
F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 235–250, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Optimal Resource Assignment in Workflows
for Maximizing Cooperation

Akhil Kumar1, Remco Dijkman2, and Minseok Song3

1 Smeal College of Business, Penn State University, University Park, PA 16802, USA
AkhilKumar@psu.edu

2 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands

r.m.dijkman@tue.nl
3 Ulsan National Institue of Science and Technology, UNIST-GIL 50,

Ulsan 689-798, South Korea
msong@unist.ac.kr

Abstract. A workflow is a team process since many actors work on various
tasks to complete an instance. Resource management in such workflows deals
with assignment of tasks to workers or actors. In team formation, it is necessary
to ensure that members of a team are compatible with each other. When a
workflow instance of, say, an insurance claim (or a surgery) process is per-
formed, the handoffs between successive tasks are often soft as opposed to
hard, and actors who perform successive tasks in this process instance must
cooperate. If they cooperate well, it can improve quality and increase through-
put of the instance. In general, the degree of required cooperation between a
pair of tasks varies and this should be captured by a model. This paper develops
a model to capture the compatibility between actors while assigning tasks in a
workflow to a group of actors. The model is tested through a simulation and the
results from a greedy algorithm are compared with optimal results. A technique
for computing the compatibility matrix is given and used for an empirical vali-
dation from a real execution log. We argue that workflow resource models
should recognize soft handoffs and provide support for them.

1 Introduction

„We found that patients whose surgical teams exhibited less teamwork
behaviors were at a higher risk for death or complications.‰ [10]

Much work within organizations takes place in teams whether it is performing surgery
(as in the quotation above), designing a car, or processing a customer's insurance
claim application. Naturally, it is very important that members of a team, in addition
to having the requisite qualifications, also be compatible with one another in order to
ensure smooth execution and flow of the work. Of course, in a team of n workers or
actors, it is not necessary that every pair of members must be fully compatible with
each other, but the goal in general would be to maximize overall compatibility partic-
ularly across actors whose roles require considerable collaboration and cooperation.
Non-cooperation can result in loss of productivity. In a similar vein, the need for

236 A. Kumar, R. Dijkman, and M. Song

optimization also arises in business processes. In a typical insurance claim process,
several tasks must be done by different roles in a certain order. After a worker or actor
completes her task she hands off the process workflow to the next actor. In a hard
handoff no further interaction between the two actors may be required. But in a soft
handoff, the two actors may still need to interact later for queries and clarifications
even though the process definition may not reflect it. Thus, in practice “there is a
series of overlapping and nested roles and responsibilities.”[8] In general, an actor
doing a later task in a workflow may need to refer back to consult with an actor who
did a previous task for the same case. Hence, cooperation is necessary between the
two actors of successive tasks so that the workflow can proceed smoothly.

Workflow management systems can be viewed from various perspectives such as:
control flow, data flow and resource modeling. The control flow describes the order-
ing relationships between various tasks, and the data flow its data inputs and outputs.
The resource model [7,19,18] refers to the roles and specific actors who are qualified
to perform various tasks. Most resource assignment algorithms consider issues like
suitability, urgency, conformance and availability [6, 11] while allocating tasks to
actors. However, they fail to recognize the interactions among the actors performing
different tasks in a workflow instance, say for insurance claim processing. In prac-
tice, there is need for such interaction.

The execution of a process instance, in general, is really a team effort involving
multiple handoffs and the handoff should be as smooth as possible. The Free Dictio-
nary (http://www.thefreedictionary.com) defines compatible as: “capable of existing
or performing in harmonious, agreeable, or congenial combination with another.”
Thus, compatibility is a measure of the degree to which actors cooperate with one
another in a workflow. Hence, compatibility between actors should be considered
while assigning tasks to actors. Current approaches only consider suitability of an
actor for a task in isolation of her compatibility with actors of others tasks in an in-
stance. We propose a model that allows us to specify compatibilities among actors in
compatibility matrix, and also the required degree of desired cooperation among tasks
through a cooperation matrix. In general, compatibility between two actors may be
task-specific, but for now we will assume that it is the same for all tasks.

As noted above, the medical domain is another area where multiple roles must
work together in order to achieve a positive outcome, and compatibility and smooth
coordination and handoffs between various personnel involved (such as surgeons,
anesthesiologists, nurses, lab technicians, etc.) is very important [1,10]. In this paper
we show how to model compatibility between actors while making work assignments
so as to achieve a high degree of overall compatibility for the process. Section 2
gives a basic framework and preliminaries. Then, Section 3 describes our model for
maximizing compatibility. Next, Section 4 gives a greedy heuristic and experimental
results for its performance against an optimal solution. Sections 5 and 6 show how to
compute the compatibility matrix and provide empirical validation respectively.
Section 7 presents several directions for extending this approach. Finally section 8
gives a discussion along with related work and we conclude with Section 9.

 Optimal Resource Assignment in Workflows for Maximizing Cooperation 237

2 Basic Framework

Consider an example of a medical insurance claim process model shown in BPMN in
Figure 1. In this process, a claim is received, and then checked by a reviewer who veri-
fies that it is a valid claim. Next, it is examined by an evaluator who determines the
amount of the settlement. A manager must approve the claim, and finally the accounts
officer issues a payment for it. Thus, the key steps or tasks, the roles that perform each
step, the actors in the roles and their respective locations, in this process are:

Receive claim (role: customer service rep; actors: John, Mary; location: call center 1)
Review, validate, assign claim (role: reviewer; actors: Beth, Sue; location: call center 2)
Evaluate and determine settlement (role: evaluator; actors: Mike, Jim; location: client city)
Approve payment (role: manager; actors: Jen, Pat; location: regional office)
Make payment (role: accounts officer; actors: Mark, Lin; location: headquarters)

Notice that the roles for each task are geographically dispersed. This makes the need
for cooperation even greater. As depicted by the dotted arrows in Figure 1, roles per-
forming different tasks may need to interact. For example, after a claim is received,
the reviewer might need to refer back to the customer service representative for clari-
fication about certain missing information on the claim (say, the exact location or
time of an accident is missing). Similarly, the evaluator may need to consult with the
reviewer for additional details. Finally, the manager could seek clarifications with the
evaluator regarding the payment amount before approving it.

