precedence-
respecting if for any a ∈ F , b ∈ E, if a � b then b � a. We say that E is
precedence/cause-respecting if E is cause-respecting and precedence-respecting.
We say that E is precedence causal if for any a ∈ E, b ∈ F , both (1) a ≺ b iff
a = b and (2) a � b iff b ≺ a or b � a.
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Clearly, if E is precedence causal then E is precedence/cause-respecting.
We can now obtain the analogue of Proposition 3.21 for RPESs.

Proposition 4.18. Let E be an RAES and let C(E) = (E,F,C,→). Let X ∈ C
be left-closed and let A,B ⊆ F . Then: 1. If E is precedence/cause-respecting

and X
B→ X ′ then X ′ B→ X. 2. If E is precedence causal and X

A∪B→ X ′ then

X ′ B∪A→ X.

Any AES can be converted into a precedence causal RAES, once we decide
which events are to be reversible. (cf. Proposition 3.19). Finally, we can also
adapt inverse causal reversing (Definition 3.23) to RAESs.

Definition 4.19. Let E = (E,F,<, �,≺, �) be an RPES. We say that E is in-
verse precedence causal if for any a ∈ E, b ∈ F , both (1) a ≺ b iff a = b and (2)
a � b iff a ≺ b or a � b.

We showed in Theorem 3.25 that in an inverse causal RPES with all events
reversible we can reach all configurations with bounded causal depth.

Theorem 4.20. Let E be an inverse precedence causal RAES with all events
reversible and let C(E) = (E,E,C,→). Let X ∈ C be such that there is a forwards
reachable X ′ ∈ C with X ⊆ X ′. Then X is reachable.

5 Mappings

In this section we show how our event structures are related.

ρp

ρa

αr

α
PES

AES

RPES

RAES

Fig. 2. Mappings

The mappings hc and htc that
we have introduced informally in Ex-
ample 3.6 and Remark 4.11 show
that pre-PESs and proto-AESs are no
more expressive than PESs and AESs
as far as configuration systems are
concerned. Hence, here we only con-
sider the four main event structures
and the mappings between them as in Figure 2. For E = (E,<, �) a PES,
we define ρp(E) = (E, ∅, <, �, ∅, ∅) and α(E) = (E,<, �) where � = < ∪ �. For
E = (E,<, �) an AES, we define ρa(E) = (E, ∅, <, �). For E = (E,F,<, �,≺r, �r)
an RPES, we define αr(E) = (E,F,≺, �) where ≺ = < ∪ ≺r and � = << ∪ � ∪ �r.
The next theorem shows that the mappings preserve configuration systems or
reachable configurations.

Theorem 5.1. 1. If E is a PES then ρp(E) is an RPES and C(ρp(E)) = C(E).
Also, α(E) is an AES [1, Lemma 2.2] and X is reachable in C(E) iff X is
reachable in C(α(E)). 2. If E is an AES then ρa(E) is an RAES. Moreover,
C(ρa(E)) = C(E). 3. If E is an RPES then αr(E) is an RAES. Moreover, X is
reachable in C(E) iff X is reachable in C(αr(E)).
We now have two methods of mapping a PES into an RAES—via an AES or via
an RPES— if E is a PES then αr(ρp(E)) = ρa(α(E)).
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6 Conclusions and Further Work

We have investigated conflict and causation for event structures with reversibil-
ity. We started by proposing a reversible form of prime event structure (RPES)
where conflict inheritance no longer holds in general. The need for greater ex-
pressiveness then led us to two extensions: permitting non-transitive causation,
and allowing asymmetric rather than symmetric conflict (useful for controlled
reversing, as distinct from processes computing freely either forwards or back-
wards). These extensions yield our more general model, reversible asynchronous
event structures (RAES). The two extensions are somewhat orthogonal and so
one could envisage intermediate models. We have obtained results about which
configurations are reachable. For instance we have given conditions under which
finite and reachable configurations are guaranteed to be reachable without inter-
mediate infinite configurations. Our models are general enough to allow several
forms of reversibility to be defined and analysed, including the causal and inverse
causal disciplines. We believe that RAESs offer the prospect of modelling a wide
range of examples in software and biochemistry.

Future work could include formulating labelled versions of reversible event
structures and bisimulations for them as in [14], establishing that our RPESs
and RAESs are special cases of the reversible event structures in [16], modelling
reversible process calculi, and extending existing work on domains and categories
for event structures to the present models.
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The Power of Priority Channel Systems�
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Abstract. We introduce Priority Channel Systems, a new natural class
of channel systems where messages carry a numeric priority and where
higher-priority messages can supersede lower-priority messages preced-
ing them in the fifo communication buffers. The decidability of safety
and inevitability properties is shown via the introduction of a priority
embedding, a well-quasi-ordering that has not previously been used in
well-structured systems. We then show how Priority Channel Systems
can compute Fast-Growing functions and prove that the aforementioned
verification problems are Fε0 -complete.

1 Introduction

Channel systems are a family of distributed models where concurrent agents
communicate via (usually unbounded) fifo communication buffers, called “chan-
nels”. These models are well-suited for the formal specification and algorithmic
analysis of communication protocols and concurrent programs [6, 7, 9]. They are
also a fundamental model of computation, closely related to Post’s tag systems.

A particularly interesting class of channel systems are the so-called lossy chan-
nel systems (LCSs), where channels are unreliable and may lose messages [10, 4,
8]. For LCSs, several important behavioral properties, like safety or inevitabil-
ity, are decidable. This is because these systems are well-structured : transi-
tions are monotonic wrt. a (decidable) well-quasi-ordering of the configuration
space [2, 14]. Beyond their applications in verification, LCSs have turned out to
be an important automata-theoretic tool for decidability or hardness in areas like
Timed Automata, Metric Temporal Logic, modal logics, etc. [3, 18, 23, 19]. They
are also a fundamental model of computation capturing the Fωω -complexity level
in Wainer et al.’s Fast-Growing Hierarchy, see [11, 24, 25].

Lossy channel systems do not provide a natural way to model systems or
protocols that treat messages discriminatingly according to some specified rule
set. An example is the prioritization of messages, which is central to ensuring
quality of service (QoS) in networking architectures, and is usually implemented
by allowing for tagging messages with some relative priority. For instance, the
Differentiated Services (DiffServ) architecture described in RFC 2475, which
enables QoS on modern IP networks, allows for a field specifying the relative
priority of an IP packet with respect to a finite set of priorities, and network
links may decide to arbitrarily drop IP packets of lower priority in favor of higher
priority packets once the network congestion reaches a critical point.
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p q
c ! 1

c ? 3
c ! 0 c ! 3

Fig. 1. A simple single-channel 3-PCS

Our contributions. We introduce priority channel systems (PCSs), a family
of channel systems where each message is equipped with a priority level, and
where higher-priority messages can supersede lower-priority messages by drop-
ping them. For technical simplicity, our model abstracts from the contents of
messages by just considering the priority levels (but see the full version of this
work at http://arxiv.org/abs/1301.5500 for a general setting allowing arbi-
trary message contents and priorities).

Priority channel systems rely on the (prioritized) superseding ordering, a new
ordering that has not been considered before in well-structured systems (though
it is related to the gap-embedding of [28]). Showing that it is a well-quasi-ordering
entails the decidability of safety and termination (among others) for PCSs. We
also show the aforementioned problems to become undecidable for channel sys-
tems that build upon more restrictive priority mechanisms.

Using techniques from [24, 28], we show in Sec. 5 an Fε0 upper bound on the
complexity of PCS verification, far higher than the Fωω -complete complexity of
LCSs. We then prove in Sec. 6 a matching lower bound and this is the main tech-
nical result of the paper: building upon techniques developed for less powerful
models [11, 27, 17], we show how PCSs can robustly simulate the computation
of the fast growing functions Fα and their inverses for all ordinals α up to ε0.
This gives a precise measure of the expressive power of PCSs.

Along the way, we show how other well-quasi-ordered data structures from the
literature, e.g. trees with (strong) embedding, can be reflected in the superseding
ordering (Sec. 4). This paves the way to new Fε0 upper bounds for problems in
other areas of algorithmic verification, whose complexity is wide open.

2 Priority Channel Systems

We define Priority Channel Systems as consisting of a single process since this
is sufficient for our purposes in this paper.1 For every d ∈ N, the level-d priority

alphabet is Σd
def
= {0, 1, . . . , d}. A level-d priority channel system (a “d-PCS”)

is a tuple S = (Σd, Ch, Q,Δ) where Σd is as above, Ch = {c1, . . . , cm} is a
set of m channel names, Q = {q1, q2, . . .} is a finite set of control states, and
Δ ⊆ Q× Ch× {!, ?} ×Σd ×Q is a set of transition rules (see below).

2.1 Semantics

The operational semantics of a PCS S is given in the form of a transition system.

We let ConfS
def
= Q×(Σ∗d)

m be the set of all configurations of S, denoted C,D, . . .

1 Systems made of several concurrent components can be represented by a single
process obtained as an asynchronous product of the components.

http://arxiv.org/abs/1301.5500
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A configuration C = (q, x1, . . . , xm) records an instantaneous control point (a
state in Q) and the contents of the m channels, i.e., sequences of messages
from Σd. A sequence x ∈ Σ∗d has the form x = a1 . . . a� and we let � = |x|.
Concatenation is denoted multiplicatively, with ε denoting the empty sequence.

The labeled transition relation between configurations, denoted C
δ−→ C′, is

generated by the rules in Δ = {δ1, . . . , δk}. From a technical perspective, it is
convenient to define two such transition relations, denoted −→rel and −→#.

Reliable Semantics. We start with −→rel that corresponds to “reliable” steps,
or more correctly steps with no superseding of lower-priority messages. As is
standard, for a reading rule of the form δ = (q, ci, ?, a, q

′) ∈ Δ, there is a

step C
δ−→rel C′ if C = (q, x1, . . . , xm) and C′ = (q′, y1, . . . , ym) for some

x1, y1, . . . , xm, ym such that xi = ayi and xj = yj for all j = i, while for a

writing rule δ = (q, ci, !, a, q
′) ∈ Δ, there is a step C

δ−→rel C′ if yi = xia (and
xj = yj for all j = i). These “reliable” steps correspond to the behavior of queue
automata, or (reliable) channel systems, a Turing-powerful computation model.

Internal-Superseding. The actual behavior of PCSs is obtained by extending

reliable steps with internal superseding steps, denoted C
ci#k−−→# C′, which can

be performed at any time in an uncontrolled manner.

Formally, for two words x, y ∈ Σ∗d and k ∈ N, we write x
#k−→# y

def⇔ x is some
a1 . . . a�, 1 ≤ k < |x| = �, ak ≤ ak+1 and y = a1 . . . ak−1ak+1 . . . a�. In other
words, the k-th message in x is superseded by its immediate successor ak+1, with

the condition that ak is not of higher priority. We write x −→# y when x
#k−→# y

for some k, and use x←−# y when y −→# x. The transitive reflexive closure
∗←−#

is called the superseding ordering and is denoted by ≤#. Put differently, −→# is
a rewrite relation over Σ∗d according to the rules {aa′ → a′ | 0 ≤ a ≤ a′ ≤ d}.

This is extended to steps between configurations by C = (q, x1, . . . , xm)
ci#k−−→#

C′ = (q′, y1, . . . , ym)
def⇔ q = q′ and xi

#k−→# yi (and xj = yj for j = i). Further-

more, every reliable step is a valid step: for any rule δ, C
δ−→# C′ iff C

δ−→rel C
′,

giving rise to a second transition system associated with S: S# def
= (ConfS ,−→#).

E.g., the PCS from Fig. 1 can perform

p, 0200
!1−→# q, 02001

#3−→# q, 0201
#1−→# q, 201

#2−→# q, 21 .

The internal-superseding semantics allows superseding to occur at any time and
anywhere in the channel. It is appropriate when abstracting from situations
where end-to-end communication actually goes through a series of consecutive
relays, network switches, and buffers, each of them possibly handling the incom-
ing traffic with a so-called write-superseding policy, where writes immediately
“consume” the congested messages in front of them in the buffer. We develop
this aspect in the full version, where we also prove the two semantics to be
essentially equivalent.
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2.2 Related Models

It is possible to consider a stricter policy for priorities where a higher-priority
message may only supersede messages with strictly lower priority. Another pri-
ority mechanism one could envision sees higher-priority messages overtake those
of lower priority without dropping them. These two mechanisms are more re-
strictive, i.e., drop fewer messages, but they may be powerless in case of network
congestion: for instance, they offer no solutions if all the messages in the con-
gested buffers have the same priority. From a more theoretical standpoint, both
semantics also yield Turing-powerful models; details are provided in the full
version.

Theorem 1. Reachability in PCSs is undecidable both for strict superseding and
overtaking semantics.

We conclude by observing that PCSs can simulate lossy channel systems. In
fact they can simulate the dynamic lossy channel systems and the timed lossy
channel systems from [1], see the full version. Hence reachability and termination
(see Thm. 3) are at least Fωω -hard for PCSs, and problems like boundedness or
repeated control-state reachability (see [26] for more) are undecidable for them.

2.3 Priority Channel Systems Are Well-Structured

Our main result regarding the verification of PCSs is that they are well-structured

systems. Recall thatC ≤# D
def⇔ C is some (p, y1, . . . , ym) andD is (p, x1, . . . , xm)

with xi ≤# yi for i = 1, . . . ,m, or equivalently, C can be obtained from D by
internal superseding steps.

Theorem 2 (PCSs are WSTSs). For any PCS S, the transition system S#
with configurations ordered by ≤# is a well-structured transition system (with
stuttering compatibility).

Proof. There are two conditions to check:

1. wqo: (ConfS ,≤#) is a well-quasi-ordering as will be shown next (see Thm. 7
in Sec. 3).

2. monotonicity: Checking stuttering compatibility (see [14, def. 4.4]) is triv-
ial with the ≤# ordering. Indeed, assume that C ≤# D and that C −→# C′

is a step from the “smaller” configuration. Then in particular D
∗−→# C by

definition of −→#, so that clearly D
+−→# C′ and D can simulate any step

from C.

A consequence of the well-structuredness of PCSs is the decidability of several
natural verification problems. In this paper we focus on “Reachability”2 (given
a PCS, an initial configuration C0, and a set of configurations G ⊆ ConfS , does

C0
∗−→# D for some D ∈ G?), and “Inevitability” (do all maximal runs from C0

eventually visit G?) which includes “Termination” as a special case.

2 Also called “Safety” when we want to check that G is not reachable.
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Theorem 3. Reachability and Inevitability are decidable for PCSs.

Proof (Sketch). The generic WSTS algorithms [14] apply after we check the
minimal effectiveness requirements: the ordering ≤# between configurations is
decidable (in NLogSpace, see Sec. 3.2) and the operational semantics is finitely
branching and effective (one can compute the immediate successors of a config-
uration, and the minimal immediate predecessors of an upward-closed set).

We note that Reachability and Coverability coincide (even for zero-length

runs when C0 has empty channels) since
+−→# coincides with ≥# ◦ +−→#, and

that the answer to a Reachability question only depends on the (finitely many)
minimal elements of G. One can even compute Pre∗(G) for G given, e.g., as a
regular subset of ConfS .

For Inevitability, the algorithms in [2, 14] assume that G is downward-closed

but, in our case where
+−→# and ≥# ◦ +−→# coincide, decidability can be shown

for arbitrary (recursive) G, as in [26, Thm. 4.4].

3 Priority Embedding

This section focuses on the superseding ordering≤# on words and establishes the

fundamental properties we use for reasoning about PCSs. Recall that ≤#
def
=

∗←−#,
the reflexive transitive closure of the inverse of −→#; we prove that (Σ

∗
p ,≤#) is a

well-quasi-ordering (a wqo). Recall that a quasi-ordering (X,�) is a wqo if any
infinite sequence x0, x1, x2, . . . overX contains an infinite increasing subsequence
xi0 � xi1 � xi2 � · · ·

3.1 Embedding with Priorities

For two words x, y ∈ Σ∗d , we let x �p y
def⇔ x = a1 · · · a� and y can be factored as

y = z1a1z2a2 · · · z�a� with zi ∈ Σ∗ai
for i = 1, . . . , �. For example, 201 �p 22011

but 120 �p 10210 (factoring 10210 as z11z22z30 needs z3 = 1 ∈ Σ∗0 ). If x �p y
then x is a subword of y and x can be obtained from y by removing factors of
messages with priority not above the first preserved message to the right of the
factor. In particular, x �p y implies y

∗−→# x, i.e., x ≤# y. This immediately
yields:

ε �p y iff y = ε , (1)

x1 �p y1 and x2 �p y2 imply x1x2 �p y1y2 , (2)

x1x2 �p y imply ∃y1 :p x1 : ∃y2 :p x2 : y = y1y2 . (3)

Lemma 4. (Σ∗d ,�p) is a quasi-ordering (i.e., is reflexive and transitive).

Proof. Reflexivity is obvious from the definition. For transitivity, consider x′ �p

x �p y with x = a1 · · · a� and y = z1a1 · · · z�a�. In view of Eqs. (1–3) it is
enough to show x′ �p y in the case where |x′| = 1. Consider then x′ = a. Now
x′ �p x implies a = a� and a ≥ ai, hence Σ∗ai

⊆ Σ∗a , for all i = 1, . . . , �. Letting

z
def
= z1a1 · · · z�−1a�−1z� yields y = za for z ∈ Σ∗a . Hence x′ �p z.
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We can now relate superseding and priority orderings with:

Proposition 5. For all x, y ∈ Σ∗d , x �p y iff x≤# y.

Proof. Obviously, y
#k−→# x allows x �p y with zk being the superseded message

(and zi = ε for i = k), so that ≤# is included in �p by Lem. 4. In the other
direction x �p y entails x≤# y as noted earlier.

3.2 Canonical Factorizations and Well-quasi-ordering

For our next development, we define the height, written h(x), of a sequence
x ∈ Σ∗d as being the highest priority occurring in x (by convention, we let

h(ε)
def
= −1). Thus, x ∈ Σ∗h iff h ≥ h(x). (We further let Σ−1

def
= ∅.) Any x ∈ Σ∗d

has a unique canonical factorization x = x0hx1h · · ·xk−1hxk where k is the
number of occurrences of h = h(x) in x and where the k + 1 residuals x0,
x1, . . . , xk are in Σ∗h−1. The point of this decomposition is the following sufficient
condition for x �p y.

Lemma 6. Let x = x0h · · ·hxk and y = y0h · · ·hym be canonical factorizations
with h = h(x) = h(y). If there is a sequence 0 = j0 < j1 < j2 < · · · < jk−1 <
jk = m of indexes s.t. xi �p yji for all i = 0, . . . , k then x �p y.

Proof. We show x≤# y. Note that hyih
∗−→# h for all i = 1, . . . ,m, so y

∗−→# y′
def
=

yj0hyj1hyj2 · · ·hyjk (recall that 0 = j0 and m = jk). From xi �p yji we deduce

yji
∗−→# xi for all i = 0, . . . , k, hence y′

∗−→# x0h · · ·hxk = x.

The condition in the statement of Lemma 6 is usually written 〈x0, . . . , xk〉 �∗
〈y0, . . . , ym〉, using the sequence extension of �p on sequences of residuals.

Theorem 7. (Σ∗d ,�p) is a well-quasi-ordering (a wqo).

Proof. By induction on d. The base case d = −1 is trivial since Σ∗−1 is ∅∗ = {ε},
a singleton. For the induction step, consider an infinite sequence x0, x1, . . .
over Σ∗d . We can extract an infinite subsequence, where all xi’s have the same
height h (since h(xi) is in a finite set) and, since the residuals are in Σ∗d−1,
a wqo by ind. hyp., further extract an infinite subsequence where the first
and the last residuals are increasing, i.e., xi0,0 �p xi1,0 �p xi2,0 �p · · · and
xi0,k0 �p xi1,k1 �p xi2,k2 �p · · · . Now recall that, by Higman’s Lemma, the se-
quence extension ((Σ∗d−1)

∗,�∗) is a wqo since, by ind. hyp., (Σ∗d−1,�p) is a wqo.
We may thus further extract an infinite subsequence that is increasing for �∗
on the residuals, i.e., with 〈xi0,0, xi0,1, . . . , xi0,k0〉 �∗ 〈xi1,0, xi1,1, . . . , xi1,k1〉 �∗
〈xi2,0, xi2,1, . . . , xi2,k2〉 �∗ · · · With Lemma 6 we deduce xi0 �p xi1 �p xi2 �p

· · · . Hence (Σ∗d ,�p) is a wqo.

Remark 8. Thm. 7 and Prop. 5 prove that ≤# is a wqo on configurations of
PCSs, as we assumed in Sec. 2.3. There we also assumed that ≤# is decidable.
We can now see that it is in NLogSpace, since, in view of Prop. 5, one can
check whether x≤# y by reading x and y simultaneously while guessing nonde-
terministically a factorization z1a1 · · · z�a� of y, and checking that zi ∈ Σ∗ai

.



The Power of Priority Channel Systems 325

Fig. 2. Two trees in T2

4 Applications of the Priority Embedding to Trees

In this section we show how tree orderings can be reflected into sequences over
a priority alphabet. This serves two purposes. First, it illustrates the “power” of
priority embeddings, giving a simple proof that strong tree embeddings form a
wqo as a byproduct. Second, the reflection defined will subsequently be used in
Sec. 6 to provide an encoding of ordinals that PCSs can manipulate “robustly.”

4.1 Encoding Bounded Depth Trees

Given an alphabet Γ , the set of finite, ordered, unranked labeled trees (aka
variadic terms) over Γ , noted T (Γ ), is the smallest set such that, if f is in Γ
and t1, . . . , tn are n ≥ 0 trees in T (Γ ), then the tree f(t1 · · · tn) is in T (Γ ). A
context C is defined as usual as a tree with a single occurrence of a leaf labeled
by a distinguished variable x. Given a context C and a tree t, we can form a
tree C[t] by plugging t instead of that x-labeled leaf.

Let d be a depth in N and • be a node label. We consider the set Td = Td({•})
of trees of depth at most d with • as single possible label; for instance, T0 = {•()}
contains a single tree, and the two trees shown in Fig. 2 are in T2:

It is a folklore result that one can encode bounded depth trees into finite
sequences using canonical factorizations. Here we present a natural variant that
is rather well-suited for our constructions in Sec. 6. We encode trees of bounded
depth using the mapping sd:Td+1→Σ∗d defined by induction on d as

sd(•(t1 · · · tn)) def
=

{
ε if n = 0,

sd−1(t1)d · · · sd−1(tn)d otherwise.
(4)

For instance, if we fix d = 1, the left tree in Fig. 2 is encoded as “111” and the
right one as “0011”. Note that the encoding depends on the choice of d: for d = 2
we would have encoded the trees in Fig. 2 as “222” and “1122”, respectively.

Not every string inΣ∗d is the encoding of a tree according to sd: for−1 ≤ a ≤ d,

we let Pa
def
= (Pa−1{a})∗ be the set of proper encodings of height a, with further

P−1
def
= {ε}. Then P

def
=
⋃

a≤d Pa is the set of proper words in Σ∗d . A proper
word x is either empty or belongs to a unique Pa with a = h(x), and has then
a canonical factorization of the form x = x1a · · ·xma with every xj in Pa−1.
Put differently, a non-empty x = a1 · · · a� is in Pa if and only if a� = h(x) and
ai+1 − ai ≤ 1 for all i < � (we say that x has no jumps : along proper words,
priorities only increase smoothly, but can decrease sharply). For example, 02 is
not proper (it has a jump) while 012 is proper; 233123401234 is proper too.
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Given a depth a, we see that sa is a bijection between Ta+1 and Pa, with the
inverse defined by

τ(ε)
def
= •() , τ(x = x1h(x) · · ·xmh(x))

def
= •(τ(x1) · · · τ(xm)) . (5)

4.2 Strong Tree Embeddings

One can provide a formal meaning to the notion of a wqo (B,�B) being more
powerful than another one (A,�A) through order reflections, i.e. through the
existence of a mapping r:A → B such that r(x) �B r(y) implies x �A y for
all x, y in A. Observe that if B reflects A and (B,�B) is a wqo, then (A,�A)
is necessarily a wqo. We show here that (Σ∗d ,�p) reflects bounded-depth trees
endowed with the strong tree-embedding relation.

Let t and t′ be two trees in Td. We say that t strongly embeds into t′, written
t �T t′, if it can be obtained from t′ by deleting whole subtrees, i.e. �T is the

reflexive transitive closure of the relation t �1
T t′

def⇔ t = C[•(t1 · · · ti−1ti+1 · · · tn)]
and t′ = C[•(t1 · · · ti−1titi+1 · · · tn)] for some context C and subtrees t1, . . . , tn.
Strong tree embeddings refine the homeomorphic tree embeddings used in
Kruskal’s Tree Theorem; in general they do not give rise to a wqo, but in the
case of bounded depth trees they do. The two trees in Fig. 2 are not related by
any homeomorphic tree embedding, and thus neither by strong tree embedding.
See the full version for the proofs of the following results:

Proposition 9. The map sd is an order reflection from (Td+1,�T ) to (Σ∗d ,�p).

Corollary 10. For each d, (Td,�T ) is a wqo.

4.3 Further Applications

As stated in the introduction to this section, our main interest in strong tree
embeddings is in connection with structural orderings of ordinals; see Sec. 6.
Bounded depth trees are also used in the verification of infinite-state systems
as a means to obtain decidability results, in particular for tree pattern rewrit-
ing systems [15] in XML processing, and, using elimination trees [see 21], for
bounded-depth graphs used e.g. in the verification of ad-hoc networks [12], the
π-calculus [22], and programs [5]. These applications consider labeled trees, which
are dealt with thanks to a generalization of �p to pairs (a, w) where a is a priority
and w a symbol from some wqo (Γ,≤); see the full version.

This generalization of �p also allows to treat another wqo on trees, the tree
minor ordering, using the techniques of Gupta [16] to encode them in prioritized
alphabets. The tree minor ordering is coarser than the homeomorphic embedding
(e.g. in Fig. 2, the left tree is a minor of the right tree), but the upside is that
trees of unbounded depth can be encoded into strings.

The exact complexity of verification problems in the aforementioned models
is currently unknown [15, 12, 22, 5]. Our encoding suggests them to be Fε0 -
complete. We hope to see PCS Reachability employed as a “master” problem
for Fε0 , like LCS Reachability for Fωω , which is used in reductions instead of
more difficult proofs based on Turing machines and Hardy computations.
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5 Fast-Growing Upper Bounds

The verification of infinite-state systems and WSTSs in particular turns out
to require astronomic computational resources expressed as subrecursive func-
tions [20, 13] of the input size. We show in this section how to bound the com-
plexity of the algorithms presented in Sec. 2.3 and classify the Reachability and
Inevitability problems using fast-growing complexity classes [25].

5.1 Subrecursive Hierarchies

Throughout this paper, we use ordinal terms inductively defined by the following
grammar

(Ω ;) α, β, γ ::= 0 | ωα | α+ β

where addition is associative, with 0 as the neutral element (the empty sum).
Equivalently, we can then see a term other than 0 as a tree over the alphabet
{+}; for instance the two trees in Fig. 2 represent 3 and ω2 + 1 respectively,

when putting the ordinal terms under the form α =
∑k

i=1 ω
αi . Such a term is 0

if k = 0, otherwise a successor if αk = 0 and a limit otherwise. We often write
1 as short-hand for ω0, and ω for ω1. The symbol λ is reserved for limits.

We can associate a set-theoretic ordinal o(α) to each term α by interpreting
+ as the direct sum operator and ω as N; this gives rise to a well-founded quasi-

ordering α < β
def⇔ o(α) < o(β). A term α =

∑k
i=1 ω

αi is in Cantor normal form
(CNF) if α1 ≥ α2 ≥ · · · ≥ αk and each αi is itself in CNF for i = 1, . . . , k. Terms
in CNF and set-theoretic ordinals below ε0 are in bijection; it will however be
convenient later in Sec. 6 to manipulate terms that are not in CNF.

With any limit term λ, we associate a fundamental sequence of terms (λn)n∈N

(γ + ωβ+1)n
def
= γ + ωβ · n = γ +

n︷ ︸︸ ︷
ωβ + · · ·+ ωβ ,

(γ + ωλ′
)n

def
= γ + ωλ′

n .

(6)

This yields λ0 < λ1 < · · · < λ for any λ, with furthermore λ = limn∈N λn. For
instance, ωn = n, (ωω)n = ωn, etc. Note that λn is in CNF when λ is.

We need to add a term ε0 to Ω to represent the set-theoretic ε0, i.e. the
smallest solution of x = ωx. We take this term to be a limit term as well; we

define the fundamental sequence for ε0 by (ε0)n
def
= Ωn, where for n ∈ N, we use

Ωn as short-hand notation for the ordinal ωω···ω}n stacked ω’s, i.e., for Ω0
def
= 1

and Ωn+1
def
= ωΩn .

Inner Recursion Hierarchies. Our main subrecursive hierarchy is the Hardy hi-
erarchy. Given a monotone expansive unary function h:N → N, it is defined as
an ordinal-indexed hierarchy of unary functions (hα:N→ N)α through

h0(n)
def
= n , hα+1(n)

def
= hα

(
h(n)

)
, hλ(n)

def
= hλn(n) .

Observe that h1 is simply h, and more generally hα is the αth iterate of h, using
diagonalisation to treat limit ordinals.
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A case of particular interest is to choose the successor function H(n)
def
= n+1

for h. Then the fast growing hierarchy (Fα)α can be defined by Fα
def
= Hωα

,
resulting in F0(n) = H1(n) = n + 1, F1(n) = Hω(n) = Hn(n) = 2n, F2(n) =

Hω2

(n) = 2nn being exponential, F3 = Hω3

being non-elementary, Fω = Hωω

being an Ackermannian function, Fωk a k-Ackermannian function, and Fε0 =
Hε0 ◦H a function whose totality is not provable in Peano arithmetic [13].

Fast-Growing Complexity Classes. Our intention is to establish the “Fε0 com-
pleteness” of verification problems on PCSs. In order to make this statement
more precise, we define the class Fε0 as a specific instance of the fast-growing
complexity classes defined for α ≥ 3 by [see 25, App. B]

Fα
def
=
⋃

p∈
⋃

β<α Fβ

DTime(Fα(p(n))) , Fα =
⋃
c<ω

FDTime(F c
α(n)) , (7)

where the class of functions Fα as defined above is the αth level of the extended
Grzegorczyk hierarchy [20] when α ≥ 2; in particular,

⋃
α<ε0

Fα is exactly the
set of ordinal-recursive (aka “provably recursive”) functions [13].

The complexity classes Fα are naturally equipped with
⋃

β<α Fβ as classes of
reductions. For instance, F2 is the set of elementary functions, and F3 the class
of problems with a tower of exponents of height bounded by some elementary
function of the input as an upper bound.3

5.2 Complexity Upper Bounds

Recall that an alternative characterization of a wqo (X,�) is that any sequence
x0, x1, x2, . . . over X verifying xi � xj for all i < j is necessarily finite. Such
sequences are called bad, and in order to bound the complexity of the algo-
rithms from Thm. 3, we can bound the lengths of bad sequences over the wqo
(ConfS ,≤#) using the Length Function Theorem of [24]; see the full version for
details:

Theorem 11 (Complexity of PCS Verification). Reachability and
Inevitability of PCSs are in Fε0 .

6 Hardy Computations by PCSs

In this section we show how PCSs can weakly compute the Hardy functions
Hα and their inverses for all ordinals α below Ω, which is the key ingredient
for Thm. 15. For this, we develop (Sec. 6.1) encodings s(α) ∈ Σ∗d for ordinals
α ∈ Ωd and show how PCSs can compute with these codes, e.g. build the code
for λn from the code of a limit λ. This is used (Sec. 6.2) to design PCSs that
“weakly compute” Hα and (Hα)−1 in the sense of Def. 13 below.

3 Note that, at such high complexities, the usual distinctions between deterministic
vs. nondeterministic, or time-bounded vs. space-bounded computations become ir-
relevant.
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6.1 Encoding Ordinals

Our encoding of ordinal terms as strings in Σ∗d is exactly the encoding of trees
presented in Sec. 4. For 0 ≤ a ≤ d, we use the following equation to define the
language Pa ⊆ Σ∗d of proper encodings, or just codes :

Pa
def
= ε+ PaPa−1a , P−1

def
= ε . (8)

Let P = P−1 +P0 + · · ·+Pd. Each Pa (and then P itself) is a regular language,
with Pa = (Pa−1a)

∗ as in Sec. 4; for instance, P0 = 0∗.

Decompositions. A code x is either the empty word ε, or belongs to a unique
Pa. If x ∈ Pa is not empty, it has a unique factorization x = yza according to
(8) with y ∈ Pa and z ∈ Pa−1. The factor z ∈ Pa−1 in x = yza can be developed
further, as long as z = ε: a non-empty code x ∈ Pd has a unique factorization
as x = yd yd−1 . . . ya a�d with yi ∈ Pi for i = a, . . . , d, and where for 0 ≤ a ≤ b,
we write a�b for the staircase word a(a + 1) · · · (b − 1)b, letting a�b = ε when
a > b. We call this the decomposition of x. Note that the value of a is obtained
by looking for the maximal suffix of x that is a staircase word. For example,
x = 23312340121234∈ P4 is a code and decomposes as

x =

y4︷ ︸︸ ︷
2331234

y3︷︸︸︷
ε

y2︷︸︸︷
012

y1︷︸︸︷
ε

1�4︷︸︸︷
1234 .

Ordinal Encoding. Following the tree encoding of Sec. 4, with a code x ∈ P , we
associate an ordinal term η(x) given by

η(ε)
def
= 0 , η(yza)

def
= η(y) + ωη(z) , (9)

where x = yza is the factorization according to (8) of x ∈ Pa \ {ε}. For example,
η(a) = ω0 = 1 for all a ∈ Σd, η(012) = η(234) = ωω, and more generally
η(a�b) = Ωb−a. One sees that η(x) < Ωa+1 when x ∈ Pa.

The decoding function η:P → Ωd+1 is onto (or surjective) but it is not bijec-
tive. However, it is a bijection between Pa and Ωa+1 for any a ≤ d. Its converse
is the level-a encoding function sa:Ωa+1 → Pa, defined with

sa

( p∑
i=1

γi

)
def
= sa(γ1) · · · sa(γp) , sa(ω

α)
def
= sa−1(α) a .

Thus sa(0) = sa(
∑
∅) = ε and, for example,

s5(1) = 5 , s5(3) = 555 , s5(ω) = 45 ,

s5(ω
3) = 4445 , s5(ω

ω) = 345 , s5(ω
ωω

) = 2345 ,

s5(ω
3 + ω2) = 4445445 , s5(ω · 3) = 454545 .

We may omit the subscript when a = d, e.g. writing s(1) = d.
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o : 3 3 4 5 4 5 $ the ordinal term ωω2

+ ωω

c : 0 0 0 0 $ the counter value 4

t : $ the temporary storage

Fig. 3. Channels for Hardy computations

Successors and Limits. Let x = yd yd−1 . . . ya a�d be the decomposition of x ∈
Pd \ ε. By (9), x encodes a successor ordinal η(x) = β + 1 iff a = d, i.e., if x
ends with two d’s (or has length 1). Since then β = η(yd . . . ya), one obtains the
“predecessor of x” by removing the final d.

If a < d, x encodes a limit λ. Combining (6) and (9), one obtains the encoding
(x)n of λn with

(x)n = yd yd−1 . . . ya+1

(
ya(a+ 1)

)n
(a+ 2)�d . (10)

E.g., with d = 5, decomposing x = 333345 = s(ωω4

) gives a = 3, x = y5y4y33
�5,

with y3 = 333 and y5 = y4 = ε. Then (x)n = (3334)n5, agreeing with, e.g.

s(ωω3·2) = 333433345.

Robustness. Translated to ordinals, Prop. 9 means that, whenever x ≤# x′ for
x, x′ ∈ Pa, then the corresponding ordinal η(x) will be “structurally” smaller
than η(x′). This in turn yields that the corresponding Hardy function Hη(x)

grows at most as fast as Hη(x′); see the full version for details:

Proposition 12 (Robustness). Let a ≥ 0 and x, x′ ∈ Pa. If x ≤# x′ then

Hη(x)(n) ≤ Hη(x′)(n′) for all n ≤ n′ in N.

6.2 Robust Hardy Computations in PCSs

Our PCSs for robust Hardy computations use three channels (see Fig. 3), storing
(codes for) a pair α, n on channels o (for “ordinal”) and c (for “counter”), and
employ an extra channel, t, for “temporary” storage. Instead of Σd, we use Σd+1

with d+1 used as a position marker and written $ for clarity: each channel always
contains a single occurrence of $.

Definition 13. A weak Hardy computer for Ωd+1 is a (d + 1)-PCS S with
channels Ch = {o, c, t} and two distinguished states pbeg and pend such that:

if (pbeg, x$, y$, z$)
∗−→# (pend, u, v, w)

then x ∈ Pd, y ∈ 0+, z = ε and u, v, w ∈ Σ∗d$ ,
(safety)

if (pbeg, s(α)$, 0
n$, $)

∗−→# (pend, s(β)$, 0
m$, $)

then Hα(n) ≥ Hβ(m) .
(robustness)

Furthermore S is complete if for any α < Ωd+1 and n > 0, (pbeg, s(α)$, 0
n

$, $)
∗−→# (pend, $, 0

m$, $) for m = Hα(n), and it is inv-complete if (pbeg, $, 0
m$,

$)
∗−→# (pend, s(α)$, 0

n$, $).
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simulate
M with
budget B

q0 Sd p0 ph S−1
d

qh

o ! 0�d$
c ! 0n$
t ! $

o ? 0�d$
c ? 0n$
t ? $

Ωd, n H−→# · · · H−→# 0, B 0, B′ H-1

−→# · · · H
-1

−→# α, n′

Fig. 4. Schematics for Thm. 15

In the full version we prove the following:

Lemma 14 (PCSs weakly compute Hardy functions). For every d ∈ N,
there exists a weak Hardy computer Sd for Ωd+1 that is complete, and a weak S−1

d

that is inv-complete. Furthermore Sd and S−1
d can be generated in LogSpace

from d.

6.3 Wrapping It Up

With the above weak Hardy computers, we have the essential gadgets required
for our reductions. The wrapping-up is exactly as in [17, 27] (with a different
encoding and a different machine model) and will only be sketched.

Theorem 15 (Verifying PCSs is Hard). Reachability and Termination of
PCSs are Fε0-hard.

Proof. We exhibit a LogSpace reduction from the halting problem of a Turing
machine M working in Fε0 space to the Reachability problem in a PCS. We
assume wlog. M to start in a state p0 with an empty tape and to have a single
halting state ph that can only be reached after clearing the tape.

Figure 4 depicts the PCS S we construct for the reduction. Let n
def
= |M | and

d
def
= n+1. A run in S from the initial configuration to the final one goes through

three stages:

1. The first stage robustly computes Fε0(|M |) = HΩd(n) by first writing s(Ωd)$,
i.e. 0�d$, on o, 0n$ on c, and $ on t, then by using Sd to perform forward
Hardy steps; thus upon reaching state p0, o and t contain $ and c encodes
a budget B ≤ Fε0(|M |).

2. The central component simulates M over c where the symbols 0 act as
blanks—this is easily done by cycling through the channel contents to sim-
ulate the moves of the head of M on its tape. Due to superseding steps, the
outcome upon reaching ph is that c contains B′ ≤ B symbols 0.

3. The last stage robustly computes (Fε0 )
−1(B′) by running S−1

d to perform
backward Hardy steps. This leads to o containing the encoding of some
ordinal α and c of some n′, but we empty these channels and check that
α = Ωd and n′ = n before entering state qh.
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Because HΩd(n) ≥ B ≥ B′ ≥ Hα(n′) = HΩd(n), all the inequalities are actually
equalities, and the simulation of M in stage 2 has necessarily employed reliable
steps. Hence, M halts if and only if (qh, ε, ε, ε) is reachable from (q0, ε, ε, ε) in S.

The case of (non-)Termination is similar, but employs a time budget in a
separate channel in addition to the space budget, in order to make sure that the
simulation of M terminates in all cases, and leads to a state qh that is the only
one from which an infinite run can start in S.

7 Concluding Remarks

We introduced Priority Channel Systems, a natural model for protocols and pro-
grams with differentiated, prioritized asynchronous communications, and showed
how they give rise to well-structured systems with decidable model-checking
problems.

We showed that Reachability and Termination for PCSs are Fε0 -complete,
and we expect our techniques to be transferable to other models, e.g. models
based on wqos on bounded-depth trees or graphs, whose complexity has not
been analyzed [15, 12, 22, 5]. This is part of our current research agenda on
complexity for well-structured systems [25].

In spite of their enormous worst-case complexity, we expect PCSs to be
amenable to regular model checking techniques à la [4, 6]. This requires investi-
gating the algorithmics of upward- and downward-closed sets of configurations
wrt. the priority ordering. These sets, which are always regular, seem promising
since �p shares some good properties with the better-known subword ordering,
e.g. the upward- or downward-closure of a sequence x ∈ Σ∗d can be represented
by a DFA with |x| states.
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10. Cécé, G., Finkel, A., Purushothaman Iyer, S.: Unreliable channels are easier to
verify than perfect channels. Inform. and Comput. 124(1), 20–31 (1996)

11. Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel
systems. In: LICS 2008, pp. 205–216. IEEE Press (2008)

12. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc
networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269,
pp. 313–327. Springer, Heidelberg (2010)

13. Fairtlough, M., Wainer, S.S.: Hierarchies of provably recursive functions. In: Hand-
book of Proof Theory, ch. III, pp. 149–207. Elsevier (1998)

14. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1-2), 63–92 (2001)

15. Genest, B., Muscholl, A., Serre, O., Zeitoun, M.: Tree pattern rewriting systems.
In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008.
LNCS, vol. 5311, pp. 332–346. Springer, Heidelberg (2008)

16. Gupta, A.: A constructive proof that trees are well-quasi-ordered under minors.
In: Nerode, A., Taitslin, M.A. (eds.) LFCS 1992. LNCS, vol. 620, pp. 174–185.
Springer, Heidelberg (1992)

17. Haddad, S., Schmitz, S., Schnoebelen, P.: The ordinal-recursive complexity
of timed-arc Petri nets, data nets, and other enriched nets. In: LICS 2012,
pp. 355–364. IEEE Press (2012)

18. Kurucz, A.: Combining modal logics. In: Handbook of Modal Logics, ch. 15,
pp. 869–926. Elsevier (2006)

19. Lasota, S., Walukiewicz, I.: Alternating timed automata. ACM Trans. Comput.
Logic 9(2) (2008)
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Abstract. This paper studies three kinds of long-term behaviour, namely reacha-
bility, repeated reachability and persistence, of quantum Markov chains (qMCs).
As a stepping-stone, we introduce the notion of bottom strongly connected com-
ponent (BSCC) of a qMC and develop an algorithm for finding BSCC decompo-
sitions of the state space of a qMC. As the major contribution, several (classical)
algorithms for computing the reachability, repeated reachability and persistence
probabilities of a qMC are presented, and their complexities are analysed.

Keywords: quantum Markov chains, reachability, persistence.

1 Introduction

Verification problems of quantum systems are emerging from quantum physics, quan-
tum communication and quantum computation. For example, verification has been iden-
tified by physicists as one of the major short-term goals of quantum simulation [4].
Some effective verification techniques for quantum cryptographic protocols have re-
cently been developed [12], [6], based on either quantum process algebras [15], [11],
[8], [9] or quantum model-checking [13]. Also, several methods for verifying quantum
programs [20] have been proposed, including quantum weakest preconditions [7] and
quantum Floyd-Hoare logic [23].

A quantum Markov chain (qMC) is a quantum generalisation of Markov chain (MC)
where, roughly speaking, the state space is a Hilbert space, and the transition probabil-
ity matrix of a MC is replaced by a super-operator, which is a mathematical formalism
of the discrete-time evolution of (open) quantum systems. qMCs have been widely em-
ployed as a mathematical model of quantum noise in physics [10] and as a model of
communication channels in quantum information theory [17]. A special class of qMCs,
namely quantum walks, has been successfully used in design and analysis of quantum
algorithms [1]. Recently, the authors [24] introduced a model of concurrent quantum
programs in terms of qMCs as a quantum extension of Hart-Sharir-Pnueli’s Markov
chain model of probabilistic concurrent programs [14]. This paper considers the verifi-
cation problem of qMCs.

Reachability analysis is at the center of verification and model-checking of both clas-
sical and probabilistic systems. Reachability of quantum systems was first studied by
physicists [19] within the theme of quantum control , but they only considered states
reachable in a single step of evolution. In [24], reachability of qMCs was considered,
and it was used in termination checking of concurrent quantum programs. However,

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 334–348, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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reachability studied in [24] can be properly described as qualitative reachability be-
cause only algorithms for computing reachable subspaces but not reachability proba-
bilities were developed. This paper is a continuation of [24] and aims at quantitative
reachability analysis for qMCs. More precisely, the main purpose of this paper is to
develop (classical) algorithms for computing the reachability, repeated reachability and
persistence probabilities of qMCs.

Reachability analysis techniques for classical MCs heavily depends on algorithms
for graph-reachability problems, in particular for finding bottom strongly connected
components (BSCCs) of the underlying graph of a MC (see [2, Section 10.1.2]). Such
algorithms have been intensively studied by the graph algorithms community since
early 1970’s (see [5, Part VI]; [22]), and are ready to be directly adopted in reachability
analysis of MCs. However, we don’t have the corresponding algorithms for qMCs in
hands and have to start from scratch. So, in order to conduct reachability analysis for
qMCs we introduce the notion of BSCC and develop an algorithm for finding BSCC de-
composition for qMCs in this paper. Interestingly, there are some essential differences
between BSCCs in the classical and quantum cases. For example, BSCC decomposi-
tion of a qMC is unnecessary to be unique. Also, classical algorithms for finding BSCCs
like depth-first search cannot be directly generalised to qMCs. Instead, it requires very
different ideas to develop algorithms for finding BSCCs of qMCs, appealing to matrix
operation algorithms [5, Chapter 28] through matrix representation of super-operators.
The major challenge in dealing with quantum BSCCs, which would not arise in clas-
sical BSCCs at all, is to maintain the linear algebraic structure underpinning quantum
systems. We believe that these results for quantum BSCCs obtained in this paper are
also of independent significance.

This paper is organised as follows. The preliminaries are presented in Sec. 2; in
particular we recall the notion of qMC and define the graph structure of a qMC. The
notion of BSCC of a qMC is introduced in Sec. 3, where a characterisation of quantum
BSCC is given in terms of the fixed points of super-operators, and an algorithm for
checking whether a subspace of the state Hilbert space of a qMC is a BSCC is given.
In Sec. 4, we define the notion of transient subspace of a qMC and show that the state
space of a qMC can be decomposed into the direct sum of a transient subspace and
a family of BSCCs. Furthermore, it is proved that although such a decomposition is
not unique, the dimensions of its components are fixed. In particular, an algorithm for
constructing BSCC decomposition of qMCs is found. With the preparation in Secs. 3
and 4, we examine reachability of a qMC in Sec. 5, where an algorithm for computing
reachability probability is presented. An algorithm for computing repeated reachability
and persistence probabilities is finally developed in Sec. 6. Sec. 7 is a brief conclusion.

2 Quantum Markov Chains and Their Graph Structures

2.1 Basics of Quantum Theory

For convenience of the reader, we recall some basic notions from quantum theory; for
details we refer to [17]. The state space of a quantum system is a Hilbert space. In this
paper, we only consider a finite-dimensional Hilbert space H, which is just a finite-
dimensional complex vector space with inner product. The inner product of two vectors
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|φ〉, |ψ〉 ∈ H is denoted by 〈φ|ψ〉. A pure quantum state is a normalised vector |φ〉 inH
with 〈φ|φ〉 = 1. We say that two vectors |φ〉 and |ψ〉 are orthogonal, written |φ〉⊥|ψ〉,
if 〈φ|ψ〉 = 0. A mixed state is represented by a density operator, i.e. a positive operator
ρ on H with tr(ρ) = 1, or equivalently a positive semi-definite and trace-one n × n
matrix if dimH = n. In particular, for each pure state |ψ〉, there is a corresponding
density operator ψ = |ψ〉〈ψ|. For simplicity, we often use pure state |ψ〉 and density
operator ψ interchangeably. A positive operator ρ is called a partial density operator if
trace tr(ρ) ≤ 1. The set of partial density operators on H is denoted by D(H). The
support supp(ρ) of a partial density operator ρ ∈ D(H) is defined to be the space
spanned by the eigenvectors of ρ with non-zero eigenvalues. The set of all (bounded)
operators onH, i.e. d× d complex matrices with d = dimH, is denoted by B(H).

For any set V of vectors in H, we write spanV for the subspace of H spanned by
V ; that is, it consists of all finite linear combinations of vectors in V . Two subspaces X
and Y of H are said to be orthogonal, written X⊥Y , if |φ〉⊥|ψ〉 for any |φ〉 ∈ X and
|ψ〉 ∈ Y . The ortho-complement X⊥ of a subspace X of H is the subspace of vectors
orthogonal to all vectors in X . An operator P is called the projection onto a subspace
X if P |ψ〉 = |ψ〉 for all |ψ〉 ∈ X and P |ψ〉 = 0 for all |ψ〉 ∈ X⊥. We write PX for the
projection onto X . According to the theory of quantum measurements, for any density
operator ρ, trace tr(PXρ) is the probability that the mixed state ρ lies in subspace X .
Let {Xk} be a family of subspaces ofH. Then the join of {Xk} is defined by∨

k

Xk = span(
⋃
k

Xk).

In particular, we write X ∨ Y for the join of two subspaces X and Y . It is easy to see
that
∨

k Xk is the smallest subspace ofH that contains all Xk.
Composed quantum systems are modeled by tensor products. If a quantum system

consists of two subsystems with state spaces H1 and H2, then its state space is H =
H1 ⊗H2, which is the Hilbert space spanned by vectors |ψ1〉|ψ2〉 = |ψ1〉 ⊗ |ψ2〉 with
|ψ1〉 ∈ H1 and |ψ2〉 ∈ H2. For any operators A1 on H1 and A2 on H2, their tensor
product A1 ⊗ A2 is defined by (A1 ⊗ A2)(|ψ1〉|ψ2〉) = (A1|ψ1〉) ⊗ (A2|ψ2〉) for all
|ψ1〉 ∈ H1 and |ψ2〉 ∈ H2 together with linearity.

The evolution of a closed quantum system is described as a unitary operator, i.e. an
operator U onH with U †U = UU † = I , where I is the identity onH. A pure state |φ〉
becomes U |φ〉 after this unitary evolution U , while a mixed state ρ becomes UρU †. The
dynamics of an open quantum system is described by a super-operator, i.e. a linear map
E from the space of linear operators onH into itself, satisfying the following conditions:

1. tr[E(ρ)] ≤ tr(ρ) for all ρ ∈ D(H), with equality for trace-preserving E ;
2. Complete positivity: for any extra Hilbert space HR, (IR ⊗ E)(A) is positive pro-

vided A is a positive operator on HR ⊗ H, where IR is the identity map on the
space of linear operators onHR.

In this paper, we only consider trace-preserving super-operators. Each super-operator
has a Kraus operator-sum representation: E =

∑
i Ei · E†i , or more precisely

E(ρ) =
∑

EiρE
†
i

for all ρ ∈ D(H), where Ei are operators onH such that
∑

i E
†
iEi = I .



Reachability Probabilities of Quantum Markov Chains 337

2.2 Quantum Markov Chains

Now we are ready to introduce the notion of quantum Markov chain. Recall that a
Markov chain is a pair 〈S, P 〉, where S is a finite set of states, and P is a matrix of
transition probabilities, i.e. a mapping P : S × S → [0, 1] such that

∑
t∈S P (s, t) = 1

for every s ∈ S, where P (s, t) is the probability of going from s to t. A quantum
Markov chain is a quantum generalisation of a Markov chain where the state space of
a Markov chain is replaced by a Hilbert space and its transition matrix is replaced by a
super-operator.

Definition 1. A quantum Markov chain is a pair G = 〈H, E〉, where H is a finite-
dimensional Hilbert space, and E is a super-operator onH.

The behaviour of a quantum Markov chain can be described as follows: if currently the
process is in a mixed state ρ, then it will be in state E(ρ) in the next step. Both ρ and
E(ρ) can be written as statistical ensembles:

ρ =
∑
i

pi|φi〉〈φi|, E(ρ) =
∑
j

qj |ψj〉〈ψj |,

where pi, qj ≥ 0 for all i, j, and
∑

i pi =
∑

j qj = 1. So, super-operator E can be un-
derstood as an operation that transfers statistical ensemble {(pi, |φi〉)} to {(qj , |ψj〉)}.
In this way, a quantum Markov chain can be seen as a generalisation of a Markov chain.

2.3 Graphs in Quantum Markov Chains

There is a natural graph structure underlying a quantum Markov chain. This can be
seen clearly by introducing adjacency relation in it. To this end, we first introduce an
auxiliary notion. The image of a subspace X of H under a super-operator E is defined
to be

E(X) =
∨

|ψ〉∈X
supp(E(ψ)).

Intuitively, E(X) is the subspace ofH spanned by the images under E of states in X .

Definition 2. Let G = 〈H, E〉 be a quantum Markov chain, and let |ϕ〉 and |ψ〉 be pure
states and ρ and σ mixed states inH. Then

1. |ϕ〉 is adjacent to |ψ〉 in G, written |ψ〉 → |ϕ〉, if |ϕ〉 ∈ E(Xψ), where Xψ =
span{|ψ〉}.

2. |ϕ〉 is adjacent to ρ, written ρ→ |ϕ〉, if |ϕ〉 ∈ E(supp(ρ)).
3. σ is adjacent to ρ, written ρ→ σ, if supp(σ) ⊆ E(supp(ρ)).

Definition 3. 1. A sequence π = ρ0 → ρ1 → · · · → ρn of adjacent density operators
in a quantum Markov chain G is called a path from ρ0 to ρn in G, and its length is
|π| = n.

2. For any density operators ρ and σ, if there is a path from ρ to σ then we say that σ
is reachable from ρ in G.
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Definition 4. Let G = 〈H, E〉 be a quantum Markov chain. For any ρ ∈ D(H), its
reachable space in G is

RG(ρ) = span{|ψ〉 ∈ H : |ψ〉 is reachable from ρ in G}.

The following lemma is very useful for our later discussion.

Lemma 1. 1. (Transitivity of reachability) For any ρ, σ ∈ D(H), if supp(ρ) ⊆ RG
(σ), thenRG(ρ) ⊆ RG(σ).

2. [24, Theorem 1] If d = dimH, then for any ρ ∈ D(H), we have

RG(ρ) =
d−1∨
i=0

supp(E i(ρ)). (1)

3 Bottom Strongly Connected Components

3.1 Basic Definitions

The notion of bottom strongly connected component plays an important role in model
checking Markov chains. In this section, we extend this notion to the quantum case. We
first introduce an auxiliary notation. Let X be a subspace of a Hilbert space, and let E
be a super-operator onH. Then the restriction of E on X is defined to be super-operator
E|X with

E|X(ρ) = PXE(ρ)PX

for all ρ ∈ D(X), where PX is the projection onto X .

Definition 5. Let G = 〈H, E〉 be a quantum Markov chain. A subspace X of H is
called strongly connected in G if for any |ϕ〉, |ψ〉 ∈ X , we have |ϕ〉 ∈ RGX (ψ) and
|ψ〉 ∈ RGX (ϕ), where quantum Markov chain GX = 〈X, EX〉 is the restriction of G on
X .

We write SC(G) for the set of strongly connected subspaces of H in G. It is easy to
see that (SC(G),⊆) is an inductive set; that is, for any subset {Xi} of SC(G) that is
linearly ordered by ⊆, we have

⋃
i Xi ∈ SC(G). Thus, by Zorn lemma we assert that

there exists a maximal element in SC(G).

Definition 6. A maximal element of (SC(G),⊆) is called a strongly connected compo-
nent (SCC) of G.

To define bottom strongly connected component, we need an auxiliary notion of invari-
ant subspace.

Definition 7. Let G = 〈H, E〉 be a quantum Markov chain. Then a subspace X ofH is
said to be invariant in G if E(X) ⊆ X .

It is easy to see that if super-operator E has the Kraus representation E =
∑

i Ei · E†i ,
then X is invariant if and only if EiX ⊆ X for all i. Recall that in a classical Markov
chain, the probability of staying in an invariant subset is non-decreasing. A quantum
generalisation of this fact is presented in the following:
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Theorem 1. For any invariant subspace X of H in a quantum Markov chain G =
〈H, E〉, we have

tr(PXE(ρ)) ≥ tr(PXρ)

for all ρ ∈ D(H), where PX is the projection onto X .

Now we are ready to introduce the key notion of this section.

Definition 8. Let G = 〈H, E〉 be a quantum Markov chain. Then a subspace X of H
is called a bottom strongly connected component (BSCC) of G if it is a SCC of G and
invariant in G.

Example 1. Consider quantum Markov chain G = 〈H, E〉 with state space H = span
{|0〉, · · · , |4〉} and super-operator

E =
5∑

i=1

Ei ·E†i ,

where the operators Ei (i=1,...,5) are given as follows:

E1 =
1√
2
(|1〉〈0 + 1|+ |3〉〈2 + 3|), E2 =

1√
2
(|1〉〈0− 1|+ |3〉〈2 − 3|),

E3 =
1√
2
(|0〉〈0 + 1|+ |2〉〈2 + 3|), E4 =

1√
2
(|0〉〈0− 1|+ |2〉〈2 − 3|),

E5 =
1

10
(|0〉〈4|+ |1〉〈4|+ |2〉〈4|+ 4|3〉〈4|+ 9|4〉〈4|),

and the states used above are defined by

|0± 1〉 = (|0〉 ± |1〉)/
√
2 and |2± 3〉 = (|2〉 ± |3〉)/

√
2.

It is easy to see that B = span{|0〉, |1〉} is a BSCC of quantum Markov chain G, as for
any |ψ〉 = α|0〉+ β|1〉 ∈ B, we have E(ψ) = (|0〉〈0|+ |1〉〈1|)/2.

The following lemma clarifies the relationship between different BSCCs.

Lemma 2. 1. For any two different BSCCs X and Y of quantum Markov chain G, we
have X ∩ Y = {0} (0-dimensional Hilbert space).

2. If X and Y are two BSCCs of G with dimX = dimY , then X⊥Y .

3.2 Characterisations of BSCCs

This subsection purports to give two characterisations of BSCCs. The first is presented
in terms of reachable spaces.

Lemma 3. A subspaceX is a BSCC of quantum Markov chainG if and only ifRG(φ) =
X for any non-zero |φ〉 ∈ X .

To present the second characterisation, we need the notion of fixed point of super-
operator.
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Definition 9. 1. A nonzero partial density operator ρ ∈ D(H) is called a fixed point
state of super-operator E if E(ρ) = ρ.

2. A fixed point state ρ of super-operator E is called minimal if for any fixed point
state σ of E , it holds that supp(σ) ⊆ supp(ρ) implies σ = ρ.

The second characterisation of BSCCs establishes a connection between BSCCs and
minimal fixed point states.

Theorem 2. A subspace X is a BSCC of quantum Markov chainG = 〈H, E〉 if and only
if there exists a minimal fixed point state ρ of E such that supp(ρ) = X . Furthermore,
ρ is actually the unique fixed point state, up to normalisation, with the support included
in X .

3.3 Checking BSCCs

We now present an algorithm that decides whether or not a given subspace is a BSCC
of a quantum Markov chain (see Algorithm 1). The correctness and complexity of this
algorithm are given in the following theorem.

Theorem 3. Given a quantum Markov chain 〈H, E〉 and a subspace X ⊆ H, Algo-
rithm 1 decides whether or not X is a BSCC of G in time O(n6), where n = dim(H).

4 Decompositions of the State Space

A state in a classical Markov chain is transient if there is a non-zero probability that the
process will never return to it, and a state is recurrent if from it the returning probability
is 1. It is well-known that a state is recurrent if and only if it belongs to some BSCC in
a finite-state Markov chain, and thus the state space of a classical Markov chain can be
decomposed into the union of some BSCCs and a transient subspace [2], [16]. The aim
of this section is to prove a quantum generalisation of this result.

Definition 10. A subspace X ⊆ H is transient in a quantum Markov chain G = 〈H, E〉
if

lim
k→∞

tr(PXEk(ρ)) = 0

for any ρ ∈ D(H), where PX is the projection onto X .

The above definition is stated in a “double negation” way. Intuitively, it means that the
probability in a transient subspace will be eventually zero. To understand this definition
better, let us recall that in a classical Markov chain, a state s is said to be transient if
the system starting from s will eventually return to s with probability less than 1. It is
well-known that in a finite-state Markov chain, this is equivalent to that the probability
at this state will eventually become 0. In the quantum case, the property “eventually
return” can be hardly described without measurements, and measurements will disturb
the behaviour of the systems. So, we choose to adopt the above definition.
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Algorithm 1. CheckBSCC(X)
input : A quantum Markov chain G = 〈H, E〉 and a subspace X ⊆ H
output: True or False indicating whether X is a BSCC of G
begin

if E(X) �⊆ X then
return False;

end
E ′ ← PX ◦ E ;
B ← a density operator basis of the set {A ∈ B(H) : E ′(A) = A}; (*)
if |B| > 1 then

return False;
else

ρ← the unique element in B;
if X = supp(ρ) then

return True;
else

return False;
end

end
end

To give a characterisation of transient subspaces, we need the notion of the asymp-
totic average of a super-operator E , which is defined to be

E∞ = lim
N→∞

1

N

N∑
n=1

En. (2)

It is easy to see from [21, Proposition 6.3, Proposition 6.9] that E∞ is a super-operator
as well.

Theorem 4. The ortho-complement of the image of the state space H of a quantum
Markov chain G = 〈H, E〉 under the asymptotic average of super-operator E:

TE := E∞(H)⊥

is the largest transient subspace in G; that is, any transient subspace of G is a subspace
of TE .

We now turn to examine the structure of the image of the state space H under super-
operator E .

Theorem 5. Let G = 〈H, E〉 be a quantum Markov chain. Then E∞(H) can be decom-
posed into the direct sum of some orthogonal BSCCs of G.

Combining Theorems 4 and 5, we see that the state space of a quantum Markov chain
G = 〈H, E〉 can be decomposed into the direct sum of a transient subspace of a family
of BSCCs:

H = B1 ⊕ · · · ⊕Bu ⊕ TE (3)
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where Bi’s are orthogonal BSCCs of G. A similar decomposition was recently obtained
in [18] for a special case of E2 = E . The above decomposition holds for any super-
operator E and thus considerably generalises the corresponding result in [18].

The BSCC and transient subspace decomposition of a classical Markov chain is
unique. However, it is not the case for quantum Markov chains; a trivial example is
that E is the identity operator, for which any 1-dimensional subspace of H is a BSCC,
and thus for each orthonormal basis {|i〉} ofH,

⊕
i span{|i〉} is an orthogonal decom-

position ofH. The following is a more interesting example.

Example 2. Let quantum Markov chain G = 〈E ,H〉 be given as in Example 1. Then
B1 = span{|0〉, |1〉}, B2 = span{|2〉, |3〉}, D1 = span{|0 + 2〉, |1 + 3〉}, and D2 =
span{|0 − 2〉, |1 − 3〉} are BSCCs, and TE = span{|4〉} is a transient subspace. Fur-
thermore, we haveH = B1 ⊕B2 ⊕ TE = D1 ⊕D2 ⊕ TE .

The relation between different decompositions of a quantum Markov chain is clarified
by the following theorem.

Theorem 6. Let G = 〈H, E〉 be a quantum Markov chain, and let

H = B1 ⊕ · · · ⊕Bu ⊕ TE = D1 ⊕ · · · ⊕Dv ⊕ TE

be two decompositions in the form of Eq. (3), and Bi’s and Di’s are arranged, re-
spectively, according to the increasing order of the dimensions. Then u = v, and
dim(Bi) = dim(Di) for each 1 ≤ i ≤ u.

To conclude this section, we present an algorithm for finding a BSCC and transient
subspace decomposition of a quantum Markov chain (see Algorithm 2).

Theorem 7. Given a quantum Markov chain 〈H, E〉, Algorithm 2 decomposes the
Hilbert space H into the direct sum of a family of orthogonal BSCCs and a transient
subspace of G in time O(n8), where n = dim(H).

5 Reachability Probabilities

The traditional way to define reachability probabilities in classical Markov chains is first
introducing a probability measure based on cylinder sets of finite paths of states. The
probability of reaching a set T is then the probability measure of the set of paths which
include a state from T . Typically, reachability probabilities can be obtained by solving a
system of linear equations, which is easy and numerically efficient. In quantum Markov
chains, however, it is even not clear how to define such a probability measure. Thus it
seems hopeless to extend reachability analysis to the quantum case in this way.

Fortunately, there is another way to compute the reachability probability in a classical
Markov chain 〈S, P 〉. Given a set of states T ⊆ S, we first change the original Markov
chain into a new one 〈S, P ′〉 by making states in T absorbing. Then the reachability
probability of T is simply the limit of the probability accumulated in T , when the time
goes to infinity. It turns out that this equivalent definition can be extended into the
quantum case as follows.
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Algorithm 2. DecomposeH(G)
input : A quantum Markov chain G = 〈H, E〉
output: A set of orthogonal BSCCs {Bi} and a transient subspace TE such that

H =
⊕

i Bi ⊕ TE
begin
B ← Decompose(E∞(H));
return B, E∞(H)⊥;

end

Definition 11. Let 〈H, E〉 be a quantum Markov chain, ρ ∈ D(H) an initial state, and
G ⊆ H a subspace. Then the probability of reaching G, starting from ρ, can be defined
as

Pr(ρ � ♦G) = lim
i→∞

tr(PGẼ i(ρ))

where Ẽ = PG+ E ◦ (I −PG) is the super-operator which first performs the projective
measurement {PG, I − PG} and then applies the identity operator I or E depending
on the measurement outcome.

Obviously the limit in the above definition exists, as the probabilities tr(PGẼ i(ρ)) are
nondecreasing in i.

To compute the reachability probability, we first note the subspace G is invari-
ant under Ẽ . Thus 〈G, Ẽ〉 is again a quantum Markov chain. Since Ẽ(IG) = IG and
Ẽ∞(G) = G, we can decompose G into a set of orthogonal BSCCs according to Ẽ by
Theorem 5. The following lemma shows a connection between the limit probability of
hitting a BSCC and the probability that the asymptotic average of the initial state lies in
the same BSCC.

Lemma 4. Let {Bi} be a BSCC decomposition of E∞(H), and PBi the projection onto
Bi. Then for each i, we have

lim
k→∞

tr(PBiEk(ρ)) = tr(PBiE∞(ρ)) (4)

for all ρ ∈ D(H).

Lemma 4 and Theorem 5 together give us an efficient way to compute the reachability
probability from a quantum state to a subspace.

Theorem 8. Let 〈H, E〉 be a quantum Markov chain, ρ ∈ D(H), and G ⊆ H a sub-
space. Then

Pr(ρ � ♦G) = tr(PGẼ∞(ρ)),

and this probability can be computed in time O(n8) where n = dim(H).

Our next results assert that if a quantum Markov chain starts from a pure state in a
BSCC then its evolution sequenceψ, E(ψ), E2(ψ), · · · will hit a subspace with non-zero
probability infinitely often provided X is not orthogonal to that BSCC. They establishes
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Procedure Decompose(X)
input : A subspace X which is the support of a fixed point state of E
output: A set of orthogonal BSCCs {Bi} such that X = ⊕Bi

begin
E ′ ← PX ◦ E ;
B ← a density operator basis of the set {A ∈ B(H) : E ′(A) = A};
if |B| = 1 then

ρ← the unique element of B;
return {supp(ρ)};

else
ρ1, ρ2 ← two arbitrary elements of B;
ρ← positive part of ρ1 − ρ2;
Y ← supp(ρ)⊥; (* the ortho-complement of supp(ρ) in X*)
return Decompose(supp(ρ)) ∪Decompose(Y );

end
end

indeed a certain fairness and thus can be seen as quantum generalisations of Theorems
10.25 and 10.27 in [2]. It is well-known that in the quantum world a measurement will
change the state of the measured system. Consequently, fairness naturally splits into
two different versions in quantum Markov chains.

Lemma 5. (Measure-once fairness) Let B be a BSCC of quantum Markov chain G =
〈H, E〉, and X a subspace which is not orthogonal to B. Then for any |ψ〉 ∈ B, it holds
that tr(PXE i(ψ)) > 0 for infinitely many i.

Lemma 6. (Measure-many fairness) Let B be a BSCC of a quantum Markov chain
G = 〈H, E〉, and X ⊆ B a subspace of B. Then for any |ψ〉 ∈ B, we have limi→∞
tr(Ẽ i(ψ)) = 0, where Ẽ = PX⊥ ◦ E , and X⊥ is the ortho-complement of X inH.

Lemma 6 is stated also in a “double negation” way. To best understand it, let us assume
that at each step after E is applied, we perform a projective measurement {PX , PX⊥}.
If the outcome corresponding to PX is observed, the process terminates immediately;
otherwise, it continues with another round of applying E . Lemma 6 asserts that the
probability of nontermination is asymptotically 0; in other words, if we set X as an
absorbing boundary, which is included in BSCC B, the reachability probability will be
absorbed eventually. This lemma is indeed a strong version of fairness. Furthermore,
we have:

Theorem 9. Let G = 〈H, E〉 be a quantum Markov chain, and let X be a subspace of
H, and Ẽ = PX⊥ ◦ E . Then the following two statements are equivalent:

1. The subspace X⊥ contains no BSCC;
2. For any ρ ∈ D(H), we have limi→∞ tr(Ẽ i(ρ)) = 0.

It is worth noting that in Theorem 9, X is not required to be a subspace of a BSCC B.
The following two examples give some simple applications of Theorem 9.
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Example 3. Consider a quantum walk on an n-size cycle [1]. The state space of the
whole system is H = Hp ⊗ Hc, where Hp = span{|0〉, · · · , |n − 1〉} is the position
space, and Hc = span{|0〉, |1〉} is the coin space. The evolution of the systems is
described by a unitary transformation U = S(I ⊗H), where the coin operator H is the
Hadamard operator, and the shift operator

S =

n−1∑
i=0

(|i+ 1〉〈i| ⊗ |0〉〈0|+ |i− 1〉〈i| ⊗ |1〉〈1|)

where the arithmetic operations over the index set are understood as modulo n. If we
set absorbing boundaries at position 0, then from any initial state |ψ〉, we know from
Theorem 9 that the probability of nontermination is asymptotically 0 because there is
no BSCC which is orthogonal to the absorbing boundaries.

Example 4. Consider the quantum Markov chain in Example 1. Let ρ0 be the initial
state, and assume that projective measurement {P0 = |0〉〈0|, P1 = I − P0} will be
performed at the end of each step and P0 is set as the absorbing boundary. We write
ρ̃k = Ẽk(ρ0) for the partial density operator after k steps, where Ẽ = P1 ◦ E .
1. If ρ0 = |1〉〈1|, then limk→∞ ρ̃k = 0. This means the probability will be eventually

absorbed.
2. If ρ0 = |2〉〈2|, then limk→∞ ρ̃k = (|2〉〈2|+ |3〉〈3|)/2. No probability is absorbed.

Let D1 and D2 be as in Example 2. Then the probabilities in D1 and D2 are both
0.5. This means that if supp(P0) is not totally in a BSCC D, then the probability
in D may not be absorbed.

6 Repeated Reachability and Persistence Probabilities

In this section, we consider how to compute two kinds of reachability probabilities,
namely “repeated reachability” and “persistence property”, in a quantum Markov chain.
Note that E∞(H)⊥ is a transient subspace. We can focus our attention on E∞(H).

Definition 12. Let G = 〈H, E〉 be a quantum Markov chain and G a subspace of
E∞(H).

1. The set of states in E∞(H) satisfying the repeated reachability “infinitely often
reaching G” is

X (G) = {|ψ〉 ∈ E∞(H) : lim
k→∞

tr((PG⊥ ◦ E)k(ψ)) = 0}.

2. The set of states in E∞(H) satisfying the persistence property “eventually always
in X” is

Y(G) = {|ψ〉 ∈ E∞(H) : (∃N ≥ 0)(∀k ≥ N) supp(Ek(ψ)) ⊆ G}.

The set X (G) is defined again in a “double negation” way. Its intuitive meaning can be
understood as follows: if the process starts in a state inX (G) and we make G absorbing,
then the probability will be eventually absorbed by G.

The following theorem gives a characterisation of X (G) and Y(G) and also clarifies
the relationship between them.
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Theorem 10. For any subspace G of E∞(H), both X (G) and Y(G) are subspaces of
H. Furthermore, we have

X (G) = E∞(G), Y(G) =
∨
B⊆G

B = X (G⊥)⊥,

where B ranges over all BSCCs, and the orthogonal complements are taken in E∞(H).
Moreover, both X (G) and Y(G) are invariant.

Example 5. Let us revisit Example 1 where E∞(H) = span{|0〉, |1〉, |2〉, |3〉}.

1. If G = span{|0〉, |1〉, |2〉}, then E∞(G⊥) = supp(E∞(|3〉〈3|)) = supp((|2〉〈2| +
|3〉〈3|)/2) and E∞(G) = E∞(H). Thus Y(G) = B1 and X (G) = E∞(H).

2. If G = span{|3〉}, then E∞(G⊥) = B1⊕B2 and E∞(G) = B2. ThusY(G) = {0}
and X (G) = B2.

Now we can define probabilistic persistence and probabilistic repeated reachability.

Definition 13. 1. The probability that a state ρ satisfies the repeated reachability
rep(G) is the eventual probability in X (G), starting from ρ:

Pr(ρ � rep(G)) = lim
k→∞

tr(PX (G)Ek(ρ)).

2. The probability that a state ρ satisfies the persistence property pers(G) is the even-
tual probability in Y(G), starting from ρ:

Pr(ρ � pers(G)) = lim
k→∞

tr(PY(G)Ek(ρ)).

The well-definedness of the above definition comes from the fact that X (G) and Y(G)
are invariant. By Theorem 1 we know that the two sequences {tr(PX (G)Ek(ρ))} and
{tr(PY(G)Ek(ρ))} are non-decreasing, and thus their limits exist. Combining Theorems
4 and 10, we have:

Theorem 11. 1. The repeated reachability probability is

Pr(ρ � rep(G)) = 1− tr(PX (G)⊥E∞(ρ)) = 1− Pr(ρ � pers(G⊥)).

2. The persistence probability is

Pr(ρ � pers(G)) = tr(PY(G)E∞(ρ)).

Finally, we are able to give an algorithm for computing reachability and persistence
probabilities (see Algorithm 3).

Theorem 12. Given a quantum Markov chain 〈H, E〉, an initial state ρ ∈ D(H), and
a subspace G ⊆ H, Algorithm 3 computes persistence probability Pr(ρ � pers(G)) in
time O(n8), where n = dim(H).

With Theorem 11, Algorithm 3 can also be used to compute repeated reachability prob-
ability Pr(ρ � rep(G)).
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Algorithm 3. Persistence(G, ρ)
input : A quantum Markov chain 〈H, E〉, a subspace G ⊆ H, and an initial state

ρ ∈ D(H)
output: The probability Pr(ρ � pers(G))
begin

ρ∞ ← E∞(ρ);
Y ← E∞(G⊥);
P ← the projection onto Y ⊥; (* Y ⊥ is the ortho-complement of Y in E∞(H) *)
return tr(Pρ∞);

end

7 Conclusions

We introduced the notion of bottom strongly connected component (BSCC) of a quan-
tum Markov chain (qMC) and studied the BSCC decompositions of qMCs. This en-
ables us to develop an efficient algorithm for computing repeated reachability and per-
sistence probabilities of qMCs. Such an algorithm may be used to verify safety and
liveness properties of physical systems produced in quantum engineering and quantum
programs for future quantum computers.
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Cost Preserving Bisimulations
for Probabilistic Automata

Holger Hermanns and Andrea Turrini
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Abstract. Probabilistic automata constitute a versatile and elegant model for
concurrent probabilistic systems. They are equipped with a compositional the-
ory supporting abstraction, enabled by weak probabilistic bisimulation serving as
the reference notion for summarising the effect of abstraction.

This paper considers probabilistic automata augmented with costs. It extends
the notions of weak transitions in probabilistic automata in such a way that the
costs incurred along a weak transition are captured. This gives rise to cost-
preserving and cost-bounding variations of weak probabilistic bisimilarity.
Polynomial-time decision algorithms are proposed, that can be effectively used
to compute reward-bounding abstractions of Markov decision processes.

1 Introduction

Markov Decision Processes (MDPs) are mathematical models widely used in operations
research, automated planning, decision support systems and related fields. In the con-
current systems context, they appear in the form of Probabilistic Automata (PAs) [18].
PAs form the backbone model of successful model checkers such as PRISM [12] en-
abling the analysis of randomised concurrent systems. They extend classical concur-
rency models in a simple yet conservative fashion, by enabling probabilistic experi-
ments inside transitions.

As one of the classical concurrency theory manifestations, weak probabilistic bisim-
ilarity is a congruence relation for parallel composition and hiding on PA. In other
contexts, this has enabled powerful compositional minimisation approaches to combat
the state space explosion problem in explicit state verification approaches [6, 10, 15].
With the conception of a polynomial time algorithm for deciding weak probabilistic
bisimilarity [11] this avenue can now be followed also in the context of PAs and MDPs.
The decision algorithm follows the usual partition refinement approach. At its core, the
decision algorithm needs to check a polynomial number of linear programming (LP)
problems. Each of them checks the existence of a specific weak transition. The decision
algorithm can be turned into a minimisation algorithm, producing a minimal canonical
representation of the PA with respect to weak probabilistic bisimilarity [7].

MDP models are usually decorated with cost or rewards structures, with the intention
to minimise costs or maximise rewards along the model execution. Likewise, in tools
like PRISM, PAs appear augmented with cost or reward structures. It is hence a natural
question how costs can be embedded into the approach discussed above, and this is
what the paper is about.
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We propose Cost Probabilistic Automata (CPAs), a model where cost is any kind
of quantity associated with the transitions of the automata, and we aim to minimise
the cost. For instance, we can consider as the cost of a transition the power needed to
transmit a message, the time spent in the computation modelled by the transition, the
(monetary) risk associated with an action, the expense of some work, and so on. Costs
for weak transitions are interpreted in line with the vast body of literature on MDPs,
and we describe how that interpretation can be linked to the weak transition encoding
as LP problems.

We then extend weak probabilistic bisimulation to also account for costs. As a strict
option, we require weak transition costs to be matched exactly for bisimilar states, in-
ducing cost-preserving weak probabilistic bisimulation. As a weaker alternative, we ask
them to be bounded from one PA to the other, leading to the notion of minor cost weak
probabilistic bisimulation. We provide polynomial time algorithms for both variations.
Finally we present an application of minor cost weak probabilistic bisimulation to a
multi-hop wireless communication scenario where the cost structure represents trans-
mission power which in turn depends on physical distances.

Organisation of the Paper. After the preliminaries in Section 2, we revisit the LP
problem formulation behind weak probabilistic bisimilarity in Section 3 and we present
cost probabilistic automata and relative bisimulations in Section 4 together with the
wireless channel example. We discuss related work and possible extensions in Section 5
and we conclude the paper in Section 6 with some remarks.

2 Mathematical Preliminaries and Probabilistic Automata

For a set X , denote by Disc(X) the set of discrete probability distributions over X ,
and by SubDisc(X) the set of discrete sub-probability distributions over X . Given ρ ∈
SubDisc(X), we denote by Supp(ρ) the set { x ∈ X | ρ(x) > 0 }, by ρ(⊥) the value
1 − ρ(X) where ⊥ /∈ X , and by δx, where x ∈ X ∪ {⊥}, the Dirac distribution such
that ρ(y) = 1 for y = x, 0 otherwise. For a sub-probability distribution ρ, we also write
ρ = { (x, px) | x ∈ X } where px is the probability of x. The lifting L(R) [14] of a
relationR ⊆ X×Y is defined as: for ρX ∈ Disc(X) and ρY ∈ Disc(Y ), ρX L(R) ρY
holds if there exists a weighting function w : X × Y → [0, 1] such that (1) w(x, y) > 0
implies x R y, (2)

∑
y∈Y w(x, y) = ρX(x), and (3)

∑
x∈X w(x, y) = ρY (y).

A Probabilistic Automaton (PA)A is a tuple (S, s̄, Σ,D), where S is a countable set
of states, s̄ ∈ S is the start state, Σ is a countable set of actions, and D ⊆ S × Σ ×
Disc(S) is a probabilistic transition relation. The set Σ is divided in two sets H and E

of internal (hidden) and external actions, respectively; we let s,t,u,v, and their variants
with indices range over S; a, b range over actions; and τ range over internal actions. In
this work we consider only finite PAs, i.e., PAs such that S and D are finite.

A Markov Decision Process (MDP) M is a tuple (S, ι, Σ,P , r) that can be consid-
ered as a variation of a PA with a functional transition relation P : S×Σ → Disc(S), a
start distribution ι ∈ Disc(S) instead of a start state, and additionally a reward function
or structure r : S × Σ → R. In this paper we consider only non-negative rewards, i.e.,
r(s, a) ≥ 0 for each (s, a) ∈ S ×Σ, but interpret them as costs.
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Fig. 1. The wireless communication channel WCC (n, r, p)

A transition tr = (s, a, μ) ∈ D , also denoted by s a−→ μ, is said to leave from state
s, to be labelled by a, and to lead to the target distribution μ, also denoted by μtr . We
denote by src(tr) the source state s and by act(tr) the action a. We also say that s
enables action a, that action a is enabled from s, and that (s, a, μ) is enabled from s.
Finally, we let D(a) = { tr ∈ D | act(tr) = a } be the set of transitions with label a.

