
Florian Daniel
Jianmin Wang
Barbara Weber (Eds.)

 123

LN
CS

 8
09

4

11th International Conference, BPM 2013
Beijing, China, August 2013
Proceedings

Business Process
Management

Lecture Notes in Computer Science 8094
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Florian Daniel Jianmin Wang
Barbara Weber (Eds.)

Business Process
Management
11th International Conference, BPM 2013
Beijing, China, August 26-30, 2013
Proceedings

13

Volume Editors

Florian Daniel
University of Trento
Department of Information Engineering and Computer Science
38123 Povo, Italy
E-mail: daniel@disi.unitn.it

Jianmin Wang
Tsinghua University
School of Software
Beijing 100084, China
E-mail: jimwang@tsinghua.edu.cn

Barbara Weber
University of Innsbruck
Business Process Management Research Cluster
6020 Innsbruck, Austria
E-mail: barbara.weber@uibk.ac.at

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40175-6 e-ISBN 978-3-642-40176-3
DOI 10.1007/978-3-642-40176-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013944577

CR Subject Classification (1998): F.3, D.2, J.1, H.3.5, H.4, K.4.3, K.6

LNCS Sublibrary: SL 3 – Information Systems and Application,
incl. Internet/Web and HCI

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

BPM 2013 was the 11th conference in a series that provides a prestigious forum
for researchers and practitioners in the field of business process management
(BPM). The conference was organized by Tsinghua University, China, and took
place during August 26–30, 2013, in Beijing, China. In response to the call for
papers, we received 118 submissions. Each paper was evaluated by at least three
Program Committee members and by one senior Program Committee member.
We accepted 17 regular papers (14.4% acceptance rate) and eight short papers
with an overall acceptance rate of 21.2%. Compared to previous editions of BPM,
this year we noted a lower focus by authors on topics like process modeling,
while we also observed a considerable growth of submissions regarding areas like
process mining, conformance/compliance checking, and process model matching.
The integrated consideration of processes and data remains popular, and novel
viewpoints focus, among others, on data completeness in business processes, the
modeling and runtime support of event streaming in business processes, and
business process architectures.

The conference’s resulting scientific program consisted of seven research
sessions, including sessions on Process Mining, Process Models, Conformance
Checking, Process Data, Process Model Matching, Process Architectures and
Collaboration, and Alternative Perspectives, as well as one Industry Paper
Session.

According to its tradition, the conference also hosted three invited keynote
presentations. Tom Baeyens, founder and CEO of Effektiv.com, architect of sev-
eral running BPM engines worldwide, and founder of the open-source process
engines jBPM and Activiti, talked about the expected tremendous impact of
cloud computing on BPM. Xiang Gao, General Manager of the Department of
Management Information Systems at China Mobile Communication Corpora-
tion, outlined how next-generation intelligent BPM (iBPM) in the era of big
data might look like. Noshir Contractor, Jane S. & William J. White Professor
of Behavioral Sciences in the School of Engineering, School of Communication
and the Kellogg School of Management at Northwestern University, USA, and
Director of the Science of Networks in Communities (SONIC) Research Group
at Northwestern University, contributed with enlightening insights into the for-
mation and success of software development teams.

Next to the main scientific program of the conference, BPM 2013 also hosted
11 workshops, which attracted a very good number of participants and enriched
the overall offering of the conference with attractive venues for the discussion
of early results and ongoing works. We would like to thank the BPM Workshop
Chairs, Niels Lohmann, Minseok Song and Petia Wohed, as well as the workshop
organizers for their professional work and commitment. Similarly, we are grateful
to Anne Rozinat, Hagen Voelzer and Liang Zhang, for the management of the

VI Preface

Industry Paper Track, Jianxun Liu and Chun Ouyang for the organization of
the Doctoral Consortium, Boudewijn van Dongen and Marie Christine Fauvet
for the organization of the Demo Track, Jian Yang and Zhaoxia Wang for the
selection of the tutorials, and Massimo Mecella and Michael zur Muehlen for the
professional publicity.

Our biggest thanks, of course, go the authors and presenters, whose contribu-
tions made BPM 2013 a success. We appreciate the senior Program Committee
members, the Program Committee members, and the external reviewers for their
thorough reviews and the serious discussions of the submitted papers. We thank
the BPM Steering Committee for their valuable guidance.

We also thank the conference sponsors, Bizagi (Platinum) and IBM Research
(Doctoral Consortium sponsor), and Mu Qiao, our Sponsorship Chair, as well as
Lijie Wen, the Organization Chair. Our thanks also go to Springer, the publisher
of the BPM proceedings, for the continuous support of BPM. Finally, the use of
EasyChair was also much appreciated and made our lives so much easier.

August 2013 Florian Daniel
Jianmin Wang
Barbara Weber

Organization

BPM 2013 was organized in Beijing, P.R. China, by Tsinghua University.

Steering Committee

Boualem Benatallah University of New South Wales, Australia
Fabio Casati University of Trento, Italy
Peter Dadam University of Ulm, Germany
Jörg Desel Fernuniversität in Hagen, Germany
Marlon Dumas University of Tartu, Estonia
Schahram Dustdar Vienna University of Technology, Austria
Arthur Ter Hofstede Queensland University of Technology, Australia
Wil van der Aalst Eindhoven University of Technology,

The Netherlands
Mathias Weske HPI, University of Potsdam, Germany
Michael zur Mühlen Stevens Institute of Technology, USA

Executive Committee

Honorary Chair

Jiaguang Sun Tsinghua University, China

General Chair

Jianmin Wang Tsinghua University, China

Program Chairs

Florian Daniel University of Trento, Italy
Jianmin Wang Tsinghua University, China
Barbara Weber University of Innsbruck, Austria

Organization Chair

Lijie Wen Tsinghua University, China

Industrial Chairs

Anne Rozinat Fluxicon
Hagen Voelzer IBM Research Zurich, Switzerland
Liang Zhang Fudan University, China

VIII Organization

Workshop Chairs

Niels Lohmann University of Rostock, Germany
Minseok Song Ulsan National Institute of Science and

Technology, South Korea
Petia Wohed Stockholm University, Sweden

Doctoral Consortium Chairs

Jianxun Liu Hunan University of Science and Technology,
China

Chun Ouyang Queensland University of Technology, Australia

Demo Chairs

Boudewijn van Dongen Eindhoven University of Technology,
The Netherlands

Marie Christine Fauvet University of Joseph Fourier, France

Publicity Chairs

Massimo Mecella University of Rome, Italy
Michael zur Muehlen Stevens Institute of Technolog, USA

Tutorial Chairs

Jian Yang Macquarie University, Australia
Zhaoxia Wang Logistical Engineering University, China

Sponsorship Chair

Mu Qiao IBM Almaden Research Center, USA

Senior Program Committee

Boualem Benatallah University of New South Wales, Australia
Peter Dadam University of Ulm, Germany
Jörg Desel Fernuniversität in Hagen, Germany
Schahram Dustdar Vienna University of Technology, Austria
Stefan Jablonski University of Bayreuth, Germany
Frank Leymann University of Stuttgart, Germany
Jan Mendling Vienna University of Economics and Business,

Austria
Manfred Reichert University of Ulm, Germany
Hajo A. Reijers Eindhoven University of Technology,

The Netherlands
Michael Rosemann Queensland University of Technology, Australia
Arthur Ter Hofstede Queensland University of Technology, Australia
Wil van der Aalst Eindhoven University of Technology, Australia
Mathias Weske HPI, University of Potsdam, Germany

Organization IX

Program Committee

Rafael Accorsi University of Freiburg, Germany
Ahmed Awad Cairo University, Egypt
Claudio Bartolini HP Labs, United States
Boualem Benatallah University of New South Wales, Australia
Christoph Bussler Voxeo Labs, Inc., United States
Fabio Casati University of Trento, Italy
Francisco Curbera IBM Research, United States
Peter Dadam University of Ulm, Germany
Jörg Desel Fernuniversität in Hagen, Germany
Alin Deutsch University of California, USA
Remco Dijkman Eindhoven University of Technology,

The Netherlands
Marlon Dumas University of Tartu, Estonia
Schahram Dustdar Vienna University of Technology, Austria
Johann Eder University of Klagenfurt, Germany
Gregor Engels University of Paderborn, Germany
Dirk Fahland Eindhoven University of Technology,

The Netherlands
Kathrin Figl Vienna University of Economics and Business,

Austria
Hans-Georg Fill University of Vienna, Austria
Piero Fraternali Politecnico di Milano, Italy
Avigdor Gal Technion, Israel
Luciano Garćıa-Bañuelos University of Tartu, Estonia
Holger Giese HPI, University of Potsdam, Germany
Claude Godart University of Lorraine, France
Thomas Hildebrandt IT University of Copenhagen, Denmark
Marta Indulska The University of Queensland, Australia
Stefan Jablonski University of Bayreuth, Germany
Sonja Kabicher-Fuchs University of Vienna, Austria
Leonid Kalinichenko Russian Academy of Science, Russia
Gerti Kappel Vienna University of Technology, Austria
Dimka Karastoyanova University of Stuttgart, Germany
Ekkart Kindler Technical University of Denmark
Marite Kirikova Riga Technical University, Latvia
Jana Koehler Hochschule Luzern, Switzerland
Agnes Koschmider Karlsruher Institute of Technology, Germany
John Krogstie Norwegian University of Science and

Technology, Norway
Jochen Kuester IBM Research, Switzerland
Akhil Kumar Penn State University, USA
Frank Leymann University of Stuttgart, Germany
Niels Lohmann University of Rostock, Germany
Peter Loos Saarland University, Germany

X Organization

Heiko Ludwig IBM Research, United States
Massimo Mecella Sapienza Università di Roma, Italy
Ana Karla Medeiros Capgemini Consulting, The Netherlands
Jan Mendling Vienna University of Economics and Business,

Austria
Hamid Motahari HP Labs, United States
Bela Mutschler University of Applied Sciences

Ravensburg-Weingarten, Germany
Alex Norta University of Helsinki, Finland
Markus Nüttgens Universität Hamburg, Germany
Andreas Oberweis Universität Karlsruhe, Germany
Hervé Panetto CRAN, University of Lorraine, CNRS, France
Oscar Pastor Lopez Universitat Politecnica de Valencia, Spain
Cesare Pautasso University of Lugano, Italy
Artem Polyvyanyy Queensland University of Technology, Australia
Frank Puhlmann inubit AG, Germany
Manfred Reichert University of Ulm, Germany
Hajo A. Reijers Eindhoven University of Technology,

The Netherlands
Stefanie Rinderle-Ma University of Vienna, Austria
Michael Rosemann Queensland University of Technology, Australia
Domenico Saccà University of Calabria, Italy
Shazia Sadiq The University of Queensland, Australia
Erich Schikuta University of Vienna, Austria
Heiko Schuldt University of Basel, Switzerland
Pnina Soffer University of Haifa, Israel
Minseok Song Ulsan National Institute of Science and

Technology, South Korea
Mark Strembeck Vienna University of Economics and Business,

Austria
Harald Störrle Danmarks Tekniske Universitet, Denmark
Jianwen Su University of California at Santa Barbara, USA
Stefan Tai Karlsruher Institute of Technology, Germany
Samir Tata Institut TELECOM; TELECOM SudParis;

CNRS UMR Samovar, France
Arthur Ter Hofstede Queensland University of Technology, Australia
Farouk Toumani Blaise Pascal University, France
Alberto Trombetta University of Insubria, Italy
Aphrodite Tsalgatidou National and Kapodistrian University of

Athens, Greece
Wil Van Der Aalst Eindhoven University of Technology,

The Netherlands
Boudewijn Van Dongen Eindhoven University of Technology,

The Netherlands
Hagen Voelzer IBM Research, Switzerland
Matthias Weidlich Technion, Israel

Organization XI

Lijie Wen Tsinghua University, China
Mathias Weske HPI, University of Potsdam, Germany
Michael Westergaard Eindhoven University of Technology,

The Netherlands
Petia Wohed Stockholm University, Sweden
Karsten Wolf University of Rostock, Germany
Andreas Wombacher University of Twente, The Netherlands
Liang Zhang Fudan University, China

Demo Track Program Committee

Henrik Leopold Humboldt-Universität zu Berlin, Germany
Diogo R. Ferreira Technical University of Lisbon, Portugal
Nick Russell Eindhoven University of Technology,

The Netherlands
Agnès Front Grenoble University, France
Michael Westergaard Eindhoven University of Technology,

The Netherlands
Laurent D’Orazio Blaise Pascal University, France
Ingo Weber NICTA, Australia
Matthias Weidlich Technion - Israel Institute of Technology
Gero Decker Signavio
Sherif Sakr The University of New South Wales, Australia
António Rito Silva Technical University of Lisbon
Hye-Young Paik The University of New South Wales, Australia
Marcelo Fantinato University of São Paulo USP, Brazil
Christian Gierds Humboldt-Universität zu Berlin, Germany
Jan Claes Ghent University, Belgium
Barbara Weber University of Innsbruck, Austria
Howard Foster City University London, UK
Marcello La Rosa Queensland University of Technology, Australia
Michael Adams Queensland University of Technology, Australia
Oliver Kopp University of Stuttgart, Germany
Simon Moser IBM Deutschland Research & Development

GmbH, Germany
Anne Rozinat Fluxicon, The Netherlands
Sandy Kemsley Kemsley Design Ltd., Canada
Vishal Saxena Oracle, United States
Luciano Garćıa-Bañuelos University of Tartu, Estonia
Stefanie Rinderle-Ma University of Vienna, Austria
Hajo A. Reijers Eindhoven University of Technology,

The Netherlands
Remco Dijkman Eindhoven University of Technology,

The Netherlands
Christoph Bussler Voxeo Labs, Inc., United States

XII Organization

Artem Polyvyanyy Queensland University of Technology, Australia
Jorge Cardoso University of Coimbra, Portugal
Heiko Ludwig IBM Research, United States

Additional Reviewers

Agostinho, Carlos
Amziani, Mourad
Aubry, Alexis
Bergmayr, Alexander
Boettcher, Boris
Bokermann, Dennis
Buijs, Joos
Chinosi, Michele
Daeuble, Gerald
De Masellis, Riccardo
Di Ciccio, Claudio
Dunkl, Reinhold
El Haouzi, Hind
Engel, Robert
España, Sergio
Fazal-Baqaie, Masud
Fdhila, Walid
Fehling, Christoph
Fischer, Robin
Furfaro, Angelo
Gaaloul, Walid
Garro, Alfredo
Gerth, Christian
Gierds, Christian
Guedria, Wided
Guermouche, Nawal
Guzzo, Antonella
Görlach, Katharina
Helal, Iman
Hellfeld, Stefan
Hildebrandt, Tobias
Hipp, Markus
Huma, Zille
Keuter, Björn
Koutrouli, Eleni
Kovalev, Dmitry
Kriglstein, Simone
Kucherbaev, Pavel
Köpke, Julius

Lakshmanan, Geetika
Leitner, Maria
Lezoche, Mario
Li, Ying
Liu, Weiwei
Loures, Eduardo
Mach, Werner
Mangler, Juergen
Mans, Ronny
Marrella, Andrea
Matijacic, Michel
Michelberger, Bernd
Mukhi, Nirmal
Muthusamy, Vinod
Müller, Richard
Nagel, Benjamin
Panach, Jose Ignacio
Pichler, Christian
Pontieri, Luigi
Rodriguez, Carlos
Rose, Mirko
Rozsnyai, Szabolcs
Ruiz, Marcela
Schoknecht, Andreas
Schultz, Martin
Schuster, Nelly
Schuster, Thomas
Serra, Edoardo
Sun, Yutian
Tsagkani, Christina
Ullrich, Meike
Valverde, Francisco
Verbeek, Eric
Vukojevic, Karolina
Weippl, Edgar
Werner, Michael
Wittern, Erik
Zdravković, Milan
Zugal, Stefan

Table of Contents

Keynotes

Moneyball for nanoHUB: Theory-Driven and Data-Driven Approaches
to Understand the Formation and Success of Software Development
Teams . 1

Noshir Contractor

Towards the Next Generation Intelligent BPM – In the Era of Big
Data . 4

Xiang Gao

BPM in the Cloud . 10
Tom Baeyens

Process Mining

Bridging Abstraction Layers in Process Mining by Automated Matching
of Events and Activities . 17

Thomas Baier and Jan Mendling

Mining Configurable Process Models from Collections of Event Logs 33
Joos C.A.M. Buijs, Boudewijn F. van Dongen, and
Wil M.P. van der Aalst

Slice, Mine and Dice: Complexity-Aware Automated Discovery of
Business Process Models . 49

Chathura C. Ekanayake, Marlon Dumas,
Luciano Garćıa-Bañuelos, and Marcello La Rosa

Business Process Mining from E-Commerce Web Logs 65
Nicolas Poggi, Vinod Muthusamy, David Carrera, and Rania Khalaf

Discovering Data-Aware Declarative Process Models from Event
Logs . 81

Fabrizio Maria Maggi, Marlon Dumas
Luciano Garćıa-Bañuelos, and Marco Montali

Enhancing Declare Maps Based on Event Correlations 97
Rantham Prabhakara Jagadeesh Chandra Bose,
Fabrizio Maria Maggi, and Wil M.P. van der Aalst

XIV Table of Contents

Conformance Checking

Aligning Event Logs and Process Models for Multi-perspective
Conformance Checking: An Approach Based on Integer Linear
Programming . 113

Massimiliano de Leoni and Wil M.P. van der Aalst

Conformance Checking in the Large: Partitioning and Topology 130
Jorge Munoz-Gama, Josep Carmona, and Wil M.P. van der Aalst

On Enabling Compliance of Cross-Organizational Business Processes . . . 146
David Knuplesch, Manfred Reichert, Walid Fdhila, and
Stefanie Rinderle-Ma

Process Data

Verification of Query Completeness over Processes 155
Simon Razniewski, Marco Montali, and Werner Nutt

Modeling and Enacting Complex Data Dependencies in Business
Processes . 171

Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

Event Stream Processing Units in Business Processes 187
Stefan Appel, Sebastian Frischbier, Tobias Freudenreich, and
Alejandro Buchmann

Process Model Matching

Predicting the Quality of Process Model Matching 203
Matthias Weidlich, Tomer Sagi, Henrik Leopold, Avigdor Gal, and
Jan Mendling

Increasing Recall of Process Model Matching by Improved Activity
Label Matching . 211

Christopher Klinkmüller, Ingo Weber, Jan Mendling,
Henrik Leopold, and André Ludwig

A Visualization Approach for Difference Analysis of Process Models
and Instance Traffic . 219

Simone Kriglstein, Günter Wallner, and Stefanie Rinderle-Ma

Process Architectures and Collaboration

Business Process Architectures with Multiplicities: Transformation and
Correctness . 227

Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske

Table of Contents XV

Optimal Resource Assignment in Workflows for Maximizing
Cooperation . 235

Akhil Kumar, Remco Dijkman, and Minseok Song

Accelerating Collaboration in Task Assignment Using a Socially
Enhanced Resource Model . 251

Rong Liu, Shivali Agarwal, Renuka R. Sindhgatta, and
Juhnyoung Lee

Alternative Perspectives

Splitting GSM Schemas: A Framework for Outsourcing of Declarative
Artifact Systems . 259

Rik Eshuis, Richard Hull, Yutian Sun, and Roman Vacuĺın

Composing Workflow Activities on the Basis of Data-Flow Structures . . . 275
Han van der Aa, Hajo A. Reijers, and Irene Vanderfeesten

Mixing Paradigms for More Comprehensible Models 283
Michael Westergaard and Tijs Slaats

Industry Papers

An Agile BPM Project Methodology . 291
Christian Thiemich and Frank Puhlmann

Declarative Modeling—An Academic Dream or the Future for BPM? . . . 307
Hajo A. Reijers, Tijs Slaats, and Christian Stahl

Investigating Clinical Care Pathways Correlated with Outcomes 323
Geetika T. Lakshmanan, Szabolcs Rozsnyai, and Fei Wang

Exformatics Declarative Case Management Workflows as DCR
Graphs . 339

Tijs Slaats, Raghava Rao Mukkamala, Thomas Hildebrandt, and
Morten Marquard

Author Index . 355

Moneyball for nanoHUB:

Theory-Driven and Data-Driven Approaches
to Understand the Formation and Success

of Software Development Teams

Noshir Contractor

Jane S. & William J. White Professor of Behavioral Sciences
Northwestern University

Evanston IL 60201
nosh@northwestern.edu

”Your goal shouldn’t be to buy players. Your goal should be to buy wins.
In order to buy wins, you need to buy runs.” (Bakshi, M., & Miller,
B. (2011). Moneyball, Motion picture. USA: Columbia Pictures.

Keynote Abstract

The same principle that transformed baseball may hold the key to building
more innovative scientific teams. In 2002, Billy Beane changed baseball when he
fielded a $41 million baseball team for the Oakland Athletics that successfully
competed with the $125 million New York Yankees. We increasingly turn to
teams to solve wicked scientific problems from sequencing the human genome
to curing cancer. Building scientific dream teams who produce breakthrough
innovations at minimal cost is not unlike choosing the players who will go on to
win the World Series. Like pre-Beane baseball, much of the selection of scientific
dream teams currently rests on an assessment of the caliber of the individual
scientists, with far less attention paid to the relationships that gel the team
together, and the factors that determine how those pivotal relationships come
about.

Given the increasing importance of teams in producing high-impact innova-
tions, it is important for success in all of the domains in which teams are critical
that we understand how to assemble innovation-ready teams. While there is con-
siderable research on how to make teams more effective once they are formed,
there is growing evidence that the assembly of the team itself influences the range
of possible outcomes. Most prior work on teams is based on the premise that the
team has been “formed” and fails to investigate the mechanisms that influence
the assembly of teams and their impact on team processes and outcomes. This
paper seeks to understand and enable the assembly of innovative scientific teams.
We use theory-driven (social science theories) as well as data-driven (data/text
mining and machine learning algorithms) to discern factors that explain/predict
assembly of innovative scientific teams.

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 1–3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 N. Contractor

We define team assembly as the set of principles that jointly determine how
a team is formed. Team assembly is a multilevel construct, capturing the sets
of factors occurring at four levels of emergence that determine how teams come
together. The theoretical mechanisms of team assembly can be categorized at
four levels of emergence: compositional, relational, task-based, and ecosystem.
All four approaches are well-captured using network approaches, with the aim
of understanding the impact of these four sets of factors on the likelihood that
a team-assembly edge (or, in network parlance, a hyperedge) will form.

The first level of compositional emergence considers each team as an aggre-
gation of people and uses the composition of individual attributes and team
attributes to explain individuals’ motivations to join teams. The second level of
relational emergence also considers prior relations (such as prior collaboration or
friendship) among team members to explain why members assemble into a team.
A third level of task-based emergence adds attributes of the task (such as the
development of open source versus proprietary software) to attributes of individ-
uals and the relations among them to explain why people join teams. Individuals
joining a certain project are represented as a bipartite graph with linkages be-
tween individuals and their project. The fourth level of ecosystem emergence
captures how the larger intellectual ecosystem might explain the emergence of
successful scientific teams. For instance, an ecosystem surrounding a software
development team would include prior or current collaborators of those who are
on the team, and collaborators of their collaborators and so on. The ecosystem
approach is a novel theoretical advance in research on teams by focusing on the
explanatory power of, rather than discounting as a “bug,” the fact that individ-
uals belong simultaneously to multiple teams that have overlapping members.

We conducted this research in the context of nanoHUB (http://nanohub.
org), a cyberinfrastructure developed as part of the NSF-funded Network for
Computational Nanotechnology. nanoHub offers a platform where teams assem-
ble to develop software, documents, presentations and tutorials for education and
research. These materials are published on nanoHUB and then rated, tagged,
downloaded and utilized in ways that provide objective metrics of team out-
comes. Over the past 10 years of operation nanoHUB has served a community of
users that has grown to more than 250,000 annually from 172 countries world-
wide. These visitors come from all of the Top 50 engineering graduate schools
and from 21% of all available educational (.edu) domains, and they access more
than 3,000 seminars, tools, tutorials, courses, and teaching materials posted on
the site. During the past 12 months, more than 12,500 registered users have
accessed over 269 simulation tools through nanoHUB’s unique, web-based sim-
ulation infrastructure, and they have launched some 430,357 simulation runs.
Hence nanoHUB is uniquely suited for us to observe teams engaged in the cre-
ation of scientific products – both basic and applied. In nanoHUB, scientists can
self assemble and we can observe the choices that they make with self-assembly.

We developed a theory-driven approach by elucidating factors that influ-
ence team assembly at the compositional level (attributes of individuals on the
team), relational level (prior collaboration, co-authorship and citations between

http://nanohub.
org

Moneyball for nanoHUB 3

individuals), task level (attributes of the task, such as development of open vs
closed software), and ecosystem level (their prior and current membership in
the landscape of all teams). We also developed a data-driven approach by using
machine learning techniques to identify which of a set of features were the best
predictors of team assembly and success. We offer substantive interpretations
of the results of the data-driven models by eliciting specific decision trees that
predicted high probabilities of team formation and success. Interpretations of
decisions trees from data-driven approaches offer new insights that can in turn
be used to guide the development of new social science theories about the team
assembly. As such this paper argues for a new iterative computational social
science methodology that combines both theory and data driven approaches.

Results of the research described here will help (i) individual researchers as-
semble their own dream team, (ii) university administrators to help organize
interdisciplinary initiatives for research and education, (iii) leaders of cyberin-
frastructure such as the NSF-funded nanoHUB, use a dashboard and recom-
mender system, to monitor and enable high performing virtual collaboration
within the nanoHUB community, (iv) program officers at funding agencies who
make decisions about the likely payoff of scientific teams, and (v) science pol-
icy makers on how to design and fund research programs that incentivize the
assembly of dream teams.

Towards the Next Generation Intelligent BPM –

In the Era of Big Data

Xiang Gao

Department of Management Information System,
China Mobile Communications Corporation, Beijing 100033, China

gaoxiang@chinamobile.com

Abstract. Big data opens a new dimension, space, to offer the advan-
tage of gleaning intelligence from data and translating that into business
benefits. It will lead to knowledge revolution in all sectors, including Busi-
ness Process Management (BPM). This paper sheds light on key charac-
teristics of intelligent BPM (iBPM) from an industrial point of view. A
big data perspective on iBPM is then proposed, showing the challenges
and potential opportunities in attempt to catalyze ideas from insight to
application. China Mobile Communications Corporation’s (CMCC) ex-
ploring and practice are provided, which also elicit the future research
directions for enterprise applications.

Keywords: big data, intelligent BPM.

1 From BPM to Intelligent BPM

Business Process Management (BPM) is recognized as a holistic management
approach that promotes business effectiveness and efficiency while striving for
innovation, flexibility, and integration with technology. It is growing as a disci-
pline, where new technologies are rapidly emerging, keeping BPM center stage
in both business and technology domains [11].

Recently, intelligent BPM (iBPM) has been given new impetus by integrating
analytical technologies into orchestrated processes. It is enabling leading orga-
nizations to make their business operations more intelligent, and giving process
participants better real-time situational awareness and the ability to tailor their
responses appropriately. Gartner considers it the next stage in the evolution of
BPM for the following reasons [7]. Firstly, it will meet the ongoing need for
process agility, especially for regulatory changes and more-dynamic exception
handling. Secondly, it will aim at leveraging the greater availability of data from
inside and outside the enterprise as input into decision making. Thirdly, it will
facilitate interactions and collaboration in cross-boundary processes.

From an application infrastructure and middleware (AIM) point of view, an
iBPM Suite inherits all the features of traditional BPM Suite, complemented
with more-advanced technologies, summarized from 10 areas of functionalities
by Gartner [7]. From enterprise application and consolidation point view, the
difference of next generation iBPM from the current one can be summarized as
the following “4As”.

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 4–9, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards the Next Generation Intelligent BPM 5

– Analytical: The most prominent feature of iBPM is the capability of ad-
vanced analytics. It integrates with state-of-the-art analytic technologies,
including both pre-analytics and post-analytics. The former mainly concen-
trates on process model based analysis, such as model decomposition [6],
clone detection [5], similarity search [4] etc. The latter makes use of the
historical log and other information, and refers to automatic business pro-
cess discovery (i.e., process mining [15, 16]), social analysis [17], intelligent
recommendation, prediction and so on.

– Automatic: The enormous volumes of data require automated or semi-
automated analysis techniques to detect patterns, identify anomalies, and
extract knowledge. Take business processes consolidation for example. It is
always an extremely arduous task for large organizations with more than
thousands of process models. The iBPM should be designed to facilitate the
procedure that automatically reduces duplications and makes the differences
between process models explicit, instead of manual operation.

– Adaptive: The dynamic changing of business processes and external data
inside and outside should be flexibly captured and responded by resorting
to not only the adaptive adjusting of the analysis algorithm parameters, but
also the on-demand selection of appropriate algorithms in a configuration
way.

– Agile: There is always a big gap: business analysts have deep understanding
of business but cannot design the process models independently without
the support of IT staffs, even though notation based modeling language is
exploited. The iBPM is expected to simplify the procedure. For example,
by incorporating process fragments with business semantics into design tool,
the efficiency of modeling can be significantly improved and most of the
procedures can be implemented by business analysts with the least IT efforts.

It is worth noticing that achieving of the “4As” features will be given new op-
portunities in the era of big data.

2 A Big Data Perspective on iBPM

The birth and growth of big data was the defining characteristic of the 2000s.
As obvious and ordinary as this might sound to us today, we are still unraveling
the practical and inspirational potential of this new era [13].

What does big data really mean in the evolution of BPM? Just one thing,
elegantly stated by the founding father and pioneer long before the introduction
of the big data concept. “In God we trust; all others must bring data,” – W.
Edwards Deming. Before the existence of big data, we could only treat these
words as maxims. However, now, we must consider them as achievable technical
criteria for our work, where big data brings unprecedented impetus and vitality
for BPM. Driven by process data and other related data, it can be a new platform
for the R&D of intelligence based on big data, making Deming’s maxims a reality
for the operation of future iBPM systems.

6 X. Gao

To find the needle in the big data iBPM haystack, one must first clarify what
the “Big Data” is in business process field. In common sense, mobile sensors,
social media services, genomic sequencing, and astronomy are among myriad
applications that have generated an explosion of abundant data, which are nat-
urally treated as big data. However, it is very important that the biggest mis-
nomer actually comes from the name itself. When we talk about big data, we
must put its size in relation to the available resources, the question asked, and
the kind of data. To some extent, large numbers of historical log and instances
data generated by running business processes can all be treated as “big data”
for their high variety and heterogeneity, especially in a large-scale organization.
Furthermore, from a generalized point of view, data with the following features
can be recognized as process data [8]: 1) composed of events; 2) on multiple
units and levels of analysis with ambiguous boundaries; 3) of variable temporal
embeddedness; and 4) eclectic. Then, the web search query log, data of product
ordering by customers, and so many other kinds of data all belongs to process
big data.

On the path from insight to action, one must pay much attention to the
following perspectives.

– Sparsity Vs. Redundancy. The widespread use of traditional data min-
ing and artificial intelligence algorithms has usually exposed their limitations
on data sparsity in large-scale data set or problems associated with high di-
mensionality [2]. For example, user-based collaborative filtering systems have
been very successful in the past, but their weakness has been revealed for
large, sparse databases [12]. However, the large amount of process data al-
ways exhibits redundancy instead of sparsity. A real scenario is investigated
in China Mobile Communications Corporation (CMCC) Office Automation
(OA) systems. There are totally more than 8000 processes running in these
systems, independently maintained and evolved by subsidiary organizations
themselves. Due to individual management requirements, these processes,
even expressing the same business behavior, are usually not exactly the same
while having a high degree of similarity. The technology for automatic frag-
mentization of process models and identification of highly reusable fragments
are required in iBPM.

– Sample Vs. Population. Sample based analysis is usually conducted to
infer the whole behavior of population. However, in the age of big data, one
turns to put emphasis on population but not sample, since collecting and
processing large amount of data are feasible now. Take the process mining
scenario for example, where the completeness of event log plays an extremely
important role. For limited event log (i.e., recognized as sample), the global
completeness needs to be evaluated by resorting to distribution fitting or at
least bound estimation. However, for complete event log (i.e., recognized as
population), the global completeness is definitely guaranteed. It seems that
the discovery problem becomes easier and the result will be more accurate!
However, much more attention should be further paid to the special cases
and quality of event log. Free control is fairly particular in CMCC to describe

Towards the Next Generation Intelligent BPM 7

the behavior that allows administrator to adjust a normal routine as what
he wants. It seldom appears in the complete event log for very special cases.
Actually, it almost cannot be automatically discovered due to its flexibility.
The data quality can also affect the efficiency of mining algorithms, while it
suffers from data missing and noise infection for population data.

– Individual Vs. Network. The observation of a large variety of complex
systems often reflects individual data sets and decentralized links, which can
be further integrated and consolidated together into a data network. Big
data is often associated with such kind of complex data network, so that it
is offering a fresh perspective, rapidly developing into a new network science
discipline [1]. It also has exerted a subtle influence on the BPM research and
applications. Web Ontology Language (OWL) has been introduced to serve
the annotation of process models, and then, a set of mapping strategies are
developed to conduct the annotation by considering the semantic relation-
ships between model artifacts to facilitate process knowledge management
and semantic interoperability [9]. Moreover, the business network manage-
ment (BNM) can strive to make business network, joined up by collaborating
business processes, visible within network views and combine automatic dis-
covery, mining and inference capabilities with expert knowledge in complex,
dynamic and heterogeneous enterprise domains [10].

– Causality Vs. Correlation. A major issue of concern in big data research is
that correlation plays much more important role than causality. For example,
Google’s founding philosophy is that we don’t know why this page is better
than that one: If the statistics of incoming links say it is, that’s good enough.
No semantic or causal analysis is required. However, we would like to mention
that causality and correlation are equally important in BPM field. Obviously,
processmining is strongly based on the rigorous deduction of activity causality
from event log. Correlation also attracts much attention, in the scenario that
some clustering based technologies are taken into consideration. In this situ-
ation, not only the business behavior and structure but also ontology based
business semantics should be treated to describe the process features.

3 Embrace the Idea of iBPM in the Era of Big Data

CMCC is committing itself to the exploring and practice of iBPM in the era of
big data, aiming at facilitating process consolidation and improving analytical
intelligence.

First of all, CMCC is concentrating on the key problems of business under-
standing & raw process reconstruction, complex business logic & recessive rules,
flexible modeling based on business semantics, as well as redundancy removal &
process repository. Several existing algorithms, such as process mining, process
models decomposition, similarity search, clustering and merging, are well con-
sidered and exploited. These algorithms are further implemented and integrated
into a tailor made process model configuration tool, in order that the advanced
analysis is appropriately integrated into the BPM life-cycle. Empirical study

8 X. Gao

also discovers some problems to be further considered. For example, the refined
process structure tree (RPST) [18] and its extension mainly focus on the struc-
ture instead of business logics. It suggests that business analysts may not easily
reuse these fragments directly obtained by RPST for modeling, where involving
business semantics into the fragmentization algorithms is of much interest. The
current mining algorithms provide efficient procedure to reconstruct mostly the
control flow, while the information from e-forms, rules and organizational rela-
tionship are also needed to elaborately consider in real scenario. Besides, the
business behavior of processes is always restricted by specifying constraints on
allowed actions, which are usually recessive and need to be modeled semantically.

Secondly, most of the big data surge is data in the wild–unruly stuff like words,
images and videos. Similar phenomenon partially happens in heterogeneous pro-
cess data. It is not typically grist for traditional databases. The NoSQL databases
based on distributed storage technology exhibit obvious advantages in CRUD,
which gains benefits regarding to extensibility, data model flexibility, economical
efficiency, accessibility and so on. Based on YCSB benchmark [3] and analysis
framework, CMCC developed a novel distributed cloud storage benchmark, ini-
tially consisted of 15 x86s (IBM 3650M3). Function, performance, scalability,
consistency are designed as the main test metrics for the mainstream distributed
file systems (e.g., HDFS, Swift, GPFS and so on) and NOSQL databases (e.g.,
Hbase, Cassandra, MongoDB and so on). By testing them, we found distributed
file systems also have exactly the same standard read & write interface, and
thus, is ready to conveniently replace traditional storage mode. MongoDB has
the most familiar operation interface with RDBM and balanced performance
and reliability in most cases. However, open source frameworks need detailed
parameter selection and optimization.

Thirdly, several related analyses are also conducted in CMCC. We have es-
tablished an open source based big data analytics platform. It implements sev-
eral time series analysis models for CMCC’s operations indicators predictions.
By combining Hadoop and Mahout, an efficient recommendation engine is con-
structed for Mobile Market (CMCC’s App Store, like Apple App Store), using
Parallel FP-Growth algorithm and taking advantages of the platform. Besides,
social network analysis (SNA) is applied and improved to analyze users’ behav-
ior, public feeling, employee emotion and so many topics, using internal social
network data and external internet micro-blog data. These technologies will be
further adjusted and transformed to BPM field to discover new value.

As mentioned in the previous conference keynote by Prof. Van der Aalst, the
“Big Data” wave is providing new prospects for BPM research [14]. We do believe
that big data will provide advancing trends in technology that open the door to a
new approach to promptly improve the theory and application level of iBPM.

References

[1] Barabászló, A.L.: The Network Takeover. Nature Physics 8(1), 14–16 (2011)
[2] Billsus, D., Pazzani, M.J.: Learning Collaborative Information Filters. In: Proc.

of ICML 1998, pp. 46–53 (1998)

Towards the Next Generation Intelligent BPM 9

[3] Cooper, B.F., Silberstein, A., Tam, E., et al.: Benchmarking Cloud Serving Sys-
tems with YCSB. In: Proc. of the 1st ACM Symposium on Cloud Computing, pp.
143–154. ACM (2010)

[4] Dijkman, R.M., Dumas, M., Dongen, B., Uba, R., Mendling, J.: Similarity of
Business Process Models: Metrics and Evaluation. Information Systems 36(2),
498–516 (2011)

[5] Ekanayake, C.C., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M., ter Hofstede,
A.H.M.: Approximate Clone Detection in Repositories of Business Process Models.
In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 302–
318. Springer, Heidelberg (2012)

[6] Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process
modeling. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 4–19. Springer, Heidelberg (2008)

[7] Janelle, B.H., Roy Schulte, W.: BPM Suites Evolve into Intelligent BPM Suites,
Gartner G00226553 (2011)

[8] Langley, A.: Strategies for Theorizing from Process Data. Academy of Manage-
ment Review, 691-710 (1999)

[9] Lin, Y.: Semantic Annotation for Process Models. Diss. Trondheim, Norway (2008)
[10] Ritter, D.: Towards a Business Network Management. Enterprise Information Sys-

tems of the Future, pp. 149–156. Springer, Heidelberg (2013)
[11] Samantha, S.: Research Index: New BPM Technologies Lead the Way to Achieving

Process Adaptability. Gartner 00228461 (2012)
[12] Sarwar, B., Karypis, G., Konstan, J., Riedl, J., et al.: Item-based Collaborative Fil-

tering Recommendation Algorithms. In: Proc. International Conference on World
Wide Web 2001, pp. 285–295. ACM (2001)

[13] Tawny, S., Brian, D.J.: Entertainment in the Age of Big Data. Proceedings of the
IEEE 100(5), 1404–1408 (2012)

[14] van der Aalst, W.M.P.: A Decade of Business Process Management Conferences:
Personal reflections on a Developing Discipline. In: Barros, A., Gal, A., Kindler,
E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 1–16. Springer, Heidelberg (2012)

[15] van der Aalst, W.M.P., Weijters, T., Maruster, L.: IEEE Transactions on Knowl-
edge and Data Engineering 16(9), 1128–1142 (2004)

[16] van der Aalst, W.M.P., Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.: Workflow mining: A Survey of Issues and Approaches. Data & Knowledge
Engineering 47(2), 237–267 (2003)

[17] van der Aalst, W.M.P., Song, M.S.: Mining Social Networks: Uncovering Interac-
tion Patterns in Business Processes. In: Desel, J., Pernici, B., Weske, M. (eds.)
BPM 2004. LNCS, vol. 3080, pp. 244–260. Springer, Heidelberg (2004)

[18] Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In:
Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
100–115. Springer, Heidelberg (2008)

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 10–16, 2013.
© Springer-Verlag Berlin Heidelberg 2013

BPM in the Cloud

Tom Baeyens

Effektif GmbH
Nürnbergerstraße 8, 10787 Berlin, Germany

tom@effektif.com
http://effektif.com

Abstract. When Salesforce started delivering software in the cloud, they started
a big shift in the CRM space. In the meantime, Software as a Service has be-
come the preferred form to deliver software. Now, Business Process Manage-
ment (BPM) products are starting to make their way to the cloud and they cause
a big impact. Here we explore the benefits of cloud computing applied to BPM
products. Basically the cloud is making BPM easier, faster and cheaper.

Keywords: BPM, business, process, management, cloud, SaaS, case, social,
collaboration, BPMN, IT, enterprise.

1 Hardware, Installation and Hosting

At first SaaS was mostly known for the fact that no client software needs to be in-
stalled on laptops and PCs. In the last ten years, the primary end user interface for
most BPM systems already were web clients. From that technological aspect, it's not a
big change for BPM. The change will be much more significant when looking at the
product design as we'll discuss throughout this paper.

The cloud also removes the need for server software installation. No hardware
needs to be selected, bought, installed and operated. This is normally done by the
company's IT department. The IT department has loads of other tasks beyond just
hosting that single BPM product. So in house IT personnel can never be as specialized
in hosting a particular BPM product then the vendor of that product itself. The quality
of service and responsiveness that companies get from in-house IT departments is a
lot less than from a cloud vendor. And on top of that, the cost of hosting and mainten-
ance is transferred from the buyer to the cloud vendor.

In typical on premise BPM purchase scenarios, a manager sees the benefits of a
BPM system and becomes the promoter within the organization. It takes dedication
from that manager to organize several meetings with IT to push the purchase of a
BPM product. There are many managers that see the benefit, but don't have that per-
severance. Cloud BPM services eliminate that lengthy BPM purchase process. On the
cloud, managers can just register an account themselves and get started without de-
pending on the IT department. This way, getting started with BPM on the cloud is a
lot faster and lowers the threshold so that managers can take an individual decision to
get started with BPM.

 BPM in the Cloud 11

2 Security, Firewall and Tenants

Same specialization reasoning holds for security. Cloud software providers are in the
business of software and IT. Their existence directly depends being honest, open and
secure. SaaS vendors are far more specialized in security compared to IT staff in a
brick-and-mortar company.

Fig. 1. The corporate firewall shields a company’s internal network from the outside

Over the last two decades, a feeling of security was obtained by placing a firewall
fence around the company's network. Internal applications are then deployed within
the VPN. The downside of this approach is accessibility. People need a VPN to access
internal systems and that is not available everywhere. Also for B2B integration this is
a pain as it is often a difficult procedure to get the corporate IT department to open
access to a certain system.

For all those on premise applications, new cloud services have appeared in recent
years. All enterprise services like Google Apps have the notion of a tenant. A tenant
represents the boundaries of the company and replaces the function of the firewall
within a service.

Fig. 2. Multi-tenancy in cloud computing environments

In the past, there has been a bit of reluctance to put corporate data outside of the
firewall. But nowadays tenant policies replace the function of the firewall. A tenant is
the space in a cloud service that is reserved for single company. Typically those ser-
vices have the capability to specify advanced security policies. In a cloud BPM

12 T. Baeyens

system an example of such a policy would be: No documents from our Google Drive
can be shared by with people outside our company. And the advantage is that docu-
ments and other items living in a cloud services are accessible from anywhere and
easier to share.

3 Easier B2B Collaboration

Cloud services are ideal to facilitate B2B collaboration. It's easy to see when compar-
ing how people collaborate on a Google Document versus the alternative of emailing
Word document versions around. When collaborating with people in other companies,
internal corporate systems behind a firewall are hard to use at best.

For BPM services in the cloud this means it's easy to share cases, tasks and other
forms of collaboration spaces with people from other companies.

4 Eliminating the Upfront Investment

The server purchase and installation efforts combined with the typical high cost of an
on-premise BPM product form a big financial investment that has to be done upfront
before actual use of the system can start.

For many smaller scale deployments, this investment is just not feasible. Even in
large organizations, a lot of managers initially have just one process where a BPM
system would be a good fit. This initial investment prevents them to get started for a
single process. Without this upfront investment, managers can get started even with a
single process.

The big upfront investment also implies that decision makers face a big risk. What
if the benefits don't turn out the way people have hoped for? In the cloud, the pay per
use models remove the need for facing such uncertainty. A pilot process can be put in
operation knowing that the cost for this process will remain low.

5 New Category of Clients: End Users

People in IT departments are primarily the drivers of BPM product purchases. When
looking at cloud BPM, these people still take initiative to purchase a product. But
because anyone can register an account, also end users can now become the drivers
for purchasing a cloud BPM solution. This leads to Bring You Own BPM system.
Meaning that individual employees can take initiative and choose their own solution
to deal with a problem.

This may look insignificant, but for the cloud in general, this is the root cause of a
big shift in terms of product design. This is the reason that SaaS services excel in
simplicity and user experience. In the past, the focus was on features. The IT depart-
ment selection process often involves a request for proposal (RFP). Such an RFP
contains a big list of features with checkboxes for each product in the comparison. Of
course, this is a big driver to BPM vendors to add more features.

 BPM in the Cloud 13

In BPM, this effect is reinforced by big analyst firms. The intelligent BPMS defini-
tion of Gartner is a good example of this. It highlights all components and functions
that can be included in a BPM product. These are totally valid, but what is missing is
the tradeoff in terms of simplicity and user experience. How much training is required
to make use of all those features and functions? Can people outside the company be
involved at all? That's a hidden cost often overlooked. Both RFPs and analyst firms
have pushed BPM products to include ever more features and functions without tak-
ing those hidden costs for end users into account.

When selling to end users, user experience exceeds the importance of the number
of features. End users require that they become productive without assistance or train-
ing. And they have an attention span that is often just five minutes. That puts a totally
different perspective on how cloud products are designed.

Let's look at cloud services like zapier.com or ifttt.com. These are based on a 2 step
process. Essentially these services allow users select a trigger and bind it to an action.
For example, when a new contact is added to my Salesforce account, add it to my
Google account. It could be seen as the simplest form of process. They succeeded in
making the simplest form of a process available to everyone. That's a good example
of the other end of the tradeoff between features and simplicity.

The end users as a new category of clients will require BPM products in the cloud
to take user experience to new levels, even when this comes at the expense of some
advanced features.

6 Changing Dynamics between Business and IT

A major unique selling point for BPM systems has been their agility. It's often dem-
onstrated how easy it is to change arrows in a process diagram and instantly publish
that change into a running system. In practice on the other hand, the processes imple-
mented with BPM systems tend to have many integrations with other systems. The
main reason for this is lack of an iterative approach. The whole process is typically
analysed upfront and all there is a high degree of feature creep.

For example at some point in a seminar process, the participants might be pushed
to the company's Salesforce account as contacts. Those integrations require data to be
exchanged between the BPM system and the external system. So there is a dependen-
cy between the activities in a process producing a certain data item and other activi-
ties consuming the data. This aspect is usually not modeled as it would clutter the
process diagram. In those processes it's not possible for non-technical business people
to change the diagram freely without being aware of those data dependencies.

So from the moment when IT people start to include integrations with other sys-
tems, data dependencies start to appear. It's those data dependencies that prevent
business people from changing the process diagram freely.

This aspect also leads to a clear split between end users and IT people. Managers
should be able to create processes that handle the coordination of people. For the
people coordination aspect, no system integration is required so managers can keep
changing the process until it is stable, measured and proven to be valuable. It makes
sense to postpone technical system integrations until that point.

14 T. Baeyens

This means that in the first phase, managers on their own can publish the complete
process that deals with handovers, approvals and escalations. With only those aspects
in the process it remains agile and managers can change and optimize it freely on their
own. As they don't need to coordinate changes with IT, these iterations can be pub-
lished fast and frequently. The process is kept agile a lot longer and many costly, time
consuming IT cycles are prevented.

7 From Collaboration to Processes

The last five years, a clear trend has been to add Advanced Case Management (ACM)
to BPM. Where BPM is historically focused on predefined flows, ACM is focused on
supporting ad hoc work.

In the cloud, services like asana.com, basecamp.com and do.com show the same
features as found in ACM. Basically they have tasks that can be shared with other
people. Tasks are shared with a group of people, they can be discussed and contain a
list of documents and links. I will refer to this type of service as social collaboration
service.

The mentioned social collaboration services are created with a primary focus on
user experience. Any employee that works online regular can learn these services
without special training. These examples show that collaboration is the more general
term used in the cloud for ACM features.

Social collaboration is an essential component of a cloud BPM service. It's the in-
cubation ground for processes. A large portion of the work and tasks that people per-
form is done only once. When users spot patterns in the work they do, then a template
or a process is a natural next step.

Tasks in the process execution can then be offered inside the social collaboration
environment. That creates consistency between dynamic work and predefined work.
And more important, it allows process owners to release early. That's because all as-
pects not yet part of the process can be handled in each case individually as ad hoc
collaboration.

8 The Lifecycle of a Process

A process can start in a very basic form of a checklist. This just takes one or two mi-
nutes to produce. The process only contains a list of tasks and some of them can be
assigned. When this is proven to be helpful and after some more experience is ob-
tained with the process, then the process can be elaborated in a subsequent iteration.
That could be to put tasks in sequence or add forms to tasks. Typically it only makes
sense to include custom coded integrations and exception paths in later stages.

This shows the lifecycle of a process. A process can start off as a checklist or sim-
ple template. This only models a fraction of the whole process and the social collabo-
ration features complement the predefined process. Going forward it's easy to publish
improvements to that process. Typically it only makes sense to add integrations in

 BPM in the Cloud 15

later stages as the data dependencies can impact the agility. So at that point, the
process should be fairly stable.

9 Capture the Experience

In the BPM community and in most BPM systems, there seems to be an assumption
that processes need to be analysed and then they can be automated. I believe this ori-
ginates from BPM projects being seen as IT projects. As analysts dive deep into the
process, they spot a lot of opportunities for automation and this leads to feature creep.
Feature creep means that feature requests keep being added so that the scope becomes
bigger than originally intended. The result is that processes often become very large
IT projects.

But this actually implies a big unnecessary overhead. Interviewing people and fi-
guring out how the pieces of the process puzzle fit together is often one of the hardest
parts of BPM. It's often surprising how people get things done when it's so hard to
find out how people work together. So even the quality of those type of analysis can
be questioned. When capturing the experience on the spot, the idea is that the big
upfront analysis is skipped.

As a side note, there is an unwritten law in the cloud stating that users must see in-
stant value for the actions they perform. Doing an upfront theoretical analysis can
hardly be called direct. Instead this should be replaced with capturing the experience
that is obtained by doing.

Taking the lifecycle of the process in mind, it's clear that in the early stages, the
process is still very agile. When a process is only a checklist of tasks, it's very easy to
add or remove a task and republish the process. So rather than performing that upfront
analysis and try to capture the full process in one go, let's start simple and make it
easy to apply improvements in small increments.

The main advantage of this iterative approach is that real world experience can be
captured. When a manager discovers that an employee has bought a personal laptop
with the company credit card, an approval could be added to the process for purchases
above $1000.

The experience that is captured while process owners are dealing with concrete
cases of the process, is much better quality compared to the theoretic knowledge pro-
duced by an analyst. On top of that, all the effort done to produce the lower quality
upfront analysis is eliminated.

10 Adding Custom Code into a Cloud Process

On the cloud, there needs to be a scalable and simple way to include integration and
custom coded logic into a process. Amazon Simple Workflow Service introduced a
robust pattern for this purpose. Similar to a task list for people, the cloud workflow
system maintains an activity instance list each time an activity is to be performed.
External activity workers can initiate a request to obtain instances of an activity they
have to perform. Typically external workers perform only instances of a specific ac-
tivity in process.

16 T. Baeyens

This is a great pattern because it activity workers can be hosted on anywhere: on
premise behind the firewall, on a private cloud or on public cloud infrastructure. It's
great for scaling because for high throughput activities, as many activity workers can
be started as necessary to cope with that load.

This pattern is also great because it supports polyglot programming. Nowadays, it's
quite normal to have multiple programming languages in use in a single organization.
Developers can choose their favorite language to implement the task logic and the
communication is standardized with HTTP and REST web services.

The open APIs for obtaining and completing activity instances allows for any
cloud service to offer actions in their service as activities in a process. For example,
Salesforce or any other party could create an activity worker to add a lead to Sales-
force as an activity in the process. This will enable a marketplace for activity types.

Fig. 3. The role of activity workers in cloud-based BPM

11 Conclusion

The cloud will make BPM simpler, faster and cheaper. The pay per use model on the
cloud removes upfront investment of money and resources. Because end users are
added as the new clients in that model, user experience becomes essential. This means
that employees don't need training and can learn BPM services by trying and explor-
ing. Instead, individual managers can start practicing BPM on their own. The lifecycle
of the process will shift to become a natural path from social collaboration over sim-
ple checklists to fully automated processes. An iterative approach allows real world
experience to be captured often removing the need for upfront analysis. Because of
the open APIs to complete system tasks, a marketplace will ensure a broad range of
activity types that can be used in processes.

On premise BPM technology has proven its value and already has a significant
market size. The cloud will enable usage of BPM in many situations where it wasn't
affordable before. Especially the reduction of investment in time and money will ena-
ble individuals to start with process automation. That shift from company wide to
personal initiatives will cause mainstream adoption and put BPM as a central technol-
ogy in small, medium and large enterprises.

Bridging Abstraction Layers in Process Mining

by Automated Matching of Events and Activities

Thomas Baier1 and Jan Mendling2

1 Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany

thomas.baier@hpi.uni-potsdam.de
2 Wirtschaftsuniversität Wien, Augasse 2-6, 1090 Vienna, Austria

jan.mendling@wu.ac.at

Abstract. While the maturity of process mining algorithms increases
and more process mining tools enter the market, process mining projects
still face the problem of different levels of abstraction when comparing
events with modeled business activities. Current approaches for event
log abstraction most often try to abstract from the events in an auto-
mated way which does not capture the required domain knowledge to
fit business activities. This can lead to misinterpretation of discovered
process models. We developed an approach which aims to abstract an
event log to the same abstraction level which is needed by the business.
We use domain knowledge extracted from existing process documenta-
tion in order to automatically match events and activities. Our proposed
abstraction approach is able to deal with n:m relations between events
and activities and also supports concurrency. We evaluated our approach
in a case study with a German IT outsourcing company.

Keywords: Process Mining, Abstraction, Event Mapping.

1 Introduction

Process mining is an emerging research field which is increasingly applied in
practice. Using the event data logged by IT systems, process mining algorithms
discover and enhance process models or check whether the execution of a process
conforms to specification [1]. Looking at conformance checking and enhancement,
it is obvious that the events stemming from the IT system have to be mapped
to the activities defined in the process models. However, the events are typically
more fine-granular than the activities defined by business users. This implies
that different levels of abstraction need to be bridged in order to conduct a
conformance analysis. Furthermore, such a mapping is not only necessary for
conformance checking and process model enhancement, but also for discovery.
The benefit of a discovered process model can only be fully exploited if the pre-
sented results are on an abstraction level which is easily understandable for the
business user. Nevertheless, most of current process mining techniques assume
that there is a 1:1 mapping between events and activities. There are some ab-
straction approaches which try to close this gap by preprocessing the event log

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 17–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

18 T. Baier and J. Mendling

and automatically finding clusters of events which can be bundled into activities.
Yet, these techniques have limited capabilities in dealing with complex mappings
between events and activities. Also, they provide no or only limited support for
correctly refining these mappings based on domain knowledge.

The contribution of this paper, which builts on our former work [2], is a
mapping approach which suggests relations between events and activities in an
automated manner using existing process documentation as e.g. work instruc-
tions. Having suggested a set of potential event-activity relations, we further-
more define means to dissolve n:m relations. In contrast to existing approaches,
the method introduced in this paper is designed to deal with concurrency and
to handle n:m relations between events and activities. Our event log abstraction
approach can be used as a preprocessing for every process mining technique.
Furthermore, we conducted a case study in order to evaluate our approach. The
results show the benefits of our approach and emphasize the sensitivity of con-
formance checking to the defined mapping problem.

The paper is structured as follows. Section 2 describes the problem of different
abstraction levels in event logs and process models and introduces the prelim-
inaries for our approach. Section 3 introduces the strategies to overcome the
gap between abstraction levels of event log and process model. In section 4, we
show the results from a case study of a German outsourcing provider where we
benchmarked our approach against a manually created mappping and outline
the implications on conformance testing. Related work is discussed in section 5
and section 6 concludes the work.

2 Background

2.1 Problem Description

In this section we illustrate the problem at hand. In order to illustrate the
different abstraction layers on design and event log level, Fig. 1 shows a simple
process model with a sequence of activities A, B and C. For each activity we
find a set of related events in the event log. Hence, the activities and events
are in a 1:n relation which is due to the fact, that the event log is on a lower
level of abstraction compared to the designed model. Thus, there has to be a
bridging model in between which is on the same level as the event log and shows
the relations between the events and their relations to the high-level activities
defined in the process model. Yet, this model is typically not available and too
complicated to be created. One possible model of these sub activities is shown
in Fig. 1. Here, we assume that all events are mandatory and occur in a strict
sequence. Nevertheless, every other order of these events is possible and could
also include loops, parallelism or exclusions. Furthermore, certain events might
not be mandatory. Note that Fig. 1 also shows that events with the same name
might not always belong to the same activity because they represent some shared
functionality which is used in different activities. An example of such a shared
activity is the writing of protocols during the execution of an activity. This is
often done for several activities in a process. The bridging model would specify

Abstracting Event Logs by Automated Matching of Events and Activities 19

A C

C_1 C_2 C_3

=

Z1 Z2 Y3

= =

A_1 A_2 A_3

=

X1 X2 X3

= =
A_4

X4

=

B

B_1 B_2 B_3

=

Y1 Y2 Y3

= =

B_4

Y4

=

B_5

Y5

=

Activities

Sub Activities

Events

Fig. 1. Abstraction levels with shared functionality: From design to event log

the process in that detail that each sub activity could be identified with an event.
In the absence of this bridging model, the relationship between events belonging
to the same activity remains unspecified.

In order to make the problem more comprehensive, we will use the Incident
Management process as defined in the IT Infrastructure Library (ITIL) as a
running example. Figure 2 shows the process model of the Incident Management
process at a very abstract level similar to the definition which can be found in
the ITIL reference books [3]. At the bottom of Fig. 2, an excerpt of six example
cases from a corresponding event log is displayed. Here, the difference between
the abstraction levels as well as between the execution sequences can be seen.
Activities designed as sequence run in parallel in reality which confuses current
abstraction approaches relying on pattern extraction and close co-occurrence as
e.g. proposed in [4]. The problem of shared activities is also clearly depicted.
The event “Select CI” (configuration item, e.g. a harddisk) is executed between
zero and 3 times per process instance. Depending on when in the process execu-
tion the event occurs, it belongs to different activities. When happening at the
beginning of the process execution the event reflects the activity “Initial diag-
nosis” executed by the first level team. Later it occurs if the configuration item
is changed by the 2nd level team or if somebody changes a wrong configuration
item during the quality checks of the incident closure.

2.2 Preliminaries

In this section we introduce the preliminaries on which we ground our work. This
includes the definition of a process model, a process execution and an event log.
Definition 1 formalizes a process model as a tuple of activities, control nodes
and flow relation. Based on this, we introduce the notion of a process execution
in Definition 2. Note that this definition also includes process executions which
do not conform to the process model.

Definition 1. (Process model) A process model is a triplet P = (A,F,C), with

◦ A as a non-empty set of activities, each having different attributes (attr ∈
AT). For each attribute #attr(a) refers to the value of the attribute attr for
the activity a ∈ A.

20 T. Baier and J. Mendling

Incident
logging

Incident
classification

&
categorization

Initial
diagnosis

Functional
escalation

Investigation
and

diagnosis

Resolution
and

recovery

Incident
closure x x

Case 1: Group, Classification, Details ��������������������., Document solution, �������......., Close ticket
Case 2: Group, Classification, Select CI, Details,���������������., Document solution, �������......., Close ticket
Case 3: Group, Classification, Select CI, Details,�, Group, �. Select CI, �, Document solution, �������......., Close ticket
Case 4: Group, ��.�........., Select CI, Details,��������������...., Document solution, �, Select CI, �......, Close ticket
Case 5: Group, Classification, Select CI, Details�.., Group, ��������.., Document solution, �, Select CI, �......, Close ticket
Case 6: Details, Group, ��������������������������., Document solution, �, Select CI, �......, Close ticket

Event log

Group, Classification, Details ������
Group, Classification, Details,�
Group, Classification, Details,�
Group, , Details,�
Group, Classification, Details�
Details, Group, ������������

Process model

Select CI,
Select CI,
Select CI,
Select CI,

Group,
�����

Group,

Document solution,
Document solution,
Document solution,
Document solution,
Document solution,
Document solution,

Select CI,
Select CI,
Select CI,

Close ticket
Close ticket
Close ticket
Close ticket
Close ticket
Close ticket

�����
Select CI,

Classification
Classification
Classification
��.�.........,
Classification

Fig. 2. Example of event to activity relations: Incident Management process model
and low level event log with shared functionalities and concurrency

◦ C as a set of control nodes which is disjoint to set A.
◦ F ⊆ (A ∪ C) × (A ∪ C) as the flow relation, which connects activities with
each other and with control nodes to build a directed graph.

We require each activity to have at least the following two attributes:

◦ #name(a) refers to the activity name.
◦ #id(a) refers to the unique identifier of the activity.

It has to be noted that #name(a) = #id(a) is also a valid case, iff
∀a ∈ A �a′ ∈ A : #name(a) = #name(a

′).

Definition 2. (Process execution, process instance, activity instance) Let P be
a process model and A the set of defined activities within this model. A process
execution is any sequence of activity instances â ∈ Â∗.

An IT system which supports process executions typically records events in an
event log. Definition 3 presents the basic concepts of an event log.

Definition 3. (Event class, event instance, event attributes, trace, event log)
Let E be the non-empty set of event classes and Ê the set of event instances.
Each event instance has different attributes (attr ∈ AT) assigned to it. For each
attribute #attr(ê) refers to the value of the attribute attr for the event ê. A trace
is a list of the form Ê∗. An event log L is a multi-set of traces over Ê, i.e.,
L ∈ B(Ê∗).

We assume that an event has the following standard attributes (cf. [1]):

◦ #name(ê), which refers to the event name and thus, to the event class.
◦ #time(ê), which refers to the time when the event occurred.

Furthermore, each trace in an event log is related to a process execution. Note
that the formerly described attributes are only the mandatory attributes we
assume for every event. Other attributes may contain role information or values
of changed database field which might also be used for defining the mapping.

Abstracting Event Logs by Automated Matching of Events and Activities 21

3 Abstracting Event Logs Using Automatic Matching

This section introduces our approach for relating events to process model activ-
ities. The approach consists of four distinct phases:

1. Annotation of process model activities,
2. Matching of activities and events on type level,
3. Definition of context-sensitive mappings, and
4. Clustering of event instances to activity instances.

3.1 Annotation of Process Model Activities

As a major challenge in event-activity matching is the diverging level of abstrac-
tion, we utilize annotations. These annotations serve the purpose of enriching
the coarse-granular activities of the process model with detailed information
that helps to link to events. Typically, organizations maintain such detailed tex-
tual documentation of a process, which extends the information provided in the
model, e.g. to serve different stakeholder groups [5]. Such documentation is often
used as work instructions.

In modern business process modeling tools, process models and activities can
be connected with such work instructions, such that the annotation of the activ-
ities is readily available. In the companies we have worked with, we often found
work instructions in a tabular form consisting of columns for the activity name
and the detailed description. In the following, we assume that such a description
is available or can be directly linked to an activity. Note, that the annotation
is not mandatory for each activity. Yet, it is likely to significantly improve the
automated matching result.

Definition 4. (Process description, activity description) Let P be a process
model and A the set of defined activities within this model. A process descrip-
tion is a set of activity descriptions which are triplets of the form (#id(a),
#name(a), textual description).

3.2 Automatic Matching of Events and Activities

Having established the connection between activities and their textual descrip-
tion, this second phase deals with the derivation of mappings between events and
activities. To this end, we have to inspect each combination of event class names
and activity descriptions for potential correspondences. In order to check for a
potential correspondence, we extract business objects from the event class name,
the activity name and description using the Stanford Part-of-Speech (POS) tag-
ger [6,7]. This allows us to use not only string comparison, but also semantic
relationships between terms on the event and on the activity level. We also
use stemming and word decomposition [8], e.g. to find correspondences between
singular and plural words and between different derived forms. For the decom-
position of compound words in our case study, we use a language independent,
lexicon-based approach developed by Abels and Hahn [9]. It generates possible

22 T. Baier and J. Mendling

splittings of words and checks whether the generated parts are covered in a lex-
icon. In our approach we use JWordSplitter, an open source implementation of
this approach with an integrated German lexicon1.

Algorithm 1. Check activity description for potential event-activity relation

1: checkRelation(eventClass, text)
2: Set eventObjects = extractNouns(eventClass)
3: Set textObjects = extractNouns(text)
4: for all eventObject ∈ eventObjects do
5: for all textObject ∈ businessObjects do
6: if eventObject==textObject then
7: return true
8: else
9: if checkPartialWordMatch(eventObject, textObject) then
10: return true
11: end if
12: end if
13: end for
14: end for
15: return false

Hence, we compare all business objects in two ways. First, we do a simple
string match and second, we decompose the business objects into their smallest
semantic components and compare these with one another. The comparison of
decomposed word parts is done with simple string comparison and comparison
of word stems. In this way, we are able to relate words like “Fachgruppe” (pro-
fessional group) and “Skillgruppen” (skill groups). The result of this phase is
an automatically provided list of potential event-activity relations on type level,
which can be refined and extended by a domain expert.

3.3 Building Context-Sensitive Event-to-Activity Mappings

Based on the approach reported above, we find potential event-activity relations.
This section describes the necessary steps to get from the potential relations to
a concrete event-to-activity mapping which can be used to abstract the event
log.

In order to lift an event log to the abstraction level of a corresponding set
of activities, we define a mapping relation which assigns every event instance
ê ∈ Ê to an activity instance â ∈ Â. Hence, all events in an event log have to be
either mapped onto their corresponding activity or removed from the log. The
challenge in this context is to identify the condition that helps to decide when
one event class matches one of alternative activities. To this end, we consider the
context of an event, either as defined over the event attributes or the surrounding

1 See http://www.danielnaber.de/jwordsplitter/

http://www.danielnaber.de/jwordsplitter/

Abstracting Event Logs by Automated Matching of Events and Activities 23

event instances. First, the role that is related to an event might be important to
distinguish different activities in the process model. For example, a the selection
of a configuration item (CI) in Figure 2 belongs to the activity “Initial diagnosis”
when executed by a first level agent while the same event class refers to the
activity “Investigation and diagnosis” when executed by a second level supporter.
Second, the relation of an event instance to an activity might also depend on the
context in terms of preceding or succeeding event instances. While the selection of
a CI normally happens during the activities “Initial diagnosis” or “Investigation
and diagnosis”, depending on the executing role, it can also be performed as
a quality improvement step during the closure of the incident ticket. As shown
in Figure 2, this is always the case if the solution has been documented before.
Third, an event might be interpreted differently if it occurs for the first time
or if it has been preceded by earlier executions. In the example in Figure 2,
the working group is always set in the beginning where it simply refers to the
logging of the incident while every other change of the working group refers to
the functional escalation of the ticket. In order to use such domain knowledge, we
have to encode it in a formal way. Definitions 5 and 6 introduce the formalization
of meta data conditions and event context conditions.

Definition 5. (Meta data condition) Let O be the set of comparison operators,
e.g. O = {equals, contains, startswith}, and let V be the set of values that an
event attribute attr ∈ AT should be tested against. Then, a meta data condition
is a tupel mdc ⊆ AT × V ×O.

Definition 6. (Event context condition) An event context condition is defined
by a tupel ecc = (f, r), where f is a condition defined as linear temporal logic
formula [10] and r ∈ {before, after} refers to the part of an event context ÊC in
which this formula should be tested. The event context ÊC is a tupel (tbefore, tafter)
where tbefore and tafter are subtraces of a trace t such that t = tbefore‖ê‖tafter.
When shared functionalities are discovered in the suggestion phase, the user
needs to define the necessary meta data or context conditions in order to dissolve
the assignment problem. Having these conditions, we define an event class to
activity mapping EAM based on event classes and conditions that have to be
fulfilled for a corresponding event instance in order to be mapped to a specific
activity. The conditions can be meta data conditions as well as event context
conditions.

Definition 7. (Event class to activity mapping) An event to activity mapping
is a function EAM : E×MDC×ECC → A, which relates an event class to an
activity class based on a set of meta data conditions and a set of event context
conditions.

Definition 7 gives the mapping between activities from a process model and event
instances found in an event log. For our examples the role based mapping could
be defined as
(’Select CI’, {(′role′, ’first level’,′ equals′)}, {}) → ’Initial diagnosis’

24 T. Baier and J. Mendling

(’Select CI’, {(′role′, ’second level’,′ equals′)}, {}) → ’Investigation & diagnosis’
and the occurrence based mapping could be defined as
(’Select CI’, {}, {(<> (′’Document solution’),′ before′)}) → ’Incident closure’.

3.4 Clustering Events to Activity Instances

Having established the relations between event classes and activities on the type
level, we still need to identify relations between events and implicit activity
instances. Therefore, we specify a function ÊAM which maps event instances
surrounded by an event context to an activity.

Definition 8. (Event instance to activity mapping) ÊAM : Ê× ÊC×EAM →
A is the function which maps an event instance ê to an activity class A based
on the event context EC and the given event class to activity mapping.

Having a mapping function ÊAM , the next step is to define how to map event
instances belonging to the same activity class to activity instances. As there
might be multiple activity instances for one activity in a process execution, i.e.
in a loop, the question is, which criteria are used to map an event instance x̂i to
an activity instance âj . In this case, we need to define the border between events
belonging to two or more instances of the same activity. Definition 9 therefore
introduces the notion of instance border conditions.

Definition 9. (Instance border condition) An instance border condition defines
under which conditions two event instances, which are mapped to the same ac-
tivity a, cannot belong to the same activity instance âi and thus, correspond
to two different activity instances âi, âj. It is defined as a boolean function

BC : Ê × Ê → {true, false}.
Instance border definitions relate to two levels: intra sub-activity structure and
inter sub-activity structure. Concerning the intra sub-activity structure, we have
to decide whether there are loops in sub-activities or not. While the assumed
sub-activity model might not contain loops, this does not imply that there are
no loops on the inter sub-activity level. The latter have to be lifted to activity
level if we assume there should not be any loops on sub-activity level. In line
with this assumption, an activity instance border is marked by the repetition of
source events from the same event class, i.e. the repetition of a source event class
signals that a new activity instance has started. Thus, for example two protocol
events could indicate rework and therefore two instances of the corresponding
activity.

Using recurring source event classes as instance border definition works only
if there are no loops in the assumed sub-activity model. If there are loops on the
intra sub-activity level and in the process model, multiple event instances from
the same event class might belong to one activity instance. A typical example for
this is a loop over the order items in an order list where different activities like
“Choose supplier” and “Sent order” have to be performed for each order item
and are modeled in the process model on activity level. The activity “Choose

Abstracting Event Logs by Automated Matching of Events and Activities 25

supplier” might contain different activities which have to be executed for each
supplier, like e.g. “Check prices”. Thus, we have a loop on activity level and a
loop on sub-activity level. In order to find the correct instance borders, we need
to extend the instance border definition to also use different business objects,
e.g. the order line, as instance border markings. Thus, instance borders can be
defined over any attributes attached to an event.

If such meta data is not available or if it is not possible to make such state-
ments about the assumed sub-activity model, we need to use heuristics in order
to be able to identify different activity instances. As a first heuristic for instance
border definition builds on the assumptions of a maximum number of events that
belong to one activity instance. This is simple, if we can exclude the occurrence
of loops on sub-activity level, but might be difficult otherwise. A second heuristic
is defined based on a threshold for the maximum distance between two events
which belong to one activity instance. This distance can be specified using the
time perspective, i.e. defining how long the time frame between two events of
the same activity instance can be. For example one might limit the time dis-
tance between two events of the same activity instance, e.g. two edit events for
a protocol belong to different activity instances if there are more than 24 hours
between them. Another way to specify the distance is to use a maximal number
of events which are allowed to occur between two events of the same activity
instance.

Definition 10 specifies the function ÊÂM which uses the previously defined
event instance to activity correlation provided by ÊAM and maps these pairs
of the form (ê, a) to activity instances using defined instance border conditions.

Definition 10. (Event instance to activity instance mapping) The function
ÊAM provides a set of event instances mapped to activity classes which is a
subset of Ê × A. Then ÊÂM : Ê ×A × BC → Â is the function which assigns
a previously mapped event instance to its corresponding activity instance â. For
each a ∈ A there is a set of instance border conditions bc ⊂ BC. An event in-
stance ê which is mapped to an activity instance â is referred to as source event
of â.

Definition 10 covers 1:1 and 1:n relations on the instance level. A 1:1 mapping
on instance level only occurs for events and activities which are on the same
abstraction level. Looking at different abstraction levels it is most likely that an
activity instance on a higher level subsumes multiple event instances representing
different sub activities. Thus, in most cases we face a 1:n mapping on instance
level and event instance will be clustered to activity instances. Nevertheless, it
can be the case that one event instance reflects multiple activities. Coming again
back to our protocol example, it might happen that the protocol does not only
contain the analysis results but also the planning of the next steps. This might
be recognized by scanning the content of the protocol which is attached to the
event instance as meta data. To solve this n:1 relation problem, we can simply
duplicate the event instance to create a 1:1 or 1:n mapping on instance level.

In order to transform a given event log to a higher abstraction level, we
iterate over the traces in a log and rename the event instances with the names

26 T. Baier and J. Mendling

Find best
host for

new event

Check for
instance
border

Add event
to cluster

of host

Find optimal
cluster

splitting

x

Instance border function
–  repetition of events
–  roles
–  distance
–  max. cluster size

Distance function using
–  distance in log sequence
–  timestamps
–  other meta data

Cluster goodness function
–  Based on distances

between cluster members

�������	�
�������

����	�
�������������

Fig. 3. 4-step instance clustering algorithm

of the activities assigned by the function ÊAM . The source events are kept
as attributes to the abstracted events. Next, the events assigned to the same
activity class need to be clustered to activity instances using the instance border
definitions as defined by the function ÊÂM . The algorithm we propose for the
clustering of events to activity instances is grounded on a tree-based incremental
clustering algorithm known from classical data mining [11]. For every activity
class the clustering forms a tree with the event instances as leaves and the activity
instances on the next higher level. The clustering starts with an empty tree for
each activity class consisting of the root alone. Next, the event instances are
incrementally inserted into the tree. Updating the tree is done by finding the
right place to put the new leaf. This may also cause the restructuring of the part
of tree that is affected by the new instance. The algorithm consists of 4 main
steps as depicted in Figure 3. The best host for a new event is the event with the
minimal distance which can be expressed by a distance function using e.g. the
time stamps of the events or other meta data. Having found the optimal host,
we have to check for all events belonging to the same activity instance as the
host event, that these do not fulfill any border condition in combination with
the event that has to be inserted into the cluster. If no instance border is found,
the event is added to the activity instance cluster of the determined host event.
Once an instance border is found, we need to determine where the new activity
instance starts as this might already have happened before the occurence of the
event that signaled the border. This is done using a goodness function based
on the summation of distances within a cluster. The goal is to find the optimal
clustering with the minimal sum of distances between events belonging to the
same activity instance cluster. For further explanations of the instance clustering
algorithm, we refer the reader to our previous work [2].

Abstracting Event Logs by Automated Matching of Events and Activities 27

4 Evaluation

In order to validate how well our approach works with real life data, we con-
ducted a case study using data from the incident process of a large German IT
outsourcing project. The process model specifying the designed process has 41
activities and the corresponding event log contains 17,209 cases, 31 event classes
and a total of 479,408 event instances for a selected month. Within the case
study we evaluated all four phases of our approach. We pay special attention to
the automated matching of events to activities and to the clustering of event in-
stances as these are the critical parts of our approach. We therefore compare (1)
the automated matching with a manual matching and evaluate the gain retrieved
by using external domain knowledge. Moreover, we compare (2) the produced
activity instances by our proposed clustering algorithm with manually build ac-
tivity instances. To further highlight the importance of a correct abstraction, we
(3) show the impact of different clustering parameters on conformance analysis.
For the purpose of evaluation, our approach has been implemented as a set of
two plugins in the process mining workbench ProM.2

52,00%

29,77%

64,71%

24,56%

0%
10%
20%
30%
40%
50%
60%
70%

Recall Overall
Precision

Name Match
Precision

Description
Match

Precision

Fig. 4. Recall and precision for automated matching

11

28

0

5

10

15

20

25

30

Activity
Name

Activity
Description

Fig. 5. Correct matches by
source

In the first phase, we annotated the activities from the given process model
with descriptions from two provided work instruction documents with a total of
238 activity descriptions. The matching algorithm annotated 32 process model
activities with 66 description. Thus, for many of the activities we even found mul-
tiple descriptions in the provided process description. Yet, not all process model
activities could be annotated due to missing descriptions in the process docu-
mentation. This already provides valuable information for the process manager
of the process. Looking at the result of the second phase, the automated match-
ing of events to activities on type level, we measure (1) the precision (number
of correctly matched event-activity pairs divided by all matched pairs) and the
recall (number of correctly matched event-activity pairs divided by all manually
matched event-activity pairs). Figure 4 presents the overall results for these two

2 See http://processmining.org for more information on ProM.

http://processmining.org

28 T. Baier and J. Mendling

measures. The not very high overall precision of 29,77 %, is mainly caused by
matches which are based on the additional activity descriptions. Here, we only re-
trieve a precision of 24,56 % while the precision of matches on the activity names
is quite high with 64,71 %. Nevertheless, the additional descriptions account for
28 correct matches while there are only 11 correct matches on activity names.
Thus, the matching of activity descriptions contributes a much higher share to
the overall recall of 52 % than the matching of activity names. This shows that
our approach of annotating the activities with additional data is beneficial.

Still, the gap in recall has to be further analyzed. The main reason for about
85 % of the event-activity relations that could not be found in this setting, is that
these steps where simply not documented in the given work instructions. Some
of these are simply missed out and need to be updated in the description. Here
the approach already helped in identifying gaps in the process documentation.
The other fraction of the undocumented relations are steps which are automati-
cally done by the system and are therefore missing in the documentation for the
people executing the process. Here, future research needs to investigate whether
such relations could be retrieved from existing software documentations. Beside
the undocumented relations, there are two other minor reasons why relations
could not be found. First, some relations can only be found looking at the meta
data of the events. For example there is an event “Neues Kommunikationspro-
tokoll” (new communication protocol) which contains all events for sent e-mail
messages. Looking at the subjects of these messages which are most often stan-
dardized, one could derive further relations. What is more, we also encountered
one case where the relation could have been established using a verb instead of
a business object. Further research is needed to evaluate whether verbs could be
included in the matching without a dramatic decrease of precision. Furthermore,
we encountered some mappings which could have been found using synonym
relations. Yet, these synonyms are domain specific an could only be found in a
domain specific ontology which would have to be build first.

90%
52%

100%

0%
20%
40%
60%
80%

100%
120%

(a) no border (b) same event
class

(c) different
resource for same

event class

Fig. 6. Fraction of correct traces for different instance border definitions

In order to evaluate (2) the produced activity instances by our proposed clus-
tering algorithm, the mapping has been provided with context-sensitive map-
ping conditions and has been completed manually by the domain expert (third

Abstracting Event Logs by Automated Matching of Events and Activities 29

phase). The domain expert furthermore manually mapped the event instances
of 152 cases to activity instances to provide a benchmark for our algorithm.

Looking at the fourth phase of our approach, we want to compare the abstrac-
tion results for different activity instance border definitions. We differentiate be-
tween merging (a) and not merging (b) event instances stemming from the same
event class and hence, either allow for loops on sub activity level or not. As a
third option, we consider that a single resource might do things iteratively and
thus, events from the same event class and same resource belong to one activity
instance while this is not the case if they are created by different resources (c).
Option (b) returns with 52 % the least percentage of correct traces when com-
pared to the gold standard. When allowing for loops on the sub-activity level (a)
this results in 90 % of all traces being correctly abstracted. The option which
only allows loops executed by a single resource performs best and even yields
100 % correct cases. The reason for this is e.g. the iterative filling of fields in the
web mask of the used ticketing tool. If a service agent writes down the problem
description and pushes the save button several times during this activity, there
will be a new event for every saving. These events obviously belong to the same
activity instance. In contrast, when a different service agent picks up the ticket
and needs to update the problem description, this is seen as rework and thus, as
a new activity instance.

To further assess the (3) impact of different instance border definitions we
investigated their influence on conformance analysis using the constraint-relative
behavioral profile conformance metric as defined in [12]. We analyzed the results
for the heuristic activity instance border definition over event distances and
found that there is a difference of 17 % points in the conformance metric between
the lowest and highest result. Thus, there is a quite big influence of the correct
activity instance clustering on conformance checking.

Summing up, we showed in this section that the presented approach performs
well in a practical setting and that the use of additional domain knowledge is
beneficial. Furthermore, we showed influences of instance border conditions on
the abstracted result as well as on conformance analysis. It has to be noted that
there is still a significant part of manual work to be done in order to encode miss-
ing domain knowledge into the required mapping definitions. Other approaches
for event log abstraction require less manual work or are even fully automated,
but in return are not able to fully capture the introduced concepts and thus, will
lead to inferior abstraction results. We will discuss these approaches in the next
section.

5 Related Work

Research related to this paper can be subdivided into three specific areas: clus-
tering in process mining, event log abstraction and automatic process model
matching.

In the area of process mining, there are several works focusing on clustering
events to activities. An approach similar to the one used in this paper clusters

30 T. Baier and J. Mendling

events to activities using a distance function based on time or sequence posi-
tion [13]. These clusters can be refined by the help of modified data types and
originators. Due to performance issues with this approach, a new means of ab-
straction on the level of event classes is introduced in [14]. These event classes
are clustered globally based on co-occurrence of related terms, yielding better
performance but lower accuracy. A similar approach introducing semantic relat-
edness, n:m relations and context dependence is defined in [4]. However, it has an
inflexible definition of activity instance borders, leading to problems when deal-
ing with concurrency. In contrast to these works, the approach presented in this
paper is able to deal with concurrency and n:m relations from shared activities
without exhibiting the discussed performance limitations. Although it requires
more manual intervention, it provides a transparent and simple means for the
user to influence the abstraction result and has proven suitable in a practical
case study.

The importance of event log abstraction is emphasized among others in [15].
The approach reported in [16] clusters process instances with similar behavior in
order to abstract behavior which is different between these clusters. While this is
an interesting approach for exploratory analysis, it is not able to abstract events
that always occur together. A different means of abstracting event logs is to sim-
ply remove insignificant behavior. Together with the fuzzy miner, an approach
is defined to abstract a mined process model by removing and clustering less
frequent behavior [17]. Furthermore, there are different approaches that apply
behaviour abstraction in process discovery and trace alignment [18,19,20]. The
technique proposed in this paper provides preprocessing for these approaches.

Our work also relates to automatic matching for process models. While match-
ing has been partially addressed in various works on process similarity [21], there
are only a few papers that covers this topic as their major focus. The work on
ICoP defines a generic framework for process model matching [22]. This frame-
work is extended with semantic concepts and probabilistic optimization in [23],
adapting general concepts from ontology matching [24]. The implications of dif-
ferent abstraction levels for finding correspondences is covered in [25,26,27]. How-
ever, all these works focus on finding matches between two process models, not
between events and activities. Also related to this paper is research on event
correlation, e.g. in [28]. The main objective of event correlation techniques is
to connect events belonging to the same process instance using event attributes.
Still, these approaches typically only consider 1:1 mappings. Against this back-
ground, our approach can be considered as a new area of process model matching,
which takes the instance level into account.

6 Conclusion

In this paper we presented a novel approach to tackle the abstraction of event
logs. Our approach distinguishes from current works by explicitly targeting a
specific abstraction level and by allowing for n:m relations and concurrency. We
therefore explicitly encode domain knowledge into the mapping function in order

Abstracting Event Logs by Automated Matching of Events and Activities 31

to get the same level of abstraction as used in the defined business activities.
We do this in a semi-automated manner by automatically matching events and
activities using existing process descriptions and by allowing for the specification
of activity instance borders. Our approach can be used as preprocessing of event
logs to lift the results of process mining techniques to a business level. We have
successfully evaluated our approach and could thereby show the influence of
incorrect abstractions on conformance analysis results.

Future work should seek for possibilities to automatically propose context con-
ditions and should include further techniques to derive event-activity relations,
e.g. by combining our approach with the one proposed in [4]. Looking at the low
level events, it should been studied how further semantics could be integrated
into the abstraction approach in order to leverage life-cycle transitions such as
start and end of an activity in a semi-automatic way.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes, 1st edn. Springer Publishing Company, Incorporated (2011)

2. Baier, T., Mendling, J.: Bridging abstraction layers in process mining: Event to
activity mapping. In: Nurcan, S., Proper, H.A., Soffer, P., Krogstie, J., Schmidt,
R., Halpin, T., Bider, I. (eds.) BPMDS 2013 and EMMSAD 2013. LNBIP, vol. 147,
pp. 109–123. Springer, Heidelberg (2013)

3. Cannon, D., Wheeldon, D.: ITIL – Service Operation. TSO (May 2007)
4. Li, J., Bose, R.P.J.C., van der Aalst, W.M.P.: Mining context-dependent and in-

teractive business process maps using execution patterns. In: Muehlen, M.z., Su,
J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 109–121. Springer, Heidelberg
(2011)

5. Scheer, A.-W.: ARIS - Modellierungsmethoden, Metamodelle, Anwendungen, 4th
edn. Springer (2001)

6. Jurafsky, D., Martin, J.: Speech and language processing. Prentice Hall (2008)
7. Toutanova, K., Manning, C.D.: Enriching the Knowledge Sources Used in a Maxi-

mum Entropy Part-of-Speech Tagger. EMNLP, 63–70 (2000)
8. Braschler, M., Ripplinger, B.: How Effective is Stemming and Decompounding for

German Text Retrieval? Information Retrieval 7(3/4), 291–316 (2004)
9. Abels, S., Hahn, A.: Pre-processing Text for Web Information Retrieval Purposes

by Splitting Compounds into their Morphemes. In: OSWIR 2005 (2005)
10. Pnueli, A.: The Temporal Logic of Programs. In: Foundations of Computer Science,

pp. 46–57 (1977)
11. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques, 2nd edn. Morgan Kaufmann (2005)
12. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compli-

ance analysis based on behavioural profiles. Information Systems 36(7), 1009–1025
(2011)

13. Günther, C.W., van der Aalst, W.M.P.: Mining activity clusters from low-level
event logs. In: BETA Working Paper Series, vol. WP 165, Eindhoven University of
Technology (2006)

14. Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity mining by global
trace segmentation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009.
LNBIP, vol. 43, pp. 128–139. Springer, Heidelberg (2010)

32 T. Baier and J. Mendling

15. Smirnov, S., Reijers, H.A., Weske, M., Nugteren, T.: Business process
model abstraction: a definition, catalog, and survey. Distributed and Parallel
Databases 30(1), 63–99 (2012)

16. Greco, G., Guzzo, A., Pontieri, L.: Mining taxonomies of process models. Data &
Knowledge Engineering 67(1), 74–102 (2008)

17. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining: adaptive process simplifica-
tion based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M.
(eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

18. Polyvyanyy, A., Smirnov, S., Weske, M.: Process Model Abstraction: A Slider Ap-
proach. In: EDOC, pp. 325–331. IEEE (2008)

19. Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a
controlled manner. Inf. Syst. 38(4), 585–605 (2013)

20. Bose, R.P.J.C., van der Aalst, W.M.P.: Process diagnostics using trace alignment:
Opportunities, issues, and challenges. Inf. Syst. 37(2), 117–141 (2012)

21. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity
of Business Process Models: Metrics and Evaluation. Information Systems 36(2),
498–516 (2011)

22. Weidlich, M., Dijkman, R.M., Mendling, J.: The ICoP Framework: Identification of
Correspondences between Process Models. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

23. Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt,
H.: Probabilistic optimization of semantic process model matching. In: Barros, A.,
Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer,
Heidelberg (2012)

24. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer (2007)
25. Weidlich, M., Dijkman, R., Weske, M.: Behaviour Equivalence and Compatibility

of Business Process Models with Complex Correspondences. ComJnl (2012)
26. Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Improving the

recall of process model matching. In: Business Process Management - 11th Inter-
national Conference, BPM 2013, Proceedings. LNCS. Springer (2013)

27. Weidlich, M., Sagi, T., Leopold, H., Gal, A., Mendling, J.: Making process model
matching work. In: Business Process Management - 11th International Conference,
BPM 2013, Proceedings. LNCS. Springer (2013)

28. Pérez-Castillo, R., Weber, B., de Guzmán, I.G.R., Piattini, M., Pinggera, J.: As-
sessing event correlation in non-process-aware information systems. Software and
Systems Modeling, 1–23 (2012)

Mining Configurable Process Models from Collections
of Event Logs

J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

Eindhoven University of Technology, The Netherlands
{j.c.a.m.buijs,b.f.v.dongen,w.m.p.v.d.aalst}@tue.nl

Abstract. Existing process mining techniques are able to discover a specific pro-
cess model for a given event log. In this paper, we aim to discover a configurable
process model from a collection of event logs, i.e., the model should describe a
family of process variants rather than one specific process. Consider for example
the handling of building permits in different municipalities. Instead of discovering
a process model per municipality, we want to discover one configurable process
model showing commonalities and differences among the different variants. Al-
though there are various techniques that merge individual process models into a
configurable process model, there are no techniques that construct a configurable
process model based on a collection of event logs. By extending our ETM genetic
algorithm, we propose and compare four novel approaches to learn configurable
process models from collections of event logs. We evaluate these four approaches
using both a running example and a collection of real event logs.

1 Introduction

Different organizations or units within a larger organization may need to execute similar
business processes. Municipalities for instance all provide similar services while being
bound by government regulations [6]. Large car rental companies like Hertz, Avis and
Sixt have offices in different cities and airports all over the globe. Often there are sub-
tle (but sometimes also striking) differences between the processes handled by these
offices, even though they belong to the same car rental company. To be able to share de-
velopment efforts, analyze differences, and learn best practices across organizations, we
need configurable process models that are able to describe families of process variants
rather than one specific process [8, 16].

Given a collection of event logs that describe similar processes we can discover a
process model using existing process mining techniques [1]. However, existing tech-
niques are not tailored towards the discovery of a configurable process model based on
a collection of event logs. In this paper, we compare four approaches to mine config-
urable models. The first two approaches use a combination of existing process discovery
and process merging techniques. The third approach uses a two-phase approach where
the fourth approach uses a new, integrated approach. All four approaches have been
implemented in the ProM framework [18].

The remainder of the paper is organized as follows. In Section 2, we discuss related
work on process discovery, configurable process models and current model merging
techniques. In Section 3 we describe the four different approaches to mine configurable

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 33–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

34 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

process models in more detail. There we also describe how our genetic process dis-
covery algorithm (ETM) has been extended to perform each of the four different ap-
proaches. Then we apply each of the approaches on a running example in Section 4.
In Section 5 we apply the four approaches on a real-life event log collection to demon-
strate the applicability of each of the approaches in practice. Section 6 concludes the
paper and suggests directions for future work.

2 Related Work

The goal of process discovery in the area of process mining is to automatically discover
process models that accurately describe processes by considering only an organization’s
records of its operational processes [1]. Such records are typically captured in the form
of event logs, consisting of cases and events related to these cases. Over the last decade,
many such process discovery techniques have been developed. For a complete overview
we refer to [1]. However, until now, no process mining technique exists that is able to
discover a single, configurable, process model that is able to describe the behavior of a
collection of event logs.

A configurable process model describes a family of process models, i.e., variants of
the same process. A configuration of a configurable process model restricts its behav-
ior, for example by hiding or blocking activities. Hiding means that an activity can be
skipped. Blocking means that a path cannot be taken anymore. Most formalisms allow
operators to be made more restrictive (e.g., an OR-split is changed into an XOR-split).
By configuring the configurable process model a (regular) process model is obtained.
A configurable process model aims to show commonalities and differences among dif-
ferent variants. This facilitates reuse and comparison. Moreover, development efforts
can be shared without enforcing a very particular process. Different notations and ap-
proaches for process configuration have been suggested in literature [4,8,11,15–17]. In
this paper we use a representation based on [17].

Configurable process models can be constructed in different ways. They can be de-
signed from scratch, but if a collection of existing process models already exist, a con-
figurable process model can be derived by merging the different variants. The original
models used as input correspond to configurations of the configurable process model.

Different approaches exist to merge a collection of existing process models into a
configurable process model. A collection of EPCs can be merged using the technique
presented in [9]. The resulting configurable EPC may allow for additional behavior,
not possible in the original EPCs. La Rosa et al. [12] describe an alternative approach
that allows merging process models into a configurable process model, even if the input
process models are in different formalisms. In such merging approaches, some configu-
rations may correspond to an unsound process model. Li et al. [13] discuss an approach
where an existing reference process model is improved by analyzing the different vari-
ants derived from it. However, the result is not a configurable process model but an
improved reference process model, i.e., variants are obtained by modifying the refer-
ence model rather than by process configuration. The CoSeNet [17] approach has been
designed for merging a collection of block structured process models. This approach
always results in sound and reversible configurable process models.

Mining Configurable Process Models from Collections of Event Logs 35

Step 2b:
Process

Configuration

event
log 1

event
log 2

event
log n

Configurable
Process model

C1

C2

Cn

...

Step 2a:
Process
Model

Merging

Step 1:
Process
Mining

Process
model 1

Process
model 2

Process
model n

(a) Approach 1: Merge individually
discovered process models

Step 1c:
Process

Individual-
ization

event
log 1

event
log 2

event
log n

Common
Process model

C1

C2

Cn

...

Step 1b:
Process
Mining

Step 1a:
Merge
Event
Logs

Merged
event log

Process
model 1

Process
model 2

Process
model n

Step 1d:
Process
Model

Merging

Step 2:
Process

Configuration
Configurable

Process model

(b) Approach 2: Merge similar discovered process models

Step 2:
Process

Configuration

event
log 1

event
log 2

event
log n

Configurable
Process model

C1

C2

Cn

...

Step 1b:
Process
Mining

Step 1a:
Merge
Event
Logs

Merged
event log

(c) Approach 3: First discover a single pro-
cess model then discover configurations

event
log 1

event
log 2

event
log n

Configurable
Process model

C1

C2

Cn

...

Step 1&2:
Process
Mining

&
Process

Configuration

(d) Approach 4: Discover process model and
configurations at the same time

Fig. 1. Creating a configurable process model from a collection of event logs

Another way of obtaining a configurable process model is not by merging process
models but by applying process mining techniques on a collection of event logs. This
idea was first proposed in [10], where two different approaches were discussed, but
these were not supported by concrete discovery algorithms. The first approach merges
process models discovered for each event log using existing process model merge tech-
niques. In the second approach the event logs are first merged and then a combined
process model is discovered and individualized for each event log.

3 Mining a Configurable Process Model

In this section we present different approaches to mine a configurable process model
from a collection of event logs. We also present the algorithm used for the discovery of
process models.

3.1 Approaches

As mentioned in Section 1, we consider four approaches to discover a configurable
process model from a collection of event logs.

The first approach, as is shown in Figure 1a, applies process discovery on each input
event log to obtain the corresponding process model. Then these processes models are
merged using model merge techniques. This approach was first proposed in [10].

36 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

Since the process models of the first approach are discovered independently of each
other, they might differ significantly hence merging them correctly becomes more dif-
ficult. Therefore we propose a second approach as an improvement of the previous
approach. The overall idea is shown in Figure 1b. From the input event logs first one
process model is discovered that describes the behavior recorded in all event logs. Then
the single process model is taken and individualized for each event log. For this we use
the work presented in [7] to improve a process model within a certain edit distance.
In the next step these individual process models are merged into a configurable pro-
cess model using the approach of [17]. By making the individual process models more
similar, merging them into a configurable process model should be easier.

The third approach, as shown in Figure 1c, is an extension of the second approach
presented by Gottschalk et al. in [10]. A single process model is discovered that de-
scribes the behavior of all event logs. Then, using each individual event log, configura-
tions are discovered for this single process model. In this approach the common process
model should be less precise than other process models since we can only restrict the
behavior using configurations, but not extend it. Therefore the process discovery algo-
rithm applied needs to put less emphasis on precision.

The fourth approach is a new approach where the discovery of the process model
and the configuration is combined, see Figure 1d. This approach is added to overcome
the disadvantages of the other three approaches. By providing an integrated approach,
where both the process model and the configuration options are discovered simultane-
ously, better trade-offs can be made.

The third and fourth approaches require an algorithm that is able to balance trade-offs
in control flow, and optionally in configuration options. In previous work we presented
the ETM-algorithm [5] that is able to seamlessly balance different quality dimensions.
Therefore, in this paper the ETM-algorithm is extended such that it can discover a single
process tree using a collection of event logs. Together with the process tree a configu-
ration for each of the event logs is also discovered. In order to be able to compare the
results of the different approaches, the ETM-algorithm is used as the process discovery
algorithm in all four approaches.

3.2 The ETM Algorithm

In this section we briefly introduce our evolutionary algorithm first presented in [5]. The
ETM (Evolutionary Tree Miner) algorithm is able to discover tree-like process models
that are sound and block-structured. The fitness function used by this genetic algorithm
can be used to seamlessly balance different quality dimensions. In the remainder of this
section we only discuss the ETM-algorithm on a high-level together with the extensions
made, to prevent repetition. All details of the ETM-algorithm can be found in [5].

Overall the ETM algorithm follows the genetic process shown in Figure 2. The input
of the algorithm is one or more event logs describing the observed behavior and, op-
tionally, one or more reference process models. First, different quality dimensions for
each candidate currently in the population are calculated, and using the weight given
to each quality dimension, the overall fitness of the process tree is calculated. In the
next step certain stop criteria are tested such as finding a tree with the desired overall
fitness, or exceeding a time limit. If none of the stop criteria are satisfied, the candidates

Mining Configurable Process Models from Collections of Event Logs 37

in the population are changed and the fitness is again calculated. This is continued until
at least one stop criterion is satisfied and the best candidate (highest overall fitness) is
then returned.

The ETM-algorithm works on process trees, which are a tree-like representation of
a process model. The leafs are activities and the other nodes represent one of several
predefined control-flow constructs.

To measure the quality of a process tree, we consider one metric for each of the four
main quality dimensions described in literature [1–3] (see Fig. 3). We have shown in [5]
that the replay fitness dimension is the most important of the four in process discovery.
The replay fitness dimension expresses how much of the observed behavior in the event
log can be replayed in the process model. The precision dimension indicates how much
additional behavior is possible in the process model but is not observed in the event
log. The simplicity dimension assesses how simple the process model description of the
behavior is. The generalization dimension is added to penalize “overfitting”, i.e., the
model should allow for unseen but very likely behaviors.

For the simplicity dimension we use a slightly different metric than in previous work.
Simplicity is based on Occam’s razor, i.e., the principle that says that when all other
things are equal the simplest answer is to be preferred. Size is one of the simplest
measures of complexity [14] since bigger process models are in general more com-
plex to understand. Unfortunately, the ideal size of the process tree cannot directly be
calculated, as control flow nodes can have multiple children. Furthermore, it might be
beneficial for other quality dimensions, such as replay fitness or precision, to duplicate
certain parts. Therefore, in the genetic algorithm, we use the fraction of the process tree
that consists of ‘useless’ nodes as a simplicity metric since it does not influence the
other quality dimensions. A node is useless if it can be removed without changing the
behavior of the tree. Useless nodes are operators with only one child, τ leafs in a → or
∧ construct, non-first τ ’s in an ∨ construct and �’s consisting of one � as a child and
two τ ’s as other children.

Each of the four metrics is computed on a scale from 0 to 1, where 1 is optimal.
Replay fitness, simplicity and precision can reach 1 as optimal value. Generalization
can only reach 1 in the limit, i.e., the more frequent nodes are visited, the closer the
value gets to 1.

Stop?

Change
Combine Select

Save Elite

Select
Best

Compute
Fitness

Event
Log
Event

Log
Event

Log
Event

Log

Fig. 2. The phases of the genetic algorithm

“able to replay event log” “Occam’s razor”

“not overfitting the log” “not underfitting the log”

Fig. 3. Quality dimensions for Discovery [1, 2]

38 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

3.3 Configuring Process Trees

In this paper, we extend process trees [5] with configuration options. A node in a pro-
cess tree can be not configured, blocked, hidden or ‘downgraded’ for each of the input
event logs. The blocking and hiding operations are as specified in existing configura-
tion languages [8, 16, 17] (see Section 2) and either block a path of execution or hide
a part of the process. However, we add the configuration option that operators can be
downgraded. By downgrading an operator, the behavior of the operator is restricted to a
subset of the initially possible behavior. The � operator for instance can be downgraded
to a →. This is done by removing the ‘redo’ part of the � operator and putting the ‘do’
and ‘exit’ children of the loop in a sequence.

Another operator that can be downgraded is the ∨ operator which can be downgraded
to an ∧ (forcing all children to be executed), × (only allowing for one child to be
executed), and a → (executing all its children in a particular order). However, since
in one configuration the order of the children might be different than in another, we
also added the ← operator, representing a reversed sequence, which simply executes
the children in the reversed order, i.e. from right to left. Finally, also the ∧ can be
downgraded to an → or ← operator.

The quality of the configuration perspective should also be incorporated in the fit-
ness function of the ETM-algorithm. This is partly done by applying the configuration
options on the overall (i.e. configurable) process tree before evaluating the main four
quality dimensions. For instance, when an activity that is not present in an event log
is hidden from the process tree, this is reflected by replay fitness. The four quality di-
mensions are calculated for each individual event log and then a weighted average is
calculated using the size of each event log. However, as part of the quality of the config-
uration, the number of nodes that have a configuration option set should be considered
(otherwise all nodes can be made configurable without any penalty). Therefore, we add
a new quality dimension for configuration that simply measures the fraction of nodes in
the process tree for which no configuration option exist. The other four quality dimen-
sions are more important than the configuration fitness, but if a configurable process tree
exists with fewer configuration options and the same quality in the other dimensions,
then the latter process tree is preferred.

4 Running Example

Our running example [7] is based on four variants of the same process describing a
simple loan application process of a financial institute, providing small consumer credit
through a webpage. The four BPMN process models describing the variants are shown
in Figure 4. The event logs that were obtained through simulation are shown in 1.

In the first variant the process works as follows: when a potential customer fills in a
form and submits the request on the website, the process is started by activity A which
is sending an e-mail to the applicant to confirm the receipt of the request. Next, three
activities are executed in parallel. Activity B is a check of the customer’s credit history
with a registration agency. Activity C is a computation of the customer’s loan capacity
and activity D is a check whether the customer is already in the system. This check is

Mining Configurable Process Models from Collections of Event Logs 39

Table 1. Four event logs for the four different variants of the loan application process of Figure 4

Trace # Trace #

A B C D E G 6 A D C B F G 4
A B C D F G 38 A C D B F G 2
A B D C E G 12 A D B C F G 1
A B D C F G 26 A D B C E G 1
A B C F G 8 A C B F G 1
A C B E G 1

(a) Event log for variant 1

Trace #

A B1 B2 C D2 E G 20
A B1 B2 C D2 F G 50

(b) Event log for
variant 2

Trace #

A C B E 120
A C B F 80

(c) Event
log for
variant 3

Trace #

A B1 D B2 C E 45
A B1 D2 B2 C F 60

(d) Event log for
variant 4

skipped if the customer filled in the application while being logged in to the personal
page, since then it is obsolete. After performing some computations, a decision is made
and communicated to the client. The loan is accepted (activity E, covering about 20%
of the cases) or rejected (activity F, covering about 80% of the cases). Finally, activity
G (archiving the request) is performed.

The second loan application variant is simpler than the first process. Most notable
is the absence of parallelism. Furthermore, activity B has been split into the activities
B1 (send credit history request to registration agency) and B2 (process response of
registration agency). Activity D of the original process has been replaced by D2 which
is checking the paper archive.

The third variant of the loan application process is even simpler where after sending
the confirmation of receipt (activity A) the capacity is calculated (activity C) and the
credit is checked (activity B). Then the decision is made to accept (activity E) or re-
ject (activity F) the application. The application is not archived; hence no activity G is
performed.

In the fourth and final variant of this process, after sending the confirmation of receipt
(activity A), the request for the credit history is sent to the agency (activity B1). Then
either the system archive (activity D) or paper archive (activity D2) is checked. Next the
response of the credit history check is processed (activity B2) and next the capacity is

(a) Variant 1 (b) Variant 2

(c) Variant 3 (d) Variant 4

Fig. 4. Four variants of a loan application process. (A = send e-mail, B = check credit, B1 = send
check credit request, B2 = process check credit request response, C = calculate capacity, D =
check system, D2 = check paper archive, E = accept, F = reject, G = send e-mail).

40 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

calculated (activity C). Then the decision is made to accept (activity E) or reject (activity
F) the application. The application is not archived (i.e., no activity G in model).

Although the four variations of the loan application process seem similar, automati-
cally discovering a configurable process model is far from trivial.

4.1 Experimental Setup

In the remainder of this section we use the ETM algorithm as our discovery technique
to construct a process model, in the form of a process tree, from an event log. We ran the
experiments for 20, 000 generations on each individual event log for approaches 1 and
2. Because in approaches 3 and 4 we consider all four event logs at once, we increased
the number of generations to 80, 000 to get a stable result. Each generation contained a
population of 20 trees out of which the best six were kept unchanged between genera-
tions, i.e. the elite. The quality dimensions of replay fitness and simplicity were given
a weight of ten, since we want a small process model with a good relation to the event
log. A weight of five for precision makes sure the model does not allow for too much
additional behavior and a weight of one-tenth for generalization makes the models more
general.

4.2 Approach 1: Merge Individually Discovered Process Models

The results of applying the first approach on the running example are shown in Figure 5.
Each of the individual process models (see Figures 5a through 5d) clearly resemble
each of the individual event logs. The combined configurable process model however
is nothing more than a choice between each of the individual input process models. In
this configurable process model those nodes that are configured have a grey ‘callout’
added, indicating for each configuration whether that node is not configured (‘-’), hid-
den (‘H’) or blocked (‘B’). The table shown in Figure 5f shows the different quality
scores for both the configurable process models as well as for each of the configura-
tions. Moreover, the simplicity statistics of size, number of configuration points (#C.P.)
and similarity of the configured process model w.r.t. the configurable process model is
shown. The fact that the four configuration options block a big part of the process model
is reflected in the low similarity of the configured process models with the configurable
process model. This is also shown by the relatively large size of the process tree.

4.3 Approach 2: Merge Similar Discovered Process Models

In the second approach we try to increase similarity by discovering a common process
model from all event logs combined, of which the result is shown in Figure 6a. This
process model has difficulties to describe the combined behavior of the four variants.
The four individual process models derived from this common process model are shown
in Figures 6b through 6e. Each individual process model has a high similarity with the
common process model, while some changes are made to improve the overall fitness for
that particular event log. For the first three variants the discovered process models are
identical to the one of approach 1. The process of the fourth variant however differs too
much from the common model, hence the similar process model is not as good as the
one found in approach 1. The combined process tree is shown in Figure 6f. Despite the

Mining Configurable Process Models from Collections of Event Logs 41

(a) Process model mined on event log 1 (b) Process model mined on event log 2

(c) Process model mined on event log 3 (d) Process model mined on event log 4

×
→

×
→

ECB2D

→

FC
→

B2D2

B1A

→
→
×

FE
B

→

CA

→

G
→

→
×

EF

→

D2
→

→

CB2
B1

A

→

G
→

×

EF

→
∧

D
∧

CB

A

[-,B,B,B] [B,-,B,B] [B,B,-,B] [B,B,B,-]

(e) Configurable process model obtained after merging models (a) through (d)

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.989 0.999 0.999 0.981 0.220 53 4 -
Variant 0 0.986 0.995 0.995 0.981 0.235 14 3 0.418
Variant 1 0.989 1.000 1.000 0.981 0.263 16 3 0.464
Variant 2 0.989 1.000 1.000 0.981 0.174 10 3 0.317
Variant 3 0.989 1.000 1.000 0.981 0.264 16 3 0.464

(f) Quality statistics of the configurable process model of (e)

Fig. 5. Results of merging seperate discovered process models on the running example

similarity of the individual process models, the combined configurable process model
is still a choice of the four input process models. The overall fitness of this model is
slightly worse than that of approach 1, mainly due to the process model of variant 4.
Similar to the previous approach, the number of configuration points is low. Unfortu-
nately, also the similarity between the configured process model and the configurable
process model is low.

4.4 Approach 3: First Discover a Single Process Model Then Discover
Configurations

The resulting configurable process model is shown in Figure 7. From this model it can
be seen that we relaxed the precision weight, in order to discover an ‘overly fitting’ pro-
cess model. Then, by applying configurations, the behavior is restricted in such a way
that the model precisely describes each of the variants, as is indicated by the perfect
replay fitness. This process model also scores relatively high for precision and simplic-
ity. The process tree however has a similar large size as the two previous approaches.
Nonetheless, the similarity of each of the individual process models to the configurable

42 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

(a) Process model discovered from combined event log

(b) Process model individualized for event log 1 (c) Process model individualized for event log 2

(d) Process model individualized for event log 3 (e) Process model individualized for event log 4

×
→

G
×

EF

∧
×

BD2
CB2

B1A

→
×

EF

→
×

B
C

A

→

G
×

EF
D2

→

CB2
→

B1A

→

G
×

EF

→
∧

BDC
A

[-,B,B,B] [B,-,B,B] [B,B,-,B] [B,B,B,-]

(f) Configurable process model obtained after merging models (b) through (e)

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.958 0.974 0.921 0.968 0.212 46 4 -
Variant 0 0.981 0.995 0.995 0.968 0.232 12 3 0.414
Variant 1 0.984 1.000 1.000 0.968 0.246 13 3 0.441
Variant 2 0.984 1.000 1.000 0.968 0.180 10 3 0.357
Variant 3 0.869 0.886 0.649 0.968 0.232 14 3 0.467

(g) Quality statistics of the configurable process model of (f)

Fig. 6. Results of merging the similar process models on the running example

process model is higher than in the previous two approaches since only small parts are
configured.