Thus, even though formal representations for workflow processes may not show it,
there is often a need for such referrals. But formal modeling approaches tend to neg-
lect this issue. Our goal is to capture notions of compatibility between actors who will
perform tasks where soft handoffs are important. Hence, a metric for compatibility is
required.

Fig. 1. A simplified insurance claim process with several tasks and roles
(Dashed lines show the need for cooperation among actors of pairs of tasks)

Our metrics for compatibility within a team or a process workflow are: ܶݕݐ݈ܾ݅݅݅ݐܽ݌݉݋ܥ ݈ܽݐ݋ ൌ ෍ ௨ଵ,௨ଶ,௧ଵ,௧ଶݐ݂݅ כ ௧ଵ,௧ଶ݌݋݋ܿ כ ሺ௨ଵ,௨ଶ,௧ଵ,௧ଶሻ׊௨ଵ,௨ଶݐ݄݃݅݁ݓܿ

ݕݐ݈ܾ݅݅݅ݐܽ݌݉݋ܥ ݁݃ܽݎ݁ݒܣ ൌ ∑ݕݐ݈ܾ݅݅݅ݐܽ݌݉݋ܥ ݈ܽݐ݋ܶ ௧ଵ,௧ଶ௧ଵ,௧ଶ݌݋݋ܿ

Where ݂݅ݐ௨ଵ,௨ଶ,௧ଵ,௧ଶ : ൜1 ݂݅ ܽܿ1ݑ ݎ݋ݐ, ,1ݐ ݏ݇ݏܽݐ ݉ݎ݋݂ݎ݁݌ 2ݑ ,0ݕ݈݁ݒ݅ݐܿ݁݌ݏ݁ݎ 2ݐ ݁ݏ݅ݓݎ݄݁ݐ݋

238 A. Kumar, R. Dijkman, and M. Song

,௧ଵ,௧ଶ:൜1݌݋݋ܿ ,20ݐ ݀݊ܽ 1ݐ ݏ݇ݏܽݐ ݊݁݁ݓݐܾ݁ ݀݁ݎ݅ݑݍ݁ݎ ݊݋݅ݐܽݎ݁݌݋݋ܿ ݂݅ ,1ݑ ݏݎ݋ݐܿܽ ݂݋ ݕݐ݈ܾ݅݅ݐܽ݌݉݋ܿ :௨ଵ,௨ଶݐ݄݃݅݁ݓܿ ݁ݏ݅ݓݎ݄݁ݐ݋ on a continuous scale of 0 1 2ݑ

The fit and cooperation values are stored in two matrices. Table 1 is an actor-actor
compatibility matrix with values on a scale of 0 to 1 (from low to high compatibility).
Table 2 gives a binary cooperation matrix for all pairs of tasks, where a '0' means
cooperation between a pair of tasks is not required, and '1' that it is. We assume that
cooperation is reciprocal; hence the matrices are symmetric. The start and end tasks
are not shown in the tables because they are not performed by humans. The diagonal
entries in the table are 1.0 to represent that an actor is fully compatible with herself.
Here we assume that compatibility between actors is not task-specific, but to make it
task specific, ܿݐ݄݃݅݁ݓ௨ଵ,௨ଶ can be modified in the above formulation to ܿݐ݄݃݅݁ݓ௨ଵ,௨ଶ,௧ where the new subscript t represent a task. Later we will show how
this model is modified to allow non-discrete values of cooperation between actors.

Example 1: (Partial Cooperation) Below we calculate average compatibilities using
the values in Tables 1 and 2. There are five main tasks in this instance. Moreover, as
per Table 2 there are only 6 interactions where cooperation is required; hence it is a
case of partial cooperation. Clearly, several combinations of actor assignments are
possible here. Let us look at two examples.

Assignment 1 (random):
cust. rep: John ; Reviewer: Sue; Evaluator: Jim; Manager: Pat; accounts officer: Mark

Average compatibility = (0.1 + 0.3 + 0.6 + 0.6 + 0.1 + 0.1)/6 = 0.3

Assignment 2 (optimal):
cust rep: Mary; Reviewer: Beth; Evaluator: Jim; Manager: Jen; accounts officer: Mark

Average compatibility = (0.3 + 0.8 + 0.8 + 0.7 + 0.8 + 0.7)/6 = 0.683

The first assignment is made simply by randomly assigning a task to a qualified actor,
while the second one is optimal. Clearly, there is a large difference (of more than
100%) in average compatibility between these two assignments.

Table 1. Actor-Actor Compatibility matrix (cweight)

Role >
(Task) >

Cust. Rep
(receive)

Reviewer
(validate)

Evaluator
(settle)

Manager
(approve)

Accounts
(pay)

 John Mary Beth Sue Mike Jim Jen Pat Mark Lin
John 1.0 0.9 0.8 0.1 0.8 0.3 0.9 0.3 0.4 0.2
Mary 0.9 1.0 0.3 0.7 0.2 0.8 0.9 0.2 0.1 0.8
Beth 0.8 0.3 1.0 0.8 0.3 0.8 0.7 0.3 0.2 0.9
Sue 0.1 0.7 0.8 1.0 0.9 0.6 0.4 0.6 0.8 0.4
Mike 0.8 0.2 0.3 0.9 1.0 0.9 0.3 0.9 0.8 0.1
Jim 0.3 0.8 0.8 0.6 0.9 1.0 0.8 0.1 0.3 0.9
Jen 0.9 0.9 0.7 0.4 0.3 0.8 1.0 0.8 0.7 0.3
Pat 0.3 0.2 0.3 0.6 0.6 0.9 0.8 1.0 0.1 0.8
Mark 0.4 0.1 0.2 0.8 0.8 0.3 0.7 0.1 1.0 0.9
Lin 0.2 0.8 0.9 0.4 0.1 0.9 0.3 0.8 0.9 1.0

 Optimal Resource Assignment in Workflows for Maximizing Cooperation 239

Example 2:(Full Cooperation) Next consider a variation of the above example. In-
stead of assuming that cooperation between some pairs of participants is necessary, let
us assume that all participants who work on an instance of a process must cooperate
with each other. The corresponding cooperation matrix is shown in Table 3. The solu-
tions from the random assignment and the optimal assignment are as follows.