Example (A wireless communication channel). As an example of PAs, consider a re-
liable wireless communication channel used to transmit messages belonging to the set
Msg from a sender to a receiver. The wireless implementation of the communication
channel is depicted in Fig. 1: the PA WCC (n, r, p) models a communication that re-
quires n intermediate nodes (hops) to reach the receiver where the probability to trans-
mit correctly the message from each node to the successor is p. Each intermediate node
has a transmission radius r, and this parameter will become useful when determining
the transmission cost in terms of power consumed. In this PA, the message m to trans-
mit is obtained from the sender via the external sm action and it is delivered to the
receiver by using the external action rm. Internal action tr models the transmission of
the message m from one node to the successor distant at most r, the transmission radius.

The ideal communication channel is modelled by the PA ICC = WCC (0,∞, 1),
that is, the automaton that does not require intermediate nodes. Obviously, ICC models
a reliable communication channel since the message is delivered with probability 1 just
after having received it.

An execution fragment of a PA A is a finite or infinite sequence of alternating states
and actions α = s0a1s1a2s2 . . . starting from a state s0, also denoted by first(α),
and, if the sequence is finite, ending with a state denoted by last(α), such that for each
i > 0 there exists a transition (si−1, ai, μi) ∈ D such that μi(si) > 0. The length of
α, denoted by |α|, is the number of occurrences of actions in α. If α is infinite, then
|α| = ∞. Denote by frags(A) the set of execution fragments of A and by frags∗(A)
the set of finite execution fragments of A. An execution fragment α is a prefix of an
execution fragment α′, denoted by α � α′, if the sequence α is a prefix of the sequence
α′. The trace trace(α) of α is the sub-sequence of external actions of α; we denote by
ε the empty trace and we define trace(a) = a for a ∈ E and trace(a) = ε for a ∈ H.

A scheduler for a PA A is a function σ : frags∗(A) → SubDisc(D) such that for
each α ∈ frags∗(A), σ(α) ∈ SubDisc({ tr ∈ D | src(tr) = last(α) }). In the MDP
context, a scheduler is known as policy π : frags∗(A) → Disc(D). Given a scheduler
σ and a finite execution fragment α, the distribution σ(α) describes how transitions
are chosen to move on from last(α). A scheduler σ and a state s induce a probability
distribution μσ,s over execution fragments as follows. The basic measurable events are
the cones of finite execution fragments, where the cone of α, denoted by Cα, is the set
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{α′ ∈ frags(A) | α � α′ }. The probability μσ,s of a cone Cα is defined recursively as
follows:

μσ,s(Cα) =

⎧⎪⎨⎪⎩
0 if α = t for a state t = s,

1 if α = s,

μσ,s(Cα′ ) ·
∑

tr∈D(a) σ(α
′)(tr) · μtr (t) if α = α′at.

Standard measure theoretical arguments ensure that μσ,s extends uniquely to the σ-
field generated by cones. We call the resulting measure μσ,s a probabilistic execution
fragment of A and we say that it is generated by σ from s. Given a finite execution
fragment α, we define μσ,s(α) as μσ,s(α) = μσ,s(Cα) · σ(α)(⊥), where σ(α)(⊥) is
the probability of terminating the computation after α has occurred.

We say that there is a weak combined transition from s ∈ S to μ ∈ Disc(S) labelled
by a ∈ Σ, denoted by s a=⇒C μ, if there exists a scheduler σ such that the following
holds for the induced probabilistic execution fragment μσ,s: (1) μσ,s(frags

∗(A)) = 1;
(2) for each α ∈ frags∗(A), if μσ,s(α) > 0 then trace(α) = trace(a); (3) for each state
t, μσ,s({α ∈ frags∗(A) | last(α) = t }) = μ(t). In this case, we say that the weak
combined transition s a=⇒C μ is induced by σ.

Albeit the definition of weak combined transitions is somewhat intricate, this defini-
tion is just the obvious extension of weak transitions on labelled transition systems to
the setting with probabilities. See [19] for more details on weak combined transitions.

Example (cont’d). Consider again the PA WCC (2, r, 3
4 ) and the weak combined tran-

sition hm0
τ=⇒C δhm

1
. In order to show that it is actually a weak combined transition

of the PA WCC (2, r, 3
4 ), we have to exhibit a scheduler σ inducing it. It is easy to

verify that σ defined as: σ(α) = δ
hm
0

τ−→ρ
if last(α) = hm0 , δ⊥ otherwise, where

ρ = {(hm1 , 3
4 ), (h

m
0 , 1

4 )}, induces the transition hm0
τ=⇒C δhm

1
. Consider, for instance,

the probability of stopping in hm1 , i.e., the sum of the probability of each finite execution
fragment ending with hm1 , i.e., execution fragments of the form (hm0 τ)n+1hm1 (τhm1 )l

where l, n ∈ N; it is easy to derive that for n ∈ N, μσ,hm
0
((hm0 τ)n+1hm1 ) = (14 )

n · 34 ·1 =

(14 )
n · 34 and that for l, n ∈ N, μσ,hm

0
((hm0 τ)n+1hm1 (τhm1 )l+1) = 0. Hence we have that

μσ,hm
0
({α ∈ frags∗(A) | last(α) = hm1 }) = μσ,hm

0
({ (hm0 τ)n+1hm1 | n ∈ N }) +

μσ,hm
0
({ (hm0 τ)n+1hm1 (τhm1 )l+1 | l, n ∈ N }) =

∑
n∈N(

1
4 )

n · 34 + 0 = 1 = δhm
1
(hm1 ).

Weak probabilistic bisimilarity [18,19] is of central importance for our considerations.

Definition 1. Let A1, A2 be two PAs. An equivalence relationR on the disjoint union
S1 � S2 is a weak probabilistic bisimulation if, for each pair of states s, t ∈ S1 � S2

such that s R t, if s a−→ μs for some probability distribution μs, then there exists μt
such that t a=⇒C μt and μs L(R) μt.

We say that A1 and A2 are weak probabilistic bisimilar if there exists a weak prob-
abilistic bisimulation R on S1 � S2 such that s̄1 R s̄2 and we say that two states
s1 and s2 are weak probabilistic bisimilar if s1 R s2. We denote the coarsest weak
probabilistic bisimulation, called weak probabilistic bisimilarity, by ≈.

Example (cont’d). Consider any instance WCC (n, r, p) and the ideal communication
channel ICC . It is quite easy to verify that ICC ≈ WCC (n, r, p) for each n ∈ N,
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r ∈ R≥0, and p ∈ (0, 1], where the relation R justifying ICC ≈ WCC (n, r, p) has
for each m ∈ Msg one class containing all hmi states and another class containing start
states. This means, by transitivity of≈, that WCC (n, r, p) ≈WCC (n′, r′, p′) for each
possible value of n, n′ ∈ N, r, r′ ∈ R≥0, and p, p′ ∈ (0, 1].

We say that there is a hyper-transition from ρ ∈ Disc(S) to μ ∈ Disc(S) labelled by
a ∈ Σ, denoted by ρ a=⇒C μ, if there exists a family of weak combined transitions
{s a=⇒C μs}s∈Supp(ρ) such that μ =

∑
s∈Supp(ρ) ρ(s) · μs, i.e., for each t ∈ S, μ(t) =∑

s∈Supp(ρ) ρ(s) · μs(t). Given s a−→ ρ and ρ τ=⇒C μ, we denote by s a−→ ρ τ=⇒C μ

the weak combined transition s a=⇒C μ obtained by concatenating s a−→ ρ and
ρ τ=⇒C μ (cf. [16, Prop. 3.6]).

3 Weak Transitions as LP Problems Revisited

This section revisits and extends the idea underlying the equivalence of weak transitions
and linear programming problems, as developed in [11]. With some inspiration from
network flow problems, we were able to see a transition t a=⇒C μt of the PA A as a
flow where the initial probability mass δt flows and splits along internal transitions (and
exactly one transition with label a for each stream provided a = τ ) according to the
transition target distributions and the scheduler resolution of the nondeterminism.

The LP problem t a=⇒C =· L(E) μ, proposed in [11] to verify the existence of the
weak combined transition t a=⇒C μt such that μ L(E) μt, assumes that E is an equiva-
lence relation on S; we can extend it to any relationR ⊆ S×S as follows: checking that
there exists μt such that t a=⇒C μt and μ L(R) μt is equivalent, by properties of L( · ),
to find μt and μ′t such that t a=⇒C μt, μt L(I) μ′t, and μ L(R) μ′t, where I is the iden-
tity relation on S. Since verifyingμ L(R) μ′t is itself equivalent [2, Lemma 5.1] to solve
a maximum flow problem, such flow problem can be merged with the t a=⇒C =· L(I) μ′t
LP problem, thereby abstracting the actual distribution μ′t, so as to extend it to a binary
relationR, as we formalise in the sequel.

For a PA A = (S, s̄, Σ,D) andR ⊆ S × S, for a ∈ E, the network G(t, a, μ,R) =
(V,E) has the set of vertices V = {�,�}∪S∪Str ∪Sa∪Str

a ∪SR where Str = { vtr |
tr = v b−→ ρ ∈ D , b ∈ {a, τ} }, Sa = { va | v ∈ S }, Str

a = { vtra | vtr ∈ Str },
and SR = { sR | s ∈ S } and the set of arcs E = {(�, t)} ∪ { (va, uR), (uR,�) |
u, v ∈ S, v R u } ∪ { (v, vtr ), (vtr , v′), (va, vtra ), (vtra , v′a) | tr = v τ−→ ρ ∈ D , v′ ∈
Supp(ρ) }∪{ (v, vtra ), (vtra , v′a) | tr = v a−→ ρ ∈ D , v′ ∈ Supp(ρ) }. When a ∈ H, the
definition is similar: V = {�,�}∪S∪Str∪SR and E = {(�, t)}∪{ (v, uR), (uR,�) |
u, v ∈ S, v R u } ∪ { (v, vtr ), (vtr , v′) | tr = v τ−→ ρ ∈ D , v′ ∈ Supp(ρ) }.

As in [11], this network G(t, a, μ,R) and the associated maximum flow problem
can not be used directly to encode a weak combined transition since it is not possible to
force the flow to split proportional to the transition probability distributions. Instead an
ordinary LP problem can be derived from the network, which is enriched with additional
constraints called balancing factors. A balancing factor models a probabilistic choice
and ensures a balance between flows that leave a vertex so as to respect the probability
values in a probabilistic choice, i.e., when leaving a vertex v ∈ Str ∪ Str

a .
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Definition 2 (cf. [11, Def. 6]). Given a PA A, R ⊆ S × S, μ ∈ Disc(S), and t ∈ S,
for a ∈ E we define the t a=⇒C =· L(R) μ LP problem associated to the network graph
(V,E) = G(t, a, μ,R) as follows:

max
∑

(x,y)∈E −fx,y
under constraints
fu,v ≥ 0 for each (u, v) ∈ E
f�,t = 1
fvR,	 = μ(v) for each v ∈ SR∑

u∈{x|(x,v)∈E } fu,v −
∑

u∈{ y|(v,y)∈E } fv,u = 0 for each v ∈ V \ {�,�}
fvtr ,v′ − ρ(v′)fv,vtr = 0 for each tr = v τ−→ ρ ∈ D and v′ ∈ Supp(ρ)
fvtr

a ,v′
a
− ρ(v′)fva,vtr

a
= 0 for each tr = v τ−→ ρ ∈ D and v′ ∈ Supp(ρ)

fvtr
a ,v′

a
− ρ(v′)fv,vtr

a
= 0 for each tr = v a−→ ρ ∈ D and v′ ∈ Supp(ρ)

When a ∈ H, the LP problem t τ=⇒C =· L(R) μ associated to G(t, τ, μ,R) is defined as
above without the last two groups of constraints.

The objective function has no impact on the equivalence of t a=⇒C =· L(R) μ and a
weak combined transition, since any feasible solution is enough to establish the tran-
sition (cf. [11, Thm. 8]). This means that we can use min

∑
(x,y)∈E fx,y as objective

function, i.e., a weak transition can also be seen as a minimum cost flow problem plus
balancing constraints, so we will in the sequel explore how to use the objective function
to compute and minimise the cost of performing a weak combined transition.

4 Cost Probabilistic Automata

As said, in this paper we consider as cost any kind of quantity associated with the
transitions of the automaton A that we aim to minimise. We model the cost of the
transitions by a function c that assigns to each transition a non-negative real value.

Definition 3. A cost probabilistic automaton (CPA) is a pair (A, c) where A is a prob-
abilistic automaton and c, the transition cost function, is a total function c : D → R≥0.

4.1 Weak Combined Transition Cost

There are several ways of extending the cost from a single transition to a sequence of
transitions, and hence to a weak combined transition. One possibility is to consider the
weighted sum of the costs of all involved finite execution fragments. This approach
matches the standard interpretation in the operations research literature for expected
reward criteria [13].

Definition 4. Given an MDP M = (S, ι, Σ,P , r), a finite execution fragment α =
s1a1 . . . snansn+1 ∈ frags∗(M), a policy π, and the final state reward rs : S → R,
let α�i = s1a1 . . . ai−1si be the i-prefix of α, r(α) =

∑n
i=1 r(si, ai) + rs(sn+1), and

Pπ(α) = ι(s1)·
∏n

i=1 π(α�i)(ai)·P(si, ai)(si+1). Then the expected total reward with
horizon N is defined as Eπ

N =
∑

α∈{α∈frags∗(M)||α|=N } r(α) · Pπ(α).

Since probabilistic automata are a conservative extension of MDP, we extend this notion
to weak transition costs by taking into account the resolution of the nondeterminism as
induced by a given scheduler.
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Definition 5. Given a CPA (A, c), a state s, an action a, a probability distribution μ,
and a scheduler σ inducing the weak combined transition s a=⇒C μ, we define the cost
cσ(s

a=⇒C μ) of the weak combined transition s a=⇒C μ as

cσ(s
a=⇒C μ) =

∑
α∈frags∗(A)

cσ(α) · μσ,s(α)

where cσ(α) = cσ(α
′) +

∑
tr∈D(a) c(tr) · σ̂(α′, t, a, tr) if α = α′at, 0 otherwise, and

where σ̂ : frags∗(A)× S ×Σ ×D → R≥0 is defined as:

σ̂(α, t, a, tr) =

⎧⎪⎨⎪⎩
σ(α)(tr ) · μtr (t)∑

tr∈D(a) σ(α)(tr ) · μtr (t)
if
∑

tr∈D(a) σ(α)(tr ) · μtr (t) > 0,

0 otherwise.

When the scheduler σ is clear from the context, we just write c(s a=⇒C μ).
When we restrict Def. 5 to MDPs, it coincides with Def. 4:

Proposition 1. Given an MDPM, a policy π, and a final state reward r : S → R such
that for each s ∈ S, r(s) = 0, it holds that for each N ∈ N,

Eπ
N =

∑
s∈S

ι(s) · c(s τ=⇒C μ)

where for each tr = (s, a,P(s, a)) ∈ D and α ∈ frags∗(M), we define c(tr) =
r(s, a), σ(α)(tr ) = π(α)(a) if |α| < N , 0 otherwise, and s τ=⇒C μ is the weak com-
bined transition induced by the scheduler σ when all actions are considered as internal.

Example (cont’d). Consider the CPA (WCC (n, r, p), c) where c assigns cost r to each
transition labelled by the internal action tr; the weak combined transition hm0

tr=⇒C δhm
n

can be seen as the sequence of transitions hmi
tr=⇒C δhm

i+1
for 0 ≤ i < n. It is routine to

check that each hmi
tr=⇒C δhm

i+1
is induced by the scheduler σi such that σi(α) = δtrm

i

if last(α) = hmi , δ⊥ otherwise, where trmi = hmi
tr−→ {(hmi+1, p), (h

m
i , 1− p)}. Now,

consider the finite execution fragment α = (hmi tr)
n+1hmi+1: according to Def. 5, it has

cost cσi(α) = (n + 1) · r. The probability μσi,hm
i
(α) of α is (1 − p)n · p while the

probability of each α′ ∈ frags∗(WCC (n, r, p)) \ { (hmi tr)
n+1hmi+1 | n ∈ N } is 0, thus

the cost of the transition hmi
tr=⇒C δhm

i+1
as induced by σi is cσi(h

m
i

tr=⇒C δhm
i+1

) =∑
n∈N(n+ 1) · r · (1 − p)n · p = r · p ·

∑
n∈N(n+ 1) · (1 − p)n = r·p

1−p ·
∑

n∈N(n+

1) · (1− p)n+1 = r·p
1−p ·

1−p
(1−(1−p))2 = r

p , hence hm0
tr=⇒C δhm

n
has cost n · r

p .

By using an equivalent definition of weak transition cost, the transition costs can be
encoded in the LP problem as coefficients of the objective function.

Definition 6. Given a CPA (A, c), a binary relationR on S, a probability distribution
μ ∈ Disc(S), and a state t ∈ S, for action a = τ we define the min-cost LP problem
minc t

a=⇒C =· L(R) μ associated to the network G(t, a, μ,R) as follows.
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min
∑

(x,y)∈E cf ((x, y)) · fx,y
under constraints
fu,v ≥ 0 for each (u, v) ∈ E
f�,t = 1
fvR,	 = μ(v) for each v ∈ SR∑

u∈{x|(x,v)∈E } fu,v −
∑

u∈{ y|(v,y)∈E } fv,u = 0 for each v ∈ V \ {�,�}
fvtr ,v′ − ρ(v′)fv,vtr = 0 for each tr = v τ−→ ρ ∈ D and v′ ∈ Supp(ρ)
fvtr

a ,v′
a
− ρ(v′)fva,vtr

a
= 0 for each tr = v τ−→ ρ ∈ D and v′ ∈ Supp(ρ)

fvtr
a ,v′

a
− ρ(v′)fv,vtr

a
= 0 for each tr = v a−→ ρ ∈ D and v′ ∈ Supp(ρ)

where cf : E → R≥0 is a total function defined as follows:

cf ((x, y)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c(tr) if tr = v τ−→ ρ, x = v, y = vtr ,

c(tr) if tr = v τ−→ ρ, x = va, y = vtra ,

c(tr) if tr = v a−→ ρ, x = v, y = vtra ,

0 otherwise.

If minc t
a=⇒C =· L(R) μ has an optimal solution fo, then we denote by C the minimum

cost C =
∑

(x,y)∈E cf ((x, y)) · fox,y.

When the action a is τ , the min-cost LP problem minc t
τ=⇒C =· L(R) μ associated to

the network G(t, τ, μ,R) is defined as above without the last two groups of constraints.
A first straightforward result is that minc t

a=⇒C =· L(R) μ is feasible if and only if
t a=⇒C =· L(R) μ is feasible, since the only difference between the two problems is the
objective function that does not affect the feasibility of an LP problem:

Proposition 2. Given a CPA (A, c), R ⊆ S × S, a ∈ Σ, μ ∈ Disc(S), and t ∈ S, the
minimisation LP problem minc t

a=⇒C =· L(R) μ has a feasible solution f∗ if and only
if f∗ is a feasible solution of the LP problem t a=⇒C =· L(R) μ.

Similarly, as generating and checking the existence of a valid solution of the LP problem
t a=⇒C =· L(R) μ is polynomial in N = max{|S|, |D |} (cf. [11, Thm. 7]), the same
holds for minc t

a=⇒C =· L(R) μ:

Corollary 1. Given a CPA (A, c), R ⊆ S × S, a ∈ Σ, μ ∈ Disc(S), and t ∈ S, gen-
erating and checking the existence of a valid solution of the minimisation LP problem
minc t

a=⇒C =· L(R) μ is polynomial in N = max{|S|, |D |}.
Since t a=⇒C =· L(R) μ is feasible if and only if there exists a scheduler σ that induces
t a=⇒C μt such that μ L(R) μt, we may expect a similar result regarding costs, that
is, minc t

a=⇒C =· L(R) μ is feasible with optimal value C if and only if there exists a
scheduler σ that induces t a=⇒C μt such that μ L(R) μt and c(t a=⇒C μt) = C. But
in general it is not possible to obtain such a result since there can be equivalent ways to
resolve nondeterminism that induce different costs, thus we can not talk about the cost
of a weak combined transition, but of the cost of the weak combined transition as in-
duced by the scheduler σ. For instance, consider an automatonA whose transitions are
tr1 = s̄ a−→ δt, tr2 = s̄ τ−→ δv, and tr3 = v a−→ δt, each one with cost 1. It is straight-
forward to check that the scheduler σ1 such that σ1(s̄) = δtr1 and σ1(α) = δ⊥ for each
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finite execution fragmentα = s̄ induces the weak combined transition s̄ a=⇒C δt whose
cost is 1; the same transition is induced also by the schedulerσ2 defined as σ2(s̄) = δtr2

,
σ2(s̄τv) = δtr3 , and σ2(α) = δ⊥ for each other finite execution fragment α. However
the cost as induced by σ2 is cσ2(s̄

a=⇒C δt) = 2 = 1 = cσ1(s̄
a=⇒C δt); it is easy

to show that 1 ≤ cσ(s̄
a=⇒C δt) ≤ 2 for each scheduler σ inducing s̄ a=⇒C δt. Note

that there are uncountably many such schedulers, each one corresponding to a different
resolution of the choice between tr1 = s̄ a−→ δt and tr2 = s̄ τ−→ δv: in general, we
can denote such choice as the distribution {(tr1, p), (tr2, 1− p)} where p ∈ [0, 1].

The cost given by a scheduler and the value of the objective function of the corre-
sponding LP problem are however related:

Theorem 1. Given a CPA (A, c), R ⊆ S × S, a ∈ Σ, μ ∈ Disc(S), and t ∈ S,
consider the minc t

a=⇒C =· L(R) μ LP problem. The following implications hold:

1. If there exists a scheduler σ forA that induces t a=⇒C μt such that μ L(R) μt, then
minc t

a=⇒C =· L(R) μ has an optimal solution fo such that C ≤ c(t a=⇒C μt).
2. If minc t

a=⇒C =· L(R) μ has an optimal solution fo, then there exists a scheduler
σ for A that induces t a=⇒C μt such that μ L(R) μt and c(t a=⇒C μt) = C.

As immediate corollaries we have that the cost given by the optimal solution of the
minc t

a=⇒C =· L(R) μ LP problem corresponds to the minimum cost induced by any
scheduler inducing t a=⇒C μt and that finding such minimum is polynomial.

Corollary 2. Given a CPA (A, c), R ⊆ S × S, a ∈ Σ, μ ∈ Disc(S), and t ∈ S such
that there exists t a=⇒C μt with μ L(R) μt, the LP problem minc t

a=⇒C =· L(R) μ has
minimum cost C = min{ cσ(t a=⇒C μt) | σ induces t a=⇒C μt such that μ L(R) μt }.

Corollary 3. Given a CPA (A, c), R ⊆ S × S, a ∈ Σ, μ ∈ Disc(S), and t ∈ S, find-
ing min{ cσ(t a=⇒C μt) | σ induces t a=⇒C μt such that μ L(R) μt } is polynomial in
N = max{|S|, |D |}.

Extending the above results to hyper-transitions of the CPA (A, c) is straightforward,
since we can consider each hyper-transition ρ a=⇒C μ as the weak combined transition
h a=⇒C μ in the CPA (A′, c′) that is (A, c) enriched with the fresh state h and the
transition h τ−→ ρ whose cost is set to 0.

4.2 Cost Preserving Bisimulations

We now discuss options for weak bisimulations on CPA, so as to ignore internal com-
putations as long as those do not change the visible behaviour of the system. Since a
CPA is an ordinary PA enriched with a cost function, one might consider a naive lifting
of PA weak probabilistic bisimulation, where two CPA are weak probabilistic bisimilar
if the underlying PA are. However this definition obviously falls too short, since it may
relate states with different cost behaviours. For this reason, following [9], we define a
restricted notion of weak probabilistic bisimulation where each transition s a−→ μs of
the challenging state s has to be matched by the defender state t by enabling a weak
combined transition t a=⇒C μt such that μs L(R) μt as in ordinary weak probabilistic
bisimulation, and, in addition, the costs of challenging and defending transitions must
agree.
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Definition 7. Given two CPAs (A1, c1) and (A2, c2), an equivalence relationR on the
disjoint union S1 � S2 is a weak probabilistic cost-preserving bisimulation if for each
pair of states s, t ∈ S1 � S2 such that s R t, if s a−→ μs, then there exists μt such that
t a=⇒C μt, μs L(R) μt, and cd(t

a=⇒C μt) = cc(s
a−→ μs) where cd and cc are the

cost functions of the defender and the challenger CPA, respectively.
Two CPAs (A1, c1) and (A2, c2) are weak probabilistic cost-preserving bisimilar if

there exists a weak probabilistic cost-preserving bisimulation R on S1 � S2 such that
s̄1 R s̄2. We denote the coarsest weak probabilistic cost-preserving bisimulation by≈c,
called weak probabilistic cost-preserving bisimilarity.

By using this definition of bisimulation, we have that states enabling transitions with
different cost are no more bisimilar, since they do not respect cost constraints.

4.3 Cost Bounding Bisimulations

The definition of weak probabilistic cost-preserving bisimulation allows us to relate
CPAs that have the same behaviour and the same cost. Since our aim is to minimise the
cost while preserving the behaviour of a CPA (A, c), we will now relax the cost equality
by requiring that the cost of the defender matching transition is at most the cost of the
challenger transition. Despite the simplicity of this idea, the formal definition is quite
involved since we have to consider properly the cost of internal transitions.

To shed some light on this, consider an automaton A1 performing three internal
steps s̄1

τ−→ δt1 , t1
τ−→ δu1 , and u1

τ−→ δv1 where each step has cost 5 followed by
an external step v1

a−→ δx1 with cost 1 and an automaton A2 that performs four steps
s̄2

τ−→ δt2 , t2
τ−→ δu2 , u2

τ−→ δv2 , and v2
τ−→ δw2 each with cost 3 followed by an

external step w2
a−→ δx2 with cost 1. An external observer is able to recognise that the

behaviour of A1 is more expensive than the one of A2 since the overall cost is 16 for
the former, 13 for the latter. However, from a state-based bisimulation point of view,A2

is not always cheaper thanA1: let {{s̄1, s̄2}, {t1, t2}, {u1, u2}, {v1, v2, w2}, {x1, x2}}
be the equivalence classes ofR; it is easy to verify thatR is a weak probabilistic bisim-
ulation betweenA1 andA2: whenA1 performs s̄1

τ−→ δt1 with cost 5,A2 replies with
s̄2

τ−→ δt2 with cost 3 ≤ 5 and t1 R t2. Note that A2 can not perform the subsequent
transition t2

τ−→ δu2 since in this case the overall cost is 6 � 5. The same happens for
transitions t1

τ−→ δu1 and u1
τ−→ δv1 that are matched by t2

τ−→ δu2 and u2
τ−→ δv2 ,

respectively. Since A1 now performs v1
a−→ δx1 with cost 1, v2 is not able to match

this transition with a cost at most 1: in order to match the transition,A2 has to perform
both transitions v2

τ−→ δw2 and w2
a−→ δx2 whose cost is 4 � 1.

These considerations indicate that internal challenger transitions should not be con-
sidered separately but as a whole, so in order to abstract away from costs of single
challenger internal transitions while preserving the overall cost, we consider for the
challenger the cost of reaching the border states, i.e., states where the automaton per-
forms an external action or exhibits a different behaviour by changing the current class
as induced by the weak bisimulation relation.

Definition 8. Given a PA A and an equivalence relationR over S, we say that a state
s is a border state if there exists s a−→ μ ∈ D such that either μ([s]R) < 1 or a ∈ E.

We denote the set of all border states with respect to R by B(R).
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Definition 9. Let (A1, c1) and (A2, c2) be two CPAs. LetW be an equivalence relation
on the disjoint union S1�S2 and C ⊆ W∩S2×S1 such that for each s2 ∈ S2 there exists
s1 ∈ S1 such that s2 C s1. Then we say that (W , C) is a minor cost weak probabilistic
bisimulation from (A1, c1) to (A2, c2) ifW is a weak probabilistic bisimulation forA1

andA2 and for each s2
a−→ μ2 ∈ D2 and each s1 ∈ S1 such that s2 C s1,

1. if there exists ρ2 ∈ Disc(B(W) ∩ S2) such that μ2
τ=⇒C ρ2, then there exists ρ1 ∈

Disc(B(W) ∩ S1) such that (a) s1
a=⇒C ρ1, (b) ρ2 L(C) ρ1, (c) c1(s1

a=⇒C ρ1) ≤
c2(s2

a−→ μ2
τ=⇒C ρ2), and (d) min{ c2(μ2

τ=⇒C ρ) | ρ ∈ Disc(B(W)∩ S2) } =
c2(μ2

τ=⇒C ρ2); or
2. if there does not exist ρ2 ∈ Disc(B(W) ∩ S2) such that μ2

τ=⇒C ρ2, then there
exists μ1 ∈ Disc(S1) such that s1

a=⇒C μ1, μ2 L(C) μ1, and c1(s1
a=⇒C μ1) ≤

c2(s2
a−→ μ2).

We say that (A1, c1) is minor cost weak probabilistic bisimilar to (A2, c2) if there exists
a minor cost weak probabilistic bisimulation (W , C) such that s̄2 C s̄1. We denote
the coarsest minor cost weak probabilistic bisimulation from (A1, c1) to (A2, c2) by
(A1, c1) �c (A2, c2) and we say that (A1, c1) is in minor cost weak probabilistic
bisimilarity with (A2, c2).

4.4 The Cost of the Wireless Communication Channel

We now apply the minor cost weak probabilistic bisimulation to the reliable wireless
communication channel introduced in Sec. 2 and depicted in Fig. 1. As cost, we con-
sider the function c that assigns cost 1 to transitions labelled by sm or rm and cost r2

to transitions labelled by tr. We use value 1 to represent a constant power consump-
tion relative to sending/receiving message actions and value r2 to model the energy,
quadratic on the transmission radius, required to transmit a message via wireless.

As a concrete example, consider the two instancesA23 = WCC (2, 3, 1
2 ) andA32 =

WCC (3, 2, 1
2 ) of the wireless communication channel connecting sender and receiver

that are at distance 6. To avoid name collisions, we rename the states hmj of
WCC (3, 2, 1

2 ) to kmj for 0 ≤ j ≤ 3. It is easy to verify that the equivalence rela-
tion W whose classes are {s̄23, s̄32} and { hmi , kmj | 0 ≤ i ≤ 2, 0 ≤ j ≤ 3 } for
each m ∈ Msg justifies A23 ≈ A32, so consider the two CPAs (A23, c) and (A32, c).
We suspect that (A32, c) �c (A23, c), but not the reverse, since intuitively (A23, c) has
overall cost 26 for sending and receiving a single message while (A32, c) has overall
cost 38. In order to show (A32, c) �c (A23, c), we have to find a suitable relation C
that, together with W , satisfies the conditions of Def. 9. A suitable relation is C =
{(s̄23, s̄32)} ∪

⋃
m∈Msg{ (hmi , km3 ) | 0 ≤ i ≤ 2 }: consider the pair (s̄23, s̄32) and the

only available transition s̄23
sm−→ δhm

0
. Since B(W) = { s̄23, s̄32, hm2 , km3 | m ∈ Msg },

the only possible ρ23 ∈ Disc(B(W) ∩ S23) such that δhm
0

τ=⇒ ρ23 is ρ23 = δhm
2

. In
order to match such transition, s̄32 enables the weak transition s̄32

sm=⇒C δkm
3

that satis-
fies δhm

2
L(C) δkm

3
. The last condition we have to verify is that c(s̄32

sm=⇒C δkm
3
) ≤

c(s̄23
sm−→ δhm

0

τ=⇒C δhm
2
); this constraint is satisfied since c(s̄32

sm=⇒C δkm
3
) = 25

while c(s̄23
sm−→ δhm

0

τ=⇒C δhm
2
) = 37. It is routine to check the remaining pairs of

states, thus (A32, c) �c (A23, c).
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Now, assume (A23, c) �c (A32, c): by definition, it must hold that s̄32 C s̄23, so
consider the transition s̄32

sm−→ δkm
0

. For sure km3 and hm2 are border states, as well
as s̄32 and s̄23. Moreover, s̄32 and s̄23 can not be related by W to any other state as
they are the only states performing sm. Suppose that these are the only border states;
this implies that s̄32

sm−→ δkm
0

has to be extended to s̄32
sm−→ δkm

0

τ=⇒C δkm
3

whose cost
is 25. The only possibility for s̄23 to match such transition while respecting the cost
constraint is to perform the weak combined transition s̄23

sm=⇒C δhm
i

with i = 0 or
i = 1 and km3 C hmi . Note that we can not use s̄23

sm=⇒C δhm
2

since its cost is 37 � 25.
Independently on the chosen i, since km3 C hmi and km3

rm−→ δs̄32 , hmi has to perform
the weak combined transition hmi

rm=⇒C δs̄23 whose cost is 1 + 18 · (2 − i) � 1, so the
condition is not satisfied. By applying the same approach to the case where we consider
other states as border states, we can derive a similar failure, thus there does not exist
any suitable cost relation C with s̄32 C s̄23, hence (A23, c) �c (A32, c).

4.5 Decision Procedure

In order to algorithmically decide whether (A1, c1) �c (A2, c2), we extend the polyno-
mial decision procedure QUOTIENT that establishes whetherA1 ≈ A2 holds [11], to the
MINORCOST algorithm depicted in Fig. 2 that computes (W , C) justifying (A1, c1) �c

(A2, c2): we first compute W = QUOTIENT(A1,A2) and then we consider as candi-
date cost relation C = C′ all pairs s2 W s1 with s2 ∈ S2 and s1 ∈ S1. In the main
loop of MINORCOST we repeatedly refine C by removing all pairs that do not satisfy
the conditions of Def. 9: if a check fails, we remove the offending pair (s2, s1) from C′.

On termination of the loop, C contains only pairs satisfying Def. 9, so deciding
whether (A1, c1) �c (A2, c2) reduces to check whether s̄2 C s̄1 and whether for each
s2 ∈ S2 there exists s1 ∈ S1 such that s2 C s1.

Given two CPAs (A1, c1) and (A2, c2), let N = max{|S1 � S2|, |D1 �D2|}. Com-
puting W = QUOTIENT(A1,A2) is polynomial in N (cf. [11, Thm. 11]), say P (N);
in the worst case, that occurs when we remove all pairs from C, the main loop of
MINORCOST is performed at most N2 times; according to Thm. 1 and its corollar-
ies, finding ρ2 ∈ Disc(B(W) ∩ S2) such that μ2

τ=⇒C ρ2 and c2(μ2
τ=⇒C ρ2) =

min{ c2(μ2
τ=⇒C ρ) | ρ ∈ Disc(B(W) ∩ S2) } is polynomial in N , say R(N), by

solving the LP problem minc μ2
τ=⇒C =· L(B) δb2 where b2 ∈ B(W) ∩ S2 and B is

the reflexive, symmetric, and transitive closure of B(W). Similarly, R(N) is also the
complexity of either finding ρ1 ∈ Disc(B(W)∩S1) such that s1

a=⇒C ρ1, ρ2 L(C) ρ1,
and c1(s1

a=⇒C ρ1) ≤ c2(s2
a−→ μ2

τ=⇒C ρ2), or finding μ1 ∈ Disc(S1) such that
s1

a=⇒C μ1, μ2 L(C) μ1, and c1(s1
a=⇒C μ1) ≤ c2(s2

a−→ μ2). This implies that the
total complexity of MINORCOST is P (N) +N2 · 2R(N).

Theorem 2. Given two CPAs (A1, c1) and (A2, c2), checking (A1, c1) �c (A2, c2) is
polynomial in N = max{|S1 � S2|, |D1 �D2|}.

Regarding weak probabilistic cost-preserving bisimulation, the algorithm is actually
simpler, since in order to check for the existence of weak combined transitions with a
given cost c, it is enough to add the new constraint

∑
(x,y)∈E cf ((x, y))·fx,y = c to the

minc t
a=⇒C =· L(R) μ LP problem. This allows us to check in polynomial time whether
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MINORCOST((A1, c1), (A2, c2))

W = QUOTIENT(A1,A2)
C′ =W ∩ (S2 × S1)
repeat
C = C′
for all (s2, a, μ2) ∈ D2 and s1 ∈ S1 s. t. s2 C′ s1 do

if there exists ρ̄2 ∈ Disc(B(W)∩S2) such that μ2
τ=⇒C ρ̄2 then

if Condition 1 of Def. 9 is not satisfied then C′ = C′\{(s2, s1)}
else

if Condition 2 of Def. 9 is not satisfied then C′ = C′\{(s2, s1)}
until C′ �= C
return (W, C)

QUOTIENT(A1,A2)

W = {S1 & S2};
(C, a, μ) = FINDSPLIT(W);
while C �= ∅ do
W = REFINE(W, (C, a, μ));
(C, a, μ) = FINDSPLIT(W);

return W

FINDSPLIT(W)
for all (s, a, μ) ∈ D = D1 &D2 do

for all t ∈ [s]W do
if t a=⇒C (· L(W) μ has no solution then

return ([s]W , a, μ)
return (∅, τ, δs̄)

Fig. 2. Minor cost weak bisimulation decision procedure

two CPAs are weak probabilistic cost-preserving bisimilar: we compute QUOTIENT on
the two CPAs where we have replaced in procedure FINDSPLIT the test for feasibility of
t a=⇒C =· L(W) μ with the test for feasibility of minc t

a=⇒C =· L(R) μ extended with
the constraint

∑
(x,y)∈E cf ((x, y)) · fx,y = c(s a−→ μs).

Theorem 3. Given two CPAs (A1, c1) and (A2, c2), checking (A1, c1) ≈c (A2, c2) is
polynomial in N = max{|S1 � S2|, |D1 �D2|}.

5 Discussion

This section puts our work in the context of related work and also discusses other op-
tions to follow.

Givan, Dean and Greig [9] have introduced the idea of strong bisimilarity for MDPs
with state and transition costs, together with algorithms for minimisation to the quotient
model. The minimisation with respect to weak probabilistic bisimulation on PA has
lately been discussed [7], and it remains to be investigated how the minimisation can be
applied for the minor cost approach meaningfully. For the cost-preserving bisimilarity,
the adaptations are straightforward, so we can indeed minimise with respect to weak
transition costs.

Since CPAs are basically MDPs with transition costs only, it is interesting to discuss
how state costs can be handled. Indeed it is possible to turn state costs to transition
costs by moving them on incoming or outgoing transitions. The concrete choice makes
a difference, because the labels of incoming and outgoing transitions generally differ. If
already transitions costs were present prior to the move, we end up with a second cost
structure. Multiple cost structures can indeed also be integrated into our setting rather
easily, one just needs to take the minor cost for all structures in the decision problem.
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For MDPs, multiple reward structures have been investigated [8] in the context of
model checking, and our approach naturally combines with that. Chatterjee, Majum-
dar, and Henzinger [5] investigated them in a setting with discounting. In fact, our
polynomial time LP approach can be extended to compute the minimum cost of dis-
counted weak combined transitions, if we can assume a polynomially bounded number
of internal steps. Conversely, one can compute an upper bound on discounted but non-
polynomially bounded weak combined transitions in polynomial time.

If discounting is integrated into the weak bisimulation definitions we propose, this
however induces difficult-to-grasp equalities. This is because sequences of internal tran-
sitions of different length are abstracted away by weak bisimilarity, but they would
imply different discounts. For similar reasons, our cost model does by itself not talk
about traces. As long as internal transitions carry nonzero costs, the definition of the
cost of a weak trace is not obvious. Even if two executions fragments have the same
trace, i.e., the same sequence of visible actions, different execution fragments usually
have different costs when they involve different internal transitions, in particular after
the last external action of the trace. Moreover, even if the execution fragment does not
involve internal transitions, it can have different costs as resulting by the resolution of
probabilistic and nondeterministic choices, the latter performed by the scheduler.

Still, cost-preserving bisimilarity implies equal trace costs, and if (A1, c1) is in mi-
nor cost weak probabilistic bisimilarity with (A2, c2), then the trace costs of (A1, c1)
are bounded from above by (A2, c2). Trace costs appear central in many cost related
formalisms not involving probabilities, such as weighted timed and energy automata [3,
17], though without (internal) actions playing a dedicated role here, so it is worth to in-
vestigate trace costs in the CPA model as well.

While minor cost weak bisimilarity is implicitly asymmetric, we have still formu-
lated it as an equivalence relation. The case study has demonstrated that this approach
is undoubtedly useful. Yet, it seems worthwhile to also take inspiration from simulation
and simulation distance approaches [1, 4] in this matter.

6 Concluding Remarks
In this paper we have presented the extension of Probabilistic Automata to Cost Prob-
abilistic Automata and we have proposed two cost related weak probabilistic bisimu-
lations: a cost preserving bisimulation and a cost bounding variation, minor cost weak
probabilistic bisimulation, where the defender matches a transition with a cost that is
bounded by at most the cost of the challenger.

Moreover we have shown how to compute in polynomial time the minimum cost
for each transition, and hence to decide the two relations. Since the CPA model en-
compasses MDPs, the results apply readily to these models as well. In the future we
plan to investigate how the compositionality properties of weak probabilistic bisimilar-
ity extend from PA to CPA. With this, we aim to arrive at compositional construction
and minimisation techniques that can be rolled out to operations research, automated
planning, and decision support applications.
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Abstract. Interactive Markov chains (IMC) are compositional
behavioural models extending labelled transition systems and continuous-
time Markov chains. We provide a framework and algorithms for compo-
sitional verification and optimization of IMC with respect to
time-bounded properties. Firstly, we give a specification formalism for
IMC. Secondly, given a time-bounded property, an IMC component and
the assumption that its unknown environment satisfies a given speci-
fication, we synthesize a scheduler for the component optimizing the
probability that the property is satisfied in any such environment.

1 Introduction

The ever increasing complexity and size of systems together with software reuse
strategies naturally enforce the need for component based system development.
For the same reasons, checking reliability and optimizing performance of such
systems needs to be done in a compositional way. The task is to get useful
guarantees on the behaviour of a component of a larger system. The key idea
is to incorporate assumptions on the rest of the system into the verification
process. This assume-guarantee reasoning is arguably a successful divide-and-
conquer technique in many contexts [MC81, AH96, HMP01].

In this work, we consider a continuous-time stochastic model called interactive
Markov chains (IMC). First, we give a language for expressing assumptions
about IMC. Second, given an IMC, an assumption on its environment and a
property of interest, we synthesize a controller of the IMC that optimizes the
guarantee, and we compute this optimal guarantee, too.

Interactive Markov chains are behavioural models of probabilistic systems
running in continuous real time appropriate for the component-based approach
[HK09]. IMC have a well-understood compositional theory rooted in process alge-
bra, and are in use as semantic backbones for dynamic fault trees, architectural
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description languages, generalized stochastic Petri nets and Statemate exten-
sions, see [HK09] for a survey. IMC are applied in a large spectrum of practical
applications, ranging from water treatment facilities [HKR+10] to ultra-modern
satellite designs [EKN+12].

init s

u

v goal

a

ττ 2

1
3

IMC arise from classical labelled transition systems
by incorporating the possibility to change state accord-
ing to a random delay governed by a negative expo-
nential distribution with a given rate, see transitions
labelled 1, 2 and 3 in the figure. Apart from delay ex-
pirations, state transitions may be triggered by the ex-
ecution of internal (τ) actions or external (synchronization) actions. Internal
actions are assumed to happen instantaneously and therefore take precedence
over delay transitions. External actions are the process algebraic means for in-
teraction with other components, see a in the figure. By dropping the delay
transitions, labelled transition systems are regained in their entirety. Dropping
action-labelled transitions instead yields continuous-time Markov chains – one
of the most used performance and reliability models.

The fundamental problem in the analysis of IMC is that of time-bounded
reachability. It is the problem to approximate the probability that a given set of
states is reached within a given deadline. We illustrate the compositional setting
of this problem in the following examples.

Examples. In the first example, consider the IMC C from above and an unknown
environment E with no assumptions. Either E is initially not ready to synchronize
on the external action a and thus one of the internal actions is taken, or E is
willing to synchronize on a at the beginning. In the latter case, whether τ or a
happens is resolved non-deterministically. Since this is out of control of C, we
must assume the worst case and let the environment decide which of the two
options will happen. For more details on this design choice, see [BHK+12]. If
there is synchronization on a, the probability to reach goal within time t = 1.5
is 1− e−2t ≈ 0.95. Otherwise, C is given the choice to move to u or v. Naturally,
v is the choice maximizing the chance to get to goal on time as it has a higher
rate associated. In this case the probability amounts to 1− e−3t ≈ 0.99, while if
u were chosen, it would be only 0.78. Altogether, the guaranteed probability is
95% and the strategy of C is to choose v in init .

init proc ret goal
req τ resp

τ

The example depicted on the
right illustrates the necessity of as-
sumptions on the environment: As
it is, the environment can drive the
component to state ret and let it get stuck there by not synchronising on resp
ever. Hence no better guarantee than 0 can be derived. However, this changes if
we know some specifics about the behaviour of the environment: Let us assume
that we know that once synchronization on req occurs, the environment must
be ready to synchronise on resp within some random time according to, say,
an exponential distribution with rate 2. Under this assumption, we are able to
derive a guarantee of 95%, just as in the previous example.
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Observe the form of the time constraint we imposed in the last example:
“within a random time distributed according to Exp(2)” or symbolically ♦≤Exp(2)

ϕ. We call this a continuous time constraint. If a part of the environment is e.g. a
model of a communication network, it is clear we cannot impose hard bounds
(discrete time constraints) such as “within 1.5” as in e.g. a formula of MTL
♦≤1.5ϕ. Folklore tells us that messages might get delayed for longer than that.
Yet we want to express high assurance that they arrive on time. In this case
one might use e.g. a formula of CSL Pr≥0.95(♦≤1.5ϕ). However, consider now a
system with two transitions labelled with resp in a row. Then this CSL formula
yields only a zero guarantee. By splitting the time 1.5 in halves, the respective
Pr≥0.77(♦≤0.75ϕ) yields only the guarantee 0.772 = 0.60. The actual guarantee
0.80 is given by the convolution of the two exponential distributions and as such
can be exactly obtained from our continuous time constraint ♦≤Exp(2)ϕ.

Our contribution is the following:

1. We introduce a specification formalism to express assumptions on continuous-
time stochastic systems. The novel feature of the formalism are the continu-
ous time constraints, which are vital for getting guarantees with respect to
time-bounded reachability in IMC.

2. We incorporate the assume-guarantee reasoning to the IMC framework. We
show how to synthesize ε-optimal schedulers for IMC in an unknown en-
vironment satisfying a given specification and approximate the respective
guarantee.

In our recent work [BHK+12] we considered a very restricted setting of the sec-
ond point. Firstly, we considered no assumptions on the environment as the
environment of a component might be entirely unknown in many scenarios. Sec-
ondly, we were restricted to IMC that never enable internal and external tran-
sitions at the same state. This was also a severe limitation as this property is
not preserved during the IMC composition process and restricts the expressivity
significantly. Both examples above violate this assumption. In this paper, we lift
the assumption.

Each of the two extensions shifts the solution methods from complete informa-
tion stochastic games to (one-sided) partial observation stochastic games, where
we need to solve the quantitative reachability problem. While this is undecidable
in general, we reduce our problem to a game played on an acyclic graph and show
how to solve our problem in exponential time. (Note that even the qualitative
reachability in the acyclic case is PSPACE-hard [CD10].)

Related Work. The synthesis problem is often stated as a game where the
first player controls a component and the second player simulates an envi-
ronment [RW89]. Model checking of open systems, i.e. operating in an un-
known environment, has been proposed in [KV96]. There is a body of work
on assume-guarantee reasoning for parallel composition of real-time systems
[TAKB96, HMP01]. Lately, games with stochastic continuous-time have gained
attention, for a very general class see [BF09]. While the second player mod-
els possible schedulers of the environment, the structure of the environment
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is fixed there and the verification is thus not compositional. The same holds
for [Spr11, HNP+11], where time is under the control of the components.

A compositional framework requires means for specification of systems. A
specification can be also viewed as an abstraction of a set of systems. Three
valued abstractions stemming from [LT88] have also been applied to the timed
setting, namely in [KKLW07] to continuous-time Markov chains (IMC with no
non-determinism), or in [KKN09] to IMC. Nevertheless, these abstractions do
not allow for constraints on time distributions. Instead they would employ ab-
stractions on transition probabilities. Further, a compositional framework with
timed specifications is presented in [DLL+12]. This framework explicitly allows
for time constraints. However, since the systems under consideration have non-
deterministic flow of time (not stochastic), the natural choice was to only allow
for discrete (not continuous) time constraints.

Although IMC support compositional design very well, analysis techniques
for IMC proposed so far (e.g. [KZH+11, KKN09, ZN10, GHKN12] are not com-
positional. They are all bound to the assumption that the analysed IMC is a
closed system, i.e. it does not depend on interaction with the environment (all
actions are internal). Some preliminary steps to develop a framework for syn-
thesis of controllers based on models of hardware and control requirements have
been taken in [Mar11]. The first attempt at compositionality is our very recent
work [BHK+12] discussed above.

Algorithms for the time-bounded reachability problem for closed IMC have
been given in [ZN10, BS11, HH13] and compositional abstraction techniques to
compute it are developed in [KKN09]. In the closed interpretation, IMC have
some similarities with continuous-time Markov decision processes. For this for-
malism, algorithms for time-bounded reachability are developed in
[BHKH05, BS11].

2 Interactive Markov Chains

In this section, we introduce the formalism of interactive Markov chains together
with the standard way to compose them. We denote by N, R>0, and R≥0 the
sets of positive integers, positive real numbers and non-negative real numbers,
respectively. Further, let D(S) denote the set of probability distributions over
the set S.

Definition 1 (IMC). An interactive Markov chain (IMC) is a quintuple C =
(S,Actτ , ↪→,, s0) where S is a finite set of states, Actτ is a finite set of actions
containing a designated internal action τ , s0 ∈ S is an initial state,

– ↪→ ⊆ S × Actτ × S is an interactive transition relation, and
–  ⊆ S × R>0 × S is a Markovian transition relation.

Elements of Act := Actτ �{τ} are called external actions. We write s
a
↪→ t when-

ever (s, a, t) ∈ ↪→, and s
λ t whenever (s, λ, t) ∈  where λ is called a rate

of the transition. We say that an external action a, or internal τ , or Markovian
transition is available in s, if s

a
↪→ t, s

τ
↪→ t or s

λ t for some t (and λ), respectively.
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IMC are well suited for compositional modelling, where systems are built
out of smaller ones using standard composition operators. Parallel composition
‖A over a synchronization alphabet A produces a product of two IMC with
transitions given by the rules

(PC1) (s1, s2)
a
↪→ (s′1, s

′
2) for each s1

a
↪→ s′1 and s2

a
↪→ s′2 and a ∈ A,

(PC2, PC3) (s1, s2)
a
↪→ (s′1, s2) for each s1

a
↪→ s′1 and a ∈ A, and symmetrically,

(PC4, PC5) (s1, s2)
λ (s′1, s2) for each s1

λ s′1, and symmetrically.

Further, hiding A an alphabet A, yields a system, where each s
a
↪→ s′ with

a /∈ A is left as it is, and each s
a
↪→ s′ with a ∈ A is replaced by internal s

τ
↪→ s′.

Hiding Act thus yields a closed IMC, where external actions do not appear
as transition labels (i.e. ↪→ ⊆ S × {τ} × S). A closed IMC (under a scheduler
σ, see below) moves from state to state and thus produces a run which is an
infinite sequence of the form s0 t1 s1 t2 s2 · · · where sn is the n-th visited state
and tn is the time of arrival to sn. After n steps, the scheduler resolves the non-
determinism among internal τ transitions based on the path p = s0 t1 · · · tn sn.

Definition 2 (Scheduler). A scheduler of an IMC C = (S,Actτ , ↪→,, s0)
is a measurable function σ : (S × R≥0)

∗ × S → D(S) such that for each path
p = s0 t1 s1 · · · tn sn with sn having τ available, σ(p)(s) > 0 implies sn

τ
↪→ s. The

set of all schedulers for C is denoted by S(C).

The decision of the scheduler σ(p) determines tn+1 and sn+1 as follows. If sn
has available τ , then the run proceeds immediately, i.e. at time tn+1 := tn, to a
state sn+1 randomly chosen according to the distribution σ(p). Otherwise, only
Markovian transitions are available in sn. In such a case, after waiting for a
random time t chosen according to the exponential distribution with the rate
R(sn) =

∑
sn

λ�s′
λ, the run moves at time tn+1 := tn + t to a randomly chosen

next state sn+1 with probability λ/r where sn
λ sn+1. This defines a probability

space (Runs,F ,Pσ
C ) over the runs in the standard way [ZN10].

3 Time-Bounded Reachability

In this section, we introduce the studied problems. One of the fundamental
problems in verification and performance analysis of continuous-time stochastic
systems is time-bounded reachability. Given a closed IMC C, a set of goal states
G ⊆ S and a time bound T ∈ R≥0, the value of time-bounded reachability is
defined as supσ∈S(C) Pσ

C
[
♦≤TG

]
where Pσ

C
[
♦≤TG

]
denotes the probability that

a run of C under the scheduler σ visits a state of G before time T . We have
seen an example in the introduction. A standard assumption over all analy-
sis techniques published for IMC [KZH+11, KKN09, ZN10, GHKN12] is that
each cycle contains a Markovian transition. It implies that the probability of
taking infinitely many transitions in finite time, i.e. of Zeno behaviour, is zero.
One can ε-approximate the value and compute the respective scheduler in time
O(λ2T 2/ε) [ZN10] recently improved to O(

√
λ3T 3/ε) [HH13].
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For an open IMC to be put in parallel with an unknown environment, the
optimal scheduler is computed so that it optimizes the guarantee against all
possible environments. Formally, for an IMC C = (C,Actτ , ↪→,, c0) and an
environment IMC E with the same action alphabet Actτ , we introduce a compo-
sition C|E = (C ‖Act E)Act where all open actions are hidden, yielding a closed
system. In order to compute guarantees on C|E provided we use a scheduler σ
in C, we consider schedulers π of C|E that respect σ on the internal actions of C,
written π ∈ Sσ(C|E); the formal definition is below. The value of compositional
time-bounded reachability is then defined in [BHK+12] as

sup
σ∈S(C)

inf
E∈ENV

π∈Sσ(C|E)

Pπ
C|E
[
♦≤TG

]
where ENV denotes the set of all IMC with the action alphabet Actτ and ♦≤TG
is the set of runs that reach G in the first component before T . Now π respects
σ on internal actions of C if for every path p = (c0, e0) t1 · · · tn(cn, en) of C|E
there is p ∈ [0, 1] such that for each internal transition cn

τ
↪→ c of C, we have

π(p)(c, en) = p ·σ(pC)(c). Here pC is the projection of p where σ can only see the
path of moves in C and not in which states E is. Formally, we define observation
of a path p = (c0, e0) t1 · · · tn(cn, en) as pC = c0t1 · · · tncn where each maximal
consecutive sequence ti ci · · · tj cj with ck = ci for all i ≤ k ≤ j is rewritten to
ti ci. This way, σ ignores precisely the internal steps of E .

3.1 Specifications of Environments

In the second example in the introduction, without any assumptions on the envi-
ronment only zero guarantees could be derived. The component was thus indis-
tinguishable from an entirely useless one. In order to get a better guarantee, we
introduce a formalism to specify assumptions on the behaviour of environments.

Example 1. In the mentioned example, if we knew that after an occurrence of req
the environment is ready to synchronize on resp in time distributed according to
Exp(3) or faster, we would be able to derive a guarantee of 0.26. We will depict
this assumption as shown below.

resp reqreq

req

resp

 

≤ Exp(3)
The dashed arrows denote may transitions,

which may or may not be available, whereas
the full arrows denote must transitions, which
the environment is ready to synchronize on.
Full arrows are further used for time transi-
tions.

Although such a system resembles a timed automaton, there are several fun-
damental differences. Firstly, the time constraints are given by probability dis-
tributions instead of constants. Secondly, there is only one clock that, moreover,
gets reset whenever the state is changed. Thirdly, we allow modalities of may
and must transitions. Further, as usual with timed or stochastic specifications,
we require determinism.
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Definition 3 (MCA syntax). A continuous time constraint is either  or of
the form �� d with �� ∈ {≤,≥} and d a continuous distribution.We denote the set
of all continuous time constraints by CT C. A modal continuous-time automaton
(MCA) over Σ is a tuple S = (Q, q0, ��	,−→,), where
– Q is a non-empty finite set of locations and q0 ∈ Q is an initial location,
– −→, ��	 : Q× Σ → Q are must and may transition functions, respectively,

satisfying −→ ⊆ ��	,
–  : Q→ CT C ×Q is a time flow function.

We have seen an example of an MCA in the previous example. Note that upon
taking req from the first state, the waiting time is chosen and the waiting starts.
On the other hand, when req self-loop is taken in the middle state, the waiting
process is not restarted, but continues on the background independently.(1) We
introduce this independence as a useful feature to model properties as “response
follows within some time after request” in the setting with concurrently running
processes. Further, we have transitions under  corresponding to “> 0”, mean-
ing there is no restriction on the time distribution except that the transition
takes non-zero time. We formalize this in the following definition. With other
respects, the semantics of may and must transitions follows the standards of
modal transition systems [LT88].

Definition 4 (MCA semantics). An IMC E = (E,Actτ , ↪→,, e0) conforms
to an MCA specification S = (Q, q0, ��	,−→,), written E |= S, if there is
a satisfaction relation R ⊆ E × Q containing (e0, q0) and satisfying for each
(e, q) ∈ R that whenever

1. q
a−→ q′ then there is some e

a
↪→ e′ and if, moreover, q = q′ then e′Rq′,

2. e
a
↪→ e′ then there is (unique) q

a��	 q′ and if, moreover, q = q′ then e′Rq′,
3. e

τ
↪→ e′ then e′Rq,

4. q
ctc q′ then for every IMC C and every scheduler π ∈ S(C|e),(2) there is a

random variable Stop : Runs→ R>0 on the probability space (Runs,F ,Pπ
C|e)

such that
– if ctc is of the form �� d then the cumulative distribution function of

Stop is point-wise �� cumulative distribution function of d (there are no
constraints when ctc =  ), and

– for every run ρ of C|e under π, either a transition corresponding to syn-

chronization on action a with q
a��	 q′ = q is taken before time Stop(ρ),

or
• the state (c, e′) visited at time Stop(ρ) satisfies e′Rq′, and
• for all states (c̄, ē) visited prior to that, whenever

(a) q
a−→ q′ then there is e

a
↪→ e′,

(b) e
a
↪→ e′ then there is q

a��	 q′.

The semantics of S is the set �S� = {E ∈ IMC | E |= S} of all conforming IMC.

(1) This makes no difference for memoryless exponential distributions, but for all other
distributions it does.

(2) Here e stands for the IMC E with the initial state e.
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b
≤ Er(3, 1)

a

1 1

a
a

b

Example 2. We illustrate this definition. Consider
the MCA on the right above specifying that a is
ready and b will be ready either immediately after
taking a or within the time distributed accord-
ing to the Erlang distribution Er(3, 1), which is
a convolution of three Exp(1) distributions. The
IMC below conforms to this specification (here,
Stop ∼ Er(2, 1) can be chosen). However, observe that it would not conform, if
there was no transition under a from the middle to the right state. Satisfying
the modalities throughout the waiting is namely required by the last bullet of
the previous definition.

3.2 Assume-Guarantee Optimization

We can now formally state what guarantees on time-bounded reachability we
can derive provided the unknown environment conforms to a specification S.
Given an open IMC C, a set of goal states G ⊆ C and a time bound T ∈ R≥0,
the value of compositional time-bounded reachability conditioned by an MCA S
is defined as

vS(C) := sup
σ∈S(C)

inf
E∈ENV:E|=S
π∈Sσ(C|E)

Pπ
C|E
[
♦≤TG

]
In this paper, we pose a technical assumption on the set of schedulers of C. For
some clock resolution δ > 0, we consider only such schedulers σ that take the
same decision for any pair of paths c0t1 . . . tncn and c0t

′
1 . . . t

′
ncn with ti and

t′i equal when rounded down to a multiple of δ for all 1 ≤ i ≤ n. This is no
practical restriction as it is not possible to achieve arbitrary resolution of clocks
when implementing the scheduler. Observe this is a safe assumption as it is not
imposed on the unknown environment.

We consider specifications S where distributions have differentiable density
functions. In the rest of the paper we show how to approximate vS(C) for such S.
Firstly, we make a product of the given IMC and MCA. Secondly, we transform
the product to a game. This game is further discretized into a partially observable
stochastic game played on a dag where the quantitative reachability is solved.
For full proofs, see [HKK13].

4 Product of IMC and Specification

In this section, we first translate MCA S into a sequence of IMC (Si)i∈N. Second,
we combine the given IMC C with the sequence (Si)i∈N into a sequence of product
IMC (C × Si)i∈N that will be further analysed. The goal is to reduce the case
where the unknown environment is bound by the specification to a setting where
we solve the problem for the product IMC while quantifying over all possible
environments (satisfying only a simple technical assumption discussed at the end
of the section), denoted ENV′. The reason why we need a sequence of products
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instead of one product is that we need to approximate arbitrary distributions
with more and more precise and detailed hyper-Erlang distributions expressible
in IMC. Formally, we want to define the sequence of the products C ×Si so that

vproduct(C × Si) := sup
σ∈S(C)

inf
E∈ENV′

π∈Sσ((C×Si)|E)

Pπ
(C×Si)|E

[
♦≤TG

]
approximates the compositional value:

Theorem 1. For every IMC C and MCA S, vS(C) = lim
i→∞

vproduct(C × Si).

Note that in vproduct , σ is a scheduler over C, not the whole product C × Si.(3)
Constructing a product with the specification intuitively corresponds to adding
a known, but uncontrollable and unobservable part of the environment to C. We
proceed as follows: We translate the MCA S into a sequence of IMC Si and then
the product will be defined as basically a parallel composition of C and Si.

There are two steps in the translation of S to Si. Firstly, we deal with the
modal transitions. A may transition under a is translated to a standard external
transition under a that has to synchronize with a in both C and E simultane-
ously, so that the environment may or may not let the synchronization occur.
Further, each must transition under a is replaced by an external transition, that
synchronizes with a in C, but is hidden before making product with the environ-
ment. This way, we guarantee that C can take a and make progress no matter if
the general environment E would like to synchronize on a or not.

Formally, the must transitions are transformed into special “barred” tran-
sitions that will be immediately hidden in the product C × Si as opposed to
transitions arising from may transitions. Let Act = {ā | a ∈ Act} denote a fresh
copy of the original alphabet. We replace all modal transitions as follows

– whenever q
a��	 r set q

a
↪→ r,

– whenever q
a−→ r set q

ā
↪→ r.

The second step is to deal with the timed transitions, especially with the con-
straints of the form �� d. Such a transition is, roughly speaking, replaced by a
phase-type approximation of d. This is a continuous-time Markov chain (an IMC
with only timed transitions) with a sink state such that the time to reach the
sink state is distributed with d′. For any continuous distribution d, we can find
such d′ arbitrarily close to d.

Example 3. Consider the following MCA on the left. It specifies that whenever
ask is taken, it cannot be taken again for at least the time distributed by Er(2, λ)
and during all that time, it is ready to synchronize on answer. This specifies
systems that are allowed to ask, but not too often, and whenever they ask, they
must be ready to receive (possibly more) answers for at least the specified time.

(3) Here we overload the notation Sσ((C × Si)|E) introduced for pairs in a straightfor-
ward way to triples, where σ ignores both the second and the third components.
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r q

answer

ask

≥ Er(2, λ)

1 2 0
λ λ

r q=1 2 0

answer answer answer

ask λ λ

Now

After performing the first step of replacing the modal transitions as described
above, we proceed with the second step as follows. We replace the timed tran-
sition with a phase-type, e.g. the one represented by the IMC in the middle.
Observe that while the Markovian transitions are taken, answer must still be
available. Hence, we duplicate the corresponding self-loops on all the new states.
Further, since the time constraint is of the form ≥, getting to the state (q, 0)
does not guarantee that we already get to the state r. It can possibly take longer.
To this end, we connect the states (q, 0) and r by a special external action Now.
Since this action is synchronized with E ∈ ENV′, the environment can block the
progress for arbitrarily long time. Altogether, we obtain the IMC on the right.

In the case of “≤” condition, we would instead add the Now transition from
each auxiliary state to the sink, which could instead shorten the waiting time.

When constructing Si, we replace each distribution d with its hyper-Erlang
phase-type approximation di with i branches of lengths 1 to i and rates

√
i in

each branch. For formal description, see [HKK13]. Formally, letNow /∈ Act∪Act
be a fresh action. We replace all timed transitions as follows:

– whenever q
� r such that q = r set q

Now
↪→ r,

– whenever q
��d r where the phase-type di corresponds to a continuous-time

Markov chain (IMC with only timed transitions) with the set of states D,
the initial state 1 and the sink state 0 , then
1. identify the states q and 1 ,
2. for every u ∈ D and q

α
↪→ q, set u

α
↪→u,

3. for every u ∈ D and q
α
↪→ p with p = q, set u

α
↪→ p,

4. if �� = ≤, then identify r and 0 , and set u
Now
↪→ r for each u ∈ D,

5. if �� = ≥, then set 0
Now
↪→ r.

Intuitively, the new timed transitions model the delays, while in the “≤” case,
the action Now can be taken to speed up the process of waiting, and in the
“≥” case, Now can be used to block further progress even after the delay has
elapsed.

The product is now the parallel composition of C and Si, where each action ā
synchronizes with a and the result is immediately hidden. Formally, the product
C × S is defined as C ‖PC6

Act∪Act Si , where ‖PC6
Act∪Act is the parallel composition

with one additional axiom:

(PC6) s1
a
↪→ s′1 and s2

ā
↪→ s′2 implies (s1, s2)

τ
↪→ (s′1, s

′
2),

saying that a synchronizes also with ā and, in that case, is immediately hidden
(and any unused ā transitions are thrown away).

The idea of Now is that it can be taken in arbitrarily short, but non-zero
time. To this end, we define ENV′ in the definition of vproduct(C ×Si) to denote
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all environments where Now is only available in states that can be entered by
only a Markovian transition. Due to this requirement, each Now can only be
taken after waiting for some time.

5 Controller-Environment Games

So far, we have reduced our problem to computing limi→∞ vproduct(C × Si).
Note that we are still quantifying over unknown environments. Further, the
behaviour of each environment is limited by the uncontrollable stochastic flow of
time caused by its Markovian transitions. This setting is still too difficult to be
solved directly. Therefore, in this section, we reduce this setting to one, where
the stochastic flow of time of the environment (limited in an unknown way) is
replaced by a free non-deterministic choice of the second player.

We want to turn the product IMC C × Si into a two-player controller–
environment game (CE game) Gi, where player con controls the decisions over
internal transitions in C; and player env simulates the environment including
speeding-up/slowing-down S using Now transitions. In essence, con chooses in
each state with internal transitions one of them, and env chooses in each state
with external (and hence synchronizing) transitions either which of them should
be taken, or a delay d ∈ R>0 during which no synchronization occurs. The inter-
nal and external transitions take zero time to be executed if chosen. Otherwise,
the game waits until either the delay d elapses or a Markovian transition occurs.

This is the approach taken in [BHK+12] where no specification is considered.
However, there is a catch. This construction is only correct under the assump-
tion of [BHK+12] that there are no states of C with both external and internal
transitions available.

i ?

yes

no

win

fail

λ

a

τ

τ

τ

a

Example 4. Consider the IMC C on the right (for
instance with a trivial specification not restrict-
ing the environment). Note that there are both
internal and external actions available in no.

As τ transitions take zero time, the environment E must spend almost all the
time in states without τ . Hence, when ? is entered, E is almost surely in such a
state e. Now τ form ? is taken and E cannot move to another state when yes/no
is entered. Since action a either is or is not available in e, the environment
cannot choose to synchronize in no and not to synchronize in yes. As a result,
the environment “commits” in advance to synchronize over a either in both
yes and no or in none of them. Therefore, in the game we define, env cannot
completely freely choose which external transition is/is not taken. Further, note
that the scheduler of C cannot observe whether a is currently available in E ,
which intrinsically induces imperfect information.

In order to transfer these “commitments” to the game, we again make use of
the compositionality of IMC and put the product C ×Si in parallel with an IMC
Commit and then define the game on the result.
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com. now?

{a}

∅

a

τ

τ

Change

Chang
e

τ

Now

The action alphabet of Commit is
Act ∪ {Now,Change} and the state
space is 2Act ∪ {commit , now?} (in the
figure, Act = {a}; for formal descrip-
tion, see [HKK13]). State A ⊆ Act cor-
responds to E being committed to the
set of currently available actions A. Thus A

a
↪→ commit for each a ∈ A. This

commitment must be respected until the state of E is changed: either (1) by an
external transition from the commitment set (which in Commit leads to the state
commit where a new commitment is immediately chosen); or (2) by a Change
transition (indicating the environment changed its state due to its Markovian
transition).

The game Gi is played on the arena
(
C × Si ‖Act∪{Now} Commit

)

(
Act ∪ {Now}

)
with its set of states denoted by Gi. Observe that external

actions have either been hidden (whenever they were available in the commit-
ment), or discarded (whenever not present in the current commitment). The
only external action that remains is Change. The game Gi is played as follows.
There are two types of states: immediate states with some τ transitions available
and timed states with no τ available. The game starts in v0 = (c0, q0, commit).

– In an immediate state vn = (c, q, e), con chooses a probability distribution
over transitions corresponding to the internal transitions in C (if there are
any). Then, env either approves this choice (chooses �) and vn+1 is chosen
randomly according to this distribution, or rejects this choice and chooses a
τ transition to some vn+1 such that the transition does not correspond to
any internal transitions of C. Then the game moves at time tn+1 = tn to
vn+1.

– In a timed state vn = (c, q, e), env chooses a delay d > 0. Then Markovian
transitions (if available) are resolved by randomly sampling a time t accord-
ing to the exponential distribution with rate R(vn) and randomly choosing
a target state vn+1 where each vn

λ v is chosen with probability λ/R(vn).

• If t < d, Gi moves at time tn+1 = tn + t to vn+1, (Markovian transition wins)

• else Gi moves at time tn+1 = tn + d to (c, q, now?). (E takes Change)

This generates a run v0t1v1t1 · · · . The set (Gi × R≥0)
∗ × Gi of prefixes of

runs is denoted Histories(G). We formalize the choice of con as a strategy
σ : Histories(Gi) → D(Gi). We further allow the env to randomize and thus
his strategy is π : Histories(Gi)→ D({�} ∪Gi) ∪ D(R>0). We denote by Σ and
Π the sets of all strategies of the players con and env, respectively.

Since con is not supposed to observe the state of the specification and the
state of Commit , we consider in Σ only those strategies that satisfy σ(p) =
σ(p′), whenever observations of p and p′ are the same. Like before, the observa-
tion of (c0, q0, e0)t1 · · · tn(cn, qn, en) ∈ Histories(G) is a sequence obtained from
c0t1 · · · tncn by replacing each maximal consecutive sequence ti ci · · · tj cj with
all ck the same, by ti ci. This replacement takes place so that the player cannot
observe transitions that do not affect C. Notice that now S(C) is in one-to-one
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correspondence with Σ. Further, in order to keep CE games out of Zeno be-
haviour, we consider in Π only those strategies for which the induced Zeno runs
have zero measure, i.e. the sum of the chosen delays diverges almost surely no
matter what con is doing. The value of Gi is now defined as

vGi := sup
σ∈Σ

inf
π∈Π

Pσ,π
Gi

[
♦≤TG

]
where Pσ,π

Gi

[
♦≤TG

]
is the probability of all runs of Gi induced by σ and π and

reaching a state with the first component in G before time T . We now show that
it coincides with the value of the ith product:

Theorem 2. For every IMC C, MCA S, i ∈ N, we have vGi = vproduct(C ×Si).
This result allows for approximating vS(C) through computing vGi ’s. However,
from the algorithmic point of view, we would prefer approximating vS(C) by
solving a single game G whose value vG we could approximate directly. This is
indeed possible. But first, we need to clarify, why the approximation sequence Si
was crucial even in the case where all distributions of S are already exponential.

q r
≥ Exp(1)

a b
Consider the MCA on the right and a conforming

environment E , in which a is available iff b becomes
available within 0.3 time units. If Player env wants to
simulate this behaviour, he needs to know how long the
transition to r is going to take so that he can plan his behaviour freely, only
sticking to satisfying the specification. If we translate Exp(1) directly to a single
Markovian transition (with no error incurred), env knows nothing about this
time as exponential distributions are memoryless. On the other hand, with finer
hyper-Erlang, he knows how long the current branch of hyper-Erlang is roughly
going to take. In the limit, he knows the precise waiting time right after coming
to q.

To summarize, env is too weak in Gi, because it lacks the information about
the precise time progress of the specification. The environment needs to know
how much time is left before changing the location of S. Therefore, the game
G is constructed from G1 by multiplying the state space with R≥0 where we
store the exact time to be waited. After the product changes the state so that
the specification component switches to a state with �� d constraint, this last
component is overwritten with a number generated according to d. This way, the
environment knows precisely how much time is left in the current specification
location. This corresponds to the infinitely precise hyper-Erlang, where we at the
beginning randomly enter a particular branch, which is left in time with Dirac
distribution. For more details, see [HKK13].

Denoting the value of G by vG := sup
σ∈Σ

inf
π∈Π

Pσ,π
G
[
♦≤TG

]
, we obtain:

Theorem 3. For every IMC C and MCA S, we have vG = lim
i→∞

vGi .

6 Approximation Using Discrete-Time PO Games

In this section, we briefly discuss the approximation of vG by a discrete time
turn-based partial-observation stochastic game Δ. The construction is rather
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standard; hence, we do not treat the technical difficulties in great detail (see
[HKK13]). We divide the time bound T into N intervals of length κ = T/N such
that the clock resolution δ (see Section 3.2) satisfies δ = nκ for some n ∈ N.

1. We enhance the state space with a counter i ∈ {0, . . . , N} that tracks that
i · κ time has already elapsed. Similarly, the R≥0-component of the state
space is discretized to κ-multiples. In timed states, time is assumed to pass
exactly by κ. In immediate states, actions are assumed to take zero time.

2. We let at most one Markovian transition occur in one step in a timed state.
3. We unfold the game into a tree until on each branch a timed state with

i = N is reached. Thereafter, Δ stops. We obtain a graph of size bounded
by b≤N ·|G| where b is the maximal branching and G is the state space of G.

Let ΣΔ and ΠΔ denote the set of randomized history-dependent strategies of
con and env, respectively, where player con observes in the history only the
first components of the states, i.e. the states of C, and the elapsed time 4i/n5
up to the precision δ. Then vΔ := supσ∈ΣΔ

infπ∈ΠΔ P
σ,π
Δ (♦G) denotes the value

of the game Δ where Pσ,π
Δ (♦G) is the probability of the runs of Δ induced by

σ and π and reaching a state with first component in G. Let b be a constant
bounding (a) the sum of outgoing rates for any state of C, and (b) densities and
their first derivative for any distribution in S.

Theorem 4. For every IMC C and MCA S, vG is approximated by vΔ:

|vG − vΔ| ≤ 10κ(bT )2 ln 1
κ .

A strategy σ∗ optimal in Δ defines a strategy (10κ(bT )2 ln 1
κ )-optimal in G. Fur-

ther, vΔ and σ∗ can be computed in time polynomial in |Δ|, hence in time 2O(|G|).

The proof of the error bound extends the technique of the previous bounds
of [ZN10] and [BHK+12]. Its technical difficulty stems from partial observa-
tion and from semi-Markov behaviour caused by the arbitrary distributions in
the specification. The game is unfolded into a tree in order to use the result
of [KMvS94]. Without the unfolding, the best known (naive) solution would be
a reduction to the theory of reals, yielding an EXPSPACE algorithm.

7 Summary

We have introduced an assume-guarantee framework for IMC. We have consid-
ered the problem to approximate the guarantee on time-bounded reachability
properties in an unknown environment E that satisfies a given assumption. The
assumptions are expressed in a new formalism, which introduces continuous time
constraints. The algorithmic solution results from Theorems 1 to 4:

Corollary 1. For every IMC C and MCA S and ε > 0, a value v and a scheduler
σ can be computed in exponential time such that |vS(C) − v| ≤ ε and σ is ε-
optimal in vS(C).
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In future work, we want to focus on identifying structural subclasses of IMC
allowing for polynomial analysis.
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Abstract. We develop a new ‘thermodynamic’ approach to stochas-
tic graph-rewriting. The ingredients are a finite set of reversible graph-
rewriting rules G (called generating rules), a finite set of connected graphs
P (called energy patterns), and an energy cost function ε : P → R. The
idea is that G defines the qualitative dynamics by showing which trans-
formations are possible, while P and ε specify the long-term probability
π of any graph reachable under G. Given G, P , we construct a finite
set of rules GP which (i) has the same qualitative transition system as
G, and (ii) when equipped with suitable rates, defines a continuous-time
Markov chain of which π is the unique fixed point. The construction relies
on the use of site graphs and a technique of ‘growth policy’ for quanti-
tative rule refinement which is of independent interest. The ‘division of
labour’ between the qualitative and the long-term quantitative aspects
of the dynamics leads to intuitive and concise descriptions for realis-
tic models (see the example in §4). It also guarantees thermodynamical
consistency (aka detailed balance), otherwise known to be undecidable,
which is important for some applications. Finally, it leads to parsimo-
nious parameterizations of models, again an important point in some
applications.

1 Introduction

Along with Petri nets, communicating finite state machines, and process alge-
bras, models of concurrent systems based on graphs and graph transformations
(GTS) have long been investigated as means to describe, verify and synthesize
distributed systems [11]. Beyond their visual aspect, which is useful in mod-
elling situations, there is a lot to like about GTSs: there are category-theoretic
frameworks to express them and encapsulate their syntax; and the existence of a
strong meta-theory [19] is a reassurance that methodologies developed in specific
cases can be ‘ported’ to other variants.

Graph-rewriting rules are convenient for writing compact models and modi-
fying them [7], and lend themselves naturally to probabilistic extensions [16,18].
However, for all their flexibility, even rules can only do so much. We ask in
this paper “what if we did not have to write the rules?”. This is where we take
a page from the book of classical statistical mechanics. In such models, which
often involve graph-like structures as in the Ising model, the dynamics is not
described upfront. Instead, the system of interest is equipped with an ‘energy
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c© Springer-Verlag Berlin Heidelberg 2013
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lansdcape’ which specifies its long run behaviour, be it deterministic as in clas-
sical mechanics, or probabilistic in statistical physics. The dynamics just follows
from the energy data. In the eye of a computer scientist, this use of energy looks
like a latent syntax. (This is especially true in the application of these ideas to
molecular dynamics.)

The broad aim of this paper is to make this syntax explicit by introducing
energy patterns and costs from which the total energy of a state of the system
can be computed; and to define a procedure whereby, indeed, the dynamics
described as probabilistic graph-rewriting rules can be derived from these energy
data. Descriptively, this takes us to an entirely new level of conciseness (as in the
example §4). It also guarantees thermodynamical consistency, otherwise known
to be undecidable [8], which is important for some applications. But perhaps
the nicest byproduct of this approach is the fact that the methodology leads
to parsimonious parameterizations. The parameter space which usually scales
as the number of rules (which in turn has at best a logarithmic impact on the
cost of a simulation event [4]), will now scale as the number of energy patterns
provided in the specification.

The particular kind of GTSs we consider forms a reversible subset of the
Kappa site-graph stochastic rewriting language. Kappa is used for the simula-
tion and analysis of combinatorial dynamical systems as typically found in cel-
lular signalling networks [20,24] and has been predicted to “become one of the
mainstream modelling tools of systems biology within the coming decade” [1].
Similar graph formalisms where nodes have a controlled valence/degree have
been considered e.g. the BNG language [12,17], Kissinger and Dixon’s quantum
proof language [10], and Kirchner et al. chemical calculi [3]. Site-graph rewriting
has found recently a ‘home’ both in the single-pushout GTS tradition [5] and
the double-pushout one [14]. This makes one hopeful that the thermodynamic
methodology we propose can crossover to other fields where quantitative GTSs
can be used, e.g. in the modelling of adaptive networks [13]. While our scalable
energy-based parameterization is particularly important in biological applica-
tions where parameters often need to be inferred, one can imagine it to be useful
in other modelling situations with uncertainty.

Outline: We start with the definition and relevant properties of the specific GTS
we use, namely a simple reversible fragment of Kappa. Next, we introduce growth
policies (adapted from Ref. [23]), a tool which allows one to replace a rule with an
orthogonal set of refined rules while preserving the quantitative semantics. We
use this tool with a specific policy which refines a rule into finitely many rules,
each of which has a definite energy balance with respect to a given set of energy
patterns. This leads to our main theorem which guarantees that the stochastic
dynamics of the obtained refined rule set converges to an equilibrium distribution
parametrized by the cost of each energy pattern. Throughout, the presentation is
set in category-theoretic terms and mostly self-contained. A substantial example
concludes the paper. (For lack of space, and following the advice of the referees,
proofs were omitted in this extended abstract; these will be presented in a longer
version.)
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2 Site Graph Rewriting

2.1 Site Graphs and Homomorphisms

A site graph G consists of a finite sets of agents and sites, AG and SG, a partial
function σG : SG ⇀ AG, and a symmetric edge relation EG on SG. The pair AG,
EG form an undirected graph; sites not in the domain of EG are said to be free.
The role of the additional map σG is to assign sites to agents; sites not in the
domain of σG are said to be dangling, and will be used to represent half-edges
(see below). Usually one also endows agents and/or sites with states (see §4);
the construction we will give in §3 carries over trivially to these.

