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Abstract. Process model matching refers to the task of creating cor-
respondences among activities of different process models. This task is
crucial whenever comparison and alignment of process models are called
for. In recent years, there have been a few attempts to tackle process
model matching. Yet, evaluating the obtained sets of correspondences
reveals high variability in the results. Addressing this issue, we propose
a method for predicting the quality of results derived by process model
matchers. As such, prediction serves as a case-by-case decision making
tool in estimating the amount of trust one should put into automatic
matching. This paper proposes a model of prediction for process match-
ing based on both process properties and preliminary match results.

1 Introduction

Process models have been widely established as a tool to manage business opera-
tions. They may be created for different purposes, such as process documentation
or workflow implementation and in different contexts, e.g., for different organisa-
tional units or at different points in time. Many use cases require the comparison
and alignment of process models, for instance, the validation of a technical pro-
cess implementation against a business-centred specification model [I] or clone
detection within a process model repository [2]. The need for comparing process
models fostered research on process model matching, which refers to the task of
creating correspondences among activities of different process models.

Recently, there have been a few attempts to tackle process model match-
ing [T)3l4l5]. Typically, the developed matchers relied on the rich literature of
schema and ontology matching [6lf7] with emphasis on string comparison and
graph matching. Evaluating the outcome of these works shows that the empir-
ical quality is subject to high variability even within a single dataset. While
matchers yield high precision and recall for some matching tasks, they entirely
fail for others. This raises the question of how to distinguish matching tasks for
which matchers yield high quality matches from those for which results are poor.
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Fig. 1. Example of two business process models and their correspondences

In this work, we offer preliminary observations on how to use matching pre-
diction [§] to tackle this question. We observe that both properties of process
models and the similarity between their characteristics impact the accuracy of
a specific match task. In particular, differences in syntactic and semantic as-
pects of labels as well as structure and behaviour of the models can be taken
into account. Based on such process properties and similarity characteristics, we
develop a statistical model to predict the quality of a match result for a given
task.

The rest of the paper is organized as follows. Section 2] introduces the process
model matching problem and the state-of-the-art in schema matching prediction.
Our approach to prediction for process model matching is detailed in Section Bl
Section [ reviews related work, before Section [ concludes the paper.

2 Background

This section first reviews the matching problem for process models, before ex-
plaining the background of schema matching prediction.

The Matching Problem. For two process models with A; and A, as their
sets of activities, process model matching aims at identifying activity correspon-
dences that represent the same behaviour in both models. Following Gal [6],
we subdivide the matching process into first and second line matching. A first
line matcher operates on the process models, compares some of their attributes
such as activity labels or the process structure, and produces a similarity matrix
M(A;1,As) over activities with | A1 | rows and |Az| columns. A second line matcher
works on one or more similarity matrices, e.g., by thresholding or combining
them. Certain second line matchers create a binary similarity matrix M’(A;,45)
with entries being either 0 or 1, the latter represents correspondences.

Figure [l illustrates the matching problem with two processes for registering a
newborn. Although both processes are similar, the lower process slightly deviates
from the upper one. Considering the highlighted correspondences between both
models, it becomes apparent that some matches are more easily identified than
others. A straightforward correspondence is the one between Receive notification
of birth and Receive notific. of birth as measures for first line matching, e.g.,
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the Levenshtein distance, indicate high values in a similarity matrix. However,
to identify complex correspondences involving sets of activities, like the one
between Decide about first name and Decide about second name with Confirm
choice of name, the usage of semantic knowledge and the model structure is
required. For instance, lexical databases can help to identify that words such as
decide and confirm are close in their meaning. Other differences relate to models
in their properties. The upper process contains three splits, whereas the lower
one represents a plain sequence of tasks. Hence, we anticipate that there may be
several complex correspondences that are generally harder to identify.

Schema Matching Prediction. Our approach relies on recent results on
schema matching prediction [8]. In the absence of a ground truth, matchers per-
form a “best effort” matching without any indication of the prospective success
of their efforts. Schema matching prediction provides an assessment mechanism
that supports schema matchers in this context. Predictors foretell the success
of a matcher in identifying correct correspondences by analysing the matcher’s
pair-wise similarity scores.