Table 2. Cooperation matrix (partial cooperation required)

 Receive Validate Settle Approve Pay
Receive – 1 1 0 0
Validate 1 – 1 1 0
Settle 1 1 – 1 0
Approve 0 1 1 – 1
Pay 0 0 0 1 –

Assignment 3 (random):
cust rep: Mary ; Reviewer: Sue; Evaluator: Jim; Manager: Jen; accounts officer: Lin
Average compatibility =
(0.7 + 0.8 + 0.9 + 0.8 + 0.6 + 0.4 + 0.4 + 0.8 + 0.9 + 0.3)/10= 0.66

Assignment 4 (optimal):
cust rep: Mary; Reviewer: Beth; Evaluator: Jim; Manager: Jen; accounts officer: Lin
Average compatibility =
(0.3 + 0.8 + 0.9 + 0.8 + 0.8 + 0.7 + 0.9 + 0.8 + 0.9 + 0.3)/10= 0.72

Table 3. Cooperation matrix (full cooperation required)

 Receive Validate Settle Approve Pay
Receive – 1 1 1 1
Validate 1 – 1 1 1
Settle 1 1 – 1 1
Approve 1 1 1 – 1
Pay 1 1 1 1 –

In this example, the difference in average compatibility between the optimal and

random assignments is much smaller than in Example 1. The improvement through an
optimal reassignment of tasks in the full cooperation case is less because, in general,
perhaps few actors cooperate well with all other actors in a process.

We have considered two scenarios involving different levels of cooperation. In
general, the cooperation matrix could vary, and the best assignment will also be dif-
ferent accordingly. Next we describe our model for finding an optimal solution so as
to maximize cooperation within the team.

3 Model – Optimal Work Assignment (OWA)

The objective of this model shown in Figure 2 is to maximize total (or average)
compatibility. However, we express our objective function so as to minimize total
incompatibility and the reason for this is explained shortly. Our notion of overall
compatibility is as an aggregate of all pair-wise compatibilities between actors who
are involved in task-pairs of a process that require cooperation. Since pair-wise actor-
actor compatibility ranges between 0 and 1, incompatibility=(1െ compatibility).

240 A. Kumar, R. Dijkman, and M. Song

Fig. 2. Model OWA for optimal work assignment

By constraint 1 of the OWA model, every task must be assigned to exactly one ac-
tor. The second constraint requires that the actor u who is assigned to perform task
t(݀ݏ݁݋௨,௧) must be qualified to do it (ܿܽ݊݀݋௨,௧). The third constraint forces the fit varia-
ble between two actors doing tasks that have a soft handoff between them to 1. Thus,
the fit variable fitu1,u2,t1,t2 must be 1. The model in Figure 2 is called an integer pro-
gramming (IP) formulation which is known to be NP-complete [2]. Hence solving the
OWA is an NP-complete problem too. It can be solved with a tool like CPLEX [4].
The solution of the model gives the optimal assignment by finding the values for the
variable ݀ݏ݁݋௨,௧ for all u,t. Additional constraints can be added to this basic model
to enforce minimum (maximum) limits on number of tasks assigned to any actor.
Note that the objective function assumes that overall compatibility is linear in
individual actor-pair compatibility.

Now, the reason the objective function minimizes total incompatibility is as fol-
lows: If we try to maximize compatibility then the fit variables are all forced to 1
resulting in an incorrect formulation. However, if we express the objective as mini-
mizing incompatibility this error does not occur, and a fit variable ݂݅ݐ ௨ଵ,௨ଶ,௧ଵ,௧ଶ
assumes a 1 value only when actor u1 does task t1 and actor u2 does task t2.

To construct the OWA model, we only need to know the data in the coop, cweight
and cando matrices. The complexity of this problem is O(tu), where t is number of
tasks and u is number of actors per task. In the next section we develop a heuristic to
solve this problem.

෍ ݁ݖ݅݉݅݊݅ܯ ௨ଵ,௨ଶ,௧ଵ,௧ଶݐ݂݅ כ ሺ1 െ ௨ଵ,௨ଶሻ௨ଵ,௨ଶ,௧ଵ,௧ଶݐ݄݃݅݁ݓܿ

௨ଵ,௨ଶ,௧ଵ,௧ଶݐ݂݅ ൌ ൜1 ݂݅ ܽܿ1ݑ ݏݎ݋ݐ, ,1ݐ ݏ݇ݏܽݐ ݉ݎ݋݂ݎ݁݌ 2ݑ ,0ݕ݈݁ݒ݅ݐܿ݁݌ݏ݁ݎ 2ݐ ݁ݏ݅ݓݎ݄݁ݐ݋