One says G is realizable iff (i) no site has an edge to itself; (ii) sites have at
most one incident edge; (iii) no dangling site is free; and, (iv) edges have at most
one dangling site.

SG
hS ��

σG

�

≤

SG′

σG′

�
AG

hA
�� AG′

A homomorphism h : G → G′ of site graphs
is a pair of functions, hS : SG → SG′ and hA :
AG → AG′ , such that (i) whenever hA(σG(s))
is defined, so is σG′(hS(s)) and they are equal;
and (ii) if s EG s′ then hS(s) EG′ hS(s

′).
A homomorphism h : G → G′ is an embed-

ding iff (i) hA and hS are injective; and (ii) if s
is free in G, so is hS(s) in G′. If h : G → G′ is
an embedding and G′ is realizable then G is also realizable.

Site graphs and homomorphisms form a category SG with the natural ‘tiered’
composition; embeddings form a subcategory; if in addition, we restrict objects
to be realizable, we get the subcategory rSGe of realizable site graphs and
embeddings.

2.2 The Category of Site Graphs over C

A homomorphism h : G → C is a contact map over C iff (i) G is realizable,
(ii) σC is total and (iii) whenever hS(s1) = hS(s2) and σG(s1) = σG(s2), then
s1 = s2. The third condition of local injectivity means that every agent of G has
at most one copy of each site of its corresponding agent in C; C is called the
contact graph.

G

h

��

ψ �� G′

h′

��
C

Hereafter, we work in the (comma) cate-
gory rSGeC whose objects are contact maps
over C, and arrows are embeddings such that
the associated triangle commute in SG. We
write Υ(h, h′) for the set of such embeddings
between h, h′ contact maps over C; we also
write | | for the domain functor from rSGeC to rSGe which forgets types. In
particular, if h : G→ C is a contact map, we write |h| for its source G.

The contact graph C is fixed and plays the role of a type: it specifies the kinds
of agents that exist, the sites that they may possess, and which of the |SC |2
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possible edge types are actually valid. It also gives canonical names to the types
of agents and their sites. In examples, we write agent and sites names directly.

In rSGe, a dangling site s in G can be mapped to any site of G′ by an
embedding h : G → G′; as such, it can be used as an any site wild card when
matching G. In rSGeC , the contact map c : G → C tells us which agent A in
C the site s belongs to because σC is total, and this must be respected by h;
we call this a binding type wild card since it typically allows us to express the
property of being bound to the site s of some occurrence of the agent A.

The category SG has all pull-backs, constructed from those in Set; it is easy
to see that they restrict to rSGeC . The category SG also has sums, but these do
not restrict to rSGeC . (Just like sums in Set do not restrict to the subcategory
of injective maps.)

h1
θ1 ��

γ1

��

si

∃!m

��

h2
θ2��

γ2

��
h

However, rSGeC has multi-sums : meaning
for all pairs of site graphs of type C, h1 : G1 →
C and h2 : G2 → C, there exists a family of
co-spans θi1 : h1 → si ← h2 : θi2, such that any
co-span γ1 : h1 → h← h2 : γ2 factors through
exactly one of the family and does so uniquely.
The idea is that the pairs θi1, θ

i
2 enumerate all

minimal ways in which one can glue h1 and h2, that is to say all the minimal
glueings of G1 and G2 that respect C. There are finitely many which all factor
through the standard sum in the larger slice category SGC .

The notion of multi-sum dates back to Ref. [9]; we will call them minimal
glueings in rSGe according to their intuition in this concrete context, and use
them in §3.2 to construct balanced rules.

2.3 Rules

L

rL

��

IA,IS �� R

rR

��
C

A rule r over C is a pair of contact maps rL :
L → C, rR : R → C which differ only in
their edge structures, i.e. AL = AR, SL = SR,
σL = σR, rLA = rRA, and rLS = rRS .

A contact map m : M → C is a mixture
iff σM is total (no dangling edge) and, for all
a ∈ AM , σ−1

M (a) ∼= σ−1
C (mA(a)), i.e. mS is locally surjective. In words, a mixture

is a fully-specified site graph with respect to the type C.

rL ��

ψ

��

rR

ψ�

��
m �� m	

(1)

An embedding ψ : rL → m induces a
rewrite of a mixture m by modifying the edge
structure of the image of ψ, i.e. an instance of
L in M , to that of R; the result of rewriting is
a new mixture m	, where |m	| has the same
agents and sites as M = |m|, and an embed-
ding ψ	 : rR → m	. This can be formalized
using double push-out rewriting [5] (since all the required push-outs do exist in
rSGeC). But with the simple rules considered here, there is no need.
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We also write Υ(r,m) for the set of all embeddings ψ : rL → m.
The inverse of r, defined as r	 := (rR, rL) is also a valid rule; by rewriting m	

with r	 via ψ	, we recover m and ψ.
Given a finite set of rules G over C, we define a labelled transition system LG

on mixtures over C: a transition from a mixture m is a rewriting step determined
and labelled by an ‘event’ (r, ψ) as in diagram (1); with r in G, and ψ in Υ(r,m).

We suppose hereafter that G is closed under rule inversion, i.e. G = G	. Hence,
every (r, ψ)-transition has an inverse (r	, ψ	), and LG is symmetric.

2.4 CTMC Semantics

It is not difficult to see that for any rule r, |Υ(r,m)| ≤ |A|m||d(r) where d(r)
is the number of connected components in rL. Hence, LG has finite out-degree,
bounded by |G| · |A|m||d for some d. Also, as agents are preserved by rules, the
(strongly) connected components of LG are finite.

Hence, given a rate map k from G to R+, we can equip LG with the structure
of an irreducible continuous-time Markov chain (CTMC), simply by assigning
rate k(r) to an event of the form (r, ψ).

We write LkG for the obtained CTMC.
We need here to record a definition for later use: a finite CTMCM has detailed

balance for a probability distribution π on M’s state space, if for all states x
and y, π(x) · q(x, y) = π(y) · q(y, x) where q(x, y) is M’s transition rate from x
to y. This implies that, assuming M is irreducible, π is the unique fixed point
of the action of M, to which the probabilistic state of M converge, regardless
of the initial state.

2.5 Extensions and Rule Refinement

Epis of rSGeC can be characterized as follows [23]: suppose s : G → C and
s′ : G′ → C are contact maps then φ : s → s′ of rSGeC is an epi iff every
connected component of G′ contains at least one agent in the image of φA.

s

φ

��

φ′

��
s′′ s′

θ

		

θ′




=

(2)We refer to an epi φ : s→ s′ as an extension
of s. The category of extensions of s is a pre-
order, i.e. there is at most one arrow between
any two objects: if φ′ = θφ = θ′φ then θ = θ′

because φ is an epi. We write φ ≤ φ′ for this
specialization order. If φ ≤ φ′ and φ′ ≤ φ then
we write φ ∼=s φ′.

A family of epis φi : s→ ti uniquely decomposes s iff, for all mixtures m and
embeddings h : s→ m, there exists a unique i and ψ such that h = ψφi. This is
the basic requirement for a reasonable notion of rule refinement: it guarantees
that the LHS s of a given rule splits into a non-overlapping collection of more
specific cases ti.

In the next Section, we will be constructing specific such decompositions in
order to produce families of sub-rules which are compatible with energy patterns.
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First, we recall the growth policy method to find such unique decompositions
which works by detailing which agents and sites should be added to s.

Specifically, a growth policy Γ for s is a family of functions Γφ, indexed by
extensions φ : s → t, where Γφ maps u ∈ A|t| to a subset Γφ(u) of σ

−1
C (tA(u)),

i.e. each agent in |t| is allocated a subset of the sites its sites can map to in
C. An agent in |t| may cover some, or all, of these sites or even completely
extraneous sites: if the former, i.e. for all u in A|t|, tS(σ−1

|t| (u)) ⊆ Γφ(u), we say

that φ is immature; if for all us, the inclusion is an equality, we say that φ is
mature; otherwise φ is said to be overgrown. The functions Γφ must satisfy, for
all extensions φ and φ′ ≥ φ, the faithfulness property, Γφ = Γφ′ψA, where ψ is
the epi witnessing φ ≤ φ′; so a site requested by φ must be requested by any
further extension. If φ is not overgrown then no φ′ ≤ φ is overgrown either. Also,
note that the union of two growth policies is itself a growth policy.

Given an s and a growth policy Γ for s, we define Γ (s) by choosing one
representative per ∼=s-isomorphism class of the set of all extensions of s which
are mature according to Γ .

Theorem 1. If Γ is a growth policy for s, then Γ (s) uniquely decomposes s.

The theorem (adjusted from Ref. [23]) guarantees that factorizations through
Γ (s) are unique, but not that they always exist. In the next section, we will
construct a growth policy for which this property of exhaustivity of the decom-
position can be proved by hand.

Given a rule r and an extension φ of rL, rφ denotes the ‘refined’ rule associated
to φ. If Γ is a growth policy for rL, the refinement of r by Γ is the set of rules,
Γ (r), the elements of which are of the form rφ, for φ in Γ (rL) a mature extension.

It is easy to see that due to the simple nature of our rules, the category of
extensions of rL and rR are isomorphic; if φ is an extension of rL, we will write
φ	 for the corresponding extension of rR.

An example of growth policy is the ground policy which assigns all possible
sites to all agents. In which case: Γ (s) is simply the set, possibly infinite, of epis
of s into mixtures, considered up to ∼=s; and Γ (r), the ground refinement of r,
contains all refinements of r along these epis, which therefore directly manipulate
mixtures.

3 Rule Generation

We fix a finite set G of generator rules; and a finite set P of connected contact
maps in rSGeC ; these are our energy patterns.

The goal is now to refine G into a new rule set GP where each refined rule is
P-balanced, which means that, however applied, it consumes or produces a fixed
amount of each pattern c in P . The construction proceeds in two steps: first,
we characterize balanced refinements; second, we define a growth policy with
balanced mature extensions, and apply Th. 1. Note that ground extensions of
g are trivially balanced but, in general, the ground refinement is impractically
large or even infinite; ours will always be finite.
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3.1 P-Balanced Extensions

c
γ′

��

γ

��

t

��

rL
ψ′

��

ψ

��
m

Consider c in P , and a rule r. For an r-event
ψ to consume an instance γ of c in a mix-
ture m, the cospan (γS , ψS) must have images
which intersect on at least one edge modified
by r. This is the case iff the associated mini-
mal glueing (γ′, ψ′) —obtained by restricting
the cospan to the union of its images in m— has the same property. Likewise, for
an r-event to produce an instance of c, the associated minimal glueing between
c and rR must have a modified intersection. We call such minimal glueings rele-
vant ; they are the ones which underlie events that can affect the set of instances
of c.

gL

φ

��
c

γ
��

t

θ

�

��
u

(3)

Pick g in G and φ : gL → t an extension of
gL. One says that φ is P-left-balanced iff, for
all relevant minimal glueings γ : c→ u← t : θ
with c ∈ P , θ is an isomorphism. This means
that the image of c under γ is contained in
t. Symmetrically, one says that φ is P-right-
balanced iff φ	 is a P-left-balanced extension
of r	.

An extension φ is P-balanced iff it is P-left-
and P-right-balanced; we say that φ is prime iff it is minimal P-balanced in the
specialization order ≤.

If φ is a P-balanced extension of g, the refined rule gφ has a balance vector in
ZP , written Δφ, where Δφ(c), for c ∈ P , is the amount of c produced by any gφ-
event leading from m to m	, or equivalently the difference between the number
of embeddings of c in the RHS and the LHS of gφ. Indeed, as φ is balanced,
|Υ(c,m	)| − |Υ(c,m)| = |Υ(c, gφ,R)| − |Υ(c, gφ,L)|.

Conversely, a non-P-balanced extension will incur different Δφ(c) for well-
chosen applications of gφ, if c in P violates the condition of diagram (3). Thus,
the notion of balanced extension characterizes the property that we want. (This
would no longer be the case if one were to relativize the construction to a superset
of reachables; e.g. in order to reduce the size of the generated rule set.)

3.2 Add-by-Glueing

We now define a growth policy, which uses minimal glueings on non-P-balanced
extensions φ to add further required sites into φ’s codomain; this corresponds in
diagram (3) to the case where θ is not an isomorphism.

Some care is needed to ensure faithfulness, i.e. Γφ = Γφ′φ φ′A, since relevant
minimal glueings on φ can disappear along a further extension φ′ and, conse-
quently, a site that was ‘requested’ at φ may no longer be so after at φ′φ. To
address this, we add site requests from all relevant minimal glueings in the past
of an extension.
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gL
φ1 �� φ

��

c

γ 

t1 ; u1

θ�� φ2 ��
t′ t ; u

(4)Given g ∈ G we define a growth
policy ΓL for gL. Suppose φ : gL → t
is an extension of gL. We set ΓL(φ) to
request a site s in σ−1

C (tA(u)) at agent
u ∈ A|t| iff either (i) u = φA(u0) and
s = φS(s0) for some u0 in A|gL|, s0
in S|gL|; or (ii) φ factorizes as φ2φ1,
where φ1 : s→ t1, and there is a relevant minimal glueing γ : c→ t′ ← t1 : θ, u1

in A|t1|, and a site s′1 in σ−1
|t′|(θA(u1)) such that u = φ2,A(u1), and s = t′S(s

′
1).

The first clause simply ensures that all sites already covered in gL are asked
for; the second one adds in sites which appear by glueing at some point between
gL and t. We refer to φ2 : t1 → t as a rewind of φ.

Symmetrically, we define a growth policy ΓR for gR by applying the same def-
inition to the reverse generator g	. Since extensions of gL and gR are isomorphic,
we can, with a slight abuse of notation, define ΓP := ΓL ∪ ΓR.

Theorem 2. The above ΓP is indeed a growth policy for gL; the induced refined
rule set ΓP(g) is non-empty, balanced, exhaustive and finite.

Therefore, given G and P , we obtain a finite P-balanced rule set which refines G
exhaustively, by setting GP := ∪̇g∈GΓP(g) (disjoint sum). To every refinement
gφ, corresponds an inverse refinement g	φ� ; hence, GP = G	P is closed under
inversion like G.

3.3 Rates

To equip GP with rates, we suppose given a P-indexed real-valued vector of
energy costs ε, and a rate map k : GP → R+ such that, for all gφ in GP :

log k(g	φ�)− log k(gφ) = ε ·Δφ (5)

with Δφ in ZP , the balance vector of the refined rule gφ with respect to P , a
well-defined quantity by Th. 2.

We write P(x) for the P-indexed vector which maps c to |Υ(c, x)|, and define
the energy E(x) of x as ε · P(x). We also write LG(x) for the finite (strongly)
connected component of x in LG , and define a probability distribution (in Boltz-
mann format) on LG(x) by:

πx(y) := e−ε·P(y)/
∑

y∈LG(x)

e−ε·P(y) (6)

Theorem 3. Let G, P, GP , k, and πx be as above; LGP and LG are isomorphic as
symmetric LTSs; and, for any mixture x, the irreducible continuous-time Markov
chain LkGP has detailed balance for, and converges to πx, on LGP (x) = LG(x) the
finite strongly connected component of x.
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Note that the subset of the state space which is reachable from x in LG , namely
LG(x) is finite; hence, the partition function Z(x) =

∑
y∈LG(x) e

−E(y) is finite.

With rules which increase the number of agents, components LG(x) can be in-
finite, and Z(x) may diverge. For (mass action stochastic) Petri nets, conver-
gence is guaranteed if detailed balance holds, but it is not true in general for
Kappa [8,6].

Another point worth making is that the result holds symbolically—regardless
of the energy cost ε. So ε can be seen as a set of parameters, an ideal support for
machine learning techniques if one were contemplating fitting a model to data.

3.4 A Linear Kinetic Model

So, the reader will ask, what of the actual rates of LkGP? Among all possible
choices which accord with (5), it is possible to delineate a tractable subset the
size of which grows quadratically in |P|. This is a useful log-linear heuristics,
which is common in machine learning but has no claim to validity.

We keep the same notations as in Th. 3.
Suppose we have, for every generating rule g in G, a constant cg ∈ R, and a

matrix Ag of dimension |P| × |P|. Subject to the constraints that cg� = cg, and
Ag� +Ag = I, we can define a log-affine rate map which satisfies (5) by:

log(k(gφ)) := cg − Ag(ε) ·Δφ (7)

The kinetic model expressed in (7) requires of the order of |P|2×|G| parameters.
In practice, one needs even fewer parameters, as only those energy patterns that
are relevant to a given g, i.e. have a non-zero balance for at least one rule in
ΓP(g), need to be considered when building Ag. Typically, for larger models, this
will be a far smaller number than |P|. This relative parsimony is compounded by
the fact that the number of independent parameters will be often lower, because
the Δφ family has often low rank. It is to be compared with the total number
of choices possible which is far greater as it is of the order of the number of
refinements, that is to say

∑
g∈G |ΓP(g)|.

If we set cg� = cg = 0, Ag� = 0, Ag = I, we get: k(gφ) = e−ε·Δφ, k(g	φ�) = 1.
As ε ·Δφ is the difference of energy between the target and source in any appli-
cation gφ, this choice amounts to being exponentially reluctant to climb up the
energy gradient. This is a continuous-time version of the celebrated Metropolis
algorithm [22].

4 Allosteric Ring

We can put our energy-based modelling methodology to use on a realistic exam-
ple of a bacterial flagellar engine. In this section, we will prefer the traditional
syntax of Kappa to denote site graphs: namely subscripts for states and shared
superscripts for edges between sites, e.g. A(x1

0), B(y1). Differently from the math-
ematical definitions of §2, agent and site types are indicated as explicit labels.
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We use KaSim (https://github.com/jkrivine/KaSim), the standard Kappa
engine, for the simulation shown below.

The engine can rotate clockwise or anti-clockwise at high angular velocities,
and this will decide whether the bacterium tumbles or swims forward. One can
build a simple model of the switch between the two modes [2]. The engine is seen
as a ring of n identical components, P , with two possible conformations, 0 and 1.
(In reality, each of the n = 34 component protomers is itself a tiny complex made
of different subcomponents, but the model ignores this.) A ring homogeneously
in state 0 (1) rotates (anti-) clockwise and induces tumbling (straight motion).
Importantly, neighbouring P s on the ring prefer to have matching conformations.
States of the ring with many mismatches thus incur high penalties. In the absence
of any Y molecule binding a P , its favoured conformation is 0; conversely, in
the presence of a Y, P favours 1. (Y stands for a small diffusible protein named
CheY.) To bind, Y has to be activated by an external signal. Hence the switch
can be triggered by a sudden activation of Y which then binds the ring and
induces a change of regime. The sharper the transition between the two regimes
the better.

As each of the P s can be in four states, the ring has on the order of 1020 non-
isomorphic configurations which precludes any reaction-based (e.g. Petri nets)
approach to the dynamics where each global state is considered as one chemical
species. At this stage, we could apply the rule-based approach, or, better, we
can obtain the rules indirectly by applying the methodology of §3. This is what
we do now informally.

First, we define our contact graph with two agent types: P (x, y, f0,1, s) with
domains x, y to form the ring, s to bind its signal Y , and f a placeholder for
P ’s conformation; Y(su,p) with two internal states to represent activity.

Motif Cost

P (fi, x
1), P (y1, fj) εPP

ij

P (fi) εPi
P (fi, s

1), Y (s1) εPY
i

Second, we capture the informal statements
in the discussion above by defining the energy
patterns and associated costs. Note that the
various motifs overlap. Following §3, we asso-
ciate to each ring configuration x the occur-
rence vector P(x) and total energy ε · P(x).
For example, a ring of size n uniformly in state 0 and with no bound Y s has to-
tal energy n(εPP

00 + εP0 ). This, in turn, defines the equilibrium distribution of the
ring, namely x has probability proportional to exp(−ε · P(x)). (The convention
is that the lower the energy, the likelier the state.)

εPP
00 , εPP

11 < εPP
10 , εPP

01 (8)

εP0 < εP1 (9)

εPY
0 > εPY

1 (10)

In order to complete our energy landscape,
we need to pick energy costs which reward
or penalize local configurations as discussed
above: the role of (8) is to align the internal
states of neighbours on the ring — an Ising
penalty term for mismatching neighbours which will “spread conformation”; (9)
makes 0 the favoured state, while (10), which kicks in only in the presence of Y,
makes 1 the favoured state.
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The next step is to create the dynamics. The naive rule b for PY binding:

b := P (s), Y (sp)↔ P (s1), Y (s1p)

has a ΔE which is ambiguous as it will be either εPY
0 or εPY

1 depending on its
instances; hence, we have no hope of assigning rates to this rule that satisfy
detailed balance—unless εPY

0 = εPY
1 , which contradicts (10). To get a definite

balance, one needs to refine this rule:

b0 := P (f0, s), Y (sp)↔ P (f0, s
1), Y (s1p)

b1 := P (f1, s), Y (sp)↔ P (f1, s
1), Y (s1p)

Now each rule bi specifies enough of the context in which it applies to have
a definite energy balance εPY

i . Following the same intuition of revealing (just)
enough context, we obtain a balanced rule set for conformational changes:

fij := P (fi, y
1), P (x1, f0, y

2, s), P (x2, fj)↔ P (fi, y
1), P (x1, f1, y

2, s), P (x2, fj)
f ′
ij := P (fi, y

1), P (x1, f0, y
2, s ), P (x2, fj)↔ P (fi, y

1), P (x1, f1, y
2, s ), P (x2, fj)

The first (second) group of rules represents the changes in the absence (presence)
of a Y bound to the middle P undergoing a change of conformation. (The fact
that P ’s site s is bound is indicated by the underscore exponent.)

These f -rules have respective balance:

εPP
i1 + εPP

1j − εPP
i0 − εPP

0j + εP1 − εP0
εPP
i1 + εPP

1j − εPP
i0 − εPP

0j + εP1 − εP0 + εPY
1 − εPY

0

As we have ten reversible rules, and only eight energy patterns, there must
be linear dependencies between the various balances. Indeed, in this case, it is
easy to see that the family of vector balances has rank six. Thermodynamic
consistency induces relationships between rates; a well-established fact in the
case of reaction networks (e.g. see Ref. [6]).

With the rules in place, the final step is to choose rates which satisfy detailed
balance. This guarantees that the obtained rule set converges to the equilibrium
specified by the choice of the energy cost vector. Convergence will happen what-
ever ε is, ie symbolically. If, in addition, ε follows (8–10), one can see in Fig. 1
that the ring 1) undergoes sharp transitions when active Y is stepped up and
down again, and 2) has at all times very few mismatches.

4.1 How to Generate the Rules

Our set of balanced rules for the ring dynamics was based on two generators, b
for binding, f for flipping:

b := P (s), Y (sp)↔ P (s1), Y (s1p)
f := P (f0)↔ P (f1)

Note that there is a design choice here. In effect, we are saying that we are
not interested in forming/breaking the bonds between the P s in the ring. If we
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Fig. 1. The simulation steps up the amount of active Y at t = 100, and down again at
t = 200; this sends the entire ring into an homogeneously 1 conformation, and back to
0. The number of mismatches (lowest curve) stays low, even during transitions.

wanted to incorporate also the ring assembly in the model, we would have to
add P (x), P (y)↔ P (x1), P (y1) among our generator set G. This would generate
many more refined rules, as we will see. Recall that our patterns fall in three
subgroups: P (fi, x

1), P (y1, fj); P (fi); and P (fi, s
1), Y (s1).

Consider the extensions of b: clearly only the last pattern can glue relevantly
on it; the corresponding (unique) site request is for P to reveal f and its internal
state. This gives the first two rules b0, b1.

Consider now the more interesting extensions of f : the second pattern type
glues relevantly but does not generate any site request; the third one asks P to
reveal its site s, resulting in two possible extensions (s means that s is bound):

P (f0, s)↔ P (f1, s)
P (f0, s )↔ P (f1, s )

These extensions are not mature yet, as one can glue relevantly patterns of the
first type on both sides of P , inducing a further request for revealing P ’s sites x
and y. If we are in the component of an initial state where P s are arranged in
a ring, then we know that the neighbours on both sides exist and are P s; this
gives the final refinement of the above into the rules fij , f

′
ij described earlier. If,

on the other hand, we do not know that, we also have to add several rules where
one or both of x, y are free, corresponding to open P -chains. This demonstrates
the sensitivity of the obtained rule set to the initial choice of generators.
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t=500 t=1500 t=2500

Fig. 2. Snapshots of the ring configuration are taken at time 500, 1500, and 2500. Solid
(green) circles indicate conformation 1, hollow ones conformation 0; a dot in the centre
indicates a bound (hence active) Y . At times 500, 2500, no Y is bound (because they
are all inactive) and the ring is globally in state 0, up to tiny fluctuations; at time 1500,
it is globally in state 1 as a consequence of the binding of Y s.

Hence, the rule set above does accord with our general refinement strategy
of §3.

We can visualize the obtained simulations by extracting snapshots be-
fore, after and during the injection of active Y s, as in Fig. 2. Again we
see few mismatches in both regime because of the Ising interaction ex-
pressed by the εPP energy costs. The full model is available on-line at
http://www.rulebase.org/models/ising-ring. The choice of rates made in
Ref. [2] for the f -generator is a particular symmetric case of our model (7),
namely Af� = Af = I/2.

5 Conclusion

We have presented a new ‘energy-oriented’ methodology for the development of
site graph rewriting models based on a set P of energy patterns; these patterns
use a graphical syntax which allows us to specify the energy landscape. Rewrite
rules are implicitly defined by P and generator rules G. The resulting rule set
GP is guaranteed to be thermodynamically correct and to eventually converge
to the probability distribution described by the energy landscape given suitable
rates. The construction is entirely parametric in the energy costs ε, and modular
in G. This means that in a modelling context, one can sweep over various values
for ε without having to rebuild the model, and compositionally add new rule
components to G. Both features are clearly useful.

We expect our construction to provide a broad and uniform language to de-
scribe and analyse models of interacting biomolecules and similar systems of a
quantitative fine-grained and distributed nature.

There are no specific conditions bearing on this construction other than that
energy patterns should be local. It would be interesting to investigate whether,
suitable constraints on patterns and generator rules can obtain optimized gen-
erated rule sets. Another interesting extension would be to deal with non-local

http://www.rulebase.org/models/ising-ring
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forms of energies expressing long-range interactions, where the metric is read
off the graph itself. In practice, there will be many more rules generated, and
beyond the descriptive aspects, simulations will need new ideas to be feasible.
A ray of hope comes from the log-affine kinetic model (presented in the last
subsection), as rules can be partitioned by energy balances for faster selection.

Finally, as said in the introduction, there is a growing body of literature which
turns a theoretical eye to site graph rewriting [14,10,15,5], and it is tempting
to ask whether our derivation can be replayed in more abstract settings; in
particular, it would be very interesting to investigate its integration with the
abstract framework for rule-based modelling developed in [21].

Acknowledgments. We would like to thank Peter Swain, Andrea Weisse,
Julien Ollivier, Nicolas Oury, Finlo Boyde and Eric Deeds for many useful and
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Globally Governed Session Semantics
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Imperial College London

Abstract. This paper proposes a new bisimulation theory based on multiparty
session types where a choreography specification governs the behaviour of ses-
sion typed processes and their observer. The bisimulation is defined with the ob-
server cooperating with the observed process in order to form complete global
session scenarios and usable for proving correctness of optimisations for globally
coordinating threads and processes. The induced bisimulation is strictly more
fine-grained than the standard session bisimulation. The difference between the
governed and standard bisimulations only appears when more than two inter-
leaved multiparty sessions exist. The compositionality of the governed bisim-
ilarity is proved through the soundness and completeness with respect to the
governed reduction-based congruence.

1 Introduction

Modern society increasingly depends on distributed software infrastructures such as
the backend of popular Web portals, global E-science cyberinfrastructure, e-healthcare
and e-governments. An application in these environments is typically organised into
many components which communicate through message passing. Thus an application is
naturally designed as a collection of interaction scenarios, or multiparty sessions, each
following an interaction pattern, or choreographic protocol. The theories of multiparty
session types [11] capture these two natural abstraction units, representing the situation
where two or more multiparty sessions (choreographies) can interleave for a single point
application, with each message clearly identifiable as belonging to a specific session.

This paper introduces a new behavioural theory which can reason about distributed
processes globally controlled by multiple choreographic sessions. Typed behavioural
theory has been one of the central topics of the study of the π-calculus throughout its
history, for example, in order to reason about various encodings into the typed π-calculi
[16,18]. Our theory treats the mutual effects of multiple choreographic sessions which
are shared among distributed participants as their common knowledges or agreements,
reflecting the origin of choreographic frameworks [5]. These features make our theory
distinct from any type-based bisimulations in the literature and the theory applicable to
real choreographic usecase from a large-scale distributed system. Since our bisimulation
is based on the regulation of conversational behaviours of distributed components by
global specifications, we call our bisimulation globally governed bisimulation.

To illustrate the key idea, we first explain the mechanisms of multiparty session
types [11]. Let us consider a simple protocol where participant 1 sends a message of
type bool to participant 2. To develop the code for this protocol, we start by specifying
the global type [11] as G1 = 1→ 2 : 〈bool〉.end where→ signifies the flow of commu-
nication and end denotes protocol termination. With agreement on G1 as a specification

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 395–409, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



396 D. Kouzapas and N. Yoshida

for participant 1 and participant 2, each program can be implemented separately. Then
for type-checking, G1 is projected into local session types: one local session type from
1’s point of view, [2]!〈bool〉 (output to 2 with bool-type), and another from 2’s point
of view, [1]?〈bool〉 (input from 1 with bool-type), against which both processes are
checked to be correct.

Server1 Server2 Client3

s1[1][3]!〈v〉

s2[1][2]!〈w〉

s1[2][3]!〈v〉

Server1 Server2 Client3

s1[1][3]!〈v〉

s2[1][2]!〈w〉

s1[2][3]!〈v〉

Resource Managment Example: (a) before optimisation; (b) after optimisation

Now we explain how our new theory can reason about an optimisation of choreog-
raphy interactions (a simplified usecase (UC.R2.13 “Acquire Data From Instrument”)
from [1]). Consider the two global types between three participants (1,2,3):

Ga = 1→ 3 : 〈ser〉.2→ 3 : 〈ser〉.end, Gb = 1→ 2 : 〈sig〉.end
and a scenario in the diagram (a) where Client3 (participant 3) uses two services, the
first from Server1 (participant 1) and Server2 (participant 2), and Server1 sends an in-
ternal signal to Server2. The three parties belonging to these protocols are implemented
as:

P1 = a[1](x).b[1](y).x[3]!〈v〉;y[2]!〈w〉;0 P2 = a[2](x).b[2](y).(y[1]?(z);0 | x[3]!〈v〉;0)
P3 = a[3](x).x[1]?(z);x[2]?(y);0

where session name a establishes the session corresponding to Ga. Client3 (P3) initiates
a session involving three processes as the third participant by a[3](x): Service1 (P1) and
Service2 (P2) participate to the session a[1](x) and a[2](x), respectively. Similarly the
session corresponding to Gb is established between Service1 and Service2.

Since from Client3, the internal signal is invisible, we optimise Server2
to a single thread to avoid an unnecessary thread creation as R2 =
a[2](x).b[2](y).y[1]?(z);x[3]!〈v〉;0 in in the diagram (b). Note that both P2 and R2

are typable under Ga and Gb. Obviously, in the untyped setting, P1 | P2 and P1 | R2 are
not bisimilar since in P2, the output action x[3]!〈v〉 can be observed before the input
action y[1]?(z) happens. However, with the global constraints given by Ga and Gb, a
service provided by Server2 is only available to Client3 after Server1 sends a signal to
Server2, i.e. action x[3]!〈v〉 can only happen after action y[1]?(z) in P2. Hence P1 | P2

and P1 | R2 are not distinguishable by Client3 and the thread optimisation of R2 is
correct.

On the other hand, if we change the global type Ga as:

G′a = 2→ 3 : 〈ser〉.1→ 3 : 〈ser〉.end
then R2 can perform both the output to Client3 and the input from Server1 concurrently
since G′a states that Client3 can receive the message from Server2 first. Hence P1 | P2

and P1 | R2 are no longer equivalent.
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The key point to make this difference possible is to observe the behaviour of pro-
cesses together with the information provided by the global types. The global types can
define additional knowledge about how the observer (the client in the above example)
will collaborate with the observed processes so that different global types (i.e. global
witnesses) can induce the different equivalences.

Contributions. This paper introduces two kinds of typed bisimulations based on mul-
tiparty session types. The first bisimulation is solely based on local (endpoint) types
defined without global information, hence it resembles the standard linearity-based
bisimulation. The second one is a globally governed session bisimilarity which uses
multiparty session types as information for a global witness. We prove that each co-
incides with a corresponding standard contextual equivalence [10] (Theorems 3.1 and
4.1). The governed bisimulation gives more fine-grained equivalences than the locally
typed bisimulation. We identify the condition when the two semantics exactly coincide
(Theorem 4.2). Interestingly our theorem (Theorem 4.3) shows this difference appears
only when processes are running under more than two interleaved global types. This
feature makes the theory applicable to real situations where multiple choreographies
are used in a single, large application. We demonstrate the use of governed bisimu-
lation through the running example, which is applicable to a thread optimisation of a
real usecase from a large scale distributed system [1]. The appendix includes auxiliary
definitions, the full proofs and a full derivation of a usecase from [1].

2 Synchronous Multiparty Sessions

This section defines a synchronous version of the multiparty session types. The syntax
and typing follows [4] except we eliminate queues for asynchronous communication.
We chose synchrony since it allows the simplest formulations for demonstrating the
essential concepts of bisimulations. The extension to asynchrony is given in [7].
Syntax. Below we define the syntax of the synchronous multiparty session calculus.

P ::= u[p](x).P Request

| u[p](x).P Accept

| c[p]!〈e〉;P Sending

| c[p]?(x);P Receiving

| c[p]⊕ l;P Selection

| c[p]&{li : Pi}i∈I Branching

u ::= x | a Identifier

n ::= s | a Name

e ::= v | x | e and e′ | e = e′ | . . .

| if e then P else Q Conditional

| P | Q Parallel

| 0 Inaction

| (ν n)P Hiding

| μX .P Recursion

| X Variable

c ::= s[p] | x Session

v ::= a | tt | ff | s[p] Value

Expression

Note that expressions includes name matching (n = n). We call p,p′,q, . . . (ranging
over the natural numbers) the participants. For the primitives for session initiation,
u[p](x).P initiates a new session through an identifier u (which represents a shared in-
teraction point) with the other multiple participants, each of shape u[p](x).Qq where
1 ≤ q ≤ p− 1. The (bound) variable x is the channel used to do the communications.
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Session communications (communications that take place inside an established ses-
sion) are performed using the next two pairs: the sending and receiving of a value and
the selection and branching (where the former chooses one of the branches offered
by the latter). Process c[p]!〈e〉;P sends a value to p; accordingly, process c[p]?(x);P
denotes the intention of receiving a value from the participant p. The same holds for
selection/branching. Process 0 is the inactive process. Other processes are standard.
We say that a process is closed if it does not contain free variables. fn(P)/bn(P) and
fv(P)/bv(P) denote a set of free/bound names and free/bound variables, respectively.
We use the standard structure rules (denoted by ≡) including μX .P≡ P{μX .P/X}.
Operational Semantics. Operational semantics of the calculus are defined below.

a[1](x).P1 |Πi={2,..,n}a[i](x).Pi −→ (ν s)(P1{s[1]/x} |Πi={2,..,n}Pi{s[i]/x}) [Link]

s[p][q]!〈e〉;P | s[q][p]?(x);Q −→ P | Q{v/x} (e ↓ v) [Comm]

s[p][q]⊕ lk;P | s[q][p]&{li : Pi}i∈I −→ P | Pk (k ∈ I) [Label]

if e then P else Q−→ P (e ↓ tt) if e then P else Q−→ Q (e ↓ ff) [If]

P−→ P′

(ν n)P−→ (ν n)P′
[Res]

P−→ P′

P | Q−→ P′ | Q
[Par]

P≡ P′ −→ Q′ ≡ Q

P−→ Q
[Str]

Rule [Link] defines synchronous session initiation. All session roles must be present
to synchronously reduce each role p on a fresh session name s[p]. Rule [Comm] is for
sending a value to the corresponding receiving process where e ↓ v means expression
e evaluates to value v. The interaction between selection and branching is defined via
rule [Label]. Other rules are standard. We write→→ for (−→∪≡)∗.

Global types, ranged over by G,G′, . . . describe the whole conversation scenario of a
multiparty session as a type signature. Its grammar is given below.

Global G ::= p→ q : 〈U〉.G′ exchange
| p→ q : {li : Gi}i∈I branching
| μt.G recursion
| t variable
| end end

Exchange U ::= S | T
Sort S ::= bool | 〈G〉

Local T ::= [p]!〈U〉;T send
| [p]?(U);T receive
| [p]⊕{li : Ti}i∈I selection
| [p]&{li : Ti}i∈I branching
| μt.T recursion
| t variable
| end end

The global type p → q : 〈U〉.G′ says that participant p sends a message of type U
to the participant q and then interactions described in G′ take place. Exchange types
U,U ′, ... consist of sorts types S,S′, . . . for values (either base types or global types),
and local session types T,T ′, . . . for channels (defined in the next paragraph). Type
p→ q : {li : Gi}i∈I says participant p sends one of the labels li to q. If l j is sent, in-
teractions described in G j take place. In both cases we assume p = q. Type μt.G is a
recursive type, assuming type variables (t, t′, . . . ) are guarded in the standard way, i.e.,
type variables only appear under some prefix. We take an equi-recursive view of recur-
sive types, not distinguishing between μt.G and its unfolding G{μt.G/t}.We assume
that G in the grammar of sorts has no free type variables. Type end represents the ter-
mination of the session.
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Local types correspond to the communication actions, representing sessions from the
view-points of single participants. The send type [p]!〈U〉;T expresses the sending to
p of a value of type U , followed by the communications of T . The selection type
[p]⊕{li : Ti}i∈I represents the transmission to p of a label li chosen in the set {li | i ∈ I}
followed by the communications described by Ti. The receive and branching are dual.
Other types are the same as global types.

The relation between global and local types is formalised by the standard projection
function [11]. For example, (p′ → q : 〈U〉.G)?p is defined as: [q]!〈U〉;(G?p) if p= p′,
[p′]?(U);(G?p) if p= q and G?p otherwise. Then the projection set of s : G is defined
as proj(s : G) = {s[p] : G?p | p ∈ roles(G)} where roles(G) denotes the set of the
roles appearing in G.

Typing System. The typing judgements for expressions and processes are of the shapes:

Γ 2 e : S and Γ 2 P�Δ
where Γ is the standard environment which associates variables to sort types, shared
names to global types and process variables to session environments; and Δ is the
session environment which associates channels to session types. Formally we define:
Γ ::= /0 | Γ · u : S | Γ ·X : Δ and Δ ::= /0 | Δ · c : T , assuming we can write
Γ · u : S if u ∈ dom(Γ ). We extend this to a concatenation for typing environments as
Δ ·Δ ′ = Δ ∪Δ ′. Typing Δ is coherent with respect to session s (notation co(Δ(s))) if
for all s[p] : Tp,s[q] : Tq ∈ Δ , Tp and Tq are dual each other (it is given by exchanging
! by ? and ⊕ by & [9]). A typing Δ is coherent (notation co(Δ)) if it is coherent with
respect to all s in its domain. The typing judgement Γ 2 P�Δ is coherent if co(Δ).

The typing rules are essentially identical to the communication typing system for
programs in [4] (since we do not require queues). The rest of the paper can be read
without knowing the typing system.

Type Soundness. Next we define the reduction semantics for local types. Since ses-
sion environments represent the forthcoming communications, by reducing processes
session environments can change. This can be formalised as in [4, 11] by introducing
the notion of reduction of session environments, whose rules are:

1. {s[p] : [q]!〈U〉;T · s[q] : [p]?(U);T ′} −→ {s[p] : T · s[q] : T ′}.
2. {s[p] : [q]⊕{li : Ti}i∈I · s[q] : [p]&{l j : T ′j} j∈J} −→ {s[p] : Tk · s[q] : T ′k} I ⊆ J,k ∈ I.
3. Δ ∪Δ ′ −→ Δ ∪Δ ′′ if Δ ′ −→ Δ ′′.

We write→→=−→∗. Note that Δ →→ Δ ′ is non-deterministic (i.e. not always confluent)
by the second rule. Then the typing system satisfies the subject reduction theorem [4]:
if Γ 2 P�Δ is coherent and P→→ P′ then Γ 2 P′ �Δ ′ is coherent with Δ →→ Δ ′.

3 Synchronous Multiparty Session Semantics

This section presents the standard typed behavioural theory for the synchronous
multiparty sessions.

Labels. We use the following labels (�,�′, ...):

� ::= a[A](s) | a[A](s) | s[p][q]!〈v〉 | s[p][q]!(a)
| s[p][q]!(s′[p′]) | s[p][q]?〈v〉 | s[p][q]⊕ l | s[p][q]&l | τ
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〈Req〉 a[p](x).P
a[{p}](s)−→ P{s[p]/x} 〈Acc〉 a[p](x).P

a[{p}](s)−→ P{s[p]/x}
〈Send〉 s[p][q]!〈e〉;P

s[p][q]!〈v〉−→ P (e ↓ v) 〈Rcv〉 s[p][q]?(x);P
s[p][q]?〈v〉−→ P{v/x}

〈Sel〉 s[p][q]⊕ l;P
s[p][q]⊕l−→ P 〈Bra〉 s[p][q]&{li : Pi}i∈I

s[p][q]&lk−→ Pk

〈Tau〉 P
�−→ P′ Q

�′−→ Q′ �@ �′

P | Q τ−→ (ν bn(�)∩bn(�′))(P′ | Q′)
〈Par〉P

�−→ P′ bn(�)∩fn(Q) = /0

P | Q
�−→ P′ | Q

〈Res〉P
�−→ P′ n /∈ fn(�)

(ν n)P
�−→ (ν n)P′

〈OpenS〉 P
s[p][q]!〈s′[p′]〉−→ P′

(ν s′)P
s[p][q]!(s′[p′])−→ P′

〈OpenN〉 P
s[p][q]!〈a〉−→ P′

(ν a)P
s[p][q]!(a)−→ P′

〈Alpha〉P≡α P′ P′
�−→ Q′

P
�−→ Q

〈AcPar〉P1
a[A](s)−→ P′1 P2

a[A′](s)−→ P′2 A∩A′ = /0

P1 | P2
a[A∪A′](s)−→ P′1 | P′2

〈ReqPar〉 P1
a[A](s)−→ P′1 P2

a[A′](s)−→ P′2 A∩A′ = /0, A∪A′ not complete w.r.t max(A′)

P1 | P2
a[A∪A′](s)−→ P′1 | P′2

〈TauS〉 P1
a[A](s)−→ P′1 P2

a[A′](s)−→ P′2 A∩A′ = /0, A∪A′ complete w.r.t max(A′)

P1 | P2
τ−→ (ν s)(P′1 | P′2)

We omit the synmetric case of 〈Par〉 and conditionals.

Fig. 1. Labelled transition system for processes

A role set A is a set of multiparty session types roles. Labels a[A](s) and a[A](s) define
the accept and request of a fresh session s by roles in set A respectively. Actions on
session channels are denoted with labels s[p][q]!〈v〉 and s[p][q]?〈v〉 for output and input
of value v from p to q on session s. Bound output values can be shared channels or
session roles (delegation). s[p][q]⊕ l and s[p][q]&l define the selection and branching
respectively. Label τ is the standard hidden transition.

Dual label definition is used to define the parallel rule in the label transition system:

s[p][q]!〈v〉 @ s[q][p]?〈v〉 s[p][q]!(v) @ s[q][p]?〈v〉 s[p][q]⊕ l @ s[q][p]&l

Dual labels are input and output (resp. selection and branching) on the same session
channel and on complementary roles. For example, in s[p][q]!〈v〉 and s[q][p]?〈v〉, role
p sends to q and role q receives from p. Another important definition for the session
initiation is the notion of the complete role set. We say the role set A is complete with
respect to n if n = max(A) and A = {1,2, . . . ,n}. The complete role set means that all
global protocol participants are present in the set. For example, {1,3,4} is not complete,
but {1,2,3,4} is. We use fn(�) and bn(�) to denote a set of free and bound names in �
and set n(�) = bn(�)∪fn(�).
Labelled Transition System for Processes. Figure 1 gives the untyped labelled tran-
sition system. Rules 〈Req〉 and 〈Acc〉 define the accept and request actions for a fresh
session s on role {p}. Rules 〈Send〉 and 〈Rcv〉 give the send and receive respectively for
value v from role p to role q in session s. Rules 〈Sel〉 and 〈Bra〉 define selecting and
branching labels.
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Γ (a) = 〈G〉,s fresh implies (Γ ,Δ)
a[A](s)−→ (Γ ,Δ · {s[i] : G?i}i∈A)

Γ (a) = 〈G〉,s fresh implies (Γ ,Δ)
a[A](s)−→ (Γ ,Δ · {s[i] : G?i}i∈A)

Γ 2 v : U,s[q] /∈ dom(Δ) implies (Γ ,Δ · s[p] : [q]!〈U〉;T )
s[p][q]!〈v〉−→ (Γ ,Δ · s[p] : T )

s[q] /∈ dom(Δ),a ∈ dom(Γ ) implies (Γ ,Δ · s[p] : [q]!〈U〉;T )
s[p][q]!(a)−→ (Γ ·a : U,Δ · s[p] : T )

Γ 2 v : U,s[q] /∈ dom(Δ) implies (Γ ,Δ · s[p] : [q]?(U);T )
s[p][q]?〈v〉−→ (Γ ,Δ · s[p] : T )

a ∈ dom(Γ ),s[q] /∈ dom(Δ) implies (Γ ,Δ · s[p] : [q]?(U);T )
s[p][q]?〈a〉−→ (Γ ·a : U,Δ · s[p] : T )

s[q] /∈ dom(Δ) implies (Γ ,Δ · s′[p′] : T ′ · s[p] : [q]!〈T ′〉;T )
s[p][q]!〈s′ [p′ ]〉−→ (Γ ,Δ · s[p] : T )

s[q] /∈ dom(Δ) implies (Γ ,Δ · s[p] : [q]!〈T ′〉;T )
s[p][q]!(s′ [p′ ])−→ (Γ ,Δ · s[p] : T · {s′[pi] : Ti})

s[q],s′[p′] /∈ dom(Δ) implies (Γ ,Δ · s[p] : [q]?(T ′);T )
s[p][q]?〈s′ [p′ ]〉−→ (Γ ,Δ · s′[p′] : T ′ · s[p] : T )

s[q] /∈ dom(Δ) implies (Γ ,Δ · s[p] : [q]⊕{li : Ti}i∈I)
s[p][q]⊕lk−→ (Γ ,Δ · s[p] : Tk)

s[q] /∈ dom(Δ) implies (Γ ,Δ · s[p] : [q]&{li : Ti}i∈I)
s[p][q]&lk−→ (Γ ,Δ · s[p] : Tk)

Δ −→ Δ ′ or Δ = Δ ′ implies (Γ ,Δ)
τ−→ (Γ ,Δ ′)

Fig. 2. Labelled Transition Relation for Environments

The last three rules are for collecting and synchronising the multiparty participants
together. Rule 〈AccPar〉 accumulates the accept participants and records them into role
set A. Rule 〈ReqPar〉 accumulates the accept participants and the request participant
into role set A. Note that the request action role set always includes the maximum role
number among the participants. Finally, rule 〈TauS〉 checks that a role set is complete,
thus a new session can be created under the τ-action (synchronisation). Other rules are
standard. See Example 3.1. We write =⇒ for the reflexive and transitive closure of−→,

�
=⇒ for the transitions =⇒ �−→=⇒ and

�̂
=⇒ for

�
=⇒ if � = τ otherwise =⇒.

Typed Labelled Transition Relation. We define the typed LTS on the basis of the
untyped one. This is realised by introducing the definition of an environment labelled

transition system, defined in Figure 2. (Γ ,Δ)
�−→ (Γ ′,Δ ′) means that an environment

(Γ ,Δ) allows an action to take place, and the resulting environment is (Γ ′,Δ ′).
The intuition for this definition is that observables on session channels occur when

the corresponding endpoint is not present in the linear typing environment Δ , and the
type of an action’s object respects the environment (Γ ,Δ). In the case when new names
are created or received, the environment (Γ ,Δ) is extended.

The first rule says that reception of a message via a is possible when a’s type 〈G〉 is
recorded into Γ and the resulting session environment records projected types from G
({s[i] : G?i}i∈A). The second rule is for the send of a message via a and it is dual to the
first rule. The next four rules are free value output, bound name output, free value input
and name input. Rest of rules are free session output, bound session output, and session
input as well as selection and branching rules. The bound session output records a set
of session types s′[pi] at opened session s′. The final rule (�= τ) follows the reduction
rules for linear session environment defined in § 2 (Δ = Δ ′ is the case for the reduction
at hidden sessions). Note that if Δ already contains destination (s[q]), the environment
cannot perform the visible action, but only the final τ-action.
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The typed LTS requires that a process can perform an untyped action � and that its
typing environment (Γ ,Δ) can match the action �.

Definition 3.1 (Typed transition). Typed transition relation is defined as Γ1 2 P1 �

Δ1
�−→ Γ2 2 P2 �Δ2 if (1) P1

�−→ P2 and (2) (Γ1,Δ1)
�−→ (Γ2,Δ2) with Γi 2 Pi �Δi.

Synchronous Multiparty Behavioural Theory. We first define a relation R as typed
relation if it relates two closed, coherent typed terms Γ 2 P1 � Δ1 R Γ 2 P2 � Δ2. We
often write Γ 2 P1 �Δ1 R P2 �Δ2.

Next we define the barb [2]: we write Γ 2P�Δ ↓s[p][q] if P≡ (ν ãs̃)(s[p][q]!〈v〉;R |Q)
with s /∈ s̃ and s[q] /∈ dom(Δ); and Γ 2 P�Δ ↓a if P≡ (ν ãs̃)(a[n](s).R | Q) with a /∈ ã.
Then we write m for either a or s[p][q]. We define Γ 2 P�Δ ⇓m if there exists Q such
that P→→ Q and Γ 2 Q�Δ ′ ↓m.

We write Δ1 � Δ2 if there exists Δ such that Δ1 →→ Δ and Δ2 →→ Δ . We now define
the contextual congruence based on the barb and [10].

Definition 3.2 (Reduction congruence). A typed relation R is reduction congruence
if it satisfies the following conditions for each Γ 2 P1 �Δ1 R P2 �Δ2 with Δ1 � Δ2.

1. Γ 2 P1 �Δ1 ⇓m iff Γ 2 P2 �Δ2 ⇓m

2. Whenever Γ 2 P1 �Δ1 R P2 �Δ2 holds, P1 →→ P′1 implies P2 →→ P′2 such that Γ 2
P′1 �Δ ′1 R P′2 �Δ ′2 holds with Δ ′1 � Δ ′2.

3. For all closed contextC, such that Γ 2C[P′1]�Δ ′1 and Γ 2C[P′2]�Δ ′2 where Δ ′1 �Δ ′2,
Γ 2C[P1]�Δ ′1 R Γ 2C[P2]�Δ ′2.

The union of all reduction congruence relations is denoted as ∼=s.

Definition 3.3 (Synchronous multiparty session bisimulation). A typed relation R
over closed processes is a (weak) synchronous multiparty session bisimulation or often
a synchronous bisimulation if, whenever Γ 2 P1 �Δ1 R P2 �Δ2, it holds:

1. Γ 2 P1 �Δ1
�−→ Γ ′ 2 P′1 �Δ ′1 implies Γ 2 P2 �Δ2

�̂
=⇒ Γ ′ 2 P′2 �Δ ′2 such that Γ ′ 2

P′1 �Δ ′1 R P′2 �Δ ′2.
2. The symmetric case.

The maximum bisimulation exists which we call synchronous bisimilarity, denoted by
≈s. We sometimes leave environments implicit, writing e.g. P ≈s Q. We also write ≈
for untyped synchronous bisimilarity which is defined by the untyped LTS in Figure 1
but without the environment LTS in Figure 2.

Theorem 3.1 (Soundness and completeness). ∼=s = ≈s.

Example 3.1 (Synchronous multiparty bisimulation). We use the running example from
§ 1. First we explain the session initialisation from Figure 1. By 〈Acc〉 and 〈Req〉,

P1
a[{1}](s1)−→ P′1 = b[1](y).s1[1][3]!〈v〉;y[2]!〈w〉;0

P2
a[{2}](s1)−→ P′2 = b[2](y).(y[1]?(z);0 | s1[2][3]!〈v〉;0) P3

a[{3}](s1)−→ P′3 = s1[3][1]?(z);s1[3][2]?(y);0



Globally Governed Session Semantics 403

with

Γ 2 P′1 � s1[1] : [3]!〈U〉;end, Γ 2 P′2 � s1[2] : [3]!〈U〉;end, Γ 2 P′3 � s1[3] : [1]?(U); [2]?(U);end

By 〈AccPar〉, we have P1 | P2
a[{1,2}](s1)−→ P′1 | P′2. We have another possible initialisation:

P1 | P3
a[{1,3}](s1)−→ P′1 | P′3. From both of them, if we compose another process, the set

{1,2,3} becomes complete so that by synchronisation 〈TauS〉, Γ 2 P1 | P2 | P3 � /0
τ−→

Γ 2 (ν s1)(P′1 | P′2 | P′3)� /0. Further we have:

Γ 2 P′1 | P′2 �Δ0
τ−→

Γ 2 (ν s2)(s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s2[2][1]?(z);0 | s1[2][3]!〈v〉;0) = Q1 �Δ0

with Δ0 = s1[1] : [3]!〈U〉;end · s1[2] : [3]!〈U〉;end. Then

Γ 2 Q1 | P′3 �Δ0 · s1[3] : [1]?(U); [2]?(U);end≈s 0 � s1[1] : end · s1[2] : end · s1[3] : end

since (Γ ,Δ)  �−→ for any � = τ with Δ = Δ0 · s1[3] : [1]?(U); [2]?(U);end (by the
condition of Line 3 in Figure 2). However by the untyped LTS, Q1 | P′3 ≈ 0 since

Q1 | P′3
s1[1][3]!〈v〉−→ .

4 Globally Governed Behavioural Theory

We introduce the semantics for globally governed behavioural theory. In the previous
section, the local typing (Δ ) constrains the untyped LTS to give rise to a local typed
LTS. In a multiparty distributed environment, communications follow the global proto-
col, which controls both an observed process and its observer. The local typing is not
sufficient to maintain the consistency of transitions of a process with respect to a global
protocol. In this section we refine the environment LTS with a global environment E to
give a more fine-grained control over the LTS of the processes.

Global Environments and Configurations. We define a global environment (E,E ′, ...)
as a mapping from session names to global types.

E ::= E · s : G | /0

The projection definition is extended to include E as proj(E) =
⋃

s:G∈E proj(s : G).
We define a labelled reduction relation over global environments which corresponds

to Δ −→Δ ′ defined in § 2. We use the labels λ ∈ {s : p→ q : U,s : p→ q : l} to annotate
reductions over global environments. We define out(λ ) and inp(λ ) as out(s : p→ q :
U) = out(s : p→ q : l) = p and as inp(s : p→ q : U) = inp(s : p→ q : l) = q and p∈ �

if p ∈ out(�)∪ inp(�). We often omit the label λ by writing −→ for
λ−→ and −→∗

for (
λ−→)∗. The first rule is the axiom for the input and output interaction between two

parties; the second rule is for the choice; the third and forth rules formulate the case that
the action λ can be performed under p→ q if p and q are not related to the participants
in λ ; and the fifth rule is a congruent rule.

{s : p→ q : 〈U〉.G} s:p→q:U−→ {s : G} {s : p→ q : {li : Gi}i∈I}
s:p→q:lk−→ {s : Gk}
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{s : G} λ−→ {s : G′} p,q /∈ λ

{s : p→ q : 〈U〉.G} λ−→ {s : p→ q : 〈U〉.G′}

{s : Gi}
λ−→ {s : G′i} i ∈ I, p,q /∈ λ

{s : p→ q : {li : Gi}i∈I}
λ−→ {s : p→ q : {li : G′i}i∈I}

E
λ−→ E ′

E ·E0
λ−→ E ′ ·E0

As a simple example of the above LTS, consider s : p→ q : 〈U1〉.p′ → q′ : {l1 : end, l2 :
p′ → q′ : 〈U2〉.end}. Since p,q,p′,q′ are pairwise distinct, we can apply the second and

third rules to obtain: s : p→ q : 〈U1〉.p′ → q′ : {l1 : end, l2 : p′ → q′ : 〈U2〉.end}
s:p′→q′:l1−→

s : p→ q : 〈U1〉.end
Next we introduce the governance judgement which controls the behaviour of pro-

cesses by the global environment.

Definition 4.1 (Governance judgement). Let Γ 2 P�Δ be coherent. We write E,Γ 2
P�Δ if ∃E ′ ·E −→∗ E ′ and Δ ⊆ proj(E ′).

The global environment E records the knowledge of both the environment (Δ ) of the
observed process P and the environment of its observer. The side conditions ensure that
E is coherent with Δ : there exist E ′ reduced from E whose projection should cover the
environment of P (since E should include the observer’s information together with the
observed process information recorded into Δ ).

Next we define the LTS for well-formed environment configurations.

Definition 4.2 (Environment configuration). We write (E,Γ ,Δ) if ∃E ′ · E −→∗ E ′

and Δ ⊆ proj(E ′).

Figure 3 defines a LTS over environment configurations that refines the LTS over envi-

ronments (i.e (Γ ,Δ)
�−→ (Γ ′,Δ ′)) in § 3.

Each rule requires a corresponding environment transition (Figure 2 in § 3) and a
corresponding labelled global environment transition in order to control a transition
following the global protocol. [Acc] is the rule for accepting a session initialisation so
that it creates a new mapping s : G which matches Γ in a governed environment E . [Req]
is the rule for requesting a new session and it is dual to [Acc].

The next seven rules are the transition relations on session channels and we assume
the condition proj(E1)⊇ Δ to ensure the base action of the environment matches one
in a global environment. [Out] is a rule for the output where the type of the value and
the action of (Γ ,Δ) meets those in E . [In] is a rule for the input and dual to [Out].
[ResN] is a scope opening rule for a name so that the environment can perform the
corresponding type 〈G〉 of a. [ResS] is a scope opening rule for a session channel which
creates a set of mappings for the opened session channel s′ corresponding to the LTS
of the environment. [Sel] and [Bra] are the rules for selection and branching, which is
similar to [Out] and [In]. In [Tau] rule, we refined the reduction relation on Δ in § 2 as:

1. {s[p] : [q]!〈U〉;T · s[q] : [p]?(U);T ′} s:p→q:U−→ {s[p] : T · s[q] : T ′}.
2. {s[p] : [q]⊕{li : Ti}i∈I ·s[q] : [p]&{l j : T ′j} j∈J}

s:p→q:lk−→ {s[p] : Tk ·s[q] : T ′k} I⊆ J,k∈ I.

3. Δ ∪Δ ′ λ−→ Δ ∪Δ ′′ if Δ ′ λ−→ Δ ′′.
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[Acc]Γ 2 a : 〈G〉 (Γ ,Δ1)
a[A](s)−→ (Γ ,Δ2)

(E,Γ ,Δ1)
a[A](s)−→ (E · s : G,Γ ,Δ2)

[Req]Γ 2 a : 〈G〉 (Γ ,Δ1)
a[A](s)−→ (Γ ,Δ2)

(E,Γ ,Δ1)
a[A](s)−→ (E · s : G,Γ ,Δ2)

[Out]Γ 2 v : U (Γ ,Δ1)
s[p][q]!〈v〉−→ (Γ ,Δ2) E1

s:p→q:U−→ E2

(E1,Γ ,Δ1)
s[p][q]!〈v〉−→ (E2,Γ ,Δ2)

[In] (Γ ,Δ1)
s[p][q]?〈v〉−→ (Γ · v : U,Δ2) E1

s:q→p:U−→ E2

(E1,Γ ,Δ1)
s[p][q]?〈v〉−→ (E2,Γ · v : U,Δ2)

[ResN]

(Γ ,Δ1)
s[p][q]!(a)−→ (Γ ·a : 〈G〉,Δ2)

E1
s:q→p:〈G〉−→ E2

(E1,Γ ,Δ1)
s[p][q]!(a)−→ (E2,Γ ·a : 〈G〉,Δ2)

[ResS]

(Γ ,Δ1)
s[p][q]!(s′ [p′ ])−→ (Γ ,Δ2 · {s′[pi] : Ti})

E1
s:q→p:T−→ E2 · ∀i.G?pi = Ti

(E1,Γ ,Δ1)
s[p][q]!(s′ [p′ ])−→ (E2 · s′ : G,Γ ,Δ2 · {s′[pi] : Ti})

[Sel] (Γ ,Δ1)
s[p][q]⊕l−→ (Γ ,Δ2) E1

s:p→q:l−→ E2

(E1,Γ ,Δ1)
s[p][q]⊕l−→ (E2,Γ ,Δ2)

[Bra] (Γ ,Δ1)
s[p][q]&l−→ (Γ ,Δ2) E1

s:q→p:l−→ E2

(E1,Γ ,Δ1)
s[p][q]&l−→ (E2,Γ ,Δ2)

[Tau]
(Δ1 = Δ2, E1 = E2)∨ (Δ1

λ−→ Δ2, E1
λ−→ E2)

(E1,Γ ,Δ1)
τ−→ (E2,Γ ,Δ2)

[Inv]E1 −→∗ E ′1 (E ′1,Γ1,Δ1)
�−→ (E2,Γ2,Δ2)

(E1,Γ1,Δ1)
�−→ (E2,Γ2,Δ2)

Fig. 3. The LTS for the environment configuations

[Inv] is the key rule: the global environment E1 reduces to E ′1 to perform the observer’s
actions, hence the observed process can perform the action w.r.t. E ′1. Hereafter we write

−→ for
τ−→.

Example 4.1 (LTS for environment configuration). Let E = s : p → q : 〈U〉.p → q :
〈U〉.G, Γ = v : U and Δ = s[p] : [q]!〈U〉;Tp with G?p= Tp, G?q= Tq and roles(G) =
{p,q}. Then (E,Γ ,Δ) is an environment configuration since if E −→ E ′ then proj(E ′)

⊃ Δ because E
s:p→q:U−→ s : p→ q : 〈U〉.G, proj(s : p→ q : 〈U〉.G) = s[p] : [q]!〈U〉;Tp ·

s[q] : [p]?(U);Tq and proj(s : p→ q : 〈U〉.G) ⊃ Δ . Then we can apply [Out] to s :

p→ q : 〈U〉.G s:p→q:U−→ s : G and (Γ ,s[p] : [q]!〈U〉;Tp)
s[p][q]!〈v〉−→ (Γ ,s[p] : Tp) to obtain

(s : p→ q : 〈U〉.G,Γ ,Δ)
s[p][q]!〈v〉−→ (s : G,Γ ,s[p] : Tp). By this and E −→ s : p→ q : 〈U〉.G,

using [Inv], we can obtain (E,Γ ,Δ)
s[p][q]!〈v〉−→ (s : G,Γ ,s[p] : Tp), as required.

Governed Reduction-Closed Congruency. To define the reduction-closed congru-
ency, we first refine the barb, which is controlled by the global witness where observ-
ables of a configuration are defined with the global environment of the observer.

(E,Γ ,Δ · s[p] : [q]!〈U〉;T ) ↓s[p][q] if s[q] /∈ dom(Δ ),∃E ′ ·E −→∗ E ′
s:p→q:U−→ ,Δ ⊆ proj(E ′)

(E,Γ ,Δ · s[p] : [q]⊕{li : Ti}i∈I) ↓s[p][q] if s[q] /∈ dom(Δ ),∃E ′ ·E −→∗ E ′
s:p→q:lk−→ ,k ∈ I,Δ ⊆ proj(E ′),

(E,Γ ,Δ ) ↓a if a ∈ dom(Γ )

We write (Γ ,Δ ,E) ⇓m if (Γ ,Δ ,E)−→∗ (Γ ,Δ ′,E ′) and (Γ ,Δ ′,E ′) ↓m.
Let us write T1 � T2 if the syntax tree of T2 includes T1. For example, [q]?(U ′);T �

[p]!〈U〉; [q]?(U ′);T . Then we define: E1�E2 = {Ei(s) | E j(s)� Ei(s), i, j ∈ {1,2}, i =
j}∪E1 \dom(E2)∪E2 \dom(E1). As an example of E1�E2, let us define:

E1 = s1 : p→ q : 〈U1〉.p′ → q′ : 〈U2〉.p→ q : 〈U3〉.end · s2 : p→ q : 〈W2〉.end
E2 = s1 : p→ q : 〈U3〉.end · s2 : p′ → q′ : 〈W1〉.p→ q : 〈W2〉.end
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Then E1�E2 = p→ q : 〈U1〉.p′ → q′ : 〈U2〉.p→ q : 〈U3〉.end · s2 : p′ → q′ : 〈W1〉.p→
q : 〈W2〉.end. The behavioural relation w.r.t. a global whiteness is defined below.

Definition 4.3 (Configuration relation). The relation R is a configuration relation
between two configurations E1,Γ 2 P1 �Δ1 and E2,Γ 2 P2 � Δ2, written E1 �E2,Γ 2
P�Δ1 R P2 �Δ2 if E1�E2 is defined.

Proposition 4.1 (Decidability). (1) Given E1 and E2, a problem whether E1 �E2 is
defined or not is decidable and if it is defined, the calculation of E1 �E2 terminates;
and (2) Given E, a set {E ′ | E −→∗ E ′} is finite.

Definition 4.4 (Global configuration transition). We write E1,Γ 2 P1 � Δ1
�−→ E2,

Γ ′ 2 P2 �Δ2 if E1,Γ 2 P1 �Δ1, P1
�−→ P2 and (E1,Γ ,Δ1)

�−→ (E2,Γ ′,Δ2).

Proposition 4.2. (1) (E1,Γ ,Δ1)
�−→ (E2,Γ2,Δ2) implies that (E2,Γ2,Δ2) is an environ-

ment configuration; and (2) If Γ 2 P�Δ and P−→P′ with co(Δ), then E,Γ 2 P�Δ −→
E,Γ 2 P′ �Δ ′ and co(Δ ′).

The definition of the reduction congruence for governance follows. Below we define
E,Γ 2 P�Δ ⇓n if P ⇓m and (E,Γ ,Δ) ⇓m.

Definition 4.5 (Governed reduction congruence). A configuration relation R is gov-
erned reduction congruence if E,Γ 2 P1 �Δ1 R P2 �Δ2 then
1. E,Γ 2 P1 �Δ1 ⇓n if and only if E,Γ 2 P2 �Δ2 ⇓n

2. P1 →→ P′1 if and only if P2 →→ P′2 and E,Γ 2 P′1 �Δ ′1 R P′2 �Δ ′2
3. For all closed context C, such that E,Γ 2 C[P1] � Δ ′1 and E,Γ 2 C[P2] � Δ ′2 then

E,Γ 2C[P1]�Δ ′1 R C[P2]�Δ ′2.
The union of all governed reduction congruence relations is denoted as ∼=s

g.

Globally Governed Bisimulation and Its Properties. This subsection introduces the
globally governed bisimulation relation definition and studies its main properties.

Definition 4.6 (Globally governed bisimulation). A configuration relation R is a glob-
ally governed weak bisimulation (or governed bisimulation) if whenever E,Γ 2 P1 �
Δ1 R P2 �Δ2, it holds:

1. E,Γ 2 P1 �Δ1
�−→ E ′1,Γ ′ 2 P′1 �Δ ′1 implies E,Γ 2 P2 �Δ2

�̂
=⇒ E ′2,Γ ′ 2 P′2 �Δ ′2 such

that E ′1�E ′2,Γ
′ 2 P′1 �Δ ′1 R P′2 �Δ ′2.

2. The symmetric case.
The maximum bisimulation exists which we call governed bisimilarity, denoted by ≈s

g.
We sometimes leave environments implicit, writing e.g. P≈s

g Q.

Theorem 4.1 (Sound and completeness). ≈s
g =

∼=s
g.

The relationship between ≈s and ≈s
g is given as follows.

Theorem 4.2. If for all E, E,Γ 2 P1 �Δ1 ≈s
g P2 �Δ2 then Γ 2 P1 �Δ1 ≈s P2 �Δ2. Also if

Γ 2 P1 �Δ1 ≈s P2 �Δ2, then for all E, E,Γ 2 P1 �Δ1 ≈s
g P2 �Δ2.
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To justify the above theorem, consider the following processes:

P1 = s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s1[2][3]!〈v〉;s2[2][1]?(x);s2[2][3]!〈x〉;0
P2 = s1[1][3]!〈v〉;0 | s2[1][2]!〈w〉;0 | s1[2][3]!〈v〉;s2[2][1]?(x);s2[2][3]!〈x〉;0

then we have P1 ≈s P2. By the above theorem, we expect that for all E , we have E,Γ 2
P1 �Δ1 and E,Γ 2 P2 �Δ2 then E 2 P1 ≈s

g P2. This is in fact true because the possible E
that can type P1 and P2 are:

E1 = s1 : 1→ 3 : 〈U〉.2→ 3 : 〈U〉.end · s2 : 1→ 2 : 〈W 〉.2→ 3 : 〈W 〉.end
E2 = s1 : 2→ 3 : 〈U〉.1→ 3 : 〈U〉.end · s2 : 1→ 2 : 〈W 〉.2→ 3 : 〈W 〉.end

Note that all E that are instances up-to weakening are E1 and E2.
To clarify the difference between ≈s and ≈s

g, we introduce the notion of a simple
multiparty process defined in [11]. A simple process contains only a single session so
that it satisfies the progress property as proved in [11]. Formally a process P is simple
when it is typable with a type derivation where the session typing in the premise and the
conclusion of each prefix rule is restricted to at most a single session (i.e. any Γ 2 P�Δ
which appears in a derivation, Δ contains at most one session channel in its domain,
see [11]). Since there is no interleaving of sessions in simple processes, the difference
between ≈s and ≈s

g disappears.

Theorem 4.3 (Coincidence). Assume P1 and P2 are simple. If ∃E ·E,Γ 2 P1 � Δ1 ≈s
g

P2 �Δ2 then Γ 2 P1 �Δ1 ≈s P2 �Δ2.

To justify the above theorem, consider: P1 = s[1][2]?(x);s[1][3]!〈x〉;0 | s[2][1]!〈v〉;0 and
P2 = s[1][3]!〈v〉;0. It holds that for E = s : 2→ 1 : 〈U〉.1→ 3 : 〈U〉.end then E 2 P1 ≈s

g
P2. We can easily reason P1 ≈s P2.

Example 4.2 (Governed bisimulation). Recall the example from § 1 and Example 3.1.
Q1 is the process corresponding to Example 3.1, while Q2 has a parallel thread instead
of the sequential composition (this corresponds to P1 | R2 in § 1).

Q1 = s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s2[2][1]?(x);0 | s1[2][3]!〈v〉;0
Q2 = s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s2[2][1]?(x);s1[2][3]!〈v〉;0

Assume: Γ = v : S ·w : S
Δ = s1[1] : [3]!〈S〉;end · s1[2] : [3]!〈S〉;end · s2[1] : [2]!〈S〉;end · s2[2] : [1]?(S);end

Then we have Γ 2 Q1 �Δ and Γ 2 Q2 �Δ . Now assume the two global witnesses as:

E1 = s1 : 1→ 3 : 〈S〉.2→ 3 : 〈S〉.end · s2 : 1→ 2 : 〈S〉.end
E2 = s1 : 2→ 3 : 〈S〉.1→ 3 : 〈S〉.end · s2 : 1→ 2 : 〈S〉.end

Then the projection of E1 and E2 are given as:

proj(E1) = s1[1] : [3]!〈S〉;end · s1[2] : [3]!〈S〉;end · s1[3] : [1]?(S); [2]?(S);end
s2[1] : [2]!〈S〉;end · s2[2] : [1]?(S);end

proj(E2) = s1[1] : [3]!〈S〉;end · s1[2] : [3]!〈S〉;end · s1[3] : [2]?(S); [1]?(S);end·
s2[1] : [2]!〈S〉;end · s2[2] : [1]?(S);end

with Δ ⊂ proj(E1) and Δ ⊂ proj(E2). The reader should note that the difference be-
tween E1 and E2 is the type of the participant 3 at s1.
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By definition, we can write: Ei,Γ 2 Q1 � Δ and Ei,Γ 2 Q2 � Δ for i = 1,2. Both
processes are well-formed global configurations under both witnesses. Now we can

observe Γ 2 Q1 �Δ
s[2][3]!〈v〉−→ Γ 2 Q′1 �Δ ′ but Γ 2 Q2 �Δ

s[2][3]!〈v〉
−→ . Hence Γ 2 Q1 �Δ ≈s

Q2 �Δ . By the same argument, we have: E2,Γ 2 Q1 �Δ ≈s
g Q2 �Δ . On the other hand,

since E1 forces to wait for s[2][3]!〈v〉, E1,Γ 2 Q1 � Δ
s[2][3]!〈v〉
−→ . Hence Q1 and Q2 are

bisimilar, i.e. E1,Γ 2 Q1 �Δ ≈s
g Q2 �Δ . This concludes the optimisation is correct.

5 Related and Future Work
As a typed foundation for structured communications programming, session types [9,
17] have been studied over the last decade for a wide range of process calculi and pro-
gramming languages. Recently several works developed multiparty session types and
their extensions. While typed behavioural equivalences are one of the central topics
of the π-calculus, surprisingly the typed behavioural semantics based on session types
have been less explored, and the existing ones only focus on binary (two-party) sessions.
Our work [14] develops an asynchronous binary session typed behavioural theory with
event operations. An LTS is defined on session type process judgements and ensures
session typed properties, such as linearity in the presence of asynchronous queues. The
work [15] proves the proof conversions induced by Linear Logic interpretation coin-
cide with an observational equivalence over a strict subset of the binary synchronous
session processes. The main focus of our paper is multiparty session types and gov-
erned bisimulation, whose definitions and properties crucially depend on information
of global types. In the first author’s PhD thesis [13], we studied how governed bisimula-
tions can be systematically developed under various semantics including three kinds of
asynchronous semantics by modularly changing the LTS for processes, environments
and global types. For governed bisimulations, we can reuse all of the definitions among
four semantics by only changing the conditions of the LTS of global types to suit each
semantics. Another recent work [6] gives a fully abstract encoding of a binary syn-
chronous session typed calculus into a linearly typed π-calculus [3]. We believe the
same encoding method is smoothly applicable to ≈s since it is defined solely based on
the projected types (i.e. local types). However a governed bisimulation requires a global
witness, hence the additional global information would be required for full abstraction.

The constructions of our work are hinted by [8] which studies typed behavioural
semantics for the π-calculus with IO-subtyping where a LTS for pairs of typing en-
vironments and processes is used for defining typed testing equivalences and barbed
congruence. On the other hand, in [8], the type environment indexing the observational
equivalence resembles more a dictator where the refinement can be obtained by the fact
that the observer has only partial knowledge on the typings, than a coordinator like our
approach. Several papers have developed bisimulations for the higher-order π-calculus
or its variants using the information of the environments. Among them, a recent pa-
per [12] uses a pair of a process and an observer knowledge set for the LTS. The knowl-
edge set contains a mapping from first order values to the higher-order processes, which
allows a tractable higher-order behavioural theory using the first-order LTS.

We record a choreographic type as the witness in the environment to obtain fine-
grained bisimulations of multiparty processes. The highlight of our bisimulation
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construction is an effective use of the semantics of global types for LTSs of processes
(cf. [Inv] in Figure 3 and Definition 4.4). Global types can give a guidance how to
coordinate parallel threads giving explicit protocols, hence it is applicable to a semantic-
preserving optimisation (cf. Example 4.2 and [7]). While it is known that it is undecid-
able to check P≈ Q in the full π-calculus, it is an interesting future topic to investigate
automated bisimulation-checking techniques for the governed bisimulations for some
subset of multiparty session processes.
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ries Initiative and EPSRC EP/K011715/1, EP/K034413/1 and EP/G015635/1.
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Abstract. The combination of timed, spatial, and epistemic information is often
needed in the specification of modern concurrent systems. We propose the proof
system SELL�, which extends linear logic with subexponentials with quantifiers
over subexponentials, therefore allowing for an arbitrary number of modalities.
We then show how a proper structure of the subexponential signature in SELL�

allows for the specification of concurrent systems with timed, spatial, and epis-
temic modalities. In the context of Concurrent Constraint Programming (CCP), a
declarative model of concurrency, we illustrate how the view of subexponentials
as specific modalities is general enough to modularly encode into SELL� variants
of CCP with these three modalities, thus providing a proof-theoretic foundations
for those calculi.

1 Introduction

To specify the behavior of distributed agents or the policies governing a distributed sys-
tem, it is often necessary to reason by using different types of modalities, such as time,
space, or even the epistemic state of agents. For instance, the access-control policies of
a building might allow Bob to have access only in some pre-defined time, such as its
opening hours. Another policy might also allow Bob to ask Alice who has higher cre-
dentials to grant him access to the building, or even specify that Bob has only access to
some specific rooms of the building. Following this need, many formalisms have been
proposed to specify, program and reason about such policies, e.g., Ambient Calculus,
Concurrent Constraint Programming, Authorization Logics, just to name a few.

Logic and proof theory have often inspired the design of many of these formalisms.
For example, Saraswat et al. proposed Concurrent Constraint Programming (CCP), a
model for concurrency that combines the traditional operational view of process calculi
with a declarative view based on logic [16,15] (see [13] for a survey). Agents in CCP
interact with each other by telling and asking information represented as constraints to
a global store. Later, Fages et al. in [4] proposed Linear Concurrent Constraint (lcc),
inspired by linear logic [6], to allow the use of linear constraints, that is, tokens of
information that once used by an agent are removed from the global store.

In order to capture the behavior of distributed systems which take into account spa-
tial, temporal and/or epistemic properties, new formalisms have been proposed. For
instance, Saraswat et al. proposed tcc [17], which extends CCP with time modalities.

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 410–424, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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More recently, Knight et al. [7] proposed a CCP-based language with spatial and epis-
temic modalities. Some of these developments have also been followed by a similar
development in proof theory. For instance, Nigam proposed a framework for linear au-
thorization logics [9], which allow the specification of access control policies that may
mention the affirmations, possessions and knowledge of principals and demonstrated
that a wide range of linear authorization policies can be specified in linear logic with
subexponentials (SELL) [2,10].

This paper shows that timed, spatial, and epistemic modalities can be uniformly spec-
ified in a single logical framework called SELL�. Our first contribution is the introduc-
tion of the proof system SELL�, which extends SELL with universal (�) and existential
(�) quantifiers over subexponentials. It turns out that SELL� has good proof-theoretic
properties: it admits cut-elimination and also has a complete focusing discipline [1].

For our second contribution, we show that subexponentials can be interpreted as
spatial, epistemic and temporal modalities, thus providing a framework for specifying
concurrent systems with these modalities. This is accomplished by encoding different
CCP languages, for which the proposed quantifiers play an important role. For instance,
they enable the use of an arbitrary number of subexponentials, required to model the
unbounded nesting of modalities, which is a common feature in epistemic and spatial
systems. This do not seem possible in existing logical frameworks such as [18] that do
not contain subexponentials nor its quantifiers.

Another important feature of subexponentials is that they can be organized into a
pre-order, which specifies the provability relation among them. By coupling subexpo-
nential quantifiers with a suitable pre-order, it is possible to specify declaratively the
rules in which agents can manipulate information. For example, an agent cannot see the
information contained in a space that she does not have access to. The boundaries are
naturally implied by the pre-order of subexponentials.

This work opens a number of possibilities for specifying the behavior of distributed
systems. For instance, unlike [7], it seems possible in our framework to handle an infi-
nite number of agents. Moreover, we discuss how linearity of constraints can be straight-
forwardly included to these systems to represent, e.g., agents that can update/change
the content of the distributed spaces. Also, by changing the underlying subexponential
structure, different modalities can be put in the hands of the modelers and program-
mers. Finally, all the linear logic meta-theory becomes available for reasoning about
distributed systems featuring modalities.

Organization. In Section 2 we review the proof theory of SELL, identify its limitations,
and propose an extension (SELL�) allowing for the quantification of subexponentials
(� and �). We prove that SELL� admits cut-elimination. Section 3 reviews some back-
ground on CCP, for which we provide a sound and faithful encoding in SELL�. As we
shall show, our encoding is modular enough to extend it so to specify new constructs in-
volving modalities, namely, constructs for epistemic (Section 4.2), spatial (Section 4.3)
and temporal modalities (Section 4.4). In Section 5 we identify a number of future work
directions that we are currently working on. The detailed proofs and the focused presen-
tation of SELL� appear in the extended version of this paper, available at the authors’
personal pages.
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2 Linear Logic and Subexponential Quantifiers

Linear logic with subexponentials (SELL) shares with linear logic all connectives ex-
cept the exponentials: the multiplicative and additive conjunctions, ⊗ and &, linear
implication,�, additive disjunction ⊕, units 1,⊥, 0,�, and its universal and existential
quantifiers ∀ and ∃. Their proof rules are the same as in standard linear logic [6]. How-
ever, instead of having a single pair of exponentials ! and ?, SELL may contain as many
labeled exponentials (!l and ?l) as needed, called subexponentials [2,10].