4.5 Approach 4: Discover Process Model and Configurations at the Same Time

The result of applying the fourth, integrated approach is shown in Figure 8. This process
model is smaller and therefore simpler than previous models, a result of the weight of
ten for the simplicity dimension. Moreover, it clearly includes the common parts of
all variants only once, e.g. always start with A and end with a choice between E and F,
sometimes followed by G. This process model correctly hides activities that do not occur
in certain variants, for instance G for variants 3 and 4 and the B, B1 and B2 activities.
Moreover, it correctly discovered the parallelism present in variant one, where the other

Mining Configurable Process Models from Collections of Event Logs 43

variants are configured to be sequential. As a trade-off, it did not include activity D2,
which is the least occurring activity in the event logs, and occurs in different locations
in the process.

The discovered configurable process model can be further improved by increasing
the replay fitness, making sure that all behavior can be replayed. This results in the con-
figurable process model as shown in 9. This process model is able to replay all behavior,
something that only was achieved in the two-phase mining approach. However, this re-
sults in a process model with a lot of � and ∨ constructs, which are then blocked for
particular configurations. Moreover, the resulting process model is rather large, contains
many configuration points and has mediocre similarity scores. This is a clear trade-off
of aiming for a higher replay fitness value. However, the two-phase approach produced
a better model with perfect replay fitness.

4.6 Comparison of the Four Approaches

The results of applying the four different approaches on the running example are very
different. All discovered models have similar scores for replay fitness and precision and
there are (almost) no useless nodes. However, there are noticeable differences in gener-
alization, size and similarity between the configurable and the configured models. The
first two approaches score relatively poor on generalization, because the merge operator
used introduces specific submodels for each log, which limits the number of visits per
node during replay. Also, due to duplication, the models are significantly larger, and
because in the configuration large parts are blocked, the configured models are dissim-
ilar to the configurable one. Mining a process model and then mining configurations
improves the similarity, but still the configurable model remains larger than necessary.
Furthermore, the number of configuration points is very high. However, it is easier to
aim for higher replay fitness values The final approach, where the configurations are

→
×

→
×

Gτ
E

F
→

GF

→
×

×
→

→

CB2D
B1

∧

BDC

×
→

CB2
→

D2B1

→

D2
→

C
→

B2B1

∧

BC

A
[-,B,→,B]

[B,-,B,-]

[H,-,-,B]

[H,B,H,-]

[-,←,H,B] [-,B,B,-]

[-,-,B,B]

[B,H,H,-]
[B,B,-,-]

[B,B,-,H]

[-,-,B,B]

(a) Configurable process model discovered using the two-phase approach

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.988 1.000 0.981 0.986 0.374 42 11 -
Variant 0 0.990 1.000 0.990 0.986 0.400 20 6 0.645
Variant 1 0.992 1.000 1.000 0.986 0.408 20 7 0.645
Variant 2 0.992 1.000 1.000 0.986 0.285 13 8 0.473
Variant 3 0.977 1.000 0.922 0.986 0.496 24 6 0.727

(b) Quality statistics of the configurable process model of (a)

Fig. 7. Results of the two-phase mining approach on the running example

44 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

→

G
×

EF

∧

BCB2DB1
A

[-,→,→,→]

[H,-,H,-][-,H,H,-][H,-,H,-] [-,H,-,H]

[-,-,H,H]

(a) Configurable process model discovered using the integrated discovery
approach

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.983 0.962 0.999 1.000 0.684 12 6 -
Variant 0 0.996 0.995 0.994 1.000 0.738 10 2 0.909
Variant 1 0.957 0.894 1.000 1.000 0.723 10 3 0.909
Variant 2 0.998 1.000 1.000 1.000 0.614 8 5 0.800
Variant 3 0.961 0.905 1.000 1.000 0.741 10 3 0.909

(b) Quality statistics of the configurable process model of (a)

Fig. 8. Results of the integrated mining approach on the running example

[B,B,B,-]

[B,-,B,B]

[-,→,-,-]

[-,-,→,-]

[B,B,-,-]

[B,-,B,B]

[-,B,-,B]

[-,-,B,B]

[B,H,B,H] [B,B,B,B]

[-,B,B,B]

[×,×,-,H]

[B,-,-,→]

[-,B,-,B]

[-,B,B,-]

[B,-,B,H]

[→,-,-,B]

[B,B,B,H]
[→,→,B,B]

[→,-,H,→]

[B,B,-,B]

[B,-,B,B]

[→,→,-,-]

[×,×,-,-]

[-,B,B,B]

[B,B,B,-]

[→,-,-,→]

[-,B,B,-]

[-,H,B,B]

[-,B,H,B]

[B,H,B,-]
�

ττ
×

�

ττ
×

�

τG
×

�

ττE
BF

�

τB1
�

∨
�

ττ
×

�

τ
�

ττA
C

∨

τ
�

Dττ

×
�

ττB

�

ττC

�

ττB

�

τFτ

D
∨

�

τ
�

ττA

×
�

ττB
D

∨

Cτ
A

∨
→

D2C
FB2

F

(a) Configurable process model discovered with more weight on replay fitness

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.980 1.000 0.767 0.993 0.345 82 31 -
Variant 0 0.985 1.000 0.826 0.993 0.534 54 20 0.794
Variant 1 0.974 1.000 0.696 0.993 0.306 30 21 0.527
Variant 2 0.986 1.000 0.850 0.993 0.349 31 20 0.549
Variant 3 0.973 1.000 0.680 0.993 0.261 24 21 0.453

(b) Quality statistics of the configurable process model of (a)

Fig. 9. Result of the integrated mining approach when improving replay fitness

discovered simultaneously with the configurable model reduces the size significantly,
thus improving the similarity score. However, this comes at a minor cost of replay
fitness.

The first two approaches seem to struggle with merging process models based on
their behavior. Because they only focus on the structure of the model, the frequencies of
parts of the process model being visited are not considered during the merge. The third
and fourth approach both directly consider the behavior and frequencies as recorded
in the event log. This seems to be beneficial for building a configurable process model
since these latter two approaches outperform the first two. In the next section we apply
all four approaches on a collection of real-life event logs to validate these findings.

Mining Configurable Process Models from Collections of Event Logs 45

Table 2. Case study event log statistics

#traces #events #activities
Combined 1214 2142 28
L1 54 131 15
L2 302 586 13
L3 37 73 9
L4 340 507 9
L5 481 845 23

Table 3. Statistics of merging the separate process models on the case study event logs

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.979 0.973 0.962 0.997 0.560 1555 5 -
Variant 0 0.977 0.977 0.949 0.996 0.362 581 4 0.544
Variant 1 0.973 0.967 0.944 0.998 0.617 201 4 0.229
Variant 2 0.991 1.000 0.993 0.988 0.234 72 4 0.089
Variant 3 0.984 0.978 0.974 0.998 0.690 455 4 0.453
Variant 4 0.978 0.971 0.964 0.997 0.480 250 4 0.277

5 Case Study

To validate our findings we use a collection of five event logs from the CoSeLoG
project1, each describing a different process variant. The main statistics of the event
logs are shown in Table 2. The event logs were extracted from the IT systems of five
different municipalities. The process considered deals with objections related to build-
ing permits.

The result of both the first (individually discovered process models that are then
merged) and the second approach (making sure the models are similar) result in process
trees with more than 200 or even 1, 500 nodes. Both process models however again
consist of an × operator as the root with each of the five original models as its children
that are then blocked, similar to the running example results. We therefore only show
the statistics in Table 3 and 4 since the process models are unreadable.

The third approach, where the ETM-algorithm first discovers a common process
model that is not very precise, and then applies configuration options, results in the
process tree as shown in Fig. 10a. The statistics for this process model are shown in
Table 10b. This process tree is rather compact and has reasonable scores for replay
fitness, precision and simplicity.

The fourth approach, where the control flow and configuration points are discovered
simultaneously, results in the process tree as shown in Fig. 11a. The statistics are shown
in Table 11b. With only 4 configuration points, and similar quality scores as the previous
result, this process tree is even smaller and hence simpler.

The application of the different approaches on the real-life event logs show similar
results as on the running example. The first two approaches seem to have difficulties in
merging the process models based on the behavior of the process model.

1 More information can be found at http://www.win.tue.nl/coselog/wiki/start

http://www.win.tue.nl/coselog/wiki/start

46 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

Table 4. Statistics of merging the similar process models on the case study event logs

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.980 0.989 0.936 0.998 0.540 236 5 -
Variant 0 0.973 0.992 0.894 0.999 0.337 65 4 0.432
Variant 1 0.977 0.969 0.958 0.998 0.598 34 4 0.252
Variant 2 0.966 0.991 0.863 0.998 0.533 24 4 0.185
Variant 3 0.991 0.999 0.968 0.999 0.461 48 4 0.338
Variant 4 0.977 0.994 0.909 0.998 0.582 69 4 0.452

[B,B,B,B,B] [B,B,B,B,B] [∧,-,-,-,-]

[-,-,B,-,-]

[B,-,-,-,B]

[-,-,→,→,-]

[→,→,-,→,-]

[H,-,H,H,-] [H,H,H,H,H]

[B,-,B,B,B]

[B,B,B,B,-]

[-,-,-,-,H]

[-,-,-,H,-]

[-,H,H,H,-]
[-,H,H,H,H]

[-,∧,B,∧,-]

[B,-,B,B,B]
×

�

τ546680

∨
×

�

τ
∨

→

560550
590

�

τ
→

766755

→

730
×

�

τ
→

700640670
630

×

τ
�

τ775540

∨
×

540630
765

770
550 1

�

τ650 1650 2

(a) Results of the two-phase mining approach

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.973 0.965 0.951 0.999 0.451 46 17 -
Variant 0 0.947 0.943 0.862 0.999 0.319 31 10 0.792
Variant 1 0.979 0.968 0.971 0.999 0.452 36 8 0.878
Variant 2 0.961 0.932 0.958 0.999 0.267 25 12 0.690
Variant 3 0.980 0.990 0.934 0.999 0.390 30 13 0.763
Variant 4 0.970 0.950 0.961 0.999 0.522 34 8 0.850

(b) Statistics of the two-phase mining result

Fig. 10. Results of the two-phase mining approach on the real-life event logs

∨
∨

∨
→

×

730τ
630

540
770

765
[B,-,B,-,-]

[∧,-,-,-,-]

[×,-,×,-,-]

[B,-,H,H,H]

(a) Result of the integrated mining approach

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.966 0.952 0.929 1.000 0.839 11 4 -
Variant 0 0.945 0.866 1.000 1.000 0.622 9 4 0.900
Variant 1 0.970 0.958 0.935 1.000 0.861 11 0 1.000
Variant 2 0.955 0.920 0.942 1.000 0.651 10 3 0.952
Variant 3 0.974 0.975 0.923 1.000 0.845 11 1 1.000
Variant 4 0.962 0.945 0.921 1.000 0.860 11 1 1.000

(b) Statistics result

Fig. 11. Results of the integrated mining approach on the real-life event logs

Mining Configurable Process Models from Collections of Event Logs 47

6 Conclusion

In this paper we presented and compared four approaches to construct a configurable
process model from a collection of event logs. We applied all four approaches on both
a running example and a real-life collection of event logs. Our results show that the
naive approach of first discovering a process model for each event log separately and
then merging the discovered models yields large configurable models to which the indi-
vidual configurations are not very similar. It is slightly better to first discover a process
model on the combination of the event logs and then configure this model for each log.
However, both of these approaches struggle with merging the modeled behavior of the
input process models into a configurable process model. The other two approaches that
directly discover a configurable process model from the event log seem to be able to
use the recorded behavior to better generalize the behavior into a configurable process
model. The approach where both the control flow and the configuration options are
changed together seems to have more flexibility than the approach where first a control
flow is discovered which is then configured.

Using the results presented in this paper we can improve model merging techniques
by considering the actual intended behavior instead of the process model structure. We
also plan to develop more sophisticated techniques for the ETM-algorithm to directly
mine configurable models from collections of event logs. For example, we plan to add
configuration-specific mutation operators and learn good parameter settings (using large
collections of real-life event logs from the CoSeLoG project). Moreover, we plan to
consider other perspectives (e.g., data-, resource- and time-related aspects) and further
develop the new area of cross-organizational mining [6]. The ultimate goal is to support
organizations in selecting a suitable configuration based on their recorded behavior.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying History on Process Mod-
els for Conformance Checking and Performance Analysis. WIREs Data Mining and Knowl-
edge Discovery 2(2), 182–192 (2012)

3. Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conformance Checking using Cost-
Based Fitness Analysis. In: Proceedings of EDOC, pp. 55–64. IEEE Computer Society
(2011)

4. Becker, J., Delfmann, P., Dreiling, A., Knackstedt, R., Kuropka, D.: Configurative Process
Modeling–Outlining an Approach to increased Business Process Model Usability. In: Pro-
ceedings of the 15th IRMA International Conference (2004)

5. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the Role of Fitness, Precision,
Generalization and Simplicity in Process Discovery. In: Meersman, R., Panetto, H., Dillon,
T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz,
I.F. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012)

6. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Towards Cross-Organizational
Process Mining in Collections of Process Models and their Executions. In: Daniel, F.,
Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part II. LNBIP, vol. 100, pp. 2–13.
Springer, Heidelberg (2012)

48 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

7. Buijs, J.C.A.M., La Rosa, M., Reijers, H.A., Dongen, B.F., van der Aalst, W.M.P.: Improving
Business Process Models using Observed Behavior. In: Proceedings of the Second Interna-
tional Symposium on Data-Driven Process Discovery and Analysis. LNBIP, Springer (to
appear, 2013)

8. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., La Rosa, M.: Configurable
Workflow Models. International Journal of Cooperative Information Systems (IJCIS) 17(2)
(2008)

9. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H.: Merging Event-driven Process
Chains. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 418–426.
Springer, Heidelberg (2008)

10. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H.: Mining Reference Process Mod-
els and their Configurations. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2008.
LNCS, vol. 5333, pp. 263–272. Springer, Heidelberg (2008)

11. Hallerbach, A., Bauer, T., Reichert, M.: Capturing Variability in Business Process Models:
The Provop Approach. Journal of Software Maintenance 22(6-7), 519–546 (2010)

12. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business Process Model Merging: An Ap-
proach to Business Process Consolidation. ACM Transactions on Software Engineering and
Methodology 22(2) (2012)

13. Li, C., Reichert, M., Wombacher, A.: The MINADEPT Clustering Approach for Discover-
ing Reference Process Models Out of Process Variants. International Journal of Cooperative
Information Systems 19(3-4), 159–203 (2010)

14. Mendling, J., Verbeek, H.M.W., van Dongen, B.F., van der Aalst, W.M.P., Neumann, G.: De-
tection and Prediction of Errors in EPCs of the SAP Reference Model. Data and Knowledge
Engineering 64(1), 312–329 (2008)

15. La Rosa, M., Gottschalk, F., Dumas, M., van der Aalst, W.M.P.: Linking Domain Models
and Process Models for Reference Model Configuration. In: Becker, J., Delfmann, P. (eds.)
Informal Proceedings of the 10th International Workshop on Reference Modeling (RefMod
2007), pp. 13–24. QUT, Brisbane (2007)

16. Rosemann, M., van der Aalst, W.M.P.: A Configurable Reference Modeling Language. In-
formation Systems 32(1), 1–23 (2007)

17. Schunselaar, D.M.M., Verbeek, E., van der Aalst, W.M.P., Raijers, H.A.: Creating Sound and
Reversible Configurable Process Models Using CoSeNets. In: Abramowicz, W., Kriksciu-
niene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 24–35. Springer, Heidelberg
(2012)

18. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame,
and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75.
Springer, Heidelberg (2011)

Slice, Mine and Dice: Complexity-Aware
Automated Discovery of Business Process Models

Chathura C. Ekanayake1, Marlon Dumas2, Luciano Garcı́a-Bañuelos2,
and Marcello La Rosa1

1 Queensland University of Technology, Australia
{c.ekanayake,m.larosa}@qut.edu.au

2 University of Tartu, Estonia
{marlon.dumas,luciano.garcia}@ut.ee

Abstract. Automated process discovery techniques aim at extracting models
from information system logs in order to shed light into the business processes
supported by these systems. Existing techniques in this space are effective when
applied to relatively small or regular logs, but otherwise generate large and
spaghetti-like models. In previous work, trace clustering has been applied in an
attempt to reduce the size and complexity of automatically discovered process
models. The idea is to split the log into clusters and to discover one model per
cluster. The result is a collection of process models – each one representing a
variant of the business process – as opposed to an all-encompassing model. Still,
models produced in this way may exhibit unacceptably high complexity. In this
setting, this paper presents a two-way divide-and-conquer process discovery tech-
nique, wherein the discovered process models are split on the one hand by vari-
ants and on the other hand hierarchically by means of subprocess extraction. The
proposed technique allows users to set a desired bound for the complexity of the
produced models. Experiments on real-life logs show that the technique produces
collections of models that are up to 64% smaller than those extracted under the
same complexity bounds by applying existing trace clustering techniques.

1 Introduction

Process mining is concerned with the extraction of knowledge about business processes
from information system logs [17]. Process mining encompasses a vast array of tech-
niques, including techniques for automated discovery of business process models. Nu-
merous algorithms for automated process discovery have been developed, which strike
various tradeoffs between accuracy and comprehensibility of the discovered models.

One key limitation of the bulk of techniques for automated process discovery is that
they fail to scale to processes with high levels of variance, i.e. high number of distinct
traces. This is mainly because traditional process discovery techniques aim at producing
a single model covering all traces in the log, leading to large and spaghetti-like models
as the variance increases. A common divide-and-conquer approach to address this issue
is by means of trace clustering [2,4,9,15]. The idea is to slice the log into separate clus-
ters, each one grouping similar traces, and to discover (via standard mining techniques)
one process model per cluster. Accordingly, the output is a collection of process mod-
els, each covering a subset of the traces, as opposed to a single model encompassing

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 49–64, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

50 C.C. Ekanayake et al.

all traces. The underlying assumption is that each model in this collection has lower
complexity than a single all-encompassing model mined from all traces. In this context,
complexity can be measured in terms of size (number of nodes or edges) or in terms
of structural complexity metrics such as control-flow complexity or average connector
degree, which have been shown to be correlated with model comprehensibility [11,13].

While process discovery techniques based on trace clustering produce smaller indi-
vidual models than single-model techniques, they do not seek to minimize the overall
size of the discovered collection of models. On the contrary, these techniques generally
yield models that share duplicate fragments. This duplication entails that collectively,
a set of models produced via trace clustering can be much larger and not necessarily
easier to comprehend as a whole than a single model mined from all traces.

In this setting, this paper presents a two-way divide-and-conquer process discovery
technique, wherein discovered process models are split on the one hand by variants
via trace clustering (an operation we term “slicing”), but also hierarchically via shared
subprocess extraction and merging (“dicing”). Slicing enables high-complexity mined
models to be split into lower-complexity ones at the expense of duplication. Dicing,
on the other hand, reduces duplication by refactoring shared fragments. By slicing,
mining and dicing recursively, the technique attempts in a best-effort way to produce
a collection of models each with size or structural complexity below a user-specified
threshold, while minimizing the overall size of the discovered collection of models and
without affecting accuracy. The technique is termed SMD (Slice, Mine and Dice) in
reference to the steps performed at each level of the recursion.

SMD can be applied as a post-processing phase on top of any automated discovery
technique based on (hierarchical) trace clustering. The paper reports on experiments
using three real-life logs that put into evidence the improvements achieved by SMD on
top of three existing trace clustering methods.

The rest of the paper is structured as follows. Section 2 provides an overview of
related work on process mining and trace clustering, and introduces techniques for clone
detection and process model merging, upon which SMD builds. Next, Section 3 presents
and illustrates the algorithms behind SMD. Section 4 discusses the experimental setup
and results, and Section 5 draws conclusions and spells out directions for future work.

2 Background and Related Work

SMD builds upon techniques for: (i) automated process discovery; (ii) hierarchical trace
clustering; (iii) clone detection in process models; and (iv) process model merging. This
section introduces these techniques in turn and discusses how they are used by SMD.

2.1 Automated Process Discovery Techniques

Numerous techniques for discovering a single (flat) process model from a process exe-
cution log have been proposed in the literature [17,21]. For example, Weijters et al. [22]
propose the Heuristics Miner, which is based on an analysis of the frequency of depen-
dencies between events in a log. In essence, frequency data is extracted from the log and
used to construct a graph of events, where edges are added based on different heuristics.
Types of splits and joins in the resulting event graph can be determined by analyzing the

Slice, Mine and Dice: Complexity-Aware Automated Discovery 51

frequency of events associated to those splits and joins. This information can be used
to convert the output of the Heuristics Miner into a Petri net. The Heuristics Miner is
robust to noise in the event logs due to the use of frequency-based thresholds, which
makes it suitable for use with real-life event logs. Meantime, van der Werf et al. [18]
proposed a discovery method where relations observed in the logs are translated to an
Integer Linear Programming (ILP) problem. The ILP miner is independent of the num-
ber of events in the log, making it applicable in practical scenarios.

Process discovery techniques can be evaluated along four dimensions: fitness (re-
call), appropriateness (precision), generalization and complexity [17]. Fitness measures
the extent to which the traces in a log can be parsed by the discovered model. Appropri-
ateness is a measure of additional behavior allowed by a discovered model, that is not
found in the log. A model with low appropriateness is one that can parse a proportion-
ally large number of traces that are not in the log from which the model is discovered.
Generalization captures how well the discovered model generalizes the behavior found
in a log. For example, if a model can be discovered using 90% of the traces of the log
and this model can parse the remaining 10% of traces in the logs, it can be said the
model generalizes well the log. The complexity of a model can be measured using sev-
eral metrics proposed in the literature [11]. A simple complexity metric is the size the
model, measured by the total number of nodes in the model (or alternatively number
of edges). Empirical studies, e.g. [11], have shown that process model size is strongly
correlated with model comprehensibility and error probability. Other (structural) com-
plexity metrics correlated with comprehensibility include:

– CFC (Control-Flow Complexity): sum of all connectors weighted by their potential
combinations of states after a split.

– ACD (Average Connector Degree): average number of nodes a connector is con-
nected to.

– CNC (Coefficient of Network Connectivity): ratio between arcs and nodes.
– Density: ratio between the number of arcs and the maximum possible number of

arcs for the same number of nodes.

An extensive empirical evaluation [21] of automated process discovery techniques has
shown that Heuristics Miner offers a good tradeoff between precision and recall with
satisfactory performance. The ILP miner achieves high recall – at the expense of some
penalty on precision – but it does not scale to larger logs due to memory requirements.
The SMD technique presented in this paper abstracts from the mining algorithm used
to extract a model from a collection of traces. However, due to its scalability, we specif-
ically use the Heuristics Miner as a basis for the evaluation of SMD .

2.2 Hierarchical Trace Clustering

Several approaches to trace clustering have been proposed [1, 2, 4, 9, 15, 16, 20]. Some
of these techniques produce a flat collection of trace clusters, e.g. [20], though most
produce hierarchical collections of trace clusters from which models can be mined.
Specifically, hierarchical trace clustering methods construct a so-called dendrogram.
The dendrogram is a tree wherein the root corresponds to the entire log. The root is

52 C.C. Ekanayake et al.

decomposed into N (typically 2) disjoint trace clusters of smaller size, each of which is
split again into N clusters and so on recursively.

A trace cluster is a set of “similar” traces. The notion of trace similarity varies be-
tween approaches and is generally defined with respect to a feature space. For instance,
if traces are seen as strings on the alphabet consisting of the set of activity labels, the
feature space corresponds to the set of all possible permutations of activity labels. With
such a feature space, similarity of traces can be assessed by means of standard string
similarity functions, such as Hamming distance or Levenshtein edit distance. However,
mappings to other feature spaces have been used in the literature, such as the count of
occurrences of activities, the count of motifs over such activities (e.g. n-grams), etc.

In addition to differing by the choice of similarity notion, trace clustering techniques
also differ in terms of the underlying clustering technique. Hierarchical clustering tech-
niques can be divided in two families: agglomerative and divisive clustering. In ag-
glomerative clustering, pairs of clusters are aggregated according to their proximity
following a bottom-up approach. In divisive clustering, a top-level cluster is divided
into a number of sub-clusters and so on recursively until a stop condition is fulfilled.

The techniques of Song et al. [15, 16] and Bose et al. [1, 2] both use agglomerative
hierarchical clustering. Song et al. also consider other clustering techniques, such as k-
means and self-organizing maps. The main difference between the approaches of Song
et al. and Bose et al. lie in the underlying feature space. Song et al. map traces into a set
of features such as count of occurrences of individual activities, or count of occurrences
of pairs of activities in immediate succession. On the other hand, Bose et al. evaluate
the occurrence of more complex motifs such as repeats (i.e., n-grams observed at dif-
ferent points in the trace). Meanwhile, the DWS method of Medeiros et al. [4,9] adopts
divisive hierarchical clustering with k-means for implementing each division step. They
use a similarity measure based on the count of occurrences of n-grams.

The above techniques produce a collection of models by applying single-model pro-
cess mining techniques (e.g. Heuristics Miner) to each cluster at the lowest level of the
dendrogram. Thus, the output is a flat collection of models of different levels of com-
plexity. Accordingly, SMD does not take as input the collection of models produced
by these techniques, but instead it takes the dendrogram. The dendrogram is traversed
top-down to extract models at the required level of complexity.

To the best of our knowledge only two methods have been proposed aimed at mining
hierarchies of process models. Bose et al. [3] presents a method that mines a single root
process and a set of subprocesses that correspond to the factorization of motifs observed
in the traces (a.k.a. conserved patterns). The method is hence intended to work on a sin-
gle process model and not on a collection thereof. Meanwhile, Greco et al. [8, 9] use
trace clustering to mine hierarchies of process models. In these hierarchies, the mod-
els associated to leaf nodes correspond to “concrete” models. In contrast, the models
associated to inner nodes correspond to generalizations, resulting from the abstraction
of multiple activities observed in models of descendant nodes. Thus the end result is a
generalization-specialization hierarchy of models. In contrast, SMD aims at producing
a collection of process models with (shared) sub-processes, thus the relation between
lower-level and higher-level models is a part-of relation.

Slice, Mine and Dice: Complexity-Aware Automated Discovery 53

2.3 Clone Detection in Process Models

SMD relies on techniques for detecting duplicate fragments (a.k.a. clones) in process
models. The idea is that these clones will be refactored into shared subprocess mod-
els in order to reduce the overall size and possibly also the complexity of discovered
process models. Given that subprocess models must have a clear start point and a clear
end point1 we are interested in extracting single-entry, single-exit (SESE) fragments.
Accordingly, SMD makes use of a clone detection technique based on a decomposition
of process models into a tree representing all SESE fragments in the model, namely the
Refined Process Structure Tree (RPST) [19]. Each node in an RPST corresponds to a
SESE fragment in the underlying process model. The root node corresponds to the en-
tire process model. The child nodes of a node N correspond to the SESE fragments that
are contained directly under N. In other words, the parent-child relation in the RPST
corresponds to the containment relation between SESE fragments. A key characteristic
of the RPST is that it can be constructed for any model captured in a graph-oriented
process modeling notation (e.g. BPMN or EPC).

For the purpose of exact clone detection, we make use of the RPSDAG index struc-
ture [6]. Conceptually, an RPSDAG of a collection of models is the union of the RPSTs
of the models in the collection. Hence, a node in the RPSDAG corresponds to a SESE
fragment whereas edges encode the containment relation between SESE fragments.
Importantly, each fragment appears only once in the RPSDAG. If a SESE fragment ap-
pears multiple times in the collection of process models (i.e. it is a clone), it will have
multiple parent fragments in the RPSDAG. This feature allows us to efficiently identify
duplicate clones: a duplicate clone is simply a fragment with multiple parents.

In addition to allowing us to identify exact clones, the RPSDAG provides a basis for
approximate clone detection [7]. Approximate clone detection is achieved by applying
clustering techniques on the collection of SESE fragments of an RPSDAG, using one
minus the graph-edit distance as the similarity measure (as defined in [5]). Two clus-
tering techniques for approximate clone detection based on this principle are presented
in [7]. The first is an adaptation of the Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) algorithm, the second is an adaptation of the Hierarchical
Agglomerative Clustering (HAC) algorithm. Both of these techniques take as input a
collection of process models and return a set of approximate clone clusters – each clus-
ter representing a set of SESE fragments that are similar within a certain similarity
threshold. To evaluate SMD, we adopted the DBSCAN approach to approximate clone
clustering due to it being more scalable.

2.4 Process Model Merging

Approximate clone detection allows us to identify clusters of similar SESE fragments
in a collection of process models. Having done so, we can replace each of the identified
approximate clones with references to a single subprocess model representing the union
of these similar fragments, so as to reduce the overall size of the collection of process

1 Note that top-level process models may have multiple start and end events, but subprocess
models must have a single start and end event in order to comply with the call-and-return
semantics of subprocess invocation.

54 C.C. Ekanayake et al.

models. It can be argued that this single subprocess should represent the collective
behavior of all the SESE fragments in a cluster, otherwise some behavior would be
lost when replacing the approximate clones with the single shared subprocess.

The technique for process model merging presented in [14] allows us to achieve
this property. This technique takes as input a collection of process models (or SESE
fragments) and returns a single merged process model, such that the set of traces of
the merged model is the union of the traces of the input models. Thus, applying this
technique on fragments of automatically discovered process models does not affect the
fitness, appropriateness or generalization of the particular discovery technique used.
An experimental evaluation reported in [14] shows that, if the input process models (or
fragments) are similar, the size of the merged process model is significantly lower than
the sum of the sizes of the input models. Also, the more similar the merged models are,
the more significant is the size reduction achieved during merging.

This merging technique is applicable to any graph-oriented process modeling lan-
guage that includes the three connectors XOR, AND and OR (e.g EPCs and BPMN).

3 The SMD Technique

The idea of SMD is to traverse the dendrogram produced by hierarchical trace clustering
in a top-down manner (breadth-first), attempting at each level of the traversal to produce
models of complexity below a certain user-defined threshold. This threshold can be
placed on the size of a model or on its structural complexity measured in terms of CFC,
density or other complexity metrics. For example, the user can specify an upper-bound
of 50 for the number of nodes in a model or a maximum control flow complexity of 20
per model. At each level of the traversal, the algorithm applies subprocess extraction
and merging in order to reduce duplication. The traversal stops at a given cluster d in
the dendrogram – meaning that its child clusters are not visited – if a single model can
be mined from d that after subprocess extraction meets the complexity threshold, or if
d is a leaf of the dendrogram, in which case the model mined from d is returned.

The detailed description of SMD is given in Algorithm 1. Hereafter we illustrate this
algorithm by means of the example dendrogram shown in Fig. 1 and we use size 12 as
the complexity threshold. Observe that the root cluster L1 of the dendrogram is the log
used as input to generate the dendrogram. As we traverse the dendrogram D, we mark
the current position of the dendrogram with the clusters from which process models
need to be mined. At the beginning, the root cluster is the only marked cluster (line 2).
While there are marked trace clusters, we perform the following operations (lines 3–
16). First, we mine a set of process models from marked trace clusters in D (line 4). As
only L1 is marked at the beginning, a single process model m1 is mined. Let us assume
that the model mined from L1 is that shown in Fig. 2. If we reach a leaf trace cluster
of D at any stage, we cannot simplify the process model mined from that trace cluster
anymore by traversing D. Thus, when a leaf of D is reached, we add the process model
mined from that leaf to the set of leaf level process models Ml (line 5). As L1 is not a
leaf, we do not update Ml at this stage. We then unmark all the clusters in Ml to avoid
mining a process model again from these clusters, in next iterations of the while cycle
(line 6). Then we extract subprocesses using Algorithm 2 (line 7) from the union of all

Slice, Mine and Dice: Complexity-Aware Automated Discovery 55

Algorithm 1. Discover process model collection
Input: Dendrogram D, complexity threshold k
Output: Set of root process models Ms, set of subprocesses S

Initialize Ml with ∅1

Mark the root trace cluster of D2

while there are marked trace clusters in D do3

Mine a set of process models M from all marked trace clusters in D4

Add to Ml the set of models from M mined from marked leaves of D5

Unmark all trace clusters used to mine models in Ml6

Invoke Algorithm 2 to extract subprocesses from M∪Ml and obtain a simplified set7

of root process models Ms and a set of subprocesses S
Let Mc be the process models in Ms that do not satisfy k8

Let Sc be the subprocesses in S that do not satisfy k9

Let P be the process models of Ms containing subprocesses in Sc10

Add all models in P to Mc11

Remove Ml from Mc12

if Mc is empty then Unmark all trace clusters in D13

foreach model mc in Mc do14

Get the trace cluster d used to mine mc15

Mark child trace clusters of d in D and unmark d16

return Ms and S17

mined models so far and all models mined from leaves Ml . In our example, we extract
subprocesses only from m1, as Ml is empty.

In Algorithm 2, we first construct the RPSDAG from the set of process models in
input (line 3). Then we identify sets of exact clones using the technique in [6] (line 4).
For each set of exact clones, we create a single subprocess and replace the occurrence
of these clones in their process models with a subprocess activity pointing to the sub-
process just created (lines 6-7). Once exact clones have been factored out, we identify
clusters of approximate clones using the technique in [7] (line 8). For each fragment
cluster, we merge all approximate clones in that cluster into a configurable fragment
(line 11) using the technique in [14]. If this fragment satisfies the threshold, we embed
it into a subprocess (line 14) and replace all occurrences of the corresponding approxi-
mate clones with a subprocess activity pointing to this subprocess (lines 15–16).

A cluster of approximate clones may contain the parent or the child of a fragment
contained in another cluster. As a fragment that has been used to extract a subprocess
does no longer exist, we need to also remove its parent and child fragments occurring
in other clusters (lines 17–18). We use the RPSDAG to identify these containment rela-
tionships efficiently. One or more fragment clusters may be affected by this operation.
Thus, we have to order the processing of the approximate clones clusters based on some
benefit-cost-ratio (BCR), so as to prioritize those clusters that maximize the number
of process models satisfying the threshold after approximate clones extraction (line
10). If we set our threshold on size, we can use the BCR defined in [7], which is the ratio

56 C.C. Ekanayake et al.

Algorithm 2. Extract subprocesses
Input: Set of process models M, complexity threshold k
Output: Set of root process models Ms, set of subprocesses S

Initialize Ms with M1

Initialize S with ∅2

Let Fs be the set of SESE fragments of Ms3

Let Fe in Fs be the set of exact clones4

Add Fe to S5

foreach fragment f in Fe do6

Replace all occurrences of f in models of Ms ∪S with a subprocess activity pointing7

to f

Apply approximate clone detection on Fs \Fe to identify fragment clusters C8

while C is not empty do9

Retrieve the cluster c with highest BCR from C10

Merge fragments in c to obtain a merged fragment fm11

Remove c from C12

if fm satisfies k then13

Add fm to S14

foreach fragment f in c do15

Replace all occurrences of f in models of Ms with a subprocess activity16

pointing to fm

Remove all ascendant and descendant fragments of f from all clusters in C17

Remove all clusters that are left with less than 2 fragments from C18

return Ms and S19

L1

L5L4

L3L2

L13L12

L7L6

L11L10L9L8

m1

m2 m3

m4 m5

Fig. 1. A possible dendrogram generated by hierarchical trace clustering

between overall size reduction (benefit) and distance between approximate clones
within a cluster (cost). Similar BCRs can be defined on other complexity metrics.

Coming back to our example, we can see there are two exact clones (f 6 and f 8)
and two approximate clones (f 4 and f 9) in m1, as highlighted in Fig. 2. After applying
Algorithm 2 we obtain the process model collection in Fig. 3, where we have two sub-
processes (s1 and s2) with s2 being a configurable model. In particular, we can observe
that s2 has two configurable gateways – the XOR-split and the XOR-join represented

Slice, Mine and Dice: Complexity-Aware Automated Discovery 57

with a thicker border – so that the selection of outgoing edges of the XOR-split (in-
coming edges of the XOR-join) is constrained by the annotated fragment identifiers. In
addition, s2 has an annotated activity to keep track of the original labels for that activity
in f 4 and f 9. For example, if we want to replay the behavior of f 4, only the top and
bottom branches of this merged model will be available with the bottom branch bearing
activity “Perform external procurements”.

Once subprocesses have been extracted, we add all models that have to be further
simplified to set Mc (lines 8–12 of Algorithm 1). Mc contains all non-leaf models not
satisfying the threshold and all non-leaf models containing subprocesses not satisfying
the threshold. Algorithm 1 terminates if Mc is empty (line 13). Otherwise, for each
model in Mc, we mark the respective cluster (lines 14–16) and reiterate the while loop.

In our example, the size of m1 after subprocess extraction is 19, which does not
satisfy the threshold 12. Thus, we discard m1 and mine two process models m2 and m3
from L2 and L3, which are shown in Fig. 4. m2 and m3 contain two exact clones (f 24
and f 31) and two approximate clones (f 22 and f 34). Now we apply Algorithm 2 on
m2 and m3 and obtain the process model collection shown in Fig. 5. The sizes of m2
and m3 after subprocess extraction are 14 and 11 respectively. Thus, m3 satisfies our
threshold while m2 has to be further simplified. We then discard m2 and mine two fresh
models m4 and m5 from L4 and L5 and so on.

Order existing
service
product

Post
material

widrawals

Perform
external

procurements

Get
feedback
from client

Schedule
revised
order

Create
service order

manually

Register
order

Create
material

reservation

Assess
capacity

requirements

Approve
service
order

Create
service order

for sales
order item

Create
material

reservation

Assess
capacity

requirements

Peform credit
limit check
manually

Contact
vendors for

orders

Post
material

widrawals

Request
external

procurements

Assign
materials
directly

f 4

f 6

f 8

f 9

m1

Fig. 2. Process model m1 with similar fragments

The complexity of Algorithm 1 depends on four external algorithms which are used
to i) discover process models from the clusters of the dendrogram (line 4), ii) detect ex-
act clones (line 4 of Algorithm 2), iii) detect approximate clones (line 8 of Algorithm 2)
and iv) merge approximate clones (line 11 of Algorithm 2). Let c1, c2, c3 and c4 be the
respective costs of these algorithms. The complexity of exact clone detection is deter-
mined by the insertion of fragments into the RPSDAG, which dominates the complexity
of deleting fragments [6]. The complexity of approximate clone detection is dominated
by that of computing the graph-edit distance between fragments [7]. Let F be the set of
all SESE fragments of the process models that can be discovered from all trace clusters
of dendrogram D, i.e. F is the union of all Fs. In the worst case, we need to discover

58 C.C. Ekanayake et al.

Order existing
service
product

Get
feedback
from client

Schedule
revised
order

Create
service order

manually

Register
order

Approve
service
order

Create service
order for sales

order item

Peform credit
limit check
manually

Contact
vendors for

orders

s2

s1

s1 s2

Create
material

reservation

Assess
capacity

requirements

s1

Post
material

widrawals

Request
external

procurements

Assign
materials
directly

s2

m1

f4: “Perform external procurements”
f9: “Request external procurements”

f4, f9

f4, f9

f9

f4, f9

f9

f4, f9

+

+

+

+

Fig. 3. Process model m1 and subprocess s1 after subprocess extraction

Order existing
service
product

Post
material

widrawals

Perform
external

procurements

Get
feedback
from client

Schedule
revised
order

Create
service order

manually

Register
order

Create
material

reservation

Assess
capacity

requirements

Approve
service
order

f 22

Create service
order for sales

order item

Create
material

reservation

Assess
capacity

requirements

Peform credit
limit check
manually

Contact
vendors for

orders

Post
material

widrawals

Request
external

procurements

Assign
materials
directly

f 34

Create third
party service

order

Register
service order

f 31

m2

m3

f 24

Fig. 4. Process models m2 and m3 mined from trace clusters L2 and L3

a process model from each cluster of the dendrogram, which is O(|D|c1); insert all
fragments in the RPSDAG, which is O(|F |c2); compute the graph-edit distance of all
pairs of fragments, which is O(|F |2c3); and merge |F |/2 fragments, which is O(|F |c4).
Thus, the worst-case complexity of Algorithm 1 is O(|D|c1 + |F|(c2 + c4)+ |F|2c3). c1

depends on the specific discovery technique used. For example, the Heuristic Miner is
quadratic on the number of event classes in the log. Theoretically, c2 is factorial in the
number of nodes with the same label inside a single SESE fragment, though in practice
this number is often very small or equal to zero thanks to various optimizations of exact
clone detection [6]. Thus in practice c2 is linear on |F | [6]. c3 is cubic on the size n of
the largest fragment if using a greedy algorithm [5], as in the experiments reported in
this paper. Finally, c4 is O(n log(n)).

Slice, Mine and Dice: Complexity-Aware Automated Discovery 59

Order existing
service
product

Get
feedback
from client

Schedule
revised
order

Create
service order

manually

Register
order

Approve
service
order

s4

s3

Create service
order for sales

order item

Peform credit
limit check
manually

Contact
vendors for

orders
s3

s4

Create third
party service

order

Register
service order

m2

m3

Create
material

reservation

Assess
capacity

requirements

s3
s4

Post
material

widrawals

Request
external

procurements

Assign
materials
directly

m2: “Perform external procurements”
m3: “Request external procurements”

m2, m3

m2, m3

m2

m2, m3

m2

m2, m3

+

+

+

+

Fig. 5. Process models and subprocesses after subprocess extraction from m2 and m3

As with any process mining technique, the outcome of SMD is affected by the quality
of the logs used as input. However, as SMD can work with different process discovery
and hierarchical trace clustering algorithms, quality requirements on the logs depend
on the specific algorithms used.

4 Evaluation

We implemented the SMD technique on the Apromore [10] platform.2 We then used
this tool to evaluate the technique on two event logs extracted from a large insurance
company and on the log of the BPI challenge 20123 (hereafter called BPI Log). The
first log of the insurance company was taken from a motor insurance claims handling
process for windscreen claims (called Motor Log). The second log was taken from a
commercial insurance claims handling process (called Commercial Log). We extracted
completed traces from the first two months of each log, leading to a total of 4,300 to
5,300 traces. As we can see from Tab. 1, the three logs exhibit different characteristics
despite the similar number of traces. In particular, there is a substantial difference in
duplication ratio (i.e. the ratio between events and event classes).

Using these logs, we measured the reductions in overall size and number of mod-
els achieved by SMD on top of three hierarchical trace clustering techniques: Song
et al. [15, 16], Bose et al. [1, 2] and the DWS technique by Medeiros et al. [4, 9].
These techniques were integrated in our tool. In particular, we used the DWS tech-
nique with K=2 and adapted it to split clusters until the process models mined from
all trace clusters have complexity lower than or equal to the threshold, so that irrele-
vant clusters are not generated. For consistency, we used the Heuristics Miner [22] to

2 The tool is available at www.apromore.org/platform/tools
3 http://www.win.tue.nl/bpi2012/doku.php?id=challenge

www.apromore.org/platform/tools
http://www.win.tue.nl/bpi2012/doku.php?id=challenge

60 C.C. Ekanayake et al.

Table 1. Characteristics of event logs used in the experiments

Log Traces Events Event classes Duplication ratio
Motor 4,293 33,202 292 114
Commercial 4,852 54,134 81 668
BPI 5,312 91,949 36 2,554

discover process models from the clusters retrieved by all three techniques. For clone
detection we used the implementation described in [6] while for approximate clone
clustering, we used the implementation of the DBSCAN algorithm described in [7]
with graph-edit distance threshold of 0.4. These implementations, as well as that of the
technique for merging process models described in [14], were also integrated into our
tool.

In this evaluation, we set the user-defined complexity threshold on the process model
size, as it has been shown that size has the largest impact on perceived process model
complexity [11]. There is an implicit limit on the minimum size each mined process
model can have. This limit, which is a lower-bound for the user-defined threshold, de-
pends on the number and size of the clones we can identify in the process model collec-
tion mined from the dendrogram of the trace clusters. The risk of choosing a threshold
lower than this limit is that we may end up with a proliferation of process models, many
of which still with size above the threshold. This high number of models is due to the
fact that the technique would explore the dendrogram as deep as possible. To discover
this implicit limit we would need to run SMD using a size threshold of 1, so as to fully
explore the dendrogram, and measure the size of the largest process model we obtain.
This would be inefficient. However, we empirically found out that a good approxima-
tion of this implicit limit, which can be computed in a matter of seconds, is given by the
size of the largest process model that can be mined from a single trace.

We set the size threshold to this approximate implicit limit, which is 37 for the Motor
log, 34 for the Commercial log and 56 for the BPI log.4 The results of the experiments
are shown in Fig. 6 (Motor Log), Fig. 7 (Commercial Log) and Fig. 8 (BPI Log), where
“S”, “B” and “M” stand for the technique by Song et al., Bose et al. and Medeiros et
al., respectively, while “SMDS”, “SMLB” and “SMDM” indicate their respective SMD
extensions.

As we can observe from the histograms, SMD consistently yields a significant re-
duction in the overall size across all three logs and all three trace clustering techniques
used. This reduction ranges from 14.2% (with SMDM on the Motor log) to 63.9% (with
SMDM on the BPI log), as evidenced by Tab. 2. In particular, we can observe that de-
spite the technique of Medeiros et al. always produces the lowest overall size while that
of Bose et al. produces the highest one among the trace clustering techniques, these
differences are thinned out by SMD. This is because SMD compensates for the redun-
dancies between clusters that may be introduced by a trace clustering technique as the
number of clusters increases.

Similarly, we can observe significant reductions in the number of models, ranging
from 22% (with SMDM on the Commercial log) to 65.8% (with SMDM on the BPI

4 It turns out that these values correspond to the actual implicit size limits of the three logs.

Slice, Mine and Dice: Complexity-Aware Automated Discovery 61

8464 8786 8103
6640 7108 6950

0

2000

4000

6000

8000

10000

S SMD B SMD M SMD

Re
po

si
to

ry
 si

ze

Technique

Motor log - Repository size

Trace clustering SMD

S B M

372
449

515

288 290
386

90 104
51

0

100

200

300

400

500

600

S SMD B SMD M SMD

N
um

be
r o

f m
od

el
s

Technique

Motor log - Number of models

Trace clustering SMD : processes SMD : subprocesses

S B M

Fig. 6. Overall size and number of models obtained from the Motor log

10833 11612
91858066 8681 7406

0

2000

4000

6000

8000

10000

12000

14000

S SMD B SMD M SMD

Re
po

si
to

ry
 si

ze

Technique

Commercial log - Repository size

Trace clustering SMD

S B M

450
551

487

325
393 380

107
121

62

0

100

200

300

400

500

600

S SMD B SMD M SMD

N
um

be
r o

f m
od

el
s

Technique

Commercial log - Number of models

Trace clustering SMD : processes SMD : subprocesses

S B M

Fig. 7. Overall size and number of models obtained from the Commercial log

9889
11170

7204

3959 4264
2602

0

2000

4000

6000

8000

10000

12000

S SMD B SMD M SMD

Re
po

si
to

ry
 si

ze

Technique

BPI log - Repository size

Trace clustering SMD

S B M

209 240

155
77 81 53

42 51

16

0

50

100

150

200

250

300

S SMD B SMD M SMD

N
um

be
r o

f m
od

el
s

Technique

BPI log - Number of models

Trace clustering SMD : processes SMD : subprocesses

S B M

Fig. 8. Overall size and number of models obtained from the BPI log

log) if considering root models only (see Tab. 2). Adding subprocesses to the count, the
extent of this reduction is clearly diminished (there is even a slight increase of 1.6% in
the total number of models in the case of SMDS on the Motor log). These results should
be interpreted as an indication that SMD can often achieve the complexity threshold
with less process models (particularly less root process models) compared to the three
baseline trace clustering techniques used in the experiments.

62 C.C. Ekanayake et al.

Table 2. Savings in the overall size and number of models yielded by SMD

Log Method Size savings (%) (Root) models number savings (%)
Motor SMDS 21.6 (22.6) -1.6

SMDB 19.1 (35.4) 12.2
SMDM 14.2 (25.0) 15.1

Commercial SMDS 25.5 (27.8) 4.0
SMDB 25.2 (28.7) 6.7
SMDM 19.4 (22.0) 9.2

BPI SMDS 60.0 (63.2) 43.1
SMDB 61.8 (66.3) 45.0
SMDM 63.9 (65.8) 55.5

Table 3. Size and structural complexity metrics for model collections mined with SMD

Log Method Size CFC ACD CNC Density
avg min max savings (%) avg avg avg avg

Motor S 22.75 4 37 22.8 12.07 2.71 1.26 0.07
SMDS 17.57 4 37 10.07 2.34 1.21 0.11
B 20.01 4 37 9.8 9.97 2.51 1.2 0.08
SMDB 18.04 4 37 10.05 2.38 1.2 0.11
M 15.73 3 49 -1.1 7.36 2.14 1.12 0.11
SMDM 15.9 4 49 8.34 2.12 1.14 0.12

Commercial S 24.07 6 34 22.4 13.65 2.96 1.32 0.06
SMDS 18.67 2 34 11.34 2.49 1.24 0.1
B 21.11 2 34 20.3 11.04 2.65 1.23 0.07
SMDB 16.82 2 34 9.73 2.29 1.18 0.12
M 18.86 2 40 11.1 10.18 2.47 1.22 0.09
SMDM 16.76 2 34 9.71 2.38 1.21 0.11

BPI S 47.32 15 56 29.7 20.77 2.34 1.24 0.03
SMDS 33.27 4 56 20.18 2.41 1.28 0.07
B 46.54 13 56 30.6 20.48 2.35 1.23 0.03
SMDB 32.3 4 56 19.29 2.33 1.27 0.07
M 46.48 21 61 18.9 21.16 2.34 1.24 0.03
SMDM 37.71 7 56 25.29 2.38 1.3 0.04

From Tab. 2 we can also observe that the extent of the improvement, both for size
and models number, increases with the increase of the log’s duplication ratio (from the
Motor log to the BPI log – see Tab. 1). This is confirmed by the strong correlation
between the duplication ratio and the percentage of size savings produced by SMD
(0.99), and the strong correlation between the duplication ratio and the percentage of
models number savings (0.95). Thus, we can conclude that the amount of improvement
achieved by SMD depends on the amount of duplication in the log.

Further, the average size and structural complexity of individual models reported
in Tab. 3, indicate that SMD achieves the size threshold on individual models without
affecting structural complexity. The table shows that the average values for structural

Slice, Mine and Dice: Complexity-Aware Automated Discovery 63

complexity measures remain largely unchanged after applying SMD (the increase in
density is due to the inverse correlation of density and size). It is also worth noting
that in most cases, the average model size is reduced after applying SMD (up to 30.6%
savings in the case of the BPI log).

In most of the experiments, SMD took more time than the corresponding baseline
trace clustering technique. This is attributable to the reliance on graph-edit distance for
process model comparison. In the worst case, SMD took double the time required by
the baseline (e.g., 58 mins instead 28 mins of Medeiros et al. on the Commercial log).
However, in other cases, SMD took less time than the baseline (e.g., 17 mins instead
of 22 mins of Bose et al. on the BPI log). This is because if SMD mines less models
relative to its baseline trace clustering technique, the time saved by the mining steps can
compensate for the time taken to compute graph-edit distances.

5 Conclusion

SMD advances the state-of-the-art in automated process discovery along two directions.
First, it is to the best of our knowledge the first complexity-aware automated process
discovery method, insofar as it seeks to produce models that meet user-specified com-
plexity thresholds. Second, SMD provides significant reductions in overall size relative
to existing process discovery techniques based on hierarchical trace clustering, while
preserving the fitness, appropriateness and generalization of process models mined from
trace clusters. The experimental evaluation based on three large real-life logs shows size
reductions of up to 64%, with little impact on structural complexity metrics of individ-
ual process models – barring an increase in density attributable to the dependency of
this complexity metric on size.

While complexity metrics have been shown to be correlated with comprehensibil-
ity [13], it is unclear how exactly to tune the thresholds used by SMD so as to produce
models that users would best comprehend. While methods for determining complexity
thresholds on individual models have been put forward [12], the interplay between over-
all size of a collection of process models, size of individual models and their structural
complexity is less understood. Building an understanding on how to set complexity
thresholds for automated process discovery is a direction for future work. Another di-
rection for future work is to optimize SMD in order to reduce its execution time. For
example, an option is to parallelize divisive trace clustering, as well as process discov-
ery, for sibling nodes of the dendrogram. The GED matrix computation can also be
parallelized by dividing the fragment collection into multiple groups that are processed
in parallel.

Acknowledgments. This work is funded by the Smart Services Cooperative Research
Centre (CRC) under the Australian CRC Program and EU Regional Development Funds
via the Estonian Centre of Excellence in Computer Science.

References

1. Bose, R.P.J.C.: Process Mining in the Large: Preprocessing, Discovery, and Diagnostics. PhD
thesis, Eindhoven University of Technology, Eindhoven (2012)

64 C.C. Ekanayake et al.

2. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved patterns: Towards
achieving better process models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM
2009 Workshops. LNBIP, vol. 43, pp. 170–181. Springer, Heidelberg (2010)

3. Bose, R.P.J.C., Verbeek, E.H.M.W., van der Aalst, W.M.P.: Discovering hierarchical process
models using prom. In: Nurcan, S. (ed.) CAiSE Forum 2011. LNBIP, vol. 107, pp. 33–48.
Springer, Heidelberg (2012)

4. de Medeiros, A.K.A., Guzzo, A., Greco, G., van der Aalst, W.M.P., Weijters, A.J.M.M.,
van Dongen, B.F., Saccà, D.: Process mining based on clustering: A quest for precision.
In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS,
vol. 4928, pp. 17–29. Springer, Heidelberg (2008)

5. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of busi-
ness process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

6. Dumas, M., Garcı́a-Bañuelos, L., La Rosa, M., Uba, R.: Fast detection of exact clones in
business process model repositories. Inf. Syst. 38(4), 619–633 (2012)

7. Ekanayake, C.C., Dumas, M., Garcı́a-Bañuelos, L., La Rosa, M., ter Hofstede, A.H.M.: Ap-
proximate clone detection in repositories of business process models. In: Barros, A., Gal, A.,
Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 302–318. Springer, Heidelberg (2012)

8. Greco, G., Guzzo, A., Pontieri, L.: Mining taxonomies of process models. Data Knowl.
Eng. 67(1), 74–102 (2008)

9. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by
clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

10. La Rosa, M., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling, J., Dumas, M.,
Garcı́a-Bañuelos, L.: APROMORE: An Advanced Process Model Repository. Expert Syst.
Appl. 38(6) (2011)

11. Mendling, J., Reijers, H.A., Cardoso, J.: What Makes Process Models Understandable? In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63.
Springer, Heidelberg (2007)

12. Mendling, J., Sánchez-González, L., Garcı́a, F., La Rosa, M.: Thresholds for error probability
measures of business process models. J. Syst. Software 85(5), 1188–1197 (2012)

13. Reijers, H.A., Mendling, J.: A study into the factors that influence the understandability of
business process models. IEEE T. Syst. Man Cy. A 41(3), 449–462 (2011)

14. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging: An ap-
proach to business process consolidation. ACM T. Softw. Eng. Meth. 22(2) (2013)

15. Song, M., Günther, C.W., van der Aalst, W.M.P.: Improving process mining with trace clus-
tering. J. Korean Inst. of Industrial Engineers 34(4), 460–469 (2008)

16. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process mining. In:
Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP, vol. 17, pp. 109–
120. Springer, Heidelberg (2009)

17. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

18. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discov-
ery using integer linear programming. Fundam. Inform. 94(3-4), 387–412 (2009)

19. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. Data Knowl.
Eng. 68(9), 793–818 (2009)

20. Veiga, G.M., Ferreira, D.R.: Understanding spaghetti models with sequence clustering for
prom. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp.
92–103. Springer, Heidelberg (2010)

21. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality
assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf.
Syst. 37(7), 654–676 (2012)

22. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (fhm). In: CIDM, pp. 310–317.
IEEE (2011)

Business Process Mining from E-Commerce

Web Logs

Nicolas Poggi1,2, Vinod Muthusamy3, David Carrera1,2, and Rania Khalaf3

1 Technical University of Catalonia (UPC) Barcelona, Spain
2 Barcelona Supercomputing Center (BSC) Barcelona, Spain

3 IBM T. J. Watson Research Center Yorktown, New York, USA

Abstract. The dynamic nature of the Web and its increasing impor-
tance as an economic platform create the need of new methods and tools
for business efficiency. Current Web analytic tools do not provide the
necessary abstracted view of the underlying customer processes and crit-
ical paths of site visitor behavior. Such information can offer insights for
businesses to react effectively and efficiently. We propose applying Busi-
ness Process Management (BPM) methodologies to e-commerce Website
logs, and present the challenges, results and potential benefits of such an
approach.

We use the Business Process Insight (BPI) platform, a collaborative
process intelligence toolset that implements the discovery of loosely-
coupled processes, and includes novel process mining techniques suitable
for the Web. Experiments are performed on custom click-stream logs
from a large online travel and booking agency. We first compare Web
clicks and BPM events, and then present a methodology to classify and
transform URLs into events. We evaluate traditional and custom process
mining algorithms to extract business models from real-life Web data.
The resulting models present an abstracted view of the relation between
pages, exit points, and critical paths taken by customers. Such models
show important improvements and aid high-level decision making and
optimization of e-commerce sites compared to current state-of-art Web
analytics.

1 Introduction

To remain competitive, online retailers need to adapt in an agile, non-structured
way, resulting in large, unstructured websites and rapidly changing server re-
source demands [14]. Moreover, Conversion Rates (CR), the fraction of users
that reach a certain goal, such as buying a product on the site, are decreasing:
less than 2% of visits result in a purchase on most sites [14]. A low CR is influ-
enced by factors including affiliation programs, changes in user habits such as
comparing different sites at the same time [15], and meta-crawling. For example,
Kayak.com and similar meta-crawlers present the user the best results gathered
from several sites, thereby lowering the visits to each site and the CR.

Most online businesses rely on free Web analytic tools to inform their Web
marketing campaigns and strategic business decisions. However these tools cur-
rently do not provide the necessary abstracted view of the customer’s actual

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 65–80, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

66 N. Poggi et al.

behavior on the site. Without the proper tools and abstractions, site owners
have a simplified and incorrect understanding of their users’ real interaction
patterns on the site, and how they evolve.

In this paper we apply Business Process Management (BPM) methodologies
to e-commerce Website logs. Structured formal models of user behavior can pro-
vide insights on potential improvements to the site. In particular, providing a
high-level abstracted view of the workflows leading to purchases and most com-
mon exit pages in order to make decisions on site optimization. BPM concerns
the management of business processes including the modeling, design, execution,
monitoring, and optimization of processes [8]. While loosely-structured to com-
pletely ad-hoc processes have not traditionally not been considered by BPM, we
(and others [7]) see this is part of a spectrum [19].

Unlike Web analytics [9], process analytics is concerned with correlating
events [20], mining for process models [24,26,18], and predicting behavior [25].
We propose treating a user’s web clicks as an unstructured process, and use
process mining algorithms to discover user behavior. The mined process model
captures the causality and paths of user interactions that lead to certain out-
comes of interest, such as buying a product. Such insights can be difficult to
extract from traditional Web analytic tools.

We use the Business Process Insight (BPI) platform, a collaborative process
intelligence toolset [19]. BPI includes the knowledge-based process miner, which
differs from traditional process mining in its initial search structure and the set
of activities considered for edge operations.

We use a real data set from Atrapalo, an online travel and booking agency
(OTA) that includes popular services such as flight and hotel reservation systems.
The data set includes the HTTP requests made by customers to the site over a
three month period, captured using Real User Monitoring techniques. We apply
process analytics to this dataset, and make three main contributions:

1. We outline how to transform web clicks into tasks suitable for analysis and
modeling with BPM tools. In particular, we classify the URLs that cor-
respond to web clicks into high level tasks. We compare both a manual
classification approach with knowledge from a domain expert, and an auto-
matic classification algorithm. The tasks are then grouped into web sessions
representing a particular customer’s interaction with the site.

2. We describe how to mine business processes that includes how regular web
visitors and customers behave. A challenge here is that, by design, most
process mining algorithms capture only the most common behavior in or-
der to keep the resulting mined process model simple enough for a human
to understand. However, in web commerce data, the behaviors of interest,
such as a customer buying a product, are infrequent. We address this issue
with techniques such as saturating the dataset with low frequency behavior
we wish to observe, clustering the process instances to extract patterns of
behavior, and using a knowledge-based processing mining algorithm.

3. We evaluate the use of the knowledge-based mining algorithm under a vari-
ety of conditions, and explain its suitability to extract process models that

Business Process Mining from E-Commerce Web Logs 67

abstract a complete over-view of user navigation from real, noisy data. Our
evaluation is notable for using real web logs, and unique in applying BPM
techniques to an e-commerce site.

2 Background and Related Work

Business Process Management. Business processes can be strongly struc-
tured (as in BPEL), loosely-structured (as in Case Management tools), or en-
tirely unstructured. The latter are common with ad-hoc human tasks. For ex-
ample, a party planning process may be carried out by phone, e-mail, and faxes
by people not following any predefined process. Such unstructured processes are
an important part of the spectrum of processes in the wild [7,19]. Process min-
ing automates the discovery of process models from event logs, and we propose
treating e-commerce web interactions as business processes.

Business Process Insight. The Business Process Insight (BPI) system [19]
detects relationships among events, and outputs a set of correlation rules. The
correlation engine applies these rules to create process traces that group related
events that belong to the same process instance. The process traces can then be
used to discover different process models or to train predictive models for making
live predictions on future behavior. Similar to Process Spaceship [11], BPI is a
process intelligence solution that simplifies the understanding of business process
executions across heterogeneous systems, as well as provide a foundation for
process-aware analytics for both historical and live events. The BPI architecture
supports plugging in different process mining algorithms, such as the alpha and
heuristic mining algorithms in the ProM process mining tool [26].

Process Mining. Process mining aims to extract a business process model from
a set of execution logs [1,26,23,4,13,17,25]. Process mining algorithms typically
find all activities (nodes) in the process model, constructing a dependency graph
with no edges, and then search through the space of process models by adding,
deleting, and reversing edges. However, many algorithms restrict the activities
that can be considered for these edge operations by observing activity adjacency
in the execution log. For instance, only if activities A and B are adjacent in the
log will they be considered for an edge operation. The knowledge-based miner
developed at IBM Research can leverage domain knowledge by initializing its
search with a predefined process model. The algorithm also considers a larger
search space of process model structures by considering edge operations on both
log-adjacent and log non-adjacent activities. This larger search space enables the
discovery of process models that more accurately represent the process execution
log. The knowledge-based miner constructs an activity precedence graph that en-
codes statistically significant activity dependencies among the execution logs, as
well as dependency and independency graphs [16] augmented with the confidence
levels of edges specified by a domain expert. The algorithm first extracts activity
dependencies and independencies from the process logs and expert knowledge,

68 N. Poggi et al.

partially using some of the techniques developed by Agrawal et al. [2]. It then
discovers the split/join semantics based on some of the ideas in [16].

ProM is a prominent process mining tool that serves as a front-end for various
process mining techniques [26]. How data attributes influence the choices made
in a process based on past process executions by leveraging decision trees has
been investigated in [18]. The focus of [18] is to correctly identify decision points
in the presence of duplicate and invisible tasks in a log. There are also a number
of probabilistic models proposed for modeling business processes [13,17,25]. In
[5] Ferreira et al. proposes a probabilistic approach implementing Expectation-
Maximization for discovering process models from unlabeled event logs. In Sec-
tion 4 we propose a similar approach to cluster clicks into events, both by manual
and automatic methods.

Web Analytics. Web analytics deals with the collection, measurement, and
analysis of user navigational data. One way to classify the analytics techniques is
by the method of data collection: page tagging through Javascript, web server log
analysis, beaconing by inserting a remote object on the page, packet sniffing, and
hybrid approaches [27]. The main metrics analyzed include the number of unique
and returning visits, URL access frequency, geolocation, client web browser and
version, and statistics around these metrics. Newer tools from Google and Yahoo
also support tracking of marketing campaigns and conversion goals, such as
users subscribing to the site’s newsletter or purchasing a product. The latter
platforms are Javascript-based implementations of page tagging. Page tagging
can be manually tuned to group different tasks on the website logically; by
default tools follow the traditional URL analysis. The objective of web analytics
it to provide feedback for website owners on user behavior in order to improve
site navigation and conversion goals [9]. However, improvements are only possible
when there is a clear understanding on the underlying site structure and user
needs.

Web Mining. There are few published studies on real e-commerce data, mainly
because web logs are considered sensitive data. In [21] web mining is classified
into usage, content, and structure web mining. The main purpose for structure
mining is to extract previously unknown relationships between Web pages. While
this paper falls within the scope of structure web mining, most of the literature in
this topic focus on recommendation systems and web personalization [3]. In [22]
authors presented a comparative study of the navigation behavior of customers
and non-customers to assess and improve the quality of a commercial web site;
while in this work we aim to build a process model that shows the complete
interactions of most users in the site that includes customer sessions.

Customer Behavior Model Graphs (CBMG) can be used to provide an ab-
stracted view on web navigation [10]. The CBMG is built using the k-means
clustering algorithm that creates a probability matrix for the possible path tran-
sitions from a state. In this paper, we do not focus on predicting the user’s next
click, but seek to extract the most relevant critical paths occurring in the site

Business Process Mining from E-Commerce Web Logs 69

and build the process model. In particular, we are interested in the important
events and workflows that lead to a user buying a product.

Web analytics has evolved from those that analyzed web server access logs to
generate reports and evaluations based on URL, IP address, and browser agent
grouping and frequency analysis, to newer tools such as Google’s or Yahoo’s
analytics. These tools, however, do not extract the user behavior at an abstrac-
tion level that is appropriate to understand the actual critical paths taken by
consumers. The experimental results in this paper lead us to believe that web an-
alytics can benefit from BPM modeling. We are not aware of any other literature
on applying BPM techniques to an e-commerce site.

3 Application Scenario and Dataset

Online Travel E-commerce Market. Online travel agencies (OTAs) are a
prominent sector in the online services market. A Nielsen report on global online
shopping found airline ticket reservations represented 24% of online shopping
purchases, hotel reservations 16%, and event tickets 15%, for a combined 55%
of global online sales [12]. Conversion Rates (CR) are usually not made public
as they reveal the success of a business strategy, but we have confirmed that
for the OTA industry CR of less than 2% is a common figure when taking into
account all web requests [14]. Our study considers Atrapalo, an international
online travel agency and booking site representative of the OTA industry. It
features popular e-commerce applications found in the Web and over twelve
years of online presence. We have been given access to a three month dataset
from 2012 featuring several million HTTP requests of site visits.

Atrapalo’s Application. Atrapalo’s online application follows a typical travel
site structure, offering the following products: flights, hotels, cars, restaurants,
activities, cruises, vacation packages, and ticket bookings. Some product invento-
ries are maintained internally, such as restaurant bookings, some are completely
external, such as flights, and some products such as hotels contain a mix of inter-
nal and external providers. The company’s main presence and clientele include
Spain and Italy from Europe; Peru, Colombia, Brazil and Chile in South Amer-
ica; and a few visitors from elsewhere. Each country is served by a separate top
level domain and has differentiated products enabled. It is important to remark
that the site has over 12 years of online presence, and its structure has been
in constant update and optimization including a recently added mobile version,
but it retains an important legacy code base.

Dataset Used for the Experiments. The dataset provided by Atrapalo con-
tains click-stream information from visitors and customers of the different prod-
ucts offered in their domains presented in the previous section. The dataset
contains more than four million user clicks representing about 850 000 full user
sessions. The average navigation time per user is four minutes and eight seconds,
and there are 4.36 clicks per session. The dataset was collected by sampling over
a period of three months from June to September 2012.

70 N. Poggi et al.

The novelty of the presented dataset is that it was produced using Real User
Monitoring (RUM) techniques, in contrast to typical server logs collected by
the web server. Every time a page is loaded in Atrapalo—for a sample of web
sessions—an asynchronous AJAX request is sent from the user browser to the
server. This information is used by Atrapalo to monitor and optimize the per-
formance of web pages from the user’s perspective.

RUM log files are useful in this study. First, the dataset is cleaner, as it only
contains data from web browsers that can process Javascript, thereby avoiding
most crawler and bot traffic. Crawler behavior is particularly different from user
traffic and can account for over 20% of total requests [15] and distort results.
Second, it only contains information about pages that the user actually clicks.
In our previous work [15] we have performed workload characterization of web
server generated datasets and among other findings found that less than 50% of
requests corresponded to user clicks. The rest of the request traffic was composed
of automatic AJAX requests for autocomplete controls or the RUM request,
dynamically generated Javascript and CSSs, HTTP redirections, and backend
requests for the user session. Third, cached web pages, either in the customer
browser or any intermediate proxy are present in the RUM log. With this, the
complete user navigation can be reconstructed. Having complete data sets is
important for any mining or prediction algorithms, as most are susceptible to
noise to different degrees. The next section presents our approach to convert web
sessions into process models.

4 Web Sessions as Process Models

Among the characteristics and challenges in process mining [24] is having to deal
with noisy event data. Noise is common in web logs as web proxies and caches can
alter content. Moreover, web browsers behave differently, and browser plugins
can affect navigation patterns. Furthermore some requests can get lost, due to
dropped connections, users roaming over a mobile network, and users altering
the normal flow with refresh, back, and forward browser buttons. Also, a user’s
web session can expire. We have observed in our preliminary work that weblogs
are indeed noisier than typical event logs for BPM systems.

Another set of important characteristics is the presence of loops, duplicate ac-
tivities and parallel tasks. Web sessions also exhibit these properties to different
degrees. For example, when a user is searching for hotels, he might try different
dates, looping over the search page, or he might click on a hotel deal, see the
details, go back to the search page, click on another deal and so forth. The user
might have also opened different hotel deals in different tabs of his browser, cre-
ating parallel tasks. He might have also been searching for flights to the same
destination, or to rent a car from the airport in parallel. Parallel tasks, duplicate
activities and loops are present in most web navigations of more than a couple
of clicks. Current research detecting loops and having loop aware algorithms can
be substantially beneficial for mining web navigation and performing predictions
on the user’s navigation.

Business Process Mining from E-Commerce Web Logs 71

While Web sessions are also time constrained as typical BPM activities, time
is also major difference. As mentioned in the previous section, the average web
navigation is only of about four minutes, while BPM processes, such as supply
chain management, can span days. As BPM processes can require human in-
tervention, in the web the process is completely automatic. This difference has
several implications as there is no time for manual interpretation and modifica-
tion of an executing process. BPM tools, if applied to web navigation need to be
automatic, free of human intervention and deployed in real-time.

While on this study we only target web content, we advocate that user navi-
gation be included in process models of companies that involve both web inter-
action and traditional processes. The next section looks at how to abstract web
clicks into logical tasks to be consumed by a BPM system.

4.1 Classifying URLs into Logical Tasks

The first challenge analyzing web logs is to classify the URLs of the site. For
the dataset used in the experimentation several URL rewriting techniques were
implemented for security, dynamic page generation, search engine optimization,
and localization. There were 949 532 unique URL in the dataset, if we take the
query string out of the URL, the number of distinct pages reduces to 375 245.

Table 1. Classification of URLs into logical tasks

Tag Description

Home Main home page
ProductHome Home page for each product
Landing Search engine landing pages
Promo Special promotional pages
Search General site search
Results Product search and results
Details Product detailed information
Opinions Opinions about a product
Info Site help or general information
CartDetails Shopping cart details
CartPurchase Shopping cart purchase forms
Confirmation Confirmation page of a sale
UserAdmin User self reservation management

In order to extract the ac-
tion —type of process and
output of a page— from a
URL in Atrapalo’s dataset,
we had to implement the
rewrite engine used for the
page classification. Rewrite
engines usually perform reg-
ular expression matching to
URLs. In Atrapalo’s URLs,
the first element in the URL
path indicates the name of
the product, such as flights,
hotels, cars, or events. Each
product had custom imple-
mentations of the rewrite en-
gine and how regular expres-
sions were performed. About 20% of the URLs didn’t match any regular expres-
sion, and for these URLs query string classification was performed by looking
for a custom parameter ”pg”, which specified the page action. Using the query
string approach we were left with 5% of unclassified URLs that were manually
analyzed and classified using string search and replace.

After the URLs where translated we were left with 533 different page actions
or type of pages. However some of the page names occurred only once, a problem
we attribute to noise and errors in the rewrite engine implementation. We then
filtered the pages that did not have more than one occurrence, and ended with

72 N. Poggi et al.

233 page names. This means that across the products of the site there were 233
different types of pages. Some of the pages serve the same logical function, such
as the search page for hotels, flights or cars, or the different home pages for each
product. After a manual analysis on the site structure and URLs, we decided to
classify them in 14 logical types of pages detailed in Table 1.

Although the classification in Table 1 is particular to Atrapalo’s dataset, many
e-commerce sites share similar structures especially for sites implementing travel
and booking products. It is important to remark that through the classification
of pages no data is lost. Page classification is added as extra columns to the
dataset. The URL and page types are kept in the dataset, so we can later use
them to filter or to extract better path predictions. The next section presents a
proposal for automating page classification.

4.2 Automating Page Classification

Table 2. Classifier Evaluation

Algorithm Clusters Error

SimpleKmeans 14 39.90%
EM 14 41.88%
EM Automatic 76.93%

Classification of types of pages into log-
ical groups is necessary to map user
clicks occurring in a website to ab-
stracted logical tasks to be consumed
both by BPM algorithms and final re-
ports to humans. We noticed while re-
viewing the results that many page ac-
tions had similar names. There was at least a search page per product and
different types of search pages, including flightsSearch, hotelsSearch, flightsCal-
endarSearch, hotelsSearchCity. To aid classification, we have tested the clustering
of the page names using the WEKA open source machine learning framework [6].
WEKA contains several popular ready to use algorithms for classification and
clustering among other tools. As we had previously decided that the classification
has 14 logical types of pages, K-means clustering was our first natural choice to
test, as it performs in general scenarios with known number of clusters. We have
used WEKA’s SimpleKMeans implementation and setting the number of clus-
ters to 14 and the “classes to clusters” evaluation option. SimpleKMeans yielded
an error of 39.90% in classifying the 233 names into 14 clusters. We have also
experimented with the EM (Expectation-Maximisation) algorithm both with
automated and manual numbers of clusters yielding 76.93% and 41.88% of clas-
sification errors, respectively. Table 2 summarizes the clustering results. If the
number of classifications is known, K-means clustering can reduce the manual
work needed to simplify page classification. The next section details our experi-
ments with process mining.

5 Process Mining for Customers

This section details our experiments mining the business processes of customers
in Atrapalo’s dataset with the page classification from the previous section.
Three new events were added to each web session: Start, End, and BuyerEnd.

Business Process Mining from E-Commerce Web Logs 73

These events are helpers to the mining algorithms and to their visualizations to
show where sessions start—as there are different starting points—and exit. Exit
events were marked BuyerEnd if the session ended in a purchase, to differentiate
them from regular sessions. This distinction is not only used for visualization
purposes, but for path prediction algorithms as well for our ongoing research.

As mentioned in Section 3, only a small fraction of visits to the site ended
buying a product. The conversion rate for the site is less than 2% of the total
number of visits. Having such a small percentage is a problem for most mining
algorithms, as these low-frequency traces (web sessions) will be filtered out by
most implementations producing an incomplete model. In our study we present
three different approaches to this problem creating three new different datasets:
saturating the data set (saturated), clustering (clustered), and biasing toward
a previously set model with the knowledge-based miner. We call the original
dataset the normal dataset.

5.1 Saturating the Dataset with Customers

The first strategy to mine customer models was saturating the dataset. This
entailed producing a new dataset where the percentage of buying customers is
higher by removing sessions that did not purchase. We have chosen the ratio 1/3
of customers to just visitors. This ratio is choosen as customer sessions are longer
in average, leaving us with and even dataset of about half of the entries belonging
to customer sessions. With this ratio, we have created a new dataset including
the entire customer sessions present in the normal dataset, and 2/3 more sessions
from regular visits from the top of the dataset. This dataset having about 8% of
the total entries of the normal dataset, but including all the purchasing sessions.

This approach was tested with the process mining algorithms implemented in
BPI, and allowed us to test the different algorithm implementations. As men-
tioned previously, the alpha miner is not suited for event logs with noise or
incompleteness, as is typical in real logs [4]. Results for alpha miner are omitted
for the saturated dataset as it produced incomplete results.

Knowledge-Based Miner. Figure 1 shows the resulting models by applying
our knowledge based miner with default noise and window parameters to the
normal (Figure 1(a)) and saturated (Figure 1(b)) datasets. The general workflow
of events can be seen from the figures, with the main distinction being that the
normal dataset does not contain the Confirmation and BuyerEnd events and
edges. The CartDetails event is present in both. This means that while there
are many users that add a product to the shopping cart and see its details,
few ultimately purchase the product. In these cases the buying events are being
discarded as noise, while on the saturated dataset they are being kept. Loops
can also be seen in both models, but the loops are from the same originating
event to itself, such as users iterating over the Results event.

Another insight from the knowledge-based miner models is that the Promo
event is not linked to any other event; almost all users that get to the site through
a promotional page leave the site without any further navigation. On the normal

74 N. Poggi et al.

(a) Knowledge-based miner process model for the normal dataset

(b) Knowledge-based miner process model for the buyers saturated dataset

Fig. 1. Knowledge-based miner process models for the normal and saturated datasets

dataset, some users from the Landing event get to the results. In the saturated
dataset, however, the landing page event doesn’t have any outbound links. The
same can be observed with the Search event in the normal dataset: it’s only link
is a self-loop. The Search event is not present in the saturated model, because it
is a low frequency event and not used by most customers. We have verified that
most results pages were directly reached from each product home pages. Search
events represent the general site search feature that searches all products at the
same time, and results show they are not very effective and were reported back
for optimization. Further details about the knowledge-based miner are given
later in this Section.

Heuristic Miner. Figure 2 shows the model generated by the heuristic miner.
The heuristic miner model included all of the events from the saturated dataset,
presenting the same behavior for the Search, Promo, and Landing events as the
knowledge-based miner. One addition is the UserAdmin event, discarded by the
knowledge-based miner as noise. There is however one main difference with the
knowledge-based miner: most events are shown as independent from another,
except for a few with one edge and the combination Details-Info-ProductHome.
This is the main difference with the knowledge-based miner, and from our tests
it makes it less applicable to web logs and similar datasets where an end to end
path is required.

Another disadvantage is that it overfits the model. If we had more events, as
we did prior to applying the classification in Section 4, the algorithm would not
highlight the critical paths in the web navigation. While the heuristic miner is
very well regarded [4], as mentioned in Section 2, the same study also questions

Business Process Mining from E-Commerce Web Logs 75

Fig. 2. Heuristic miner with saturated dataset

traditional process mining algorithms and advocates for new methods for real
data. Results with the normal dataset were almost identical, except for the
thickness (significance) of the edges between activities, as the frequency was
different between both datasets.

Fuzzy Miner. The Fuzzy Miner in PRoM [26] can visually cluster events, and
can be useful when working with a large number of activities and unstructured
behavior. The fuzzy miner gave good results mining the saturated dataset. The
main difference with the knowledge-based miner is that it doesn’t remove noise
from the dataset, but it can simplify and group the model to the desired level
of abstraction. However, the generated clusters do not necessarily group events
logically; the clusters included unrelated event types as compared to our manual
classification. It, therefore, does not seem that fuzzy mining can be used to aid
or avoid the URL classification performed in Section 4.

5.2 Clustering Sessions

The next tested approach to mine for customer sessions was clustering. BPI im-
plements the string distance algorithm to cluster imported traces. By clustering
similar sessions, we can run the process mining directly on individual clusters
through the BPI interface. This feature is very helpful as clustering can help
remove noise and allows the ability to mine specific customer clusters or target
groups without the need to saturate the dataset. For example, with clustering,
the alpha miner could be applied to small clusters if required.

76 N. Poggi et al.

Fig. 3. Process model of a customer cluster for Heuristic and knowledge-based miners

Figure 3 shows the model produced by both Heuristic and knowledge-based
miner to a specific small cluster of customers, representative of the most com-
mon buying process. It shows the critical path (the most important pages) for
buyers on the website, and thus, the most important pages to keep optimized.
It also shows that the most typical buying process consists of three main pages:
Details, specific product information; CartDetails, final costs details and pay-
ment options; and Confirmation, the reservation confirmation page. This would
mean that most buying sessions go strait to purchasing without much searching,
probably performed at a previous time and different session.

The disadvantage of clustering, besides not having the complete process in
the output model, is that models cannot be combined directly without manual
work. The knowledge-based miner allows us to use prior knowledge, such as the
model produced by clustering as shown in Figure 3, to assign more weight for
these events and edges. This particular feature is detailed in the next subsection
as a different strategy.

5.3 Prior Knowledge

The knowledge-based miner, besides being able to keep longer paths and be
parameterized by the amount of noise (fitting) and window size, can use an-
other model as prior knowledge with a tunable confidence. This feature can be
used not only to mine for customer models without saturating the dataset, but
also to include certain clusters or behavior, such as the effect of improving the
promotional page, or a marketing campaign targeting a certain product.

Figure 4 shows both the model produced by the knowledge-based miner miner
on the normal dataset, and the output when the model from Figure 3 is applied
to the knowledge-based miner. Results are the same in both, except that when
the prior knowledge is applied, the output includes the CartPurchase, Confir-
mation, and BuyerEnd events.

Figure 4 also shows the use of the knowledge miner parameters. Compared
to Figure 1 it shows the UserAdmin event and more edges and loops between
events. The reason is that both figures were executed with lower window and
noise parameters. This shows how models can be abstracted and fitted using
these parameters in the knowledge-based miner algorithm.

6 Discussion of Results

The previous section presented three strategies to mine process models to include
customer navigation behavior besides general user behavior, as well as a compar-
ison of the mining algorithms. As we are dealing with real web user navigation of
a large site, there is no correct process model we can compare our results against.

Business Process Mining from E-Commerce Web Logs 77

Fig. 4. Knowledge-based miner process models on the normal dataset

The main reasons for this are that there are about one million different pages,
most pages can be reached from search engines or link sharing directly and the
combinations of pages are too large to generate or validate manually. Rather, we
rely on domain knowledge of the site and previous works characterizing the site
and generating CBMGs [10].

The first strategy to generate the process models consisted in saturating the
supplied dataset—in our case with customers—to be able to work with most min-
ing implementations. The alpha miner gave incomplete results in the saturated
dataset. The heuristic miner process model did not show the relation between
the different pages, but displayed them as independent from one another (see
Figure 2) except for one combination of pages. The second strategy consisted in
clustering sessions before applying process mining. Clustering enabled mining
directly on a specific group of interest, such as customer clusters, but required
human intervention to select the target cluster and only represent sessions con-
tained in the selected cluster. A benefit of clustering, is that it allowed the alpha
miner to produce results on small clusters of similar sessions, and can be used for
tools that need a model produced by the alpha miner. The heuristic miner also
gave coherent results for clusters. The last strategy, particular to our implemen-
tation, was the use of prior knowledge, a specific feature of our knowledge-based
miner implementation that can use a previously generated model, such as from
a customer’s clustering as taken from Figure 3. The knowledge-based miner was
able to produce process models our domain experts were expecting, as it was
able to filter non-critical events, bias towards a particular group, and keep longer
paths between edges. Furthermore, the size of the output model can be altered
through its parameters to control the noise and trace window size.

Lessons Learned. While applying techniques described in previous sections
enabled us to produce meaningful process models, process mining on real logs,
including the datasets presented in this study, demonstrates the need for new
algorithms that can work with noisy event logs, a large number of events, and
underrepresented groups, such as buyer sessions. As with [4], we also quickly
found that the alpha miner was not able to produce the process models we and

78 N. Poggi et al.

domain experts were expecting. We attribute noise and session incompleteness
as the main reasons for the incomplete or incoherent outputs from the alpha and
heuristic miners. Most web sessions in our datasets are only composed of one
click, while a smaller fraction of visitors, including buyers, have longer sessions
which mislead miner classification.

From the different web logs we had available: web server, application, ana-
lytics, and RUM; we choose the one produced by RUM techniques (see Section
3). The RUM dataset was free of crawlers that cannot process Javascript, it
doesn’t include automated background actions such as AJAX controls, and in-
cludes pages cached by intermediary proxies or the user browser. While cleaner
and more complete than the other available logs, they were still not clean enough
for some mining algorithms. Having a large number of activities (pages), was a
problem for most of the mining algorithms which failed to produce coherent re-
sults and required excessive computational resources. We tested the fuzzy miner
in ProM with success as a suitable option to process a large numbers of events
and unstructured activities. The fuzzy miner can also group events into clusters
for visualization though ProM’s interface. However a pre-classification of events
into categories is needed not only for miners, but for models to have a clear ab-
straction level for human consumption. As from our previous experience, we also
found that only a small sample of sessions—a few thousand—are needed to pro-
duce meaningful process models. However, while this is true for a general process
model, for process models that need to reflect seasonal trends, larger datasets
are needed. Processing larger datasets requires the mining implementations to
be efficient in computational resources as well as parallelizable.

UserFeedback. TheAtrapalo.comWebAnalytics teamprovided some feedback
about the results in this paper. They noted that for a data analyst to use the dis-
covered models, BPM tools need to be integrated into their familiar day-to-day
products such as their currentWeb analytics tools stack. Since the time our results
were presented, the general site search feature, which our processmodels showedas
not contributing to the sale process, has been redesigned.With the added features
we have been reported that the conversion rate of visitors using the search feature
has improved up to 46% and the bounce rate (users that leave the site after visiting
this particular page) loweredby 22% for a particular product. Page classificationas
performed in Section 4.1 was also mentioned to be very useful, as the site contains
over amillion differentURLs and the number of different pages keeps growingmak-
ing it difficult to get a clear understanding of the site. In general we have found that
while larger models are needed for automated processing such as path prediction,
simpler, more abstracted models are appropriate for informing business decisions.

7 Conclusions

This paper applied process mining techniques, and in particular the Business
Process Insight platform, to analyze web user behavior. We found that web
navigation shares characteristics with traditional BPM activities such as loops
and parallel tasks. However, sessions only span a few minutes on average and
include no human intervention. We also discovered that any analysis of web logs

Business Process Mining from E-Commerce Web Logs 79

required the classification of URLs to higher level logical tasks. Otherwise, the
number of unique URLs—almost a million in our case study—is impractical for
human consumption and traditional mining algorithms. Manual URL rewriting
rules reduced the number of unique URLs substantially in our case study. We also
showed that clustering algorithms can automatically classify URLs, requiring
only that each cluster be named. The above classification of URLs allowed web
logs to be mined for processes that represent the navigation behavior of users.
We found that a knowledge-based process mining algorithm performed the best,
generating process models that most resemble the behavior we were expecting
in our dataset. We hypothesize that this mining algorithm may perform well
in other real web applications, but this will require further study to validate.
There are several insights from the obtained process models, such as the low
conversion of the Promo page, and the ineffectiveness of the general site search
feature. Since our first results and feedback, the company redesigned the general
site search, improving the conversion rate of visitors using the search feature by
up to 46%, and lowering the bounce rate by 22% for a particular product.

Process mining algorithms are designed to extract the dominant behavior ob-
served and filter out noise to keep the resulting mined process manageable. How-
ever, in our case study the interesting behavior—those that result in a user buying a
product—seldomoccur.We expect this to be the case inmanyweb applications. To
avoid losing this behavior,we took the approachof saturating thedatasetwithmore
traces that result in the outcome of interest. This simple strategy worked well in
producing a complete processmodel that includes both themost commonbehavior
on the site, and also includes the behavior of users that buy a product. An alternate
strategy is to provide an expected process model—for example from clustering—
as input to the mining algorithm. However, this option is only available with the
knowledge-based miner, and requires some domain knowledge. Web sites can be
complex to model, but the insights derived from mining the actual behaviors were
extremely valuable in our case study for site optimization. We feel that BPM tools
and techniques can complement and improve currentWeb Analytic tools by giving
them abstracted views of the most important paths taken by types of visitors. This
understanding of their navigation behavior can be used to inform business and IT
decisions and improve sales as from the results of this study.

Acknowledgements. We thank Atrapalo.com for the datasets, feedback, and
domain knowledge for this study. We also acknowledge Aubrey Rembert who de-
veloped and offered support on the knowledge-based miner. This work is partially
supported by the Ministry of Science and Technology of Spain under contract
TIN2012-34557.

References

1. Aalst, W., et al.: Process mining manifesto. In: Business Process Management
Workshops, vol. 99, Springer, Heidelberg (2012)

2. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

80 N. Poggi et al.

3. Bhushan, R., Nath, R.: Automatic recommendation of web pages for online users
using web usage mining. In: ICCS (2012)

4. De Weerdt, J., et al.: A multi-dimensional quality assessment of state-of-the-art
process discovery algorithms using real-life event logs. Inf. Syst. 37(7) (2012)

5. Ferreira, D.R., Gillblad, D.: Discovering process models from unlabelled event logs.
In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701,
pp. 143–158. Springer, Heidelberg (2009)

6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explorations 11(1) (2009)

7. Kemsley, S.: It’s not about BPM vs. ACM, it’s about a spectrum of process
functionality,
http://www.column2.com/2011/03/its-not-about-bpm-vs-acm-its-about-

a-spectrum-of-process-functionality/
8. Koehler, J.: Business process modeling
9. Kumar, L., Singh, H., Kaur, R.: Web analytics and metrics: a survey. In: ACM

ICACCI (2012)
10. Menascé, D.A., Almeida, V.A., Fonseca, R., Mendes, M.A.: A methodology for

workload characterization of e-commerce sites. In: ACM EC (1999)
11. Nezhad, H.R.M., Saint-Paul, R., Casati, F., Benatallah, B.: Event correlation for

process discovery from web service interaction logs. VLDB J. 20(3) (2011)
12. Nielsen. Trends in online shopping, a Nielsen Consumer report. Technical report,

Nielsen (February 2008)
13. Pfeffer, A.: Functional specification of probabilistic process models. In: AAAI (2005)
14. Poggi, N., Carrera, D., Gavald, R., Ayguad, E., Torres, J.: A methodology for the

evaluation of high response time on e-commerce users and sales. In: ISF (2012)
15. Poggi, N., et al.: Characterization of workload and resource consumption for an

online travel and booking site. In: IEEE IISWC (2010)
16. Rembert, A.J., Ellis, C.S.: Learning the control-flow of a business process using

icn-based process models. In: ACM ICSOC, pp. 346–351 (2009)
17. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering colored

petri nets from event logs. STTT 10(1) (2008)
18. Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S., Fi-

adeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer,
Heidelberg (2006)

19. Rozsnyai, S., et al.: Business process insight: An approach and platform for the
discovery and analysis of end-to-end business processes. In: IEEE SRII (2012)

20. Rozsnyai, S., Slominski, A., Lakshmanan, G.T.: Discovering event correlation rules
for semi-structured business processes. In: ACM DEBS (2011)

21. Sharma, K., Shrivastava, G., Kumar, V.: Web mining: Today and tomorrow. In:
ICECT, vol. 1 (2011)

22. Spiliopoulou, M., Pohle, C., Faulstich, L.C.: Improving the effectiveness of a web
site with web usage mining. In: Masand, B., Spiliopoulou, M. (eds.) WebKDD 1999.
LNCS (LNAI), vol. 1836, pp. 142–162. Springer, Heidelberg (2000)

23. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer (2011)

24. van der Aalst, W.M.P.: et al. Workflow mining: a survey of issues and approaches.
Data Knowl. Eng., 47(2) (November 2003)

25. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450–475 (2011)

26. van der Aalst, W.M.P., van Dongen, B.F., Gunther, C.W., Rozinat, A., Verbeek,
E., Weijters, T.: ProM: The process mining toolkit. In: BPM (Demos) (2009)

27. Waisberg, D., et al.: Web analytics 2.0: Empowering customer centricity (2009)

http://www.column2.com/2011/03/its-not-about-bpm-vs-acm-its-about-a-spectrum-of-process-functionality/
http://www.column2.com/2011/03/its-not-about-bpm-vs-acm-its-about-a-spectrum-of-process-functionality/

Discovering Data-Aware Declarative Process

Models from Event Logs

Fabrizio Maria Maggi1, Marlon Dumas1, Luciano Garćıa-Bañuelos1,
and Marco Montali2

1 University of Tartu, Estonia
{f.m.maggi,marlon.dumas,luciano.garcia}@ut.ee

2 KRDB Research Centre, Free University of Bozen-Bolzano, Italy
montali@inf.unibz.it

Abstract. A wealth of techniques are available to automatically dis-
cover business process models from event logs. However, the bulk of these
techniques yield procedural process models that may be useful for de-
tailed analysis, but do not necessarily provide a comprehensible picture
of the process. Additionally, barring few exceptions, these techniques do
not take into account data attributes associated to events in the log,
which can otherwise provide valuable insights into the rules that govern
the process. This paper contributes to filling these gaps by proposing a
technique to automatically discover declarative process models that in-
corporate both control-flow dependencies and data conditions. The dis-
covered models are conjunctions of first-order temporal logic expressions
with an associated graphical representation (Declare notation). Impor-
tantly, the proposed technique discovers underspecified models capturing
recurrent rules relating pairs of activities, as opposed to full specifica-
tions of process behavior – thus providing a summarized view of key rules
governing the process. The proposed technique is validated on a real-life
log of a cancer treatment process.

Keywords: Automated Process Discovery, Predicate Mining, Linear
Temporal Logic, Declare.

1 Introduction

Business processes in modern organizations are generally supported and con-
trolled by information systems. These systems usually record relevant events,
such as messages and transactions, in the form of event logs. Process mining
aims at exploiting these event logs in order to model and analyze the underly-
ing processes. One of the most developed family of process mining techniques
is automated process discovery. Automated process discovery aims at construct-
ing a process model from an event log consisting of traces, such that each trace
corresponds to one execution of the process. Each event in a trace consists as a
minimum of an event class (i.e., the task to which the event corresponds) and
generally a timestamp. In some cases, other information may be available such
as the originator of the event (i.e., the performer of the task) as well as data
produced by the event in the form of attribute-value pairs.

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 81–96, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

82 F.M. Maggi et al.

The Process Mining Manifesto [9] argues that one of the open challenges in
process mining is to find a suitable representational bias (language) to visualize
the resulting models. The suitability of a language largely depends on the level
of standardization and the environment of the process. Standardized processes
in stable environments (e.g., a process for handling insurance claims) are char-
acterized by low complexity of collaboration, coordination and decision making.
In addition, they are highly predictable, meaning that it is feasible to determine
the path that the process will follow. On the other hand, processes in dynamic
environments are more complex and less predictable. They comprise a very large
number of possible paths as process participants have considerable freedom in
determining the next steps in the process (e.g., a doctor in a healthcare process).

As discussed in [24,20,23], procedural languages, such as BPMN, EPCs and
Petri nets, are suitable for describing standardized processes in stable environ-
ments. Due to their predictability and low complexity, these processes can be
described under a “closed world” assumption, meaning that it is feasible to ex-
plicitly represent all the allowed behavior of the process. In contrast, the use of
procedural languages for describing processes in dynamic environments leads to
complex and incomprehensible models. In this context, declarative process mod-
eling languages are more appropriate [23]. Unlike their procedural counterparts,
declarative models describe a process under an “open world” assumption, such
that everything is allowed unless it is explicitly forbidden. Accordingly, a declar-
ative model focuses on capturing commitments and prohibitions that describe
what must or must not occur in a given state of the process.

Previous work on automated discovery of declarative process models [16,14]
has focused on mining control-flow dependencies, such as “the execution of a
task entails that another task must eventually be executed”. This prior work, as
well as the bulk of process discovery techniques for procedural languages, ignores
data attributes attached to events, besides the event class. Hence, the resulting
models lack insights into the role of data in the execution of the process.

The importance of data in business processes, particularly dynamic ones, is
paramount as it is often data that drives the decisions that participants make.
In dynamic processes, the fact that a task A is executed often tells us little
about what must or must not happen later. It is only when considering the
data produced by task A and other data associated to the process that we can
state that something must or must not happen later. This holds in particular
for healthcare processes, which according to Rebuge et al. [21] involve numerous
variables that determine how a specific patient should be treated (e.g., age,
gender, type of disease).

This paper addresses the above gap by presenting a technique to discover
data-aware declarative process models, represented using an extension of the
Declare notation [17]. Declare is a declarative language that combines a formal
semantics grounded in Linear Temporal Logic (LTL) on finite traces,1 with a
graphical representation. In essence, a Declare model is a collection of LTL rules,
each capturing a control-flow dependency between two activities. Declare itself

1 For compactness, we will use the LTL acronym to denote LTL on finite traces.

Discovering Data-Aware Declarative Process Models from Event Logs 83

is not designed to capture data aspects of a process. Accordingly, for the sake of
discovering data-aware models, we extend Declare with the ability to define data
conditions (predicates). The extended (data-aware) Declare notation is defined
in terms of LTL-FO (First-Order LTL) rules, each one capturing an association
between a task, a condition and another task. An example of such rule is that if
a task is executed and a certain data condition holds after this execution, some
other task must eventually be performed.

The proposed approach relies on the notion of constraint activation [3]. For ex-
ample, for the constraint “every request is eventually acknowledged” each request
is an activation. This activation becomes a fulfillment or a violation depending on
whether the request is followed by an acknowledgement or not. In our approach,
we first generate a set of candidate constraints considering the constraints that
are most frequently activated. Then, we apply an algorithm to replay the log and
classify activations (with their data snapshots) into fulfillments and violations.
Given the resulting classification problem, we use invariant discovery techniques
to identify the data conditions that should hold for a constraint activation to be
fulfilled.

The paper is structured as follows. Section 2 introduces the basic Declare
notation as well as the techniques used to discover data conditions. Next, Section
3 introduces the proposed data-aware extension of Declare and the technique for
automated discovery of data-aware Declare models. In Section 4, we validate
our approach in a real-life scenario. Finally, Section 5 discusses related work and
Section 6 concludes and spells out directions for future work.

2 Background

In this section, we introduce some background material needed to present our
proposed approach. In Section 2.1, we give an overview of the Declare language
and introduce the notion of activation, fulfillment and violation for a Declare
constraint. We describe the data condition discovery technique we use in our
discovery algorithm in Section 2.2.

2.1 Declare: Some Basic Notions

Declare is a declarative process modeling language first introduced by Pesic and
van der Aalst in [18]. A Declare model is a set of constraints that must hold in
conjunction during the process execution. Declare constraints are equipped with
a graphical notation and an LTL semantics. Examples of Declare constraints are
response(A,B) (formally: �(A → ♦B)), responded existence(A,B) (formally:
♦A → ♦B) and precedence(A,B) (formally: (¬B A) ∨ �(¬B)). We refer the
reader to [19] for a complete overview of the language.

Constraint response(A,B) indicates that if A occurs, B must eventually fol-
low. Therefore, this constraint is satisfied for traces such as t1 = 〈A,A,B,C〉,
t2 = 〈B,B,C,D〉 and t3 = 〈A,B,C,B〉, but not for t4 = 〈A,B,A,C〉 because,
in this case, the second A is not followed by a B.

84 F.M. Maggi et al.

Note that, in t2, response(A,B) is satisfied in a trivial way because A never
occurs. In this case, we say that the constraint is vacuously satisfied [11]. In
[3], the authors introduce the notion of behavioral vacuity detection according
to which a constraint is non-vacuously satisfied in a trace when it is activated
in that trace. An constraint activation in a trace is an event whose occurrence
imposes, because of that constraint, some obligations on other events in the same
trace. For example, A is an activation for response(A,B) because the execution
of A forces B to be executed eventually.

A constraint activation can be classified as a fulfillment or a violation. When a
trace is perfectly compliant with respect to a constraint, every constraint activa-
tion in the trace leads to a fulfillment. Consider, again, constraint response(A,B).
In trace t1, the constraint is activated and fulfilled twice, whereas, in trace t3,
the same constraint is activated and fulfilled only once. On the other hand, when
a trace is not compliant with respect to a constraint, a constraint activation in
the trace can lead to a fulfillment but also to a violation (and at least one acti-
vation leads to a violation). In trace t4, for example, response(A,B) is activated
twice, but the first activation leads to a fulfillment (eventually B occurs) and the
second activation leads to a violation (the target event class B does not occur
eventually).

In [3], the authors define two metrics to measure the conformance of an event
log with respect to a constraint in terms of violations and fulfillments, called
violation ratio and fulfillment ratio of the constraint in the log. These metrics
are valued 0 if the log contains no activations of the considered constraint. Oth-
erwise, they are evaluated as the percentage of violations and fulfillments of the
constraint over the total number of activations.

2.2 Discovery of Data Conditions

Given a set of Declare constraints extracted from an event log, a key step of
the proposed technique is to generate a set of data-aware constraints, meaning
constraints that incorporate conditions based on data attributes found in the
logs. This problem can be mapped to a classification problem as follows. Given a
Declare constraint and a set of traces, we can determine by “replaying” the log,
the points in each trace of the log where the constraint is fulfilled or violated. In
other words, we can construct a set of trace snapshots where the constraint is
fulfilled and another set where the constraint is violated, where a snapshot is an
assignment of values to each attribute appearing in the log (possibly including
“null” values). Given these two sets, classification techniques, such as decision
tree learning, can be used to discover a condition on the data attributes that
discriminates between fulfillments and violations. The discovered condition is
then used to enrich the initial (control-flow) Declare constraint.

A similar principle is used in ProM’s Decision Miner [22] for the purpose of
discovering conditions that can be associated to branches of a decision point of
a business process model. ProM’s Decision Miner applies decision tree learning
to discover conditions consisting of atoms of the form ‘variable op constant’,
where ‘op’ is a relational operator (e.g., =, <, or >). Given the capabilities of

Discovering Data-Aware Declarative Process Models from Event Logs 85

standard decision tree learning techniques, this approach does not allow us to
discover expressions of the form ‘variable op variable’ or conditions involving lin-
ear combinations of variables. This limitation is lifted in our previous work [5],
where we combine standard decision tree learning with a technique for the dis-
covery of (likely) invariants from execution logs, i.e., Daikon [7]. Daikon allows
us to discover invariants that hold true at a given point in a program, where a
program point may be a method call, a field access or some other construction
of the target programming language. The execution logs that serve as input to
Daikon are commonly generated by instrumented code that monitors the pro-
gram’s points of interest, but they can also come from other sources. Given such
execution logs, Daikon discovers invariants consisting of linear expressions with
up to three variables as well as expressions involving arrays.

The technique described in [5] uses Daikon as an oracle to discover conditions
that, given a decision point (e.g., XOR-split), discriminates between the cases
where one branch of the decision point is taken and those where the other branch
is taken. In a nutshell, this technique works as follows: given a set of traces S, a
process model M discovered from S and a task T in this process model, Daikon is
used to discover invariants that hold true before each execution of task T . Given a
decision point between a branch starting with task T 1 and a branch starting with
task T 2, the invariants discovered for branch T 1 and those discovered for branch
T 2 are combined in order to discover a conjunctive expression that discriminates
between T 1 and T 2. In order to discover disjunctive expressions, decision tree
learning is employed to first partition the observation instances where T 1 (or T 2)
are executed into disjoint subsets. One conjunctive expression is then discovered
for each subset.

In this paper, this technique is employed to discover conditions that discrimi-
nate between violations and fulfillments of a constraint as detailed in Section 3.2.

3 Discovering Data-Aware Declare Models

In this section, we first define a semantics to enrich Declare constraints with
data conditions based on First-Order Linear Temporal Logic (LTL-FO). Then,
we present an algorithm for discovering Declare models with data.

3.1 LTL-FO Semantics for Declare

We now define a semantics to extend the standard Declare constraints with data
conditions. To do this, we use First-Order Linear Temporal Logic (LTL-FO),
which is the first-order extension of propositional LTL. While many reasoning
tasks are clearly undecidable for LTL-FO, this logic is appropriate to unam-
biguously describe the semantics of the data-aware Declare constraints we can
generate by using our algorithm.

The defined semantics (shown in Table 1) is quite straightforward. In partic-
ular, the original LTL semantics of a Declare constraint is extended by requiring
an additional condition on data, Cond, to hold when the constraint is activated.

86 F.M. Maggi et al.

Table 1. LTL-FO semantics and graphical representation for some Declare constraints
extended with data conditions

constraint description formalization notation

responded existence(A,B,Cond) if A occurs and Cond holds, B
must occur before or after A

♦(A ∧ Cond) → ♦B A
Cond•−−−− B

response(A,B,Cond) if A occurs and Cond holds, B
must occur afterwards

�((A ∧ Cond) → ♦B) A
Cond•−−−� B

precedence(A,B,Cond) if B occurs and Cond holds, A
must have occurred before

(¬(B ∧ Cond) �A) ∨�(¬(B ∧ Cond)) A
Cond−−−�• B

alternate response(A,B,Cond) if A occurs and Cond holds, B
must occur afterwards, without
further As in between

�((A ∧ Cond) → ©(¬A �B)) A
Cond•===� B

alternate precedence(A,B,Cond) if B occurs and Cond holds,
A must have occurred before,
without other Bs in between

((¬(B ∧Cond)�A)∨�(¬(B ∧Cond)))
∧�((B ∧ Cond) → ©(¬B �A))

A
Cond
===�• B

chain response(A,B,Cond) if A occurs and Cond holds, B
must occur next

�((A ∧ Cond) → ©B) A
Cond•=−=−=−� B

chain precedence(A,B,Cond) if B occurs and Cond holds,
A must have occurred immedi-
ately before

�(©(B ∧ Cond) → A) A
Cond
=−=−=−�• B

not resp. existence(A,B,Cond) if A occurs and Cond holds, B
can never occur

♦(A ∧ Cond) → ¬♦B A
Cond•−−−−‖ B

not response(A,B,Cond) if A occurs and Cond holds, B
cannot occur afterwards

�((A ∧ Cond) → ¬♦B) A
Cond•−−−�‖ B

not precedence(A,B,Cond) if B occurs and Cond holds, A
cannot have occurred before

�(A → ¬♦(B ∧ Cond)) A
Cond−−−�•‖ B

not chain response(A,B,Cond) if A occurs and Cond holds, B
cannot be executed next

�((A ∧ Cond) → ¬©B) A
Cond•=−=−=−�‖ B

not chain precedence(A,B,Cond) if B occurs and Cond holds, A
cannot have occurred immedi-
ately before

�(©(B ∧ Cond) → ¬A) A
Cond
=−=−=−�•‖ B

Cond is a closed first-order formula with the following structure: ∃x1, . . . , xn.
curState(x1, . . . , xn)∧Φ(x1, . . . , xn), where curState/n is a relation storing the
n data available in the system (considering both case attributes and event at-
tributes in the log) and Φ/n is a first-order formula constraining such data by
means of conjunctions, disjunctions and relational operators.

For example, response(A,B,Cond) specifies that whenever A occurs and con-
dition Cond holds true, then a corresponding occurrence of B is expected to
eventually happen. Constraint precedence(A,B,Cond) indicates that whenever
B occurs and Cond holds, then an occurrence of A must have been executed
beforehand. The semantics for negative relations is also very intuitive. For ex-
ample, not responded existence(A,B,Cond) indicates that if an instance of A
occurs and Cond holds, then no occurrence of B can happen before or after A.
Note that some Declare constraints derive from the conjunction of other con-
straints. For example, the succession constraint is the conjunction of response
and precedence. In this case, we have a condition on the attribute values of A
and a condition on the attribute values of B. These two conditions can be, in
principle, different.

Based on this semantics, the notion of constraint activation changes. Acti-
vations of data-aware Declare constraints are all those constraint activations

Discovering Data-Aware Declarative Process Models from Event Logs 87

(according to the standard definition) for which Cond is true. For example,
response(A,B,Cond) is activated when A occurs and, also, Cond is valid. On
the other hand, precedence(A,B,Cond) is activated when B occurs and Cond is
valid. The definitions of fulfillments and violations are also adapted accordingly.

3.2 Discovery Algorithm

In a nutshell, our approach aims at discovering data-aware Declare constraints
with fulfillment ratio close to 1 from an event log. We thus start from event
logs where the process execution traces and their events are equipped with data,
modeled as attribute-value pairs.

More specifically, the algorithm takes as input an event log, which is a set
of execution traces. Each execution trace represents, as usual, the sequence of
events characterizing a specific instantiation of the process. Our focus is on
case data, i.e., we consider data to be attached to the case and their values
to be manipulated by the corresponding events. For this reason, a case can be
associated to a set of key-value pairs defining the initial values for some of the
data. These can be extracted by applying the caseAtts/1 function to a trace. The
other data mentioned in the events of the log are implicitly considered to have
an initial null value.

Events are meant to manipulate such case data. Specifically, each event ev
is associated to: (i) a class that represents the task to which the event refers
to and that can be extracted with evClass(ev); (ii) a timestamp; (iii) a set of
attribute-value pairs that denotes the impact of the event in terms of case data
and that can be extracted with evAtts(ev). We follow the classical commonsense
law of inertia: given a data attribute a, its value remains constant until it is
explicitly overridden by an event that provides a new value for a.

The discovery of data-aware Declare constraints is based on a supervised
learning approach. Before discussing the details of the algorithm, we introduce a
short example that summarizes its key aspects. The algorithm requires the user
to choose the constraint types she is interested in. In the following, we assume
that response is selected. Consider an event log constituted by the following
execution traces (we use triples to represent the events):

{(A, 1, {x = 1, y = 1}), (B, 5, {x = 2, y = 2}), (C, 8, {x = 3, y = 3})}
{(A, 1, {x = 1, y = 2}), (B, 3, {x = 1, y = 2})}
{(A, 1, {x = 2, y = 1}), (C, 7, {x = 2, y = 4})}

The event log contains three event classes:A, B and C. Therefore, in principle, all
possible pairs of event classes could be involved in response constraints: response
from A to B, from A to C, from B to A, from B to C, from C to A and
from C to B. Among all these possibilities, only those that are “relevant” are
considered to be candidate constraints. Relevance is measured in terms of number
of activations, which, in the case of response, correspond to the execution of the
source activity.

For example, response constraints with source A are activated once in each
trace present in the log above, whereas response constraints with source B or

88 F.M. Maggi et al.

C are activated in only two traces out from three. Assuming to filter away
those constraints with number of activations < 3, only response constraints with
source A are kept. For each of those, the activations are classified as fulfillments
or violations, depending on whether there is an event that refers to the target
activity and occurs after it.

In the case of response(A,B), the activations in the first two traces are marked
as fulfilled, whereas the one for the third trace is not (in fact, no B is present in
the third trace). This means that this constraint is not fully supported by the
log. The classification of activations into fulfillments and violations is used as
input of the approach discussed in Section 2.2. With this approach, we try to
improve the support of a constraint by discovering finer-grained data conditions,
used to restrict the context of application for the constraint. For example, we
could learn that response(A,B) is fully supported by the log whenever at the
time A is executed, the value for attribute x is 1.

The full algorithm is shown in Fig. 1. It takes as input an event log, a set of
constraint types userTypes previously selected by the user, a threshold minRatio
representing the minimum expected fulfillment ratio for a constraint to be dis-
covered and a threshold minActivations representing the minimum number of
activations for a constraint to be considered as a candidate.

All the information needed for the discovery is collected by traversing the log
twice. In the first iteration, the event classes and the (event and case) attributes
with their types are collected (lines 2-9). To start the second iteration, we invoke
function generateConstraints to generate the set of possible candidate constraints
given the required minimum level of activation support, minActivations (line 10).
This function produces all possible constraints of the form Constr(A,B), where
Constr is one of the constraint types in userTypes and A and B are event classes
in eClasses (the one corresponding to the constraint activation with at least
minActivations occurrences).