௨,௧ݏ݁݋݀ ൌ ൜1, ,0ݐ ݇ݏܽݐ ݉ݎ݋݂ݎ݁݌ ݋ݐ ݀݁݊݃݅ݏݏܽ ݏ݅ ݑ ݎ݋ݐܿܽ ݂݅ ௨,௧݋݀݊ܽܿ ݁ݏ݅ݓݎ݄݁ݐ݋ ൌ ൜1, ,0ݐ ݇ݏܽݐ݉ݎ݋݂ݎ݁݌ ݋ݐ ݂݈݀݁݅݅ܽݑݍ ݏ݅ ݑ ݎ݋ݐܿܽ ݂݅ ௧ଵ,௧ଶ݌݋݋ܿ ݁ݏ݅ݓݎ݄݁ݐ݋ ൌ ൜1, ,20ݐ ݀݊ܽ 1ݐ ݊݁݁ݓݐܾ݁ ݀݁݀݁݁݊ ݏ݅ ݊݋݅ݐܽݎ݁݌݋݋ܿ ݂݅ :௨ଵ,௨ଶݐ݄݃݅݁ݓܿ ݁ݏ݅ݓݎ݄݁ݐ݋ ݊݁݁ݓݐܾ݁ ݕݐ݈ܾ݅݅ݐܽ݌݉݋ܿ ݏݎ݋ݐܿܽ ,1ݑ 2ݑ

Model OWA

Subject to: ∑ ௨,௧ݏ݁݋݀ ൌ 1, ௨ݐ׊ (1)
௨,௧ݏ݁݋݀ ൑ ௨,௧ (2)݋݀݊ܽܿ
௨ଵ,௧ଵݏ݁݋݀ ൅ ݀ݏ݁݋௨ଶ,௧ଶ െ ௨ଵ,௨ଶ,௧ଵ,௧ଶ ݐ݂݅ ൑ 1, ,1ݐ ׊ ,1ݐሺ݌݋݋ܿ ݁ݎ݄݁ݓ 2ݐ 2ሻݐ ൌ 1 (3)

Where:

 Optimal Resource Assignment in Workflows for Maximizing Cooperation 241

4 A Greedy Heuristic and Results

Here we describe a greedy heuristic to solve the actor assignment problem. The main
steps are shown in Figure 3. The coop, cweight and cando arrays are taken directly from
the model described above. For each successive task t1 (line 1), we consider each
actor u1 (line 2) who can do t1. Then, for each actor u1 and for every other task t2
(line 3) such that cooperation between t1 and t2 is required (line 4), we find the max-
imum compatibility actor with actor u1 from the cweight array and accumulate the
compatibility in a variable score. This is repeated for every task t2 that requires coop-
eration with t1 and in this way a score is computed for each actor who can perform
task t1. Finally, the actor with the maximum score is assigned the task t1 (line 7) and
corresponding actor to other tasks that need cooperation with t1. This is repeated until
all actors are assigned. The algorithm returns the assign array.

Fig. 3. A greedy heuristic for actor assignment

This is a greedy algorithm. At each successive step, we assign actors to a task

based on the best compatibility for this particular assignment without optimizing
across all tasks. Next, we compare the greedy heuristic results against the optimal
solution to see how much improvement is possible by using the optimal approach.

We conducted experiments to compare the greedy heuristic with the optimal solu-
tion. The greedy heuristic was implemented in Python language, while the optimal
solution was found by solving the model using CPLEX software [4]. We used a simu-
lation first to create the data for the experiments, and the parameters of the simulation
are given in Table 4. In particular there are 10 tasks in the process and 20 actors. Each
task can be done by either 2 or 3 actors. First, we select the number of qualified
actors for each task (2 or 3, with equal probability), and then pick the actual actors at
random. Our cooperation model assumes that:

Algorithm Greedy_Coop
 Input: coop[][],cweight[][], cando[][]
 Output: assign[]
1 for each (task t1 = 1,…, num_tasks)
2 for each (u1 ∈ cando[t1])
3 for each (task t2 = t1+1,…, num_tasks)
4 if (coop(t1,t2)&& not(assign[t1])&& not(assign[t2]):
 score(u1)=score(u1) + max(cweight(u1,u2), ׊ u2∈cando[t2])
5 end for
6 end for
7 assign[t1] = u*,
 s.t. score[u*],u*= max(score[u], u∈cando[t1])
8 for each (task t2 = t1+1,…,num_tasks)
9 if (coop(t1,t2)&& not(assign[t2]):
 assign[t2] = u2*, s.t.
 cweight[u*,u2*]=max(cweight[u*,u2], u2∈cando[t2])
10 end for
11 return(assign[])

242 A. Kumar, R. Dijkman, and M. Song

(1) task i must cooperate with the next task i+1 with probability 1.0
(2) tasks in the pairs (i,i+1) and (i,i+2) must cooperate with probability 0.5
Finally an actor-actor compatibility matrix is generated where compatibility values

of 0.1, 0.2, …, 0.9 are randomly assigned. If the same actor performs two tasks, then
her compatibility with herself is 0.99 (i.e. close to 1). In these experiments we as-
sumed availability of all actors was 1, i.e. they were all available.

Table 4. Parameters used in the simulation experiment

Parameter Description value
tasks Number of tasks 10, 20
Total # actors Number of actors 20, 40
Task- actor
assignment

For each task, assign actors who can perform the task Pick 2 or 3
actors
at random

Cooperation
requirement

Between tasks i and i+1 with prob. 1, and between i, and,
i+2 and i+3, with prob. 0.5

Compatibility
weight

Weight between 0 and 1 to measure degree of fit between
two actors where handoff is important

0.1,0.2, …
0.9

Availability Extent of availability of an actor (0.0,…1.0) 1.0

In Table 5 (a) we summarize the results for 10 cases with 10 tasks and 20 actors in

each case. The actual actor assignments produced by the heuristic are not shown. In
case 1, the heuristic produces an assignment where task 1 is assigned to actor 19, task
2 to actor 10, and so on. For this case the heuristic assignment is very surprisingly
close to the optimal solution. In fact 9 out of 10 actor assignments are the same except
that task 9 is assigned to actor 10 in the heuristic instead of actor 7. We also report the
average compatibility, i.e. the average of the compatibility values across the '1' entries
in the cooperation matrix, along with the percentage gap between the optimal and the
heuristic solutions. In case 1, the heuristic is worse than the optimal by just about 6%,
but in other cases, the gap is larger, even as high as 40% in case 9. Overall, across
all 10 cases the average gap is about 19%.