Formally, the proof system for intuitionistic SELL is specified by a subexponential
signature Σ = 〈I,
,U〉, where I is a set of labels, U ⊆ I is a set specifying which
subexponentials allow weakening and contraction, and 
 is a pre-order among the el-
ements of I. We assume that U is closed wrt 
, i.e., if a ∈ U and a 
 b, then b ∈ U.
The system SELL is constructed by adding all the rules for the linear logic connectives
as usual, except for the exponentials, whose right introduction rules are as follows. For
each a ∈ I, we add the introduction rules corresponding to dereliction and promotion,
where we state explicitly the first-order signature L of the terms of the language:

L;Γ, F −→ G
L;Γ, !aF −→ G

!a
L and

L; !x1 F1, . . . !xn Fn −→ G
L; !x1 F1, . . . !xn Fn −→ !aG

!a
R

The rules for ?a are dual. Here, the rule !a
R (and ?a

L) have the side condition that a 
 xi
for all i. That is, one can only introduce a !a on the right (or a ?a on the left) if all
other formulas in the sequent are marked with indices that are greater or equal than a.
Furthermore, for all a ∈ U, we add the structural rules:

L;Γ, !aF, !aF −→ G
L;Γ, !aF −→ G

C
and

L;Γ −→ G
L;Γ, !aF −→ G

W

That is, we are also free to specify which indices are unbounded (those appearing in the
set U), and which indices are linear or bounded.

It is known that subexponentials greatly increase the expressiveness of the system
when compared to linear logic. For instance, they can be used to represent contexts of
proof systems [12], to mark the epistemic state of agents [9], or to specify locations in
sequential computations [10].

The key difference to standard presentations of linear logic is that while linear logic
has only seven logically distinct prefixes of bangs and question-marks, SELL allows for
an unbounded number of such prefixes, e.g., !i, or !i? j. As we show later, by using differ-
ent prefixes (written generically as

�
), we will also be able to interpret subexponentials

in more creative ways, such as temporal units or spatial and epistemic modalities.
However, SELL has a serious limitation: it does not have any sort of quantification

over subexponentials. Therefore, given the interpretation above for subexponentials, it
is not feasible in SELL to specify properties that are valid for all locations or for all
agents. Another way of visualizing this limitation is that any sequent in any derivation
in SELL has the same subexponential signature Σ. For instance, it is not possible to
encode in SELL none of the encodings of the CCP languages discussed in Section 4.

2.1 Subexponential Quantifiers

In the following we introduce the system SELL�, containing two novel connectives:
universal (�) and existential (�) quantifiers over subexponentials.
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Subexponential Constants and Variables Recall that given a pre-order (I,
), the ideal
of an element a ∈ I in 
, written ↓ a, is the set {x | x 
 a}. The subexponential signature
of SELL� is of the form Σ = 〈I,
, F,U〉, where I is a set of subexponential constants
and 
 is a pre-order among these constants. The new component F = {f1, . . . , fn} speci-
fies families of subexponentials indices. In particular, a family f ∈ F takes an element of
a ∈ I and returns a subexponential index f(a). As it will be clear below, families allow
us to specify disjoint pre-orders based on 〈I,
〉. The set of unbounded subexponentials
U ⊆ {f(a) | a ∈ I, f ∈ F}, as before, is upwardly closed wrt 
: if a 
 b, where a, b ∈ I,
and f(a) ∈ U then f(b) ∈ U. Notice that the SELL� system obtained from the signature
〈I,
, {id},U〉 conservatively extends the SELL system obtained from 〈I,
,U〉.

For our subexponential quantification, we will be interested in determining whether
a subexponential b belongs to the ideal ↓ a of a given subexponential a. This is formally
achieved by adding a typing information to subexponentials. Given the signature Σ =
〈I,
, F,U〉, the judgment s : a is true whenever s 
 a. Thus we obtain the set AΣ =
{s : a | s, a ∈ I, s 
 a} of typed subexponential constants. We shall simply write !f(l)

instead of !f(l : a) when the type “a” can be inferred from the context. Similarly for “?.”
As with the universal quantifier ∀, which introduces eigenvariables to the signature,

the universal quantification for subexponentials � introduces subexponential variables
of the shape l : a, where a is a subexponential constant, i.e., a ∈ I. Thus, SELL�

sequents have the form A;L;Γ −→ G, where A = AΣ ∪ {l1 : a1, . . . , ln : an}, and
{l1, . . . , ln} is a disjoint set of subexponential variables and {a1, . . . , an} ⊆ I are subex-
ponential constants. Formally, only these subexponential constants and variables may
appear free as an index of subexponential bangs and question marks.

The introduction rules for the subexponential quantifiers look similar to those in-
troducing the first-order quantifiers, but instead of manipulating the context L, they
manipulate the context A:

A;L;Γ, P[l/x] −→ G
A;L;Γ,�x : a.P −→ G

�L
A, le : a;L;Γ −→ G[le/x]
A;L;Γ −→ �x : a.G

�R

A, le : a;L;Γ, P[le/x] −→ G
A;L;Γ,�x : a.P −→ G

�L
A;L;Γ −→ G[l/x]
A;L;Γ −→ �x : a.G

�R

In these rules, l : a ∈ A and le is fresh, i.e., it does not appear in A nor L. Intu-
itively, subexponential variables play a similar role as eigenvariables. The generic vari-
able li : ai represents any subexponential constant that is in the ideal of the subexponen-
tial constant a. This is formalized by constructing from a given sequent,A;L;Γ −→ G,
a pre-order, called sequent pre-order, written 
A. This pre-order is formally used in the
side condition of the promotion rule and is defined on subexponentials obtained from
applying a family fi ∈ F to an element of I. Formally, it is the transitive and reflexive
closure of the following sets:

{f(si : a) 
A f(s j : b) | f ∈ F, si, s j ∈ I and si 
 s j} ∪
{f(l : a) 
A f(s : b) | f ∈ F, l � I, s ∈ I and a 
 s}

The first component of this set specifies that families preserve the pre-order 
 in Σ
only involving subexponential constants; thus 
A is a conservative extension of 
. The
second component is the interesting one, which relates subexponential obtained from
variables and subexponentials obtained from constants: l : a means that l belongs to the
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ideal of a and if a 
 s, then f(l) 
A f(s). Notice that f(l1) and f(l2) are unrelated for two
different subexponentials variables l1 and l2.

The pre-order 
A is used in the right-introduction of bangs and the left-introduction
of question-marks in a similar way as before in SELL

A;L; !f(l1: a1)F1, . . . !f(ln: an)Fn −→ G

A;L; !f(l1: a1)F1, . . . , !f(ln: an)Fn −→ !f(l : a)G
!f(l:a)

R

A;L; !f(l1: a1)F1, . . . !f(ln : an)Fn, P −→ ?f(ln+1: an+1)G

A;L; !f(l1: a1)F1, . . . , !f(ln: an)Fn, ?f(l : a)P −→ ?f(ln+1: an+1)G
?f(l:a)

L

with the side condition that for all 1 ≤ i ≤ n + 1, f(l : a) 
A f(li : ai).
Notice that bangs and question marks use families, while quantifiers use only con-

stants and variables. This interplay allows us to bind formulas with different families,
such as in the formula �l : a.(!f(l : a)F ⊗ !g(l : a)F′).

As pointed out in [2], for cut-elimination, one needs to be careful with the structural
properties of subexponentials. For subexponential variables, we define f(li : a) to be
always bounded, while for subexponential constants, it is similar as before: if f(s : a) ∈
U, then structural rules can be applied. We can now state our desired result.

Theorem 1. For any signature Σ, the proof system SELL� admits cut-elimination.

3 CCP Calculi

Concurrent Constraint Programming (CCP) [15,16] is a model for concurrency that
combines the traditional operational view of process calculi with a declarative view
based on logic. This allows CCP to benefit from the large set of reasoning techniques
of both process calculi and logic. In CCP, processes interact with each other by telling
and asking constraints (pieces of information) in a common store of partial information.
The type of constraints processes may act on is not fixed but parametric in a constraint
system (CS for short). Such systems can be formalized as a Scott information system
as in [15], or they can be built upon a suitable fragment of logic e.g., as in [8]. Here we
specify constraints as formulas in a fragment of intuitionistic first-order logic (LJ [5]).

Definition 1 (Constraint System [4]). A constraint system is a tuple (C, �Δ) where C
is a set of formulas (constraints) built from a first-order signature and the grammar

F := 1 | A | F ∧ F | ∃x.F
where A is an atomic formula. We shall use c, c′, d, d′, etc, to denote elements of C.
Moreover, let Δ be a set of non-logical axioms of the form ∀x.(c ⊃ c′) where all free
variables in c and c′ are in x. We say that d entails d′, written as d �Δ d′, iff the sequent
Δ, d −→ d′ is probable in LJ [5].

The language of determinate CCP processes is built from constraints in the underlying
constraint system as follows:

P,Q ::= tell(c) | ask c then P | P ‖ Q | (local x) P | p(x)

where variables in x are pairwise distinct. A way to introduce non-determinism in CCP
is by adding the usual non-deterministic choice operator P+P′. However, as the systems
considered here are all determinate, we shall add this operator only when needed.
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(X;Γ; c) ≡ (X′;Γ′; c′) −→ (Y ′; Δ′; d′) ≡ (Y ;Δ; d)
(X;Γ; c) → (Y ;Δ; d)

REQUIV

(X; tell(c), Γ; d) −→ (X;Γ; c ∧ d)
RT

d �Δ c
(X; ask c then P, Γ; d) −→ (X; P, Γ; d)

RA

x � X ∪ f v(d) ∪ f v(Γ)
(X; (local x) P, Γ; d) −→ (X ∪ {x}; P, Γ; d)

RL
p(x)

def
= P

(X; p(y), Γ; d) −→ (X; P[y/x], Γ; d)
RC

(a) Operational rules for CCP.

(X; P; c) −→ (X′; P′; d)
(X; [P]i; c) −→ (X′; [P]i, P′; d)

RE
(X; P; di) −→ (X′; P′; d′)

(X; [P]i; d) −→ (X′; [P′]i; d ∧ si(d′))
RS

(b) Operational rules for eccp and sccp

(X;� P;Γ; d) −→ (X; P, ◦� P;Γ; d)
R�

n ≥ 0
(X;�P, Γ; d) −→ (X; ◦nP, Γ; d)

R�

(∅; P; c) −→∗ (X;Γ; d) �−→
P

(c,∃X.d)
====⇒ (local X) F(Γ)

RObs

(c) Internal and Observable rules for timed-ccp. ◦n means ◦...◦ n-times. F(Γ) –the future of
Γ– is defined as: F(ask c then Q) = ∅, F(◦Q) = Q and F(P1, ...,Pn) = F(P1) ‖ ... ‖ F(Pn)

Fig. 1. Operational semantics for CCP calculi

The process tell(c) adds c to the store d producing the new store d ∧ c. The process
ask c then P evolves into P if the store entails c. Otherwise, it remains blocked un-
til more information is added to the store. This provides a synchronization mechanism
based on constraint entailment. The process (local x) P behaves as P and binds the vari-
ables in x to be local to it. The process p(x) evolves into P[x/y] provided the definition

p(y)
def
= P where all free variables of P are in the pairwise distinct variables y.

The operational semantics of CCP is given by the transition relation γ −→ γ′ sat-
isfying the rules on Figure 1(a). These rules are straightforward realizing the opera-
tional intuitions given above. Moreover, they will form the core of transitions common
to the other systems that we encode later. A configuration γ is a triple of the form
(X;Γ; c), where c is a constraint (a logical formula specifying the store), Γ is a mul-
tiset of processes, and X is a set of hidden (local) variables of c and Γ. The multiset
Γ = P1, P2, . . . , Pn represents the process P1 ‖ P2... ‖ Pn. We shall indistinguishably
use both notations to denote parallel composition of processes.

Processes are quotiented by a structural congruence relation � satisfying: (1) P ‖
Q � Q ‖ P; (2) P ‖ (Q ‖ R) � (P ‖ Q) ‖ R; and (3) (local x) P � (local y) P[y/x] if
y � f v(P). Furthermore, Γ = {P1, ..., Pn} � {P′1, ..., P′n} = Γ′ iff Pi � P′i for all 1 ≤ i ≤ n.
Finally, (X;Γ; c) � (X′;Γ′; c′) iff X = X′, Γ � Γ′ and c ≡Δ c′ (i.e., c �Δ c′ and c′ �Δ c).

Let −→∗ be the reflexive and transitive closure of −→. If (X;Γ; d) −→∗ (X′;Γ′; d′)
and ∃X′.d′ �Δ c we write (X;Γ; d) ⇓c. If X = ∅ and d = 1 we simply write Γ ⇓c.
Intuitively, if P is a process then P ⇓c captures the outputs of P (under input 1).

4 Encoding CCP Languages as SELL� Formulas

This section gives an interpretation of CCP processes as SELL� formulas. The encoding
we propose will be used as basis in the subsequent sections to encode CCP calculi that
include modalities. For this, we rely on the two following features of SELL�. The first
one is the subexponential quantifiers� and �, which enable the specification of systems
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governing an unbounded number of modalities, e.g., spaces or agents. For instance,
these quantifiers allow us to specify that process definitions are available to all entities
in the system. The second feature is the presence of non-equivalent subexponential
prefixes (such as, e.g., !i or !i?i) which will be written generically as

�
i. This is the key

for encoding correctly the different modalities, such as spatial, epistemic or temporal.
As we mentioned before, while in linear logic there are only seven classes of modalities,
SELL� (and even SELL) allows for an unbounded number of non-equivalent prefixes.

4.1 Basic Encoding

We shall use a signature 〈I ∪ {nil,∞},
, {c, p, d},U〉 with three families and two dis-
tinguished elements nil (the least element) and ∞ (the greatest element). Moreover,
c(a) ∈ U for all a ∈ I ∪ {nil,∞} and p(∞) ∈ U, while p(nil), d(nil) � U. Intuitively,
the family c is used to mark constraints; the family p is used to mark processes; and the

family d is used to mark procedures p(x) whose definition p(y)
def
= P may be unfolded.

As it will be clear later, the remaining indices in I specify the modalities available in the
system, where nil represents no modality. For instance, p(nil) will mark a process that
is not under any modality. Since process definitions, non-logical axioms and constraints
can be used as many times, c(a), p(∞) for any a ∈ I are unbounded; since processes and
procedure calls are consumed when executed, p(nil) and d(nil) are bounded.

Encoding Constraints and Processes Constraints and processes are encoded in SELL�

by using two functions:P[[P]]l for processes and C[[c]]l for constraints. These encodings
will depend on the system that we want to encode and they are parametric on an index
l ∈ I. Next we define such functions for the set of basic processes and constraints shown
in Section 3. Later, we refine these encodings by adding new cases handling the specific
constraints of each system. These cases will basically play with the index l.

Definition 2 (Encoding of Constraints and Processes). Let 〈I∪{nil,∞},
, {c, p, d},U〉
be a subexponential signature, and let l ∈ I. For any constraint c, atomic formula A and
process P we define C[[c]]l and P[[P]]l as follows:

C[[c1 ∧ c2]]l = C[[c1]]l ⊗ C[[c2]]l

C[[∃x.c]]l = ∃x.C[[c]]l

C[[A]]l =
�
c(l) A

C[[1]]l =
�
c(l) 1

P[[tell(c)]]l = !p(l)[�s : l.(C[[c]]s)]
P[[ask c then P]]l = !p(l)[�s : l.(C[[c]]s −◦ P[[P]]s)]
P[[(local x) P]]l = !p(l)[�s : l.∃x.(P[[P]]s)]
P[[P1, ..., Pn]]l = P[[P1]]l ⊗ ... ⊗ P[[Pn]]l

P[[p(x)]]l =
�
d(l) p(x)

Hence, atomic constraints, processes and procedure calls (p(x)) are marked, respec-
tively, with subexponentials from the c, p and d family. The role of the subexponential
quantifiers in the encoding will become clear in the following sections. The idea is
that they allow choosing in which modality a resulting process should be placed. We
note that by using simple logical equivalences, the encoding C[[c]]l can be rewritten as
∃x.
[�
c(l1) A1 ⊗ · · · ⊗�

c(ln) An

]
where each Ai is an atomic formula or the unit 1.

Encoding Non-Logical Axioms and Process Definitions A non-logical axiom of the
form ∀x(d ⊃ c) is encoded as:

�l : ∞.∀x.(C[[c]]l −◦ C[[d]]l)
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nil

a b · · ·

a.a a.b . . .. . . b.a . . .

a.a.a . . . a.b.b . . .b.a.b. . .

. . . . . . . . .

∞

(a) Epistemic reasoning.

nil

a1 a2 a3

a{1,2} a{1,3} a{2,3}

∞

a{1,2,3}

(b) Common knowledge.

∞

1+

1 2+

2 3+

3 . . .

(c) Timed modalities.

Fig. 2. Subexp. signatures for epistemic and time reasoning. Here a → b denotes that a 
 b.

specifying that the non-logical axiom is available to all subexponentials in the ideal of
∞, i.e., all elements in I. Similarly, a process definition is encoded as:

�l : ∞.∀x.(
�
d(l) p(x) −◦ P[[P]]l)

We write �Δ� and �Ψ� for the set of formulas encoding the non-logical axioms Δ and
the process definitions Ψ . Finally, a configuration (X;Γ; c) is encoded as the sequent:

A;L ∪ X; !c(∞)�Δ�, !p(∞)�Ψ�,P[[Γ]]nil,C[[c]]nil −→ G
The formula G on the right is the goal to be proved, i.e., the encoding of the constraint
we are interested to know whether it can be outputted or not by the system. Finally, as
normally done [3], the fresh values X are specified as eigenvariables in the logic.

Since the left introduction rules for ∃ and ⊗ are invertible [1], we can rewrite the
sequent above as follows, where we elide the contexts A and L ∪ X:

!c(∞)�Δ�, !p(∞)�Ψ�,P[[Γ]]nil,
�
c(l1) A1, · · · ,�c(ln) An −→ G

It is worth noticing that the store is specified by the atomic formulas it contains (Ai),
marked with the prefix,

�
c(li). Up to now, from Definition 2, we have a unique li, namely

nil. The forthcoming encodings will enable different subexponential indices to be used,
illustrating the encoding’s modularity. Moreover, by changing the signature’s pre-order,
we will be able to specify different modalities (see e.g., Figure 2(a)).

The specification of processes, on the other hand, simply manipulates the set of con-
straints appearing on the left-hand side of sequents. For instance, the encoding of tell(c)
adds the atomic constraints which compose c to the left-hand side of the sequent, as in
rule RT . Repeating this process we can prove the following adequacy result.

Theorem 2. Let P be a CCP process, (C, �Δ) be a CS, Ψ be a set of process definitions.
Let

�
l be instantiated to !l. Then P ⇓c iff !c(∞)�Δ�, !p(∞)�Ψ�,P[[P]]nil −→ C[[c]]nil ⊗ �.

The adequacy that we get is in fact quite strong on the level of derivations [11]. It
relies on the completeness of the focusing strategy [1] (see the extended version of this
paper, available at the authors’ personal pages for details). This means that doing proof
search from our encoding corresponds exactly to executing processes in the encoded
CCP language. This is much stronger than the encoding of CCP in [4], which is only on
the level of provability. In fact, all our encodings, except the one for tcc (Section 4.4),
have that strong level of adequacy.

4.2 Epistemic Meaning to Subexponentials

Knight et al. in [7] proposed Epistemic CCP (eccp), a CCP-based calculi where sys-
tems of agents are considered for distributed and epistemic reasoning. In eccp, the
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constraint system, seen as an Scott information system as in [15], is extended in order
to consider spaces of agents. Roughly, each agent i has a space si and si(c) means “c
holds in the space –store– of agent i.”

The following definition gives an instantiation of an epistemic constraint system
where basic constraints are built as in Definition 1.

Definition 3 (Epistemic Constraint System (ECS)). Let A be a countable set of agent
names. An ECS (Ce, �Δe) is a CS where, for any i ∈ A, si : Ce −→ Ce satisfies:
1. si(1) = 1 (bottom preserving)
2. si(c ∧ d) = si(c) ∧ si(d) (lub preserving)
3. If d �Δe c then si(d) �Δe si(c) (monotonicity)
4. si(c) �Δe c (beliefs are facts –extensiveness–)
5. si(si(c)) = si(c) (idempotence)

CCP processes are extended in eccpwith the constructor [P]i that represents P running
in the space of the agent i. The operational rules for [P]i are specified in Figure 1(b).
In epistemic systems, agents are trustful, i.e., if an agent i knows some information c,
then c is necessarily true. Furthermore, if j knows that i knows c, then j also knows c.
For example, given a hierarchy of agents as in [[P]i] j, it should be possible to propagate
the information produced by P in the space i to the outermost space j. This is captured
exactly by the rule RE, which allows a process P in [P]i to run also outside the space of
agent i, i.e., P can be contracted. The rule RS, on the other hand, allows us to observe the
evolution of processes inside the space of an agent. There, the constraint di represents
the information the agent i may see or have of d, i.e., di =

∧{c | d �Δe si(c)}. For
instance, i sees c from the store si(c) ∧ s j(c′).

We now configure the encodings in Section 4 so to encode epistemic modalities,
starting by the subexponential signature that we use. Let A = {a1, a2, ...} be a possible
infinite set of agents and let A∗ be the set of non-empty strings of elements in A; for
example, if a, b ∈ A, then a, b, a.a, b.a, a.b.a, . . . ∈ A∗. We shall use i, l, etc to denote
elements in A∗. We shall also consider nil to be the empty string, thus the string i.nil.l
is written as i.l. We let I = A∗ ∪ {nil,∞} and U = {c(l), d(l), p(l) | l ∈ I} \ {d(nil), p(nil)}.
Intuitively, the connective !p(1.2.3) specifies a process in the structure [[[·]3]2]1, denoting
“agent 1 knows that agent 2 knows that agent 3 knows” expressions. The connective
!c(1.2.3), on the other hand, specifies a constraint of the form s1(s2(s3(·))). Notice that
all p(·) and d(·) subexponentials except the ones constructed using nil are unbounded.
This reflects the fact that both constraints and processes in the space of an agent are
unbounded, as specified by rule RE.

The pre-order 
 is as depicted in Figure 2(a). More precisely, for every two different
agent names a and b in A, the subexponentials a and b are unrelated; Moreover, two
sequences in A∗ are related i1.i2. · · · im 
 j1. j2. · · · jn whenever the following sequent is
provable !c( j1)!c( j2) · · ·!c( jn)F −→!c(i1)!c(i2) · · ·!c(in)F, for any formula F. Alternatively, the
pre-order on sequences of agent names could be defined as a ≈ a. . . . .a and b1 . . . bn 

i1.b1.i2.b2...in.bn where each ii is a possible empty string of elements in A.

The shape of the pre-order is key for our encoding. In particular, we are using one
subexponential index, e.g., p(i1.i2. · · · in), to denote a prefix of subexponential bangs
!p(i1)!p(i2) · · ·!p(in). Thus if two subexponentials l, l′ are equal in the pre-order (l ≈ l′), it
means that they represent the same equivalence class of prefixes. This way, we are able
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to quantify over such prefixes (or boxes) by using a single quantifier, for example, as
we do for the encoding of the non-logical axioms and procedure calls.

Definition 4 (Epistemic constraints and processes). We extend C[[·]]l in Definition 2
so that C[[si(c)]]l = C[[c]]l.i and

�
l is instantiated as !l. Moreover, we extend P[[·]]l in

Definition 2 so that P[[[P]i]]l = P[[P]]l.i.

Observe that, inP[[P]]l, l is the space-location where P is executed. The role of the quan-
tifier subexponentials in the encoding of processes in Definition 2 is key. For instance,
recall that P[[ask c then P]]l = !p(l)[�s : l.(C[[c]]s −◦ P[[P]]s)]. Here !p(l) specifies the
epistemic state []l where the process is. On the other hand, �s : l., specifies that one can
move the process anywhere in the ideal of l. From the pre-order shown in Figure 2(a),
this means moving the process to anywhere outside the box []l. This corresponds exactly
to the operational rule RE. Moreover, since p(l) ∈ U, the process is unbounded, thus the
encoding P[[ask c then P]]l is not consumed. In fact, the sequent P[[P]]l.i −→ P[[P]]l is
provable for any process P and indexes l and i. That is, any process can move to an outer
box (see details in the extended version of this paper, available at the authors’ personal
page).

The following proposition shows that C[[·]]l, the proposed translation of constraints
to formulas in SELL�, represents indeed an epistemic constraint system.

Proposition 1. Let (Ce, �Δe ) be an ECS and C[[·]]l be as in Definition 4. Then, for any l:
1. C[[1]]l ≡ 1 (bottom preserving);
2. C[[c ∧ d]]l ≡ C[[c]]l ⊗ C[[d]]l (lub preserving);
3. If d �Δe c then !c(∞)�Δe�,C[[d]]l −→ C[[c]]l (monotonicity);
4.C[[si(c)]]l −→ C[[c]]nil (beliefs are facts);
5. C[[si(si(c))]]l ≡ C[[si(c)]]l (idempotence).

Example 1 (Epistemic Reasoning). Let P = tell(c), Q = ask c then tell(d) and R =
[P ‖ [Q]b]a. The following sequent is provable P[[R]]nil −→!c(a)c⊗!c(nil)c ⊗ �. That is, c
is known by agent a and the external environment (i.e., c is a fact). Also, P[[R]]nil −→
!c(a)d ⊗ � since Q also runs in the scope of a. This intuitively means that a knows that
b knows that if c is true, then d is true. Therefore, a knows c and d. Furthermore, the
agent b does not know c, i.e., the sequent P[[R]]nil −→!c(b)c ⊗ � is not provable.

Theorem 3 (Adequacy). Let P be an eccp process, (Ce, �e) be an ECS, Ψ be a set
of process definitions and let C[[·]]l and P[[·]]l be as in Definition 4. Then P ⇓c iff
!c(∞)�Δe�, !p(∞)�Ψ�,P[[P]]nil −→ C[[c]]nil ⊗ �.

This result, besides giving an interesting interpretation of subexponentials as knowledge
spaces, gives a proof system for the verification of eccp processes. Note that, because
of the “�” connective, we only consider the observables of a process regardless whether
the final configuration has suspended ask processes.

So far, we have assumed that knowledge is not shared by agents. Next example shows
how to handle common knowledge among agents. The approach is similar to the one
given in [7], by introducing announcements of constraints among group of agents, but
by using our proof theoretic framework.
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Example 2 (Common Knowledge). Assume a finite set of agents A = {a1, ..., an} and a

process definition: globalP()
def
= P ‖ [P ‖ globalP()]a1 ‖ ... ‖ [P ‖ globalP()]an . For

instance, globaltell(c) makes c available in all spaces and nested spaces involving agents
in A. Instead of computing common knowledge by recursion, we can complement the
subexponential signature as in Figure 2(b) where for all S ⊆ A, i 
 aS for any string
i ∈ S∗. Then, the announcement of c on the group of agents S can be represented by
!c(aS)c. Notice that the sequent !c(aS)c −→ !c(i)c can be proved for any i ∈ S∗.

4.3 Spaces and Information Confinement

Inconsistent information in CCP arises when considering theories containing axioms
such as c ∧ d �Δ 0. Notice that agents are not allowed to tell or ask false, i.e., 0 is not
a (basic) constraint. Unlike epistemic scenarios, in spatial computations, a space can
be locally inconsistent and it does not imply the inconsistency of the other spaces (i.e.,
si(0) does not imply s j(0)). Moreover, the information produced by a process in a space
is not propagated to the outermost spaces. In [7], spatial computations are specified
in spatial CCP (sccp) by considering processes of the form [P]i as in the epistemic
case, but excluding the rule RE in the system shown in Figure 1(b). Furthermore, some
additional requirements are imposed on the representation of agents’ spaces (si(·)).
Definition 5 (Spatial Cons. Sys. (SCS)). Let A be a countable set of agent names. An
SCS (Cs, �Δs ) is a CS where, for any i ∈ A, si : Cs −→ Cs is a mapping satisfying bottom
and lub preserving, monotonicity and false containment (see Proposition 2).

The set I = A∗ ∪ {nil,∞} is the same as in the encoding of the epistemic case but
the pre-order is much simpler: we only require that for any i ∈ A∗, i 
 ∞. That is,
two different elements of A∗ are unrelated. Since sccp does not contain the RE rule,
processes in spaces are treated linearly, i.e., we set U = {c(l) | l ∈ I}∪{p(∞)}. Moreover,
the confinement of spatial information is captured by a different subexponential prefix,
namely, by instantiating

�
l as the prefix !l?l.

Definition 6 (Spatial constraints in SELL�). The encoding C[[·]]l maps constraints in
a SCS into SELL� formulas and it is defined as in Definition 4. P[[·]]l is as in Definition
2 extended with P[[[P]i]]l = P[[P]]l.i. In both cases, however,

�
l is instantiated as !l?l.

Differently from the epistemic case, the encoding of [P]i runs P only the space of i and
not outside it. This is captured by the pre-order above and by instantiating

�
l as !l?l.

Notice that the ideal of all index l in I \ {∞} is the singleton {l}. This means that the only
way of instantiating the subexponential quantifier (�s : l) in the encoding of processes
is by using the l itself. In this way, we confine the information inside the location of
agents as states the following proposition.

Proposition 2 (False confinement). Let (Cs, �Δs ) be a SCS and C[[·]]l as in Definition
6. Then, monotonicity, bottom and lub preserving items in Proposition 1 hold. Further-
more, for any l ∈ A∗, if we assume that c ∧ d �Δs 0:
1. C[[0]]l −→ C[[c]]l (any c can be deduced in l if its local store is inconsistent);
2. C[[0]]l −→ C[[0]]l

′ is not provable (false is confined);
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3. !c(∞)C[[Δs]],C[[c]]l,C[[d]]l −→ C[[0]]l (l becomes inconsistent if it contains c and d);
4. !c(∞)C[[Δs]],C[[c]]l,C[[d]]l

′ −→ C[[0]]l is not provable
5. C[[c]]l −→ c and C[[c]]l −→ C[[c]]nil are both not provable (local info. is not global).

Example 3 (Local stores). Let P = tell(c) and Q = ask c then tell(d). Let R =
[P]a ‖ [Q]b. Then, Q remains blocked since the information c is only available on
the space of a. In our encoding, as !c(a)?c(a)c −→ !c(b)?c(b)c is not provable, the sequent
P[[R]]nil −→!c(b)?c(b)d ⊗ � is also not provable. Now let R = [P]a ‖ [Q]a. The process
P adds d in the space of a and then, Q can evolve. Thus, P[[R]]nil −→!c(a)?c(a)d ⊗ � is
provable. Moreover, c does not propagate outside the scope of agent a, i.e., the sequent
P[[R]]nil −→ !c(nil)?c(nil)c ⊗ � is not provable. Finally, consider R = [[P]a]b ‖ [Q]a. Since
a � b.a and b.a � a, the sequent !c(b.a)?c(b.a)c −→ !c(a)?c(a)c is not provable. Thus, the
process Q inside the agent a remains blocked, i.e., the sequentP[[R]]nil −→!c(a)?c(a)d⊗�
is not provable. This intuitively means that the space that b confers to a may behave
differently (i.e., it contain different information) from the own space of a. The same
reasoning applies for the process R = [[P]a]a ‖ [Q]a. This means that, in general, the
space of a inside a is different from the space a (a � a.a). If we want spaces to be
idempotent, we simply need to add the equivalence a.a ≈ a to the pre-order.

Theorem 4 (Adequacy). Let P be an sccp process, (Cs, �s) be an SCS, Ψ be a set of
process definitions and C[[·]]l and P[[·]]l be as in Definition 6. Then P ⇓c iff
!c(∞)�Δs�, !p(∞)�Ψ�,P[[P]]nil −→ P[[c]]nil ⊗ �.

4.4 Temporal Modalities

Saraswat et al. proposed in [17] timed-CCP (tcc), an extension of CCP for the speci-
fication of reactive systems. In tcc, time is conceptually divided into time intervals (or
time units). In a particular time interval, a CCP process P gets an input c from the en-
vironment, it executes with this input as the initial store, and when it reaches its resting
point, it outputs the resulting store d to the environment. The resting point determines
also a residual process Q which is then executed in the next time unit. The resulting
store d is not automatically transferred to the next time unit. Hence, computations dur-
ing a time-unit proceed monotonically (by adding information to the store), but outputs
of two different time-units are not supposed to be related to each other. This view of re-
active computation is akin to synchronous languages such as Esterel, where the system
reacts continuously with the environment at a rate controlled by the environment.

The syntax of CCP is extended in tcc by including temporal operators:
P,Q ::= · · · | ◦P | � P

The process ◦P delays the execution of P in one time-unit. The replication � P means
P ‖ ◦P ‖ ◦ ◦ P ‖ . . ., i.e., unboundly many copies of P, but one at a time.

In tcc, recursive calls are assumed to be guarded by a “◦” process to avoid non-
terminating sequences of recursive calls during a time-unit. Recursive procedures can
then be encoded via replication (see [8]) and we omit them here. We also distinguish
between internal (−→) and observable ( ====⇒) transitions. The internal transition of
the form (X;Γ; c) −→ (X′;Γ′; c′) is similar to that of CCP plus the additional rules for
the timed constructs (see Figure 1(c)). A process � P executes one copy of P in the
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current time-unit and then, executes again � P in the next time-unit (Rule R�). The
seemingly missing rule for ◦P is given by the observable transition relation.

Assume that (∅;Γ; c) −→∗ (X;Γ′; c′) �−→. We say that (the parallel composition in)

Γ under input c outputs ∃X.c′ and we write Γ
(c,∃X.c′)
====⇒ Υ where Υ = (local X) F(Γ′)

corresponds to the future of Γ′ (see Figure 1(c)). Roughly, the future function drops
any ask whose guard cannot be entailed from the final store. Furthermore, it unfolds
the processes guarded by “◦”. Note that F(·) does not consider the processes tell(c),
� P and (local x) P since all of them have an internal transition. Therefore, in a final

configuration (X, Γ, c) �−→ they must occur within the scope of “◦”. If, Γ = Γ1
(1,c1)
====⇒

Γ2...Γn
(1,cn)
====⇒ Γn+1 and cn �Δ c, we say that Γ outputs c and we write Γ ⇓c.

As before, we use a specific subexponential signature but with only two families c
and p as procedure calls are not required as we explained before:

I = {∞, nil} ∪ {i, i+ | i ≥ 1} U = {c(i), | i ∈ I} ∪ {p(∞)}.
Notice that only the subexponentials marking constraints, c(·), and boxed processes,
p(∞), are unbounded, as they can be used as many times as needed. On the other hand,
subexponentials processes, p(·), are bounded.

The pre-order is depicted in Figure 2(c), where a descending chain is formed with the
numbers marked with “+”. Intuitively, the subexponential i is used to specify a given
time-unit while i+ is used to store processes valid from the time-unit i on. This chain
captures the semantics of � P: if � P appears in time i, then P should be available at any
future time. Formally, that chain allows us to specify, by using a quantifier �l : i+, that
P can be instantiated anywhere in the ideal of i+, i.e., in future time units.

Definition 7 (Timed Constraints in SELL�). We instantiate
�

l as !l?l. The interpre-
tation C[[·]]l is as in Definition 2, while we modify P[[·]]l as follows:

P[[tell(c)]]l = !p(l)C[[c]]l P[[ask c then P]]l = !p(l)(C[[c]]l −◦ P[[P]]l)
P[[(local x) P]]l = !p(l)(∃x.(P[[P]]l)) P[[◦P]]i = P[[P]]i+1

P[[� P]]i =!p(∞)�l : i+(P[[P]]l)

The encoding of the non-temporal operators are similar as before, just that we do not
need the subexponential quantification. While the encoding of ◦P is straightforward,
the encoding of � P is more interesting. If the process � P is executed in the time-unit
i, then the encoding of P must be available in subexponentials representing the subse-
quent time-units. For example, let P = � ask c then Q. The process P must execute
Q in all time-units j ≥ i whenever c can be deduced in j. We make use of universal
quantification over locations to capture this behavior.

We note that the observable transition ( ====⇒) results from a finite sequence of
internal (−→) transitions (RObs in Figure 1(c)). Proof theoretically, detecting that a given
configuration cannot longer be reduced is problematic in general. In fact, the adequacy
theorem below is not on the level of derivations, as our previous theorems, but only at
the level of provability [11]: P outputs c iff one can prove that there is a time-unit where
c holds. Key for proving this theorem is the use of !l?l prefixes as for the sccp case.
More precisely, facts are confined to a determinate time unit: any formula derived in a
subexponential representing a time unit is not spilled to other subexponentials, unless
explicitly specified. We note also that we consider here the monotonic fragment of tcc
i.e., we do not include the time-out unless c (◦P) that executes P in the next time-unit
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if c cannot be deduced. This operator lacks of a proper proof theoretic semantics: the
reduction to P amounts to showing that there is no proof of c.

Theorem 5 (Adequacy). Let P be a timed process, (Ct, Δt) be a CS and P[[·]]l as in
Definition 7. Then P ⇓c iff !c(∞)�Δt�,P[[P]]1 −→ �l : 1+.!c(l)?c(l)c ⊗ �.

5 Concluding Remarks

In this paper, we have introduced quantification over subexponentials in linear logic
with subexponentials and proved that cut elimination is admissible for the resulting sys-
tem (SELL�), reflecting a pleasant duality with the standard quantification over terms.
We demonstrated that SELL� is, indeed, a powerful tool for specifying concurrent sys-
tems involving modalities by proposing novel encodings for CCP-calculi featuring epis-
temic, spatial and timed modalities, hence providing a proof-theoretic foundation for
those calculi.

We believe that there are many directions to follow from this work. For instance,
in our encoding, we did not need the generation of fresh subexponential variables by
using the rules �R and �L. As done with eigenvariables for modeling nonces in security
protocol [3], it seems possible to create new modalities, such as new spaces or new
agents not related to the ones already created as in the Ambient Calculus. This would
solve the limitation of sccp and eccp in [7] where the set of agents is fixed.

Although this paper does not consider non-determinism, some form of it can be eas-
ily captured. For instance a non-deterministic choice of the form P +Q can be encoded
as the formula F = P[[P]]l & P[[Q]]l. In fact, by adding and moving subexponential
bangs, it is possible to model precisely don’t-care and don’t-know choices [10]. Thus,
non-determinism (not-considered in [7] for neither sccp nor eccp) can be also intro-
duced in sccp, where processes do not contract. For a second example, consider the
ntcc calculus [8] which extends tccwith guarded non-deterministic choices and asyn-
chrony. For the later, the process �P represents an arbitrary long, but finite delay for
the activation of P; that is, �P non-deterministically chooses n ≥ 0 and behaves as ◦nP
(see Rule R� in Figure 1(c)). It seems possible to encode this behavior by extending
P[[·]]l with the following case: P[[�P]]i = �l : i+.P[[P]]l. Roughly, if �P is executed in
time-unit i, then there is a subexponential j such that j 
 i+ (i.e., a future time-unit j)
and the encoding of P holds using that subexponential.

However, for adequacy, some care has to be taken to avoid undesired interactions
between � and a non-deterministic processes P (containing � or +): P[[� P]]l yields a
formula of the form !p(∞)F. Due to the connective !p(∞) that precedes F, by contraction,
it is possible to have a derivation with two copies of F representing the process P ‖ P
that does not behave as P, thus breaking adequacy.

We think that CCP research can greatly profit from this work. Due to the modularity
of our encoding, it seems possible to design variants of CCP by simply configuring the
subexponentials differently or by using different prefixes. For instance, by using a mix
of linear and unbounded c(·) subexponentials, it is possible to specify a spatial CCP
language that allows constraints to be consumed. It also seems possible to design CCP
models that allow for the creation of new spaces or agents. Finally, one could explore
the use of these new variants of CCP and their declarative reading as SELL� formulas to
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reason about other models of concurrency (see e.g., [14] that studies different fragments
of the asynchronous π-calculus through the CCP model).
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by Digiteo and DGAR (École Polytechnique) funds for visitors.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. of Logic and
Computation 2(3), 297–347 (1992)

2. Danos, V., Joinet, J.-B., Schellinx, H.: The structure of exponentials: Uncovering the dynam-
ics of linear logic proofs. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS,
vol. 713, pp. 159–171. Springer, Heidelberg (1993)

3. Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: Multiset rewriting and the complexity
of bounded security protocols. JCS 12(2), 247–311 (2004)

4. Fages, F., Ruet, P., Soliman, S.: Linear concurrent constraint programming: Operational and
phase semantics. Information and Computation 165(1), 14–41 (2001)

5. Gentzen, G.: Investigations into logical deductions. In: Szabo, M.E. (ed.) The Collected Pa-
pers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam (1969)

6. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
7. Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and epistemic modalities

in constraint-based process calculi. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012.
LNCS, vol. 7454, pp. 317–332. Springer, Heidelberg (2012)

8. Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint programming:
Denotation, logic and applications. Nordic Journal of Computing 9(1), 145–188 (2002)

9. Nigam, V.: On the complexity of linear authorization logics. In: LICS, pp. 511–520. IEEE
(2012)

10. Nigam, V., Miller, D.: Algorithmic specifications in linear logic with subexponentials. In:
PPDP, pp. 129–140. ACM (2009)

11. Nigam, V., Miller, D.: A framework for proof systems. J. Autom. Reasoning 45(2), 157–188
(2010)

12. Nigam, V., Pimentel, E., Reis, G.: Specifying proof systems in linear logic with subexponen-
tials. Electr. Notes Theor. Comput. Sci. 269, 109–123 (2011)

13. Olarte, C., Rueda, C., Valencia, F.D.: Models and emerging trends of concurrent constraint
programming. Constraints (2013)

14. Palamidessi, C., Saraswat, V.A., Valencia, F.D., Victor, B.: On the expressiveness of linearity
vs persistence in the asychronous pi-calculus. In: LICS, pp. 59–68. IEEE Computer Society
(2006)

15. Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent constraint
programming. In: POPL, pp. 333–352. ACM (1991)

16. Saraswat, V.A.: Concurrent Constraint Programming. MIT Press (1993)
17. Saraswat, V.A., Jagadeesan, R., Gupta, V.: Timed default concurrent constraint programming.

J. Symb. Comput. 22(5/6), 475–520 (1996)
18. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical framework I: Judg-

ments and properties. TR CMU-CS-02-101, CMU (2003)



Compositional Choreographies

Fabrizio Montesi1 and Nobuko Yoshida2

1 IT University of Copenhagen
2 Imperial College London

Abstract. We propose a new programming model that supports a composition-
ality of choreographies. The key of our approach is the introduction of partial
choreographies, which can mix global descriptions with communications among
external peers. We prove that if two choreographies are composable, then the
endpoints independently generated from each choreography are also composable,
preserving their typability and deadlock-freedom. The usability of our framework
is demonstrated by modelling an industrial use case implemented in a tool for
Web Services, Jolie.

1 Introduction

Choreography-based programming is a powerful paradigm for designing communicat-
ing systems where the flow of communications is defined from a global viewpoint,
instead of separately specifying the behaviour of each endpoint (peer). The local be-
haviour of the endpoints can then be automatically generated by means of EndPoint
Projection (EPP). This paradigm has been used in standards [21,4] and language imple-
mentations [11,19,20,8]. Choreographies impact significantly the quality of software:
they lower the chance for programming errors and ease their detection [16,6,7].

Previous works provide models for programming implementations of communicat-
ing systems with choreographies [6,7]. These models come with a type discipline for
checking choreographies against protocol specifications given as session types [12],
which are used to verify that the global behaviour of a choreography implements the
expected communication flows. For example, a programmer may express a protocol
using a multiparty session type [13] (or global type) such as the following one:

B -> C : 〈string〉; C -> B : 〈int〉; B -> T :

{
ok : B -> T : 〈string〉; T -> B : 〈date〉,

quit : end

}
Above, B, C and T are roles and abstractly represent endpoints in a system. In the proto-
col, a buyer B sends the name of a product to a catalogue C, which replies with the price
for that product. Then, B notifies the transport role T of whether the price is accepted or
not. In the first case (label ok), B sends also a delivery address to T and T replies with
the expected delivery date. Otherwise (label quit), the protocol terminates immediately.

To the best of our knowledge, all previous choreography programming models
(e.g., [7,6]) require the programmer to implement the behaviour of all roles in a protocol
where it is used; e.g., it would not be possible to write the choreography of a system that
uses the protocol above but gives the implementations only of roles C and T, to make

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 425–439, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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those reusable by other programs as software libraries through an API. This seriously
hinders the applicability of choreographies in industrial settings, where the interoper-
ability of different systems developed independently is the key. In particular, it is not
currently possible to:

– use choreographies to develop software libraries that implement subsets of roles in
protocols such that they can be reused from other systems;

– reuse an existing software library that implements subsets of roles in protocols from
inside a choreography.

To tackle the issues above, we ask: Can we design a choreography model in which
the EPP of a choreography can be composed with other existing systems? The main
problem is that existing choreography models rely on the complete knowledge of the
implementation details of all endpoints to ensure that the systems generated by EPP will
behave correctly. This complete knowledge is not available when independently devel-
oped implementations of distributed protocols need to be composed. In order to answer
our question, we build a model for developing partial choreographies. Partial chore-
ographies implement the behaviour of subsets of the roles in the protocols they use.
Endpoint implementations are then automatically generated from partial choreogra-
phies and composed with other systems, with the guarantee that their overall execution
will follow the intended protocols and the behaviour of the originating choreographies.

Main Contributions. We provide the following contributions:
Compositional Choreographies. We introduce a new programming model for chore-
ographies in which the implementation of some roles in protocols can be omitted (§ 3).
These partial choreographies can then be composed with others through message pass-
ing. Our model allows to describe both choreographies with many participants or just a
single endpoint. We provide a notion of EPP that produces correct endpoint code from
a choreography, and we show that the EPP of a choreography preserves its composi-
tional properties (§ 5). Our model introduces shared channel mobility to choreogra-
phies, which gains a dynamism when two protocols are composed.
Typing. We provide a type system for checking choreographies against protocol speci-
fications given as multiparty session types [13]. The type system ensures that the com-
position of different programs implements the intended protocols correctly (§ 4), and
that our EPP produces code that follows the behaviour of the originating choreogra-
phies. Our framework guarantees that the EPP is still typable (§ 5); therefore, the EPP
is reusable as a “black box” composable with other systems and the result of the com-
position can be checked for errors by referring only to types.
Deadlock-freedom and Progress among Composed Choreographies. In the presence
of partial choreographies, we prove that we can (i) capture the existing methodologies
for deadlock-freedom in complete choreographies as in [6,7] and (ii) extend the notion
of progress for incomplete systems investigated in [13] to choreographies (§ 5). Our
results demonstrate for the first time that choreographies can be effectively used also as
a tool for progress in a compositional setting, offering a new viewpoint for investigating
progress and giving a fresh look to the results in [6,7].

Proofs, auxiliary definitions, and other resources are posted at [1], including an im-
plementation of our use case (§ 2) with Jolie [15,18].
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2 Motivations: A Use Case of Compositional Choreographies

We present motivations for this study by reporting a use case from our industry collabo-
rators [14], and informally introducing our model. For clarity, we discuss only its most
relevant parts. An extended version can be found at [1].

In our use case a buyer company needs to purchase a product from one of many
available seller companies. The use case has two aspects that previous choreography
models cannot handle: (i) the system of the buyer company is developed independently
from those of the seller companies, and use the latter as software modules without
revealing internal implementation details; (ii) depending on the desired product, the
buyer company selects a suitable seller company at runtime. We address these issues
with partial choreographies. A partial choreography implements a subset of the roles in
a protocol, leaving the implementation of the other roles to an external system. External
systems can be discovered at runtime. In our case, the buyer company will select a seller
and then run the protocol from the introduction by implementing only the buyer role B,
and rely on the external seller system to implement the other two roles C and T.

Buyer Choreography. We now define a choreography for the buyer company, CB .

CB =

1. u[U] starts pd[PD] : a(k); u[U].prod -> pd[PD].x : k;
2. pd[PD] starts r[R] : b(k′); pd[PD].x -> r[R].y : k′; r[R].find(y) -> pd[PD].z : k′;
3. pd[B] req C, T : z(k′′); pd[B].x -> C : k′′; C -> pd[B].price : k′′;
4. if check(price)@pd then
5. pd[B] -> T : k′′ ⊕ ok; pd[PD] -> u[U] : k[del]; pd[PD] -> u[U] : k〈k′′[B]〉;
6. u[B].addr -> T : k′′; T -> u[B].ddate : k′′

7. else
8. pd[B] -> T : k′′ ⊕ quit; pd[PD] -> u[U] : k[quit]

Above, a purchase in the buyer company is initiated by a user process u. In Line 1, pro-
cess u and the freshly created process pd (for purchasing department) start a session k
by synchronising on shared channel a. Each process is annotated with the role it plays in
the protocol that the session implements. Then, still in Line 1, u sends the product prod
the user wishes to buy to pd. In Line 2 pd starts a new session k′ with a fresh process r
(a service registry) through shared channel b. Then, pd forwards the product name to r,
which replies with the shared channel of the seller to contact for the purchase.

We refer to statements such as those in Lines 1-2 as complete, since they describe
the behaviour of all participants, both sender and receiver(s). On the other hand, the
continuation in Lines 3-8 is a partial choreography that relies on the selected external
seller to implement the protocol shown in the introduction and perform the purchase.

The partial choreography in Lines 3-8 is depicted as a sequence chart in Fig. 1.a,
where dashed lines indicate interactions with external participants. In Line 3 pd re-
quests a synchronisation on the shared channel stored in its local variable z to create
the new session k′′, declaring that it will play role B and that it expects the environ-
ment to implement roles C and T. Session k′′ proceeds as specified by the protocol in
the introduction. First, pd sends the product name stored in x through session k′′ to the
external process that is playing role C (the product catalogue executed by the seller com-
pany). Observe that here we do not specify the process name of the receiver, since that
will be established by the external seller system. Then, pd waits to receive the price for
the product from the external process playing role C in k′′. In Line 4, pd checks whether



428 F. Montesi and N. Yoshida

u pd T : k'' C : k'' 
start k''start k''

product

price

[ok]
[del]

delegate k''

address

date

[quit]
[quit]

choice

(a)

B : k'' t c

start k''start k''
product

price

[ok]

[quit]

address

date

external

choice

(b)

u pd

start k''start k''
product

price

[ok]
[del]

delegate k''

address

date

[quit]
[quit]

t c

choice

(c)

Fig. 1. Sequence charts for buyer (a), seller (b), and their composition (c)

the price is acceptable; if so, in Line 5 pd tells the external process playing role T (the
transport process executed by the seller company) and user u (which remains internal to
the buyer choreography) to proceed with the purchase (labels ok and del respectively).
Still in Line 5, pd delegates to u the continuation of session k′′ in its place, as role B. In
Line 6, the user sends her address to T and receives a delivery date. If the price is not
acceptable, Line 7, then in Line 8 pd informs the others to quit the purchase attempt.

Seller Choreography and Composition. We define now a choreography for a seller
that can be contacted by CB . Let the find function in CB return shared channel c for
electronic products, and c′ for other products; we refer to the choreographies of the re-
spective seller companies as CS and C′S . Below, we define CS (C′S , omitted, is similar).

CS =

1. acc c[C], t[T] : c(k′′); B -> c[C].x2 : k
′′; c[C].price(x2) -> B : k′′;

2. B -> t[T] : k′′&

{
ok : B -> t[T].daddr : k′′; t[T].time(daddr) -> B : k′′

quit : 0

}
The choreography CS , depicted as a sequence chart in Fig. 1.b, starts by accepting the
creation of session k′′ through shared channel c, offering to spawn two fresh processes
c and t. Choreographies starting with an acceptance act as replicated, modelling typical
always-available modules. The acceptance in Line 1 would synchronise with the request
made by CB in the case z = c. Afterwards, c expects to receive the product name from
the process playing B in session k′′, and replies with the respective price. In Line 2, t
(the process for the transport) waits for either label ok or quit. In the first case, t also
waits for a delivery address and then sends back the expected time of arrival.

From the code of CB and CS and, graphically, from their respective sequence charts
we can see that they are compatible: sending actions match receiving actions on the
other side and vice versa. Our model can recognise this by using roles in protocols as
interfaces between partial choreographies (§ 4). The code for buyer and seller compa-
nies can be composed in a network with the parallel operator | as: C = CB | CS | C′S .
Parallel composition allows partial terms in different choreographies to communicate.
In (§ 3, Semantics) we formalise a semantics for choreography composition. To give
the intuition behind our semantics, let us consider the sequence charts in Fig. 1.a and
Fig. 1.b; their composition will behave as the sequence chart in Fig. 1.c.
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C ::= η;C (seq) | C1 | C2 (par)
| if e@p thenC1 elseC2 (cond) | (νr) C (res)

| recX(x̃@p, k̃, p̃) = C2 inC1 (rec) | X(x̃@p, k̃, p̃) (call)
| 0 (inact) | A -> q : k&{li :Ci}i∈I (branch)

η ::= p starts q̃ : a(k) (start) | p.e -> q.x : k (com)
| p -> q : k[l] (sel) | p -> q : k〈k′[A]〉 (del)
| p req B̃ : u(k) (req) | acc q̃ : a(k) (acc)
| p.e -> B : k (com-s) | A -> q.x : k (com-r)
| p -> B : k〈k′[C]〉 (del-s) | A -> q : k(k′[C]) (del-r)
| p -> B : k ⊕ l (sel-s)

p, q ::= p[A] u ::= x | a

Fig. 2. Compositional Choreographies.

3 Compositional Choreographies

This section introduces our model for compositional choreographies, a calculus where
complete and partial actions can be freely interleaved.

Syntax. Fig. 2 defines the syntax of our calculus. C is a choreography, η is a complete
or partial action, p is a typed process identifier made by a process identifier p and a role
annotation A, k is a session identifier, and a is a shared channel. A term η;C denotes a
choreography that may execute action η and then proceed as C. In the productions for
η, terms (start), (com), (sel) and (del) are complete actions, whereas all the others are
partial. In the productions for C, term (branch) is also partial.

Complete Actions. Term (start) initiates a session: process p starts a new multiparty ses-
sion through shared channel a and tags it with a fresh identifier k. p is already running
and dubbed active process, while q̃ (which we assume nonempty) is a set of bound ser-
vice processes that are freshly created. A, B̃ represent the respective roles played by the
processes in session k. Term (com) denotes a communication where process p sends,
on session k, the evaluation of a first-order expression e to process q, which binds it to
its local variable x. Expressions may be shared channel names, capturing shared chan-
nel mobility. In (sel), p communicates to q its selection of branch l. Term (del) models
session mobility: process p delegates to q through session k its role C in session k′.

Partial Actions. In term (req), process p is willing to start a new session k by synchro-
nising through shared channel a with some other external processes. p is willing to play
role A in the session and expects the other processes to play the other roles B̃. (req) terms
are supposed to synchronise with always-available service processes, modelled by term
(acc). In term (acc), processes q̃ are dynamically spawned whenever requested by a
matching (req) term on the same shared channel a. Term (com-s) models the sending of
a message from a process p to an external process playing role B in session k. Dually,
in (com-r) process q receives a message intended for B in session k from the external
process playing role A. (del-s) and (del-r) model, respectively, the sending and receiving
of a delegation of role C in session k′. (sel-s) models the sending of a selection of label
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l. (sel-s) can synchronise with a (branch) term, which offers a choice on multiple labels.
Once a label li is selected, (branch) proceeds by executing its continuation Ci.

Other Terms. In term (cond), process p evaluates condition e to choose the continuation
C1 or C2. Term (res) restricts the usage of a name r to a choreography C. r can be any
name, i.e., a process identifier p, a session identifier k, or a shared channel a. Term (par)
models the parallel composition of choreographies, allowing partial actions to interact
through the network. The other terms are standard: terms (rec), (call) and (inact) model,
respectively, a recursive procedure, a recursive call, and termination.

For clarity, we have annotated process identifiers with roles in all communications.
Technically, this is necessary only for terms (start), (req) and (acc) since roles can be
inferred from session identifiers in all other terms (cf. [7]).

Semantics. We give semantics to choreographies with a labelled transition system (lts),
whose rules are defined in Fig. 3 and whose labels λ are defined as:

λ ::= η | A -> q : k&l | if@p | (νr) λ

We distinguish between labels representing complete or partial actions with the respec-
tive sets CAct and PAct. CAct is the smallest set containing all η that are complete ac-
tions and the labels of the form if@p, closed under restrictions (νr). PAct is the smallest
set containing all η that are partial actions and the labels of the form A -> q : k&l, sim-
ilarly closed under restriction of names. We also use other auxiliary definitions. fc(C)
returns the set of all session/role pairs k[A] such that k is free in C and there is a process
performing an action as role A in session k in C. rc(λ) is defined only for partial la-
bels that are not (req) or (acc), and returns the session/role pair of the intended external
sender or receiver of λ; e.g., rc(p.e -> B : k) = k[B]. fn and bn denote the sets of free
and bound names in a label or a term. snd(η) returns the name of the sender process
in η, and is undefined if η has no sender process (e.g., when η is a (com-r)). rcv(η),
instead, returns the session/role pair k[A] where k is the session used in η and A is the
role of the receiver (similarly for rcv(λ)). fc(λ) is as fc(C), but applied on labels.

We comment the rules. Rule 4C|ACTZ handles actions that can be simply consumed.
Rule 4C|STARTZ starts a session with a global action, by restricting the names of the newly
created session identifier k and processes q̃. Rule 4C|COMZ handles the communication of
a value by substituting, in the continuation C, the binding occurrence x under process
identifier q with value v (evaluated from expression e). Similarly, rules 4C|COM-SZ and
4C|COM-RZ implement the respective partial sending and receiving actions of a communi-
cation. In rule 4C|BRANCHZ, process q receives a selection on a branching label and proceeds
accordingly. Rules 4C|CONDZ, 4C|RESZ, and 4C|CTXZ are standard. Rule 4C|PARZ makes global
actions observable and blocks partial actions if their counterpart is in the parallel branch
C2. In rule 4C|EQZ, the relation R can either be the swapping relation 6C , which swaps
terms that describe the behaviour of different processes [7], or the structural congruence
≡, which handles name restriction and recursion unfolding (see [1]).

Rule 4C|SYNCZ is the main rule and enables two choreographies to perform compatible
sending/receiving partial actions λ and λ′ to interact and realise a global action, defined
by λ ◦ λ′. Function ◦ : PAct× PAct→ CAct is formally defined by the rules below:

p[A] -> B : k〈v〉 ◦ A -> q[B] : k〈v〉 = p[A] -> q[B] : k〈v〉
p[A] -> B : k〈k′[C]〉 ◦ A -> q[B] : k(k′[C]) = p[A] -> q[B] : k〈k′[C]〉
p[A] -> B : k ⊕ l ◦ A -> q[B] : k&l = p[A] -> q[B] : k[l]
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�C|ACT* η �∈ {(com), (com-s), (com-r), (start), (acc)} ⇒ η;C
η−→ C

�C|START* η = p starts q̃[B] : a(k) ⇒ η;C
η−→ (νk, q̃) C

�C|COM* η = p.e -> q[B].x : k ⇒ η;C
p -> q[B]:k〈v〉−−−−−−−−−→ C[v/x@q] (e ↓ v)

�C|COM-S* p.e -> B : k;C
p -> B:k〈v〉−−−−−−−→ C (e ↓ v)

�C|COM-R* A -> q[B].x : k;C
A -> q[B]:k〈v〉−−−−−−−−→ C[v/x@q]

�C|BRANCH* A -> q : k&{li :Ci}i∈I
A -> q:k&lj−−−−−−−→ Cj (j ∈ I)

�C|COND* if e@p thenC1 elseC2
if@p−−−→ Ci (i = 1 if e ↓ true, i = 2 otherwise)

�C|RES* C
λ−→ C′ ⇒ (νr) C

(νr) λ−−−−→ (νr) C′

�C|CTX* C1
λ−→ C′

1 ⇒ recX(x̃@p, k̃, p̃) = C2 inC1
λ−→ recX(x̃@p, k̃, p̃) = C2 inC′

1

�C|PAR* C1
λ−→ C′

1 ⇒ C1 | C2
λ−→ C′

1 | C2 ( λ ∈ CAct ∨ rc(λ) �∈ fc(C2) )

�C|EQ* R ∈ {≡,,C} C1 R C′
1 C′

1
λ−→ C′

2 C′
2 R C2 ⇒ C1

λ−→ C2

�C|SYNC* C1
λ−→ C′

1 C2
λ′
−−→ C′

2 ⇒ C1 | C2
λ◦λ′
−−−→ C′

1 | C′
2

�C|P-START*

i ∈ [1, n] {q̃} = {q̃1, . . . , q̃n}

{B̃} = {B̃1, . . . , B̃n} C′′ =
∏

i Ci

C
p req B̃:u(k)−−−−−−−−→ C′

Ci = acc q̃[B]i : a(k);C
′
i

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
⇒

C | C′′ λ−→ (νk, q̃)
(
C′ | ∏i(C

′
i)
)
| C′′

( λ = p starts q̃[B]1, . . . , q̃[B]n : a(k) )

�C|ASYNC* C
λ−→ (ν r̃) C′ ⇒ η;C

λ−→ (ν r̃) η;C′

⎛⎝ snd(η) ∈ fn(λ) r̃ = bn(λ)
rcv(η) �∈ fc(λ) r̃ �∈ fn(η)

η �∈ {(start), (acc)}

⎞⎠

Fig. 3. Semantics of Compositional Choreographies

Observe that if λ◦λ′ is not defined (the actions are incompatible), then the rule cannot be
applied. Similarly, 4C|P-STARTZmodels a session start by synchronising a partial choreogra-
phy that requests to start a session with other choreographies that can accept the request
on the same shared channel. The choreographies accepting the request remain available
afterwards, for reuse. Finally, rule 4C|ASYNCZmodels asynchrony, allowing the sender pro-
cess of an interaction η (snd(η)) to send a message and then proceed freely before the
intended receiver actually receives it. In the rule, we require asynchrony to preserve the
message ordering in a session wrt receivers with a causality check (rcv(η) ∈ fc(λ)).

4 Typing Compositional Choreographies

We now present our typing discipline, which ensures that sessions in a choreography
follow protocol specifications given as global types [13,3]. The key advances from
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previous work [7] are: (i) introduction of the typing rules for partial choreographies
and shared channel passing; and (ii) typing endpoints by local types, which offer trans-
parent compositional properties for the behaviour of each process.

Global and Local Types from [13,3] are defined below:
G ::= A -> B : 〈U〉;G | A -> B : {li : Gi}i∈I | μ t . G | t | end

T ::= !A〈U〉; T | ?A〈U〉; T | ⊕ A{li : Ti}i∈I | &A{li : Ti}i∈I | μ t . T | t | end

S ::= G | int | bool · · · U ::= S | T
G is a global type. A -> B : 〈U〉;G abstracts a communication from role A to role B

with continuation G, where U is the type of the exchanged message. U can either be
a sort type S (used for typing values or shared channels), or a local type T (used for
typing session delegation). In A -> B : {li : Gi}i∈I , role A selects one label li offered
by role B and the global type proceeds as Gi. All other terms are standard.

T denotes a local type. !A〈U〉;T represents the sending of a message of type U to
role A, with continuation T . Dually, ?A〈U〉;T represents the receiving of a message of
type U from role A. ⊕A{li : Ti}i∈I and &A{li : Ti}i∈I abstract the selection and the
offering of some branches. The other terms are standard.

To relate a global type to the behaviour of an endpoint, we project a global type G
onto a local type that represents the behaviour of a single role. We write [[G]]A to denote
the projection of G onto the role A, which is defined following [10] (cf. [1]).

Type Checking. We now introduce our type checking discipline for checking chore-
ographies against global types. We use two kinds of typing environments, the linear
session typing environments Δ and the unrestricted service environments Γ :

Δ ::= Δ, k[A] :T | ∅ Γ ::= Γ, x@p :S | Γ,X : (Γ,Δ) | Γ, p :k[A] | Γ, a :G〈A|B̃|C̃〉 | ∅
Δ is standard [3], where k[A] : T maps a local type T to a role A in a session k. In Γ ,
x@p :S types variable x of process p with type S. X : (Γ,Δ) types recursive procedure
X . p : k[A] establishes that process p owns role A in session k. a : G〈A|B̃|C̃〉 types a
shared channel a with global type G: A is the role of the active process that starts the
session through a; B̃ are the roles of the service processes; C̃ are the roles, in B̃, that a
choreography implements for the shared channel a, enabling compositionality of ser-
vices. Whenever we write a : G〈A|B̃|C̃〉 in Γ , we assume that C̃ ⊆ B̃, A ∈ B̃, and that
A, B̃ = roles(G). roles(G) returns the set of roles in a global type G.

We can write Γ, p : k[A] only if p is not associated to any other role in session k in
Γ (a process may only play one role per session). A process p may however appear
more than once in a same Γ , allowing processes to run multiple sessions. As usual, we
require all other kinds of occurrences in environments to have disjoint identifiers.

A typing judgement Γ 2 C � Δ establishes that a choreography C is well-typed.
Intuitively, C is well-typed if shared channels are used according to Γ and sessions are
used according to Δ. Δ gives the session types of the free sessions in C. Following
the design idea that services should always be available, shared by other models [6,7],
we assume that all (acc) terms in a choreography are not guarded by other actions. A
selection of the rules defining our typing judgement is reported in Fig. 4.

We comment the typing rules. Rule 4T|STARTZ types a (start); a :G〈A|B̃|B̃〉 checks that
the choreography should implement all roles in protocol G; processes q̃ are checked to
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�T|START�
Γ, a :G〈A|B̃|B̃〉, Γ ′ � C � Δ,Δ′ r[C] ∈ p[A], q̃[B]⇔

(
r :k[C] ∈ Γ ′ ∧ k[C] : [[G]]C ∈ Δ′ ) q̃ 
∈ Γ

Γ, a :G〈A|B̃|B̃〉 � p[A] starts q̃[B] : a(k);C � Δ

�T|SEL�
j ∈ I Γ � p :k[A], q :k[B] Γ � C � Δ, k[A] :Tj, k[B] :T

′
j

Γ � p[A] -> q[B] : k[lj ];C � Δ, k[A] : ⊕B{li : Ti}i∈I , k[B] : &A{li : T ′
i}i∈I

�T|REQ�
Γ � x@p :G〈A|B̃|∅〉 Γ, p :k[A] � C � Δ, k[A] : [[G]]A

Γ � p[A] req B̃ : x(k);C � Δ
�T|PAR�

Γ, Γi � Ci � Δi

Γ, Γ1 ◦ Γ2 � C1 | C2 � Δ1, Δ2

�T|ACC�
Γ, a :G〈D|B̃|∅〉, Γ ′ � C � Δ,Δ′ r[C] ∈ q̃[A]⇔

(
r :k[C] ∈ Γ ′ ∧ k[C] : [[G]]C ∈ Δ′ ) q̃ 
∈ Γ

Γ, a :G〈D|B̃|Ã〉 � acc q̃[A] : a(k);C � Δ

�T|COM-S�
Γ � e@p :S Γ � p :k[A] Γ � C � Δ, k[A] :T q :k[B] 
∈ Γ

Γ � p[A].e -> B : k;C � Δ, k[A] :!B〈S〉;T
�T|ZERO�

cosha(Γ ) Δ end only

Γ � 0 � Δ

�T|BRANCH�
i ∈ I Γ � Ci � Δ, k[A] :Ti I ⊆ J p :k[A] 
∈ Γ

Γ � A -> q[B] : k&{li :Ci}i∈I � Δ, k[B] : &B{lj : Tj}j∈J

Fig. 4. Typing Rules for Compositional Choreographies (selection)

be fresh (q̃ ∈ Γ ); the continuation C is checked by updating Γ ′ and Δ′ respectively
with the process ownerships for their roles in k and the local types for their behaviour in
k. 4T|SELZ deals with selection, checking that the selected label lj is specified in the local
types. In rule 4T|REQZ, we check that the choreography requesting the services is not
responsible for implementing them, to avoid deadlocks due to the lack of services in
parallel required by rule 4C|P-STARTZ, and that the requesting process behaves as expected
by its role in the protocol. Conversely, 4T|ACCZ types an (acc) term by ensuring that all
the roles for which the choreography is responsible are implemented (the other checks
are similar to 4T|STARTZ). This distribution of the responsibilities for implementing the
different roles in a protocol is handled by rule 4T|PARZ, using the role distribution function
Γ1 ◦ Γ2. Formally, Γ1 ◦ Γ2 is defined as the union of Γ1 and Γ2 except for the typing of
shared channels with the same name, which are merged with the following rule:

a :G〈A|B̃|C̃〉 = a :G〈A|B̃|D̃〉 ◦ a :G〈A|B̃|Ẽ〉 (C̃ = D̃ & Ẽ)
In rule 4T|ZEROZ we check that all responsibilities have been implemented and that the
sessions in Δ have been executed. Specifically, predicate cosha(Γ ) checks that for every
a :G〈A|B̃|C̃〉 in Γ either (i) C̃ = B̃, meaning that a was used only internally with (start)
terms; or (ii) C̃ = ∅, meaning that a is used compositionally in collaboration with
other choreographies and all roles that the current choreography is responsible for (C̃)
have been implemented correctly with (acc) terms. Rules 4T|COM-SZ and 4T|BRANCHZ type
respectively a sending action and a branching. They are very similar to their complete
versions since local types allow us to look at the behaviour of processes independently.
They also check that the counterpart for the partial action is not in the continuation, by
ensuring that there is not process q such that q plays the other role for session k in Γ ,
which could obviously lead to a deadlock because process p would not have another
process to communicate with in parallel as required by rule 4C|SYNCZ.
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Typing Expressiveness. Our typing system exploits the global information given by
complete terms and seamlessly falls back to typical session typing when dealing with
partial actions. In particular, 4T|SELZ judges that a choice in a protocol is implemented
correctly even if only one of the branches is actually followed. This is sound because
we are typing a complete term, and therefore we know that the other branches are not
used. This expressiveness is typical of choreography-based models [6,7]. However, such
a global knowledge is not available in a partial choreography. For example, in rule
4T|BRANCHZ we cannot know which branch will be selected by the sender and we must
therefore require that the receiver process supports at least all the branches specified by
the corresponding local type, as in standard session typing for endpoints [12,13].

Properties. We conclude this section by presenting the expected main properties of
our type system. Below, to state session fidelity, we use the transition of local types
Δ

α−→ Δ′ (defined as [13] and fully given in [1]), where α types a partial or complete
action. α 2 λ judges that the label λ is for the same session as α and respects its roles
and carried type. We also extend our typing judgement with the extra environment Σ,
for handling session ownerships with asynchronous delegations at runtime (see [1]).

Theorem 1 (Typing Soundness). Let Γ ;Σ 2 C � Δ. Then,

– (Subject Swap) C 6C C′ implies Γ ;Σ 2 C′ � Δ.

– C
λ−→ C′ implies that there exists Δ′ such that

• (Subject Reduction) Γ ′;Σ′ 2 C′ � Δ′ for some Γ ′, Σ′;
• (Session Fidelity) if λ is a communication on session k, then Δ

α−→ Δ′ with
α 2 λ; else, Δ = Δ′.

5 Properties of Compositional Choreographies

This section states the main properties of our framework wrt the execution of actual
systems composed by endpoints.

Endpoint Projection (EPP) generates correct endpoint code from a choreography. For-
mally, by endpoint code we refer to choreographies that do not contain complete ac-
tions. To define the complete EPP, we first define how the behaviour of a single process
in a choreography can be projected. We denote this process projection of a process p in
a choreography C with [[C]]p. Selected rules of process projection are given below:

[[p[A] starts q̃[B] : a(k);C]]r [[p[A].e -> q[B].x : k;C]]r

=

⎧⎨⎩
p[A] req B̃ : a(k); [[C]]r if r = p

acc r[C] : a(k); [[C]]r if r[C] ∈ q̃[B]
[[C]]r otherwise

=

⎧⎨⎩
p[A].e -> B : k; [[C]]r if r = p
A -> q[B].x : k; [[C]]r if r = q
[[C]]r otherwise

[[p[A].e -> B : k;C]]r [[A -> q[B].x : k;C]]r

=

{
p[A].e -> B : k; [[C]]r if r = p
[[C]]r otherwise

=

{
A -> q[B].x : k; [[C]]r if r = p
[[C]]r otherwise

[[if e@p thenC1 elseC2]]r [[A -> q[B] : k&{li :Ci}i∈I ]]r

=

{
if e@p then [[C1]]r else [[C2]]r if r = p
[[C1]]r ! [[C2]]r otherwise

=

{
A -> q[B] : k&{li : [[Ci]]r}i∈I if r = q⊔

i∈I [[Ci]]r otherwise



Compositional Choreographies 435

Process projection follows the structure of the originating choreography. In a (start), we
project the active process p to a request and the service processes q̃ to (always-available)
accepts. In a (com), the sender is projected to a partial sending action and the receiver
to a partial receiving action. The projections of (sel) and (del), omitted, follow the same
principle. Above we also report the rule for projecting (com-s) and (com-r) to exem-
plify how we treat partial choreographies: these are simply projected as they are for
their respective process, following the structure of the choreography. The projections
of conditionals and partial branchings are the only special cases. In a conditional, we
project it as it is for the process evaluating the condition, but for all other we merge their
behaviours with the merging partial operator � [6]. C � C ′ is defined only for partial
choreographies that define the behaviour of a single process and returns a choreogra-
phy isomorphic to C and C′ up to branching, where all branches with distinct labels are
also included. We use � also in the projection of (branch) terms, where we require the
behaviour of all processes not receiving the selection to be merged. As an example, the
process projection for process u in the choreography CB from our example in § 2 is:

[[CB ]]u =

u[U] req PD : a(k); u[U].prod -> PD : k;

PD -> u[U] : k&

⎧⎨⎩
del : PD -> u[U] : k〈k′′[B]〉; u[B].addr -> T : k′′;

T -> u[U].ddate : k′′,
quit : 0

⎫⎬⎭
Using process projection, we can now define the EPP of a whole system. Since different
service processes may be started through (start) terms on the same shared channel and
play the same role, we use � for merging their behaviours into a single service. We
identify these processes with the service grouping operator 4C5aA , which computes the
set of all service process names in a start or a request in C on shared channel a playing
role A. Formally, EPP is the endofunction [[C]] defined in the following.

Definition 1 (Endpoint Projection). Let C ≡ (νã, k̃, p̃) Cf , where Cf does not con-
tain (res) terms. Then, the EPP of C is:

[[C]] = (νã)

(
(νk̃, p̃)

(∏
p∈fn(Cf )

[[Cf ]]p

)
| ∏a,A

(⊔
p∈�Cf �aA [[Cf ]]p

))
The EPP of a choreography C is the parallel composition of (i) the projections of all
active processes and (ii) the merged projections of all service processes started under
same shared channel and role. EPP respects the following Lemma, which shows that
our model can adequately capture not only typical complete choreographies, but also
scale down to describing the behaviour of a single endpoint.

Lemma 1 (Endpoint Choreographies). Let C be restriction-free, contain only partial
terms, and be well-typed. If one of the following two conditions apply, then C = [[C]].

1. C = acc q[B] : a(k);C ′ and q is the only free process name in C′;
2. otherwise, C has only one free process name.

We refer to choreographies that respect one of the two conditions above as endpoint
choreographies. They implement either the behaviour of a single always-available ser-
vice process (1), or that of a single free process (2). The EPP for these choreographies
is the identity since they already model the behaviour of only one endpoint.
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The projection of services may lead to undesirable behaviour if service roles for
shared channels are not distributed correctly. For example, if we put the choreography
CB from § 2 in parallel with a choreography with a conflicting service on shared chan-
nel b for role R (which is internally implemented in CB) we obtain a race condition,
even if protocols are correctly implemented. Consider the following choreography:

CR = acc h[R] : b(k′); PD -> h[R].x : k′; h[R].c -> PD : k′

If we put the projection of CB in parallel with that of CR, we get a race condition be-
tween the service processes r and h for role R on shared channel b. Hence, the projection
of process pd may synchronise with the service offered by CR for creating session k′,
instead of that by the projection of service process r in CB . Consequently, CB may not
follow its intended behaviour. The distribution of service roles performed by our type
system avoids this kind of situations. Observe that normal session typing cannot help
us in detecting these problems, because the service process h correctly implements the
same communication behaviour for session k′ as service process r.

Main Theorems. We can now present our main theorems. We build our results on the
foundation that the EPP of a choreography is still typable. As in previous work [16,6,7],
we need to consider that in the projection of complete choreographies, due to merging,
some projected processes may still offer branches that the original complete choreog-
raphy has discarded with a conditional. Therefore, we state our type preservation result
below under the minimal typing of choreographies 2min, in which the branches in rules
4T|SELZ and 4T|BRANCHZ are typed using the respective minimal branch types.

Theorem 2 (EPP Type Preservation). Let Γ 2min C � Δ. Then, Γ 2min [[C]] � Δ.

By Theorem 2, it follows that Theorem 1 applies also to the EPP of a choreography. We
use this result to prove that EPP correctly implements the behaviour of the originating
choreography, by establishing a formal relation between their respective semantics.

Theorem 3 (EPP Theorem). Let C ≡ (νã, k̃, p̃) Cf , where Cf is restriction-free, be
well-typed. Then,

1. (Completeness) C
λ−→ C′ implies [[C]]

λ−→8 [[C′]].

2. (Soundness) [[C]]
λ−→ C′ implies C

λ−→ C′′ and [[C′′]] ≺ C′.

Above, the pruning relation C ≺ C′ is a strong typed bisimilarity [6] such that C has
some unused branches and always-available accepts. 8 is a shortcut for ≺ interpreted
in the opposite direction.

Deadlock-freedom and Progress. We introduce our results on deadlock-freedom and
progress mentioned in the Introduction. First, we define deadlock-freedom:

Definition 2 (Deadlock-freedom). We say that choreography C is deadlock-free if ei-

ther (i) C ≡ 0 or (ii) there exist C′ and λ such that C
λ−→ C′ and C′ is deadlock-free.

In our semantics (Fig. 3) complete terms can always be executed; therefore, choreogra-
phies that do not contain partial terms, or complete choreographies, are deadlock-free:

Theorem 4 (Deadlock-freedom for Complete Choreographies). Let C be a com-
plete choreography and contain no free variable names. Then, C is deadlock-free.



Compositional Choreographies 437

By Theorems 3 and 4 we can obtain, as a corollary, that the EPP of well-typed complete
choreographies never deadlock.

Corollary 1 (Deadlock-freedom for EPP). Let C be a complete choreography, con-
tain no free variable names, and be well-typed. Then, [[C]] is deadlock-free.

Our model can also be used to talk of deadlock-freedom compositionally. In a compo-
sitional setting, a choreography may get stuck because of partial actions that need to
be executed in parallel composition with other choreographies. We say that a chore-
ography can progress if it can be composed with another choreography such that (i)
all free names can be restricted and the resulting system is still well-typed, ensuring
that protocols are implemented correctly; and (ii) the composition is deadlock-free.
Differently from deadlock-freedom for complete choreographies, progress for partial
choreographies does not follow directly from the semantics. For example, the follow-
ing choreography does not have the progress property:

A -> q[B] : k; p[A].e -> B : k

Above, q is waiting for a message on session k from A, but that role is implemented by
process p in the continuation. Thus, the two partial actions will never synchronise. As
shown in § 4, our type system takes care of checking that roles in sessions or services
are distributed correctly, avoiding cases such as this one and ensuring progress. In gen-
eral, if a well-typed choreographies does not contain inner (par) terms we know that it
can progress, since role distribution ensures that there exists a compatible environment.

Theorem 5 (Progress for Partial Choreographies). Let C be a choreography, be
well-typed, and contain no (par) terms. Then, there exists C′ such that (ν r̃) (C | C′)
with r̃ = fn(C | C′), is well-typed and deadlock-free.

By Theorems 2 and 5, it follows as a corollary that also the EPP of a well-typed chore-
ography can progress:

Corollary 2 (Progress for EPP). Let C contain no free variable names, be well-typed,
and contain no (par) terms. Then, there exists C′ such that (ν r̃) ([[C]] | C′) with r̃ =
fn(C | C′), is well-typed and deadlock-free.

Correctness of Choreography Composition. We end this section by presenting results
that allow to reason about the composition of choreographies.

Lemma 2 (Compositional EPP). Let C = C1 | C2 be well-typed. Then, [[C]] ≡
[[C1]] | [[C2]].

By combining Lemma 2 with the Theorems shown so far, we get the following corol-
lary, which summarises the properties for well-typed compositions of choreographies.

Corollary 3 (Compositional Choreographies). Let C | C′ be well-typed. Then,

1. (EPP Type Preservation) [[C]] | [[C′]] is well-typed.

2. (Completeness) C | C′ λ−→ C′′ implies [[C]] | [[C′]] λ−→8 [[C′′]].

3. (Soundness) [[C]] | [[C′]] λ−→ C′′ implies C
λ−→ C′′′ and [[C′′′]] ≺ C′′.
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Our corollary above formally addresses the issues mentioned in the Introduction. Chore-
ographies (C and C′ in the corollary) can be developed independently and then their
respective projections can be composed.

6 Related Work

Previous works have tackled the problem of defining a formal model for choreographies
and giving a correct EPP [7,6]. The main difference wrt our work is compositionality:
previous models can only capture closed systems, and do not treat a methodology for
composing choreographies. A major difficulty wrt composition given by the approach
in [7] is that the EPP of a choreography could be untypable with known type systems
for session types. Typability of EPP is important to achieve composition, since a pro-
grammer may need to reuse a choreography after it has been projected. [7] is the only
previous work providing an asynchronous semantics for multiparty sessions in chore-
ographies; however, asynchrony is modelled in two different ways in the choreography
model and the endpoint model, raising complexity. As a consequence, the EPP Theorem
in [7] has a more complex formulation with weak transitions and confluence, whereas
ours can be formulated in a stronger form where EPP mimics its original choreography
step by step. [6] preserves typability of projections but does not handle neither asyn-
chrony nor multiparty sessions; instead, they type choreographies with binary sessions.
We have shown that choreographies can be made compositional by introducing partial
terms to perform message passing with the environment, and that it is possible to en-
sure typability of EPP in a multiparty and asynchronous setting. This is the first work
introducing a compositional multiparty session typing for choreographies, exploiting
the projection of global types onto local types. Finally, neither of [7,6] handles shared
channel passing, and does not treat how to handle delegation in a compositional setting,
where sessions may be delegated to external or internal processes.