Sagi and Gal [§] argue for the importance of tunability to support prediction
of different qualities, putting emphasis, e.g., on precision or recall. Thus, pre-
diction models compose various, loosely correlated predictors into a statistical
model. The weights of participating predictors are tuned, so that the combined
prediction correlates well with the desired quality criterion. To accommodate for
tunable prediction models, our work leverages a set of matrix evaluation func-
tions, termed matriz predictors [8]. These predictors encode different assump-
tions on how a particular value distribution in a similarity matrix indicates the
likelihood of a successful match. Each predictor is applied to a similarity matrix
M(A;,A3) obtained by a first line matcher and yields a non-binary prediction
value. Here, we give two examples for such predictors.

o An entry (a;,a;) in M(A;,A5) is dominant, if it has the highest value in the
respective row and column of the matrix. The Dominants matrix predictor
measures the ratio of dominant values and k = min{|A41], |A2|}.

o The Binary Matriz predictor measures the distance between M(A41,A45) and
the closest ideal matrix M’(A41,A2) in a vector space, where M’(A4;,42) is
required to be a binary matrix (with the entries being either 0 or 1).

3 Prediction for Process Model Matching

This section introduces our approach to predicting the quality of process model
matching. Figure [l illustrates the major components of the proposed prediction
architecture. Given a pair of process models, prediction may either be based
solely on process properties (top) or on a similarity measure (bottom). In the
first case, properties of both process models are extracted and process property
predictors derive a score for the model pair. In the second case, we obtain a set of
similarity matrices over the activities of the processes. Then, matrix predictors
exploit characteristics of these matrices to obtain a prediction score per model
pair and similarity measure.
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Fig. 2. Overview of the prediction architecture

The prediction scores are combined into a prediction model, predicting a cer-
tain quality measure, such as precision, recall, or their harmonic mean, the F-
score. To this end, a stepwise (multi-valued) regression is performed over the
whole set of predictors in the presence of a ground truth, i.e., a set of correspon-
dences that are known to hold true. Depending on the origin of the prediction
scores, the prediction model generalises in different dimensions, e.g., it is relative
to process properties (if only scores per process pair are considered) or to process
properties and characteristics of similarity measures.

Below, we instantiate this architecture with strategies for prediction based on
process properties (Section B and process similarity measures (Section B2)).
Then, Section [B.3] discusses how prediction is used to answer the question of how
to identify matching tasks for which matchers yield high quality results.

3.1 Prediction Based on Process Properties

Below, we present several examples of property predictors, each taking a certain
process property and implementing an evaluation measure.

Avg Length of Labels (ALL). An example of a property referring to the textual
syntax is the average length of activity labels. It can be expected to yield insights
on the suitability of textual similarity measures. With avg; and avgs as the average
lengths of activity labels in two processes, we define two predictors.

o ALLR is the relative difference between the properties, i.e., the prediction
score is parrr = 1 if max{avgi,avga} = 0 and parrr = 1 — (Javgs —
avgs|/ max{avgr, avgs}) otherwise.

o ALLA is the arithmetic average of the smoothed absolute deviation of the
property values from a label length [ (e.g., I = 20), i.e., parra = (1 —
max{0,1 — 0.01(avgs — 20)%})/2 + (1 — max{0,1 — 0.01(avgs — 20)%})/2.

Number of Labels with Action in a Lexical Database (NLALD). To
take semantic textual features into account, we consider the number of activity
labels for which the action can be found in a lexical database, e.g. WordNet [9]
for English. Therefore, all activity labels are annotated with their semantic com-
ponents using the approach presented by Leopold et al. [I0]. Then, a lookup in a
lexical database is performed. If the lookup is successful in many cases, we expect
good results of textual similarity measures. With act; and acts as the numbers of
activities of two process models and act Action, and actActions as the number of
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these activities with labels for which the lookup succeeded, a predictor uses the
arithmetic average of the ratio of labels for which actions have been found as an
evaluation function, i.e., pyrarp = (actAction;/act1)/2 + (act Actiona/acts)/2.