Similarly, the results for a second experiment with 20 tasks and 40 actors are given in
Table 5 (b). Now there is an average gap of 17% between the performance of the optim-
al and the heuristic, and it lies between 8% (case 3) and 23% (case 7). In case 3, 6 out
of 10 actor assignments are the same, while in case 7, 5 out of 10 are the same.

The results clearly show that the greedy algorithm is useful but suboptimal. The
main problem observed in both sets of experiments with the greedy algorithm is that
if it makes a bad assignment early on, this effect gets magnified with successive task
assignments. Thus, it can lead to a very inferior final solution since there is no back-
tracking in the greedy algorithm. The assignment of actors to tasks can be done dy-
namically rather than making a static assignment at the start of the process instance.
Thus, in a dynamic mode an initial assignment is made at the start, and after each
successive task is completed, the algorithm is rerun to make the next assignment
based on availability of actors.

The experiments were carried out on a typical desktop PC (Intel dual core CPU at
2.40 GHz with 3.25 GB RAM) running CPLEX. The running times to find the solu-
tions were in fractions of a second for the problems above. Thus, for problems of

 Optimal Resource Assignment in Workflows for Maximizing Cooperation 243

Table 5. Results for average compatibility: heuristic vs. optimal solutions

(a) 10 tasks, 20 actors (b) 20 tasks, 40 actors

 Avg. Compat. % gap
Case Greedy Opt.

1. 0.656 0.700 6.29
2 0.650 0.759 14.36
3. 0.669 0.760 11.97

4. 0.653 0.785 16.82
5. 0.591 0.740 20.14
6. 0.615 0.737 16.55
7. 0.461 0.597 22.78
8. 0.550 0.761 27.73
9. 0.466 0.780 40.26

10. 0.615 0.730 15.75
Avg. 0.593 0.735 19.32

 Avg. Compat. % gap
Case Greedy Opt.

1. 0.615 0.684 10.09
2 0.568 0.717 20.78
3. 0.557 0.607 8.24

4. 0.605 0.759 20.29
5. 0.608 0.712 14.61
6. 0.596 0.771 22.70
7. 0.567 0.734 22.75
8. 0.556 0.718 22.56
9. 0.570 0.691 17.51

10. 0.619 0.720 14.03
Avg. 0.586 0.711 17.36

medium size one can find optimal solutions but for larger problems heuristic methods
may be more appropriate.

5 Automatically Computing the Compatibility Matrix

To fully benefit from optimal work assignment with the compatibility matrix, a com-
patibility matrix must be determined that corresponds to the manner in which actors
work together in practice. While this matrix can be designed in a traditional manner,
e.g. based on interviews with the actors, this is not ideal. In particular, because it is
unlikely that the interviewees will accurately report on their cooperation with others,
due to political considerations. Therefore, we propose an approach in which we derive
the compatibility matrix automatically based on an execution log that contains for
each execution trace: the executed tasks, the actor executing each task and the total
throughput time.

The basic idea is that if, in cases where two actors u1 and u2 cooperate, the
throughput time is lower on average than in the general case, these actors can be as-
sumed to have a higher compatibility. Conversely, if the throughput time is higher on
average, the actors can be assumed to have a lower compatibility. Based on this as-
sumption, we can use a sigmoid function to derive the actors’ compatibility from the
throughput times as follows. Given two actors u1 and u2, the average throughput time t
of the process, and the average throughput time tc of the process for execution traces
in which u1 and u2 collaborated, ܿݐ݄݃݅݁ݓ௨ଵ,௨ଶ ൌ 11 ൅ ݁ି௞ሺ௧ି௧௖ሻ
Figure 4 illustrates the relation between t, tc and cweight for k = 1. In this function k is
a parameter that we can vary to obtain better results. In particular, if the variance in
throughput time is high k should be smaller to be more sensitive to these variances,

244 A. Kumar, R. Dijkman, and M. Song

similarly, if the variance is low, k should be greater. A suggestion is, to choose k such
that the sigmoid is most sensitive for tc from the first to the third quartile of the
throughput times domain (see Figure 4). Given the first quartile is q1, the third
quartile q3 and the average t, k = 10/(q3-q1).

Fig. 4. Relation between (t– tc) and cweight in a collaboration

Alternatives to the sigmoid function, such as a simple linear function, and alterna-
tive values of k can also be used to compute the compatibility matrix. We experi-
mented with some different values for k during the evaluation (see Section 6), but did
not evaluate alternatives exhaustively. In future work, we aim to investigate alterna-
tive functions and determine the parameter settings (a value for k in case of the sigmo-
id function) and a function that produces the best result.

Figure 5 shows an example of the automated computation of the compatibility ma-
trix from an execution log. The average throughput time of the execution traces is 9
and the average throughput times for traces where a particular combination of actors
appears is shown in Figure 5 (b). For example, the average throughput time for execu-
tion traces in which John and Mary work together is 8.5, for traces where John and
Beth work together it is 10. Figure 5 (c) shows a compatibility matrix computed based
on the throughput times using the sigmoid function. For example, the cweight

(a) execution traces

Trace Receive Validate Settlement t
1 John Mary Mike 8
2 John Beth Mike 10
3 John Mary Mike 9

(b) average throughput times (c) compatibility matrix

 John Mary Beth Mike John Mary Beth Mike

John 9 8.5 10 9 John 0.5 0.6 0.3 0.5

Mary 8.5 9 – 8.5 Mary 0.6 0.5 – 0.6

Beth 10 – 9 10 Beth 0.3 – 0.5 0.3

Mike 9 8.5 10 9 Mike 0.5 0.6 0.3 0.5

Fig. 5. Example of automated computation of the compatibility matrix

0

0,5

1

-5 0 5

cweight

(t-tc)

 Optimal Resource Assignment in Workflows for Maximizing Cooperation 245

for the collaboration between John and Mary is 1/(1 + e - (9 - 8.5)) ≈ 0.6, i.e.: John and
Mary are slightly more compatible than the average, which is 0.5, and certainly more
compatible than John and Beth, who have compatibility 1/(1 + e - (9 - 10)) ≈ 0.3.