Multiparty session types have been previously used for typing endpoint pro-
grams [13,3,9]. In our setting, endpoint programs can be captured as special cases of
partial choreographies. Our global types are taken from [3]. Differently from our frame-
work, these works capture asynchronous communications with dedicated processes that
model order-preserving message queues. An approach more similar to ours can be
found in the notion of delayed input presented in [17]. [3] defines a type system for
progress by building additional restrictions on top of standard multiparty session typ-
ing; our model yields a simpler analysis, since we can rely on the fact that complete
terms in a choreography do not get stuck. Nevertheless, [3] can capture sessions started
by more than one active thread. We leave an extension of our model in this direction as
future work.

In [2] the authors use a concept similar to our partial choreographies for protocol
specifications, to allow a single process to implement more than one role in a protocol.
Differently from our approach, these are not fully-fledged system implementations but
abstract behavioural types, which are then used to type check endpoint code. In our set-
ting, the techniques in [2] can be seen as a more flexible way of handling the projection
from global types to local types. An extension of our type system to allow for a process
to play more than one role in a session as in [2,9] is an interesting future work.
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The relationship between choreographies and endpoints has been explored in, among
others, [5,16,13,6,7]. Our work distinguishes itself by adopting the same calculus for
describing choreographies and endpoints, simplifying the technical development.
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Abstract. We introduce negotiations, a model of concurrency close
to Petri nets, with multiparty negotiation as primitive. We study the
problems of soundness of negotiations and of, given a negotiation with
possibly many steps, computing a summary, i.e., an equivalent one-step
negotiation. We provide a complete set of reduction rules for sound,
acyclic, weakly deterministic negotiations and show that, for determin-
istic negotiations, the rules compute the summary in polynomial time.

1 Introduction

Many modern distributed systems consist of components whose behavior is only
partially known. Typical examples include open systems where programs (e.g.
Java applets) can enter or leave, multi-agent systems, business processes, or pro-
tocols for conducting elections and auctions. An interaction between a fixed set
of components with not fully known behavior can be abstractly described as a
negotiation in which several parties (the components involved in the negotiation)
nondeterministically agree on an outcome, which results in a transformation of
internal states of the parties. A more technical but less suggestive term would
be a synchronized nondeterministic choice and, as the name suggests, these in-
teractions can be modelled in any standard process algebra as a combination of
parallel composition and nondeterministic choice, or as small Petri nets. We ar-
gue that much can be gained by studying formal models with negotiation atoms
as concurrency primitive. In particular, we show that the negotiation point of
view reveals new classes of systems with polynomial analysis algorithms.

Negotiation atoms can be combined into distributed negotiations. For instance,
a distributed negotiation between a buyer, a seller, and a broker, consists of one
or more rounds of atoms involving the buyer and the broker or the seller and the
broker, followed by a final atom between the buyer and the seller. We introduce
a formal model for distributed negotiations, close to a colored version of van
der Aalst’s workflow nets [1], and investigate two important analysis problems.
First, just like workflow nets, distributed negotiations can be unsound because
of deadlocks or livelocks (states from which no deadlock is reached, but the
negotiation cannot be completed). The soundness problem consists of deciding
if a given negotiation is sound. Second, a sound negotiation is equivalent to a
negotiation with only one atom whose state transformation function determines
the possible final internal states of all parties as a function of their initial internal
states. We call this negotiation a summary. The summarization problem consists

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 440–454, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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of computing a summary of a distributed negotiation. Both problems will shown
to be PSPACE-hard for arbitrary negotiations, and NP-hard for acyclic ones.
They can be solved by means of well-known algorithms based on the exhaustive
exploration of the state space. However, this approach badly suffers from the
state-explosion problem: even the analysis of distributed negotiations with a
very simple structure requires exponential time.

In this paper we suggest reduction algorithms that avoid the construction of
the state space but exhaustively apply syntactic reduction rules that simplify
the system while preserving some aspects of the behavior, like absence of dead-
locks. This approach has been extensively applied to Petri nets or workflow nets,
but most of this work has been devoted to the liveness or soundness problems
[5,15,16,13,22]. For these problems many reduction rules are known, and some
sets of rules have been proved complete for certain classes of systems [14,10,11],
meaning that they reduce all live or sound systems in the class, and only those,
to a trivial system (in our case to a single atomic negotiation). However, many
of these rules, like the linear dependency rule of [11], cannot be applied to the
summarization problem, because they preserve only the soundness property.

We present a complete set of reduction rules for the summarization problem
of acyclic negotiations that are either deterministic or weakly deterministic. The
rules are inspired by reduction rules used to transform finite automata into
regular expressions by eliminating states [18]. In deterministic negotiations all
involved agents are deterministic, meaning that they are never ready to engage
in more than one atomic negotiation. Intuitively, nondeterministic agents may
be ready to engage in multiple atomic negotiations, and which one takes place
is decided by the deterministic parties, which play thus the role of negotiation
leaders. In weakly deterministic negotiations not every agent is deterministic,
but some deterministic party is involved in every atomic negotiation an agent
can engage in next. For deterministic negotiations we prove that a sound and
acyclic negotiation can be summarized by means of a polynomial number of
application of the rules, leading to a polynomial algorithm.

The paper is organized as follows. Section 2 introduces the syntax and se-
mantics of the model. Section 3 introduces the soundness and summarization
problems. Section 4 presents our reduction rules. Section 5 defines (weakly) de-
terministic negotiations. Section 6 proves the completeness and polynomial com-
plexity results announced above. Finally, Section 7 presents some conclusions,
open questions and related work. The paper only contains proof sketches. Full
proofs can be found in [12].

2 Negotiations: Syntax and Semantics

We fix a finite set A of agents representing potential parties of negotiations.
Each agent a ∈ A has a (possibly infinite) nonempty set Qa of internal states.
We denote by QA the cartesian product

∏
a∈AQa. A transformer is a left-total

relation τ ⊆ QA×QA, representing a nondeterministic state transforming func-
tion. Given S ⊆ A, we say that a transformer τ is an S-transformer if, for each
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ai /∈ S,
(
(qa1 , . . . , qai , . . . , qa|A|), (q

′
a1

, . . . , q′ai
, . . . , q′a|A|)

)
∈ τ implies qai = q′ai

.

So an S-transformer only transforms the internal states of agents in S.

Definition 1. A negotiation atom, or just an atom, is a triple n = (Pn, Rn, δn),
where Pn ⊆ A is a nonempty set of parties, Rn is a finite, nonempty set of out-
comes, and δn is a mapping assigning to each outcome r in Rn a Pn-transformer
δn(r). We denote the transformer δn(r) by 〈n, r〉, and, if there is no confusion,
by 〈r〉.

Intuitively, if the states of the agents before a negotiation n are given by a tuple
q and the outcome of the negotiation is r, then the agents change their states to
q′ for some (q, q′) ∈ 〈n, r〉. Only the parties of n can change their internal states.
Each outcome r ∈ Rn is possible, independent from the previous internal states
of the parties.

For a simple example, consider a negotiation atom nFD with parties F (Father)
and D (teenage Daughter). The goal of the negotiation is to determine whether
D can go to a party, and the time at which she must return home. The possible
outcomes are {yes, no, ask mother}. Both sets QF and QD contain a state angry
plus a state t for every time T1 ≤ t ≤ T2 in a given interval [T1, T2]. Initially, F
is in state tf and D in state td. The transformer δnFD

is given by

〈yes〉 = {((tf , td), (t, t)) | tf ≤ t ≤ td ∨ td ≤ t ≤ tf}
〈no〉 = {((tf , td), (angry , angry)) }

〈ask mother〉 = {((tf , td), (tf , td))}

That is, if the outcome is yes, then F and D agree on a time t which is not earlier
and not later than both suggested times. If it is no, then there is a quarrel and
both parties get angry. If the outcome is ask mother, then the parties keep their
previous times.

2.1 Combining Atomic Negotiations

If the outcome of the atom above is ask mother, then nFD should be followed by
a second atom nDM between D and M (Mother). The complete negotiation is the
composition of nFD and nDM, where the possible internal states of M are the same as
those of F and D, and nDM is a copy of nFD, but without the ask mother outcome.
In order to compose atoms, we add a transition function X that assigns to every
triple (n, a, r) consisting of an atom n, a participant a of n, and an outcome r
of n a set X(n, a, r) of atoms. Intuitively, this is the set of atomic negotiations
agent a is ready to engage in after the atom n, if the outcome of n is r.

Definition 2. Given a finite set of atoms N , let T (N) denote the set of triples
(n, a, r) such that n ∈ N , a ∈ Pn, and r ∈ Rn. A negotiation is a tuple N =
(N,n0, nf ,X), where n0, nf ∈ N are the initial and final atoms, and X : T (N)→
2N is the transition function. Further, N satisfies the following properties:

(1) every agent of A participates in both n0 and nf ;
(2) for every (n, a, r) ∈ T (N): X(n, a, r) = ∅ iff n = nf .
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Fig. 1. An acyclic negotiation and the ping-pong negotiation

We may have n0 = nf . Notice that nf has, as all other atoms, at least one
outcome r ∈ Rnf

.
Negotiations are graphically represented as shown in Figure 1. For each atom

n ∈ N we draw a black bar; for each party a of Pn we draw a white circle on the
bar, called a port. For each (n, a, r) ∈ T (N), we draw a hyperarc leading from
the port of a in n to all the ports of a in the atoms of X(n, a, r), and label it by r.
Figure 1 shows on the left the graphical representation of the Father-Daughter-
Mother negotiation sketched above. Instead of multiple (hyper)arcs connecting
the same input port to the same output ports we draw a single (hyper)arc with
multiple labels. In the figure, we write y for yes, n for no, and am for ask mother.
st stands for start, the only outcome of n0. Since nf has no outgoing arc, the
outcomes of nf do not appear in the graphical representation.

Definition 3. The graph associated to a negotiation N = (N,n0, nf ,X) is
the directed graph with vertices N and edges {(n, n′) ∈ N × N | ∃ (n, a, r) ∈
T (N) : n′ ∈ X(n, a, r)}. The negotiation N is acyclic if its graph has no cycles.

The negotiation on the left of Figure 1 is acyclic. The negotiation on the right
(ignore the black dots on the arcs for the moment) is the ping-pong negotiation,
well-known in every family. The nDM atom has now an extra outcome ask father

(af), and Daughter D can be sent back and forth between Mother and Father.
After each round, D “negotiates with herself” (atom nD) with possible outcomes
c (continue) and gu (give up). This negotiation is cyclic because, for instance,
we have X(nFD, D, am) = {nDM}, X(nDM, D, af) = {nD}, and X(nD, D, c) = {nFD}.

2.2 Semantics

A marking of a negotiation N = (N,n0, nf ,X) is a mapping x : A → 2N . Intu-
itively, x(a) is the set of atoms that agent a is currently ready to engage in next.
The initial and final markings, denoted by x0 and xf respectively, are given by
x0(a) = {n0} and xf (a) = ∅ for every a ∈ A.
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A marking x enables an atom n if n ∈ x(a) for every a ∈ Pn, i.e., if every
agent that parties in n is currently ready to engage in it. If x enables n, then n
can take place and its parties agree on an outcome r; we say that (n, r) occurs.
The occurrence of (n, r) produces a next marking x′ given by x′(a) = X(n, a, r)

for every a ∈ Pn, and x′(a) = x(a) for every a ∈ A \Pn. We write x
(n,r)−−−−→ x′

to denote this, and call it a small step.
By this definition, x(a) is always either {n0} or equals X(n, a, r) for some

atom n and outcome r. The marking xf can only be reached by the occurrence
of (nf , r) (r being a possible outcome of nf ), and it does not enable any atom.
Any other marking that does not enable any atom is considered a deadlock.

Reachable markings can be graphically represented by placing tokens (black
dots) on the forking points of the hyperarcs (or in the middle of an arc). Thus,
both the initial marking and the final marking are represented by no tokens, and
all other reachable markings are represented by exactly one token per agent.

Figure 1 shows on the right the marking in which Father (F) is ready to engage
in the atoms nFD and nf , Daughter (D) is only ready to engage in nFD, and Mother
(M) is ready to engage in both nDM and nf .

We write x1
σ−→ to denote that there is a sequence

x1
(n1,r1)−−−−−→ x2

(n2,r2)−−−−−→ · · · (nk−1,rk−1)−−−−−−−−→ xk
(nk,rk)−−−−−→ xk+1 · · ·

of small steps such that σ = (n1, r1) . . . (nk, rk) . . .. If x1
σ−→ , then σ is an

occurrence sequence from the marking x1, and x1 enables σ. If σ is finite, then
we write x1

σ−→ xk+1 and say that xk+1 is reachable from x1. If x1 is the initial
marking then we call σ initial occurrence sequence. If moreover xk+1 is the final
marking, then σ is a large step.

3 Analysis Problems

Correct negotiations should be deadlock-free and, in principle, they should not
have infinite occurrence sequences either. However, requiring the latter in our
negotiation model is too strong, because infinite occurrence sequences may be
excluded by fairness constraints. Following [1,2], we introduce a notion of partial
correctness independent of termination:

Definition 4. A negotiation is sound if (a) every atom is enabled at some reach-
able marking, and (b) every occurrence sequence from the initial marking is either
a large step or can be extended to a large step.

The negotiations of Figure 1 are sound. However, if we set X(n0, M, st) =
{nDM} instead of X(n0, M, st) = {nDM, nf}, then the occurrence sequence
(n0, st)(nFD, yes) leads to a deadlock.

The final outcomes of a negotiation are the outcomes of its final atom. Intu-
itively, two sound negotiations over the same agents are equivalent if they have
the same final outcomes, and for each final outcome they transform the same
initial states into the same final states.
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Definition 5. Given a negotiation N = (N,n0, nf ,X), we attach to each out-
come r of nf a summary transformer 〈N, r〉 as follows. Let Er be the set of
large steps of N that end with (nf , r). We define 〈N, r〉 =

⋃
σ∈Er

〈σ〉, where for
σ = (n1, r1) . . . (nk, rk) we define 〈σ〉 = 〈n1, r1〉 · · · 〈nk, rk〉 (each 〈ni, ri〉 is a
relation on QA; concatenation is the usual concatenation of relations).

〈N, r〉(q0) is the set of possible final states of the agents after the negotiation
concludes with outcome r, if their initial states are given by q0.

Definition 6. Two negotiations N1 and N2 over the same set of agents are
equivalent, denoted by N1 ≡ N2, if they are either both unsound, or if they are
both sound, have the same final outcomes, and 〈N1, r〉 = 〈N2, r〉 for every final
outcome r. If N1 ≡ N2 and N2 consists of a single atom, then N2 is a summary
of N1.

Notice that, according to this definition, all unsound negotiations are equivalent.
This amounts to considering soundness essential for a negotiation: if it fails, we
do not care about the rest.

3.1 Deciding Soundness

The reachability graph of a negotiation N has all markings reachable from x0 as

vertices, and an arc leading from x to x′ whenever x
(n,r)−−−−→ x′.

The soundness problem consists of deciding if a given negotiation is sound. It
can be solved by (1) computing the reachability graph of N and (2a) checking
that every atom appears at some arc, and (2b) that, for every reachable marking

x, there is an occurrence sequence σ such that x
σ−→ xf .

Step (1) needs exponential time, and steps (2a) and (2b) are polynomial in the
size of the reachability graph. So the algorithm is single exponential in the num-
ber of atoms. This cannot be easily avoided, because the problem is PSPACE-
complete, and NP-complete for acyclic negotiations.

Recall that a language L is in the class DP if there exist languages L1, L2 in
NP and co-NP, respectively, such that L = L1 ∩ L2 [20].

Theorem 1. The soundness problem is PSPACE-complete. For acyclic negotia-
tions, the problem is co-NP-hard and in DP (and so at level ΔP

2 of the polynomial
hierarchy).

Proof. (Sketch) Membership in PSPACE follows easily from Savitch’s theorem
and closure of NPSPACE under complement. For PSPACE-hardness, given a
deterministic linearly bounded automaton A and a word w, we construct a ne-
gotiation NA,w such that A accepts w iff NA,w is sound. NA,w has an agent C
(for control), an agent H (for head), and an agent Ti for every tape cell of A.
The negotiation has an atom n[q, h, a] for every state q, head position h, and
input letter a, plus initial and final atoms. The transition function is defined so
that NA,w simulates the computation of A on w.

Membership in DP follows easily from the fact that checking the first (second)
condition in the definition of soundness lies in NP (co-NP, respectively). Co-NP-
hardness follows by a standard reduction from 3-CNF-UNSAT. ��
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3.2 A Summarization Algorithm

The summarization problem consists of computing a summary of a given nego-
tiation, if it is sound. A straightforward solution follows these steps:

(1) Compute the reachability graph of N. Interpret it as a weighted finite au-
tomaton over the alphabet of transformers 〈n, r〉, with x0 as initial state,
and xf as final state.

(2) Compute the sum over all paths σ leading from x0 to xf of the transformers
〈σ〉. We recall a well-known algorithm for this based on state elimination
(see e.g. [18]). The algorithm proceeds in phases consisting of the following
three steps:

(2.1) Exhaustively replace steps x
f1−−→ x′, x

f2−−→ x′ by one step

x
f1+f2−−−−→ x′.

(2.2) Pick a state x different from x0 and xf . If there is a self-loop x
f−→ x,

replace all steps x
g−→ x′, where x′ = x, by the step x

g∗f−−−→ x′, and
then remove the self-loop.

(2.3) For every two steps x1
f1−−→ x and x

f2−−→ x2, add a step x
f1f2−−−→ x2

and remove state x together with its incident steps.

Step (1) takes exponential time in the number of atoms. Steps (2.1)-(2.3) can
be seen as reduction rules that replace an automaton by a smaller one with
the same sum over all paths. In the next section we provide similar rules, but
at the syntactic level, i.e., rules which act directly on the negotiation diagram,
and not on the reachability graph. Two of the three rules are straightforward
generalizations of (2.1) and (2.3) above, while the third allows us to remove
certain useless arcs from a negotiation.

4 Reduction Rules

A reduction rule, or just a rule, is a binary relation on the set of negotiations.

Given a rule R, we write N1
R−−→ N2 for (N1,N2) ∈ R. A rule R is correct if

it preserves equivalence, i.e., if N1
R−−→ N2 implies N1 ≡ N2. Notice that, in

particular, this implies that N1 is sound if and only if N2 is sound.
Given a set of rules R = {R1, . . . , Rk}, we denote by R∗ the reflexive and

transitive closure of R1 ∪ . . . ∪ Rk. We say that R is complete with respect to a
class of negotiations if, for every negotiation N in the class, there is a negotiation

N′ consisting of a single atom such that N
R∗
−−→ N′.

We describe rules as pairs of a guard and an action; N1
R−−→ N2 holds if N1

satisfies the guard and N2 is a possible result of applying the action to N1.

Merge Rule. Intuitively, the merge rule merges two outcomes with identical
next enabled atoms into one single outcome. It corresponds to the rule of step
(2.1) in the previous section.
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Definition 7. Merge rule
Guard: N contains an atom n with two distinct outcomes r1, r2 ∈ Rn, such

that X(n, a, r1) = X(n, a, r2) for every a ∈ An.

Action: (1) Rn ← (Rn \ {r1, r2}) ∪ {rf}, where rf is a fresh name.
(2) For all a ∈ Pn: X(n, a, rf )← X(n, a, r1).
(3) δ(n, rf )← δ(n, r1) ∪ δ(n, r2).

It is easy to see that the merge rule is correct for arbitrary negotiations.

Shortcut Rule. The shortcut rule corresponds to the rule of step (2.3) in the
previous section. We need a preliminary definition.

Definition 8. Given atoms n, n′, we say that (n, r) unconditionally enables n′

if Pn ⊇ Pn′ and X(n, a, r) = {n′} for every a ∈ Pn′ .

Observe that if (n, r) unconditionally enables n′ then, for every marking x that

enables n, the marking x′ given by x
(n,r)−−−−→ x′ enables n′. Moreover, n′ can

only be disabled by its own occurrence.
The shortcut rule merges the outcomes of two atoms that can occur one after

the other into one single outcome with the same effect. Consider the negotiation
fragment shown on the left of Figure 2. The guard of the rule will state that n
must unconditionally enable n′, which is the case. For every outcome of n′, say r1,
the action of the rule adds a fresh outcome r1f to n, and modifies the negotiation
so that the occurrence of (n, r1f ) has the same effect as the occurrence of the
sequence (n, r)(n′, r1). In the figure, shortcutting the outcome (n, r) leaves n′

without any input arc, and in this case the rule also removes n′. Otherwise we
require that at least one input arc of a party ã of n′ is an arc (i.e., not a proper
hyperarc) from some atom ñ = n, annotated by r̃. This implies that after the
occurrence of (ñ, r̃), n′ is the only atom agent ã is ready to engage in.

Definition 9. Shortcut rule
Guard: N contains an atom n with an outcome r, and an atom n′, n′ = n,
such that (n, r) unconditionally enables n′. Moreover, if n′ ∈ X(ñ, ã, r̃) for at
least one ñ = n with ã ∈ Pñ and r̃ ∈ Rñ, then {n′} = X(ñ, ã, r̃) for some ñ = n,
ã ∈ Pñ, r̃ ∈ Rñ.
Action: (1) Rn ← (Rn \ {r}) ∪ {r′f | r′ ∈ Rn′}, where r′f are fresh names.

(2) For all a ∈ Pn′ , r′ ∈ Rn′ : X(n, a, r′f )← X(n′, a, r′).
For all a ∈ P \ Pn′ , r′ ∈ Rn′ : X(n, a, r′f )← X(n, a, r).

(3) For all r′ ∈ Rn′ : 〈n, r′f 〉 ← 〈n, r〉〈n′, r′〉.
(4) If X−1(n′) = ∅ after (1)-(3), then remove n′ from N , where

X−1(n′) = {(ñ, ã, r̃) ∈ T (N) | n′ ∈ X(ñ, ã, r̃)}.

Theorem 2. The shortcut rule is correct.

Proof. (Sketch) Let N2 be the result of applying the rule to N1. The proof is
based on the following observation: Each initial occurrence sequence of N2 can
be translated to a corresponding initial occurrence sequence of N1 by replacing
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r1f , r2fr r

r2

n′

n

r

r2 r1

r1

r1fr1f r2fr2f

Fig. 2. An application of the shortcut rule

each occurrence of (n, r′f ) by (n, r)(n′, r′). Conversely, since (n, r) uncondition-
ally enables n′, each (n, r)-step of an initial occurrence sequence of N1 has a cor-
responding subsequent (n′, r′)-step, or the occurrence sequence can be extended
by a (n′, r′)-step. This (n′, r′)-step is independent from all steps in between, i.e.,
no participant of n′ is involved in any of the steps in between. Therefore, the oc-
currence sequence of N1 (or its extension by (n′, r′)) can be reordered to obtain
pairs (n, r)(n′, r′) which can be translated to (n, r′f )-steps of N2.

This mutual relation of initial occurrence sequences is used to show that an
atom occurs in one negotiation if and only if it occurs in the other one, and
that an occurrence sequence of N1 can be extended by (i.e., is prefix of) another
sequence leading to the final marking if the same holds for the corresponding
occurrence sequence of N2, and vice versa.

The full proof requires some delicate case distinctions because n′ might still
exist in N2 or not, and in the first case there are occurrences of n′ in N2 that do
not belong to pairs (n, r)(n′, r′). ��
Useless Arc Rule. Consider the negotiation on the left of Figure 3, in which
all atoms have one outcome r. We have X(n0, a, r) = {n1, nf}, i.e., after the
occurrence of (n0, r) agent a is ready to engage in both n1 and nf . However, a
always engages in n1, because the only large step is (n0, r)(n1, r)(n2, r)(nf , r).
In other words, we can set X(n0, a, nf) = {n1} without changing the behavior.
Intuitively, we say that the arc (more precisely, the leg of the hyperarc) leading
to the a-port of nf is useless. The useless arc rule identifies and removes some
useless arcs.

a
n0

n2

n1

nf

a
n0

n2

n1

nf

b b

Fig. 3. The useless arc rule can only be applied to the left negotiation
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Definition 10. Useless arc rule.
Guard: There are (n, a, r), (n, b, r) ∈ T (N) and two distinct atoms n′, n′′ ∈ N
such that a, b ∈ Pn′ ∩ Pn′′ , n′, n′′ ∈ X(n, a, r) and X(n, b, r) = {n′}.
Action: X(n, a, r)← X(n, a, r) \ {n′′}.

The rule can be applied to the negotiation on the left of Figure 3 by instantiating
n := n0, n

′ := n1, and n′′ := nf . It cannot be applied to the negotiation on the
right. If we set n := n0, n

′ := n1, and n′′ := n2, then a /∈ Pn2 .

Theorem 3. The useless arc rule is correct.

Proof. (Sketch) Let N2 be the result of applying the rule to N1. We prove that
N1 and N2 have the same initial occurrence sequences, from which the result
easily follows. Let X1,X2 be the transition functions of N1 and N2, respectively.
Since X2(n, a, r) ⊆ X1(n, a, r) for every (n, a, r) ∈ T (N), every initial occurrence
sequence of N2 is also an initial occurrence sequence of N1. To prove that every
initial occurrence sequence σ of N1 is also an initial occurrence sequence of
N2, assume there is σ = σ1σ2 such that σ1 is an initial occurrence sequence
of both N1 and N2 whereas the first step of σ2 is only possible in N1. Since
both negotiations only differ w.r.t. X(n, a, r), this step must be an occurrence
of agent n′′ occurring after an occurrence of (n, r) such that no other atom of
X(n, a, r) occurred in between. This holds in particular for n′ ∈ X(n, a, r). But,
since X(n, b, r) = {n′} and b participates both in n′ and in n′′, n′ must occur
before n′′ after (n, r) in the occurrence sequence – a contradiction. ��

5 (Weakly) Deterministic Negotiations

Definition 11. An agent a ∈ A is deterministic if for every (n, a, r) ∈ T (N)
such that n = nf there exists one atom n′ such that X(n, a, r) = {n′}.

The negotiation N is weakly deterministic if for every (n, a, r) ∈ T (N) there
is a deterministic agent b that is a party of every atom in X(n, a, r), i.e., b ∈ Pn′

for every n′ ∈ X(n, a, r). It is deterministic if all its agents are deterministic.

Graphically, an agent a is deterministic if no proper hyperarc leaves any port of
a. Consider the negotiations of Figure 1. In the acyclic negotiation both Father
and Daughter are deterministic, while Mother is not. In the ping-pong negotia-
tion only Daughter is deterministic. Both negotiations are weakly deterministic,
because Daughter participates in all atoms, and so can be always chosen as
the party b required by the definition. Observe that the notion of deterministic
agent does not refer to the behavior of atoms, which is intrinsically nondetermin-
istic with respect to its possible outcomes and even to its state transformations.
Rather, it refers to the composition of negotiations: For each atom n, the next
atom of a deterministic agent is completely determined by the outcome of n.

Weakly deterministic negotiations have a natural semantic justification. Con-
sider a negotiation with two agents a, b and three atoms {n0, n1, nf}. All atoms
have the same parties a, b and one outcome r, such that X(n0, a, r) = {n1, nf} =
X(n0, b, r) and X(n1, a, r) = {nf} = X(n1, b, r). After the occurrence of (n0, r)
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the parties a and b are ready to engage in both n1 and nf , and so which of them
occurs requires a “meta-negotiation” between a and b. This meta-negotiation,
however, is not part of the model and, more importantly, it can be difficult
to implement, since it requires to break a symmetry. In a weakly deterministic
negotiation this situation cannot happen. If X(n, a, r) contains more than one
atom, then some deterministic agent b is a part of all atoms in X(n, a, r). If some
atom of X(n, a, r) becomes enabled, say n′, then because agent b is ready to
engage in it, and, since b is deterministic, b is not ready to engage in any other
atom. So n′ is the only enabled atom of X(n, a, r), and n′ is the negotiation that
a will engage in next. This is very easy to implement: b just sends a message to
a telling her that she should commit to n′.

For deterministic negotiations, the second part of the guard of the shortcut
rule is always satisfied. Using the notation of the shortcut rule, this condition
requires that the atom n′ is the only atom in X(ñ, ã, r̃) for some (ñ, r̃), provided
n′ is not only in X(n, a, r) for some a ∈ Pn (i.e., provided n′ is not removed by
the application of the rule). This clearly holds if ñ is deterministic, as all agents
are deterministic in deterministic negotiations.

In the next section we show that, on top of their semantic justification, weakly
deterministic and deterministic negotiations are also interesting from an analysis
point of view. We prove that the shortcut and useless arc rules are complete for
acyclic, weakly deterministic negotiations, which of course implies that the same
rules plus the merge are complete, too. A second result proves that a polynomial
number of applications of the merge and shortcut rules suffices to summarize
any sound deterministic acyclic negotiation (the useless arc rule is irrelevant for
deterministic negotiations).

6 Completeness and Complexity

We start with the completeness result for the weakly deterministic case.

Theorem 4. The shortcut and useless arc rules are complete for acyclic, weakly
deterministic negotiations.

Proof. (Sketch) Let N be a sound and acyclic weakly deterministic negotiation.
The proof has two parts.

(1) If N has more than one atom, then the shortcut rule or the useless arc
rule can be applied to it.

Since N is acyclic, its graph generates a partial order on atoms in the obvious
way (n < n′ if there is a path from n to n′). Clearly n0 is the unique minimal
element. We choose an arbitrary linearisation of this partial order. Since N has
more than one atom, this linearisation begins with n0 and has some second
element, say n1.

The full proof shows that, if {n1} = X(n0, a, r0) for every party a of n1, then
the shortcut rule can be applied to n0, n1, and if {n1} = X(n0, a, r0) for some
party a of n1, then the useless arc rule is applicable.



On Negotiation as Concurrency Primitive 451

(2) The shortcut and useless arc rules cannot be applied infinitely often.
This follows from two facts: the application of the shortcut rule does not increase
the length of any large step of a negotiation, and strictly decreases the length of
at least one large step (by replacing a sequence of two outcomes by one single
outcome); the application of the useless arc rule does not change the large steps
but decreases the number of arcs.

By (2) every maximal sequence of applications of the rule terminates. By (1)
it terminates with a negotiation containing one single atom. ��

Next we prove that a polynomial number of applications of the merge and
shortcut rules suffice to summarize any sound deterministic acyclic negotiation
(SDAN). For this we have to follow a strategy in the application of the shortcut
rule.

Definition 12. The deterministic shortcut rule, or d-shortcut rule, is the result
of adding to the guard of the shortcut rule a new condition: (3) n′ has at most
one outcome (the actions of the shortcut and d-shortcut rules coincide).

We say that a SDAN is irreducible if neither the merge nor the d-shortcut rule
can be applied to it. In the rest of the section we prove that irreducible SDANs
are necessarily atomic. The proof, which is rather involved, proceeds in three
steps. First, we prove a technical lemma showing that SDANs can be reduced
so that all agents participate in every atom with more than one outcome. Then
we use this result to prove that, loosely speaking, every SDAN can be reduced
to a “replication” of a negotiation with only one agent: if X(n, a, r) = {n′} for
some agent a, then X(n, a, r) = {n′} for every agent a. In the third step, we show
that replications can be reduced to atomic negotiations. Finally, we analyze the
number of rule applications needed in each of these three steps, and conclude.

Lemma 1. Let N be an irreducible SDAN and let n = nf be an atom of N with
more than one outcome. Then every agent participates in n.

Proof. (Sketch) We first prove the following key claim: The atom n has an out-
come r such that either (n, r) unconditionally enables nf , or (n, r) uncondition-
ally enables some atom with more than one outcome.
To prove the claim, we first show that it suffices to prove: if some outcome (n, r)
unconditionally enables some atom, then the claim holds. For this we assume the
contrary, and prove that N then contains a cycle, contradicting the hypothesis.

By repeated application of the claim we find a chain (n1, r1) . . . (nk, rk) such
that n1 = n, nk = nf , and (ni, ri) unconditionally enables ni+1 for every
1 ≤ i ≤ k − 1. By the definition of “unconditionally enabled” we have
P1 ⊇ P2 ⊇ · · · ⊇ Pk = Pf . Since Pf = A, we obtain P1 = A. ��

Lemma 2. Let N be an irreducible SDAN. Every agent participates in every
atom, and for every atom n = nf and every outcome r there is an atom n′

satisfying X(n, a, r) = {n′} for every agent a.
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Proof. We first show that every agent participates in every atom. By Lemma 1,
it suffices to prove that every atom n = nf has more than one outcome.
Assume the contrary, i.e., some atom different from nf has only one out-
come. Since, by soundness, every atom can occur, there is an occurrence se-
quence (n0, r0)(n1, r1) · · · (nk, rk) such that nk has only one outcome and all of
n0, . . . , nk−1 have more than one outcome. By Lemma 1, all agents participate in
all of n0, n1, nk−1. It follows that (ni, ri) unconditionally enables (ni+1, ri+1) for
every 0 ≤ i ≤ k− 1. In particular, (nk−1, rk−1) unconditionally enables (nk, rk).
But then, since nk only has one outcome, the d-shortcut rule can be applied to
nk−1, n, contradicting the hypothesis that N is irreducible.

For the second part, assume there is an atom n = nf , an outcome r of n, and
two distinct agents a1, a2 such that X(n, a1, r) = {n1} = {n2} = X(n, a2, r). By
the first part, every agent participates in n, n1 and n2. Since N is sound, some
reachable marking x enables n. Moreover, since all agents participate in n, and
N is deterministic, the marking x only enables n. Let x′ be the marking given

by x
(n,r)−−−−→ x′. Since a1 participates in all atoms, no atom different from n1

can be enabled at x′. Symmetrically, no atom different from n2 can be enabled
at x′. So x′ does not enable any atom, contradicting that N is sound. ��
Theorem 5. Let N be an irreducible SDAN. Then N contains only one atom.

Proof. (Sketch) Assume N contains more than one atom. Fore every atom n =
nf , let l(n) be the length of the longest path from n to nf in the graph of N. Let
nmin be any atom such that l(nmin) is minimal, and let r be an arbitrary outcome
of nmin. By Lemma 2 there is an atom n′ such that X(nmin, a, r) = {n′} for every
agent a. If n′ = nf then by acyclicity we have l(n′) < l(nmin), contradicting the
minimality of nmin. So we have X(nmin, a, r) = {n′} for every outcome r of nmin

and every agent a. If nmin has more than one outcome, then the merge rule
is applicable. If nmin has one outcome, then, since it unconditionally enables
nf , the d-shortcut rule is applicable. In both cases we get a contradiction to
irreducibility. ��
Definition 13. For every atom n and outcome r, let shoc(n, r) be the length
of a shortest maximal occurrence sequence containing (n, r) minus 1, and let
Shoc(N) =

∑
n∈N,r∈R shoc(n, r). Finally, let Out(N) =

∑
(P,R,δ)∈N\{nf} |R| be

the total number of outcomes of N, excluding those of the final atom.

Notice that if N has K atoms then shoc(n, r) ≤ K − 1 holds for every atom n
and outcome r. Further, if K = 1 then Shoc(N) = 0 = Out(N).

Theorem 6. Every SDAN N can be completely reduced by means of Out(N)
applications of the merge rule and Shoc(N) applications of the d-shortcut rule.

Proof. Let N and N′ be negotiations such that N′ is obtained from N by means of
the merge or the d-shortcut rule. For the merge rule we have Out(N′) < Out(N)
and Shoc(N′) ≤ Out(N) because the rule reduces the number of outcomes by
one. For the d-shortcut rule we have Out(N′) = Out(N) because if it is applied
to pairs n, n′ such that n′ has one single outcome, and Shoc(N′) < Shoc(N),
because Shoc(n, r′f ) < Shoc(n, r). ��
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7 Conclusions

We have introduced negotiations, a formal model of concurrency with negoti-
ation atoms as primitive. We have defined and studied two important analysis
problems: soundness, which coincides with the soundness notion for workflow
nets, and the new summarization problem. We have provided a complete set of
rules for sound acyclic, weakly deterministic negotiations, and we have shown
that the rules allow one to compute a summary of a sound deterministic nego-
tiations in polynomial time.

Several open questions deserve further study. Our results show that summa-
rization can be solved in polynomial time for deterministic, acyclic negotiations,
and is co-NP-hard for arbitrary acyclic negotiations. The precise complexity
of the weak deterministic case is still open. We are currently working on a
generalization of Rule 2.2. of Section 3.2, such that we can completely reduce in
polynomial time arbitrary deterministic negotiations, even if they contain cycles.

Related Work. Previous work on Petri net analysis by means of reductions has
already been discussed in the Introduction.

A number of papers have modelled specific distributed negotiation protocols
with the help of Petri nets or process calculi (see [21,19,3]). However, these
papers do not address the issue of negotiation as concurrency primitive.

The feature of summarizing parts of a negotiation to single negotiation atoms
has several analogies in Petri net theory, among these the concept of zero-safe
Petri nets. By abstracting from reachable markings which mark distinguished
“zero-places”, transactions can be modelled by zero-safe Petri nets [8]. Reference
[7] extends this concept to reconfigurable, dynamic high-level Petri nets.

A related line of research studies global types and session types to model multi-
party sessions [17]. See [9] for an overview that also covers choreography-based
approaches for web services. This research emphasises communication aspects
in the formal setting of mobile processes. Thus, the aim differs from our aim.
However, it might be worth trying to combine the two approaches.

Finally, the graphical representation of negotiations was partly inspired by
the BIP component framework [4,6], where a set of sequential components (i.e.,
the agents) interact by synchronizing on certain actions (i.e., the atoms).

Acknowledgement. We thank the reviewers, in particular for their hints to
related papers. We also thank Stephan Barth, Eike Best, and Jan Kretinsky for
very helpful discussions.
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Abstract. We show that satisfiability for CTL∗ with equality-, order-, and mod-
ulo-constraints over Z is decidable. Previously, decidability was only known for
certain fragments of CTL∗, e.g., the existential and positive fragments and EF.

1 Introduction

Temporal logics like LTL, CTL or CTL∗ are nowadays standard languages for specify-
ing system properties in model-checking. They are interpreted over node labeled graphs
(Kripke structures), where the node labels (also called atomic propositions) represent
abstract properties of a system. Clearly, such an abstracted system state does in general
not contain all the information of the original system state. Consider for instance a pro-
gram that manipulates two integer variables x and y. A useful abstraction might be to
introduce atomic propositions v−232 , . . . , v232 for v ∈ {x, y}, where the meaning of vk
for −232 < k < 232 is that the variable v ∈ {x, y} currently holds the value k, and
v−232 (resp., v232 ) means that the current value of v is at most−232 (resp., at least 232).
It is evident that such an abstraction might lead to incorrect results in model-checking.

To overcome these problems, extensions of temporal logics with constraints have
been studied. Let us explain the idea in the context of LTL. For a fixed relational struc-
ture A (typical examples for A are number domains like the integers or rationals ex-
tended with certain relations) one adds atomic formulas of the form r(Xi1x1, . . . ,X

ikxk)
(so called constraints) to standard LTL. Here, r is (a name of) one of the relations of the
structureA, i1, . . . , ik ≥ 0, and x1, . . . , xk are variables that range over the universe of
A. An LTL-formula containing such constraints is interpreted over (infinite) paths of a
standard Kripke structure, where in addition every node (state) associates with each of
the variables x1, . . . , xk an element of A (one can think of A-registers attached to the
system states). A constraint r(Xi1x1, . . . ,X

ikxk) holds in a path s0 → s1 → s2 → · · ·
if the tuple (a1, . . . , ak), where aj is the value of variable xj at state sij , belongs to
the A-relation r. In this way, the values of variables at different system states can be
compared. In our example from the first paragraph, one might choose for A the struc-
ture (Z, <,=, (=a)a∈Z), where =a is the unary predicate that only holds for a. This
structure has infinitely many predicates, which is not a problem; our main result will
actually talk about an expansion of (Z, <,=, (=a)a∈Z). Then, one might for instance
write down a formula (<(x,X1y))U(=100(y)) which holds on a path if and only if there
is a point of time where variable y holds the value 100 and for all previous points of
time t, the value of x at time t is strictly smaller than the value of y at time t+ 1.

� Omitted proofs can be found in [4]. This work is supported by the DFG Research Training
Group 1763 (QuantLA). The second author is supported by the DFG research project GELO.

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 455–469, 2013.
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In [9], Demri and Gascon studied LTL extended with constraints from a language
IPC∗. If we disregard succinctness aspects, these constraints are equivalent to con-
straints over the structure

Z = (Z, <,=, (=a)a∈Z, (≡a,b)0≤a<b), (1)

where =a denotes the unary relation {a} and ≡a,b denotes the unary relation {a+ xb |
x ∈ Z} (expressing that an integer is congruent to a modulo b). The main result from
[9] states that satisfiability of LTL with constraints from Z is decidable and in fact
PSPACE-complete, and hence has the same complexity as satisfiability for LTL without
constraints. We should remark that the PSPACE upper bound from [9] even holds for
the succinct IPC∗-representation of constraints used in [9].

In the same way as outlined for LTL above, constraints can be also added to CTL
and CTL∗ (then, constraints r(Xi1x1, . . . ,X

ikxk) are path formulas). A weak form of
CTL∗ with constraints from Z (where only integer variables and the same state can be
compared) was first introduced in [5], where it is used to describe properties of infinite
transition systems, represented by relational automata. There it is shown that the model
checking problem for CTL∗ over relational automata is undecidable.

Demri and Gascon [9] asked whether satisfiability of CTL∗ with constraints from
Z over Kripke structures is decidable. This problem was investigated in [3,10], where
several partial results where shown: If we replace in Z the binary predicate < by unary
predicates <c = {x | x < c} for c ∈ Z, then satisfiability for CTL∗ is decidable by
[10]. While, for the full structure Z satisfiability is decidable for the CTL∗ fragment
CEF+ (which contains the existential and universal fragment of CTL∗ as well as EF)
[3].

In this paper we prove that CTL∗ with constraints over Z is decidable. Our proof is
divided into two steps. The first step provides a tool to prove decidability of CTL∗ with
constraints over any structure A over a countable (finite or infinite) signature S (the
structureA has to satisfy the additional property that the complement of any of its rela-
tions has to be definable in positive existential first-order logic overA). Let L be a logic
that satisfies the following two properties: (i) satisfiability of a given L-sentence over
the class of infinite node-labeled trees is decidable, and (ii) L is closed under boolean
combinations with monadic second-order formulas (MSO). A typical such logic is MSO
itself. By Rabin’s seminal tree theorem, satisfiability of MSO-sentences over infinite
node-labeled trees is decidable. Assuming L has these two properties, we prove that
satisfiability of CTL∗ with constraints over A is decidable if one can compute from
a given finite subsignature σ ⊆ S an L-sentence ψσ (over the signature σ) such that
for every countable σ-structure B: B |= ψσ if and only if there exists a homomorphism
from B toA (i.e., a mapping from the domain of B to the domain ofA that preserves all
relations from σ). We say that the structure A has the property EHomDef(L) if such a
computable function σ �→ ψσ exists. EHomDefstands for “existence of homomorphism
is definable”. For instance, the structure (Q, <,=) has the property EHomDef(MSO),
see Example 7.

It is not clear whether Z from (1) has the property EHomDef(MSO) (we conjecture
that it does not). Hence, we need a different logic. It turns out that Z has the property
EHomDef(WMSO+B), where WMSO+B is the extension of weak monadic second-
order logic (where only quantification over finite subsets is allowed) with the bounding
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quantifier B. A formula BX : ϕ holds in a structureA if and only if there exists a bound
b ∈ N such that for every finite subset B of the domain of A with A |= ϕ(B) we
have |B| ≤ b. Recently, Bojańczyk and Toruńczyk have shown that satisfiability of
WMSO+B over infinite node-labeled trees is decidable [1]. The next problem is that
WMSO+B is not closed under boolean combinations with MSO-sentences. But fortu-
nately, the decidability proof for WMSO+B can be extended to boolean combinations
of MSO-sentences and (WMSO+B)-sentences, see Section 3 for details. This finally
shows that satisfiability of CTL∗ with constraints from Z is decidable.

While it would be extremely useful to add successor constraints (y = x + 1) to
Z , this would lead to undecidability even for LTL [8] and the very basic description
logicALC [13], which is basically multi-modal logic. NonethelessZ allows qualitative
representation of increment, for example x = y + 1 can be abstracted by (y > x) ∧
(≡1,2k (y)) where k is a large natural number. This is why temporal logics extended
with constraints over Z seem to be a good compromise between (unexpressive) total
abstraction and (undecidable) high concretion.

In the area of knowledge representation, extensions of description logics with con-
straints from so called concrete domains have been intensively studied, see [11] for
a survey. In [12], it was shown that the extension of the description logic ALC with
constraints from (Q, <,=) has a decidable (EXPTIME-complete) satisfiability prob-
lem with respect to general TBoxes (also known as general concept inclusions). Such
a TBox can be seen as a second ALC-formula that has to hold in all nodes of a model.
Our decidability proof is partly inspired by the construction from [12], which in con-
trast to our proof is purely automata-theoretic. Further results for description logics and
concrete domains can be found in [13,14].

Unfortunately, our proof does not yield any complexity bound for satisfiability of
CTL∗ with constraints from Z . The boolean combinations of (WMSO+B)-sentences
and MSO sentences that have to be checked for satisfiability (over infinite trees) are of
a simple structure, in particular their quantifier depth is not high. But no complexity
statement for satisfiability of WMSO+B is made in [1], and it seems to be difficult
to analyze the algorithm from [1] (but it seems to be elementary for a fixed quantifier
depth). It is based on a construction for cost functions over finite trees from [6], where
the authors only note that their construction seems to have very high complexity.

2 Preliminaries

Let [1, d] = {1, . . . , d}. For a word w = a1a2 · · · al ∈ [1, d]∗ and k ≤ l we define
w[: k] = a1a2 · · · ak; it is the prefix of w of length k.

Let P be a countable set of (atomic) propositions. A Kripke structure over P is a
triple K = (D,→, ρ), where (i) D is an arbitrary set of nodes (or states), (ii) → is a
binary relation on D such that for every u ∈ D there exists v ∈ D with u → v, and
(iii) ρ : D → 2P assigns to every node the set of propositions that hold in the node.
We require that

⋃
v∈D ρ(v) is finite, i.e., only finitely many propositions appear in K.

A K-path is an infinite sequence π = (v0, v1, v2, . . .) such that vi → vi+1 for all i ≥ 0.
For i ≥ 0 we define the state π(i) = vi and the path πi = (vi, vi+1, vi+2, . . .). A Kripke
d-tree is a Kripke structure of the form K = ([1, d]∗,→, ρ), where→ contains all pairs
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(u, ui) with u ∈ [1, d]∗ and 1 ≤ i ≤ d, i.e., ([1, d]∗,→) is a tree with root ε where
every node has d children.

A signature is a countable (finite or infinite) set S of relation symbols. Every relation
symbol r ∈ S has an associated arity ar(r) ≥ 1. An S-structure is a pair A = (A, I),
where A is a non-empty set and I maps every r ∈ S to an ar(r)-ary relation over
A. Quite often, we will identify the relation I(r) with the relation symbol r, and we
will specify an S-structure as (A, r1, r2, . . .) where S = {r1, r2, . . .}. The S-structure
A = (A, I) is negation-closed if there exists a computable function that maps a relation
symbol r ∈ S to a positive existential first-order formula ϕr(x1, . . . , xar(r)) (i.e., a
formula that is built up from atomic formulas using∧,∨, and ∃) such that Aar(r)\I(r) =
{(a1, . . . , aar(r)) | A |= ϕr(a1, . . . , aar(r))}. In other words, the complement of every
relation I(r) must be effectively definable by a positive existential first-order formula.

Example 1. The structure Z from (1) is negation-closed (we will write x = a instead
of =a(x) and similarly for ≡a,b). We have for instance:

– x = y if and only if x < y or y < x.
– x = a if and only if ∃y ∈ Z : y = a ∧ (x < y ∨ y < x).
– x ≡ a mod b if and only if x ≡ c mod b for some 0 ≤ c < b with a = c.

For a subsignature σ ⊆ S, a σ-structure B = (B, J) and an S-structure A = (A, I),
a homomorphism h : B → A is a mapping h : B → A such that for all r ∈ σ and all
tuples (b1, . . . , bar(r)) ∈ J(r) we have (h(b1), . . . , h(bar(r))) ∈ I(r). We write B � A
if there is a homomorphism from B to A.

3 MSO and WMSO+B

Recall that monadic second-order logic (MSO) is the extension of first-order logic
where also quantification over subsets of the underlying structure is allowed. We as-
sume that the reader has some familiarity with MSO. Weak monadic second-order logic
(WMSO) has the same syntax as MSO but second-order variables only range over finite
subsets of the underlying structure. Finally, WMSO+B is the extension of WMSO by
the additional quantifier BX : ϕ (the bounding quantifier). The semantics of BX : ϕ in
the structure A = (A, I) is defined as follows: A |= BX : ϕ(X) if and only if there is
a bound b ∈ N such that |B| ≤ b for every finite subset B ⊆ A with A |= ϕ(B).

Example 2. For later use, we state some example formulas. Let ϕ(x, y) be a WMSO-
formula with two free first-order variables x and y. Let A = (A, I) be a structure and
let E = {(a, b) ∈ A× A | A |= ϕ(a, b)} be the binary relation defined by ϕ(x, y). We
define the WMSO-formula reachϕ(a, b) to be

∃X ∀Y
(
a ∈ Y ∧ ∀x∀y((x ∈ Y ∧ y ∈ X ∧ ϕ(x, y))→ y ∈ Y )→ b ∈ Y

)
It is straightforward to prove that A |= reachϕ(a, b) if and only if (a, b) ∈ E∗. Note
that reachϕ is the standard MSO-formula for reachability but restricted to some finite
induced subgraph. Clearly, b is reachable from a in the graph (A,E) if and only if it is
in some finite subgraph of (A,E).
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Let ECycleϕ = ∃x∃y(reachϕ(x, y) ∧ ϕ(y, x)) be the WMSO-formula expressing
that there is a cycle in (A,E).

Given a second-order variable Z , we define reachZϕ(a, b) to be

a ∈ Z ∧ ∀Y ⊆ Z
(
a ∈ Y ∧ ∀x∀y((x ∈ Y ∧ y ∈ Z ∧ ϕ(x, y))→ y ∈ Y )→ b ∈ Y

)
.

We have A |= reachZϕ (a, b) iff b is reachable from a in the subgraph of (A,E) induced

by the (finite) set Z . Note thatA |= reachZϕ (a, b) implies {a, b} ⊆ Z .
For the next examples we restrict our attention the case that the graph (A,E) defined

by ϕ(x, y) is acyclic. Hence, the reflexive transitive closure E∗ is a partial order on
A. Note that a finite set F ⊆ A is an E-path from a ∈ F to b ∈ F if and only if
(F, (E ∩ (F × F ))∗) is a finite linear order with all elements between a and b. Define
the WMSO-formula Pathϕ(a, b, Z) as

∀x ∈ Z ∀y ∈ Z (reachZϕ(x, y) ∨ reachZϕ(y, x)) ∧ reachZϕ (a, x) ∧ reachZϕ(x, b).

For every acyclic (A,E) we haveA |= Pathϕ(a, b, P ) if and only if P contains exactly
the nodes along an E-path from a to b.

We finally define the WMSO+B-formula BPathsϕ(x, y) = BZ : Pathϕ(x, y, Z).
By definition of the quantifier B, if (A,E) is acyclic, then A |= BPathsϕ(a, b) if and
only if there is a bound k ∈ N on the length of any E-path from a to b.

Next, let Bool(MSO,WMSO+B) be the set of all Boolean combinations of MSO-
formulas and (WMSO+B)-formulas. We will use the following result.

Theorem 3 (cf. [1]). One can decide whether for a given d ∈ N and a formula ϕ ∈
Bool(MSO,WMSO+B) there exists a Kripke d-tree K such that K |= ϕ.

Proof. This theorem follows from results of Bojańczyk and Toruńczyk [1,2]. They in-
troduced puzzles which can be seen as pairs P = (A,C), where A is a parity tree
automaton and C is an unboundedness condition C which specifies a certain set of infi-
nite paths labeled by states of A. A puzzle accepts a tree T if there is an accepting run
ρ of A on T such that for each infinite path π occurring in ρ, π ∈ C holds. In partic-
ular, ordinary parity tree automata can be seen as puzzles with trivial unboundedness
condition. The proof of our theorem combines the following results.

Lemma 4 ([1]). From a given (WMSO+B)-formula ϕ and d ∈ N one can construct a
puzzle Pϕ such that ϕ is satisfied by some Kripke d-tree iff Pϕ is nonempty.

Lemma 5 ([1]). Emptiness of puzzles is decidable.

Lemma 6 (Lemma 17 of [2]). Puzzles are effectively closed under intersection.

Let ϕ ∈ Bool(MSO,WMSO+B). First, ϕ can be effectively transformed into a dis-
junction

∨n
i=1(ϕi ∧ψi) where ϕi ∈ MSO and ψi ∈ WMSO+B for all i. By Lemma 4,

we can construct a puzzle Pi for ψi. It is known that the MSO-formula ϕi can be trans-
lated into a parity tree automaton Ai. Let P ′i be a puzzle recognizing the intersection of
Pi and Ai (cf. Lemma 6). Now ϕ is satisfiable over Kripke d-trees if and only if there
is an i such that ϕi∧ψi is satisfiable over Kripke d-trees if and only if there is an i such
that P ′i is nonempty. By Lemma 5, the latter condition is decidable which concludes the
proof of the theorem. ��
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Let L be a logic (e.g. MSO or Bool(MSO,WMSO+B)). An S-structure A has the
property EHomDef(L) (existence of homomorphisms to A is L-definable) if there is a
computable function that maps a finite subsignature σ ⊆ S to an L-sentence ϕσ such
that for every countable σ-structure B: B � A if and only if B |= ϕσ .

Example 7. The structure Q = (Q, <,=) has the property EHomDef(WMSO) (and
EHomDef(MSO)). In [12] it is implicitly shown that for a countable {<,=}-structure
B = (B, I), B � Q if and only if there does not exist (a, b) ∈ I(<) such that (b, a) ∈
(I(<)∪ I(=)∪ I(=)−1)∗. This condition can be easily expressed in WMSO using the
reach-construction from Example 2. Note that I(=) is not required to be the identity
relation on B.

4 CTL∗ with Constraints

Let us fix a countably infinite set of atomic propositions P and a countably infinite set
of variables V for the rest of the paper. Let S be a signature. We define an extension of
CTL∗ with constraints over the signature S. We define CTL∗(S)-state formulas ϕ and
CTL∗(S)-path formulas ψ by the following grammar, where p ∈ P, r ∈ S, k = ar(r),
i1, . . . , ik ≥ 0, and x1, . . . , xk ∈ V:

ϕ ::=p | ¬ϕ | (ϕ ∧ ϕ) | Eψ
ψ ::=ϕ | ¬ψ | (ψ ∧ ψ) | Xψ | ψUψ | r(Xi1x1, . . . ,X

ikxk)

A formula of the form R := r(Xi1x1, . . . ,X
ikxk) is also called an atomic constraint

and we define d(R) = max{i1, . . . , ik} (the depth of R). The syntactic difference
between CTL∗(S) and ordinary CTL∗ lies in the presence of atomic constraints.

Formulas of CTL∗(S) are interpreted over triples C = (A,K, γ), where A = (A, I)
is an S-structure (also called the concrete domain),K = (D,→, ρ) is a Kripke structure
over P, and γ : D×V→ A assigns to every (v, x) ∈ D× V a value γ(v, x) (the value
of variable x at node v). We call such a triple C = (A,K, γ) anA-constraint graph. An
A-constraint graph C = (A,K, γ) is an A-constraint d-tree if K is a Kripke d-tree.

We now define the semantics of CTL∗(S). For an A-constraint graph C = (A,K, γ)
with A = (A, I) and K = (D,→, ρ), a state v ∈ D, a K-path π, a state formula ϕ, and
a path formula ψ we write (C, v) |= ϕ if ϕ holds in (C, v) and (C, π) |= ψ if ψ holds in
(C, π). This is inductively defined as follows (for the boolean connectives ¬ and ∧ the
definitions are as usual and we omit them):

– (C, v) |= p iff p ∈ ρ(v).
– (C, v) |= Eψ iff there is a K-path π with π(0) = v and (C, π) |= ψ.
– (C, π) |= ϕ iff (C, π(0)) |= ϕ.
– (C, π) |= Xψ iff (C, π1) |= ψ.
– (C, π) |= ψ1Uψ2 iff there exists i ≥ 0 such that (C, πi) |= ψ2 and for all 0 ≤ j < i

we have (C, πj) |= ψ1.
– (C, π) |= r(Xi1x1, . . . ,X

inxn) iff (γ(π(i1), x1), . . . , γ(π(in), xn)) ∈ I(r).



Satisfiability of CTL∗ with Constraints 461

Note that the role of the concrete domainA and of the valuation function γ is restricted
to the semantic of atomic constraints. CTL∗-formulas are interpreted over Kripke struc-
tures, and to obtain their semantics it is sufficient to replace C by K in the rules above
and to remove the last line.

We use the usual abbreviations: θ1 ∨ θ2 := ¬(¬θ1 ∧ ¬θ2) (for both state and path
formulas), Aψ := ¬E¬ψ (universal path quantifier), ψ1Rψ2 := ¬(¬ψ1U¬ψ2) (the
release operator). Note that (C, π) |= ψ1Rψ2 iff ((C, πi) |= ψ2 for all i ≥ 0 or there
exists i ≥ 0 such that (C, πi) |= ψ1 and (C, πj) |= ψ2 for all 0 ≤ j ≤ i).

Using this extended set of operators we can put every formula into a semantically
equivalent negation normal form, where ¬ only occurs in front of atomic propositions
or atomic constraints. Let #E(θ) be the the number of different subformulas of the form
Eψ in the CTL∗(S)-formula θ. Then CTL∗(S) has the following tree model property:

Theorem 8 (cf. [10]). Let ϕ be a CTL∗(S)-state formula in negation normal form and
let A = (A, I) be an S-structure. Then ϕ is A-satisfiable if and only if there exists an
A-constraint (#E(ϕ) + 1)-tree C with (C, ε) |= ϕ.

Note that for checking (A,K, γ) |= ϕ we may ignore all propositions p ∈ P that do not
occur in ϕ. Similarly, only those values γ(u, x), where x is a variable that appears in
ϕ, are relevant. Hence, if Vϕ is the finite set of variables that occur in ϕ, then we can
consider γ as a mapping from D × Vϕ to the domain of A. Intuitively, we assign to
each node u ∈ D registers that store the values γ(u, x) for x ∈ Vϕ.

5 Satisfiability of Constraint CTL∗ over a Concrete Domain

When we talk about satisfiability for CTL∗(S) our setting is as follows: We fix a con-
crete domain A = (A, I). Given a CTL∗(S)-state formula ϕ, we say that ϕ is A-
satisfiable if there is an A-constraint graph C = (A,K, γ) and a node v of K such that
(C, v) |= ϕ. With SATCTL∗(A) we denote the following computational problem: Is a
given state formula ϕ ∈ CTL∗(S) A-satisfiable? The main result of this section is:

Theorem 9. Let A be a negation-closed S-structure, which moreover has the property
EHomDef(Bool(MSO,WMSO+B)). Then the problem SATCTL∗(A) is decidable.

We say that a CTL∗(S)-formula ϕ is in strong negation normal form if negations only
occur in front of atomic propositions (i.e., ϕ is in negation normal form and there is no
subformula ¬R where R is an atomic constraint).

Let us fix a CTL∗(S)-state formula ϕ in negation normal form and a negation-closed
S-structure A for the rest of this section. We want to check whether ϕ is A-satisfiable.
First, we reduce to formulas in strong negation normal form:

Lemma 10. LetA = (A, I) be a negation-closed S-structure. From a given CTL∗(S)-
state formula ϕ one can compute a CTL∗(S)-state formula ϕ̂ in strong negation normal
form such that ϕ is A-satisfiable iff ϕ̂ is A-satisfiable.

From now on let us assume that ϕ is in strong negation normal form. Let d = #E(ϕ)+1.
Let R1, . . . , Rn be a list of all atomic constraints that are subformulas of ϕ, and let Vϕ
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Fig. 1. The (N, <,=)-constraint 2-tree C from Ex. 11, the Kripke 2-tree T = Ca, and the struc-
ture GT

be the finite set of variables that occur in ϕ. Let us fix new propositions p1, . . . , pn (one
for each Ri) that do not occur in ϕ. Let di = d(Ri) be the depth of the constraint Ri.
We denote with ϕa the (ordinary) CTL∗-formula obtained from ϕ by replacing every
occurrence of a constraint Ri by Xdipi. Given an A-constraint d-tree C = (A,K, γ),
where K = ([1, d]∗,→, ρ) and ρ(v) ∩ {p1, . . . , pn} = ∅ for all v ∈ [1, d]∗, we define a
Kripke d-tree Ca = ([1, d]∗,→, ρa), where ρa(v) contains

– all propositions from ρ(v) and
– all propositions pi (1 ≤ i ≤ n) such that the following holds, where we as-

sume that Ri has the form r(Xj1x1, . . . ,X
jkxk) with k = ar(r) (hence, di =

max{j1, . . . , jk}):
• v = su with |u| = di
• (γ(su1, x1), . . . , γ(suk, xk)) ∈ I(r), where ul = u[: jl] for 1 ≤ l ≤ k.

Hence, the fact that proposition pi labels node su with |u| = di means that the constraint
Ri holds along every path that starts in node s and descends in the tree down via node
su. The superscript “a” in Ca stands for “abstracted” since we abstract from the concrete
constraints and replace them by new propositions.

Moreover, given a Kripke d-tree T = ([1, d]∗,→, ρ) (where the new propositions
p1, . . . , pn are allowed to occur in T ) we define a countable S-structure GT = ([1, d]∗×
Vϕ, J) as follows: The interpretation J(r) of the relation symbol r ∈ S contains all k-
tuples (where k = ar(r)) ((su1, x1), . . . , (suk, xk)) for which there exist 1 ≤ i ≤ n
and u ∈ [1, d]∗ with |u| = di such that pi ∈ ρ(su), Ri = r(Xj1x1, . . . ,X

jkxk), and
ut = u[: jt] for 1 ≤ t ≤ k.

Example 11. Figure 1 shows an example, where we assume that d = 2 and n = 2,
R1 = [<(x1,Xx2)], and R2 = [=(Xx1,Xx2)]. The figure shows an initial part of an
(N, <,=)-constraint 2-tree C = ((N, <,=),K, γ). The edges of the Kripke 2-tree K
are dotted. We assume thatK is defined over the empty set of propositions. The node to
the left (resp., right) of a tree node u is labeled by the value γ(u, x1) (resp. γ(u, x2)).
The figure shows the labeling of tree nodes with the two new propositions p1 and p2
(corresponding to R1 and R2) as well as the {<,=}-structure GT for T = Ca.
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Lemma 12. Let ϕ be a CTL∗(S)-state formula in strong negation normal form. The
formula ϕ is A-satisfiable if and only if there exists a Kripke (#E(ϕ) + 1)-tree T such
that (T , ε) |= ϕa and GT � A.

Let θ = ϕa for the further discussion. Hence, θ is an ordinary CTL∗-state formula,
where negations only occur in front of propositions from P \ {p1, . . . , pm}, and d =
#E(θ) + 1. By Lemma 12, we have to check, whether there exists a Kripke d-tree T
such that (T , ε) |= θ and GT � A.

Let σ ⊆ S be the finite subsignature consisting of all predicate symbols that oc-
cur in our initial CTL∗(S)-formula ϕ. Note that GT is actually a σ-structure. Since
the concrete domainA has the property EHomDef(Bool(MSO,WMSO+B)), one can
compute from σ a Bool(MSO,WMSO+B)-formula α such that for every countable
σ-structure B we have B |= α if and only if B � A. Hence, our new goal is to decide,
whether there exists a Kripke d-tree T such that (T , ε) |= θ and GT |= α (note that GT
is countable). It is well known that every CTL∗-state formula can be effectively trans-
formed into an equivalentMSO-formula with a single free first-order variable. Since the
root ε of a tree is first-order definable, we get an MSO-sentence ψ such that (T , ε) |= θ
if and only if T |= ψ. Hence, we have to check whether there exists a Kripke d-tree T
such that T |= ψ and GT |= α. If we can translate the Bool(MSO,WMSO+B)-formula
α back into a Bool(MSO,WMSO+B)-formula α′ such that (GT |= α ⇔ T |= α′),
then we can finish the proof.

Recall the construction of GT : For every node v ∈ D of T = (D,→, ρ) we introduce
m := |Vϕ| copies (v, x) for x ∈ Vϕ. The S-relations between these nodes are deter-
mined by the propositions p1, . . . , pn: The interpretation of r ∈ S contains all k-tuples
(k = ar(r)) ((su1, y1), . . . , (suk, yk)) for which there exist 1 ≤ i ≤ n and u ∈ [1, d]∗

with |u| = di, pi ∈ ρ(su), Ri = r(Xj1y1, . . . ,X
jkyk), and ut = u[: jt] for 1 ≤ t ≤ k.

This is a particular case of an MSO-transduction [7] with copy number m. It is there-
fore possible to compute from a given MSO-sentence η over the signature S an MSO-
sentence η′ such that GT |= η ⇔ T |= η′. But the problem is that in our situation η is
the Bool(MSO,WMSO+B)-formula α, and it is not clear whether MSO-transductions
(or even first-order interpretations) are compatible with the logic WMSO+B. Never-
theless, there is a simple solution. Let Vϕ = {x1, . . . , xm}. From a Kripke d-tree T =
([1, d]∗,→, ρ) we build an extended (d+m)-Kripke tree T e = ([1, d+m]∗,→, ρe) as
follows: Let us fix new propositions q1, . . . , qm (one for each variable xi) that do not
occur in the MSO-sentence ψ and such that ρ(v)∩{q1, . . . , qm} = ∅ for all v ∈ [1, d]∗.
We define the new labeling function ρe as follows:

ρe(v) = ρ(v) for v ∈ [1, d]∗

ρe(vi) = {qi−d} for v ∈ [1, d]∗, d+ 1 ≤ i ≤ d+m

ρe(viu) = ∅ for v ∈ [1, d]∗, d+ 1 ≤ i ≤ d+m,u ∈ [1, d+m]+

It is easy to write down an MSO-sentence β such that for every (d + m)-Kripke tree
T ′ we have T ′ |= β if and only if T ′ ∼= T e for some Kripke d-tree T . Moreover,
since the old Kripke d-tree T is MSO-definable within T e, we can construct from the
MSO-sentence ψ a new MSO-sentence ψe such that T |= ψ if and only if T e |= ψe.
Finally, let q(x) =

∨m
i=1 qi(x). Then, the nodes of GT are in a natural bijection with
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the nodes of T e that satisfy q(x): If T e |= q(u) for u ∈ [1, d + m]∗, then there is a
unique i ∈ [1,m] such that T e |= qi(u) and u = v(i+d). Then we associate the node u
with node (v, xi) of GT . By relativizing all quantifiers in the Bool(MSO,WMSO+B)-
formula α to q(x), we can construct a Bool(MSO,WMSO+B)-formula αe such that
GT |= α if and only if T e |= αe.

It follows that there is a Kripke d-tree T such that T |= ψ and GT |= α if and only
if there is a Kripke (d+m)-tree T ′ such that T ′ |= (β ∧ ψe ∧ αe). Since β ∧ ψe ∧ αe

is a Bool(MSO,WMSO+B)-formula, the latter is decidable by Thm. 3.

6 Concrete Domains over the Integers

The main technical result of this section is:

Proposition 13. Z from (1) has the property EHomDef(Bool(MSO,WMSO+B)).

Since Z is negation-closed (see Ex. 1) our main result follows by Thm. 9:

Theorem 14. SATCTL∗(Z) is decidable.

We prove Prop. 13 in three steps. First, we show that the structure (Z, <) has the prop-
erty EHomDef(WMSO+B). Then we extend this result to the structure (Z, <,=) and,
finally, to the full structure Z .

Proposition 15. (Z, <) has the property EHomDef(WMSO+B).

As a preparation of the proof, we first define some terminology and then we characterize
structures that allow homomorphisms to (Z, <) in terms of their paths. Let A = (A, I)
be a countable {<}-structure. We identify A with the directed graph (A,E) where
E = I(<). When talking about paths, we always refer to finite directed E-paths. The
length of a path (a0, a1, . . . , an) (i.e., (ai−1, ai) ∈ E for 1 ≤ i ≤ n) is n. For S ⊆ A
and x ∈ A \ S, a path from x to S is a path from x to some node y ∈ S. A path from S
to x is defined in a symmetric way.

Lemma 16. We have A � (Z, <) if and only if

(H1) A does not contain cycles, and
(H2) for all a, b ∈ A there is c ∈ N such that the length of all paths from a to b is

bounded by c.

Proof. Let us first show the “only if” direction of the lemma. Suppose h is a homo-
morphism from A to (Z, <). The presence of a cycle (a0, . . . ak−1) in A (k ≥ 1,
(ai, ai+1 mod k) ∈ E for 0 ≤ i ≤ k − 1) would imply the existence of integers
z0, . . . zk−1 with zi < zi+1 mod k for 0 ≤ i ≤ k − 1 (where zi = h(ai)), which is
not possible. Hence, (H1) holds.

Suppose now that a, b ∈ A are such that for every n there is a path of length at
least n from a to b. If d = h(b) − h(a), we can find a path (a0, a1 . . . , ak) with a0 =
a, ak = b and k > d. Since h is a homomorphism, this path will be mapped to an
increasing sequence of integers h(a) = h(a0) < h(a1) < · · · < h(ak) = h(b). But
this contradicts h(b)− h(a) = d < k. Hence, (H2) holds.
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For the “if” direction of the lemma assume thatA is acyclic (property (H1)) and that
(H2) holds. Fix an enumeration a0, a1, a2, . . . of the countable set A. For n ≥ 0 let
Sn := {a ∈ A | ∃i, j ≤ n : (ai, a), (a, aj) ∈ E∗}, which has the following properties:

(P1) Sn is convex w.r.t. the partial order E∗: If a, c ∈ Sn and (a, b), (b, c) ∈ E∗, then
b ∈ Sn.

(P2) For a ∈ A \ Sn all paths between a and Sn are “one-way”, i.e., there do not exist
b, c ∈ Sn such that (b, a), (a, c) ∈ E∗. This follows from (P1).

(P3) For all a ∈ A \ Sn there exists a bound c ∈ N such that all paths between a and
Sn have length at most c. Let can ∈ N be the smallest such bound (hence, we have
can = 0 if there do not exist paths between a and Sn).

To see (P3), assume that there only exist paths from Sn to a but not the other way
round (see (P2)); the other case is symmetric. If there is no bound on the length of paths
from Sn to a, then by definition of Sn, there is no bound on the length of paths from
{a0, . . . , an} to a. By the pigeon principle, there exists 0 ≤ i ≤ n such that there is no
bound on the length of paths from ai to a. But this contradicts property (H2).

We build our homomorphism h inductively. For every n ≥ 0 we define functions
hn : Sn → Z such that the following invariants hold for all n ≥ 0.

(I1) If n > 0 then hn(a) = hn−1(a) for all a ∈ Sn−1

(I2) hn(Sn) is bounded in Z, i.e., there exist z1, z2 ∈ Z such that hn(Sn) ⊆ [z1, z2].
(I3) hn is a homomorphism from the subgraph (Sn, E ∩ (Sn × Sn)) to (Z, <).

For n = 0 we have S0 = {a0}. We set h0(a0) = 0 (any other integer would be also
fine). Properties (I1)–(I3) are easily verified. For n > 0, there are four cases.

Case 1. an ∈ Sn−1, thus Sn = Sn−1. We set hn = hn−1. Clearly, (I1)–(I3) hold for n.

Case 2. an /∈ Sn−1 and there is no path from an to Sn−1 or vice versa. We set
hn(an) := 0 (and Sn = Sn−1 ∪ {an}). In this case (I1)–(I3) follow easily from the
induction hypothesis.

Case 3. an /∈ Sn−1 and there exist paths from an to Sn−1. Then, by (P2) there do not
exist paths from Sn−1 to an. Hence, we have

Sn = Sn−1 ∪ {a ∈ A | ∃b ∈ Sn−1 : (an, a), (a, b) ∈ E∗}.

We have to assign a value hn(a) for all a ∈ A \ Sn−1 that lie along a path from an to
Sn−1. By (I2) there exist z1, z2 ∈ Z with hn−1(Sn−1) ⊆ [z1, z2]. Recall the definition
of can−1 from (P3). For all a ∈ A \ Sn−1 that lie on a path from an to Sn−1, we set
hn(a) := z1 − can−1. Since there are paths from a to Sn−1, we have can−1 > 0. Hence,
for all a ∈ Sn \ Sn−1, hn(a) < z1. Let us check that hn : Sn → Z satisfy (I1)– (I3):
Invariant (I1) holds by definition of hn. For (I2) note that hn(Sn) ⊆ [z1 − can

n−1, z2].
It remains to show (I3), i.e., that hn is a homomorphism from (Sn, E ∩ (Sn × Sn))

to (Z, <). Hence, we have to show that h(b1) < h(b2) for all (b1, b2) ∈ E ∩ (Sn×Sn).

– If b1, b2 ∈ Sn−1, then hn(b1) = hn−1(b1) < hn−1(b2) = hn(b2) by induction
hypothesis.

– If b1 ∈ Sn \ Sn−1 and b2 ∈ Sn−1, we know that hn(b2) = hn−1(b2) ≥ z1 while
hn(b1) < z1 by construction. This directly implies hn(b1) < hn(b2).
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– If b2 ∈ Sn \Sn−1 and b1 ∈ Sn−1, then (b1, b2) ∈ E and by assumption b2 must be
on a path from an to Sn−1 which contradicts (P2).

– If both b1 and b2 belong to Sn \ Sn−1 then hn(bi) := z1 − cbin−1 for i ∈ {1, 2}
Since (b1, b2) ∈ E, we have cb1n−1 > cb2n−1. This implies hn(b1) < hn(b2).

Case 4. an /∈ Sn−1 and there exist paths from Sn−1 to an. For all a ∈ Sn \ Sn−1 =
{a ∈ A \ Sn−1 | a belongs to a path from Sn−1 to an}, set hn(a) = z2 + can−1. The
rest of the argument goes analogously to Case 3.

This concludes the construction of hn. By (I1) limit function h =
⋃

i∈N hi exists. By
(I3) and A =

⋃
i∈N Si, h is a homomorphism fromA to (Z, <). ��

Proof of Prop. 15. We translate the conditions (H1) and (H2) from Lemma 16 into
WMSO+B. Cycles are excluded by the sentence¬ECycle< (Example 2). Moreover, for
an acyclic {<}-structure A we have A |= ∀x∀y BPaths<(x, y) (see also Example 2)
if and only if for all a, b ∈ A there is a bound b ∈ N on the length of paths from a to b.
Thus,A � (Z, <) if and only if A |= ¬ECycle< ∧ ∀x∀y BPaths<(x, y). ��
Next, we extend Prop. 15 to the negation-closed structure (Z, <,=). To do so let us
fix a countable {<,=}-structure A = (A, I). Note that I(=) is not necessarily the
identity relation on A. Let∼ = (I(=)∪ I(=)−1)∗ be the smallest equivalence relation
on A that contains I(=). Since∼ is the reflexive and transitive closure of the first-order
definable relation I(=) ∪ I(=)−1, we can construct a WMSO-formula ϕ̃(x, y) (using
the reach-construction from Ex. 2) that defines ∼. Let

E< = ∼ ◦ I(<) ◦ ∼ i.e., the relation defined by the formula (2)

ϕ<(x, y) = ∃u ∃v (ϕ̃(x, u) ∧ u < v ∧ ϕ̃(v, y)). (3)

With Ã = (Ã, Ĩ) we denote the∼-quotient ofA: It is a {<}-structure, its domain is the
set Ã = {[a]∼ | a ∈ A} of all ∼-equivalence classes, and for two equivalence classes
[a]∼ and [b]∼ we have ([a]∼, [b]∼) ∈ Ĩ(<) iff there are a′ ∼ a and b′ ∼ b such that
(a′, b′) ∈ I(<). Let us write [a] for [a]∼. We have:

Lemma 17. A � (Z, <,=) if and only Ã � (Z, <).

In the next lemma, we translate the conditions for the existence of a homomorphism
from Ã to (Z, <) into conditions in terms of A.

Lemma 18. The following conditions are equivalent:

– Ã satisfies the conditions (H1) and (H2) from Lemma 16.
– The graph (A,E<) is acyclic and for all a, b ∈ A there is a bound c ∈ N such that

all E<-paths from a to b have length at most c.

Proposition 19. The concrete domains (Z, <,=), (N, <,=) and (Z \ N, <,=) have
property EHomDef(WMSO+B).

Proof. We only proof the proposition for (Z, <,=). The other two cases are similar. We
want to find a (WMSO+B)-formula ϕ such that for all {<,=}-structures A, A |= ϕ
if and only if A � (Z, <,=). Let A = (A, I) be a {<,=}-structure. We use the
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notations introduced before Lemma 17. By Lemma 17 and 18 we have to construct a
(WMSO+B)-formula expressing that A has no E<-cycles and for all a, b ∈ A there is
a bound c ∈ N on the length of E<-paths from a to b. For this, we can use the formula
constructed in the proof of Prop. 15 with < replaced by the formula ϕ< from (3). ��

In the rest of this section, we prove Prop. 19 for the full structure Z from (1), which is
defined over the infinite signature S = {<,=}∪{=c| c ∈ Z}∪{≡a,b| 0 ≤ a < b}. By
the definition of EHomDef(Bool(MSO,WMSO+B)) we have to compute from a finite
subsignature σ ⊆ S a Bool(MSO,WMSO+B)-sentence ϕσ that defines the existence
of a homomorphism to Z when interpreted over a σ-structure A. Hence, let us fix a
finite subsignature σ ⊆ S. We can assume that σ = {<,=} ∪ {=c| c ∈ C} ∪ {≡a,b|
b ∈ D, 0 ≤ a < b} for finite non-empty sets C ⊆ Z and D ⊆ N \ {0, 1}. Define
m = min(C) and M = max(C). W.l.o.g. we can assume that m ≤ 0 and M ≥ 0. Let
A = (A, I) be a countable σ-structure. In order to not confuse the relation I(=) with
the identity relation on A, we write in the following E=(x, y) for the atomic formula
expressing that (x, y) belongs to the relation I(=). Similarly, we write Ec(x) for the
atomic formula expressing that x ∈ I(=c). Instead of ≡a,b(x) we write x ≡ a mod b.

Define x ≤ y ⇔ (x < y ∨ E=(x, y) ∨ E=(y, x)) and the MSO-formula

ϕbounded(x) = ∃y ∃z
( ∨
c∈C

Ec(y) ∧
∨
c∈C

Ec(z) ∧ reach≤(y, x) ∧ reach≤(x, z)
)
.

Let B = {a ∈ A | A |= ϕbounded(a)}. We call the induced substructure B := A
B the
“bounded” part of A. Every homomorphism from B to Z has to map B to the interval
[m,M ]. Thus, a homomorphism h : B → Z can be identified with a partition of B into
M −m+ 1 sets Bm, . . . , BM , where Bi = {a ∈ B | h(a) = i}. It follows that:

Lemma 20. There is an MSO-sentence ϕB such that for every S-structure A with
bounded part B, we have B � Z if and only if A |= ϕB .

Similar to B we define three other parts of a σ-structure by the WMSO-formulas

ϕgreater(x) = ¬ϕbounded(x) ∧ ∃y
(
ϕbounded(y) ∧ reach≤(y, x)

)
,

ϕsmaller(x) = ¬ϕbounded(x) ∧ ∃y
(
ϕbounded(y) ∧ reach≤(x, y)

)
,

ϕrest(x) = ¬(ϕbounded(x) ∨ ϕgreater(x) ∨ ϕsmaller(x)).

Moreover, let G = {a ∈ A | A |= ϕgreater(a)}, S = {a ∈ A | A |= ϕsmaller(a)}, and
R = {a ∈ A | A |= ϕrest(a)}. LetN = Z
N and N = Z
Z\N. Then we have:

Lemma 21. A � Z iff
(
B � Z,A
G∪S∪R � Z,A
G � N , andA
S � N

)
.

We need some conventions on modulo constraints. A sequence (a1, b1), . . . , (ak, bk)
with 0 ≤ ai < bi ∈ D for 1 ≤ i ≤ k is contradictory, if there is no number n ∈ N such
that n ≡ ai mod bi for all 1 ≤ i ≤ k. In the following let CSk denote the set of con-
tradictory sequences of length k. It is straightforward to show that every contradictory
sequence contains a contradictory subsequence of length at most � := max{2, |D|}.

Recall that ∼ is the smallest equivalence relation containing I(=) and that ∼ is
defined by the WMSO-formula ϕ̃(x, y). We call a σ-structure A = (A, I) modulo
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contradicting if there is a ∼-class [c], elements c1, c2, . . . , ck ∈ [c], and a contradictory
sequence (a1, b1), . . . , (ak, bk) such that ci ∈ I(≡ai,bi) for all 1 ≤ i ≤ k.

The following WMSO-formula ϕmodcon expresses that a σ-structure is modulo con-
tradicting, where we write sa(j) (resp. sb(j)) for the first (resp. second) entry of the
j-th element of the sequence s ∈ CSk:

ϕmodcon =
∨

2≤k≤�

∨
s∈CSk

∃x1 · · · ∃xk
∧

i,j≤k
ϕ̃(xi, xj) ∧

∧
j≤k

xj ≡ sa(j) mod sb(j)

Lemma 22. Let σ′ = σ \ {=c | c ∈ Z}. Let A = (A, I) be a σ′-structure.