In the second iteration (lines 14-28), we process each event in the log with a
twofold purpose: constructing a snapshot that tracks the values of data obtained
after the event execution and classifying constraint activations into fulfillments
and violations. These two sources of information are used to select the final
constraints and decorate them with data-aware conditions. In particular, when
we start replaying a trace trace, we create a set state0 of pairs (attribute,value),
where each event/case attribute is firstly initialized to null (line 15) and each
case attribute present in trace is then associated to the corresponding value (line
16). Given a trace/event x and an attribute a, we use function value(x,a) to
extract the corresponding value. When an event occur at position p, the value
of each event attribute is replaced by the new value attached to the event just
occurred (through the update of curState, line 20), so as to reconstruct the
effect of the event in terms of data values update. In this way, we associate each
event occurring in trace at position p to snapshot[p], calculated by updating the
previous state with the contribution of that event (line 21).

In parallel with the construction of snapshots, constraint activations are clas-
sified into fulfillments and violations. For every trace, each candidate constraint

Discovering Data-Aware Declarative Process Models from Event Logs 89

Algorithm Discovery

Input: log, an event log

userTypes, a set of Declare constraint types

minRatio, the minimum expected fulfillment ratio for a constraint to be discovered

minActivations, the minimum number of activations for a constraint to be considered as a candidate

1: eClasses = ∅; cAtts = ∅; model = ∅; prunedModel = ∅;
2: for each trace in log do

3: cAtts = cAtts ∪ caseAtts(trace);

4: for each trace in log do

5: for each ev in trace do

6: cAtts = cAtts ∪ evAtts(ev); eClasses = eClasses ∪ evClass(ev);

7: end

8: end

9: end

10: constraints = generateConstraints(userTypes,eClasses,minActivations);

11: for each c in constraints do

12: fulfSnapshots(c) = ∅; violSnapshots(c) = ∅;
13: end

14: for each trace in log do

15: state0 = {(a, null) | a ∈ cAtts};
16: for each a in caseAtts(trace) do state0 = (state0 \ {(a, null)}) ∪ {(a, value(trace, a))};
17: curState = state0;

18: snapshot = new Array(length(trace));

19: for (p=0; p < length(trace); p++) do

20: for each a in evAtts(trace[p]) do curState = (curState \ {(a,)}) ∪ {(a, value(trace[p], a))};
21: snapshot[p] = curState;

22: for each c in constraints do classifyActivations(candidate, id(trace), p);

23: end

24: for each c in constraints do

25: for each fp in getFulfPositions(c) do fulfSnapshots(c) = fulfSnapshots(c) ∪ snapshot[fp];

26: for each vp in getViolPositions(c) do violSnapshots(c) = violSnapshots(c) ∪ snapshot[vp];

27: end

28: end

29: for each c in constraints do

30: if (min{|fulfSnapshots(c)|, |violSnapshots(c)|} ≥ 10 × |cAtts|)
31: dataCondition= callDaikon(fulfSnapshots(c),violSnapshots(c));

32: model= model ∪ (c, dataCondition);

33: end

34: end

35: for each c in model do complianceCount(c) = 0;

36: for each trace in log do

37: for each c in model do

38: if (checkCompliance(trace, c)) complianceCount(c)++;

39: end

40: end

41: for each c in model do

42: if (
complianceCount(c)

|log| ≥ minRatio) prunedModel = prunedModel ∪ c; 42

43: end

44: return prunedModel;

Fig. 1. Discovery algorithm for data-aware Declare

is associated to a set of activations. Internally, every activation is a quadruple
(candidate, id(trace), p, curState) indicating that in position p of the trace identi-
fied by id(trace), an event occurs activating constraint candidate and that snap-
shot(id(trace), p) = curState in the same position. These quadruples are classified
into fulfillments and violations by leveraging on function classifyActivations (line
22). This function depends on the constraint type.

In particular, there is a difference when we are processing an event for a
constraint looking at the past (e.g., precedence) and for constraints looking at
the future (e.g., response). For constraints looking at the past, we store each
scanned event as possible target in a sorted list. The same event will be an

90 F.M. Maggi et al.

activation for some candidate constraints. In particular, it will be a fulfillment if
the list of the events already occurred contains a possible target and a violation if
the list does not contain such an event. For constraints looking at the future, we
process an event by considering it as a “pending” activation waiting for a possible
target to be classified as a fulfillment. The same event can be, on the other hand,
a target for a pending activation. All the activations that are still pending when
the trace has been completely replayed are classified as violations (indeed, no
further events can occur to fulfill them). Note that undirected constraints (e.g.,
responded existence) use an hybrid approach. Furthermore, for each negative
constraint the same algorithm used for the corresponding positive constraint is
adopted, by substituting fulfillments with violations and vice-versa.

As an example, consider constraint (response, A, B). Activation ((response,A,B),
123, 4, curState) is added to the list of pending activations whenever in trace 123
at position 4, activity A is executed. This activation is pending, since it expects
a consequent execution of B. If B occurs in 123 at a later position, say, 12, then
the activation at position 4 is classified as a fulfillment. On the other hand, if we
evaluate constraint (not response, A, B) on the same trace, ((not response,A,B),
123, 4, curState) would be classified as a violation (indeed, not response would
forbid the presence of B after A).

When the processing of a trace is completed, the aforementioned functions
have calculated, for each constraint c, the set of positions at which an activation
for c was classified as a fulfillment or as a violation. These two sets can then
be retrieved by respectively calling function getFulfPositions(c) and getViolPosi-
tions(c). Starting from these positions, we can in turn obtain the corresponding
snapshots, globally accumulating them into two sets fulfSnapshots(c) and viol-
Snapshots(c) (lines 24-27).

With the information collected in fulfSnapshots(c) and violSnapshots(c), we
proceed with the discovery of data-aware conditions using the approach discussed
in Section 2.2 (lines 29-34). It is well known that the quality of decision trees is
sensible to the amount of the observations for each class being considered and
so is the method used for discovering data conditions. To filter cases with not
enough observations, we use a common heuristic as described in [10]. According
to this heuristic, the number of samples for classifier learning should be at least
10 times the number of features. Hence, we filter out candidate constraints that
have a number of fulfillments and a number of violations (i.e., number of positive
and negative samples) lower than 10 times the number of attributes in the log.

Finally, the resulting data-aware Declare model can be further pruned by
means of threshold minRatio, i.e., the minimum expected fulfillment ratio for a
discovered data-aware constraint. Function checkCompliance/2 is called to check
whether the aforementioned ratio is above minRatio or not. If so, the constraint
is maintained in the final model and discarded otherwise (lines 41-43).

Discovering Data-Aware Declarative Process Models from Event Logs 91

Table 2. Discovered response constraints

A B data condition

Milk acid dehydrogenase squamous cell (((Diagnosis code == “M13”) || (Diagnosis code == “822”))
LDH kinetic carcinoma using eia || (Diagnosis code == “M12”))

(((org:group == “Radiotherapy”) || (Treatment code == “113”)) ||
First outpatient teletherapy - megavolt ((Diagnosis == “Gynaecologische tumoren”) ||
consultation photons bestrali (Diagnosis == “Maligne neoplasma cervix uteri”) ||

(Diagnosis == “maligniteit cervix”)))

bilirubin- squamous cell ((Diagnosis code == “M13”) ||
total carcinoma using eia (Diagnosis code == “822”))

gammaglutamyl- squamous cell (((Diagnosis code == “M13”) || (Diagnosis code == “822”))
transpeptidase carcinoma using eia || (Diagnosis code == “M12”))

unconjugated squamous cell (((Diagnosis code == “M13”) || (Diagnosis code == “822”))||
bilirubin carcinoma using eia (Diagnosis code == “M12”))

outpatient follow-up differential
(Specialism code == “13”)

consultation count automatically

(((((Diagnosis == “Maligne neoplasma cervix uteri”) ||
CEA - tumor squamous cell (Diagnosis == “maligniteit cervix”)) || (Diagnosis code == “M13”)) ||

marker using meia carcinoma using eia ((Diagnosis == “Plaveiselcelca. vagina st II”) || (Diagnosis == “maligniteit vagina”))) ||
((Diagnosis == “Plav.celcarc. vulva: st II”) || (Diagnosis == “maligne melanoom van de vulva”)))

Table 3. No. of activations, fulfillments and fulfillment ratio (response)

A B
activ # activ # fulf. # fulf. fulf. ratio fulf. ratio
no data data no data data no data data

Milk acid dehydrogenase squamous cell
1282 474 420 315 0.32 0.66

LDH kinetic carcinoma using eia

First outpatient teletherapy - megavolt
1200 646 530 452 0.44 0.69

consultation photons bestrali

bilirubin- squamous cell
1253 499 419 321 0.33 0.64

total carcinoma using eia

gammaglutamyl- squamous cell
1442 595 479 372 0.33 0.62

transpeptidase carcinoma using eia

unconjugated squamous cell
967 406 361 284 0.37 0.69

bilirubin carcinoma using eia

outpatient follow-up differential
6860 2575 2096 1345 0.30 0.52

consultation count automatically

CEA - tumor squamous cell
465 132 145 103 0.31 0.78

marker using meia carcinoma using eia

Table 4. Discovered not response constraints

A B data condition

rhesus factor d - ABO blood group antigens
(Age >= 46)

Centrifuge method - email other than rhesu

rhesus factor d - cde
(Age >= 46)

Centrifuge method - email phenotyping

((((((Diagnosis code == “M16”) || (Diagnosis code == “821”)) ||
((Diagnosis == “Maligne neoplasma adnexa uteri”) ||

Milk acid dehydrogenase teletherapy - megavolt (Diagnosis == “Maligne neoplasma vulva”) ||
LDH kinetic photons bestrali (Diagnosis == “maligniteit vulva”))) || (Diagnosis code == “823”)) ||

((Diagnosis == “Plaveiselcelca. vagina st II”) ||
(Diagnosis == “maligniteit vagina”))) || (Diagnosis code == “M11”))

((((((Diagnosis code == “M16”) || (Diagnosis code == “821”)) ||
bilirubin - teletherapy - megavolt ((Diagnosis == “Maligne neoplasma adnexa uteri”) || (Diagnosis == “Maligne neoplasma vulva”) ||

total photons bestrali (Diagnosis == “maligniteit vulva”))) || (Diagnosis code == “823”)) ||
(Diagnosis code == “M11”)) || (Diagnosis == “maligniteit myometrium”))

((((((Diagnosis code == “M16”) || (Diagnosis code == “821”)) ||
unconjugated teletherapy - megavolt (Diagnosis code == “M11”)) ||

bilirubin photons bestrali ((Diagnosis code == “M13”) && (Diagnosis == “maligniteit cervix”))) ||
(Diagnosis code == “839”)) || (Treatment code == “503”))

(((((Diagnosis code == “M16”) || (Diagnosis code == “821”)) ||
alkaline teletherapy - megavolt ((Diagnosis == “Maligne neoplasma adnexa uteri”) || (Diagnosis == “Maligne neoplasma vulva”) ||

phosphatase-kinetic- photons bestrali (Diagnosis == “maligniteit vulva”))) ||
(Diagnosis code == “823”)) || (Diagnosis code == “M11”))

ABO blood group ABO blood group antigens
(Age >= 46)

and rhesus factor other than rhesu

ABO blood group cde
(Age >= 46)

and rhesus factor phenotyping

92 F.M. Maggi et al.

Table 5. No. of activations, fulfillments and fulfillment ratio (not response)

A B
activ # activ # fulf. # fulf. fulf. ratio fulf. ratio
no data data no data data no data data

rhesus factor d - ABO blood group antigens
1558 1071 1271 1041 0.81 0.97

Centrifuge method - email other than rhesu

rhesus factor d - cde
1558 1071 1273 1043 0.81 0.97

Centrifuge method - email phenotyping

Milk acid dehydrogenase teletherapy - megavolt
1191 541 908 528 0.76 0.97

LDH kinetic photons bestrali

bilirubin - teletherapy - megavolt
1166 518 880 504 0.75 0.97

total photons bestrali

unconjugated teletherapy - megavolt
909 457 676 441 0.74 0.96

bilirubin photons bestrali

alkaline teletherapy - megavolt
1326 557 1001 544 0.75 0.97

phosphatase-kinetic- photons bestrali

ABO blood group ABO blood group antigens
1558 1071 1271 1041 0.81 0.97

and rhesus factor other than rhesu

ABO blood group cde
1558 1071 1273 1043 0.81 0.97

and rhesus factor phenotyping

4 Validation

We implemented the approach as a plug-in of the process mining tool ProM.2 As
a proof of concept, we validated the approach with the event log used in the BPI
challenge 2011 [1] that records the treatment of patients diagnosed with cancer
from a large Dutch hospital. The event log contains 1143 cases and 150, 291
events distributed across 623 event classes. Moreover, the event log contains a
total of 13 domain specific attributes, e.g., Age, Diagnosis Code, Treatment code,
in addition to the standard XES attributes, i.e., concept:name, lifecycle:transition,
time:timestamp and org:group. In our experiments, we take into consideration
only the domain specific attributes.

In a first experiment,3 we discovered data-aware response constraints from the
event log, with a fulfillment ratio of at least 0.5. Since the log contains 13 data
attributes, the candidate constraints must have at least 130 fulfillments and 130
violations (i.e., 10 times the number of attributes, as explained in Section 3.2).
The execution time for this experiment was 9.6 minutes for the first traversal
of the log (gathering of data snapshots, fulfillments and violations for each can-
didate constraint) and 15.3 minutes for the discovery of data-aware conditions.
The constraints discovered are summarized in Table 2.

In Table 3, we compare the number of activations and fulfillments for the
discovered constraints, first without considering the data conditions and then
considering the data conditions (in bold). As expected, both the number of
activations and the number of fulfillments decrease when the data conditions are
considered. However, the decrease in the number of fulfillments is less pronounced
than the decrease in the number of activations. If we interpret the fulfillment
ratio as a measure of goodness of a constraint, we obtain better results when
considering the data conditions (see the last two columns of Table 3).

2 www.processmining.org
3 The experiments were performed on a standard, 2.6 GHz dual-core processor laptop.

Discovering Data-Aware Declarative Process Models from Event Logs 93

Fig. 2. Some of the discovered not response constraints in ProM

In a second experiment, we considered the discovery of not response con-
straints. It is worth noting that negative constraints are interesting because
they specify forbidden scenarios that usually result in extremely complex repre-
sentations when using procedural modeling languages. For this experiment, we
decided to discover data-aware not response constraints with a fulfillment ratio
of at least 0.95. The execution time for this experiment was 13.3 minutes for
the first traversal of the log (to collect data snapshots and fulfillments and vio-
lations for each candidate constraint) and 14.1 minutes for the discovery of data
conditions. The not response constraints discovered are summarized in Table 4.
Interestingly, in this experiment we discovered more complex data conditions.
For instance, the not response constraint between unconjugated bilirubin and
teletherapy - megavolt photons bestrali has a data condition associated with a
combination of conjunctions and disjunctions.

In Table 5, we compare the number of activations and the number of ful-
fillments for the constraints discovered in the second experiment. Similarly to
the results obtained in the first experiment, we can clearly observe a lift in the
fulfillment ratio when the data conditions are considered. In Fig. 2, we present a
screenshot of ProM with the data-aware Declare model discovered in the second
experiment. For example, the not response constraint between rhesus factor d
- Centrifuge method - email and ABO blood group antigens other than rhesu
indicates that, if the age of the patient is greater than or equal to 46, when

94 F.M. Maggi et al.

rhesus factor d - Centrifuge method - email occurs, then ABO blood group anti-
gens other than rhesu can no longer occur.

5 Related Work

Several algorithms have been proposed to discover declarative process models.
Some of these algorithms [12,8,4] assume that every trace in the input log is
labeled as a “positive” or a “negative” case, where a negative case is one that
should not occur. The problem of mining a declarative model is mapped to
one of discriminating between positive and negative cases. The assumption of
a pre-existing labeling of positive and negative cases enables the separation of
constraint fulfillments and violations. However, this assumption often does not
hold as negative cases are generally not explicitly present in a real-life event
log. In [16,14], LTL model checking techniques are used to classify negative and
positive cases (i.e., constraint violations and fulfillments), thus avoiding the need
for a preprocessing step to explicitly label the traces. The approach presented in
this paper extends the one in [16,14] by using data attributes in order to enrich
candidate control-flow constraints with data conditions. We have shown in the
case study that this enrichment leads to constraints with higher fulfillment ratio.

The work reported in [6] provides an alternative approach to declarative pro-
cess mining that does not assume explicit labeling of positive and negative cases.
In this approach, each Declare constraint is mapped to a regular expression. The
regular expressions are used to generate a set of matrices of fulfillments and these
matrices are used to generate a Declare model. It would be worth investigating
the combination of this approach with our data enrichment algorithm. To this
end, the approach in [6] would first have to be extended to reconstruct the con-
straint activations and the corresponding fulfillments and violations.

Automated discovery of behavioral models enhanced with data conditions has
been addressed recently in [13,22,5]. In [13], a technique is presented to mine
finite state machines extended with data. This work builds on top of a well-
known technique to mine finite state machines that incrementally merges states
based on automata equivalence notions (e.g., trace equivalence). However, this
approach is not suitable for discovering business process models, as automata
do not capture concurrency and concurrency is common in business processes.
ProM’s decision miner [22] embodies a technique to discover data-aware proce-
dural process models, based on existing techniques for discovering “control-flow”
process models (e.g., Petri nets) and decision trees. [5] extends ProM’s decision
miner in order to discover more general conditions as discussed in Section 2.2.

6 Conclusion and Future Work

This paper has presented a technique to automatically discover data-aware declar-
ative models consisting of LTL-FO rules from event logs. A validation on real-life
logs from a cancer treatment process demonstrates that the technique can dis-
cover more precise rules (higher fulfillment ratio) compared to a technique for
discovering declarative models without data conditions.

Discovering Data-Aware Declarative Process Models from Event Logs 95

As future work, we will carry out a more extensive experimentation with new
datasets. Furthermore, some optimizations of the presented technique are war-
ranted. For example, it may be possible to prune the discovered models through
transitive reduction. In [15], the authors use an algorithm for transitive reduction
of cyclic graphs to prune a Declare model discovered from a log. This approach,
however, can be used when the model only includes Declare constraints without
data conditions. For data-aware Declare models different reduction algorithms
should be used. For example, approaches for transitive reduction of weighted
graphs like the one presented in [2] could be adopted.

Another avenue for future work is to optimize the performance of the proposed
technique, for example by reducing the number of invocations made to Daikon.
This could be achieved by caching some of the invariants discovered by Daikon
for a given constraint and reusing them for other constraints. Such optimization
should be based however on a case-by-case analysis of which invariants can be
reused for a given constraint type.

Finally, we plan to extend the technique so that it can discover a larger set of
LTL-FO rule templates such as the existence templates and the non-binary rela-
tion templates in Declare as well as templates beyond the standard set included
in Declare.

Acknowledgment. This research is supported by the EU’s FP7 Programme
(ACSI Project).

References

1. 3TU Data Center. BPI Challenge, Event Log (2011), doi: 10.4121/uuid:d9769f3d-
0ab0-4fb8-803b-0d1120ffcf54

2. Bonaki, D., Odenbrett, M.R., Wijs, A., Ligtenberg, W.P.A., Hilbers, P.A.J.: Ef-
ficient reconstruction of biological networks via transitive reduction on general
purpose graphics processors. BMC Bioinformatics 13, 281 (2012)

3. Burattin, A., Maggi, F.M., van der Aalst, W.M.P., Sperduti, A.: Techniques for a
Posteriori Analysis of Declarative Processes. In: EDOC, pp. 41–50 (2012)

4. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploit-
ing Inductive Logic Programming Techniques for Declarative Process Mining. In:
Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 278–295.
Springer, Heidelberg (2009)

5. de Leoni, M., Dumas, M., Garćıa-Bañuelos, L.: Discovering Branching Conditions
from Business Process Execution Logs. In: Cortellessa, V., Varró, D. (eds.) FASE
2013 (ETAPS 2013). LNCS, vol. 7793, pp. 114–129. Springer, Heidelberg (2013)

6. Di Ciccio, C., Mecella, M.: Mining constraints for artful processes. In: Abramowicz,
W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 11–23.
Springer, Heidelberg (2012)

7. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Trans. Software
Eng. 27(2), 99–123 (2001)

8. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery
with artificial negative events. JMLR 10, 1305–1340 (2009)

96 F.M. Maggi et al.

9. IEEE Task Force on Process Mining. Process Mining Manifesto. In: Algebraic
Semantics. LNBIP, vol. 99, pp. 169–194. Springer (2011)

10. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE
Trans. on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)

11. Kupferman, O., Vardi, M.Y.: Vacuity Detection in Temporal Model Checking. Int.
Journal on Software Tools for Technology Transfer, 224–233 (2003)

12. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying Inductive Logic Program-
ming to Process Mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.)
ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008)

13. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: Proc. of ICSE, pp. 501–510. IEEE (2008)

14. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative models from event logs. In: Ralyté, J., Franch, X., Brinkkem-
per, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer,
Heidelberg (2012)

15. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: A knowledge-based integrated
approach for discovering and repairing declare maps. In: Salinesi, C., Norrie, M.C.,
Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg
(2013)

16. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declar-
ative process models. In: Proc. of CIDM, pp. 192–199. IEEE (2011)

17. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Support for
Loosely-Structured Processes. In: Proc. of EDOC, pp. 287–300. IEEE (2007)

18. Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business
Processes Management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

19. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Controls to
Users. PhD thesis, Beta Research School for Operations Management and Logistics,
Eindhoven (2008)

20. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Impera-
tive versus declarative process modeling languages: An empirical investigation. In:
Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP,
vol. 99, pp. 383–394. Springer, Heidelberg (2012)

21. Rebuge, A., Ferreira, D.R.: Business process analysis in healthcare environments:
A methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012)

22. Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S., Fi-
adeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer,
Heidelberg (2006)

23. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative Workflows: Bal-
ancing Between Flexibility and Support. Computer Science - R&D, 99–113 (2009)

24. Zugal, S., Pinggera, J., Weber, B.: The impact of testcases on the maintainability
of declarative process models. In: BMMDS/EMMSAD, pp. 163–177 (2011)

Enhancing Declare Maps Based on Event Correlations

R.P. Jagadeesh Chandra Bose1, Fabrizio Maria Maggi2, and Wil M.P. van der Aalst1

1 Eindhoven University of Technology, The Netherlands
2 University of Tartu, Estonia

Abstract. Traditionally, most process mining techniques aim at discovering pro-
cedural process models (e.g., Petri nets, BPMN, and EPCs) from event data.
However, the variability present in less-structured flexible processes complicates
the discovery of such procedural models. The “open world” assumption used by
declarative models makes it easier to handle this variability. However, initial at-
tempts to automatically discover declarative process models result in cluttered
diagrams showing misleading constraints. Moreover, additional data attributes in
event logs are not used to discover meaningful causalities. In this paper, we use
correlations to prune constraints and to disambiguate event associations. As a
result, the discovered process maps only show the more meaningful constraints.
Moreover, the data attributes used for correlation and disambiguation are also
used to find discriminatory patterns, identify outliers, and analyze bottlenecks
(e.g., when do people violate constraints or miss deadlines). The approach has
been implemented in ProM and experiments demonstrate the improved quality of
process maps and diagnostics.

1 Introduction

Processes executed in today’s world are often supported and controlled by information
systems, which record events, like messages and transactions, in so-called event logs.
Process mining aims at discovering, monitoring and improving real-life processes by
extracting knowledge from event logs. Process discovery, conformance checking, and
process enhancement are three main process mining tasks [3]. In particular, process
enhancement aims at enriching and extending existing process models with information
retrieved from logs, e.g., a process model can be extended with performance-related
information such as flow time and waiting time.

Choosing a suitable representational bias for process discovery, visualization, and
analysis is one of the challenges in process mining [11]. Process characteristics play
a significant role in the selection of a suitable representational bias. Processes work-
ing in stable environments are typically highly predictable, i.e., it is easy to determine
in advance the way how processes execute and behave (e.g., a process for handling
travel requests). Procedural languages, such as BPMN, UML ADs, EPCs, and Petri
nets, are suitable for describing such processes because it is easy to explicitly represent
all allowed behavior of the process at hand [4, 22]. In contrast, processes operating in
flexible/turbulent environments are often more complex and less predictable. Here, pro-
cess participants make decisions based on multiple (possibly conflicting) objectives and
have a lot of freedom in the process execution (e.g., a doctor in a healthcare process).

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 97–112, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

98 R.P.J.C. Bose, F.M. Maggi, and W.M.P. van der Aalst

Declarative process modeling languages like Declare [4] are more suitable for such en-
vironments. Declarative models describe a process as a list of constraints that must be
satisfied during the process execution. In declarative languages, an “open world” is as-
sumed where everything is allowed unless it is explicitly forbidden. Declarative models
are widely used in domains and applications where processes cannot be “straightjack-
eted” into a procedural model [7, 15, 16, 25].

Declare is a declarative language introduced in [4] that combines a formal semantics
grounded in Linear Temporal Logic (LTL) with a graphical representation for users.1 A
Declare map is a set of Declare constraints each one with its own graphical represen-
tation and LTL semantics (see [4] for a full overview of Declare). In recent years, ap-
proaches to discover Declare models from event logs [17–19] and approaches to check
conformance of Declare models with respect to event logs [9, 13] have been proposed.

Although promising, these approaches face several challenges and limitations when
being applied to real-life event logs. First of all, discovery approaches typically generate
too many constraints resulting in incomprehensible Declare maps. Most of the gener-
ated constraints have no domain significance and are uninteresting for experts/analysts.
Second, when evaluating the satisfaction of a constraint, one often faces ambiguities
in connecting events that “activate” the constraint (activations) and events that “ful-
fill” it (target events). For example, consider trace t = 〈A,A,B,B〉 and the constraint
response(A,B).2 It is unclear which instance of activity B can be associated to the two
instances of activity A. Such ambiguities inhibit a correct evaluation of constraints in
terms of satisfaction/violation and the application of certain types of analysis such as
performance analysis (e.g., computing the response time of constraints).

One of the main reasons for these ambiguities and incomprehensible maps is the
exclusive focus on the control-flow perspective. Typically, event logs contain additional
information in the form of attributes and values. Let t = 〈A(x = 1, y = 2), A(x =
2, y = 1), B(x = 2, y = 0), B(x = 1, y = 4)〉 be the above trace with its data
attributes. The additional information suggests that the first instance of A is related to
the second instance of B and the second instance of A is related to the first instance of
B because they share the same value for attribute x.

In this paper, we propose an approach to automatically discover significant event
correlations between events involved in a constraint and use these correlations to (i)
enhance (annotate) a discovered Declare map and improve its comprehensibility (see
Fig. 1), (ii) prune discovered constraints that are uninteresting, (iii) disambiguate events
so that correct events are correlated, (iv) extend a Declare map with meaningful perfor-
mance information, and (v) improve the diagnostic abilities by finding discriminatory
patterns (if any) between different classes of behavior (e.g., patterns that may discrimi-
nate between conformant and non-conformant activations of a constraint).

We evaluate the proposed approach using a real-life event log provided for the 2011
BPI Challenge [2], which pertains to the treatment of patients diagnosed with cancer
in a large Dutch academic hospital. Fig. 2 depicts the Declare maps obtained using
the hospital’s event log for the response and precedence constraints with and with-
out correlations (the correlations used are A.org:group = B.org:group and A.Producer

1 In the remainder, LTL refers to the version of LTL tailored towards finite traces.
2 response(A,B) = If A occurs, then eventually B follows after A.

Enhancing Declare Maps Based on Event Correlations 99

A
First outpatient consultation

B
administrative fee-the first polresponse

A.org : group = B.org : group
A.Producercode = B.Producercode

C
unconjugated bilirubin

D
bilirubin - totalresponse

|C.time : timestamp− D.time : timestamp| ≤ 4 days

E
rhesus factor d-Centrifuge method

F
red cell antibody screeningprecedence

E.time : timestamp = F.time : timestamp

Fig. 1. A Declare map annotated with correlations

(a) without correlations

(b) with correlations

Fig. 2. Declare maps discovered for a hospital’s event log [2] using the response and precedence
constraints with and without correlations

code = B.Producer code). We can clearly see that the map obtained using correlations
(Fig. 2(b)) is much simpler and more comprehensible than the map using the conven-
tional approach (Fig. 2(a)).

100 R.P.J.C. Bose, F.M. Maggi, and W.M.P. van der Aalst

The remainder of this paper is organized as follows. Section 2 presents some prelim-
inaries on event logs and the Declare language. Section 3 presents some of the issues
in contemporary approaches in the discovery of Declare maps and highlights how cor-
relations can help address them. Section 4 presents our approach to discovering event
correlations and discriminatory patterns between different classes of constraint behav-
ior. Section 5 presents and discusses the experimental results. Related work is presented
in Section 6. Finally, Section 7 concludes the paper.

2 Preliminaries

In this section, we introduce some preliminary notions. In particular, in Section 2.1, we
summarize what an event log is and, in Section 2.2, we give an overview of the Declare
language.

2.1 Event Logs

An event log captures the manifestation of events pertaining to the instances of a single
process. A process instance is also referred to as a case. Each event in the log corre-
sponds to a single case and can be related to an activity or a task. Events within a case
need to be ordered. An event may also carry optional additional information like times-
tamp, transaction type, resource, costs, etc. For analysis, we need a function that maps
any event e onto its class e. In this paper, we assume that each event is classified based
on its activity. We use the following notations:

– A denotes the set of activities. A+ is the set of all non-empty finite sequences of
activities from A.

– A process instance (i.e., a case) is described as a trace overA, i.e., a finite sequence of
activities. Examples of traces are t1 = 〈A,B,C,D〉 and t2 = 〈A,B,B,B,A,D〉.

– Let t = 〈t(1), t(2), . . . , t(n)〉 ∈ A+ be a trace over A. |t| = n denotes the length
of trace t. t(k) represents the kth activity in the trace.

– An event log, L, corresponds to a multi-set (or bag) of traces from A+. For ex-
ample, L = [〈A,B,C,D〉, 〈A,B,C,D〉, 〈A,B,B,B,A,D〉] is a log consisting
of three cases. Two cases follow trace 〈A,B,C,D〉 and one case follows trace
〈A,B,B,B,A,D〉.

2.2 Declare: Some Basic Notions

Declare is a declarative process modeling language introduced by Pesic and van der
Aalst in [4]. A Declare map is a set of constraints that must hold in conjunction during
the process execution. Declare constraints are equipped with graphical notations and
LTL semantics. The most frequently used Declare constraints are shown in Table 1.
However, the language is extensible and new constraints can be added by providing
a graphical representation and corresponding LTL semantics. The results discussed in
this paper only refer to positive relation constraints and not to negative relations (last
three rows in Table 1). Indeed, since negative relation constraints forbid the occurrence
of events, it is less natural to define the notion of correlation for these constraints.

Enhancing Declare Maps Based on Event Correlations 101

Table 1. Graphical notation and textual description of some Declare constraints

Constraint Meaning LTL semantics Graphical notation

responded existence(A,B)
if A occurs then

♦A → ♦BB occurs before
or after A

co-existence(A,B)
if A occurs then B occurs

♦A ↔ ♦Bbefore or after A
and vice versa

response(A,B)
if A occurs then

�(A → ♦B)eventually B occurs
after A

precedence(A,B)
if B occurs then

(¬B �A) ∨�(¬B)A occurs
before B

succession(A,B)
for A and B �(A → ♦B)
both precedence and ∧
response hold (¬B �A) ∨�(¬B)

alternate response(A,B)
if A occurs then eventually

�(A → ©(¬A �B))B occurs after A without other
occurrences of A in between

alternate precedence(A,B)
if B occurs then ((¬B �A) ∨�(¬B))
A occurs before B without ∧
other occurrences of B in between �(B → ©((¬B �A) ∨�(¬B)))

alternate succession(A,B)
for A and B �(A ⇒ ©(¬A UB)) ∧
both alternate precedence (((¬B �A) ∨�(¬B)) ∧
and alternate response hold �(B → ©((¬B �A) ∨�(¬B))))

chain response(A,B)
if A occurs then

�(A → ©B)B occurs in the next
position after A

chain precedence(A,B)
if B occurs then

�(©B → A)A occurs in the next
position before B

chain succession(A,B)
for A and B �(A → ©B)
both chain precedence ∧
and chain response hold �(©B → A)

not co-existence(A,B)
A and B

¬(♦A ∧ ♦B)cannot occur
together

not succession(A,B)
if A occurs then

�(A → ¬(♦B))B cannot eventually occur
after A

not chain succession(A,B)
if A occurs then

�(A → ©(¬B))B cannot occur in the next
position after A

Consider the response constraint �(A → ♦B). This constraint indicates that if A
occurs, B must eventually follow. Therefore, this constraint is satisfied for traces such
as t1 = 〈A,A,B,C〉, t2 = 〈B,B,C,D〉, and t3 = 〈A,B,C,B〉, but not for t4 =
〈A,B,A,C〉 because t4(3), i.e., the second instance of A, is not followed by a B. Note
that, in t2, the response constraint is satisfied in a trivial way because A never occurs.
In this case, we say that the constraint is vacuously satisfied [12]. In [9], the authors
introduce the notion of behavioral vacuity detection according to which a constraint is
non-vacuously satisfied in a trace when it is activated in that trace. An activation of a
constraint in a trace is an event whose occurrence imposes, because of that constraint,
some obligations on other events in the same trace. For example, A is an activation for
the response constraint because the execution of A forces B to be executed eventually.

An activation of a constraint results in either a fulfillment (the obligation is met) or
a violation (e.g., A is not followed by B in a response constraint). A trace is perfectly
compliant if there are no violations. Consider, again, the response constraint. In trace t1,

102 R.P.J.C. Bose, F.M. Maggi, and W.M.P. van der Aalst

the constraint is activated and fulfilled twice, whereas, in trace t3, the same constraint
is activated and fulfilled only once. When a trace is not compliant w.r.t. a constraint,
at least one activation leads to a violation. In trace t4, for example, the response con-
straint is activated twice (at t4(1) and t4(3)): the activation at t4(1) leads to a fulfillment
(eventually B occurs), but the activation at t4(3) leads to a violation (B does not occur
subsequently). An algorithm to discriminate between fulfillments and violations for a
constraint in a trace is presented in [9].

3 Correlations as a Means of Enhancing Declare Maps

Techniques for the automated discovery of Declare maps from event logs have been
proposed in [17–19]. These approaches, although promising, typically generate maps
with too many constraints, have difficulties in correctly associating events, and do not
provide diagnostic information. This can be attributed to the fact that these techniques
exploit only the control-flow perspective. Several of today’s event logs contain rich
information in the form of (event) attributes pertaining to the data, resource, and time
perspectives.

In this paper, we advocate the use of these additional perspectives and investigate
the correlations between event attributes as a means of addressing some of the above
mentioned issues. Correlations are defined over event attributes and linked through re-
lationship operators between them. For example, two events are correlated if they act
upon common data elements of the process or if they are executed by the same re-
source etc. Such correlations can be used in conjunction to the control-flow relationship
between events (defined in the form of Declare constraints) to further assess the rele-
vance/significance of a constraint. Correlations can help us to:

– prune uninteresting constraints: we conjecture that constraints involving activities
are interesting from a domain point of view only in cases where they share some
common (data) elements of a process. For example, consider an insurance claim
process where, apart from the handling of a claim application, applicants are asked
to fill out a regular questionnaire. Clearly, in this process, the portion soliciting
feedback does not interfere with the claim handling. Subsequently, the control-flow
constraints between the activities involved in the claim handling and the activities
involved in the questionnaire handling are less interesting to experts. This might be
reflected in the activities in these two portions of the process sharing no or very few
attributes (and thereby there are not significant correlations between them). Pruning
such constraints will help reduce the number of uncovered constraints and improve
the comprehensibility of a Declare map.

– disambiguate events: event associations that are ambiguous purely from a control-
flow point of view can be disambiguated with additional conditions on their at-
tributes. For example, consider trace t1 = 〈A,B,C,B〉 and the response constraint
�(A → ♦B). Let us assume that activities A and B have a common attribute x
and that we have an additional condition A.x = B.x correlating these attributes
for this constraint, i.e., the constraint now reads as “if A occurs, then B eventually
follows and the value of attribute x is the same for both A and B”. Now let us
assume that t1(1).x = 1, t1(2).x = 2, and t1(4).x = 1. Using the correlation, we

Enhancing Declare Maps Based on Event Correlations 103

can now clearly identify that the instance of B at t1(4) is the one to be associated
to the activation at t1(1). Disambiguation of events facilitates a correct association
of events involved in a constraint and thereby helps in performance analysis of a
process (e.g., computing the response time more accurately).

– improve diagnostic capabilities: event correlations can be used for a plethora of di-
agnostic insights on process execution. One may use the discovered correlations to
identify any potential exceptional executions/outliers. For example, let us assume
that the correlation A.x = B.x holds for 98% of the fulfillments of a response
constraint �(A → ♦B). The 2% of the activations where the correlation does not
hold (but considered as fulfillments purely from a control-flow perspective) may
potentially be outliers or can be considered as a fulfillment due to wrong associa-
tion of events for the constraint. Similarly, one may try to find if any discriminatory
correlation patterns exist between different classes of behavior, e.g., between acti-
vations that are fulfillments and activations that are violations. For example, in an
insurance claim, one may learn that a constraint is violated if the claim amount is
greater than 1000 euros.

Furthermore, correlations can be used in defining conceptual groupings of activities.
Different correlations between events can be used to define different conceptual group-
ings. For example, one may define equivalence classes based on a common attribute
and consider all activities in that equivalence class as one conceptual group, e.g., the
activities involving all events that are executed within the same department can be de-
fined as one conceptual group. Such conceptual groupings of activities can be used for
guiding the discovery of Declare maps towards results that are more significant from an
application domain point of view [18].

For a categorization of correlations we refer to [6]. In this paper we use:

– Property-based correlation, i.e., events are classified based on a function operat-
ing on their attributes. For example, all claim applications referring to an amount
greater than 1000 euros are grouped together.

– Reference-based correlation, i.e., two events are correlated if an attribute of the first
event (identifier attribute) and an attribute of the second event (reference attribute)
have the same value.

– Moving time-window correlation, i.e., two events are correlated if they occur within
a given duration of one another (e.g., one hour).

We use an extended definition of reference-based correlation according to which two
events are correlated if there is a function connecting an attribute of the first event
with an attribute of the second event. This function can include not only equality but
also operators such as greater than, less than, and not equal to. For example, an event
of producing a document is correlated to an event of checking it if the resource that
produces the document is different from the resource that checks it.

4 Discovering Correlations from Event Logs

Correlations can be provided by a domain expert, or alternatively, one can try to learn
these correlations automatically from event logs. In this section, we focus on the

104 R.P.J.C. Bose, F.M. Maggi, and W.M.P. van der Aalst

automated discovery of correlations and discriminatory (correlation) patterns between
different classes of behavior from event logs.

The XES standard [1] for event logs allows for events having attributes. XES sup-
ports data types such as string, date, boolean, int, and float (henceforth, we consider
int and float types as continuous). Depending on the type, standard operators are sup-
ported. For example, we use the ≤,≥, <,>,=, �= operators for continuous attributes
and =, �= for string and boolean attributes. Timestamp (date) attributes are related using
before, after operators in addition to all relation operations (i.e., ≤,≥, <,>,=, �=) over
the time difference between two events.

We are interested in correlations between comparable attributes of different events,
e.g., in an insurance claim process, attribute amount claimed is comparable to amount
issued, but not to, say, location. If a priori knowledge about the domain is available, we
can use that knowledge to identify/group attributes that are comparable. In the absence
of prior domain knowledge, we consider attributes having the same data type to be
comparable. Standard event attributes in XES are handled differently, e.g., although the
attributes concept:name and org:group are of string type, they are not comparable.

Using the above correlation notion, we generate all feasible correlations for a given
constraint. For discovering significant correlations, we partition the constraint activa-
tions into ambiguous activations and non-ambiguous activations. The definition of what
constitutes an ambiguous activation is specific for each constraint type. We consider a
fulfilled activation as non-ambiguous if there is only one possible target that can be
associated to it. For example, for the response constraint �(A → ♦B), the activations
in traces t1 = 〈A,C,B〉 and t2 = 〈A,A,C,B〉 are non-ambiguous whereas the acti-
vations in traces t3 = 〈A,B,C,B〉 and t4 = 〈A,A,B,B〉 are ambiguous. One may
argue that the activations in trace t2 are also ambiguous because B can be associated
to either of the two A’s. We consider the scenario in t1 as strongly non-ambiguous and
the scenario in t2 as weakly non-ambiguous. For each feasible correlation, we evaluate
its support considering only non-ambiguous activations. The support of a correlation is
defined as the ratio between the number of activations in which that correlation is true
and the total number of non-ambiguous activations. We consider a feasible correlation
as significant if its support is greater than a (user-specified) threshold. For correlations
involving an attribute and a constant value, e.g., B.timestamp − A.timestamp < δ, δ
is derived based on the mean μ and standard deviation σ time difference of all non-
ambiguous activations (for example δ can be set to μ+ σ).

Significant correlations thus discovered from non-ambiguous activations of a con-
straint can then be used to address the issues highlighted before, e.g., to disambiguate
ambiguous activations. For each significant correlation, its degree of disambiguation is
defined as the ratio between the number of ambiguous activations that can be disam-
biguated and the total number of ambiguous activations. Furthermore, different correla-
tions can be combined using conjunctions or disjunctions to form complex correlations.
Fig. 3 depicts the block diagram of discovering constraint correlations.

Discovering Discriminant Correlations. An event log may exhibit several classes of
behavior. For example, certain activations of a constraint may be eventually fulfilled
while others may not. As another example, one may observe differences in the response
time for different activations of a constraint (one may distinguish the activations into

Enhancing Declare Maps Based on Event Correlations 105

Event Log

Constraint

Identify
activations

Identify
Feasible

Correlations

constraint
activations

feasible
correlations

fulfilled
activations

violated
activations

non-ambiguous
activations

ambiguous
activations

Assess
Significance

significant
correlations

Disambiguate

Fig. 3. Correlations are discovered for non-ambiguous activations and are subsequently used to
disambiguate other (ambiguous) activations

slow, medium, and fast based on their response time). Such differences in behavior may
be attributed to some of the characteristics of the events/traces, e.g., one may perceive
differences in the response time of a constraint based on the resources involved in the
execution of the activities or based on the attribute values (such as the claim amount
or geography in a loan handling process). An analyst would be interested in uncov-
ering any significant discriminatory correlations that can explain the different classes
of behavior among the activations. We find such discriminatory correlations using the
following three classification steps:

Step 1: Class Labeling. First, we select all the activations of a constraint and associate
a class label to them. Different strategies for labeling can be adopted. For example, one
can classify them as conformant or non-conformant based on whether they correspond
to a fulfillment or to a violation. One can also consider all the fulfilled activations of a
constraint and classify them as slow, medium, and fast based on their response time.

Step 2: Feature Extraction and Selection. The attributes of the events involved in a
constraint and the process instance (case) attributes are considered as primitive features
for finding discriminatory patterns. If all activations of a constraint (i.e., both fulfilled
and violated) are selected in the previous step, then we only consider the correlations
between attributes of the activations. If only fulfilled activations of a constraint are
selected, then the correlations between attributes of the activations and attributes of the
target events are also considered. This is due to the fact that a correlation involving
an attribute of an activation and a target event can only be defined if the constraint is
fulfilled (only in this case both activation and target event occur).3

Let C = {c1, c2, . . . , cn} be the set of feasible correlations for a constraint, A =
{a1, a2, . . . , am} be the set of attributes of the activation of a constraint, and P =
{p1, p2, . . . , pk} be the set of case attributes corresponding to an activation. Each acti-
vation of a constraint can be translated into a vector where the dimensions correspond
to C ∪ A ∪ P ∪ {Cl}; Cl is a special feature called the class label. The values of the
features for each activation correspond to:

3 This is true only for positive relation constraints (which are the ones considered in this paper).
For negative relations the opposite applies (i.e., a correlation involving an attribute of an acti-
vation and a target event can only be defined if the constraint is violated because only in this
case both activation and target event occur).

106 R.P.J.C. Bose, F.M. Maggi, and W.M.P. van der Aalst

– {true, false} if the feature is a correlation feature. The value is true if the correlation
holds in the activation and false if it does not hold,

– the value of the attribute in the event corresponding to the activation of the con-
straint if the feature corresponds to ai ∈ A,

– the value of the case attribute corresponding to the process instance of the activation
if the feature corresponds to pi ∈ P , and

– the class label of the activation if the feature is the class label.

The set of all activations upon transformation into a vector space can be seen as a dataset
as depicted in Table 2.

Table 2. A labeled dataset defined by features

Activation c1 c2 . . . cn a1 a2 . . . am p1 p2 . . . pk Cl

1 true false . . . true 50 xyz . . . 1.5 1000 p . . . r conformant
2 true false . . . false 110 abc . . . 3.25 500 q . . . s non-conformant
3 false true . . . true 64 ted . . . 0.2 275 p . . . t non-conformant
4 false true . . . true 15 xyz . . . 0.87 1255 u . . . s conformant
...

...
...

...

Step 3: Discovering Discriminatory Patterns. Given a dataset as depicted in Table 2,
the goal of this step is to discover the patterns over the features, which are strongly cor-
related to the class label (e.g., conformant and non-conformant). We adopt standard data
mining techniques, i.e., decision tree learning [23] and association rule mining [5, 14].
For the association rule mining, we adopt the special subset called the class associa-
tion rules [14], which is an integration of classification rule mining and association rule
mining. The details of these algorithms are beyond the scope of this paper. The result
of this step are rules such as:

If cn = true AND a1 ≤ 50 AND a2 = xyz AND p1 ≥ 1000 then conformant;
If a1 ≥ 60 AND a2 = xyz AND p1 ≤ 500 then non-conformant.

Each rule can be associated with metrics such as the number of true positives (TP),
false positives (FP), support and confidence. The quality of the entire set of discrim-
inatory patterns uncovered can be assessed using standard metrics such as accuracy,
sensitivity, specificity, precision, and F1-score.

5 Experiments and Results

The concepts presented in this paper have been implemented as the Extend Declare
Map with Correlations and Extend Declare Map with Time Information plug-ins
in ProM4. The former deals with the discovery and evaluation of correlations while
the latter deals with performance analysis of Declare constraints (e.g., computing the

4 ProM is an extensible framework that provides a comprehensive set of tools/plug-ins for the
discovery and analysis of process models from event logs. See www.processmining.org
for more information and to download ProM.

www.processmining.org

Enhancing Declare Maps Based on Event Correlations 107

response times). The plug-ins take a Declare map and an event log as input and pro-
duce an enhanced Declare map annotated with data correlations and/or performance
information. The input Declare map can either be discovered using the Declare Maps
Miner plug-in or provided by a domain expert.

We have applied the proposed approach to the BPI challenge 2011 event log [2] per-
taining to the treatment of patients diagnosed with cancer in a large Dutch academic
hospital. The event log contains 1143 cases and 150, 291 events distributed across
623 event classes (activities). The event log contains domain specific attributes, e.g.,
Producer code, Section, Activity code, Number of executions, and Specialism code in
addition to the standard XES attributes for events: concept:name, lifecycle:transition,
time:timestamp, and org:group. We considered attributes with the same name to be
comparable (i.e., an attribute x of the activation event is comparable only to attribute x
of the target event) and explored the feasible correlations for various attributes.

We first generated a Declare Map from this event log using the Declare Maps Miner
plug-in and considered constraints with a support of 50%. Activations that are fulfill-
ments are further partitioned into ambiguous and non-ambiguous activations. Table 3
depicts the number of ambiguous and non-ambiguous activations for some constraints.
Using the non-ambiguous activations we evaluated the support for the various correla-
tions. Some significant correlations are depicted in Table 3 (refer columns correlation
and support (correl.)).

From the table, we can see that for the response constraint �(A → ♦B) (where
A corresponds to First outpatient consultation and B corresponds to administrative
fee - the first pol), there are 559 ambiguous activations. Correlation A.org:group =
B.org:group (i.e., both activities A and B are performed in the same department) holds
for 94% of the 517 non-ambiguous activations. It is expected that the fee is decided and
collected by the same department that performed the activation activity. However, it is
interesting to see that 6% of the activations do not satisfy this correlation. It could be the
case that by considering only the control-flow perspective, we have wrongly associated
some administrative fee events thereby incorrectly evaluating the constraint as fulfill-
ment for these activations. This correlation is able to disambiguate 57.96% of the 559
ambiguous activations. There exists another correlation A.Producer code = B.Producer
code for this constraint, whose support is 93.61% in the non-ambiguous activations.
This correlation is able to disambiguate 61.53% of the ambiguous activations.

For the response constraint �(C → ♦D) (where C corresponds to unconjugated
bilirubin and D corresponds to bilirubin - total), we discover the correlation
| C.time:timestamp − D.time:timestamp| ≤ 4 days (i.e., activity D should be performed
within 4 days of performing activity C). This event log exhibits coarse granular times-
tamps (recorded at the level of a day). The threshold of 4 days corresponds to μ + σ
where μ and σ correspond to the mean and standard deviation time difference for all
non-ambiguous activations of this constraint. This correlation holds in 99.63% of the
non-ambiguous activations. The remaining 0.37% are most likely outliers. This corre-
lation is able to disambiguate 81.61% of the ambiguous activations.

As another example, for the precedence constraint (¬F E) ∨ �(¬F) (where E
corresponds to rhesus factor d - Centrifuge method and F corresponds to red cell an-
tibody screening), there are 603 and 932 non-ambiguous and ambiguous activations

108 R.P.J.C. Bose, F.M. Maggi, and W.M.P. van der Aalst

Table 3. Correlations discovered for some constraints and their support and degree of disam-
biguation. The encoded activities correspond to A = First outpatient consultation, B = adminis-
trative fee - the first pol, C = unconjugated bilirubin, D = bilirubin - total, E = rhesus factor d -
Centrifuge method, F = red cell antibody screening.

constraint support #non- #ambig. correlation support degree of
(constr.) ambig. inst. (correl.) disambig-

(%) inst. (%) uation(%)

response (A,B) 57.39 517 559
A.org:group =
B.org:group

94.00 57.96

A.Producer code =
B.Producer code

93.61 61.53

response (C,D) 52.40 542 359 |C.time:timestamp −
D.time:timestamp| ≤
4 days

99.63 81.61

precedence (E,F) 54.85 603 932 E.time:timestamp =
F.time:timestamp

100.00 96.45

respectively. We discover that the correlation E.time:timestamp = F.time:timestamp
holds in all the non-ambiguous activations (i.e., both these activities are performed
on the same day). Using this correlation, we are able to disambiguate 96.45% of the
ambiguous activations.

Although we discussed the applicability of correlations in disambiguation for the
response and precedence templates, correlations exhibit a similar behavior for other
templates too. Table 4 depicts the average and maximum degree of disambiguation
across various constraints (with a support of 50%) for different templates. From the
table, we can see that the approach proposed above is able to assist in disambiguation
significantly.

Table 4. Degree of disambiguation for different templates

Template #Constraints Avg #Activations Deg. of Disamb.
per constraint Avg. (%) Max. (%)

non-ambi. ambi.
response 86 402 1321 51.68 95.76
precedence 250 842 1536 32.17 96.45
alternate response 53 733 601 70.67 100.00
alternate precedence 52 807 715 41.86 100.00
responded existence 584 682 2365 20.52 97.62

The discovered correlations can be used to reassess the fulfillment of constraint ac-
tivations. For example, a response constraint �(A → ♦B) can be compounded with
a correlation condition, A.org:group = B.org:group (i.e., in addition to B eventually
following A, it is also required that they are executed by the same resource/department
for an activation to be considered as fulfilled). Some activations that were deemed to be
fulfilled when considering only the control-flow perspective, may no longer be fulfilled
thereby impacting the support of the constraint, whose value, if less than a threshold,

Enhancing Declare Maps Based on Event Correlations 109

renders the constraint insignificant and a candidate for pruning. Table 5 illustrates how
correlations assist in pruning constraints. The first row in each constraint type depicts
the number of constraints for varying support thresholds and without considering cor-
relations, e.g., 371 response constraints have a support of at least 30% in the event log.
The subsequent rows show the effect of adding correlations. For example, by adding a
correlation based on org:group, the number of response constraints with a support of
at least 30% reduces from 371 to 229 (a reduction of 38.3%). Adding the correlation
requirement A.Producer code = B.Producer code results in a reduction from 371 to 100
response constraints.

Table 5. Pruning of constraints using correlations. The number of constraints reported are without
filtering transitive reductions.

constraint correlation
#constraints

supp=30 supp=35 supp=40 supp=45

response(A,B)

〈〈 no correlation 〉〉 371 286 225 125
A.org:group = B.org:group 229 180 163 114
A.Producer code = B.Producer
code

100 85 83 71

|A.time:timestamp −
B.time:timestamp| ≤ 4 days

226 172 139 112

precedence(A,B)

〈〈 no correlation 〉〉 458 403 352 261
A.org:group = B.org:group 274 249 240 237
A.Producer code = B.Producer
code

113 106 104 104

|A.time:timestamp −
B.time:timestamp| ≤ 4 days

325 281 274 217

We further analyzed the log for discriminatory patterns that may exist between ful-
fillments and violations of some constraints. Here, we present one such example of
the response(A,B) constraint (where A corresponds to First outpatient consultation and
B corresponds to administrative fee - the first pol). The event log contains 517 (non-
ambiguous) fulfillments and 60 violations of this constraint. We considered the event
attributes of First outpatient consultation, correlations involving these attributes, and
the case attributes pertaining to the traces involving these activations.

The event log contains several case level attributes such as diagnosis and treatment
codes (the reader is referred to [8] for a detailed description on these case attributes).
We have grouped different variants of similar case attributes into a single attribute (e.g.,
the 16 diagnosis code attribute values are captured as a set of values under a single
attribute). We have transformed the 577 activations into vector space using these at-
tributes and their correlations and applied the J48 [23] decision tree learning algorithm.
Out of the 60 non-conformant activations, we could find discriminant patterns covering
23 activations using these features. For example, five of the six activations whose value
of A.Section is Section 5 and C.DiagnosisCodeSet is {106, 823} are non-conformant,
i.e., TP=5 and FP=1 (C signifies a case-level attribute). Similarly, three of the four acti-
vations whose value of A.Section is not equal to Section 5 and A.Producercode is SGSX
are non-conformant, i.e., TP=3 and FP=1.

110 R.P.J.C. Bose, F.M. Maggi, and W.M.P. van der Aalst

Fig. 4 depicts the annotation of a Declare map with performance information using
the Extend Declare Map with Time Information plug-in. The map is color coded to
easily pin-point bottlenecks based on flow times and the plug-in allows for the interac-
tive exploration of a wealth of diagnostic information e.g., #activations, #fulfillments,
etc. on the constraints.

histogram showing the
distribution of flow
time of activations of
the selected constraint

statistics (mean,
std.dev, min, and max)
on the flow time of the
selected constraint

diagnostic information
(#activations, #fulfill-
ments, #violations) on
the selected constranit

color coding of constraints
helps us identify bottlenecks

Fig. 4. Interactive visualization of a Declare map with diagnostic information such as flow time
and bottlenecks

6 Related Work

Techniques for the automated discovery of Declare maps from event logs have been pro-
posed in [17–19]. In [19], the authors rely on a combinatorial exploration of all feasible
constraint activations and evaluate the constraints’ goodness based on their activation
ratio, i.e., the percentage of traces where a constraint is activated. In [17], the authors
adopt the classic apriori algorithm [5] to find frequent item sets in data mining to iden-
tify significant activations and propose several metrics such as support and confidence to
prune uninteresting constraints. In [18], the authors extend the work of [17] through the
incorporation of domain knowledge and techniques for pruning redundant constraints
to uncover interesting constraints. None of these approaches exploit the availability of
rich information in the form of data attributes in event logs.

Correlation is a critical topic when applying process mining techniques to event
data recorded by non-BPM/WFM systems. Indeed, these systems just generate a list
of events without providing a properly structured event log. To generate an event log,
it is necessary to correlate events into process instances. In [21], the authors present
an event correlation algorithm to discover the best correlation conditions from a set of
candidates. This algorithm is used to generate an event log from a set of uncorrelated
events. A probabilistic approach based on the Expectation-Maximization (EM) princi-
ple has been proposed in [10] for correlating events from unlabeled event logs (where
case ids are not available).

Enhancing Declare Maps Based on Event Correlations 111

In [20], the authors identify different types of correlations and investigate the prob-
lem of discovering event correlation from data recorded by service oriented systems.
The authors also introduce the concept of process view to represent the process result-
ing from a certain way of event correlation. They argue that correlation is subjective and
that multiple views are possible. For example, in a process for customer order handling,
in one view, orders can be considered from the viewpoint of order lines and, in another
view, the same orders can be considered from the viewpoint of deliveries. A collection
of process views is called the process space.

Rozsnyai et al [24] propose approaches for automatically deriving correlations from
arbitrary sources of data. An interesting part of their work is the automatic identification
of attributes that might be correlated based on properties such as their type, cardinality
and the domain of values. In this paper, we used the heuristic of considering attributes
of similar type as comparable. It would be interesting to explore the applicability of the
concepts proposed in [24] for correlating events for Declare map discovery.

7 Conclusions and Future Work

Declarative process maps discovered from event logs without any consideration for event
and case attributes tend to result in inaccurate and incomprehensible results. In this pa-
per, we exploited the data present in event logs to discover process maps only showing
relevant and accurate constraints. We proposed a means of discovering significant cor-
relations that exist between events and use these correlations to prune constraints, to
disambiguate event associations, and to provide additional diagnostic information. Our
evaluation using real-life logs demonstrates that the proposed approach is very promis-
ing, e.g., we are able to disambiguate up to 96.45% of events in a hospital log. In this
paper, we focused only on positive relation constraints involving two activities. In the fu-
ture, we would like to extend this to also cover constraints involving multiple activities
and negative relations (e.g., not co-existence and not succession in Table 1). Also, the
proposed approach relies on some heuristics such as the use of μ± σ of time difference
for temporal correlations and the correlations of like attribute types. As future work, we
would like to study the trade-off between completeness and efficiency of mining. Fur-
thermore, we would like to evaluate our approach using more case studies.

References

1. XES Standard Definition (2009), www.xes-standard.org
2. 3TU Data Center: BPI Challenge 2011 Event Log (2011), doi:10.4121/uuid:d9769f3d-0ab0-

4fb8-803b-0d1120ffcf54
3. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-

ness Processes. Springer (2011)
4. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative Workflows: Balancing Be-

tween Flexibility and Support. Computer Science - R&D, 99–113 (2009)
5. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: VLDB, pp. 487–

499 (1994)
6. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-Oriented Ar-

chitectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 245–259.
Springer, Heidelberg (2007)

www.xes-standard.org

112 R.P.J.C. Bose, F.M. Maggi, and W.M.P. van der Aalst

7. Binder, M., Dorda, W., Duftschmid, G., Dunkl, R., Fröschl, K.A., Gall, W., Grossmann,
W., Harmankaya, K., Hronsky, M., Rinderle-Ma, S., Rinner, C., Weber, S.: On Analyzing
Process Compliance in Skin Cancer Treatment: An Experience Report from the Evidence-
Based Medical Compliance Cluster (EBMC2). In: Ralyté, J., Franch, X., Brinkkemper, S.,
Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 398–413. Springer, Heidelberg (2012)

8. Bose, R.P.J.C., van der Aalst, W.M.P.: Analysis of Patient Treatment Procedures: The BPI
Challenge Case Study. Technical Report BPM-11-18, BPMCenter.org (2011)

9. Burattin, A., Maggi, F.M., van der Aalst, W.M.P., Sperduti, A.: Techniques for a Posteriori
Analysis of Declarative Processes. In: EDOC, pp. 41–50 (2012)

10. Ferreira, D.R., Gillblad, D.: Discovering Process Models from Unlabelled Event Logs. In:
Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 143–
158. Springer, Heidelberg (2009)

11. IEEE Task Force on Process Mining: Process Mining Manifesto. In: Guessarian, I. (ed.)
Algebraic Semantics. LNBIP, vol. 99, pp. 169–194. Springer, Berlin (1981)

12. Kupferman, O., Vardi, M.Y.: Vacuity Detection in Temporal Model Checking. International
Journal on Software Tools for Technology Transfer, 224–233 (2003)

13. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: Aligning Event Logs and Declarative
Process Models for Conformance Checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM
2012. LNCS, vol. 7481, pp. 82–97. Springer, Heidelberg (2012)

14. Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In: KDD,
pp. 80–86. The AAAI Press (1998)

15. Ly, L.T., Indiono, C., Mangler, J., Rinderle-Ma, S.: Data Transformation and Semantic Log
Purging for Process Mining. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.)
CAiSE 2012. LNCS, vol. 7328, pp. 238–253. Springer, Heidelberg (2012)

16. Ly, L.T., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring Business Process Compli-
ance Using Compliance Rule Graphs. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A.,
Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M.,
Hitzler, P., Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 82–99. Springer,
Heidelberg (2011)

17. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient Discovery of Understandable
Declarative Models from Event Logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S.
(eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012)

18. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: A Knowledge-Based Integrated Ap-
proach for Discovering and Repairing Declare Maps. In: Salinesi, C., Norrie, M.C., Pastor,
Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg (2013)

19. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-Guided Discovery of Declarative
Process Models. In: IEEE Symposium on Computational Intelligence and Data Mining,
vol. 2725, pp. 192–199. IEEE Computer Society (2011)

20. Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event Correlation for Pro-
cess Discovery from Web Service Interaction Logs. The VLDB Journal 20(3), 417–444 (2011)

21. Perez-Castillo, R., Weber, B., Guzmn, I.R., Piattini, M., Pinggera, J.: Assessing Event Cor-
relation in Non-Process-Aware Information Systems. Software & Systems Modeling, 1–23
(2012)

22. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative Ver-
sus Declarative Process Modeling Languages: An Empirical Investigation. In: Daniel, F.,
Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383–394.
Springer, Heidelberg (2012)

23. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
24. Rozsnyai, S., Slominski, A., Lakshmanan, G.T.: Discovering Event Correlation Rules for

Semi-structured Business Processes. In: DEBS, pp. 75–86 (2011)
25. Schulte, S., Schuller, D., Steinmetz, R., Abels, S.: Plug-and-Play Virtual Factories. IEEE

Internet Computing 16(5), 78–82 (2012)

Aligning Event Logs and Process Models
for Multi-perspective Conformance Checking:

An Approach Based on Integer Linear Programming

Massimiliano de Leoni and Wil M.P. van der Aalst

Eindhoven University of Technology, Eindhoven, The Netherlands
{m.d.leoni,w.m.p.v.d.aalst}@tue.nl

Abstract. Modern organizations have invested in collections of descriptive
and/or normative process models, but these rarely describe the actual processes
adequately. Therefore, a variety of techniques for conformance checking have
been proposed to pinpoint discrepancies between modeled and observed behav-
ior. However, these techniques typically focus on the control-flow and abstract
from data, resources and time. This paper describes an approach that aligns event
log and model while taking all perspectives into account (i.e., also data, time and
resources). This way it is possible to quantify conformance and analyze differ-
ences between model and reality. The approach was implemented using ProM
and has been evaluated using both synthetic event logs and a real-life case study.

1 Introduction

Today’s organizations are challenged to make their processes more efficient and effec-
tive; costs and response times need to be reduced in all of today’s industries. Process
models are used to guide people, discuss process alternatives, and to automate parts
of critical business processes. Often these process models are not enforced and people
can deviate from them. Such flexibility is often desirable, but still it is good to analyze
differences between modeled and observed behavior. This illustrates the relevance of
conformance checking [1]. Conformance checking techniques take an event log and a
process model and compare the observed traces with the traces possible according to the
model. There are different dimensions for comparing process models and event logs. In
this paper, we focus of the fitness dimension: a model with good fitness allows for most
of the behavior seen in the event log. A model has perfect fitness if all traces in the
log can be replayed by the model from beginning to end. Other quality dimensions are
simplicity, precision, and generalization [1].

Various conformance checking techniques have been proposed in recent years
[1,2,3,4]. Unfortunately, they focus on the control-flow, i.e. the ordering of activities,
thereby ignoring the other perspectives, such as data, resources, and time. In a process
model, each case, i.e. a process instance, is characterized by its case variables. Paths
taken during the execution may be governed by guards and conditions defined over
such variables. Process models define the domain of possible values to assign to each
variable, along with modeling the variables that each activity is prescribed to write or
update. In addition, process models describe which resources are allowed to execute

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 113–129, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

114 M. de Leoni and W.M.P. van der Aalst

Fig. 1. BPMN diagram describing a process to handle credit requests. Besides the control-flow
perspective, also the data perspective (see data objects and conditions), the resource perspective
(see roles), and the time perspective (see timeout) are modeled. Dotted lines going from activities
to data objects indicate the variables manipulated by each activity. Each activity requires a person
having a particular role.

which activities. An activity is typically associated with a particular role, i.e., a selected
group of resources. There may also be additional rules such as the “four-eyes principle”
which does not allow for the situation where the same resource executes two related
tasks for the same case. Finally, there may be time-related constraints, e.g., a registra-
tion activity needs to be followed by decision activity within 30 days.

Since existing conformance checking techniques abstract from data, resources, and
time, many deviations remain undetected. Let us consider the process model in Figure 1
(taken from [5]). The model describes a process to deal with loans requested by clients
to buy small home appliances. After the credit request, the requester’s financial data are
verified and, if the verification is positive, the request is assessed. In case of a positive
assessment, the credit is provided and the requester is informed. In case of a negative
assessment, requesters can try to renegotiate the credit within one week or, otherwise,
the request is definitely rejected. In the remainder, data objects are simply referred with
the upper-case bold initials, e.g., V=Verification, and activity names by the letter in
boldface in brackets, e.g. a=Credit Request.

Let us also consider the following trace where variables are shortened with the initial
letter andEx andTx denote the executor of x and the timestamp when x was executed:1

〈(a, {A = 1000,R = Mary, Ea = Pete,Ta = 03 Jan}), (b, {V = OK,Eb = Sue}),
(c, {I = 150,D = OK,Ec = Sue,Tb = 4 Jan}), (e, {Ee = Pete,A = 1000,Te = 15 Jan}),
(c, {I = 150,D = NOK,Ec = Sue,Tc = 16 Jan}), (g, {Eg = Pete,Tg = 17 Jan}),
(h, {Eh = Sara,Th = 18 Jan})〉.

1 Notation (act, {attr1 = val1, . . . , attrn = valn}) is used to denote the occurrence of activ-
ity act in which variables attr1, . . . , attrn are assigned values val1, . . . , valn, respectively.

Aligning Event Logs and Process Models 115

Conformance checking techniques only considering the control-flow perspective can-
not find the following conformity’s violations: (i) the requested amount cannot be 1000:
activity d should be executed, instead of c; (ii) for the considered credit loan, the inter-
est is against the credit-institute’s policy for large loans; (iii) ‘Sue’ is not authorized
to execute activity b since she cannot play role Assistant; (iv) activity e is performed
11 days after the preceding c occurrence, whereas it should not be later than 7 days;
(v) activity h has been executed and, hence, the last decision cannot be negative. The
approach we propose is based on the principle of finding an alignment of event log and
process model. The events in the log traces are mapped to the execution of activities
in the process model. Such an alignment shows how the event log can be replayed on
the process model. We allow costs to be assigned to every potential deviation: some
deviations may be more severe than others.

This paper proposes a technique based on building a suitable ILP program to find
a valid sequence of activities that is as close as possible to the observed trace, i.e., we
aim to minimize the cost of deviations and create an optimal alignment. To assess the
practical feasibility and relevance, the technique has also been implemented in ProM
and tested using synthetic event logs and in a real-life case study. Experimental results
show that conformance of the different perspectives can be checked efficiently.

When checking for conformance, pinpointing the deviations of every single trace
is definitely useful, but it is not enough. Process analysts need to be provided with a
helicopter view of the conformance of the model with respect to the entire log. There-
fore, this paper also introduces some diagnostics to clearly highlight the most frequent
deviations encountered during the process executions and the most common causes.

Our previous work [5] provides an initial approach for multi-perspective confor-
mance checking. However, our previous technique could not deal with variables defined
over infinite domains. The ILP-based approach presented in this paper also allows for
numerical values. Our new approach is also several orders of magnitude faster. Finally,
the work reported in [5] was limited to returning optimal alignments. In this paper,
we provide enhanced diagnostics guiding the user in finding the root-cause of specific
conformance problems.

Our conformance-checking technique is independent of the specific formalism used
to describe the control-flow and data-flow perspectives. Therefore, BPMN, EPC or any
other formalism can be employed to represent these perspectives. However, we need
a simple modeling language with clear semantics to explain our technique. For this
purpose we use Petri nets with data. The notation is briefly discussed in Section 2.
Section 3 illustrates the basic concepts related to aligning a process and an event log.
Section 4 details our new technique to compute optimal alignments and to provide en-
hanced diagnostics. Section 5 describes the implementation in ProM and reports on the
experimental results. Finally, Section 6 concludes the paper, comparing this work with
the state of the art and describing future research directions.

2 Petri Nets with Data

A Petri net with data (DPN-net) is a Petri net in which transitions can write variables.
This formalism was introduced in [6] and, later, revisited in [7]. A transition modeling

116 M. de Leoni and W.M.P. van der Aalst

an activity performs write operations on a given set of variables and may have a data-
dependent guard. A transition can fire only if its guard is satisfied and all input places are
marked. A guard can be any formula over the process variables, using logical operators
such as conjunction (∧), disjunction (∨), and negation (¬).

Definition 1 (DPN-net). A Petri net with data (DPN-net) N = (P, T, F, V, U,W,G)
consists of:

– a Petri net (P, T, F);
– a set V of variables;
– a function U that defines the values admissible, i.e., for each variable v ∈ V , U(v)

is the domain of variable v;
– a write function W : T → 2V that labels each transition with a set of write opera-

tions, i.e. with a s the set of variables whose value needs to be written/updated;
– a guard function G : T → GV that associates a guard with each transition.2

When a variable v ∈ V appears in a guard G(t), it refers to the value just before the
t occurrence. Nonetheless, if v ∈ W (t), it can also appear as v′ (i.e., with the prime
symbol). In this case, it refers to the value after the t occurrence. Some transitions can
be invisible and correspond to τ -steps: they do not represent actual pieces of work.
Pictorially, they are represented as black boxes in the model.

Example 1. Figure 2 shows the DPN-net that models the same process as that modeled in
Figure 1 through the BPMN notation. In particular, Figure 2(a) depicts the control-flow and the
write operations. In addition to the variables depicted in the figure, there exists a set of variables
to model the resource and time perspective, i.e., for each transition t, there are two variables Et

and Tt. Moreover, these two variables are associated with a write operation of t. Figure 2(b)
enumerates the data-perspective guards Gd(t) for each transition t. When defining guards, we
assume that string values can be lexicographically ordered and, hence, it is also possible to use
inequality operators (i.e., < and >) for strings.

To also model the resource and time perspective, a second guard Gr(t) can be associated
with each transition t (see Figure 2(c)). Formally, only one guard G(t) can be assigned to t

and, hence, we set G(t) = Gd(t) ∧ Gr(t). Note the atom E′
c = Ec in the guard of transition

Simple Assessment in Figure 2(c): it models the resource constraint that the Simple Assessment
cannot be performed the i-th time by the same resource that performed it the (i − 1)-th time
within the same case (i.e., the “four-eyes” principle mentioned in Section 1). Formula (T ′

e ≤
Tc + 7days ∨ T ′

e ≤ Td + 7days) in the guard of transition Renegotiate Request to model that it
must occur within 7 days from the occurrence of the Assessment, Simple or Advanced. Conditions
are never satisfied when involving variables that are not set.

Space limitations prevent us from describing a complete operational semantics of DPN-
net. Interested readers are referred to [7]. We only introduce the concepts needed later.
The preset of a transition t is the set of its input places: •t = {p ∈ P | (p, t) ∈ F}. The
postset of t is the set of its output places: t• = {p ∈ P | (t, p) ∈ F}. Definitions of pre-
and postsets of places are analogous. A marking of a Petri net (with data) is a multiset
of its places, i.e., a mapping M : P → N. We say the marking assigns to each place a

2 The guard is defined over (a sub set of) variables in V . If a transition t has no guard, we set
G(t) = true.

Aligning Event Logs and Process Models 117

(a) The control-flow and write operations. Transitions and places are represented as squares
and circles, respectively. Each rounded orange rectangle identifies a different process vari-
able. A dotted arrow from a transition t to a variable v is a pictorial representation of the fact
that v ∈ W (t).

Transition Guard
Advanced
Assessment

Verification = true ∧Amount > 5000∧
0.1 < Interest′/Amount < 0.15

Inv1 Verification = false
Inv2 Decision = true
Inv3 Decision = false
Open Credit
Loan

Verification = true ∧ Decision = true

Register Deci-
sion and Inform
Customer M-Z

Requester ≥ “M”

Register Deci-
sion and Inform
Customer A-L

Requester ≤ “L”

Renegotiate Amount′ ≤ Amount

Simple
Assessment

Verification = true ∧Amount ≤ 5000∧
0.15 < Interest′/Amount < 0.2

(b) The guards to encode the data-
perspective constraints.

Transition Guard
Credit Request E′

a ∈ {“Pete”, “Mike”, “Ellen”}
Verify E′

b ∈ {“Pete”, “Mike”, “Ellen”}
Simple Assessment E′

c ∈ {“Sue”, “Sean”, “Sara”} ∧ E′
c �= Ec

Advanced Assessment E′
d ∈ {“Sue”, “Sean”, “Sara”} ∧ E′

d �= Ed

Renegotiate Request
E′
e ∈ {“Pete”, “Mike”, “Ellen”}

∧(T ′
e ≤ Tc + 7days ∨ T ′

e ≤ Td + 7days)

Open Credit Loan E′
h

= “Sara”

Register Decision and In-
form Customer M-Z

E′
f ∈ {“Pete”, “Mike”, “Ellen”}

Register Decision and In-
form Customer A-L

E′
g ∈ {“Pete”, “Mike”, “Ellen”}

(c) The guards to encode the constraints over re-
sources and time. Ei ∈ {a1, . . . , an} is a short-
cut for expression Ei = a1 ∨ . . . ∨Ei = an.

Fig. 2. The DPN-net of the working example

number of tokens. A state is a pair (M,A) where M is a marking for Petri net (P, T, F)
and A is a function that associates a value with each variable, i.e. A : V → D ∪ {⊥},
with A(v) ∈ U(v) ∪ {⊥}.3 Each DPN-net defines two special places po, pe ∈ P , the
initial and final place. The initial state is (M0, A0) where the initial place p0 ∈ P
contains exactly one token, i.e. M0(p0) = 1, and any other p ∈ P \ {p0} contains no
tokens, i.e. M0(p) = 0. Moreover, A0(v) = ⊥ for each v ∈ V . A transition firing
s = (t, w) is valid in state (M,A) if each place in the preset of t contains at least one
token, i.e. iff ∀p ∈ •t. M(p) > 0, t writes all and only the variables that it is prescribed
to and G(t) evaluates true with respect to assignment A. We introduce the following
functions to access to the components of s: #vars(s) = w and #act(s) = t. Function
#vars is also overloaded such that #vars(s, v) = w(v) if v ∈ dom(#vars(s)), or
#vars(s, v) = ⊥ if v �∈ dom(#vars(s)).4

3 A special value ⊥ is assigned to variables that have not been initialized.
4 The domain of a function f is denoted with dom(f).

118 M. de Leoni and W.M.P. van der Aalst

Firing a transition s in a state (M,A) leads to a state (M ′, A′) where M ′ assigns
a token less than M to the t’s input places •t and a token more that M to t’s output
places t•; the number of tokens in the other places remains unchanged. Moreover, for
each v ∈ V , A′(v) = A(v) if #vars(s, v) = ⊥, or, otherwise, A(v′) = #vars(s, v).
The set of valid process traces of a DPN-net N is denoted with PN and consists of all
firing sequences σ ∈ (

T × (V �→ U)
)∗

that, from an initial state (M0, A0), lead to a
state (MF , AF) where MF (pe) > 0.

A DPN-net is data sound iff, for each sequence of transitions yielding a token in the
final place, there is a sequence of write operations for the transitions in the sequence
such that the guard of every transition t in the sequence is satisfied when t fires.

Definition 2 (Data Soundness). Let N = (P, T, F, V, U,W,G) be a DPN-net. Let
N ′ = (P, T, F,∅, U ′,W ′, G′) be a DPN-net such that dom(U ′) = dom(W ′) =
dom(G′) = ∅. DPN-net N is data sound iff, for each 〈s′1, . . . , s′n〉 ∈ PN ′ , there exists
a sequence 〈s1, . . . , sn〉 ∈ PN where, for all 1 ≤ i ≤ n, #act(si) = #act(s

′
i).

3 Alignments of Event Logs and Process Models

An event log contains events associated to cases, i.e., process instances. Each case fol-
lows a trace of events. Each trace records the execution of a process instance. Different
instances may follow the same trace. Let SN be the set of (valid and invalid) firing of
transitions of a DPN-net N with SN . An event log is a multi-set of traces: L ∈ B(S∗

N).5

Conformance checking requires an alignment of event log L and process model P :
the events in the event log need to be related to model elements and vice versa. Such an
alignment shows how the event log can be replayed on the process model. This is far
from being trivial since the log may deviate from the model and not all activities may
have been modeled and recorded.

We need to relate “moves” in the log to “moves” in the model in order to establish an
alignmentbetweenaprocessmodelandanevent log.However, itmaybethecase thatsome
of the moves in the log cannot be mimicked by the model and vice versa. We explicitly
denote “no move” by �. For convenience, we introduce the set S⊥

N = SN ∪ {�}.

Table 1. A complete alignment

Event-Log Trace Proc
a {A = 1000, R = Mary} a {A = 5001, R = Mary}
b {V = OK) b {V = OK}
c {I = 150, D = OK} c {I = 650,D = NOK}

Inv3
e {A = 1000} e {A = 5001}

b {V = OK}
c {I = 150, D = OK} c {I = 650,D = OK}

Inv2
g {} g
h {} h

Inv5

One move in an alignment is repre-
sented by a pair (s′, s′′) ∈ (S⊥

N × S⊥
N) \

{(�,�)} such that

– (s′, s′′) is a move in log if s′ ∈ S and
s′′ =�,

– (s′, s′′) is a move in process if
s′ =� and s′′ ∈ S,

– (s′, s′′) is a move in both without in-
correct write operations if s′ ∈ S,
s′′ ∈ S and ∀v ∈ V #vars(s

′, v) =
#vars(s

′′, v),
– (s′, s′′) is a move in both with incor-

rect write operations if s′ ∈ S, s′′ ∈ S and ∃v ∈ V #vars(s
′, v) �= #vars(s

′′, v).

AN = (S⊥
N × S⊥

N) \ {(�,�)} is the set of all legal moves.

5 B(X) the set of all multi-sets over X .

Aligning Event Logs and Process Models 119

The alignment of two execution traces σ′, σ′′ ∈ S∗
N is a sequence γ ∈ A∗

N such
that, ignoring all occurrences of �, the projection on the first element yields to σ′ and
the projection on the second yields σ′′. In the remainder, σ′ and σ′′ are referred to as the
log and the process projection of alignment γ. In particular, γ is a complete alignment
if σ′′ ∈ PN . Table 1 shows a complete alignment of the process model in Figure 2 and
the log trace in Section 1.

In order to define the severity of a deviation, we introduce a cost function on legal
moves: κ ∈ SA → R+

0 . The cost of each legal move depends on the specific model
and process domain and, hence, cost function κ needs to be defined ad-hoc for every
specific case. The cost function can be generalized to an alignment γ as the sum of the
cost of each individual move: K(γ) =

∑
(s′,s′′)∈γ κ(s

′, s′′).
However, we do not aim to find any complete alignment. Given a log trace σL ∈ L,

our goal is to find a complete alignment of σL and P which minimizes the cost. We
refer to it as an optimal alignment. Let ΓσL,P be the multi-set of all complete align-
ments of σL and P . The alignment γ ∈ ΓσL,P is an optimal alignment if ∀γ′ ∈
ΓσL,P K(γ) ≤ K(γ′). Note that there may exist several optimal alignments, i.e. several
complete alignments having the same minimal cost.

Regarding the complexity, in [8] we discuss a polynomial-time reduction of SAT
problems (i.e., simply satisfiability problems) to problems of finding an optimal align-
ment. The existence of this reduction implies that finding an optimal alignment is an
NP-hard problem. Therefore, while it is clear that no deterministic algorithm can guar-
antee an optimal alignment to be computed in polynomial time, this paper attempts to
reduce the computation time for the average case.

4 The ILP-Based Technique and Diagnostics

In order to find an optimal alignment of a DPN net N = (P, T, F, V, U,W,G) and a log
trace σL, we rely on existing techniques to build an alignment that only considers the
control-flow perspective. Later, we construct a problem of Integer Linear Programming
(ILP) to obtain an optimal alignment which also takes the other process perspectives
into account.

The approach assumes four functions to be provided by process analysts. Functions
κl(t) and κp(t) return a non-negative cost associated with a move in log or process for
transition t. Function kv(v) returns a non-negative cost relative to a variable v and a
move in both (sLi , s

P
i) where #vars(s

L
i , v) �= ⊥ and #vars(s

L
i , v) �= #vars(s

P
i , v)

(i.e., sLi assigns to v a value that is out of the domain or incompatible with some guard).
Function kn(v) returns a non-negative cost relative to a variable v and a move in both
(sLi , s

P
i) where #vars(s

L
i , v) = ⊥ and #vars(s

P
i , v) �= ⊥ (i.e., sLi does not perform

a prescribed write operation for v). These four functions can be suitably composed to
obtain cost functions κ as defined in Section 3. Our ILP-based technique comprises of
three phases:

120 M. de Leoni and W.M.P. van der Aalst

1. We employ the off-the-shelf techniques described in [9] to build an alignment γC =
〈(sL1 , sP1), . . . , (sLn , sPn)〉 between the Petri net (P, T, F) and the log trace σL using
the cost functions kl and km. Since such techniques only take the control-flow
into account, the process projection of γC does not contain write operations, i.e. if
sPi �=�, dom(#vars(s

P
i)) = ∅ for all 1 ≤ i ≤ n. In the remainder, γC is called

control-flow alignment and is not a complete alignment since its process projection
is not a trace in PN .

2. We enrich the firings of transitions in the process projection σC of γC with the
opportune write operations so as to minimize their difference with respect to the
write operations observed in σL. Since it is a minimization problem, finding the
opportune write operations can be formulated as solving a certain ILP problem:
when a solution is found, the values of certain variables of the ILP-problem denote
those to be assigned to variables in the writing operations of σC . The ILP-problem
objective function f is the alignment cost.

3. We compute the fitness value F(σL) ∈ [0, 1]. Adriansyah et al. [9] propose a
fitness measurement where only the control-flow is considered. Let FC(σL) ∈
[0, 1] be this measure. Here, we propose a fitness with respect to all perspectives:
F(σL) =

(FD(σL) + FC(σL)
)
/2 which is the mean of FC(σL) and a certain

quantity FD(σL) ∈ [0, 1] that considers the fitness with respect to any of the non-
control-flow perspectives (data, resource, time):

FD(σL) =
fmin∑

(sL,sP)∈γO : sP 	=

∑

v∈#vars(sP) max(kd(v), kn(v))

where fmin is the value of the objective function for the solution found of the ILP
problem. The denominator corresponds to the highest cost in term of deviations,
i.e. for each move (sL, sP) in both, the deviations between the write operations of
sL and sP have the highest cost.

Section 4.1 discusses how to build an ILP problem to obtain optimal solutions. To keep
the discussion simple, each guard is assumed to be atomic (e.g., Amount > 5000).
However, this limitation can be easily addressed, as discussed in technical report [8].
The technical report also discusses how to convert date- and string-typed variables
into integers and, hence, to support these types of variables. Section 4.2 discusses our
proposal for a helicopter view where common deviations and their causes are shown.

4.1 Construction of the ILP Problem

Given a DPN-net N and a log trace σL, the outcome of the first phase is a control-flow
alignment γC = 〈(sL1 , sP1), . . . , (sLn , sPn)〉.
Example 2. In order to maintain the example of a reasonable size, in the remainder, we only
consider the data perspective (i.e., we ignore the guards in Figure 2(c)). Let us assume κl(t) =
κp(t) = 1 for each transition t ∈ T \ {Inv1, Inv2, Inv3, Inv4} and κl(t) = κp(t) = 0 for
each transition t ∈ {Inv1, Inv2, Inv3, Inv4}. The latter transitions are invisible and, hence,
by definition, they never appear in the log. Therefore, they are always associated with moves in

Aligning Event Logs and Process Models 121

Event-Log Trace Proc
a {A = 1000, R = Mary} a
b {V = OK) b
c {I = 150, D = OK} c

Inv3
e {A = 1000} e

b
c {I = 150, D = NOK} c

Inv2
g {} g
h {} h

Inv5

(a) Control-flow
Alignment.

min10 + ̂V1 + ̂I1 + ̂D1 + ̂A1
+̂A2 + ̂I2 + ̂D2 + ̂R1

V1 = 1
I1 > 0.1 A1
I1 < 0.15 A1
D1 = 0
A2 < 0.6 A1
I2 > 0.1 A2
I2 < 0.1 A2
I2 < 0.15 A2
D2 = 0
R1 < “M”

A1 = 1000 ⇔ ̂A1 = 0

R1 = “Mary” ⇔ ̂R1 = 0

I1 = 150 ⇔ ̂I1 = 0

A2 = 1000 ⇔ ̂A1 = 0

I2 = 150 ⇔ ̂I2 = 0

D2 = 1 ⇔ ̂D2 = 0

(b) The ILP problem to
find an optimal align-
ment.

Event-Log Trace Proc
a {A = 1000, R = Mary} a {A = A∗

1 ,R = R∗
1}

b {V = OK) b {V = V ∗
1 }

c {I = 150, D = OK} c {I = I∗1 ,D = D∗
1}

Inv3
e {A = 1000} e {A = A∗

2}
b {V = V ∗

2 }
c {I = 150, D = NOK} c {I = I∗2 ,D = D∗

2}
Inv2

g {} g
h {} h

Inv5

(c) Optimal Alignment obtained
as solution of an ILP problem: v∗i
denotes the value assigned to vari-
able vi in the ILP-problem solu-
tion that is found.

Fig. 3. The technique applied to the working example. First, a control-flow alignment is built,
which, later, is used to build an ILP problem, whose solution allows for extending the control-
flow alignment to obtain the write operations of the process projection. The constraints in bold
in Figure 3(b) are non-linear. Nevertheless, as discussed in the text, each can be transformed into
two equivalent linear constraints.

process, without them being real deviations. Figure 3(a) is a possible control-flow alignment γ
for the trace considered in Section 1, which is returned by the technique reported in [9]. This is
the output of the first phase, which needs to be extended to obtain an optimal alignment.

In order to build the ILP problem, we introduce a helper function #V (γ, v) that returns
the number of write operations that are prescribed to happen for variable v, considering
the transitions fired in the process projection of γ.

For each write operation that is prescribed to happen for a variable v ∈ V ,
there exists an ILP variable vi. The set of such variables is denoted with
VILP : VILP = {vi : v ∈ V ∧ 0 < i ≤ #V (γ, v)}.

By analyzing the control-flow alignment, it is possible to determine whether the i-
th write operation for v has or has not occurred. In remainder, constant vi denotes the
actual value observed in the log trace , with vi = ⊥ if the i-th write operation has not
been observed. For instance, considering the control-flow alignment in Figure 3(a) and,
specifically, the first move, it can be observed that A1 = 1000 and R1 = 1000, whereas,
considering the 6th move (i.e., for transition b), V2 = ⊥. In addition to the variables in
VILP , the ILP problem also includes a boolean variable v̂i, for each vi ∈ VILP such
that vi �= ⊥. For the solution found for the ILP problem, variable v̂i is assigned value
1 if variable vi is not assigned value vi, i.e. there is a deviation relative to the i-th write
operation for variable v. Otherwise, v̂i is given value 0.

We create a set ΦγC of ILP-problem constraints as follow. For each prefix γ′
C =

〈(sL1 , sP1), . . . , (sLi , sPi)〉 of control-flow alignment γC , there exists a constraint φ ∈
ΦγC if sPi �=�. Constraint φ is obtained starting from G(#act(s

P
i)) and replacing, for

each v ∈ V , all occurrences of v with vk−1 ∈ VILP and all occurrences of v′ (i.e., with
the prime symbol) with vk ∈ VILP , where k = #V (γ

′
C , v).

122 M. de Leoni and W.M.P. van der Aalst

Example 3. By analyzing the control-flow in Figure 3(a), variables V, I,D need to be written
twice each and variable R once. Therefore, following variables V1, V2, I1, I2, D1, D2 and R1

are introduced to the ILP problem. Moreover, besides the write operation for V associated with
the 6th move of the control-flow alignment (i.e., the second execution of transition b), they have
all occurred. Therefore the following boolean variables V̂1, , Î1, Î2, D̂1, D̂2, R̂1 needs to be in-
troduced, i.e. V̂2 is excluded. Figure 3(b) shows the ILP problem to find the optimal alignment:
the constraints not in bold are those in Φγ , i.e. relative to the transitions’ guards. Each occur-
rence v and v′ is replaced with the respective variable vi−1 and vi of ILP problem, as described
above. To enhance the example’s comprehension, string constants are not converted into their
respective numeric representations. Nonetheless, the conversion is necessary to be able to solve
the ILP problem.

Once these elements are introduced, the structure of the entire ILP problem can be
described. Let CN(γC , k

n) be the cost relative to missing write operations:

CN(γC , k
n) =

∑
(sLi ,sPi)∈γC s.t. sPi 	=

(∑
v∈(dom(#vars(sPi))\dom(#vars(sLi)))

kn(v)
)

The objective function to minimize is the cost associated with deviations of any per-
spective different from the control-flow:

min
(
CN(γC , k

n) +
∑

vi∈VILP :vi 	=⊥

(
kd(v) · v̂i

))
(1)

subject to the constraints in ΦγC and the following ones:

∀vi ∈ VILP s.t. vi �= ⊥. vi = vi ⇔ v̂i = 0 (2)

and
∀vi ∈ VILP . vi ∈ U(v); ∀vi ∈ VILP s.t. vi �= ⊥. v̂i ∈ [0, 1]

The constraints in Equation 2 are clearly not linear. Nonetheless, each of these con-
straints can also be written as a pair of linear constraints:

vi −Mv̂i ≤ vi; −vi −Mv̂i ≤ −vi

whereM is a sufficiently large number (e.g., the maximum machine-representable num-
ber). The equivalence of each pair of these constraints can be easily observed: in the so-
lution of the ILP problem, if v̂i = 0, then vi = vi must hold; otherwise any value can be
assigned to vi. Nonetheless, we aim to minimize the objective function in Equation 1;
hence, v̂i = 1 only if value vi cannot be assigned to vi.

Example 4. Let us suppose that kn(v) = 10 and kd(v) = 1 for each v ∈ V . In Figure 3(b),
the constraints in bold are those which are introduced to enforce that v̂i = 0 iff vi = vi, i.e.
the constraints of the type described in Equation 2. Figure 3(c) shows the optimal alignment in
function of the solution of the ILP problem. It contains write operations of form v = v∗i where v∗i
is the value assigned to variable vi in the solution found for the ILP problem. Note the objective
function has an added constant 10, which is relative to the only missing write operation, which is
for V .

Aligning Event Logs and Process Models 123

The following theorem discusses the admissibility of the ILP problems constructed as
described above (see [8] for a sketch of the proof):

Theorem 1 (Admissibility of the ILP problem). Let N = (P, T, F, V, U,W,G) be a
data-sound DPN-Net and σL be a log trace. The ILP problem constructed as mentioned
above to find an optimal alignment of σL and N is always admissible.

4.2 A Helicopter View on the Optimal Alignments

Alignments can be projected on the process model to obtain a helicopter view. Transi-
tions and variables are colored based on their level of conformance: a value between 0
and 1. Extreme values 1 and 0 identify the situations in which, according to the behavior
in an event log L, the executions of a transition or the write operations for a variable are
always or never conforming with the model. When projecting deviations on the model,
transitions and variables are colored according to their level of conformance: if the level
is 1 or 0, a white or black color is used, with intermediate values associated with in-
termediate shades of color, including different intensities of yellow, orange, red, purple
and brown. Readers are referred to [8] for more details on how levels of conformance
are computed.

Each transition t is also associated with a decision tree that relates the deviations for
t (e.g., moves in log) to the typical causes, e.g. the typical DPN-net states (M,A) when
such deviations occurred. Decision trees classify instances by sorting them down in a
tree from the root to some leaf node. Each non-leaf node specifies a test of some clas-
sification feature and each branch descending from that node corresponds to a range of
possible values for the feature. Leaf nodes are relative to the value for the classification
feature.

Decision trees are constructed starting from a set of training instances. In
our case, a different training instance −→o is associated with each prefix γ′ =
〈(sL1 , sP1), . . . , (sLi , sPi)〉 of every optimal alignment γ ∈ Γ . Instance −→o is used to
train the decision tree for transition #act(s

P
i), if sPi �=�, or #act(s

L
i), if sPi =�. The

possible value of the classification feature in −→o corresponds to one of 4 types of moves,
i.e. moves in process, in log, as well as moves in both with or without incorrect write op-
erations. Let σ′

L be the log projection of alignment prefix 〈(sL1 , sP1), . . . , (sLi−1, s
P
i−1)〉,

i.e., ignoring the last move in γ′. If γ occurs multiple times in Γ , i.e. #Γ (γ) > 1, each
γ prefix generates #Γ (γ) training instances, which are giving the same values to all
classification features.

For each variable v ∈ V , there exist two classification features: v and v′. The value
of the classification feature v is the value of the last write operation for v in log trace σ′

L.
If there is no write operation for v in σ′

L, no value is assigned to the feature. As a matter
of fact, decision-tree construction algorithms can deal with missing values of features.
The value of the classification feature v′ is the value assigned to v by log event sLi , i.e.
#vars(v, s

L
i). If sLi =� or #vars(v, s

L
i) = ⊥, no value is assigned to the feature. We

also add an additional feature #t for each transition t ∈ T . The value for feature #t is
the number of firings of transition t in σ′

L, i.e. the number of execution of t before the
last move of γ′.

124 M. de Leoni and W.M.P. van der Aalst

5 Implementation and Experiments on Real Life Event Logs

Our multi-perspective conformance checking approach is realized through two software
plug-ins of ProM, a generic open-source framework for implementing process mining
tools in a standard environment.6 A first ProM plug-in, the Data-aware Conformance
Checker, takes a process model in form of a DPN-net and an event log as input and
operationalizes the techniques described in Section 4, including the extensions for non-
atomic formulas. The output is a set of optimal alignments, one for each trace in the
event log. A second plug-in, the Data-aware Conformance Projector, projects the op-
timal alignments onto the process model, operationalizing the approach described in
Section 4.2. To solve ILP problems our implementation uses the lp solve library, which
is based on the revised simplex method combined with a branch-and-bound method
for the integers.7 To construct decision trees, we leverage on the implementation of the
C4.5 algorithm in the WEKA toolkit.8

To assess the practical feasibility of the approach, the two ProM plug-ins have been
tested on a real-life case study involving a Dutch insurance institute. We used an event
log containing 12319 traces (i.e. process instances), where, on average, each trace is
composed by around 7 events, with a minimum of 4 events and a maximum of 11
events. The event log has been generated through XESame, which is bundled in ProM.
XESame allowed us to extract the event log from the database of the insurance insti-
tute. A control-flow process model has been designed in collaboration with a process
analyst of the institute. Figure 5 shows the DPN-net for the case study. Each transition t
modeling an activity t is associated with a guard G(t) = Gr(t)∧Gd(t) where formulas
Gr(t) and Gd(t) encode the constraints on the resource and data perspective, respec-
tively. We have derived Gr(t) for every transition t after a number of talks with the
process analyst; formulas Gd(t) have automatically been mined through the Decision
Miner [7] and validated with the process analyst. Although the event log contains 32
data attributes, only five are actually involved in the guards of the activities. Therefore,
we did not include the others in the process model to preserve the model’s readability.
These five attributes are written once with the Start activity when a insurance claim is
submitted and never updated. Here, the Data-aware Conformance Checker plug-in is
used to evaluate whether this process model is a good representation of the real behav-
ior observed in the event log. The process analyst could not identify some deviations as
more severe than others. Therefore, the four cost functions were defined so as to return
1 for any control-flow and data-flow deviation.

Visualization of the Optimal Alignments in ProM. Figure 4 shows how the optimal
alignments are visualized in ProM: the optimal alignment of each log trace is shown
as a sequence of triangles, each representing an alignment’s move. Each triangle is
colored according to the move that it represents. The green and white colors are used to
identify moves in both without or with incorrect write operations, respectively; yellow
and purple are for moves in the log or in the process, respectively. Finally, the gray is
used for moves for invisible transitions. When the user passes over a triangle with the

6 http://www.promtools.org/
7 http://lpsolve.sourceforge.net/
8 http://weka.sourceforge.net

http://www.promtools.org/
http://lpsolve.sourceforge.net/

Aligning Event Logs and Process Models 125

Fig. 4. The ProM User Interface to show the optimal alignments

Fig. 5. The process model relative to the case study of a Dutch insurance institute. The alignments
have been projected on the model to pinpoint where deviations occur more often.

mouse, the plug-in highlights the two transition firings sL and sP associated with the
move (sL, sP). Specifically, the figure refers to a move in both with an incorrect write
operation for variable Availability Employment History. The value next to the optimal
alignment for every trace σL is the fitness value F(σL). On the top of the screen view,
the average fitness of all traces is shown.

Enhanced Diagnostics in ProM. Figure 5 illustrates the output of the Data-aware
Conformance Projector in ProM. Activities and variables are colored according to their
level of conformance, as discussed in Section 4.2. Activity Start is the most involved
in deviations, since the rectangle of respective transition is filled with the darkest color.
Similarly, BR11 Self Resigner is the variables for which there is the highest num-
ber of incorrect write operations. When passing over a transition/activity or variable
with the mouse, more information is given: the figure shows that activity Start is 3249
moves in both with incorrect write operations and 9070 moves without incorrect write
operations. It is worthy observing that variable res is filled with a white color, which
implies activities are generally performed by authorized resources. When clicking on a
transition’s rectangle, as discussed in Section 4.2, an associated decision tree is shown
which classifies the types of deviations relative to the transition as function of the pro-
cess state when the deviations occurred. Figure 6 shows the decision tree associated
with transition Quick Scan. In brackets, each tree leaf shows the number of moves in

126 M. de Leoni and W.M.P. van der Aalst

Fig. 6. The decision tree associated with activity/transition Quick Scan. Each tree leaf corresponds
to one of the possible types of moves: in log, in process and in both, with or without incorrect
write operations.

the computed optimal alignments that are classified in that leaf. Some moves can be
incorrectly classified: the type of moves may be different from what the values of the
classification features would suggest. In these cases, after the slash, a second number is
shown, which is the number of wrongly classified moves. The labels around the deci-
sion tree, i.e. Variables, Configuration and Summary, allow users, on the one hand, to
access information about the quality of the decision tree and, on the other hand, to set
the configuration parameters and the classification features to consider when construct-
ing the decision tree. By analyzing the tree in Figure 6, one can observe that activity
Quick Scan is usually correctly executed if it has never been previously executed (i.e.,
#3QuickScan = 0) and the claim’s request channel is known and the previous activity
is performed by any resource different from #6011, #29313, #32478, #6024, #17338.
This statement is not confirmed in only 7 out of 1248 moves as indicated by the label
“Move in Both without incorrect write operation (1248/7)” associated with the tree’s
leaf. In any different state of the DPN-net when Quick Scan was performed, a move in
log is expected.

Table 2. Execution time comparison between the
new technique and the technique in [5] for some
log-model combinations. When unspecified, the
time units are seconds.

Event Log & Model New Previous
Dutch Insurance Institute 3+7.02 > 2 hs
Synthetic Log (n = 4) 0.17+0.38 13.3
Synthetic Log (n = 5) 0.2+0.21 48
Synthetic Log (n = 6) 0.2+0.44 205

Execution-Time Analysis. As men-
tioned in the introduction, our new
technique is several orders of mag-
nitude faster than it predecessor de-
scribed in [5]. To support this claim,
we performed a number of experi-
ments with different combinations of
event logs and process models.
The experimental results are summarized
in Table 2: the second column is relative

Aligning Event Logs and Process Models 127

to the results for our new technique, i.e. the ILP-based technique described in this paper,
whereas the third refers to the previous technique. For the new technique, the execution
time is reported as x+y where x and y are, respectively, the execution times to compute
the control-flow alignments and to complement them to consider the other perspectives.

Fig. 7. Scalability of the approach with event logs of
different sizes

The first row is relative to the real-
life event log of the Dutch insurance
institute used before to showcase the
implementation. Along with the real-
life event log, we have employed the
same process models that were used
for execution-time analysis reported
in Section 5 of paper [5]. In particu-
lar, a process model has been consid-
ered with n parallel activities. Each
of n parallel activities performs a
write operation for a different inte-
ger variable, which can be assigned a
value between 0 and 42. After the n
activities, a different activity is per-
formed which is associated with a

guard involving the n variables. Further details on the model are given in [5]. To perform
the comparison, we have conducted experiments for n = 4, 5 or 6. For each of these
three values, we have generated an event log that contained 60 traces with data-related
deviations on the write operations. Finally, we have employed both of techniques and
compared the execution time to find the 60 optimal alignments. Comparing the results
reported in Table 2, the improvements of the new ILP-based technique are evident.

As further evaluation, we performed detailed experiments to see how the approach
scales up with logs of different sizes. To this purpose, we generated 7 events logs by
simulating the model in Figure 2 with CPNTools9. Each event log contained a different
number of events while the number of traces were always 3000 (i.e., the average length
of traces was different in each of 7 event logs). To generate event logs of different
sizes, we instructed the simulation in a way that, on average, each loan request required
a different number of renegotiations (i.e., the loop was executed a large number of
times in each trace). After the generation of the logs, 20% of events were moved to a
different position in the respective trace to introduce deviations. Figure 7 shows the the
execution time required to compute the optimal alignments for the traces in the 7 event
logs. The dotted line indicates the general trend. This shows that optimal alignments
can be computed efficiently (at least, for the considered example): the execution time
grows almost linearly with event logs of increasing sizes.

6 Conclusion

Various conformance checking techniques have been proposed in recent years. As men-
tioned in Section 1, they only focus on the control-flow thereby ignoring, e.g., incorrect

9 http://cpntools.org/

http://cpntools.org/

128 M. de Leoni and W.M.P. van der Aalst

routing decisions, incorrect values assigned to variables, delayed activities, and unqual-
ified resources executing activities.

This paper presents a technique that consider data, resources and time when check-
ing for process conformance. The proposed technique using state-of-the-art techniques
to first create control-flow alignments. Such alignments are extended to incorporate
the other perspectives. To extend alignments with other perspectives, an additional ILP
problem is constructed and solved for each log trace. The conformance-checking tech-
nique discussed in this paper has been implemented in ProM and was tested with various
synthetic log-model combinations and, also, using a real-life case study. This way we
were able to demonstrate the practical relevance and feasibility of the technique.

Our approach goes much further than existing techniques for data-aware behav-
ioral compliance checking [10,11]. The setting considered in [10,11] is different from
ours: a set of compliance rules rather than a multi-set of log traces is checked. There
also exist efficient algorithms to perform sequence alignments (e.g., the algorithms of
Needleman-Wunsch and Smith-Waterman). Similarly, in Process Mining, J.C. Bose et
al. [12] have proposed techniques to efficiently align pairs of log traces. Unfortunately,
they cannot be applied to find an alignment between a log trace and a process model.
In our setting, we do not know a priori the process trace to align with the log trace;
conversely, the process trace needs to be chosen, thus minimizing the severity of the
deviations. Moreover, sequence and trace alignments only focus on the activity names,
i.e. the control-flow perspective, ignoring the other perspectives.

Montali [13] developed some techniques to check the conformity of running process
instances with respect to a set of temporal- and data-related constraints. Certainly, these
techniques can also be applied for a-posteriori analysis, but they would not be able to
pinpoint where the deviations exactly occur, which we aim to do. For this purpose,
one could also leverage on existing techniques in the field of distributed systems for
system debugging [14,15]. Unfortunately, they would also be limited to alert deviations,
without highlighting where they actually occur.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

2. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on Monitor-
ing Real Behavior. Information Systems 33, 64–95 (2008)

3. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J.: Process Compliance Measurement
based on Behavioural Profiles. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 499–
514. Springer, Heidelberg (2010)

4. Cook, J., Wolf, A.: Software Process Validation: Quantitatively Measuring the Correspon-
dence of a Process to a Model. ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM) 8, 147–176 (1999)

5. de Leoni, M., van der Aalst, W.M.P., van Dongen, B.F.: Data- and Resource-Aware
Conformance Checking of Business Processes. In: Abramowicz, W., Kriksciuniene, D.,
Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 48–59. Springer, Heidelberg (2012)

6. Sidorova, N., Stahl, C., Trčka, N.: Soundness Verification for Conceptual Workflow Nets
With Data: Early Detection of Errors With the Most Precision Possible. Information Sys-
tems 36(7), 1026–1043 (2011)

Aligning Event Logs and Process Models 129

7. de Leoni, M., van der Aalst, W.M.P.: Data-Aware Process Mining: Discovering Decisions in
Processes Using Alignments. In: Proc. of the 28th ACM Symposium on Applied Computing
(SAC 2013). ACM (2013)

8. de Leoni, M., van der Aalst, W.M.P.: Aligning Event Logs and Process Models for Multi-
Perspective Conformance Checking: An Approach Based on Integer Linear Programming,
BPM Center Report BPM-13-05 (2013)

9. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.: Conformance Checking Using Cost-
Based Fitness Analysis. In: IEEE International Enterprise Distributed Object Computing
Conference, pp. 55–64. IEEE Computer Society (2011)

10. Ly, L., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring business process compliance
using compliance rule graphs. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert,
M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P.,
Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 82–99. Springer, Heidelberg
(2011)

11. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of GSM-Based Artifact-Centric Sys-
tems through Finite Abstraction. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC
2012. LNCS, vol. 7636, pp. 17–31. Springer, Heidelberg (2012)

12. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Process Diagnostics Using Trace
Alignment: Opportunities, Issues, and Challenges. Information Systems 37(2) (2012)

13. Montali, M.: Specification and Verification of Declarative Open Interaction Models. LNBIP,
vol. 56. Springer, Heidelberg (2010)

14. Reynolds, P., Killian, C., Wiener, J.L., Mogul, J.C., Shah, M.A., Vahdat, A.: Pip: detecting
the unexpected in distributed systems. In: Proceedings of the 3rd Conference on Networked
Systems Design & Implementation, vol. 3, pp. 115–128. USENIX Association (2006)

15. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale system prob-
lems by mining console logs. In: Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, pp. 117–132. ACM (2009)

Conformance Checking in the Large:

Partitioning and Topology

Jorge Munoz-Gama1, Josep Carmona1, and Wil M.P. van der Aalst2

1 Universitat Politecnica de Catalunya, Barcelona, Spain
2 Eindhoven University of Technology, Eindhoven, The Netherlands

{jmunoz,jcarmona}@lsi.upc.edu, w.m.p.v.d.aalst@tue.nl

Abstract. The torrents of event data generated by today’s systems are
an important enabler for process mining. However, at the same time, the
size and variability of the resulting event logs are challenging for today’s
process mining techniques. This paper focuses on “conformance checking
in the large” and presents a novel decomposition technique that parti-
tions larger processes into sets of subprocesses that can be analyzed more
easily. The resulting topological representation of the partitioning can be
used to localize conformance problems. Moreover, we provide techniques
to refine the decomposition such that similar process fragments are not
considered twice during conformance analysis. All the techniques have
been implemented in ProM, and experimental results are provided.

Keywords: Process Mining, Conformance Checking, Process Diagnosis.

1 Introduction

The interest in process mining is increasing because of the widespread avail-
ability of event data and the desire to improve performance and compliance of
operational processes. Process mining relates modeled behavior and observed
behavior [1,2]. This novel discipline tackles three challenges relating event data
(i.e., log files) and process models: the discovery of a process model from an
event log, checking the conformance of a process model and a log, and the en-
hancement of a process model with the information extracted from a log. Process
mining research resulted in a variety of algorithms that demonstrated to be of
great value for undertaking small or medium-sized problem instances. However,
real-life experiences show that most of the existing algorithms have difficulties
dealing with industrial-sized problems (cf. Section 6).

This paper proposes a decomposition technique for determining the confor-
mance of a Petri net with respect to a log (i.e., how good is the model describ-
ing the behavior of the log). Instead of trying to asses the conformance of the
whole event log and the complete Petri net, we check conformance for selected
subprocesses (subnets of the initial Petri net and corresponding sublogs). Sub-
processes are identified as fragments of the Petri net that have a single-entry
and a single-exit node (SESE), thus representing an isolated part of the model
with a well-defined interface to the rest of the net [3].

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 130–145, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Conformance Checking in the Large: Partitioning and Topology 131

In [4], we presented a conformance checking approach using the so-called Re-
fined Process Structure Tree (RPST). The RPST [3] allows for the construction of
hierarchy of SESEs. This paper extends the approach presented in [4] as follows:
First of all, we present a new strategy to compute fitness (i.e., the dimension of
conformance that focuses on analyze if the traces in the log are valid sequences
of the model) by selecting a partitioning of the RPST. Then this partitioning
is extended with a new set of fragments corresponding to the interface between
place-bordered SESEs. With this extension, it is guaranteed that the fitness of
the whole Petri net can be computed directly from the fitness of the fragments
forming the partition. Experiments show a considerable reduction (orders of
magnitude) in the fitness checking, and moreover the techniques allow for iden-
tifying those subnets that have fitness problems, allowing the process owner to
focus on the problematic parts of a large model.

The RPST-based decomposition is not only used for efficiency reasons.We also
use it to provide diagnostics that help the analyst in localizing conformance prob-
lems. We create a topological structure of SESEs in order to detect the larger con-
nected components that have fitness problems. Moreover, problematic parts can
be analyzed in isolation and independently of the rest of the model. Finally, the
approach is refined to avoid considering the same problem multiple times. For ex-
ample, it makes no sense to consider small or highly similar process fragments.

Related Work. Cook et al. [5] were among the first to quantify the relation-
ship between event logs and process models. They compared event streams of the
model with event streams generated from the event log. Several authors propos-
ing process discovery algorithms also provide a quality metric (often related to
fitness). For example, in [6] the authors define a fitness function for searching
for the optimal model using a genetic approach.