In the next section, we will apply the automatic computation of the compatibility
matrix, as it is explained here, to an execution log from practice.

6 Empirical Evaluation

We evaluated the technique described in this paper using an execution log of a doc-
tor’s consultation process in Seoul National University Bundang Hospital, South Ko-
rea. The log was manually constructed from data that was extracted from the software
systems that are used in the various process steps. The process involved five steps:
reserving a room for the consultation; the actual consultation; planning follow-up
appointments; making payment; and issuing a prescription. The first and second steps
are performed by the same role (the doctor), which has 174 possible actors. The third
step is performed by a secretary, which has 74 possible actors. The fourth and fifth
steps are again performed by the same role (an administrator) and had 38 possible
actors. We had 4,446 execution traces.

First, we empirically validated that collaborations between actors did indeed have
an effect on the throughput time. Because of the large number of unique collabora-
tions, we focused on a subset of collaborations that occurred more than 20 times, and
disregarded other collaborations as insignificant (in fact, many occurred only once).
We also focused on collaborations in the third, fourth and fifth steps of the process.
These steps involved administrative tasks around the consultation: making the next
appointment, receiving a prescription and paying for the appointment. It was felt that
these steps were more likely to be affected by compatibility and less likely to be af-
fected by other factors, such as complexity of the medical case. This selection resulted
in 35 pairs of collaborations, associated with 1,717 execution traces. The data was
analyzed in SPSS. We determined whether the throughput times for the collaborations
were normally distributed, using a Shapiro-Wilk test. The test showed that the data
was not normally distributed. Consequently, we used a Kruskal-Wallis test (instead of
ANOVA) to determine whether the collaborations differed significantly, which was
found to be the case at a 0.05 significance level. Therefore, we conclude that there are
significant differences in throughput times between collaborations.

Second, we evaluated the theoretical improvement that the technique described in
this paper can achieve in work assignments. We did so by determining the compatibil-
ity matrix for the case and subsequently determining the optimal work assignment for
this compatibility matrix. We used the sigmoid function to determine cweight with the
parameter k set such that the function was most sensitive in the second and third quar-
tiles of the throughput times. Figure 6 shows a part of the compatibility matrix for the
case, showing the actors in the process and their compatibility. The actors are
represented by codes such as EIC, CDCJJ, etc. to ensure anonymity. Due to the large
number of actors involved in the case, the full compatibility matrix has 286 x 286
cells. The optimal work assignment computed from the compatibility matrix leads to
an average throughput time of 6 minutes, which is a strong improvement over the
overall average throughput time of 42.9 minutes. However, this average is based on
cweights computed from only one execution trace for illustration of an extreme case.

246 A. Kumar, R. Dijkman, and M. Song

Focusing on assignments that were based on at least 10 execution traces, the best
work assignment leads to an average throughput time of 23.7 minutes, still a strong
improvement over the overall average throughput times. Interestingly, in this case the
third-best work assignment is actually better at an average of 19.7 minutes. The best
assignment based on at least 20 execution traces has an average throughput time of
26.9 minutes.

 EIC CDCJJ CHBAB CEFGG …
EIC 0.50 0.99 – – …
CDCJJ 0.99 0.50 0.25 0.75 …
CHBAB – 0.25 0.50 – …
CEFGG – 0.75 – 0.50 …

… … … … … …

Fig. 6. Part of the compatibility matrix of the case

Although our results on throughput were not tested for statistical significance, we
believe these differences are too large to be explained by differences in worker com-
petence alone, especially given that the tasks involved are of low complexity. Hence,
our initial evidence points to varying levels of cooperation among actors.

7 Further Extensions

In this section we consider some variants of the basic model. The first one allows us
to model varying degrees of cooperation between actors instead of just 0-1 binary
cooperation. The second extension considers how to find an optimal assignment when
multiple paths exist in the process. Finally, the last variant includes cost in the model
as a constraint or an objective.

7.1 Varying Degrees of Required Cooperation

In the discussion thus far, the coop matrix only contained discrete 0-1 entries for pairs
of tasks, where a 0 indicated cooperation was not required between the actors per-
forming two tasks, and a 1 indicated it was required. In general, varying degrees of
cooperation may be required between actors of different pairs of tasks. For example,
in the process of Figure 2, a high degree of cooperation (say, 0.9) may be necessary
between the evaluator and the manager, the need for cooperation between the manag-
er and the accounts officer may be less (say, 0.3). This can be captured by associating
a continuous parameter between 0 and 1 to denote the strength of cooperation re-
quired between the performers of two tasks. Thus, the cooperation matrix would
contain ܿ݌݋݋௧ଵ,௧ଶ entries that are values between 0 and 1, and not binary values.
These values would be determined subjectively by somebody with knowledge about
the process. Again, the objective function would also be modified as follows: ݁ݖ݅݉݅݊݅ܯ ෍ ௨ଵ,௨ଶ,௧ଵ,௧ଶݐ௧ଵ,௧ଶ݂݅݌݋݋ܿ כ ሺ1 െ ௨ଵ,௨ଶ,௧ଵ,௧ଶ׊௨ଵ,௨ଶሻݐ݄݃݅݁ݓܿ

The rest of the formulation would remain unchanged.