– A � Z iff A is not modulo contradicting and (A, I(<), I(=)) � (Z, <,=).
– A � N iff A is not modulo contradicting and (A, I(<), I(=)) � (N, <,=).

Proof of Prop. 13. Let A = (A, I) be a σ-structure. We defined a partition of A into
B,G, S, and R. Since membership in each of these sets is (WMSO+B)-definable, we
can relativize any (WMSO+B)-formula to any of these sets. For instance, we write
ϕG for the relativization of ϕ to the substructure induced by G. Let ϕB be the MSO-
formula from Lemma 20, and for C ∈ {Z,N,Z \N} let ϕC be a formula that expresses
A � (C,<,=), see Prop. 19. ThenA |= (ϕB ∧ ϕG∪S∪R

Z ∧ ϕG
N ∧ ϕS

Z\N ∧ ¬ϕmodcon) iff
A � Z due to Lemmas 21 and 22. ��

7 Extensions, Applications, Open Problems

A simple adaptation of our proof for Z shows that Q = (Q, <,=, (=q)q∈Q) has the
property EHomDef(Bool(MSO,WMSO+B)) as well:A = (A, I) � Q iff (i) (A,E<)
is acyclic, where E< is defined as in (2), (ii) there does not exist (a, b) ∈ E+

< (the
transitive closure of E<) with a ∈ I(=p), b ∈ I(=q) and q ≤ p, and (iii) there do not
exist a ∼ b with a ∈ I(=p), b ∈ I(=q), and q = p.

Let us finally state a simple preservation theorem for A-satisfiability for CTL∗(S).
Assume thatA and B are structures over countable signatures SA and SB , respectively,
and let B be the domain of B. We say that A is existentially interpretable in B if there
exist n ≥ 1 and quantifier-free first-order formulas ϕ(y1, . . . , yl, x1, . . . , xn) and

ϕr(z1, . . . , zlr , x1,1, . . . , x1,n, . . . , xar(r),1, . . . , xar(r),n) for r ∈ SA

over the signature SB, where the mapping r �→ ϕr has to be computable, such thatA is
isomorphic to the structure ({b ∈ Bn | ∃c ∈ Bl : B |= ϕ(c, b)}, I) with

I(r) = {(b1, . . . , bar(r)) ∈ Bar(r)n | ∃c ∈ Blr : B |= ϕr(c, b1, . . . , bar(r))} for r ∈ SA.

Proposition 23. If SATCTL∗(B) is decidable andA is existentially interpretable in B,
then SATCTL∗(A) is decidable too.

Examples of structures A that are existentially interpretable in (Z, <,=), and hence
have a decidable SATCTL∗(A)-problem are (i) (Zn, <lex,=) (for n ≥ 1), where <lex

denotes the strict lexicographic order on n-tuples of integers, and (ii) the structure
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AllenZ, which consists of all Z-intervals together with Allen’s relations b (before), a
(after), m (meets), mi (met-by), o (overlaps), oi (overlapped by), d (during), di (con-
tains), s (starts), si (started by), f (ends), fi (ended by). In artificial intelligence, Allen’s
relations are a popular tool for representing temporal knowledge.

It remains open to determine the complexity of CTL∗-satisfiability with constraints
over Z , see the last paragraph in the introduction. Clearly, this problem is 2EXPTIME-
hard due to the known lower bound for CTL∗-satisfiability. To get an upper complexity
bound, one should investigate the complexity of the emptiness problem for puzzles
from [1] (see Lemma 5). An interesting structure for which the decidability status for
satisfiability of CTL∗ with constraints is open, is ({0, 1}∗,≤p, ≤p), where ≤p is the
prefix order on words, and ≤p is its complement. It is not clear, whether this structure
has the property EHomDef(Bool(MSO,WMSO+B)).

Acknowledgments. We are grateful to Szymon Toruńczyk for fruitful discussions.
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Proof Graphs for Parameterised
Boolean Equation Systems
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Abstract. Parameterised Boolean equation systems (PBESs) can be used for
solving a variety of verification problems such as model checking and equiva-
lence checking problems. The definition of solution for a PBES is notoriously
difficult to understand, which makes them hard to work with. Tan and Cleaveland
proposed a notion of proof for Boolean equation systems they call support sets.
We show that an adapted notion of support sets called proof graphs gives an al-
ternative characterisation of the solution to a PBES, and prove that minimising
proof graphs is NP-hard. Finally, we explain how proof graphs may be used in
practice and illustrate how they can be used in equivalence checking to generate
distinguishing formulas.

1 Introduction

Boolean equation systems (BESs) are the enabling technology in tool suites such as
CADP, the Concurrency Workbench NC and the Edinburgh Concurrency Workbench,
for analysing complex, concurrent systems. For instance, they are used to encode model
checking problems for the modal μ-calculus and for deciding a variety of process equiv-
alences. Parameterised Boolean equation systems (PBESs) [9], used in the tool suite
mCRL2, extend BESs with data and first-order quantification, thereby lifting the typi-
cal finiteness restrictions of BESs. Consequently, PBESs can be used to encode equiv-
alence checking problems for infinitely large and infinitely branching systems, but also
for encoding model checking problems for μ-calculi with first-order and real-time ex-
tensions. A variety of techniques exist for solving a PBES; using pattern recognition,
they can sometimes be solved by simply looking up a solution to the pattern; using
abstraction techniques (that are again defined completely within the domain of parame-
terised Boolean equation systems), PBESs with infinite data domains can in some cases
be reduced to PBESs with finite data domains; using instantiation, they can be reduced
to Boolean equation systems.

Relying on PBES technology for verification has major benefits: solving algorithms
for PBESs and all solution-preserving transformations available to PBESs instantly
become available to all decision problems that are encoded as PBESs. Moreover, the
clear-cut separation between the encoding of a verification problem as a PBES, and the
technology for solving PBESs leads to improved maintenance and flexibility. The close
link with Boolean equation systems and parity games allows exploration and solving
techniques from these contexts to be re-used, and the combination of many-sorted logic
and recursion shows great similarity with process algebra.

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 470–484, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Tools that implement solving algorithms for PBESs typically produce an end result
that is a simple true or false verdict. Understanding the correctness of the outcome
is hardly helped by such verdicts. In the case of an unexpected outcome, or in case the
answer is as expected but the person carrying out the verification would like to ascertain
that it is the answer to the right question, additional information is needed to explain
the answer. Explaining the answer in terms of the formal definition of the solution is
often quite involved and not very illuminating. Nevertheless, a more structural way of
extracting a meaningful explanation or some form of diagnostics from a solution to a
PBES is currently lacking.

We propose a notion of proof called proof graphs, that solve exactly these issues: they
offer a formal, intuitive explanation of the solution of a PBES, and they are sufficiently
detailed to serve as the basis for presenting diagnostics. Our proof graphs are inspired
by Tan and Cleaveland’s support sets [13]. Support sets were studied in the setting of
closed BESs in standard recursive form, a fragment of BESs in which mixing of ∧ and
∨ in right-hand sides of an equation is prohibited.

We lift these restrictions by defining proof graphs on arbitrary PBESs: they need not
be closed, nor need they be in standard recursive form. The latter is practical, because
transformations to this form may cause an exponential blow-up in the size of the PBES
or yield a PBES that cannot be instantiated with the current techniques. Any such trans-
formation changes the structure of the PBES, making it difficult to relate a proof graph
for the transformed PBES back to the original PBES.

Section 2 briefly reviews the concept of parameterised Boolean equation systems, af-
ter which we introduce proof graphs in Section 3. We show that the existence of a proof
graph for a variable instantiation in a PBES is sufficient to determine its solution in 3.1,
and in Section 3.2 we show that for every solution to a PBES, there is a proof graph that
explains it. We note that our less restrictive setting required different proof strategies
than Tan and Cleaveland used for support sets. For instance, the completeness proof
for support sets relies on a correspondence between the syntax of BESs in standard re-
cursive form and the structure of support sets. In the presence of first-order constructs
and potentially infinite semantic domains in a PBES, no such correspondence can be
exploited.

Section 3.3 explores the concept of minimality for proof graphs, and shows that
minimising proof graphs is NP-hard in general, and NP-complete if the data language
is decidable in polynomial time. We finish with an outlook on the practical implications
of proof graphs and illustrate some of these through examples in Section 4.

2 Preliminaries

In this paper we use the notion of parameterised Boolean equation system (PBES) as
defined in [9]. In the remainder we will often simply call them ‘equation systems’.

We assume the use of a theory of abstract data types that gives rise to data terms.
For the sake of readability, we assume that there is only one data sort D with semantic
domain D in our proofs. In practice, various sorts Di with semantic domains Di may
be used, but it is easy to see this is equivalent to using projection functions on a seman-
tic domain D that contains all elements of every Di. In our examples, we assume the
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existence of data sorts B and N representing the Booleans B = {�, �} and the natural
numbers N. For these types, we do not distinguish between the syntactic elements from
B and N , and the semantic elements from B and N they represent.

Data terms may contain unbound variables from some set of variable names V . A
data environment δ:V → D maps variable names to their values. We assume the exis-
tence of a mapping � �δ for the data language that is used which maps expressions of
sort D to their semantic value in D, using a data environment δ to resolve open vari-
ables. We will assume B ⊆ D, so that we may define that b is a Boolean data term if
and only if �b�δ ∈ B. We use square brackets to denote environment updates: δ[v/d] is
the environment that maps d to v, and maps everything else in the same way δ does.

Definition 1 (PBES Syntax). We denote the empty equation system by ∅. Equation
systems E and predicate formulas φ are defined through the following grammar:

E ::= ∅ | (μX(d:D) = φ) E | (νX(d:D) = ψ) E
φ, ψ ::= b | φ ∧ ψ | φ ∨ ψ | ∀d:D φ | ∃d:D φ |X(e)

Here, b is a Boolean data term, e a data expression, X a predicate variable in some
presupposed set P of predicate variables, and d a data variable of sort D. In case an
equation system is non-empty, we omit the trailing ∅.

Without loss of generality, we use the following naming convention for every equation
system of size n:

E = (σ0X0(d:D) = ϕ0) . . . (σn−1Xn−1(d:D) = ϕn−1)

The syntax above is in positive normal form, which means that predicate variables do
not occur in the context of an odd number of negations (for simplicity, we only allow
negation in the Boolean data terms b). This normal form guarantees that the solution of
a PBES (see below) is well-defined.

The set of bound variables in an equation system E , denoted bnd(E), is the set of
variable names that occur on the left-hand sides of the equations in E .

We define the signature sig(X) of a predicate variable X to be the product {X}×D.
We lift this notion to sets of variables P ⊆ P and to equation systems in the natural
way, i.e., sig(P ) =

⋃
X∈P sig(X) and sig(E) = sig(bnd(E)). Elements of a signature

type are called instantiations in this paper. We denote the instantiation 〈X, v〉 by X(v),
following the equation system syntax.

The rank of a predicate variable Xi in an equation system E , denoted rankE(Xi) is
defined as rankE(Xi) = |{0 ≤ j ≤ i | σj = σj−1}| if we define σ−1 = ν.

Definition 2 (Semantics of predicate formulas). The semantics of a predicate formula
ϕ is defined in the context of a data environment δ and a predicate environment θ:P →
(D→ B), which assigns a Boolean valued function to each predicate variable.

�b�θδ = �b�δ �X(e)�θδ = θ(X)(�e�δ)

�ϕ ∧ ψ�θδ = �ϕ�θδ ∧ �ψ�θδ �ϕ ∨ ψ�θδ = �ϕ�θδ ∨ �ψ�θδ

�∀d:D ϕ�θδ = ∀v∈D �ϕ�θδ[v/d] �∃d:D ϕ�θδ = ∃v∈D �ϕ�θδ[v/d]
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Although predicate environments are defined as mappings from P to D → B, it is of-
ten convenient to think of them as sets of instantiations, i.e., subsets of P × D. We
will often want to add or remove elements from these sets, which is accomplished
using environment updates. For mappings f :D → B we define f [r/v](v) = r and
f [r/v](d) = f(d) if d = v. Using this notation, we define an environment update
θ[r/X(v)] as the environment θ in which the instantiation X(v) is mapped to r as fol-
lows: θ[r/X(v)](X) = θ(X)[r/v] and θ[r/X(v)](Y ) = θ(Y ) if X = Y . This notation
is lifted to sets of instantiations: θ[r/S] for some set of instantiations S = {s0, s1, . . .}
is equal to θ[r/s0][r/s1] . . . (for some arbitrary ordering of the elements of S).

Note that the right hand side ϕi of variable Xi gives rise to the Boolean function
λv ∈ D.�ϕi�θδ[v/d]. In the following definition, we use this function to construct a
predicate transformer T (in our case, a function of type (D → B) → (D → B)).
Because ϕ is in positive normal form, it can be shown that T is monotonic over the
complete lattice 〈BD,�〉 (with � the point-wise lifting of implication), and therefore
has least and greatest fixpoints, denoted by μT and νT , respectively.

Definition 3 (Solution). The solution to an interpreted PBES 〈E , θ, δ〉 is a predicate
environment �E�θδ defined inductively as follows (for σ ∈ {μ, ν}):

�∅�θδ = θ

�(σX(d:D) = ϕ) E ′�θδ = �E ′�θ[σT/X ]δ,

in which T is the predicate transformer associated with X in 〈E , θ, δ〉, defined by

T = λf ∈ BD. λv ∈ D.�ϕ�(�E ′�θ[f/X ]δ)δ[v/d] .

We will call a tuple 〈E , θ, δ〉 consisting of an equation system and associated data and
predicate environments an interpreted PBES.

3 Proof Graphs

Computing the solution to a PBES is a hard problem: even for the subclass of BESs,
no solving algorithm is known that can solve any BES in polynomial time. For SAT
solving, checking that a given solution to the problem is correct is straightforward.
While PBES solving is very similar (we are looking for a satisfying assignment to
instantiations), it does not share this property. It can be shown that checking that a
predicate environment is the solution to a PBES is as hard as computing the solution.
This also indicates that the solution to a PBES is not in itself enough to explain to a
human why the encoded problem has a given outcome.

In this section, we show that there is an alternative characterisation of the solution to
a PBES, called a proof graph, that can be used as a certificate. It is in general easier to
automatically verify a proof graph than to solve its PBES (it can be checked in polyno-
mial time for BESs), and it offers humans an intelligible explanation of the reason why
the solution to a PBES is the way it is.

Our definition of proof graph is based on the notion of support sets on Boolean
equation systems defined by Tan [13,14]. In the remainder of the text we adopt the
convention to write v• for the postset {v′ ∈ V | v → v′} of a vertex v, if the context
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provides a set of vertices V and a binary relation→ on V . The notation is lifted to sets
of vertices in the usual way.

Definition 4 (Proof graph). A proof graph for an interpreted PBES 〈E , θ, δ〉 is defined
as a tuple 〈V,→, r〉, where V ⊆ sig(E), → ⊆ V × V , r ∈ B and in which for all
Xi(v) ∈ V we have the following:

– �ϕi�θ[¬r/sig(E)][r/Xi(v)
•]δ[v/d] = r

– If Xi(v) = Z0(x0) → Z1(x1) → . . . for some infinite sequence of Zi and xi,
then even(min{rankE(Zi) | Zi ∈ Z∞}) = r, where Z∞ is the set of Zi occurring
infinitely often in the sequence.

We say that a proof graph 〈V,→, r〉 proves Xi(v) = r if and only if Xi(v) ∈ V .

In case of a finite proof graph, the second property in Definition 4 amounts to solving
the even-cycle problem [10]. For certain classes of equation systems, solving the system
can be reduced to the even-cycle problem, so there are cases in which checking the
proof graph is not faster than solving the equation system. Contrary to solving a BES,
however, the even-cycle problem is known to be polynomial: it is sub-quadratic in the
size of the BES [7].

Our main theorem states that these graphs can be used as an alternative characterisa-
tion of the solution of an equation systems. That is, if a certain instantiation evaluates to
r, then there is a proof graph that shows this, and if there is a proof graph that shows a
certain instantiation to evaluate to r, then the solution is indeed r for that instantiation.

Theorem 1. Given an interpreted PBES 〈E , θ, δ〉, we have that for all Xi(v) ∈ sig(E),
�Xi(v)�θδ = r iff there is a proof graph 〈V,→, r〉 on 〈E , θ, δ〉 such that Xi(v) ∈ V .

Soundness (the if -part of the theorem) and completeness (the only-if part) follow from
Theorems 2 and 4, presented later in this paper. We first illustrate the concept of a proof
graph with an example.

Example 1. Consider the following two equation systems E1 and E2, and suppose we
are interested in both cases in the value of X(�).

μX(b:B) = Y ∨ b μX(b:B) = Y (0) ∨ b

νY = Y ∨ (X(�) ∧ Z) νY (n:N) = Y (n+ 1) ∧X(�)

μZ = Z

Below are proof graphs for these systems that prove X(�) = �. Because the equation
systems are closed (they do not refer to predicate variable names that are not bound
inside the PBES itself), we can assume arbitrary θ and δ. We assume that � �δ gives
the usual semantics to the function symbols that are used above. Note that sig(E1) =
{X(d) | d ∈ B} ∪ {Y, Z} and sig(E2) = {X(d) | d ∈ B} ∪ {Y (d) | d ∈ N}.

X(�) X(�)

Y

X(�) X(�)

Y (0) Y (1)
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To see that the graph on the left satisfies the first property of proof graphs for every
node, note that the following hold:

for X(�): �Y ∨ b�θ[�/sig(E)][�/{Y }]δ[�/b] = �

for X(�): �Y ∨ b�θ[�/sig(E)]δ[�/b] = �

for Y : �Y ∨X(�)�θ[�/sig(E)][�/{Y,X(�)}]δ = �

It also satisfies the second property of proof graphs, for the only predicate variable
occurring infinitely often in any infinite sequence of instantiations is Y , and because the
rank of Y is 2, indeed even(rankE1(Y )) = �. Note that in this proof graph, Y → X(�)
can be left out, because the right hand side of the equation for Y is disjunctive and
the left disjunct is true. This cannot be done in the right-hand side proof graph, which
illustrates how a PBES can give rise to an infinite proof graph. �

3.1 Soundness

The proof of the main theorem of this section relies heavily on two lemmas that give
some insight in how proof graphs work. The first lemma says that the successor relation
in a proof graph is a dependency relation: if all successors of an instantiation Xi(x) ∈ V
in a proof graph 〈V,→, r〉 can be shown to have value r in the solution of the equation
system the graph was defined on, then Xi(x) itself also has value r in the solution.

Lemma 1. Let 〈V,→, r〉 be a proof graph on 〈E , θ, δ〉, and let Xi(x) ∈ V . Then:(
∀Xj(x′)∈Xi(x)• (�E�θδ)(Xj)(x

′) = r
)
⇒ (�E�θδ)(Xi)(x) = r

Let E i denote E without the first i equations. Lemma 2 below shows that, intuitively,
one can see predicate environments as assumptions about the unbound variables in a
PBES. This gives us an induction principle: the subgraph of a proof graph on 〈E , θ, δ〉
that contains only instantiations from a subsystem E i is a proof graph on 〈E i, θ′, δ〉, as
long as any dependencies on variables outside E i are now ‘assumed’ by θ′.

Lemma 2. Let 〈V,→, r〉 be a proof graph for interpreted equation system 〈E , θ, δ〉. Let
i < |E|, let V i = sig(E i)∩V,→i =→∩(V i×V i), and let θ′ be any predicate environ-
ment such that θ and θ′ agree on predicate variables not in bnd(E), and θ′(Xj)(v) = r
for all Xj(v) ∈ V i• \ V i. Then 〈V i,→i, r〉 is a proof graph for 〈E i, θ′, δ〉.

Theorem 2. Let 〈V,→, r〉 be a proof graph for interpreted equation system 〈E , θ, δ〉.
Then (�E�θδ)(Xi)(x) = r for all Xi(x) ∈ V (0 ≤ i < |E|, x ∈ D).

Proof (sketch). Let Xi(x) ∈ V ; we prove that (�E�θδ)(Xi)(x) = r using induction
on the size of E (the outer induction) and on i (the inner induction). The inner induc-
tion hypothesis allows us to conclude that Xj(x) ∈ V implies (�E�θδ)(Xj)(y) = r
for all j < i, and Lemma 2 in combination with the outer induction hypothesis al-
lows us to conclude that Xj(y) ∈ V implies (�E�θδ)(Xj)(y) = r for all j > i.
(The latter is tricky, because Lemma 2 yields a proof graph on another, derived, PBES,
with a different predicate environment.) So, we know that all instantiations Xj(y) with
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j = i on which the solution of Xi(x) may depend have the value r under �E�θδ.
If σi = μ and r = �, or σi = ν and r = �, then assume towards a contradiction
that �E�θδ(Xi)(x) = ¬r. From the inner induction hypothesis we derive that then
Xi(x) → Xj(y) for some Xj(y) with j ≥ i and �E�θδ(Xj)(y) = ¬r. We show
that we can keep making such steps until we reach Xj(y) with j = i such that again
�E�θδ(Xj)(y) = ¬r, without visiting Xj(y) with j < i. This allows us to construct
an infinite path that violates the second condition in Definition 4, which contradicts our
assumption that 〈V,→, r〉 is a proof graph. If σi = μ and r = � or σi = ν and r = �,
then we use the fixpoint definition of Xi to show that for all successors Xj(y) of Xi(x)
we have �E�θδ(Xj)(y) = r, using the well-known result that fixpoints of monotone
functions may be approximated by iteratively applying them to some initial approxima-
tion. Lemma 1 can then be used to obtain the result. ��

3.2 Completeness

Any equation system can be solved by translating it to a parity game and solving that
game. We give our proof of completeness by translating equation systems into parity
games, and then obtaining proof graphs from these. In practice, parity game solvers
prove to be very effective for solving games generated from model checking problems,
and tools that perform model checking this way are already available. Our completeness
result therefore also yields a practical way of creating proof graphs. We note that there
are more methods to solve equation systems, each with their own virtues.

Definition 5 (Parity game). A parity game is a directed graph (V,→, Ω,Π), where

– V is a set of vertices,
– → ⊆ V × V ,
– Ω:V → F is a function that assigns priorities from some finite set F ⊂ N to

vertices,
– Π :V → { �,�} is a function assigning players to vertices.

A game starting in a vertex v ∈ V is played by placing a token on v, and then moving
the token along the edges in the graph. Moves are taken indefinitely, or until neither
player can move, according to the following simple rule: if the token is on some vertex
v, player Π(v) moves the token to some vertex w such that v → w. If the result is a
finite path, then the winner is the opponent of the last vertex on the path (i.e., the player
who cannot do any more moves loses). If the result is an infinite path p in the game
graph, then the parity of the lowest priority that occurs infinitely often on p defines the
winner of the path. If this priority is even, then player � wins, otherwise player � wins.
A strategy for player i is a partial function s:V → V , that for each vertex owned by
player i determines the next vertex to be played onto. By Π(s) we denote the player
for which the strategy is defined. A strategy s is winning from a vertex v iff every path
that is the result of playing the game from v according to s, is winning for Π(s). Parity
games are memoryless determined [5]. From this, it follows that the set of vertices won
by player � and � partition V .

When a PBES is translated to a parity game, the nodes of the parity game represent
subformulas in the PBES. The logical operators are encoded in the players associated
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with the nodes: a node owned by � represents a disjunction, a node owned by � repre-
sents a conjunction. The successor relation reflects the subformula relation in the PBES.
Predicate variables occurring in right-hand sides of the PBES are simply a reference to
a formula (the right-hand side of an equation), and so this formula is treated as a subfor-
mula of the equation that contained the reference. This means that predicate variables
are not a natural notion in parity games (they are just a syntactic way to represent re-
cursive formulas in a PBES), so this information is lost when translating a PBES to a
parity game.

Suppose that we have an equation system E and a parity game 〈V,→, Ω,Π〉, and
we have some injective partial function π : V → sig(E) that gives us this missing
information. We can then construct a formula for each node v ∈ V that expresses
its truth value in terms of elements of sig(E), which can then be evaluated using an
environment θ. This evaluation is defined as �v�θπ:

�v�θπ =

{
∀v′∈v• eval(v′, θ, π), Π(v) = �
∃v′∈v• eval(v′, θ, π), Π(v) = �

eval(v, θ, π) =

{
θ(π(v)), if π(v) defined

�v�θπ, otherwise

Definition 6 (Encoding). We say that a parity game 〈V,→, Ω,Π〉 encodes interpreted
equation system 〈E , θ, δ〉 if and only if there is a partial function π:V → sig(E) such
that the following conditions are satisfied:

1. For each 〈v,Xi(x)〉 ∈ π we have
– �v�θπ = �ϕi�θδ[x/d],
– Ω(v) = rankE(Xi).

2. For all v, w ∈ V , if v → w and π(w) is undefined, then Ω(v) ≤ Ω(w).
3. There is no infinite path in which π is undefined for all nodes on the path.

Note that the third condition guarantees that �v�θπ is well defined: if there would be
such infinite paths, then �v�θπ may have more than one solution. We choose to resolve
this issue by adding this extra restriction to our definition of encoding, keeping our def-
initions (and proofs) simpler, although it should be possible to drop the third condition
and instead modify the definition of �v�θπ.

Now we have a formal relationship between a PBES and its parity game encoding,
we show how a proof graph can be obtained from such an encoding. In essence, we
show that there is a direct correspondence between our notion of proof graph, and the
notion of a winning strategy in a parity game.

Define reach(v, π, s) as the subset of sig(E) that is used in the computation of �v�θπ,
restricted to those instantiations that are reachable in the parity game from v by playing
according to strategy s.

reach′(v, π, s) =

{
{π(v)}, if π(v) defined

reach(v, π, s) otherwise

reach(v, π, s) =

{⋃
v′∈v• reach′(v′, π, s), Π(v) = Π(s)

reach′(s(v), π, s), Π(v) = Π(s)
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Note that again this definition is only properly defined when condition 3 of Definition
6 holds on the parity game.

Suppose G = 〈V,→, Ω,Π〉 is an encoding, and s is a strategy in that game that wins
from some vertex v ∈ V for which π is defined. We define a structure proofG,s(v) =
〈Us,→s, r〉 where r ∈ B and r = � if and only if Π(s) = �, and Us ⊆ sig(E) and
→s ⊆ Us × Us are the smallest sets such that π(v) ∈ Us and for all Xi(x) ∈ Us, we
have Xi(x)

• = reach(π−1(Xi(x)), π, s).

Theorem 3. Let G be a parity game that is an encoding of 〈E , θ, δ〉, and let v be a
vertex in G such that π(v) is defined. If s is a winning strategy from v, then proofG,s(v)
is a proof graph on 〈E , θ, δ〉.

We now show that it is always possible to encode a PBES into a parity game. Given is
an interpreted PBES 〈E , θ, δ〉. Let F be the set of all subformulas of right-hand sides in
E . We define a parity game with V ⊆ (P × F × (V → D)) as follows.

The sets V and→ are chosen to be the smallest sets such that 〈Xi(x), ϕi, δ[x/d]〉 ∈
V for all Xi ∈ bnd(E), and for all 〈Xi(x), ϕ, δ

′〉 ∈ V we have the following, based on
the shape of ϕ:

ϕ = ψ1 ∨ ψ2 or ϕ = ψ1 ∧ ψ2 , then

– 〈Xi(x), ψ1, δ
′〉 ∈ V ∧ 〈Xi(x), ϕ, δ′〉 → 〈Xi(x), ψ1, δ

′〉
– 〈Xi(x), ψ2, δ

′〉 ∈ V ∧ 〈Xi(x), ϕ, δ′〉 → 〈Xi(x), ψ2, δ
′〉

ϕ = ∀d′:D ψ or ϕ = ∃d′:D ψ , then

– ∀v∈D 〈Xi(x), ψ, δ′[v/d′]〉 ∈ V ∧ 〈Xi(x), ϕ, δ′〉 → 〈Xi(x), ψ, δ′[v/d′]〉
ϕ = Xj(e) for some Xj ∈ bnd(E) and expression e, then

– 〈Xj(�e�δ
′), ϕj , δ

′[�e�δ′/d]〉 ∈ V ∧ 〈Xi(x), ϕ, δ′〉 → 〈Xj(�e�δ
′), ϕj , δ

′[�e�δ′/d]〉

We define Ω(〈X,ϕ, δ′〉) = rankE(X). Π(〈X,ϕ, δ′〉) is defined to be � if ϕ has the
shape ∃d′:D ψ or ψ1∨ψ2, and� if it has the shape ∀d′:D ψ or ψ1∧ψ2. For Xj ∈ bnd(E),
we define Π(〈X,Xj(e), δ

′〉) = �. For all other nodes, we define Π(〈X,ϕ, δ′〉) = � if
�ϕ�θδ′ and � otherwise.

It is straightforward to check that this translation is an encoding in the sense of
Definition 6, as we can define π(〈Xi(x), ϕi, δ

′〉) = Xi(x).
Properties 2 and 3 follow directly from the fact that in this encoding, if 〈Xi, ϕ, δ

′〉 →
〈Xj(y), ψ, δ′′〉 and π is not defined for the target, then ψ is a subformula of ϕ (hence
property 3 holds) and Xi = Xj (so property 2 holds). For property 1, note that we
created our parity game by ‘glueing together’ subgraphs that are isomorphic to the ϕi.
Using this one-to-one correspondence, the property can be seen to be true by a simple
induction on the structure of ϕi.

The following theorem now follows from the fact that we can encode an arbitrary
PBES into a parity game, and then recover a proof graph from the parity game using
Theorem 3.

Theorem 4. For every instantiation Xi(x) in some interpreted PBES 〈E , θ, δ〉, there is
a proof graph 〈V,→, �E�θδ(Xi)(x)〉 such that Xi(x) ∈ V .
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3.3 Minimality

We have shown that a proof graph contains enough information to prove that an instan-
tiation in the graph has a certain solution, but in many cases it would be useful to have
a concise proof. We assume that we will be using this definition in the setting where we
are given a proof graph G by a PBES solver (not necessarily a parity game solver), and
we wish to discard any irrelevant information from the proof. We are therefore looking
for a subgraph of this proof graph that is ‘as small as possible’, in a similar vein to what
happens in [2].

Definition 7 (Minimal proof graph). A proof graph is minimal w.r.t. Xi(v) and a
proof graph G if and only if it is a subgraph of G, includes Xi(v) and there is no
smaller subgraph of G that is a proof graph and includes Xi(v).

Note that there are two aspects to minimality: no minimal proof graph contains a sub-
graph that is a proof graph, and minimality with respect to G means that any proof graph
contained in G is the same size or larger. Minimising a graph is a difficult problem: we
show that the problem is NP-hard by using the same technique as Sahni used in [12] to
show that minimising and/or-trees is an NP-complete problem.

Theorem 5. Given a proof graph G that proves Xi(v) = r (for some r), checking
whether a subgraph of size N exists that proves Xi(v) = r is NP-hard.

Proof. We prove the theorem by reducing CNF-satisfiability to the problem of finding
a minimal proof graph. Let a CNF formula ϕ be given as a set V of variable names, a
set C of clause names, and mappings p : C → 2V and n : C → 2V that give, for each
clause, the variables that occur as positive (resp. negative) literals in that clause.

Consider the following PBES:

μP =
∧
v∈V

X(v) ∧
∧
c∈C

S(c)

μS(c:C) =
∨

v∈p(c)
T (v) ∨

∨
v∈n(c)

F (v)

μX(v:V ) = T (v) ∨ F (v)
μF (v:V ) = �

μT (v:V ) = �

Notice that in any proof graph that proves P , we must have the nodes X(v) and S(c)
for all v ∈ V and c ∈ C, as they occur in conjunction in the right-hand side of P .
Because of the definition of X , either T (v) or F (v) must be in the graph for every
v ∈ V . A proof graph for P therefore contains at least 1 + |C|+ 2|V | nodes. If it does
not contain more nodes, then only F (v) or T (v) is included for all v ∈ V . In that case,
the assignment that assigns � to all nodes for which F (v) occurs in the graph and � to
all nodes for which T (v) occurs in the graph is a satisfying assignment for ϕ (this can
easily be seen from the definition of S). ��

Note that if it can be guaranteed that the first requirement in Definition 4 can be checked
in polynomial time, then the problem is in fact NP-complete. In the mCRL2 toolkit, the
Boolean expressions b in Definition 1 can consist of arbitrary first-order logic formulas,
so the checking of proofs is, in the general case, not even decidable.
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The problem of minimising finite proof graphs can be reduced to finding minimum
prime implicants for Boolean formulas, which was shown to be Σp

2 -complete in the
general setting, but NP-complete for monotone Boolean formulas [6]. This direct con-
nection with proof graphs may mean that algorithms and heuristics for finding mini-
mum prime implicants can be re-used to minimise proof graphs. It is also an interesting
connection because in SAT and SMT solving, minimum prime implicants are used as a
diagnostic, which is also one of the main applications we have in mind for proof graphs.

Given a proof graph 〈V,→, r〉 on 〈E , θ, δ〉, we will create a formula that encodes
the graph in terms of two new sets of variables {nv | v ∈ V } and {ev→v′ | (v, v′) ∈
→}. Define the translation trv(V, δ, ϕ) for all v ∈ V as a function that takes a for-
mula, converts it to a positive normal form formula ϕ′ (pushing negations inwards) and
then replaces every Xj(e) or ¬Xj(e) that occurs in ϕ′ by ev→Xj(�e�δ) ∧ nXj(�e�δ) if
Xj(�e�δ) ∈ V , and by � otherwise. Using this translation, we define the following
Boolean formula for our proof graph.

ΦV,δ = nXi(v) ∧
∧

Xj(w)∈V
nXj(w) ⇒ trXj(w)(V, δ[w/d], (r ∧ ϕj) ∨ (¬r ∧ ¬ϕj)),

The formula encodes by the left conjunct the fact that Xi(v) is a node in the proof
graph, and the right conjunct encodes the first requirement from Definition 4: if Xj(w)
is a node in the proof graph, then its right-hand ϕj side must evaluate to r, if r is
substituted for any predicate variable instantiations in ϕj that are also a node in the
proof graph. Note that one of the disjuncts that is translated is always ignored, due to r
having a fixed value. The eX→Y variables do not restrict the satisfiability of the formula,
as they occur only once. It is easy to see that the formula is satisfiable by filling in � for
all variables.

Theorem 6. Let I be a minimal prime implicant for ΦV,δ and define V ′ = {Xj(w) ∈
V | nXj(w) ∈ I} and→′= {(X,Y ) ∈→ | eX→Y ∈ I}. Then 〈V ′,→′, r〉 is a minimal
proof graph with respect to Xi(v).

We now know that we can use techniques from the SAT/SMT community to minimise
graphs. It remains an interesting challenge, however, to find a solving algorithm that
produces acceptable input for a minimisation algorithm. A proof graph G generated
from a parity game strategy, for instance, can easily be seen to be minimal with respect
to itself, but will not necessarily be a small graph. A solving method like Gauss elimina-
tion for equation systems could yield better input for minimisation, but performs poorly
in some cases. It may also be possible to modify parity game solvers like Zielonka’s
recursive algorithm [15] to generate proof graphs rather than winning strategies.

4 Application

Proof graphs can, like Tan’s support sets, be used to certify model checking results: a
model checker generates a proof graph, and to ascertain that the result it provided is
correct, one can check that this graph is indeed a proof graph. This technique can also
be used to ‘re-use’ proofs in model checking: if an equation system E encodes the model
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Algorithm 1. Generation of a PBES for Strong Bisimulation
bisim= ν{XM,S(d:DM , d′:DS) = matchM,S(d, d′) ∧matchS,M (d′, d),

XS,M (d′:DS , d:DM ) = XM,S(d, d′)

Xp,q
a (d:Dp, d′:Dq, da:Da)=stepp,qa (d, d′, da) | a∈Act, (p, q)∈{(M,S), (S,M)}}

Where νE , for a set of equations E , yields a greatest fixpoint equation system in which E ’s
equations are ordered according to an arbitrary but total order; we use the following abbrevia-
tions, for all a ∈ Act, (p, q) ∈ {(M,S), (S,M)}:

matchp,q(d:Dp, d′:Dq) =
∧

a∈Act

∀e:Ep
a
(hp

a(d, e)⇒ Xp,q
a (gp

a(d, e), d
′, fp

a (d, e)))

stepp,qa (d:Dp, d′:Dq , da:Da) = ∃e′:Eq
a
hq
a(d

′, e′) ∧ (da = fq
a (d

′, e′)) ∧Xp,q(d, gq
a(d

′, e′))

checking problem of whether some system M satisfies property f , and the behaviour
of M is changed only in parts of the state space that do not affect f , then it is usually
the case (depending on how straightforward the encoding is) that the proof graph for E
is also a proof graph for the system E ′ that reflects the changes in M .

The use of proof graphs is not limited to certification. Tan already indicated that his
support sets could be used to obtain counterexamples and witnesses for model checking
problems. We show that proof graphs can also be used to derive distinguishing formulas
for behavioural equivalence checking problems. For brevity, we focus on strong bisim-
ilarity, but the method we use is not limited to this setting.

We assume that processes are described syntactically using Linear Process Equa-
tions (LPEs) [8], a representation of (potentially infinite) labelled transition systems. In
an LPE, the behaviour is described by a state vector of typed variables, accompanied
by a set of condition-action-effect rules. LPEs are typically used in tool sets for process
algebraic languages such as mCRL2 and μCRL.

Definition 8. A linear process equation is a parameterised equation of the form

M(d : D) =
∑
a∈Act

∑
ea:Ea

ha(d, ea) −→ a(fa(d, ea)) ·M(ga(d, ea))

where for each parameterised action a taken from a finite set of actions Act, we assume
functions fa, ha and ga of type fa : D × Ea → Da, ha : D × Ea → B and ga :
D × Ea → D. Note that here D, Da and Ea are general data types and B is the
Boolean type. The

∑
symbols represent non-deterministic choices.

An LPE M specifies that if in the current state d the condition ha(d, ea) holds for any ea
of sort Ea, then an action a carrying data parameter fa(d, ea) is possible and the effect
of executing this action is the new state ga(d, ea). The values of the condition, action
parameter and new state may depend on the current state and a non-deterministically
chosen value for variable ea. The operational semantics in terms of labelled transition
systems is standard.

Given two LPEs M and S of the form of Definition 8, in which all variables, sorts
and functions are indexed with either M or S. The encoding of [1] of whether M is
strongly bisimilar to S as an equation system is depicted in Algorithm 1.
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The encoding is such that for all θ, δ, (�bisim�θδ)(XM,S)(vM , vS) = � iff M(vM )
is strongly bisimilar to S(vS). As a consequence, if M(vM ) and S(vS) are not strongly
bisimilar, there is a proof graph 〈V,→, �〉 with XM,S(vM , vS) ∈ V and in which
there are no cycles, since bisim contains no least fixpoints. Now consider the following
transformation, yielding a Hennessy-Milner formula with parameterised actions:

Φ(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∧
{Φ(v′) | v′ ∈ v•} if v = XM,S(d, d′)

¬Φ(XM,S(d′, d)) if v = XS,M(d, d′)

〈a(da)〉
∧
{Φ(v′) | v′ ∈ v•} if v = XM,S

a (d, d′, da)

[a(da)]
∨
{¬Φ(v′) | v′ ∈ v•} if v = XS,M

a (d, d′, da)

As a convention, the conjunction over an empty set is � and the disjunction over an
empty set is �.

For every pair of non-strongly bisimilar M(vM ) and S(vS) and all finitely branching
proof graphs 〈V,→, �〉 for bisim for which XM,S(vM , vS) ∈ V , we have M(vM ) |=
Φ(XM,S(vM , vS)) and S(vS) |= Φ(XM,S(vM , vS)). The proof for this is straightfor-
ward, using induction on the number of steps to a terminal vertex.

Example 2. Consider two LPEs with actions a, b, c. The LPEs are the prototypical ex-
amples of two processes that are not strongly bisimilar due to a difference in the moment
of branching.

M(v : B)
= v −→ a ·M(�)
+¬v −→ b ·M(�)
+¬v −→ c ·M(�)

S(t, u : B)
=
∑
u′:B

t −→ a · S(�, u′)

+ ¬t ∧ u −→ b · S(�, �)
+¬t ∧ ¬u −→ c · S(�, �)

Based on the equation system bisim for M and S (not given explicitly here), we can
construct a proof graph, proving that M(�) and S(�, �) are not strongly bisimilar. A
proof graph for XM,S(�, �, �) is depicted below on the left, with a derivation of a dis-
tinguishing formula depicted next to it.

XM,S(�, �, �)

XM,S
a (�, �, �)

XS,M
a (�, �, �) XS,M

a (�, �, �)

XS,M (�, �, �) XS,M (�, �, �)

XM,S(�, �, �) XM,S(�, �, �)

XM,S
b (�, �, �) XM,S

c (�, �, �)

Φ(XM,S(�, �, �))

= Φ(XM,S
a (�, �, �)) ∧

Φ(XS,M
a (�, �, �)) ∧ Φ(XS,M

a (�, �, �))

= 〈a〉(Φ(XM,S(�, �, �)) ∧ Φ(XM,S(�, �, �)))) ∧
[a]Φ(XM,S(�, �, �)) ∧ [a]Φ(XM,S(�, �, �))

= 〈a〉(Φ(XM,S
b (�, �, �)) ∧ Φ(XM,S

c (�, �, �))) ∧
[a]Φ(XM,S

b
(�, �, �)) ∧ [a]Φ(XM,S

c (�, �, �))
= 〈a〉(〈b〉� ∧ 〈c〉�) ∧ [a]〈b〉� ∧ [a]〈c〉�

Clearly, M(�) |= 〈a〉(〈b〉� ∧ 〈c〉�) ∧ [a]〈b〉� ∧ [a]〈c〉�, while S(�, �) does not.
Note that the proof graph is not minimal. By minimising the proof graph also the

distinguishing formula can be minimised. In particular, all vertices of the form XM,S( )
only need one outgoing edge. �
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5 Related Work

Concepts similar to our proof graphs have been suggested in literature before. For alter-
nation free Boolean equation systems, a similar concept was introduced by Mateescu
[11], which he calls extended Boolean graphs. The work of Tan and Cleaveland [14],
upon which we based our own definition, generalise this to support sets on BESs in
standard recursive form. Proof graphs in turn generalise support sets.

In model checking, it is sometimes possible to generate counterexamples and wit-
nesses that are linear (lasso-shaped graphs) or tree-like (graphs in which every SCC is
a cycle, and of which the component graph is a tree), and that have no subgraph that is
still a counterexample or witness [3,2]. A similar thing can be done for proof graphs.
We already noted that parity game solvers yield minimal proof graphs. Proof graphs
that have the same structure as linear and tree-like counterexamples can be created for
purely conjunctive and purely disjunctive PBESs, using the solving method described
in [7]. Although it operates on Boolean equation systems rather than PBESs, it can
easily be modified to operate directly on PBESs. The algorithm works by solving the
even-cycle problem [10], which finds reachable cycles with a certain property. It is easy
to show that a trace to this cycle plus the cycle itself results in a linear proof graph.
This solving method is of particular interest because it allows for efficient solving of
LTL formulas via the modal μ-calculus, as was shown in [4]. Because the translation
proposed there gives rise to a purely conjunctive PBES, it is possible to obtain linear
(and therefore minimal) proof graphs for the LTL model checking problem. For ACTL∗

problems, the translation can easily be seen to give rise to tree-like proof graphs.

6 Conclusions and Future Work

We have presented an alternative notion of solution to parameterised Boolean equation
systems called proof graphs. Proof graphs generalise the work in [14] by lifting the
syntactic restrictions, and by allowing open equation systems. The use of PBESs rather
than BESs gives rise to infinite and infinitely branching proof graphs. This more general
setting required us to use a different proof strategy than was used in [13]. Minimisation
of proof graphs was shown to be NP-hard (or NP-complete when the data language is
decidable in polynomial time), and we showed how proof graphs are related to winning
strategies in parity games, and how the problem of minimising proof graphs is related
to the problem of finding minimal prime implicants in Boolean formulas. Finally, we
have shown how to obtain distinguishing formulas from proof graphs for behavioural
equivalence checking problems.

It would be interesting to investigate which solving methods, aside from parity game
solvers, can produce proof graphs, and how concise these proof graphs are.

We would also like to relate proof graphs to the more classical notions of ‘counterex-
ample’ and ‘witness’ in model checking. The challenge here is to extract from the proof
graph a part of the original model that sufficiently explains the verification result. We
like the approach that Tan has taken, by defining sufficient conditions on a proof graph
for extracting such counterexamples. Our first investigation in this direction indicates
that this is tricky: the conditions that Tan gives allow us to construct an incorrect witness
for a system and a CTL formula as shown below.
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System Formula Witness

s1
{a}

s0 s2
{b} EXa

s0 s2
{b}

The problem here is that the proof graph from which the witness is constructed is re-
quired to be in some way consistent with the system, but not with the formula. We are
currently investigating how this issue can best be resolved, and whether the approach
extends to mixed Kripke structures and arbitrary specification languages. This would in
particular make it possible to extract witnesses for certain equivalence checking prob-
lems (using one of the systems as a specification) in the same way as one would do for
model checking.
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Abstract. We introduce a notion of subsumption for domains used in
abstract interpretation. We show that subsumption has the same proper-
ties and applications in the context of abstract interpretation that simu-
lation has for transition systems. These include a modal characterisation
theorem, a fixed point characterisation, and the construction of property-
preserving abstractions. We use the notion of conjugate functions from
algebraic logic to develop bisubsumption, an order-theoretic generali-
sation of bisimulation to Boolean domains. We prove a representation
theorem that relates simulation and subsumption.

1 Spreading the Joy of Simulation

Simulation is a relation between transition systems that has numerous applica-
tions in logic, model checking, automata theory, and process algebra. Simula-
tion quotients preserve ACTL and the universal fragment of the μ-calculus [15].
Infinite-state systems with simulation quotients of finite index have decidable
model checking problems [11]. Reachability is decidable in systems that are
well-founded with respect to a simulation preorder [2,8]. Simulation provides
a sufficient, polynomial-time criterion for language inclusion between nondeter-
ministic automata [1,7].

We develop subsumption, a lattice-theoretic generalisation of simulation for
domains used in abstract interpretation. Subsumption facilitates reasoning about
modal logics, property-preservation, and decidability in abstract interpretation
in the same manner that simulation facilitates such reasoning over transition
systems. We illustrate by recalling the standard definition of simulation below,
on the left, and a lattice-theoretic definition below, on the right.

r1 s1

r2 s2

implies

r1 s1

r2 s2

{r1} ⊆ pre({r2})

implies

Sim({r1}) ⊆ pre(Sim({r2})

A relation Sim , depicted by dotted arrows, is a simulation if for every pair (r1, s1)
in Sim and transition, depicted by solid arrows, from r1 to r2, there exists an s2
such that s1 transits to s2 and (r2, s2) are in Sim . We derive a lattice-theoretic
formulation of this definition by observing that the set {r1} is an element of the

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 485–499, 2013.
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powerset lattice of states and is contained in the set pre({r2}) of predecessors of
r2. States that simulate r1 are in the set Sim({r1}) and must have a transition
to some state related to r2, hence must be contained in pre(Sim({r2})).

We generalise the formulation above to domains in the abstract interpretation
sense: complete lattices equipped with monotone functions called transformers.
Strictly speaking, a domain should have heuristic operators (called widening and
narrowing) to enforce convergence of fixed point computations. These are non-
monotone and are not considered in logical studies of abstract domains [6,19].
Consider the domains (A,�, opA) and (B,�, opB). A subsumption is a function
f : A → B satisfying that a1 � opA(a2) implies f(a1) � opB(f(a2)) for all
a1 and a2 in A. Subsumption enjoys the standard properties of simulation such
as the modal characterisation, fixed point definition, and property preservation
indicating that it is an appropriate generalisation of simulation.

Subsumptions generalise simulation in two ways. Instead of a powerset lat-
tice of states, we have a complete lattice that can be non-distributive, and the
predecessor operator is replaced by arbitrary monotone functions. Over power-
set lattices, using successor operators corresponds to backward simulation, using
a composition of successor and predecessor operators yields forward-backward
simulations, and nesting a predecessor or successor operator inside a least fixed
point, generates stuttering simulation and stuttering backward simulation.

Subsumption is two-steps removed from homomorphisms [18]. A homomor-
phism h satisfies that ‘true implies h(opA(a2)) = opB(h(a2))’. In subsumption,
the antecedent true is replaced by a1 � opA(a2) and the equality is replaced by
order. Subsumption shifts focus from preserving the structure of an algebra as
in homomorphism to approximating the properties of certain elements.

There are generalisations of simulation to coalgebras [4,12,14]. Transition sys-
tems can be represented as Boolean algebras with operators, and we are not
aware of a notion of simulation (or bisimulation) in that setting. Coalgebraic
characterisation simulation apply to the category of sets or posets [14] but not
lattices with operators, as considered here.

Contribution. This paper generalises simulation from transition systems to
domains studied in abstract interpretation. Our contributions are:

1. The notions of subsumption and bisubsumption for abstract domains and
proofs that the logical, fixed point, and finitary characterisation of simulation
and bisimulation carry over to subsumption and bisubsumption. The defi-
nition of bisubsumption uses a novel algebraic formulation of bisimulation
based on conjugate functions from algebraic logic.

2. Representation theorems relating subsumption and bisubsumption to simu-
lation and bisimulation. Our proofs use representation theorems for Boolean
algebras with operators, and distributive lattices with operators.

A copy of the paper with an appendix containing proofs and back-
ground material is available at: http://www.eecs.berkeley.edu/~vijayd/

papers/2013/concur.html

http://www.eecs.berkeley.edu/~vijayd/papers/2013/concur.html
http://www.eecs.berkeley.edu/~vijayd/papers/2013/concur.html
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2 Subsumption

We now introduce subsumption and prove a modal characterisation theorem.

Notation. The n-fold composition of a function f with itself is written fn with
f0 as identity. An m-termed A-sequence is a function s̄ : [0,m − 1] → A. We
denote the element s̄(i) as si. Function application with f : An → C is written
f(s̄) with the implicit understanding that s̄ is n-termed. In illustrations, we write
a set {a, b} as a, b to reduce clutter.

Following [6,19], we define domains with respect to a signature. A signature
is a set of symbols Sig with an arity function ar . Constants are zero arity sym-
bols. A Sig-domain A = (A,OA) is a complete lattice (A,�,�,�), and a set of
monotone functions OA, called transformers such that there is one transformer
opA : Aar(op) → A, for each op in Sig . A pointed domain (A, a) is an domain
with a lattice element a. The element a usually represents initial states or error
states. We will drop the word pointed for brevity.

Subsumption replaces a transition system by a domain, states by lattice ele-
ments, transitions by operators, and simulation by a function between domains.
We write f〈ā〉 for the sequence obtained by applying f to each element of ā.

Definition 1. A function f : A → C between two domains A = (A,OA) and
C = (C,OC) is a subsumption if the conditions below hold.

1. For every constant symbol p, a � pA implies that f(a) � pC.
2. For every operator symbol op, and sequence ā of elements of A of length

ar(op), the inequality a � opA(ā) implies f(a) � opC(f〈ā〉).

The domain (C, c) subsumes (A, a) if there exists a subsumption f : A→ C such
that c � f(a).

If the domains in question are clear, we say that c subsumes a. We now illustrate
how simulation relations generate subsumptions.

Example 1. Two labelled transition systems M and N are shown in Figure 1
along with the domains they generate. The lattices contain powersets of states
with constants representing sets of states in which they are true.

pA = {1} qA = {2} pB = {3} qB = {4, 5}

The domains have predecessor transformers denoted preA and preB. The relation
R is a simulation and f : A → B maps each element of A to its image under
R, and has the following properties. Propositions map to propositions: f(qA) =
f({2}) = {4, 5} = qB. The simulation condition implies that because (1, 3) is in
R and 1 transits to 2, there must be a state s (in this case 4) such that 3 transits
to s and (2, s) is in R. When lifted to a domain, we obtain that {1} is contained
in preA({2}) and f({1}) is not the empty set, so there must be a set of states
S, (in this case f({2})) such that f({1}) ⊆ preB(S) holds. �
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Fig. 1. A simulation and its encoding as a subsumption

Languages. We consider a simple specification language. A Boolean symbol is
one of ∧, ∨, ¬,

∧
i,
∨

i, where i is an ordinal indicating the arity of
∧

i. We will
write

∧
and leave the arity implicit. A language signature Sig = Const ∪Mod ∪

Bool , consists of a set Const of constants, a set Mod of non-null modalities, and
a set Boolean symbols Bool . A modal signature has no Boolean symbols.

A formula is a constant or the composition op(ϕ̄) of an operator with a
sequence of formulae of the right arity. language L generated by Sig contains all
formulae over Sig. The conjunctive extension of L is the language L∧ generated
by Sig ∪ {∧}. The completely conjunctive extension of L is the language L∧
generated by Sig ∪ {

∧
}, where

∧
represents operators of multiple arities.

Formulae over L and (completely) conjunctive extensions of L are interpreted
over Sig-domains, where Sig is a modal signature. Constants are interpreted
as lattice elements, modalities as monotone operators, ∧ as �, and

∧
as

�
. We

define the interpretation �ϕ�A of a formula ϕ in a domain A, as pA for a constant
p, and opA(�ϕ̄�A) for a formula, where �ϕ̄�A denotes the sequence of elements
obtained by interpreting each element of the sequence ϕ̄.

Over transition systems, the expression M, s |= ϕ denotes that a state s in M
satisfies a formula ϕ. A pointed domain satisfies a formula, denoted (A, a) |= ϕ,
if a � �ϕ�A. We write L(A, a) for the set of formulae in L satisfied by (A, a). A
domain (C, c) preserves a language L with respect to (A, a) if L(A, a) is contained
in L(C, c). Two domains are L-equivalent if L(A, a) = L(C, c). Theorem 1 lifts the
modal characterisation of simulation to subsumption and domains.

Theorem 1. Let (A, a) and (C, c) be pointed domains over a modal signature
generating a logic L. An element c subsumes a if and only if L∧(A, a) ⊆ L∧(C, c).
Subsumption, being parameterised by a signature, applies to logics over different
types of modalities. Our proof is order theoretic and uses only monotonicity and
greatest lower bounds unlike standard proofs of simulation, which refer to the
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x = 0 !→ x ≤ 0
x > 0 !→ x ≤ 0

Fig. 2. Two domains that are equivalent with respect to properties specified in a logic
closed under conjunction and the next state modality

transition system. The example below shows that subsumption can be used to
reason about properties of domains in the same way simulation is used to reason
about properties of transition systems.

Example 2. Consider the signature Sig = {(x > 0), pre}, and the two domains in
Figure 2. The constant (x > 0) is interpreted as expected, and pre is interpreted
as shown, with pre(x � y) =̂ pre(x) � pre(y), so values that can be derived this
way are omitted. The function f is a subsumption. It also maps elements of A to
overapproximations of those elements in B and can be viewed as an abstraction
function in the abstract interpretation sense.

Consider a language over {(x > 0),EX�,∧}, with (x > 0) interpreted as
expected, EX� interpreted as pre, and ∧ as � in both lattices. The formula
EX�(x > 0) is satisfied by the element (x < 0) in A and by (x ≤ 0) in B.
Since f(x < 0) is (x ≤ 0), and f is a subsumption, we know by Theorem 1 that
formulae satisfied by (A, (x < 0)) are satisfied by (B, (x ≤ 0)).

Consider a function g : B → A from elements of B to identically denoted
elements in A. This function can be viewed as a concretisation function, forms a
Galois connection with f , and is a subsumption. It follows that for every point
b in B, there exists a point a in A such that (A, a) and (B, b) satisfy the same
formulae in the logic above. While B is a sound abstraction of A in the sense
of abstract interpretation, we can use subsumption to show that the two satisfy
the same logical properties. �

Example 3. The domains in Figure 3, over the signature {p, q, post}, are gen-
erated by M and N from Example 1. The arrows on the lattice represent the
successor transformer post . Consider a signature {p, q,EX�}, where the previous
state modality EX�, is interpreted as post . The element {4} satisfies the formu-
lae EX�p, and {5} satisfies EX�q, but neither element satisfies both formulae.
The element {2} subsumes {4} and {5} and satisfies both formulae. �
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Fig. 3. A subsumption representing a backward simulation

Fixed-Point Characterisation. We characterise subsumption by a fixed point.
Given a lattice C, the pointwise order f � g on functions in A → C, holds if
f(x) � g(x) for all x. If C is a complete lattice so is A → C. Our character-
isation uses the operators on A → C defined below. A function f that is not
a subsumption is brought closer to one by ic, which ensures the condition on
constants is satisfied and iop, which enforces the condition on transformers.

iop(f) =̂
{
a �→

�{
opC(f〈ā〉) | a � opA(ā)

}}
ic(f) =̂

{
a �→

�{
pC | a � pA

}}
isub =̂ ic � iop

Theorem 2. A subsumption is a function satisfying f � isub(f) and the great-
est subsumption is the greatest fixed point gfp(isub).

We now apply Theorem 2 to compute a subsumption.

Example 4. Consider the domains in Figure 1. For every f , the function ic(f) is
{∅ �→ ∅, {1} �→ {3} , {2} �→ {4, 5} , {1, 2} �→ {3, 4, 5}}. The function f0 : A → B
that maps all elements of A to {3, 4, 5} is greatest in the pointwise order. Since
preB maps {3, 4, 5} to itself, the function iop(f0) maps ∅ to ∅ and all other
elements of A to {3, 4, 5}. The function f1 =̂ ic(f0) � iop(f0) equals ic(f0), is a
fixed point of isub(f1), and in fact, is the subsumption in Figure 1. �

Stratified Subsumption. Theorem 1 involves infinitary conjunction. Logical
equivalence of transition systems in finitary modal languages is characterised by
notions weaker than simulation. We weaken subsumption for a similar purpose.

Definition 2. A sequence of n functions f̄ in A → C is an n-stratified sub-
sumption if fi+1 � fi for all i < n and if the conditions below hold.

1. For every constant p and element a in A, a � pA implies that f0(a) � pC.
2. For every operator op, element a and ar(op)-sequence ā, if a � opA(ā), it

holds that fn(a) � opC(fn−1〈ā〉).

The pointed domain (C, c) subsumes (A, a) up to depth n if there is an n-stratified
subsumption f̄ such that c � fn−1(a).
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Stratified subsumptions are related to modal languages by modal depth. The
modal depth of a formula, denoted mdep(ϕ), is the number of nested modal
operators in ϕ, and has the standard definition. Define Ln(A, a) to be the set of
formulae ϕ satisfied by a such that mdep(ϕ) ≤ n. Theorem 3 relates satisfaction
of formulae with bounded modal depth and stratified subsumption.

Theorem 3. Given two pointed domains over a modal signature Sig with
finitely many symbols, and the conjunctive extension L of the language over Sig,
Ln(A, a) ⊆ Ln(C, c) if and only if (C, c) subsumes (A, a) up to depth n.

For the proof, we introduce a lemma showing that formulae of finite modal depth
define finitely many elements of the lattice.

3 Bisubsumption

We now study bisimulation for domains. The different, equivalent definitions of
bisimulation suggest different lattice-theoretic formulations. Bisimulation as a
simulation whose inverse is a simulation. Subsumptions can replace simulation in
this definition, so we only require a notion of inverse. We use conjugate functions
from the theory of Boolean Algebras with Operators [13].

Conjugate Functions Two functions f : A → C and g : C → A between com-
plete, atomic, Boolean lattices are conjugate if, for all elements a in A and c in C,
f(a)�c = ⊥ exactly if a�g(c) = ⊥. Conjugate functions are the lattice-theoretic
analogue of the inverse of a relation. The function f is completely additive if it
satisfies f(

⊔
S) =

	
f(S) for every set S ⊆ A. A completely additive function f

between complete, atomic Boolean algebras has a unique conjugate [13]. If g is
the conjugate, its DeMorgan dual ¬◦g ◦¬ is the right adjoint of f . For example,
the successor operator post generated by a transition system is completely addi-
tive, has a conjugate pre and a right adjoint p̃re. In logical terms, the past-time
modality EX� has a conjugate EX� and right adjoint AX�.

A Modal Characterisation We interpret ¬ as the complement in a Boolean lat-
tice. If a language contains negation, a � �¬ϕ�A exactly if a � ¬�ϕ�A. Preser-
vation requires showing that L(A, a) ⊆ L(C, c) for properties without a leading
negation and L(C, c) ⊆ L(A, a) for properties with a leading negation.

Definition 3. A function f : A → C between domains over complete, atomic
Boolean lattices is a bisubsumption if f is a completely additive subsumption and
the conjugate of f is a subsumption. Two elements a and c are in a bisubsumption
if there is a bisubsumption f with conjugate b such that c � f(a) and a � b(c).

We emphasise that the definition above is not obvious from the existing defini-
tions of bisimulation for transition systems or coalgebras.

Example 5. Revisit the transition systems and domains in Figure 1. The inverse
of R is a simulation, so R is a bisimulation. The conjugate b : C → A of
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f extends the mappings {∅ �→ ∅, {3} �→ {1} , {4} �→ {2} , {5} �→ {2}} to satisfy
b(x ∪ y) = b(x) ∪ b(y). See that f({1}) = {3}, so f({1}) ∩ {4, 5} = ∅ and
conversely, b({4, 5}) = {2}, so {1} ∩ b({4, 5}) = ∅, as required of conjugate
functions. Moreover, b is a subsumption.

Contrast with the domains and language in Example 3, which contain EX�.
The conjugate of g is h =̂ {∅ �→ ∅, {1} �→ {3} , {2} �→ {4, 5} , {1, 2} �→ {3, 4, 5}},
which is not a subsumption. The inequality {2} ⊆ postA({2}) holds but h({2}) =
{4, 5} and is not contained in postA(h({2})) = {5}. Over {p, q,EX�,¬,∧} for-
mulae, {5} satisfies ¬EX�p, but {2} does not. In classical terms, there is no
backward bisimulation (in the sense of [16]) between M and N in Figure 1. �
Theorem 4. Consider a modal signature Sig and the language L over Sig ∪
{¬,
∧
}. The pointed domains (A, a) and (C, c) are L-equivalent if and only if a

and c are in a bisubsumption.

The proof that a bisubsumption implies equivalence extends that of Theorem 1
with a case for negation, and uses the Dedekind law of conjugate functions [13].
To prove the two elements satisfying the same formulae are in a bisubsumption,
we construct two conjugate subsumptions. We introduce a finitary analogue
of bisubsumption below and use it to characterise equivalence with respect to
formulae of bounded depth.

Definition 4. Let f̄ and b̄ be n+1-termed sequences of strict additive functions
in A → C and C → A, respectively such that each bi is the cojugate of the
corresponding fi. The sequence f̄ is a stratified bisubsumption of depth n if f̄
and b̄ are both stratified subsumptions of depth n.

Two elements a and c are in an n-stratified bisubsumption if there is an n-
stratified bisubsumption f̄ with conjugates b̄ such that a � bn(c) and c � fn(a).
The inequalities only have to be satisfied by the last functions in the sequence.

Theorem 5. Given two Sig-algebras over a modal signature with finite symbols,
and a language L over Sig ∪ {∧,¬}, Ln(A, a) = Ln(C, c) if and only if c and a
are in an n-stratified bisubsumption.

Fixed Point Characterisation. The fixed point characterisations provided
earlier extend to bisubsumption. We consider algebras over complete, atomic,
Boolean lattices and define operators on A→ C below.

ibc(f) =̂
{
a �→

�{
pC | a � pA

}
∪
{
¬qC | a � ¬qA

}}
ibop(f) =̂

{
a �→

�
Xa ∪ Ya

}
, where

Xa =̂
{
opC(f(a′)) | a � opA(a′)

}
, and

Ya =̂
{
¬opC(f(a′)) | a � ¬opA(a′)

}
ibisub =̂ ic � iop

Theorem 6. A function f is a bisubsumption if and only if f � ibisub(f). The
greatest subsumption is the greatest fixed point gfp(ibisub).
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4 Representation and Abstraction

We now show that subsumption generates the notion of simulation. We recall
elements of discrete duality theory, which provides a convenient framework for
our work.

4.1 Recap of Discrete Duality Theory

The duality theory of modal logic shows that the categories of transition systems,
Boolean lattices with transformers, and certain topological spaces, are Stone
duals. The term discrete duality refers to restrictions under which the topologies
are discrete. Discrete duality suffices for this paper.

A Boolean Representation Theorem. Fix a set of constant symbols Const .
A labelled transition system M = (S,E, prop) has a set of states S, a transition
relation E ⊆ S × S, and a labelling function prop : S → P(Const). A Boolean
pre-domain A = (A,OA) consists of a complete, atomic, Boolean lattice A and
a completely additive transformer preA, which represents a predecessor trans-
former. The construction below, from [13], maps between transition systems and
pre-domains. The set Atom(A) contains the atoms of A.

salg(M) =̂M = (P(S), OM ) srel(A) =̂ N = (SA, EA, propA)

pM =̂ {s | p is in prop(s)} SA =̂ Atom(A)

preM =̂
{
X �→ E−1(X)

}
EA =̂

{
(a, b) | a � preA(b)

}
propA =̂

{
p �→

{
a | a � pA

}}
Special cases of the theorem below have been repeatedly rediscovered and the
earliest account we are aware of is [13].

Theorem 7 ([13]). For M and A as above, srel(salg(M)) is isomorphic to M ,
and A is isomorphic to salg(srel(A)).

A Distributive Representation Theorem. The definitions that follow are
based on [9]. A subset S of a poset P is join-dense if every element of P is
equal to the join

⊔
Q of some subset Q of S. Let L be a bounded lattice. An

element x = ⊥ is completely join-irreducible if for every subset S of L, x =
⊔

S
implies that x is in S. As no ambiguity arises, completely join-irreducibles are
called join-irreducibles. The set of join-irreducibles of L is Irr"(L). The set of
join-irreducibles below x is Irr"(x) =̂ {y ∈ Irr"(L) | y � x}.

Powerset lattices and (N ∪ {ω} ,≤), the extension of N with a greatest upper
bound ω, satisfy a strong distributivity property. Consider two sets of indices I
and J and the functions I → J . A lattice is completely distributive if the identity

�{⊔
{xi,j | j ∈ J} | i ∈ I

}
=
⊔{�{

xi,f(i) | i ∈ I
}
| f ∈ I → J

}
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is satisfied by every doubly indexed set {xi,j | i ∈ I, j ∈ J}. A doubly algebraic
distributive lattice (dadl) is a completely distributive lattice in which the com-
pletely join-irreducibles are join-dense.

A downset S is a subset of a poset (M,�) satisfying that if x is in S and y � x
then y is also in S. The set of downsets of M is D(M). The poset of downsets
of M with the subset order, (D(M),⊆), is called the downset lattice. Downset
lattices are known to be dadls.

A monotone transition system M = (S,�, E, prop) has a poset of states
(S,�), a transition relation which satisfies � ◦E◦ �⊆ E, and a labelling func-
tion which satisfies prop(t) ⊆ prop(s) whenever s � t. The order inversion is
intentional. A distributive pre-domain A = (A,OA) consists of a dadl A and
a completely additive transformer preA. The construction below is from [9,3].

salg(M) =̂M = (D(S), OM ) srel(A) =̂ N = (SA, EA, propA)

pM =̂ {s | p is in prop(s)} SA =̂ Irr"(A)

preM =̂
{
X �→ E−1(X)

}
EA =̂

{
(a, b) | a � preA(b)

}
propA =̂

{
p �→

{
a | a � pA

}}
Theorem 8 ([9]). For M and A as above, srel(salg(M)) is isomorphic to M ,
and A is isomorphic to salg(srel(A)).

4.2 Deriving Simulation from Subsumption

We now apply the representation theorems above to generate simulations from
subsumptions. We recall the definition of simulation below.

Definition 5. Let M1 = (S1, E1, prop1) and M2 = (S2, E2, prop2) be transition
systems with labelling functions mapping states to sets of labels. A relation Sim ⊆
S1×S2 is a labelled simulation if every (r, s) in Sim satisfy the conditions below.

1. prop1(r) ⊆ prop2(s)
2. For every state r′ of S1, if (r, r′) is in E1, there exists a state s′ of S2

satisfying that (s, s′) is in E2 and (r′, s′) is in Sim.

A relation Sim is a labelled bisimulation if Sim is a simulation and the inverse
relation Sim−1 is a simulation.

Consider a relation Sim between M1 and M2 as above, and a completely additive
subsumption f from the Boolean pre-domain A1 to A2. The relation Sim defines
a function between domains and f defines a relation, both shown below.

salg(Sim) : P(S1)→ P(S2) srel(f) ⊆ Atom(A1)×Atom(A2)

salg(Sim) =̂ {X �→ Sim(X)} srel(f) =̂ {(a, b) | b � f(a)}

By the construction above, every simulation can be derived from a subsump-
tion, and every completely additive subsumption between Boolean pre-domains
can be derived from a simulation. In Definition 1, we defined subsumption as
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a monotone function between lattices. The construction above only applies to
completely additive subsumptions between complete, atomic, Boolean algebras,
so subsumption strictly generalises simulation.

Theorem 9. Consider Boolean pre-domains A1 and A2, and transition systems
M1 and M2.

1. Every completely additive subsumption f from A1 to A2 is equivalent to the
subsumption salg(srel(f)) from salg(srel(A1)) to salg(srel(A2)).

2. Every simulation Sim from M1 to M2 is equivalent to srel(salg(Sim)), a
simulation from srel(salg(M1)) to srel(salg(M2)).

The equivalences above hold if simulation is replaced by bisimulation, and sub-
sumption by bisubsumption.

The proof lifts the isomorphism used to prove Theorem 7 to simulations and
subsumptions. The proof of Theorem 9 for the bisimulation case requires a result
of Jónsson and Tarski, which shows that conjugate functions between Boolean
lattices generate a relation and its inverse.

The construction above applies also to labelled transition systems with edge
labels. It can be instantiated with different additive operators to obtain dif-
ferent variants of simulation. If we use the operator post , we obtain backward
simulations [16]. Compositions of operators, such as post ◦ pre and pre ◦ post are
completely additive and yield forward-backward simulations [16]. Recall that
pren is defined for n = 0 as the identity function and for n = i+ 1 as pre ◦ prei
and that pre∗ is the pointwise union of prei for all i in N. A subsumption for
pre∗ represents a stuttering simulation, while one for post∗ represents a stutter-
ing backward simulation. The preceding results about subsumption yield modal,
fixed point and finitary characterisations of these variants of simulation in the
lattice-theoretic setting, and via Theorem 9, in the transition system setting.

Ordered Simulations. By combining representation theorems for distributive
lattices with subsumption, we can generate a notion of simulation for monotone
transition systems. We have not observed this notion of simulation in the lit-
erature despite monotone transition systems being used in infinite-state model
checking [2,8] and modal logic [9].

Definition 6. Given monotone transition systems M1 = (S1,�1, E1, prop1, act1)
and M2 = (S2,�2, E2, prop2, act2), a relation Sim ⊆ S1 × S2 is an ordered sim-
ulation if every (r, s) in Sim satisfies the conditions below.

1. prop1(r) ⊆ prop2(s)
2. For all states r1, r2 of S1, if r �1 r1 and (r1, r2) is in E1 there exist states

s1, s2 of S2 satisfying the order s �2 s1, with the transition (s1, s2) in E2

and act1(r1, r2) ⊆ act2(s1, s2).

Ordered simulations represent completely additive subsumptions between dis-
tributive pre-domains. Consider two monotone pre-transition systems M1 and
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M2 with an ordered simulation Sim from M1 to M2. Consider also two distribu-
tive pre-domains A1 and A2 and an additive subsumption f from A1 to A2. The
constructions below derive a relation from Sim and a function from f .

salg(Sim) : D(S1)→ D(S2) srel(f) ⊆ Irr"(A1)× Irr"(A2)

salg(Sim) =̂ {X �→ Sim(X)} srel(f) =̂ {(a, b) | b � f(a)}

The definition of srel(f) is as before with the difference that the relation is de-
fined over join irreducibles. The definition of salg(Sim) is over downwards closed
sets instead of sets. The theorem below shows that every additive subsumption
between distributive pre-domains has a representation as an ordered simulation.

Theorem 10. Let A1 and A2 be distributive pre-domains and M1 and M2 be
monotone transition systems.

1. Every additive subsumption f from A1 to A2 is isomorphic to the subsump-
tion salg(srel(f)) from salg(srel(A1)) to salg(srel(A2)).

2. Every ordered simulation Sim from M1 to M2 is isomorphic
to srel(salg(Sim)), an ordered simulation from srel(salg(M1)) to
srel(salg(M2)).

We emphasise again the generality of subsumption and its utility. It follows
from our earlier results about subsumption that ordered simulations have modal
and fixed point characterisations and a finitary analogue. In particular, ordered
simulation characterises property preservation between monotone transition sys-
tems in the logic over the signature Const ∪ {EX�,

∧
,
∨
}. Completely additive

subsumptions over dadls can be instantiated to obtain ordered variants of back-
ward, forward-backward, stuttering, and stuttering-backward simulations.

4.3 An Abstract Interpretation Perspective

We conclude the technical treatment with an abstract interpretation perspective
on subsumption and bisubsumption. Cousot and Cousot [5] showed that a re-
stricted case of abstract interpretation can be formalised using closure operators.
We use closure operators to show that additive subsumptions can be derived as
underapproximations of subsumptions, and bisubsumptions as underapproxima-
tions of additive subsumptions. The operators below are defined on the lattice
A→ C of functions with the pointwise order.

sub(f) =̂
⊔
{g � f | g is a subsumption }

sadd(f) =̂
⊔
{g � f | g is an additive subsumption }

bisub(f) =̂
⊔
{g � f | g is a bisubsumption }
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Theorem 11. The operators sub, sadd, and bisub are lower closure operators
on A→ C. For all f : A→ C, sub(f) is a subsumption, sadd(f) is a completely
additive subsumption, and bisub(f) is a bisubsumption.

Recall that the image of a complete lattice under a closure operator is a complete
lattice. It follows that the set of all subsumptions and bisubsumptions between
two domains form a complete lattice. In particular, there are meet and join
operations that map a pair of subsumptions to the greatest subsumption that is
more precise, and the least subsumption that is less precise, both with respect
to the pointwise order.

5 Related Work

It is infeasible to survey the immensely large body of work on simulation in
such a short paper. See [20] for a detailed history of bisimulation. The linear-
time branching-time papers are the standard references for variants of simula-
tion [21,10], but there exist further variants not covered there [16]. Newer variants
are continuously discovered to suit the needs of different applications.

Transition systems are coalgebras, so simulation and bisimulation generalise
to coalgebras, as shown in [4,12,14]. Transition systems also generate Boolean
lattices with completely additive transformers, and we are not aware of a no-
tion of simulation in this setting. Our work fills this gap providing a notion of
simulation and bisimulation for Boolean lattices with operators. Bisimulation
is symmetric and characterised by logics with negation, hence bisubsumption
is restricted to Boolean lattices. Simulation applies to logics without negation,
hence subsumption generalises to lattices with transformers.

The modal languages considered in this paper were closed under all symbols
in the signature. The characterisations presented here only apply to languages
that strictly adhere to this form. For example, the 2-nested simulation logic of
[21], in which formulae have at most one negation, is not of this form. Neither is
the common fragment of LTL and CTL identified by [17]. The framework in this
paper is not general enough to cover those cases.

Simulation and bisimulation quotients have been studied from the perspective
of abstract interpretation [19] and coalgebras [14]. In the language of this paper,
if C = (C,OC) and A = (A,OA) are abstract domains with ρ : C → C an upper
closure operator, such that ρ(C) is isomorphic to A, a forward complete abstrac-
tion A of C satisfies ρ ◦ fC ◦ ρ = fA ◦ ρ. Ranzato and Tapparo [19] showed that
simulation and bisimulation quotients have constructive characterisations as for-
ward complete abstractions. Their work allows for a lattice-theoretic derivation
of simulation and bisimulation quotients. Our work is complementary and pro-
vides a lattice-theoretic formulation for comparing two different domains, which
need not be related by abstraction functions.
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6 Conclusion

Simulation and bisimulation are fundamental notions that have numerous ap-
plications in modal logic, model checking and automata theory. In this paper,
we introduced subsumption, a generalisation of simulation to domains used in
abstract interpretation. We also introduced bisubsumption, a generalisation of
bisimulation to a subfamily of domains defined over Boolean lattices. We have
shown that the modal, fixed point and finitary characterisations and lattice-
structure of the family of simulations and bisimulations all lift to subsumption
and bisubsumption.

There are several directions for future work. Simulation-style relations are
used to prove impossibility results about properties that cannot be expressed
in certain logics. One question is whether subsumption can be used to derive
impossibility results about the reasoning capabilities of static analysers. The
setting of non-distributive lattices with transformers is used to give semantics to
sub-structural logics. A second question is whether subsumption can be used to
reason about such structures, particularly to derive abstractions for reasoning
about heap manipulating programs with separation logic. The characterisation
theorem in this paper applies to modal languages with a simple and restricted
grammatical structure. A third question is whether generic techniques can be
developed to generate variants of subsumption from the grammar of a logic
such that the variant characterises property preservation in the logic. Finally,
all the languages considered in this paper are propositional in that they have no
first-order structure. The first-order analogue of bisimulation is the Ehrenfeucht-
Fräısse game, for which an algebraic analogue already exists in the form of
Fräısse morphisms. A task left open by this work is to combine subsumption
and Fräısse morphisms to derive first-order subsumptions. Such a notion would
enable reasoning about the abstract domains used in static analysers while also
providing structural tools for reasoning about sub-structural first-order logics.
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and positive comments despite the apparent simplicity of this work.
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Abstract. Two-player games on graphs are central in many problems in formal
verification and program analysis such as synthesis and verification of open sys-
tems. In this work, we consider both finite-state game graphs, and recursive game
graphs (or pushdown game graphs) that model the control flow of sequential
programs with recursion. The objectives we study are multidimensional mean-
payoff objectives, where the goal of player 1 is to ensure that the mean-payoff
is non-negative in all dimensions. In pushdown games two types of strategies
are relevant: (1) global strategies, that depend on the entire global history; and
(2) modular strategies, that have only local memory and thus do not depend on
the context of invocation. Our main contributions are as follows: (1) We show that
finite-state multidimensional mean-payoff games can be solved in polynomial
time if the number of dimensions and the maximal absolute value of the weights
are fixed; whereas if the number of dimensions is arbitrary, then the problem is
known to be coNP-complete. (2) We show that pushdown graphs with multidi-
mensional mean-payoff objectives can be solved in polynomial time. For both
(1) and (2) our algorithms are based on hyperplane separation technique. (3) For
pushdown games under global strategies both one and multidimensional mean-
payoff objectives problems are known to be undecidable, and we show that un-
der modular strategies the multidimensional problem is also undecidable; under
modular strategies the one-dimensional problem is NP-complete. We show that if
the number of modules, the number of exits, and the maximal absolute value of
the weights are fixed, then pushdown games under modular strategies with one-
dimensional mean-payoff objectives can be solved in polynomial time, and if
either the number of exits or the number of modules is unbounded, then the prob-
lem is NP-hard. (4) Finally we show that a fixed parameter tractable algorithm
for finite-state multidimensional mean-payoff games or pushdown games under
modular strategies with one-dimensional mean-payoff objectives would imply the
fixed parameter tractability of parity games.

1 Introduction

In this work we present a hyperplane separation technique that solves several fun-
damental algorithmic open questions for multidimensional mean-payoff objectives.
We first present an overview of mean-payoff games, then the important extensions,
followed by the open problems, and finally our contributions.
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Mean-Payoff Games on Graphs. Two-player games played on finite-state graphs pro-
vide the mathematical framework to analyze several important problems in computer
science as well as in mathematics, such as formal analysis of reactive systems [8,24,23].
Games played on graphs are dynamic games that proceed for an infinite number of
rounds. The vertex set of the graph is partitioned into player-1 vertices and player-2
vertices. The game starts at an initial vertex, and if the current vertex is a player-1
vertex (resp. player-2 vertex), then player 1 (resp. player 2) chooses an outgoing edge.
This process is repeated forever, and gives rise to an outcome of the game, called a play,
that consists of the infinite sequence of vertices that are visited. The most well-studied
payoff criteria in such games is the mean-payoff objective, where a weight (represent-
ing a reward) is associated with every transition and the goal of one of the players is
to maximize the long-run average of the weights; and the goal of the opponent is to
minimize. Mean-payoff games and the special case of graphs (with only one player)
with mean-payoff objectives have been extensively studied over the last three decades;
e.g. [20,14,27,17]. Graphs with mean-payoff objectives can be solved in polynomial
time [20], whereas mean-payoff games can be decided in NP ∩ coNP [14,27]. The
mean-payoff games problem is an intriguing and rare combinatorial problem that lie in
NP ∩ coNP, but no polynomial time algorithm is known. However, pseudo-polynomial
time algorithms exist [27,7]; if the weights are constants the algorithm is polynomial.

The Extensions. Motivated by applications in formal analysis of reactive systems, the
study of mean-payoff games has been extended in two directions: (1) pushdown mean-
payoff games; and (2) multidimensional mean-payoff games on finite game graphs.
Pushdown games, aka games on recursive state machines, can model reactive systems
with recursion. Pushdown games have been studied widely with applications in veri-
fication, synthesis, and program analysis in [26,1]. In applications of verification and
synthesis, the quantitative objectives that typically arise are multidimensional quanti-
tative objectives, e.g., to express properties like the average response time between a
grant and a request is below a given threshold ν1, and the average number of unneces-
sary grants is below a threshold ν2. Thus mean-payoff objectives can express proper-
ties related to resource requirements, performance, and robustness; multiple objectives
can express the different, potentially dependent or conflicting objectives. Moreover, re-
cently many quantitative logics and automata theoretic formalisms have been proposed
with mean-payoff objectives in their heart to express properties such as reliability re-
quirements, and resource bounds of reactive systems [9,5,13,4]. Thus pushdown games
and graphs with mean-payoff objectives, and finite-state game graphs with multidimen-
sional mean-payoff objectives are fundamental theoretical questions in model checking
of quantitative logics and quantitative analysis of reactive systems. Pushdown games
with multidimensional objectives are also a natural generalization to study. Further-
more, in applications related to reactive system analysis, the number of dimensions
of mean-payoff objectives is typically small, say 2 or 3, as they denote the different
types of resources; and the weights denoting the resource consumption amount are also
bounded by constants; whereas the state space of the reactive system is huge; see [3,6].