The first comprehensive approach to conformance analysis was proposed in
[7]. Two different types of metrics are proposed: (a) fitness metrics, i.e., the
extent to which the log traces can be associated with valid execution paths
specified by the process model, and (b) appropriateness metrics, i.e., the degree
of accuracy in which the process model describes the observed behavior in the
log, combined with the degree of clarity in which it is represented. One of the
drawbacks of the approach in [7] and most other approaches that “play the
token game”, is that fitness is typically overestimated. When a model and log
do not fit well together, replay will overload the process model with superfluous
tokens. As a result, the model will allow for too much behavior. Approaches such
as the one in [7] also have problems when the model has “invisible activities”
(silent steps that are not recorded in the event log) or “duplicate activities”
(multiple transitions bearing the same label). To deal with such phenomena
state-space exploration and heuristics are needed to replay the event log. In
fact, most conformance techniques give up after the first non-fitting event or
simply “guess” the corresponding path in the model. Therefore, Adriansyah et
al. formulated conformance checking problems as an optimization problem [8,9].

Lion’s share of attention in conformance checking has been devoted to check-
ing fitness. However, in recent papers researchers started to explore the other

132 J. Munoz-Gama, J. Carmona, and W.M.P. van der Aalst

quality dimensions [1,8,10]. For example, Munoz-Gama et al. quantified the pre-
cision dimension [11,12].

In [13] various process mining decomposition approaches are discussed. In
[14] the notion of passages is used to decompose a process model and/or event
log into smaller parts that can be checked or discovered locally. This approach
is generalized in [15] where it is shown that fitness-related problems can be
decomposed as long as the different process fragments only share transitions
having unique labels. This idea is used in this paper. However, unlike [14,15]
we use an RPST-based decomposition that also allows for place-boundaries.
Moreover, the refined RPST-based decomposition and the topological structure
enable additional diagnostics not considered before.

Outline. Section 2 provides some preliminaries, before describing our partition-
ing approach (Section 3). Section 4 presents the notion of a topological graph
to show conformance diagnostics. In Section 5 we discuss a refinement to avoid
inspecting small or highly similar process fragments. Experimental results are
presented in Section 6. Section 7 concludes the paper.

2 Preliminaries

To explain our conformance checking approach we introduce some basic notions.
We use Petri nets (workflow nets to be precise) to model processes.

Definition 1 (Petri Net, Workflow Net). A Petri net[16] is a tuple PN =
(P, T,A) having a finite set of places P and a finite set of transitions T where
P ∩T = ∅, and a flow relation A ⊆ (P×T)∪(T×P).1 The preset and postset of
a node are defined as •x = {y|(y, x) ∈ A} and x• = {y|(x, y) ∈ A}, respectively.
The state of a Petri net is defined by its marking, i.e., a multiset over P . A
workflow net (WF-net) WN = (P, T,A, i, o) is a particular type of Petri net
where the net has one source place i and one sink place o, and all the other
nodes are in a path between them.

Definition 2 (Workflow Graph). Given a Petri net PN = (P, T,A), we
define its workflow graph simply as the structural graph G = (V,E) with no
distinctions between places and transitions, i.e., V = P ∪ T and E = A.

Definition 3 (System Net, Full Firing Sequences). A system net is a tuple
SN = (PN,mi,mo) where mi and mo define the initial and final marking of the
net, respectively. (PN,m1)[σ〉(PN,m2) denotes that a sequence of transitions
σ ∈ T ∗ is enabled in marking m1 and executing σ in m1 results in marking m2.
{σ | (PN,mi)[σ〉(PN,mo)} are all full firing sequences of SN .

An event log is a multiset of traces. Each trace is a sequence of activities (in this
paper corresponding to the set of transitions T). Multiple cases may follow the
same trace.

1 Although the approach is valid also for weighted Petri nets, for the sake of clarity
in this paper we restrict to the case with no weights on the arcs.

Conformance Checking in the Large: Partitioning and Topology 133

Definition 4 (Event Log). An event log L ∈ IB(T ∗) is a multiset of traces.

Fitness can be defined in various ways [1,8,10]. In this paper, we just classify
traces into fitting or non-fitting. Fitting traces correspond to full firing sequences.

Definition 5 (Fitting Trace). A trace σ ∈ T ∗ fits SN = (PN,mi,mo) if
(PN, [mi])[σ〉(PN, [mo]), i.e., σ corresponds to a full firing sequence of SN . An
event log L ∈ IB(T ∗) fits SN if (PN, [mi])[σ〉(PN, [mo]) for all σ ∈ L.

To decompose conformance checking problems, we identify so-called SESE com-
ponents. In the remainder, the following context is assumed: Let G be the work-
flow graph of a given WF-net WN , and let GS = (VS , S) be a connected sub-
graph of G formed by a set of edges S and the vertexes VS = Π(S) induced by
S.2

Definition 6 (Interior, Boundary, Entry and Exit nodes [3]). A node
x ∈ VS is interior with respect to GS iff it is connected only to nodes in VS;
otherwise x is a boundary node of GS. A boundary node y of GS is an entry of
GS iff no incoming edge of y belongs to S or if all outgoing edges of y belong to
S. A boundary node y of GS is an exit of GS iff no outgoing edge of y belongs
to S or if all incoming edges of y belong to S.

For example, given the model in Fig. 1a and its corresponding workflow graph in
Fig. 1b, let consider the subgraph S4 containing the arcs b, d, f, h and the vertexes
induced by them. The nodes corresponding with t1 and t4 are boundary nodes,
while p2, t2 and p4 are interior nodes. Moreover, the node t1 is an entry node,
while t4 is an exit.

(a) workflow net

(b) workflow graph and SESE descomposition

t1
t2

t3
t4

t5

t6
t7

p1
p2

p3

p4

p5
p6 p7 p8

a
b

c

d

e

f

g

h

i

j
k

l

m

n

o p

S6

S7

S3

S4

S5

SS2SS1

S1S

S2S S3S

j opa

S4S S5S S6S S7S

b d f h c e g i k m l n
(c) RPST

Fig. 1. A WF-net, its workflow graph and the RPST and SESE decomposition

Definition 7 (SESE, Trivial SESE and Canonical SESE [3]). S ⊆ E is
a SESE (Single-Exit-Single-Entry) of graph G = (V,E) iff GS has exactly two
boundary nodes: one entry and one exit. A SESE is trivial if it is composed of a

2 Π(R) =
⋃

(a,b)∈R{a, b} is the set of elements referred to by relation X ⊆ A×B.

134 J. Munoz-Gama, J. Carmona, and W.M.P. van der Aalst

single edge. S is a canonical SESE of G if it does not partially overlap with any
other SESE of G, i.e., given any other SESE S′ of G, they are nested (S ⊆ S′ or
S′ ⊆ S) or they are disjoint (S ∩ S′ = ∅). By definition, the source of a WF-net
is an entry to every fragment it belongs to and the sink of the net is an exit from
every fragment it belongs to.

The decomposition based on canonical SESEs is a well studied problem in the
literature, and can be computed in linear time. In [17], the authors proposed the
algorithm for constructing the Refined Process Structure Tree (RPST), i.e., an
hierarchical structure containing all the canonical SESEs of a model. In [3], the
computation of the RPST is considerably simplified and generalized by introduc-
ing a pre-processing step that reduces the implementation effort considerably.

Definition 8 (RPST-based Decomposition [3]). Let G be the workflow
graph of the WF-net WN .3 The Refined Process Structured Tree (RPST) of
G is the tree composed by the set of all its canonical SESEs, such that, the par-
ent of a canonical SESE S is the smallest canonical SESE that contains S. The
root of the tree is the entire graph, and the leaves are the trivial SESEs. The set
of all the nodes of the tree is denoted as S.

Figure 1c shows the RPST for the given example. In the remainder of the paper,
we will refer to canonical SESEs resulting from the RPST decomposition simply
as SESEs. Also note that the SESEs are defined as a set of edges (i.e., S) over the
workflow graph (not as subgraphs, i.e., GS). However, for simplicity and when
the context is clear, we will use the term SESE to refer also to the subgraph of
the workflow graph or Petri net induced by those edges (PN S = (P ∩Π(S), T ∩
Π(S), A ∩ S)). For example, the SESE S4 of Fig. 1b containing the edges b, d, f
and h, refers also to the Petri net composed by the transitions t1, t2 and t4, the
places p2 and p4, and the arcs between them in the WF-net of Fig. 1a.

3 Partitioning Conformance Diagnosis

In this section, we propose a divide-and-conquer approach for conformance check-
ing, preserving the SESE decomposition’s underlying semantics. Moreover, we
show that a trace is fitting the overall model if and only if it is fitting the indi-
vidual fragments. The proposed approach is based on selecting a set of RPST
nodes that partition the set of arcs of the process model. The maximum size
of the components to be analyzed can be limited in order to deal with compu-
tation time restrictions or to control the complexity of individual components.
Formally:

Definition 9 (k-partitioning over a SESE decomposition). Given the
SESE decomposition S of a WF-net WN , we define P = {S1, . . . , Sn} ⊆ S:

3 Although the approach presented in this paper can be generalized to graphs with
several sources and sinks, for the sake of clarity in this paper we restrict to the case
with only one source and only one sink [3].

Conformance Checking in the Large: Partitioning and Topology 135

Algorithm 1. k-partitioning algorithm

procedure k-part(RPST,k)
V = {root(RPST)}
P = ∅
while V = ∅ do

v ← pop(V)
if |v.arcs()| ≤ k then P = P ∪ {v}
else V = V ∪ {children(v)}

a partitioning of SESEs such that each arc in WN is contained in exactly one
Si. A k-partitioning of S is a set of SESEs P = {S1, . . . , Sn} ⊆ S where each Si

contains at most k arcs.

Proposition 1 (k-partitioning existence). Given a SESE decomposition S
over the WF-net WN = (P, T,A, i, o), and given any k such that 1 ≤ k ≤ |A|,
there always exists a k-partitioning of S.

Proof. By definition, any edge is a SESE (and they appear as leaves of the
RPST). Therefore, a trivial partitioning with all parts being trivial SESEs is
always possible. �
Algorithm 1 shows how to compute a k-partitioning. The algorithm has linear
complexity (with respect to the size of the RPST) and termination is guaranteed
by the fact that fragments size is reduced with every iteration.

Given a partitioning, we use it to decompose conformance checking. Remem-
ber that SESEs only interface the rest of the net through the single entry and
single exit nodes, which may be shared by different SESEs. The rest of nodes of
a SESE (i.e., the interior nodes) have no connection with other SESEs. For the
boundary nodes, we distinguish two cases: transition bounded and place bounded.

As proven in [15], transition bounded net fragments can be checked in isola-
tion. For a partitioning into SESEs where all entry and single nodes are tran-
sitions the following holds: a trace perfectly fitting the whole WF-net will also
fit all individual SESEs (projected trace on corresponding transitions) and vice
versa. For example, consider the WF-net in Fig. 2a, and the partitioning shown
in Fig. 2b. The existence of d in both S1 and S2 ensures that both subnets move
synchronously when replaying a trace. For instance, trace abcddefg (non-fitting
in the original net due the double d) is fitting on S2 (on S2, the preset of d is
empty), but not in S1. On the other hand, trace abcefg (also non-fitting in the
original net) is fitting in neither S1 nor S2.

However, the case of place bounded SESEs (i.e., entry and/or exit nodes cor-
respond to places) is completely different. Places, unlike transitions, have no
reflection in the log, and therefore, cannot be used to synchronize the individual
SESEs during replay. Consider, for example, the net in Fig. 3a, and the parti-
tioning shown in Fig. 3b. There is a strong dependency between the execution of
S1 and the initial marking considered for S2. For example, consider a marking
of one token on p and the trace abcdef . Such trace fits the original model, but it

136 J. Munoz-Gama, J. Carmona, and W.M.P. van der Aalst

�������	�
�������
�������	�
�����������
�
	

�
�

�

��

�

�
	

�� �
�

�

��

�

�
	

��

Fig. 2. Example of partitioning with transition boundary

does not fit S2 (i.e., it requires two tokens on p). On the other hand, considering
an initial marking of S2 with two tokens on p, the trace abdecf fits S1 and S2

but does not fit the original net.

�
�

�

�

�
�

�

�
�

� �

�

�
�

�

�
�

�

�

�
�

�

�

�

��

�� ��

��

��

��� �����

��	
������
�����

��	
��������
���������

��	
������
���������

Fig. 3. Example of partitioning with place boundary

Thus, in case of place-boundaries, we extend the isolated fitness calculation
by considering a new element that we call bridge. A bridge simply contains the
pre and post sets of the boundary place. Bridges replicate the behavior on the
boundary places thus synchronizing all components connected to such place. For
example, given the place boundary of Fig. 3a, besides the two SESE components
S′
1 and S′

2, a third component B1 is constructed explicitly, containing the place
p, its preset, and its postset (cf. Fig. 3c). Although bridges do not satisfy the
SESE definition, their structure is very specific (i.e., nets with only one place).
Given that the bridge makes the synchronization explicit on the boundary place,
SESEs having this boundary place no longer need it, and therefore, it is removed
from all the SESEs (cf. S′

1 and S′
2 on Fig. 3c). Note that the modified SESEs do

not longer satisfy the SESE definition, but have a set of input and output tran-
sitions. Remarkably, the removal of boundary places in the original SESEs and
the introduction of bridges ensures transition bounded fragments, and therefore,
the results of [15] can be applied directly. We now formally define the so-called
extended partitioning:

Conformance Checking in the Large: Partitioning and Topology 137

Definition 10 (Extended partitioning over a SESE decomposition). Let
P = {S1, . . . Sn} be a partitioning of the WF-net WN = (P, T,A, i, o). Let IP =
{i1, . . . , in} and OP = {o1, . . . , on} be the set of all entry and exit nodes of the
SESEs in P. B = {p1, . . . , pk} = ((IP ∪ OP) ∩ P) \ {i, o} = (IP ∩ OP) ∩ P is the
set of boundary places, i.e., entry and exit nodes of the SESEs that are places
but not the source or sink place of the WF-net WN . The extended partitioning
P′ = {S′

1, . . . S
′
n, B1 . . . Bk} of P is constructed as follows:

• For all 1 ≤ i ≤ n: S′
i = {(x, y) ∈ Si | {x, y} ∩ B = ∅} (boundary places are

removed from the SESEs).
• For 1 ≤ j ≤ k: Bj = {(x, y) ∈ A | pj ∈ {x, y}} (bridges are added).

Note that, a bridge may not satisfy the k-size property. However, its size is
limited because it contains a single place. Lemma 1 shows that, given any ex-
tended partitioning, fitness is preserved among its components, i.e., a trace fits
the whole WF-net if and only if it fits all the parts of the extended partitioning.

Lemma 1 (Decomposed Fitness Checking). Let L be a log and SN =
(WN,mi,mo) be a system net where WN = (P, T,A, i, o) is a WF-net. Let
P′ be any extended partitioning over WN . A trace σ ∈ L fits SN (i.e.,
(WN, [mi])[σ〉(WN, [mo])) if and only if it fits all the parts, i.e., for all S ∈ P′,
PN S = (PS , TS , AS) = (P ∩ Π(S), T ∩ Π(S), A ∩ S): (PN S , [mi↓PS

])[σ↓TS 〉
(PN S , [mo↓PS

])).4

Proof. Special case of the more general Theorem 2 in [15]. If the overall trace
σ fits SN , then each of the projected traces σ↓Tx fits the corresponding SESE.
If this is not the case, then at least there exist one projected trace σ↓Tx that
does not fit. If the projected traces σ↓Tx fit the corresponding SESEs, then these
traces can be stitched back into a trace σ that fits SN .

Although the use of a partitioning makes it possible to decompose a complex
problem as conformance checking into smaller subproblems, there are applica-
tions (e.g., process diagnosis) where a more fined-grained analysis is required. In
other words, we need to be able to navigate zooming in and out of the model,
to get a better understanding (see Chapter 13 in [1]). With this idea in mind,
the theory proposed on this section can be combined with the properties of the
RPST to obtain a hierarchy of fitness results based on SESEs. Therefore, given
an RPST, an extension based on bridges is performed over each level of the tree,
and the fitness is checked for the complete level. Unlike other techniques (like
in [4]), this analysis guarantees the fitness for the complete level. Note that, the
RPST contains the whole net as its root. Therefore, in those cases where the
complete system cannot be checked due its complexity, this is also not possible
with this technique. However, a greedy procedure can be developed, that starts
processing the higher levels of the RPST hierarchy (root is at level 0), and goes
up until it reaches a level non-computable due to complexity or time reasons.
Algorithm 2 describes the resulting conformance checking technique.

4 σ↓T is the projection of sequence σ onto transitions T and m↓P is the projection of
marking m onto the multiset of places P .

138 J. Munoz-Gama, J. Carmona, and W.M.P. van der Aalst

Algorithm 2. Extended RPST Conformance algorithm

procedure ConfExtRPST(RPST,log)
level ← heigth(RPST)
while level ≥ 0 and level computable do

{S1 . . . Sn} ← Find partitioning containing the SESEs in level of the RPST
{S′

1 . . . S
′
n, B1 . . . Bk} ← Extend partitioning {S1 . . . Sn} with bridges

check fitness for the pairs (S′
1, log↓T1

), . . . , (Bk, log↓Tk
)

level ← level − 1

4 Topological Graph of a Partitioning

In this section we present the topological graph of a partitioning, and some tech-
niques that can use it to improve the diagnosis. Given an extended partitioning,
the topological graph is the directed graph that represents the connections via
boundary nodes between the parts. Formally:

Definition 11 (Topological Graph of a Partitioning). Let P = {S1, . . . Sn}
be a partitioning of the WF-net WN = (P, T,A, i, o), with boundary places
{p1, . . . , pk}. Given an extended partitioning P′ = {S′

1, . . . S
′
n, B1, . . . Bk} (cf.

Def. 10), we define its topological graph T = (P′, C) as the graph whose vertexes
are the parts of P′, and the set of edges is C = {(S′

i, S
′
j)|1 ≤ i, j ≤ n ∧ (y, x) ∈

Si ∧ (x, z) ∈ Sj} ∪ {(S′
i, Bj)|1 ≤ i ≤ n ∧ 1 ≤ j ≤ k ∧ (y, pj) ∈ Si} ∪

{(Bj , S
′
i)|1 ≤ i ≤ n ∧ 1 ≤ j ≤ k ∧ (pj , y) ∈ Si}.

(a) partition of the net in SESEs (S1..S8) and its additional bridges (B1 and B2)

(b) topological graph and fitness for the trace <t1,t3,t4,t5,t7,t7,t9>

t1
t2

t3
t4

t5

t6
t9

p1
p2

p3

p4

p5
p6 p9 p10

S6S3

S4 S5

S

S2SS1

p7

p8

t7

t8
t4

t5

t6p6
t9

p9

t7

t8

2BB1

S1

S2S

S3S

S4 B1

S5

S6

2B S7 S8

t5 t9
p6 p9p7

t7

t8

t1 t4
p4p2

t2

t1 t4
p4p2

t2 t5 t9
p6 p9p7

t7

t8t8
(c) non fitting connected components

(d) non fitting net resulting of combining S2, S4, B1, S5 and B2

S7 S8

S5 2B�

2S

Fig. 4. Example of partitioning, topological graph, and its corresponding non-fitting
connected components, and non-fitting net

Note that the topological graph has as vertexes the transition-bordered parts of
the extended partitioning, but some arcs of this graph (those regarding connec-
tion to bridges) are defined over the parts of the original partitioning P, since
in the extended partitioning boundary places have been removed. One of the
functions of the topological graph is to aid in the visualization of the extended

Conformance Checking in the Large: Partitioning and Topology 139

partitioning resulting from applying the techniques developed in Sec. 3. For ex-
ample, let us consider an extended partitioning that arises from a 4-partitioning
of the WF-net in Fig. 4a (a slight modification of the model in Fig. 1). The
resulting extended partitioning is composed by the SESEs S′

1 . . . S
′
8 and the two

bridges B1 and B2 corresponding with the two boundary places p6 and p9. The
corresponding topological graph is shown in Fig. 4b. Besides simply showing the
connections through boundary nodes, the topological graph can be enhanced
with other information. For instance, in this example, bridges are represented
with dotted borders, while SESEs with solid borders. Moreover, the size of the
nodes in the graph is directly related with the size of the corresponding parts,
i.e., larger parts will have more importance in the representation and will appear
larger than smaller parts. Finally, the graph can be enhanced with the confor-
mance analysis results. In this example we have considered the fitness dimension
of the model with respect to the log composed by only one trace t1t3t4t5t7t7t7.
Considering this trace, three parts contain fitness anomalies (filled in gray): in
S′
2, t4 is fired without firing t2; in S′

5, t7 is executed twice, but this requires the
firing of t5 also twice; finally, in the bridge B2, t7 is fired twice, but t9 only once,
leaving a token remaining in p9.

Although the topological graph is an important aid for the process diagnosis
by itself, it can also guide subsequent analysis. In the remainder of this section
we present and motivate some ideas.

The topological graph extended with conformance information can be used to
identify maximal process fragments with fitness problems. This allows us to focus
on the problematic parts of a model, discarding those parts of the model perfectly
fitting. Algorithm 3 describes a procedure that is based on detecting connected
components on the graph induced by the non-fitting vertexes. First, the topolog-
ical graph is filtered, leaving only non-fitting vertexes, and the edges connecting
them. Then, for each set of weakly connected components (i.e., connected ver-
texes without considering the direction of the edges), we project the elements
of the original net they refer to. Note that this algorithm prioritizes the con-
nectivity among vertexes resulting in weakly connected components. However,
alternative versions of the algorithm yielding strongly connected components are
possible. For instance, given the example of Fig. 4b, two connected components
are found as shown in Fig. 4c: S2 and S5 +B2.

The topological graph extended with conformance information can also be
used to create one complete subnet that includes all non-fitting parts of the
extended partitioning. We use a heuristic based on the greedy expansion of
the largest non-fitting connected component (based on Algorithm 3), to get
connected with the second largest component, until all the non-fitting behavior
is connected, trying to include as few fitting nodes as possible. A schema of
the procedure is shown in Algorithm 4. Given the example of Fig. 4b, the net
resulting (shown in Fig. 4d) contains the elements of S2, S4, B1, S5 and B2. In
Sec. 6 we provide experimental results on large models for the two techniques
proposed in this section.

140 J. Munoz-Gama, J. Carmona, and W.M.P. van der Aalst

Algorithm 3. Non-Fitting Weakly Connected Components Algorithm

function nfwcc(T,V) � Let V be the non-fitting vertexes
Cc = ∅
remove from T all arcs c = {x, y} such that x, y ∈ V � Graph induced by V
remove from T all vertexes z ∈ V
while T has vertexes do � Find Weakly Connected Components

v1 ← select random vertex on T

{v1, . . . vn} ← get vertexes weakly connected with v1 using Depth-first search
remove {v1, . . . vn} from T

Cc = Cc ∪ {(⋃n
1 places(vi),

⋃n
1 trans(vi),

⋃n
1 arcs(vi))}

return Cc

Algorithm 4. Non-Fitting Subnet Algorithm

function nfn(T,V) � Let V be the non-fitting vertexes
while graph G induced by V on T is not connected do

c1 ← get the largest connected component of G
c2 ← get the second largest connected component of G
{v1 . . . vn} ← shortest path vertexes(T, c1, c2)
V = V ∪ {v1 . . . vn}.

return Petri net induced by V

5 RPST Simplifications

Although the decomposition of a model based on SESEs and their RPST is in-
tuitive and fine-grained, it remains different from the conceptual decomposition
typically on the mind of the process analysts. In [4], the results of an experiment
performed over 7 subjects identify three main differences between their manual
decomposition and the one provided by the RPST: 1) predisposition of the ana-
lysts to discard small components, 2) to not consider twice similar components,
and 3) to not make grow the depth of the hierarchy unnecessarily. In this section
we formalize the two last items into a similarity metric between parent-child
SESEs, enabling discarding child components when the similarity with the par-
ent is above some threshold. Also we tackle 1) by defining a threshold on the
minimal size of a SESE to consider. Note that in the case of 1), Lemma 1 may not
be applicable (since a partitioning of the net may not be possible) and therefore
these RPST simplifications can only be applied without any guarantee.

In particular we present a metric (cf. Def.12) for estimating the similarity
between a node S and its single child S′ based on two factors: size and sim-
plicity. The size factor is straightforwardly related with the number of arcs of S
not included on S′. The more arcs shared by both components, the more simi-
lar they are. For instance, considering the component S1 of Fig. 5a, all its arcs
are included in S2 except two, i.e., S2 is in essence S1. Therefore, a detailed
conformance diagnosis over S1 may be sufficient for understanding both subpro-
cesses. The simplicity factor refers to the simplicity of part of the parent S not
included on the child S′. When such part defines a simple behavior (e.g., the

Conformance Checking in the Large: Partitioning and Topology 141

strictly sequential behavior of S3 not included in S4, in Fig. 5b), the analysis
and understanding of the parent may again be enough. On the other hand, when
the behavior not included in S′ contains complex constructions (e.g., mixtures of
concurrency and choice) it may be more advisable to analyze both subprocesses.

(a) similar size among SESEs

S3 S4SS2SS1

(b) high simplicity among SESEs

Fig. 5. Example of cases with high similarity between nested SESEs

Definition 12 (Similarity Metric). Let SP = (VP , FP) be an RPST node,
and let SC = (VC , FC) be its only child. Let size define the difference on size
between them, i.e., size = |FC |/|FP |. Let FO = FP \ FC be the set of non-
intersecting arcs. Let F ∗

O be the arcs in FO that have a source vertex with only
one outgoing edge, and a target vertex with only one incoming edge, i.e., F ∗

O =
{(x, y) ∈ FO : |(x, v) ∈ FO| = 1 ∧ |(w, y) ∈ FO| = 1}. Let simplicity define
the simplicity of the non-intersecting arcs, i.e., simplicity = |F ∗

O|/|FO|. The
similarity between SP and SC is the harmonic mean between size and simplicity:

similarity = 2 · size · simplicity

size+ simplicity

Although the similarity merging is restricted to single-child nodes, our experi-
mental results show that the reduction achieved on the tree may be considerable.
Both simplification techniques (small components and similarity merging) have
been implemented and tested. The next section shows the effects of their appli-
cation on large models.

6 Experimental Results

All techniques presented in this paper have been implemented within ProM
framework and are accessible through the JorgeMunozGama package.5 To test
performance we created various benchmarks generated by PLG tool [18]6 In this
section we first highlight the empirical differences with related conformance
checking approaches described in the literature and the partitioning-based pro-
posed in this paper. Second, we provide some results on the application of the
topological graph algorithms. Finally, we illustrate the effects of the simplifica-
tion methods proposed on large models.

Table 1 shows the ability to handle conformance problems of industrial size
using our approach. The experiment is composed of several large models (having

5 Download from http://www.promtools.org/prom6/nightly/ .
6 http://dx.doi.org/10.4121/uuid:44c32783-15d0-4dbd-af8a-78b97be3de49

http://www.promtools.org/prom6/nightly/
http://dx.doi.org/10.4121/uuid:44c32783-15d0-4dbd-af8a-78b97be3de49

142 J. Munoz-Gama, J. Carmona, and W.M.P. van der Aalst

P places and T transitions), and their corresponding logs. For each benchmark,
the table contains the fitness value (f) and the time required for analyzing their
conformance using the approach proposed in [9,11] (t). Dashes denote the lack of
results after 10 hours of computation. The rest of the table contains the results
of applying the same conformance technique over a 50, 100 or 200 SESE-based
extended partitioning, respectively. For each k-partitioning the table provides
the number of parts (S SESEs and B bridges), the number of non-trivial small
parts (> 5) containing more than 5 arcs (threshold extracted from the study
in [4]), and the total time required for the fitness analysis (t). In addition, the
table shows the number of parts with a fitness value lower than one (i.e., non-
fitting nf) and the percentage of arcs they represent within the whole model.
Remarkably, the time required to compute the RPST and the k-partitioning is
negligible (i.e., never more than few seconds).

Table 1. Comparison between k-partitioning and [9,11]

[9,11] k = 50 k = 100 k = 200
P T f t S/B >5 nf t S/B >5 nf t S/B >5 nf t

prAm6 347 363 0.92 75 129/57 29 7(3%) 423 62/27 14 1(9%) 323 27/12 7 1(10%) 180
prBm6 317 317 1 88 93/38 22 0(0%) 608 66/29 14 0(0%) 318 36/16 8 0(0%) 114
prCm6 317 317 0.57 2743 93/38 22 58(92%) 189 66/29 14 41(94%) 185 36/16 8 22(96%) 502
prDm6 529 429 - - 105/34 33 5(8%) 1386 60/23 18 4(14%) 986 33/15 9 4(23%) 1284
prEm6 277 275 0.97 3566 82/35 20 2(5%) 529 35/13 11 2(5%) 343 15/7 5 2(6%) 211
prFm6 362 299 - - 108/43 28 2(6%) 1667 57/23 15 2(21%) 863 21/9 5 1(23%) 562
prGm6 357 335 - - 94/37 25 2(8%) 867 67/31 15 2(8%) 850 51/25 11 2(8%) 474

Table 1 shows that partitioning yields significant speedups in case event logs
are not perfectly fitting the model [9,11]. In cases with a perfect fitting (e.g.,
prBm6) the time required for the proposed approach is higher, due the over-
head caused by creating and storing in memory the generated parts. However,
in real cases where the log is poorly fitting the model, the time needed for con-
formance checking is reduced in one order of magnitude using k-partitioning.
More important, the proposed approach is able to tackle and provide confor-
mance information for those cases where [9,11] is not able to provide a result
(e.g., prDm6, prFm6 and prGm6).

Table 1 also shows the capability of the proposed approach to detect and
isolate the subprocesses causing the fitness problems. In particular, the approach
is able to identify those cases were all the fitness problems are located in only
a few parts of the process, e.g., in prEm6, all the fitness problems of a net with
277 transitions can be restricted to 2 subprocesses that represent only the 5% of
the model. Note that, although the number of parts generated by the approach
can be considered high, most of them are trivial parts with less than 5 arcs.
Importantly, the number of large parts remains low, and its maximum size can
be controlled by the parameter k of Algorithm 1.

The second experiment aims at illustrating the role of the topological graph.
Figure 6 shows a graphical example on how the techniques of Sec. 4 can be
used for diagnosis: given a large model having conformance problems (denoted
in red), Algorithms NFWCC and NFN can be used to identify one subprocess with
conformance problems or a connected subnet including all the subprocesses with

Conformance Checking in the Large: Partitioning and Topology 143

Fig. 6. The 50-partition as a diagnosis tool for the prFm6 benchmark

Table 2. Results of NFWCC and NFN algorithms

NFWCC NFN

P T |CC | |V̄ | |P̄ | |T̄ | |V | |P | |T |
prAm6 317 317 7 1 2.1 3 14 15 14
prCm6 317 317 38 1.5 8.2 9.5 113 315 317
prDm6 529 429 5 1 9.4 9.4 31 55 52
prEm6 277 275 2 1 1 2 31 29 40
prFm6 362 299 2 1 13 11 7 27 25
prGm6 357 335 2 1 16.5 14.5 5 34 29

conformance problems, respectively. Table 2 reports on the performance of these
two algorithms using the examples of the previous experiment.7 For the ex-
periments, we have considered the topological graph resulting from the 50-
partitioning for the different log-model combinations. For the NFWCC algorithm,
the table contains the number of non-fitting weakly connected components (|CC |),
the average size (places |P̄ | and transitions |T̄ |) and average number of vertexes
(|V̄ |) whose connected components are composed of. For the NFN algorithm, the
table provides the size of the derived non-fitting net (|P | and |T |), and the num-
ber of topology vertexes it includes. The table illustrates the benefits of the
proposed algorithms to detect and isolate the fitness mismatches. In case the
fitness problems are spread all over the whole model, the resulting net is almost
the original net (e.g., prCm6). However, when the fitness problems are local, the
net that encloses all problem spots may be orders of magnitude smaller than the
original net, thus easing the diagnosis.

The final experiment illustrates the effects of the simplification over the RPST
decomposition on the number of components and hierarchy levels. Figure 7 shows
the simplification of two models used in the previous experiments of this section.
For each model, the figure provides the number of components (Y-axis) at each
level of the RPST tree (being 1 the root of the RPST, and 14 the deepest level). The
figure contains the number components for the original RPST, after removing the

7 Only non-fitting models of Table 1 are considered in Table 2.

144 J. Munoz-Gama, J. Carmona, and W.M.P. van der Aalst

small components (less than 10 arcs), and after merging similar nested nodes (i.e.,
similarity degree over 0.8). Both charts reflect the difference between the number
of components on the original RPST and the one after removing the small com-
ponents, i.e., most of the RPST nodes are small. After removing small nodes the
depth of theRPSTonly decreases two levels (from14 to 13).On the other hand, the
effect on the depth after merging similar nodes is high. In both cases, the number of
levels of the tree is reduced significantly (from 12 to 6), providing a decomposition
with less redundancy and more aligned with human perception [4].

1 2 3 4 5 6 7 8 9 10 11 12 13 14
RPST 1 9 3 39 19 133 53 201 56 211 40 160 25 76
Small 1 1 3 8 13 12 21 12 13 7 8 3
Similar 1 3 9 15 23 23

0

50

100

150

200

250

pr
Cm

6

(a) prCm6

1 2 3 4 5 6 7 8 9 10 11 12 13 14
RPST 1 7 2 15 8 40 21 111 62 328 127 501 73 248
Small 1 1 2 3 8 8 21 21 46 29 29 9
Similar 1 2 5 12 33 66

0

100

200

300

400

500

600

pr
Dm

6

(b) prDm6

Fig. 7. Effect of the simplification techniques

7 Conclusions and Future Work

The practical relevance of process mining increases as more event data becomes
available. More and more events are being recorded and already today’s event
logs provide massive amounts of process related data. However, as event logs
and processes become larger, many computational challenges emerge.

In this paper, we presented an approach that makes use of the well-known
SESE and RPST analysis to decompose the problem of conformance checking
and process diagnosis. The approach makes it possible to discover conformance
problems more efficiently both in terms of computation and diagnostics. Al-
though our experimental results support these claims, more real-life case studies
need to be conducted. For example, we would like to empirically show that the
diagnostics based on the topological graph are indeed more insightful because
the analyst can focus on the problem spots. Moreover, the inclusion of other con-
formance dimensions into the approach, together with the possibility of tackling
invisible and duplicate transitions, is another direction for future work.

Acknowledgments. The authors would like to thank Dr. Artem Polyvyanyy
for his comments and help. This work has been partially supported by the Min-
isterio de Educación (AP2009-4959) and by the projects TIN-2011-22484 and
TIN-2007-66523.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer (2011)

Conformance Checking in the Large: Partitioning and Topology 145

2. IEEE Task Force on Process Mining: Process Mining Manifesto. In: Daniel, F.,
Barkaoui, K., Dustdar, S. (eds.) Business Process Management Workshops. LNBIP,
vol. 99, pp. 169–194. Springer (2012)

3. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and general-
ization of the refined process structure tree. In: Bravetti, M. (ed.) WS-FM 2010.
LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011)

4. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Hierarchical Conformance
Checking of Process Models Based on Event Logs. In: Applications and Theory of
Petri Nets (2013), TR: http://www.lsi.upc.edu/~techreps/files/R13-5.zip

5. Cook, J., Wolf, A.: Software Process Validation: Quantitatively Measuring the Cor-
respondence of a Process to a Model. ACM Transactions on Software Engineering
and Methodology 8(2), 147–176 (1999)

6. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Pro-
cess Mining: An Experimental Evaluation. Data Mining and Knowledge Discov-
ery 14(2), 245–304 (2007)

7. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

8. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying History on
Process Models for Conformance Checking and Performance Analysis. WIREs Data
Mining and Knowledge Discovery 2(2), 182–192 (2012)

9. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking
using cost-based fitness analysis. In: EDOC, pp. 55–64. IEEE Computer Society
(2011)

10. Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A Multi-Dimensional
Quality Assessment of State-of-the-Art Process Discovery Algorithms Using Real-
Life Event Logs. Information Systems 37(7), 654–676 (2012)

11. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Alignment Based Precision Checking. In: La Rosa, M., Soffer, P. (eds.)
BPM Workshops 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013)

12. Munoz-Gama, J., Carmona, J.: Enhancing Precision in Process Conformance: Sta-
bility, Confidence and Severity. In: Chawla, N., King, I., Sperduti, A. (eds.) IEEE
Symposium on Computational Intelligence and Data Mining (CIDM 2011), Paris,
France, pp. 184–191. IEEE (April 2011)

13. van der Aalst, W.M.P.: Distributed Process Discovery and Conformance Checking.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 1–25. Springer,
Heidelberg (2012)

14. van der Aalst, W.M.P.: Decomposing Process Mining Problems Using Passages. In:
Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 72–91.
Springer, Heidelberg (2012)

15. van der Aalst, W.M.P.: Decomposing Petri Nets for Process Mining: A Generic
Approach. BPMCenter.org BPM-12-20 (accepted for Distributed and Parallel
Databases) (2012)

16. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) () 77(4), 541–580 (1989)

17. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data
Knowl. Eng. 68(9), 793–818 (2009)

18. Burattin, A., Sperduti, A.: Plg: A framework for the generation of business pro-
cess models and their execution logs. In: Muehlen, M.z., Su, J. (eds.) BPM 2010
Workshops. LNBIP, vol. 66, pp. 214–219. Springer, Heidelberg (2011)

http://www.lsi.upc.edu/~techreps/files/R13-5.zip

On Enabling Compliance

of Cross-Organizational Business Processes⋆

David Knuplesch1, Manfred Reichert1, Walid Fdhila2,
and Stefanie Rinderle-Ma2

1 Institute of Databases and Information Systems, Ulm University, Germany
2 Faculty of Computer Science, University of Vienna, Austria

{david.knuplesch,manfred.reichert}@uni-ulm.de,
{walid.fdhila,stefanie.rinderle-ma}@univie.ac.at

Abstract. Process compliance deals with the ability of a company to
ensure that its business processes comply with domain-specific regula-
tions and rules. So far, compliance issues have been mainly addressed
for intra-organizational business processes, whereas there exists only lit-
tle work dealing with compliance in the context of cross-organizational
processes that involve multiple business partners. As opposed to intra-
organizational processes, for a cross-organizational process, compliance
must be addressed at different modeling levels, ranging from interaction
models to public process models to private processes of the partners. Ac-
cordingly, there exist different levels for modeling compliance rules. In
particular, we distinguish between local compliance rules of a particular
partner and global compliance rules to be obeyed by all partners involved
in the cross-organizational process. This paper focuses on checking the
compliance of interaction models. For this purpose, we introduce the no-
tion of compliability, which shall guarantee that an interaction model is
not conflicting with a set of imposed global compliance rules.

1 Introduction

Business process compliance has been identified as one of the core challenges
for process-aware information systems [1]. So far, the focus has been on intra-
organizational business processes, and a variety of proposals for checking the
compliance of a business process with domain-specific regulations and rules in
different phases of the process life cycle have been made [2,3,4,5,6]. Besides
few approaches (e.g., business contracts [7,8]), compliance checking for cross-
organizational processes has been neglected so far, even though being crucial in
collaborative settings [9,10]. Therefore, the consideration of compliance rules in
the context of cross-organizational processes and the provision of techniques for
checking them are indispensable. Compared to approaches checking the compli-
ance of intra-organizational business processes, however, additional challenges

⋆ This work was done within the research project C3Pro funded by the German Re-
search Foundation (DFG) under project number RE 1402/2-1, and the Austrian
Science Fund (FWF) under project number I743.

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 146–154, 2013.
© Springer-Verlag Berlin Heidelberg 2013

On Enabling Compliance of Cross-Organizational Business Processes 147

local compliance
rules

global
compliance rules

public

private local
compliance

global
compliance

compliability

?

?

?

1.

2.

3.

M1
B

A
M5
A

B

M2
C

B
M3
B

C

M4
A

B

M2
C

B
M3
B

C

T1

T2

T3

private process model

public process model

interaction model

local view

T1

T2
T3P1

P2 P3

P4

M2 M3

M2 M3

Fig. 1. Different levels of compliance rules in a cross-organizational setting

emerge [9]. In particular, process compliance must be ensured at different levels.
Furthermore, compliance checking must cope with the fact that parts of cross-
organizational processes are not known by all partners, e.g. due to privacy reasons.

Consider Fig. 1: Compliance rules relevant for setting up and running cross-
organizational processes refer to different levels as known from interaction mod-
eling [11]. First, the global view of the interactions (i.e. messages exchanged) be-
tween the partners of a cross-organizational process (i.e., the interaction model)
provides the top level. Second, each partner defines a public model of its process
taking its local view on the interaction model into account. Accordingly, a local
view refers to the behavior of the interaction model from the viewpoint of a
particular partner. Note that public models must conform with the behavior of
the respective local view. Finally, each partner maintains its own private pro-
cess model, which not only comprises activities for exchanging messages with the
other partners, but also private activities not relevant for the interactions with
the partners; i.e., due to privacy, a partner usually does not reveal all details
about its private processes to the other partners. However, the private processes
must conform with the public process model. Semantic constraints in respect
to such private processes are denoted as local compliance rules. In turn, global
compliance rules are imposed on interaction models and public process models.
Altogether, the public parts of a cross-organizational process include the interac-
tion model, public process models, and global compliance rules. In turn, private
process models and local compliance rules constitute private parts.

As opposed to intra-organizational processes, in the context of cross-organiza-
tional processes we must consider three levels of compliance. First, we must deal
with local compliance rules that constrain private partner processes. Second,
we must support global compliance rules that constrain the public parts of a
cross-organizational process scenario. Third, interaction models must enable the
partners to model both public and private processes meeting the global compli-
ance rules. This requires interaction models being not in conflict with the set of
global compliance rules.

148 D. Knuplesch et al.

This paper focuses on the latter level of compliance and provides a novel
correctness criterion, which we denote as compliability in the following. Compli-
ability refers to the ability of an interaction model to comply with a given set of
global compliance rules without knowing all details of the private and public pro-
cess models of the partners. We denote an interaction model as not compliabile,
if it conflicts with the given set of global compliance rules. In particular, we pre-
sent an approach enabling automated compliability checking of interaction mod-
els against a given set of imposed global compliance rules. Note that compliability
must be ensured before the partners specify their public and private process mod-
els. Therefore, our approach extends interaction models with additional control
flow structures and activities to approximate the not yet specified behavior of
partners. Furthermore, it merges and adapts the global compliance rules, before
checking compliability through the application of model checking techniques.

Note that this paper focuses on compliability checking of interaction models
at build time, but does not consider any other phase of the process life cycle
(e.g., execution and change time). Furthermore, we focus on compliance rules
related to control-flow and do not explicitly address data, resources, or time.
Finally, our approach requires from the partners to publish the set of activities
they use for specifying their public and private processes.

The remainder of this paper is structured as follows: Sect. 2 illustrates an ex-
ample from the healthcare domain. Sect. 3 provides algorithms for compliability
checking as the main contribution of this paper. Sect. 4 discusses related work
and Sect. 5 closes with a discussion and outlook.

2 Example

Figs. 2 and 3 depict an example of a cross-organizational process from the health-
care domain using the BPMN 2.0 standard. This process involves three partners :
gynecologist, laboratory, and hospital. In particular, Fig. 2 depicts the in-
teractions (i.e., messages exchanged) between these partners. In turn, Fig. 3
shows their public process models. Note that the public process model of the
hospital is simplified due to space limitations. Tab. 1 shows and classifies ex-
amples of compliance rules imposed on the cross-organizational process from
Figs. 2 and 3.

Gynecologist

Lab

Sample

Lab

Gynecologist

Result

Gynecologist

Hospital

Results of
blood test

Gynecologist

Hospital

Patient data

Gynecologist

Hospital

Patient data

Interaction

AND-split

Start event

XOR-split

AND-join

XOR-join

End event

Fig. 2. Interaction model of a healthcare scenario [9]

On Enabling Compliance of Cross-Organizational Business Processes 149

G
yn

ec
ol

og
is

t

H
os

pi
ta

l

La
bo

ra
to

ry

Analyse
sample Send resultsReceive

sample

Examine
patient

Blood
test

Admit patient
into hospital

Send
blood sample

Receive
results

Send
patient data

Inform
patient

Admit patient
into hospital

Send
patient data

Forward
results

Receive
results

Receive
patient data

Monitor
patient

Inform
patient

Task

Start event End event

XOR-split
AND-split XOR-join

AND-join

Fig. 3. Public models of a healthcare scenario [9]

Table 1. Examples of compliance rules

- Classification Compliance rule
r1 Global compliance Rule After a blood test, the blood sample has to be analyzed.
r2 Global compliance rule After the patient is admitted to the hospital, she must be monitored.
r3 Local compliance rule of The patient must be informed about the results of a blood test.

gynecologist

The interaction model from Fig. 2 is compliable with the set of global com-
pliance rules, which comprise r1 and r2. This can be easily shown, since the
collaboration of the public processes (cf. Fig. 3) complies with r1 and r2. In gen-
eral, however, public processes will not have been specified yet when verifying
compliability (cf. Fig. 1).

3 Compliability Checking

When setting up a cross-organizational process, compliability constitutes a seman-
tic correctness criterion to be considered when designing interaction models. It
ensures that interaction models do not conflict with the set of imposed global
compliance rules. Consequently, if an interaction model is not compliable, the in-
volved partners are unable to implement their public and private processes in
such a way that the overall cross-organizational process satisfies all imposed
compliance rules. As input our approach takes the interaction model I, the set
of global compliance rules GR expressed in terms of linear temporal logic (LTL),
the set of partners P , and for each partner p ∈ P the set of activities Ap that p
may execute.

Similar to approaches checking compliance of intra-organizational processes,
we apply model checking to ensure compliability. As opposed to these intra-
organizational approaches, however, we do not want to show that all possible
executions of a model comply with all compliance rules in GR, but that there
exists at least one execution satisfying all compliance rules in GR, and hence I

150 D. Knuplesch et al.

and GR do not conflict. Furthermore, we cannot directly take the interaction
model I as input for model checking, but must consider all tasks that might
be additionally executed by partners. Thus, we cannot apply model checking
directly, but have to add preprocessing steps.

Consider Fig. 4: We utilize the knowledge about the set of activities Ap to
enrich interaction model G with parts simulating the behavior of the partners
involved (cf. Alg. 1), and obtain an extended interaction model (EIM) as re-
sult (cf. Fig. 5).This enrichment is expressed through the following constructs:
sequence (SEQ), parallelism (PAR), choice (CHC), and repeated loop (RPT).
Note that this does not require the interaction model to be well-structured.

counterexample

counterexample

Activities of P1

interaction model

Activities of P1activities of P1

extend
interaction

model
EIM

combine
 rulesActivities of P1Activities of P1

global
compliance rule 1

model
 checking

CGR¬

Compliability Checking

true

truefalse

false

extended interaction model

conjunction of
global compliance rules

Fig. 4. Process of compliability checking

Algorithm 1: Extend interaction model

1 Function extendInteractionModel(I,P,Ap) ;
2 begin
3 PM ∶= EMPTY ;
4 foreach partner p ∈ P do
5 foreach activity a ∈ Ap do
6 PM ∶= CHC(a,PM);
7 end

8 end
9 EIM ∶= PAR(I,RPT (PM));

10 end
11 Output: EIM Extend interaction model

Blood
test

Analyse
sample

Examine
patient

Interaction
model

...
...

...

Fig. 5. Extended interaction model EIM

Next, we construct the conjunction of all global compliance rules CGR in
Alg. 2. Finally, we apply LTL model checking to the extended interaction model
EIM and the negation of CGR in Alg. 3. In case the enriched model EIM is
compliable, at least one trace τ is producible through EIM satisfying all global
compliance rules. Consequently, the negated conjunction of the global compli-
ance rules does not hold. For this case, explicit LTL model checking returns
false (and outputs τ as counter-example), which means that compliabily holds.
Otherwise, all traces violate at least one of the global compliance rules, and
EIM satisfies the negated formula. In this case, model checking returns true,
but compliability is violated. Basically, our algorithm for compliability check-
ing applies model checking over the enriched interaction model EIM and the
negated conjunction of the global compliance rules, and then negates the result
(cf. Alg. 3 and Fig. 4).

On Enabling Compliance of Cross-Organizational Business Processes 151

Algorithm 2: Combine global compliance rules

1 Function combineRules(GR) ;
2 begin
3 CGR ∶= true;
4 foreach global compliance rule r ∈ GR do
5 CGR ∶= CGR ∧ r;
6 end

7 end
8 Output: CGR the combined global compliance rules

Algorithm 3: Compliability checking

1 Function checkCompliability(GR,I,P,Ap) ;
2 begin
3 EIM ∶= extendInteractionModel(I,P,Ap);
4 CGR ∶= combineRules(GR);
5 MC Result ∶= LTLModelCecking(EIM,¬CGR);
6 compliability ∶= ¬MC Result.propertyV alid;

7 end
8 Output: compliability the compliability of I with GR

original interaction model

automatically generated
extended interaction model

Fig. 6. Proof-of-concept prototype enabling compliability checking

We have demonstrated the feasibility of our approach by a proof-of-concept
prototype. We applied this prototype to different application scenarios including
the sketched healthcare example [9]. More precisely, the presented compliance
checking techniques have been implemented as plug-in of the Aristaflow BPM
Suite [12]. The upper part of Fig. 6 shows an automatically generated, extended
interaction model for compliability checking, while the lower part depicts the
original interaction model.

4 Related Work

In many domains, process execution is subject to compliance rules and restric-
tions that stem from laws, regulations, and guidelines (e.g. Basel or Sarbanes-
Oxley-Act) [1]. Existing approaches differ with respect to the process lifecycle
phase in which compliance is considered [13]. Compliance rules are often con-
sidered as restrictions to the order in which process activities may be executed.

152 D. Knuplesch et al.

In literature, there exist approaches formalizing these rules with temporal logic
[2,14], patterns [15], or graphical notations [2,16]. To check whether compliance
rules are fulfilled by a process model at build time, most approaches apply model
checking [2,14,17,18]. Furthermore, business process compliance along the pro-
cess lifecycle is discussed in [3,4].

Only little work exists, which deals with compliance of cross-organizational
processes [7,8]. In particular, compliability of interaction models with a given
set of compliance rules has not been addressed yet.

Various other issues related to the correctness of cross-organizational processes
and complementing compliability have been addressed. For example, [19,20] dis-
cuss whether private processes are compatible with the public ones. In turn, [21,22]
introduce the notion of realizability of interaction models, i.e., to check whether
involved partners are able to model public and private processes compatible with
a particular interaction model. [23] discusses changes and their propagation in
cross-organizational scenarios.

5 Discussion and Outlook

To ensure compliance of business processes with existing guidelines, standards,
and laws is crucial for both intra-organizational and cross-organizational set-
tings. However, existing proposals have only dealt with intra-organizational pro-
cesses so far [9]. This paper constitutes an important step towards enabling
compliance of cross-organizational business processes at different levels. In par-
ticular, we introduced the notion of compliability, i.e., the general ability of an
interaction model to not conflict with a given set of compliance rules indepen-
dent from the concrete process models of the partners.

However, compliability does not guarantee that there exists a compliant re-
alization of an interaction model; i.e., public and private process models that
comply with the global compliance rules. For example, consider the interac-
tion model from Fig. 7 and the global compliance rules r4 and r5 from Tab. 2.
As indicated by the process log being the output of compliability checking (cf.
Fig. 7), there exists no conflict between the model and r4 and r5. Nevertheless,
the partners are not able to specify compliant private and public processes, be-
cause the laboratory is unable to determine, when the patient is notified. Thus,
laboratory can not determine when activity analyse sample may be started
without violating r5. This is caused by a missing interaction. In the example, it
is easy to enhance the interaction model with an additional interaction to en-
able the partners to specify compliant private and public processes (cf. Fig. 7).
Generally, compliability remains a necessary, but not sufficient precondition for
the ability of the partners to specify their public and private models in such
a way that the overall cross-organizational process satisfies the set of imposed
compliance rules.

In future work, we will present a comprehensive formal theory for compliance
and related criteria (e.g., compliability) in cross-organizational processes. Fur-
ther, we will present additional algorithms for checking compliability and global

On Enabling Compliance of Cross-Organizational Business Processes 153

Gynecologist

Lab

Sample

Lab

Gynecologist

Result

Blood test
Message sample
Notify patient
Analyse sample
Message result

1
2
3
4
5

Gynecologist
Gynecologist → Lab
Gynecologist
Lab
Lab → Gynecologist

Activity# Partner
Gynecologist

Lab

Sample

Lab

Gynecologist

Result

Gynecologist

Lab

Notification
done

Fig. 7. An example indicating the limitations of compliability

Table 2. Examples of compliance rules

- Classification Compliance rule
r4 Global compliance rule After blood sample is sent to laboratory, the patient has to be notified.
r5 Global compliance rule The analysis must start after the notification of the patient, but before

results are sent.

compliance as well as related semantic correctness criteria. Finally, we will con-
sider additional process perspectives (e.g. data, time, resources) in the context
of compliance and compliability checking.

References

1. Sadiq, W., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

2. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q
and temporal logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008)

3. Ly, L.T., et al.: On enabling integrated process compliance with semantic con-
straints in process management systems. Inf. Sys. Frontiers 14(2), 195–219 (2012)

4. Knuplesch, D., Reichert, M.: Ensuring business process compliance along the pro-
cess life cycle. Technical Report 2011-06, University of Ulm (2011)

5. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring
business constraints with linear temporal logic: an approach based on colored
automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 132–147. Springer, Heidelberg (2011)

6. Ramezani, E., Fahland, D., van der Werf, J.M., Mattheis, P.: Separating compli-
ance management and business process management. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM Workshops 2011, Part II. LNBIP, vol. 100, pp. 459–464.
Springer, Heidelberg (2012)

7. Berry, A., Milosevic, Z.: Extending choreography with business contract con-
straints. Int. J. Coop. Inf. Sys. 14(2-3), 131–179 (2005)

8. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business
processes and business contracts. In: EDOC 2006, pp. 221–232 (2006)

9. Knuplesch, D., Reichert, M., Mangler, J., Rinderle-Ma, S., Fdhila, W.: Towards
compliance of cross-organizational processes and their changes - research challenges
and state of research. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012.
LNBIP, vol. 132, pp. 649–661. Springer, Heidelberg (2013)

10. Leitner, M., Mangler, J., Rinderle-Ma, S.: Definition and enactment of instance-
spanning process constraints. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.)
WISE 2012. LNCS, vol. 7651, pp. 652–658. Springer, Heidelberg (2012)

154 D. Knuplesch et al.

11. Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Inf.
Sys. 35(8) (2010)

12. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and devel-
opment for robust and flexible process support. Computer Science-Research and
Development 23(2), 81–97 (2009)

13. El Kharbili, M., et al.: Business process compliance checking: Current state and
future challenges. In: MobIS 2008, pp. 107–113 (2008)

14. Ghose, A.K., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180.
Springer, Heidelberg (2007)

15. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: FMSP 1998 (1998)

16. Ly, L.T., Rinderle-Ma, S., Dadam, P.: Design and verification of instantiable com-
pliance rule graphs in process-aware information systems. In: Pernici, B. (ed.)
CAiSE 2010. LNCS, vol. 6051, pp. 9–23. Springer, Heidelberg (2010)

17. Ly, L.T., et al.: Seaflows toolset–compliance verification made easy for process-
aware information systems. Inf. Syst. Evolution, 76–91 (2011)

18. Knuplesch, D., Ly, L.T., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On enabling
data-aware compliance checking of business process models. In: Parsons, J., Saeki,
M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 332–346.
Springer, Heidelberg (2010)

19. Decker, G., Weske, M.: Behavioral consistency for B2B process integration. In:
Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007. LNCS, vol. 4495, pp.
81–95. Springer, Heidelberg (2007)

20. Fdhila, W., Rouached, M., Godart, C.: Communications semantics for WS-BPEL
processes. In: ICWS 2008 (2008)

21. Lohmann, N., Wolf, K.: Realizability is controllability. Web Services and Formal
Methods, 110–127 (2010)

22. Knuplesch, D., Pryss, R., Reichert, M.: Data-aware interaction in distributed
and collaborative workflows: modeling, semantics, correctness. In: CollaborateCom
2012, pp. 223–232. IEEE Comp. Press (2012)

23. Fdhila, W., Rinderle-Ma, S., Reichert, M.: Change propagation in collaborative
processes scenarios. In: CollaborateCom 2012, pp. 452–461. IEEE Comp. Press
(2012)

Verification of Query Completeness over Processes

Simon Razniewski, Marco Montali, and Werner Nutt

Free University of Bozen-Bolzano
Dominikanerplatz 3

39100 Bozen-Bolzano
{razniewski,montali,nutt}@inf.unibz.it

Abstract. Data completeness is an essential aspect of data quality, and has in
turn a huge impact on the effective management of companies. For example,
statistics are computed and audits are conducted in companies by implicitly plac-
ing the strong assumption that the analysed data are complete. In this work, we are
interested in studying the problem of completeness of data produced by business
processes, to the aim of automatically assessing whether a given database query
can be answered with complete information in a certain state of the process. We
formalize so-called quality-aware processes that create data in the real world and
store it in the company’s information system possibly at a later point. We then
show how one can check the completeness of database queries in a certain state
of the process or after the execution of a sequence of actions, by leveraging on
query containment, a well-studied problem in database theory.

1 Introduction

Data completeness is an important aspect of data quality. When data is used in decision-
making, it is important that the data is of good quality, and in particular that it is com-
plete. This is particularly true in an enterprise setting. On the one hand, strategic deci-
sions are taken inside a company by relying on statistics and business indicators such as
KPIs. Obviously, this information is useful only if it is reliable, and reliability, in turn,
is strictly related to quality and, more specifically, to completeness.

Consider for example the school information system of the autonomous province
of Bolzano in Italy, which triggered the research included in this paper. Such an in-
formation system stores data about schools, enrolments, students and teachers. When
statistics are computed for the enrolments in a given school, e.g., to decide the amount
of teachers needed for the following academic year, it is of utmost importance that the
involved data are complete, i.e., that the required information stored in the information
system is aligned with reality.

Completeness of data is a key issue also in the context of auditing. When a company
is evaluated to check whether its way of conducting business is in accordance to the law
and to audit assurance standards, part of the external audit is dedicated to the analysis
of the actual data. If such data are incomplete w.r.t. the queries issued during the audit,
then the obtained answers do not properly reflect the company’s behaviour.

There has been plenty of work on fixing data quality issues, especially for fixing
incorrect data and for detecting duplicates [10,6]. However, some data quality issues
cannot be automatically fixed. This holds in particular for incomplete data, as missing

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 155–170, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

156 S. Razniewski, M. Montali, and W. Nutt

data cannot be corrected inside a system, unless additional activities are introduced to
acquire them. In all these situations, it is then a mandatory requirement to (at least)
detect data quality issues, enabling informed decisions drawn with knowledge about
which data are complete and which not.

The key question therefore is how it is possible to obtain this completeness infor-
mation. There has been previous work on the assessment of data completeness [12],
however this approach left the question where completeness information come from
largely open. In this work, we argue that, in the common situation where the manip-
ulation of data inside the information system is driven by business processes, we can
leverage on such processes to infer information about data completeness, provided that
we suitably annotate the involved activities with explicit information about the way they
manipulate data.

A common source of data incompleteness in business processes is constituted by
delays between real-world events and their recording in an information system. This
holds in particular for scenarios where processes are carried out partially without sup-
port of the information system. E.g., many legal events are considered valid as soon
as they are signed on a sheet of paper, but their recording in the information system
could happen much later in time. Consider again the example of the school information
system, in particular the enrolment of pupils in schools. Parents enroll their children at
the individual schools, and the enrolment is valid as soon as both the parents and the
school director sign the enrolment form. However, the school secretary may record the
information from the sheets only later in the local database of the school, and even later
submit all the enrolment information to the central school administration, which needs
it to plan the assignment of teachers to schools, and other management tasks.

In the BPM context, there have been attempts to model data quality issues, like in
[7,14,2]. However, these approaches mainly discussed general methodologies for mod-
elling data quality requirements in BPMN, but did not provide methods to asses their
fulfilment. In this paper, we claim that process formalizations are an essential source for
learning about data completeness and show how data completeness can be verified. In
particular, our contributions are (1) to introduce the idea of extracting information about
data completeness from processes manipulating the data, (2) to formalize processes that
can both interact with the real-world and record information about the real-world in an
information system, and (3) to show how completeness can be verified over such pro-
cesses, both at design and at execution time.

Our approach leverages on two assumptions related to how the data manipulation
and the process control-flow are captured. From the data point of view, we leverage on
annotations that suitably mediate between expressiveness and tractability. More specifi-
cally, we rely on annotations modeling that new information of a given type is acquired
in the real world, or that some information present in the real world is stored into the
information system. We do not explicitly consider the evolution of specific values for
the data, as incorporating full-fledged data without any restriction would immediately
make our problem undecidable, being simple reachability queries undecidable in such a
rich setting [9,3,4]. From the control-flow point of view, we are completely orthogonal
to process specification languages. In particular, we design our data completeness al-
gorithms over (labeled) transition systems, a well-established mathematical structure to

Verification of Query Completeness over Processes 157

represent the execution traces that can by produced according to the control-flow depen-
dencies of the (business) process model of interest. Consequently, our approach can in
principle be applied to any process modeling language, with the proviso of annotating
the involved activities. We are in particular interested in providing automated reasoning
facilities to answer whether a given query can be answered with complete information
given a target state or a sequence of activities.

The rest of this paper is divided as follows. In Section 2, we discuss the scenario
of the school enrolment data in the province of Bozen/Bolzano in detail. In Section 3,
we discuss our formal approach, introducing quality-aware transition systems, process
activity annotations used to capture the semantics of activities that interact with the
real world and with an information system, and properties of query completeness over
such systems. In Section 4, we discuss how query completeness can be verified over
such systems at design time and at runtime, how query completeness can be refined and
what the complexity of deciding query completeness is.

The proofs of Proposition 1 and 2 and of Lemma 1 and 2 are available in the extended
version available at Arxiv.org [13].

2 Example Scenario

Consider the example of the enrollment to schools in the province of Bolzano. Parents
can submit enrollment requests for their child to any school they want until the 1st of
March. Schools then decide which pupils to accept, and parents have to choose one
of the schools in which their child is accepted. Since in May the school administra-
tion wants to start planning the allocation of teachers to schools and take further deci-
sions (such as the opening and closing of school branches and schools) they require the
schools to process the enrollments and to enter them in the central school information
system before the 15th of April.

A particular feature of this process is that it is partly carried out with pen and paper,
and partly in front of a computer, interacting with an underlying school information
system. Consequently, the information system does not often contain all the information
that hold in the real world, and is therefore incomplete. E.g., while an enrollment is
legally already valid when the enrollment sheet is signed, this information is visible in
the information system only when the secretary enters it into a computerised form.

A BPMN diagram sketching the main phases of this process is shown in Fig. 1, while
a simple UML diagram of (a fragment of) the school domain is reported in Fig. 2. These
diagrams abstractly summarise the school domain from the point of view of the central
administration. Concretely, each school implements a specific, local version of the en-
rolment process, relying on its own domain conceptual model. The data collected on a
per-school basis are then transferred into a central information system managed by the
central administration, which refines the conceptual model of Fig. 2. In the following,
we will assume that such an information system represents information about children
and the class they belong to by means of a pupil(pname, class, sname) relation, where
pname is the name of an enrolled child, class is the class to which the pupil belongs,
and sname is the name of the corresponding school.

158 S. Razniewski, M. Montali, and W. Nutt

Parents

Submit enrolment
applications

Schools School Administration

Decide about
enrolment
requests

Enrolment
applications

Record
accepted

enrolments
Enrolment
deadline

School
information system

Generate
statistics and

assign resources

Fig. 1. BPMN diagram of the main phases of the school enrollment process

Child

- name: String

Parent

Place

- name: String

Class

- no: int

School

- name: String

hasChild
1..*0..2

belongsTo
0..10..*

isAt
0..*

1..1
livesIn

0..*

1..1

locatedIn
0..*1..1

managedBy

1..1

1..*
Branch

- type: Stringoffers
1..*0..*

School Admin

Fig. 2. UML diagram capturing a fragment of the school domain

When using the statistics about the enrollments as compiled in the beginning of May,
the school administration is highly interested in having correct statistical information,
which in turn requires that the underlying data about the enrollments must be complete.
Since the data is generated during the enrollment process, this gives rise to several
questions about such a process. The first question is whether the process is generally
designed correctly, that is, whether the enrollments present in the information system
are really complete at the time they publish their statistics, or whether it is still possible
to submit valid enrollments by the time the statistics are published. We call this problem
the design-time verification.

A second question is to find whether the number of enrollments in a certain school
branch is already complete before the 15th of April, that is, when the schools are still
allowed to submit enrolments (i.e., when there are school that still have not completed
the second activity in the school lane of Fig. 1), which could be the case when some
schools submitted all their enrollments but others did not. In specific cases the number
can be complete already, when the schools that submitted their data are all the schools
that offer the branch. We call this problem the run-time verification.

A third question is to learn on a finer-grained level about the completeness of statis-
tics, when they are not generally complete. When a statistic consists not of a single
number but of a set of values (e.g. enrollments per school), it is interesting to know for
which schools the number is already complete. We call this the dimension analysis.

3 Formalization

We want to formalize processes as in Fig. 1, which both operate over data in the real-
world (pen and paper) and record information about the real world in an informa-
tion system. We therefore first introduce real-world databases and information system

Verification of Query Completeness over Processes 159

databases, and then annotate transition systems, which represent possible process exe-
cutions, with effects to interact with the real-world or the information system database.

3.1 Real-World Databases and Information System Databases

As common in database theory, we assume a set of constants dom and a fixed set Σ
of relations, comprising the built-in relations < and ≤ over the rational numbers. We
assume that dom is partitioned into the types of strings and rational numbers and that the
arguments of each relation are typed. A database instance is a finite set of facts in Σ over
dom. As there exists both the real world and the information system, in the following we
model this with two databases: Drw called the real-world database, which describes the
information that holds in the real world, and Dis, called the information system database,
which captures the information that is stored in the information system. We assume that
the stored information is always a subset of the real-world information. Thus, processes
actually operate over pairs (Drw,Dis) of real-world database and information system
database. In the following, we will focus on processes that create data in the real world
and copy parts of the data into the information system, possibly delayed.

Example 1. Consider that in the real world, there are the two pupils John and Mary
enrolled in the classes 2 and 4 at the Hofer School, while the school has so far only pro-
cessed the enrollment of John in their IT system. Additionally it holds in the real world
that John and Alice live in Bolzano and Bob lives in the city of Merano. The real-world
database Drw would then be {pupil(John, 2,HoferSchool), pupil(Mary, 4,HoferSchool),
livesIn(John,Bolzano), livesIn(Bob,Merano), livesIn(Alice,Bolzano)} while the infor-
mation system database would be {pupil(John, 2,HoferSchool)}.
When necessary, we annotate atoms with the database they belong to. So,
pupilis(John, 4,HoferSchool) indicates a fact stored in the information system database.

3.2 Query Completeness

For planning purposes, the school administration is interested in figures such as the
number of pupils per class, school, profile, etc. Such figures can be extracted from
relational databases via SQL queries using the COUNT keyword. In an SQL database
with a table pupil(name, class, school), a query asking for the number of students
per school would be written as:

SELECT school, COUNT(name) as pupils_nr
FROM pupil
GROUP BY school.

(1)

In database theory, conjunctive queries were introduced to formalize SQL queries. A
conjunctive query Q is an expression of the form Q(x̄) :−A1, . . . , An,M, where x̄ are
called the distinguished variables in the head of the query, A1 to An the atoms in the
body of the query, and M is a set of built-in comparisons [1]. We denote the set of
all variables that appear in a query Q by Var(Q). Common subclasses of conjunctive
queries are linear conjunctive queries, that is, they do not contain a relational symbol
twice, and relational conjunctive queries, that is, queries that do not use comparison

160 S. Razniewski, M. Montali, and W. Nutt

predicates. Conjunctive queries allow to formalize all single-block SQL queries, i.e.,
queries of the form “SELECT . . . FROM . . .WHERE . . .”. As a conjunctive query, the
SQL query (1) above would be written as:

Qp/s(schoolname, count(name)) :− pupil(name, class, schoolname) (2)

In the following, we assume that all queries are conjunctive queries. We now formalize
query completeness over a pair of a real-world database and an information system
database. Intuitively, if query completeness can be guaranteed, then this means that the
query over the generally incomplete information system database gives the same answer
as it would give w.r.t. the information that holds in the real world. Query completeness
is the key property that we are interested in verifying.

A pair of databases (Drw,Dis) satisfies query completeness of a query Q, if Q(Drw) =
Q(Dis) holds. We then write (Drw,Dis) |= Compl(Q).

Example 2. Consider the pair of databases (Drw,Dis) from Example 1 and the query
Qp/s from above (2). Then, Compl(Qp/s) does not hold over (Drw,Dis) because
Q(Drw) = {(HoferSchool, 2)} but Q(Dis) = {(HoferSchool, 1)}. A query for pupils in
class 2 only, Qclass2(n) :− pupil(n, 2, s), would be complete, because Q(Drw) = Q(Dis) =
{John}.

3.3 Real-World Effects and Copy Effects

We want to formalize the real-world effect of an enrollment action at the Hofer School,
where in principle, every pupil that has submitted an enrolment request before, is al-
lowed to enroll in the real world. We can formalize this using the following expres-
sion: pupilrw(n, c,HoferSchool) � requestrw(n,HoferSchool), which should mean that
whenever someone is a pupil at the Hofer school now, he has submitted an enrolment
request before. Also, we want to formalize copy effects, for example where all pupils in
classes greater than 3 are stored in the database. This can be written with the following
implication: pupilrw(n, c, s), c > 3 → pupilis(n, c, s), which means that whenever some-
one is a pupil in a class with level greater than three in the real world, then this fact is
also stored in the information system.

For annotating processes with information about data creation and manipulation in
the real world Drw and in the information system Dis, we use real-world effects and
copy effects as annotations. While their syntax is the same, their semantics is different.
Formally, a real-world effect r or a copy effect c is a tuple (R(x̄, ȳ),G(x̄, z̄)), where R is
an atom, G is a set of atoms and built-in comparisons and x̄, ȳ and z̄ are sets of distinct
variables. We call G the guard of the effect. The effects r and c can be written as follows:

r : Rrw(x̄, ȳ)� ∃z̄ : Grw(x̄, z̄)

c : Rrw(x̄, ȳ),Grw(x̄, z̄)→ Ris(x̄, ȳ)

Real-world effects can have variables ȳ on the left side that do not occur in the condition.
These variables are not restricted and thus allow to introduce new values.

A pair of real-world databases (Drw
1 ,D

rw
2) conforms to a real-world effect Rrw(x̄, ȳ)�

∃z̄ : Grw(x̄, z̄), if for all facts Rrw(c̄1, c̄2) that are in Drw
2 but not in Drw

1 it holds that there

Verification of Query Completeness over Processes 161

exists a tuple of constants c̄3 such that the guard Grw(c̄1, c̄3) is in Drw
1 . The pair of

databases conforms to a set of real-world effects, if each fact in Drw
2 \ Drw

1 conforms to
at least one real-word effect.

If for a real-world effect there does not exist any pair of databases (D1,D2) with
D2 \ D1 � ∅ that conforms to the effect, the effect is called useless. Useless effects
can be detected by checking whether the effect does not have unbound variables (ȳ is
empty) and whether Q(x̄) :−G(x̄, z̄) is contained in Q(x̄) :−R(x̄). In the following we
only consider real-world effects that are not useless.

The function copyc for a copy effect c = Rrw(x̄, ȳ),Grw(x̄, z̄) → Ris(x̄, ȳ) over a real-
world database Drw returns the corresponding R-facts for all the tuples that are in the
answer of the query Pc(x̄, ȳ) :−Rrw(x̄, ȳ),Grw(x̄, z̄) over Drw. For a set of copy effects
CE, the function copyCE is defined by taking the union of the results of the individual
copy functions.

Example 3. Consider a real-world effect r that allows to introduce persons living in
Merano as pupils in classes higher than 3 in the real world, that is, r = pupilrw(n, c, s)�
c > 3, livesIn(n,Merano) and a pair of real-world databases using the database Drw from
Example 1 as (Drw,Drw∪{pupilrw(Bob, 4,HoferSchool)}. Then this pair conforms to the
real-world effect r, because the guard of the only new fact pupilrw(Bob, 4,HoferSchool)
evaluates to true: Bob lives in Merano and his class level is greater than 3. The pair
(Drw,Drw ∪ {pupilrw(Alice, 1,HoferSchool)} does not conform to r, because Alice does
not live in Merano, and also because the class level is not greater than 3.

For the copy effect c = pupilrw(n, c, s), c > 3 → pupilis(n, c, s), which copies all
pupils in classes greater equal 3, its output over the real-world database in Example 1
would be {pupilis(Mary, 4,HoferSchool)}.

3.4 Quality-Aware Transition Systems

To capture the execution semantics of quality-aware processes, we resort to (suitably
annotated) labelled transition systems, a common way to describe the semantics of con-
current processes by interleaving [5]. This makes our approach applicable for virtually
every business process modelling language equipped with a formal underlying transi-
tion semantics (such as Petri nets or, directly, transition systems).

Formally, a (labelled) transition system T is a tuple T = (S , s0, A, E), where S is a
set of states, s0 ∈ S is the initial state, A is a set of names of actions and E ⊆ S ×A×S is
a set of edges labelled by actions from A. In the following, we will annotate the actions
of the transition systems with effects that describe interaction with the real-world and
the information system. In particular, we introduce quality-aware transition systems
(QATS) to capture the execution semantics of processes that change data both in the
real world and in the information system database.

Formally, a quality-aware transition system T̄ is a tuple T̄ = (T, re, ce), where T is a
transition system and re and ce are functions from A into the sets of all real-world effects
and copy effects, which in turn obey to the syntax and semantics defined in Sec. 3.3.
Note that transition systems and hence also QATS may contain cycles.

162 S. Razniewski, M. Montali, and W. Nutt

Example 4. Let us consider two specific schools, the Hofer School and the Da Vinci
School, and a (simplified version) of their enrolment process, depicted in BPMN in
Fig. 3(a) (in parenthesis, we introduce compact names for the activities, which will be
used throughout the example). As we will see, while the two processes are independent
from each other from the control-flow point of view (i.e., they run in parallel), they
eventually write information into the same table of the central information system.

Let us first consider the Hofer School. In the first step, the requests are processed
with pen and paper, deciding which requests are accepted and, for those, adding the
signature of the school director and finalising other bureaucratic issues. By using re-
lation requestrw(n,HoferSchool) to model the fact that a child named n requests to be
enrolled at Hofer, and pupilrw(n, 1,HoferSchool) to model that she is actually enrolled,
the activity pH is a real-world activity that can be annotated with the real-world effect
pupilrw(n, 1,HoferSchool) � requestrw(n,HoferSchool). In the second step, the infor-
mation about enrolled pupils is transferred to the central information system by copying
all real-world enrolments of the Hofer school. More specifically, the activity rH can be
annotated with the copy effect pupilrw(n, 1,HoferSchool)→ pupilis(n, 1,HoferSchool).

Let us now focus on the Da Vinci School. Depending on the amount of incoming
requests, the school decides whether to directly process the enrolments, or to do an en-
trance test for obtaining a ranking. In the first case (activity pD), the activity mirrors that
of the Hofer school, and is annotated with the real-world effect pupilrw(n, 1,DaVinci)�
requestrw(n,DaVinci). As for the test, the activity tD can be annotated with a real-
world effect that makes it possible to enrol only those children who passed the test:
pupilrw(n, 1,DaVinci) � requestrw(n,DaVinci), testrw(n,mark),mark ≥ 6. Finally, the
process terminates by properly transferring the information about enrolments to the
central administration, exactly as done for the Hofer school. In particular, the activity
rD is annotated with the copy effect pupilrw(n, 1,DaVinci)→ pupilis(n, 1,DaVinci). No-
tice that this effect feeds the same pupil relation of the central information systems that
is used by rH, but with a different value for the third column (i.e., the school name).

Fig. 3(b) shows the QATS formalizing the execution semantics of the parallel compo-
sition of the two processes (where activities are properly annotated with the previously
discussed effects). Circles drawn in orange with solid line represent execution states
where the information about pupils enrolled at the Hofer school is complete. Circles in
blue with double stroke represent execution states where completeness holds for pupils
enrolled at the Da Vinci school. At the final, sink state information about the enrolled
pupils is complete for both schools.

3.5 Paths and Action Sequences in QATSs

Let T̄ = (T, re, ce) be a QATS. A path π in T̄ is a sequence t1, . . . , tn of transitions such
that ti = (si−1, ai, si) for all i = 1 . . .n. An action sequence α is a sequence a1, . . . , am

of action names. Each path π = t1, . . . , tn has also a corresponding action sequence απ
defined as a1, . . . , an . For a state s, the set Aseq(s) is the set of the action sequences of
all paths that end in s.

Next we consider the semantics of action sequences. A development of an action
sequence α = a1, . . . , an is a sequence Drw

0 , . . . ,D
rw
n of real-world databases such that

each pair (Drw
j ,D

rw
j+1) conforms to the effects re(α j+1). Note that Drw

0 can be arbitrary.

Verification of Query Completeness over Processes 163

"D
a

Vi
nc

i"
sc

ho
ol

"H
of

er
" s

ch
oo

l

process
enrolment
requests

register
enrolment

forms

X

do test

process
enrolment
requests

X
register

enrolment
forms

(pD)

(tD)

(rD)

(pH) (rH)

(a)

pH

rD

rH

rDtD
pD

tD
pD

tD
pD

rH
pH

rH

rD

pH

(b)

Fig. 3. BPMN enrolment process of two schools, and the corresponding QATS

For each development Drw
0 , . . . ,D

rw
n , there exists a unique trace Dis

0 , . . . ,D
is
n , which is a

sequence of information system databases Dis
j defined as follows:

Dis
j =

⎧
⎪⎪⎨
⎪⎪⎩

Drw
j if j = 0

Dis
j−1 ∪ copyCE(t j)(D

rw
j) otherwise.

Note that Dis
0 = Drw

0 does not introduce loss of generality and is just a convention. To
start with initially different databases, one can just add an initial action that introduces
data in all real-world relations.

3.6 Completeness over QATSs

An action sequence α = a1, . . . , an satisfies query completeness of a query Q, if for all
developments of α it holds that Q is complete over (Drw

n ,D
is
n), that is, if Q(Drw

n) = Q(Dis
n)

holds. A path P in a QATS T̄ satisfies query completeness for Q, if its corresponding
action sequence satisfies it. A state s in a QATS T̄ satisfies Compl(Q), if all action
sequences in Aseq(s) (the set of the action sequences of all paths that end in s) satisfy
Compl(Q). We then write s |= Compl(Q).

Example 5. Consider the QATS in Figure 3(b) and recall that the action pH is annotated
with the real-world effect pupilrw(n, 1,HoferSchool)� requestrw(n,HoferSchool), and
action rH with the copy effect pupilrw(n, 1,HoferSchool) → pupilis(n, 1,HoferSchool).
A path π = ((s0, pH, s1), (s1, rH, s2)) has the corresponding action sequence (pH, rH).
Its models are all sequences (Drw

0 ,D
rw
1 ,D

rw
2) of real-world databases (developments),

where Drw
1 may contain additional pupil facts at the Hofer school w.r.t. Drw

0 because
of the real-world effect of action a1, and Drw

2 = Drw
1 . Each such development has a

uniquely defined trace (Dis
0 ,D

is
1 ,D

is
2) where Dis

0 = Drw
0 by definition, Dis

1 = Dis
0 because

no copy effect is happening in action a1, and Dis
2 = Dis

1 ∪ copyce(a1)(Drw
1), which means

that all pupil facts from Hofer school that hold in the real-world database are copied
into the information system due to the effect of action a1. Thus, the state s2 satisfies
Compl(QHofer) for a query QHofer(n) :− pupil(n, c,HoferSchool), because in all models of
the action sequence the real-world pupils at the Hofer school are copied by the copy
effect in action rH.

164 S. Razniewski, M. Montali, and W. Nutt

4 Verifying Completeness over Processes

In the following, we analyze how to check completeness in a state of a QATS at design
time, at runtime, and how to analyze the completeness of an incomplete query in detail.

4.1 Design-Time Verification

When checking for query completeness at design time, we have to consider all possible
paths that lead to the state in which we want to check completeness. We first analyze
how to check completeness for a single path, and then extend our results to sets of paths.

Given a query Q(z̄) :−R1(t̄1), . . . ,Rn(t̄n),M, we say that a real-world effect r is risky
w.r.t. Q, if there exists a pair of real-world databases (Drw

1 ,D
rw
2) that conforms to r and

where the query result changes, that is, Q(Drw
1) � Q(Drw

2). Intuitively, this means that
real-world database changes caused by r can influence the query answer and lead to
incompleteness, if the changes are not copied into the information system.

Proposition 1 (Risky effects). Let r be the real-world effect R(x̄, ȳ)� G1(x̄, z̄1), Q be
the query Q :−R1(t̄1), . . . ,Rn(t̄n),M and v̄ = Var(Q). Then r is risky wrt. Q if and only
if the following formula is satisfiable:

G1(x̄, z̄1) ∧ (
∧

i=1...n

Ri(t̄i)
) ∧ M ∧ (

∨

Ri=R

(x̄, ȳ) = t̄i
)

Example 6. Consider the query Q(n) :− pupil(n, c, s), livesIn(n,Bolzano) and the real-
world effect r1 = pupil(n, c, s) � c = 4, which allows to add new pupils in class 4 in
the real world. Then r1 is risky w.r.t. Q, because pupils in class 4 can potentially also live
in Bolzano. Note that without integrity constraints, actually most updates to the same
relation will be risky: if we do not have keys in the database, a pupil could live both
in Bolzano and Merano and hence an effect r2 = pupil(n, c, s) � livesIn(n,Merano)
would be risky w.r.t. Q, too. If there is a key defined over the first attribute of livesIn,
then r2 would not be risky, because adding pupils that live in Merano would not influ-
ence the completeness of pupils that only live in Bolzano.

We say that a real-world effect r that is risky w.r.t. a query Q is repaired by a set of
copy effects {c2, . . . , cn}, if for any sequence of databases (Drw

1 ,D
rw
2) that conforms to r

it holds that Q(Drw
2) = Q(Drw

1 ∪ copyc1...cn (Drw
2)). Intuitively, this means that whenever

we introduce new facts via r and apply the copy effects afterwards, all new facts that
can change the query result are also copied into the information system.

Proposition 2 (Repairing). Consider the query Q :−R1(t̄1), . . .Rn(t̄n),M, let v̄ =
Var(Q), a real-world effect R(x̄, ȳ) � G1(x̄, z̄1) and a set of copy effects {c2, . . . , cm}.
Then r is repaired by {c2, . . . , cm} if and only if the following formula is valid:

∀x̄, ȳ :
((

∃z̄1, v̄ : G1(x̄, z̄1)∧
∧

i=1...n

Ri(t̄i)∧M∧
∨

Ri=R

(x̄, ȳ) = t̄i
)

=⇒
∨

j=2...m

∃z̄ j : G j(x̄, z̄ j)
)

This implication can be translated into a problem of query containment, a
well-studied topic in database theory [11,8,15,12]. In particular, for a query

Verification of Query Completeness over Processes 165

Q(z̄) :−R1(t̄1), . . . ,Rn(t̄n), we define the atom-projection of Q on the i-th atom as
Qπi (x̄) :−R1(t̄1), . . . ,Rn(t̄n), x̄ = t̄i. Then, for a query Q and a relation R, we define the
R-projection of Q, written QR, as the union of all the atom-projections of atoms that use
the relation symbol R, that is,

⋃

Ri=R Qπi . For a real-world effect r = R(x̄, ȳ) � G(x̄, z̄),
we define its associated query Pr as Pr(x̄, ȳ) :−R(x̄, ȳ),G(x̄, z̄).

Corollary 1 (Repairing and query containment). Let Q be a query, α = a1, . . . an be
an action sequence, ai be an action with a risky real-world effect r, and {c1, . . . , cm} be
the set of all copy effects of the actions ai+1 . . . an.

Then r is repaired, if and only if it holds that Pr ∩ QR ⊆ Pc1 ∪ . . . ∪ Pcm .

Intuitively, the corollary says that a risky effect r is repaired, if all data that is introduced
by r that can potentially change the result of the query Q are guaranteed to be copied
into the information system database by the copy effects c1 to cn.

The corollary holds because of the direct correspondence between conjunctive
queries and relational calculus [1].

We arrive at a result for characterizing query completeness wrt. an action sequence:

Lemma 1 (Action sequence completeness). Let α be an action sequence and Q be a
query. Then α |= Compl(Q) if and only if all risky effects in α are repaired.

Before discussing complexity results in Section 4.4, we show that completeness en-
tailment over action sequences and containment of unions of queries have the same
complexity. A query language is defined by the operations that it allows. Common sub-
languages of conjunctive queries are, e.g., queries without arithmetic comparisons (so-
called relational queries), or queries without repeated relation symbols (so-called linear
queries).

For a query languageL, we call EntC(L) the problem of deciding whether an action
sequence α entails completeness of a query Q, where Q and the real-world effects and
the copy effects in α are formulated in languageL. Also, we call ContU(L) the problem
of deciding whether a query is contained in a union of queries, where all are formulated
in the language L.

Theorem 1. LetL be a query languages. Then EntC(L) and ContU(L) can be reduced
to each other in linear time.

Proof. “⇒”: Consider the characterization shown in Lemma 1. For a fixed action se-
quence, the number of containment checks is the same as the number of the real-world
effects of the action sequence and thus linear.

“⇐”: Consider a containment problem Q0 ⊆ Q1 ∪ . . .∪Qn, for queries in a language
L. Then we can construct a QATS T̄ = (S , s0, A, E, re, ce) over the schema of the queries
together with a new relation R with the same arity as the queries where S = {s0, s1, s2},
A = {a1, a2}, re(a1) = {Rrw(x̄)� Q0(x̄)} and ce(a2) =

⋃

i=1...n{Qi(x̄)→ Ris(x̄)}. Now, the
action sequence a1, a2 satisfies a query completeness for a query Q′(x̄) :−R(x̄) exactly
if Q0 is contained in the union of the queries Q1 to Qn, because only in this case the
real-world effect at action a1 cannot introduce any facts into Drw

1 of a development of
a1, a2, which are not copied into Dis

2 by one of the effects of the action a2. ��
We discuss the complexity of query containment and hence of completeness entailment
over action sequences more in detail in Section 4.4.

166 S. Razniewski, M. Montali, and W. Nutt

So far, we have shown how query completeness over a path can be checked. To verify
completeness in a specific state, we have to consider all paths to that state, which makes
the analysis more difficult. We first introduce a lemma that allows to remove repeated
actions in an action sequence:

Lemma 2 (Duplicate removal). Let α = α1, ã, α2, ã, α3 be an action sequence with
ã as repeated action and let Q be a query. Then α satisfies Compl(Q) if and only if
α′ = α1, α2, ã, α3 satisfies Compl(Q).

The lemma shows that our formalism can deal with cycles. While cycles imply the ex-
istence of sequences of arbitrary length, the lemma shows that we only need to consider
sequences where each action occurs at most once. Intuitively, it is sufficient to check
each cycle only once. Based on this lemma, we define the normal action sequence of
a path π as the action sequence of π in which for all repeated actions all but the last
occurrence are removed.

Proposition 3 (Normal action sequences). Let T̄ = (T, re, ce) be a QATS, Π be the set
of all paths of T̄ and Q be a query. Then
1. for each path π ∈ Π , its normal action sequence has at most the length | A |,
2. there are at most Σ |A|k=1

|A|!
(|A|−k)! < (|A | +1)! different normal forms of paths,

3. for each path π ∈ Π , it holds that π |= Compl(Q) if its normal action sequence α′
satisfies Compl(Q).

The first two items hold because normal action sequences do not contain actions twice.
The third item holds because of Lemma 2, which allows to remove all but the last
occurrence of an action in an action sequence without changing query completeness
satisfaction.

Before arriving at the main result, we need to show that deciding whether a given
normal action sequence can actually be realized by a path is easy:

Proposition 4. Given a QATS T̄ , a state s and a normal action sequence α. Then,
deciding whether there exists a path π that has α as its normal action sequence and that
ends in s can be done in polynomial time.

The reason for this proposition is that given a normal action sequence α = a1, . . . , an,
one just needs to calculate the states reachable from s0 via the concatenated expression
(a1, . . . , an)+, (a2, . . . , an)+, . . . , (an−1, an)+, (an)+. This expression stands exactly for all
action sequences with α as normal sequence, because it allows repeated actions before
their last occurrence in α. Calculating the states that are reachable via this expression
can be done in polynomial time, because the reachable states S reach

n can be calculated
iteratively for each component (ai, . . . , an)+ as S reach

i from the reachable states S reach
i−1

until the previous component (ai−1, . . . , an)+ by taking all states that are reachable from
a state in S reach

i−1 via one or several actions in {ai, . . . , an}, which can be done with a
linear-time graph traversal such as breadth-first or depth-first search. Since there are
only n such components, the overall algorithm works in polynomial time.

Theorem 2. Given a QATS T̄ and a query Q, both formulated in a query language
L, checking “s �|= Compl(Q)?” can be done using a nondeterministic polynomial-time
Turing machine with a ContU(L)-oracle.

Verification of Query Completeness over Processes 167

Sign
enrolment forms

Record signed
enrolment forms School

information system

X X

Fig. 4. Simplified BPMN process for the everyday activity of a secretary in a school

Proof. If s �|= Compl(Q), one can guess a normal action sequence α, check by Prop. 4 in
polynomial time that there exists a path π from s0 to s with α as normal action sequence,
and by Thm. 1 verify using the ContU(L)-oracle that α does not satisfy Compl(Q). ��
We discuss the complexity of this problem in Section 4.4

4.2 Runtime Verification

Taking into account the concrete activities that were carried out within a process can
allow more conclusions about completeness. As an example, consider that the secretary
in a large school can perform two activities regarding the enrollments, either he/she can
sign enrollment applications (which means that the enrollments become legally valid),
or he/she can record the signed enrollments that are not yet recorded in the database. For
simplicity we assume that the secretary batches the tasks and performs only one of the
activities per day. A visualization of this process is shown in Fig. 4. Considering only
the process we cannot draw any conclusions about the completeness of the enrollment
data, because if the secretary chose the first activity, then data will be missing, however
if the secretary chose the second activity, then not. If however we have the information
that the secretary performed the second activity, then we can conclude that the number
of the currently valid enrollments is also complete in the information system.

Formally, in runtime verification we are given a path π = t1, . . . , tn that was executed
so far and a query Q. Again the problem is to check whether completeness holds in the
current state, that is, whether all developments of π satisfy Compl(Q).

Corollary 2. Let π be a path in a QATS and Q be a query, such that both Q and the
real-world effects and the copy effects in the actions of π are formulated in a query
language L. Then “π |= Compl(Q)?” and ContU(L) can be reduced to each other in
linear time.

The corollary follows directly from Theorem 1 and the fact that a path satisfies com-
pleteness if and only if its action sequence satisfies completeness.

Runtime verification becomes more complex when also the current, concrete state of
the information system database is explicitly taken into account. Given the current state
D of the database, the problem is then to check whether all the developments of π in
which Dis

n = D holds satisfy Compl(Q). In this case repairing of all risky actions is a
sufficient but not a necessary condition for completeness:

Example 7. Consider a path (s0, a1, s1), (s1, a2, s2), where action a1 is annotated with
the copy effect requestrw(n, s) → requestis(n, s), action a2 with the real-world effect

168 S. Razniewski, M. Montali, and W. Nutt

Fig. 5. Visualization of the dimension analysis of Example 8

pupilrw(n, c, s) � requestrw(n, s), a database Dis
2 that is empty, and consider a query

Q(n) :− pupil(n, c, s), request(n, s). Then, the query result over Dis
2 is empty. Since the

relation request was copied before, and is empty now, the query result over any real-
world database must be empty too, and therefore Compl(Q) holds. Note that this cannot
be concluded with the techniques introduced in this work, as the real-world effect of
action a2 is risky and is not repaired.

The complexity of runtime verification w.r.t. a concrete database instance is still open.

4.3 Dimension Analysis

When at a certain timepoint a query is not found to be complete, for example because
the deadline for the submissions of the enrollments from the schools to the central
school administration is not yet over, it becomes interesting to know which parts of the
answer are already complete.

Example 8. Consider that on the 10th of April, the schools “Hofer” and “Da Vinci”
have confirmed that they have already submitted all their enrollments, while “Max Va-
lier” and “Gherdena” have entered some but not all enrollments, and other schools did
not enter any enrollments so far. Then the result of a query asking for the number of
pupils per school would look as in Fig. 5 (left table), which does not tell anything about
the trustworthiness of the result. If one includes the information from the process, one
could highlight that the data for the former two schools is already complete, and that
there can also be additional schools in the query result which did not submit any data
so far (see right table in Fig. 5).

Formally, for a query Q a dimension is a set of distinguished variables of Q. Originally,
dimension analysis was meant especially for the arguments of a GROUP BY expression
in a query, however it can also be used with other distinguished variables of a query.
Assume a query Q(x̄) :− B(x̄, ȳ) cannot be guaranteed to be complete in a specific state
of a process. For a dimension w̄ ⊆ x̄, the analysis can be done as follows:

1. Calculate the result of Q′(w̄) :− B(x̄, ȳ) over Dis.
2. For each tuple c̄ in Q′(Dis), check whether s,Dis |= Compl(Q[w̄/c̄]). This tells

whether the query is complete for the values c̄ of the dimension.
3. To check whether further values are possible, one has to guess a new value c̄new

for the dimension and show that Q[w̄/c̄new] is not complete in the current state. For
the guess one has to consider only the constants in the database plus a fixed set
of new constants, hence the number of possible guesses is polynomial for a fixed
dimension v̄.

Verification of Query Completeness over Processes 169

Query/QATS language L Complexity of ContU(L) and
EntC(L) (“π |= Compl(Q)”?)

Complexity of
“s |= Compl(Q)”?

Linear relational queries PTIME in coNP
Linear conjunctive queries coNP-complete coNP-complete

Relational conjunctive queries NP-complete in ΠP
2

Relational conjunctive queries over
databases with finite domains

ΠP
2 -complete ΠP

2 -complete

Conjunctive queries with comparisons ΠP
2 -complete ΠP

2 -complete
Relational conjunctive queries over

databases with keys and foreign keys
in PSPACE in PSPACE

Fig. 6. Complexity of design-time and runtime verification for different query languages

Step 2 corresponds to deciding for each tuple with a certain value in Q(Dis), whether it
is complete or not (color red or green in Fig. 5, right table), Step 3 to deciding whether
there can be additional values (bottom row in Fig. 5, right table).

4.4 Complexity of Completeness Verification

In the previous sections we have seen that completeness verification can be solved using
query containment. Query containment is a problem that has been studied extensively in
database research. Basically, it is the problem to decide, given two queries, whether the
first is more specific than the second. The results follow from Theorem 1 and 2, and are
summarized in Figure 6. We distinguish between the problem of runtime verification,
which has the same complexity as query containment, and design-time verification,
which, in principle requires to solve query containment exponentially often. Notable
however is that in most cases the complexity of runtime verification is not higher than
the one of design-time verification. The results on linear relational and linear conjunc-
tive queries, i.e., conjunctive queries without selfjoins and without or with comparisons,
are borrowed from [12]. The result on relational queries is reported in [15], and that on
conjunctive queries from [11]. As for integrity constraints, the result for databases sat-
isfying finite domain constraints is reported in [12] and for databases satisfying keys
and foreign keys in [8].

5 Conclusion

In this paper we have discussed that data completeness analysis should take into account
the processes that manipulate the data. In particular, we have shown how process models
can be annotated with effects that create data in the real world and effects that copy data
from the real world into an information system. We have then shown how one can
verify the completeness of queries over transition systems that represent the execution
semantics of such processes. It was shown that the problem is closely related to the
problem of query containment, and that more completeness can be derived if the run of
the process is taken into account.

In this work we focussed on the process execution semantics in terms of transition
systems. The next step is to realize a demonstration system to annotate high-level busi-
ness process specification languages (such as BPMN or YAWL), extract the underly-
ing quality-aware transition systems, and apply the techniques here presented to check

170 S. Razniewski, M. Montali, and W. Nutt

completeness. Also, we intend to face the open question of completeness verification at
runtime taking into account the actual database instance.

Acknowledgements. This work was partially supported by the ESF Project 2-299-
2010 “SIS - Wir verbinden Menschen”, and by the EU Project FP7-257593 ACSI. We
are thankful to Alin Deutsch for an invitation that helped initiate this research, and to
the anonymous reviewers for helpful comments.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Bagchi, S., Bai, X., Kalagnanam, J.: Data quality management using business process mod-

eling. In: IEEE International Conference on Services Computing, SCC 2006 (2006)
3. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., De Masellis, R., Felli, P.: Foundations of

relational artifacts verification. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011.
LNCS, vol. 6896, pp. 379–395. Springer, Heidelberg (2011)

4. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification
of relational data-centric dynamic systems with external services. In: PODS (2013)

5. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
6. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string similarity

measures. In: ACM SIGKDD, pp. 39–48 (2003)
7. Bringel, H., Caetano, A., Tribolet, J.M.: Business process modeling towards data quality: A

organizational engineering approach. In: ICEIS, vol. (3) (2004)
8. Calì, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints in data

integration systems. In: IJCAI 2003, pp. 16–21 (2003)
9. Damaggio, E., Deutsch, A., Hull, R., Vianu, V.: Automatic verification of data-centric

business processes. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 3–16. Springer, Heidelberg (2011)

10. Hernández, M.A., Stolfo, S.J.: Real-world data is dirty: Data cleansing and the merge/purge
problem. Data Mining and Knowledge Discovery 2(1), 9–37 (1998)

11. van der Meyden, R.: The complexity of querying indefinite data about linearly ordered do-
mains. In: PODS, pp. 331–345 (1992)

12. Razniewski, S., Nutt, W.: Completeness of queries over incomplete databases. In: VLDB
(2011)

13. Razniewski, S., Montali, M., Nutt, W.: Verification of query completeness over processes
[Extended version] (2013), http://arxiv.org/abs/1306.1689

14. Rodríguez, A., Caro, A., Cappiello, C., Caballero, I.: A BPMN extension for including data
quality requirements in business process modeling. In: Mendling, J., Weidlich, M. (eds.)
BPMN 2012. LNBIP, vol. 125, pp. 116–125. Springer, Heidelberg (2012)

15. Sagiv, Y., Yannakakis, M.: Equivalence among relational expressions with the union and
difference operation. In: VLDB, pp. 535–548 (1978)

http://arxiv.org/abs/1306.1689

Modeling and Enacting Complex Data Dependencies
in Business Processes

Andreas Meyer1, Luise Pufahl1, Dirk Fahland2, and Mathias Weske1

1 Hasso Plattner Institute at the University of Potsdam
{Andreas.Meyer,Luise.Pufahl,Mathias.Weske}@hpi.uni-potsdam.de

2 Eindhoven University of Technology
d.fahland@tue.nl

Abstract. Enacting business processes in process engines requires the coverage
of control flow, resource assignments, and process data. While the first two as-
pects are well supported in current process engines, data dependencies need to
be added and maintained manually by a process engineer. Thus, this task is error-
prone and time-consuming. In this paper, we address the problem of modeling
processes with complex data dependencies, e.g., m:n relationships, and their auto-
matic enactment from process models. First, we extend BPMN data objects with
few annotations to allow data dependency handling as well as data instance differ-
entiation. Second, we introduce a pattern-based approach to derive SQL queries
from process models utilizing the above mentioned extensions. Therewith, we al-
low automatic enactment of data-aware BPMN process models. We implemented
our approach for the Activiti process engine to show applicability.

Keywords: Process Modeling, Data Modeling, Process Enactment, BPMN, SQL.

1 Motivation

The purpose of enacting processes in process engines or process-aware information sys-
tems is to query, process, transform, and provide data to process stakeholders. Process
engines such as Activiti [4], Bonita [5] or AristaFlow [12] are able to enact the control
flow of a process and to allocate required resources based on a given process model in
an automated fashion. Also simple data dependencies can be enacted from a process
model, for example, that an activity can only be executed if a particular data object is
in a particular state. However, when m:n relationships arise between processes and data
objects, modeling and enactment becomes more difficult.

For example, Fig. 1 shows a typical build-to-order process of a computer manufac-
turer in which customers order products that will be custom built. For an incoming
Customer order, the manufacturer devises all Components needed to build the product.
Components are not held in stock, but the manufacturer on demand creates and executes
a number of Purchase orders to be sent to various Suppliers to procure the Components
required. To reduce costs, Components of multiple Customer orders are bundled in
joint Purchase orders. The two subprocesses of Fig. 1 handle complex m:n relationships

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 171–186, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

172 A. Meyer et al.

Co
m

pu
te

r
M

an
uf

ac
tu

re
r Create and

execute purchase
orders (C)

Process incoming
customer orders

(P)

Component
III

Customer

Supplier

Customer
order

III

III

Purchase
order

Fig. 1. Build-to-order process, where subprocess P
collects multiple orders from several Customers in
an internal loop and where C sends multiple Pur-
chase orders to several Suppliers using a multi in-
stance subprocess internally

between the different orders: one Pur-
chase order contains Components of
multiple Customer orders and one
Customer order depends on Compo-
nents of multiple Purchase orders.

Widely accepted process modeling
languages such as BPMN [17] do
not provide sufficient modeling con-
cepts for capturing m:n relationships
between data objects, activities, and
processes. As a consequence, actual
data dependencies are often not de-
rived from a process model. They are
rather implemented manually in ser-
vices and application code, which yields high development efforts and may lead to
errors.

Explicitly adding data dependencies to process models provides multiple advantages.
In contrast to having data only specified inside services and applications called from
the process, an integrated view facilitates communication with stakeholders about pro-
cesses and their data manipulations; there are no hidden dependencies. With execution
semantics one can automatically enact processes with complex data dependencies from
a model only. Finally, an integrated conceptual model allows for analyzing control and
data flow combined regarding their consistency [11, 24] and correctness. Also different
process representations can be generated automatically, for instance, models showing
how a data object evolves throughout a process [9, 13].

Existing techniques for integrating data and control flow follow the “object-centric”
paradigm [3, 6, 10, 15]: a process is modeled by its involved objects; each one has a
life cycle and multiple objects synchronize on their state changes. This paradigm is
beneficial when process flow follows from process objects, e.g., in manufacturing pro-
cesses [15]. However, there are many domains, where processes are rather “activity-
centric” such as accounting, insurance handling, or municipal procedures. In these, ex-
ecution follows an explicitly prescribed ordering of domain activities, not necessarily
tied to a particular object life cycle. For such processes, changing from an activity-
centric view to an object-centric view for the sake of data support has disadvantages.
Besides having to redesign all processes in a new paradigm and training process mod-
elers, one also has to switch to new process engines and may no longer be supported
by existing standards. This gives rise to a first requirement (RQ1-activity): processes
can be modeled in an activity-centric way using well-established industrial standards
for describing process dynamics and data dependencies.

In this paper, we address the problem of modeling and enacting activity-centric pro-
cesses with complex data dependencies. The problem itself was researched for more
than a decade revealing numerous requirements as summarized in [10]. The following
requirements of [10] have to be met to enact activity-centric processes with complex
data dependencies directly from a process model:

Modeling and Enacting Complex Data Dependencies in Business Processes 173

(RQ2-data integration) The process model refers to data in terms of object types,
defines pre- and post-conditions for activities (cf. requirements R01 and R14 in [10]),
and

(RQ3-object behavior) expresses how data objects change (cf. R04 in [10])

(RQ4-object interaction) in relation and interaction with other data objects; objects
are in 1:1, 1:n, or m:n relationships. Thereby, process execution depends on the state of
its interrelated data objects (cf. R05 in [10]) and

(RQ5-variable granularity) an activity changes a single object, multiple related ob-
jects of different types, or multiple objects of the same type (cf. R17 in [10]).

In this paper, we propose a technique that addresses the requirements (RQ1)-(RQ5). The
technique combines classical activity-centric modeling in BPMN [17] with relational
data modeling as known from relational databases [21]. To this end, we introduce few
extensions to BPMN data objects: Each data object gets dedicated life cycle information,
an object identifier, and fields to express any type of correlation, even m:n relationships,
to other objects with identifiers. We build on BPMN’s extension points ensuring confor-
mance to the specification [17]. These data annotations define pre- and post-conditions
of activities with respect to data. We show how to automatically derive SQL queries from
annotated BPMN data objects that check and implement the conditions on data stored
in a relational database. For demonstration, we extended the Activiti process engine [4]
to automatically derive SQL queries from data-annotated BPMN models.

The remainder of this paper is structured as follows. In Section 2, we discuss the cur-
rent data modeling capabilities of BPMN including shortcomings. Then, in Section 3,
we present our technique for data-aware process modeling with BPMN, which we give
operational semantics in Section 4. There, we also discuss the SQL derivation and our
implementation before we review related work in Section 5 and conclude in Section 6.

2 Data Modeling in BPMN

BPMN [17], a rich and expressive modeling notation, is the industry standard for busi-
ness process management and provides means for modeling as well as execution of
business processes. In this section, we introduce BPMN’s existing capabilities for data
modeling and its shortcomings with respect to the requirements introduced above.

So far, we used the term “data object” with a loose interpretation in mind. For the
remainder, we use the terminology of BPMN [17], which provides the concept of data
objects to describe different types of data in a process. Data flow edges describe which
activities read or write which data objects. The same data object may be represented
multiple times in the process distinguishing distinct read or write accesses. A data flow
edge from a data object representation to an activity describes a read access to an
instance of the data object, which has to be present in order to execute the activity.
A data object instance is a concrete data entry of the corresponding data object. A
data flow edge from an activity to a data object representation describes a write access,
which creates a data object instance, if it did not exist, or updates the instance, if it
existed before. Fig. 2 shows two representations of data object D, one is read by activity
A and one is written. Data object representations can be modeled as a single instance or
as a multi instance (indicated by three parallel bars) that comprises a set of instances of

174 A. Meyer et al.

one data object. Further, a data object can be either persistent (stored in a database) or
non-persistent (exists only while the process instance is active). Our approach focuses
on persistent single and multi instance data objects.

Activity A

D
[state X]

D
[state Y]

Fig. 2. Object life cycle of data ob-
ject D with two representations

The notion of an object life cycle emerged over the
last years for giving data objects a behavior. The idea
is that each data object D can be in a number of differ-
ent states. A process activity A reading D may only
get enabled if D is in a particular state; when A is
executed object D may transition to a new state. To
express this behavior, BPMN provides the concept of
data states, which allows to annotate each data object
with a [state]. Fig. 2 shows an example: Activity A
may only be executed when the respective object instance is indeed in state X; after
executing the activity, this object instance is in state Y.

The BPMN semantics is not sufficient to express all data dependencies in a process
model with respect to the following four aspects. The annotations to data object rep-
resentations in Fig. 2 do not allow to distinguish different object instances of D in the
same process instance, e.g., two different customer orders. Likewise, we cannot express
how several instances of different data objects relate to each other. Further, the type of
a write access on data objects, e.g., creation or update, is not clear from the annota-
tions shown above. Finally, the correlation between a process instance and its object
instances is not supported. Next, we propose a set of extensions to BPMN data objects
to overcome the presented shortcomings.

3 Extending BPMN Data Modeling

In this section, we introduce annotations to BPMN data objects to overcome the short-
comings utilizing extension points, which allow to extend BPMN and still being stan-
dard conform. With these, we address requirements (RQ1)-(RQ5) from the introduction.
In the second part, we illustrate the extensions on a build-to-order process.

3.1 Modeling Data Dependencies in BPMN

To distinguish and reference data object instances, we utilize proven concepts from
relational databases: primary and foreign keys [21]. We introduce object identifiers as
an annotation that describes the attribute by which different data object instances can be
distinguished (i.e., primary keys). Along the same lines, we introduce attributes, which
allow to refer to the identifier of another object (cf. foreign keys in [21]).

Fig. 3 shows annotations for primary key (pk) and foreign key (fk) attributes in BPMN
data object representations. Instances of D are distinguishable by attribute d id and in-
stances of E by attribute e id. In Fig. 3a, each instance of D is related to one instance of E
by the fk attribute e id, i.e., a 1:1 relationship. The activity A can only execute when one
instance e of E is in state Z and one instance d of D is in state X that is related to e exist.
Upon execution, d enters state Y whereas e remains unchanged. A multi instance repre-
sentation ofD expresses a 1:n relationship fromE toD as shown in Fig. 3b, e.g., several
computer components for one customer order. To execute activity A, all instances of D

Modeling and Enacting Complex Data Dependencies in Business Processes 175

Activity A

D
[state X]

D
[state Y]

E
[state Z]

pk: e_id

pk: d_id
fk: e_id

pk: d_id
fk: e_id

(a)

D
[state X]

D
[state Y]

pk: d_id
fk: e_id

pk: d_id
fk: e_id

III III

Activity A

E
[state Z]

pk: e_id

(b)

D
[state X]

D
[state Y]

pk: d_id
fk: e_id, *f_id*

pk: d_id
fk: e_id, *f_id*

III III

Activity A

E
[state Z]

pk: e_id

(c)

Fig. 3. Describing object interactions in (a) 1:1, (b) 1:n, and (c) m:n cardinality

create

D
[state X]

[new]

read

D
[state X]

update

D
[state Y]

delete

D

[delete]

pk: d_id pk: d_id pk: d_id pk: d_id

Fig. 4. Describing create, read, update, and delete of a data object

related to e have to be in state X; the execution will put all instances of D into state Y.
We allow multi-attribute foreign keys to express m:n relationships between data objects
as follows. Assume, data objectsD, E, F have primary keys d id, e id, f id, respectively,
and D has foreign key attributes e id, f id. Each instance of D (e.g., a component) refers
to one instance of E (e.g., a customer order it originated from) and one instance of F
(e.g., a purchase order in which it is handled). Different instances of D may refer to the
same instance e of E (e.g., all components of the same customer order) but to different
instances of F (e.g., handled by different purchase orders) and vice versa. This yields an
m:n relationship between E and F via D. We allow to all-quantify over foreign keys by
enclosing them in asterisks, e.g., *f id* in Fig. 3c. Here, activity A updates all instances
of D from state X to state Y if they are related to the instance e of E and to any instance
of F , that is, we quantify over *f id*. A foreign key attribute can be null indicating that
the specific reference is not yet set. A data object may have further attributes, however,
these are not specified in the object itself but in a data model, possibly given as UML
class diagram [18], accompanying the process model.

In order to derive all data dependencies from a process model, we need to be able to
express the four major data operations: create, read, update, and delete for a data object
instance (see Fig. 4). Read and update are already provided through BPMN’s data flow
edges. To express create or delete operations, we need to add two annotations shown
in the upper right corner: [new] expresses the creation of a new data object instance
having a completely fresh identifier and [delete] expresses its deletion. Note that one
activity can apply several data operations to different data objects. For example, activity
A in Fig. 3a reads and updates an instance of D and reads an instance of E.