 Optimal Resource Assignment in Workflows for Maximizing Cooperation 247

7.2 Multiple Paths in a Process

The process described in Figure 1 is linear. Now, consider a modified version of that
process as shown in Figure 4 with two alternative branches after the validate step, the
lower branch being taken when the claim is rejected outright on initial review, say if it
is not covered by the policy. To handle this situation, we modify the objective func-
tion by introducing a new parameter ݌௧ଵ,௧ଶ for the transition probability between two
tasks t1, t2. An example of a transition probability matrix is shown in Table 6. The ݌௧ଵ,௧ଶ values are also shown on the edges in Figure 7. The revised objective function
is a weighted sum of the probability of path ߨ௜being taken and the incompatibility
along that path. The probability ܲሺߨ௜ሻof a path being taken is computed as the product
of probabilities along all the edges on the path from the start node to t2. The con-
straints, however, remain the same as before. Thus, the new objective function is: ݁ݖ݅݉݅݊݅ܯ ෍ ܲሺߨ௜ሻ ෍ ௨ଵ,௨ଶ,௧ଵ,௧ଶݐ݂݅ כ ሺ1 െ ௉௔௧௛௦א௨ଵ,௨ଶሻ௨ଵ,௨ଶ,௧ଵ,௧ଶగ೔ݐ݄݃݅݁ݓܿ

In a process model with loops the compatibility matrix is created as before by consi-
dering the activities in a loop and the compatibility requirements for them. An
estimate is used for the average number of loop repetitions, so the pairs of activities
within the loop can be weighted by this factor in the objective function.

Fig. 7. A revised process (labels on arcs show transition probabilities)

Table 6. A task-task transition probability matrix for the process in Figure 4

 Receive Validate Settle Approve Pay Reject
Receive 0 1 0.9 0.9 0.9 0.1
Validate 0 0 0.9 0.9 0.9 0.1
Settle 0 0 0 1 1 0
Approve 0 0 0 0 1 0
Pay 0 0 0 0 0 0

7.3 Optimization of Cost, Time, Resource

Model OWA in Section 3 has been formulated to minimize incompatibility, or equi-
valently, to maximize compatibility. However, in some actor assignment scenarios
an additional objective is to minimize cost, time or another resource. Given an

248 A. Kumar, R. Dijkman, and M. Song

actor-task cost matrix, where costu,t is the cost of actor u performing one instance of
task t, the model can be modified easily. In such a case it is possible to incorporate
cost into our model as an additional constraint such as: ෍ ௨,௧ݏ݁݋௨,௧݀ݐݏ݋ܿ ൏ ௠௔௫௨,௧ݐݏ݋ܿ

Where, costmax is the maximum allowable cost for the assignment.
Another alternative is to convert the objective function and add it as a constraint in-

to a cost optimization model. Then the constraint is expressed as: ෍ ௨ଵ,௨ଶ,௧ଵ,௧ଶݐ݂݅ כ ሺ1 െ ௨ଵ,௨ଶሻݐ݄݃݅݁ݓܿ ൐ 1 െ ௠௜௡ݐܽ݌݉݋ܿ

where compatmin is a minimum desired compatibility threshold.
In a similar way, it is possible to further extend the formulation by adding availa-

bility, throughput and resource consumption constraints.

8 Discussion and Related Work

Research has shown that cooperative behavior is reciprocal [14] as we assume here,
and it affects service quality and performance [17]. Therefore, a workflow framework
should incorporate cooperation by providing suitable constructs for modeling compa-
tibility between actors. This means that a process designer should be able to model
soft handoffs between tasks and the degree of cooperation. This information can be
used in making resource assignments to enable a smoother flow of work.

In general, the time to perform a task consists of two elements: the intrinsic capa-
bility of an actor(ui) to perform task t based on skill and experience, and her compati-
bility(ui,uj) with other actors (uj) of related tasks of an instance. Thus,

Avg. time for task t by actor ui = f(capability(ui,t), compatibility(ui, uj))

Although we do not model the output quality of a process instance in this paper, it is
reasonable to assume that given qualified actors, better compatibility among them will
lead to higher quality and greater customer satisfaction. Further work is needed to
develop a more elaborate model that can capture quality and tease out the role of the
capability and compatibility elements. The approach described here can be imple-
mented with a push-pull hybrid strategy. Actors would be offered a list of new tasks
based on their compatibility, and then they may accept tasks from it.

In recent years there has been a surge of interest in modeling, connecting, schedul-
ing and optimizing business processes both within and across organizations
[16,18,19]. All such processes involve actors interacting in a collaborative manner.
Techniques for organizational mining to discover organizational models and social
networks are discussed in [15]. These models can assist in improving the underlying
processes and provide insights for resource assignment. When many actors or workers
collaborate on a team or on an instance of a running workflow, several factors can
influence the overall performance. In [12], based on an extensive empirical study it
was shown that there is a positive effect on performance of workflow instances when
actors are located geographically close together. This study has implications for

 Optimal Resource Assignment in Workflows for Maximizing Cooperation 249

assignment of work to distributed actors, and in relation to our work it suggests that
geographical distribution of actors may affect cooperation adversely.

The issue of cooperation among actors also has implications for best practices in
business process redesign [9]. In a cooperative setting, a process may be designed in
such a way that the boundaries between tasks are flexible. In a non-cooperative envi-
ronment the interfaces between tasks must be rigid. In [13] it is shown that asymmetry
in task size of tasks in a process, knowledge intensity levels and required customiza-
tion needs of tasks have an impact on throughput times and are factors to consider in
process redesign. When knowledge intensity and level of customization are high,
effective communication becomes critical in ensuring a smooth handoff, and hence
compatibility between the actors carrying out the handoff is important. It can also be
helpful to develop handoff protocols for better performance of a process as was
shown for the case of nursing shift handoffs in critical care [1].