Relevant Aspects of Pushdown Games. In pushdown games two types of strategies
are relevant and studied in the literature. The first one are the global strategies, where a
global strategy can choose the successor vertex depending on the entire global history
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of the play; where history is the finite sequence of configurations of the current prefix of
a play. The second are modular strategies, which are understood more intuitively in the
model of games on recursive state machines. A recursive state machine (RSM) consists
of a set of component machines (or modules). Each module has a set of nodes (atomic
states) and boxes (each of which is mapped to a module), a well-defined interface con-
sisting of entry and exit nodes, and edges connecting nodes/boxes. An edge entering a
box models the invocation of the module associated with the box and an edge leaving
the box represents return from the module. In the game version the nodes are parti-
tioned into player-1 nodes and player-2 nodes. Due to recursion the underlying global
state-space is infinite and isomorphic to pushdown games. The equivalence of push-
down games and recursive games has been established in [1]. A modular strategy is a
strategy that has only local memory, and thus, the strategy does not depend on the con-
text of invocation of the module, but only on the history within the current invocation
of the module. Informally, modular strategies are appealing because they are stackless
strategies, decomposable into one for each module.

Previous Results and Open Questions. We now summarize the main previous results
and open questions and then present our contributions.

1. (Finite-state graphs). Finite-state graphs with mean-payoff objectives can be solved
in polynomial time [20], and finite-state graphs with multidimensional mean-payoff
objectives can also be solved in polynomial time [25] using the techniques to detect
zero-circuits in graphs of [21].

2. (Finite-state games). Finite-state games with a one-dimensional mean-payoff objec-
tive can be decided in NP ∩ coNP [27,14], and pseudo-polynomial time algorithms ex-
ist for mean-payoff games [27,7]: the current fastest known algorithm works in time
O(n · m · W ), where n is the number of vertices, m is the number of edges, and
W is the maximal absolute value of the weights [7]. Finite-state games with multi-
dimensional mean-payoff objectives are coNP-complete with weights in {−1, 0, 1} but
with arbitrary dimensions [10], and the current best known algorithm works in time
O(2n · poly(n,m, logW )).

3. (Pushdown graphs and games). Pushdown graphs and games have been studied only
for one-dimensional mean-payoff objectives [12]. Under global strategies, pushdown
graphs with a one-dimensional mean-payoff objective can be solved in polynomial time,
whereas pushdown games are undecidable. Under modular strategies, pushdown graphs
with single exit for every module and weights in {−1, 0, 1} are NP-hard, and pushdown
games with any number of exits and general weight function are in NP [12].

Many fundamental algorithmic questions have remained open for analysis of finite-
state and pushdown graphs and games with multidimensional mean-payoff objec-
tives, such as: (A) Can finite-state game graphs with multidimensional mean-payoff
objectives with 2 or 3 dimensions and constant weights be solved in polynomial
time?; (B) Can pushdown graphs under global strategies with multidimensional mean-
payoff objectives be solved in polynomial time?; (C) Can a polynomial time algorithm
be obtained for pushdown games under modular strategies with a one-dimensional
mean-payoff objective when relevant parameters (such as the number of modules) are
bounded?; and (D) In what complexity class does pushdown games under modular
strategies with multidimensional mean-payoff objectives lie?
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Our Contributions. In this work we present a hyperplane separation technique to pro-
vide answers to many of the open fundamental questions. Our contributions are:

1. (Hyperplane technique). We use the separating hyperplane technique from compu-
tational geometry to answer the open questions (A) and (B) above. First, we present
an algorithm for finite-state games with multidimensional mean-payoff objectives of
k-dimensions that works in time O(n2 · m · k ·W · (k · n ·W )k

2+2·k+1) (Section 2:
Theorem 1), and thus for constant weights and any constant k (not only k = 2 or
k = 3) our algorithm is polynomial. Second, we present a polynomial-time algorithm
for pushdown graphs under global strategies with multidimensional mean-payoff objec-
tives (Section 3: Theorem 3); the algorithm is polynomial for general weight function
and arbitrary number of dimensions. Our key intuition is to reduce the multidimensional
problem to searching for a separating hyperplane such that all realizable mean-payoff
vectors lie on one side of the hyperplane. This intuition allows us to search for a vec-
tor, which is normal to the hyperplane and reduce the multidimensional problem to
one-dimensional problem by multiplying the weight function by the vector.

2. (Modular pushdown games). We first show that the hyperplane techniques do not
extend for modular strategies in pushdown games: we show that pushdown games under
modular strategies with multidimensional mean-payoff objectives with fixed number of
dimensions are undecidable (Section 4: Theorem 4). Thus the only relevant algorithmic
problem for pushdown games is the modular strategies problem for a one-dimensional
mean-payoff objective; under global strategies even a one-dimensional mean-payoff
objective problem is undecidable [12]. It was already shown in [12] that if the number of
modules is unbounded, then even with single exits for every module the problem is NP-
hard. We show that pushdown games under modular strategies with one-dimensional
mean-payoff objectives are NP-hard with two modules and with weights {−1, 0, 1} if
the number of exits is unbounded (Section 4: Theorem 5). Thus to obtain a polynomial
time algorithm we need to bound both the number of modules as well as the number of
exits. We show that pushdown games under modular strategies with one-dimensional
mean-payoff objectives can be solved in time (n · M)O(M5+M·E2) ·WO(M2+E), where
n is the number of vertices, W is the maximal absolute weight, M is the number of
modules, and E is the number of exits (Section 4: Theorem 6). Thus if M, E, and W are
constants, our algorithm is polynomial. Hence we answer questions (C) and (D).

3. (Hardness for fixed parameter tractability). Given our polynomial time algorithms
when the parameters are fixed for finite-state multidimensional mean-payoff games
and pushdown games with a one-dimensional mean-payoff objective under modular
strategies, a natural question is whether they are fixed parameter tractable, e.g., could
we obtain an algorithm that runs in time f(k) · O(poly(n,m,W )) (resp. f(M,E) ·
O(poly(n,W ))) for finite-state multidimensional mean-payoff games (resp. for push-
down modular games with one-dimensional objective), for some computable function
f (e.g., exponential or double exponential). We show the hardness of fixed parameter
tractability problem by reducing the long-standing open problem of fixed parameter
tractability of parity games to both the problems (Section 2: Theorem 2 and Section 4:
Theorem 7), i.e., fixed parameter tractability of any of the above problems would imply
fixed parameter tractability of parity games.
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2 Finite-State Multidimensional Mean-Payoff Games

In this section we will present two results: (1) an algorithm for finite-state multidimen-
sional mean-payoff games for which the running time is polynomial when the number
of dimensions and weights are fixed; (2) a reduction of finite-state parity games to finite-
state multidimensional mean-payoff games with polynomial weights and arbitrary di-
mensions that shows that fixed parameter tractability of multidimensional mean-payoff
games would imply the fixed parameter tractability of parity games.

Game Graphs. A game graph G = ((V,E), (V1, V2)) consists of a finite directed graph
(V,E) with a finite set V of n vertices and a set E of m edges, and a partition (V1, V2)
of V into two sets. The vertices in V1 are player-1 vertices, where player 1 chooses
the outgoing edges, and the vertices in V2 are player-2 vertices, where player 2 (the
adversary to player 1) chooses the outgoing edges. For a vertex u ∈ V , we write
Out(u) = {v ∈ V | (u, v) ∈ E} for the set of successor vertices of u. We assume that
every vertex has at least one outgoing edge, i.e., Out(u) is non-empty for all u ∈ V .

Plays. A game is played by two players: player 1 and player 2, who form an infinite
path in the game graph by moving a token along edges. They start by placing the token
on an initial vertex, and then they take moves indefinitely in the following way. If the
token is on a vertex in V1, then player 1 moves the token along one of the edges going
out of the vertex. If the token is on a vertex in V2, then player 2 does likewise. The
result is an infinite path in the game graph, called plays. Formally, a play is an infinite
sequence π = 〈v0, v1, v2, . . .〉 of vertices such that (vj , vj+1) ∈ E for all j ≥ 0.

Strategies. A strategy for a player is a rule that specifies how to extend plays. Formally,
a strategy τ for player 1 is a function τ : V ∗ · V1 → V that, given a finite sequence of
vertices (representing the history of the play so far) which ends in a player 1 vertex,
chooses the next vertex. The strategy must choose only available successors, i.e., for
all w ∈ V ∗ and v ∈ V1 we have τ(w · v) ∈ Out(v). The strategies for player 2 are
defined analogously. A strategy is memoryless if it is independent of the history and only
depends on the current vertex. Formally, a memoryless strategy for player 1 is a function
τ : V1 → V such that τ(v) ∈ Out(v) for all v ∈ V1, and analogously for player 2
strategies. Given a starting vertex v ∈ V , a strategy τ for player 1, and a strategy σ for
player 2, there is a unique play, denoted π(v, τ, σ) = 〈v0, v1, v2, . . .〉, which is defined
as follows: v0 = v and for all j ≥ 0, if vj ∈ V1, then τ((v0, v1, . . . vj)) = vj+1, and if
vj ∈ V2, then σ((v0, v1, . . . , vj)) = vj+1.

Graphs Obtained under Memoryless Strategies. A player-1 graph is a special case of
a game graph where all vertices in V2 have one successor (and player-2 graphs are
defined analogously). Given a memoryless strategy σ for player 2, we denote by Gσ the
player-1 graph obtained by removing from all player-2 vertices the edges not chosen
by σ.

Multidimensional Mean-Payoff Objectives. For multidimensional mean-payoff objec-
tives we will consider game graphs along with a weight function w : E → Zk

that maps each edge to a vector of integer weights. We denote by W the maxi-
mal absolute value of the weights. For a finite path π, we denote by w(π) the sum
of the weight vectors of the edges in π and Avg(π) = w(π)

|π| , where |π| is the
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length of π, denotes the average vector of the weights. We denote by Avgi(π) the
projection of Avg(π) to the i-th dimension. For an infinite path π, let ρt denote the
finite prefix of length t of π; and we define LimInfAvgi(π) = lim inft→∞ Avgi(ρt)
and analogously LimSupAvgi(π) with lim inf replaced by lim sup. For an infinite
path π, we denote by LimInfAvg(π) = (LimInfAvg1(π), . . . , LimInfAvgk(π)) (resp.
LimSupAvg(π) = (LimSupAvg1(π), . . . , LimSupAvgk(π))) the limit-inf (resp. limit-
sup) vector of the averages (long-run average or mean-payoff objectives). The objective
of player 1 we consider is to ensure that the mean-payoff is non-negative in every di-
mension, i.e., to ensure LimInfAvg(π) ≥ 0, where 0 denotes the vector of all zeros.
A mean-payoff objective is invariant to the shift operation, i.e., if in a dimension i, we
require that the mean-payoff is at least νi, then we subtract νi in the weight vector from
every edge in the i-th dimension and require the mean-payoff is at least 0 in dimension i.
Hence WLOG the comparison is with 0. We will present all the results for LimInfAvg
objectives and the results for LimSupAvg objectives are simpler. In sequel we will write
LimAvg for LimInfAvg. Also all the results we will present would hold if we replace
the non-strict inequality (≥ 0) with a strict inequality (> 0).

Winning Strategies. A player-1 strategy τ is a winning strategy from a set U of vertices,
if for all player-2 strategies σ and all v ∈ U we have LimAvg(π(v, τ, σ)) ≥ 0. A player-
2 strategy is a winning strategy from a set U of vertices if for all player-1 strategies τ and
for all v ∈ U we have that the path π(v, τ, σ) does not satisfy LimAvg(π(v, τ, σ)) ≥ 0.
The winning region for a player is the largest set U such that the player has a winning
strategy from U .

Intuition and Key Ideas. Our key insight to solve multidimensional mean-payoff
games is to search for a hyperplane H such that player 2 can ensure a mean-payoff
vector below H. Intuitively, we show that if such a hyperplane exists, then any vector
below H is negative in at least one dimension, and thus the multidimensional mean-
payoff objective for player 1 is violated. Conversely, we show that if for all hyperplanes
H player 1 can achieve a mean-payoff vector that lies above H, then player 1 can en-
sure the multidimensional mean-payoff objective. The technical argument relies on the
fact that if we have an infinite sequence of unit vectors b1, b2, . . . and b� lies above the
hyperplane that is normal to

∑�−1
j=1 bj , then lim inf�→∞

1
� ·
∑�

j=1 bj = 0.

Multiple Dimensions to One Dimension. Given a multidimensional weight function w
and a vector λ, we denote by w ·λ the one-dimensional weight function that assigns ev-
ery edge e the weight value w(e)T ·λ, where w(e)T is the transpose of the weight vector
w(e). We show that with the hyperplane technique we can reduce a game with multi-
dimensional mean-payoff objective to the same game with a one-dimensional mean-
payoff objective. A vector b lies above a hyperplaneH if λ is the normal vector of H
and bT · λ ≥ 0. Hence, player 1 can achieve a mean-payoff vector that lies aboveH if
and only if player 1 can ensure the one-dimensional mean-payoff objective with weight
function w(e) · λ.

Examples. Consider the game graph G1 (Figure 1) where all vertices belong to player 1.
The weight function w1 labels each edge with a two-dimensional weight vector. In
G1, player 1 can ensure all mean-payoff vectors that are convex combination of
(1,−2), (−2, 1) and (−1,−1) (see Figure 3). All the vectors reside below the hyper-
plane y = −x, and consider the normal vector λ = (1, 1) to the hyperplane y = −x.
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All the cycles in G1 with weight function w1 · λ have negative weights. Therefore
player 1 loses in the one-dimensional mean-payoff objective. Consider the game graph
G2 (Figure 2) with all player-1 vertices; where player 1 can achieve any mean-payoff
vector that is a convex combination of (2,−1), (−1, 2) and (−2,−1) (see Figure 4).
Every two-dimensional hyperplane that passes through the origin intersects with the
feasible region. Thus, no separating hyperplane exists.

v0(1,−2) v2 (−2, 1)v1
(0, 0) (0, 0)

(−3,−3)

Fig. 1. Game graph G1

v0(2,−1) v2 (−1, 2)v1
(0, 0) (0, 0)

(−6,−3)

Fig. 2. Game graph G2

Fig. 3. Feasible vectors for G1 Fig. 4. Feasible vectors for G2

Basic Lemmas and Assumptions. We now prove two lemmas to formalize the intuition
related to reduction to one-dimensional mean-payoff games. Lemma 1 requires two
assumptions, which we later show (in Lemma 4) how to deal with. The assumptions are
as follows: (1) The first assumption (we refer Assumption 1) is that every outgoing edge
of player-2 vertices is to a player-1 vertex; formally, E ∩ (V2 × V ) ⊆ E ∩ (V2 × V1).
(2) The second assumption (we refer Assumption 2) is that every player-1 vertex has
k self-loop edges e1, . . . , ek such that wi(ej) = 0 if i = j and wi(ei) = −1. Let
us denote by Win2 the player-2 winning region in the multidimensional mean-payoff
game with weight function w, and by Win2λ the player-2 winning region in the one-
dimensional mean-payoff game with the weight function w · λ. Lemma 1 shows that if
Win2λ = ∅, then Win2 = ∅; thus gives a sufficient condition for non-emptiness of Win2.
Lemma 2 complements Lemma 1, and does not require Assumption 1 or Assumption 2.

Lemma 1. Given a game graph G that satisfies Assumption 1 and Assumption 2, and
a multidimensional mean-payoff objective with weight function w, for every λ ∈ Rk we
have Win2λ ⊆Win2; (hence, if Win2λ = ∅, then Win2 = ∅).

Proof. Let σ be a player-2 winning strategy in G from an initial vertex v0 for the mean-
payoff objective with weight function w · λ. Due to Assumption 1 and Assumption 2
it follows that λ ∈ (0,∞)k. We show σ is also a player-2 winning strategy wrt the
multidimensional mean-payoff objective. Let ρ be a play that is consistent with σ. Since
σ is a player-2 winning strategy for the mean-payoff objective with weight function
w ·λ, there exists a constant c > 0 such that there are infinitely many prefixes of ρ with
average weight (according to w · λ) at most −c. Let λmin = min{λi | 1 ≤ i ≤ k}
be the minimum value of λ among its dimension. Since λ ∈ (0,∞)k, it follows that
λmin > 0. There must be a dimension i with infinitely many prefixes of ρ with average
weight at most − c·λmin

k < 0. Hence the multidimensional objective is violated. ��
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Lemma 2. Given a game graph G and a multidimensional mean-payoff objective with
weight function w, if for all λ ∈ Rk we have Win2λ = ∅, then we have Win2 = ∅.

Proof. Since Win2λ = ∅ for every λ ∈ Rk, it follows by the determinacy of one-
dimensional mean-payoff games [14] that for all λ ∈ Rk, player 1 can ensure the one-
dimensional mean-payoff objective with weight functionw·λ by a memoryless strategy
τλ in G (from all initial vertices). We now present an explicit construction of a player-1
winning strategy for the multidimensional mean-payoff objective in G. We construct a
player-1 winning strategy τ for the multidimensional objective in the following way:

– Initially, set b0 := (1, 1, . . . , 1).
– For i = 1, 2, . . . ,∞, in iteration i play as follows:

• Set λbi := −bi−1. In τ , player 1 plays according to τλbi
for i rounds.

• Let ρi be the play suffix that was formed in the last i rounds (or steps) of the
play. From ρi we obtain the part of ρi that consists of cycles (that are possibly
repeated) and denote the part as ρ2i ; and an acyclic part ρ1i of length at most n.

• Set bi := bi−1 + w(ρ2i ); and proceed to the next iteration.
In order to prove that τ is a winning strategy, it is enough to prove that for every play ρ
that is consistent with τ , the Euclidean norm of the average weight vector tends to zero
as the length of the play tends to infinity.

We first compute the Euclidean norm of bi. For this purpose we observe that τλbi
is

a memoryless winning strategy for the one-dimensional mean-payoff game with weight
function w ·λbi ; and hence it follows that for every cycle C in the graph G

τλbi the sum
of the weights of C according to w ·λbi is non-negative. Since ρ2i is composed of cyclic
paths, we must have w(ρ2i )

T · λbi ≥ 0; and hence, we have w(ρ2i )
T · bi−1 ≤ 0. Thus

|bi| = |bi−1 +w(ρ2
i )| =

√
|bi−1|2 + 2 · w(ρ2

i )
T · bi−1 + |w(ρ2

i )|2 ≤
√
|bi−1|2 + |w(ρ2

i )|2

Since W is the maximal absolute value of the weights, it follows that W ·
√
k is a

bound on the Euclidean norm of any average weight vector. Since the length of ρ2i is at
most i we get that |bi| ≤

√
|bi−1|2 + k ·W 2 · i2 ≤

√
k ·W 2 · i3. We are now ready

to compute the the Euclidean norm of the play after the i-th iteration. We denote the
weight vector after the i-th iteration by xi and observe that xi = bi+

∑i
j=1 w(ρ1j ) and

by the Triangle inequality we get that |xi| ≤ |bi| +
∑i

j=1 |w(ρ1j )|. Since the length of

ρ1i is at most n and by the bound we obtained over bi we get that |xi| ≤
√
k ·W 2 · i3+

i · n ·W ·
√
k. For a position j of the play between iteration i and iteration i+ 1, let us

denote by yj the weight vector after the play prefix at position j. Since there are i steps
played in iteration i we have |yj | ≤ |xi|+ i ·W ·

√
k. Finally, since after the (i− 1)-th

iteration
∑i−1

t=1 t = i · (i− 1)/2 rounds were played, we get that the Euclidean norm of

the average weight vector, namely, |yj

j | ≤
|yj |

i·(i−1)/2 , tends to zero as i tends to infinity.
It follows that the limit average of the weight vectors is zero. ��

Lemma 1 and Lemma 2 suggest that in order to check if player-2 winning region is
non-empty in a multidimensional mean-payoff game it suffices to go over all (uncount-
ably many) λ ∈ Rk and check whether player-2 winning region is non-empty in the
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one-dimensional mean-payoff game with weight function w · λ. Lemma 3 shows that
we need to consider only finitely many vectors.

Notations. For the rest of this section, we denote M = (k · n ·W )k+1, where W is the
maximal absolute value of the weight function. For a positive integer �, we will denote
by Z±� = {i | −� ≤ i ≤ �} (resp. Z+

� = {i | 1 ≤ i ≤ �}) the set of integers (resp.
positive integers) from −� to �.

Lemma 3. Let G be a game graph with a multidimensional mean-payoff objective and
a weight function w. There exists λ0 ∈ Rk for which player-2 winning region is non-
empty in G for the one-dimensional mean-payoff objective with weight function w ·λ0 if
and only if there exists λ ∈ (Z±M )k such that the player-2 winning region is non-empty
in G for the one-dimensional mean-payoff objective with weight function w · λ.

Proof. Suppose that player 2 has a memoryless winning strategy σ in G from an initial
vertex v0 for the one-dimensional mean-payoff objective with weight function w · λ0.
Let C1, . . . , Cm be the simple cycles that are reachable from v0 in the graph Gσ . Since σ
is a player-2 winning strategy it follows that w(Ci)

T ·λ0 < 0 for every i ∈ {1, . . . ,m}.
We note that for all 1 ≤ i ≤ m we have w(Ci) ∈ (Z±n·W )k (since Ci is a simple
cycle, in every dimension the sum of the weights is between−n ·W and n ·W ). Then
by [22, Lemma 2, items c and d] it follows that there is a vector of integers λ such that
w(Ci)

T · λ ≤ −1 < 0, for all 1 ≤ i ≤ m; and λ ∈ (Z±M )k. Since all the reachable
cycles from v0 in Gσ are negative according to w ·λ, we get that σ is a winning strategy
for the one-dimensional mean-payoff game with weight function w · λ; and hence the
proof for the direction from left to right follows. The converse direction is trivial. ��

Lemma 4 removes the two assumptions of Lemma 1; the technical proof (in [11]) re-
quires Lemma 1, Lemma 2, and Lemma 3.

Lemma 4. Let G be a game graph with a multidimensional mean-payoff objective with
a weight function w. The following assertions hold: (1)

⋃
λ∈(Z+

M)k Win2λ ⊆Win2. (2) If⋃
λ∈(Z+

M )k Win2λ = ∅, then Win2 = ∅.

Attractor Removal. To use the result of Lemma 4 iteratively to solve finite-state games
with multidimensional mean-payoff objectives, we need the notion of attractors. For a
set U of vertices, Attr2(U) is defined inductively as follows: U0 = U and for all i ≥ 0
we have Ui+1 = Ui ∪ {v ∈ V1 | Out(v) ⊆ Ui} ∪ {v ∈ V2 | Out(v) ∩ Ui = ∅},
and Attr2(U) =

⋃
i≥0 Ui. Intuitively, from Ui+1 player 2 can ensure to reach Ui in

one step against all strategies of player 1, and thus Attr2(U) is the set of vertices such
that player 2 can ensure to reach U against all strategies of player 1 in finitely many
steps. The set Attr2(U) can be computed in linear time [18,2]. Observe that if G is a
game graph, then for all U , the game graph induced by the set V \ Attr2(U) is also a
game graph (i.e., all vertices in V \Attr2(U) have outgoing edges in V \Attr2(U)). In
multidimensional mean-payoff games, if U is a set of vertices such that player 2 has a
winning strategy from every vertex in U , then player 2 has a winning strategy from all
vertices in Attr2(U), and we can recurse in the game graph after removal of Attr2(U).

Algorithm. We now present our iterative algorithm that is based on Lemma 4 and at-
tractor removal. In the current iteration i of the game graph execute the following steps:
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sequentially iterate over vectors λ ∈ (Z+
M )k; and if for some λ we obtain a non-empty

set U of winning vertices for player 2 for the one-dimensional mean-payoff objective
with weight function w · λ in the current game graph, remove Attr2(U) from the cur-
rent game graph and proceed to iteration i+1. Otherwise if for all λ ∈ (Z+

M )k, player 1
wins from all vertices for the one-dimensional mean-payoff objective with weight func-
tion w ·λ, then the set of current vertices is the set of winning vertices for player 1. The
correctness of the algorithm follows from Lemma 4 and attractor removal. Since one-
dimensional mean-payoff games with n vertices, m edges, and maximal weight W can
be solved in time O(n ·m ·W ) [7], we obtain the following result.

Theorem 1. The set of winning vertices for player 1 in a multidimensional mean-payoff
game with n vertices, m edges, k-dimensions, and maximal absolute weight W can be
computed in time O(n2 ·m · k ·W · (k · n ·W )k

2+2·k+1).

Hardness for Fixed Parameter Tractability. We reduce finite-state parity games to
finite-state multidimensional mean-payoff games with weights bounded linearly by the
number of vertices. Note that our reduction is different from the standard reduction of
parity games to one-dimensional mean-payoff games where exponential weights are
necessary [19]. A parity game consists of a finite-state game graph G along with a
priority function p : E → {1, . . . , k} that maps every edge to a natural number (the
priority). The objective of player 1 is to ensure that the minimal priority that occurs
infinitely often in a play is even, and the goal of player 2 is the complement.

The Reduction. Given a game graph G with priority function p we construct a multi-
dimensional mean-payoff objective with weight function w of k dimensions on G as
follows: for every i ∈ {1, . . . , k} we assign wi(e) as follows: (i) 0 if p(e) > i; (ii) −1
if p(e) ≤ i and p(e) is odd; and (iii) n if p(e) ≤ i and p(e) is even. From a vertex v,
player 1 wins the parity game iff she wins the multidimensional mean-payoff game.

Theorem 2. Let G be a game graph with a parity objective defined by a priority func-
tion of k-priorities. We can construct in linear time a k-dimensional weight function w,
with maximal weight W bounded by n, such that a vertex v is winning for player 1 in
the parity game iff v is winning for player 1 in the multidimensional mean-payoff game.

3 Multidimensional Mean-Payoff Pushdown Graphs

We consider pushdown graphs (pushdown systems) with multidimensional mean-
payoff objectives, and give an algorithm that determines if there exists a path that sat-
isfies a multidimensional objective. Our algorithm runs in polynomial time even for
arbitrary number of dimensions and for arbitrary weight function. We again use the
hyperplane separation technique to reduce the problem to one-dimensional pushdown
graphs, and a polynomial solution for the latter is known [12].

Key Obstacles and Overview of the Solution. We first describe the key obstacles for
the polynomial time algorithm to solve pushdown graphs with multidimensional mean-
payoff objectives (as compared to finite-state graphs and finite-state games). For push-
down graphs we need to overcome the next three main obstacles: (a) The mean-payoff
value of a finite-state graph is uniquely determined by the weights of the simple cycles
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of the graph. However, for pushdown graphs it is also possible to pump special types
of acyclic paths. Hence, we first need to characterize the pumpable paths that uniquely
determine the possible mean-payoff value vector in a pushdown graph. (b) Lemma 2
does not hold for arbitrary infinite-state graphs and we need to show that it does hold
for pushdown graphs. (c) We require an algorithm to decide whether there is a hyper-
plane such that all the weights of the pumpable paths of a pushdown graph lie below
the hyperplane (also for arbitrary dimensions). The overview of our solutions to the
above obstacles are as follows: (a) In the first part of the section (until Proposition 1)
we present a characterization of the pumpable paths in a pushdown graph. (b) We use
Gordan’s Lemma [15] (a special case of Farkas’ Lemma) and in Lemma 6 we prove
that Lemma 1 and Lemma 2 hold also for pushdown graphs (Lemma 1 holds for any
infinite-state graph). (c) Conceptually, we find the separating hyperplane by construct-
ing a matrix A, such that every row in A is a weight vector of a pumpable path, and
we solve the linear inequality λ · A < 0. However, in general the matrix A can be
of exponential size. Thus we need to use advanced linear-programing technique that
solves in polynomial time linear inequalities with polynomial number of variables and
exponential number of constraints. This technique requires a polynomial-time oracle
that for a given λ returns a violated constraint (or says that all constraints are satisfied).
We show that in our case the required oracle is the algorithm for pushdown graphs
with one-dimensional mean-payoff objective (which we obtain from [12]), and thus we
establish a polynomial-time hyperplane separation technique for pushdown graphs.

Stack Alphabet and Commands. We start with the basic notion of stack alphabet and
commands. Let Γ denote a finite set of stack alphabet, and Com(Γ ) = {skip, pop} ∪
{push(z) | z ∈ Γ} denotes the set of stack commands over Γ . Intuitively, the command
skip does nothing, pop deletes the top element of the stack, push(z) puts z on the top of
the stack. For a stack command com and a stack string α ∈ Γ+ we denote by com(α)
the stack string obtained by executing the command com on α (in a stack string the top
denotes the right end of the string).

Multi-weighted Pushdown Systems. A multi-weighted pushdown system (WPS) (or
a multi-weighted pushdown graph) is a tuple: A = 〈Q,Γ, q0 ∈ Q,E ⊆ (Q × Γ ) ×
(Q × Com(Γ )), w : E → Zk〉, where Q is a finite set of states with q0 as the initial
state; Γ the finite stack alphabet and we assume there is a special initial stack symbol
⊥ ∈ Γ ; E describes the set of edges or transitions of the pushdown system; and w is
a weight function that assigns an integer weight vector to every edge; we denote by wi

the projection of w to the i-th dimension. We assume that ⊥ can be neither put on nor
removed from the stack. A configuration of a WPS is a pair (α, q) where α ∈ Γ+ is a
stack string and q ∈ Q. For a stack string α we denote by Top(α) the top symbol of the
stack. The initial configuration of the WPS is (⊥, q0).

Successor Configurations and Runs. Given a WPS A, a configuration ci+1 =
(αi+1, qi+1) is a successor configuration of a configuration ci = (αi, qi), if there is
an edge (qi, γi, qi+1, com) ∈ E such that com(αi) = αi+1, where γi = Top(αi). A
path π is a sequence of configurations. A path π = 〈c1, . . . , cn+1〉 is a valid path if
for all 1 ≤ i ≤ n the configuration ci+1 is a successor configuration of ci (and the
notation is similar for infinite paths). In the sequel we shall refer only to valid paths. A
path can equivalently be defined as a sequence 〈c1e1e2 . . . en〉, where c1 is the initial
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configuration and ei are valid transitions. We will present an algorithm that given a WPS
A decides if there exists an infinite path π in A from q0 such that LimAvg(π) ≥ 0.

Notations. We shall use (i) γ or γi for an element of Γ ; (ii) e or ei for a transition
(equivalently an edge) from E; (iii) α or αi for a string from Γ ∗. For a path π =
〈c1, c2, . . .〉 = 〈c1e1e2 . . .〉 we denote by (i) qi: the state of configuration ci, and (ii) αi:
the stack string of configuration ci.

Pumpable Pair of Paths. Let π = 〈c1e1e2 . . .〉 be a finite or infinite path. A
pumpable pair of paths for π is a pair of non-empty sequences of edges: (p1, p2) =
(ei1ei1+1 . . . ei1+n1 , ei2ei2+1 . . . ei2+n2), for n1, n2 ≥ 0, i1 ≥ 0 and i2 > i1+n1 such
that for every j ≥ 0 the path πj(p1,p2) obtained by pumping the pair of paths p1 and p2
for j times each is a valid path.

Local Minimum of a Path. Let π = 〈c1, c2, . . .〉 be a path. A configuration ci = (αi, qi)
is a local minimum if for every j ≥ i we have αi � αj (i.e., the stack string αi is a prefix
string of αj). One basic fact: Every infinite path has infinitely many local minimum.

Non-Decreasing Paths and Cycles, and Proper Cycles. A path from configuration
(αγ, q1) to configuration (αγα2, q2) is a non-decreasing α-path if (αγ, q1) is a local
minimum. Note that if π is a non-decreasing α-path for some α ∈ Γ ∗, then the same
sequence of transitions leads to a non-decreasing β-path for every β ∈ Γ ∗. Hence we
say that π is a non-decreasing path if there exists α ∈ Γ ∗ such that π is a non-decreasing
α-path. A non-decreasing cycle is a non-decreasing path from (α1, q) to (α2, q) such
that the top symbols of α1 and α2 are the same. A non-decreasing cycle from (α1, q)
to (α2, q) is a proper cycle if α1 = α2 (i.e., returns to the same configuration). By con-
vention, when we say that a path π is a non-decreasing path from (γ1, q1) to (γ2, q2), it
means that for some α1, α2 ∈ Γ ∗, the path π is a non-decreasing path from (α1γ1, q1)
to (α1γ1α2γ2, q2).

Cone of Pumpable Pairs. We denote R+ = [0,+∞). For a finite non-decreasing
path π we denote by PPS(π) the (finite) set of pumpable pairs that occur in π, that
is, PPS(π) = {(p1, p2) ∈ (E∗ × E∗) | p1 and p2 are a pumpable pair in π}. Let
PPS(π) = {P1 = (p11, p

1
2), P2 = (p21, p

2
2), . . . , Pj = (pj1, p

j
2)}, and we denote by

PumpMat(π) the matrix that is formed by the weight vectors of the pumpable pairs of
π, that is, the matrix has j rows and the i-th row of the matrix is w(pi1) + w(pi2) (every
weight vector is a row in the matrix). We denote by PCone(π) the cone of the weight
vectors in PPS(π), formally, PCone(π) = {PumpMat(π) · x | x ∈ (Rk

+\{0})}.
Fix � = (|Q| · |Γ |)(|Q|·|Γ |)2+1 for the rest of the section. For q1, q2 ∈ Q and

γ1, γ2 ∈ Γ , by abuse of notation we denote by PPS((γ1, q1), (γ2, q2)) the (finite)
set of all pumpable pair of paths, not longer than �, that occur in a non-decreasing
path from (γ1, q1) to (γ2, q2); we similarly define PumpMat((γ1, q1), (γ2, q2))
and PCone((γ1, q1), (γ2, q2)). If q1 = q2 and γ1 = γ2, then we abbreviate
PPS((γ1, q1), (γ1, q1)) by PPS((γ1, q1)), and similarly for PumpMat and PCone. In
Proposition 1 we establish a sufficient and necessary condition for the existence of a
path with non-negative mean-payoff values in all the dimensions.

Proposition 1. There exists an infinite path π such that LimInfAvg(π) ≥ 0 if and only
if there exists a (reachable) non-decreasing cycle π such that Rk

+ ∩ PCone(π) = ∅.
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By Proposition 1, we can decide whether there is an infinite path π for which
LimAvg(π) ≥ 0 by checking if there exist a tuple (γ, q) ∈ Γ ×Q for which there is a
non-negative (and non-trivial) solution for the equation PumpMat((γ, q))·x ≥ 0. As in
Lemma 1 by adding k self-loop transitions with weights, where the weight of transition
i is −1 in the i-th dimension and 0 in the other dimensions, we reduce the problem to
finding q and γ such that there is a non-negative solution for PumpMat((γ, q)) ·x = 0.
We present an algorithm that solves the problem by a reduction to a corresponding
one dimensional problem. As before given a k-dimensional weight function w and a k-
dimensional vector λ we denote by w ·λ the one-dimensional weight function obtained
by multiplying the weight vectors with λ. The reduction to one-dimensional objective
(Lemma 6) requires the use of Gordan’s lemma (Lemma 5).

Lemma 5 ([15]). For a matrix A, either A · x = 0 has a non-trivial non-negative
solution for x, or there exists a vector y such that y ·AT is negative in every dimension.

Lemma 6. Given a WPS A with a k-dimensional weight function w, and (γ, q) ∈
Γ ×Q, there exists a non-trivial non-negative solution for PumpMat((γ, q)) ·x = 0 if
and only if for every λ ∈ Rk there is a non-decreasing path from (γ, q) to (γ, q) that
contains a pumpable pair P = (p1, p2) such that (w · λ)(P ) ≥ 0.

Proposition 2. There is a polynomial time algorithm that given WPS A with k-
dimensional weight function w, (γ, q) ∈ Γ × Q, a vector λ ∈ Qk, and a rational
number r ∈ Q decides if there exists a pumpable pair of paths P in a non-decreasing
cyclic path that begins at (γ, q) in A, with (w·λ)(P )

|P | > r and |P | ≤ �, and if such pair

exists, it returns w(P )
|P | .

Intuitively, the algorithm (for Proposition 2) is based on the algorithm for solving WPSs
with one-dimensional mean-payoff objectives. We now show how to use the result of
the proposition and a result from linear programming to solve the problem.

Polynomial-Time Separating Oracle. Consider a linear program over n variables and
exponentially many constraints in n. Given a polynomial time separating oracle that
for every point in space returns in polynomial time whether the point is feasible, and if
infeasible returns a violated constraint, the linear program can be solved in polynomial
time using the ellipsoid method [16]. We use this fact to show the following result.

Proposition 3. There exists a polynomial time algorithm that decides whether for a
given state q and a stack alphabet symbol γ there exists a non-trivial non-negative
solution for PumpMat((γ, q)) · x = 0.

Proof. Conceptually, given q and γ, we compute a matrix A, such that each row in
A corresponds to the average weight vector of a row in PumpMat((γ, q)) (that is, the
weight of a pumpable pair divided by its length), and solves the following linear pro-
gramming problem: For variables r and λ = (λ1, . . . , λk), the objective function is to
minimize r subject to the constraints below: (i) λ ·AT ≤ r where r = (r, r, . . . , r)T ;
(ii)
∑k

i=1 λi = 1. Once the minimal r is computed, by Lemma 6, there exists a solution
for PumpMat((γ, q)) · x = 0 if and only if r ≥ 0.

The number of rows of A in the worst case is exponential (to be precise at most � ·(2 ·
W · �)k, since the length of the path is at most �, the sum of weights is between−W · �
and W · � and there are k dimensions). However, we do not enumerate the constraints
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of the linear programming problem explicitly but use the result of linear programs with
polynomial time separating oracle. By Proposition 2 we have an algorithm that verifies
the feasibility of a solution (that is, an assignment for λ and r) and if the solution is
infeasible it returns a constraint that is not satisfied by the solution. Thus the result of
Proposition 2 provides the desired polynomial-time separating oracle. ��
Theorem 3. Given a WPS A with multidimensional weight function w, we can decide
in polynomial time whether there exists a path π such that LimAvg(π) ≥ 0.

4 Recursive Mean-Payoff Games with Modular Strategies
In this section, we will consider recursive games (which are equivalent to pushdown
games) with modular strategies.

Weighted Recursive Game Graphs (WRGs). A recursive game graph A consists
of a tuple 〈A0, A1, . . . , An〉 of game modules, where each game module Ai =
(Ni, Bi, V

1
i , V 2

i ,Eni,Ex i, δi) consists of the following components: (i) A finite
nonempty set of nodes Ni. (ii) A nonempty set of entry nodes Eni ⊆ Ni and a
nonempty set of exit nodes Ex i ⊆ Ni. (iii) A set of boxes Bi. (iv) Two disjoint sets V 1

i

and V 2
i that partition the set of nodes and boxes into two sets, i.e., V 1

i ∪ V 2
i = Ni ∪Bi

and V 1
i ∩ V 2

i = ∅. The set V 1
i (resp. V 2

i ) denotes the places where it is the turn of
player 1 (resp. player 2) to play (i.e., choose transitions). We denote the union of V 1

i

and V 2
i by Vi. (v) A labeling Yi : Bi → {1, . . . , n} that assigns to every box an index

of the game modules A1 . . . An. (vi) Let Callsi = {(b, e) | b ∈ Bi, e ∈ Enj , j = Yi(b)}
denote the set of calls of module Ai and let Retnsi = {(b, x) | b ∈ Bi, x ∈ Ex j , j =
Yi(b)} denote the set of returns in Ai. Then, δi ⊆ (Ni ∪ Retnsi)× (Ni ∪ Callsi) is the
transition relation for module Ai. A weighted recursive game graph (for short WRG) is
a recursive game graph, equipped with a weight function w on the transitions. We also
refer the readers to [1] for detailed description and illustration with figures of recursive
game graphs. We will also consider the special case of one-player WRGs, where either
V 2 is empty (player-1 WRGs) or V 1 is empty (player-2 WRGs). The module A0 is the
initial module, and its entry node the starting node of the game.

Modular Strategies. Intuitively, a modular strategy only depends on the local history,
and not on the context of invocation of the module. A memoryless modular strategy is
defined in similar way, where every component local strategy is memoryless.

Mean-Payoff Objectives and Winning Modular Strategies. The modular winning strat-
egy problem asks if player 1 has a modular strategy τ such that against every strategy σ
for player 2 the play π given the starting node and the strategies satisfy LimAvg(π) ≥ 0
(note that the counter strategy of player 2 is a general strategy).

Undecidability. We show the following undecidability result, and in view of it will
focus on WRGs under modular strategies for one-dimensional mean-payoff objectives.

Theorem 4. The problem of deciding the existence of a modular winning strategy in
WRGs with multidimensional mean-payoff objectives is undecidable, with six dimen-
sions, three modules and with at most one exit for each module.

NP-hardness. We consider WRGs under modular strategies with one-dimensional
mean-payoff objectives. It was already shown in [12] that if the number of modules
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is unbounded, then even if all modules have at most one exit, the problem is NP-hard
even for one player game with weights restricted to {−1, 0, 1}. We present a similar
hardness result by a reduction from 3SAT.

Theorem 5. The decision problem of existence of modular winning strategies in WRG’s
with one-dimensional mean-payoff objectives is NP-hard even for WRG’s with two mod-
ules and weights restricted to {0,−1}.

Algorithm for One-Dimensional Mean-Payoff Objectives. Given the undecidability
result, we focus on WRGs with one-dimensional mean-payoff objectives, and given
the hardness results for either unbounded number of modules or unbounded number of
exits, our goal is to present an algorithm that runs in polynomial time if both the number
of modules and the number of exits are bounded. For the rest of this section we denote
the number of game modules by M, the number of exits and boxes (in the entire graph)
by E and B, respectively, and by n and m the maximal size of |Vi| and |δi| (number of
vertices and transitions) respectively that a module has. If M, E and W (the maximal
absolute weight) are bounded, then our algorithm runs in polynomial time.

Description of the Key Steps of the Algorithm. One key result that we use is the fact that
if there is a winning modular strategy, then there is a memoryless one [12]. The intuitive
idea of our algorithm is to consider a signature function for a strategy that assigns to
every exit of a module the weight of the worst sub-play from the entrance of the module
to the exit. We show that for a memoryless modular winning strategy the range of the
signature function is bounded (in absolute value) by (n ·M)M·E+1 ·W . The final step
is to show that for a given a signature function, there is a memoryless modular strategy
to satisfy the signature function. The verification is achieved by solving a finite-state
mean-payoff game. The detailed formal description is presented in [11].

Theorem 6. Given a WRG A with a one-dimensional mean-payoff objective, whether
player 1 has a modular winning strategy can be decided in (n · M)O(M5+M·E2) ·
WO(M2+E) time.

Hardness for Fixed Parameter Tractability. Given Theorem 6 (algorithm to solve
in polynomial time when M and E are fixed) an interesting question is whether it is
possible to show that WRGs under modular strategies is fixed parameter tractable (i.e.,
to obtain an algorithm that runs in time O(f(M,E) · poly(n,m,W ))). We show the
hardness of fixed parameter tractability, again by a reduction from parity games, imply-
ing that fixed parameter tractability would imply the solution of the long-standing open
problem of fixed parameter tractability of parity games (details presented in [11]).

Theorem 7. Given a finite-state parity game G with n vertices and priority function
of k-priorities, we can construct in polynomial time a WRG A with 2 · k + 1 modules,
O(k · n) nodes, and weights in {−1, 0,+1} such that a vertex v is winning for player 1
in the parity game iff there is a modular winning strategy inA with v as the initial node.
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Abstract. Just as traditional games can be represented by trees, so
concurrent games can be represented by event structures. We show the
determinacy of such concurrent games with Borel sets of configurations as
winning conditions, provided they are race-free and bounded-concurrent.
Both properties are shown necessary. The determinacy proof proceeds via
a reduction to the determinacy of tree games, and the determinacy of
these in turn reduces to the determinacy of Gale-Stewart games.

1 Introduction

In logic the study of determinacy in games (the existence of a winning strategy
or counter-strategy) dates back, at least, to Zermelo’s work [12] on finite games
which showed that all perfect-information finite games are determined. Since
then, more complex games and determinacy results have been studied, e.g. for
games with plays of infinite length. A research line that began in the 1950s with
the seminal work of Gale and Stewart [5] on open games culminated with the
work of Martin [6] who showed that two-player zero-sum sequential games with
perfect information in which the winning conditions were Borel are determined.

In computer science determinacy results have most often been used rather
than investigated. Frequently decision and verification problems are represented
by games with winning conditions where winning strategies encode solutions to
the problems being represented by the games. The determinacy of games ensures
that in all cases there is a solution to the decision or verification problem under
consideration, so is a computationally desirable property.

A common feature of the games mentioned above is that they are gener-
ally represented as trees. As a consequence, the plays of such games form total
orders—the branches. The games we consider in this paper are not restricted to
games represented by trees. Instead, they are played on games represented by
event structures. Event structures [9] are the concurrency analogue of trees. Just
as transitions systems unfold to trees, so Petri nets and asynchronous transition
systems unfold to event structures. Plays are now partial orders of moves.

The concurrent games we consider are an extension of those introduced in [10].
Games there can be thought of as highly-interactive, distributed games between
Player (thought of as a team of players) and Opponent (a team of opponents).
The games model, as first introduced in [10], was extended with winning con-
ditions in [3]. There a determinacy result was given for well-founded games
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(i.e. where only finite plays are possible) provided they are race-free, i.e. neither
player could interfere with the moves available to the other—a property satisfied
by all best-known games on trees/graphs, both sequential and concurrent.

Here we extend the main result of [3] by providing a much more general
determinacy theorem. We consider concurrent games in which plays may be
infinite and where the winning set of configurations forms a Borel set.

In particular we show that such games are determined provided that they are
race-free and satisfy a structural condition we call bounded concurrency. Bounded
concurrency expresses that no move of one of the players can be concurrent with
infinitely many moves of the other—a condition trivially satisfied when e.g. all
plays are finite, the games are sequential, or the games have rounds where simple
choices are made (usual in traditional concurrent games). Bounded concurrency
and race-freedom hold implicitly in games as traditionally defined.

We also show in what sense both bounded concurrency and race-freedom are
necessary for Borel determinacy. Our determinacy proof follows by a reduction
to the determinacy of Borel games, shown by Martin [6].

Related Work. Determinacy problems have been studied for more than a
century: for finite games [12]; open games [5]; Borel games [6]; or Blackwell
games [7], to mention a few particularly relevant to concurrency and computer
science. Whereas the determinacy theorem in [3] is a concurrent generalisation
of Zermelo’s determinacy theorem for finite games, the determinacy theorem in
this paper generalises the Borel determinacy theorem for infinite games from
trees to event structures, so from total orders to partial orders of moves.

The results here apply to zero-sum concurrent games with perfect informa-
tion. The games here require additional structure in order to model imperfect
information [4] or stochastic features, so the determinacy result here does not ap-
ply directly to Blackwell games [7], the imperfect-information concurrent games
played on graphs in [2] or the nonzero-sum concurrent games of [1].

Structure of the Paper. In Section 2 we present concurrent games represented
as event structures. Section 3 introduces tree and Gale-Stewart games as variants
of concurrent games. In Section 4 race-freedom and bounded concurrency are
studied. Section 5 contains the determinacy theorem, preceding the conclusion.

2 Concurrent Games on Event Structures

An event structure comprises (E,≤,Con), consisting of a set E, of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy axioms:

{e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con =⇒ Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con.

The configurations of E consist of those subsets x ⊆ E which are
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Consistent: ∀X ⊆ x. X is finite⇒ X ∈ Con, and
Down-closed: ∀e, e′. e′ ≤ e ∈ x =⇒ e′ ∈ x.

We write C∞(E) for the set of configurations of E and C(E) for the finite con-
figurations. Two events e1, e2 which are both consistent and incomparable with
respect to causal dependency in an event structure are regarded as concurrent,
written e1 co e2. In games the relation of immediate dependency e 
 e′, meaning
e and e′ are distinct with e ≤ e′ and no event in between plays an important
role. For X ⊆ E we write [X ] for {e ∈ E | ∃e′ ∈ X. e ≤ e′}, the down-closure
of X ; note if X ∈ Con then [X ] ∈ Con. We use x−⊂y to mean y covers x in

C∞(E), i.e., x ⊂ y with nothing in between, and x
e

−−⊂ y to mean x∪{e} = y for

x, y ∈ C∞(E) and event e /∈ x. We use x
e

−−⊂ , expressing that event e is enabled

at configuration x, when x
e

−−⊂ y for some configuration y.
Let E and E′ be event structures. A map of event structures is a partial

function on events f : E → E′ such that for all x ∈ C(E) its direct image
fx ∈ C(E′) and if e1, e2 ∈ x and f(e1) = f(e2) (with both defined) then
e1 = e2. The map expresses how the occurrence of an event e in E induces
the coincident occurrence of the event f(e) in E′ whenever it is defined. Maps
of event structures compose as partial functions, with identity maps given by
identity functions. We say that the map is total if the function f is total. Say a
total map of event structures is rigid when it preserves causal dependency.

The category of event structures is rich in useful constructions on processes.
In particular, pullbacks are used to define the composition of strategies, while
restriction (a form of equalizer) and the defined part of maps will be used in
defining strategies. Any map of event structures f : E → E′, which may be a
partially defined on events, has a defined part the total map f0 : E0 → E′, in
which the event structure E0 has events those of E at which f is defined, with
causal dependency and consistency inherited from E, and where f0 is simply f
restricted to its domain of definition. Given an event structure E and a subset
R ⊆ E of its events, the restriction E 
R is the event structure comprising events
{e ∈ E | [e] ⊆ R} with causal dependency and consistency inherited from E; we
sometimes write E \ S for E 
 (E \ S), where S ⊆ E.

Event Structures with Polarity. Both a game and a strategy in a game are
represented with event structures with polarity, comprising an event structure
E together with a polarity function pol : E → {+,−} ascribing a polarity +
(Player) or − (Opponent) to its events; the events correspond to moves. Maps
of event structures with polarity, are maps of event structures which preserve
polarities. An event structure with polarityE is deterministic iff

∀X ⊆fin E. Neg[X ] ∈ ConE =⇒ X ∈ ConE ,

where Neg[X ] =def {e′ ∈ E | pol(e′) = − & ∃e ∈ X. e′ ≤ e}. We write Pos[X ] if
pol(e′) = +. The dual, E⊥, of an event structure with polarity E comprises the
same underlying event structure E but with a reversal of polarities.

Given two sets of events x and y, we write x ⊂+ y to express that x ⊂ y and
pol(y \ x) = {+}; similarly, we write x ⊂− y iff x ⊂ y and pol(y \ x) = {−}.
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Games and Strategies. Let A be an event structure with polarity—a game;
its events stand for the possible moves of Player and Opponent and its causal
dependency and consistency relations the constraints imposed by the game.

A strategy (for Player) in A is a total map σ : S → A from an event struc-
ture with polarity S, which is both receptive and innocent. Receptivity ensures
an openness to all possible moves of Opponent. Innocence, on the other hand,
restricts the behaviour of Player; Player may only introduce new relations of
immediate causality of the form ] 
 ⊕ beyond those imposed by the game.
Receptivity: A map σ is receptive iff

σx
a

−−⊂ & polA(a) = − ⇒ ∃!s ∈ S. x
s

−−⊂ & σ(s) = a .
Innocence: A map σ is innocent iff
s 
 s′ & (pol (s) = + or pol(s′) = −) then σ(s) 
 σ(s′).
Say a strategy σ : S → A is deterministic if S is deterministic.

Composing Strategies. Suppose that σ : S → A is a strategy in a game A. A
counter-strategy is a strategy of Opponent, so a strategy τ : T → A⊥ in the
dual game. The effect of playing-off a strategy σ against a counter-strategy τ
is described via a pullback. Ignoring polarities, we have total maps of event
structures σ : S → A and τ : T → A. Form their pullback,

P

Π1

��

��
Π2 �� T

τ

��
S σ

�� A .

The event structure P describes the play resulting from playing-off σ against τ .
Because σ or τ may be nondeterministic there can be more than one maximal
configuration z in C∞(P ). A maximal z images to a configuration σΠ1z = τΠ2z
in C∞(A). Define the set of results of playing-off σ against τ to be

〈σ, τ〉 =def {σΠ1z | z is maximal in C∞(P )} .

Example 1. Let σi : Si → A be a strategy in A = ⊕ co ]

S0

σ0

��

]

��
A ] ⊕

S1

σ1

��

]

��

⊕

��
A ] ⊕

S2

σ2

��

] � ���

��

⊕

��
A ] ⊕

There are three analogous counter-strategies τj : Tj → A⊥, j = 0, 1, 2, for
Opponent. The results of playing each σi against each τj are:

〈σi, τj〉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{∅} if i ∈ {0, 2} & j ∈ {0, 2},
{{⊕}} if i = 1 & j = 0,

{{]}} if i = 0 & j = 1,

{{⊕,]}} if i = 1 & j = 1.
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Note that Player (or Opponent) can try to force some play to happen sequentially
by adding causal dependencies, e.g. when using strategy σ2 (or τ2). This situation
may lead to a deadlock as with σ2 played-off against τ2 when both players are
waiting for their opponent to play first. �
Determinacy and Winning Conditions. A game with winning conditions [3]
comprises G = (A,W ) where A is an event structure with polarity and the set
W ⊆ C∞(A) consists of the winning configurations (for Player). Define the
losing conditions (for Player) to be L = C∞(A) \W . The dual G⊥ of a game
with winning conditions G = (A,W ) is defined to be G⊥ = (A⊥, L), a game
where the roles of Player and Opponent are reversed, as are correspondingly the
roles of winning and losing conditions.

A strategy in G is a strategy in A. A strategy in G is regarded as winning
if it always prescribes moves for Player to end up in a winning configuration,
no matter what the activity or inactivity of Opponent. Formally, a strategy σ :
S → A in G is winning (for Player) if σx ∈W for all ⊕-maximal configurations

x ∈ C∞(S)—a configuration x is ⊕-maximal if whenever x
s

−−⊂ then the event
s has −ve polarity. Equivalently, a strategy σ for Player is winning if when
played against any counter-strategy τ of Opponent, the final result is a win for
Player; precisely, it can be shown [3] that a strategy σ is a winning for Player
iff all the results 〈σ, τ〉 lie within W , for any counter-strategy τ of Opponent.
Sometimes we say a strategy σ dominates a counter-strategy τ (and vice versa)
when 〈σ, τ〉 ⊆ W (respectively, 〈σ, τ〉 ⊆ L). A game with winning conditions is
determined when either Player or Opponent has a winning strategy in the game.

Example 2. Consider the game A with two inconsistent events ⊕ and ] with the
obvious polarities and winning conditions W = {{⊕}}. The game (A,W ) is not
determined: no strategy of either player dominates all counter-strategies of the
other player. Any strategy σ : S → A cannot be winning as it must by receptivity
have ] �→ ], so a ⊕-maximal configuration of S with image {]} /∈ W . By a
symmetric argument no counter-strategy for Opponent can be winning. �
3 Tree Games and Gale–Stewart Games

We introduce tree games as a special case of concurrent games, traditional Gale–
Stewart games as a variant, and show how to reduce the determinacy of tree
games to that of Gale–Stewart games. Via Martin’s theorem for the determinacy
of Gale–Stewart games with Borel winning conditions we show that tree games
with Borel winning conditions are determined.

3.1 Tree Games

Definition 3. Say E, an event structure with polarity, is tree-like iff it has
empty concurrency relation (so ≤E forms a forest), all events enabled by the
initial configuration ∅ have the same polarity, and is such that polarities alternate
along branches, i.e. if e 
 e′ then polE(e) = polE(e

′). A tree game is (E,W ), a
concurrent game with winning conditions in which E is tree-like. �
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Proposition 4. Let E be a tree-like event structure with polarity. Then, its
finite configurations C(E) form a tree w.r.t. ⊆. Its root is the empty configu-
ration ∅. Its (maximal) branches may be finite or infinite; finite sub-branches
correspond to finite configurations of E; infinite branches correspond to infinite

configurations of E. Its arcs, associated with x
e

−−⊂x′, are in 1-1 correspondence

with events e ∈ E. The events e associated with initial arcs ∅
e

−−⊂x all have the
same polarity. In a branch

∅
e1−−⊂x1

e2−−⊂ x2

e3−−⊂ · · ·
ei−−⊂ xi

ei+1

−−⊂ · · ·

the polarities of the events e1, e2, . . . , ei, . . . alternate.

Proposition 4 gives the precise sense in which the terms ‘arc,’ ‘sub-branch’ and
‘branch’ are synonyms for the terms ‘events,’ ‘configurations’ and ‘maximal con-
figurations’ when an event structure with polarity is tree-like. Notice that for a
non-empty tree-like event structure with polarity, all the events that can occur
initially share the same polarity. We say a non-empty tree game (E,W ) has po-
larity + or − depending on whether its initial events are +ve (positive) or −ve
(negative). We adopt the convention that the empty game (∅, ∅) has polarity +,
and the empty game (∅, {∅}) has polarity −.

Proposition 5. Let f : S → A be a total map of event structures with polarity
and let A be tree-like. Then, it follows that S is also tree-like and that the map
f is innocent. The map f is a strategy if and only if it is receptive.

3.2 Gale–Stewart Games

Gale–Stewart games are a variant of tree games in which all maximal configu-
rations of the tree game are infinite, and more importantly where Player and
Opponent must play to a maximal, infinite configuration. Note that this is in
general not the case for concurrent games where neither player is forced to play.

Definition 6. A Gale–Stewart game (G, V ) comprises

– G, a tree-like event structure with polarity for which all maximal configura-
tions are infinite, and

– V , a subset of infinite configurations—the winning configurations for Player.

A winning strategy in (G, V ) is σ : S → G, a deterministic strategy such that
σx ∈ V for all maximal (and hence necessarily infinite) x in C∞(S). �
This is not the way a Gale–Stewart game and a winning strategy in a Gale–
Stewart game are traditionally defined. However, because σ is deterministic it is
injective as a map on configurations, so corresponds to the subfamily of config-
urations T = {σx | x ∈ C∞(S)} of C∞(G). The family of configurations T forms
a subtree of the tree of configurations of G. Its properties, given below, reconcile
our definition based on event structures with the traditional one.
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Proposition 7. A winning strategy in a Gale–Stewart game (G, V ) is a non-
empty subset T ⊆ C∞(G) such that

(i) ∀x, y ∈ C∞(G). y ⊆ x ∈ T =⇒ y ∈ T ,

(ii) ∀x, y ∈ C(G). x ∈ T & x
−
−−⊂ y =⇒ y ∈ T ,

(iii) ∀x, y1, y2 ∈ T . x
+

−−⊂ y1 & x
+

−−⊂ y2 =⇒ y1 = y2 , and
(iv) all ⊆-maximal members of T are infinite and in V .

A Gale–Stewart game (G, V ) has a dual game (G, V )∗ =def (G
⊥, V ∗), where V ∗

is the set of all maximal configurations in C∞(G) \ V . A winning strategy for
Opponent in (G, V ) is a winning strategy (for Player) in the dual game (G, V )∗.

For any event structure A there is a topology on C∞(A) given by the Scott
open subsets [8]. The ⊆-maximal configurations in C∞(A) inherit a sub-topology
from that on C∞(A). The Borel subsets of a topological space comprise the
sigma-algebra generated by the open subsets, i.e. the Borel sets are constructed
by closing the open subsets under countable union, countable intersection and
complement. Martin proved in [6] that Gale–Stewart games (G, V ), with V Borel,
are determined.

3.3 Determinacy of Tree Games

The determinacy of tree games with Borel winning conditions is shown by a
reduction to the determinacy of Gale–Stewart games. Let (E,W ) be a tree game.
We construct a Gale–Stewart game GS(E,W ) = (G, V ) and a partial map proj :
G → E. The events of G are built as sequences of events in E together with
two new symbols δ− and δ+ decreed to have polarity − and +, respectively; the
symbols δ− and δ+ represent delay moves by Opponent and Player.

An event of G is a non-empty finite sequence [e1, · · · , ek] of symbols from
the set E ∪ {δ−, δ+} where: e1 has the same polarity as (E,W ); polarities
alternate along the sequence; and for all subsequences [e1, · · · , ei], with i ≤
k, {e1, · · · , ei} ∩ E ∈ C(E) . Causal dependency is given by [e1, · · · , ek] ≤G

[e1, · · · , ek, ek+1] and consistency by compatibility w.r.t. ≤G. Events [e1, · · · , ek]
of G have the same polarity as their last entry ek. Note that G is tree-like and
that all maximal configurations are infinite (because of delay moves).

The map proj : G → E takes an event [e1, · · · , ek] of G to ek if ek ∈ E, and
is undefined otherwise. The set V consists of all infinite, maximal configurations
for which proj x ∈W . We have built a Gale–Stewart game GS(E,W ) = (G, V ).
Note, as proj is Scott-continuous on configurations, if W is Borel then so is V .
The construction respects the duality on games: GS((E,W )⊥) = (GS(E,W ))∗.

Lemma 8. Suppose σ is a winning strategy for GS(E,W ). Then proj ◦ σ has
defined part σ0, a winning strategy for (E,W ).

Dually, a winning counter-strategy in GS(E,W ) yields a winning counter-
strategy in (E,W ). Hence by Martin’s Borel-determinacy theorem [6]:

Theorem 9. Tree games with Borel winning conditions are determined.
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4 Race-Freedom and Bounded-Concurrency

Not all games are determined, cf. Example 2. However, a determinacy theorem
holds for well-founded games (games where all configurations are finite) which
satisfy a property called race-freedom (from [3]): in a game A, for x ∈ C(A),

x
a

−−⊂ & x
a′
−−⊂ & pol(a) = pol (a′) =⇒ x ∪ {a, a′} ∈ C(A) . (Race− free)

Note that the game in Example 2 is not race-free, but well-founded; tree games
are race-free, but not necessarily well-founded. It may be easy to believe that
a nondeterministic winning strategy always has a winning deterministic sub-
strategy. This is not so and determinacy does not hold even for well-founded race-
free games if we restrict to deterministic strategies, cf. [3]. Other observations
made in [3]: being race-free is necessary for determinacy, in the sense that without
it there are winning conditions for which a well-founded game is not determined;
race-freedom is not sufficient to ensure determinacy when infinite behaviour is
allowed, i.e. when A is not well-founded, as is illustrated in the following example.

Example 10. Let A be the event structure with polarity consisting of one positive
event ⊕ which is concurrent with an infinite chain of alternating negative and
positive events, i.e. for each i we have both ⊕ co ⊕i and ⊕ co ]i, i ∈ N,

A = ⊕ ]1
� ���⊕1

� ���]2
� ���⊕2

� ���· · ·

and Borel winning conditions (for Player) given by

W = {∅, {]1,⊕1}, ..., {]1,⊕1, ...,]i,⊕i}, ..., A}.

So, Player wins if (i) no event is played, or (ii) the event ⊕ is not played and the
play is finite and finishes in some ⊕i, or (iii) all of the events in A are played.
Otherwise, Opponent wins.

Player does not have a winning strategy because Opponent has an infinite
family of spoiler strategies, not all be dominated by a single strategy of Player.
The inclusion maps τ∞ : T∞ → A⊥ and τi : Ti → A⊥, i ∈ N, are strategies for
Opponent where T⊥∞ =def A and T⊥i =def A \ {e′ ∈ A | ]i ≤ e′}, for i ∈ N.

Any strategy for Player that plays ⊕ is dominated by some strategy τi for
Opponent; likewise, any strategy for Player that does not play ⊕ and plays
only finitely many positive events ⊕i is also dominated by some strategy τi for
Opponent. Moreover, a strategy for Player that does not play ⊕ and plays all
of the events ⊕i in A is dominated by τ∞. So, Player does not have a winning
strategy in this game. Similarly, Opponent does not have a winning strategy
in A because Player has two strategies that cannot be both dominated by any
strategy for Opponent. Let σ⊕ : S⊕ → A and σ⊕ : S⊕ → A be strategies for
Player such that S⊕ =def A \ {⊕} and S⊕ =def A.

On the one hand, any strategy for Opponent that plays only finitely many
(possibly zero) negative events ]i is dominated by σ⊕; on the other, any strategy
for Opponent that plays all of the negative events ]i in A is dominated by σ⊕.
Thus neither player has a winning strategy in this game! �
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In the above example, to win Player should only make the move ⊕ when Oppo-
nent has played a specified infinite number of moves. We can banish such diffi-
culties by insisting that in a game A no event is concurrent with infinitely many
events of the opposite polarity. This property is called bounded-concurrency:

∀y ∈ C∞(A). ∀a ∈ y. {a′ ∈ y | a co a′ & pol(a) = pol(a′)} is finite.
(Bounded− concurrent)

Bounded concurrency is in fact a necessary structural condition for determinacy
with respect to Borel winning conditions.

Notation. For configurations y, y′ of A, we shall write max+(y
′, y) iff y′ is ⊕-

maximal in y, i.e. y′
e

−−⊂ & pol(e) = + =⇒ e ∈ y; similarly, max+(y
′, y) iff y′

is not ⊕-maximal in y. We use max− analogously when pol(e) = −. �
We show that if a countable race-free A is not bounded-concurrent, then there
is Borel W so that the game (A,W ) is not determined. Bounded-concurrency is
thus shown necessary: Since A is not bounded-concurrent, there is y ∈C∞(A) and
e ∈ y such that e is concurrent with infinitely many events of opposite polarity
in y. W.l.o.g. assume that pol(e) = +, that ye =def y \ {e} is a configuration and
that y = [e] ∪ [{a ∈ y | polA(a) = −}]. The following rules determine whether
y′ ∈ C∞(A) is in W or L:

1. y′ ⊇ y =⇒ y′ ∈ W ;
2. y′ ⊂ y & e ∈ y′ =⇒ y′ ∈ L;
3. y′ ⊂ y & e ∈ y′ & max+(y

′, ye) & max−(y
′, ye) =⇒ y′ ∈ W ;

4. y′ ⊂ y & e ∈ y′ & max+(y
′, ye) or max−(y

′, ye) =⇒ y′ ∈ L;
5. y′ � y & (y′ ∩ y) ⊂− y′ =⇒ y′ ∈ W ;
6. y′ � y & (y′ ∩ y) ⊂+ y′ =⇒ y′ ∈ L;
7. otherwise assign y′ (arbitrarily) to W .

No y′ is assigned as winning for both Player and Opponent: the implications’
antecedents are exhaustive and pairwise mutually exclusive.1 Informally, rules 3
and 4 ensure that to win both players’ strategies must progress towards y; rules
5 and 6 that to win no player can deviate from y; rules 1 and 2 that for Player
to win they should make move e iff Opponent plays all their moves in y.

Lemma 11. For A and W as above, W is a Borel subset of C∞(A) and the
game (A,W ) is not determined.

Proof. (Sketch) Countability of A ensures that W defined using the scheme
above is Borel. We first show: (i) if σ : S → A is a winning strategy for Player
then y is σ-reachable, i.e., there is x ∈ C∞(S) such that σx = y—equivalently,
there is τ such that y ⊆+ y′ for some y′ ∈ 〈σ, τ〉. And, (ii) if τ is a winning
strategy for Opponent then y is τ -reachable.

Define the (deterministic) strategies τ∞ : T∞ → A⊥ for Opponent and σ⊕ :
S⊕ → A for Player as the following inclusion maps:

1 The set W in Example 10 is an instance of this scheme—use rules 1 and 3.
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τ∞ : A⊥ 
 ({a ∈ A | a ∈ y or polA(a) = +}) ↪→ A⊥,
σ⊕ : A 
 ({a ∈ A | a ∈ ye or polA(a) = −}) ↪→ A.

For (i) suppose σ : S → A is a winning strategy for Player. Let y′ ∈ 〈σ, τ∞〉.
Thus y′ ∈ W . Since Neg[(τ∞T∞)⊥] ⊆ y then (y′ ∩ y) ⊂− y′ does not hold
(to discard rule 5); and, because {−}⊂polA(y′ \ y) one can discard rule 7 too.
Moreover, since max−(y

′, ye) holds then max+(y
′, ye) & max−(y

′, ye) does not
hold (to discard 3). Then, necessarily y′ ⊇ y (by rule 1). However, because of
the definition of τ∞ this implies y′ ⊇+ y and that y is σ-reachable.

For (ii) suppose τ : T → A⊥ is a winning strategy for Opponent. It is sufficient
to show that ye is τ -reachable as then y will also be τ -reachable by receptivity.
Let y′ ∈ 〈σ⊕, τ〉. Thus y′ ∈ L. As Pos[σ⊕S⊕] ⊆ ye then (y′ ∩ y) ⊂+ y′ does not
hold (to discard rule 6). Since there is no se ∈ S⊕ such that σ⊕(se) = e then
the antecedent of rule 2, i.e., y′ ⊂ y & e ∈ y′, does not hold (to discard rule 2).
And since max+(y

′, ye) holds for all y
′ ∈ 〈σ⊕, τ〉 then, because y′ ∈ L, we have

that max−(y
′, ye) holds too (by rule 4). Hence, ye is τ -reachable.

To conclude we show there is no winning strategy for either player. If σ is a
winning strategy for Player then by (i) there is x ∈ C∞(S) such that σx = y;
in particular there is se ∈ x such that σ(se) = e. Define the inclusion map
τfin : A⊥ 
 ({a ∈ A⊥ | a ∈ σ[se]S or polA(a) = +} ↪→ A⊥ as a spoiler strategy.
Then τfin is a strategy for Opponent for which there is y′ ∈ 〈σ, τfin〉 with e ∈ y′

and where y′ only contains finitely many −ve events. Either y′ ⊂ y whence
y′ ∈ L by (2), or y′ ⊂ y whereupon (y′ ∩ y) ⊂+ y′ so y′ ∈ L by (6). Hence as τfin
is a strategy for Opponent not dominated by σ the latter cannot be winning.

If τ is a winning strategy for Opponent then y is τ -reachable. Define a spoiler
strategy as the inclusion map σ⊕ : A 
 ({a ∈ A | a ∈ y or polA(a) = −} ↪→ A.
Then σ⊕ is a strategy for which there is y′ ∈ 〈σ⊕, τ〉 with y′ ⊇ y. By (1), y′ ∈ W ,
so σ⊕ is not dominated by τ , which then cannot be a winning strategy either. ��

5 From Concurrent to Tree Games

We now construct a tree game TG(A,W ) from a concurrent game (A,W ). We
can think of the events of TG(A,W ) as corresponding to (non-empty) rounds
of −ve (negative) or +ve (positive) events in the original concurrent game
(A,W ). When (A,W ) is race-free and bounded-concurrent, a winning strategy
for TG(A,W ) will induce a winning strategy for (A,W ). In this way we reduce
determinacy of concurrent games to determinacy of tree games.

5.1 The Tree Game of a Concurrent Game

Let (A,W ) be a concurrent game; from the game (A,W ) we construct a tree
game TG(A,W ) = (TA,TW ) . The construction of TA depends on whether
∅ ∈ W . When ∅ ∈W , define an alternating sequence of (A,W ) to be a sequence

∅ ⊂− x1 ⊂+ x2 ⊂− · · · ⊂+ x2i ⊂− x2i+1 ⊂+ x2i+2 ⊂− · · ·
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of configurations in C∞(A)—the sequence need not be maximal. Define the
−ve events of TG(A,W ) to be [∅, x1, x2, . . . , x2k−2, x2k−1] , i.e. finite alternating
sequences of the form ∅ ⊂− x1 ⊂+ x2 ⊂− · · · ⊂+ x2k−2 ⊂− x2k−1 , and let the
+ve events to be [∅, x1, x2, . . . , x2k−1, x2k] , i.e. finite alternating sequences of
the form ∅ ⊂− x1 ⊂+ x2 ⊂− · · · ⊂− x2k−1 ⊂+ x2k , where k ≥ 1. The causal
dependency relation on TA is given by the relation of initial sub-sequence, with
a finite subset of events being consistent if and only if the events are all initial
sub-sequences of a common alternating sequence.

It is easy to see that a configuration of TA corresponds to an alternating
sequence, the −ve events of TA matching arcs x2k−2 ⊂− x2k−1 and the +ve
events arcs x2k−1 ⊂+ x2k. As such, we say a configuration y ∈ C∞(TA) is
winning, and in TW , if and only if y corresponds to an alternating sequence of
the form ∅ · · · ⊂+ xi ⊂− xi+1 ⊂+ · · · for which

⋃
i xi ∈W .

When ∅ ∈ L, we define an alternating sequence of (A,W ) as a sequence

∅ ⊂+ x1 ⊂− x2 ⊂+ · · · ⊂− x2i ⊂+ x2i+1 ⊂− x2i+2 ⊂+ · · ·

of configurations in C∞(A). In this case, the −ve events of TG(A,W ) are finite
alternating sequences ending in x2k, while the +ve events end in x2k−1, for k ≥ 1.
The remaining parts of the definition proceed analogously.

We have constructed a tree game TG(A,W ) from (A,W ). The construction
respects duality on games: TG((A,W )⊥) = (TG(A,W ))⊥ .

Proposition 12. Suppose (A,W ) is a bounded-concurrent game. Every maxi-
mal alternating sequence has one of two forms,

(i) finite:
∅ · · · ⊂+ xi ⊂− xi+1 ⊂+ · · ·xk ,

where xi is finite for all 0 < i < k (where possibly xk is infinite), or
(ii) infinite:

∅ · · · ⊂+ xi ⊂− xi+1 ⊂+ · · · ,
where each xi is finite.

Example 13. Let (A,W ) be the concurrent game with A as in Example 1 and
W = {∅, {⊕,]}}. Player has an obvious winning strategy: await Opponent’s
move and then make their move. Because ∅ ∈W , its tree game is

e1 = [∅, {]}] � ���e2 = [∅, {]}, {],⊕}]

In the tree game the empty and maximal branches are winning. Its Gale–Stewart
game has events which correspond to the non-empty subsequences of

(δ−δ+)∗e1(δ
+δ−)∗e2(δ

−δ+)∗

and branches which comprise consecutive sequences of such. An infinite branch
is winning if it only has delay events or contains e1 and e2. Player has a winning
strategy: delay while Opponent delays and play e2 when Opponent plays e1. �
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5.2 Concurrent Strategies from Tree-Strategies

Now assume that the game (A,W ) is race-free and bounded-concurrent. Suppose
that str : T → TA is a (winning) strategy in the tree game TG(A,W ). Note that
T is necessarily tree-like. We will show how to construct σ0 : S → A, a (winning)
strategy in the original concurrent game (A,W ). We construct S indirectly from
Q, a prime-algebraic domain [8,11], built as follows. For technical reasons, when
defining Q it is convenient to assume that A∩ (A×T ) = ∅ . Via str a sub-branch
*t = (t1, · · · , ti, · · · ) of T determines a tagged alternating sequence

∅ · · ·
ti−1

⊂− xi−1

ti

⊂+ xi

ti+1

⊂− · · ·

where str(ti) = [∅, . . . , xi−1, xi]. (the arc ti is associated with a round extending
xi−1 to xi in the original game.) Define q(*t) to be the partial order with events⋃
{(xi\xi−1) | ti is a −ve arc of *t} ∪

⋃
{(xi\xi−1)×{ti} | ti is a +ve arc of *t}

—so a copy of the events
⋃

i xi but with +ve events tagged by the +ve arc of
T at which they occur—with order a copy of that

⋃
i xi inherits from A with

additional causal dependencies from (with x−i−1 the set of −ve events in xi−1)

x−i−1 × ((xi \ xi−1)× {ti})

—making the +ve events occur after the −ve events which precede them in the
alternating sequence.

Define the partial order Q as follows. Its elements are posets q, not necessarily
finite, where for some sub-branch (t1, t2, · · · , ti, · · · ) of T there is a rigid inclusion
q ↪→ q(t1, t2, · · · , ti, · · · ) , i.e. if q(*t) ∈ Q and q ↪→ q(*t) is a rigid inclusion
(regarded as a map of event structures) then q ∈ Q. The order on Q is that of
rigid inclusion. Define the function σ : Q → C∞(A) by taking

σq = {a ∈ A | a is −ve & a ∈ q} ∪ {a ∈ A | ∃t ∈ T. a is +ve & (a, t) ∈ q}

for q ∈ Q. We check σq ∈ C∞(A). Clearly, we have that σq(*t) =
⋃

i∈I xi where

∅ · · ·
ti−1

⊂− xi−1

ti

⊂+ xi
ti+1

⊂− · · · is the tagged alternating sequence determined
by *t =def (t1, · · · , ti, · · · ). Any q for which there is a rigid inclusion q ↪→ q(*t),
i.e. which preserves causal dependency, is sent to a sub-configuration of

⋃
i xi.

Proposition 14. Let str : T → TA be a strategy in the tree game TG(A,W ) and
let (t1, · · · , ti, · · · ) be a sub-branch of T , so corresponding to some configuration
{t1, · · · , ti, · · ·} ∈ C∞(T ). Then,

str{t1, · · · , ti, · · ·} ∈ TW ⇐⇒ σq(t1, · · · , ti, · · · ) ∈ W .

The following proposition justifies writing ⊆ for the order of Q.

Proposition 15. For all q, q′ ∈ Q, whenever there is an inclusion of the events
of q in the events of q′ there is a rigid inclusion q ↪→ q′.
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The next lemma is crucial and depends critically on (A,W ) being race-free and
bounded-concurrent.

Lemma 16. The order (Q,⊆) is a prime algebraic domain in which the primes
are precisely those (necessarily finite) partial orders in Q with a top element.

Proof. (Sketch) Any compatible finite subset X of Q has a least upper bound:
if all the members of X include rigidly in a common q then taking the union
of their images in q, with order inherited from q, provides their least upper
bound. Provided Q has least upper bounds of directed subsets it will then be
consistently complete with the additional property that every q ∈ Q is the least
upper bound of the primes below it—this will make Q a prime algebraic domain.
It then remains to show that Q has least upper bounds of directed sets.

Let S be a directed subset of Q. The +ve events of orders q ∈ S are tagged
by +ve arcs of T . As S is directed the +ve tags which appear throughout all
q ∈ S must determine a common sub-branch of T , viz., *t =def (t1, t2, · · · , ti, · · · ) .
Every +ve arc of the sub-branch appears in some q ∈ S and all −ve arcs are
present only by virtue of preceding a +ve arc. Forming the partial order

⋃
S

comprising the union of the events of all q ∈ S with order the restriction of that
on q(*t) we obtain a rigid inclusion

⋃
S ↪→ q(*t) and so a least upper bound of S

in Q—from which prime algebraicity follows. ��

Prime algebraic domains determine event structures in a simple way [8,11]: define
S to be the event structure with polarity, with events the primes of Q; causal
dependency the restriction of the order on Q; with a finite subset of events
consistent if they include rigidly in a common element of Q. The polarity of
events of S is the polarity in A of its top element (the event is a prime in Q).

Define σ0 : S → A to be the function which takes a prime with top element
an untagged event a ∈ A to a and top element a tagged event (a, t) to a.

Lemma 17. The function which takes q ∈ Q to the set of primes below q in Q
gives an order isomorphism Q ∼= C∞(S). The function σ0 : S → A is a strategy
for which the following commutes:

Q

σ

��

∼= C∞(S)

σ0�����
��
��
��

C∞(A)

We obtain a winning strategy in a concurrent game from a winning strategy in
its tree game:

Theorem 18. Suppose that str : T → TA is a winning strategy in the tree game
TG(A,W ). Then σ0 : S → A is a winning strategy in (A,W ).

Proof. (Sketch) For σ0 to be a winning strategy we require that σ0x ∈ W for
every⊕-maximal x ∈C∞(S). Via the order isomorphismQ ∼=C∞(S) (Lemma 17)
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we can carry out the proof inQ rather than C∞(S). For any q which is⊕-maximal
in Q (i.e. whenever q ⊆+ q′ in Q then q = q′) we require that σq ∈W .

Letting q be ⊕-maximal in Q, because there is a rigid inclusion q ↪→ q(*t)
for some sub-branch *t = (t1, · · · , ti, · · · ) of T , we can show that q = q(*u) for
some ⊕-maximal branch *u of T . This implies that its image str{*u} is in TW ,
as str is a winning strategy in TG(A,W ). By Proposition 14, we have that
str{*u} ∈ TW ⇐⇒ σq(*u) ∈ W . Hence, σq ∈W , as required. ��
Corollary 19. Let (A,W ) be a race-free, bounded-concurrent game. If the tree
game TG(A,W ) has a winning strategy, then (A,W ) has a winning strategy.

As TG respects duality, a winning counter-strategy for TG(A,W ) determines
a winning counter-strategy for (A,W ). Corollary 19 and Theorem 9 guarantee
winning strategies in (A,W ) from winning strategies in GS(TG(A,W )). We can
now establish a concurrent analogue of Martin’s determinacy theorem [6].

Theorem 20 (Concurrent Borel determinacy). Any race-free, bounded-
concurrent game (A,W ), in which W is a Borel subset of C∞(A), is determined.

We illustrate the construction of Theorem 18, how a winning strategy for a
concurrent game is built from that of its tree game.