176 A. Meyer et al.

D
[state X]

pk: d_id
fk: e_id, null

III

[new]

Fig. 5. Extended data ob-
ject representation

The introduced extensions require that a data object con-
tains a name and a set of attributes, from which one needs to
describe a data state, an object identifier (primary key), and
a set of relations to other data objects (foreign keys). Fig. 5
summarizes these extensions for a data object representation.
Based on the informal considerations above, we formally de-
fine such extended representation of a BPMN data object as
follows.

Definition 1 (Data object representation). A data object representation r = (name,
state, pk ,FK ,FK ∗, η, ω) refers to the name of the data object, has a state, a primary
key (pk), a finite set FK of foreign keys, a set FK ∗ ⊆ FK of all-quantified foreign keys,
and a data operation type η ∈ {new , delete,⊥}.ω ∈ {singleInstance,multiInstance}
defines the instance multiplicity property. �
⊥ as element of set η refers to a blank data operation description for which the data
access is derived from the data flow: an input data flow requires a read operation while
an output data flow requires an update operation.

To let a specific process instance create or update specific data object instances, we
need to link these two. For this, we adopt an idea from business artifacts [16] that
each process instance is “driven” by a specific data object instance. We call this object
case object; all other objects have to be related to it by means of foreign keys. This
idea naturally extends to instances of subprocesses or multi-instance activities. Each
of them defines a scope which has a dedicated instance id. An annotation in a scope
defines which data object acts as case object. A case object instance is either freshly
created by its scope instance based on a new annotation (the object instance gets the
id of its scope instance as primary key value). Alternatively, the case object instance
already exists and is passed to the scope instance upon creation (the scope instance gets
the id of its case object instance). By all means, a case object is always single instance.
For this paper, we assume that all non case objects are directly related to the case object;
see our technical report [14] for the general case. We make data objects and case objects
part of the process model as follows, utilizing a subset of BPMN [17].

Definition 2 (Process model). A process model M = (N,R,DS,C, F, P, typeA,
case, typeG , κ) consists of a finite non-empty set N ⊆ A∪G∪E of nodes being activ-
ities A, gateways G, and events E, a finite non-empty set R of data object representa-
tions, and the finite set DS of data stores used for persistence of data objects (N,R,DS
are pairwise disjoint). C ⊆ N ×N is the control flow relation, F ⊆ (A×R)∪ (R×A)
is the data flow relation, and P ⊆ (R×DS)∪(DS×R) is the data persistence relation;
typeA : A → {task , subprocess ,multiInstanceTask ,multiInstanceSubprocess}
gives each activity a type; case(a) defines for each a ∈ A where typeA(a) �= task
the case object. Function typeG : G → {xor , and} gives each gateway a type; partial
function κ : F � exp optionally assigns an expression exp to a data flow edge. �
An expression at a data flow edge allows to refer to data attributes that are neither state
nor key attribute, as we show later. As usual, a process model M is assumed to be
structural sound, i.e., M contains exactly one start and one end event and every node
of M is on a path from the start to the end event. Further, each activity has at most one
incoming and one outgoing control flow edge.

Modeling and Enacting Complex Data Dependencies in Business Processes 177

3.2 Example

In this section, we apply the syntax introduced above to model the build-to-order sce-
nario presented in the introduction. The scenario consists of two interlinked process mod-
els and the corresponding data model. The scenario comprises the collection of customer
orders, presented in Fig. 7, and the arrangement of purchase orders based on the customer
orders received, presented in Fig. 8. Each customer order can be fulfilled by a set of pur-
chase orders and each purchase order consolidates the components required for several
customer orders. This m:n relationship is expressed in the data model in Fig. 6.

Processing Cycle (ProC)

-proc_id : string
-state : string

Customer Order (CO)

-co_id : string
-proc_id : string
-state : string

Purchase Order (PO)

-po_id : string
-proc_id : string
-state : string

Booking (B)

-b_id : string
-po_id : string
-state : string

Component (CP)

-cp_id : string
-co_id : string
-po_id : string
-state : string
-supplier : string

1

1..*

1..*

1 1

1
1..*

1

Fig. 6. Data model

Data Model. The process-
ing cycle (ProC) contains
information about customer
orders (CO) being placed
by customers and purchase
orders (PO) used to orga-
nize the purchase of com-
ponents within a particu-
lar time frame. Data object
component (CP) links CO
and PO in an m:n-fashion, i.e., CP has two foreign keys, one to CO and one to PO.
CO and PO each have one foreign key to ProC. Accounting of the manufacturer is
performed utilizing data object booking (B). For simplicity, we assume that all data is
persisted in the same data store, e.g., the database of the manufacturer, and omit repre-
sentations of the data store in the process diagrams.

Customer Order Collection Process. In Fig. 7, the first task starts a new processing
cycle allowing customers to send in orders for computers. By annotation new, a new
ProC object instance is created for each task execution. As this is the case object of
the process, the primary key proc id gets the id of the process instance as value. Next,
COs are collected in a loop structure until three COs have been successfully processed.
Task Receive customer order receives one CO from a customer and correlates this CO
instance to the ProC instance of the process instance (annotation fk: proc id) before
it is analyzed in a subprocess. CO is the case object of the subprocess, which gets
its instance id from the primary key of the received CO instance. Task Create compo-
nent list determines the components needed to handle the CO: several CP instances are

Co
m

pu
te

r
M

an
uf

ac
tu

re
r

Start
processing

cycle

Close CO
retrieval

Customer
orders >= 3

Customer
orders < 3

case object: ProC

ProC
[created]

pk: proc_id

[new]

ProC
[received]

pk: proc_id

CO

Customer
III

case object: COReceive
customer

order
Create

component
list

Set supplier
for CP

numberOfItems = 13

ProC
[created]

pk: proc_id

CO
[created]

pk: co_id
fk: null

CO
[received]

pk: co_id
fk: proc_id

CP
[created]

pk: cp_id
fk: co_id, null

III

[new]

CP
[updated]

pk: cp_id
fk: co_id, null

III

III

case object: CP

CO
[received]

pk: co_id
fk: proc_id

CP
[created]

pk: cp_id
fk: co_id, null

III

Fig. 7. Build-to-order scenario: customer order collection

178 A. Meyer et al.

Co
m

pu
te

r
M

an
uf

ac
tu

re
r

Create
purchase

order

Specify
$supplier

Book purchase
orders

Send purchase
orders

Finalize
purchase

III

case object: ProC

numberOfItems = 5

case object: PO

CP.supplier
= $supplier

Assign CP
to PO

PO
[created]

pk: po_id
fk: proc_id

III

[new]

ProC
[received]

pk: proc_id

PO
[created]

pk: po_id
fk: proc_id

III

PO
[created]

pk: po_id

PO
[created]

pk: po_id
fk: proc_id

III

PO
[sent]

pk: po_id
fk: proc_id

III

B
[created]

pk: b_id
fk: po_id

III

[new]

PO
[created]

pk: po_id
fk: proc_id

III

PO
[sent]

pk: po_id
fk: proc_id

III

ProC
[purchased]

pk: proc_id
III

Supplier
III

PO

ProC
[purchasing]

pk: proc_id

CP
[updated]

pk: cp_id
fk: *co_id*, null

III

CP
[assigned]

pk: cp_id
fk: *co_id*,po_id

III

III

case object: PO

III

case object: PO

CP.supplier
= $supplier

Fig. 8. Build-to-order scenario: purchase order arrangement

created (annotation new on a multi instance object representation). Each CP instance
has a unique primary key value; the foreign key attribute co id referring to CO is set
to the current CO instance; the foreign key attribute referring to PO is still null. The
number of CP instances to create is given in the expression on the data output flow
edge. Here, we give an explicit number, but it could also be a process variable holding
the result of the task execution (e.g., user input, result of a service invocation). Next, an
user updates the attribute CP.supplier for each component (CP) to indicate where it can
be purchased, e.g., by using a form. The loop structure is conducted for each received
CO and repeated until three COs are collected. CO retrieval is closed by moving the
current ProC to state received.

Purchase Order Arrangement Process. The second process model in Fig. 8 describes
how components (extracted from different COs) are associated to purchase orders (POs),
building an m:n relationship between POs and COs. Object ProC links both processes,
the process in Fig. 8 can only start when there is a ProC object instance in state received.

Create purchase order creates multiple PO object instances correlated to the ProC
instance. All PO instances are handled in the subsequent multi instance subprocess:
for each PO instance one subprocess instance is created, having the PO instance as
case object and the corresponding po id value as instance identifier. Per PO, first, one
supplier is selected that will handle the PO; here we assume that the task Select supplier
sets a process variable $supplier local to the subprocess instance. Task Assign CP to PO
relates to the PO all CP instances in state updated that have no po id value yet and where
attribute CP.supplier equals the chosen $supplier. The relation is built by setting the
value of CP.po id to the primary key PO.po id of the case object. The update quantifies
over all values of co id as indicated by the asterisks.

The execution of the multi instance subprocess results in several CP subsets each
being related to one PO. The POs along with the contained information about the CPs
are sent to the corresponding supplier. In parallel, Book purchase orders creates a new
booking for each PO; it may start when either all POs are in created or in sent.

Modeling and Enacting Complex Data Dependencies in Business Processes 179

created received purchasing purchasedinit Startprocessingcycle

Close COretrieval

Createpurchaseorder

Finalizepurchase

(a)

init Create
componentlist

created updated assignedSetsupplierfor CP

Assign CPfor PO

(b)
Fig. 9. Object life cycles of objects (a) ProC
and (b) CP derived from the process model

Object Life Cycle. Altogether, our ex-
tension to BPMN data objects increases
the expressiveness of a BPMN process
model with information about process-
data-correlation on instance level. As such,
it does not interfere with standard BPMN
semantics.

In addition, our extension is compati-
ble with the object life cycle oriented tech-
niques allowing to derive object life cycles from sufficiently annotated process mod-
els [9,13]. Taking our build-to-order process, we can derive the object life cycles shown
in Fig. 9.

4 Executing Data-Annotated BPMN Models

This section presents operational execution semantics for the data annotated process
models defined in Section 3. Aiming at standardized techniques, we refine the standard
BPMN semantics [17, Section 13] with SQL database queries (see Section 4.1) that are
derived from annotated input and output data objects (see Section 4.2).

4.1 Process Model Semantics

Our semantics distinguishes control flow and data flow aspects of a process model M .
A state s = (C,D) of M consists of a control flow state C describing a distribution of
tokens on sequence flow edges and activities and a database D storing the data objects
of M in tables. To distinguish the states of different process instances, each token in C
is an identifier id . The data model of the process is implemented in a relational database
D (shared by all processes). Each data object is represented in D as a table; columns
represent attributes, having at least columns for primary key, foreign keys (if any), and
state. Each row in a table describes an instance of this data object with concrete values.

An activity A has several input and output data object representations, grouped
into input sets and output sets; different input/output sets represent alternative pre-
/postconditions for A. A representation R of an input object is available in instance
id if the corresponding table in D holds a particular row. We can define a select query
QR(id) on D and a guard gR(id) that compares the result of QR(id) to a constant or
to another select query; gR(id) is true iff R is available in id . A representation R of an
output object of A has to become available when A completes. We operationalize this
by executing an insert, update, or delete query QR(id) on D depending on R.

Activity A is enabled in instance id in state s = (C,D) iff a token with id id is on
the input edge of A and for some input set {R1, . . . , Rn} of A, each guard gRi(id) is
true. If A is enabled in C, then A gets started, i.e., the token id moves “inside” A in
step (C,D) → (C′,D) and depending on the type of activity services are called, forms
are shown, etc. When this instance of A completes, the outgoing edge of A gets a token
id and the database gets updated in a step (C′,D) → (C′′,D′), where D′ is the result
of executing queries QR1(id), . . . , QRm(id) for some output set {R1, . . . , Rm} of A.
The semantics for gateways and events is extended correspondingly. If activity A is a

180 A. Meyer et al.

subprocess with case object D, and A has D as data input object, then we create a new
instance of subprocess A for each entry returned by query QD(id). Each subprocess
instance is identified by the primary key value of the corresponding row of D. Next, we
explain how to derive queries from the data object representations.

4.2 Deriving Database Queries from Data Annotations

The annotated data object representations defined in Section 3 describe pre- and post-
conditions for the execution of activities. In this section, we show how to derive from
a data object representation R (and its context) a guard gR or a query QR that realizes
this pre- or post-condition.

In a combinatorial analysis, we considered the occurrence of a data object as case
object, as single dependent object with 1:1 relationship to another object, and as mul-
tiple dependent object with 1:n or m:n relationship in the context of a create, read,
update, and delete operation. Additionally, we considered process instantiation based
on existing data and reading/updating object attributes other than state. Altogether, we
obtained a complete collection of 43 parameterized patterns regarding the use of data
objects as pre- or post-conditions in BPMN [14]. For each of these patterns, we defined
a corresponding database query or guard. During process execution, each input/output
object is matched against the patterns. The guard/query of the matching pattern is then
used as described in Section 4.1. Here, we present the five patterns that are needed to
execute the subprocess in the model in Fig. 8; Tables 1 and 2 list the patterns and their
formalization that we explain next. All 43 patterns and their formalization are given in
our technical report [14].

As introduced in Section 3, we assume that each scope (e.g., subprocess) is driven
by a particular case object. Each scope instance has a dedicated instance id. The symbol
$ID refers to the instance id of the directly enclosing scope; $PID refers to the process
instance id.

Read Single Object Instance. Pattern 1 describes a read operation on a single data
object D1 that is also the case object of the scope. The activity is only enabled when this
case object is in the given state s. The guard shown below P1 in Table 1 operationalizes
this behavior: it is true iff table D1 in the database has a row where the state attribute
has value ‘s’ and the primary key d1 id is equal to the scope instance id.

Read Multiple Object Instances. Pattern 2 describes a read operation on multiple data
object instances of D2 that are linked to the case object D1 via foreign key d1 id. The
activity is only enabled when all instances of D2 are in the given state t. This is captured
by the guard shown below P2 in Table 1 that is true iff the rows in table D2 that are linked
to the D1 instance with primary key value $ID are also the rows in table D2 where state
= ‘t’ (and the same link to D1); see [14] for the general case of arbitrary tables between
D1 and D2. For example, consider the second process of the build-to-order scenario (see
Fig. 8). Let us assume that activity Create purchase order was just executed for process
instance 6 and the database table of the purchase order (PO) contains the entries shown
in Fig. 10a. All rows with proc id = 6 are in state created, i.e., both queries of pattern
2 yield the same result and the subprocess gets instantiated.

Instantiate Subprocesses from Data. Pattern 3 deals with the instantiation of a multi
instance subprocess combined with a read operation on the dependent multi instance

Modeling and Enacting Complex Data Dependencies in Business Processes 181

Table 1. SQL queries for patterns 1 to 3 for subprocess in Fig. 8

P1 P2 P3

Activity

D1
[s]

pk: d1_id

case object: D1

Activity

D2
[t]

pk: d2_id
fk: d1_id

III

case object: D1

D2
[t]

pk: d2_id
fk: d1_id

III

Subprocess

case object: D2

III

case object: D1

guard :
(SELECT COUNT(d1 . d1 id)
FROM d1
WHERE d1 . d1 id = $ID
AND d1 . s ta te = ’ s ’) ≥ 1

guard :
(SELECT COUNT(d2 . d2 id)
FROM d2
WHERE d2 . d1 id = $ID
AND d2 . s ta te = ’ t ’) =
(SELECT COUNT(d2 . d2 id)
FROM d2
WHERE d2 . d1 id =$ID)

For each d2 id ∈ (
SELECT d2 . d2 id
FROM d2
WHERE d2 . d1 id = $ID)

s t a r t subprocess
wi th i d d2 id

Table 2. SQL queries for patterns 4 and 5 for subprocess in Fig. 8

Data model P4 P5

-d1_id : string
-state : string

D1

-d3_id : string
-d1_id : string
-state : string

D3

-d4_id : string
-d1_id : string
-state : string

D4

-d2_id : string
-d3_id : string
-d4_id : string
-state : string

D2

1

1..*1..*

1 1

1..*

Activity

D2
[t]

pk: d2_id
fk: *d3_id*,null

III

case object: D4

case object: D1

D2.attr = $var

Activity
D4
[q]

pk: d4_id

D2
[t]

pk: d2_id
fk: *d3_id*, null

III

D2
[r]

pk: d2_id
fk: *d3_id*,d4_id

III

case object: D4

case object: D1

D2.attr = $var

guard :
(SELECT COUNT(d2 . d2 id)
FROM d2
WHERE d2 . s ta te = ’ t ’
AND d2 . d4 id IS NULL
AND d2 . a t t r = $var
AND d2 . d3 id = (

SELECT d3 . d3 id
FROM d3
WHERE d3 . d1 id = $PID)

) >= 1

UPDATE d2
SET d2 . d4 id = (

SELECT d4 . d4 id
FROM d4
WHERE d4 . d4 id = $ID) ,

s ta te = ’ r ’
WHERE d2 . s ta te = ’ t ’
AND d2 . d4 id IS NULL
AND d2 . a t t r = $var
AND d2 . d3 id = (

SELECT d3 . d3 id
FROM d3
WHERE d3 . d1 id = $PID)

data object D2. As described in Section 4.1, we create a new instance of the subprocess
for each id returned by the query shown below P3 in Table 1. For our example, where
process instance 6 is currently executed, the subprocess having the PO as case object
is instantiated twice, once with id 17 and once with id 18. In each subprocess instance,
control flow reaches activity Select supplier for which pattern 1 applies. For the subpro-
cess instance with id 17, the guard of Pattern 1 evaluates to true of the state in Fig. 10a:
activity Select Supplier is enabled.

Transactional Properties. Patterns 4 and 5 illustrate how our approach updates m:n-
relationships. Pattern 4 describes a read operation on multiple data object instances D2
that share a particular attribute value and are not related to the case object (in contrast

182 A. Meyer et al.

Update CP SET CP.po_id = (SELECT PO.po_id FROM PO
WHERE PO.po_id = 17), CP.state = ‘assigned‘

WHERE CP.co_id = (SELECT CO.co_id FROM CO
WHERE CO.proc_id = 6) AND CP.state = ‘updated‘

AND CP.po_id IS NULL AND CP.supplier = ‘B‘;
Subprocess with $ID = 17

(inside of process instance $PID = 6)
„Specify $supplier“ picks $supplier = ‘B‘

(a) Before update (b) After update

CP

co_id = 30

state = assigned

cp_id = 126

po_id = 17

supplier = B

CO

proc_id = 6
state = received

co_id = 30

CO

proc_id = 6
state = received

co_id = 35

PO

proc_id = 6
state = created

po_id = 17

PO

proc_id = 6
state = created

po_id = 18

CP

co_id = 35

state = assigned

cp_id = 127

po_id = 17

supplier = B

CP

co_id = 30

state = updated

cp_id = 125

po_id = null

supplier = A

PO

proc_id = 5
state = sent

po_id = 16

CP

co_id = 30

state = updated

cp_id = 126

po_id = null

supplier = B

CO

proc_id = 6
state = received

co_id = 30

CO

proc_id = 6
state = received

co_id = 35

PO

proc_id = 6
state = created

po_id = 17

PO

proc_id = 6
state = created

po_id = 18

CP

co_id = 35

state = updated

cp_id = 127

po_id = null

supplier = B

CP

co_id = 30

state = updated

cp_id = 125

po_id = null

supplier = A

PO

proc_id = 5
state = sent

po_id = 16

Fig. 10. Setting missing foreign key relation of m:n object Component: Concrete update statement
of subprocess 17 to relate all CPs referring to supplier B to the PO with ID 17 indicated by arrows

to Pattern 2). We have to ensure that another process instance does not interfere with
reading (and later updating) these instances of D2, that is, we have to provide basic
transactional properties. We achieve this by accessing only those instances of D2 that
are in some way related to the current process instance. Therefore, this read operation
assumes a data model as shown in Table 2(left): D2 defines an m:n relationship between
D3 and D4 via foreign keys d3 id and d4 id; D3 and D4 both have foreign keys to
D1 which is the case object of the process; see [14] for the general case. The guard
shown below P4 in Table 2 is true iff there is at least one instance of D2 in state t, with
a particular attribute value, not linked to D4, and where the link to D3 points to an
instance that itself is linked to the case object instance of the process (i.e., foreign key
of D3 points to $PID). The link to D3 ensures that the process instance only reads D2
instances and no other process instance can read. In our example, the pattern occurs at
task Assign CP to PO reading all instances of object component (CP), which are not yet
assigned to a PO (i.e., null value as foreign key) and where CP .supplier = $supplier .
Assume the state shown in Fig. 10a and that $supplier = B was set by task Select
$supplier for the subprocess instance with ID 17. In this state, the queries of pattern 4
return two rows having a null value for po id, B as supplier value, and updated as state
value: the activity is enabled.

Updating m:n Relationships. Finally, pattern 5 describes an update operation on mul-
tiple data object instances of D2, which sets the foreign key d4 id that is not set yet
and moves them to state r. All instances of D2 get as value for d4 id the instance id of
the current instance of case object D4. Semantically, this turns the select statement of
pattern 4 into an update statement that sets attributes d4 id and state for all rows where
the pre-condition holds; see the SQL query of pattern 5 in Table 2. In our example, pat-
tern 5 occurs at task Assign CP to PO for assigning a specific set of components (CP)
to a purchase order (PO) based on the chosen supplier. As assumed for the subprocess
instance with ID 17, the process variable $supplier has the value B. The entire derived
query is shown in Fig. 10b (top right); executing the query gives components with ID

Modeling and Enacting Complex Data Dependencies in Business Processes 183

126 and ID 127 concrete references to PO (po id = 17), and the state assigned. The
resulting state of the database in Fig. 10b shows the m:n relationship that was set.

4.3 Implementation

We evaluated our approach for enacting process models with complex data dependen-
cies by implementation. In the spirit of building on existing standards and techniques,
we made the existing BPMN process engine Activiti [4] data-aware by only few addi-
tions to its control structures. Activiti enacts process models given in the BPMN XML
format and supports standard BPMN control flow constructs.

We extended the BPMN XML specification with our concepts introduced in Sec-
tion 3.1 using extension elements explicitly supported by BPMN [17]. The BPMN
parser of Activiti was supplemented correspondingly. Finally, we adapted the actual ex-
ecution engine to check for availability of input data objects when an activity is enabled,
and to make output data objects available when an activity completes – both through the
SQL queries presented in Section 4.2. Our extensions required just over 1000 lines of
code with around 600 lines being concerned with classifying data objects to patterns
and generating and executing SQL queries; see [14] for details.

With the given implementation, a user can model data annotated processes in
BPMN, and directly deploy the model to the extended Activiti engine, which then
executes the process including all data dependencies. No further hard-coding is re-
quired as all information is derived from the process model. The extended engine, a
graphical modeling tool, examples, and a complete setup in a virtual machine are
available for download together with the source code and a screencast at
http://bpt.hpi.uni-potsdam.de/Public/BPMNData.

5 Related Work

In the following, we compare the contributions of this paper to other techniques for
modeling and enacting processes with data; our comparison includes all requirements
for “object-aware process management” described in [10] and three additional factors.

The requirements cover modeling and enacting of data, processes, activities, autho-
rization of users, and support for flexible processes. (1) Data should be managed in
terms of a data model defining object types, attributes, and relations; (2) cardinality con-
straints should restrict relations; (3) users can only read/write data they are authorized
to access; and (4) users can access data not only during process execution. Processes
manage (5) the life cycle of object types and (6) the interaction of different object in-
stances; (7) processes are only executed by authorized users and (8) users see which task
they may or have to execute in the form of a task list; (9) it is possible to describe the
sequencing of activities independently from the data flow. (10) One can define proper
pre- and post-conditions for service activities based on objects and their attributes; (11)
forms for user-interaction activities can be generated from the data dependencies; (12)
activities can have a variable granularity wrt. data updates, i.e., an activity may read-
/write objects in 1:1, 1:n, and m:n fashion. (13) Whether a user is authorized to execute
a task should depend on the role and on the authorization for the data this task accesses.
(14) Flexible processes benefit from data integration in various ways (e.g., tasks that set
mandatory data are scheduled when required, tasks can be re-executed, etc.).

http://bpt.hpi.uni-potsdam.de/Public/BPMNData

184 A. Meyer et al.

Table 3. Comparison of data-aware process modeling techniques

requirement [in [10]] P
ro

cl
et

s
[3

]

C
or

eP
ro

[1
5]

O
P

M
[8

]

O
bj

.-
C

en
t.

[1
9]

P
B

W
S

[2
2]

A
rt

ifa
ct

s
[6

]

C
H

[2
]

B
P

M
N

[1
7]

P
H

.F
l.

[1
0]

th
is

data

1: data integration [R1] o o o o o + o - + + (RQ2)
2: cardinalities [R2] + o + + - + o o + +
3: data authorization [R10] - o - - - - o - + -
4: data-oriented view [R8] - o - - - o o - + o

process

5: object behavior [R4] o + + + - o o o + + (RQ3)
6: object interactions [R5] + + + + o o o o + + (RQ4)
7: process authorization [R9] + + + + + o + o + o
8: process-oriented view [R7] + + + + + + + + + +
9: explicit sequencing of activities + o o o - - - + o +

activity
10: service calls based on data [R14] + + + + + + o o + + (RQ2)
11: forms based on data/flow in forms [R15/R18] - - - - - o/- +/- - + -
12: variable granularity 1:1/1:n/m:n [R17] - - - - - o o - o + (RQ5)

users 13: authorization by data and roles [R11/R12] - - - - - - - - + -
flex 14: flexible execution [R3/R6/R13/R16/R19] - o - - o o o - + -

factors
15: process paradigm A D D D D D D A D A (RQ1)
16: standards o o o o - - o + - + (RQ1)
17: reusability of existing techniques + - o - - - - + - +

fully satisfied (+), partially satisfied (o), not satisfied (-), activity-centric (A), object-centric (D).

In addition to these requirements, we consider factors that influence the adaption of
a technique, namely, (15) whether the process paradigm is activity-centric or object-
centric, (16) whether the approach is backed by standards, and (17) to which extent it
can reuse existing methods and tools for modeling, execution, simulation, and analysis.
Table 3 shows existing techniques satisfy these requirements and requirements (RQ1)-
(RQ5) given in the introduction.

Classical activity-centric techniques such as workflows [1] lack a proper integration
of data. Purely data-based approaches such as active database systems [21] allow to
update data based on event-condition-action rules, but lack a genuine process perspec-
tive. Many approaches combine activity-centric process models with object life cycles,
but are largely confined to 1:1 relationships between a process instance and the object
instances it can handle, e.g., [9, 13, 23] and also BPMN [17]; some of these techniques
allow flexible process execution [20].

Table 3 compares techniques that support at least a basic notion of data integration.
Proclets [3] define object life cycles in an activity-centric way that interact through
channels. In [22], process execution and object interaction are derived from a product
data model. CorePro [15], the Object-Process Methodology [8], Object-Centric Process
Modeling [19], and the Artifact-Centric approach [6] define processes in terms of object
life cycles with various kinds of object interaction. Only artifacts support all notions of
variable granularity (12), though it is given in a declarative form that cannot always be
realized [7]. In Case Handling [2], process execution follows updating data such that
particular goals are reached in a flexible manner. PHILharmonic Flows [10] is the most
advanced proposal addressing variable granularity as well as flexible process execution
through a combination of micro processes (object life cycles) and macro processes (ob-
ject interactions); though variable granularity is not fully supported for service tasks

Modeling and Enacting Complex Data Dependencies in Business Processes 185

and each activity must be coupled to changes in a data object (limits activity sequenc-
ing). More importantly, the focus on an object-centric approach limits the reusability of
existing techniques and standards for modeling, execution, and analysis.

The technique proposed in this paper extends BPMN with data integration, cardinal-
ities can be set statically in the data model and dynamically as shown in Section 3.2;
a data-oriented view is available by the use of relational databases and SQL. Object
behavior and their interactions are managed with variable granularity. Our work did not
focus on authorization aspects and forms, but these aspects can clearly be addressed in
future work. Our approach, as it builds on BPMN, does not support flexible processes,
and thus should primarily be applied in use cases requiring structured processes. Most
importantly, we combine two industry standards for processes and data, allowing to
leverage on various techniques for modeling and analysis. We demonstrated reusability
by our implementation extending an existing engine. Thus, our approach covers more
than the requirements (RQ1)-(RQ5) raised in the introduction.

6 Conclusion

In this paper, we presented an approach to model processes incorporating complex
data dependencies, even m:n relationships, with classical activity-centric modeling tech-
niques and to automatically enact them. It covers all requirements RQ1-RQ5 presented
in the introduction. We combined different proven modeling techniques: the idea of
object life cycles, the standard process modeling notation BPMN, and relational data
modeling together make BPMN data-aware. This was achieved by introducing few ex-
tensions to BPMN data objects, e.g., an object identifier to distinguish object instances.
Data objects associated to activities express pre- and post-conditions of activities. We
presented a pattern-based approach to automatically derive SQL queries from depicted
pre- and post-conditions. It covers all create, read, update, and delete operations by
activities on different data object types so that data dependencies can be automatically
executed from a given process model. Further, we ensure that no two instances of the
same process have conflicting data accesses on their data objects. Through combining
two standard techniques, BPMN and relational databases, we allow the opportunity to
use existing methods, tools, and analysis approaches of both separately as well as com-
bined in the new setting. The downside of this approach is an increased complexity of
the process model; however, this complexity can be alleviated through appropriate tool
support providing views, abstraction, and scoping.

The integration of complex data dependencies into process execution is the first of
few steps towards fully automated process enactment from process models. We support
operations on single data attributes beyond life cycle information and object identifiers
in one step. In practice, multiple attributes are usually affected simultaneously during a
data operation. Further, we assumed the usage of a shared database per process model.
Multi-database support may be achieved by utilizing the concept of data stores. We
focused on process orchestrations with capabilities to utilize objects created in other
processes. Process choreographies with data exchange between different parties is one
of the open steps. Fourth, research on formal verification is required to ensure correct-
ness of the processes to be executed. In future work, we will address these limitations.

186 A. Meyer et al.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language. In-
formation Systems 30(4), 245–275 (2005)

2. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case Handling: A New Paradigm for
Business Process Support. Data & Knowledge Engineering 53(2), 129–162 (2005)

3. van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Proclets: A Framework for Lightweight
Interacting Workflow Processes. Int. J. Cooperative Inf. Syst. 10(4), 443–481 (2001)

4. Activiti: Activiti BPM Platform, https://www.activiti.org/
5. Bonitasoft: Bonita Process Engine, https://www.bonitasoft.com/
6. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business opera-

tions and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)
7. Damaggio, E., Hull, R., Vaculı́n, R.: On the equivalence of incremental and fixpoint semantics

for business artifacts with guard-stage-milestone lifecycles. Inf. Syst. 38(4), 561–584 (2013)
8. Dori, D.: Object-Process Methodology. Springer (2002)
9. Eshuis, R., Van Gorp, P.: Synthesizing Object Life Cycles from Business Process Models. In:

Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012 Main Conference 2012. LNCS, vol. 7532, pp.
307–320. Springer, Heidelberg (2012)

10. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for Object-aware Pro-
cess Management. J. Softw. Maint. Evol.R 23(4), 205–244 (2011)

11. Küster, J., Ryndina, K., Gall, H.: Generation of Business Process Models for Object Life
Cycle Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 165–181. Springer, Heidelberg (2007)

12. Lanz, A., Reichert, M., Dadam, P.: Robust and flexible error handling in the aristaflow bpm
suite. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 174–189.
Springer, Heidelberg (2011)

13. Liu, R., Wu, F.Y., Kumaran, S.: Transforming activity-centric business process models into
information-centric models for soa solutions. J. Database Manag. 21(4), 14–34 (2010)

14. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and Enacting Complex Data De-
pendencies in Business Processes. Tech. Rep. 74, HPI at the University of Potsdam (2013)

15. Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of large process
structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 131–149.
Springer, Heidelberg (2007)

16. Nigam, A., Caswell, N.: Business artifacts: An Approach to Operational Specification. IBM
Systems Journal 42(3), 428–445 (2003)

17. OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011)
18. OMG: Unified Modeling Language (UML), Version 2.4.1 (2011)
19. Redding, G., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: A flexible, object-centric

approach for business process modelling. In: SOCA 2010, vol. 4(3), pp. 191–201 (2010)
20. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information systems.

In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 115–135.
Springer, Heidelberg (2009)

21. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 4th edn. McGraw-
Hill Book Company (2001)

22. Vanderfeesten, I.T.P., Reijers, H.A., van der Aalst, W.M.P.: Product-based workflow support.
Inf. Syst. 36(2), 517–535 (2011)

23. Wang, J., Kumar, A.: A Framework for Document-Driven Workflow Systems. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp.
285–301. Springer, Heidelberg (2005)

24. Wang, Z., ter Hofstede, A.H.M., Ouyang, C., Wynn, M., Wang, J., Zhu, X.: How to Guarantee
Compliance between Workflows and Product Lifecycles? Tech. rep., BPM Center Report
BPM-11-10 (2011)

https://www.activiti.org/
https://www.bonitasoft.com/

Event Stream Processing Units
in Business Processes

Stefan Appel, Sebastian Frischbier, Tobias Freudenreich, and Alejandro Buchmann

TU Darmstadt, Germany
lastname@dvs.tu-darmstadt.de

Abstract. The Internet of Things and Cyber-physical Systems provide enormous
amounts of real-time data in form of streams of events. Businesses can bene-
fit from the integration of this real-world data; new services can be provided to
customers, or existing business processes can be improved. Events are a well-
known concept in business processes. However, there is no appropriate abstrac-
tion mechanism to encapsulate event stream processing in units that represent
business functions in a coherent manner across the process modeling, process
execution, and IT infrastructure layer. In this paper we present Event Stream
Processing Units (SPUs) as such an abstraction mechanism. SPUs encapsulate
application logic for event stream processing and enable a seamless transition
between process models, executable process representations, and components at
the IT layer. We derive requirements for SPUs and introduce a BPMN extension
to model SPUs. We present a runtime infrastructure that executes SPUs and sup-
ports implicit invocation and completion semantics. We illustrate our approach
using a logistics process as running example.

1 Introduction

Business process modeling and execution is widely adopted in enterprises. Processes
are modeled by business experts and translated into executable workflow representa-
tions. They are executed inside IT infrastructures, e.g., Service-oriented Architectures
(SOAs) or workflow management systems. With the adoption of the Internet of Things
and Cyber-physical Systems, huge amounts of information become available that reflect
the state of the real world. The integration of this up-to-date information with business
processes (BPs) allows quick reactions on unforeseen situations as well as offering new
services to customers, e.g., monitoring of environmental conditions during transport of
goods and handling exceeded thresholds.

A common paradigm for the representation of information from sources like the
Internet of Things or Cyber-physical Systems are streams of events. The notion of a
stream illustrates that new events occur over time, e.g., continuous temperature sensor
readings. In such event-based systems, event producers do not necessarily know the
event consumers, or whether the events will be consumed at all. This independence is
intrinsic to the event-based approach [4]. The decoupling of event producers and con-
sumers as well as the arrival of an indefinite number of events over time requires an
appropriate event dissemination mechanism. Commonly, publish/subscribe systems are
used; they allow asynchronous communication between fully decoupled participants.

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 187–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

188 S. Appel et al.

Event consumers specify their interest in events in form of subscriptions; event produc-
ers specify the type of events they may publish in advertisements.

While single events are a well known and established concept in BPs [25,20], event
stream processing lacks an appropriate abstraction for the seamless integration across
the process modeling, process execution, and IT infrastructure layer. In collaboration
with Software AG1, a leader in business process management, we developed Event
Stream Processing Units (SPUs) as such an integration concept.

In this paper we present SPUs. We analyze BP modeling, BP execution, and the IT
infrastructure, and derive requirements for SPUs at the modeling, execution, and IT in-
frastructure layer. We address the decoupled nature of event-based systems and provide
process modelers with an appropriate representation of SPUs that can be mapped to
executable workflow representations and the IT infrastructure seamlessly. SPUs encap-
sulate event stream processing logic at the abstraction level of business functions and
hide implementation details. At the IT layer, SPUs are manageable components that
are conceptually equivalent to services in a SOA. SPUs contain, for example, complex
event processing (CEP) functionality.

The paper is structured as follows: we introduce a logistics scenario as running ex-
ample; we then derive requirements for the integration of event streams with BPs at
the modeling, execution, and IT infrastructure layer. In Section 3, we introduce Event
Stream Processing Tasks (ESPTs), a BPMN 2.0 extension to model SPUs. We present
a mapping of ESPTs to BPEL as well as a runtime environment for SPUs. In Section 4,
we discuss related work; we summarize our findings in Section 5.

Scenario. We illustrate our concept of SPUs by means of an order-to-delivery process.
The processing of an order consists of multiple process steps: an order is received, the
invoice for the order is prepared and the payment is processed. With SPUs, data gen-
erated during the physical transport can now be integrated with this process. An event
stream that provides monitoring data related to the shipment can be used to detect, e.g.,
temperature threshold violations. An SPU can represent such a monitoring task and in-
tegrate it at the BP modeling, BP execution, and IT infrastructure layer. A shipment
monitoring SPU is instantiated with the shipment of an order. The SPU completes af-
ter delivery. Throughout the paper, we illustrate our approach on the basis of such a
monitoring SPU.

2 Event Stream Integration Requirements

Business process models describe workflows in companies in a standardized way. They
document established business procedures with the goal of making complex company
structures manageable. This encompasses the business perspective as well as the IT
perspective. For the modeling and execution of processes, an appropriate level of ab-
straction is crucial to hide irrelevant details to the process modeler. Building blocks for
BP modeling, BP execution, and IT infrastructure should encapsulate business func-
tions in a self-contained way, e.g., like services in a SOA [22]. The BP model describes
interactions between these building blocks.

1 www.softwareag.com

www.softwareag.com

Event Stream Processing Units in Business Processes 189

The implementation of BPs in enterprises involves three layers: the modeling layer,
the execution layer, and the IT infrastructure layer (see Figure 1). During design time,
business experts create models, e.g., using the Business Process Modeling Notation
(BPMN) [20]. The model is then transformed into an executable workflow expressed,
e.g., with the Business Process Execution Language (BPEL) [19]. Typically, the work-
flow execution requires IT support, which is provided by a SOA and workflow manage-
ment systems.

Model
(e.g., BPMN 1/2, EPC)

<process name="pns:Caller">
 <invoke partnerLink=“Link">
 <service name="wns:Billing”/>
 </invoke>
</process>

Executable Workflow
(e.g., BPMN 2.0, BPEL)

IT Infrastructure
(e.g., SOA, EDA)

BPM Transition Process

Billing by Credit
Card

Invoke Billing
by Credit Card
Service

Billing by
Credit Card
Service

Invoke Invoice
Service and Billing
Service

Billing Service
(different methods);
Invoice Service

Accounting
(Invoice & Billing)

Examples of Abstraction
high coherence low coherence

D
es

ig
n

Ti
m

e
R
un

 T
im

e

Fig. 1. Transition steps between process modeling, process execution, and IT infrastructure layer

The transition process from a BP model to, e.g., SOA service interactions is not
trivial and requires expertise from the business perspective as well as from the IT per-
spective. To enable the seamless implementation of modeled processes, the abstraction
of business functions should have the same granularity at each layer; a coherent ab-
straction across the layers minimizes the transition effort [21]. The example in Figure 1
illustrates this: the low coherence case requires a refinement with each transition step
(a single BPMN task maps to multiple services) while the high coherence case allows
a one-to-one transition between the business function representations available at each
layer (e.g., BPMN tasks, BPEL invocations, and SOA services). In the following, we
derive requirements for SPUs as business function abstractions. With the encapsulation
of event stream processing in SPUs, a high coherence between the different layers is
achieved; this supports a seamless transition between process model, executable work-
flow, and IT infrastructure.

2.1 Business Process Modeling Layer

Process models are typically created by business experts that have a good knowledge
about the company structure and established workflows. These process models describe
interactions between business functions [22]. For a clear separation of concerns be-
tween the business perspective and the IT perspective, it is necessary to encapsulate
event stream processing logic in SPUs that hide technical details at the modeling layer.
SPUs are the abstract representation of business functions that process event streams.
SPUs require at least one event stream as input and may output event streams or single
events. An important characteristic of SPUs is the demand for continuous processing

190 S. Appel et al.

of event streams; rather than in single request/reply interactions, SPUs process new
events as they arrive, e.g., a shipment monitoring SPU receives new monitoring data
continuously.

Requirements. For the integration of event streams, the modeling notation has to pro-
vide elements or patterns to express SPUs (R1). While the actual event-processing func-
tionality is encapsulated inside SPUs, event streams should be accessible by the mod-
eler. Integrating event streams during modeling simplifies the transition to an executable
workflow. Thus, the modeling notation has to provide means to express event streams
as input/output to/from SPUs (R2). Finally, the model notion must allow SPUs to run
continuously and in parallel to other tasks (R3). This includes appropriate execution
semantics adapted to event-based characteristics (R4).

2.2 Workflow Execution Layer

The execution of BP models requires a transition from the, often graphical, model nota-
tion to a formal process representation. The interactions between the different process
tasks are formalized in a workflow description, e.g., using BPEL. This workflow de-
scription contains, e.g., service invocations and defines the input data for services. Like
traditional BP tasks can be mapped to human tasks or service invocations, SPUs need
to be mapped from the model to the IT infrastructure.

Requirements. To support SPUs at the workflow execution layer, the execution no-
tation has to support the instantiation of the SPUs provided by the IT infrastructure
(R5). It further needs means to define streams of events as input and output of SPUs
(R6). The instantiation and completion of SPUs needs to be configurable with respect
to event-based characteristics (R7).

2.3 IT Infrastructure Layer

The IT infrastructure holds the technical representations of SPUs. It is responsible for
the execution of the encapsulated event stream processing logic. In contrast to SOA
services, SPUs follow the event-based paradigm. While services are invoked explicitly,
SPUs behave reactively on streams of events. Services encapsulate business functions
in a pull manner (reply is requested); SPUs encapsulate reactive business functions that
are defined on event streams pushed into the system.

Requirements. The IT infrastructure has to provide a runtime environment for SPUs
that respects event-based characteristics, e.g., implicit instantiation (R8). It must pro-
vide containers for SPUs that represent business functions (R9). Just like services, these
SPU containers must be manageable and capable of receiving the required data in form
of event streams (R10).

3 Event Stream Processing Units

To support SPUs at the BP modeling, BP execution, and IT infrastructure layer, we
suggest mechanisms at each layer. At the modeling layer, we introduce Event Stream

Event Stream Processing Units in Business Processes 191

Processing Tasks (ESPTs) to represent SPUs in BPMN process models. At the IT infras-
tructure layer, we adapt Eventlets [1] for the implementation of SPUs. The execution
layer is responsible for the mapping between ESPTs and Eventlets. This is shown in
Figure 2: like services form a SOA, SPUs form an event-driven architecture (EDA). At
the execution layer, service tasks in a model are mapped to, e.g., web services. Equally,
ESPTs are mapped to Eventlets.

Events:
Streams of Data

Database:
Persistent Data

EDA

SPU1 ... SPUn

SOA

Service1 ... Servicen

Reactive Workflow (e.g., BPEL, BPMN 2.0)

Push-based
(subscribe)

Pull-based
(request/reply)

Reactive Business Processes (e.g., BPMN)

Service Task

Web Service

Event Stream
Processing Task

Eventlet

Fig. 2. Stream Processing Units (SPUs) as building blocks of an event-driven architecture (EDA)

3.1 Modeling Layer

BPMN 2.0 is widely adopted in industry and has a broad tool support. From a tech-
nological perspective, processes can be modeled in different granularities with BPMN.
From a semantical perspective, the single building blocks (BPMN tasks) of a process
model should reflect business functions and hide technical details. We extend BPMN
with building blocks that represent SPUs. The extension of BPMN is necessary to ad-
dress the characteristics of SPUs determined by the streaming nature of event data.
SPUs exhibit the following specific properties that cannot be expressed completely with
existing BPMN elements:

– Execution semantics: After the instantiation, SPUs can run indefinitely; events ar-
rive and are processed continuously, e.g., temperature measurements during the
shipment transport. The completion semantics differ from service-like request/re-
ply interactions where the reply triggers the process control flow to proceed. In
contrast, completion of SPUs has to be triggered - either implicitly or explicitly. In
either case, the completion indicates a clean shutdown. Implicit completion requires
the specification of a condition that determines when the SPU should complete. Ex-
amples are a timeout in case no new events arrive, the detection of a certain event
pattern, or dedicated events, e.g., shipment arrival. Explicit completion triggers the
completion of an SPU externally. For example, when a process reaches a point
where the processing of an event stream is not required anymore, e.g., shipment
arrival has been confirmed.

– Signaling: The continuous processing inside of SPUs requires support to trigger
concurrent actions, e.g., triggering exception handling in case of a temperature
threshold violation without stopping the shipment monitoring SPU.

192 S. Appel et al.

– Event stream input and output: The inputs for SPUs are event streams. An event
stream is specified by a subscription to future events, e.g., temperature measure-
ments for a certain shipment. The output is specified by an advertisement that de-
scribes the events producible by an SPU.

Our extensions to BPMN are shown in Figure 3. We introduce Event Stream Specifica-
tions (ESSs) that reflect input data and output data in form of event streams. Further,
we introduce Event Stream Processing Tasks (ESPTs) to model SPUs.

Event Stream
Processing Task

Input Event
Stream

Output Event
Stream

Event Stream
Processing Task

Implicit Completion Explicit Completion
Completion
Condition Stop Signal

Fig. 3. Extensions to BPMN: Event Stream Specifications (ESSs) and Event Stream Processing
Tasks (ESPTs)

Definition 1. An Event Stream Specification (ESS) (→ R2) references a stream of
events and their parameters. ESSs can be used as input and output of ESPTs. An ESS
used as input determines the subscription an ESPT has to issue. An ESS used as output
determines the advertisement that describes the event output stream of an ESPT.

Definition 2. An Event Stream Processing Task (ESPT) (→ R1, R3, R4) requires at
least one ESS as input. It may have output ESSs. When the control flow reaches an
ESPT, it is activated with the specified ESS as input. The transition from the active state
to the completing state (see BPMN task lifecycle [20, p. 428]) is triggered implicitly
or explicitly (→ R5). The implicit completion of an ESPT is realized with a modified
conditional sequence flow; the condition determines when the ESPT completes. The
explicit completion is realized with a dedicated signal. It is attached as non-interrupting
signal to the boundary of the ESPT. Upon completion, either implicitly or explicitly, the
ESPT stops processing, performs a clean shutdown, and passes on the control flow. To
trigger concurrent actions, ESPTs can activate outgoing sequence flow elements while
remaining in the active state.

Related BPMN Concepts. Events are part of the BPMN specification. However, events
in BPMN are meant to affect the control flow in a process [20, p. 233]. Events modeled
as ESS do not exhibit this property; they are rather a source of business-relevant infor-
mation that is exploited within the process. Thus, due to the different semantics, events
in the sense of the BPMN standard are not appropriate to model SPUs.

To avoid unnecessary extensions of BPMN, we evaluated different BPMN task types
as alternatives to ESPTs. From the task types contained in the BPMN 2.0 standard,
service tasks, business rule tasks, loop service tasks, and multiple instance service tasks
share properties with SPUs.

Service Tasks are containers for business functions that are implemented as SOA ser-
vices. The execution semantics for service tasks state, that data input is assigned to the
service task upon invocation; upon completion output data is available. For SPUs, this

Event Stream Processing Units in Business Processes 193

separation is not feasible; input data arrives continuously and output data can be avail-
able during task execution in form of output streams. Therefore, service tasks are no
appropriate representation for SPUs. In Business Rule Tasks, event stream processing
can be used to check conformance with business rules. However, event stream process-
ing supports a wider application spectrum than conformance checking, e.g., real-time
shipment tracking. Further, output in form of event streams is not part of business rule
tasks; their purpose is to signal business rule evaluation results. Loop Service Tasks
perform operations until a certain stop condition is met. However, the whole loop task
is executed repeatedly, i.e., a repeated service call. This repeated execution of a busi-
ness function depicts a different level of abstraction compared to continuous process-
ing inside an SPU; SPUs perform continuous processing to complete a single business
function. To use loop tasks for event stream processing, the process model would have
to define the handling of single events rather than the handling of event streams. This
conflicts with the abstraction paradigm of business functions and degrades coherence
across the layers. Multiple Instance Service Tasks allow the execution of a task in par-
allel, i.e., parallel service calls. However, like loop tasks, this would require one task
per event which conflicts with the intention to encapsulate business functions in tasks.
In addition, the number of task instances executed in parallel is static and determined at
the beginning of the task. This is not suitable for event processing since the number of
events is not known a priori.

In general, BPMN tasks have no support for triggered completion required in event
processing. In addition, event streams cannot be represented as input to and output
from tasks. Thus, we extend BPMN with ESPTs. ESPTs support implicit and explicit
completion, an essential part of SPU execution semantics. Further, we introduce ESSs
as input to and output from ESPTs in the form of event streams.

Example: Shipment Monitoring. To illustrate the application of our BPMN exten-
sions, we model the monitoring of environmental conditions in the order process in-
troduced in Section 1. Figures 4 and 5 show two variants with different completion
strategies. The shipment monitoring is an SPU that receives monitoring events as input
stream. This shipment monitoring SPU is modeled as an ESPT in BPMN; the monitor-
ing events are assigned as an input ESS. The monitoring task can send a message event
(as concurrent action) to indicate a violation of environmental conditions, e.g., temper-
ature threshold exceeded. The message event can activate a task or trigger a different
process for handling the exception; this exception handling is omitted here for brevity.

In Figure 4, the shipment monitoring is modeled with explicit completion semantics.
As soon as the shipment has arrived, the monitoring is not required anymore. Thus, the
monitoring task completion is triggered by sending the stop signal.

In Figure 5, the shipment monitoring is modeled with implicit completion semantics.
This requires the definition of a completion condition. In our example, we specify the
shipment arrival: when the location of the shipment matches the destination address,
the monitoring is completed. Other implicit completion conditions could be dedicated
arrival events, e.g., arrival scans of shipment barcodes, or timeouts, e.g., no new mon-
itoring events for the shipment arrive. The condition needs to be evaluated inside the
SPU, thus support for different condition types depends on the technical infrastructure
that executes SPUs.

194 S. Appel et al.

Confirm
Order

SPU:
Monitor

Shipment

Create
Invoice

Process
Payment

Confirm
Arrival

Shipment
Monitoring

Events

Shutdown
Monitoring

Shutdown
Monitoring

Environmental
Condition Violation

Fig. 4. Shipment monitoring SPU that is stopped explicitly. The data input/output of the service
tasks omitted.

Confirm
Order

SPU:
Monitor

Shipment

Create
Invoice

Process
Payment

Confirm
Arrival

Shipment
Monitoring

Events Environmental
Condition Violation

Shipment Arrival:
Location matches destination address

Fig. 5. Shipment monitoring SPU that is stopped implicitly. The data input/output of the service
tasks omitted.

3.2 Workflow Execution Layer

The support of BPs by an IT infrastructure requires a transition from the graphical
process notation to an executable format. With this technical representation, tasks of
a process model can be executed by technical components of the IT infrastructure.
The BPMN 2.0 standard itself specifies such a technical representation of the graph-
ical model. The standard also provides examples for the mapping between BPMN and
BPEL. Independent of the concrete technical representation format, the goal is to bridge
the semantic gap between graphical notation and interfaces of IT components so that the
process can be executed automatically. The transition from a graphical model towards a
technical representation requires adding additional technical information necessary for
the execution.

For different task types and control flow components, execution languages provide
executable representations. When the mapping of graphical process task and process
control flow elements is complete and all necessary data is specified, the process execu-
tion engine is able to execute instances of the process. Each instance reflects a concrete
business transaction, e.g., processing of Order No. 42. For each process instance, the
execution engine orchestrates the different tasks, passes on task input and output data,
and evaluates conditions specified in the control flow. Examples are the execution of
BPMN service tasks and human tasks: a service task can be executed by calling a web
service. For this, the execution engine needs the service address as well as the input
data to send to a service and the format of the expected output data from this service.
For the execution of human tasks, process execution engines typically provide a front
end to perform the work necessary to complete the task.

Event Stream Processing Units in Business Processes 195

At the execution layer we define the technical details that allow ESPTs to be mapped
to IT components. The mapping mechanism has to take into consideration, that events
arrive indefinitely and are not known when the control flow reaches an ESPT. Thus, the
data input must be specified as a subscription for desired events that arrive during the
execution period of an ESPT. During process execution, this subscription has to parti-
tion the event stream in process instance specific sub streams: when a process instance
is created for a certain business task, e.g., processing of Order No. 42, the event stream
has to be partitioned in sub streams of events relevant for the different order process
instances. This is shown in Figure 6: a monitoring task must be active for each process
instance. This task instance has to receive all monitoring events for the shipment that
is handled in this process instance. Given that each event carries a shipment ID, each
monitoring task instance can issue a subscription for the appropriate events using the
shipment ID as filter. When the process instance ID correlates with the shipment ID,
the subscription can also be derived by the process execution engine on the basis of the
process instance ID.

ShipmentID = 3

ShipmentID = 2

ShipmentID = 1
Shipment Monitoring

Event Stream

Shipment Monitoring1
Process Instance 1

Shipment Monitoring2
Process Instance 2

Shipment Monitoring3
Process Instance 3

Fig. 6. Process execution: Event Stream Processing Tasks (ESPTs) receive sub streams of events

The subscription parameters are essential for the instantiation of an ESPT. Like the
input data passed on to a service during a service call, the subscription is part of the
input data during an ESPT instantiation. Further, when the ESPT is modeled with an
implicit completion, the completion condition is part of the input data required for the
instantiation. As for ESPT completion, different ESPT instantiation strategies are pos-
sible. The push-based nature of stream processing allows an implicit creation of ESPT
instances upon the arrival of appropriate events. In addition, ESPT instances can also
be created explicitly by the process execution engine. When switching from explicit to
implicit instantiation, the responsibility of instantiation moves from the process execu-
tion engine to the IT infrastructure. Implicit instantiation is useful when the moment of
instantiation cannot be determined by the execution engine. It is also the more natural
approach with respect to the characteristics of event streams; application logic is exe-
cuted as soon as appropriate events are available. We support both instantiation schemes
to allow for a high flexibility (→ R8). Independent of the instantiation scheme, a sub-
scription does not guarantee the availability of events, e.g., that events for Shipment
No. 42 are published. Explicitly instantiated ESPTs can use a timeout to detect such
an absence of events. With implicit instantiation, ESPT instances are not created in this
case; the execution environment can detect and report this.

ESPT Instantiation and Completion. The execution of a BPs leads to process in-
stances that may run in parallel. Each ESPT in the model has corresponding ESPT
instances that are created during process execution. Each ESPT instance processes the

196 S. Appel et al.

event streams relevant for a particular process instance (see Figure 6). The process exe-
cution engine can create an ESPT instance explicitly during the execution of a process
instance. The subscription parameters required for the explicit instantiation must be de-
rived per process instance; they define the sub stream of events that has to be processed
by a particular ESPT instance, e.g., monitoring events for Shipment No. 42. The explicit
instantiation is specified as follows (→ R6, R7, R8):

EsptInstantiate(EsptName, EventStreamFilter, SubStreamAttribute,
SubStreamId [, CompletionCondition])

For the monitoring example, the explicit instantiation of a monitoring task for Shipment
No. 42 without and with completion condition is:

EsptInstantiate(MonitorShipment, MonitoringEvent,
ShipmentId, 42)

EsptInstantiate(MonitorShipment, MonitoringEvent,
ShipmentId, 42, timeout(120sec))

An ESPT is referenced by name: EsptName, e.g., Monitor Shipment. The subscription
parameter has three parts: First, a general filter for events of interest that applies to all
ESPT instances is specified as EventStreamFilter, e.g., monitoring events. Sec-
ond, the SubStreamAttribute defines the part of the event data that partitions the
event stream with respect to ESPT instances, e.g., the shipment ID; both are static ex-
pressions and derived based upon the ESS used in the model. Third, the SubStreamId
defines the concrete event sub stream for which an ESPT instance should be created,
e.g., Shipment No. 42. The SubStreamId is dynamic and derived per process in-
stance by the execution engine at run time, e.g., based on the process instance ID.
The optional CompletionCondition can be specified for implicit completion, e.g.,
defining a time out.

With implicit instantiation, the process execution engine only registers a static sub-
scription pattern for an ESPT once, e.g., with the registration of the process. Since
events arise in a push-style manner, the IT infrastructure is able to create ESPT instances
implicitly at run time. The implicit instantiation is specified as follows (→ R6, R7, R8):

EsptRegister(EsptName, EventStreamFilter,
SubStreamAttribute [, CompletionCondition])

For the shipment monitoring example, the ESPT registration is:

EsptRegister(MonitorShipment, MonitoringEvent, ShipmentId)

In contrast to explicit instantiation, the execution engine is not responsible for the dy-
namic subscription part anymore. Rather, the IT infrastructure ensures, that an ESPT
instance is created for each distinct value of the SubStreamAttribute, e.g., for
each shipment ID.

For the explicit completion of an ESPT instance, the process execution engine has to
advise the IT infrastructure to perform a shutdown of particular ESPT instances, e.g.,
the shipment monitoring of Shipment No. 42. The completion command is specified as
follows (→ R8):

EsptComplete(EsptName,SubStreamId)

Event Stream Processing Units in Business Processes 197

The SubStreamId identifies the ESPT instance that should be completed. In the mon-
itoring example for Shipment No. 42, the following completion command is issued after
the arrival confirmation task:

EsptComplete(MonitorShipment,42)

Although ESPTs have different execution semantics than BPMN service tasks, the con-
trol commands to register, instantiate, and complete ESPTs follow a request/reply pat-
tern. Thus, our integration approach of event streams with BPs can be mapped to web
service invocations. Web service invocation capabilities are part of most process execu-
tion engines so that ESPTs can be registered, instantiated, or completed; the ESPT name
as well as further subscription and completion parameters are specified as variables in
the service invocation. In addition to service invocation mechanisms, it might be nec-
essary to implement a back channel for control flow purposes. Implicitly completing
ESPT instances might have to notify the process execution engine about completion.
This is the case when the control flow waits for a completion of an ESPT, e.g., when an
ESPT is used before a BPMN AND-Join.

ESPT Mapping in BPEL. Business process models that contain ESPTs can be mapped
to BPEL. However, the BPEL standard [19] does not support all concepts required for a
complete mapping of the different instantiation and completion strategies. ESPTs with
explicit instantiation and explicit completion can be mapped to standard BPEL: the ex-
plicit instantiation is realized as web service call. The return from this call is blocked by
the IT infrastructure until the ESPT instance is explicitly stopped by a EsptComplete
service invocation. Explicit instantiation and completion in BPEL are as follows:

<invoke partnerLink="EsptWebService" operation="EsptInstantiate"
inputVariable="explicitInstantiateParams"
outputVariable="completed"/>

<invoke partnerLink="EsptWebService" operation="EsptComplete"
inputVariable="explicitCompletionParams"/>

With implicit instantiation, single ESPT instances are transparent to the process execu-
tion engine. The registration of ESPTs has to be performed once with the registration of
a process; the ESPT instances are then created automatically. The BPEL standard does
not support hooks for service invocation upon the registration of new processes. Thus,
a BPEL execution engine has to be extended with these capabilities to support implicit
instantiation of ESPTs. The hook for execution at process registration can be part of the
BPEL code itself; when a new process is registered and checked, this part of the process
is executed only once:

<atRegistration><invoke partnerLink="EsptWebService" operation=
"EsptRegister" inputVariable="implicitInstantiateParams"/>
</atRegistration>

When an ESPT is invoked implicitly, there is no BPEL web service invocation in each
process instance. Thus, a blocking service invocation cannot be used to interrupt the

198 S. Appel et al.

control flow until completion of an ESPT instance. Rather, the process execution en-
gine has to be notified externally about the completion of an ESPT instance so that the
control flow can proceed. Extensions to BPEL engines to react on such external triggers
have been proposed, e.g., in [14] and [12]. The ESPT can be mapped to a barrier that is
released when the ESPT instance signals its completion.

3.3 IT Infrastructure Layer

SPUs require a technical representation at the IT infrastructure layer. In [1] we present
a suitable component model and runtime infrastructure to encapsulate event stream pro-
cessing. We introduce event applets, in short Eventlets, as service-like abstraction for
event stream processing. Our model benefits from concepts known from services; it
hides application logic so that Eventlets represent business functions. We extend the
runtime environment presented in [1] to allow for the integration with BP execution
engines. We now introduce the main concepts of Eventlets to make this paper self-
contained; we then present the extensions to the Eventlet middleware. We adapt the
more general Eventlet nomenclature of [1] to fit the terminology of this paper.

<EventletName>

CompletionCondition: <Validity of Eventlet>
EventStreamFilter: <Precondition for event handling>
SubStreamAttribute: <Distinction criteria for Eventlet instances>

Eventlet Metadata

onInstantiation(subStreamId id) { ... }
onRemove() { ... }
onCompletion() { ... }
onEvent(Event e) { ... }

Eventlet Runtime Code <InstanceID>

Fig. 7. Eventlet structure: Eventlet metadata and Eventlet runtime methods

Eventlets encapsulate event stream processing logic with respect to a certain entity,
e.g., shipments (→ R10). An Eventlet instance subscribes to events of a certain entity
instance, e.g., Shipment No. 42 (→ R11). The basic structure of an Eventlet is shown in
Figure 7. The grouping attribute to define the sub stream of events associated with a cer-
tain entity instance is specified as Sub Stream Attribute2 in the Eventlet metadata, e.g.,
the shipment ID. Further, the metadata holds the Completion Condition3, e.g., a time-
out, as well as the Event Stream Filter4 as a general subscription filter applied by all
Eventlet instances, e.g., monitoring event. Eventlet instances are created implicitly or
explicitly (→ R9). With implicit instantiation the middleware ensures that an Eventlet
instance is active for each distinct value of the sub stream attribute, e.g., for each ship-
ment in transport. With explicit instantiation, Eventlet instances are created manually by

2 Referred to as Instantiation Expression in [1].
3 Referred to as Validity Expression in [1].
4 Referred to as Constant Expression in [1].

Event Stream Processing Units in Business Processes 199

specifying a concrete sub stream attribute value, e.g., Shipment No. 42. The completion
of Eventlet instances is triggered implicitly by the completion condition or explicitly by
a command (→ R9). Eventlet instances run in a distributed setting and have a managed
lifecycle; application logic can be executed upon instantiation, removal, completion,
and upon event arrival (→ R11).

In our monitoring example, an Eventlet holds application logic to detect tempera-
ture violations. This can involve a lookup in a database at instantiation to retrieve the
temperature threshold for a certain shipment. It can also involve issuing complex event
processing (CEP) queries to rely on the functionality of a CEP engine for temperature
violation detection. An evaluation of CEP queries encapsulated in Eventlets is presented
in [1]. The semantics of ESPT execution (cf. Section 3.2) are implemented by the Event-
let middleware. The EsptInstantiate and EsptRegister invocations provide
the Eventlet middleware with the metadata to explicitly or implicitly create Eventlet in-
stances. For implicit instantiation, the middleware creates a so-called Eventlet Monitor;
it analyzes the event stream and detects the need to create Eventlet instances as soon as
events of a new entity instance, e.g., a new shipment, occur. Like services, Eventlets are
managed in a repository and identified via the EsptName.

Eventlet Middleware Extension. The Eventlet middleware infrastructure uses the
Java Message Service (JMS) for event dissemination. JMS supports publish/subscribe
communication with event content sensitive subscriptions. Our implementation sup-
ports events in attribute-value and XML representation. For attribute-value events, the
Event Stream Filter is specified as JMS message selector in a SQL-like syntax. The Sub
Stream Attribute is the name of an attribute, e.g., shipmentID. For XML events, Event
Stream Filter and Sub Stream Attribute are specified as XPath expressions on the event
content. For implicit completion of Eventlet instances, timeouts are supported.

We extended the Eventlet middleware in [1] to support ESPT execution. As shown
in Figure 8, the Eventlet middleware is configured and controlled using a command
bus. This command bus is realized as a set of JMS queues and topics to which all mid-
dleware components connect. We added a web service interface to the Eventlet Man-
ager; the new interface accepts service invocations as described in Section 3.2 and uses
the internal command bus to start or stop Eventlet Monitors and Eventlet instances.
The web service interface is implemented as Java Enterprise application. The Eventlet

Business Process Execution (e.g., BPEL)

Eventlet
Instances

Eventlet
Repository

Eventlet
Monitors

Command Bus

JMS
Interface

WSDL/SOAP
interface

Native
Client

Eventlet Manager

Eventlet Middleware

Fig. 8. Eventlet middleware access via web service

200 S. Appel et al.

middleware can be deployed on multiple application servers and use a JMS infras-
tructure in place. It is designed for scalability: Eventlet instances can run on arbitrary
machines.

4 Related Work

Events are part of various BP modeling notations like BPMN 2.0 and event-driven pro-
cess chains (EPCs) [13,25]; they trigger functions/tasks and influence the process con-
trol flow. The incorporation of (complex) events leads to more reactive and dynamic
processes. This is a core concept in event-driven architectures (EDA) [6,18] or event-
driven SOA [16]. However, event streams do not have explicit representations in BPMN
or EPCs. Currently, event streams have to be modeled explicitly as multiple events, e.g.,
using loops that process events. Such explicit modeling of complex events and event
processing is for example presented in [2,3,5,9,26]. The problem is, that process mod-
els are often created by business experts without detailed knowledge about technical
details of event processing. Further, to make models intuitively understandable, mod-
elers should use as few elements as possible with self-explaining activity labels [17].
Thus, activities should represent business functions. Services are a successful abstrac-
tion mechanism to support this. Services represent business functions and exhibit a data
input/output interface [22]. Process models do not (and should not) contain the applica-
tion logic of a service; this is left to service developers who can use more appropriate
modeling notations to describe the technical details. Thus, the approach in this work
confers basic service concepts [7] to event stream processing and introduces SPUs as
an appropriate abstraction.

At the execution layer, Juric [12] presents extensions to BPEL that allow service
invocations by events. In [23], Spiess et al. encapsulate event sources as services. Both
approaches do not address event streams as input/output to/from components; rather
than a stream of events, single events are understood as business relevant.

At the technical layer, event streams are well known. CEP is supported by a variety
of tools, e.g., the Esper CEP engine [8]. CEP is also part of BP execution environ-
ments like JBoss jBPM/Drools [11]. In [15], BP modeling techniques are used to ex-
press CEP queries. Event stream processing is integrated bottom-up; CEP queries and
rules are specified at the technical layer. In contrast, we propose a top-down approach
where business entity-centric event streams are visible as input/output of ESPTs at the
modeling layer. Event streams can be as business relevant as, e.g., input/output data of
services. Thus, like service task input/output is explicit in models, event streams are
explicit at the modeling layer in our approach.

The event stream processing application logic inside Eventlets can be simple rules,
CEP queries, or complex event processing networks as described in [10]. While event
stream processing queries can run centralized, e.g., a single CEP query processes mon-
itoring data of all shipments, our middleware instantiates Eventlets for each entity
instance, e.g., one CEP query per shipment. This encapsulation of event stream pro-
cessing logic is related to design by units described in [24]. It improves scalability and
fosters elasticity; in [1] we show the scalability benefits of CEP query encapsulation
in Eventlets. The more process instances require entity-centric stream processing, the
more Eventlets are instantiated and vice versa.

Event Stream Processing Units in Business Processes 201

5 Conclusion

In collaboration with Software AG, we identified the need to integrate event streams
with BP modeling and execution. Rather than single events, event streams are consid-
ered as business-relevant units in this context. We developed an approach for this inte-
gration at the modeling, execution, and IT infrastructure layer. Our approach introduces
SPUs: a consistent abstraction for event stream processing across the layers. Like ser-
vices, SPUs encapsulate business functions; they use event streams as business-relevant
data sources. This allows intuitive modeling from the business perspective. The abstrac-
tion paradigm of SPUs leads to a high coherence across the layers. This minimizes the
transition effort from the graphical model notation to the executable process description
and from the executable process description to the IT infrastructure. Our approach is a
clear separation of concerns; SPUs are declarative, the (imperative) application logic
resides solely at the technical layer inside Eventlets.

The contributions of this paper are: 1) SPUs as abstraction to encapsulate event
stream processing as business functions, 2) an extension of BPMN 2.0 with ESPTs
and ESSs to model SPUs, 3) a mapping of ESPTs and ESSs to an executable process
description, and 4) an extension of our Eventlet middleware to interface with BP execu-
tion engines. We take semantics of event processing into account and support implicit as
well as explicit instantiation and completion strategies. Event stream processing tech-
niques, like CEP, are widely adopted. Our approach encapsulates them and makes event
stream processing available coherently across the BP modeling, BP execution, and IT
infrastructure layer. We illustrate our approach with the running example of a shipment
monitoring SPU inside an order-to-delivery process.

In ongoing work we are enhancing our Eventlet middleware. We implement support
for more types of completion conditions and investigate complex expressions as triggers
for the instantiation of Eventlets. We are also working on extensions to the event-driven
process chain (EPC) notation to support SPUs in EPCs.

Acknowledgements. We thank Dr. Walter Waterfeld, Software AG, Germany, for the
valuable feedback and insights into process modeling practice. Funding by German
Federal Ministry of Education and Research (BMBF) under research grants 01IS12054,
01IC12S01V, and 01IC10S01. The authors assume responsibility for the content.

References

1. Appel, S., Frischbier, S., Freudenreich, T., Buchmann, A.: Eventlets: Components for the
integration of event streams with SOA. In: SOCA, Taiwan, (2012)

2. Barros, A., Decker, G., Grosskopf, A.: Complex events in business processes. In: Abramow-
icz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 29–40. Springer, Heidelberg (2007)

3. Biörnstad, B., Pautasso, C., Alonso, G.: Control the flow: How to safely compose streaming
services into business processes. In: SCC, USA (2006)

4. Buchmann, A., Appel, S., Freudenreich, T., Frischbier, S., Guerrero, P.E.: From calls to
events: Architecting future bpm systems. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM
2012. LNCS, vol. 7481, pp. 17–32. Springer, Heidelberg (2012)

5. Caracaş, A., Kramp, T.: On the expressiveness of BPMN for modeling wireless sensor net-
works applications. In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.) BPMN 2011. LNBIP,
vol. 95, pp. 16–30. Springer, Heidelberg (2011)

202 S. Appel et al.

6. Chakravarty, P., Singh, M.: Incorporating events into cross-organizational business processes.
IEEE Internet Computing 12(2), 46–53 (2008)

7. Elfatatry, A.: Dealing with change: components versus services. Communications of the
ACM 50(8), 35–39 (2007)

8. EsperTech Inc. Esper Complex Event Processing Engine (2013)
9. Estruch, A., Heredia Álvaro, J.A.: Event-driven manufacturing process management ap-

proach. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 120–133.
Springer, Heidelberg (2012)

10. Etzion, O., Niblett, P.: Event processing in action. Manning Publications Co. (2010)
11. JBoss.com. Drools - The Business Logic integration Platform (2013)
12. Juric, M.B.: WSDL and BPEL extensions for event driven architecture. Information and

Software Technology 52(10), 1023–1043 (2010)
13. Keller, G., Scheer, A.-W., Nüttgens, M.: Semantische Prozeßmodellierung auf der Grundlage

”Ereignisgesteuerter Prozeßketten (EPK)”. Inst. für Wirtschaftsinformatik (1992)
14. Khalaf, R., Karastoyanova, D., Leymann, F.: Pluggable framework for enabling the execution

of extended BPEL behavior. In: ICSOC/WESOA, Austria (2007)
15. Kunz, S., Fickinger, T., Prescher, J., Spengler, K.: Managing complex event processes with

business process modeling notation. In: Mendling, J., Weidlich, M., Weske, M. (eds.) BPMN
2010. LNBIP, vol. 67, Springer, Heidelberg (2010)

16. Levina, O., Stantchev, V.: Realizing event-driven SOA. In: ICIW, Italy (2009)
17. Mendling, J., Reijers, H., van der Aalst, W.: Seven process modeling guidelines (7pmg).

Information and Software Technology 52(2), 127–136 (2010)
18. Michelson, B.M.: Event-driven architecture overview. Patricia Seybold Group (2006)
19. OASIS Web Services Business Process Execution Language (WSBPEL) TC. Web services

business process execution language (BPEL), version 2.0 (April 2007)
20. Object Management Group (OMG). Business process model and notation (BPMN), version

2.0 (January 2011)
21. Ouyang, C., Dumas, M., van der Aalst, W., ter Hofstede, A., Mendling, J.: From business

process models to process-oriented software systems. ACM Transactions on Software Engi-
neering and Methodology 19(1), 2:1–2:37 (2009)

22. Papazoglou, M.: Service-oriented computing: concepts, characteristics and directions. In:
WISE, Italy (2003)

23. Spiess, P., Karnouskos, S., Guinard, D., Savio, D., Baecker, O., Souza, L., Trifa, V.: SOA-
based integration of the internet of things in enterprise services. In: ICWS, USA (2009)

24. Tai, S., Leitner, P., Dustdar, S.: Design by units: Abstractions for human and compute re-
sources for elastic systems. IEEE Internet Computing 16(4), 84–88 (2012)

25. van der Aalst, W.: Formalization and verification of event-driven process chains. Information
and Software Technology 41(10), 639–650 (1999)

26. Wieland, M., Martin, D., Kopp, O., Leymann, F.: SOEDA: A method for specification
and implementation of applications on a service-oriented event-driven architecture. In:
Abramowicz, W. (ed.) BIS 2009. LNBIP, vol. 21, pp. 193–204. Springer, Heidelberg (2009)

Predicting the Quality

of Process Model Matching

Matthias Weidlich1, Tomer Sagi1, Henrik Leopold2, Avigdor Gal1,
and Jan Mendling3

1 Technion - Israel Institute of Technology, Technion City, 32000 Haifa, Israel
{weidlich,stomers7}@tx.technion.ac.il, avigal@ie.technion.ac.il

2 Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
henrik.leopold@wiwi.hu-berlin.de

3 Wirtschaftsuniversität Wien, Augasse 2-6, A-1090 Vienna, Austria
jan.mendling@wu.ac.at

Abstract. Process model matching refers to the task of creating cor-
respondences among activities of different process models. This task is
crucial whenever comparison and alignment of process models are called
for. In recent years, there have been a few attempts to tackle process
model matching. Yet, evaluating the obtained sets of correspondences
reveals high variability in the results. Addressing this issue, we propose
a method for predicting the quality of results derived by process model
matchers. As such, prediction serves as a case-by-case decision making
tool in estimating the amount of trust one should put into automatic
matching. This paper proposes a model of prediction for process match-
ing based on both process properties and preliminary match results.

1 Introduction

Process models have been widely established as a tool to manage business opera-
tions. They may be created for different purposes, such as process documentation
or workflow implementation and in different contexts, e.g., for different organisa-
tional units or at different points in time. Many use cases require the comparison
and alignment of process models, for instance, the validation of a technical pro-
cess implementation against a business-centred specification model [1] or clone
detection within a process model repository [2]. The need for comparing process
models fostered research on process model matching, which refers to the task of
creating correspondences among activities of different process models.

Recently, there have been a few attempts to tackle process model match-
ing [1,3,4,5]. Typically, the developed matchers relied on the rich literature of
schema and ontology matching [6,7] with emphasis on string comparison and
graph matching. Evaluating the outcome of these works shows that the empir-
ical quality is subject to high variability even within a single dataset. While
matchers yield high precision and recall for some matching tasks, they entirely
fail for others. This raises the question of how to distinguish matching tasks for
which matchers yield high quality matches from those for which results are poor.

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 203–210, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

204 M. Weidlich et al.

$&'&*+&
-./*;*'</*.-

.; =*>/?

?&'@�CE
;.>*F&-/*/G

$&/H>-
F.'HI&-/J

�>'?*+&�
F.'HI&-/J

�<-'&K�=*>/?
-./*;*'</*.-

�������	
����������

�&'*F&�<=.H/
;*>J/�-<I&

�&'*F&�<=.H/
J&'.-F�-<I&

�>&</&
'&>/*;*'</&

$&'&*+&
-./*;*'L
.; =*>/?

�������	
����������

�.-;*>IJ�
F&-//G�Q*/?

U<JJU.>/

�.-;*>I
F&-//G�Q*/?.H/�

U<JJU.>/

�.-;*>I�
'?.*'&�.;

-<I&

�?&'@�
-</*.-<K*/G

�>&</&
'&>/*;*'</&

E*V-
'&>/*;*'</& �>'?*+&W<K*F</&

F&-//G

Fig. 1. Example of two business process models and their correspondences

In this work, we offer preliminary observations on how to use matching pre-
diction [8] to tackle this question. We observe that both properties of process
models and the similarity between their characteristics impact the accuracy of
a specific match task. In particular, differences in syntactic and semantic as-
pects of labels as well as structure and behaviour of the models can be taken
into account. Based on such process properties and similarity characteristics, we
develop a statistical model to predict the quality of a match result for a given
task.

The rest of the paper is organized as follows. Section 2 introduces the process
model matching problem and the state-of-the-art in schema matching prediction.
Our approach to prediction for process model matching is detailed in Section 3.
Section 4 reviews related work, before Section 5 concludes the paper.

2 Background

This section first reviews the matching problem for process models, before ex-
plaining the background of schema matching prediction.

The Matching Problem. For two process models with A1 and A2 as their
sets of activities, process model matching aims at identifying activity correspon-
dences that represent the same behaviour in both models. Following Gal [6],
we subdivide the matching process into first and second line matching. A first
line matcher operates on the process models, compares some of their attributes
such as activity labels or the process structure, and produces a similarity matrix
M(A1,A2) over activities with |A1| rows and |A2| columns. A second line matcher
works on one or more similarity matrices, e.g., by thresholding or combining
them. Certain second line matchers create a binary similarity matrix M’(A1,A2)
with entries being either 0 or 1, the latter represents correspondences.

Figure 1 illustrates the matching problem with two processes for registering a
newborn. Although both processes are similar, the lower process slightly deviates
from the upper one. Considering the highlighted correspondences between both
models, it becomes apparent that some matches are more easily identified than
others. A straightforward correspondence is the one between Receive notification
of birth and Receive notific. of birth as measures for first line matching, e.g.,

Predicting the Quality of Process Model Matching 205

the Levenshtein distance, indicate high values in a similarity matrix. However,
to identify complex correspondences involving sets of activities, like the one
between Decide about first name and Decide about second name with Confirm
choice of name, the usage of semantic knowledge and the model structure is
required. For instance, lexical databases can help to identify that words such as
decide and confirm are close in their meaning. Other differences relate to models
in their properties. The upper process contains three splits, whereas the lower
one represents a plain sequence of tasks. Hence, we anticipate that there may be
several complex correspondences that are generally harder to identify.

Schema Matching Prediction. Our approach relies on recent results on
schema matching prediction [8]. In the absence of a ground truth, matchers per-
form a “best effort” matching without any indication of the prospective success
of their efforts. Schema matching prediction provides an assessment mechanism
that supports schema matchers in this context. Predictors foretell the success
of a matcher in identifying correct correspondences by analysing the matcher’s
pair-wise similarity scores.

Sagi and Gal [8] argue for the importance of tunability to support prediction
of different qualities, putting emphasis, e.g., on precision or recall. Thus, pre-
diction models compose various, loosely correlated predictors into a statistical
model. The weights of participating predictors are tuned, so that the combined
prediction correlates well with the desired quality criterion. To accommodate for
tunable prediction models, our work leverages a set of matrix evaluation func-
tions, termed matrix predictors [8]. These predictors encode different assump-
tions on how a particular value distribution in a similarity matrix indicates the
likelihood of a successful match. Each predictor is applied to a similarity matrix
M(A1,A2) obtained by a first line matcher and yields a non-binary prediction
value. Here, we give two examples for such predictors.
◦ An entry (ai, aj) in M(A1,A2) is dominant, if it has the highest value in the
respective row and column of the matrix. The Dominants matrix predictor
measures the ratio of dominant values and k = min{|A1|, |A2|}.

◦ The Binary Matrix predictor measures the distance between M(A1,A2) and
the closest ideal matrix M’(A1,A2) in a vector space, where M’(A1,A2) is
required to be a binary matrix (with the entries being either 0 or 1).

3 Prediction for Process Model Matching

This section introduces our approach to predicting the quality of process model
matching. Figure 2 illustrates the major components of the proposed prediction
architecture. Given a pair of process models, prediction may either be based
solely on process properties (top) or on a similarity measure (bottom). In the
first case, properties of both process models are extracted and process property
predictors derive a score for the model pair. In the second case, we obtain a set of
similarity matrices over the activities of the processes. Then, matrix predictors
exploit characteristics of these matrices to obtain a prediction score per model
pair and similarity measure.

206 M. Weidlich et al.

Pair of
Processes

Process
Model

M1

Process
Property
Extractor

Process
Similarity
Measure

Matrix
Predictors

Property Scores

Score 1 Score m

Similarity Matrix Scores

Score 1 Score m

Prediction
Models

Pre

F

Rec

Pred.
Model
Builder

Process
Model

M2

Process
Property
Predictor

Ground Truth Correspond.

Corr 1 Corr m
Similarity Matrices

Over Activities

Process Properties
M1

Prop. 1
M1

Prop. n
M2

Prop. 1
M2

Prop. n

Fig. 2. Overview of the prediction architecture

The prediction scores are combined into a prediction model, predicting a cer-
tain quality measure, such as precision, recall, or their harmonic mean, the F-
score. To this end, a stepwise (multi-valued) regression is performed over the
whole set of predictors in the presence of a ground truth, i.e., a set of correspon-
dences that are known to hold true. Depending on the origin of the prediction
scores, the prediction model generalises in different dimensions, e.g., it is relative
to process properties (if only scores per process pair are considered) or to process
properties and characteristics of similarity measures.

Below, we instantiate this architecture with strategies for prediction based on
process properties (Section 3.1) and process similarity measures (Section 3.2).
Then, Section 3.3 discusses how prediction is used to answer the question of how
to identify matching tasks for which matchers yield high quality results.

3.1 Prediction Based on Process Properties

Below, we present several examples of property predictors, each taking a certain
process property and implementing an evaluation measure.

Avg Length of Labels (ALL). An example of a property referring to the textual
syntax is the average length of activity labels. It can be expected to yield insights
on the suitability of textual similaritymeasures.With avg1 and avg2 as the average
lengths of activity labels in two processes, we define two predictors.

◦ ALLR is the relative difference between the properties, i.e., the prediction
score is pALLR = 1 if max{avg1, avg2} = 0 and pALLR = 1 − (|avg1 −
avg2|/max{avg1, avg2}) otherwise.

◦ ALLA is the arithmetic average of the smoothed absolute deviation of the
property values from a label length l (e.g., l = 20), i.e., pALLA = (1 −
max{0, 1− 0.01(avg1 − 20)2})/2 + (1−max{0, 1− 0.01(avg2 − 20)2})/2.

Number of Labels with Action in a Lexical Database (NLALD). To
take semantic textual features into account, we consider the number of activity
labels for which the action can be found in a lexical database, e.g. WordNet [9]
for English. Therefore, all activity labels are annotated with their semantic com-
ponents using the approach presented by Leopold et al. [10]. Then, a lookup in a
lexical database is performed. If the lookup is successful in many cases, we expect
good results of textual similarity measures. With act1 and act2 as the numbers of
activities of two process models and actAction1 and actAction2 as the number of

Predicting the Quality of Process Model Matching 207

these activities with labels for which the lookup succeeded, a predictor uses the
arithmetic average of the ratio of labels for which actions have been found as an
evaluation function, i.e., pNLALD = (actAction1/act1)/2 + (actAction2/act2)/2.

Number of Nodes in Cycles (NNC). Focussing on structural features of a
process model, we consider the number of nodes in control flow cycles. A large
difference in the values of this property for two process models hints at different
control flow structures and, thus, lower chances of achieving a good match result.
Our predictor, thus, applies a relative comparison. With inCycle1 and inCycle2
as the number of nodes in two process models that are part of a control flow
cycle, the prediction score is pNNC = 1 if max{inCycle1, inCycle2} = 0 and
pNNC = 1− (|inCycle1 − inCycle2|/max(inCycle1, inCycle2)) otherwise.

Depth of the RPST (DRPST). Another structural property of a process
model is the depth of a decomposition tree, e.g., defined by the Refined Process
Structure Tree (RPST) [11]. The depth of this tree provides a means to assess
the complexity of the control flow structure. Complex control flow structures in
either model as well as large differences in this complexity can be expected to
have a negative impact on process model matching. With depth1 and depth2 as
the depths of the RPSTs of two process models, we define two predictors.

◦ DRPSTR measures the relative difference, i.e., pDRPSTR = 1 − (|depth1 −
depth2|/max{depth1, depth2}).

◦ DRPSTA measures the arithmetic average of a smoothed absolute depth,
i.e., pDRPSTA = (1 − max{0, 1 − 0.02(depth1 − 1)2})/2 + (1 − max{0, 1 −
0.02(depth2 − 1)2})/2.

Size of the Concurrency Relation (SCR). The size of the concurrency rela-
tion is an example for a behavioural property. The concurrency relation contains
all pairs of activities that may be enabled concurrently in some reachable state
of the process, cf., [12]. Since its size provides insights on behavioural complexity,
high absolute values and large relative differences for two process models may
lower the result quality of process model matchers. Let conc1 and conc2 be the
sizes of the concurrency relation of two process models with act1 and act2 as the
number of activities, respectively. Then, we define two predictors.

◦ SCRR measures the relative difference, i.e., pSCRR = 1 if max{conc1, conc2}
= 0 and pSCRR = 1− (|conc1 − conc2|/max{conc1, conc2}) otherwise.

◦ SCRA measures the arithmetic average of the ratio of concurrent activities,
i.e., pSCRA = (conc1/act

2
1)/2 + (conc2/act

2
2)/2.

3.2 Prediction Based on Similarity Measures

Most matchers use textual similarity measures for deriving match candidates
and consider structural and behavioural features for selecting correspondences.
Hence, below, we focus on textual similarity measures and, for each of them,
apply one of the matrix predictors (Section 2) to obtain a prediction score.

Optimal String Edit Distance over Activity Labels (OSEDAL). A first
syntactical similarity measure is the optimal string edit distance over tokenised
activity labels. First, string preprocessing techniques, such as stop word removal

208 M. Weidlich et al.

and stemming, are applied to all terms. For the remaining, preprocessed terms
{t1, . . . , tn} and {t′1, . . . , t′m} of two activity labels, we seek an optimal term
alignment ∼ ⊆ {t1, . . . , tn} × {t′1, . . . , t′m} that (1) relates one term t to at most
one term t′ and (2) maximises the string edit distance similarity seds(t, t′) =
lev(t, t′)/max{|t|, |t′|} (with lev as the Levenshtein Distance and | · | as the term
length) over the aligned pairs. Then, the similarity measure for the two activities
is defined as sOSEDAL =

∑
t∼t′ seds(t, t

′)/max{n,m}.
VirtualDocsDistanceSet (VDDS).Asanother syntactical similaritymeasure,
we define a measure that first groups activities in either process and then assesses
their similarity based on virtual documents. We follow the heuristics of the Dis-
tance Doc Searcher of the ICoP framework [4] for grouping activities: Given a base
activity, we group activities based on their distance in the flow graph according
to predefined patterns, e.g., a join (activities from which the base activity can be
reached within a certain distance). For these groups, we derive virtual documents
as the union of terms of all activity labels. For two virtual documents d and d′, a
vector space is created and theCosine similarity cos(d, d′) is used to assess their sim-
ilarity, cf., [13]. For each pair of activities a1 and a2, the similarity score is defined
as sVDDS = max{cos(d1, d′1), . . . , cos(dn, d′m)} with d1, . . . , dn and d′1, . . . , d′m as
documents representing groups that include a1 and a2, respectively.

Number of (Common) Semantic Components of Activity Labels
(N(C)SCAL). Turning to semantic features, we compute a similarity based on
the common semantic components of activity labels. Again, we annotate activity
labels to obtain their semantic components aac (the action), abo (the object), and
aad (an additional part) for the activity label a [10]. Let compa ⊆ {ac, bo, ad}
denote the type of the components found for activity a. Then, we define two
similarity measures:

◦ Similarity in the number of semantic components comp1 and comp2 for two
activities a1 and a2 is considered by the measure defined as sNSCAL = 1− |
((| compa1 | − | compa2 |)/3) |.

◦ Similarity in the types of semantic components is considered by an adapted
measure, defined as sNCSCAL = 1− (| compa1 ∩ compa2 | /3).

Lin Distance between Activity Labels (LDAL). A fine-grained similarity
measure for semantic features, is the semantic distance among the activity labels.
Given the semantic components of two labels, we assess their semantic distance
with the Lin metric [14] (denoted by lin). For two activities a1 and a2 with aac1 ,
abo1 , aad1 , and aac2 , abo2 , aad2 as their semantic components, we define the similarity
score as sLDAL = (lin(aac1 , aac2) + lin(abo1 , abo2) + lin(aad1 , aad2)).

3.3 Assessing the Confidence in Match Results

Predictions are used to determine the confidence that is associated with a match
result. Because of their high result variability, existing matchers are rarely ap-
plicable in a setting that requires unsupervised matching, e.g., similarity search
in process model repositories. Further, even if applied as a semi-automated tech-
nique, a process expert has to review all match results including those that have

Predicting the Quality of Process Model Matching 209

high quality and could directly have been processed further, as well as those that
have poor quality and should thus be neglected. Using the prediction architec-
ture, we address this issue following a machine learning approach:

(1) In a training phase, prediction models are created for a sample of process
models for which some ground truth is available.

(2) In an application phase, the predictionmodels are applied to further matching
tasks, i.e., pairs of process models, for which the ground truth is not available.

The score obtained by a prediction model is interpreted as the confidence in the
match result. Prediction models should generalise for different process model
matchers. They are defined relative only to process properties and characteristics
of some basic similarity measures, such that the predicted score, the confidence
in the match result, holds independent of any concrete matcher.

Since prediction models are geared towards a quality criterion, they can be
selected for the envisioned setting of process model matching. For instance, a
recall-oriented prediction qualifies for computation of match confidence when
conducting process model clone detection, in order not to miss potential clones
for manual evaluation. For matching in automated similarity search over process
models, in turn, precision-oriented prediction may be a better option.

4 Related Work

Recently, various approaches addressed the problem of process model match-
ing [1,3,4,5]. These works typically combine a measure for textual similarity
applied for first line matching with a measure for structural or behavioural simi-
larity that guides the second line matching. Our prediction architecture considers
both and, thus, can be seen as a first step towards integrating matchers that have
different strengths for certain types of matching tasks.

As for basic similarity measures, we focussed on those commonly used for pro-
cess model matching. Yet, additional measures may be considered. For instance,
a large number of string distance metrics, as reviewed by Cohen et al. [15], has
been presented for assessing syntactic, textual similarity. Besides, a large body
of structural and behavioural similarity measures are available for process mod-
els, e.g., [16,17,18]. Recent surveys of these techniques have been presented by
Dijkman et al. [19] and Becker and Laue [20]. These measures can be integrated
in our architecture to broaden the basis of prediction.

5 Conclusion

The presented approach addresses the issue of variability in the results obtained
by process model matchers. We showed how prediction models for the quality of
match results are created based on predictors that refer to process properties and
characteristics of similarity measures. Such prediction models allow for assigning
a confidence value to a match result.

In future work, we aim at conducting prediction on a more fine-granular level,
i.e., for individual correspondences. Also, we want to exploit prediction not only
for post-matching analysis, but also for improving the actual matching.

210 M. Weidlich et al.

References
1. Castelo Branco, M., Troya, J., Czarnecki, K., Küster, J., Völzer, H.: Matching

business process workflows across abstraction levels. In: France, R.B., Kazmeier,
J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 626–641.
Springer, Heidelberg (2012)

2. Ekanayake, C.C., Dumas, M., Garćıa-Bañuelos, L., Rosa, M.L., ter Hofstede,
A.H.M.: Approximate clone detection in repositories of business process models.
[21], pp. 302–318

3. Dijkman, R.M., Dumas, M., Garćıa-Bañuelos, L., Käärik, R.: Aligning business
process models. In: EDOC, pp. 45–53. IEEE Computer Society (2009)

4. Weidlich, M., Dijkman, R., Mendling, J.: The iCoP framework: Identification of
correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

5. Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R.M., Stucken-
schmidt, H.: Probabilistic optimization of semantic process model matching. [21],
pp. 319–334

6. Gal, A.: Uncertain Schema Matching. Morgan & Claypool Publishers (2011)
7. Bellahsene, Z., Bonifati, A., Rahm, E. (eds.): Schema Matching and Mapping.

Springer (2011)
8. Sagi, T., Gal, A.: Schema matching prediction with applications to data source dis-

covery and dynamic ensembling. Technical Report IE/IS-2013-02, Technion (March
2013),
http://ie.technion.ac.il/tech_reports/1364134687_Prediction_v7.pdf

9. Miller, G.A.: WordNet: A lexical database for English. Commun. ACM 38(11),
39–41 (1995)

10. Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in
business process models. Inf. Syst. 37(5), 443–459 (2012)

11. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data
Knowl. Eng. 68(9), 793–818 (2009)

12. Kovalyov, A., Esparza, J.: A polynomial algorithm to compute the concurrency
relation of free-choice signal transition graphs. In: WODES, Edinburgh, Scotland,
UK. IEE Society (1996)

13. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975)

14. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the
15th International Conference on Machine Learning, pp. 296–304. Morgan Kauf-
mann (1998)

15. Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: IIWeb, pp. 73–78 (2003)

16. Wombacher, A., Li, C.: Alternative approaches for workflow similarity. In: IEEE
SCC, pp. 337–345. IEEE Computer Society (2010)

17. Corrales, J.C., Grigori, D., Bouzeghoub, M.: BPEL processes matchmaking for
service discovery. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275,
pp. 237–254. Springer, Heidelberg (2006)

18. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – A proper metric. In:
Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp.
166–181. Springer, Heidelberg (2011)

19. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity
of business process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

20. Becker, M., Laue, R.: A comparative survey of business process similarity measures.
Computers in Industry 63(2), 148–167 (2012)

21. Barros, A., Gal, A., Kindler, E. (eds.): BPM 2012. LNCS, vol. 7481. Springer,
Heidelberg (2012)

http://ie.technion.ac.il/tech_reports/1364134687_Prediction_v7.pdf

Increasing Recall of Process Model Matching

by Improved Activity Label Matching

Christopher Klinkmüller1,2, Ingo Weber2,3, Jan Mendling4, Henrik Leopold5,
and André Ludwig1

1 Information Systems Institute, University of Leipzig, Leipzig, Germany�

{klinkmueller,ludwig}@wifa.uni-leipzig.de
2 Software Systems Research Group, NICTA, Sydney, Australia��

ingo.weber@nicta.com.au
3 School of Computer Science & Engineering, University of New South Wales

4 Wirtschaftsuniversität Wien, Augasse 2-6, A-1090 Vienna, Austria
jan.mendling@wu.ac.at

5 Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
henrik.leopold@wiwi.hu-berlin.de

Abstract. Comparing process models and matching similar activities
has recently emerged as a research area of business process management.
However, the problem is fundamentally hard when considering realistic
scenarios: e.g., there is a huge variety of terms and various options for the
grammatical structure of activity labels exist. While prior research has
established important conceptual foundations, recall values have been
fairly low (around 0.26) – arguably too low to be useful in practice. In this
paper, we present techniques for activity label matching which improve
current results (recall of 0.44, without sacrificing precision). Furthermore,
we identify categories of matching challenges to guide future research.

Keywords: BPM, process similarity, process model matching.

1 Introduction

Business process models support analysis, redesign, and implementation projects
in enterprises. In various situations, correspondences between different process
models have to be found, e.g. when similar processes of recently merged compa-
nies have to be identified. The major challenge in such scenarios is the efficient
and effective identification of same or similar activities in heterogeneous models.

Recent research has approached the problem of automatically matching activ-
ities between process models by adopting techniques from schema and ontology

� The work presented in this paper was partly funded by the German Federal Min-
istry of Education and Research under the projects LSEM (BMBF 03IPT504X) and
LogiLeit (BMBF 03IPT504A).

�� NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 211–218, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

212 C. Klinkmüller et al.

matching [15,9]. However, the few studies in this area reveal an issue with recall.
This is a serious problem since process matching is usually utilized as decision
support. As such it aims to show users an extensive set of potential matches from
which they de-select false positives [4]. A prerequisite for applying matching in
such a way is a high recall and a big share to be true matches.

This paper contributes to the area of process model matching in a twofold
way. First, we present label matching techniques that aim to improve the recall
without weakening precision. These techniques are evaluated using established
benchmark samples, and yield statistically significant improvements. The source
code for the techniques and for the evaluation is publicly available1. Second, we
conduct a qualitative study towards identifying categories of issues that impede
matching performance. Our work not only has implications for process matching
research, but also for consistent process modeling altogether.

The paper is structured as follows. Section 2 summarizes prior research and
section 3 introduces the techniques for improving recall. Evaluation results and
a qualitative analysis are presented in section 4. Section 5 concludes the paper.

2 Prior Research on Process Model Matching

The use of heterogeneous terminology and labels with different levels of details as
well as different grammatical structure are challenges, not only to process match-
ing research, but also to practice [1]. The foundations for research in process
model matching can be found in various works on process model similarity and
ontology matching. Such process similarity techniques exploit different sources
of information such as text [3,7], model structure [6,2], or execution semantics
[8,16]. Approaches on process model matching directly build on such techniques
and combine them in different ways. For example, the ICoP framework defines
a generic architecture for assembling and combining different matchers [15]. It,
for instance, integrates the graph-based matcher from [2] and the Levenshtein
distance [11]. The semantic matcher proposed in [9] relies on Markov logic net-
works and on an approach to derive semantic match hypotheses from model
pairs. Therefore, they apply a label decomposition approach [10] to annotate
each activity with action, business object, and additional fragment. Based on
the semantic comparison of these components with techniques from ontology
matching [5], such as the Lin metric [12], semantic match hypotheses are com-
puted. These hypotheses then serve as input for the Markov model. Although
these approaches include several similarity measures and apply complex mecha-
nisms to compute the best matching constellation, they only achieve low recall
values of around 0.26.

3 Activity Label Similarity

We now discuss techniques for matching activities based on their labels. There-
fore, we introduce a basic process matching algorithm. Subsequently, we describe
two variations of this algorithm called Bag-of-Words and Label Pruning.

1 http://code.google.com/p/jpmmt/

http://code.google.com/p/jpmmt/

Increasing Recall of Process Model Matching 213

Basic Process Matching Algorithm. Algorithm 1 presents our basic proce-
dure to compute activity matches between two process models p1, p2. As we do
not consider structural properties of process models for process matching, we
simply refer to a process model as a set of activities p ∈ P(A). Furthermore,
each activity is given a label which is returned by the function λ : A → L.

First, the function createSimilarityMatrix calculates similarity scores of all
activity pairs as sim.λ(a1, a2), where a1 ∈ p1, a2 ∈ p2. sim.λ = 0 implies
complete dissimilarity, sim.α = 1 means that the two words are identical, and
in between are degrees of similarity. Next, the algorithm selects all activity pairs
whose similarity score is above a threshold, and proposes them as matches.

Algorithm 1. Basic process matching algorithm (pseudocode)

map(Process p1 , Process p2 , double thr esho ld) {
S im i l a r i t yMat r i x sim = createSimilarityMatrix (p1 , p2) ;
MatchList matches = emptyMatchList () ;
whi l e (h i ghes tSco r e (sim) >= thresho ld) {

Act i v i tyPa i r match = getPairWithHighestScore (sim) ;
addMatch (matches , match) ;
removeMatchFromMatrix (sim , match) ;

}
r e turn matches ;

}

Bag-of-Words. The first variant adopts the bag-of-words technique, where we
treat each label as a set of words – and do not further consider the structure of
the label. The rationale for neglecting label structure is that the brevity of labels
makes it hard to deduce information like word forms. In this way, we aim to offer
a means to find matches like “prepare online application” vs. “apply online”.

In order to define the bag-of-words similarity, a tokenize function is introduced
as tok : L → P(W), from the set of labels, L, to the powerset of words P(W).
This function splits a label into its individual words, and removes common stop
words like “the”, “if”, and “to”. Then, the label similarity sim.λ is computed by
comparing the tokenized words of both labels, using a word similarity function
sim.ω : (ω1, ω2) → [0..1] which has the same properties as actsim. Note that we
evaluate concrete implementations of sim.ω in section 4. In the basic variant,
sim.λb, we aggregate these values by determining the maximum similarity score
for each word and calculating the mean over these values.

Definition 1 (Basic bag-of-words similarity). Let p1, p2 be two processes,
and a1 ∈ p1, a2 ∈ p2 be two activities. We define Ω1 := tok(λ1(a1)), Ω2 :=
tok(λ2(a2)) as tokenized lists of words contained in the labels. The basic bag-of-
word similarity sim.λb(a1, a2) is then defined as:

sim.λb(a1, a2) :=

|Ω1|∑
i=1

max
|Ω2|
j=1 (sim.ω(ω1

i , ω
2
j)) +

|Ω2|∑
j=1

max
|Ω1|
i=1 (sim.ω(ω1

i , ω
2
j))

|Ω1|+ |Ω2|

Label Pruning. The second technique for label similarity builds on sim.λb, but
attempts to better capture activity labels with a strong difference in specificity.

214 C. Klinkmüller et al.

This extension called sim.λp prunes words from the longer label. Thus, in cases
where |Ω1| > |Ω2| (without loss of generality), e.g. “rank application on scale of
1 to 10” vs. “rank case”, sim.λp only considers |Ω2|-many words of Ω1.

First, we introduce a generic function pru : P(W)×P(W) → P(W). It returns
a set of words extracted from its first input: pru(Ω1, Ω2) is Ω1 iff |Ω1| ≤ |Ω2|,
or a subset of Ω1 of size |Ω2| otherwise. Criteria for choosing the words to prune
from Ω1 are introduced below the generic definition of sim.λp.

Definition 2 (Bag-of-words similarity with label pruning). Let p1, p2
be two processes, a1 ∈ p1, a2 ∈ p2 two activities, and Ω1 := tok(λ1(a1)),
Ω2 := tok(λ2(a2)) tokenized lists of words contained in the labels. Further,
pr1 = pru(Ω1, Ω2) and pr2 = pru(Ω2, Ω1) are the pruned lists of words. The
bag-of-words similarity with label pruning sim.λp(a1, a2) is then defined as:

sim.λp(a1, a2) :=

|Ω1|∑
i=1

max
|Ω2|
j=1 (sim.ω(pri1, pr

j
2)) +

|Ω2|∑
j=1

max
|Ω1|
i=1 (sim.ω(pri1, pr

j
2))

2×min(|Ω1|, |Ω2|)
We consider three variants of pru. The first variant, prumax, calculates the sim-
ilarity scores for all word pairs, as well as the maximal score for each word in
|Ω1|. prumax(Ω

1, Ω2) returns the |Ω2|-top-scoring words from Ω1. The second
and the third variant rely on the occurrence of a term t in a collection of doc-
uments D, called document frequency (df). The df measure is defined as ft

|D| ,

where ft is the number of documents containing t. In our context, an activity la-
bel is considered a document, but we provide two variants for determining which
documents are considered part of the collection. One variant takes all activity
labels of all models in the model collection as part of the document pool. This
variant is called prucoll. In the other variant, only the activity labels of the two
models being compared form the document pool. This variant is called pru2p. In
both cases the |Ω2| words from Ω1 with the highest df are selected. Applying df,
we consider words occuring more often as more important for activity matching.

4 Evaluation

In this section, we evaluate the introduced matching techniques. First, we de-
scribe the evaluation’s setup including the data set and parameter sampling.
Then, the results are presented with focus on precision and recall. Next, we
provide a qualitative result analysis. Finally, the findings are discussed.

Setup. In order to achieve comparability, we used the data set from [9] contain-
ing a process model collection of nine admission processes of German universities
which are publicly available2. The other part of the evaluation data is a process
matching standard which was also used in [9]. It defines normative 1:1 activity
matches for all 36 possible pairs in the collection.

2 http://www.mendling.com/Admission_Processes_BPM2012_Leopold_et_al.zip

http://www.mendling.com/Admission_Processes_BPM2012_Leopold_et_al.zip

Increasing Recall of Process Model Matching 215

To evaluate the quality of a matching technique, each 1:1 match found by
the technique can be classified as true-positive (TP), true-negative (TN), false-
positive (FP), or false-negative (FN) – with respect to the standard. Based
on this classification the standard measures of precision (P) (TP/(TP+FP)),
recall (R) (TP/(TP+FN)), and F1 measure as harmonic mean between P and R
(2×P ×R/(P +R)) can be computed for each model pair. We measure overall
quality for a given technique as the mean and standard deviation of these three
values over the set of process pairs.

In the evaluation, we examined different parameter configurations for the
basic process matching algorithm and both label similarity scores. We sampled
threshold over the interval [0..1] in steps of 0.05. Furthermore, we employed the
following variants for sim.ω:

1. Levenshtein (sim.ωlev): based on the Levenshtein distance [11]
2. Lin (sim.ωlin): a semantic notion [12] based on WordNet [14]
3. Levenshtein-Lin-Max (sim.ωmax) the maximum of sim.ωlev and sim.ωlin

4. Stemmed versions of the former (sim.ωs.lev, sim.ωs.lin, sim.ωs.max): which
apply word stemming [13] and in particular the stemming algorithm in the
state-of-the-art tool MIT Java Wordnet Interface3 to their stems.

Results. Table 1 summarizes the evaluation results. The first two rows list the
results from [9] whereby ICoP refers to a matching approach based on the ICoP
framework and Markov to the one relying on Markov Logic (cf. Section 2).

The next two rows outline the results for the basic process matching algorithm
in combination with the basic bag-of-words similarity. The first row shows the
best parameter configuration when applying word similarity functions without
stemming, while the second row presents the best stemming variant. Note, that
“best” refers to the highest F1 value obtained using the parameter sampling
explained above. There are two important observations. First, the variant with-
out stemming outperformed Markov and ICoP regarding precision (0.748), recall
(0.299) and F1 (0.363). Second, the application of stemming helped to improve
the F1 value (0.372) due to higher precision (0.808) and recall (0.304).

The last three rows represent the best results for the basic process matching
algorithm in combination with each of the three pruning variants. All pruning
variants yield higher F1 measures than the best basic bag-of-words variants. The
best F1 measure (0.409) was yielded by the document frequency variant using
the whole model collection (prucoll). This variant also yielded the highest recall
(0.450), while the variant based on the maximal similarity scores yielded the
highest precision (0.735).

Qualitative Analysis: Matching Challenges. To identify challenges in
matching activity labels we conducted, a qualitative analysis based on data
collected during the evaluation. For the admission data set, we considered all
matches found by the best configuration as well as all matches contained in the
gold standard – a total of 912 matches comprising 223 true positives (TP), 381

3 http://projects.csail.mit.edu/jwi/

http://projects.csail.mit.edu/jwi/

216 C. Klinkmüller et al.

Table 1. Evaluation results for variants of bag-of-words similarity

variant precision stddev. recall stddev. F1 stddev. threshold sim.ω prune

Markov 0.421 0.217 0.263 0.170 0.315 0.182 - - -

ICoP 0.506 0.309 0.255 0.282 0.294 0.253 - - -

sim.λb 0.748 0.254 0.299 0.282 0.363 0.249 0.75 max -

sim.λb 0.808 0.241 0.304 0.281 0.372 0.247 0.75 s.lev -

sim.λp 0.735 0.235 0.331 0.279 0.393 0.245 0.75 s.lev max

sim.λp 0.468 0.253 0.450 0.256 0.409 0.179 0.70 s.lin coll

sim.λp 0.689 0.259 0.356 0.287 0.407 0.242 0.80 s.lev 2p

false positives (FP) and 308 false negatives (FN). In an iterative process of man-
ual coding and clustering, we derived a list of matching challenge categories. This
process involved three researchers in clustering reasons and resolving different
opinions in discussions. We explain the four major categories below – specificity
of labels, wording, term semantics and process structure.

1. Different specificity in labels: This class refers to the degree of information
provided by a label. We found a difference in the detail of information, a.o.,
when one of the activities is described in more detail than the other. There
are problems with implicit objects, i.e. when the object of consideration is
assumed to be known from the context of an activity, and thus omitted.
There are also higher-level activity challenges, where one activity in the first
process corresponds to multiple activities in the second process, or activities
in both processes refer to the same higher-level activity. Finally, action/object
combinations are challenging when one of the activities contains a list of
actions or objects.

2. Other wording challenges: Challenges in this class refer to words. The domain
specificity can be a problem. Second, abbreviations are sometimes used in
labels. Third, the action is the same but different conditions might apply.
Fourth, similar issues are expressed with similar words but different sentence
structure. Fifth, one of the labels may be the inverse of the other.

3. Challenges from term semantics: The comparison of labels depends on the
meaning of words. We identified several problems regarding the interpreta-
tion of words. A concept can be expressed by a compound word. A word
might have spelling errors. There exist semantic relations between the con-
cepts represented by words, like homonyms and antonyms.

4. Process structure-related challenges: Control flow characteristics may chal-
lenge activity matches. First, activities with similar labels may appear at
different control flow positions. Second, activities may be performed by dif-
ferent roles that are not modeled. Third, processes use non-consensual case
differentiation.

The results of the analysis are summarized in Table 2. For each challenge the
table shows how often it was identified (#) and the relative appearance in false
positive (FP) and false negative (FN) matches – note that a match can pose

Increasing Recall of Process Model Matching 217

Table 2. Matching challenge classification, ordered by number of occurrences (#)

class challenge # FP FN class challenge # FP FN

1 detail of information 463 0.35 0.51 4 different roles 75 1.00 0.00

3 compound words 412 0.59 0.26 4 case differentiation 59 0.24 0.49

1 implicit object 290 0.38 0.48 2 abbreviations 27 0.11 0.82

2 different conditions 249 0.48 0.36 2 domain specificity 25 0.40 0.56

1 higher-level activity 223 0.05 0.87 3 spelling errors 21 0.29 0.57

3 semantic relation 136 0.22 0.54 2 sentence structure 17 0.77 0.00

4 control flow position 120 1.00 0.00 2 inverse 9 0.67 0.33

1 action/object combinations 99 0.37 0.46

multiple challenges. The most striking problems are apparently detail of infor-
mation and compound words. Overall, challenges regarding the label specificity
appear to constitute the biggest source of errors, while challenges related to the
process structure and other wording issues seem to occur least often.

Discussion. The evaluation shows that we were able to outperform the results of
the two state-of-the-art approaches from previous research by applying our label
based matching techniques. Most of the gains in recall can be attributed to the
general design decision to employ a bag-of-words technique. This is in contrast
to prior research where the label structure is explicitly utilized [9]. Disregarding
the label structure alone already yielded improvements in our evaluation, with
word stemming and pruning providing further gains.