There is related work as well on assignment of tasks to actors. Wolf [18] describes
a constraint programming approach for modeling and scheduling clinical pathways.
An IP formulation with the objective to minimize cost for assigning medical person-
nel is discussed in [3]. Another approach for assigning work in emergency situations
[11] is based on threshold models consisting of two components, threshold and stimu-
lus. As stimulus associated with a task increases, even actors who have a high thre-
shold for performing the task respond. Since cooperation plays an important role in
emergencies, compatibility should be a factor in deciding the stimulus.

9 Conclusions

In this paper we have highlighted the importance of compatibility among actors for
resource assignments in workflows. In practice, the actors who participate in a
workflow instance are part of a collaborative team. Empirical evidence from an execu-
tion log of a doctor’s consultation process in a hospital was given to show that through-
put times can vary considerably when resource assignments change. Thus, there is a
need to adequately model soft handoffs between tasks. Such situations are frequent in
practice and this issue has received little attention in research literature. We developed a
novel approach for such scenarios using the notion of compatibility between tasks, and
built a formal model to describe assignments of actors to tasks so as to maximize overall
compatibility across an end-to-end workflow instance. The optimal solution for this
model performed 20% better than a heuristic greedy algorithm. For medium size prob-
lems the optimal solution could be found very fast. A technique for discovering compa-
tibility matrices from logs was described, but it needs further validation. Other non-
greedy heuristics for task assignment would also be worth exploring.

We argue for new constructs for modeling of soft handoffs that allow cooperation
among actors and sharing of responsibility across tasks in a workflow. Future work
should examine ways to model such cooperation more accurately, and also study its
impact on throughput and other metrics of performance. More research is also needed
to understand and better model factors that affect cooperation.

Acknowledgement. Song was supported by the Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (No. 2011-0010561).

250 A. Kumar, R. Dijkman, and M. Song

References

1. Berkenstadt, H., Haviv, Y., Tuval, A., et al.: Improving handoff communications in critical
care: Utilizing simulation-based training toward process improvement in managing patient
risk. CHEST 134(1), 158–162 (2008)

2. Garey, M.R., Johnson, D.S. (eds.): Computers and Intractability: AGuide to the Theory of
NP-Completeness. W.H. Freeman, San Francisco (1979)

3. Grunow, M., Günther, H.-O., Yang, G.: Development of a decision support model for
scheduling clinical studies and assigning medical personnel. Health Care Management
Science 7(4), 305–317 (2004)

4. ILOG: Ilog CPLEX software, Version 11.010 (2008)
5. Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architecture and

Implementation. Thomson Computer Press, London (1996)
6. Kumar, A., van der Aalst, W.M.P., Verbeek, H.M.W.: Dynamic work distribution in

workflow management systems: How to balance quality and performance. Journal of
Management Information Systems 18(3), 157–193 (2002)

7. Kumar, A., Wang, J.: A framework for designing resource driven workflow systems. In:
Rosemann, M., vom Brocke, J. (eds.) The International Handbook on Business Process
Management, pp. 419–440. Springer (2010)

8. Leach, L., Myrtle, R., Weaver, F., Dasu, S.: Assessing the performance of surgical teams.
Health Care Manage Rev. 34(1), 29–41 (2009)

9. Mansar, S., Reijers, H.: Best practices in business process redesign: validation of a rede-
sign framework. Computers in Industry 56(5), 457–471 (2005)

10. Mazzocco, K., Petitti, D.B., Fong, K.T., Bonacum, D., Brookey, J., Graham, S., Lasky, R.,
Sexton, J., Thomas, E.: Surgical team behaviors and patient outcomes. The American
Journal of Surgery 197(5), 678–685 (2009)

11. Reijers, H.A., Jansen-Vullers, M.H., Zur Muehlen, M., Appl, W.: Workflow management
systems + swarm intelligence = dynamic task assignment for emergency management ap-
plications. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 125–140. Springer, Heidelberg (2007)

12. Reijers, H.A., Song, M., Jeong, B.: Analysis of a collaborative workflow process with dis-
tributed actors. Information System Frontiers 11(3), 307–322 (2008)

13. Seidmann, A., Sundararajan, A.: The effects of asymmetry on business process redesign.
International Journal of Production Economics 50, 117–128 (1997)

14. Sen, S.: Reciprocity: a foundational principle for promoting cooperative behavior among
self-interested actors. In: Proceedings of the Second International Conference on Multiac-
tor Systems, pp. 322–329. AAAI Press, Menlo Park (1996)

15. Song, M., van der Aalst, W.M.P.: Towards comprehensive support for orga-nizational
mining. Decision Support Systems 46(1), 300–317 (2008)

16. Sun, S., Kumar, A., Yen, J.: Merging workflows: A new perspective on connecting busi-
ness processes. Decision Support Systems 42(2), 844–858 (2006)

17. Tjosvold, D., Moy, J., Sasaki, S.: Co-operative teamwork for service quality in East Asia.
Managing Service Quality 9(3), 209–216 (1999)

18. Wolf, A.: Constraint-based modeling and scheduling of clinical pathways. In: Larrosa, J.,
O’Sullivan, B. (eds.) CSCLP 2009. LNCS, vol. 6384, pp. 122–138. Springer, Heidelberg
(2011)

19. ZurMühlen, M.: Organizational management in workflow applications – Issues and pers-
pectives. Information Technology and Management 5(3-4), 271–291 (2004)

	Optimal Resource Assignment in Workflows
for Maximizing Cooperation
	1 Introduction
	2 Basic Framework
	3 Model – Optimal Work Assignment (OWA)
	4 A Greedy Heuristic and Results
	5 Automatically Computing the Compatibility Matrix
	6 Empirical Evaluation
	7 Further Extensions
	7.1 Varying Degrees of Required Cooperation
	7.2 Multiple Paths in a Process
	7.3 Optimization of Cost, Time, Resource

	8 Discussion and Related Work
	9 Conclusions
	References