Example 21. Let (A,W ) be a concurrent game where A is ]Lco⊕Cco]R and the
set {∅, {]L,⊕C}, {]R,⊕C}, {]L,]R,⊕C}} is W , that is, Player’s winning con-
ditions in A. Player has a winning strategy. The maximal alternating sequences
upon which the tree game TG(A,W ) is constructed are:

1. t1max = ∅ ⊂− {]L} ⊂+ {]L,⊕C} ⊂− {]L,⊕C ,]R},
2. t2max = ∅ ⊂− {]R} ⊂+ {]R,⊕C} ⊂− {]R,⊕C ,]L},
3. t3max = ∅ ⊂− {]L,]R} ⊂+ {]L,]R,⊕C}.
Its winning configurations correspond to those sub-branches terminating in W .
It has a winning strategy str is given by the identity function on TG(A,W ). We
construct a winning strategy via a prime algebraic domain Q which has elements
partial orders built out of tagged alternating sequences determined by str . In
this example str is deterministic so the tagging plays no essential role and we can
build the partial orders in Q from the alternating sequences above. The three
maximal alternating sequences above are associated with the following partial
orders on the three events {]L,⊕C ,]R}: the first with just ]L 
 ⊕C ; the
second with ]R 
 ⊕C ; and the last with both ]L 
 ⊕C and ]R 
 ⊕C . There
are other partial orders in Q associated with sub-branches. The event structure
S of the winning non-deterministic concurrent strategy σ0 : S → A is built from
the complete primes of Q, and takes the form shown:

⊕

��

������������������
�� �� �	


� � ��
�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��  ! "#

⊕

��

⊕�� �� �� �� �� �� �� �� ��

��

]

�	�������
	
�������


�

]
��

�	�������
	
�������

]L ⊕C ]R

Wiggly lines denote conflict and the dotted arrows the map σ0. �
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6 Concluding Remarks

Event structures have a central status within models for concurrency, both ‘in-
terleaving’ and ‘partial-order’ based, and are formally related to other models
by adjunctions. One can expect this central status to be inherited within games.
Indeed, working with such a detailed model exposes new structure and new
subtleties, which readily appear when studying determinacy issues.

For instance, in traditional ‘interleaving’ games on graphs or trees, both race-
freedom and bounded-concurrency hold implicitly. At each vertex every player
makes a simple choice independently of the others, implying race-freedom. Strate-
gies are generally defined as functions from partial plays to partial plays via
rounds which ensures bounded-concurrency. Round-free asynchrony, not studied
before, makes the determinacy problem considerably harder.

Our determinacy result is, in a sense, the strongest one can hope to obtain
(with respect to the descriptive complexity of the winning sets) for concurrent
games on event structures—and hence on partial orders—since any generalisa-
tion of the winning sets would require an extension of the determinacy theorem
by Martin [6]—well known to be at the limits of traditional set theory.
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Abstract. One-clock priced timed games is a class of two-player, zero-
sum, continuous-time games that was defined and thoroughly studied
in previous works. We show that one-clock priced timed games can be
solved in time m12nnO(1), where n is the number of states and m is
the number of actions. The best previously known time bound for solv-

ing one-clock priced timed games was 2O(n2+m), due to Rutkowski. For
our improvement, we introduce and study a new algorithm for solving
one-clock priced timed games, based on the sweep-line technique from
computational geometry and the strategy iteration paradigm from the al-
gorithmic theory of Markov decision processes. As a corollary, we also im-
prove the analysis of previous algorithms due to Bouyer, Cassez, Fleury,
and Larsen; and Alur, Bernadsky, and Madhusudan.

1 Introduction

Priced timed automata and priced timed games are classes of one-player and
two-player zero-sum real-time games played on finite graphs that were defined
and thoroughly studied in previous works [2,4,3,16,1,6,8,5,7,11,14]. Synthesizing
(near-)optimal strategies for priced timed games has many practical applications
in embedded systems design; we refer to the cited papers for references.

Informal Description of Priced Timed Games. Informally (for formal def-
initions, see the sections below), a priced timed game is played by two players
on a finite directed labeled multi-graph. The vertices of the graph are called
states, with some states belonging to Player 1 (or the Minimizer) and the other
states belonging to Player 2 (or the Maximizer). We shall denote by n the total
number of states of the game under consideration and m the total number of
arcs (actions). Player 1 is trying to play the game to termination as cheaply as
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possible, while Player 2 is trying to make Player 1 pay as dearly as possible for
playing. At any point in time, some particular state is the current state. The
player controlling the state decides when to leave the current state and which
arc to follow when doing so. For each arc, there is an associated cost. Each state
has an associated rate of expense per time unit associated with waiting in the
state. The above setup is further refined by the introduction of a finite number of
clocks that can informally be thought of as “stop watches”. In particular, some
arcs may have associated a reset event for a clock. If the corresponding transition
is taken, that clock is reset to 0. Also, an arc may have an associated clock and
time interval. When the arm of the clock is in the interval, the corresponding
transition can be taken; otherwise it can not. With three or more clocks, the
problem of solving priced timed games is known not to be computable [5]. In
this paper, we focus on the computable case of solving one-clock priced timed
games. We shall refer to these as 1PTGs. We shall furthermore single out an
important, particularly clean, special case of 1PTGs. We shall refer to this class
as simple priced timed games, SPTGs. In an SPTG, time runs from 0 to 1, the
single clock is never reset, and there are no restrictions on when transitions may
be taken. A slightly more general class of games was called “[0,1]-PTGs without
resets” by Bouyer et al. [7].

Values and Strategies.As is the case in general for two-player zero-sum games,
informally, a priced timed game is said to have a value v if Player 1 and Player 2
are both able to guarantee (or approximate arbitrarily well) a total cost of v when
the game is played. The guarantees are obtained when players commit to (near-
)optimal strategies when playing the game. Player 1, who is trying to minimize
cost, may (approximately) guarantee the value from above, while Player 2, who
is trying to maximize cost, may (approximately) guarantee the value from below.
Clearly, in general, the value of a one-clock priced timed game will be a function
v(q, t) of the initial state q and the initial setting t of the single clock. Bouyer
et al. [7] showed that the value v(q, t) exists1 and that for any state q, the value
function t → v(q, t) is a piecewise linear function of t. By solving a game, we
mean computing an explicit description of all these functions (i.e., lists of their
line segments). From such an object, near-optimal strategies can be synthesized.

Example. Figure 1 shows an SPTG with n = 5 states. Circles are controlled by
Player 1 and squares are controlled by Player 2. States and actions have been
annotated with rates and costs. If no cost is given for an action it has cost zero.
The figure also includes graphs of the value functions. Actions are shown in black
and gray, and an optimal strategy profile is shown along the x-axis of the value
functions by using these colors – more precisely, it is the optimal strategy found
by our algorithm. Waiting is shown as white. For instance, at state 2 at time 1

3 ,
Player 2 waits until time 2

3 and then changes the current state to state 4.

1 Players in general cannot guarantee the value exactly, but only approximate it ar-
bitrarily well – one of the particular appealing aspects of SPTGs is that they do
have exactly optimal strategies! This is in contrast to both the general case and
[0,1]-PTGs without resets.
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Fig. 1. Example of an SPTG, showing value functions and an optimal strategy profile

1.1 Contributions

The contributions of this paper are the following.

1. A polynomial time Turing-reduction from the problem of solving general
1PTGs to the problem of solving SPTGs. The best previous result2 along
these lines was a Turing-reduction from the general case to the case of “[0,1]-
PTGs without resets” by Bouyer et al. [7]. Our reduction is a polynomial time
reduction reducing solving a general 1PTG to solving at most (n+1)(2m+1)
SPTGs, while the previous reduction is an exponential time reduction.

2. A novel algorithm for solving SPTGs, based on very different techniques
than previously used to solve 1PTGs. In particular, our algorithm is based
on applications of a technique from computational geometry: the sweep-
line technique of Shamos and Hoey [15], applied to the linear arrangement
resulting when the graphs of all value functions are superimposed in a cer-
tain way. Also, an extension of Dijkstra’s algorithm due to Khachiyan et
al. [12] is a component of the algorithm. We believe that an implemen-
tation of this algorithm and the reduction could provide an attractive al-
ternative to the current state-of-the-art tools for solving 1PTGs or various
special cases (e.g., such as those of UPPAAL, http://uppaal.orgor HyTech
http://embedded.eecs.berkeley.edu/ research/hytech/), which all
seem to be based on a value-iteration based algorithm independently devised
by Bouyer, Cassez, Fleury, and Larsen [6]; and Alur, Bernadsky, and Mad-
husudan [1]. We shall refer to that algorithm as the BCFL-ABM
algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case
analysis of the BCFL-ABM algorithm. Interestingly, the analysis of the

2 Rutkowski [14] also made a polynomial time Turing-reduction, but his was for the
decision problem: Given a state k in an 1PTG and a number v in unary, is the value
of k at time 0 greater than v? Ours is for the similar decision problem, where v is
given in binary.
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algorithms is quite indirect: We analyze a different algorithm for a subprob-
lem (priced games, see section 2), namely the strategy iteration algorithm,
also used to solve Markov decision processes and various other classes of
two-player zero-sum games played on graphs, and relate the analysis of this
algorithm to our algorithm. To summarize the result of the analysis, it is
convenient to introduce the parameter L = L(G) of an SPTG to be the total
number of distinct time coordinates of left endpoints of the linear segments
of all value functions of G. Note that the parameter L is very natural, as L is
a lower bound on the size of the explicit description of these value functions,
i.e., the output of the algorithms under consideration. We show:
(a) For an SPTG G, we have that L(G) ≤ min{12n,

∏
k∈S(|Ak|+1)}, where

S is the set of states and Ak the set of actions in state k. The best
previous bound on L(G) was 2O(n2), due to Rutkowski [14]. It seems
to be a “folklore theorem” that L does not become very big for games
arising in practice. We conjecture that for all SPTGs G, L(G) ≤ p(n)
for some polynomial p.

(b) The worst case time complexity of our new algorithm isO((m+n logn)L).
In particular, the algorithm combined with the reduction solves general
1PTGs in time m12nnO(1). The best previous worst case bound for any
algorithm solving 1PTGs was 2O(n2+m), due to Rutkowski [14], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is
min{12n,

∏
k∈S(|Ak|+ 1)}m · nO(1) for general 1PTGs, significantly im-

proving an analysis of Rutkowsi. (An ”iteration” is a natural unit of time,
specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

The above bounds hold if we assume a unit-cost Real RAM model of compu-
tation, which is a natural model of computation for the algorithms considered
(that previous analyses also seem to have implicitly assumed). The algorithms
can also be analyzed in Boolean models of computation (such as the log cost inte-
ger RAM), as a rational valued input yields a rational valued output. Bounding
the bit length of the numbers computed by straightforward inductive techniques,
we find that this no more than squares the above worst case complexity bounds.
The somewhat tedious analysis establishing this is not included in either version
of the paper.

1.2 Organization of Paper

Our algorithm is most naturally presented in three stages, adding more compli-
cations to the model at each stage. First, in Section 2, we show how the strategy
iteration paradigm can be used to solve priced games, where the temporal as-
pects of the games are not present. In Section 3, we show how the algorithm
extends to simple priced timed games. In Section 4, we show how solving the
general case of one-clock priced-timed games can be reduced to the case of simple
priced timed games in polynomial time.
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In terms of the list of contributions above, contribution 1) is Lemma 9. The
algorithm of contribution 2) is SolveSPTG of Figure 3. Contribution 3a) is The-
orem 4, contribution 3b) is Theorem 5 and contribution 3c) is Theorem 8.

2 Priced Games

In this section, we introduce priced games. A priced game G is given by a finite
set of states S = [n] = {1, . . . , n}, a finite set of actions A = [m] = {1, . . . ,m}.
The set S is partitioned into S1 and S2, with Si being the set of states belonging
to Player i. Player 1 is also referred to as the minimizer and Player 2 is referred
to as the maximizer. The set A is partitioned into (Ak)k∈S , with Ak being the set
of actions available in state k. Furthermore, define Ai =

⋃
k∈Si

Ak. Each action
j ∈ A has an associated non-negative cost cj ∈ R≥0 ∪ {∞} and an associated
destination d(j) ∈ S ∪{⊥}, where ⊥ is a special terminal state. Note that G can
be interpreted as a directed weighted graph.

Positional Strategies and Payoffs. A positional strategy for Player i is a map
σi of Si to A, with σi(k) ∈ Ak for each k ∈ Si. A pair of strategies (or strategy
profile) σ = (σ1, σ2) defines a maximal path Pk0,σ = (k0, k1, . . . ), from each
k0 ∈ S∪{⊥}, possibly ending at ⊥, such that d(σ(ki)) = ki+1 for all i ≥ 0. Note
that σ can be naturally interpreted as a map from S to A. We let �(k, σ) be the
length of Pk,σ . The payoff u(k, σ) ∈ R ∪ {∞} of a state k for σ is defined to be
the sum of the costs of actions on Pk0,σ, or ∞ if Pk0,σ is of infinite length.

Values and Optimal Strategies. The lower value v(k) of a state k is defined
by v(k) = maxσ2 minσ1 u(k, σ1, σ2). A strategy σ2 is called optimal, if for all
states k, we have σ2 ∈ argmaxσ2

minσ1 u(k, σ1, σ2). Similarly, the upper value
v(k) of a state k is defined by v(k) = minσ1 maxσ2 u(k, σ1, σ2) and a strategy
σ1 is called optimal if for all k, σ1 ∈ argminσ1

maxσ2 u(k, σ1, σ2). Khachiyan et
al. [12] observed that v(k) = v(k), i.e., that priced games have values v(k) :=
v(k) = v(k). They also showed how to find these values and optimal strategies
efficiently using a variant of Dijkstra’s algorithm. The strategies found were
postional, hence implying that optimal positional strategies always exists.

Strategy Iteration Algorithm. We shall present a different algorithm for
solving priced games, following the general strategy iteration pattern [10]. This
algorithm will be extended to simple priced timed games in the next section. Let
σ be a strategy profile. For each state k ∈ S, we define the valuation ν(k, σ) =
(u(k, σ), �(k, σ)). I.e., the valuation of a state k for strategy profile σ is the payoff
for k combined with the length of the path Pk,σ . We say that an action j ∈ Ak

from state k is an improving switch for Player 1 if (cj+u(d(j), σ), 1+�(d(j), σ)) <
ν(k, σ) where we order pairs lexicographically, with the first component being
most significant. If the inequality is strict for the first component we say that
j is a strongly improving switch. Improving switches are defined similarly for
Player 2. The inclusion of the length in the definition of an improving switch
is needed to ensure that the algorithm can find cycles of cost 0. We define σ[j]
to be the strategy profile obtained from σ by exchanging the action j with the
corresponding action in σ.



536 T. Dueholm Hansen, R. Ibsen-Jensen, and P.B. Miltersen

The StrategyIt algorithm (see Figure 2) computes an optimal strategy pro-
file σ and u(σ), the vector of payoffs for σ, by repeatedly performing improving
switches. The algorithm also works when multiple improving switches are per-
formed in parallel. We refer to the full version of the paper [9] for proofs of the
following lemma and theorem.

Lemma 1. Let σ = (σ1, σ2) be a strategy profile such that for both players i
there are no improving switches in Ai. Then σ1 and σ2 are optimal.

Theorem 1. The StrategyIt algorithm correctly computes an optimal strategy
profile σ∗ such that neither player has an improving switch w.r.t. σ∗.

Function StrategyIt(G, σ)

while ∃ improving switch j ∈ A1 for Player 1 w.r.t. σ do
σ ← σ[j];
while ∃ improving switch j ∈ A2 for Player 2 w.r.t. σ do

σ ← σ[j];

return (u(σ), σ);

Fig. 2. The StrategyIt algorithm for solving priced games

3 Simple Priced Timed Games

A simple priced timed game (SPTG) G = (S1, S2, (Ak)k∈S , (cj)j∈A, d, r) is given
by a priced game G′ = (S1, S2, (Ak)k∈S , (cj)j∈A, d), where S = S1 ∪ S2 and
A =

⋃
k∈S Ak, and for each state i ∈ S, an associated rate ri ∈ R≥0. We assume

that Ak = ∅ for all k ∈ S.

Playing an SPTG. A SPTG G is played as follows. A pebble is placed on some
starting state k0 and the clock is set to its starting time x0. The pebble is then
moved from state to state by the players. The current configuration of the game
is described by a state and a time, forming a pair (k, x) ∈ S × [0, 1].

Assume that after t steps the pebble is on state kt ∈ Si, controlled by Player
i, at time xt, corresponding to the configuration (kt, xt). Player i now chooses
the next action jt ∈ Akt . Furthermore, the player also chooses a delay δt ≥ 0
such that xt+1 = xt + δt ≤ 1. The pebble is moved to d(jt) = kt+1. The next

configuration is then (kt+1, xt+1). We write (kt, xt)
jt,δt−−−→ (kt+1, xt+1). The game

ends if kt+1 = ⊥.

Plays and Outcomes. A play of the game is a sequence of steps starting from

some configuration (k0, x0). Let ρ = (k0, x0)
j0,δ0−−−→ (k1, x1)

j1,δ1−−−→ . . .
jt−1,δt−1−−−−−−→

(kt, xt) be a finite play such that kt = ⊥. The outcome of the game, paid by

Player 1 to Player 2, is then given by cost(ρ) =
∑t−1

�=0(δ�rk�
+ cj�). I.e., for each

unit of time spent waiting at a state k Player 1 pays the rate rk to Player 2.



A Faster Algorithm for Solving One-Clock Priced Timed Games 537

Furthermore, every time an action j is used, Player 1 pays the cost cj to Player
2. If ρ is an infinite play the outcome is ∞, and we write cost(ρ) =∞.

Positional Strategies. A (positional) strategy for Player i is a map πi : Si ×
[0, 1]→ A∪{λ}, where λ is a special delay action. For every k ∈ Si and x ∈ [0, 1),
if πi(k, x) = λ then we require that there exists a δ > 0 such that for all 0 ≤ ε < δ,
πi(k, x+ε) = λ. Let δπi(k, x) = inf{x′−x | x ≤ x′ ≤ 1, πi(k, x

′) = λ} be the delay
before the pebble is moved when starting in state k at time x for some strategy
πi. More general types of strategies could be considered, but see Remark 1.

Playing According to a Strategy and Strategy Profiles. Player i is said
to play according to πi if, when the pebble is in state k ∈ Si at time x ∈ [0, 1],
he waits until time x′ = x + δπi(k, x) and then moves according to πi(k, x

′). A
strategy profile π = (π1, π2) is a pair of strategies, one for each player. Let Πi

be the set of strategies for Player i, and let Π be the set of all strategy profiles.
A strategy profile π is again interpreted as a map π : S × [0, 1] → A ∪ {λ}.
Furthermore, we use π(x) to refer to the decisions at a fixed time. I.e., π(x) :
S → A ∪ {λ} is the map defined by (π(x))(k) = π(k, x).

Value Functions and Optimal Strategies. Let ρπk,x be the play starting
from configuration (k, x) where the players play according to π. Define the value
function for a strategy profile π = (π1, π2) and state k as: vπ1,π2

k (x) = cost(ρπk,x).
For fixed strategies π1 and π2 for Player 1 and 2, define the best response value
functions for Player 2 and 1, respectively, for a state k as:

vπ1

k (x) = sup
π2∈Π2

vπ1,π2

k (x) vπ2

k (x) = inf
π1∈Π1

vπ1,π2

k (x)

Lower and upper value functions are defined analogously to the way they were
defined in Section 2. Bouyer et al. [7] showed that the lower and upper value
functions are the same. In fact, this was shown for the more general class of
one-clock priced timed games (1PTGs) studied in Section 4. Hence, we again
define the value function for every state k as:

vk(x) := sup
π2∈Π2

vπ2

k (x) = inf
π1∈Π1

vπ1

k (x)

Remark 1. Positional strategies are commonly defined more generally as maps
from states and times to delays and actions, i.e., τi : Si × [0, 1]→ [0, 1]×A. In
the full version [9], we show that our less general notion of strategies is sufficient
for optimal play. Sometimes strategies are defined even more generally such that
they can be history-dependent. Positional strategies are, however, still sufficient
for optimal play in this setting (see Bouyer et al. [7]), and to simplify our proofs
we restrict our attention to positional strategies.

Strategies Optimal from Some Time. A strategy πi ∈ Πi is optimal from
time x for Player i if for all k ∈ S and x′ ∈ [x, 1], we have vπi

k (x′) = vk(x
′).

Strategies are called optimal if they are optimal from time 0. Similarly, a strategy
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πi is a best response to another strategy π−i from time x if for all k ∈ S and
x′ ∈ [x, 1], we have v

πi,π−i

k (x′) = v
π−i

k (x′).

Nash Equilibrium from Some Time. A strategy profile (π1, π2) is called a
Nash equilibrium from time x if π1 is a best response to π2 from time x, and
π2 is a best response to π1 from time x. As in the case of priced games, any
equilibrium payoff of an SPTG is the value of the game. The exact statement is
shown in Lemma 2.

Lemma 2. If there exists a strategy profile (π1, π2) that is a Nash equilibrium
from time x, then vk(x

′) = vπ1,π2

k (x′) for all k ∈ S and x′ ∈ [x, 1].

The existence of optimal strategies and best replies is non-trivial. We are, how-
ever, later going to prove the following theorem, which, in particular, implies
that inf and sup can be replaced by min and max in the definitions of value
functions. The theorem was first established by Bouyer et al. [7] for general
1PTGs.

Theorem 2. For any SPTG there exists an optimal strategy profile. Also, the
value functions are continuous piecewise linear functions.

Our proof will be algorithmic. Specifically, the algorithm SolveSPTG computes
a value function of the desired kind. Furthermore, the proof of correctness of
SolveSPTG (the proof of Theorem 5) also yields the existence of exactly optimal
strategies.

We refer to the non-differentiable points of the value functions of G as event
points of G. The number of distinct event points of G is an important parameter
in the complexity of our algorithm for solving SPTGs. We denote by L(G) the
total number of event points, excluding x = 1.

3.1 Solving SPTGs

In order to solve an SPTG we make use of a technique similar to the sweep-line
technique from computational geometry of Shamos and Hoey [15]. Informally, we
construct the value functions by moving a sweep-line backwards from time 1 to
time 0, and at each time computing the current values based on the later values.
The approach is also similar to a technique known in game theory as backward
induction. The parameter of the induction, the time, is a continuous parameter,
however. The BCFL-ABM algorithm also applies backward induction, but there
the parameter of induction is the number of transitions taken, i.e., a discrete
parameter, leading to a value iteration algorithm.

Informal Description of the Algorithm. If π is a strategy profile that is
optimal from time x in an SPTG G, we use π to construct a new strategy profile
π′ that is optimal from time x′ < x. More precisely, for x′ sufficiently close to x,
we show that there exists a fixed optimal action (where “waiting” is viewed as
an action) for all states for both players for every point in time in the interval
[x′, x). The new strategy profile π′ is then obtained from π by using these actions.
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Starting from time x′, once the players wait in some state k, they wait at least
until time x because they use the same actions throughout the interval. This
allows us to model the situation with a priced game where every state k is given
an additional action λk corresponding to waiting for y = x − x′ units of time.
Thus, the value of a state in the priced game is the same as the value of the
corresponding state in G if the game starts at time x′ = x − y, and if the first
time a player waits he is forced to wait until time x. The formal development of
the algorithm follows. The proofs of lemmas in this section can be found in the
full version [9] of the paper.

The Game Gx,y. Let G be some SPTG. We denote the priced game described
above by Gx,y. Formally, Gx,y is identical to the priced game defining G, with
the exception that every state k is given an additional action λk leading to the
terminal state ⊥ with cost vk(x) + yrk. We refer to actions λk, for k ∈ S, as
waiting actions. We sometimes write u(k, σ,Gx,y) instead of u(k, σ) to clarify
which priced game Gx,y we consider.

Let x ∈ (0, 1] and y ≥ 0. Let σ be a strategy profile for Gx,y, and let k0 be a
state. Consider the (maximal) path Pk0,σ = (k0, k1, . . . ) that starts at k0 and uses
actions of σ. We let r(k0, σ) (or r(k, σ,G) when G is not clear from the context)
be the rate of the state from which a waiting action is used in Pk0,σ. If no waiting
action is used in Pk0,σ we let r(k0, σ) be zero. Note that r(k0, σ) does not depend
on y. In particular, we always have: u(k0, σ,G

x,y) = u(k0, σ,G
x,0) + yr(k0, σ).

We will often let y be the infinitesimal ε, in which case we simply denote
Gx,ε by Gx. Since ε is an infinitesimal, the payoffs of a strategy profile σ for Gx

have two components. We then (informally) have u(k0, σ,G
x) = u(k0, σ,G

x,0) +
εr(k0, σ). There are no infinitesimals in Gx,0, and, hence, the second component
of the payoff u(k0, σ,G

x) is exactly r(k0, σ). For every x ∈ (0, 1] we let σx =
(σx1 , σ

x
2 ) be a strategy profile for which neither player has an improving switch.

I.e., by Lemma 1 σx is an optimal strategy profile for Gx. The existence of σx

is guaranteed by the correctness of the StrategyIt algorithm.
Note that the only difference between Gx and Gx′

, for x = x′, is the costs
of the waiting actions λk. Hence, we may interpret a strategy profile σ for Gx

as a strategy profile for Gx′
. Slightly abusing notation, we will interpret actions

chosen by σ as also being actions π(x) for G, and the actions of π(x) as forming
a strategy profile for Gx.

Lemma 3. The strategy profile σx is optimal for Gx,0 and u(k, σx, Gx,0) =
vk(x).

Lemma 4. Let π be a strategy profile for G that is optimal from time x, and
let x′ < x. If π(x′′) = σx for all x′′ ∈ [x′, x), then vπk (x

′) = vk(x) + (x −
x′)r(k, σx, Gx) for all k ∈ S.

The Function NextEventPoint(Gx). For every action j ∈ A and time x ∈ (0, 1],
define the function:

fj,x(x
′′) := cj + u(d(j), σx, Gx,x−x′′

)

= cj + u(d(j), σx, Gx,0) + (x− x′′)r(d(j), σx, Gx) .
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I.e., fj,x(x
′′), for j ∈ Ak, is the payoff obtained in Gx,x−x′′

by starting at state
k, using action j, and then repeatedly using actions of σx. In particular, we have
u(k, σx, Gx,x−x′′

) = fσx(k),x(x
′′), and j ∈ Ak, for k ∈ S1, is a strongly improving

switch for Player 1 w.r.t. σx if and only if fj,x(x
′′) < fσx(k),x(x

′′). A similar
observation can be made for Player 2. Note that fj,x(x

′′) defines a line in the
plane.

We define NextEventPoint(Gx) to be equal to the first intersection before x
of two lines fσx(k),x(x

′′) and fj,x(x
′′), for k ∈ S and j ∈ Ak \σx. It is not difficult

to check that NextEventPoint(Gx) can be defined as:

max {0} ∪ {x′ ∈ [0, x) | ∃k ∈ S, j ∈ Ak :

fj,x(x
′) = fπ(k),x(x

′) ∧ fj,x(x) = fπ(k),x(x)}.

Lemma 5. Let x′ = NextEventPoint(Gx), then σx is optimal for Gx,y, for all
y ∈ (0, x−x′]. Furthermore, neither player has a strongly improving switch w.r.t.
σx for Gx,y.

We are now ready to state the main technical lemma used to prove the correctness
of our algorithm. The main idea of the proof is to show that the strategy profile
π′ defined in the lemma is a Nash equilibrium from time x′. It is shown that if
some player can improve over π′ after time x′ then he has a strongly improving
switch w.r.t. σx for Gx,y, for some y ∈ (0, x − x′], which contradicts Lemma 5.
Lemma 4 is used to prove that the optimal values have the desired form.

Lemma 6. Let x′ = NextEventPoint(Gx), and let π = (π1, π2) be a strategy
profile that is optimal from time x. Then the strategy profile π′ = (π′1, π

′
2), defined

by:

π′(k, x′′) =

{
σx(k) if x′′ ∈ [x′, x)

π(k, x′′) otherwise

is optimal from time x′, and vk(x
′′) = vk(x)+r(k, σx, Gx)(x−x′′), for x′′ ∈ [x′, x)

and k ∈ S.

The Algorithm. Lemma 6 allows us to compute optimal strategies by backward
induction once the values vk(1) at time 1 are known for all states k ∈ S. Finding
vk(1) and corresponding optimal strategies from time 1 is, however, not difficult.
Indeed, when x = 1 time does not increase further, and we simply solve the priced
game G′ that defines G. The resulting algorithm is shown in Figure 3. Note that
the choice of first using the ExtendedDijkstra algorithm of Khachiyan et al. [12]
and then the StrategyIt algorithm is to facilitate the analysis in Section 3.2.
In fact, any algorithm for solving priced games could be used. By observing that
SolveSPTG simply repeatedly applies Lemma 6 to construct optimal strategies
by backward induction we get the following theorem.

Theorem 3. If SolveSPTG terminates, it correctly computes the value function
and optimal strategies for both players.
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Note that SolveSPTG resembles the sweep-line algorithm of Shamos and
Hoey [15] for the line segment intersection problem. At every time x we have n
ordered sets of line segments with an intersection within one set at the next event
point x′ = NextEventPoint(Gx). When handling the event point, the order of
the line segments is updated, and we move on to the next event point.

Function SolveSPTG(G)

(v(1), (π1(1), π2(1)))← ExtendedDijkstra(G′);
x← 1;
while x > 0 do

(u(k, σx, Gx,0) + εr(k, σx, Gx), (σ1, σ2))← StrategyIt(Gx, (π1(x), π2(x)));
x′ ← NextEventPoint(Gx);
forall k ∈ S and x′′ ∈ [x′, x) do

vk(x
′′)← vk(x) + r(k, σx, Gx)(x− x′′);

π1(k, x
′′)← σ1(k);

π2(k, x
′′)← σ2(k);

x← x′;

return (v, (π1, π2));

Fig. 3. Algorithm for solving a simple priced timed game G = (G′, (rk)k∈S)

3.2 Bounding the Number of Event Points

Let G be an SPTG. Recall that the only difference between Gx and Gx′
, for

x = x′, are the costs of actions λk, for k ∈ S, if vk(x) = vk(x
′). The actions

available from each state are therefore the same, and a strategy profile σ for Gx

can, thus, also be interpreted as a strategy profile for Gx′
. To bound the number

of event points we assign a potential to each strategy profile σ, such that the
potential strictly decreases when one of the players performs a single improving
switch. Furthermore, the potential is defined independently of the values vk(x).
It then follows that the number of single improving switches performed by the
SolveSPTG algorithm is at most the total number of strategy profiles for Gx.
We further improve this bound to show that the number of event points is at
most exponential in the number of states. This improves the previous bound by
Rutkowski [14].

The Potential Matrix. Let n be the number of states of G, let N be the
number of distinct rates, including rate 0 for the terminal state ⊥. Assume that
the distinct rates are ordered such that r1 < r2 < · · · < rN . Recall that r(k, σ)
is the rate of the waiting state reached from k in σ. Let count(σ, i, �, r) = |{k ∈
Si | �(k, σ) = � ∧ r(k, σ) = r}| be the number of states controlled by Player i
at distance � from ⊥ in σ that reach a waiting state with rate r.
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For every strategy profile σ for the priced games Gx, for x ∈ (0, 1], de-
fine the potential P (σ) ∈ Nn×N as an integer matrix as follows: P (σ)�,r =
count(σ, 2, �, r)− count(σ, 1, �, r). I.e., rows correspond to lengths, columns cor-
respond to rates, and entries count the number of corresponding Player 2 con-
trolled states minus the number of corresponding Player 1 controlled states.

Intuitively, at time 1 the rates are unimportant and Player 2, the maximizer,
will prefer using actions of large cost. However, the closer we get to time 0 the
more important the rates become, and Player 2 may want to switch to actions of
lower cost that benefit more from higher rates. The trade-off between costs and
rates is monotone over time, and this will allows us to show that the potential
matrices change monotonically when going from time 1 to time 0. The situation
is the opposite for Player 1, which is the reason that the roles of the two players
are opposite of each other.

Ordering the Potential Matrices. We define a lexicographic ordering of po-
tential matrices where, firstly, entries corresponding to lower rates are of higher
importance. Secondly, entries corresponding to shorter lengths are more impor-
tant. Formally, we write P (σ) ≺ P (σ′) if and only if there exists � and r such
that P (σ)�′,r′ = P (σ′)�′,r′ for all r

′ < r and 1 ≤ �′ ≤ n, and P (σ)�′,r = P (σ′)�′,r
for all �′ < �, and P (σ)�,r < P (σ′)�,r.

We get the following lemma, whose proof has been deferred to the full ver-
sion [9].

Lemma 7. Let σ be a strategy profile that is optimal for Gx,0, for some x ∈
(0, 1]. Let j ∈ Ai be an improving switch for Player i w.r.t. σ in the priced game
Gx. Then P (σ[j]) ≺ P (σ).

Consider the finite sequence of strategy profiles generated by StrategyIt while
running the algorithm SolveSPTG. When solving Gx, for some x ∈ (0, 1], the
players repeatedly perform single improving switches. The resulting optimal
strategy profile σx is then used as the starting point for solving the next priced
game Gx′

, for x′ = NextEventPoint(Gx). Using Lemma 7 we show that the
strategy profiles observed while running the SolveSPTG algorithm have decreas-
ing potential matrices. This allows us to bound the number of event points by
the number of strategy profiles of Gx, giving us the following theorems. For
additional details, and an argument for the 12n bound, see the full version [9].

Theorem 4. The total number of event points for any SPTG G with n states
is L(G) ≤ min{12n,

∏
k∈S(|Ak|+ 1)}.

Theorem 5. SolveSPTG solves any SPTG G in time O(m ·
min{12n,

∏
k∈S(|Ak| + 1)}) in the unit cost model, where n is the num-

ber of states and m is the number of actions. Alternatively, the variant of
SolveSPTG that uses the ExtendedDijkstra algorithm of Khachiyan et al. [12]
instead of StrategyIt solves G in time O(L(G)(m + n logn)).

Theorem 2 follows as a corollary of Theorem 5, since SolveSPTG is always guar-
anteed to compute optimal strategies, and the resulting value functions are con-
tinuous piecewise linear functions.
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4 One-Clock Priced Timed Games

One-clock priced timed games (1PTGs) extend SPTGs in two ways. First, actions
are associated with time intervals (existence intervals) during which they are
available, and second, certain actions (reset actions) will cause the time to be
reset to zero. Also, we do not require the time to run from zero to one. In this
extended abstract we only give an informal description of 1PTGs and of our
results and proofs related to 1PTGs. We refer to the full version of the paper [9]
for a more extensive presentation of the subject. To simplify the lemmas below,
we say that an (n,m, r, d)-1PTG is a 1PTG with n states, r of which are the
destination of some reset action, m actions and d distinct endpoints of existence
intervals. We let M be the maximum endpoint of any existence interval, i.e.,
after time M no actions are available and the game must end.

Plays, Outcomes, Positional Strategies, Values, and ε-Optimal Strate-
gies. 1PTGs are played like SPTGs with the exception that using a reset action
resets the time to zero and that the actions must be available when they are used.
Since 1PTGs are simply priced timed games with only one clock we also refer to
the description of priced timed games in Section 1. Plays, outcomes, positional
strategies, value functions, best response and lower and upper value functions
are defined analogously to SPTGs, except that time goes from 0 to M instead
of from 0 to 1 and that actions must be available when used by a strategy. It
should be pointed out, however, that optimal strategies do not always exist (see
Bouyer et al. [7]). Instead, we say that a strategy is ε-optimal for Player i for
ε ≥ 0 if, for all states k ∈ S and all times x ∈ [0,M ], |vπi

k (x)− vk(x)| ≤ ε.
In the proof of Lemma 8 below we also make use of history-dependent strate-

gies. A history-dependent strategy maps every play to an action and a delay such
that the play is continued. Bouyer et al. [7] proved the following fundamental
theorem, showing that history-dependent strategies are not needed for ε-optimal
play, for any ε > 0.

Theorem 6 (Bouyer et al. [7]). For every 1PTG G, there exist value func-
tions vk(x). Moreover, a player can get arbitrarily close to the values even when
restricted to playing positional strategies.

Solving 1PTGs with Resets. We reduce solving any 1PTG to solving a num-
ber of SPTGs. The first step towards this goal is to remove reset actions by
extending the game.

Lemma 8. Let G be an (n,m, r, d)-1PTG. Solving G can be reduced to solving
r + 1 (n,m, 0, d)-1PTGs.

The idea of the proof of Lemma 8 is that if a play, defined by some ε-optimal
positional strategy profile for G, uses more than r reset actions, then the same
configuration (k, 0), for some state k, appears twice in the play. Since the strate-
gies are positional the play must repeatedly cycle back to (k, 0), and the play
is, in fact, of infinite length. Thus, when playing G we may augment config-
urations by the number of times a reset action has been used, and once this
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number reaches r+1 we may assume without loss of generality that the value is
infinite. This defines a new PTG G′ with states S′ = S × {0, . . . , r} and actions
A′ = A × {0, . . . , r}. An ε-optimal positional strategy profile for G′ can then
be viewed as an ε-optimal history-dependent strategy profile for G. Theorem 6
implies that the values obtained from G′ are the same as the values for G. Due
to the special structure of G′ it can be solved as r + 1 (n,m, 0, d)-1PTGs.

Solving 1PTGs without Resets. Let G be a 1PTG without reset actions,
and let X be the set which consists of 0 and the endpoints of existence intervals
of actions of G. Let the i’th largest element in X be Mi. Note that M1 = M
and that |X | ≤ 2m+ 1. Since there are no reset actions in G, it can be solved
using the sweep-line technique described in Section 3.1. That is, we construct
the optimal value functions starting from time M and moving to time 0. Note
that the same actions are available throughout the open interval defined by
two adjacent elements Mi and Mi+1 of X . The situation within this interval is
essentially identical to the situation in an SPTG, and this will be the key idea
for how to solve G.

To be more precise we divide the interval from 0 to M into the points of X
and the open intervals between the points of X . Starting from M and going to
0 we then solve a priced game for every point of X and an SPTG for every open
interval. We use the previously computed value functions to define the games as
we go along. Note that initially, at time M , it is not possible to wait, and we
can get the correct values by solving a priced game.

Technically, we make the reduction from 1PTGs without resets to solving
a number of SPTGs in three steps. First we reduce 1PTGs without resets to
solving a number of 1PTGs where the existence interval of every action is either
(0, 1) or [1, 1]. A similar reduction was also used by Laroussinie, Markey, and
Schnoebelen [13]. Note that it is always possible to scale time by scaling the
rates appropriately. Next, we reduce specialized 1PTGs to 1PTGs with existence
intervals [0, 1] and [1, 1], and finally we reduce these 1PTGs to SPTGs.

The proofs of the following lemma and theorems are in the full version [9].
Note that d is bounded by 2m+ 1 and r is bounded by n.

Lemma 9. Any (n,m, r, d)-1PTG G can be solved in time O((r+1)d(n logn+
min{m,n2})) using at most (r + 1)d calls to an oracle that solves SPTGs with
n+ 1 states and at most m+ n+ 1 actions.

Theorem 7. Any (n,m, r, d)-1PTG G can be solved in time

O((r + 1)d(min(m,n2) + n ·min{12n,
∏
k∈S

(Ak + 1)})).

Theorem 8. The BCFL-ABM algorithm solves any 1PTG G using at most
m · nO(1) min{12n,

∏
k∈S(Ak + 1)}) iterations.

Theorem 9. Any (n,m, r, d)-1PTG G, where all states have rate 1 and all ac-
tions have cost 0, can be solved in time O((r + 1)d(n logn+min(m,n2))).
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Theorem 10. Every priced timed automata G (i.e., all states are controlled
by Player 1) that is a (n,m, r, d)-1PTG can be solved in time O((r +
1)dn2(min(m,n2) + n logn)).
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Abstract. We consider the fundamental problem of Büchi acceptance in
timed automata in a robust setting. The problem is formalised in terms
of controller synthesis: timed automata are equipped with a parametrised
game-based semantics that models the possible perturbations of the de-
cisions taken by the controller. We characterise timed automata that are
robustly controllable for some parameter, with a simple graph theoretic
condition, by showing the equivalence with the existence of an aperi-
odic lasso that satisfies the winning condition (aperiodicity was defined
and used earlier in different contexts to characterise convergence phe-
nomena in timed automata). We then show decidability and PSPACE-
completeness of our problem.

1 Introduction

Timed automata [AD94] are a timed extension of finite-state automata, pro-
viding an automata-theoretic framework to design, model, verify and synthesise
systems with timing constraints. However, the semantics of timed automata is
an idealisation of real timed systems; it assumes, for instance, perfect clocks for
arbitrarily precise time measures, and instantaneous actions. Thus, properties
proven on timed automata may not hold in a real implementation, and similarly,
a synthesised controller may not be realisable on a real hardware. This problem
has been addressed in several works in the literature, where the goal is to de-
fine a convenient notion of robustness, so as to define a realistic semantics for
timed automata, and also make sure that the verified (or synthesised) behaviour
remains correct in presence of small perturbations.

In this work, we consider the fundamental problem of Büchi acceptance of a
given timed automaton in a robust setting. Our goal is to distinguish timed au-
tomata where a Büchi condition can be satisfied even when the chosen delays are
systematically perturbed by an adversary by a bounded parametrised amount.
In fact, it has been observed that some timed automata require choosing time
delays with infinite precision in order to realise some behaviours. Apart from
well-known Zeno behaviours, [CHR02] shows such a convergence phenomenon
where an infinite run requires increasing precision at each step. These unreal-
isable behaviours are discarded in such an adversarial robust setting. Thus, we
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formalize the problem in a game-theoretic setting. Our objective is to synthesise
controllers that are robust while discarding unrealisable behaviours.

More precisely, to define robustness, we equip timed automata with the fol-
lowing game semantics between two players ([CHP11]): Controller with a given
Büchi objective, and Perturbator with the complementary objective. The seman-
tics is a turn-based game parametrised by δ > 0. At each step, Controller chooses
an edge, and d > δ, such that the guard of the edge is satisfied after any delay
d′ ∈ [d− δ, d+ δ]. Then, the edge is taken after a delay d′ ∈ [d− δ, d+ δ] chosen
by Perturbator. Timed games with parity conditions were studied in [CHP11]
for a fixed known parameter δ > 0, and for strictly positive delays with no lower
bound. In fact, in this case, one can encode this semantics as a usual timed
game, and rely on existing techniques for solving timed games. For an unknown
parameter δ > 0, the problem is more complicated, and was left as a challenging
open problem in [CHP11].

Our main result is the following: we show that deciding the existence of δ > 0,
and of a strategy for Controller in the perturbation game so as to ensure infinite
runs satisfying a given Büchi condition is PSPACE-complete, thus no harder
than in the exact setting [AD94]. We characterise robust timed automata, i.e.,
those in which Controller has a winning strategy, by showing that Controller can
win precisely when the timed automaton has an accepting aperiodic lasso. Ape-
riodicity [Sta12] is a variant of forgetfulness introduced in [BA11] in a different
context, to study the entropy of timed languages. Our characterisation confirms
the suggestion of [BA11] that this notion could be significant in the study of
robustness. Our results rely on the non-trivial combination of various techniques
used for studying timed automata: forgetful and aperiodic cycles as considered
in [BA11, Sta12], the metrics of [GHJ97], shrinking techniques [SBM11, BMS12]
and reachability relations of [Pur00]. Last, our proof provides a symbolic repre-
sentation of Controller’s strategy which could be amenable to implementation.

A full version of the paper is available in [SBMR13].

Related Works. A similar game semantics was considered in [BMS12], but the
winning objectives considered are only reachability. An important consequence
is that convergence phenomena and unrealisable strategies are not an issue,
since one essentially only considers finite paths. In this paper, we thus need
new proof techniques to deal with convergence. In addition, the semantics con-
sidered in [BMS12] is less restrictive for Controller: he only needs to suggest
delays after which the guard of the chosen edge is satisfied. Hence, the guard
may not be satisfied after a perturbation. The emphasis in the resulting se-
mantics is therefore on the newly appearing behaviours. Algorithmically, the
semantics of [BMS12] gives rise to more complex problems: reachability is al-
ready EXPTIME-complete, whereas we are able to treat richer Büchi objectives
in PSPACE in this paper. From a designer’s perspective, we believe that both
semantics are meaningful in different modelling assumptions. The present se-
mantics is interesting if lower and upper bounds on events, e.g task execution
times, appear naturally in the model, and need be respected strictly. On the
other hand, in other applications, the semantics of [BMS12] allows to model
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with equality constraints, and then synthesise controllers taking into account
additional behaviour due to perturbations.

A related line of work is that of [Pur00, DDR05, DDMR08], which consists
in modeling imprecisions by enlarging all clock constraints of the automaton by
some parameter δ, that is, transforming each constraint of the form x ∈ [a, b]
into x ∈ [a− δ, b + δ]. The dual notion of shrinking was considered in [SBM11]
in order to study whether any significant behaviour is lost when guards are
shrunk. Both approaches are interested in model-checking, and the robustness
condition is defined on the global behaviour of the enlarged or shrunk timed
automaton. This does not capture the system’s ability to adapt to perturbations
that were observed earlier in a given run. In contrast, the game semantics endows
Controller with a strategy against perturbations.

Among other robustness notions, [GHJ97] defines the tube semantics using
a topology on timed automata runs. Our semantics is not related as we have
a game semantics and a concrete parameter δ. However we use some results
from [GHJ97] in our proofs. [Mar11] surveys different robust semantics for timed
automata.

2 Timed Automata and Robust Safety

Given a finite set of clocks C, we call valuations the elements of RC≥0. For a subset
R ⊆ C and a valuation ν, ν[R← 0] is the valuation defined by ν[R← 0](x) = ν(x)
for x ∈ C \R and ν[R ← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation ν,
the valuation ν + d is defined by (ν + d)(x) = ν(x) + d for all x ∈ C. We extend
these operations to sets of valuations in the obvious way. We write 0 for the
valuation that assigns 0 to every clock.

An atomic clock constraint is a formula of the form k � x �′ l or k � x−y �′ l
where x, y ∈ C, k, l ∈ Z∪{−∞,∞} and �,�′ ∈ {<,≤}. A guard is a conjunction
of atomic clock constraints. A valuation ν satisfies a guard g, denoted ν |= g, if
all constraints are satisfied when each x ∈ C is replaced with ν(x). We write ΦC
for the set of guards built on C.

A timed automaton A is a tuple (L, C, �0, E), where L is a finite set of locations,
C is a finite set of clocks, E ⊆ L × ΦC × 2C × L is a set of edges, and �0 ∈ L is

the initial location. An edge e = (�, g, R, �′) is also written as �
g,R−−→ �′.

The set of possible behaviours of a timed automaton can be described by
the set of its runs, as follows. A run of A is a sequence q1e1q2e2 . . . where qi ∈
L×RC≥0, and writing qi = (�, ν), either ei ∈ R>0, in which case qi+1 = (�, ν+ei),
or ei = (�, g, R, �′) ∈ E, in which case ν |= g and qi+1 = (�′, ν[R ← 0]). We
denote by statei(ρ) the i-th state of any run ρ, by first(ρ) its first state, and, if
ρ is finite, last(ρ) denotes the last state of ρ.

In order to define perturbations, and to capture the reactivity of a controller
to these, we define the following robust game semantics, defined in [CHP11]
(see also [BMS12] for a variant). Intuitively, the robust semantics of a timed
automaton is a two-player game parametrised by δ > 0, where Player 1, also
called Controller chooses a delay d > δ and an edge whose guard is satisfied
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after any delay in the set d + [−δ, δ]. Then, Player 2, also called Perturbator
chooses an actual delay d′ ∈ d + [−δ, δ] after which the edge is taken. Hence,
Controller is required to always suggest delays that satisfy the guards whatever
the perturbations are.

Formally, given a timed automaton A = (L, C, �0, E) and δ > 0, we define the
perturbation game of A w.r.t. δ as a two-player turn-based game Gδ(A) between
players Controller and Perturbator. The state space of Gδ(A) is partitioned into
VC ∪VP where VC = L×RC≥0 belong to Controller, and VP = L×RC≥0×R≥0×E
belong to Perturbator. The initial state is (�0,0) ∈ VC . The transitions are
defined as follows: from any state (�, ν) ∈ VC , there is a transition to (�, ν, d, e) ∈
VP whenever d > δ, e = (�, g, R, �′) is an edge such that ν + d + ε |= g for all
ε ∈ [−δ, δ]. Then, from any such state (�, ν, d, e) ∈ VP , there is a transition to
(�′, (ν + d+ ε)[R ← 0]) ∈ VC , for any ε ∈ [−δ, δ]. A pair of states of VC ∪ VP is
said to be consecutive if there is a transition between them. A play of Gδ(A) is
a finite or infinite sequence q1e1q2e2 . . . of states and transitions of Gδ(A), with
q1 = (�0,0), where ei is a transition from qi to qi+1. It is said to be maximal if
it is infinite or cannot be extended. A strategy for Controller is a function that
assigns to every non-maximal play ending in some (�, ν) ∈ VC , a pair (d, e) where
d > δ and e is an edge such that there is a transition from (�, ν) to (�, ν, d, e).
A strategy for Perturbator is a function that assigns, to every play ending in
(�, ν, d, e), a state (�′, ν′) such that there is a transition from the former to the
latter state. A play ρ is compatible with a strategy f if for every prefix ρ′ of ρ
ending in VC , the next transition along ρ after ρ′ is given by f . We define similarly
compatibility for Perturbator’s strategies. A play naturally gives rise to a unique
run, where the states are in VC , the delays are those chosen by Perturbator, and
the edges are chosen by Controller.

Given δ > 0, and a pair of strategies f, g, respectively for Controller and Per-
turbator we let OutcomeδA(f, g) denote the unique maximal run that is compati-
ble with both strategies. We also define OutcomeδA(f, ·) (resp. OutcomeδA(·, g)) as
the set of all maximal runs compatible with f (resp. with g). A Büchi objective
is a subset of the locations of A. Controller’s strategy f is winning for a Büchi
objective B, if all runs of OutcomeδA(f, ·) are infinite and visit infinitely often
some location of B. The parametrised robust controller synthesis problem asks,
given a timed automaton A and a Büchi objective B, whether there exists δ > 0
such that Controller has a winning strategy in Gδ(A) for the objective B. Note
that these games are determined since for each δ > 0, the semantics is a timed
game.

Figure 1 shows examples of controllable and uncontrollable timed automata,
in our sense. The main result of this paper is the following.

Theorem 1. Parametrised robust controller synthesis is PSPACE-complete for
Büchi objectives.

The next section introduces several notions we need to state our main lemma
(Lemma 3), which characterises timed automata that are robustly controllable,
based on the nature of the lassos of the region automata.
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 0  1  2
1<x<2

y:=0

y≥2,y:=0

x≤2,x:=0

(a)

 1  2

0<y<1,y:=0

0<x<1,x:=0

(b)

Fig. 1. On the left, a timed automaton from [Pur00] that is not robustly controllable
for the Büchi objective { 2}. In fact, Perturbator can enforce that the value of x be
increased by δ at each arrival at  1, thus blocking the run eventually. On the right,
the timed automaton (from [BA11]) is robustly controllable for the Büchi objective
{ 2}. In fact, perturbations at a given transition do not affect the rest of the run; they
are forgotten.

3 Regions, Orbit Graphs, Topology

Regions and Region Automata. We assume that the clocks are bounded above
by a known constant in all timed automata we consider. Fix a timed automa-
ton A = (L, C, �0, E). We define regions as in [AD94], as subsets of RC≥0. Any
region r is defined by fixing the integer parts of the clocks, and giving a parti-
tion X0, X1, . . . , Xm of the clocks, ordered according to their fractional values:
for any ν ∈ r, 0 = frac(ν(x0)) < frac(ν(x1)) < . . . < frac(ν(xm)) for any
x0 ∈ X0, . . . , xm ∈ Xm, and frac(ν(x)) = frac(ν(y)) for any x, y ∈ Xi. Here,
Xi = ∅ for all 1 ≤ i ≤ m but X0 might be empty. For any valuation ν, let [ν]
denote the region to which ν belongs.

We define the region automaton R(A) as a finite automaton whose states are

pairs (�, r) where � ∈ L and r is a region. There is a transition (�, r)
Δ−→ (�, s)

if there exist ν ∈ r, ν′ ∈ s and d > 0 such that ν′ = ν + d. There is a transition
(�, r)

e−→ (�′, s) where e = (�, g, R, �′) if r |= g and r[R ← 0] = s. We write the
paths of the region automaton as π = q1e1q2e2 . . . qn where each qi is a state,
and ei ∈ E ∪ {Δ}, such that qi

ei−→ qi+1 for all 1 ≤ i ≤ n − 1. We also write
first(π) = q1, last(π) = qn, statei(π) = qi, and transi(π) = ei. The length of the
path is n, and is denoted by |π|. We denote the subpath of π between states
of indices i and j by πi...j . Given a run ρ of A, its projection on regions is the
path π in the region automaton s.t. statei(ρ) ∈ statei(π) for all 1 ≤ i ≤ n, and
either transi(ρ) = transi(π) or transi(π) = Δ and transi(ρ) ∈ R≥0. In this case,

we write first(ρ)
π−→ last(ρ) (and say that ρ is along π). A lasso is a path π0π1

where π1 is a cycle, i.e. first(π1) = last(π1). A cycle of R(A) is a progress cycle
if it resets all clocks at least once [Pur00].

A region r is said to be non-punctual if it contains some ν ∈ r such that
ν + [−ε, ε] ⊆ r for some ε > 0. It is said punctual otherwise. By extension, we
say that (�, r) is non-punctual if r is. A path π = q1e1q2e2 . . . qn is non-punctual
if whenever ei = Δ, qi+1 is non-punctual.

Vertices and Orbit Graphs. A vertex of a region r is any point of r̄ ∩NC , where
r̄ denotes the topological closure of r. For any region r, and any clock x, let
us denote by rx,0 the upper bound (by −r0,x the lower bound) on clock x
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inside region r. Then, a vertex v of r is defined by the choice of an index 0 ≤
i ≤ m such that for all x ∈ X1, . . . , Xi, we have v(x) = −r0,x and for all
x ∈ Xi+1, . . . , Xm, we have v(x) = rx,0. Hence, any region has at most |C| + 1
vertices (See e.g. [DDMR08]). We denote by inf(r) (resp. sup(r)) the vertex of r
where all clocks are equal to their lower bounds (resp. upper bounds). Let V(r)
denote the set of vertices of r. We also extend this definition to V((�, r)) = V(r).
Note the following easy properties of regions. Any region r has at most one ver-
tex v ∈ V(r) such that both v and v + 1 belong to V(r). If these exist, then
v = inf(r) and v + 1 = sup(r). Moreover, sup(r) = inf(r) + 1 if, and only if r is
non-punctual. It has been shown that all valuations in r are convex combinations
of V(r) [Pur00].
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Fig. 2. The orbit graph of a (cyclic) path in the region automaton of the automaton
of Fig. 1(a)

Fig. 3. The folded orbit graph of
the (non-forgetful) cycle of Fig. 2

Fig. 4. The folded orbit graph of a
forgetful cycle

With any path π of the region automaton, we associate a |π|-partite la-
belled graph γ(π) called the orbit graph of π [Pur00]. Intuitively, the orbit
graph of a path gives the reachability relation between the vertices of the re-
gions visited along the path. Formally, for a transition τ = q1e1q2, its orbit
graph γ(τ) = (V1 ∪ V2, fG, E) is a bipartite graph where V1 = {(1, v)}v∈V(q1),
and V2 = {(2, v)}v∈V(q2). For any

(
(1, u), (2, v)

)
∈ V1 × V2, we have an edge

((1, u), (2, v)) ∈ E, if, and only if u
ē1−→ v, where e1 = Δ if e1 = Δ, and otherwise

e1 is obtained by replacing the guard by its closed counterpart. Note that each
vertex has at least one successor through e1 [AD94]. The labelling function fG
maps each i to qi; we also extend to nodes of G by fG((i, v)) = fG(i). In order
to extend γ(·) to paths, we use a composition operator ⊕ between orbit graphs,
defined as follows. If G = (V1 ∪ . . .∪ Vn, fG, E) and G′ = (V ′1 ∪ . . .∪ V ′m, fG′ , E′)
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denote two orbit graphs, then G⊕G′ is defined if, and only if, fG(n) = fG′(1),
that is, when the path defining the former graph ends in the first state of
the path defining the latter graph. In this case, the graph G′′ = G ⊕ G′ =
(V ′′1 ∪ . . . V ′′n+m−1, fG′′ , E′′) is defined by taking the disjoint union of G and
G′, merging each node (n, v) of Vn with the node (1, v) of V ′1 , and renaming
any node (i, v) ∈ V ′i by (i + n − 1, v), so that we get a (n + m − 1)-partite
graph. Formally, we let Vi = V ′′i for all 1 ≤ i ≤ n, and the subgraph of G′′

induced on these nodes is equal to G. For any n+ 1 ≤ i ≤ n+m− 1, we have
V ′′i = {(i, v)}(i−n+1,v)∈V ′

i−n+1
, and there is an edge

(
(i, v), (i + 1, w)

)
∈ E′′ if,

and only if,
(
(i− n+ 1, v), (i− n,w)

)
∈ E′. Now, we extend γ(·) to paths by

induction, as follows. Consider any path π = q1e1 . . . qn−1en−1qn, and let G =
(V1 ∪ . . . ∪ Vn−1, fG, E) be the (n − 1)-partite graph γ(q1e1 . . . qn−1), given by
induction. Let G′ = (U ∪ U ′, fG′ , E′) denote the bipartite graph of qn−1en−1qn.
Then, we let γ(π) = G⊕G′. For any node (i, v) of γ(π), let Succ((i, v)) denote the
set of nodes (i+ 1, w) with

(
(i, v), (i+ 1, w)

)
is an edge. We also extend Succ(·)

to sets of nodes. Fig. 2 displays a path in the region automaton of the automa-
ton depicted on Fig. 1(a) together with its orbit graph. Note that delays of
duration zero are allowed when defining orbit graphs.

We define the folded orbit graph Γ (π) for any path π that is not a cycle, as
a bipartite graph on node set {1} × V(first(π)) ∪ {2} × V(last(π)). There is an
edge

(
(1, v), (2, w)

)
in Γ (π) if, and only if there is a path from (1, v) to (n,w)

in γ(π), where n = |π|. Nodes are labelled by the regions they belong to. For
any cycle π, we define Γ (π) similarly on the node set V(first(π)). Thus Γ (π) may
contain cycles; an example is given in Fig. 3. We extend the operator ⊕ to folded
orbit graphs. A strongly connected component (SCC) of a graph is initial if it
is not reachable from any other SCC.

A forgetful cycle of R(A) is a cycle whose folded orbit graph is strongly
connected. A cycle π is aperiodic if for all k ≥ 1, πk is forgetful. A lasso is said
to be aperiodic if its cycle is. Note that there exist forgetful cycles that are not
aperiodic [Sta12].

An example of a non-forgetful cycle is given in Fig. 3. The timed automaton
of Fig. 1(b) contains a forgetful cycle, shown on Fig. 4.

Some Linear Algebra. For any set of vectors, we denote by Span(B) the linear
span of B, i.e. the set of linear combinations of B. In the proofs, we will often
use the vertices of a region to define a basis of a vector space that contains the
region.

Lemma 2. Let r be any region, and let v0 = inf(r). The set of vectors Bv0 =
{v − inf(r)}v∈V(r)\{v0} is linearly independent. Moreover, the affine space v0 +
Span(Bv0) contains r.

Let the dimension of a subset r ⊆ RC be the least d such that a affine subspace
of RC of dimension d contains r. It follows immediately from Lemma 2 that in
any region where the partition of the clocks according to their fractional values
is written as X0, X1, . . . , Xm, has dimension m since it has m+ 1 vertices.

We will consider the usual d∞ metric on RC , defined as d∞(ν, ν′) =
maxx∈C |ν(x) − ν′(x)|. We denote open balls in this metric by Balld∞(ν, ε).
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4 Main Lemma and Algorithm

Our main result is based on the following lemma, which gives a characterization
of robust timed automata using aperiodic lassos of region automata.

Lemma 3 (Main Lemma). For any timed automaton A and Büchi objec-
tive B, there exists δ > 0 such that Controller has a winning strategy in Gδ(A)
for objective B, if, and only if R(A) has a reachable aperiodic non-punctual
B-winning lasso.

The algorithm for deciding robust Büchi acceptance follows from Lemma 3. It
consists in looking for aperiodic non-punctual B-winning lassos in R(A). These
lassos need not be simple, but the following lemma bounds their lengths.

Lemma 4. Let B be a Büchi objective in a timed automaton A, and π be an
aperiodic non-punctual B-winning cycle of R(A). Then, there exists a cycle π′

with the same properties, with length at most N = 2(|C|+1)2+1 × |R(A)|.

The polynomial-space algorithm then consists in guessing an accepting lasso
of exponential size in R(A) on-the-fly, and checking whether its folded orbit
graph is aperiodic. The folded orbit graph can also be computed on-the-fly, and
aperiodicity can be checked in PSPACE [Sta12]. See Appendix for more details.

The two directions of the main lemma are proved using different techniques;
they are presented respectively in Sections 5 and 6. Our results also establish
that winning strategies can be represented by regions with a given granularity,
depending on δ. An algorithm is described at the end of Section 6 to actually
compute the bound δ and a description of the winning strategy for Controller.

5 No Aperiodic Lassos Implies No Robustness

In this section, we prove that Controller loses if there is no aperiodic winning
lassos. The idea is that if no accepting lasso of R(A) is aperiodic, then, as
we show, the projection of any play to R(A) eventually enters and stays in a
non-forgetful cycle. Then, we choose an appropriate Lyapunov function LI(·)
defined on valuations and taking nonnegative values, and describe a strategy
for Perturbator such that the value of LI(·) is decreased by at least ε at each
iteration of the cycle. Hence, Controller cannot cycle infinitely on such cycles:
either it reaches a deadlock, or it cycles on non-accepting lassos. In the rest of
this section, we describe Perturbator’s strategy, study its outcomes, choose a
function LI(·), and prove the first direction of the main lemma.

Our proof is based on several results. First, we consider a result from
Puri [Pur00](Lemma 5) on reachability relations between valuations in timed
automata, and establish non-trivial properties on it valid along non-punctual
paths. We then study the folded orbit graphs of non-punctual progress cycles,
and use original proof techniques (e.g. using the dimension of sets) to understand
the form of these graphs. This allows us to consider the Lyapunov functions
of [BA11] in this context, and prove our results as described above.
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5.1 Reachability Relations

We already noted that any valuation ν can be written as the convex combination
of the vertices of its region, i.e. ν =

∑
v∈V([ν]) λvv for some unique coefficients

λv ≥ 0 with
∑

v λv = 1. When the region is clear from context, we will simply
write ν = λv. Given a path π and a vertex v of the region of first(π), let us
denote by RΓ (π)(v) the set of nodes w ∈ V(last(π)) such that (v, w) ∈ E(Γ (π)).
Thus, this is the “image” of v by the path π. Puri showed in [Pur00] that the
reachability along paths can be characterized using orbit graphs.

Lemma 5 ([Pur00]). Let π be a path from region r to s. Consider any ν ∈ r

with ν =
∑

v∈V(r) λvv for some coefficients λv ≥ 0 and
∑

λv = 1. If ν
π−→ ν′,

then for each v ∈ V(r), there exists a probability distribution {pν,ν′
v,w }w∈RΓ(π)(v)

over RΓ (π)(v) such that ν′ =
∑

v∈V(r) λv
∑

w∈RΓ(π)(v)
pν,ν

′
v,ww. Conversely, if there

exist probability distributions pν,ν
′

v,w satisfying above equalities, then ν
π̄−→ ν′.

Intuitively, the lemma shows that any successor of a point ν =
∑

i λivi can be
obtained by distributing the weight λi of each vertex vi to its successors following
a probability distribution.

Example 1. The automaton of Fig. 1(a) contains a cycle on the region r = �1 <
x, y < 2 ∧ 0 < x − y < 1�. The vertices of r are v1 = (1, 1), v2 = (2, 1), v3 =
(2, 2). Consider a point ν = 1

3v1 + 1
3v2 + 1

3v3. Then, Lemma 5 says that ν′ =∑
1≤i≤3 λivi is reachable from ν along the cycle, where λ1 = 1

30.5 +
1
30.4 = 9

30 ,

λ2 = 1
31 +

1
30.3 = 13

30 , and λ3 = 1
30.6 +

1
30.2 = 4

15 . Here, vertex set {v1, v3} is an
initial SCC I. One can check that LI is indeed decreasing: 1

3 + 1
3 ≥

9
30 + 4

15 .

For any region r, and any subset I ⊆ V(r), we define the function LI : r̄ → R≥0

as, LI(ν) =
∑

v∈I λv, where ν = λv. It is shown in [BA11] that given any
cycle π, if I is chosen as the initial strongly connected component of Γ (π),

then for any run ν
π−→ ν′, LI(ν

′) ≤ LI(ν). We will abusively use LI(·) for a
subset I of nodes of γ(π) or Γ (π), that correspond to a same region. Notice that
0 ≤ LI(·) ≤ 1.

5.2 A Global Strategy for Perturbator

Let us call a valuation v ε-far if v + [−ε, ε] ⊆ [v]. A run is ε-far if all delays end
in ε-far valuations. We show that Perturbator has a strategy ensuring ε-far runs.

Lemma 6. Given any δ > 0, and any timed automaton with C clocks, there ex-
ists a strategy σP

δ,+ (resp. σP
δ,−) for Perturbator that always perturbs by a positive

(resp. negative) amount, and whose all outcomes are δ
2(C+1) -far, and all delays

are at least δ
2(C+1) .

Proof. After any delay ν
d−→ ν′, d ≥ δ, chosen by Controller, consider the regions

spanned by the set ν′ + [0, δ]. It is easy to see that this set intersects at most
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|C|+ 1 different regions (See also [BMS12, Lemma 6]), all of which must satisfy
the guard by definition of the game. So some region r satisfies ν′ + [α, β] ⊆ r, for
some 0 ≤ α < β ≤ δ with β − α ≥ δ

|C|+1 . The strategy σP
δ,+ consists in choosing

the perturbation as 1
2 (β−α). This guarantees time progress (of at least δ

2(|C|+1)).

Moreover, the resulting valuation is always ε-far in its region, where ε = δ
2(|C|+1) .

Observe also that all perturbations prescribed by this strategy are positive. The
strategy σP

δ,− is constructed similarly by considering the valuations ν′ + [−δ, 0].

It turns out that in order to win, Perturbator only needs to ensure ε-far runs,
hence either of the strategies defined above is sufficient to win. In the rest, let us
fix a strategy σP

δ as σP
δ,+ or σP

δ,−. In order to prove that ε-far runs are winning

for Perturbator, we study the properties of the runs OutcomeδA(·, σP
δ ). We prove

Propositions 7 and 8 which are a key element of the proof.
Using the ε-far property of the runs, the following proposition derives a bound

on the convex combination coefficients of all visited valuations.

Proposition 7. Let ρ ∈ OutcomeA(·, σP
δ ). For any i ≥ 1, if we write statei(ρ) =

λv, then λv ≥ ε for all vertices v ∈ V([statei(ρ)]).

r

ν
inf(s)

sup(s)

s

ν′

D

Intuitively, a lower bound on the convex coefficients
means that the valuation is not close to the bor-
ders of the region. We sketch the proof which is by
induction. The property is true initially since the
region 0 has a single vertex. For the induction case,
let us mention the easy case of resets. Clock resets
map each vertex to a single vertex, so each vertex
has a single successor in the orbit graph. Then, it
follows from Lemma 5 that the coefficient of each
vertex in the target region is at least as large as
its predecessor in the source region. For the case of
time delays, one needs to consider the geometry of regions. The figure on the
right shows the intuition in two dimensions. Given an ε-far delay from ν to ν′,
with [ν] = r, and [ν′] = s, one shows that the coefficients of inf(s) and sup(s)
cannot be too small; otherwise the line D that connects ν′ to the third vertex
would be close to vertical or to horizontal, requiring ν′ to be close to a border
of s.

We need another property of similar spirit stating that all edges of the folded
orbit graph receive a probability of at least min(12 ,

ε
2 ) along ε-far delays, ac-

cording to the interpretation of Lemma 5. The proof is rather involved, and
establishes that there is some degree of freedom in the choice of the probabilities
of Lemma 5.

Proposition 8. Let ν = λv and ν′ = λ′v′ denote two valuations satisfying
λ,λ′ ≥ ε, and s.t. (�, ν)

π−→ (�, ν′) is an ε-far delay of duration at least ε. Then,
for each v ∈ V([ν]), there exists a probability distribution {pv,w}w∈RΓ(π)(v) over

RΓ (π)(v) s.t. ν′ =
∑

v∈V(r) λv
∑

w∈RΓ(π)(v)
pv,ww, and pv,w ≥ min(12 ,

ε
2 ).
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5.3 Decreasing Lyapunov Function

In the previous subsection, we established lower bounds on the convex coefficients
of the visited valuations, and the probabilities of Lemma 5. We use this property
to find a Lyapunov function that strictly decreases at each iteration of a cycle.

In this subsection, we concentrate on progress cycles. In fact, in the proof of
Lemma 3, we will show that if Controller is able to win against σP

δ , then some
cycle of R(A) must be repeated infinitely often. But since σP

δ always ensures a
time progress of δ

2(|C|+1) (see Lemma 6), and because all clocks are bounded,

this is only possible in a progress cycle.
The following lemma shows that along non-punctual progress cycles, runs can

reach any valuation in a ball around the target state. This gives the dimension
of the set of valuations reachable along a progress cycle starting from a given
valuation. The proof is somewhat similar to [DDMR08, Lemma 29].

Lemma 9. Let π be a non-punctual progress cycle, and (�, ν)
π−→ (�, ν′) a run

along π. Then, there exists ε > 0 such that there exists a run from (�, ν), along π,
to any point in {�} × (Balld∞(ν′, ε) ∩ [ν′]).

We now prove that the folded orbit graphs of non-punctual progress cycles are
always connected. If the cycle is non-forgetful, there are at least two connected
SCCs (Corollary 11). The lemma is proved by contradiction: we show that if
the graph has disjoint components, then the set of states reachable from a given
state cannot have full dimension, which contradicts Lemma 9.

Lemma 10. The folded orbit graph of a non-punctual progress cycle is connected.

Corollary 11. The folded orbit graph of a non-punctual non-forgetful progress
cycle π contains at least two strongly connected components that are connected.
We associate with each π an initial SCC of Γ (π), which we denote by I(π).

Hence, for any non-punctual non-forgetful cycle π, we consider the function
LI(π). The following lemma shows a key property for the proof: LI(π) decreases by

a fixed amount at each iteration of such a cycle under Perturbator’s strategy σP
δ .

Lemma 12. Let ω ∈ OutcomeδA(·, σP
δ ), and ρ be a finite prefix of ω such that π,

the projection of ρ to regions, is a cycle. If π is a non-forgetful progress cy-
cle, then, writing first(ρ) = λv and last(ρ) = λ′v′, we have,

∑
i∈I(π) λ

′
i ≤∑

i∈I(π) λi − ε2/2.

The proof shows that any such run has a transition in which some edge of the
folded orbit graph has a successor to a node that is not coreachable from I(π).
The existence of such an edge is proved using Corollary 11. By Propositions 7
and 8, we know that the convex combination coefficient associated to the node
is at least ε, and the probability associated to the edge leaving it is at least ε/2.
One then shows that at least ε2/2 is lost from Lπ at each iteration.

The previous lemma already gives an insight into the proof, since it follows
that no non-forgetful cycle can be repeated infinitely under strategy σP

δ . How-
ever, one also needs to show that switching between different cycles cannot help
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Controller win. Thus, the last tool we need for the proof is the following fac-
torization theorem, which allows factoring paths to cycles with the same folded
orbit graphs.

Lemma 13. Let π be a path of R(A) written as π = π0π1π2 . . . πn where each
πi is a cycle that starts in the same state, for i ≥ 1. Then, one can write
π = π′0π

′
1π
′
2 . . . π

′
m+1 such that m ≥

√
n/r − 2 − 1, where r = 2(|C|+1)2|R(A)|,

and for some indices 0 = α0 < α1 < . . ., we have π′i = παi · . . . · παi+1−1 for
each i ≥ 0, and Γ (π′1) = Γ (π′i) for all 1 ≤ i ≤ m.

Proof: No winning aperiodic lassos implies no robust safety. To get a
contradiction, fix any winning strategy σ for Controller and let ρ be the infinite
run OutcomeδA(σ, σ

P
δ ), and π its projection on regions. By definition of σP

δ , π is
a non-punctual path. Let us write π = π0π1 . . . πn . . . such that all πi, i ≥ 1, are
accepting cycles from a same state. Let r = 2(|C|+1)2×|R(A)|, n = ?2/ε2Z+1 and

N large enough so that ?
√

N/r − 2Z − 1 ≥ n2(|C|+1)2 . We extract π′ the prefix
of π with N factors, and apply Lemma 13 which yields π′ = π′0π

′
1 . . . π

′
n′π′n′+1,

with n′ = n2(|C|+1)2, where Γ (π′1) = . . . = Γ (π′n′), and π′i are obtained by
concatenating one or several consecutive πi. By hypothesis, some power k of π′i
is non-forgetful, with k ≤ 2(|C|+1)2 since this is the number of folded orbit graphs
for a fixed labelling function. But since the folded orbit graphs are the same for
all π′i, this power is the same for all factors, and Γ (π′i

k
) = Γ (π′iπ

′
i+1 . . . π

′
i+k−1).

Hence, we can factorize π′ again into π′ = π′0π
′′
1π
′′
2 . . . π′′nπ

′′
n+1, where Γ (π′′1 ) =

. . . = Γ (π′′n) and all are non-forgetful; while π′0 and π′′n+1 are arbitrary non-
punctual paths. Moreover, π′′i , for 1 ≤ i ≤ n, must be progress cycles too. In
fact, otherwise there is some clock x ∈ C that is never reset along π′. But because
σP
δ ensures a time progress of ε at each delay, this means that π′ contains delays

of duration at least nε2/2 > 1, so we cannot have first(π′1) = last(π′n) since the
integer part of the clock x changes, and so does the region since all clocks are
assumed to be bounded. Now, we have I(π′′i ) = I(π′′j ) for any 1 ≤ i, j ≤ n, so
the functions LI(π′′

i ) are the same for all 1 ≤ i ≤ n. If we write ρi the state
reached in ρ following π′0π

′′
1 . . . π′′i , then we get, by Lemma 12, LI(π′′

1 )(ρn) ≤
LI(π′′

1 )(ρ0)− nε2/2. This is a contradiction since 0 ≤ LI(π′
1)
≤ 1 and nε2/2 > 1.

6 Aperiodic Lassos Implies Robustness

We now prove that if R(A) contains an aperiodic non-punctual B-winning lasso,
then there exists δ > 0 and a strategy for Controller in Gδ(A) ensuring robust
safety. The idea of the proof is to observe that aperiodic cycles do not constrain
runs in the way non-forgetful ones do, and show that this is still the case in the
perturbation game semantics. More precisely, along an aperiodic lasso, Controller
is able to always come back in a set at the middle of the starting region.

6.1 Zones and Shrunk Zones

A zone is a subset of RC≥0 defined by a guard. A difference-bound matrix (DBM)
is a |C0| × |C0|-matrix over (R × {<,≤}) ∪ {(∞, <)}. We adopt the following
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notation: for any DBM M , we write M = (M,≺M ), where M is the matrix made
of the first components, with elements in R∪{∞}, while ≺M is the matrix of the
second components, with elements in {<,≤}. A DBM M naturally represents a
zone (which we abusively write M as well), defined as the set of valuations v such
that, for all x, y ∈ C0, it holds v(x)− v(y) ≺M

x,y Mx,y (where v(0) = 0). Standard
operations used to explore the state space of timed automata have been defined
on DBMs: intersection is written M ∩N , Pre (M) is the set of time predecessors
of M , UnresetR(M) is the set of valuations that end in M when the clocks in R
are reset. We also consider Pre>δ(M), the set of time predecessors with a delay
of more than δ. DBMs were introduced in [BM83, Dil90] for analyzing timed
automata; we refer to [BY04] for details.

A parametrised extension, namely shrunk DBMs were introduced in [SBM11]
in order to study the parametrised state space of timed automata. Intuitively,
our goal is to express shrinkings of guards, e.g. sets of states satisfying con-
straints of the form g = 1 + δ < x < 2 − δ ∧ 2δ < y, where δ is a parameter
to be chosen. Formally, a shrunk DBM is a pair (M,P ), where M is a DBM,
and P is a nonnegative integer matrix called a shrinking matrix (SM). This pair
represents the set of valuations defined by the DBM M−δP , for any given δ > 0.
Considering the example g, M is the guard g obtained by setting δ = 0, and P
is made of the integer multipliers of δ.

We adopt the following notation: when we write a statement involving a
shrunk DBM (M,P ), we mean that for some δ0 > 0, the statement holds for
(M − δP ) for all δ ∈ [0, δ0]. For instance, (M,P ) = Pre>δ((N,Q)) means that
M − δP = Pre>δ(N − δQ) for all small enough δ > 0. Additional operations are
defined for shrunk DBMs: for any (M,P ), we define shrink[−δ,δ]((M,P )) as the
set of valuations ν such that ν + [−δ, δ] ⊆M − δP , for small enough δ > 0.

Shrunk DBMs are closed under standard operations on zones:

Lemma 14 ([SBM11, BMS12]). Let M = f(N1, . . . , Nk) be an equation be-
tween normalized DBMs M,N1, . . . , Nk, using the operators Pre>δ, UnresetR, ∩,
and shrink[−δ,δ], and let P1, . . . , Pk be SMs. Then, there exists a shrunk DBM

(M ′, Q) with M′ = M, M ⊆ M ′ and (M ′, Q) = f
(
(N1, P1), . . . , (Nk, Pk)

)
. The

shrunk DBM (M ′, Q) and an upper bound on δ can be computed in poly-time.

6.2 Controllable Predecessors

Consider an edge e = (�, g, R, �′). For any set Z ⊆ RC≥0, we define the controllable

predecessors of Z as follows: CPreδe(Z) = Pre>δ(shrink[−δ,δ](g ∩ UnresetR(Z))).

Intuitively, CPreδe(Z) is the set of valuations from which Controller can en-
sure reaching Z in one step, following the edge e. In fact, it can delay in
shrink[−δ,δ](g ∩ UnresetR(Z)) with a delay of more than δ, where under any per-
turbation in [−δ, δ], the valuation satisfies the guard, and it ends, after reset,
in Z. We extend this operator to paths as expected. Note that CPre0e is the
usual predecessor operator without perturbation: If N = CPre0π(M) for some
sets N,M and path π, then, N is the set of all valuations that can reach some
valuation in M following π.
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It immediately follows from Lemma 14 that the controllable predecessors of
shrunk DBMs are shrunk DBMs, which are computable.

Corollary 15. Let e = (�, g, R, �′) be an edge. Let M and N be non-empty
DBMs such that N = CPre0e(M). Then, for any SM P , there exists an SM Q
such that (N ′, Q) = CPreδe((M,P )) for some N ⊆ N ′ and N = N′.

The set (N ′, Q) given by the previous lemma can be empty in general. However,
as the following lemma shows, it turns out that in the case of non-punctual paths,
controllable predecessors of open sets are non-empty, for small enough δ > 0.

Lemma 16. Let π be a non-punctual path from region r to s. Let s′ ⊆ s such
that there exists ν′ ∈ s′ and ε > 0 with Balld∞(ν′, ε)∩ s ⊆ s′. Then, CPreδπ(s

′) is
non-empty for small enough δ > 0.

6.3 Winning under Perturbations

Let π0π denote a non-punctual aperiodic lasso, where π is the cycle; Γ (πn) is
strongly connected for n ≥ 1. We prove that the graph of some power is complete:

Lemma 17. Let π be an aperiodic cycle. Then, there exists n ≤ |C0| · |C0|! such
that Γ (πn) is a complete graph.

Let us assume, by the previous lemma, that Γ (π) is a complete graph (one can
consider the lasso π0π

n for an appropriate n). Let s be a region with smaller
granularity inside r, obtained so that the Hausdorff distance between r and s
is positive. In this case, s can be chosen so that it can be expressed by a DBM
(with rational components). The construction is defined in the following lemma.

Lemma 18. For any non-empty DBM M , there exists a non-empty DBM N
such that Balld∞(ν, ε)∩M ⊆ N for some ν ∈M , and for any shrinking matrix P
with (M,P ) = ∅, N ⊆ (M,P ). Moreover, N is computable in polynomial time.

The last element we need for our proof is an observation from [BA11]: If π is a
cycle of R(A) such that Γ (π) is a complete graph, then for all (�, ν), (�, ν′) ∈
first(π), there is a run (�, ν)

π−→ (�, ν′), hence the reachability relation is complete.

Proof: Winning aperiodic lassos implies robust safety. We write r =
first(π). Let s ⊆ r given by Lemma 18 applied to r. Because Γ (π) is complete,
we have, by previous remark r = CPre0π(s). By Lemma 15, there exists a SM Q
such that (r,Q) = CPreδπ(s). By Lemma 16, (r,Q) is non-empty. By definition
of s, for small enough δ > 0, s ⊆ (r,Q), so Controller has a strategy to always
move inside s, at each iteration of π. Similarly, CPreδπ0

((r,Q)) is also non-empty
and therefore contains the initial state. Hence, Controller wins.

Now, to actually compute δ and a winning strategy in exponential time, given
an aperiodic lasso, one iterates the cycle so as to obtain a complete folded orbit
graph (Lemma 17), then picks a subset s as in Lemma 18, and uses Corollary 15
to compute the controllable predecessors of s. This also provides the greatest δ
under which the strategy along given lasso is valid.
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7 Future Works

We intend to investigate possible extensions of this work to timed games, where
Perturbator entirely determines the move in some locations. This could require
generalizing the notion of aperiodicity from paths to trees since Controller can no
more ensure to follow a given path. Another interesting future work is studying
infinite runs in the semantics of [BMS12].
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