Our post-hoc analysis of false positive and false negative match proposals
provides a good basis for future innovations in process model matching. Detail
of information and compound words are difficult problems, in particular as their
resolution has to rely on less semantic context and text structure as in general
natural language processing. There are also problems that are apparently specific
to process models. The identification of implicit objects and roles may offer
opportunities for further improvements.

However, the validity of our results is clearly restricted by the size of the data
set used in the evaluation. Linked thereto is the threat to validity that we did
not distinguish between training and evaluation data. A clear separation of data
for development and evaluation purposes prevents the development of techniques
well suited for a certain data set. Thus, enlarging the evaluation data set is an
important step to substantiate our findings in future work.

5 Conclusion

In this paper, we presented techniques for improving process activity matching.
In particular, our focus is on activity labels, so as to increase recall of matches
when applied to realistic process model collections. Our comparative evaluation
shows that we achieved significant improvements: recall increased by around 0.2
to 0.445. Driven by this outcome, we analyzed what makes activity matching
hard, and categorized the challenges into 4 classes over 15 categories in total.

218 C. Klinkmüller et al.

In future work, we plan to pursue two directions regarding the improvement
of process matching: investigating additional techniques for considering process
structure, both from literature and new approaches, as well as further improving
label matching. To substantiate our findings we will also work on an enlarging
our evaluation data set.

References

1. Castelo Branco, M., Troya, J., Czarnecki, K., Küster, J., Völzer, H.: Matching
business process workflows across abstraction levels. In: France, R.B., Kazmeier,
J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 626–641.
Springer, Heidelberg (2012)

2. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph matching algorithms for busi-
ness process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)

3. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of
business process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

4. Duchateau, F., Bellahsene, Z., Coletta, R.: A flexible approach for planning schema
matching algorithms. In: COOPIS 2008 (2008)

5. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer (2007)
6. Grigori, D., Corrales, J.C., Bouzeghoub, M.: Behavioral Matchmaking for Service

Retrieval. In: IEEE ICWS (2006)
7. Koschmider, A., Blanchard, E.: User assistance for business process model decom-

position. In: IEEE RCIS (2007)
8. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – A proper metric. In:

Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp.
166–181. Springer, Heidelberg (2011)

9. Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt,
H.: Probabilistic optimization of semantic process model matching. In: Barros, A.,
Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer,
Heidelberg (2012)

10. Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in
business process models. Inf. Syst. 37(5), 443–459 (2012)

11. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10(8), 707–710 (1966)

12. Lin, D.: An information-theoretic definition of similarity. In: ICML (1998)
13. Lovins, J.B.: Development of a stemming algorithm. Mechanical Translation and

Computational Linguistics 11, 22–31 (1968)
14. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–41

(1995)
15. Weidlich, M., Dijkman, R., Mendling, J.: The iCoP framework: Identification of

correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

16. Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net similarity measure
based on transition adjacency relations. Computers in Industry 61(5), 463–471

A Visualization Approach for Difference

Analysis of Process Models and Instance Traffic

Simone Kriglstein1, Günter Wallner2, and Stefanie Rinderle-Ma3

1 SBA Research, Vienna, Austria
skriglstein@sba-research.at

2 University of Applied Arts, Institute of Art and Technology, Vienna, Austria
guenter.wallner@uni-ak.ac.at

3 University of Vienna, Faculty of Computer Science, Vienna, Austria
stefanie.rinderle-ma@univie.ac.at

Abstract. Organizations are often confronted with the task to identify
differences and commonalities between process models but also between
the instance traffic that presents how instances have progressed through
the model. The use cases range from comparison of process variants in
order to identify redundancies and inconsistencies between them to the
analysis of instance traffic for the (re)design of models. Visualizations
can support users in their analysis tasks, e.g., to see if and how the
models and their instance traffic have changed. In this paper we present
a visualization approach to highlight the differences and commonalities
between two models and – if available – their instance traffic.

Keywords: Visualization, Control Flow Analysis.

1 Introduction

In the last years, the interest to develop approaches in order to support users
in analyzing process models and their instances with regard to their differences
and commonalities has increased. This could be partly caused by the need to
manage the increasing number of process models and their instances that can
accumulate in organizations over the years (cf. [12]). Therefore different ways to
compare process models have been developed. One way is the use of similarity
checks (see, e.g., [8,17]) for checking commonalities. Another way is to check
explicitly for the differences between the process models (e.g., [7]).

According to van der Aalst [2], there exist only a few techniques (e.g., [1,9,11])
for detecting differences in process models, but because of the importance it
needs more attention. For example, in addition to the analysis of process models,
it is also of interest to find techniques to analyze the instance traffic (based on the
executable logs or simulation data) that reflects how instances have progressed
through the model in order to, e.g., see the distribution of instances over the
different paths through the process model. Understanding the flow of instances
helps to distinguish well-designed models from models that require modifications
(e.g., to identify redundant paths because of changed conditions). Furthermore,

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 219–226, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

220 S. Kriglstein, G. Wallner, and S. Rinderle-Ma

the analysis of the differences between the instance traffic helps to identify trends
across multiple process instances or time periods. Moreover, it allows to see if
and how the traffic has changed, e.g., to detect more or less visited paths or
to follow the consequences of changes in process models with respect to the
execution of instances.

In this paper we present a visualization approach to highlight the difference
information between process models and – if available – between the instance
traffic in a single graph. The differences between the two input models and their
instance traffic are visualized as difference model that merges the two input mod-
els in such a way that it allows users to visually see differences and commonalities
between the two models. With the presented visualization approach, users have
the possibility to analyze two models and their instance traffic to support the
following tasks: 1) comparison of two process models, 2) comparison of instance
traffic between two process models and 3) comparison of instance traffic of one
model at different points in time.

2 Related Work

Comparing artifacts in order to detect their differences plays an important role
in many application domains. For example, detecting differences in models is
an essential operation in software development including version and change
management, software evolution etc. in order to find problems or to detect dis-
crepancies between the models (see, e.g., [3,13,14,16]). Especially for business
processes, delta analysis is used in order to compare the differences between two
models. For example, various approaches were developed that use delta analy-
sis to compare predefined process models with discovered models derived from
event logs (e.g., [1,9,11]).

For the representation of differences, color-coding is often used to highlight
which nodes and edges were added or removed from a graph (see, e.g.,
[5,6,10,13,14]). In contrast, Andrews et al. [4] use color-coding in such a way
that each of the two input models is associated with a single color. The dif-
ference model is a superposition of the two input models in order to highlight
differences and commonalities between both models. The coloring of the nodes in
the calculated difference model depicts in which input model the node is present.
If a node is present in both input models the node is two colored. In contrast to
our approach, their approach requires to specify node similarities a priori before
the difference model can be calculated.

3 Basic Concepts

In this paper, we focus on a visualization concept for directed connected graphs
in order to provide a basis for existing business process modeling and exe-
cution notations such as Event-driven Process Chains (EPC), UML Activity
Diagrams, and the Business Process Modeling Notation (BPMN). For special
concepts of certain languages corresponding extensions might become necessary.

A Visualization Approach for Difference Analysis of Process Models 221

At this point we should also emphasize that we are looking at the processes from
the control flow perspective.

3.1 Difference Model

We define a process model as a directed connected graph PM = (N,E ⊆ N×N),
where N is a set of nodes and E is a set of directed control edges. Each node
n ∈ N is described by a 3-tuple (id, l, t) where id is a unique identifier, l is
the label and t is the type of the node. Different business modeling languages
like BPMN or EPC distinguish between different types of nodes. For example,
BPMN differentiates between activity nodes, event nodes, and gateway nodes
for the control flow graph. For the sake of simplicity, we restrict the following
discussion to activity and gateway nodes.

A process model contains one start node and one end node. Nodes are con-
nected in such a way that each node is on a path from the start point to the end
point. The start node has no incoming edge and the end node has no outgoing
edge. Let PM1 = (N1, E1) and PM2 = (N2, E2) be the two process model to be
compared, then the difference model1 can be defined as

DM = PM2 − PM1 := (Nd, Ed,MNd
,MEd

) =

= (N2 ∪N1, E2 ∪ E1,MNd
,MEd

)
(1)

where MNd
and MEd

describe the node and edge markings of DM with MNd
:

Nd �→ {−1, 0, 1} and MEd
: Ed �→ {−1, 0, 1}. For a node n ∈ Nd its marking is

determined as follows:

mn =

⎧⎪⎨
⎪⎩
0, if n ∈ N1 ∧ n ∈ N2.

1, if n ∈ N2 ∧ n /∈ N1.

−1, otherwise.

(2)

The same applies for the marking of a control edge e ∈ Ed:

me =

⎧⎪⎨
⎪⎩
0, if e ∈ E1 ∧ e ∈ E2.

1, if e ∈ E2 ∧ e /∈ E1.

−1, otherwise.

(3)

The markings are used to distinguish between add and delete change operations.
The markings also indirectly cover some other change operations likemove (mov-
ing a node will remove it from the old location and add it at a new location in the
model), but currently we do not account for them explicitly in the visualization.

3.2 Instance Traffic

If the control flow of process instances – either on the same process model or
two different process models – should be compared the above concept can be ex-
tended by considering how often control edges have been executed by individual

1 Mathematically, this can be considered as merging PM1 and PM2. However, with
the term difference model we want to emphasize that the merged model reflects the
differences between PM1 and PM2.

222 S. Kriglstein, G. Wallner, and S. Rinderle-Ma

Fig. 1. An example to illustrate the instance traffic for PM1 with k1 = 10 and PM2 with
k2 = 10 and the relative traffic for DM with its corresponding marking information

instances (in the following referred to as instance traffic) to observe the distribu-
tion of instances over the different paths through the process model. For a given
process model PM = (N,E) with a set of instances I, |I| = k executed on PM ,
the instance traffic t(e)PM for a control edge e ∈ E is given by the number of
instances which passed e during the execution. Please note that t(e)PM can be
greater than k if there are loops in PM which may cause an instance to pass e
several times.

However, when comparing two sets of instances I1 executed on PM1 and I2
executed on PM2 usually |I1| �= |I2| will be different. Calculating the difference
directly from the traffic values of the individual process models would therefore
skew the result in favor of one of the two process models being compared. We
therefore equalize the traffic by weighting the traffic of PM2 with δ = k1/k2.
The relative traffic t̃(e)DM of e ∈ Ed in the difference model DM is then given
by

t̃(e)DM = δt(e)PM2 − t(e)PM1 (4)

where t(e)PM1 = 0 if e /∈ E1, t(e)
PM2 = 0 if e /∈ E2.

To illustrate these concepts the example in Figure 1 shows the instance traffic
for two input models and the relative traffic in the corresponding difference model
(k = 10 for both input models) with the corresponding marking information. The
node S is the start point and the node E is the end point. In this example, the
difference between PM1 and PM2 is the node c and the edges from b to c, c to
gateway node x, and b to x. The instance traffic in PM1 shows that the instances
split into two halves after the XOR split (presented by the gateway node x), but
in PM2 all instances go across b. The difference model DM allows to observe
these changes of the instance traffic between PM1 and PM2 in a single graph.
For instance, the relative traffic in the difference model shows that the traffic
has decreased for the path via a and increased for the path x→b→x.

A Visualization Approach for Difference Analysis of Process Models 223

Table 1. Description of the visual elements which can occur in the difference model

Meaning Short Description

Representation of Activities/Gateways/Edges

No Change Black is used to highlight all nodes n ∈ Nd where
the marking mn = 0. The same applies for an edge
e ∈ Ed with me = 0.

Only in PM2 Green is used to present all n ∈ Nd where mn = 1.
The same applies for an edge e ∈ Ed with me = 1.

Only in PM1 Gray is used to visualize all n ∈ Nd where mn = −1.
The same applies for an edge e ∈ Ed with me = −1.

Representation of Instance Traffic between Activities/Gateways

No Change Blue is used to present the instance traffic between
nodes if the traffic t(e)PM1 = δt(e)PM2 of e ∈ Ed.

Increased Traffic Green is used if the traffic δt(e)PM2 > t(e)PM1 of
e ∈ Ed.

Increased Traffic
(New Edge)

Light green is used if the traffic δt(e)PM2 > 0 ∧
e ∈ E2 ∧ e /∈ E1 to highlight that the instance
traffic increased due to the addition of e.

Decreased Traffic Red is used to highlight the instance traffic if the
traffic δt(e)PM2 < t(e)PM1 of e ∈ Ed.

Decreased Traffic
(Removed Edge)

Orange is used if the traffic t(e)PM1 > 0 ∧ e ∈ E1

∧ e /∈ E2 to highlight that instance traffic decreased
due to the removal of e.

4 Visualization Design and Implementation

For the visualization of the two input models and the difference model, we
use a node-link representation. For the left-to-right arrangement of the nodes
a Sugiyama-style layouter [15] is used. Activities are displayed as rectangular
nodes and gateways as diamond shaped nodes. Color-coding is used to highlight
the changes between the process models and between their instance traffic (cf.
Table 1).

The thickness d of an arrow depicting the instance traffic in an input model
along edge e is given by Δd · t(e)PM where Δd is a user-changeable parameter.
However, in case of the difference model we have to take care of the special
case that t̃(e)DM = 0 due to the adjusted instance traffic being equal in both
input models. To be able to distinguish this case (and to highlight this fact in
the visualization) from the case where the difference is zero because no traffic
occurred along e in PM1 as well as PM2, the thickness in the difference model
is given by

d =

{
dmin if t(e)PM1 = δt(e)PM2

Δd · t̃(e)DM otherwise.
(5)

As proof of concept, we implemented a C# prototype (see Figure 2) which allows
the user to load two process models that should be compared in .xml format.

224 S. Kriglstein, G. Wallner, and S. Rinderle-Ma

Fig. 2. Interface of the prototype. The two input models are shown on the top and the
difference model at the bottom.

Multiple views are used to present the two input models and their difference
model at the same time. Furthermore, users have the possibility to simulate
the execution of a certain number of instances on a process model. If instances
are simulated, this information is automatically considered when calculating the
difference model. Options for filtering allow the user to hide or show the different
types of edges (e.g., only showing edges which have been added or removed). This
can be useful to reduce visual clutter especially for larger process models.

5 Use Case

Organizations are often confronted with the need to adapt their business pro-
cess to react to new or changed environmental conditions (e.g., requirements of
customers changed). The comparison of the different process versions and their
instance traffic helps to analyze the impact of such changes. For example, the
process model in Figure 3 on the right side shows that only the lower path of
the process was executed whereas the upper path was never executed. A simula-
tion of the changed process model shows the new distribution of instances over
the different paths (cf. Figure 3, left side). The difference model highlights how
the instance traffic changed between the two process versions. For example, the
instance traffic increased for the upper path but decreased for the lower one.
A reason is that the path with the increased instance traffic, has never been
executed in the old version. The decreased instance traffic was caused by a dif-
ferent distribution of instances. A reason could be that some of the activities

A Visualization Approach for Difference Analysis of Process Models 225

Fig. 3. Use Case: Comparison of instance traffic between two process versions

may not be well-suited for the adapted process model anymore. The difference
visualization of instance traffic makes the effects of the changes visible and can
support users in their design decisions (e.g., if a redesign of the process model is
necessary or not).

6 Conclusion

The interest to develop approaches for the identification of differences and com-
monalities between process models and instances has increased in the last years.
In this paper we presented a visualization approach with the goal to highlight
differences but also commonalities to support the following tasks: comparison
of two process models, the comparison of instance traffic between two process
models and the comparison of instance traffic of one model at different points in
time.

Acknowledgements. The research was funded by COMET K1, FFG - Aus-
trian Research Promotion Agency.

References

1. van der Aalst, W.M.P.: Business alignment: Using process mining as a tool for
delta analysis and conformance testing. Requir. Eng. 10(3), 198–211 (2005)

2. van der Aalst, W.M.P., Weijters, A.J.M.M.: Process mining: a research agenda.
Comput. Ind. 53(3), 231–244 (2004)

3. Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle,
J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg
(2003)

4. Andrews, K., Wohlfahrt, M., Wurzinger, G.: Visual graph comparison. In: Proc. of
the 13th Int. Conf. Information Visualisation, pp. 62–67. IEEE (2009)

226 S. Kriglstein, G. Wallner, and S. Rinderle-Ma

5. Archambault, D.: Structural differences between two graphs through hierarchies.
In: Proc. of Graphics Interface, pp. 87–94. GI, Canadian Information Processing
Society (2009)

6. van den Brand, M., Protić, Z., Verhoeff, T.: Generic tool for visualization of model
differences. In: Proc. of the 1st Int. Workshop on Model Comparison in Practice,
pp. 66–75. ACM Press (2010)

7. Delugach, A., de Moor, H.: Difference graphs. In: Meersman, R., Tari, Z. (eds.)
Proc. of Common Semantics for Sharing Knowledge: Contributions to the 13th
Int. Conf. on Conceptual Structures, pp. 41–53. ICCS (2005)

8. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R.R., Mendling, J.: Similarity
of business process models: metrics and evaluation. Information Systems 36(2),
498–516 (2011)

9. Esgin, E., Senkul, P.: Delta analysis: A hybrid quantitative approach for measuring
discrepancies between business process models. In: Corchado, E., Kurzyński, M.,
Woźniak, M. (eds.) HAIS 2011, Part I. LNCS, vol. 6678, pp. 296–304. Springer,
Heidelberg (2011)

10. Geyer, M., Kaufmann, M., Krug, R.: Visualizing differences between two large
graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 393–
394. Springer, Heidelberg (2011)

11. Kleiner, N.: Delta analysis with workflow logs: aligning business process prescrip-
tions and their reality. Requirements Engineering 10, 212–222 (2005)

12. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Merging business process models.
In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp.
96–113. Springer, Heidelberg (2010)

13. de Moor, H., Delugach, A.: Software process validation: comparing process and
practice models. In: Proc. of the 11th Int. Workshop on Exploring Modeling Meth-
ods for Systems Analysis and Design (EMMSAD 2006) held in conjunction with the
18th Conf. on Advanced Information Systems (CAiSE 2006), pp. 533–540 (2006)

14. Ohst, D., Welle, M., Kelter, U.: Differences between versions of UML diagrams. In:
Proc. of the 9th European Software Engineering Conf. held jointly with 11th ACM
SIGSOFT Int. Symposium on Foundations of Software Engineering, ESEC/FSE,
pp. 227–236. ACM Press (2003)

15. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchi-
cal system structures. IEEE Trans. Systems, Man and Cybernetics 11(2), 109–125
(1981)

16. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference computation of large mod-
els. In: Proc. of the the 6th Joint meeting of the European Software Engineering
Conf. and the ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering, ESEC-FSE, pp. 295–304. ACM Press (2007)

17. Yan, Z., Dijkman, R., Grefen, P.: Fast business process similarity search. Dis-
tributed and Parallel Databases 30, 105–144 (2012)

Business Process Architectures with Multiplicities:
Transformation and Correctness

Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
{rami.eidsabbagh,marcin.hewelt,mathias.weske}@hpi.uni-potsdam.de

Abstract. Business processes are instrumental to manage work in organisations.
To study the interdependencies between business processes, Business Process Ar-
chitectures (BPA) have been introduced. These express trigger and message flow
relations between business processes. When we investigate real world business
process architectures we find complex interdependencies, involving multiple pro-
cess instances. These aspects have not been studied in detail so far, especially
concerning correctness properties. In this paper, we propose a modular transfor-
mation of BPAs to open nets for the analysis of behavior involving multiple busi-
ness processes instances with multi-communication.

1 Introduction

In today’s organisations, business processes play a key role to manage work. Business
Process Architectures (BPAs) have been introduced in [1] to represent the interdepen-
dencies between related processes. Real-world scenarios show that complex relation-
ships between business processes are rather the rule than the exception. This involves
the repeated execution of processes as well as multi-communication. By this we mean
communication between multiple instances of several processes, instead of one-to-one
correspondence between instances. It is desirable to analyse the behavior of interacting
processes and to assure certain correctness criteria.

Apply for construction
permit

Examine
application

Create expert
report

|||

2...5 2...5

Fig. 1. Exemplary BPA

Consider the scenario of applying for a con-
struction permit, illustrated as BPA in Fig. 1.
Depending on the type of construction, the ap-
plication is forwarded to between two and five
experts instantiating an appropriate number of
“create expert report” processes. On termination,
each instance returns a message to the “exam-
ine application” instance that waits for the ac-
cording number of messages, then terminates,
returning the decision to the applicant. Business
process modeling approaches which allow to ex-
press these types of multiplicity do not offer for-
mal analysis. Formal methods based on Petri
nets have been successfully applied to model and analyse workflows, services and
their composition as well as process choreographies. However, those elaborated anal-
ysis methods do not explicitly deal with multiple instances of processes. Our aim is to

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 227–234, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

228 R.-H. Eid-Sabbagh, M. Hewelt, and M. Weske

analyse BPAs with multiple instances and multi-communication. We propose a transfor-
mation from BPAs with multiplicities into open nets and introduce intermediary nets to
represent and analyse multiple instances and multi-communication in this formalism.

This paper is structured as follows: Section 2 presents current research. Section 3
introduces the foundations of BPAs and open nets. Section 4 presents the transformation
of BPAs into open nets, followed by the conclusion in Section 5. A detailed version of
this paper containing an evaluation is published as technical report in [2].

2 Related Work

Research in the field of BPM evolved from modeling of single processes to model-
ing the behavior of interacting processes and choreographies, e.g. [3, 4], and analysis
of their correctness [5–8]. To facilitate the modeling of process interaction existing lan-
guages were extended, e.g. BPMN with Choreography diagrams, or new notations were
proposed, e.g. Let’s dance. However, none of those approaches provide both means to
express and formally analyse interactions between multiple process instances and multi-
message communication. Most of the proposed solutions address interactions between
two processes and assuming messages to be sent once to only one receiver.

Going a step further, BPMN choreographies also depict the message exchange be-
tween two or more processes but do not provide means for correctness analysis. In [3]
Proclets are presented to model multi-instance communication by multicast messages
via ports and associated cardinalities between different business processes. Both method-
ologies lack formal analysis techniques.

In contrast to that, Petri net based techniques, e.g. open nets or interaction Petri
nets are used to verify correct interaction behavior, compatibility, controllability, and
local enforceability [5–8]. Common patterns of service interaction between two pro-
cesses were described and examined by [7, 9]. Barros et al. [9] propose three multi-
transmission patterns among their basic service interaction patterns. Aalst et al. [7] look
at multi-instance correlation in one to one correspondences and provide means for verifi-
cation of process interaction, but they mainly deal with service refinement, replacement
and integration.

Similar to their approach our solution builds on the open nets formalism to analyse
process interaction behavior. It extends the current research by combining the capabil-
ities of BPAs to express interactions between multiple processes with several process
instances as well as multi-communication, with an adapted open net formalism to anal-
yse such interactions.

3 Foundations

3.1 Business Process Architectures

Business Process Architectures capture all business processes of an organisation to-
gether with their interdependencies, expressed as message and trigger flow relations.
In contrast to other approaches, BPAs provide means to model multiplicities, a term
subsuming the sending and receiving of variably many messages to and from multiple

BPAs with Multiplicities: Transformation and Correctness 229

process instances of several processes. In the model this is expressed by assigning multi-
plicity specifications to the events in the BPA. When external requests are grouped into
scenarios, non-disjoint subsets of all processes can be identified that are responsible for
handling the scenario. Such a BPA subset realizes a service or creates a product of an
organisation. In the following we focus our inquiry to subsets of a BPA.

Definition 1 (Business Process Architecture (based on [1, 10]). A Business Process
Architecture is a tuple (E, V, L, I, μ,=), in which:

– E is a set of events, partitioned in start events, ES , end events EE , intermediate
throwing events ET , and intermediate catching events EC

– V is a partition of E representing a set of business processes
– v ∈ V is a sequence of events, v = 〈e1, ..., en〉 such that e1 ∈ ES is a start event,
en ∈ EE an end event, and ei ∈ EC ∪ ET for 1 < i < n are intermediate events

– L ⊆ (ET ∪ EE)× EC is a message flow relation.
– I ⊆ (ET ∪ EE)× ES is a trigger relation.
– μ : E → P (N0) denotes the multiplicity set of an event.
– =⊆ (ET × EC) ∪ (EC × ET) is an equivalence relation between events of the

same process, demanding they send resp. receive the same number of messages

The multiplicity set μ contains all valid numbers of messages or trigger signals an event
can send or receive. μ(e) = {1} is called trivial and is omitted in graphical represen-
tation. The set •e = {e′ ∈ EE ∪ ET |(e′, e) ∈ I ∪ L}, called preset of e, contains the
events with an outgoing relation to e ∈ E. The set e• = {e′ ∈ ES∪EC |(e, e′) ∈ I∪L},
called postset of e, consists of the events with an incoming relation from e ∈ E [1].

Business Process Architecture Run. On instance level we define the notion of a BPA run,
which describes how many instances of each process are instantiated and in which order
they interact. By assigning to each event one element from its multiplicity set, the BPA
run also determines how many messages or trigger signals an event sends or receives.
Hence each run consists of a fixed number of process instances, which run in parallel
or sequentially. The assignment of multiplicity elements to events must conform to the
equivalence specification =.

A BPA run is started by an initial stimulus that activates all those business processes
that are not triggered within the BPA, for instance the desire of a citizen to build a house
in Fig. 1. The start events of those processes are considered external [1]. All other start
events occur and instantiate their process when they receive the amount of assigned
trigger signals from another process in the same BPA run. All events require to receive
or emit the number of trigger signals or messages assigned to them by that BPA run.

BPA Correctness Criteria. As BPA subsets generally describe the interaction of many
processes, the notion of soundness which was introduced for single processes is too
restrictive. We propose to use the following BPA correctness criteria to decide whether
a given BPA is correct.

Every BPA run initially instantiates all those processes whose start events have no
incoming triggers (•b = ∅). A BPA run is called terminating if it guarantees for all pro-
cesses, that the end event of a process will occur eventually once its start event occurred.

230 R.-H. Eid-Sabbagh, M. Hewelt, and M. Weske

Hence all processes that are instantiated in a terminating run also terminate. The weaker
notion of lazy termination allows BPA runs with pending messages or left-behind pro-
cess instances, if at least one instance of every process, which was instantiated by a run,
terminates.

However a BPA run might also fail to terminate, if for a process of a BPA subset one
or more occurrences of its start event are part of the run, but its end event is not. Such
a BPA run is called a deadlock. Similarly, livelocks are BPA runs, which are infinite
due to business processes triggering each other in a cyclic fashion. A BPA run need not
instantiate all business processes of the BPA subset. A process in a BPA is called dead
if no run instantiates it.

Definition 2 (Correctness Criteria for BPA Subsets). A BPA subset is correct if it
complies to the following rules:
1. The BPA subset has at least one (lazily) terminating run.
2. The BPA subset is free from dead processes.
3. The BPA subset contains no livelocks.

A BPA is correct if all its subsets are correct.

3.2 Open Nets

The open nets formalism is an extension of classical Petri nets by interface places and
final markings. We employ the definition and composition rules from [8, 11].

For a set X we denote with MS : X → N the multiset over X , where each element
of X can occur multiple times (i.e. x ∈ X occurs MS(x) times). We write multisets as
a formal sum of their elements e.g. 2 ·p1+p2 for the multiset containing two exemplars
of p1 and one of p2. The empty multiset is denoted as 0.

Definition 3 (Open Net). An open net is a tuple N = (P, T, F,M0, Ω) in which P is
a finite set of places that is partitioned into pairwise disjoint sets of internal places PN ,
incoming places P I , and outgoing places PO, T is a finite set of transitions, disjoint
with P , F : (P × T) ∪ (T × P) → N is the flow relation assigning weights to arcs.
M : P → N denotes the marking of a place P, M0 denotes the initial marking of the net,
Ω the set of final markings. •t is called the preset, t• the postset of a transition t ∈ T .

t ∈ T is activated in a marking M , denoted by m
t−→ if ∀p ∈ P : M(p) ≥ •t(p) i.e. if

there are enough token on p for t to consume. Firing an activated transition t leads to a
follower marking M ′ defined by M ′ = M − •t+ t•
Definition 4 (Composition of Open Nets). Two open nets N1 and N2 are called com-
posable if no input place p of one net is also input place of the other net, and vice versa.
If the nets are composable, composition yields open net N = N1 ⊕N2 with

– P = P1 ∪ P2 and T = T1 ∪ T2

– P I = (P I
1 ∪ P I

2) \ (PO
1 ∪ PO

2) and PO = (PO
1 ∪ PO

2) \ (P I
1 ∪ P I

2)
– PN = PN

1 ∪ PN
2 ∪ (P I

1 ∩ PO
2) ∪ (PO

1 ∩ P I
2)

– M0 = M01 +M02

– Ω = {M1 +M2 |M1 ∈ Ω1 ∧M2 ∈ Ω2}
and F being defined as F (x, y) = F1(x, y) if (x, y) ∈ (P1 × T1) ∪ (T1 × P1) and
F2(x, y) otherwise. Note that fused places become internal places in the composed net.

BPAs with Multiplicities: Transformation and Correctness 231

4 Transformation of BPA Multiplicities

4.1 Multiplicity in BPA

Business Process Architectures exhibit two kinds of multiplicity: a) multiple instances
of a business process and b) sending and receiving multiple messages or trigger signals.
These were described as patterns in [1] but so far not covered by the transformation
proposed in [10].

R
|||

2...4

O

P

Q
|||

b2

b1
e1 e2 e3

e4

b3 b4

o q q’ r r’

p p’

0...1

2...5

2
{2,4}

Fig. 2. BPA multiplicity concepts

A particular run of a BPA subset can
comprise multiple instances of its busi-
ness processes. The number of times a
process is instantiated depends on the
number of trigger signals it receives
compared to the number assigned by its
multiplicity specification in this partic-
ular run. Start events can be in trigger

relation with several other events (b ∈ ES : |•b| > 1). In such a case each trigger
signal from one of the predecessors causes one instance of the process to be created.
If the multiplicity set of the start event is non-trivial, it needs to receive the amount of
trigger signals assigned by the run, before it can occur and instantiate the process.

Sending and receiving multiple messages. Throwing events can send messages to multi-
ple receiving processes, while catching events can receive messages from multiple send-
ing processes according to the multiplicity assigned to them. In the first case the same
amount of messages is delivered to each receiver, while in the second case messages
from various senders are collected before being consumed according to the multiplicity
specification. Zero is a valid value in the multiplicity set of a throwing event, meaning
that a message (or trigger signal) is not sent at all. At the same time zero is forbidden
in the multiplicity for catching events for the following reasons. Optional start events
could instantiate an unbounded number of process instances without receiving a trigger
signal, while optional receiving events would exhibit the undesired behavior of ignoring
incoming messages. If the multiplicity set of an end event contains a zero, this does not
mean that the process might not terminate, but rather that it terminates and optionally
sends a message or trigger signal. The BPA in Fig. 2 illustrates those concepts.

Relating event multiplicity specifications. Often the number of messages a process
sends is closely related to the number it expects to receive, e.g. in Fig. 1. This rela-
tion between two events is captured in the =-relation, to which all BPA runs need to
conform, hence reducing the amount of possible BPA runs. Runs which assign num-
bers contradicting the =-relation are considered invalid and can be omitted in the state
space of a BPA subset. If the =-relation is not used, all possible runs are valid and the
complete state space has to be explored during analysis.

4.2 Transforming Business Process Architectures

For the analysis of BPAs, we employ a transformation into open nets [11], which have
been successfully applied to study the composition of services and its correctness. Due
to the definition of open net composition we cannot directly express the triggering resp.

232 R.-H. Eid-Sabbagh, M. Hewelt, and M. Weske

sending or receiving of an varying amount of instances resp. messages with open nets.
Events that are in trigger or message flow relation with several other events are also
not directly covered. To overcome these limitations we adopt the approach of inserting
intermediary nets from [10] and extend it with net constructs for multi-communication.

The transformation is conducted in a modular fashion: Each of the BPA’s processes
is first transformed independently into an open net. As a second step intermediary open
nets are created that capture the trigger and message relations and interconnect the
process’s open nets. In the last step intermediary and process’s nets are composed into
one p/t-net and analysed with the model checker LoLA [12].

Transforming Business Processes. The transformation of a single business process is
defined as follows.

Definition 5 (BPA Process Transformation). Given a BPA, let 〈e1e2 . . . en〉 be the
sequence of events belonging to the business process v ∈ V then the process’s open net
is defined as Nv = (Pv, Tv, Fv,M0v , Ωv), where

– Tv = {tei |ei ∈ v}, Pv = PN
v ∪ PO

v ∪ P I
v ,

– PN
v = {p′ei |ei ∈ v ∧ 1 ≤ i < n},

– PO
v = {pei |ei ∈ (EE ∪ ET) ∩ v} \ {pen | en• = ∅},

– P I
v = {pei |ei ∈ (ES ∪EC) ∩ v} \ {pe1 | •e1 = ∅},

– F = {(tei , p′ei), (p′ei , tei+1) | tei ∈ Tv ∧ p′ei ∈ PN
v } ∪

{(tei , pei) | tei ∈ Tv ∧ pei ∈ PO
v } ∪ {(pei , tei) | tei ∈ T ∧ pei ∈ P I

v },
– M0v = ∅ if there exists (t, e1) ∈ I and pe1 otherwise
– Ωv = {} if there exists (en, t) ∈ I ∪ L and {pen} otherwise

The sets P I
v of input and PO

v of output places depend partially on the trigger relation I .
Only if an start event e1 is triggered the place pe1 is an input place, otherwise it is an
initially marked internal place. Equivalently pen is an output place only if en has a non-
empty postset, otherwise it is internal and part of the final marking. As in [10] we resort
to indicating the number of business process instances as black tokens in open net.

Multicast and multireceive net. Depending on the multiplicity of a throwing event it
emits a different number of messages or trigger signals. To capture this in the open nets

(a) Multicast net (b) Multireceive net

Fig. 3. Open net constructs to represent multi-
communication

formalism, we propose to use an inter-
mediary open net called multicast net. It
is a net schema, because each multiplic-
ity specification entails a different mul-
ticast net, consisting of one input place,
one output place, and one transition for
each element in the multiplicity set of
the event. Note, that the same construct

is used for triggering multiple instances as well as sending multiple messages. Fig. 3(a)
presents an exemplary multicast net.

Definition 6 (Multicast Net). Given a BPA the multicast net for a message or trig-
ger flow (s, r) ∈ L ∪ I is defined as Ns,r = (Ps,r , Ts,r, Fs,r, 0, {0}) where Ps,r =
PN
s,r ∪ P I

s,r ∪ PO
s,r and P I

s,r = {ps}, PO
s,r = {pr}, PN = ∅, Ts,r = {si | i ∈ μ(s)},

Fs,r(ps, si) = 1, Fs,r(si, pr) = i where i ∈ μ(s). Note that the multicast net has the
empty multiset as initial and as only final marking.

BPAs with Multiplicities: Transformation and Correctness 233

The multireceive net which is a slightly adapted version of the multicast net, expresses
that a process instance needs a certain number of messages or trigger signals before it
can continue resp. is instantiated only. Formally we haveFs,r(ps, si) = i, Fs,r(si, pr)=
1 where i ∈ μ(s) for the multireceive net, while the rest stays the same. The resulting
open net construct is depicted in Fig. 3(b).

Splitter and collector net. Processes can not only trigger multiple instances of one
process, but also instances of multiple processes. The same is true for sending and
receiving messages. In Fig. 2 for example, process P sends messages to both processes
Q and R. Formally we have p• = {q, r} two events in the postset of throwing event p.
Note, that it only matters that the preset resp. postset is non-singleton and not in which
relation those events are. Therefore the following definitions for open nets, adapted
from [10] apply to both messaging and triggering.

Definition 7 (Splitter and Collector Net). Given a BPA, a throwing or end event e ∈
ET ∪ EE and a catching or start event e′ ∈ ES ∪ EC . Then the open net Ne =
(Pe, Te, Fe, 0, {0}) is called the splitter net for e, where Pe = PN

e ∪ P I
e ∪ PO

e , PN
e =

∅, P I
e = {pe}, P 0

e = {pb | b ∈ e•}, Te = {te}, Fe(p, te) = Fe(te, p) = 1 ∀p ∈ Pe.
The initial marking is the empty multiset, the only final marking as well.
The collector net for e′ is defined similarly except that P I

e′ = {pe | e ∈ •e′}, P 0
e′ =

{pe′} and Te′ = {te | e ∈ •e′}.

4.3 Composition and Analysis

Before the analysis, the open nets resulting from the transformation have to be com-
posed according to Def. 4. This composition relies on the names of interface places.
For each pair of events in trigger or message flow relation at least one intermediary net
is created. Those are defined to provide the complementary interface places and make
the nets composable. If not for the intermediary nets, the composition would yield un-
connected nets leaving all places unfused.

In some cases additional care has to be taken to avoid wrong composition, e.g. for
events that have both a non-trivial multiplicity set |μ(e)| �= {1} and a non-singleton
postset |e•| > 1. In such cases multiple intermediary nets are necessary, which per
default would have interface places with identical names, thus making the nets non-
composable. But since such situations can be derived from the relations, the problem
can be circumvented by renaming those places. Details and the renaming algorithm can
be found in the technical report [2].

Analysis with LoLA. To analyse the correctness of a BPA subset, several of LoLAs built-
in verification tasks are applied to the composed open net. For this purpose we express
the BPA correctness criteria as CTL formulae or state predicates and apply model check-
ing to determine if they can be satisfied. A terminating BPA run is characterized by the
final place or places of the net being marked with one or more tokens and any other
place in the net being unmarked. If such a state is reachable in the state space, the BPA
subset has a terminating run and is thus correct. Lazy termination of a BPA run can be
concluded if there is a path in the state space leading to a final marking, such that each
process terminates at least once, if it is instantiated at all. In lazy terminating BPA runs
unterminated instances and pending messages might stay behind. If a final marking is

234 R.-H. Eid-Sabbagh, M. Hewelt, and M. Weske

not reachable, the BPA subset contains only deadlocks and infinite BPA runs (livelocks).
Those can automatically be detected by LoLA. Dead processes are found by searching
the state space for all those initial places, that are always unmarked. If the transformed
open net successfully passes all the verification tasks the BPA subset is correct.

5 Conclusion

Business Process Architectures provide means to model and analyse multi-communi-
cation between multiple instances of interacting business processes. In this contribu-
tion we introduced the concept of a BPA run and elaborated on correctness criteria for
BPAs. Our main contribution is the introduction of intermediary nets to capture BPA
multiplicities inside the frame of open nets. The resulting open net allows analysis with
established verification tools.

Future work will deal with extending BPAs with the ability to model alternative
behaviour as well as focus on introducing correlation concepts. A BPA analysis tool for
the extraction of BPAs from process model collections and their large scale analysis is
currently under development.

References

1. Eid-Sabbagh, R.-H., Dijkman, R., Weske, M.: Business process architecture: Use and cor-
rectness. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 65–81.
Springer, Heidelberg (2012)

2. Eid-Sabbagh, R.H., Hewelt, M., Weske, M.: Business Process Architectures with Multiplici-
ties: Transformation and Correctness. Technical Report 77, Hasso-Plattner-Institut (2013)

3. van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Proclets: A Framework for Lightweight
Interacting Workflow Processes. Int. J. Cooperative Inf. Syst. 10(04), 443–481 (2001)

4. Decker, G., Zaha, J.M., Dumas, M.: Execution semantics for service choreographies. In:
Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 163–177.
Springer, Heidelberg (2006)

5. Martens, A.: Analyzing web service based business processes. In: Cerioli, M. (ed.) FASE
2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)

6. Decker, G., Weske, M.: Local Enforceability in Interaction Petri Nets. In: Alonso, G., Dadam,
P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319. Springer, Heidelberg
(2007)

7. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service interaction: Patterns, formal-
ization, and analysis. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS,
vol. 5569, pp. 42–88. Springer, Heidelberg (2009)

8. Weinberg, D.: Efficient Controllability Analysis of Open Nets. In: Bruni, R., Wolf, K. (eds.)
WS-FM 2008. LNCS, vol. 5387, pp. 224–239. Springer, Heidelberg (2009)

9. Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service Interaction Patterns. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649,
pp. 302–318. Springer, Heidelberg (2005)

10. Eid-Sabbagh, R.-H., Weske, M.: In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013.
LNCS, vol. 7908, pp. 208–223. Springer, Heidelberg (2013)

11. Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I find a partner? Undecidability of
partner existence for open nets. Information Processing Letters 108(6), 374–378 (2008)

12. Schmidt, K.: LoLA: A Low Level Analyser. In: Nielsen, M., Simpson, D. (eds.) ICATPN
2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000)

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 235–250, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Optimal Resource Assignment in Workflows
for Maximizing Cooperation

Akhil Kumar1, Remco Dijkman2, and Minseok Song3

1 Smeal College of Business, Penn State University, University Park, PA 16802, USA
AkhilKumar@psu.edu

2 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands

r.m.dijkman@tue.nl
3 Ulsan National Institue of Science and Technology, UNIST-GIL 50,

Ulsan 689-798, South Korea
msong@unist.ac.kr

Abstract. A workflow is a team process since many actors work on various
tasks to complete an instance. Resource management in such workflows deals
with assignment of tasks to workers or actors. In team formation, it is necessary
to ensure that members of a team are compatible with each other. When a
workflow instance of, say, an insurance claim (or a surgery) process is per-
formed, the handoffs between successive tasks are often soft as opposed to
hard, and actors who perform successive tasks in this process instance must
cooperate. If they cooperate well, it can improve quality and increase through-
put of the instance. In general, the degree of required cooperation between a
pair of tasks varies and this should be captured by a model. This paper develops
a model to capture the compatibility between actors while assigning tasks in a
workflow to a group of actors. The model is tested through a simulation and the
results from a greedy algorithm are compared with optimal results. A technique
for computing the compatibility matrix is given and used for an empirical vali-
dation from a real execution log. We argue that workflow resource models
should recognize soft handoffs and provide support for them.

1 Introduction

„We found that patients whose surgical teams exhibited less teamwork
behaviors were at a higher risk for death or complications.‰ [10]

Much work within organizations takes place in teams whether it is performing surgery
(as in the quotation above), designing a car, or processing a customer's insurance
claim application. Naturally, it is very important that members of a team, in addition
to having the requisite qualifications, also be compatible with one another in order to
ensure smooth execution and flow of the work. Of course, in a team of n workers or
actors, it is not necessary that every pair of members must be fully compatible with
each other, but the goal in general would be to maximize overall compatibility partic-
ularly across actors whose roles require considerable collaboration and cooperation.
Non-cooperation can result in loss of productivity. In a similar vein, the need for

236 A. Kumar, R. Dijkman, and M. Song

optimization also arises in business processes. In a typical insurance claim process,
several tasks must be done by different roles in a certain order. After a worker or actor
completes her task she hands off the process workflow to the next actor. In a hard
handoff no further interaction between the two actors may be required. But in a soft
handoff, the two actors may still need to interact later for queries and clarifications
even though the process definition may not reflect it. Thus, in practice “there is a
series of overlapping and nested roles and responsibilities.”[8] In general, an actor
doing a later task in a workflow may need to refer back to consult with an actor who
did a previous task for the same case. Hence, cooperation is necessary between the
two actors of successive tasks so that the workflow can proceed smoothly.

Workflow management systems can be viewed from various perspectives such as:
control flow, data flow and resource modeling. The control flow describes the order-
ing relationships between various tasks, and the data flow its data inputs and outputs.
The resource model [7,19,18] refers to the roles and specific actors who are qualified
to perform various tasks. Most resource assignment algorithms consider issues like
suitability, urgency, conformance and availability [6, 11] while allocating tasks to
actors. However, they fail to recognize the interactions among the actors performing
different tasks in a workflow instance, say for insurance claim processing. In prac-
tice, there is need for such interaction.

The execution of a process instance, in general, is really a team effort involving
multiple handoffs and the handoff should be as smooth as possible. The Free Dictio-
nary (http://www.thefreedictionary.com) defines compatible as: “capable of existing
or performing in harmonious, agreeable, or congenial combination with another.”
Thus, compatibility is a measure of the degree to which actors cooperate with one
another in a workflow. Hence, compatibility between actors should be considered
while assigning tasks to actors. Current approaches only consider suitability of an
actor for a task in isolation of her compatibility with actors of others tasks in an in-
stance. We propose a model that allows us to specify compatibilities among actors in
compatibility matrix, and also the required degree of desired cooperation among tasks
through a cooperation matrix. In general, compatibility between two actors may be
task-specific, but for now we will assume that it is the same for all tasks.

As noted above, the medical domain is another area where multiple roles must
work together in order to achieve a positive outcome, and compatibility and smooth
coordination and handoffs between various personnel involved (such as surgeons,
anesthesiologists, nurses, lab technicians, etc.) is very important [1,10]. In this paper
we show how to model compatibility between actors while making work assignments
so as to achieve a high degree of overall compatibility for the process. Section 2
gives a basic framework and preliminaries. Then, Section 3 describes our model for
maximizing compatibility. Next, Section 4 gives a greedy heuristic and experimental
results for its performance against an optimal solution. Sections 5 and 6 show how to
compute the compatibility matrix and provide empirical validation respectively.
Section 7 presents several directions for extending this approach. Finally section 8
gives a discussion along with related work and we conclude with Section 9.

 Optimal Resource Assignment in Workflows for Maximizing Cooperation 237

2 Basic Framework

Consider an example of a medical insurance claim process model shown in BPMN in
Figure 1. In this process, a claim is received, and then checked by a reviewer who veri-
fies that it is a valid claim. Next, it is examined by an evaluator who determines the
amount of the settlement. A manager must approve the claim, and finally the accounts
officer issues a payment for it. Thus, the key steps or tasks, the roles that perform each
step, the actors in the roles and their respective locations, in this process are:

Receive claim (role: customer service rep; actors: John, Mary; location: call center 1)
Review, validate, assign claim (role: reviewer; actors: Beth, Sue; location: call center 2)
Evaluate and determine settlement (role: evaluator; actors: Mike, Jim; location: client city)
Approve payment (role: manager; actors: Jen, Pat; location: regional office)
Make payment (role: accounts officer; actors: Mark, Lin; location: headquarters)

Notice that the roles for each task are geographically dispersed. This makes the need
for cooperation even greater. As depicted by the dotted arrows in Figure 1, roles per-
forming different tasks may need to interact. For example, after a claim is received,
the reviewer might need to refer back to the customer service representative for clari-
fication about certain missing information on the claim (say, the exact location or
time of an accident is missing). Similarly, the evaluator may need to consult with the
reviewer for additional details. Finally, the manager could seek clarifications with the
evaluator regarding the payment amount before approving it.

Thus, even though formal representations for workflow processes may not show it,
there is often a need for such referrals. But formal modeling approaches tend to neg-
lect this issue. Our goal is to capture notions of compatibility between actors who will
perform tasks where soft handoffs are important. Hence, a metric for compatibility is
required.

Fig. 1. A simplified insurance claim process with several tasks and roles
(Dashed lines show the need for cooperation among actors of pairs of tasks)

Our metrics for compatibility within a team or a process workflow are: , , , , ,, , ,

 ∑ ,,

Where , , , : 1 1, 2 1, 2 0,

238 A. Kumar, R. Dijkman, and M. Song

, :
1, 1 20, , : 1, 2 on a continuous scale of 0 1

The fit and cooperation values are stored in two matrices. Table 1 is an actor-actor
compatibility matrix with values on a scale of 0 to 1 (from low to high compatibility).
Table 2 gives a binary cooperation matrix for all pairs of tasks, where a '0' means
cooperation between a pair of tasks is not required, and '1' that it is. We assume that
cooperation is reciprocal; hence the matrices are symmetric. The start and end tasks
are not shown in the tables because they are not performed by humans. The diagonal
entries in the table are 1.0 to represent that an actor is fully compatible with herself.
Here we assume that compatibility between actors is not task-specific, but to make it
task specific, , can be modified in the above formulation to , , where the new subscript t represent a task. Later we will show how
this model is modified to allow non-discrete values of cooperation between actors.

Example 1: (Partial Cooperation) Below we calculate average compatibilities using
the values in Tables 1 and 2. There are five main tasks in this instance. Moreover, as
per Table 2 there are only 6 interactions where cooperation is required; hence it is a
case of partial cooperation. Clearly, several combinations of actor assignments are
possible here. Let us look at two examples.

Assignment 1 (random):
cust. rep: John ; Reviewer: Sue; Evaluator: Jim; Manager: Pat; accounts officer: Mark

Average compatibility = (0.1 + 0.3 + 0.6 + 0.6 + 0.1 + 0.1)/6 = 0.3

Assignment 2 (optimal):
cust rep: Mary; Reviewer: Beth; Evaluator: Jim; Manager: Jen; accounts officer: Mark

Average compatibility = (0.3 + 0.8 + 0.8 + 0.7 + 0.8 + 0.7)/6 = 0.683

The first assignment is made simply by randomly assigning a task to a qualified actor,
while the second one is optimal. Clearly, there is a large difference (of more than
100%) in average compatibility between these two assignments.

Table 1. Actor-Actor Compatibility matrix (cweight)

Role >
(Task) >

Cust. Rep
(receive)

Reviewer
(validate)

Evaluator
(settle)

Manager
(approve)

Accounts
(pay)

 John Mary Beth Sue Mike Jim Jen Pat Mark Lin
John 1.0 0.9 0.8 0.1 0.8 0.3 0.9 0.3 0.4 0.2
Mary 0.9 1.0 0.3 0.7 0.2 0.8 0.9 0.2 0.1 0.8
Beth 0.8 0.3 1.0 0.8 0.3 0.8 0.7 0.3 0.2 0.9
Sue 0.1 0.7 0.8 1.0 0.9 0.6 0.4 0.6 0.8 0.4
Mike 0.8 0.2 0.3 0.9 1.0 0.9 0.3 0.9 0.8 0.1
Jim 0.3 0.8 0.8 0.6 0.9 1.0 0.8 0.1 0.3 0.9
Jen 0.9 0.9 0.7 0.4 0.3 0.8 1.0 0.8 0.7 0.3
Pat 0.3 0.2 0.3 0.6 0.6 0.9 0.8 1.0 0.1 0.8
Mark 0.4 0.1 0.2 0.8 0.8 0.3 0.7 0.1 1.0 0.9
Lin 0.2 0.8 0.9 0.4 0.1 0.9 0.3 0.8 0.9 1.0

 Optimal Resource Assignment in Workflows for Maximizing Cooperation 239

Example 2:(Full Cooperation) Next consider a variation of the above example. In-
stead of assuming that cooperation between some pairs of participants is necessary, let
us assume that all participants who work on an instance of a process must cooperate
with each other. The corresponding cooperation matrix is shown in Table 3. The solu-
tions from the random assignment and the optimal assignment are as follows.

Table 2. Cooperation matrix (partial cooperation required)

 Receive Validate Settle Approve Pay
Receive – 1 1 0 0
Validate 1 – 1 1 0
Settle 1 1 – 1 0
Approve 0 1 1 – 1
Pay 0 0 0 1 –

Assignment 3 (random):
cust rep: Mary ; Reviewer: Sue; Evaluator: Jim; Manager: Jen; accounts officer: Lin
Average compatibility =
(0.7 + 0.8 + 0.9 + 0.8 + 0.6 + 0.4 + 0.4 + 0.8 + 0.9 + 0.3)/10= 0.66

Assignment 4 (optimal):
cust rep: Mary; Reviewer: Beth; Evaluator: Jim; Manager: Jen; accounts officer: Lin
Average compatibility =
(0.3 + 0.8 + 0.9 + 0.8 + 0.8 + 0.7 + 0.9 + 0.8 + 0.9 + 0.3)/10= 0.72

Table 3. Cooperation matrix (full cooperation required)

 Receive Validate Settle Approve Pay
Receive – 1 1 1 1
Validate 1 – 1 1 1
Settle 1 1 – 1 1
Approve 1 1 1 – 1
Pay 1 1 1 1 –

In this example, the difference in average compatibility between the optimal and

random assignments is much smaller than in Example 1. The improvement through an
optimal reassignment of tasks in the full cooperation case is less because, in general,
perhaps few actors cooperate well with all other actors in a process.

We have considered two scenarios involving different levels of cooperation. In
general, the cooperation matrix could vary, and the best assignment will also be dif-
ferent accordingly. Next we describe our model for finding an optimal solution so as
to maximize cooperation within the team.

3 Model – Optimal Work Assignment (OWA)

The objective of this model shown in Figure 2 is to maximize total (or average)
compatibility. However, we express our objective function so as to minimize total
incompatibility and the reason for this is explained shortly. Our notion of overall
compatibility is as an aggregate of all pair-wise compatibilities between actors who
are involved in task-pairs of a process that require cooperation. Since pair-wise actor-
actor compatibility ranges between 0 and 1, incompatibility=(1 compatibility).

240 A. Kumar, R. Dijkman, and M. Song

Fig. 2. Model OWA for optimal work assignment

By constraint 1 of the OWA model, every task must be assigned to exactly one ac-
tor. The second constraint requires that the actor u who is assigned to perform task
t(,) must be qualified to do it (,). The third constraint forces the fit varia-
ble between two actors doing tasks that have a soft handoff between them to 1. Thus,
the fit variable fitu1,u2,t1,t2 must be 1. The model in Figure 2 is called an integer pro-
gramming (IP) formulation which is known to be NP-complete [2]. Hence solving the
OWA is an NP-complete problem too. It can be solved with a tool like CPLEX [4].
The solution of the model gives the optimal assignment by finding the values for the
variable , for all u,t. Additional constraints can be added to this basic model
to enforce minimum (maximum) limits on number of tasks assigned to any actor.
Note that the objective function assumes that overall compatibility is linear in
individual actor-pair compatibility.

Now, the reason the objective function minimizes total incompatibility is as fol-
lows: If we try to maximize compatibility then the fit variables are all forced to 1
resulting in an incorrect formulation. However, if we express the objective as mini-
mizing incompatibility this error does not occur, and a fit variable , , ,
assumes a 1 value only when actor u1 does task t1 and actor u2 does task t2.

To construct the OWA model, we only need to know the data in the coop, cweight
and cando matrices. The complexity of this problem is O(tu), where t is number of
tasks and u is number of actors per task. In the next section we develop a heuristic to
solve this problem.

 , , , 1 ,, , ,

 , , , 1 1, 2 1, 2 0,

 , 1, 0, , 1, 0,
, 1, 1 20, , : 1, 2

Model OWA

Subject to: ∑ , 1, (1)
 , , (2)
 , , , , , 1, 1, 2 1, 2 1 (3)

Where:

 Optimal Resource Assignment in Workflows for Maximizing Cooperation 241

4 A Greedy Heuristic and Results

Here we describe a greedy heuristic to solve the actor assignment problem. The main
steps are shown in Figure 3. The coop, cweight and cando arrays are taken directly from
the model described above. For each successive task t1 (line 1), we consider each
actor u1 (line 2) who can do t1. Then, for each actor u1 and for every other task t2
(line 3) such that cooperation between t1 and t2 is required (line 4), we find the max-
imum compatibility actor with actor u1 from the cweight array and accumulate the
compatibility in a variable score. This is repeated for every task t2 that requires coop-
eration with t1 and in this way a score is computed for each actor who can perform
task t1. Finally, the actor with the maximum score is assigned the task t1 (line 7) and
corresponding actor to other tasks that need cooperation with t1. This is repeated until
all actors are assigned. The algorithm returns the assign array.

Fig. 3. A greedy heuristic for actor assignment

This is a greedy algorithm. At each successive step, we assign actors to a task

based on the best compatibility for this particular assignment without optimizing
across all tasks. Next, we compare the greedy heuristic results against the optimal
solution to see how much improvement is possible by using the optimal approach.

We conducted experiments to compare the greedy heuristic with the optimal solu-
tion. The greedy heuristic was implemented in Python language, while the optimal
solution was found by solving the model using CPLEX software [4]. We used a simu-
lation first to create the data for the experiments, and the parameters of the simulation
are given in Table 4. In particular there are 10 tasks in the process and 20 actors. Each
task can be done by either 2 or 3 actors. First, we select the number of qualified
actors for each task (2 or 3, with equal probability), and then pick the actual actors at
random. Our cooperation model assumes that:

Algorithm Greedy_Coop
 Input: coop[][],cweight[][], cando[][]
 Output: assign[]
1 for each (task t1 = 1,…, num_tasks)
2 for each (u1 ∈ cando[t1])
3 for each (task t2 = t1+1,…, num_tasks)
4 if (coop(t1,t2)&& not(assign[t1])&& not(assign[t2]):
 score(u1)=score(u1) + max(cweight(u1,u2), u2∈cando[t2])
5 end for
6 end for
7 assign[t1] = u*,
 s.t. score[u*],u*= max(score[u], u∈cando[t1])
8 for each (task t2 = t1+1,…,num_tasks)
9 if (coop(t1,t2)&& not(assign[t2]):
 assign[t2] = u2*, s.t.
 cweight[u*,u2*]=max(cweight[u*,u2], u2∈cando[t2])
10 end for
11 return(assign[])

242 A. Kumar, R. Dijkman, and M. Song

(1) task i must cooperate with the next task i+1 with probability 1.0
(2) tasks in the pairs (i,i+1) and (i,i+2) must cooperate with probability 0.5
Finally an actor-actor compatibility matrix is generated where compatibility values

of 0.1, 0.2, …, 0.9 are randomly assigned. If the same actor performs two tasks, then
her compatibility with herself is 0.99 (i.e. close to 1). In these experiments we as-
sumed availability of all actors was 1, i.e. they were all available.

Table 4. Parameters used in the simulation experiment

Parameter Description value
tasks Number of tasks 10, 20
Total # actors Number of actors 20, 40
Task- actor
assignment

For each task, assign actors who can perform the task Pick 2 or 3
actors
at random

Cooperation
requirement

Between tasks i and i+1 with prob. 1, and between i, and,
i+2 and i+3, with prob. 0.5

Compatibility
weight

Weight between 0 and 1 to measure degree of fit between
two actors where handoff is important

0.1,0.2, …
0.9

Availability Extent of availability of an actor (0.0,…1.0) 1.0

In Table 5 (a) we summarize the results for 10 cases with 10 tasks and 20 actors in

each case. The actual actor assignments produced by the heuristic are not shown. In
case 1, the heuristic produces an assignment where task 1 is assigned to actor 19, task
2 to actor 10, and so on. For this case the heuristic assignment is very surprisingly
close to the optimal solution. In fact 9 out of 10 actor assignments are the same except
that task 9 is assigned to actor 10 in the heuristic instead of actor 7. We also report the
average compatibility, i.e. the average of the compatibility values across the '1' entries
in the cooperation matrix, along with the percentage gap between the optimal and the
heuristic solutions. In case 1, the heuristic is worse than the optimal by just about 6%,
but in other cases, the gap is larger, even as high as 40% in case 9. Overall, across
all 10 cases the average gap is about 19%.

Similarly, the results for a second experiment with 20 tasks and 40 actors are given in
Table 5 (b). Now there is an average gap of 17% between the performance of the optim-
al and the heuristic, and it lies between 8% (case 3) and 23% (case 7). In case 3, 6 out
of 10 actor assignments are the same, while in case 7, 5 out of 10 are the same.

The results clearly show that the greedy algorithm is useful but suboptimal. The
main problem observed in both sets of experiments with the greedy algorithm is that
if it makes a bad assignment early on, this effect gets magnified with successive task
assignments. Thus, it can lead to a very inferior final solution since there is no back-
tracking in the greedy algorithm. The assignment of actors to tasks can be done dy-
namically rather than making a static assignment at the start of the process instance.
Thus, in a dynamic mode an initial assignment is made at the start, and after each
successive task is completed, the algorithm is rerun to make the next assignment
based on availability of actors.

The experiments were carried out on a typical desktop PC (Intel dual core CPU at
2.40 GHz with 3.25 GB RAM) running CPLEX. The running times to find the solu-
tions were in fractions of a second for the problems above. Thus, for problems of

 Optimal Resource Assignment in Workflows for Maximizing Cooperation 243

Table 5. Results for average compatibility: heuristic vs. optimal solutions

(a) 10 tasks, 20 actors (b) 20 tasks, 40 actors

 Avg. Compat. % gap
Case Greedy Opt.

1. 0.656 0.700 6.29
2 0.650 0.759 14.36
3. 0.669 0.760 11.97

4. 0.653 0.785 16.82
5. 0.591 0.740 20.14
6. 0.615 0.737 16.55
7. 0.461 0.597 22.78
8. 0.550 0.761 27.73
9. 0.466 0.780 40.26

10. 0.615 0.730 15.75
Avg. 0.593 0.735 19.32

 Avg. Compat. % gap
Case Greedy Opt.

1. 0.615 0.684 10.09
2 0.568 0.717 20.78
3. 0.557 0.607 8.24

4. 0.605 0.759 20.29
5. 0.608 0.712 14.61
6. 0.596 0.771 22.70
7. 0.567 0.734 22.75
8. 0.556 0.718 22.56
9. 0.570 0.691 17.51

10. 0.619 0.720 14.03
Avg. 0.586 0.711 17.36

medium size one can find optimal solutions but for larger problems heuristic methods
may be more appropriate.

5 Automatically Computing the Compatibility Matrix

To fully benefit from optimal work assignment with the compatibility matrix, a com-
patibility matrix must be determined that corresponds to the manner in which actors
work together in practice. While this matrix can be designed in a traditional manner,
e.g. based on interviews with the actors, this is not ideal. In particular, because it is
unlikely that the interviewees will accurately report on their cooperation with others,
due to political considerations. Therefore, we propose an approach in which we derive
the compatibility matrix automatically based on an execution log that contains for
each execution trace: the executed tasks, the actor executing each task and the total
throughput time.

The basic idea is that if, in cases where two actors u1 and u2 cooperate, the
throughput time is lower on average than in the general case, these actors can be as-
sumed to have a higher compatibility. Conversely, if the throughput time is higher on
average, the actors can be assumed to have a lower compatibility. Based on this as-
sumption, we can use a sigmoid function to derive the actors’ compatibility from the
throughput times as follows. Given two actors u1 and u2, the average throughput time t
of the process, and the average throughput time tc of the process for execution traces
in which u1 and u2 collaborated,

, 11

Figure 4 illustrates the relation between t, tc and cweight for k = 1. In this function k is
a parameter that we can vary to obtain better results. In particular, if the variance in
throughput time is high k should be smaller to be more sensitive to these variances,

244 A. Kumar, R. Dijkman, and M. Song

similarly, if the variance is low, k should be greater. A suggestion is, to choose k such
that the sigmoid is most sensitive for tc from the first to the third quartile of the
throughput times domain (see Figure 4). Given the first quartile is q1, the third
quartile q3 and the average t, k = 10/(q3-q1).

Fig. 4. Relation between (t– tc) and cweight in a collaboration

Alternatives to the sigmoid function, such as a simple linear function, and alterna-
tive values of k can also be used to compute the compatibility matrix. We experi-
mented with some different values for k during the evaluation (see Section 6), but did
not evaluate alternatives exhaustively. In future work, we aim to investigate alterna-
tive functions and determine the parameter settings (a value for k in case of the sigmo-
id function) and a function that produces the best result.

Figure 5 shows an example of the automated computation of the compatibility ma-
trix from an execution log. The average throughput time of the execution traces is 9
and the average throughput times for traces where a particular combination of actors
appears is shown in Figure 5 (b). For example, the average throughput time for execu-
tion traces in which John and Mary work together is 8.5, for traces where John and
Beth work together it is 10. Figure 5 (c) shows a compatibility matrix computed based
on the throughput times using the sigmoid function. For example, the cweight

(a) execution traces

Trace Receive Validate Settlement t
1 John Mary Mike 8
2 John Beth Mike 10
3 John Mary Mike 9

(b) average throughput times (c) compatibility matrix

 John Mary Beth Mike John Mary Beth Mike

John 9 8.5 10 9 John 0.5 0.6 0.3 0.5

Mary 8.5 9 – 8.5 Mary 0.6 0.5 – 0.6

Beth 10 – 9 10 Beth 0.3 – 0.5 0.3

Mike 9 8.5 10 9 Mike 0.5 0.6 0.3 0.5

Fig. 5. Example of automated computation of the compatibility matrix

0

0,5

1

-5 0 5

cweight

(t-tc)

 Optimal Resource Assignment in Workflows for Maximizing Cooperation 245

for the collaboration between John and Mary is 1/(1 + e - (9 - 8.5)) ≈ 0.6, i.e.: John and
Mary are slightly more compatible than the average, which is 0.5, and certainly more
compatible than John and Beth, who have compatibility 1/(1 + e - (9 - 10)) ≈ 0.3.

In the next section, we will apply the automatic computation of the compatibility
matrix, as it is explained here, to an execution log from practice.

6 Empirical Evaluation

We evaluated the technique described in this paper using an execution log of a doc-
tor’s consultation process in Seoul National University Bundang Hospital, South Ko-
rea. The log was manually constructed from data that was extracted from the software
systems that are used in the various process steps. The process involved five steps:
reserving a room for the consultation; the actual consultation; planning follow-up
appointments; making payment; and issuing a prescription. The first and second steps
are performed by the same role (the doctor), which has 174 possible actors. The third
step is performed by a secretary, which has 74 possible actors. The fourth and fifth
steps are again performed by the same role (an administrator) and had 38 possible
actors. We had 4,446 execution traces.

First, we empirically validated that collaborations between actors did indeed have
an effect on the throughput time. Because of the large number of unique collabora-
tions, we focused on a subset of collaborations that occurred more than 20 times, and
disregarded other collaborations as insignificant (in fact, many occurred only once).
We also focused on collaborations in the third, fourth and fifth steps of the process.
These steps involved administrative tasks around the consultation: making the next
appointment, receiving a prescription and paying for the appointment. It was felt that
these steps were more likely to be affected by compatibility and less likely to be af-
fected by other factors, such as complexity of the medical case. This selection resulted
in 35 pairs of collaborations, associated with 1,717 execution traces. The data was
analyzed in SPSS. We determined whether the throughput times for the collaborations
were normally distributed, using a Shapiro-Wilk test. The test showed that the data
was not normally distributed. Consequently, we used a Kruskal-Wallis test (instead of
ANOVA) to determine whether the collaborations differed significantly, which was
found to be the case at a 0.05 significance level. Therefore, we conclude that there are
significant differences in throughput times between collaborations.

Second, we evaluated the theoretical improvement that the technique described in
this paper can achieve in work assignments. We did so by determining the compatibil-
ity matrix for the case and subsequently determining the optimal work assignment for
this compatibility matrix. We used the sigmoid function to determine cweight with the
parameter k set such that the function was most sensitive in the second and third quar-
tiles of the throughput times. Figure 6 shows a part of the compatibility matrix for the
case, showing the actors in the process and their compatibility. The actors are
represented by codes such as EIC, CDCJJ, etc. to ensure anonymity. Due to the large
number of actors involved in the case, the full compatibility matrix has 286 x 286
cells. The optimal work assignment computed from the compatibility matrix leads to
an average throughput time of 6 minutes, which is a strong improvement over the
overall average throughput time of 42.9 minutes. However, this average is based on
cweights computed from only one execution trace for illustration of an extreme case.

246 A. Kumar, R. Dijkman, and M. Song

Focusing on assignments that were based on at least 10 execution traces, the best
work assignment leads to an average throughput time of 23.7 minutes, still a strong
improvement over the overall average throughput times. Interestingly, in this case the
third-best work assignment is actually better at an average of 19.7 minutes. The best
assignment based on at least 20 execution traces has an average throughput time of
26.9 minutes.

 EIC CDCJJ CHBAB CEFGG …
EIC 0.50 0.99 – – …
CDCJJ 0.99 0.50 0.25 0.75 …
CHBAB – 0.25 0.50 – …
CEFGG – 0.75 – 0.50 …

… … … … … …

Fig. 6. Part of the compatibility matrix of the case

Although our results on throughput were not tested for statistical significance, we
believe these differences are too large to be explained by differences in worker com-
petence alone, especially given that the tasks involved are of low complexity. Hence,
our initial evidence points to varying levels of cooperation among actors.

7 Further Extensions

In this section we consider some variants of the basic model. The first one allows us
to model varying degrees of cooperation between actors instead of just 0-1 binary
cooperation. The second extension considers how to find an optimal assignment when
multiple paths exist in the process. Finally, the last variant includes cost in the model
as a constraint or an objective.

7.1 Varying Degrees of Required Cooperation

In the discussion thus far, the coop matrix only contained discrete 0-1 entries for pairs
of tasks, where a 0 indicated cooperation was not required between the actors per-
forming two tasks, and a 1 indicated it was required. In general, varying degrees of
cooperation may be required between actors of different pairs of tasks. For example,
in the process of Figure 2, a high degree of cooperation (say, 0.9) may be necessary
between the evaluator and the manager, the need for cooperation between the manag-
er and the accounts officer may be less (say, 0.3). This can be captured by associating
a continuous parameter between 0 and 1 to denote the strength of cooperation re-
quired between the performers of two tasks. Thus, the cooperation matrix would
contain , entries that are values between 0 and 1, and not binary values.
These values would be determined subjectively by somebody with knowledge about
the process. Again, the objective function would also be modified as follows: , , , , 1 ,, , ,

The rest of the formulation would remain unchanged.

 Optimal Resource Assignment in Workflows for Maximizing Cooperation 247

7.2 Multiple Paths in a Process

The process described in Figure 1 is linear. Now, consider a modified version of that
process as shown in Figure 4 with two alternative branches after the validate step, the
lower branch being taken when the claim is rejected outright on initial review, say if it
is not covered by the policy. To handle this situation, we modify the objective func-
tion by introducing a new parameter , for the transition probability between two
tasks t1, t2. An example of a transition probability matrix is shown in Table 6. The , values are also shown on the edges in Figure 7. The revised objective function
is a weighted sum of the probability of path being taken and the incompatibility
along that path. The probability of a path being taken is computed as the product
of probabilities along all the edges on the path from the start node to t2. The con-
straints, however, remain the same as before. Thus, the new objective function is: , , , 1 ,, , ,

In a process model with loops the compatibility matrix is created as before by consi-
dering the activities in a loop and the compatibility requirements for them. An
estimate is used for the average number of loop repetitions, so the pairs of activities
within the loop can be weighted by this factor in the objective function.

Fig. 7. A revised process (labels on arcs show transition probabilities)

Table 6. A task-task transition probability matrix for the process in Figure 4

 Receive Validate Settle Approve Pay Reject
Receive 0 1 0.9 0.9 0.9 0.1
Validate 0 0 0.9 0.9 0.9 0.1
Settle 0 0 0 1 1 0
Approve 0 0 0 0 1 0
Pay 0 0 0 0 0 0

7.3 Optimization of Cost, Time, Resource

Model OWA in Section 3 has been formulated to minimize incompatibility, or equi-
valently, to maximize compatibility. However, in some actor assignment scenarios
an additional objective is to minimize cost, time or another resource. Given an

248 A. Kumar, R. Dijkman, and M. Song

actor-task cost matrix, where costu,t is the cost of actor u performing one instance of
task t, the model can be modified easily. In such a case it is possible to incorporate
cost into our model as an additional constraint such as:

, ,,

Where, costmax is the maximum allowable cost for the assignment.
Another alternative is to convert the objective function and add it as a constraint in-

to a cost optimization model. Then the constraint is expressed as:

, , , 1 , 1

where compatmin is a minimum desired compatibility threshold.
In a similar way, it is possible to further extend the formulation by adding availa-

bility, throughput and resource consumption constraints.

8 Discussion and Related Work

Research has shown that cooperative behavior is reciprocal [14] as we assume here,
and it affects service quality and performance [17]. Therefore, a workflow framework
should incorporate cooperation by providing suitable constructs for modeling compa-
tibility between actors. This means that a process designer should be able to model
soft handoffs between tasks and the degree of cooperation. This information can be
used in making resource assignments to enable a smoother flow of work.

In general, the time to perform a task consists of two elements: the intrinsic capa-
bility of an actor(ui) to perform task t based on skill and experience, and her compati-
bility(ui,uj) with other actors (uj) of related tasks of an instance. Thus,

Avg. time for task t by actor ui = f(capability(ui,t), compatibility(ui, uj))

Although we do not model the output quality of a process instance in this paper, it is
reasonable to assume that given qualified actors, better compatibility among them will
lead to higher quality and greater customer satisfaction. Further work is needed to
develop a more elaborate model that can capture quality and tease out the role of the
capability and compatibility elements. The approach described here can be imple-
mented with a push-pull hybrid strategy. Actors would be offered a list of new tasks
based on their compatibility, and then they may accept tasks from it.

In recent years there has been a surge of interest in modeling, connecting, schedul-
ing and optimizing business processes both within and across organizations
[16,18,19]. All such processes involve actors interacting in a collaborative manner.
Techniques for organizational mining to discover organizational models and social
networks are discussed in [15]. These models can assist in improving the underlying
processes and provide insights for resource assignment. When many actors or workers
collaborate on a team or on an instance of a running workflow, several factors can
influence the overall performance. In [12], based on an extensive empirical study it
was shown that there is a positive effect on performance of workflow instances when
actors are located geographically close together. This study has implications for

 Optimal Resource Assignment in Workflows for Maximizing Cooperation 249

assignment of work to distributed actors, and in relation to our work it suggests that
geographical distribution of actors may affect cooperation adversely.

The issue of cooperation among actors also has implications for best practices in
business process redesign [9]. In a cooperative setting, a process may be designed in
such a way that the boundaries between tasks are flexible. In a non-cooperative envi-
ronment the interfaces between tasks must be rigid. In [13] it is shown that asymmetry
in task size of tasks in a process, knowledge intensity levels and required customiza-
tion needs of tasks have an impact on throughput times and are factors to consider in
process redesign. When knowledge intensity and level of customization are high,
effective communication becomes critical in ensuring a smooth handoff, and hence
compatibility between the actors carrying out the handoff is important. It can also be
helpful to develop handoff protocols for better performance of a process as was
shown for the case of nursing shift handoffs in critical care [1].

There is related work as well on assignment of tasks to actors. Wolf [18] describes
a constraint programming approach for modeling and scheduling clinical pathways.
An IP formulation with the objective to minimize cost for assigning medical person-
nel is discussed in [3]. Another approach for assigning work in emergency situations
[11] is based on threshold models consisting of two components, threshold and stimu-
lus. As stimulus associated with a task increases, even actors who have a high thre-
shold for performing the task respond. Since cooperation plays an important role in
emergencies, compatibility should be a factor in deciding the stimulus.

9 Conclusions

In this paper we have highlighted the importance of compatibility among actors for
resource assignments in workflows. In practice, the actors who participate in a
workflow instance are part of a collaborative team. Empirical evidence from an execu-
tion log of a doctor’s consultation process in a hospital was given to show that through-
put times can vary considerably when resource assignments change. Thus, there is a
need to adequately model soft handoffs between tasks. Such situations are frequent in
practice and this issue has received little attention in research literature. We developed a
novel approach for such scenarios using the notion of compatibility between tasks, and
built a formal model to describe assignments of actors to tasks so as to maximize overall
compatibility across an end-to-end workflow instance. The optimal solution for this
model performed 20% better than a heuristic greedy algorithm. For medium size prob-
lems the optimal solution could be found very fast. A technique for discovering compa-
tibility matrices from logs was described, but it needs further validation. Other non-
greedy heuristics for task assignment would also be worth exploring.

We argue for new constructs for modeling of soft handoffs that allow cooperation
among actors and sharing of responsibility across tasks in a workflow. Future work
should examine ways to model such cooperation more accurately, and also study its
impact on throughput and other metrics of performance. More research is also needed
to understand and better model factors that affect cooperation.

Acknowledgement. Song was supported by the Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (No. 2011-0010561).

250 A. Kumar, R. Dijkman, and M. Song

References

1. Berkenstadt, H., Haviv, Y., Tuval, A., et al.: Improving handoff communications in critical
care: Utilizing simulation-based training toward process improvement in managing patient
risk. CHEST 134(1), 158–162 (2008)

2. Garey, M.R., Johnson, D.S. (eds.): Computers and Intractability: AGuide to the Theory of
NP-Completeness. W.H. Freeman, San Francisco (1979)

3. Grunow, M., Günther, H.-O., Yang, G.: Development of a decision support model for
scheduling clinical studies and assigning medical personnel. Health Care Management
Science 7(4), 305–317 (2004)

4. ILOG: Ilog CPLEX software, Version 11.010 (2008)
5. Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architecture and

Implementation. Thomson Computer Press, London (1996)
6. Kumar, A., van der Aalst, W.M.P., Verbeek, H.M.W.: Dynamic work distribution in

workflow management systems: How to balance quality and performance. Journal of
Management Information Systems 18(3), 157–193 (2002)

7. Kumar, A., Wang, J.: A framework for designing resource driven workflow systems. In:
Rosemann, M., vom Brocke, J. (eds.) The International Handbook on Business Process
Management, pp. 419–440. Springer (2010)

8. Leach, L., Myrtle, R., Weaver, F., Dasu, S.: Assessing the performance of surgical teams.
Health Care Manage Rev. 34(1), 29–41 (2009)

9. Mansar, S., Reijers, H.: Best practices in business process redesign: validation of a rede-
sign framework. Computers in Industry 56(5), 457–471 (2005)

10. Mazzocco, K., Petitti, D.B., Fong, K.T., Bonacum, D., Brookey, J., Graham, S., Lasky, R.,
Sexton, J., Thomas, E.: Surgical team behaviors and patient outcomes. The American
Journal of Surgery 197(5), 678–685 (2009)

11. Reijers, H.A., Jansen-Vullers, M.H., Zur Muehlen, M., Appl, W.: Workflow management
systems + swarm intelligence = dynamic task assignment for emergency management ap-
plications. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 125–140. Springer, Heidelberg (2007)

12. Reijers, H.A., Song, M., Jeong, B.: Analysis of a collaborative workflow process with dis-
tributed actors. Information System Frontiers 11(3), 307–322 (2008)

13. Seidmann, A., Sundararajan, A.: The effects of asymmetry on business process redesign.
International Journal of Production Economics 50, 117–128 (1997)

14. Sen, S.: Reciprocity: a foundational principle for promoting cooperative behavior among
self-interested actors. In: Proceedings of the Second International Conference on Multiac-
tor Systems, pp. 322–329. AAAI Press, Menlo Park (1996)

15. Song, M., van der Aalst, W.M.P.: Towards comprehensive support for orga-nizational
mining. Decision Support Systems 46(1), 300–317 (2008)

16. Sun, S., Kumar, A., Yen, J.: Merging workflows: A new perspective on connecting busi-
ness processes. Decision Support Systems 42(2), 844–858 (2006)

17. Tjosvold, D., Moy, J., Sasaki, S.: Co-operative teamwork for service quality in East Asia.
Managing Service Quality 9(3), 209–216 (1999)

18. Wolf, A.: Constraint-based modeling and scheduling of clinical pathways. In: Larrosa, J.,
O’Sullivan, B. (eds.) CSCLP 2009. LNCS, vol. 6384, pp. 122–138. Springer, Heidelberg
(2011)

19. ZurMühlen, M.: Organizational management in workflow applications – Issues and pers-
pectives. Information Technology and Management 5(3-4), 271–291 (2004)

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 251–258, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Accelerating Collaboration in Task Assignment Using
a Socially Enhanced Resource Model

Rong Liu1, Shivali Agarwal2, Renuka R. Sindhgatta2, and Juhnyoung Lee1

1 IBM T.J. Watson Research Center, New York, USA
2 IBM Research – India, Bangalore, India

{rliu,jyl}@us.ibm.com,
{shivaaga,renuka.sr}@in.ibm.com

Abstract. Knowledge-intensive business processes require knowledge workers
to collaborate on complex activities. Social network analysis is increasingly
being applied in organizations to understand the underlying interaction patterns
between teams and foster meaningful collaboration. The social positions of a
worker, i.e. the role played in working with others, can be identified through
analyzing process logs to assist effective collaboration. In this paper, we present
a novel resource model that incorporates the concepts of resource communities
and social positions. We demonstrate our resource model through a real
industry process - IT incident management process. This socially enhanced
resource model is also used to accelerate the collaboration between various
work groups by dedicating collaborative units in the task of incident resolution.

Keywords: BPM, resource model, social network, social compute unit.

1 Introduction

Social networking has become a powerful paradigm in enabling people to work
together. Participation in a business process is “social” in nature [10]. Particularly,
knowledge workers interact with each other, share ideas, and build knowledge to
execute complex activities in knowledge-intensive processes. For such processes, it is
critical to provide knowledge workers with an appropriate social supporting structure
for effective task execution. For example, in IT Service Management (ITSM), support
teams troubleshoot IT issues that are formally referred to as IT incidents. Due to the
complexity of IT environment, incidents regarding enterprise applications (e.g. SAP),
often require on-demand collaboration across teams, e.g., middleware or operation
system teams. However, traditional process technologies often have difficulties in
supporting such collaboration that usually cannot be prescribed before runtime [10].

There is a strong call for injecting social computing technologies into business
process management (BPM) framework for a higher level of flexibility and efficiency
[1,11,15]. A Social Compute Unit (SCU) [6,15] is dynamically and virtually formed
as a loosely coupled team of skilled (human) resources to execute a specific task. An
ITSM example is provided in [15] where an SCU is created based on IT component
dependencies involved in an incident. Although such intrinsic dependencies within a
task mandate collaboration to a degree, social positions of workers are also a critical

252 R. Liu et al.

factor in successful collaboration. Moreover, often such dependencies need to be
explored as part of task execution. In this paper, we propose a new method to study
social networks formed during process execution, identify different social positions,
and utilize these social positions to dynamically form SCUs.

A resource is an entity assigned to a process activity during runtime to perform
work. In this paper, we focus on human resources. Traditional resource models often
consider organizational aspects of resources [3,12,14], not social connections among
resources. However, resources, especially, knowledge workers, form various social
communities and take different social positions while participating in business
processes. In this paper, we enhance a traditional resource model with a set of social
networking features to facilitate collaboration. Also, we provide a new resource
assignment method that utilizes the social networking features. To illustrate this
model, we study a real-world ITSM process to discover the social networks among
knowledge workers and incorporate their social features into resource assignment.

The remainder of this paper is organized as follows: Section 2 introduces the
enhanced resource model. Section 3 provides a case study to illustrate this model and
use it in task assignment. Section 4 compares our work with related approaches and
concludes this paper with a brief description of our future work.

2 Socially Enhanced Resource Model

In this paper, we adapt Muehlen’s resource model in [12] to accommodate resource
social positions as shown in Figure 1. In the traditional model, each human resource
(i.e., person) owns some roles and occupies positions in organization units. Often, we
refer to an organization unit as a work group that specializes in a particular domain,
e.g., a finance work group. These elements specify basic competency requirements for
resource assignment. When collaboration is mandatory, in addition to the basic
requirements, a dynamic supporting team (i.e. SCU) comprised of a set of relevant
resources will greatly improve the execution efficiency. In the extended model, each
person is interested in some topics. A topic can be represented as a bag of keywords
[5]. Also, topics may be related to each other through overlapping keywords. A
resource belongs to one or more communities and has a degree of social power. The
social power is reflected in the resource’s social positions, the roles played in
connecting groups [8]. We are interested in three social positions within a community:
key contributor, influencer and coordinator. A key contributor is an active resource,
e.g., constantly executing a fair number of tasks. Usually, we identify group key
contributors for each work group. An influencer has high influence power over a
community. This influence power is often interpreted as leadership. A proper measure
of influence is eigenvector centrality [13]. A coordinator (see Figure 2(a)) within a
community connects others and thus can be measured by betweenness centrality.
Moreover, a community is formed by a group of people who have common interest on
certain topics. Thus, a community often focuses on a collection of related topics.

People within a community often interact with other communities. Figure 2
illustrates “brokerage” social positions [8]. A resource may act as a representative of
a community, which directly connects to other communities and is on most outgoing
paths from this community to others, while a gatekeeper of a community is a resource

 Accelerating Collaboration in Task Assignment 253

to which other communities often directly connect for communication going to this
community. These social positions often play critical roles during resource
collaboration across communities. In the next section, we will use a real-world
example to illustrate how to create such an enhanced resource model.

Fig. 1. Socially enhanced resource model (extended from resource meta model [12])

Fig. 2. Four different “brokerage” social positions [8] of Resource B: (a) Coordinator, (b)
Gatekeeper of Blue Community, and (c) Representative of Red Community

3 Case Study – IT Incident Management

3.1 IT Incident Management Process

As a common practice, many enterprises outsource the management of their IT
systems to specialized service providers. Business users of the IT systems submit
incidents when they face issues with the systems. Resources from the service provider
resolve the issues within timelines as defined in a service level agreement. The
process starts when a business user reports in a ticketing tool and records the issue
typically in a free-text form. Then the incident is assigned to a specific work group
based on the problem description by a dispatcher. The incident is then picked up by
an available resource within the group. The resource starts the resolution process. The
resource analyzes the problem in the ticket, communicates to the business user for
more input if needed, and resolves the problem. The business user validates the
restoration of service and the incident is closed. Note that the resolution stage in this
process is iterative because: (1) the incident may be misrouted due to insufficient
information, (2) the assigned resource may be unavailable, and/or (3) for the complex
nature of issues involved in the incident, multiple resources with different specialties

(a) (b) (c) A B C A B C A B C

254 R. Liu et al.

may be required. Currently, an incident is assigned to one resource at a time. When
necessary, the assigned resource works with a team lead and transfers the ticket to
another suitable resource. An incident transfer reflects the need for collaboration.

3.2 Resource Social Network, Communities, and Social Positions

We analyzed 1,563 incidents along with 23,123 task execution logs from a client in
the travel and entertainment industry. We built a network of 154 nodes and 220 edges
based on incident transfer logs, as shown in Figure 3. In this network, each node is a
resource and a direct link indicates incident transferred from the source to the target
with the number of transferred incidents as the weight. We applied Girvan and
Newman’s algorithm [9] to detect communities in this network. This algorithm
returns 21 communities as shown by different colors in Figure 3. Clearly, there are
four major interconnected communities (A-D). Some communities are aligned with
resource work group structures, while others spread across work groups. For example,
among the 28 resources in Community B, there are 10 resources from HR Payroll
work group, 7 from Security, and 3 from Travel and Expense group. We also
discovered main topics from the incidents handled by Communities A-D using Latent
Dirichlet Allocation [5]. As shown in Table 1, tickets processed by Community A are
about four major topics, including Purchasing, Payment, Invoice, and Web Method
Integration, with sample keywords shown in Table 1. The topics of each community
can be considered as an affinity bond among the resources. Communities may have
overlapping topics, but each community should have at least one unique topic.

Fig. 3. The resource social network consists of communities highlighted in different colors

Four Major Communities

A
B
C
D

19%
18%
13%
12%

 Accelerating Collaboration in Task Assignment 255

Table 1. Topics of Communities A, B, C, and D

Community Size Group Mix Topics

A 29

Procure to Pay,
Web Methods
Application,
Custom
Application

Purchasing: purchasing order, shopping cart, goods
movement, buyer, process
Payment: payment, vendor, approval, transaction,
Invoice: invoice, item, line, code
Web Methods Integration: Hub, Request

B 28

Security, Travel
and Expense, HR
Payroll

User Password: User ID, user locked, password reset
Access: authentication, connection, access, role,
applicable, portal, self service, registration
HR Expense / Payroll: employee, time, trip, deposit

C 20
Planned Transport
Charges (PTC),
Business Reports

PTC: ledger, session, task abended, printing failure
Reports: source, error, report, filename

D 19
Business Reports,
Security

Reporting: report, file, excel, attachment, record, pdf,
accessing, absence, transport

Furthermore, we identified a number of interesting social positions as shown in

Table 2. For each community, we identified coordinators by betweenness centrality,
which measures the number of shortest paths that pass through a node [13]. For
example, in Community A, Resource 21 has the highest betweenness centrality score,
87. In ITSM domain, coordinators are often IT architects, or managers responsible for
coordinating groups. Influencers are identified through eigenvector centrality. This
metric assigns relative scores to all nodes based on the concept that connections to
high-scoring nodes weigh more than those to low-scoring nodes [13]. In Community
A, Resource 36 has the highest score. In addition, we also identify group key
contributors by the degree centrality, i.e., the number of edges of a node.

Table 2. Coordinator, Influencer, and Group Key Contributor

Communities may interact with each other through representatives and gatekeepers.

Representatives typically correspond to leads or managers, and gatekeepers can be
considered as points of contact within a community. To identify these positions, we
studied the sub-network formed by only the links cutting across each pair of
communities and measured indegree/outdegree centrality score (the number
incoming/outgoing links of a node). A node with a high indegree score is recognized as
a gatekeeper, and that with a high outdegree score is identified as a representative. For
example, for community pair (A, B) shown in Figure 3, Resource 21 is a representative
of Community A and Resource 11 acts as a gatekeeper of B.

Resource Betweenness Resource Eigenvector Resource Workgroup Degree
21 87 36 0.46 21 procure to pay 37
40 24 39 0.39 39 custom application 28
6 27 38 0.37 40 procure to pay 21

31 18 21 0.35 36 web methods application 12
11 265 90 0.47 11 security 26
92 206 11 0.39 22 HR travel and expense 15
22 152 15 0.34 92 HR Payroll 9
68 151 92 0.30 33 security 7

Community
Coordinator Influencer Key Contributor

A

B

256 R. Liu et al.

3.3 Using Resource Model in Task Assignment

In this section, we provide an algorithm that augments the traditional incident
assignment approach [4] with a social compute unit (SCU). This algorithm is not
specific to ITSM and may be applicable to task assignment in other knowledge-
intensive processes as well. For each high priority incident, a primary owner is
assigned and a group of resources are formed as an SCU in anticipation of
collaboration. The SCU leverage their broad knowledge and social power to advice
the task owner resolution strategies and recommend suitable resources to collaborate.
A formally assigned SCU is especially useful in a situation where a resource has not
developed his own collaborative network. Figure 4 shows the outline of the proposed
task assignment algorithm. Assuming that resource social networks have been
analyzed, communities are well formulated, and different social positions are
identified using the approach described above, this algorithm is triggered upon a new
incident arrives. Traditional approaches, for example, the predictive learning model
[4], can be used to recommend a workgroup and determine the task owner. Then, the
following steps are taken to recommend resources forming an SCU:

1) Associate the incident with communities that are most relevant to it based on the
keywords present in task description. There are two cases:

Case A: The incident is matched with one community

i. Choose an influencer node and a coordinator node from the matching
community to the SCU. In case there are multiple influencers/coordinators,
choose the one with best availability and least load. Preference is given to a
resource qualified as both a coordinator and an influencer.

ii. If the matching community consists of multiple work groups, choose a key
contributor to the SCU from each group based on load and availability. If a
selected influencer/coordinator is also a key contributor for a workgroup, then
there is no need to pick another from that work group.

Case B: The incident is matched with multiple communities

i. Complete all steps in Case A for each community.

ii. Choose a representative and a gatekeeper to the SCU from each pair of
matching communities in case they are not already chosen in the capacity of
their other social positions.

2) Notify the task owner and SCU of the incident.

3) If needed, members from the SCU can be added or removed, and task ownership
can be transferred to a member in the SCU.

Figure 5 gives an incident to illustrate this algorithm. The text of this incident has
references to keywords “goods movement” and “authorization”, which match with the
topics associated with both Communities B and A. Following the algorithm, two
possible SCUs suggested are also shown in Figure 5. From the actual incident logs,
we find the incident was transferred between Communities A & B as follows: 21 (A)
 40 (A) 46 (B) 11 (B) 187 (B) 40 (A) 15 (B) 11 (B) 145 (B)
21 (A). This case clearly indicates that the transfer is caused by collaboration. It can
be seen from the logs that the key social positions do get involved and the transfers
typically are originate from these powerful positions.

 Accelerating Collaboration in Task Assignment 257

Fig. 4. Task Assignment Outline

Fig. 5. An Incident Example

4 Related Work and Conclusion

Technologies developed for BPM have had a tremendous success in the past two
decades [2]. Resource modeling has been an important part of BPM. In [12], Muehlen
describes a generic resource meta-model where a set of attributes may be associated
with workflow participants. In [14], Russell et al present a collection of resource
patterns in the context of process-aware information systems. A team-enabled
workflow reference model is introduced in [3]. An SCU can be considered as a
dynamically formed team on demand. In general, all of the above work focused on
modeling of static features of resources but not the social aspect of resources.

Another challenge of BPM comes from its flexibility in handling processes that
cannot be well defined before execution [2]. Social computing is considered as a
natural remedy to this issue. General introduction to social computing and network
analysis can be found in [13]. There is growing interest in integrating social
computing with BPM (a. k. a. Social BPM) [7,11]. The studies in Social BPM
propose the integration of different social tools, e.g., Wikis, discussion forums, to
engage stakeholders in designing process models or collaborating on task execution,
but not on analytical approaches to understanding resource social structures and
utilizing the social structures in process execution, as presented in our work.
Moreover, recent work also analyzed process execution logs to understand resource
social behaviors. [1] introduces a systematic approach and also a tool called MiSoN

Incident ID: INC1 Priority: High
Open time: 8/23/2010 2:02:16 PM Close Time: 7/28/2010 6:34:41 PM
Had system reimaged a few months ago, has not been able to perform goods movement, had previous
incident opened (INCx) to report authorization issue, but is still unable to complete work, referring
back to appropriate parties at higher severity. Please help to check.
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
Two possible SCUs:
i) Community A: 21 (coordinator, key contributor, gatekeeper, and representative), 36 (influencer,

key contributor), 39 (key contributor)
Community B: 92 (coordinator, influencer, key contributor), 11 (gatekeeper, key contributor), 33
(representative), 22 (key contributor)

ii) Community A: 21 (coordinator, gatekeeper, and representative), 36 (influencer, key contributor),
40 (key contributor), 39 (key contributor)
Community B: 90 (influencer), 11 (coordinator, key contributor, and gatekeeper), 22 (key
contributor), 33 (representative), 92 (key contributor).

258 R. Liu et al.

that creates social networks based on task execution logs. Our work moves a step
further to identify different resource social positions and use them to create SCUs for
collaborative task execution. In addition, our paper proposed an approach to forming
SCUs, which differs from previous work [15] in that SCUs are recommended based
on social positions but not on dependencies involved in a task.

In summary, we have presented a resource model for process execution augmented
with social characteristics of resources. This model brings together social concepts
such as communities, topics, and various social positions along with traditional
concepts such as roles and work groups, to support knowledge-intensive processes.
Also, we provided a new approach to suggesting Social Compute Unit, a dynamic
collaborative team, to execute a task in an efficient manner. We plan to work on a
pilot of the new socially enhanced task assignment approach and will evaluate it by
appropriate business measures such as reduced task execution time.

References

1. van der Aalst, W.M.P., Song, M.S.: Mining Social Networks: Uncovering Interaction
Patterns in Business Processes. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004.
LNCS, vol. 3080, pp. 244–260. Springer, Heidelberg (2004)

2. van der Aalst, W.M.P.: Business Process Management: A Comprehensive Survey. ISRN
Software Engineering (2013)

3. van der Aalst, W.M.P., Kumar, A.: A reference model for team-enabled workflow
management systems. Data Knowl. Eng. 38(3), 335–363 (2001)

4. Agarwal, S., Sindhgatta, R., Sengupta, B.: SmartDispatch: enabling efficient ticket
dispatch in an IT service environment. In: KDD 2012 (2012)

5. Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. Journal of Machine Learning
Research 3, 993–1022 (2003)

6. Dustdar, S., Bhattacharya, K.: The Social Compute Unit. IEEE Internet Computing 15(3),
64–69 (2011)

7. Erol, S., Granitzer, M., Happ, S., Jantunen, S., Jennings, B., Johannesson, P., Koschmider,
A., Nurcan, S., Rossi, D., Schmidt, R.: Combining BPM and social software: contradiction
or chance? Journal of Software Maintenance and Evolution 22, 449–476 (2010)

8. Fernandez, R.M., Gould, R.V.: A Dilemma of State Power: Brokerage and Influence in the
National Health Policy Domain. American Journal of Sociology 99, 1455–1491 (1994)

9. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks.
Proc. of National Academy of Sciences of USA 99, 7821–7826 (2002)

10. Khan, R.: Social Networking and BPM of the Future. BPTrends (2009)
11. Koschmider, A., Song, M., Reijers, H.A.: Social software for modeling business processes.

In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP, vol. 17, pp.
666–677. Springer, Heidelberg (2009)

12. Muehlen, M.: Organizational Management in Workflow Applications – Issues and
Perspectives. Information Technology and Management Archive 5(3-4), 271–291 (2004)

13. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)
14. Russell, N., van der Aalst, W.M.P.: Work Distribution and Resource Management in

BPEL4People: Capabilities and Opportunities. In: Bellahsène, Z., Léonard, M. (eds.)
CAiSE 2008. LNCS, vol. 5074, pp. 94–108. Springer, Heidelberg (2008)

15. Sengupta, B., Jain, A., Bhattacharya, K., Truong, H.-L., Dustdar, S.: Who do you call?
Problem resolution through social compute units. In: Liu, C., Ludwig, H., Toumani, F.,
Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 48–62. Springer, Heidelberg (2012)

Splitting GSM Schemas: A Framework for Outsourcing
of Declarative Artifact Systems

Rik Eshuis1,
∗
, Richard Hull2,

∗ ∗
, Yutian Sun3,∗ ∗ ∗

, and Roman Vaculı́n2

1 School of Industrial Engineering, Eindhoven University of Technology, Netherlands
2 IBM T J Watson Research Center, USA

3 Department of Computer Science, UC Santa Barbara, USA

Abstract. Case Management is emerging as an important paradigm for Business
Process Management. The Guard-Stage-Milestone (GSM) model is a recent case
management approach that substantially influences OMG’s emerging Case Man-
agement Modeling Notation standard. We study the problem of outsourcing part
of a GSM schema to another party, and develop a framework that supports split-
ting and outsourcing of GSM schemas. One element of the framework focuses
on restructuring the GSM schema to facilitate outsourcing while preserving the
semantics of the original schema; the second focuses on locking protocols that
define how the distributed parties should operate. Additionally, the framework
allows parties to keep local parts of their GSM subschema private without affect-
ing the outcomes of the global execution. The rules restructuring developed here
enables a crisp separation of concerns, which allows reuse of existing GSM (and
thus Case Management) engines for executing the subschemas.

1 Introduction

Nowadays, cloud-computing is a key enabler of business process outsourcing. Collab-
oration in an outsourcing relationship is typically organized around business objects or
business artifacts, like Order or Product, that are continually modified during the col-
laboration. This has a natural fit with data-centric BPM and case management [2,23],
recent BPM paradigms that organize processes around business artifacts and cases [7].

In this paper we study outsourcing of portions of case management models. The busi-
ness process modeling approach we use is the Guard-Stage-Milestone (GSM) model
[12,6], which supports a declarative specification of case lifecycles, also known as “ar-
tifact lifecycles”. GSM has substantially influenced the forthcoming OMG Case Man-
agement Model and Notation (CMMN) standard [3,18].

To support outsourcing of parts of a GSM schema, we propose a solution in which
each collaborating party has its own artifact-centric system, and the GSM schema (orig-
inal schema) is split into parts (essentially, subschemas) that are hosted by the respective
parties. This allows a party to use its own GSM engine for performing its work. To sim-
plify the discussion, we focus on the two party scenario (client and provider), but the
technical results can be extended to an arbitrary number of parties.

∗
Performed some of this research while visiting the IBM T.J. Watson Research Center.

∗ ∗
Supported in part by NSF grant IIS-0812578, and in part by the European Community Seventh
Framework Programme FP7/2007-2013 under grant agreement number 257593 (ACSI).

∗ ∗ ∗
Supported in part by NSF grant IIS-0812578. Performed part of the research as a summer
intern at the IBM T.J. Watson Research Center.

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 259–274, 2013.
© Springer-Verlag Berlin Heidelberg 2013

260 R. Eshuis et al.

An obvious naive way to achieve a split of a GSM schema is to simply partition it
into subschemas that are to be executed by the parties. However, this can cause two
kinds of challenges. First, because of the declarative, rule-based nature of GSM (and
CMMN), processing (incorporating) a new event can lead to a long propagation of rule
firings, which could involve arbitrarily long and inefficient back-and-forth interaction
between the two parties. Second, if multiple incoming events are to be processed in
the distributed setting, race conditions may break the equivalence between the original
schema and the pair of split subschemas. To mitigate the race conditions introduced by
the naive splitting approach, the underlying GSM engines would need to be extended
to incorporate transactional mechanisms in the heart of the rule propagation logic.

To addresses these concerns, we propose an alternative technique for restructuring
(the rules of) the original GSM schema into the two subschemas, so that the rule propa-
gation caused by an incoming event can be achieved in 3 steps: incorporating the event
into one subschema, sending a single message (event) to the other subschema, and then
incorporating the event into the other subschema. Also, we propose a light-weight dis-
tributed 2-phase locking protocol to avoid race conditions. This construction enables
a separation of concerns, allowing the core GSM algorithm (and engine) to remain
unchanged and layering the outsourcing and locking protocol above it. These two el-
ements combine into a formal framework that covers both the design-time (splitting
GSM schemas) and run-time aspects (locking protocol) of outsourcing GSM schemas.

The basic restructuring assumes that every part of the GSM schema is public and,
therefore, that any part can be placed with either party. In practice, the parties may want
to keep certain parts of the GSM schema private, meaning that other parties should not
be able see it. For instance, a business rule that explains under what conditions a credit
request is rejected might be considered confidential. To address privacy requirements,
we extend the framework to allow hiding of private elements of a GSM schema behind
newly created anonymizing events, which can be processed as normal events.

Although left as future work, we anticipate that the techniques developed here can be
extended to other declarative, rules-driven approaches to data-centric business process
management, including OMG’s CMMN [3] and the model of [2]. Also, the approach
here can be used with artifact-centric interoperation hubs [13] (see Section 6).

The remainder of this paper is organized as follows. Section 2 introduces GSM
schemas by means of a real-world example, and also shows the issues that arise from
naive GSM schema partitioning to support outsourcing. Section 3 formally introduces
the GSM model used in this paper. Section 4 defines the outsourcing framework, in
particular the restructuring and splitting of GSM schemas and a locking protocol. Sec-
tion 5 extends the framework to deal with privacy. Section 6 discusses related work and
Section 7 offers conclusions.

Because of space limitations the exposition in this paper is succinct, with a focus on
the main intuitions and techniques used. Full details are provided in [8].

2 Motivating Example

We introduce the problem of outsourcing GSM artifact schemas by means of an exam-
ple from the processes used by IBM Global Financing (IGF) [4], which is the largest IT
financier in the world. IGF finances hardware, software, and services in the IT industry.
First, we explain a simplified portion of a GSM schema for IGF processes. Then, we
discuss the problem of outsourcing parts of this GSM schema to other parties.

Splitting GSM Schemas 261

Deal
Refined

Deal
Failed

Deal
Drafted

Refine Deal

Create Deal Propose Offer Letter Deal
Agreed

Deal
Declined

Term
DraftedDraft Term Credit

CheckedCheck Credit
Determine

Price
Price

Determined

Offer
Letter

Created
Create Offer

Letter

Offer
Letter

Proposed
Propose Offer

Letter

ReDraftTermNeeded ReCheckCreditNeeded

.

Data Attributes Status Attributes

Milestones Stages

Fig. 1. GSM schema of the simplified part of the IGF business process: the Deal artifact

2.1 The Guard-Stage-Milestone Model of IGF

The main business process of IGF is arranging financial deals with clients. First, a draft
deal is created. Next, a deal offer is sent to the client. If the client accepts, the deal is
refined and signed by both parties. We focus on deal refinement process and three of its
main activities: drafting the terms of the deal, checking the credit level of the client, and
determining the price. The price can only be determined if the term has been drafted and
the credit checked. A complicating factor is that the result of drafting terms might be
that the credit check needs to be redone. For instance, if the risk is high the requirements
on the client’s credit are more strict. Conversely, the outcome of the credit check might
be that more strict terms are needed, requiring the terms to be redrafted. (In the actual
IGF process there are about 10 interrelated activities needed before determining price.)

As in other artifact-centric models, in GSM the business process is represented as in-
teraction of key business artifacts, with each artifact consisting of a data schema and a
lifecycle schema. Figure 1 shows a simplified GSM schema of part of the IGF business
process, organized around the key artifact Deal. The information part (bottom half of
Figure 1) consists of data attributes specific to the deal, and status attributes that record
the full state of the artifact lifecycle. In GSM, the lifecycle includes stages (rounded
rectangles), which represent the business activities. The Deal lifecycle includes three
main stages. Stages are composite (i.e., contain other substages, e.g. RefineDeal) or
atomic (i.e., stages that encapsulate a task, e.g. CheckCredit). Tasks correspond to ex-
ternal service invocations (manual or automated), and when completed they typically
update data attributes. Each stage has one or more guards, or opening sentries (dia-
monds), which are expressions specifying when stages open, and one or more termi-
nators, or terminating sentries, which specify when stages close. Milestones (circles)
represent important business objectives or conditions. Milestones can be attached to a
stage to represent the goal reached when the stage has completed, or can be standalone
to represent an important business condition that is not directly the result of any stage.

Informally, a sentry is an expression that may get triggered by an event and/or a
Boolean condition. A rule is a sentry along with an internal action, namely open-
ing/closing (terminating) a stage or achieving/invalidating a milestone. Figure 2 shows
the opening and terminating sentries for the three atomic stages in composite stage
RefineDeal. Some sentries reference internal events that correspond to status changes
of stages or milestones. For instance, if stage RefineDeal is opened, internal event
+RefineDeal is generated. Closing RefineDeal generates internal event −RefineDeal.

262 R. Eshuis et al.

Stages Guards (Opening sentries) Terminating sentries

DraftTerm
r1: on +RefineDeal r3: on +TermDrafted
r2: on +ReDraftTermNeeded if RefineDeal r4: on −RefineDeal

CheckCredit
r5: on +RefineDeal r7: on +CreditChecked
r6: on +ReCheckCreditNeeded if RefineDeal r8: on −RefineDeal

DeterminePrice

r10: on +PriceDetermined
r9: if TermDrafted ∧ CreditChecked r11: on +DraftTerm

∧ RefineDeal r12: on +CheckCredit
r13: on −RefineDeal

Fig. 2. Guards and terminators of IGF schema

Milestones Achieving sentries Invalidating sentries

TermDrafted
r14: on C:DraftTerm r15: on +DraftTerm

if RefineDeal r16: on +ReDraftTermNeeded

CreditChecked
r17: on C:CheckCredit r18: on +CheckCredit

if RefineDeal r19: on +ReCheckCreditNeeded

PriceDetermined r20: on C:DeterminePrice
if RefineDeal

r21: on +DraftTerm if ReDraftTermNeeded
r22: on +CheckCredit if ReCheckCreditNeeded
r23: on +DeterminePrice

ReDraftTermNeeded

r24: on E:RegulationChange

r26: on +TermDrafted
if RefineDeal

r25: if credit level>100, 000
∧ RefineDeal

ReCheckCreditNeeded
r27: if risk level > 4

r28: on +CreditChecked∧ RefineDeal

Fig. 3. Milestones with achieving and invalidating sentries of IGF schema

The opening sentries containing internal event +RefineDeal, namely r1 and r5, state
that if +RefineDeal occurs, stages DraftTerm and CheckCredit are opened. Similarly, a
stage is closed when one of its terminating sentries becomes true, e.g., r4 indicates that
if RefineDeal closes then so does DraftTerm. A substage can open only if its parent is
open, e.g., r2, r6, r9 all include the conjunct RefineDeal used here as a Boolean status
attribute which is true when the stage is open (in practice inclusion of such conjuncts
can be omitted and inferred by the underlying system).

Figure 3 shows the achieving and invalidating sentries for several milestones in Re-
fineDeal; these specify when a milestone should become true or false. For example,
milestone CreditChecked is achieved (sentry r17) when task CheckCredit completes,
denoted by C:CheckCredit, a task completion event. Also, milestone TermDrafted gets
invalidated (sentry r16) when milestone ReDraftTermNeeded is achieved.

The GSM execution semantics is driven by incoming events, including external
events, such as E:RegulationChange, and task completion events, such as C:DraftTerm;
these are processed in sequence. An incoming event can result in one or more internal
events, i.e., changes in status attributes. Such changes may have cascading effects by
triggering other internal events. The full effect of incorporating one incoming event
is called a business step or B-step. To ensure that each incoming event has “maxi-
mal effect”, sentries are evaluated in an order so that modifications of all status at-
tributes occurring in the sentry have been performed before the sentry is evaluated (see
Section 3).

Example 2.1. Consider a snapshot (or instance) of the IGF schema in which mile-
stones TermDrafted and ReCheckCreditNeeded are true (have been achieved), stages

Splitting GSM Schemas 263

RefineDeal and CheckCredit are open, and task CheckCredit is in progress. Suppose
that task CheckCredit completes and this results in an incoming task completion event
C:CheckCredit which has as its payload a value 200,000 for credit level. This incoming
event initiates a B-step which involves the following steps:
1: (a) milestone CreditChecked is achieved, which causes (b) stage CheckCredit to close
2: (a) milestone ReDraftTermNeeded gets achieved and (b) opens stage DraftTerm,
which causes (c) TermDrafted to be invalidated
3: since TermDrafted becomes invalidated, stage PriceDetermined stays closed.

2.2 Outsourcing GSM Schemas and Maintaining Privacy

In this subsection we examine two outsourcing scenarios for IGF. Outsourcing will
involve dividing or splitting the GSM schema of Figure 1 into two parts that can execute
on the GSM engines of the two different parties. For each scenario we show that naive
splitting results in problematic behavior. In Sections 4 and 5 we revisit the outsourcing
scenarios to illustrate how the proposed framework resolves the identified problems.

Example 2.2. (Outsourcing Scenario 1.) IGF hires a specialized Law Office (LO) to
draft the terms of each contract and outsources stage DraftTerm (with its embedded task
of the same name) and milestones TermDrafted and ReDraftTermNeeded in the GSM
schema (in Figure 1) to LO. Several splits of the GSM schema are possible.

A naive split creates a LO subschema (called IGFLO) that only contains stage Draft-
Term plus its embedded task and milestones TermDrafted and ReDraftTermNeeded, to-
gether with the corresponding sentries. All other stages and milestones with their sen-
tries remain in the subschema IGFMAIN that is maintained by the IGF organization. It
turns out, that to preserve the behavior of the original GSM schema, the two subschemas
require an intricate synchronization to guide their interactions. Consider for instance
the situation in Example 2.1, where event C:CheckCredit triggers three sequential steps
as denoted by the bullet points 1–3 there. With the stage DraftTerm and milestones Ter-
mDrafted and ReDraftTermNeeded outsourced to the LO, step (2) needs to be processed
at LO and LO needs to wait until step (1) is finished, which is processed by IGF. Sim-
ilarly, when step (2) is under processing at LO, IGF cannot start processing step (3)
until LO informs IGF about finishing of step (2). Without such a synchronization, given
the situation in Example 2.1, IGF might inadvertently open stage DeterminePrice, as it
might conclude that both milestones CreditChecked and TermDrafted are true at a cer-
tain moment. Thus, for a naive split a complex synchronization mechanism is required
that needs to be built into the GSM engines of the two parties.