Number of Nodes in Cycles (NNC). Focussing on structural features of a
process model, we consider the number of nodes in control flow cycles. A large
difference in the values of this property for two process models hints at different
control flow structures and, thus, lower chances of achieving a good match result.
Our predictor, thus, applies a relative comparison. With inCycle; and inCycles
as the number of nodes in two process models that are part of a control flow
cycle, the prediction score is pyye = 1 if max{inCycle;,inCycles} = 0 and
pnNe = 1 — (JinCycley — inCycles|/ max(inCycley, inCycles)) otherwise.

Depth of the RPST (DRPST). Another structural property of a process
model is the depth of a decomposition tree, e.g., defined by the Refined Process
Structure Tree (RPST) [L1I]. The depth of this tree provides a means to assess
the complexity of the control flow structure. Complex control flow structures in
either model as well as large differences in this complexity can be expected to
have a negative impact on process model matching. With depth, and depths as
the depths of the RPSTs of two process models, we define two predictors.

o DRPSTR measures the relative difference, i.e., pprpsrr = 1 — (|depth, —
depths|/ max{depthi, depthsa}).

o DRPSTA measures the arithmetic average of a smoothed absolute depth,
i.e., pprrsTa = (1 — max{0,1 — 0.02(depth; — 1)?})/2 + (1 — max{0,1 —
0.02(depthy — 1)2})/2.

Size of the Concurrency Relation (SCR). The size of the concurrency rela-
tion is an example for a behavioural property. The concurrency relation contains
all pairs of activities that may be enabled concurrently in some reachable state
of the process, cf., [I2]. Since its size provides insights on behavioural complexity,
high absolute values and large relative differences for two process models may
lower the result quality of process model matchers. Let conc; and concs be the
sizes of the concurrency relation of two process models with act; and acts as the
number of activities, respectively. Then, we define two predictors.

o SCRR measures the relative difference, i.e., pscrr = 1 if max{concy, conca}
=0 and pscrr = 1 — (Jconcy — concs|/ max{concy, conca}) otherwise.

o SCRA measures the arithmetic average of the ratio of concurrent activities,
i.e., pscra = (concy/act?) /2 + (conca/act3) /2.

3.2 Prediction Based on Similarity Measures

Most matchers use textual similarity measures for deriving match candidates
and consider structural and behavioural features for selecting correspondences.
Hence, below, we focus on textual similarity measures and, for each of them,
apply one of the matrix predictors (Section [2) to obtain a prediction score.

Optimal String Edit Distance over Activity Labels (OSEDAL). A first
syntactical similarity measure is the optimal string edit distance over tokenised
activity labels. First, string preprocessing techniques, such as stop word removal
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and stemming, are applied to all terms. For the remaining, preprocessed terms
{t1,...,tn} and {t},...,t],} of two activity labels, we seek an optimal term
alignment ~ C {t1,...,t,} x {t},...,¢,} that (1) relates one term ¢ to at most
one term ¢’ and (2) maximises the string edit distance similarity seds(t,t’) =
lev(t,t")/ max{|t|, |t'|} (with lev as the Levenshtein Distance and |-| as the term
length) over the aligned pairs. Then, the similarity measure for the two activities
is defined as sosgpar = Y ;. seds(t,t’)/ max{n, m}.

Virtual Docs Distance Set (VDDS). As another syntactical similarity measure,
we define a measure that first groups activities in either process and then assesses
their similarity based on virtual documents. We follow the heuristics of the Dis-
tance Doc Searcher of the ICoP framework [4] for grouping activities: Given a base
activity, we group activities based on their distance in the flow graph according
to predefined patterns, e.g., a join (activities from which the base activity can be
reached within a certain distance). For these groups, we derive virtual documents
as the union of terms of all activity labels. For two virtual documents d and d’, a
vector space is created and the Cosine similarity cos(d, d’) is used to assess their sim-
ilarity, cf., [I3]. For each pair of activities a; and ag, the similarity score is defined
as sypps = max{cos(dy,d}),...,cos(dn,d,,)} with dy,...,d, and d},...,d], as
documents representing groups that include a; and a9, respectively.