In contrast, the framework presented in this paper splits GSM schemas in such a way
that both parties can reuse their GSM engines and use a simple locking protocol to coor-
dinate their execution. For the situation of Example 2.2, the framework restructures the
schema into subschemas that support the following behaviors. If event C:CheckCredit
arrives at IGF, then IGF first performs all relevant processing on its subschema IGFMAIN,
and then sends an event to LO, which performs all relevant processing on its subschema.
To ensure the behavior of the original schema is preserved, the framework duplicates
certain status attributes and sentries from IGFLO subschema into IGFMAIN subschema.
This enables, for example, IGF to determine whether or not DeterminePrice should
open without waiting for LO to do its part of the processing (see Example 4.1).

264 R. Eshuis et al.

A more complicated synchronization problem arises when two incoming events ar-
rive at the two parties simultaneously (this is illustrated in Example 4.3).

We now illustrate how our framework can maintain privacy.

Example 2.3. (Outsourcing Scenario 2.) IGF outsources stages CheckCredit and Draft-
Term with their tasks, their milestones CreditChecked and TermDrafted, and the corre-
sponding sentries to an Administration Company (AC). All other milestones, in particu-
lar ReDraftTermNeeded, are kept at IGF. Consider again that event C:CheckCredit with
credit level = 200, 000 occurs. According to the approach for restructuring described
above, an attribute for tracking the status of milestone ReDraftTermNeeded is created
at AC and the achieving sentry r25 (see Figure 3) of the milestone is included into AC.

However, IGF might consider the logic that determines ReDraftTermNeeded to be
confidential, and want to keep the sentry r25 private. A private sentry should not be
moved to another party, so the split we used before is not possible. To solve this prob-
lem, we introduce “anonymizing events” that hide private sentries. As explained in Sec-
tion 5, a refinement of our restructuring approach can be used to preserve the privacy
of a set of status attributes, and preserve the behavior of the original GSM schema.

3 The Formal GSM Model

This section presents the formalism underlying the GSM model. (Further details are
presented in [8].) To simplify exposition, the model used in this paper is a variation of
the models defined in [6,22], and it incorporates features that simplify technical aspects
of how rules are fired when processing incoming events. The core properties of GSM,
including the equivalence of the incremental and fixpoint semantics [6] hold in this
variant. For the technical development we focus on GSM schemas with a single artifact
type, and assume that there is no interaction between artifact instances. Generalization
to multiple artifact types and instances is left as future work.

Definition 3.1. A (single artifact type) GSM schema is a tuple Γ = (A, E ,H,R),
where

– A = (AD,AS ,AM) is a family of three disjoint sets of symbols, called data,
stage, and milestone attributes, respectively. The data attributes have types includ-
ing scalars, records, and sets. The elements of Astatus = AS∪AM are called status
attributes, and have Boolean values (always initialized to be false). The stage and
milestone attributes correspond to the stages and milestones in the schema.

– E = Einc ∪Egen, where Einc is the set of incoming event types that can be received
by snapshots (i.e., instances) of Γ , and Egen is the set of event types that can be
generated by snapshots of Γ . Each event type has the form E(a1, . . . , an), where
E is the event type name and {a1, . . . , an} ⊆ A is the payload, with the restriction
that for E ∈ Einc, the payload must be in AD, i.e., data attributes. Generated events
draw their payload from the attribute values in the snapshot; incoming events update
snapshot attributes according to the payload.

– H = (Substage, Task, Submilestone) is the hierarchy schema, that specifies the
relationships between stages, tasks, and milestones in Γ . In particular:
• Substage is a function fromAS to finite subsets of AS . The relation {(S, S′)|S′
∈ Substage(S)} creates a forest.

Splitting GSM Schemas 265

• Task is a function from the atomic stages in AS to tasks (i.e., external services).
The event type associated with the invocation (completion) of a task of type T
is denoted by Invoke(T) (Compl(T)).

• Submilestone defines a function from AS to finite subsets of AM , such that
Submilestone(S) ∩ Submilestone(S′) = ∅ for S �= S′.

– R is a set of Event-Condition-Action (ECA) rules formed over A∪ E (see below).

For a GSM schema Γ as above, a snapshot is an assignment Σ of values for the
attributes.

We assume a standard condition language C with the following characteristics.
Atomic terms include symbols in AS ∪ AM ∩ Einc, and pred(x1, . . . , xn), where pred
is a supported predicate (e.g., =, <, and set membership) and where each xi is either
a constant, an attribute, or a variable. The variables are used in quantification (e.g., if a
data attribute has set type). C also permits terms that are polarized status attributes, i.e.,
expressions of the form +σ and −σ where σ ∈ AS ∪AM ; intuitively, +σ (or −σ) is true
if σ has become true (or false), during a B-step (defined below).

The truth value of a formulaϕ in C is defined relative to triples of the form (Σ, e,Σ′)
where Σ,Σ′ are snapshots of Γ and e is an event with type in E . Intuitively, Σ corre-
sponds to the initial snapshot of a B-step, e corresponds to the incoming event that
triggers the B-step, and Σ′ corresponds to a snapshot that is constructed during the
computation that incorporates e into Σ. (So, Σ′ might be the result of updating the data
attributes according to e, or might correspond to some snapshot computed during incre-
mental firing of ECA rules). The triple (Σ, e,Σ′) satisfies expression pred(x1, . . . , xn),
denoted (Σ, e,Σ′) |= pred(x1, . . . , xn), if Σ′ |= pred(x1, . . . , xn). For terms E ∈
Einc, (Σ, e,Σ′) |= E if e has typeE. For polarized status attributes, the triple (Σ, e,Σ′)
|= +σ if Σ |= ¬σ and Σ′ |= σ, and analogously for (Σ, e,Σ′) |= −σ. The notion of
(Σ, e,Σ′) |= ϕ for other formulas in C is defined recursively in the usual manner.

We define a sentry as an expression ξ of form “on δ if ϕ”, “on δ” or “if ϕ”, where δ is
an event expression, ϕ is an expression in C with no free variables. An event expression
is a conjunction holding zero or one incoming event types and any number of polarized
status attributes. A rule over GSM schema Γ is an expression ρ of form “ξ then �σ”,
where ξ is a sentry, � ∈ {+,−} and �σ is a polarized status attribute.

In this paper we use the newly-true semantics when testing the truth condition of a
sentry ψ of form “if ϕ” (i.e., no incoming event and no polarized attributes). In this
case, we define (Σ, e,Σ′) |= ϕ if Σ /|=ϕ and Σ′ |= ϕ. The intuition is that a rule of
form “if ϕ then �σ” will be applicable, and will cause a change in the value of σ, only
if the value of ϕ has changed from false to true during the B-step being computed.

Suppose now that ψ is a sentry, ρ = “ψ then �σ” is a rule, and (Σ, e,Σ′) is a triple
as above. Then ρ is applicable to (Σ, e,Σ′) if (Σ, e,Σ′) |= ψ and �σ can be applied
to Σ′ (i.e., either � = + and Σ′ |= ¬σ or � = − and Σ′ |= σ).

The application of event e to snapshot Σ, denoted apply(Σ, e) is the result of updat-
ing the attributes of Σ according to the payload of e. Event e is applicable to Σ in Γ if
the sentry of at least one rule in Γ is true for (Σ, e, apply(Σ, e)).

Following [6], the operational semantics of GSM is based on the notion of B-steps:

Definition 3.2. Let Γ = (A, E ,H,R) be a GSM schema, Σ,Σ′ snapshots of Γ , e an
event with type in E that is applicable to Σ, and G a set of events whose type corresponds
to task invocations for tasks in H. The tuple (Σ, e,Σ′,G) is a B-step of Γ if there is a
sequence Σ0 = Σ,Σ1 = apply(Σ, e), Σ2, . . . , Σn = Σ′ of snapshots of Γ , where Σi

266 R. Eshuis et al.

is the result of applying a rule in R to Σi−1 for each i ∈ [2..n] and G is the set of events
corresponding to the tasks invoked because of atomic stages S whose value is false in Σ
and true in Σ′. (The order of rule firing must be compatible with the Event-relativized
Polarized Dependency Graph, defined below.) The set of B-steps for a GSM schema Γ
is denoted as Bstep(Γ).

Finally, we describe two “healthiness” conditions on GSM schemas. Both of these rely
on graphs formed from Γ that capture the relationships between the rules in Γ .

Let Γ = (A, E ,H,R) be a GSM schema and E ∈ E . The Event-relativized Polar-
ized Dependency Graph (erPDG) of Γ for E, denoted PDGΓ (E), is a directed graph
whose set of nodes is a subset of {E} ∪ AD ∪⋃

σ∈Astatus
{+σ,−σ} that describes the

dependencies among E, the payload attributes of E, and selected polarized status at-
tributes of Γ . (The detailed definition is in [8].) Essentially, an edge is included in an
erPDG from one polarized attribute, say +τ , to another one, say −σ, if some rule for −σ
has +τ in its “on” part or τ in its “if” part. If there is such an edge in the erPDG, then
all the rules that might toggle τ to true should be considered, and fired if appropriate,
before any rules that might toggle σ to be false. (If τ is in the “if” part of a rule for −σ,
then both (+τ,−σ) and (−τ,−σ) are included in the erPDG.) Further, if an event type
E (or a data attibute a in the payload of E) occurs in the sentry of −σ, edge (E,−σ) (or
(a,−σ)) should be included. Finally, if a is in the payload of E, edge (E, a) is included.

Example 3.3. Figure 4 shows an event-relativized polarized dependency graph with
respect to event C:CheckCredit based on the GSM schema in Figure 1 and the rules in
Figures 2 and 3. Some sentries are labeled on edges to illustrate the why these edges are
included. For example, there is an edge from +ReDraftTermNeeded to −TermDrafted,
because one of the sentries of −TermDrafted is r16 = “on +ReDraftTermNeeded”.

Due to declarative nature of GSM, a designer may accidentally create a family of rules
that, in some circumstances, has conflicting effects on a status attribute, i.e., where there
exists a single B-step that leads to both a request to make some status attribute σ true
and a request to make σ false. To prevent this, we introduce the concept of pathwise
consistency. (See [8] for further details.) Intuitively, an erPDG for an event type E is
pathwise consistent, if for each status attribute σ, if there is a path from E to +σ and a
path fromE to−σ, then the sentryψ on an edge of one of these paths is “blocked” by the
other path, i.e., the conjunction of sentries on the other path implies ¬ψ. As discussed
in [8], if the underlying logic is decidable then determining pathwise consistency is also
decidable. If the underlying logic is undecidable, then decidable modified versions of
“pathwise consistent” can be used.

Definition 3.4. A GSM schema Γ = (A, E ,H,R) is well-formed if for each event type
E ∈ E , PDGΓ (E) has no directed cycles and is pathwise consistent.

C:CheckCredit

+CreditChecked

credit_level +ReDraftTermNeeded

-ReCheckCreditNeeded

-CheckCredit

-PriceDetermined

-TermDrafted

+DraftTerm

+DeterminePrice -DeterminePrice

r9

r16

r9

r21r21

r11

r2

r22

r23

r28
r7

r25

r17
r15

Fig. 4. Event-relativized PDG for C:CheckCredit

If Γ is a well-formed
GSM schema, then the
incremental semantics in
Definition 3.2 is equiva-
lent to both the incremen-
tal and fixpoint semantics
defined in [6] (see [14]).

Splitting GSM Schemas 267

4 GSM Splitting

This section presents the formal framework for splitting a GSM schema into two sub-
schemas (the approach can be generalized to n subschemas), so that each B-step of the
original schema can be simulated using a B-step of the one subschema followed by a
B-step of the other subschema. The first part of the subsection considers situation where
there is only one event that is being processed; and the second part develops a frame-
work based on locking to achieve transactional consistency when multiple concurrent
incoming events are processed. Further details are presented in [8].

4.1 Splitting a Single B-Step

Let Γ = (A = (AD,AS ,AM), E = (Einc ∪ Egen),H,R) be a well-formed GSM
schema. To support outsourcing of a portion of a GSM schema Γ , we use a form of
“splitting”, to create two GSM schemasΓ 1 = (A1, E1,H1,R1) and Γ 2 = (A2, E2,H2,
R2). (In this case, Γ 1 can be thought of as the client that owns the overall process and
Γ 2 as the server that supports the outsourced portion of the process. However, Γ 1 and
Γ 2 are symmetric in the mathematical framework developed in this paper.) The split-
ting of Γ is specified by partitioning the attribute set A of Γ into a pair of disjoint
sets Base1att and Base2att (possibly including both data and status attributes). Intuitively
Γ 1 includes the data attributes, stages, and milestones corresponding to Base1att, and
also each task that is contained in an atomic stage in Base1att, and similarly for Γ 2.
The set A1 will typically be formed as the union of Base1att along with some additional
attributes from Base2att, and similarly for A2, as explained below.

When specifying Γ 1 and Γ 2, we also specify Base1inc and Base2inc as a partition of
Einc corresponding to the incoming event types that can be received by Γ 1 and Γ 2

respectively. To simplify exposition, assume that for i ∈ {1, 2} and each event type
E ∈ Baseiinc, the payload of E is entirely contained within Baseiatt. Moreover, if atomic
stage S ∈ Baseiatt holds task T , then the payload of completion event type Compl(T) is
contained in Baseiatt. (These assumptions can be dropped without substantially altering
the framework or results.)

Let Γ be a well-formed GSM schema, Γ 1 and Γ 2 be a splitting of Γ , and e as an
incoming event of Γ , our construction ensures that the B-step triggered by e of Γ is
equivalent to a B-step triggered by e of Γ 1 followed by a B-step triggered by ê of Γ 2

(where ê will be introduce later).
There are four primary elements in the framework for splitting GSM schemas to

achieve the above property. The first three relate to the construction of Γ 1 and Γ 2.

1. Duplication of selected attributes: This involves identifying an “extension” set
Ext1 ⊆ Base2att that will be duplicated in Γ 1, and similarly, identifying a set
Ext2 ⊆ Base1att that will be duplicated in Γ 2. Let the attribute set Ai of Γ i be
Baseiatt ∪ Exti for i ∈ {1, 2}. The duplicated attributes are needed so that the first
host that computes part of a B-step against Γ can perform a complete B-step with-
out reference to the other host.

2. Rules allocation: The set of rules in Γ are allocated to Γ 1 and Γ 2 in such a way
that each rule fired in a given subschema (i.e., in Γ 1 or in Γ 2) has the information
needed without referring to the other subschema. In some cases, a rule for a status
attribute σ ∈ Ext2 (i.e., a status attribute in Base2att that is duplicated in Γ 1) will be

268 R. Eshuis et al.

allocated to R1, and visa-versa. In other cases the same rule may be allocated to
both Γ 1 and Γ 2

3. Event transformation: This aspect involves creating, for each incoming event type
E ∈ Base1inc, and for each event e of type E, an event type Ê, along with event ê
that are applied to snapshots of Γ 2, and visa-versa. Let the event set E1 of Γ 1 be
Base1inc ∪ {Ê | E ∈ Base2inc}, and similarly for E2.

4. B-step Simulation Protocol: Finally, a protocol is specified for communication
between the hosts of Γ 1 and Γ 2, that enables simulation of multiple B-steps against
Γ by pairs of B-steps against Γ 1 and Γ 2 that do not “interfere” with each other.

We first discuss the construction of Γ 1 and Γ 2 from the perspective of the first three
elements. The core definitions are in the context of a single incoming event type E.
In particular, we will define ExtiE and Ri

E for i ∈ {1, 2}; then Exti =
⋃

E∈E ExtiE and
Ri =

⋃
E∈E Ri

E . We use example event C:CheckCredit, abbreviated as CC, to illustrate
the core definitions. To simplify the definitions, we use the following auxiliary notions.

1. The range of E in Γ is rangeatt
Γ (E) = payload(E) ∪{σ ∈ Astatus | for some � ∈

{+,−}, there is a directed path from E to �σ in PDGΓ (E)}. Intuitively, this holds
all data attributes and status attributes in Γ that might be affected by an incoming
event e of type E. For example, the range of CC contains all the data and (unpolar-
ized) status attributes shown in Figure 4.

2. The rule range of E in Γ is rangerule
Γ (E) = {ρ ∈ R | either E or some a ∈

rangeatt
Γ (E) occurs in the sentry of ρ}. Intuitively, this holds all rules that might

fire because of an incoming event e of type E.
3. The support of a status attribute x ∈ rangeatt

Γ (E) is SuppEΓ (x) = {y ∈ A | for
some z ∈ rangeatt

Γ (E)∩Astatus and ρ ∈ rangerule
Γ (E), y occurs in the sentry of ρ, z

occurs in the “then” part of ρ and there is a (possibly zero-length) path from z to x in
PDGΓ (E)}. Intuitively, y is in the support of x for E if the value of y (or a change
in value of y) is referred to by some rule in rangerule

Γ (E) that influences if x tog-
gles. For example, the support of DeterminePrice for CC is {credit level,RefineDeal,
CreditChecked,ReDraftTermNeeded, DraftTerm,TermDrafted}.

4. For X ⊆ rangeatt
Γ (E), SuppEΓ (X) =

⋃
x∈X SuppEΓ (x). We note that for X ⊆

rangeatt
Γ (E), the set MarginEΓ (X) = SuppEΓ (X)− rangeatt

Γ (E) may be nonempty.
Intuitively, this is the set of attributes that a rule in rangerule

Γ (E) might refer to, but
whose value will not be affected by events of type E. For example, given CC and
the range set of CC, the margin set is {RefineDeal}.

For notational convenience, we set Baseistatus = Baseiatt ∩ Astatus for i ∈ {1, 2}.
Suppose that E is associated with Γ 1 and that σ ∈ Base1status. (The construction for

E associated with Γ 2 is symmetrical.) Intuitively, if y ∈ SuppEΓ (σ), then the value of y
is needed by the host of Γ 1, in order to determine whether σ should toggle in a B-step
launched by an E event. In particular, set Ext1E = SuppEΓ (Base1status ∩ rangeatt

Γ (E))−
Base1att, i.e., the extension in Γ 1 needed forE is all attributes not already in Base1att (i.e.,
that are in Base2att) that are used to determine the value of an attribute in Base1status. We
also set R1

E =
⋃

σ∈(Base1
att∪Ext1E)∩Astatus

R(σ) ∩ rangerule
Γ (E), i.e., a rule is included

into Γ 1 if it may be triggered by an event of type E and it governs a status attribute in
Base1att or its extension for E.

Splitting GSM Schemas 269

For Γ 2, the extension set of E, Ext2E = SuppEΓ (Base2status − Ext1E) − Base2att, i.e.,
include duplicates in Γ 2 for support attributes of those status attributes that are in
Base2att and not included in Ext1E . (Because E is assumed to be associated with Γ 1

for this development, the status attributes in Ext1E will be computed by Γ 1 and then
passed to Γ 2 by an Ê event.) For the rules, use R2

E =
⋃

σ∈Base2
status−Ext1E

{ρ̂ | ρ ∈
R(σ) ∩ rangerule

Γ (E)} where ρ̂ is constructed from ρ by replacing “E” by “Ê”, if “E”
occurs in ρ; otherwise ρ̂ = ρ.

Example 4.1. Consider schemas IGFMAIN and IGFLO in Section 2. We haveExtIGFMAIN
CC =

{TermDrafted,ReDraftTermNeeded,DraftTerm} andRIGFMAIN
CC = {r2, r7, r9, r11, r15, r16,

r17, r21, r22, r23, r25, r28}. Although status attribute RefineDeal occurs in r2 and r25,
these rules toggle status attributes in ExtIGFMAIN

CC , hence ExtIGFLO
CC = ∅ = RIGFLO

CC .
Let abbreviation RC denote E:RegulationChange, which arrives at LO. We have

ExtIGFLO
RC = {RefineDeal} and RIGFLO

RC = {r2, r15, r16, r24}. For IGF, ExtIGFMAIN
RC =

{TermDrafted,DraftTerm,ReDraftTermNeeded} and RIGFMAIN
RC = {r9, r11, r21}.

The remaining aspects of the construction is presented informally (the formal construc-
tion is in [8]); namely, (a) specifying the payloads of the event types Ê, and (b) de-
scribing how the events of type Ê are generated. For (a), if E is associated with Γ 1,
then events of type Ê will send all attributes of rangeatt

E that are in A1 and also in A2.
Intuitively, these attributes are computed in Γ 1, and should be sent to Γ 2 to avoid re-
computation. For (b), a new atomic stage is added to Γ 1, which is triggered only after
all other processing for E in Γ 1 is completed. This stage includes a task that generates
a message of type Ê with payload from the (newly updated) attributes of Γ 1.

Given a snapshot Σ of a well-formed GSM schema Γ , a pair Γ 1, Γ 2 a splitting of
Σ, and i ∈ {1, 2}, denote θi(Σ) to be a snapshot of Γ i, such that θi(Σ) and Σ agree
on the values of the same attributes in Γ and Γ i (including the duplicated ones), and
for each event type E of Γ i, SE is false. The following lemma (whose detailed proof is
in [8]) states that the pair Γ 1 and Γ 2 can faithfully simulate the behavior of Γ .

Lemma 4.2. Let Γ, Γ 1, Γ 2 as above, G a set of outgoing events of Γ , Σ,Σ′ are snap-
shots of Γ , and e an event of type E ∈ Base1inc. Then the following two are equiv-

alent: (1) (Σ, e,Σ′,G) is a B-step of Γ , and (2) there exist an event ê of type Ê and
a partition G1,G2 of G, such that (θ1(Σ), e, θ1(Σ′),G1 ∪ {ê}) is a B-step of Γ 1, and
(θ2(Σ), ê, θ2(Σ′),G2) is a B-step of Γ 2.

4.2 Splitting with Multiple B-Steps

This subsection considers the management of multiple B-steps. In general, problems
with the simulation may arise if two events, e of type E arriving for Γ 1 and f of type F
arriving for Γ 2, are processed almost simultaneously. In particular, there may be a race
condition, as illustrated in the following example.

Example 4.3. We continue with Example 4.1. Suppose now that stage CheckCredit is
open, stages DraftTerm and DeterminePrice are closed, and milestone CreditChecked
is not achieved. Suppose events E:RegulationChange and +C:CheckCredit with pay-
load credit level = 50, 000 arrive at LO and IGF respectively at almost the same time.
Then, consider this scenario: first, the B-step triggered by +C:CheckCredit (at IGF) will

270 R. Eshuis et al.

achieve milestone CreditChecked and open stage DeterminePrice; then the B-step trig-
gered by E:RegulationChange (at LO) opens stage DraftTerm and sends an event to IGF
to report the status change; upon receving the event, IGF marks DraftTerm as open. In
this case, both DraftTerm and DeterminePrice are open, which is impossible based on
the rules in Figure 2 and 3. Intuitively, the problem arises because the simulation of the
second B-step modifies attributes before the simulation of the first B-step completes.

We prevent such race conditions by using a protocol borrowed from distributed database
management that guarantees a form of serializability. More specifically, the B-step Sim-
ulation Protocol is based on a form of distributed 2-phase commit [10]. It is assumed
that communication between the hosts is reliable, and also that if a host states that it
will perform an activity, then it will eventually complete that activity.

Let Γ be a well-formed GSM schema, E an event type, Γ 1 and Γ 2 be a splitting of
Γ as described above, and E ∈ Baseiinc for i ∈ {1, 2}. Intuitively, the write lock set
and read lock set for E in Γ i, denoted as writei(E) and readi(E) respectively, are the
set of attributes that might be written and read (resp.) in Γ i when processing E. (The
detailed definitions of writei(E) and readi(E) are in [8].)

To prevent dead locks, for each i ∈ {1, 2} and each E ∈ Baseiinc, assume that the

priority to process an event of type Ê is higher than each event of a type in Base3−i
inc .

The B-step Simulation Protocol that is for simulating a B-step triggered by event e
of type E ∈ Base1inc, is stated as follows.

1. The host of Γ 1 attempts to lock write1(E) and read1(E), and requests that the host
of Γ 2 lock write2(E) and read2(E). If the locks can be obtained then proceed to
step (2); otherwise, the host of Γ 1 waits and tries again later.

2. The host of Γ 1 performs B-step triggered by the event e, sends the event ê to the
host of Γ 2, and then releases locks write1(E) and read1(E).

3. The host of Γ 2 performs B-step triggered by the event ê and then releases locks
write2(E) and read2(E).

Let SYS be a system with a host for Γ 1 and a host for Γ 2. The following theorem
(whose formal statement and proof is in [8]) states that based on the B-step Simulation
Protocol, the B-steps processed under the two hosts will not interfere with each other.

Theorem 4.4. (Informal) Let SYS, Γ , Γ 1, and Γ 2 be as above. Suppose that the B-step
Simulation Protocol is followed,Σ is a snapshot of Γ , and μ = e1, . . . , en is a sequence
of events forΓ . Then the overall effect of applying e1, . . . , en on (θ1(Σ), θ2(Σ)) in SYS
is equivalent, in terms of the final snapshots and the set of outgoing events, to the effect
of some permutation μ′ of μ applied to Σ, where μ′ is a shuffle of the Γ 1 events in μ
(in order) with the Γ 2 events in μ (in order).

5 Outsourcing with Hidden Rules

The framework for hiding status attribute rules has two main aspects. First, given GSM
schema Γ and set H of status attributes to be hidden, a new schema Γ = hide(Γ,H) is

constructed. Second, Γ is split into Γ
1
, Γ

2
according to the construction of Section 4.

For the latter aspect, the B-step Simulation Protocol is modified.
Suppose that status attribute σ is owned by host1 (which is holding Γ 1), and its rules

are to be “hidden” fromhost2 (host2 may be allowed to see value of σ). To hide the rules

Splitting GSM Schemas 271

governing σ two new anonymizing event types, and two new stages are introduced that
provide a level of indirection between the rules of σ and the actual toggling of σ. Specifi-
cally, two new stages ToggleSTG(+σ) and ToggleSTG(−σ) are included into Γ ; these will
be held by host1. In the simulation of a B-step of Γ , the stage ToggleSTG(+σ) in Γ

is triggered by the sentries that cause +σ in Γ (and similarly for ToggleSTG(−σ)). Also,
stage ToggleSTG(+σ)will invoke a task that generates a new anonymizing incoming event
ToggleEVT(+σ). This event will cause a separate B-step in the simulation. In that B-step
σ will toggle to true, and rules propagation based on +σ will occur. The rules that trigger
ToggleSTG(+σ) (i.e., the rules causing +σ) will be held by host1 and are not duplicated
in host2. In this sense, ToggleSTG(+σ) “anonymizes” the event+σ, and similarly for −σ.

The simulation of one B-step of Γ typically involves a cluster of B-steps of hide(Γ,
H), essentially the cluster starts with the original B-step and it adds one extra B-step
for each hidden status attribute. It is important to prevent “interference” from other
incoming events while performing this cluster. In our framework, the interference is
prevented by the mechanisms for managing incoming events; the GSM engines of the
hosts do not need to be modified.

The exposition in this section is terse; further details are presented in [8].

5.1 Hidden Rules in a Centralized GSM Schema

We illustrate the construction of hide(Γ,H) by extending Example 2.3 for IGF, which
focuses on the desire to hide the rules for ReDraftTermNeeded, denoted here as RDTN.
We describe here some of the rules restructuring used to build hide(IGF, {RDTN}).
We focus on the rewriting used in connection with incoming event type C:CheckCredit,
denoted here as CC; similar rewritings are needed for each incoming event type.

An incoming event of type CC might cause +RDTN but not −RDTN according to
Figure 4. We thus focus exclusively on the former for CC of hide(IGF, {RDTN}).

To hide the rules of RDTN, a new stage ToggleSTG
CC (+RDTN) will be introduced,

which holds a task that generates an event of type ToggleEVT
CC (+RDTN); these are the

“anonymizing” events to indicate that RDTN should be toggled to true. In the rewriting
relevant to CC, the new sentry of +RDTN is simply “on +ToggleEVT

CC (+RDTN)”. Rel-
ative to CC, the sentries of ToggleSTG

CC (+RDTN) in hide(IGF, {RDTN}) are essentially
the sentries of +RDTN in IGF, although a transform will have to be applied (see below).
In this example there will be one sentry for ToggleSTG

CC (+RDTN) stemming from CC,
namely a transform of r25. (r24 is triggered by a different event, so not relevant to CC.)

In the framework we also need an event type NoToggleEVT
CC (+RDTN) (sent by a task

in a new atomic stage), used to indicate that RDTN is not toggled to true in the original
B-step (needed for the simulation to know when the B-steps cluster for CC is finished).

In this example, the simulation of a CC event in Γ involves two B-steps, the first
one triggered by a CC event and the second triggered by a ToggleEVT

CC (+RDTN) or
NoToggleEVT

CC (+RDTN) event. In the second B-step it is important that sentries to be
evaluated are “aware of” which status attributes were toggled in the first B-step.

To address this, for each status attribute �σ that may get toggled in the first B-step
we introduce in hide(IGF, {RDTN}) a new milestone ToggleMST

CC (�σ) with achieving
sentry “on �σ”, and we transform rules by replacing �σ by ToggleMST

CC (�σ).) Such
milestones have the function of “remembering” the toggling of the status attributes, and
are invalidated at the end of the simulation of the CC B-step.

272 R. Eshuis et al.

The construction involves two more steps for CC, namely: (i) Ensure that rules fire in
the correct B-step of the simulation, accomplished by introducing additional milestones
that track which B-steps have occurred so far, and (ii) “Clean up” the milestones that
record which status attributes have toggled during the simulation, accomplished by a
new stage EndOfSimEVT

CC that opens during the final B-step in the simulation to occur.
To summarize, we state the following.

Lemma 5.1. (Informal) Let Γ be a well-formed GSM schema and H a set of status
attributes in Γ . Then Γ = hide(Γ,H) is a well-formed GSM schema such that (a) the
sentries in Γ of each attribute in H are of form “on E” for some new incoming event
type E, and (b) each B-step of Γ is faithfully simulated by a cluster of B-steps of Γ .

5.2 Hidden Rules in a Split GSM Schema

As noted above, a single B-step of Γ is simulated by a cluster of B-steps of Γ = hide(Γ,
H). The generalized B-step Simulation Protocol ensures that there is no “interference”
between the simulation of one Γ -level B-step and another one.

Suppose now that SYS is a system with two hosts, one for Γ
1

and the other for Γ
2
.

As with the B-step Simulation Protocol of Section 4, to simulate a Γ -level B-step of
event e with type E, the generalized version first obtains read and write locks at both
hosts (this time relative to Γ rather than Γ). The hosts maintain the read and write
locks during the simulation of the entire cluster of B-steps against Γ that correspond to
the single B-step for e in Γ . The hosts will “know” when the simulation is completed,
because of the generated event EndOfSimEVT

E , which can be shared with both hosts.
We summarize the development with the following.

Theorem 5.2. Let SYS, Γ,H, Γ = hide(Γ,H), Γ
1
, Γ

2
be as above, Σ a snapshot of

Γ , and μ = e1, . . . , en a sequence of events for Γ . Let Σ correspond to Σ in Γ ,

and let θ1(Σ), θ2(Σ) correspond to Σ in Γ
1
, Γ

2
. Then the overall effect of applying

e1, . . . , en on θ1(Σ), θ2(Σ) in SYS will correspond to the effect of some permutation
μ′ of μ applied to Σ, where μ′ is a shuffle of the Γ 1 events in μ (in order) with the Γ 2

events in μ (in order).

6 Related Work

There has been quite some work that studies how part of a procedural workflow without
data can be outsourced to another party [1,15,20,11] without changing the original be-
havior. The race conditions tackled in this paper are specific to data-centric workflows;
therefore the framework developed in this paper is radically different from these works.

To tackle the issue of privacy in procedural workflows, the notion of view [5,9,17,21]
has been proposed. A process view hides certain internal details of the procedural work-
flow, similar to the way a database view hides a conceptual database schema. If two ac-
tivities owned by two different views collaborate, then the activities are required to be
public [5,9]. In contrast, the framework of the current paper allows that shared business
logic like a sentry is marked as private and therefore gets hidden, without affecting the
overall outcome. Yongchareon et al. [25] uses a similar style of views to model inter-
organizational artifact-centric business processes, but do not address runtime aspects.

Splitting GSM Schemas 273

To the best of our knowledge, outsourcing has not been studied previously for data-
centric or artifact-centric processes. A closely related work is [24], which develops
a formal framework for several algebraic operations on GSM schemas, including the
notion of “tear” which is similar to splitting. Also somewhat related are artifact-centric
interoperation hubs [13], which enable multiple parties to collaborate on a single
artifact-based business process (state-machine-based or GSM) that is maintained by
the centralized hub using an underlying centralized GSM engine. However, the work
on artifact-centric hubs does not consider outsourcing a part of the global schema to
another hub or GSM engine of another participant. Recent work [16] addresses some
aspects of privacy and information hiding, but the underlying artifact schema runs en-
tirely in the hub, rather than being distributed between the hub and a participant. The
research described in the current paper could extend [16] by enabling such distribution,
and also enabling a participant to hide some of its logic from the interoperation hub.

The GSM approach is based on the Event-Condition-Action (ECA) approach (e.g.,
[19]) for providing declarative semantics to data-centric system, and so the formal tech-
niques used in this paper build on those from the ECA literature. Importantly, GSM adds
structure to classical ECA approaches; this structure is exploited to achieve the protocol
and privacy results obtained in this paper.

7 Conclusions

The main contribution of this paper is a formal framework that supports the outsourcing
of GSM schemas by splitting them. Race conditions prohibit the use of a direct split
on the orginal schema. The framework avoids race conditions by restructuring GSM
schemas as well as using locking protocols that ensure serializability of multiple event
occurrences. Restructuring a GSM schema does not change its behavior of the GSM
schema, but allows for a dramatic simplification of the locking protocols.

Key feature of the framework is that it allows reuse of existing GSM centralized en-
gines for executing the split subschemas. Moreover, the framework supports hiding of
parts of a GSM schema that are private, without affecting the outcomes of the global ex-
ecution. The framework is proven to preserve the behavior of the original GSM schema.

There are several directions for future work. We plan to apply the framework to
OMG’s CMMN [3]. Also, we plan to extend framework by considering multi-party
outsourcing and multiple interacting artifact types.

References

1. van der Aalst, W.M.P., Weske, M.: The P2P approach to interorganizational workflows. In:
Dittrich, K.R., Geppert, A., Norrie, M. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 140–156.
Springer, Heidelberg (2001)

2. Aalst, W., Weske, M., Grünbauer, D.: Case handling: a new paradigm for business process
support. Data Knowl. Eng. 53(2), 129–162 (2005)

3. BizAgi, et al.: Case Management Model and Notation (CMMN), FTF Beta 1,
OMG Document Number dtc/2013-01-01, Object Management Group (January 2013),
http://www.omg.org/spec/CMMN/1.0/Beta1/

4. Chao, T., et al.: Artifact-Based Transformation of IBM Global Financing. In: Dayal, U.,
Eder, J., Koehler, J., Reijers, H.A., et al. (eds.) BPM 2009. LNCS, vol. 5701, pp. 261–277.
Springer, Heidelberg (2009)

http://www.omg.org/spec/CMMN/1.0/Beta1/

274 R. Eshuis et al.

5. Chebbi, I., Dustdar, S., Tata, S.: The view-based approach to dynamic inter-organizational
workflow cooperation. Data Knowl. Eng. 56(2), 139–173 (2006)

6. Damaggio, E., Hull, R., Vaculı́n, R.: On the equivalence of incremental and fixpoint seman-
tics for business artifacts with guard-stage-milestone lifecycles. Information Systems 38,
561–584 (2013)

7. de Man, H.: Case management: A review of modeling approaches. BP Trends (January
2009), http://www.bptrends.com

8. Eshuis, R., Hull, R., Sun, Y., Vaculı́n, R.: Splitting GSM schemas: A framework for out-
sourcing of declarative artifact systems with privacy guarantees (in preparation, 2013)

9. Eshuis, R., Norta, A.: A framework for service outsourcing using process views. In: Proc.
EDOC 2010, pp. 99–108. IEEE Computer Society (2010)

10. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann,
Burlington (1993)

11. Grefen, P., et al.: CrossFlow: Cross-organizational Workflow Management in Dynamic Vir-
tual Enterprises. Intl. J. of Computer Systems, Science, and Engineering 15(5), 277–290
(2000)

12. Hull, R., et al.: Business artifacts with guard-stage-milestone lifecycles: Managing artifact
interactions with conditions and events. In: ACM Intl. Conf. on Distributed Event-based
Systems, DEBS (2011)

13. Hull, R., Narendra, N.C., Nigam, A.: Facilitating workflow interoperation using artifact-
centric hubs. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS,
vol. 5900, pp. 1–18. Springer, Heidelberg (2009)

14. Hull, R., Sun, Y., Vaculı́n, R.: Equivalence on Variants of Guard-Stage-Milestone Artifact
Models (in preparation, 2013)

15. Khalaf, R., Kopp, O., Leymann, F.: Maintaining data dependencies across bpel process frag-
ments. Int. J. Cooperative Inf. Syst. 17(3), 259–282 (2008)

16. Limonad, L., et al.: A generic business artifacts based authorization framework for cross-
enterprise collaboration. In: SRII Global Conference, pp. 70–79 (2012)

17. Liu, D.-R., Shen, M.: Workflow modeling for virtual processes: an order-preserving process-
view approach. Inf. Syst. 28(6), 505–532 (2003)

18. Marin, M., Hull, R., Vaculı́n, R.: Data centric BPM and the emerging case management
standard: A short survey. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP,
vol. 132, pp. 24–30. Springer, Heidelberg (2013)

19. McCarthy, D.R., Dayal, U.: The architecture of an active data base management system. In:
Proc. ACM SIGMOD Intl. Conf. on Mgmnt of Data (SIGMOD), pp. 215–224 (1989)

20. Muth, P., et al.: From centralized workflow specification to distributed workflow execution.
Journal of Intelligent Information Systems 10(2), 159–184 (1998)

21. Schulz, K., Orlowska, M.: Facilitating cross-organisational workflows with a workflow view
approach. Data Knowl. Eng. 51(1), 109–147 (2004)

22. Sun, Y., Hull, R., Vaculı́n, R.: Parallel processing for business artifacts with declarative life-
cycles. In: Proc. of Intl. Conf. on Cooperating Information Systems (CoopIS); OTM Confer-
ences (1), pp. 433–443 (2012)

23. Swenson, K.D.: Mastering the Unpredictable: How Adaptive Case Management will Revo-
lutionize the Way that Knowledge Workers Get Things Done. Meghan-Kiffer, FL (2010)

24. Vaculı́n, R., Chee, Y.-M., Oppenheim, D.V., Varshney, L.R.: Work as a service meta-model
and protocol for adjustable visibility, coordination, and control. In: SRII Global Conference,
San Jose, California, pp. 90–99. IEEE Computer Society (July 2012)

25. Yongchareon, S., Liu, C., Zhao, X.: An artifact-centric view-based approach to modeling
inter-organizational business processes. In: Bouguettaya, A., Hauswirth, M., Liu, L. (eds.)
WISE 2011. LNCS, vol. 6997, pp. 273–281. Springer, Heidelberg (2011)

http://www.bptrends.com

Composing Workflow Activities

on the Basis of Data-Flow Structures

Han van der Aa1, Hajo A. Reijers1,2, and Irene Vanderfeesten3

1 Dept. of Mathematics and Computer Science, Eindhoven University of Technology,
PO Box 513, 5600MB Eindhoven, The Netherlands

2 Perceptive Software, Piet Joubertstraat 4, 7315AV Apeldoorn, The Netherlands
3 School of Industrial Engineering, Eindhoven University of Technology,

PO Box 513, 5600MB Eindhoven, The Netherlands

Abstract. The proper composition of activities is important for the ef-
ficient execution of a workflow process. In this paper, an approach is
presented that utilizes the data-flow underlying a workflow process to
determine the importance and semantic relatedness of the various, el-
ementary data-processing steps. Based on these aspects, fundamental
guidelines are proposed to drive and objectify the task of activity com-
position in the context of workflow design.

1 Introduction

The bulk of business processes in the service domain pursue the production of
an informational product, such as a mortgage contract, a decision on a damage
claim, or a commercial offer. We will refer to these processes as workflows. When
designing a workflow, one should carefully consider how to properly design its
activities (or tasks). An activity is a logical piece of work within a workflow,
which may comprise a number of elementary data processing steps. For exam-
ple, the activity of calculating a mortgage amount may consist of entering the
current interest rate, choosing the discount rate negotiated by the customer, and
calculating the amortized amount of debt.

The focus of attention in this paper is on the grouping of elementary data
processing steps into activities. We will refer to this act as activity composition.
Proper composition can result in activities that have a proper size, i.e. are of a
right granularity. They provide a balance between an increased number of work
hand-overs that result from many small activities against the reduced flexibility
caused by too many large activities [1]. Secondly, activity composition can be
used to increase the meaningfulness of activities for employees executing these [2].

This paper introduces fundamental design guidelines for activity composition
by exploiting the structural data-flow relations in a workflow. To make our ideas
operational, we will assume that such relations are captured in a Product Data
Model (PDM). However, the guidelines can be easily transferred to compara-
ble data-flow specifications, e.g. the data flow matrices of [3]. The PDM that we

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 275–282, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

276 H. van der Aa, H.A. Reijers, and I. Vanderfeesten

build on stems from Product Based Workflow Design (PBWD), a method for
the radical redesign of workflows [4]. It is proposed here that data-flow relations
in the form of a PDM can be used to determine the semantic relatedness as
well as the relative importance of its elements. These two notions are used to
propose guidelines on activity composition, which form the main contribution of
this paper.

This work extends the state of the art in several ways. The interaction be-
tween the steps in a process and the data being processed is at the basis of a wide
range of research efforts, e.g. [3,5]. Yet, their exclusive focus is on the detection
of data-flow errors. While we agree that it is important to ensure that a work-
flow works correctly, they leave open the issue of designing granular, meaningful
tasks. The job design literature does address these issues [2,6], but we noted
that the provided guidance is rather abstract and does not rest on a detailed
understanding of the data-flow perspective in a specific process. Earlier, we pro-
posed metrics to evaluate the quality of activity compositions on the basis of job
design insights [7], but these can only be retrospectively applied on activities
already composed. The guidelines we provide ensure a correct data processing
through its reliance on a PDM, while they additionally lead to concrete and
proper compositions of activities.

In the remainder of this paper, Sect. 2 provides an example to motivate the
goal of activity composition and introduces some important notions. Sect. 3 pro-
poses our solution: three guidelines that objectify activity composition. Finally,
Sect. 4 concludes the paper with a discussion and directions for future research.

2 Motivating Example

To motivate the application of activity composition in a workflow process, this
section presents the design of activities for an example case. The example, in-
troduced in [8], considers the process that deals with requests for governmental
student grants in the Netherlands. The presented process is a simplified version
of the actual procedure as implemented by the “Dienst Uitvoering Onderwijs”
(DUO)1, the governmental agency in the Netherlands responsible for the assess-
ment of student grant requests.

2.1 Product Data Model

Fig. 1 presents the PDM of the student grants example. A PDM contains a
set of data elements, which are depicted as labelled circles. The top element
i42, referred to as the root element, resembles the total student grant assigned
to an applicant. The other data elements in the PDM are data elements that
are relevant for the computation of i42, the ultimate goal of this workflow. A
description of all data elements is provided in Table 1. The values for data ele-
ments for a specific case are computed by executing operations on data elements.

1 See http://www.duo.nl

http://www.duo.nl

Composing Workflow Activities on the Basis of Data-Flow Structures 277

Fig. 1. Product Data Model of the student grants example

Operations are depicted as black dots in the figure. Each operation requires a
set of input elements, and produces a single output data element. For example,
Fig. 1 expresses that a value for i42 can be computed based on the values for
data elements i39, i40, i41, and i43. These four elements represent the four types
of student grant an applicant may be eligible to receive: (i) a basic grant (i40),
(ii) a supplementary grant (i39), (iii) a loan (i41), and (iv) any credit for tuition
fees (i43). A value for i42 can also be computed via a second operation, which
has i27 as its only input element. This input element represents an applicant’s
eligibility to receive a grant2. The second operation is enabled when the value
of i27 is negative, i.e. the applicant is not entitled to receive a grant. Hence,
the execution of this operation means that an application is rejected. We refer
to distinct operations that can produce a value for the same data element, as
alternative operations ; they provide alternative routings through a workflow.
Finally, the figure shows operations that do not have input elements. These
operations are referred to as leaf operations. Leaf operations produce values for
leaf elements, i.e. data that is received from outside the process. In this example,
the leaf elements contain the data that is provided by the applicant, such as i20,
the applicant’s date of birth. For a more detailed description of the case, the
interested reader is referred to [8, p.193].

2 An applicant must have the Dutch nationality (stored in i21) and may not be older
than thirty (i23) in order to be eligible to receive a grant.

278 H. van der Aa, H.A. Reijers, and I. Vanderfeesten

Table 1. Description of data elements present in the student grants example

ID Description ID Description

i19 Date of request i36 Parental contribution
i20 Birth date of applicant i37 Requested amt. of loan
i21 Nationality of applicant i38 Max. amt. of loan
i23 Age of applicant i39 Amt. of supplementary grant assigned
i24 Social Security Number of father i40 Amt. of basic grant assigned
i25 Reference year for tax authority i41 Amt. of loan assigned
i26 Social Security Number of mother i42 Total amt. of student grant assigned
i27 Applicant has the right to receive grant i43 Amt. of tuition credit assigned
i28 Income of father of applicant i44 Max. amt. of credit for tuition fees
i29 Income of mother of applicant i45 Tuition fees of educational institution
i30 Income of parents of applicant i46 Has requested credit for tuition fees
i32 Has requested a supplementary grant i47 Tuition fees declared by law
i33 Living situation of applicant i48 Kind of education of applicant
i35 Max. amt. of supplementary grant

2.2 Activity Design

In PBWD, the task of activity design is to group the operations in a PDM into
activities that form logical pieces of work [8]. As introduced in Sect. 1, activity
composition can influence the efficiency of workflow execution [1], as well as the
meaningfulness of activities for workflow users [2].

Fig. 2 presents a workflow design for the student grant example based on
a proposed set of eight activities. Each activity, depicted in Fig. 3, is designed
such that it results in the computation of a data element that directly affects the
total amount of student grant an applicant receives, e.g. activity B determines
the eligibility of an applicant to receive a grant. Each activity thus represents
a significant step during the workflow’s execution. The non-atomic activities
furthermore encompass distinct sub-processes in the workflow, in which all un-
derlying operations have a similar meaning or subject, e.g. all operations in
activity D are related to a student’s tuition credit. The proposed design shows
that it is possible to partition a PDM into activities that form meaningful tasks
in a workflow. The issue of how to design these activities, however, still remains
open. Section 3 addresses this by defining objective guidelines for this purpose.

3 Activity Composition

The main contribution in this paper consists of three activity composition guide-
lines. The guidelines consider the semantic aspects of workflow design. Semantics
are those properties that relate to the meaning of PDM elements. These proper-
ties are often inferred from the context, rather than explicitly defined in a PDM.
Despite this lack of explicitness, it is here proposed that such semantics can
be partly derived from the structure of a PDM. This section introduces design

Composing Workflow Activities on the Basis of Data-Flow Structures 279

Fig. 2. Process model based on the proposed activity design

Fig. 3. Non-atomic activities in the process model

guidelines that exploit the proposed relation between semantics and structure.
The guidelines are purposefully designed to be independent of context, or any
data beyond the structure of a PDM. The proposed guidelines result in activi-
ties that work towards the production of an important data element on the one
hand and of which the operations are semantically related on the other. This
concept is, amongst others, based on the notions of task identity and task signif-
icance, two determinants of experienced meaningfulness in the widely used Job
Characteristics Model of Hackman & Oldman [2].

This section comprises two parts. Sect. 3.1 considers patterns that imply rel-
ative importance of data elements. Secondly, Sect. 3.2 regards the identification
of semantically related operations based on structural properties. The guidelines
are motivated by referring to the student grants example. However, the propo-
sitions are designed to apply to PDMs and PDM-like structures in general.

3.1 Data Element Importance

All data elements in a PDM are to some degree required to produce a value
for the root data element. Nonetheless, it is clear that not all data elements are

280 H. van der Aa, H.A. Reijers, and I. Vanderfeesten

equally important. For example, in the students grants case, data element i27,
an applicant’s right to receive a grant, is certainly more important than i28,
the income of the applicant’s father. The semantic importance of i27 is clear,
because it fully determines acceptance or rejection. This section proposes that
different types of semantically important data elements (IDEs) can be identi-
fied based on five structural patterns. The proposed patterns have been found
by analysing manual activity designs in [7,8,9] and through utilization of best
modelling practices.

Pattern 1 (Root Data). The root data element is the single data element that
is not used as input for any operations.

Pattern 1 identifies the first type of IDE, namely the root element of a PDM.
This element is straightforwardly the most important data element in a PDM, as
it represents the final outcome of a workflow. For example in the student grants
case, this is the total amount of student grant assigned to an applicant (i42).

Pattern 2 (Leaf Data). A leaf data element is a data element that is produced
by an operation without input elements.

Leaf elements represent the second type of IDEs. These are the data elements
that are provided as input to a workflow; the values for these elements are re-
trieved from outside the process. In the student grants example, the leaf elements
represent the data that is retrieved from a student’s application, e.g. i19, i24 and
i26.

Pattern 3 (Conditional Data). A conditional data element is a data element
that can be produced by multiple alternative operations.

Pattern 3 identifies conditional data elements. These data elements can be pro-
duced by multiple alternative operations. Four such elements exist in the student
grants example: the root element i42, and the data elements i39, i41, and i43.
The latter data elements represent three out of the four types of grant that ap-
plicants may be eligible to receive. These grants directly affect the value of the
root element and are therefore clearly important in this process.

Pattern 4 (Equal Level Data). An equal level data element is an input data
element to an operation that also requires conditional data as input.

By considering conditional data, three out of the four types of grant are identified
as goals. The fourth type of grant is the amount of basic grant assigned to an
applicant (i40). Without additional context information, there is no reason why
this fourth grant is less important than the other types of grant; i40 is hence
also considered to be of importance. In this case, an important element is thus
identified based on its adjacent elements. It is proposed that this transitive notion
can be applied in a generic fashion to uncover the fourth type of IDEs: equal
level data. These elements are revealed by considering the operations that require
conditional data as input elements, as defined in Pattern 4.

Composing Workflow Activities on the Basis of Data-Flow Structures 281

Pattern 5 (Reference Data). A reference data element is a data element that
is an input element to multiple operations that are, directly or indirectly, involved
in the computation of different important data elements.

Recall that i27, the eligibility to receive a grant, is arguably an important data
element. i27 is important from a structural perspective, because the data element
is required to produce multiple other IDEs. Such data elements shall be referred
to as reference data elements, the final type of IDE.

The five types of IDEs represent those structural patterns that are proposed
to predict the significance of data elements. This results in Proposition 1.

Proposition 1 (Important Data Elements). Root, leaf, conditional, equal
level and reference data elements represent important data elements in a PDM.

3.2 Semantic Relatedness

Semantic relatedness considers the degree to which the meaning of elements is
similar. It is here proposed that operations with similar meaning can, to a certain
extent, be identified based on structural properties of a PDM. The underlying
intuition is that each operation can be associated with the computation of a sin-
gle IDE. Operations that are associated with the same goal are then considered
to be semantically related. Definition 1 defines how operations are associated
with a unique IDE3.

Definition 1 (Associated Element). The associated element of an operation
is the unique IDE for which there exists a path in the PDM from the operation
to that IDE, such that this path does not contain any other IDEs.

Since operations that are associated to the same element are considered to be
semantically related, it is proposed that such operations can be grouped into a
semantically coherent activity. This proposition is extended with the notion that
leaf operations can be grouped together into leaf activities. This notion is based
on the premise that the values for multiple leaf elements are often retrieved from
the same data source. For example, as seen in Sect. 2.1, all leaf elements in the
student grants case are derived from a student’s application. By grouping leaf
operations, the workflow design enforces the retrieval of multiple data elements
at once, which is often desirable [11].

Proposition 2 (Semantically Coherent Activities). A semantically coher-
ent activity is an activity that consists of a set of operations that are associated
with the same IDE.

Proposition 1 and Proposition 2 together form the means to compose activities
that result in activities that work towards a goal and of which the operations
are semantically related. Finally, it is proposed that an activity composition that
conforms to both aforementioned propositions results in well-designed activities.

3 Due to the way the IDEs, especially reference data elements, are defined in Sect. 3.1,
each operation is associated with exactly one IDE. [10] provides a formal proof for
this.

282 H. van der Aa, H.A. Reijers, and I. Vanderfeesten

Proposition 3 (Well-Designed Activities). The set of operations in an ac-
tivity should work towards the production of a relatively important data element
and be semantically related to each other.

4 Conclusions

This paper introduces fundamental guidelines for the objective composition of
activities in workflow settings. The proposed guidelines pose that activities
should work towards a goal, and should consist of semantically related oper-
ations. It has been shown that these properties can be identified based on struc-
tural data-flow relations. Hence, the guidelines can be applied objectively.

While this paper emphasizes the motivation for the activity composition prob-
lem as well as the development of guidelines, follow-up work has been carried
out that does not fit the constraints of this paper. Specifically, an automation
of the task of composing activities has been undertaken and a thorough valida-
tion of the guidelines has taken place. We intend to report on these in a future
publication.

References

1. Seidmann, A., Sundararajan, A.: The effects of task and information asymmetry
on business process redesign. International Journal of Production Economics 50(2),
117–128 (1997)

2. Hackman, J.R., Oldham, G.R.: Motivation through the design of work: Test of a
theory. Organizational Behavior and Human Performance 16(2), 250–279 (1976)

3. Sun, S.X., Zhao, J.L., Nunamaker, J.F., Sheng, O.R.L.: Formulating the data-flow
perspective for business process management. Information Systems Research 17(4),
374–391 (2006)

4. Reijers, H.A., Limam, S., Van der Aalst, W.M.P.: Product-based workflow design.
Journal of Management Information Systems 20(1), 229–262 (2003)

5. Trčka, N., van der Aalst, W.M.P., Sidorova, N.: Data-flow anti-patterns: Discover-
ing data-flow errors in workflows. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.)
CAiSE 2009. LNCS, vol. 5565, pp. 425–439. Springer, Heidelberg (2009)

6. Robbins, S.P., Judge, T.A., et al.: Organizational behaviour. Pearson Education,
Inc., New Jersey (2007)

7. Vanderfeesten, I., Reijers, H.A., Van der Aalst, W.M.P.: Evaluating workflow pro-
cess designs using cohesion and coupling metrics. Comput. Ind. 59(5), 420 (2008)

8. Vanderfeesten, I.: Product-Based Design and Support of Workflow Processes. PhD
thesis, Eindhoven University of Technology (2009)

9. Reijers, H.A.: Design and control of workflow processes: business process manage-
ment for the service industry. Springer-Verlag (2003)

10. Van der Aa, J.H.: Composing workflow activities. Master’s thesis, Eindhoven Uni-
versity of Technology (2013)

11. Reijers, H.A., Mansar, S.L.: Best practices in business process redesign: an overview
and qualitative evaluation of successful redesign heuristics. Omega 33(4), 283–306
(2005)

Mixing Paradigms
for More Comprehensible Models

Michael Westergaard1,2,� and Tijs Slaats3,4

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

2 National Research University Higher School of Economics,
Moscow, 101000, Russia

3 IT University of Copenhagen
Rued Langgaardsvej 7, 2300 Copenhagen, Denmark

4 Exformatics A/S, Lautrupsgade 13, 2100 Copenhagen, Denmark
m.westergaard@tue.nl, tslaats@itu.dk

Abstract. Petri nets efficiently model both data- and control-flow.
Control-flow is either modeled explicitly as flow of a specific kind of data,
or implicit based on the data-flow. Explicit modeling of control-flow is
useful for well-known and highly structured processes, but may make
modeling of abstract features of models, or processes which are highly
dynamic, overly complex. Declarative modeling, such as is supported by
Declare and DCR graphs, focus on control-flow, but does not specify it
explicitly; instead specifications come in the form of constraints on the
order or appearance of tasks. In this paper we propose a combination of
the two, using colored Petri nets instead of plain Petri nets to provide
full data support. The combined approach makes it possible to add a
focus on data to declarative languages, and to remove focus from the
explicit control-flow from Petri nets for dynamic or abstract processes.
In addition to enriching both procedural processes in the form of Petri
nets and declarative processes, we also support a flow from modeling
only abstract data- and control-flow of a model towards a more explicit
control-flow model if so desired. We define our combined approach, and
provide considerations necessary for enactment. Our approach has been
implemented in CPN Tools 4.

1 Introduction

Petri nets provide a powerful formalism for specifying many real-life systems,
including business processes. Petri nets excel by having a duality between data
and events, yielding a very powerful tool for specifying how data flows though a
system. Control-flow of a Petri net model is often modeled explicitly as flow of a
specific kind of data, similar to a program counter in traditional programming.
Alternatively, the control-flow is not modeled at all, and just manifests as a con-
sequence of the data-flow. As such, we call a Petri net model a procedural model
� Support from the Basic Research Program of the National Research University

Higher School of Economics is gratefully acknowledged.

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 283–290, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

284 M. Westergaard and T. Slaats

as the control-flow when disregarding data is close to procedural programming
languages: modelers specify how to solve a problem. An example where such
a language is useful, is classical filling of forms, such as a patient registration
process at a hospital.

Declarative specification of processes is an emerging trend for specifying espe-
cially business processes, but it has not seen massive use in practice. Declarative
models often focus primarily on flow of control, but instead of explicitly modeling
control-flow as a program counter, constraints between the different events are
described. Declarative languages resemble declarative programming languages:
modelers specify what the intention of the control-flow is, but not how to achieve
that. An example where such languages are useful, is a patient treatment process
at a hospital; here, many tests need to be run and many treatments are possi-
ble. There is no strict order of tests and treatments, but some treatments are
incompatible with each other, and some treatments need follow-up treatments.

Declarative processes are typically better at describing highly dynamic en-
vironments, where actions can take place in many different orders, or early in
the design, where the exact order of events is unknown. On the other hand,
Petri nets are far better at modeling data-flow, and the strict control-flow model
makes it easier to model processes with a strict and well-understood control-
flow, which also makes it much easier to extract experiences from the model to
an eventual implementation [10]. In this paper, we propose to merge two declar-
ative approaches, Declare [15,19] and DCR graphs [7,13], with a high-level Petri
nets formalism, colored Petri nets [9], to obtain a formalism that offers the best
of both worlds. We aim to do so in a manner that makes it possible to use all
three formalisms completely independently of each other or to mix all three for-
malisms in a single model. This makes it also possible to initially construct a
purely declarative model, optionally with data, and during refinement make it
more procedural as applicable. If we consider a hospital, this allows us to make
a single model comprising both patient registration, diagnosis, and treatment.
The reason for using both DCR graphs and Declare for the declarative parts
is that the languages have different focus areas: Declare provides higher level
primitives, often resulting in more comprehensible models, but DCR graphs do
not suffer from the computational overhead of detecting conflicts necessary to
ensure correct execution of Declare models.

We introduce our combined approach in Sect. 2, including pointers on how to
allow analysis of combined models and our implementation in CPN Tools 4 [17].
In Sect. 3, we sum up our conclusions and compare with related work.

2 Combined Models

In this section we informally introduce our hybrid model and its semantics, and
provide analysis considerations important for implementation. Actual implemen-
tation details are deferred to the next section.

The idea behind the hybrid approach is to identify transitions of CP-nets with
tasks of Declare models and events of DCR graphs and then allow places and

Mixing Paradigms for More Comprehensible Models 285

arcs (with annotations) from CP-nets, constraints from Declare models, and the
relations from DCR graphs to be added to the model to constrain the possible
executions.

The reason for including these three languages is that CP-nets is a widely
used procedural formalism with a strong theoretical background. It provides
great support for data flow, both theoretically and practically in the form of
tool support. We also prefer to use both Declare and DCR graphs for specifying
the declarative parts of the model. We choose these two languages because they
are on the surface very similar, yet they have different focus areas.

Declare offers a large set of contraints which have been identified as com-
monly used in business processes, making it well-suited to the BPM domain.
DCR Graphs on the other hand aim to provide a formal language for describing
processes in general, containing only 4 basic constrains while still being formally
more expressive than LTL.

By providing both languages, we can use pre-existing tools and techniques to
analyze our combined models, automatically switching from one kind of analysis
to the other as needed.

An execution is considered accepting if it is accepting for all three underlying
models. In other words, the execution should be accepting for the CP-net that
one gets when removing all Declare constraints and DCR Graph relations, it
should be accepting for the Declare model one gets by removing all places, arcs
and DCR Graph relations and it should also be accepting for the DCR Graph
model that one gets by removing all places, arcs and Declare constraints. For-
mally, we can define the semantics of all three languages in terms of transition
systems, and the semantics of the combined language is just the synchroniza-
tion of the three transition systems we get from the individual semantics by
projecting the combined model onto each of the three languages.

2.1 Analysis

We would like to provide a step-wise semantics for combined models. This is
necessary for efficient simulation. For CP-nets isolated, this is easy because every
state is accepting, so if a binding element sequence is enabled, the execution will
inevitably end in an accepting state. For Declare models and DCR graphs, this
is possible using a preprocessing step: we simply compute the prefix automaton,
which is possible as they both have a semantics yielding finite automata, and
only allow a transition if it leads to an accepting state in the prefix automaton.
For the combined models, however, this is not in general decidable. While we
can construct the transition system product of the 3 automata on the fly, we
cannot employ any of the techniques to ensure we can end up in an accepting
state: as not all states of Declare models and DCR graphs are accepting, not all
states of the product are necessarily accepting, so we cannot just execute any
enabled binding element sequence and be sure to end in an accepting state. As
the transition system we get from a CP-net is not necessarily finite, neither is
the product, so we cannot compute the prefix automaton. If either the CP-net
model is bounded (yielding a finite state space), or the Declare model automaton

286 M. Westergaard and T. Slaats

and the DCR graph automaton only have accepting states, we can use the fact
that these properties are preserved by transition system product and use the
appropriate technique. Otherwise, we must settle for weaker guarantees.

When talking about runtime verification of Declare models [12], each con-
straint can be in not just the two states satisfied and violated , but also in two
weaker states, where a constraint is only temporarily satisfied or violated, but
future execution may violate or satisfy it. Only when the execution is termi-
nated, is it possible to collapse possible satisfied/violated constraints into their
(permanently) satisfied/violated counterparts.

For DCR Graphs we do not keep track of the state of individual constraints,
instead we have a current marking and on execution check that the executed
event is enabled and calculate the new marking. If a marking contains no pending
included responses, the DCR Graph is in an accepting state and the process can
terminate. Feedback to the user consists of showing which events have occured
before, are enabled and need to occcur.

Simple Simulation. As demonstrated in [18], even if Declare is decidable,
constructing the automaton for the full system can be very time and memory
consuming – it is exponential in the number of constraints. To avoid this over-
head, we can instead create an automaton for each individual constraint. If we
do so, we can avoid ever violating individual constraints, while retaining fast
simulation (we can update the model in the initial state in constant time). CPN
Tools offers a mixed mode, where simulation and editing are interleaved. This
is useful for testing and debugging, but requires that the simulation can resume
very quickly, so performing an operation that is exponential in the size of the
model may be undesirable (at least for large models). By constructing the indi-
vidual automata, we can avoid ever (permanently) violating constraints, and for
some constraints, e.g., init, this is sufficient. For other constraints, this provides a
best-effort but fast simulation mode (we can update the model in constant time
in the initial state). We call this the simple simulation approach. The simple
simulation approach for DCR Graphs comes down to doing basic runtime verifi-
cation as described previously: checking that an event is enabled in the current
marking and calculating a new marking can be done in constant time.

Smart Simulation. As shown in [11] some Declare constraints can be in a
conflicted state: they are not violated, but also cannot all be (possibly) satisfied
at the same time. We can only catch this if we construct the automaton for the
full Declare model. By making the product explicit, we can compute the prefix
automaton. Unfortunately, the product of the prefix automata is not sufficient.
As demonstrated in [18], this can still be fairly fast for moderately-sized models
(in the order of seconds for models with 30-50 constraints). We call this smart
simulation: we avoid executing any transition that would lead to a conflicted
state. We can also do smart simulation of the DCR Graph constraints by build-
ing the finite automaton that corresponds to the graph and only allowing the
execution of events that can lead to an accepting state (i.e., the DCR Graph

Mixing Paradigms for More Comprehensible Models 287

does not contain any deadlocks). The efficiency of this approach has not been
investigated structurally yet, but for the models that we have considered to date
the state space tends to be modest. We can compute the product of the automata
from the underlying Declare model and the underlying DCR Graph model to
ensure that the two kinds of declarative constraints cannot conflict with other
as well.

Data-Aware Simulation. When combining declarative models with CP-nets,
we get an additional type of conflicts: a declarative constraint might require some
task to be executed, while the the CP-net model blocks its execution (f.e. because
of a missing token). Smart simulation cannot catch this on its own as it only
looks at the declarative (and computable) parts of the model. To handle such
situations we need constraints that yield automata which only have accepting
states, which severely limits the usability, or that the state-space is finite. Thus,
data-aware simulation is as hard as state space analysis.

For simple examples with small domains, we can just generate the state-space
and perform the synchronization, typically in minutes or hours. If the state-space
is larger but still finite, we can perform many simulations using smart simulation
and discard any not ending in an accepting state, similar to how simulation is
used for bug-finding until a final verification often is used. After computing the
synchronization, it can be stored efficiently (often only few states are conflicted).
If we deal with large domains, it is sufficient if we can generate an equivalence-
reduced state-space. This is for example the case if all types are integers or
reals, and we only compare all tokens with integers, similarly to region or zone
reduction for timed automata.

2.2 Implementation

We have implemented our combined models in CPN Tools 4 [5,17]. CPN Tools 4
adds support for simulator extensions [17], a mechanism which makes it possible
to extend CPN Tools using Java code. Each extension can add operations to
CPN Tools and also modify existing operations. The integration comprises 4
parts: GUI extension, syntax check extension, enabling restriction, and analysis.
In Fig. 1, we see how combined models look and are constructed in CPN Tools.

3 Conclusion

In this paper we have introduced a new approach to modelling workflows com-
bining the procedural formalism colored Petri nets, and the two declarative for-
malisms, Declare and DCR graphs. The combined formalism can be seen as
adding declarative control-flow to CP-nets or as adding data-flow to declarative
formalisms. Declarative approaches are typically better for abstract descriptions
or highly dynamic processes, where procedural approaches are better for well-
known and structured processes. Combining the two allows us the best of both

288 M. Westergaard and T. Slaats

Fig. 1. Declare and DCR graphs in CPN Tools 4

worlds and allows declarative processes to also deal with data. We have consid-
ered what is needed to provide simulation that avoids future conflicts in efficient
ways, and introduce three modes of simulation: simple, smart, and data-aware,
where the simple mode only avoids individual conflicts, smart avoids conflicts
not related to data, and data-aware makes sure that even in the presence of
data, all executions can terminate successfully. We have briefly introduced our
implementation in CPN Tools.

3.1 Related Work

The Guard-Stage-Milestone (GSM) model [8] by Hull et al, which originated
from the work on artifact-centric business processes [3], takes an approach to
modelling business processes where a process consists of a number of (possibly
nested) stages, which in turn contain a number of tasks. A stage also has guards
and milestones; it is activated by satisfying its guards and through perform-
ing the tasks in the stage its milestones can become enabled, which can then
in turn satisfy the guards of other stages. We see the GSM model as a hybrid
model combining procedural and declarative structures in a single language,
whereas our approach is based on combining existing procedural and declarative
languages. In [14] the authors introduce a declarative version of the Computer-
Interpretable Guidelines (CIG) language for modelling clinical guidelines, they
conclude that because both the procedural and declarative languages have their

Mixing Paradigms for More Comprehensible Models 289

disadvantages it would be best to combine them into a single model, but leave
this for future work. In [16] the authors have examined the understanding of
procedural and declarative process models by users. In their conclusions they
note that while it appears that procedural models are more comprehensible, it
remains uncertain to what extent this is caused by participants being skewed
towards procedural models because of their general acceptance and availability.
They do not consider a hybrid approach using both procedural and declarative
concepts. In [6] Fahland bridges the gap between declarative and procedural
workflow approaches by proposing a general compositional mechanism for trans-
lating declarative workflow models to procedural workflow models. He exem-
plifies the general approach by giving a translation from Declare to Petri nets.
The main difference to our approach is that while in [6] a declarative model is
translated to a procedural version to facilitate using existing modeling, analysis
and management techniques, we aim to combine the declarative and procedural
approaches and provide tools and techniques for the hybrid approach.

3.2 Future Work

Here we have assumed that a user creates and refines a model. Another approach
is to have the tool do that. For example, a precedence(A,B) constraint is trivially
modeled using a single place of type boolean, initially marked by false. Then
A changes the value indiscriminately to true and B checks that the value on
the place is true. not co-existence(A,B) can be implemented using a place with
three possible values: {A,B,UNDECIDED}. init(A) is less elegant, but can be
implemented using, e.g., inhibitor arcs. This will not catch conflicts, but we can
do that (and translate all constraints in a uniform way) by constructing the finite
automaton either just equate the states of the automaton with new places or
use a (not data-aware) process mining algorithm [1] or the theory of regions [4]
to construct a Petri net for the control flow. Future work includes investigating
the best way to make such a translation (semi-)automatically.

The current approach works as long as we describe a single run of a single
process. That is, our example in the figures handles one treatment of one patient.
It would be interesting to investigate multiple instances, which would essentially
be a folding of the current model. We could also have multiple processes com-
municate, e.g., like Proclets [2], resulting in a more artifact-driven result. Using
a translation from declarative constraints would essentially result in process-
partitioned CP-nets in the sense of [10], which means it would be possible to
automatically derive code from the resulting model. It would also be interest-
ing to look into making a proper notion of a process in CP-net models, where
instances cannot just terminate in any state. This would also include adding a
notion of instances to the declarative languages.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer (2011)

290 M. Westergaard and T. Slaats

2. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Workflow Modeling
using Proclets. In: CoopIS 2000. LNCS, pp. 198–209. Springer, Heidelberg (2000)

3. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis of
artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann, M.
(eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

4. Carmona, J.A., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for
Discovering Petri Nets from Event Logs. In: Dumas, M., Reichert, M., Shan, M.-C.
(eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)

5. CPN Tools webpage, http://cpntools.org
6. Fahland, D.: Towards analyzing declarative workflows. In: Autonomous and Adap-

tive Web Services. Dagstuhl Seminar Proceedings, vol. 07061, p. 6. Internationales
Begegnungs- und Forschungszentrum fuer Informatik, IBFI (2007)

7. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as distributed
dynamic condition response graphs. In: Post-Proc. of PLACES 2010 (2010)

8. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Terry, H.,I.F., Stacy, H., Mark,
L., Sridhar, M., Anil, N., Piyawadee, S., Roman, V.: Introducing the guard-stage-
milestone approach for specifying business entity lifecycles. In: Proc. of WS-FM
2010, pp. 1–24. Springer, Heidelberg (2011)

9. Jensen, K., Kristensen, L.: Coloured Petri Nets – Modelling and Validation of
Concurrent Systems. Springer (2009)

10. Kristensen, L.M., Westergaard, M.: Automatic Structure-Based Code Generation
from Coloured Petri Nets: A Proof of Concept. In: Kowalewski, S., Roveri, M.
(eds.) FMICS 2010. LNCS, vol. 6371, pp. 215–230. Springer, Heidelberg (2010)

11. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime Ver-
ification of LTL-Based Declarative Process Models. In: Khurshid, S., Sen, K. (eds.)
RV 2011. LNCS, vol. 7186, pp. 131–146. Springer, Heidelberg (2012)

12. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring
Business Constraints with Linear Temporal Logic: An Approach Based on Colored
Automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 132–147. Springer, Heidelberg (2011)

13. Mukkamala, R.R.: A Formal Model For Declarative Workflows - Dynamic Condi-
tion Response Graphs. Ph.D. thesis, IT University of Copenhagen (March 2012)

14. Mulyar, N., Pesic, M., van der Aalst, W.M.P., Peleg, M.: Declarative and proce-
dural approaches for modelling clinical guidelines: Addressing flexibility issues. In:
ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007 Workshops.
LNCS, vol. 4928, pp. 335–346. Springer, Heidelberg (2008)

15. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Controls to
Users. Ph.D. thesis, Beta Research School for Operations Management and Logis-
tics, Eindhoven (2008)

16. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Impera-
tive versus declarative process modeling languages: An empirical investigation. In:
Proc. of ER-BPM 2011, pp. 383–394 (2011)

17. Westergaard, M.: CPN Tools 4: Multi-formalism and Extensibility. In: Colom, J.-
M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 400–409. Springer,
Heidelberg (2013)

18. Westergaard, M.: Better Algorithms for Analyzing and Enacting Declarative Work-
flow Languages Using LTL. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 83–98. Springer, Heidelberg (2011)

19. Westergaard, M., Maggi, F.: Declare: A Tool Suite for Declarative Workflow Mod-
eling and Enactment. In: Business Process Management Demonstration Track (BP-
MDemos 2011). CEUR Workshop Proceedings, vol. 820, CEUR-WS.org (2011)

http://cpntools.org

An Agile BPM Project Methodology

Christian Thiemich and Frank Puhlmann

Bosch Software Innovations GmbH
D-10785 Berlin, Germany

{christian.thiemich,frank.puhlmann}@bosch-si.com

Abstract. Business Process Management (BPM) has become one of the
most important management disciplines in recent years. In reality, how-
ever, many technical process improvement projects failed in the past and
the expected benefits could not be established. In the meantime, the ag-
ile software development movement made massive progress in contrast
to classic waterfall approaches which are still the foundational method-
ologies for many BPM projects. This paper investigates the combination
of a traditional BPM methodology and agile software development to
overcome the limitations of existing BPM methodologies. The main fo-
cus is on projects that cover the technical realization of processes based
on modern Business Process Management Systems (BPMS).

1 Motivation

Business Process Management (BPM) helps companies focusing on value-adding
end-to-end processes and supporting them with IT systems. Hence, it focusses
on implementing process-based, long-running and wide-reaching business appli-
cations with a specific set of tools (Business Process Management System, abbr.
BPMS). Additionally, it supports the organizational change management which
is required to successfully roll-out these changes throughout the company.

In some of our projects, however, we discovered that the process implemen-
tation the business departments got is precisely what they once required, but
not what they need anymore as the requirements changed over time. Traditional
software engineering were faced with the same problems but came up with so-
lutions to closely link the customers (e.g. the requirement providers) with the
engineers who actually build the systems. The solutions are based around the
principles of agile software development, such as “satisfy the customer through
early and continuous delivery of valuable software”, “Welcome changing require-
ments, even late in development”, or “Deliver working software frequently” (see
[3]).

To gain the benefits of the agile principles for BPM projects, we developed a
new approach for the realization of BPM projects which is based on the principles
of the agile software development manifesto. Therefore we classify the existing
artifacts and methods of an existing BPM methodology with a traditional wa-
terfall project execution (named IBPM, see [12]) and reframe the generic parts
into an agile development methodology based on Scrum. The derived framework

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 291–306, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

292 C. Thiemich and F. Puhlmann

A

Process

model

B

Organization &

Roles

C

Task Mgmt

D

Business

Rules

E

Analysis &

Reporting

F

Componen-

tization

G

UI Design

H

Process

Comp.

I

Business

Objects &

Backend

Comp.

J
Technical
Architecture

1

Planning

2

Analysis

3

Functional
Design

4

Detailed

Design

5

Implemen-

tation

SOAD

Service Oriented Analysis and Design

POAD

Process Oriented Analysis and Design

Fig. 1. The Integrated BPM Project Methodology Framework according to [12]

builds the foundation for an agile BPM methodology that provides guidance
from early BPM project initiatives to the final implementation.

The paper is structured as follows. We start with an overview of the prelim-
inaries in section 2, in particular IBPM as well as Scrum. Section 3 discusses
the foundations of agile BPM projects. Besides providing an adaption of the
agile principles to BPM, it also provides a guideline whether a BPM project
should be implemented with the usage of the traditional lifecycle or by an agile
methodology. Section 4 provides the core concepts of the agile BPM method-
ology, including a formal meta model, the agile lifecycle and key artifacts and
methods.1 Section 5 introduces a practical experience with the application of
the agile methodology. We discuss related work in section 6 and conclude in
section 7.

2 Preliminaries: IBPM and Scrum

This section introduces the basics of the Integrated BPM Project Methodology
(IBPM) [12] and the Scrum software development framework. Both approaches
have different purposes. While IBPM has a strong focus on analysis and design,
Scrum delivers a holistic approach of how to get requirements implemented.
IBPM furthermore provides best practices and artifacts to capture and discuss
business requirements.

2.1 The Integrated BPM Project Methodology

The Integrated BPM Project Methodology enables BPM projects to be accom-
plished in a structured manner. The authors introduce different characteristics

1 A complete description of the agile BPM methodology has been published as a Mas-
ter Thesis (In German), available online at http://frapu.de/pdf/thiemich2012.

pdf

http://frapu.de/pdf/thiemich2012.pdf
http://frapu.de/pdf/thiemich2012.pdf

An Agile BPM Project Methodology 293

Implementation

PO-A

PO-D I

PO-D II

SO-A

Planning

SO-D II

SO-D I

Fig. 2. IBPM Project Approach according to [12]

of BPM projects that are distinct to pure software development projects. BPM
projects are to a large degree organizational projects. The challenge is to sepa-
rate process flow and decision logic from software development aspects such as
functions, thus establishing a well aligned and loosely coupled service-oriented
architecture.

The motivation behind IBPM was a desire to increase quality and efficiency
as well as to reduce risks and costs by enabling people to ask the right questions
and deliver the right artifacts at the right time. For this purpose IBPM uses best
practices and consists of the following three core components: IBPM Framework,
IBPM Pattern Catalogue, IBPM Project Approach.

Preliminary 1 (IBPM Framework). The IBPM Framework, shown in fig-
ure 1, defines ten thematic pillars, which combine the most important aspects
from the process-oriented and the service-oriented perspective in a BPM project.
Both perspectives are represented by five columns. Given that the process model
is based on BPMN, it is the leading artifact for the process-oriented perspective.
Additional pillars include Organization and Roles (B), User Tasks (C), Business
Rules (D) as well as Process Monitoring (E). The same idea can be applied to
the pillars in the service perspective. The Componentization (F) contains the
leading artifact represented as an SOA-Map as well as four more refining pillars.
The Framework is additionally based on five different levels of detail (Planning,
Analysis, Business Design, Implementation Design and Implementation). The
resulting matrix allows the structured discussion of artifacts and corresponding
requirements.

Preliminary 2 (IBPM Pattern Catalogue). The IBPM Pattern Catalogue
is based on best practices and provides project conventions for eight different
aspects with predefined patterns. The patterns include BPMN modeling guide-
lines, UI templates, or patterns covering change management.

Preliminary 3 (IBPM Project Approach). The IBPM Project Approach
(figure 2) is based on a waterfall approach and introduces different project phases

294 C. Thiemich and F. Puhlmann

2-4
weeks

24 h

Product
Backlog

Sprint
Backlog

Product
Increment

Daily Scrum
Meeting

Sprint
Planning Sprint Review

Sprint
Retrospective

Fig. 3. The Scrum Development Process

(Planning, Analysis, Business Design, Implementation Design, Implementation)
and working packages, focusing either on Processes or Services with a strong
emphasis on the Analysis and Design of a BPM project. IBPM splits the de-
sign phase into the Business Design and the Implementation Design. Comparing
IBPM to generic project approaches, IBPM adds value by defining BPM-specific
tasks, roles and artifacts.

2.2 The Scrum Software Development Framework

Scrum (see e.g. [10],[15]) is a lightweight development framework, which is easy to
understand and provides defined roles and processes. Even though the framework
was born the early 1990s for software development purposes, other disciplines,
including general management, have adapted it more and more [4]. It represents
the Agile Manifesto2 and the associated principles by focusing on collaboration
and interaction to satisfy the customer. Scrum is based on empirical process con-
trol theory and utilizes an iterative, incremental approach to control risks and
optimize predictability. The main goal is to develop potentially releasable prod-
uct increments in short, consistent and time-boxed iterations, so-called sprints.

Scrum is based around three roles (Product Owner, Scrum Master, Team),
four meetings (Sprint Planning, Daily Scrum, Sprint Review and Sprint Retro-
spective) and three artifacts (Product Backlog, Sprint Backlog, Product Incre-
ment). We introduce the product backlog, followed by the other artifacts and
roles based on the meetings as shown in figure 3.

Preliminary 4 (Product Backlog). A “Product Backlog” describes the re-
quirements for a product prioritized by their business values. In addition each
entry in a Backlog is estimated (according to an abstract effort metrics based
on “Story Points”) and has a set of acceptance criteria.

Preliminary 5 (Sprint Planning). Within the first part of a “Sprint Plan-
ning” the “Product Owner” presents his goal for the following sprint and his
priorities. The team will estimate the presented items and depending on the

2 See http://agilemanifesto.org/

http://agilemanifesto.org/

An Agile BPM Project Methodology 295

velocity (e.g. how many “Story Points” a team can currently implement in a
predefined time frame), a certain amount of “Backlog Items” are selected for
the sprint. In the second part of the “Sprint Planning” those requirements are
broken down into “Tasks” which result as entries in the “Sprint Backlog”.

Preliminary 6 (Daily Scrum). Over a predefined length of a sprint (usually
2-4 weeks) the Team will meet daily for the “Daily Scrum” to synchronize the
current work and especially the problems (so-called impediments). The “Scrum
Master” is responsible for solving those impediments as quickly as possible.

Preliminary 7 (Sprint Review). At the end of a “Sprint” the “Team”,
the “Scrum Master” and the “Product Owner” will meet again for the “Sprint
Review”. Based on the requirements and their predefined acceptance criteria the
“Product Owner” will approve the requirements in the live system.

Preliminary 8 (Sprint Retrospective). The last meeting of a “Sprint” is
the “Retrospective” where the “Team” and the “Scrum Master” (sometimes
including the “Product Owner”) reflect the result of the “Sprint” and define
tasks to improve their Scrum process.

Scrum has a number of variants with additional steps or artifacts like Back-
log Grooming, a Definition of Ready and a Definition of Done. The Backlog
Grooming establishes a new meeting that helps the Product Owner to maintain
his Product Backlog. He can get the assistance of the Team to make sure that
the items in his Product Backlog are ready corresponding to the Definition of
Ready. The Definition of Done is used to define general criteria which are needed
in order for each requirement to be approved by the Product Owner.

3 Foundations of Agile BPM Projects

This section discusses selected agile principles and how they affect BPM projects.
We start by introducing the foundation of agile BPM projects by comparing the
idea of BPM and the definition of a project. The idea behind BPM is to provide
sustainable and continuous improvements, whereas projects are intended to be
unique and to have defined goals.

From our experience, most BPM improvements are motivated by a project and
are not continuous at all. BPM aims to make the business processes flexible and
to improve them continuously. Even though agile projects are still projects, they
have certain advantages in combination with BPM. They lead to an inevitable
flexibility for BPM projects which embraces and welcomes changes. Additionally,
when most projects start, their goal is often not exactly defined at a detailed
levels. Agile approaches cut off the overhead of a multiple-month analysis and
design phase and deliver visible results in early phases of the project.

Best Practice 1 (Motivate the Different Approaches Using the “Magic
Triangle”). Use the “Magic Triangle”, shown in figure 4, to explain the idea of
the paradigm shift that accompanied an agile development approach. While the
classic waterfall approach has a fixed project scope, it only delivers assumptions

296 C. Thiemich and F. Puhlmann

A
ss

um
pt

io
n

Fi

x

Classic

Scope

Time Budget

Time Budget

Agile

Scope

Fig. 4. Comparing the magic triangle

on time and budget. Turning the triangle to agile, in contrast, offers a fixed time
and budget, but no limitation or restriction on the scope.

Until recently, a project without a clearly defined scope was not acceptable.
Nowadays it is recognized that long-running projects with a fixed scope are
often not successful and do not lead to end-user acceptance. To overcome this
issue, the foundation of agile BPM projects is based on an adaption of the Agile
Manifesto and its principles. In the following, the most relevant principles behind
the Agile Manifesto are reflected from the perspective of a BPM project. We cite
the principles according to [5]:

Principle 1. Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

A number of BPM projects have a long analysis and design phase, including
late presentation of visible results. Thus, the customer is not able to realign the
direction of the project at appropriate times, leading to no continuous delivery
at all. BPM projects are often accompanied by coarse-grained requirements.
Since BPM and the agile approaches have similar preconditions, further research
is necessary on how they fit together. Again, the idea of BPM is that of a
sustainable improvement and support of the business’ processes and not the
accomplishment of a single project. This is a significant problem that is addressed
via agile BPM projects.

Principle 2. Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

Why do companies engage in BPM? They expect competitive advantages and
want to reduce the time-to-market of their innovations and improvements. Our
experience has shown that BPM projects are often delayed due to changing re-
quirements. Agile methods welcome changes to satisfy customer requirements,
which have evolved over time. This refines the process implementation, channel-
ing it into the direction to help fulfill the customer’s needs.

Principle 3. Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference towards the shorter timescale.

This principle raises the question, ’what does working software mean for a BPM
project?’ Is it only the “living” process running in the BPMS or does it mean
we have rolled out the process throughout the company, including training and

An Agile BPM Project Methodology 297

Fig. 5. Project parameters

documentation? A complete rollout cannot be achieved in one single sprint. In
case of a technical BPM project we need to deliver a working process in our
BPMS frequently. Depending on the project, we might have multiple releases
every 5–10 sprints. In this case it is important to insure that the whole lifecycle
of a process has been completed (incl. test/rollout/training).

Principle 4. Business professionals and developers must work together on a
daily basis throughout the project.

One of the major benefits of agile software development approaches is that they
are run in short and frequent iterations. This enables a higher transparency for
both sides. Problems become visible earlier than in classic approaches and can be
addressed directly. Business professionals are often working on multiple projects
at the same time. This leads to a problem regarding their availability and focus
on one single project. In BPM projects, the business professionals need to be
closely integrated, since the project is not only about changing software but also
about organizational changes.

Principle 5. Continuous attention to technical excellence and good design en-
hances agility.

Besides needing a well-designed architecture, the technical implementation of
a business process might differ from the business processes model. Therefore
synchronization is needed. At this point, discussions often arise as to whether
the process model or the (existing) technical implementation is leading. From
our point of view, the process model should be the leading artifact. Nevertheless,
to succeed with agile BPM projects it is necessary to focus on architecture first.
An advantage of using modern BPMS is that there is a common base on which
reference architectures can be used as a starting point for new projects.

Principle 6. Simplicity—the art of maximizing the amount of work not done—
is essential.

When business people and IT people work together, it is important to keep it
simple. The focus should always be on a minimum valuable process. That means

298 C. Thiemich and F. Puhlmann

��
X�Y

�X�
	Z

�
� �

	X
��

�Z
�

� �

�[
X��
�

XZ
�

� �

• �	���	�X[�	X�
\[�	X	[Z�

• �[��X��\[�]��X������
• 	�
����\[�]��X�

ZX�[X^����
• ����X�
_�X�`������[�
• �Y��j�X������

��Xj[�X_�
�
�
�

�

��\����

• 	�
����Z\[��X�����X��
• �[��X�����X����[����Z��

\����
• �ZX����Z���[���X��Xj[��

Y�Z����
• �j����X����

�
�
�
�
�
�

���`k�

�

• 	�
����	�
���X�����
�
	����q�	�
���X�����
�
����_�

• ����X�
_����X����
[�wj�[����XZ�

• 	�
�������X����
�[���X��Xj[��

• �Xj\�\[�]��X�
��Y�[�����X�
�
�
�

\[��X�x�

• ��
����\[���ZZ����`����
• �����Z\[��X�
• 	�
����X�Z`Z�
• ��\�����X�[�wj�[����XZ�
• ��X��ZX�`������[�
������`�
• ���X[���\[�]��X�\[��[�ZZ�
• �j��[�X[�Z\��X�Y��
�

�
�
�
�

\[��X�zk��

• �\\���������Z����X�Z�
• �[��������\�[�X���Z�����

����jZ�[Z�
• ��X��[�X����X�ZXZ�
• ����Z��	��j���X�X����

�
�
�
�
�
�
�

�����Z�Z\[��X�

�[�]��X�

�����Z�� �����Z��

\[��X� \[��X� \[��X� \[��X� \[��X� \[��X�

�����
�[�\[���ZZ�
��\[�Y����X�

�����Z��

\[��X� \[��X� \[��X�

• X�`������[��j��`k
����`�
�
�
�
�

• �[���X��Xj[��
��j�\[��X����

• ����j��`k����`�
• `��������_Z�Z�
• ������j��`k����`�

 �Y���z�

• ������j��`k����`�
 �Y���{q|�

• X�[_���\\����
�
�
�

• ������j��`k����`� �Y���{q|�
• ������j��`k����`� �Y���}�
• X�[_���\\����

�
�
�

• �[�]��X������
• �ZX��
�X�`������[�

�
�
�

• �[���X��Xj[��!�Z����
• ��k����
• ��[ZX������Z�\����
• `�����X[�~�

�

• 	�
���
�	����
• 	�
���
�����_�
• �[���ZZ����`����
• X�[_���\�

�

• \[��X����`����
• �[���ZZ����[����X�
• X�[_���\�

�
�

• �[����������j���XZ�
• �����Z����X�Z�
• 	��j���X�X����

�
�

�
�
�
�
�
�

Fig. 6. Agile BPM Framework Overview

that the details are only needed for the requirements that will be implemented
in the next 2–3 sprints. By doing so, the approach stays conform to the agile
principles that value generating business value over documentation.

All discussed principles have their impact on a BPM project. In most cases,
it is not possible to stay conform to all of them.

Best Practice 2 (Parameters for Agile or Classic Project Approaches).
Evaluate the parameters shown in figure 5 to decide whether you should tend
towards executing your project in an agile or more classic (waterfall)-oriented
approach.

4 An Agile BPM Methodology

Since IBPM and Scrum are suitable methods for their purpose, the missing
link is a value-adding combination of both frameworks. The goal of the current
section is to combine BPM and Scrum to introduce a flexible framework for agile
BPM projects. The proposed framework consists of three core aspects: “Project
approach”, “Artifacts”, and “Methods”. It enhances the reflected adaption of
agile principles in BPM projects. Our focus is on the technical implementation
of process-centric projects that are realized based on BPMS.

Agile BPM projects can be divided into the phases and types of sprints shown
in figure 6. As discussed, we differentiate between artifacts, methods, and activ-
ities in each phase. Before a project starts, it must be scoped. Afterwards, the
project kick-off starts the project and is followed by an adjustable number of

An Agile BPM Project Methodology 299

Fig. 7. Agile BPM Meta Model

sprints, until the project goal is achieved. Depending on the project, the number
of releases will vary.

At customer sites, the agile life cycle often leads to a discussion regarding
modeling vs. implementation. This is one of the central differences between tra-
ditional agile software development projects and BPM projects. So, how does
the documentation and modeling of business processes fit into the idea of agile
software development? Though it is obvious that the code itself is a kind of docu-
mentation, how can we argue the value of business process models? Since a BPM
project is mostly running on different abstraction levels (from management, busi-
ness professionals and IT), we need to clarify a language that is understood by
both worlds. A process model helps to communicate the needs of the business
people to the IT. Furthermore, a modern BPMS allows the implementation of
the processes based on their models.

Best Practice 3 (Clarify Modeling vs. Implementation). We believe that
in a BPM project, both—the process model and the implementation—generate
business value. Furthermore, BPM projects are often connected with organiza-
tional change that is based and communicated using the different models.

4.1 Agile BPM Meta Model

Given that a process model is adding value to the project and needs to be speci-
fied before the process can be implemented, we generate additional dependencies
that have to be managed. A common problem in a software development project
using Scrum and User Stories is that the big picture or strategic fit is often lost.

300 C. Thiemich and F. Puhlmann

The combination of IBPM and Scrum in an agile BPM project helps to keep this
big picture. Therefore several of methods and artifacts are used in our approach.
In the following paragraphs, we will give an overview and some examples to
highlight the linkage between both approaches.

The meta model of our proposed approach, shown in figure 7, depicts the
different artifacts, methods and activities, and indicates how they are connected
with the processes. Not all relations are shown at the given level of granularity.
As can be seen, the model is divided into different main subjects, according to
figure 6. From the BPM perspective, we assume that a process has a manager, an
owner and multiple participants. Processes exist in different releases. A process
improvement will be initiated with a new project, where a project has different
roles. It always has Stakeholders and depending on the project size, a project
might consist of one or multiple teams working together. Each team, aligned to
the idea of Scrum, has its Agile BPM Master, an Agile BPM Process Owner and
a 3–5 member team. We chose a different wording to highlight that those roles
need additional competencies.

The Agile BPM Process Owner is responsible for identifying the customer’s
needs. He has to extract and transfer them into appropriate requirements in the
process backlog. The prioritization and estimation of the backlog is also his re-
sponsibility. Besides that, he is accountable for the Return on Invest of the project.
It is necessary that he is always available for the team, in case questions and prob-
lems arise during a sprint. The Agile BPMMaster takes care of the compliance to
the Agile BPM Methodology, the project approach and different responsibilities.
He is familiar to BPM as well as agile principles and approaches. Particularly in
the early phases of the project he is the trainer and mentor for the whole project
team and moderates the meetings. He is the first contact person in case of any am-
biguity and for problems thatmay threaten the target achievements. The teamhas
the same role it has in Scrum. Since it is a BPM project, the required skills are dif-
ferent to those in software development projects. Projects have multiple sprints
and these sprints are associated to releases of the appropriate processes. Every
sprint is run the same way. At this point our approach is very similar to Scrum.
We decided to establish the Backlog Grooming as a mandatory activity within our
projects, since we discovered out that most of the projects use something similar
to help the product owner to prepare the backlog for the next sprints.

4.2 Tools and Techniques

We identified a set of tools and techniques that support us in delivering suc-
cessful BPM projects. In the following we describe an excerpt of these tools and
techniques as best practices.

Given that we work with user stories in our process backlog, we developed
three IBPM Quick Check Levels based on the IBPM Matrix (see figure 1) for
different purposes and phases (see figure 6). They establish the big picture and
help to identify the BPM artifacts needed to achieve the defined targets and
goals. The goal of those different Quick Checks is to ask the right questions
depending on the detail level and project approach, e.g.

An Agile BPM Project Methodology 301

Fig. 8. IBPM Quick Check Level

– “Do we need a UI? If so, how should it look like?”
– “Are there any business rule candidates within the process?”
– “Which non-functional requirements have to be considered?”

Best Practice 4 (Use the IBPM Story Check). You should use the IBPM
Story Check (see figure 9) in the early phase of a new user story to identify which
subjects and dependencies the specific story will generate. The goal is to classify
new requirements and to identify the relevant IBPM pillars. Even though it is
a very simple enhancement to a story card, it helped in our projects to handle
dependencies and to maintain the big picture. Lets say we have a story card
that says: “As a purchasing agent I want to create a new purchase requisition to
initiate the purchase process”. This story will get a priority and some acceptance
criterias. In our framework, we additionally map this story into a specific process
step. In this case it is “Create purchase requisition”. This process step can be
found directly in our process model. Doing this for each user story will help
us to keep track of our end-to-end processes. A best practice is to offer three
options for the relevance of a specific pillar: Existing artifacts, Artifacts needed,
Not needed. Based on this information we can derive specific tasks and artifacts
that have to be delivered before we can put the story into a specific sprint. We
highly recommend to tie this method into the Definition Of Ready.

Best Practice 5 (Use IBPM Quick Checks). Use the different IBPM
Quick Checks levels shown in figure 10 to decide on important steps within a
Sprint. Since the IBPM Quick Check Level 1 is only used within the project
kickoff, the other three are used within the preparation of the next sprints. The
Backlog Grooming is supported by the Level 2 and 3. The goal is to make the
requirements achievable for the team. Therefore it is necessary to identify the
missing BPM artifacts. If there are any required artifacts missing, they have to
be addressed within the next sprint. Since IBPM specifies a lot of artifacts, it
is not mandatory to deliver all of them. In agile BPM projects, the associated
user story is used as guideline, which artifacts should be considered. The team
defines which of the artifacts generate value for the business and IT alignment.

302 C. Thiemich and F. Puhlmann

Fig. 9. IBPM Story Check

All of these checks generate a broad set of artifacts. The artifacts are linked
to either a process, the project or methods. To handle the complexity and to
understand their relations, we use the meta model shown in the beginning of
this section.

Best Practice 6 (Customize the Framework). Take the time to think
about a project-specific customization carefully. Depending on specific problems
or questions there are ways to solve issues by adapting some of our best practices.
One point that sometimes leads to questions is the feasibility of requirements
within one sprint. To make sure that any requirement that gets into a sprint
can be achieved successfully, the “Definition of Ready” defines what needs to be
delivered prior to the realization. It is a best practice to establish the Backlog
Grooming to identify the information demand for the next one or two sprints.
In case the team and the Agile BPM Process Owner identifies a missing BPM
artifact, there is enough time to gather or create the required information.

Best Practice 7 (Use Interleaved Teams for Business and Technical
Perspectives If Needed). Use interleaved parallel teams to generate “ready”
backlog items with an offset of one sprint if the stories become too complex. One
team represents the business perspective and shapes the requirements which will
then be implemented by the second team. This approach collides with the agile
principles, but sometimes helps to get at least some of the concepts into a project.
[14]

Best Practice 8 (Adjust Stories from Horizontal to Vertical as the
Project Progresses). From the product development perspective, user stories
have to be vertical (e.g. one feature/activity in depth). Otherwise they can’t pro-
duce any benefit. In contrast, BPM projects are not about product development.
We recognized that there are often horizontal user stories which are predomi-
nantly at the beginning of a project (e.g. a click-dummy of the process). They
help people understand how their process will look and feel like. Afterwards it is
much easier to identify which aspects must be considered vertically. Adjust the
splitting of the user stories from horizontal to vertical as the project progresses.

An Agile BPM Project Methodology 303

Fig. 10. Sprint preparation with IBPM Quick Checks

5 Experience

In our professional experiences, we have analyzed multiple projects and their
lessons learned. Most of the less successful projects suffer from the same prob-
lems. Waterfall oriented approaches were not able to use the benefits of modern
BPMS. The time between the initial planning, the analysis, design phase and
the final implementation causes a reduced end-user acceptance, a lack of man-
agement attention and often changed business requirements.

The first practical experiences of applying the presented framework are very
promising. We had several projects that were successfully accomplished based
on the described framework. We observed that the classification of the project
environment is one of the key issues for successful BPM projects (see best prac-
tice 2). In projects where agile approaches are used for the wrong reasons, for
example to only seem state-of-the-art, we recognized that they were neither suc-
cessful, nor did they emphasize the agile principles. Talking to project members
clarified that it only left “‘scorched earth”’. One of our goals is to establish guide-
lines that help BPM projects to decide between agile and classic approaches. In
the following we introduce one of our recent projects that highlights how the
sketched framework can be adapted for specific requirements.

5.1 Service Portal Project

In September 2012, our company set up a project to build a remote service por-
tal based on our core products. Before the project started, we considered the
parameters that would influence the project. The outcome of our classification
(based on figure 5) stated that it matched our expectations of an agile environ-
ment. The project was defined by a fixed timeline and the allocated resources.
Since the project was based on our core products, the technical architecture was
also well defined in the early stage of this project. Another important aspect
was fuzzy requirements at the project start which often resembled more a vision
than concrete issues. The basic parameters of the project can be summarized

304 C. Thiemich and F. Puhlmann

as follows. We had one single team which was cross-functional and international
but had no former experience with agile methodologies. In this project we began
by coaching the team and filled the position of the Agile BPM Master. Addition-
ally we supported the Agile BPM Product Owner by getting the stories ready
according to our definition. Since the team had neither experience in IBPM nor
in Scrum, we chose to start with a reduced set of artifacts to begin with. Besides
a lack of experience in the Agile BPM area, we had to face cultural differences.
The people who formed the team were from Singapore, USA and Germany. Nev-
ertheless, we passed through the defined phases (see figure 6), which helped the
team to structure their work several times, especially in the initial workshops
and sprints.

The team chose to start with a sprint length of one week. They started with
this high frequency for several reasons. First of all, they wanted to learn more
about the Agile BPM approach and expected a faster adaption. On the other
hand they had fuzzy requirements and wanted to remain flexible in the face
of a highly changing process backlog. At the end of the project, their decision
has proven of value. During the project the stakeholders were highly satisfied
by the results and the project approach. Before the project started there was a
certain suspiciousness among the stakeholders. They were doubtful how a newly
formed and international team should produce any usable outcome in a short
running project like this. The results from our project have shown that most
of the issues can be overcome, based on the application of the agile principles
explained earlier.

5.2 Lessons Learned

We have learned that a clearly defined process for collaboration accelerates the
knowledge transfer and the efficiency. From our experience we know that it works
well to start with agile projects in smaller scopes. The most important thing to
start with agile approaches is to find a project initiative that matches the require-
ments for an agile approach. Do not try and implement the agile approach in a
project just to say that you are doing so; in most cases this will not work out well.

We additionally found out that IT departments often think in short terms.
Unfortunately, in a lot of cases, the business departments are not ready to think
this way yet. Their organization does not support early and frequent feedback
since they are working in many different projects and can not devote their full
attention to one project. At this point our approach can not deliver a general
recommendation, since every company is differently organized. We can only de-
mand that the stakeholders from the business departments must have at least
half of their time available for a particular project, since otherwise it will not
be possible to align the pulse of business and IT. Also keep in mind, that one
of the most important things is to keep it simple. It is not about following our
framework in a dogmatic way but rather about finding a pragmatic, customized
path. When we start working with our approach, we consider the people and
their knowledge and then successively bring in methods, tools, and artifacts.

An Agile BPM Project Methodology 305

6 Related Work

BPM methodologies can be clustered based on their focus (e.g. enterprise, pro-
cess, or project level) or purpose (e.g. business process redesign or continuous
process improvements). Enterprise-BPM [12] has a focus on the enterprise-wide
establishment of BPM. It helps to identify project initiatives, to manage complex
application landscapes and to improve BPM based on a risk-oriented approach.
Six-Sigma’ DMAIC, the RummlerBrache Methodology [11], or Jeston and Nelis
[9] are focussing on the process level. In addition to those methodologies , there
are a number of other approaches. Nevertheless, most focus on the process level
and help to identify possible process improvements. Existing BPM methodolo-
gies that focus on the project level, such as the Integrated BPM Methodology
(IBPM) [12], help business departments to precisely state their requirements
as process models and corresponding artifacts. The traditional BPM-lifecycle
(model, implement, execute, analyze) [1] defines how to hand over the docu-
mented requirements to the IT department for implementation.

Evaluating the agile methods and approaches, we focussed on the most popu-
lar methods, e.g. Scrum and Kanban [13][6][2]. Scrum is originally a framework
for developing complex software products. We chose Scrum in this approach,
because it fits very well with the IBPM approach.

During the last year, we recognized a stronger interest in this topic in the
academic sector and the industry as well. Parallel to the thesis on which this
paper is based on, there had been some investigations into the subject. One of
them is a study confirming that agile approaches are progressively adapted to
process centric projects[6]. Wauch and Meyer illustrate an approach to establish
an agile BPM organization within the company in their conference paper[14].
Another topic is the current rise of cloud services and their combination with
BPM and agile methods [8][7].

7 Conclusions

This paper introduced an agile BPM project methodology that has been based
upon an existing BPM methodology and an agile software development frame-
work. In contrast to existing BPM methodologies, the proposed agile method-
ology focuses on the customer needs first, by tightly integrating them into the
process implementation.

As a result, the first two steps of the traditional BPM lifecycle (e.g. modeling
and implementation) are merged together, resulting in “better” processes, since
the business departments iterate in close cycles together with the IT departments
to implement the processes that are really needed. Since the business gets a
better understanding of what they really want in each iteration, the fuzziness
of the to-be processes is cleared up in early stages. Due to the high frequency
of feedback cycles and the daily synchronization of the progress, we discovered
that the agile approaches establish a very transparent project environment.

While the first practical results are very encouraging, in our ongoing research
we will analyze more agile BPM projects and investigate the results to come

306 C. Thiemich and F. Puhlmann

up with recommendations on how to handle those difficulties. If needed, the
proposed framework will be adapted to a more fine-grained support of different
project causalities.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process man-
agement: A survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.
(eds.) BPM 2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

2. Anderson, D.J.: Kanban: Evolutionäres Change Management für IT-
Organisationen. dpunkt, Heidelberg and Neckar, 1st edn (2011)

3. Beck, K., Jeffries, R., Highsmith, J., Grenning, J., Martin, R.C., Schwaber, K.,
Cunningham, W., Sutherland, J., Mellor, S., Thomas, D.: Manifesto for agile soft-
ware development (2001), http://agilemanifesto.org/

4. Denning, S.: The Leader’s Guide to Radical Management. John Wiley and Sons,
San Francisco (2010)

5. Beck, K., et al.: Twelve Principles of Agile Software (2001),
http://agilemanifesto.org/principles.html

6. Komus, A.: Studie: Status Quo Agile: Verbreitung und Nutzen agiler Methoden
(2012)

7. Kruba, S., Baynes, S., Hyer, R.: Bpm, agile, and virtualization combine to create
effective solutions. CoRR abs/1208.3887 (2012)

8. Krumeich, J., Werth, D., Loos, P.: Knowledge management and business processes
learning on the job; a conceptual approach and its prototypical implementation. In:
Malzahn, D. (ed.) eKNOW 2013, The Fifth International Conference on Informa-
tion, Process, and Knowledge Management, Nizza, France, pp. 1–7. International
Academy, Research, and Industry Association (IARIA), ThinkMind (2013)

9. Nelis, J. (ed.): Business Process Management: Practical Guidelines to Successful
Implementations. Taylor & Francis (2008)

10. Pichler, R.: Agile product management with Scrum: Creating products that cus-
tomers love. Addison-Wesley, Upper Saddle River (2010)

11. Rummler, G.A., Brache, A.P.: Improving Performance: How To Manage the White
Space on the Organization Chart. The Jossey-Bass Management Series. ERIC
(1995)

12. Slama, D., Nelius, R., Breitkreuz, D.: Enterprise BPM: Erfolgsrezepte für un-
ternehmensweites Prozessmanagement, 1st edn. dpunkt-Verlag, Heidelberg (2011)

13. VersionOne: State of agile survey 2011: The state of agile development: 6th annual
(2011)

14. Wauch, F., Meyer, S.: Agilität als Wegbereiter für lebende Prozesse. In: Engstler,
M., Oestereich, B. (eds.) IT-Projektmanagement 2012+ im Spagat zwischen In-
dustrialisierung und Agilität?, pp. 49–62. dpunkt-Verlag, Heidelberg (2012)

15. Woodward, E., Surdek, S., Ganis, M.: A practical guide to distributed Scrum. IBM
Press, Upper Saddle River (2010)

http://agilemanifesto.org/
http://agilemanifesto.org/principles.html

Declarative Modeling–An Academic Dream

or the Future for BPM?

Hajo A. Reijers1,2, Tijs Slaats3,4, and Christian Stahl1

1 Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{H.A.Reijers,C.Stahl}@tue.nl
2 Perceptive Software, Piet Joubertstraat 4, 7315 AV Apeldoorn, The Netherlands

3 IT University of Copenhagen, Rued Langgaardsvej 7, 2300 Copenhagen, Denmark
TSlaats@itu.dk

4 Exformatics A/S, Lautrupsgade 13, 2100 Copenhagen, Denmark

Abstract. Declarative modeling has attracted much attention over the
last years, resulting in the development of several academic declarative
modeling techniques and tools. The absence of empirical evaluations on
their use and usefulness, however, raises the question whether practi-
tioners are attracted to using those techniques. In this paper, we present
a study on what practitioners think of declarative modeling. We show
that the practitioners we involved in this study are receptive to the idea
of a hybrid approach combining imperative and declarative techniques,
rather than making a full shift from the imperative to the declarative
paradigm. Moreover, we report on requirements, use cases, limitations,
and tool support of such a hybrid approach. Based on the gained insight,
we propose a research agenda for the development of this novel modeling
approach.

1 Introduction

Imperative modeling is currently the most prominent modeling paradigm in
BPM. Imperative modeling techniques are implemented in almost every model-
ing tool, and many imperative modeling languages have been developed, most
prominently, Event-Driven Process Chains (EPCs) and Business Process Mod-
eling Notation. Imperative models take an “inside-out” approach; that is, every
possible execution sequence must be modeled explicitly. As a consequence, im-
perative modeling may lead to over-specification and lack of flexibility, mak-
ing it difficult to defer decisions at runtime and to change existing process
models [21,2].

To overcome these shortcomings, declarative modeling approaches have been
proposed [3]. In contrast to imperative approaches, declarative models take an
“outside-in” approach. Instead of describing how the process has to work ex-
actly, only the essential characteristics are described. To this end, constraints
are specified that restrict the possible execution of activities.

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 307–322, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

308 H.A. Reijers, T. Slaats, and C. Stahl

Research on declarative modeling has gained increasing interest over the last
years. Declarative languages, such as Declare [3] (formerly known as DecSer-
Flow), DCR Graphs [12] and SCIFF [14], have been developed. These languages
have been integrated in academic and industrial modeling tools [24].

Beside the development of declarative techniques, also empirical research has
been conducted to study the relation between imperative and declarative ap-
proaches [8,9,22,20]. It is well understood how to specify properties of a busi-
ness process, but it is still not clear how to define a business process modeling
languages that is understandable [8] on the one hand, and enables maintainabil-
ity [9], expressiveness and modeling comfort, on the other hand.

To the best of our knowledge, there does not exist any studies that reflect
on the question whether declarative techniques can be used in practise from a
practitioner’s standpoint. This raises a question, which has not been answered
yet: Do practitioners see opportunities to use declarative techniques?

The contribution of this paper is to present what practitioners think of declar-
ative modeling. In that way, we close the gap between research on declarative
techniques and empirical investigations on declarative modeling. Our results are
based on a workshop on declarative modeling with ten professionals from in-
dustry, including both consultants involved in modeling projects and developers
of industrial modeling tools. During the workshop, we introduced declarative
modeling techniques, performed two modeling assignments, and discussed the
prospects of a declarative approach. The evaluation, both qualitative and quan-
titative, shows that practitioners see good opportunities for a hybrid approach
combining imperative and declarative techniques while they are skeptical regard-
ing a purely declarative approach. With the gained insight from the discus-
sion, we present requirements on such a hybrid approach, use cases, limitations,
and requirements concerning tool support. Shifting the focus from imperative
and declarative modeling to a hybrid approach raises many research questions.
Therefore, we propose a research agenda for the BPM community to make the
hybrid approach work.