Number of (Common) Semantic Components of Activity Labels
(N(C)SCAL). Turning to semantic features, we compute a similarity based on
the common semantic components of activity labels. Again, we annotate activity
labels to obtain their semantic components a®® (the action), a®® (the object), and
a® (an additional part) for the activity label a [I0]. Let comp, C {ac,bo,ad}
denote the type of the components found for activity a. Then, we define two
similarity measures:

o Similarity in the number of semantic components comp; and comps for two
activities a; and as is considered by the measure defined as syscar = 1— |
(| compa, | — | compay )/3) |

o Similarity in the types of semantic components is considered by an adapted
measure, defined as snyoscar =1 — (| compa, N compq, | /3).

Lin Distance between Activity Labels (LDAL). A fine-grained similarity
measure for semantic features, is the semantic distance among the activity labels.
Given the semantic components of two labels, we assess their semantic distance
with the Lin metric [I4] (denoted by lin). For two activities a1 and ap with a{®
ab?, ag?, and a3c, a5°, a3? as their semantic components we define the similarity

score as sppar, = (lin(a$c, as®) + lin(a8®, a5®) + lin(a$?, a3?)).

3.3 Assessing the Confidence in Match Results

Predictions are used to determine the confidence that is associated with a match
result. Because of their high result variability, existing matchers are rarely ap-
plicable in a setting that requires unsupervised matching, e.g., similarity search
in process model repositories. Further, even if applied as a semi-automated tech-
nique, a process expert has to review all match results including those that have
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high quality and could directly have been processed further, as well as those that
have poor quality and should thus be neglected. Using the prediction architec-
ture, we address this issue following a machine learning approach:

(1) In a training phase, prediction models are created for a sample of process
models for which some ground truth is available.

(2) Inanapplication phase, the prediction models are applied to further matching
tasks, i.e., pairs of process models, for which the ground truth is not available.

The score obtained by a prediction model is interpreted as the confidence in the
match result. Prediction models should generalise for different process model
matchers. They are defined relative only to process properties and characteristics
of some basic similarity measures, such that the predicted score, the confidence
in the match result, holds independent of any concrete matcher.

Since prediction models are geared towards a quality criterion, they can be
selected for the envisioned setting of process model matching. For instance, a
recall-oriented prediction qualifies for computation of match confidence when
conducting process model clone detection, in order not to miss potential clones
for manual evaluation. For matching in automated similarity search over process
models, in turn, precision-oriented prediction may be a better option.

4 Related Work

Recently, various approaches addressed the problem of process model match-
ing [TI3J4)5]. These works typically combine a measure for textual similarity
applied for first line matching with a measure for structural or behavioural simi-
larity that guides the second line matching. Our prediction architecture considers
both and, thus, can be seen as a first step towards integrating matchers that have
different strengths for certain types of matching tasks.

As for basic similarity measures, we focussed on those commonly used for pro-
cess model matching. Yet, additional measures may be considered. For instance,
a large number of string distance metrics, as reviewed by Cohen et al. [I5], has
been presented for assessing syntactic, textual similarity. Besides, a large body
of structural and behavioural similarity measures are available for process mod-
els, e.g., [LOUI7U18]. Recent surveys of these techniques have been presented by
Dijkman et al. [I9] and Becker and Laue [20]. These measures can be integrated
in our architecture to broaden the basis of prediction.

5 Conclusion

The presented approach addresses the issue of variability in the results obtained
by process model matchers. We showed how prediction models for the quality of
match results are created based on predictors that refer to process properties and
characteristics of similarity measures. Such prediction models allow for assigning
a confidence value to a match result.

In future work, we aim at conducting prediction on a more fine-granular level,
i.e., for individual correspondences. Also, we want to exploit prediction not only
for post-matching analysis, but also for improving the actual matching.
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