We continue with a brief introduction to Declare and DCR Graphs, two declar-
ative approaches we used throughout the workshop. In Sect. 3, we describe the
outline of the workshop and our evaluation method. The quantitative evalua-
tion is described in Sect. 4, and Sect. 5 reports on the qualitative evaluation.
In Sect. 6, we present our research agenda. We close with a conclusion and
directions for future work.

2 Declare and DCR Graphs by Example

In this section, we briefly introduce two declarative modeling approaches, De-
clare [3,24] and DCR Graphs [12], using the following example of a document
management system. To simplify the presentation, we restrict ourselves to the
control flow dimension and do not consider data or resources.

Example 1. Every case of the document management system is initially created
and eventually closed. For a created case, an arbitrary number of documents can

Declarative Modeling–An Academic Dream or the Future for BPM? 309

Fig. 1. Declare model of the document management system

be uploaded. An uploaded document can be downloaded or searched. At any time,
a case can be locked. After locking a case, it is not possible to upload a document;
still, uploaded documents can be downloaded and searched. Furthermore, in
every case, meetings can be held. To hold a meeting, it has to be (re-)scheduled.
Meetings can be rescheduled arbitrarily often, but it is not possible to schedule
more than one meeting in advance.

2.1 Declare

A Declare model consists of activities and constraints. An activity is depicted
as a rectangle and a constraint as a hyper-arc (i.e., a constraint connects one
or more activities). From the specification, we identify eight activities which are
highlighted in the description. Figure 1 shows the Declare model of the example.
The init symbol on top of activity Create Case specifies that every case of the
document management system starts with activity Create Case. Likewise, the
last symbol on top of activity Close Case specifies that the final activity of every
case of the document management system is Close Case.

There are three types of arcs in Fig. 1. Each arc type specifies one type of
constraint. The precedence constraint, modeled as an arc from Upload Document
to Download Document specifies that a document has to be uploaded before
it can be downloaded. Likewise, we can only search a document once it has
been uploaded (arc from Upload Document to Search Document). The second
type of constraint is the not-succession constraint, which is modeled by an arc
from Lock Case to Upload Document. It specifies that after a case has been
locked, we cannot upload new documents. The third type of constraint, alternate
precedence, is the arc from Schedule Meeting to Hold Meeting. It means that a
meeting can only be held after it has been (re-)scheduled at least once. Moreover,

310 H.A. Reijers, T. Slaats, and C. Stahl

Fig. 2. DCR Graph model of the document management system

after a meeting has been held, the next meeting has to be (re-)scheduled before
it can be held (i.e., activity Hold Meeting has to be followed by Schedule Meeting
before Hold Meeting can be executed again).

As mentioned in the introduction, a declarative model only describes the
essential characteristics of a process rather than how the process has to work
exactly. For example, holding and (re-)scheduling meetings is independent from
handling documents. Therefore the respective activities are not connected by
arcs; that is, no constraint restricts their interplay. To execute the model in Fig. 1,
one has to determine which activities are enabled by evaluating all constraints.
Initially, it is the start activity, Create Case. After this activity is executed,
any of the activities Schedule Meeting, Upload Document, Lock Case and Close
Case can occur. A Declare model can be enacted and executed. The tool then
computes the enabled transitions for every state [24].

2.2 DCR Graphs

A DCR Graph model consists of activities, relations, and a runtime marking.
Activities are depicted as rectangles with an “ear” that can contain the roles
which can execute the activity. Activities can be nested under super-activities,
depicted by drawing an activity inside the rectangle of another activity, in which
case any relation that applies to the super-activity, applies to all its sub-activities.
Only the atomic activities (that do not contain any sub-activities of their own)
are executable. The relations are drawn as arrows between activities.

Figure 2 shows the DCR model of the example. The first activity is Create
Case, which should occur before all other activities can occur. We model this
behaviour by the yellow condition relation from Create Case to the super-activity
Manage Case, containing all other activities. The condition relation states that
the second activity (in this case any sub-activity of Manage Case) can not occur

Declarative Modeling–An Academic Dream or the Future for BPM? 311

before the first activity (in this case Create Case). We also require that Create
Case happens only once, which we model through the dynamic exclusion relation
drawn as a red arrow with a percentage sign at the end. Through this relation
Create Case excludes itself from the workflow when it is executed, meaning that
it can not be executed anymore afterward. The next two activities are Schedule
Meeting and Hold Meeting. We should always schedule a meeting before we can
hold a meeting, but it might be the case that a meeting is rescheduled before it
is held. We model this in the following way: Hold Meeting is initially excluded,
meaning that at the start of the workflow it can not be executed before it is
included. Hold Meeting is included by doing Schedule Meeting, modelled by the
dynamic inclusion relation, drawn as a green arrow with a plus sign in the end.
Hold Meeting excludes itself meaning that it can not be executed again before
there has been a new occurrence of Schedule Meeting. The next three activities
are Upload Document, Download Document, and Search Documents. We can not
download or search documents before at least one document has been uploaded,
therefore those activities are initially excluded and will be included by Upload
Document. The case can also be locked through the activity Lock Case, which
makes it impossible to upload further documents, therefore Lock Case excludes
Upload Document. Finally we can close the case by executing the activity Close
Case. We model this by having Close Case exclude the super-activity Manage
Case. Because all activities are nested under Manage Case, Close Case will
exclude all activities from the workflow.

The final two relations of DCR Graphs are not used in the example. First there
is the response relation which states that one activity requires another activity
to happen in the future, when this occurs we say that the second activity is a
pending response and annotate it with an exclamation mark. A workflow is in
an accepting state while there are no included pending responses, in case there
are included pending responses these should be executed before the workflow
can be closed. The second relation that is not shown is the milestone relation, it
captures this accepting condition on the level of activities by stating that while
some activity is a pending response, some other activity can not be executed.

We represent the runtime of a DCR Graph by showing which activities have
been executed at least once before by drawing them with a green check-mark,
showing which activities are pending responses by drawing them with a red
exclamation mark and showing which activities are currently excluded by draw-
ing them with a dashed line instead of a solid line. We call these three sets of
activities the marking of the DCR Graph. Based on the marking we can deter-
mine which activities are enabled: Activities which are excluded (drawn with
a dashed line) are not enabled and activities that are blocked by a condition
and/or milestone relation are also not enabled. In the latter case, we show this
by drawing a red stop-mark on the activity. In Fig. 2, one can see that the only
initially enabled activity is Create Case. All other activities are either excluded
(drawn with dashed lines) or blocked through the condition relation (drawn with
a red stop-mark). We distinguish between being excluded and blocked by a con-
dition/milestone relation because we consider these two as essentially different

312 H.A. Reijers, T. Slaats, and C. Stahl

states of the activity: When it is blocked it is still a part of the workflow, but
being stopped from executing. When it is excluded it is not considered as a part
of the workflow at that time. This is also why only included pending responses
will block the workflow from being closed.

2.3 Comparison

Figures 1 and 2 clearly illustrate the idea behind declarative modeling. The main
difference between DCR Graphs and Declare is that the DCR Graph approach
allows to define any constraint using the five basic relations, while one has to
define many more constraint for Declare (some of them are logical combinations
of simpler constraints). Also, Declare represents the runtime of a workflow by
showing the state of the individual constraints—that is, which constraints are
(possibly) satisfied, and which constraints are (possibly) violated. DCR Graphs,
by contrast, represents the runtime of a workflow by showing which tasks have
been executed at least once before, which tasks are pending as a response and
should be done some time in the future, and which tasks are currently included in
the workflow. While on infinite traces DCR Graphs are strictly more expressive
than Declare, this has no impact on practical business process modeling: The
processes under consideration typically produce finite traces.

3 Method

For our evaluation, we worked together with Perceptive Software, a provider of
enterprise content management and BPM technologies. We invited both consul-
tants, who engage with clients to model their processes and implement BPM
suites using such models, and professionals who contribute to the development
of the toolsets. We planned a single workshop that went through the four phases,
as depicted in Fig. 3.

In the first phase (Introduction), we provided the participants with the mo-
tivation for organizing the workshop and gave them a generic introduction to
declarative principles. After this phase, we split the groups into two sub-groups
of equal size. We first randomly assigned half of the consultants to group 1 and
the other half to group 2. We did the same for the developers after that. In
this way, we ensured an even distribution of consultants and developers over the
groups.

The second phase was specific for each group and consisted of a tutorial on
the techniques under consideration (Explanation). In other words, one group
received the tutorial on DCR Graphs and the other on Declare. The tutorials
were provided by separate moderators for each group. Each moderator had deep
expertise in the technique that he explained. The tutorials were synchronized
beforehand between the moderators to guarantee a similar level of depth and
the same duration.

Following up on the tutorials, each group received two assignments. These
assignments were the same for both groups and required the participants to

Declarative Modeling–An Academic Dream or the Future for BPM? 313

Explanation ModelingIntroduction

DCR Graphs

Declare

Assignment 1
Assignment 2

Participant 1

Participant n

Assignment 1
Assignment 2

Participant n/2

Participant n/2+1

Discussion

Participant 1

Participant n

Participant n/2

Participant n/2+1

Workshop

Fig. 3. Organization of the workshop

translate the assignment material into process models (Modeling). Clearly,
the sub-group who received the tutorial on DCR Graphs used this technique;
the other sub-group used Declare. The assignments can be found back at
http://www.win.tue.nl/ais/doku.php?id=research:declare:bpm2013. As
we were not so much interested in checking the correctness of the solutions but
in transferring knowledge on the techniques to the participants, we encouraged
them to work in pairs within each sub-group.

The final phase re-united the sub-groups (Discussion). During this phase, we
first had the participants fill out a questionnaire on usefulness, ease of use, and
intent to use as proposed by Moody [17]. The questionnaire can be used to get a
broad-brush insight into the perceived quality of an IS design method, building
on the concepts known from the Technology Acceptance Model as proposed by
Davis [6]. We extended the questions with some more to gather demographic data
on the group. The used questions can also be found at http://www.win.tue.nl/
ais/doku.php?id=research:declare:bpm2013. After the questionnaire, we en-
gaged in a semi-structured discussion with the group. This discussion was moder-
ated by one of the authors, while the other authors took notes. The independently
taken notes were used to reach consensus on how the participants reflected on
the questions.

The insights that we gathered during the last phase of the evaluation with
the questionnaire will be referred to as the quantitative evaluation, because the
design of Davis’ list allows for measuring the strength of the perceptions on ease
of use, usefulness, and intent to use. Our insights on the modeling phase and the
open part of the discussion phase will be dealt with as the qualitative evaluation,
as they add a qualifying lens on the results. These respective evaluations will be
discussed next.

http://www.win.tue.nl/ais/doku.php?id=research:declare:bpm2013
http://www.win.tue.nl/ais/doku.php?id=research:declare:bpm2013
http://www.win.tue.nl/ais/doku.php?id=research:declare:bpm2013

314 H.A. Reijers, T. Slaats, and C. Stahl

4 Quantitative Evaluation

4.1 Demographics

Overall, ten professionals participated in the workshop. Of these, five are ac-
tive as consultants, modeling processes at client sites and implementing process
management software, while the other five are involved in different roles associ-
ated to the development of process modeling and workflow tools (product man-
ager/architect/developer). For the entire group, the average number of years of
experience in the BPM domain was more than 11 years. Of the ten participants,
on a scale of 1 to 5, three considered themselves to have an intermediate exper-
tise in process modeling (level=3), three to have an advanced level of expertise
(level=4), and the remaining four people considered themselves to be experts
(level=5). Finally, the participants indicated that on average they had each read
close to 15 different process models in the preceding 12 months, while each had
created or updated nearly four models on average in the same period. We are
aware that the number of professionals is rather low. However, within a given
time frame, we were choosing the day for which most professionals indicated
their availability.

4.2 Validity and Reliability

Prior to performing an in-depth analysis of the data that had been gathered
through the questionnaire, the validity and reliability of the empirical indicators
were checked. We determined all correlations between the responses for ques-
tions that were used to measure to same construct (inter-item correlations) and
identified no item that displayed a low convergent validity. In other words, the
questions and their grouping to measure the constructs appeared valid. Next, we
used Cronbach’s alpha to test the reliability of the items to measure the various
constructs. This is a test to check internal consistency of the questions. While
there is no authoritative level for Cronbach’s alpha, it is generally assumed that
levels above 0.7 point at a good reliability of the items [18]. Adequate levels
were established for Perceived Usefulness (0.743) and Perceived Ease of Use
(0.826). However, Intention to Use scored too low (0.600). For this reason, we
removed the latter construct from our main analysis and will only report on the
mean scores of the items. Note that it was the only construct measured using
just two items—an approach to be reconsidered in future applications of the
questionnaire.

4.3 Results

Our main analysis then focused on this question: Are the considered techniques,
DCR Graphs vs. Declare, perceived differently by the groups? To select the
appropriate technique, we established with the Shapiro-Wilk test that the re-
spondent answers were normally distributed. We could, therefore, proceed with
applying a one-way ANOVA test with Perceived Usefulness and Perceived Ease

Declarative Modeling–An Academic Dream or the Future for BPM? 315

Perceived
Usefulness

Mean = .29
Std. Dev. = .453
N = 10

Perceived
Ease of Use

Mean = .62
Std. Dev. = .629
N = 10

(Very negative) (Very negative) (Very positive) (Very positive)

Fig. 4. Histograms for Perceived Usefulness and Perceived Ease of Use

of Use as dependent variables and the technique employed as factor. The test
generated p-values of 0.116 and 0.939 for Perceived Usefulness and Perceived
Ease of Use, respectively. By maintaining a confidence level of 95%, both of
these values exceed the 0.05 threshold. In other words, any differences in per-
ception between the used techniques are not statistically significant. Therefore,
we must reject the idea that people perceive the techniques as different in either
their usefulness or their ease of use.

This first important insight allows us to aggregate the responses received from
both groups to determine a view on the usefulness and ease of use of declarative
techniques on a more general level. Figure 4 shows the histograms for the two
constructs under consideration, Perceived Usefulness and Perceived Ease of Use,
aggregating the responses from all ten respondents. Also displayed is the fitted
normal distribution for both constructs.

The histograms display the frequencies of the scores on a scale of -2.0 (very
negative) to +2.0 (very positive). The 0 value indicates the neutral stance (not
negative, not positive). What can be seen is that the averages of the distri-
butions for both constructs are positive, hinting at a receptive mood toward
declarative techniques in terms of both constructs. Note that the mean values
for the two items under consideration for Intention to Use are 0.00 and 1.00. Sec-
ond, Perceived Ease of Use seems to be more positively evaluated than Perceived
Usefulness, with respective mean values of 0.62 and 0.29.

To determine whether the optically favorable outcomes are indeed statistically
significant, we applied one sample t-tests. Like in our previous test, we used a
confidence level of 95%, which means that we will only treat p-values below 0.05
as statistically significant. The outcomes of the t-tests are that the positive mean
score for Perceived Ease of Use is significantly different from zero (p=0.013),
but that this is—just—not the case for Perceived Usefulness (p=0.076). In other
words, one can trust that the positive stance toward the ease of use is not a

316 H.A. Reijers, T. Slaats, and C. Stahl

matter of chance. However, this cannot be ruled out for usefulness, despite its
closeness to the cut-off value. Apparently, the involved respondents can easily
use the method, despite the limited amount of training received. They were
not similarly outspoken about the usefulness of a declarative technique, albeit
certainly not negative either.

We finally checked whether the years of experience, the level of expertise, the
type of role (consultant vs. non-consultant), or the modeling intensity in terms
of models read or created had any relation to the outcomes. Interestingly, we
could see that the most negative responses on Perceived Usefulness came from
those respondents who assessed their own level of process modeling expertise
as relatively low. While on average the three respondents with an intermedi-
ate expertise assessed the usefulness of the declarative techniques as negative
(-0.208), the advanced modelers and the experts were positive (0.417 and 0.563,
respectively). Tukey’s HSD (Honestly Significant Difference) confirmed that the
self-assessed level of expertise was a significant factor to explain differences in
scores on Perceived Usefulness (p=0.042). In other words, the higher the level of
expertise, the more merit a participant saw in the declarative techniques. The
other factors had no noticeable effects on the scores.

5 Qualitative Evaluation

In this section, we present the qualitative evaluation of the workshop. In partic-
ular, we report on the results of the modeling assignment and of the discussion
with the professionals.

5.1 Modeling Assignment

As reported in Sect. 3, we split the ten professionals into two groups of five. One
group got an introduction to Declare and the other group to DCR Graphs. After
this introduction of about 30 minutes, each group was asked to work on two small
modeling assignments. One assignment was the document management system,
which we used to illustrate Declare and DCR Graphs in Sect. 2. The second
assignment was a hospital process of similar size and level of difficulty. The
professionals worked in groups of two and three on the two assignments. Each
assignment took less than 15 minutes, after which we presented and discussed
our solution. All four groups came up with a correct solution for each of the two
assignments.

The way we organized the assignment does not allow us to derive overly strong
conclusions. Still, we gained two interesting insights. First, the result of the as-
signment shows that it is possible to teach declarative modeling to practitioners.
Although it was difficult for the professionals to get used to the declarative way of
modeling and to the graphical notations of the techniques, they came up with cor-
rect models in reasonable time. Second, we were told that the graphical notation
of Declare and DCR Graphs are too academic and for practitioners neither con-
vincing nor intuitive. Moreover, also the informal description, which we provided

Declarative Modeling–An Academic Dream or the Future for BPM? 317

for each introduced constraint, did not help them to easily identify the constraint
they needed. These comments hold for both techniques, DCRGraphs andDeclare.
This comes, indeed, not as a surprise as both formalisms have an academic back-
ground. However, we expected DCRGraphs to be more comprehensible and easier
to use than Declare because DCR Graphs only consist of five relations, whereas
Declare requires to learn a larger set of constraints.

5.2 Opportunities for a Declarative Approach

In the subsequent discussion with the professionals, we tried to figure out whether
they see opportunities for a declarative modeling approach. Clearly, such a ques-
tion is difficult to answer given the the short tutorials and only taking two assign-
ments. The participants did indicate that there are probably processes that can
be modeled most naturally using the imperative approach, while others would
fit better with the declarative approach. For example, a clearly well-structured
process of registering a newborn at a townhall can be modeled most naturally
in an imperative way whereas the document management system of Sect. 2 is
an example of a process that can be modeled most natural in a declarative way.
In addition, in almost all processes the professionals came across, there were
always at least parts or subprocesses where an imperative approach seems most
natural. So, the conclusion to this question is that a purely declarative approach
seems less attractive than a hybrid approach, which combines imperative and
declarative modeling aspects.

5.3 Requirements Concerning a Declarative/Hybrid Approach

In the previous section, we showed that practitioners see opportunities for a
hybrid approach. Next, we report on the practitioners’ requirements concerning
the specification, the constraints, the process, and tool support.

The consensus was that the efficient design of a declarative model (or of the
declarative part of a hybrid model) will require a declarative specification. The
reason is that it can be nontrivial to derive constraints from an imperative spec-
ification. We received one comment that it might be difficult to get a declarative
specification at all, but we are not that pessimistic. Based on our experience,
it depends on how one formulates questions to domain experts; that is, ask-
ing about the relationship between two activities (i.e., declarative) rather than
which steps can be performed in a certain state (i.e., imperative) will allow one
to come up with a declarative specification.

Other requirements concern the constraints. The involved professionals
brought forward that too many constraints may negatively influence the quality
of a declarative model. For example, many constraints affecting few activities
may result in an unreadable model. Furthermore, they assumed the complete-
ness of the constraints to be crucial, although that is similar to the completeness
of the branching conditions in an imperative model.

Looking at the process model or the specification to identify “candidate”
parts that may benefit from a declarative modeling approach, the professionals

318 H.A. Reijers, T. Slaats, and C. Stahl

suggested to identify parts that have many dependencies (e.g., spaghetti-like
parts). Although such parts seem good candidates, it is unclear whether a declar-
ative way of modeling results in a better model. Another suggestion was to iden-
tify those parts where much modeling freedom is; for example, a set of concurrent
activities (that preferably occur more than once) with only few dependencies may
result in a simpler declarative model than their imperative counterpart.

Finally, also proper tool support is a hard requirement. Here, in particular,
the professionals saw deficits in the usability of the academic techniques when
used in a pen-and-paper fashion. We shall discuss tool support in Sect. 5.6 in
more detail.

5.4 Use Cases for a Declarative/Hybrid Approach

In this section, we list use cases for the declarative approach as identified during
the discussion.

Process evolution [21] was mentioned as the main use case by the involved
professionals—that is, manage processes along the various changes it encoun-
ters. Having a set of constraints rather than a graph-based model seems to be
beneficial to visualize changes over time, on the one hand and to actually change
a process model, on the other hand. This is, in fact, one of the claimed advantages
of declarative modeling [3,15]. The “outside-in” approach of declarative models
allows for a higher level of abstraction than an imperative process model. There-
fore, it is often simpler to add or remove constraints than changing a BPMN
model, for instance.

The discussion also suggested that the use case for declarative models is tied
to model purpose. Process models serve different purposes—for example, as a
medium to communicate with stakeholders (i.e., communication model) or to
execute a process (i.e., executable model). Especially with respect to the com-
munication aspect, the professionals saw good opportunities for using declarative
techniques. Communication models are rather imprecise (e.g., exceptions may
be left out), and business analysts do not tend to stick to model conventions.
Instead, they may prefer to use short hands to illustrate behavior in a simpli-
fied way, for instance. Here, a hybrid approach looks promising as the business
analyst is provided with a lot of different ways to present the model. Again,
this follows from the higher level of abstraction of declarative models. In con-
trast, there was no common agreement on a declarative approach being useful
for specifying executable models. As an executable model contains all behavior,
a hybrid approach will only be beneficial if it allows for designing more readable
or simpler models.

Another interesting aspect mentioned was that a hybrid approach may result
in fewer errors in the model than using a purely imperative approach. This may
lead to shorter development cycles. We think that this is also a consequence
of the higher level of abstraction in declarative modeling. A modeler has to
identify the constraints rather than encode it in terms of control flow. However,
no experience report or empirical results exist that confirm this assumption.

Declarative Modeling–An Academic Dream or the Future for BPM? 319

5.5 Limitations of a Declarative/Hybrid Approach

In this section, we report on limitations of a declarative/hybrid approach con-
cerning the specification, the modeling paradigm, and the usability.

The main concern regarding the specification is that currently all specifica-
tions are imperative (e.g., “we first do this, then that”), and it seems to be very
difficult to produce a declarative model for such a specification. As discussed in
Sect. 5.3, we think that it is possible to receive declarative specifications.

There has been a paradigm shift in system development from monolithic sys-
tems to component-based systems that are distributed within and across organi-
zational boundaries. One prominent computing paradigm that implements this
trend is service-oriented computing (SOC) [19]. We received concerns that in
this setting declarative modeling techniques may be less applicable compared
to imperative techniques. The reason for this concern lies in the fact that cer-
tain constraints affect activities of an individual component, whereas other con-
straints affect activities of different components. Declarative techniques have,
however, been successfully applied in the service-oriented setting [14,15], and
it has been studied how a declarative cross-organizational workflow containing
global constraints can be projected to its individual localized components [11],
so we are convinced that this concern is unsubstantiated.

Another limitation concerns the usability of existing techniques and tools.
Current tool support is mainly academic by nature and seems, therefore, not
overly concerned with usability issues. Moreover, the declarative paradigm also
requires a different way of thinking, making it perhaps difficult for practition-
ers to understand declarative models. Here, more research is required to make
declarative techniques more comprehensible.

5.6 Requirements Concerning Tool Support

In this section, we report on feedback we received concerning Declare and DCR
Graphs and general requirements concerning tool support.

Several requirements on tools that were discussed deal with the specification
and visualization of constraints. As mentioned earlier in Sect. 5.1, the profes-
sionals mentioned that working with constraints was relatively difficult for them.
The graphical notations used in Declare and DCR Graphs were not always that
intuitive. Moreover, specifying constraints in plain English is not always help-
ful either, because it is often nontrivial to identify the differences between two
constraints. Therefore, the professionals proposed that constraints should be au-
tomatically derived from an informal textual specification. This problem has
indeed been investigated in the field of computer-aided verification, for instance.
Different approaches have been proposed, for example [7,5], but none of them
could solve the problem entirely.

A given set of constraints makes it necessary to check for conflicting con-
straints. This is a feature which has been implemented in most declarative mod-
eling tools [24], but has also been investigated in the context of compliance
rules [4], for instance. Another important feature is to generate a model from a

320 H.A. Reijers, T. Slaats, and C. Stahl

given set of constraints and to identify missing features. This problems is related
to scenario-based programming [10]. In case an implementation and recorded
event logs exist, process mining techniques to automatically derive missing con-
straints from the logs are required. First attempts at dealing with this topic
exist, see [13].

Besides modeling support, tools should preferably also provide operational
support. For example, event logs may be exploited to provide at runtime the
best possible next step. Such features are implemented in recommender systems.

Finally, usability plays an important role. Specification of constraints, their
graphical representation and the complete interplay between the tool and an end
user must be on an abstraction level that is adequate to the task at hand.

6 Research Agenda

In this section, we pick up the results from the discussion with the professionals
as presented in the previous section. We propose a research agenda for the devel-
opment of a hybrid modeling approach that combines imperative and declarative
techniques. The aim is thereby to point out necessary steps for developing and
actually using a hybrid technique rather than a complete research agenda.

Model guidelines. In order to apply the hybrid approach, a modeler has to know
when to model in an imperative and when in a declarative way. In other words,
we need to identify modeling guidelines to guide modelers through the modeling
process. This requires rules for identifying imperative and declarative “candi-
date” parts on the level of an existing (imperative) process model (e.g., for
process redesign), on the level of event logs (e.g., for process discovery), and on
the level of (informal) specifications (e.g., for designing a new model).

Identify the hybrid technique. Modeling in a hybrid way requires a well-suited
modeling language. It needs to be investigated whether we can combine existing
imperative and declarative languages or whether a new language has to be de-
signed. For instance, we can integrate a declarative part as a subprocess into an
imperative model (e.g., as a hierarchical transition in a Petri net or subprocess
task in BPMN) or we can allow declarative and imperative constructs to coexist
within a single subprocess. The modeling language must in any case support
hierarchy. In the latest version of CPN Tools [23], Westergaard integrated DCR
Graphs and Declare into Colored Petri nets. It turned out that defining the
semantics of such models is nontrivial.

Beside that, it needs to be settled which constraints are relevant for practise
and, thus, what the expressiveness of the declarative part of the language is.
Empirical research has shown [8,9] that certain declarative constructs may be
more difficult to understand. Thus, we think the language should not contain
too many declarative constructs, but this needs further empirical investigation.

Also, the graphical representation of hybrid models must be investigated. Dif-
ferent graphical notations exist, for example, compare DCR Graphs and Declare.
Insights from [16] may aid the design of a hybrid notation.

Declarative Modeling–An Academic Dream or the Future for BPM? 321

Analysis of hybrid models. The novelmodeling approachneeds analysis techniques
including the verification of models, performance analysis, and property-
preserving abstraction and refinement techniques. Also, processmining techniques
[1] are needed—for example, checking the conformance of an event log and a hy-
brid model and discovering a hybrid model from a given event log.

Tool support. To show the applicability of the hybrid modeling technique, tool
support is a sine qua no. As reported in Sect. 5.6, research has to be performed
to simplify the use of declarative techniques, for example, finding a way to derive
constraints from informal specifications that can be used by business analysts
without requiring knowledge about temporal logics.

7 Conclusion

We reported on a workshop on declarative modeling given to professionals from
industry. The goal of this workshop was to gain insight into what practitioners
think about declarative modeling and what opportunities they see to use this
technique. Our quantitative evaluation showed that they were mostly positive
and open to this modeling paradigm. In particular, the techniques were rather
easy to learn. The qualitative evaluation showed that the practitioners did single
out the use of declarative techniques in the context of a hybrid approach, which
combines imperative and declarative modeling. Although our study is only based
on a small group of practitioners, we are convinced that practise can benefit from
such a hybrid modeling approach. To arrive at such an approach, we proposed
a research agenda for the development of a hybrid approach.

In our ongoing research, we plan to work on the development of modeling
guidelines. We will investigate techniques to identify “candidate” parts of a
model for which a declarative way of modeling seems most natural. Also, we
plan to study event logs and process models and try to use the results to iden-
tify constraints that frequently occur. In a second branch of research, we will
investigate what a hybrid technique may look like, thereby using Declare, DCR
Graphs and CPN Tools as starting points for our studies.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer (2011)

2. van der Aalst, W.M.P.: Business process management: A comprehensive survey.
ISRN Software Engineering (2013)

3. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Bal-
ancing between flexibility and support. Computer Science - R&D 23(2), 99–113
(2009)

4. Awad, A., Weidlich, M., Weske, M.: Consistency checking of compliance rules.
In: Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010. LNBIP, vol. 47, pp. 106–118.
Springer, Heidelberg (2010)

5. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User guidance for creating precise and
accessible property specifications. In: SIGSOFT FSE, pp. 208–218. ACM (2006)

322 H.A. Reijers, T. Slaats, and C. Stahl

6. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Q. 13(3), 319–340 (1989)

7. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE 1999, pp. 411–420. ACM (1999)

8. Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zugal,
S.: Declarative versus imperative process modeling languages: The issue of un-
derstandability. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R.,
Soffer, P., Ukor, R. (eds.) BPMDS 2009. LNBIP, vol. 29, pp. 353–366. Springer,
Heidelberg (2009)

9. Fahland, D., Mendling, J., Reijers, H.A., Weber, B., Weidlich, M., Zugal, S.: Declar-
ative versus imperative process modeling languages: The issue of maintainability.
In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43,
pp. 477–488. Springer, Heidelberg (2010)

10. Harel, D.: Come, let’s play - scenario-based programming using LSCs and the
play-engine. Springer (2003)

11. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Safe distribution of declarative pro-
cesses. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041,
pp. 237–252. Springer, Heidelberg (2011)

12. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES 2010. EPTCS, vol. 69,
pp. 59–73 (2010)

13. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285.
Springer, Heidelberg (2012)

14. Karpinski, M.: Specification and Verification of Declarative Open Interaction Mod-
els - A Logic-Based Approach. LNBIP, vol. 56. Springer (1977)

15. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographiess. TWEB 4(1)
(2010)

16. Moody, D.: The physicsof notations: toward a scientific basis for constructing vi-
sual notations in software engineering. IEEE Transactions on Software Engineer-
ing 35(6), 756–779 (2009)

17. Moody, D.L.: The method evaluation model: a theoretical model for validating
information systems design methods. In: ECIS 2003, pp. 1327–1336 (2003)

18. Nunnally, J.C.: Psychometric theory. McGraw-Hill, New York (1978)
19. Papazoglou, M.: Web Services - Principles and Technology. Prentice Hall (2008)
20. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Impera-

tive versus declarative process modeling languages: An empirical investigation. In:
Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP,
vol. 99, pp. 383–394. Springer, Heidelberg (2012)

21. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems. Springer (2012)

22. Weber, B., Reijers, H.A., Zugal, S., Wild, W.: The declarative approach to business
process execution: An empirical test. In: van Eck, P., Gordijn, J., Wieringa, R.
(eds.) CAiSE 2009. LNCS, vol. 5565, pp. 470–485. Springer, Heidelberg (2009)

23. Westergaard, M.: CPN Tools 4: Multi-formalism and Extensibility. In: Colom, J.-
M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 400–409. Springer,
Heidelberg (2013)

24. Westergaard, M., Maggi, F.M.: Declare: A tool suite for declarative workflow
modeling and enactment. In: BPM (Demos) 2011. CEUR Workshop Proceedings,
vol. 820, CEUR-WS.org (2011)

Investigating Clinical Care Pathways Correlated

with Outcomes

Geetika T. Lakshmanan, Szabolcs Rozsnyai, and Fei Wang

IBM T.J. Watson Research Center, Hawthorne, NY, USA
{gtlakshm,srozsny,fwang}@us.ibm.com

Abstract. Clinical care pathway analysis is the process of discovering
how clinical activities impact patients in their care journeys, and uses the
discovered knowledge for various applications including the redesign and
optimization of clinical pathways. We present an approach for mining
clinical care pathways correlated with patient outcomes that involves a
combination of clustering, process mining and frequent pattern mining.
Our approach is implemented as a set of interactive tools in the business
process insight (BPI) platform, a a collaborative software as a service
platform, that provides an event-driven process-aware analytics toolset.
After interactively utilizing the individual clustering, process mining, and
frequent pattern mining capabilities in BPI, users can overlay frequent
patterns, ranked according to their correlation with a particular patient
outcome, on a mined model of the patient population with that outcome.
We have tested our approach for mining care pathways correlated with
outcomes on electronic medical record data obtained from a US based
healthcare provider on congestive heart failure (CHF) patients. Experi-
mental results show that the tools we have developed and implemented
can provide new insights to facilitate the improvement of existing clinical
care pathways.

Keywords: Care pathway, clustering, frequent pattern mining, process
mining.

1 Introduction

A clinical pathway, guided by clinical practice guidelines, is a standardized
therapy pattern and procedure for a specific disease that follows contempo-
rary clinical experts’ experiences [14,16]. Researchers in medical informatics
and process-aware analytics have paid significant attention to the analysis of
clinical care pathways [36,15,8]. Clinical pathway analysis is the process of dis-
covering how clinical activities impact patients in their care journeys, and uses
the discovered knowledge for various applications including clinical pathway re-
design, clinical pathway optimization, clinical decision support, and medical de-
viation detection [14]. In this paper we address the problem of mining clinical
care pathways correlated with patient outcomes from healthcare data. Among
other things, this could allow a healthcare professional to determine whether the

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 323–338, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

324 G.T. Lakshmanan, S. Rozsnyai, and F. Wang

pathway is compliant with care pathway guidelines for a particular disease, and
identify which additional or lack of activities beyond the care pathway guidelines
contributed to positive or negative patient outcomes.

Healthcare processes are dynamic, complex and ad-hoc [32]. Process changes
occur due to a variety of reasons including new administrative procedures, tech-
nological developments, or drug discovery. The complexity arises from many fac-
tors such as complex medical decision processes, large amounts of data, and the
unpredictability of patients and treatments. Healthcare depends significantly on
human collaboration, and participants have the expertise and autonomy to de-
cide their own procedures [25,21]. As demonstrated in recent work [25,32,26,20],
process mining and clustering are useful tools to address these challenges in
healthcare data, and can be used to mine clinical care pathways.

In this paper, we provide users with an interactive set of tools to extract and
visualize clinical care pathway related insight from healthcare data. The tools
include trace clustering, process mining, frequent pattern mining, and the abil-
ity to overlay frequent patterns on the mined model. Many existing studies on
healthcare data [32,25,36,14] use data that is available from healthcare infor-
mation systems, and therefore the data contains activity events such as scan
abdomen, CT scan brain, follow-up visit etc. The data used in our study, how-
ever, is electronic medical record (EMR) data. Such EMR data consists of events
including diagnoses, medication orders, laboratory reports and vital statistics for
a given patient.

Extracting and visualizing care pathways correlated with outcomes is chal-
lenging particularly on EMR data. Such data typically contains a large propor-
tion of events occurring on the same day. In addition there is incredible diversity
in the range of event names. In this paper we describe some data pre-processing
strategies and an algorithm to collapse same day events to address these issues.
Due to their dynamic, complex, and ad-hoc nature, healthcare process instances
are disparate and there may be a plethora of treatment pathways correlated with
positive or negative patient outcomes. We describe an algorithm to mine clinical
care pathways using frequent pattern mining, and rank the frequent patterns
according to the degree of their correlation with a patient outcome. An individ-
ual care pathway mined from real patient event data in the form of a frequent
pattern may contain a small subset of the overall possible set of events that could
be applied to treat a particular disease. Healthcare professionals need some con-
text with which to interpret a frequent pattern care pathway. We describe an
interactive tool to overlay each individual frequent pattern, representing a single
care pathway, on a mined process model of all care pathways of a segment of
the patient population. The patient population is segmented by outcome where
the outcome criteria is established on our dataset with the help of an expert
physician. The overlay capability provides healthcare professionals with some
context with which to interpret a frequent pattern care pathway with respect
to the overall set of treatment events for a disease. We also describe a trace
clustering algorithm to eliminate outliers in the patient data.

Investigating Clinical Care Pathways 325

We have implemented the tools introduced in this paper in an existing collab-
orative platform called business process insight (BPI) [33] that provides process-
aware analytics tools in a software as a service (SaaS) environment. Process
mining is an existing capability BPI. Clustering, frequent pattern mining, and
the ability to overlay frequent patterns on a mined process model have been
developed and implemented as additional features of BPI during the course of
this work. We report on the use of these tools to investigate clinical care path-
ways correlated with outcomes on real EMR data collected from 4096 patients
diagnosed with congestive heart failure (CHF) belonging to a US-based health-
care provider. The utility of the tools was validated with the help of an expert
physician with 20+ years of experience in treating CHF patients.

2 Related Work

There is considerable existing work on the application of process mining, clus-
tering and frequent pattern mining on healthcare data. In this section we survey
state of the art work in each of these fields and outline differences between ex-
isting works and our approach. The uniqueness of our contribution stems from
the combination of these three techniques in a single interactive toolset.

Process mining has been applied extensively in healthcare. HeuristicsMiner,
social network analysis, and dotted chart analysis are used for obtaining insights
into care flow data in [25]. A methodology for analyzing business processes in
a healthcare environment using sequence clustering and process mining is pre-
sented in [32]. The use of fuzzy mining and trace alignment for investigating
clinical pathway data is proposed by [7]. The applicability of various mining
techniques to healthcare data by adopting both a department and treatment
based focus is discussed in [8]. The benefits of both a drill up and drill down per-
spective on the data relying on control-flow discovery with the Fuzzy Miner and
networked graph visualizations are presented in [36]. The effectiveness of several
process mining algorithms on Magnetic Resonance Imaging (MRI), ultrasound
and X-ray appointments within a Radiology workflow has been explored in [20].
Hidden Markov Models in combination with process mining techniques are used
to investigate care pathways for breast cancer patients in [30]. Use of process
mining and clustering to discover patient journeys has been examined in [29].
A new process mining approach is introduced in [14] to discover temporal or-
ders of medical behaviors in clinical pathways. Data mining techniques inspired
by process mining are applied to detect time dependency patterns in clinical
pathways in [23].

There is a significant amount of work on clustering techniques for business
processes. A method to group process instances based on similar behavior is
presented in [6,35]. They use methods to determine transitions between activi-
ties to derive the underlying process model and relate instances to that shared
common behavioral model. Some work has been devoted to organize, group and
cluster process models based on similarities such as structure and contained data
(organizations, activity names, etc) [31]. These techniques are based on defined

326 G.T. Lakshmanan, S. Rozsnyai, and F. Wang

static process models not on process execution footprints. This problem and the
solutions are different from the trace clustering method applied in this paper.
Evaluating different similarity measures for clustering process instances using
a density based clustering algorithm for evaluation (DBSCAN) is done in [18].
While we also use a density based clustering algorithm for clustering process
instances, we use a different representation for process instances and distance
metrics. In the clustering approach discussed in [17] processes are represented as
weighted graphs and similarity measures are based on graph vectors that are es-
timated based on activity and transition frequencies. Similarly in [34] clustering
is based on computing graph similarity. Improving process mining techniques by
hierarchical clustering of execution traces is presented in [13] in which each trace
is viewed as a point in a properly identified space of features. Another approach
for optimizing mined process models using clustering is presented in [2], where
process models (not instances such as in our work) are translated into string
representations representing all possible execution permutations.

There is a significant amount of work on the application of frequent pattern
mining techniques to healthcare data. A technique to mine discriminative dyadic
sequential patterns is presented in [24]. It cannot handle sequences with same-day
concurrent events. A tree based algorithm for identifying discriminative patterns
is presented in [9]. It does not however use a pattern based representation for
events, and cannot handle sequences with same-day concurrent events. A statis-
tical approach for summarizing and visualizing temporal associations between
the prescription of a drug and the occurrence of a medical event is presented
in [28]. This is quite different from the use of frequent patterns in our work. An-
other approach for temporal pattern discovery is presented in [27] that requires
a predefined temporal grammar and logic with prior knowledge. A visual inter-
face [11] for finding temporal patterns in multivariate temporal clinical data is
used in [4] for searching for temporal patterns in patient histories and requires
users to specify the structure of the pattern.

3 Identifying Care Pathways Correlated with Outcomes

In order to identify care pathways correlated with outcomes several steps are
performed as outlined in Fig 1. The patient population is first segmented by
patient outcomes, and events are pre-processed. Irrelevant events are removed
and raw event names are replaced by hierarchical category names. EMR data
typically has a lot of same day events. We designed and implemented a same
day concurrent event collapse algorithm to address this problem. After pre-
processing, users of BPI can either mine frequent patterns from patient events
or perform patient trace clustering or mine a process model from traces created
from the data. We conduct trace clustering first in order to remove outliers from
the patient pool before performing frequent pattern mining and process mining
on a set of clustered traces. Next, each frequent pattern can be overlaid on the
mined process model, or users can choose a different cluster or do clustering
again with different parameters. This section describes the details of the data

Investigating Clinical Care Pathways 327

Fig. 1. An overview of our end to end approach

pre-processing steps, and the algorithms applied for clustering, frequent pattern
mining and overlaying frequent patterns on a mined model.

3.1 Segmenting Patients by Outcome and Hierarchical Renaming
of Events

We tested our methodology on data belonging to 4096 patients already diagnosed
with CHF in ambulatory care (i.e. outpatient setting) consisting of EMR data
containing diagnoses, prescribed medications, labs and vital signs recorded over
several years from a US healthcare provider. With the help of the CHF expert
physician we defined criteria for positive and negative outcomes, and segmented
the patient population according to this criteria. Patients hospitalized within one
year of being diagnosed with CHF are classified as negative outcome patients.
Patients not hospitalized up to one year or more after being diagnosed with CHF
are classified as positive outcome patients. There were a total of 2197 patients
with positive outcomes in our data set. In the expert physician’s opinion, one
year is a sufficiently large enough time period to extract care pathways correlated
with a positive outcome. For each negative outcome patient, events are collected
up to their first hospital admission date. For each positive outcome patient,
events are collected up to one year of the patient being diagnosed with CHF.

The EMR data we received contained many redundancies in event names.
For example, 40 different medication names all corresponded to renal failure
medication. Using publicly available medical vocabularies, we developed a set of
hierarchical category names to replace each individual event name in the medica-
tions, labs, and diagnoses event classes. The expert physician provided guidance
to identify the level of granularity at which to perform this transformation in
each event class. For medications we used publicly available pharmacy subclass
names to identify medications with different names that served the same pur-
pose. We also concatenated the level of CHF treated by the pharmacy subclass
with the pharmacy subclass name (e.g. AntianginalAgents4 represents Antiangi-
nal agents used to treat CHF level 4). This resulted in a total of 9 different kinds
of medication events. All medication events not related to the treatment of CHF

328 G.T. Lakshmanan, S. Rozsnyai, and F. Wang

were discarded. For diagnoses, we used publicly available DXGroup names to
rename and classify individual diagnosis names, and discarded diagnoses events
that were not related to CHF. This resulted in a total of 11 different kinds of
diagnoses events. For labs, we restricted events to labs performed specifically in
connection to CHF. This resulted in a total of 30 different kinds of lab events,
and we discarded all other types of labs. For each set of vital signs (e.g. heart
rate, blood pressure etc), we created a single Vital event type, and gave it a
timestamp corresponding to the date coinciding with the recording of a set of
vital signs for a given patient.

3.2 Same Day Concurrent Event Collapse

An issue that affects the efficiency of temporal pattern mining and the quality of
process mining is when many events happen simultaneously. This is particularly
true when the time granularity of the patient EMR is low resolution. Typical
to many EMRs (especially outpatient records), the finest time resolution is a
day, and during a day, multiple medical events may occur to a patient. For
example, the patient may have multiple lab tests performed, diagnoses made,
and medications prescribed on the same day that the patient visits their primary
care physician.

Algorithm 1. Breaking Down a SDCE

Require: A SDCE S to be broken down, Pre-detected Clinical Event Packages (CEP)
1: Sort the detected CEPs into buckets according to their cardinalities (number of

events contained), such that the packages within the same bucket have the same
cardinality.

2: Sort the packages within the same bucket with their appearance frequencies in the
patient traces.

3: O = ∅
4: for Every bucket B do
5: if length(B) <length(S) then
6: for Every CEP E in B do
7: if E is a subset of s then
8: Add E to O, Set S = S\E
9: if S == ∅ then
10: Return O
11: else
12: Return to Step 4
13: end if
14: end if
15: end for
16: end if
17: end for

Such data characteristics yield a great challenge for frequent pattern mining
algorithms, as they detect patterns with all possible combinations of events and
subsets of events occurring at the same time. For instance, if we have A;B-->A;C

Investigating Clinical Care Pathways 329

as a frequent pattern, then A-->A, A-->C, A;B-->A, A;B-->C, A-->A;C, B-->A;C
are all frequent patterns (a semicolon connotes events occurring at the same
time). If there are even more concurrent events, the number of detected frequent
patterns increases dramatically. We refer to this phenomenon as pattern explo-
sion. An explosion of same timestamp events are also a challenge for process
mining algorithms as the mining algorithm cannot extract a causal ordering be-
tween the events, and therefore the mined model representation of such events
may not be reliable.

To alleviate these problems, we pre-process patient traces before feeding them
to the frequent pattern miner. The goal is to reduce the number of events hap-
pening at the same time. There are many Same Day Concurrent Events (SD-
CEs) contained in patient EMRs, thus we first detect the frequent Clinical Event
Packages (CEPs) that are frequent subsets of SDCEs. If we treat each SDCE in
every patient trace as a transaction, then the problem of detecting those CEPs
is equivalent to the problem of frequent itemset mining [1], and each detected
CEP can be used as a super event. Then, a greedy approach is applied based on
Two-Way Sorting to break down each SDCE as a combination of regular and
super events, such that the number of events contained in each SDCE is greatly
reduced.

Algorithm 1 summarizes the main procedure of breaking down a specific
SDCE. After the sorting procedure (line 1), all the CEP buckets are ordered
from the largest cardinality to the lowest. After step 2, all CEPs within each
bucket are ordered from the highest frequency to the lowest. The enumeration
process of all buckets and CEPs in lines 4 and 6 is according to this order.

Fig. 2. A graphical illustration of how the two-way sorting procedure works. Mined
clinical packages are first sorted according to their cardinalities. Next, packages with
the same cardinality are sorted according to their frequency.

To illustrate the process of breaking down SDCEs, we provide an example:
Suppose we have an SDCE ABCDE and we wish to break it down using the de-
tected CEPs, shown in the central area of Figure 2. The algorithm then sorts
the packages according to a two-way sorting strategy as shown in Figure 2. It
first sorts the packages according to their cardinalities (length). Then, for pack-
ages with the same cardinality, they are sorted with respect to their appearance

330 G.T. Lakshmanan, S. Rozsnyai, and F. Wang

frequency. To breakdown ABCDE, the algorithm first finds the longest clinical
packages that are subsets of ABCDE. In this example, ABC and ACE are the longest
packages which are subsets of ABCDE. Then, because ABC occurs more frequently
than ACE, ABC is selected as a super event contained in ABCDE. Besides ABC, the
rest of the events are DE. The procedure is applied again to break down ABCDE as
ABC,D, E. There are only 3 super events in ABCDE with our technique, as opposed
to 5 events.

After conducting same day event collapse on the data according to this al-
gorithm, users can either mine frequent patterns, or perform clustering after
generating patient traces. In the next section (3.3) we provide details of the
frequent pattern mining algorithm. In section 3.4 we provide details of the clus-
tering algorithm we employed in order to remove patient traces that are outliers.

3.3 Frequent Pattern Mining

We first detect frequent patterns using SPAM (Sequential Pattern Mining with
bitmap representation)[5], where we specified the support threshold as 15%
meaning that a pattern must occur in at least 15% of the input patient traces.
Next the patterns are collected into a dictionary and a Bag-of-Pattern (BoP)
representation for each patient trace is constructed. Suppose the pattern dictio-
nary size is m, then the BoP vector for each patient is an m-dimensional vector,
such that the value on the ith dimension represents the frequency of the ith pat-
tern in the corresponding patient trace. When counting pattern frequency, the
bitmap representation of patient trace is applied, as done by SPAM, and pattern
matching is done bit by bit. After a match is detected, we examine its validity
by checking whether the duration of the match is shorter than a pre-specified
threshold. Ultimately, the pattern frequency is the number of valid matches.

After BoP representation, all patient traces are represented as an n×mmatrix
X, with Xij indicating the frequency of the jth pattern in the ith patient’s trace,
and n is the number of patients. Suppose each patient has an outcome, which
can be either discrete (e.g., hospitalized or not hospitalized) or continuous (e.g.,
HbA1c value for diabetes patients), we can construct an n-dimensional patient
outcome vector y. Let xi be the ith column of X, which characterizes the ap-
pearance frequency distribution of the ith pattern in different patient traces. We
can now compute correlation statistics between each xi (i = 1, 2, · · · ,m) and
y, and identify patterns with high correlation with patient outcomes. Specifi-
cally, we compute the Information Gain, IG(xi,y), between a pattern xi and
an outcome y as follows1:

IG(xi,y) = H(xi)−H(xi|y) (1)

where

H(xi) = −
∑
α

P (xij = α) log(P (xij = α)) (2)

1 http://en.wikipedia.org/wiki/Information_gain_in_decision_trees

http://en.wikipedia.org/wiki/Information_gain_in_decision_trees

Investigating Clinical Care Pathways 331

where P (xij = α) is the probability that the j-th variable of xi equals α, and

H(xi|y) = −
∑

β={−1,+1}
P (yi = β)

∑
α

P (xij = α|yi = β) log(P (xij = α|yi = β))

(3)
where P (xij = α|yi = β) is the conditional probability that the j-th variable of
pattern xi is α while its outcome is β.

H(·) is the entropy of a variable. For example, H(xi|y) is the entropy of
pattern xi with respect to outcome y. We also compute the P-value [12] of
IG(xi,y) in order to check whether it is statistically significant.

3.4 Clustering

We apply the DBScan [10] clustering algorithm and use a custom string-based
distance metric to determine the distance between process traces. The goal of
this clustering method is to group process traces together based on, what we refer
to as, execution footprint. Many existing clustering techniques [2,13,18,31,34] are
based on process models rather than process execution footprints. As opposed
to existing clustering methods, we do not take into account underlying process
model, structure (e.g. transitions between events), event payloads or attribute
data belonging to traces into account. We represent the sequence of events within
a trace as a String where the position of characters within that String represents
the temporal occurrence of events within a trace.

For all patients, all events related to a patient are grouped into a trace so
that they reflect a given process instance. Each event contains a payload (i.e.
timestamp etc). The events in a trace must be ordered corresponding to their
temporal occurrence. This is achieved by having either a defined order of their
occurrence or a timestamp. Each event type is uniquely mapped to a single
digit unicode character. In case event names exceed the space of available Uni-
code characters, digits may be added to ensure a unique mapping. Every given
trace is then transformed to a String representation, where the mapped Unicode
character replaces the event type. The order of the Unicode characters within
the String is determined by the order of the events within the process trace (i.e.
through timestamp or defined order). We show a simple example of the mapping.
The first step is to take all known event types and map them to Unicode charac-
ters as follows: Heartfailure → A, Diuretics → B, AntianginalAgents → C,
Creatinine → D, V ital → E. Each event in each trace (T1, T2, ..., Tn) is then
replaced by the corresponding mapped character as shown in table 1. As events
within a trace are ordered (typically by time), the resulting character represen-
tation of a trace resembles that order. Each trace in its string representation
(TnMapped) is now equivalent to a point. DBScan computes clusters of such
traces. By default most DBScan implementations rely on the Euclidean Dis-
tance and a point requires a numeric representation. In our case each point
is a sequence of characters. Rather than Euclidean Distance, we use the Leven-
shtein distance [22]. The Levenshtein distance measures the amount of difference

332 G.T. Lakshmanan, S. Rozsnyai, and F. Wang

Table 1. An example of traces and their corresponding string representations

T1 Heartfailure → Diuretics → AntianginalAgents
→ Creatinine → Vital

T1Mapped ABCDE

T2 Heartfailure → Diuretics → AntianginalAgents
→ Diuretics → AntianginalAgents → ...

T2Mapped ABCBC...

between two sequences (not necessarily of the same length) and allows determi-
nation of the number of operations required to transform one string into another.
Thus, Levenshtein provides a good measure of similarity for our goal of finding
similar execution patterns. DBScan requires two parameters to be initialized:

1. MinPts: Determines the minimum number of points required to form a
cluster. In our setup this parameter is 1, which means that for every trace a
cluster is created. This also means that a cluster containing 1 trace can be
considered an outlier.

2. ε: represents the distance threshold between two points that can be consid-
ered to be similar.

Finding the optimal offset of ε can be achieved through experiments (by users) in
combination with subjective expectations of what should correspond to a clus-
ter. Depending on the user’s preference, sometimes finer and sometimes more
coarse-grained clusters are expected. In order to aid the user with this task, we
implemented a utility to provide a suggestion for the offset by calculating the
median Levenshtein distance between a sample set of all available traces. Calcu-
lating the median distance over all traces would take too long on a large set of
traces. Experiments on data from various domains have shown that taking 1

16 th
of the median distance provides an offset that produces clusters with finer gran-
ularity that is perceived by users to be a good starting point for the threshold.
The clustering algorithm outputs groups of traces that share a similar execution
sequence (based on Levenshtein string distance metric), the distance between
individual clusters, and the size of clusters.

3.5 Overlaying Frequent Patterns on a Mined Process Model

To enable process mining, the well known HeuristicsMiner [3] algorithm is im-
plemented and integrated into BPI. We choose HeuristicsMiner because it is
robust to noise and incomplete trace sets [19], and therefore well suited for min-
ing healthcare data [20,25]. The overlay algorithm first identifies every node in
the frequent pattern that occurs in the mined process model and highlights the
color of that node. For every two consecutive nodes, a and b in the frequent
pattern, if an edge from a to b exists in the mined process model, that edge is
highlighted. If an edge does not exist from a to b, we run Dijkstra’s shortest path
algorithm to determine the shortest path from a to b in the mined process model,

Investigating Clinical Care Pathways 333

and highlight that path. This procedure is repeated for every consecutive pair
of nodes in the frequent pattern. For example, suppose Cardiotonics4 → Vital
→ Heartfailure is a frequent pattern to be overlaid on a mined process model.
Thus nodes Cardiotonics4, Vital, and Heartfailure in the process model are high-
lighted by a color, and either an edge or a path of edges from Cardiotonics4 to
Vital, and Vital to Heartfailure are highlighted.

4 Results and Discussion

We have implemented the clustering, process mining, frequent sequence mining
and overlay tools as part of the BPI platform [33]. BPI uses Cloud-based storage
built on HBase. Each tool in BPI is implemented as a server-side library with a
full Java API, and a web-based user interface (UI) implemented using the Google
Web Toolkit.

Data is loaded in BPI as events after performing same day concurrent event
collapse (algorithm 1 in section 3.2). BPI has the ability to generate patient
traces, where all the events for a given patient are correlated by patientID. As
a result of the same day concurrent event collapse algorithm, we found that a
large majority of same day concurrent events that were collapsed consisted of
individual lab tests. For example, labs BUN, AST, ALT, HDL were determined
as a frequently occurring set of same day concurrent events. At the request of
the expert physician, such events were collapsed into a single event denoted as
LabPanel{i}, where i is a single character (e.g. LabPanelA). In addition, iden-
tical events that occurred consecutively for a given patient were collapsed into
a single event denoted as Repeat{e}, where e is an event name (e.g. RepeatVi-
tal). Both of these techniques contributed to providing easier to interpret mined
process models. Differentiating between a Vital and a RepeatVital event is par-
ticularly important. In the CHF expert physician’s opinion, a recurring Vital
event denoted as RepeatVital indicates regular visits to a primary care physi-
cian, where as a singular Vital event indicates the need for a checkup in response
to particular symptoms.

Figure 3 shows an example of the clusters resulting from executing clustering
on patient traces containing EMR events of CHF patients, while using a sug-
gested epsilon value of 2.75. As shown in the figure, the largest cluster has 204
traces, the second largest cluster has 10 traces, and many clusters have only 1
trace indicating that they are outliers. Users can right click on a cluster in order
to mine a process model out of it using the HeuristicsMiner algorithm.

Fig. 4 shows an example of a model mined from a cluster of 204 patients with
positive outcomes. Discussions of the mined models with an expert physician
allowed us to better understand the insight showcased by the mined models.
For example, from Fig. 4 the following insight was extracted for three of the
many clinical care pathways depicted in the mined model. Pathway 1: Start
→ AntianginalAgents4 → Vital → Cardiotonics4 → LabPanelL → Digoxin →
Magnesium → NatureticPeptide → HeartFailure → Vital. Antianginal agents
are prescribed for CHF level 4 for someone at risk of heart attack. Once this
medication is given, vitals are checked. Cardiotonics are prescribed if abnormal

334 G.T. Lakshmanan, S. Rozsnyai, and F. Wang

Fig. 3. A set of patient trace clusters. The largest cluster has 204 traces.

pumping of the heart is detected. Next, labs including LabPanelL (a panel of
labs), as well as individual labs such as Digoxin and Magnesium are conducted
followed by a NatureticPeptide test. A positive result of this test leads to a
diagnosis of exacerbated heart failure. It serves as a confirmation of the patient’s
heart failure diagnosis.

Pathway 2: Vital → Diuretics3 → Vital → as well as Vital → Diuretics3
→ Vital → LabPanelK → Diuretics3 → Vital. If vitals indicate fluid overload,
Diuretics for the appropriate CHF level (in this case level 3) are prescribed
to reduce fluid overload. Upon taking Diuretics3 the patient will immediately
undergo weight-loss and Vitals are rechecked to determine how the patient is
responding. An additional a set of labs (LabPanelK) are conducted to monitor
the patient’s mineral levels. This explains the loop between Diuretic3, Vital and
LabPanelK.

Pathway 3: Vital → Potassium → LabPanelC → FO2HBArterial→ O2SAr-
terial → PCO2Arterial→ PHArterial → POArterial→ PulseOx → Vital. These
labs serve as direct measures for diagnosing respiratory distress. They serve as
follow up tests after managing the patient’s condition with either Antianginal
Agents or after managing a patient’s condition with Diuretics. This explains why
pathways 1 and 2 merge into Vital which allows the connection to pathway 3.

Table 2 shows an example of frequent patterns ranked by their information
gain that were extracted for the congestive heart failure patients using the al-
gorithm described in section 3.3. The overlay feature is enabled via an Overlay
Pattern button in BPI. Figure 5 shows an example of a frequent pattern overlaid
on a mined model of the patients with positive outcomes. In this experiment we
also collapsed all individual lab and lab panel events in to a single event called
LabTest which significantly simplified the model in the expert physician’s opin-
ion and allowed him to view the overlaid pattern clearly in the context of the
other pathways. Discussions with the expert physician made it apparent that
this pattern is correlated with positive outcomes because taking Cardiotonics

Investigating Clinical Care Pathways 335

Fig. 4. A process model mined from a cluster of 204 positive outcome patients using
the HeuristicsMiner algorithm

Table 2. A sample of frequent patterns ordered by information gain corresponding to
the patient population in Fig 4

Frequent Pattern Information Gain

Diuretics3 → Vital 0.142934165

AntianginalAgents4 → Vital 0.127046503

Vital → Beta Blockers2 0.108907065

Vital → Cardtiotonics4 → Digoxin 0.101768006

Repeatvital → Diuretics3 → Repeatvital 0.07780386

for CHF level 4 control’s a patient’s acute CHF condition, and Diuretics for
CHF level 4 manages their electrolytes. This overall reduces a patient’s risk of
hospitalization by reducing the risk of their heart failure exacerbation. Next vi-
tal signs are checked (in the Vital event) immediately after taking Diuretics to
check the patient’s response to the medications.

Experimental validation allowed us to identify several limitations which we
intend to address in future work:

– The frequent pattern generation algorithm is governed by a support thresh-
old that controls how frequently a pattern may be found. Similarly, the
HeuristicsMiner algorithm has threshold parameters for edge and node fre-
quencies. While it is possible that frequent patterns mined from a dataset
can be placed on the process model mined from the same data set, this is
not guaranteed. This is because the parameters for the HeuristicsMiner and
the FPMiner algorithm need to be synchronized to guarantee placement of
frequent patterns on the mined model.

– While replacing raw event names with publicly available hierarchical cate-
gory names (section 3.1) helped eliminate redundancies in event names, it
may have led to loss of useful event information.

336 G.T. Lakshmanan, S. Rozsnyai, and F. Wang

Fig. 5. Frequent pattern Cardiotonics4 → Diuretics4 → V ital overlaid on a mined
model of a cluster of the data

– Although overlaying a frequent pattern on a mined model of the patient
EMR data was useful to the expert physician in terms of understanding how
the care pathway represented by the pattern fit with respect to other care
pathways in the mined model, the utility of the toolset needs to be validated
with a larger set of users. Depending upon their individual objectives, the
utility of the toolset to individual users may vary dramatically.

5 Conclusions

Process mining has been applied extensively to extract insight from healthcare
data [8,14,20,25,26,36] with promising results. In this paper we have applied pro-
cess mining in combination with frequent pattern mining to investigate clinical
care pathways correlated with outcomes on traces of congestive heart failure pa-
tients, where the traces are first clustered to remove outliers. These techniques
are provided as tools in a collaborative SaaS environment called BPI [33]. Trace
clustering, frequent pattern mining and overlay of frequent patterns on a mined
model are implemented as new features in BPI as a result of our work. We also
implemented a same day concurrent event collapse algorithm to address situa-
tions with events occurring within the same time window. Unlike many existing
studies on the application of process mining to healthcare data [8,14,20,25,26,36],
we have evaluated the effectiveness of these tools on CHF patient EMR data
from a healthcare provider. Activity level data was not available. Experimental
results discussed with an expert physician allowed us to evaluate the utility of
these tools in extracting clinical care pathway insight from EMR data. In fu-

Investigating Clinical Care Pathways 337

ture work we plan to enhance the interactive capabilities of the toolset while
experimenting with EMR data from other providers.

Acknowledgments. We thank Dr. Robert Sorrentino M.D. and Dr. Jianying
Hu at IBM T. J. Watson Research Center for valuable discussions.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB 1994, San Francisco, CA, USA (1994)

2. Aiolli, F., Burattin, A., Sperduti, A.: A business process metric based on the alpha
algorithm relations. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Work-
shops 2011, Part I. LNBIP, vol. 99, pp. 141–146. Springer, Heidelberg (2012)

3. Weijters, A.J.M.M., van der Aalst, W., de Medeiros, A.A.: Process mining with
the heuristics miner-algorithm. BETA Working Paper (2006)

4. C.P., et al.: Searching electronic health records for temporal patterns in patient
histories: A case study with microsoft amalga. In: AMIA Annual Symposium, pp.
601–605 (2008)

5. Ayres, J., Gehrke, J., Yiu, T., Flannick, J.: Sequential pattern mining using a
bitmap representation. In: KDD, pp. 429–435. ACM Press (2002)

6. Bose, R.P.J.C., van der Aalst, W.M.P.: Context aware trace clustering: Towards
improving process mining results. In: SDM, pp. 401–412 (2009)

7. Jagadeesh Chandra Bose, R.P., van der Aalst, W.: Trace alignment in process
mining: Opportunities for process diagnostics. In: Hull, R., Mendling, J., Tai, S.
(eds.) BPM 2010. LNCS, vol. 6336, pp. 227–242. Springer, Heidelberg (2010)

8. Caron, F., Vanthienen, J., De Weerdt, J., Baesens, B.: Advanced care-flow mining
and analysis. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011 Workshops,
Part I. LNBIP, vol. 99, pp. 167–168. Springer, Heidelberg (2012)

9. Cheng, H., Yan, X., Han, J., Yu, P.S.: Direct discriminative pattern mining for
effective classification. In: ICDE, pp. 169–178 (2008)

10. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. Computer (6), 226–231 (1996)

11. Fails, J.A., Karlson, A.K., Shahamat, L., Shneiderman, B.: A visual interface for
multivariate temporal data: Finding patterns of events across multiple histories.
In: IEEE VAST, pp. 167–174 (2006)

12. Goodman, S.N.: Toward evidence-based medical statistics. 1: The p value fallacy.
Annals of Internal Medicine 130, 995–1004 (1999)

13. Greco, G., Guzzo, A., Pontieri, L., Saccá, D.: Mining expressive process models by
clustering workflow traces. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004.
LNCS (LNAI), vol. 3056, pp. 52–62. Springer, Heidelberg (2004)

14. Huang, Z., Lu, X., Duan, H.: On mining clinical pathway patterns from medical
behaviors. Artif. Intell. Med. 56(1), 35–50 (2012)

15. Huang, Z., Lu, X., Duan, H.: Using recommendation to support adaptive clinical
pathways. Journal of Medical Systems 36(3), 1849–1860 (2012)

16. Ireson, C.L.: Critical pathways: Effectiveness in achieving patient outcomes. Nurs-
ing Administration 27(6), 16–23 (1997)

17. Jung, J.-Y., Bae, J.: Workflow clustering method based on process similarity. In:
Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A.,
Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3981, pp. 379–389. Springer,
Heidelberg (2006)

338 G.T. Lakshmanan, S. Rozsnyai, and F. Wang

18. Kastner, M., Wagdy Saleh, M., Wagner, S., Affenzeller, M., Jacak, W.: Heuristic
methods for searching and clustering hierarchical workflows. In: Moreno-Dı́az, R.,
Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp.
737–744. Springer, Heidelberg (2009)

19. Lakshmanan, G., Khalaf, R.: Leveraging process mining techniques to analyze
semi-structured processes. IT Professional PP (99), 1–1 (2012)

20. Lang, M., Bürkle, T., Laumann, S., Prokosch, H.U.: Process mining for clinical
workflows: Challenges and current limitations. In: MIE, pp. 229–234 (2008)

21. de Leoni, M., Adams, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Visual
support for work assignment in process-aware information systems: Framework
formalisation and implementation. Decision Support Systems 54(1), 345–361 (2012)

22. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10, 707–710 (1966)

23. Ren Lin, F., Chao Chou, S.: Mining time dependency patterns in clinical pathways.
International Journal of Medical Informatics, 11–25 (2001)

24. Lo, D., Cheng, H.: Lucia: Mining closed discriminative dyadic sequential patterns.
In: International Conference on Extending Database Technology, pp. 21–32 (2011)

25. Mans, R.S., Schonenberg, H., Song, M., van der Aalst, W.M.P., Bakker, P.J.M.:
Application of process mining in healthcare - a case study in a dutch hospital. In:
BIOSTEC (Selected Papers), pp. 425–438 (2008)

26. Mans, R., van der Aalst, W.M.P., Vanwersch, R.J.B., Moleman, A.J.: Process min-
ing in healthcare: Data challenges when answering frequently posed questions. In:
ProHealth/KR4HC, pp. 140–153 (2012)

27. Moskovitch, R., Shahar, Y.: Medical temporal-knowledge discovery via temporal
abstraction. In: AMIA Annual Symposium, pp. 452–456 (2009)

28. Norén, G.N., Bate, A., Hopstadius, J., Star, K., Edwards, I.R.: Temporal pattern
discovery for trends and transient effects: its application to patient records. In:
SIGKDD, pp. 963–971. ACM (2008)

29. Perimal-Lewis, L.: Gaining insight from patient journey data using a process-
oriented analysis approach. In: HIKM 2012, vol. 129, pp. 59–66 (2012)

30. Poelmans, J., Dedene, G., Verheyden, G., Van der Mussele, H., Viaene, S., Pe-
ters, E.: Combining business process and data discovery techniques for analyzing
and improving integrated care pathways. In: Perner, P. (ed.) ICDM 2010. LNCS,
vol. 6171, pp. 505–517. Springer, Heidelberg (2010)

31. Qiao, M., Akkiraju, R., Rembert, A.J.: Towards efficient business process clustering
and retrieval: Combining language modeling and structure matching. In: Rinderle-
Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 199–214.
Springer, Heidelberg (2011)

32. Rebuge, Á., Ferreira, D.R.: Business process analysis in healthcare environments:
A methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012)

33. Rozsnyai, S., Lakshmanan, G.T., Muthusamy, V., Khalaf, R., Duftler, M.J.: Busi-
ness process insight: An approach and platform for the discovery and analysis of
end-to-end business processes. In: SRII Global Conference, pp. 80–89 (2012)

34. Silva, V., Fernando Chirigati, K.M.A.O., de Oliveira, D., Braganholo, V., Murta,
L., Mattoso, M.: Similarity-based workflow clustering. Journal of Computational
Interdisciplinary Sciences 2(1), 23–35 (2011)

35. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process min-
ing. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP,
vol. 17, pp. 109–120. Springer, Heidelberg (2009)

36. Weerdt, J.D., Caron, F., Vanthienen, J., Baesens, B.: Getting a grasp on clinical
pathway data: An approach based on process mining. In: PAKDD Workshops, pp.
22–35 (2012)

Exformatics Declarative Case Management Workflows
as DCR Graphs

Tijs Slaats1,2, Raghava Rao Mukkamala1,
Thomas Hildebrandt1, and Morten Marquard2,�

1 IT University of Copenhagen,
Rued Langgaardsvej 7, 2300 Copenhagen, Denmark

{hilde,rao,tslaats}@itu.dk
http://www.itu.dk

2 Exformatics A/S,
Lautrupsgade 13, 2100 Copenhagen, Denmark

{mmq,ts}@exformatics.com
http://www.exformatics.com

Abstract. Declarative workflow languages have been a growing research subject
over the past ten years, but applications of the declarative approach in industry are
still uncommon. Over the past two years Exformatics A/S, a Danish provider of
Electronic Case Management systems, has been cooperating with researchers at
IT University of Copenhagen (ITU) to create tools for the declarative workflow
language Dynamic Condition Response Graphs (DCR Graphs) and incorporate
them into their products and in teaching at ITU. In this paper we give a status
report over the work. We start with an informal introduction to DCR Graphs. We
then show how DCR Graphs are being used by Exformatics to model workflows
through a case study of an invoice workflow. Finally we give an overview of the
tools that have been developed by Exformatics to support working with DCR
Graphs and evaluate their use in capturing requirements of workflows and in a
bachelor level course at ITU.

Keywords: workflows, declarative specifications, tools, teaching, case study.

1 Introduction

Declarative workflow modelling [8,9,16] is an emerging field in both academia and in-
dustry which offers a new paradigm that supports flexibility and adaptability in business
processes. Traditional imperative workflow languages describe how a process is carried
out as a procedure with explicit control flow. This often leads to rigid and overspecified
process descriptions, that fails to capture why the activities must be done in the given
order. Declarative workflow languages on the other hand specify processes by the con-
straints describing why activities can or must be executed in a particular order, and not
how the the process is to be executed, i.e. activities can be executed in any order and
any number of times, as long as not prohibited by a constraint [15, 19]. This may lead
to under specified process descriptions and make it difficult to perceive the path from

� This research is supported by the Danish Research Agency through an industrial PhD Grant.

F. Daniel, J. Wang, and B. Weber (Eds.): BPM 2013, LNCS 8094, pp. 339–354, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.itu.dk
http://www.exformatics.com

340 T. Slaats et al.

start to end, but captures the reason for the ordering of activities and leaves flexibility
in execution.

An example a constraint between activities is the response constraint [4, 16] (e.g.
A •→ B), which requires that an execution of one task (A) is eventually followed by
an execution of another task (B), but it does not put any further limits on the number
of times and order in which the tasks are executed. For example, it would be perfectly
valid if the second task occurs first, as long as it also occurs after the first task. In other
words, B,AB,BAB,AAB, ... are all valid runs, where as A,BA,BBA, ... are not
valid runs, as they fail to satisfy the constraint by having an occurence of A that is not
followed by an occurence of B.

Examples of processes that require more flexibility are commonly found in the health-
care [5] and case management [1] domains. In those processes, the work is being carried
out by knowledge workers who typically have the experience and expertise needed to
deal with the complexity of a process whose requirements may vary from case to case.
For this reason, knowledge-intensive processes require flexible workflow systems that
support the users in their work (instead of dictating them what to do) and allow them to
make their own choices as long as they do not break those constraints that do need to
be strictly followed in all cases (e.g. laws or organizational policies).

Over the last decade, several declarative languages for business processes have been
proposed in academic literature. The first of these languages is Declare [15, 19] which
gave a number of common workflow constraints formalized in Linear-time Temporal
Logic (LTL). More recently, DCR Graphs [4] have been developed as a generalization
of event structures [21], where processes are described as a graph of events related
by only 4 basic constraints. A simple operational semantics based on markings of the
process graph makes it possible to clearly visualize the runtime state. Furthermore,
the Guard-Stage-Milestone [10] has been developed, which is a data-centric workflow
model with declarative elements for modeling life cycles of business artifacts.

Even though by now these techniques have become well known in academia, their
application in the industry is relatively uncommon. Over the last two years Exformat-
ics A/S, a Danish provider of Electronic Case Management(ECM) systems, has been
collaborating with researchers of IT University of Copenhagen (ITU), to develop tools
for the declarative workflow language DCR Graphs with the aim to apply and evaluate
the use of DCR Graphs on real world scenarios in the case management domain and in
teaching at ITU.

The goal of the present paper is to give a status report, presenting and evaluating
the tools developed so far. As the first step, the core DCR Graphs model were used
by Exformatics A/S in a case study to capture some of the requirements in the design
phase of a cross-organizational case management system [1]. The case study led to
the further development of the DCR Graphs model by adding support for hierarchical
modelling using nested events and a (milestone) constraint [6], making it possible to
concisly specify that some event(s) must not be pending in order for some event to
happen. It also encouraged developing a graphical design, simulation and verification
tool [18] which is being used successfully in further case studies with industry and in
teaching at ITU.

Exformatics Declarative Case Management Workflows as DCR Graphs 341

In the remainder of this paper we will first introduce DCR Graphs informally in
Sec. 2, in Sec. 3 we will explain how they are used as the underlying formalism for
workflows within the Exformatics ECM system and in Sec. 4 we will give an overview
of the tools for managing DCR Graphs that have been developed by Exformatics. We
evaluate and describe related work in Sec. 5 and conclusions and future work in Sec. 7.

2 DCR Graphs by Example

This section describes DCR Graphs informally by giving an overview of the declarative
nature of the language and its graphical modeling notation. (All figures shown are pro-
duced in the developed graphical editor and simulation tool [18]). The formal semantics
of DCR Graphs are given in [4, 6, 12].

A DCR Graph specifies a process as a set of events, typically representing the (pos-
sibly repeated) execution of activities in the workflow process, changes to a dataset or
timer events. The events are represented graphically as rectangular boxes with zero or
more roles in a small box on top of the event as depicted in Fig. 1, showing an excerpt
of an invoice workflow with three events: Recieve Invoice, Enter Invoice Data and
Responsible Approval and two roles: Administration (Adm), representing the admin-
istration office of a company and Responsible (Res), the person responsible for the
invoice. The administation office has access to the tasks Recieve Invoice and Enter
Invoice Data and the responsible has access to the task Responsible Approval.

Fig. 1. DCR Graphs: Tasks and Roles

The concrete principals/actors (either human or automated) are typically not shown
in the graphical notation, but will at runtime be assigned one or more of the roles and
can then execute any of the events that are assigned to one of these roles.

The events in a DCR Graph can happen any number of times and in any order, unless
prevented by a constraint relation. The graph in Fig. 1 has no constraints, so it would be
valid to e.g. just receive an invoice and do nothing else, or to receive an invoice and then
approve the invoice twice. Constraints are defined using five different kinds of relations
between the events, named the condition, response, milestone, inclusion and exclusion
relation respectively.

Fig. 2(a) gives an example of a condition relation (depicted graphically as →•) be-
tween Recieve Invoice and Enter Invoice Data, which states that before Enter In-
voice Data can happen, the event Recieve Invoice must first have happened. In other
words, we have to receive an invoice before we can enter the details of the invoice into

342 T. Slaats et al.

the system. The DCR Graph shown in Fig. 2(a) allows possible runs such as Recieve
Invoice.Enter Invoice Data or Recieve Invoice.Enter Invoice Data.Recieve In-
voice or Recieve Invoice.Recieve Invoice.Enter Invoice Data, but it does not allow
e.g. Enter Invoice Data. Recieve Invoice as it invalidates the condition constraint.
As a help for the user, the graphical editor shows a ”no entry” sign at the event Enter
Invoice Data to indicate that it is not enabled.

(a) The Condition Relation (b) The Response Relation

Fig. 2. The Condition and Response relations

In Fig. 2(b) is given an example of the response relation (depicted graphically as
•→), which states that if Enter Invoice Data happens, Responsible Approval even-
tually has to happen in order for the workflow to be completed. Note that this relation
is not counting, i.e., it is not required to execute Responsible Approval once for each
execution of Enter Invoice Data. In other words, the response relation offers the flex-
ibility of approving one to many invoices just by executing Responsible Approval
once. Examples of completed runs in the process represented by the graph in Fig. 2(b)
are: Enter Invoice Data.Responsible Approval, and Enter Invoice Data.Enter In-
voice Data.Responsible Approval. An example of a run which is possible, but not
completed is Enter Invoice Data.Responsible Approval.Enter Invoice Data as the
last Enter Invoice Data is not (yet) followed by Responsible Approval.

In [6] we extended DCR Graphs to allow nested events as shown in Fig. 3. Nesting
both acts as a logical grouping and as a shorthand notation for having the same relation
between many events. For instance, the response relation from Enter Invoice Data in
Fig. 3 represents a response relation from Enter Invoice Data to all three sub events of
the super event Approval.

Adding nesting to the model, made it apparant, that it is useful to be able of express,
that an event can not happen when a nested subgraph is not in an accepting state. We
call this relation the milestone relation (depicted graphically as →�), and is exemplified
shown in Fig. 3 from the Approval super event to Pay Invoice. The meaning is, that
after doing Enter Invoice Data, we will have a pending response on each approval task
and therefore we can’t execute Pay Invoice until each of these tasks has been done.
Note that in contrast to the condition relation, by using a combination of the response
and milestone relations we can require approval again after it was already given.

Finally, the exclude relation (depicted graphically as →%) and its dual the include
relation (depicted graphically as →+) allows for dynamically respectively exclude and
include events from the workflow. Fig. 4(a) shows a typical example of the use of the
dynamic include and exclude relations to model exclusive choice between events: The

Exformatics Declarative Case Management Workflows as DCR Graphs 343

Fig. 3. Example of Nesting and the Milestone Relation

responsible may choose between approving or request a change to the invoice. The
choice is modelled by letting the two events mutually exclude each other. If a change
is requested, the administration is required to enter data again (because of the response
relation from Request Change to Enter Invoice Data), and when data is entered
again, the two events nested under the Approval super event is included again because
of the include relation from Enter Invoice Data to Approval. This example illustrates
the flexible nature of DCR Graphs in process modeling, as compared to the typical
BPMN procedural model in Fig. 4(b). In the DCR Graph, invoice data can be entered
any number of times before approval, and changes can also be requested any number of
times before data is entered again, while the BPMN process only allows every task to
be executed once for each cycle in the loop. It is of course possible to model the more
flexible execution in BPMN, but not in a natural way.

2.1 Execution Semantics

The runtime state of a DCR Graph is defined by a marking of the graph, formally given
by 3 finite sets of events representing respectivly which events are executed (at least
once), pending responses and included. By keeping track of which events have been
executed at least once in the executed set, we can determine which conditions have been
satisfied. The pending responses set keeps track of which events need to be executed
before the workflow is in a completed state. Finally, the included set keeps track of the
currently included events. An event is enabled for execution if it is currently included

344 T. Slaats et al.

(a) Modeling choice with include and exclude (b) Imperative BPMN model

Fig. 4. Declarative DCR Graph and imperative BPMN model of invoice approval

(i.e. part of the included set in the current marking) and all of its conditions are either
executed or excluded (i.e all condition events that are currently included should be part
of the executed events set) and no event related to it by the milestone relation is included
and a pending response. A (finite or infinite) execution is defined to be accepting, when
no event from some point stays included and as a pending response forever without
eventually being executed.

The excluded events are graphically depicted by a dashed border, the executed events
by a green checkmark at the event, and pending response events by a red exclamation
mark. This is shown in Fig. 5, where Enter Invoice Data and Request Change are
executed, and thereby Responsible Approval is a pending response, but it is also ex-
cluded and Enter Invoice Data is a pending response too.

A DCR Graph contains an initial marking defined as part of the graph. For example,
a graph may have a number of initial pending responses (representing tasks that are
required to be executed mandatorily for the workflow to be considered finished), or
initially excluded events.

2.2 DCR Graphs with Global Data

In one of the more recent extensions to DCR Graphs [12], we have introduced the
concept of global data. In DCR Graphs, data is modelled as a global store that contains
a number of named variables. The variables are mapped to events so that we can specify
which events can read/write to specific variables. Furthermore, guards are defined as
boolean expressions over the values of variables. Guards can be placed on both events
and relations. If a guard is assigned to an event, then as long as the guard does not
evaluate to true, the event is blocked from execution. On the other hand, having a guard
on a relation means that the relation is only evaluated when the guard evaluates to true,
in other words the condition constraint only needs to hold and an event is only recorded
as a response while the guard holds.

Exformatics Declarative Case Management Workflows as DCR Graphs 345

Fig. 5. Example marking after executing Enter Invoice Data followed by Request Change

For example, the response between Enter Invoice Data and Manager Approval in
Fig 6 is only recorded when the amount of the invoice is equal or larger than 1000 euro,
if the amount is lower than 1000 euros, executing Enter Invoice Data will not make
Manager Approval a pending response.

3 Exformatics Workflows as DCR Graphs

Before the introduction of (Nested) DCR Graphs, the Exformatics workflow model
consisted of tasks grouped under phases. There was always one active phase, which
could be changed manually by the user, tasks belonging to that phase were then enabled.
When introducing DCR Graphs we chose to map tasks to events and to maintain the
phase model, mapping it to a single-level nesting structure. We removed the practice
that tasks were enabled when their phase was active and allowed the active phase to
be changed automatically through the execution of certain tasks. In the new model, the
active phase no longer controls the workflow but instead just gives a general indication
of the state that the case is in. We introduced all five relations of DCR Graphs as ways of
constraining the flow of tasks. One distinction from the traditional DCR Graph approach
is that tasks in the Exformatics system are normally only done once. As a result, when
a task is executed, it is not shown in the list of tasks that need to be done anymore.
However, unless it is exlicitely excluded through the exclude relation it remains possible
to open the task again manually and do it again, so the execution semantics remains
faithful to the DCR Graphs semantics.

346 T. Slaats et al.

Fig. 6. Exformatics Invoice Workflow as a DCR Graph

Fig. 6 shows a workflow that is being used internally by Exformatics and has been
modelled using DCR Graphs. It describes how to handle the process of receiving
invoices.

The workflow contains five roles: 1) the administration department (Adm), which is
responsible for receiving the invoice, scanning it and creating an invoice case . 2) The
invoice responsible (Res), which is responsible for the invoice, usually because they are
the person that bought the items that the invoice concerns, they are expected to check
and approve the invoice. 3) The manager of the responsible (Man), whose approval
may be needed in certain circumstances. 4) The CEO (CEO) who may also need to
give approval in certain exceptional cases. And finally 5) the finance department (Fin),
which takes care of paying the invoice and confirming that payment has succeeded.
The tasks are divided into three phases, the Initial Phase which contains the tasks of
the administration department, the Approval Phase which consists of the approval
tasks and the Payment Phase which contains the tasks that handle the payment of the
invoice.

Exformatics Declarative Case Management Workflows as DCR Graphs 347

The process starts when an invoice is received by the administration department,
because Exformatics wants to keep all their documents in an electronic format it is re-
quired (through the response relation from Receive Invoice to Scan Invoice) that the
invoice is scanned. The administration department is also required to decide if the in-
voice should be entered into the system (sometimes fake or wrong invoices are received
which can be easily filtered out at first sight, for example because they are addressed to
a non-existent employee). If they decide that the invoice appears legit then they enter all
relevant data into the system, in particular the amount the invoice is for, which is used
by the workflow system to determine whose approval is needed for the invoice. The re-
sponsible for the invoice should always approve the invoice (modelled by an unguarded
response relation), if the amount of the invoice is higher then 1000 euros, approval from
the responsible’s manager is required as well (modelled by a response relation with the
guard amount ≥ 1000). In special cases where the amount is higher then 20000 euros,
approval from the CEO of the company is required as well.

It is possible that data is entered again, for example because a mistake was made
by the administration department, or because a correction on the invoice was received,
in this case new approvals will be required. When all necessary approvals have been
received the invoice can be paid, this is modelled through the milestone relation from
the Approval Phase to the task Pay Invoice, which means that Pay Invoice can not
be done while there are pending responses in the Approval Phase. Once payment is
confirmed, the invoice case should be closed, modelled through an exclusion relation
from Confirm Payment to all three phases. There are five conditions in the workflow:
first of all, Receive Invoice is required before the administration department can exe-
cute Enter Invoice Data or Scan Invoice. Enter Invoice Data is required before any
approval can be given and all of the tasks in the Initial Phase should be done before
any of the tasks in the Payment Phase can be done. Finaly, we have to pay the invoice
before we can confirm payment.

4 Tool Support

Several tools have been developed at Exformatics to design and execute DCR Graphs
internally or externally when presenting DCR Graphs at seminars or when interacting
with customers. First of all, to facilitate the exchange of process descriptions between
the tools developed by Exformatics and the tools being developed at IT University of
Copenhagen, we defined a common XML format, which we will show in the first sub-
section. Secondly we developed a set of webservices that provide functionality for the
execution, verification, storage and visualization of DCR Graphs, we named this set of
services the Process Engine. Finally, as already mentioned above, we developed a stand-
alone graphical editor to support the visual modelling and simulation of DCR Graphs,
called the DCR Graphs Editor, which has also been used for teaching at a bachelor level
course on Business Processes and IT at the IT University of Copenhagen.

Fig. 7 gives an overview of these tools and how they interact with eachother and
the Exformatics ECM. The Process Engine is central to our tools and is used by the
ECM to execute, verify and visualize workflows. The DCR Graphs Editor allows for
execution of single steps by itself, but also uses the Process Engine for verification

348 T. Slaats et al.

Process Engine
http://processengine.exformatics.net

Execution Repository

Visualization Verification

Other Applications
at Customer

Exformatics ECM

DCR Graphs
XML Format

DCR Graphs
XML Format

DCR Graphs
XML Format

DCR Graphs Editor

Fig. 7. Overview of the Exformatics DCR Graphs Tools

of DCR Graphs. Finally the purpose of the Process Engine is to be easily plugged in
to other case management solutions as well, so that we may provide only workflow
functionalities such as execution, verification, visualization and storage to customers
without them being required to adopt the full Exformatics ECM package.

4.1 DCR Graphs XML Format

In listing 1 we give an example of the XML format for describing DCR Graphs.
The xml file consists of two main parts: the specification of the DCR Graph and the

runtime state of the DCR Graph. The specification is split up into a section decribing
resources and section describing constraints. The resource section contains subsections
for events (possibly nested), labels, a mapping from labels to events, variables, expres-
sions and variable acccess rights. The constraint section contains five subsections for
the DCR Graph relations. The runtime section contains a subsection for the marking,
containing the set of executed events, pending responses and included events, and a
subsection for the state of the globalstore, which contains the values assigned to the
variables in the current state.

Listing 1. Overview of DCR Graph XML Format
<?xml v e r s i o n = ” 1 . 0 ” encod ing = ” u t f 8 ” ?>
<d c r g r a p h>

<s p e c i f i c a t i o n>
<r e s o u r c e s>

<e v e n t s>
<e v e n t i d =” I n i t i a l Phase ”>

<e v e n t i d =” E n t e r I n v o i c e Data ” />
. . .

</ e v e n t>

Exformatics Declarative Case Management Workflows as DCR Graphs 349

. . .
</ e v e n t s>
< l a b e l s>

< l a b e l i d =”CEO Approva l ” />
. . .

</ l a b e l s>
<l a b e l M a p p i n g s>

<l abe lM app ing e v e n t I d =”CEO Approva l ” l a b e l I d =”CEO Approva l ” />
. . .

</ l a b e l M a p p i n g s>
<v a r i a b l e s>

<v a r i a b l e i d =” amount ” v a l u e =”0” />
</ v a r i a b l e s>
<e x p r e s s i o n s>

<e x p r e s s i o n i d =” g te1000 ” v a l u e =” amount >= 1000 ” />
. . .

</ e x p r e s s i o n s>
<v a r i a b l e A c c e s s e s>

<r e a d A c c e s s e s>
<r e a d A c c e s s e v e n t I d =” E n t e r I n v o i c e Data ” v a r i a b l e I d =” amount ” />
. . .

</ r e a d A c c e s s e s>
<w r i t e A c c e s s e s>

<w r i t e A c c e s s e v e n t I d =” E n t e r I n v o i c e Data ” v a r i a b l e I d =” amount ” /
>

</ w r i t e A c c e s s e s>
</ v a r i a b l e A c c e s s e s>

</ r e s o u r c e s>
<c o n s t r a i n t s>

<c o n d i t i o n s>
<c o n d i t i o n s o u r c e I d =” Rece ive I n v o i c e ” t a r g e t I d =” Scan I n v o i c e ” />
. . .

</ c o n d i t i o n s>
<r e s p o n s e s>

<r e s p o n s e s o u r c e I d =” E n t e r I n v o i c e Data ” t a r g e t I d =” Manager Approva l
” e x p r e s s i o n I d =” g te1000 ” />

. . .
</ r e s p o n s e s>
<e x c l u d e s>

<e x c l u d e s o u r c e I d =” Confirm Payment ” t a r g e t I d =” Approva l Phase ” />
. . .

</ e x c l u d e s>
<i n c l u d e s />
<m i l e s t o n e s>

<m i l e s t o n e s o u r c e I d =” Approva l Phase ” t a r g e t I d =” Pay I n v o i c e ” />
</ m i l e s t o n e s>

</ c o n s t r a i n t s>
</ s p e c i f i c a t i o n>
<r u n t i m e>

<marking>
<e x e c u t e d />
<i n c l u d e d>

<e v e n t i d =” Approva l Phase ” />
. . .

</ i n c l u d e d>
<pend ingRes pons es />

</ marking>
<g l o b a l S t o r e>

<v a r i a b l e i d =” amount ” v a l u e =”0 ” />
</ g l o b a l S t o r e>

</ r u n t i m e>
</ d c r g r a p h>

Next to the standard elements described above, it is possible to insert custom ele-
ments at all nodes of the XML tree. This allows one to add additional data for specific
tools that is not required for the formal definition of a DCR Graph. Examples of these

350 T. Slaats et al.

are the roles (they are not a part of the formal model as they are not necesairily interest-
ing for applications in other domains than BPM) and the location of events when drawn
in the visual editor as shown in listing 2.

Listing 2. Example of how custom data can be insterted into the XML format
<?xml v e r s i o n =” 1 . 0 ” encod ing =” u t f 8 ” ?>
<e v e n t i d =”CEO Approva l ”>

<custom>
<v i s u a l i z a t i o n>

<l o c a t i o n xLoc=” 449 ” yLoc=” 123 ” />
</ v i s u a l i z a t i o n>

<r o l e s>
<r o l e>CEO</ r o l e>

</ r o l e s>
</ cus tom>

</ e v e n t>

4.2 Process Engine

Currently the Process Engine consists of three main webservices: the first for execution,
the second for storage of DCR Graphs and the third for visualization of DCR Graphs.
The execution service contains methods for executing and verifying DCR Graphs. The
execution methods support the global data model, verification consists of checking for
deadlock and livelock, but only for standard DCR Graphs without data. In the future
we plan to extend the verification aspect and move it to its own service. The repository
service for storage of DCR Graphs is currently very limited and mainly a proof of
concept, it is planned to extend this in the future so it can be used to support sharing
of workflows between cooperating organizations. The visualization service can be used
to automatically layout and draw DCR Graphs, currently limited to the basic model
without guards on data. All of these services are used by the Exformatics ECM for
modelling and executing workflows.

4.3 DCR Graphs Editor

The DCR Graphs Editor is a graphical editor for modelling and simulating DCR Graphs.
There are two main screens in the tool: in the Process Model screen one can design DCR
Graphs by drawing events, changing the name, label and initial marking, adding roles
and adding relations between events. In he Process Simulation Screen one can simulate
DCR Graphs by clicking on the events that one wants to execute, the tool will give
feedback on the current trace of executed events, which events can be executed and if
the DCR Graph is in an accepting state. The tool can also interact with the verifica-
tion methods of the Process Engine to check DCR Graphs for deadlock and livelock.
It currently supports nested DCR Graphs including the milestone relation and work is
underway to also add support for the global data model. All the images of DCR Graphs
in this paper come directly from the editor.

5 Related Work

As mentioned in the introduction Declare [15, 19] was the first serious attempt at cre-
ating a declarative notation for describing business processes. Tool support for Declare

Exformatics Declarative Case Management Workflows as DCR Graphs 351

consists of a design tool, a server and corresponding user client for executing Declare
processes. The designer is similar to the DCR Graphs Editor, allowing modellers to
draw and verify Declare models (including a notion of data) by using a graphical user in-
terface. The server is similar to the execution webservices contained in the Process En-
gine, allowing execution of Declare models by client programs. Finally the user client
is somewhat comparable to the simulation part of the DCR Graphs Editor, although it
offers more features to support the user in the execution of the process. These tools have
been in development since the inception of the Declare language and therefor have seen
a fair amount of iterations and reached a high level of maturity. The DCR Graphs tools
on the other hand can be seen as being an advanced prototype version (with the most
mature parts, such as the execution engine, currently being brought into production),
where new features are still frequently being added. Both Declare and DCR Graphs
are being included as extensions to the newest version of CPN Tools [20], for Declare
it is the intention that this will become the main vehicle for further developments on
the language and that no further features will be added to the previously mentioned
tools. Declare also offers extensive support for analysis of Declare logs through ProM
and support for process mining through the Declare Miner [11]. At the moment nothing
comparable exists for DCR Graphs, however there is an interest in investigating process
mining on running instances of DCR Graphs, particularly in the context of adaptive pro-
cesses, with the goal of identifying common adaptation patterns. DCR Graphs also offer
extended tool support for verification, allowing users to specify properties to be verified
as a DCR Graph and then verifying processes modelled as DCR Graphs against these
properties [13]. These tools are being developed at the IT University of Copenhagen
and are therefor not described in detail this paper, however since these tools use the
common XML format described in sec. 4.1, the Exformatics tools can easily interact
with them.

The business artifacts [14] model developed by IBM Research combines both data
and process aspects in a holistic manner. An artifact type contains both an information
model (data for business objects) and a lifecycle model, which describes the possible
ways a business entity might progress through and responds to events and external
activities. A declarative approach using Guard-Stage-Milestone (GSM model) [9] based
on ECA(Event Condition Action)-like rules for specification of life cycles on business
artifacts has been developed in the recent years. Compared to DCR Graphs, the GSM-
model has a richer support for data, but also a more complex semantics that does not
capture acceptance criteria for infinite executions.

6 Evaluation

This work provides an initial report on tools being developed at Exformatics A/S ex-
amplified by a use-case being used internally within the company itself. As such no
concrete quantitative evaluation of the usefulness and commercial viabilty of the tools
exists yet. However, DCR Graphs as a modelling paradigm and the Exformatics tools
themselves have already seen both commercial and academic use. As a modelling
paradigm, DCR Graphs were applied in a commercial project involving Exformat-
ics and Landsorganisationen i Danmark (LO), the umbrella organisation for Danish

352 T. Slaats et al.

unions. During this project DCR Graphs were used to model the IT system that Ex-
formatics developed for LO [1], but the lack of tool support for design and simulation
limited its use. In [5] we showed how DCR Graphs can be used to model a distributed
healthcare process encountered in a Danish hospital. DCR Graphs and the tools are cur-
rently employed in a project jointly with a danish research foundation for modelling the
case management process for handling funding applications from submission to decis-
sion. All of these cases have been demonstrated for industry at seminars with positive
feedback resulting in several requests for follow up meetings. Finally, Exformatics has
recently started a commercial project for the Danish Cancer Society, including the de-
velopment of an invoice approval solution based on the example used in this paper and
using the Process Engine for execution of the workflows in the solution.

In the recent paper [17] we give the first empirical evaluation on what practitioners
think of declarative modelling based on a study performed at a Dutch provider of ECM
software. During the study some of those participating were presented Declare, while
others were presented DCR Graphs. While the overall results of the study point in the
direction of a hybrid model combining the imperative and declarative paradigms, it was
also clear that the declarative paradigm by itself was percieved as useful for the right
application domains.

In the Spring 2012 and 2013, the DCR Graphs model has been introduced in a bache-
lor course in IT and Business Process Modelling at the IT University of Copenhagen [2].
Each year, the course was followed by about 40 students, and the DCR Graph model
was introduced for capturing process requirements, along with BPMN 2.0 for modelling
processes imperatively. The students worked in groups, modelling their own processes
identified in a field study performed in a previous course. They first modelled the pro-
cess in BPMN and subsequently were asked to model the requirements in DCR Graphs
and compare the models. They all experienced that the initial BPMN was good at de-
scribing a procedure of how to carry out the process. However, when turning to the DCR
Graph model, they also realized that in most cases their BPMN model only described a
fairly rigid, happy path through the process. In most cases it took the group two itera-
tions to change their mindset to model requirements instead of the procedure. This may
however be influenced by the fact, that they did no longer have access to the company
in which they had performed the field study. Only in 2013, the DCR Graphs editor was
available, and we experienced that it made it much easier for the students to learn the
notation and semantics, and to appreciate its use for modelling process requirements.
However, it was also clear that it still could be difficult for some of the students to
visualize the possible paths of the process specified as DCR Graphs.

7 Conclusion

In this paper, we have given an informal introduction to DCR Graphs and briefly de-
scribed current tool support, and how DCR Graphs and the tools are being used by
Exformatics and in teaching at ITU university to model workflows.

Even though the uses in practice and teaching so far is limited, it has been very en-
couraging. At presentations for industry the models have generally been appreciated
and easily understood. At the course the students were able to apply DCR Graphs to

Exformatics Declarative Case Management Workflows as DCR Graphs 353

model processes obtained from their own field studies in a previous course. They re-
ported back that using the simulation facility in the tool was a great help to understand
both the constraints of their own process and DCR Graphs as a model language.

As part of the future work, we plan to further develop the tools, making them more
easily accessible and user-friendly to process modelers, based on the usability studies
and feedback from students and clients of Exformatics. Furthermore, we also intend
to upgrade the tools to support some of the latest extensions on DCR Graphs such as
time [7], a distributed data model and more advanced verification techniques. Simi-
larly, we are also working on extending the theory of DCR Graphs to provide a behav-
ioral type system for cross-organizational workflows as initiated in [3]. In the future we
also want to research the challenge of developing business processes for knowledge-
intensive and adaptive case management processes as initiated in [13], which require
more focus on evolutionary process data and adaptability of the process during
execution.

References

1. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Designing a cross-organizational case man-
agement system using dynamic condition response graphs. In: 2011 15th IEEE International
Enterprise Distributed Object Computing Conference (EDOC), October 2-September 2, pp.
161–170 (2011)

2. Hildebrandt, T.: It and business process modelling course. IT University of Copenhagen
(2013), https://blog.itu.dk/BIMF-F2013/

3. Hildebrandt, T., Carbone, M., Slaats, T.: Rsvp: Live sessions with responses. In: Proceedings
of BEAT 2013, 1st International Workshop on Behavioural Types (2013)

4. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as distributed dynamic
condition response graphs. In: Post-Proceedings of PLACES 2010 (2010)

5. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Declarative modelling and safe distribution of
healthcare workflows. In: International Symposium on Foundations of Health Information
Engineering and Systems, Johannesburg, South Africa (August 2011)

6. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response graphs. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 343–350. Springer, Heidel-
berg (2012)

7. Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-organizational
workflows as timed dynamic condition response graphs. Journal of Logic and Algebraic
Programming, JLAP (May 2013),
http://dx.doi.org/10.1016/j.jlap.2013.05.005

8. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as distributed dy-
namic condition response graphs. In: Honda, K., Mycroft, A. (eds.) PLACES. EPTCS,
vol. 69, pp. 59–73 (2010)

9. Hull, R.: Formal study of business entities with lifecycles: Use cases, abstract models, and
results. In: Bravetti, T., Bultan, M. (eds.) 7th International Workshop on Web Services and
Formal Methods. LNCS, vol. 6551, Springer, Heidelberg (2001)

10. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath III, F.T., Hobson, S., Linehan, M.,
Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing the guard-stage-milestone
approach for specifying business entity lifecycles. In: Proc. of WS-FM 2010, pp. 1–24.
Springer, Heidelberg (2011)

https://blog.itu.dk/BIMF-F2013/
http://dx.doi.org/10.1016/j.jlap.2013.05.005

354 T. Slaats et al.

11. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-Guided Discovery of Declarative
Process Models. In: 2011 IEEE Symposium on Computational Intelligence and Data Mining,
IEEE (2011)

12. Mukkamala, R.R.: A Formal Model For Declarative Workflows - Dynamic Condition Re-
sponse Graphs. PhD thesis, IT University of Copenhagen (March 2012) (forthcomming)

13. Mukkamala, R.R., Hildebrandt, T., Slaats, T.: Towards trustworthy adaptive case manage-
ment with dynamic condition response graphs. In: Proceedings of the 17th IEEE Interna-
tional EDOC Conference, EDOC 2013 (2013)

14. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Syst. J. 42, 428–445 (2003)

15. Pesic, M., Schonenberg, M.H., Sidorova, N., Van Der Aalst, W.M.P.: Constraint-based work-
flow models: change made easy. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS,
vol. 4803, pp. 77–94. Springer, Heidelberg (2007)

16. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes
management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp.
169–180. Springer, Heidelberg (2006)

17. Reijers, H.A., Slaats, T., Stahl, C.: Declarative Modeling — An Academic Dream or the
Future for BPM? In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp.
307–322. Springer, Heidelberg (2013)

18. Slaats, T.: Dcr graphs wiki. IT University of Copenhagen (2013),
http://www.itu.dk/research/models/wiki/index.php/
DCR Graphs Editor

19. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing be-
tween flexibility and support. Computer Science - R&D 23(2), 99–113 (2009)

20. Westergaard, M., Slaats, T.: Mixing Paradigms for More Comprehensible Models. In: Daniel,
F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 283–290. Springer, Heidel-
berg (2013)

21. Winskel, G.: Events in Computation. PhD thesis, Edinburgh University (1980)

http://www.itu.dk/research/models/wiki/index.php/DCR_Graphs_Editor
http://www.itu.dk/research/models/wiki/index.php/DCR_Graphs_Editor

Author Index

Agarwal, Shivali 251
Appel, Stefan 187

Baeyens, Tom 10
Baier, Thomas 17
Bose, Rantham Prabhakara

Jagadeesh Chandra 97
Buchmann, Alejandro 187
Buijs, Joos C.A.M. 33

Carmona, Josep 130
Carrera, David 65
Contractor, Noshir 1

de Leoni, Massimiliano 113
Dijkman, Remco 235
Dumas, Marlon 49, 81

Eid-Sabbagh, Rami-Habib 227
Ekanayake, Chathura C. 49
Eshuis, Rik 259

Fahland, Dirk 171
Fdhila, Walid 146
Freudenreich, Tobias 187
Frischbier, Sebastian 187

Gal, Avigdor 203
Gao, Xiang 4
Garćıa-Bañuelos, Luciano 49, 81

Hewelt, Marcin 227
Hildebrandt, Thomas 339
Hull, Richard 259

Khalaf, Rania 65
Klinkmüller, Christopher 211
Knuplesch, David 146
Kriglstein, Simone 219
Kumar, Akhil 235

Lakshmanan, Geetika T. 323
La Rosa, Marcello 49
Lee, Juhnyoung 251
Leopold, Henrik 203, 211

Liu, Rong 251
Ludwig, André 211

Maggi, Fabrizio Maria 81, 97
Marquard, Morten 339
Mendling, Jan 17, 203, 211
Meyer, Andreas 171
Montali, Marco 81, 155
Mukkamala, Raghava Rao 339
Munoz-Gama, Jorge 130
Muthusamy, Vinod 65

Nutt, Werner 155

Poggi, Nicolas 65
Pufahl, Luise 171
Puhlmann, Frank 291

Razniewski, Simon 155
Reichert, Manfred 146
Reijers, Hajo A. 275, 307
Rinderle-Ma, Stefanie 146, 219
Rozsnyai, Szabolcs 323

Sagi, Tomer 203
Sindhgatta, Renuka R. 251
Slaats, Tijs 283, 307, 339
Song, Minseok 235
Stahl, Christian 307
Sun, Yutian 259

Thiemich, Christian 291

Vacuĺın, Roman 259
van der Aa, Han 275
van der Aalst, Wil M.P. 33, 97, 113, 130
Vanderfeesten, Irene 275
van Dongen, Boudewijn F. 33

Wallner, Günter 219
Wang, Fei 323
Weber, Ingo 211
Weidlich, Matthias 203
Weske, Mathias 171, 227
Westergaard, Michael 283

	Preface
	Organization
	Table of Contents
	Keynotes
	Moneyball for nanoHUB: Theory-Driven and Data-Driven Approaches to Understand the Formation and Successof Software Development Teams
	Towards the Next Generation Intelligent BPM –In the Era of Big Data
	1 From BPM to Intelligent BPM
	2 A Big Data Perspective on iBPM
	3 Embrace the Idea of iBPM in the Era of Big Data
	References

	BPM in the Cloud
	1 Hardware, Installation and Hosting
	2 Security, Firewall and Tenants
	3 Easier B2B Collaboration
	4 Eliminating the Upfront Investment
	5 New Category of Clients: End Users
	6 Changing Dynamics between Business and IT
	7 From Collaboration to Processes
	8 The Lifecycle of a Process
	9 Capture the Experience
	10 Adding Custom Code into a Cloud Process
	11 Conclusion

	Process Mining
	Bridging Abstraction Layers in Process Miningby Automated Matching of Events and Activities
	1 Introduction
	2 Background
	2.1 Problem Description
	2.2 Preliminaries

	3 Abstracting Event Logs Using Automatic Matching
	3.1 Annotation of Process Model Activities
	3.2 Automatic Matching of Events and Activities
	3.3 Building Context-Sensitive Event-to-Activity Mappings
	3.4 Clustering Events to Activity Instances

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Mining Configurable Process Models from Collectionsof Event Logs
	1 Introduction
	2 Related Work
	3 Mining a Configurable Process Model
	3.1 Approaches
	3.2 The ETM Algorithm
	3.3 Configuring Process Trees

	4 Running Example
	4.1 Experimental Setup
	4.2 Approach 1: Merge Individually Discovered ProcessModels
	4.3 Approach 2: Merge Similar Discovered ProcessModels
	4.4 Approach 3: First Discover a Single Process Model Then Discover Configurations
	4.5 Approach 4: Discover Process Model and Configurations at the Same Time
	4.6 Comparison of the Four Approaches

	5 Case Study
	6 Conclusion
	References

	Slice, Mine and Dice: Complexity-AwareAutomated Discovery of Business Process Models
	1 Introduction
	2 Background and RelatedWork
	2.1 Automated Process Discovery Techniques
	2.2 Hierarchical Trace Clustering
	2.3 Clone Detection in Process Models
	2.4 ProcessModel Merging

	3 The SMD Technique
	4 Evaluation
	5 Conclusion
	References

	Business Process Mining from E-CommerceWeb Logs
	1 Introduction
	2 Background and Related Work
	3 Application Scenario and Dataset
	4 Web Sessions as Process Models
	4.1 Classifying URLs into Logical Tasks
	4.2 Automating Page Classification

	5 Process Mining for Customers
	5.1 Saturating the Dataset with Customers
	5.2 Clustering Sessions
	5.3 Prior Knowledge

	6 Discussion of Results
	7 Conclusions
	References

	Discovering Data-Aware Declarative ProcessModels from Event Logs
	1 Introduction
	2 Background
	2.1 Declare: Some Basic Notions
	2.2 Discovery of Data Conditions

	3 Discovering Data-Aware Declare Models
	3.1 LTL-FO Semantics for Declare
	3.2 Discovery Algorithm

	4 Validation
	5 Related Work
	6 Conclusion and Future Work
	References

	Enhancing Declare Maps Based on Event Correlations
	1 Introduction
	2 Preliminaries
	2.1 Event Logs
	2.2 Declare: Some Basic Notions

	3 Correlations as a Means of Enhancing Declare Maps
	4 Discovering Correlations from Event Logs
	5 Experiments and Results
	6 Related Work
	7 Conclusions and Future Work
	References

	Conformance Checking
	Aligning Event Logs and Process Models for Multi-perspective Conformance Checking:An Approach Based on Integer Linear Programming
	1 Introduction
	2 Petri Nets with Data
	3 Alignments of Event Logs and Process Models
	4 The ILP-Based Technique and Diagnostics
	4.1 Construction of the ILP Problem
	4.2 A Helicopter View on the Optimal Alignments

	5 Implementation and Experiments on Real Life Event Logs
	6 Conclusion
	References

	Conformance Checking in the Large:Partitioning and Topology
	1 Introduction
	2 Preliminaries
	3 Partitioning Conformance Diagnosis
	4 Topological Graph of a Partitioning
	5 RPST Simplifications
	6 Experimental Results
	7 Conclusions and Future Work
	References

	On Enabling Complianceof Cross-Organizational Business Processes
	1 Introduction
	2 Example
	3 Compliability Checking
	4 Related Work
	5 Discussion and Outlook
	References

	Process Data
	Verification of Query Completeness over Processes
	1 Introduction
	2 Example Scenario
	3 Formalization
	3.1 Real-World Databases and Information System Databases
	3.2 Query Completeness
	3.3 Real-World Effects and Copy Effects
	3.4 Quality-Aware Transition Systems
	3.5 Paths and Action Sequences in QATSs
	3.6 Completeness over QATSs

	4 Verifying Completeness over Processes
	4.1 Design-Time Verification
	4.2 Runtime Verification
	4.3 Dimension Analysis
	4.4 Complexity of Completeness Verification

	5 Conclusion
	References

	Modeling and Enacting Complex Data Dependenciesin Business Processes
	1 Motivation
	2 Data Modeling in BPMN
	3 Extending BPMN Data Modeling
	3.1 Modeling Data Dependencies in BPMN
	3.2 Example

	4 Executing Data-Annotated BPMN Models
	4.1 ProcessModel Semantics
	4.2 Deriving Database Queries from Data Annotations
	4.3 Implementation

	5 Related Work
	6 Conclusion
	References

	Event Stream Processing Unitsin Business Processes
	1 Introduction
	2 Event Stream Integration Requirements
	2.1 Business Process Modeling Layer
	2.2 Workflow Execution Layer
	2.3 IT Infrastructure Layer

	3 Event Stream Processing Units
	3.1 Modeling Layer
	3.2 Workflow Execution Layer
	3.3 IT Infrastructure Layer

	4 Related Work
	5 Conclusion
	References

	Process Model Matching
	Predicting the Qualityof Process Model Matching
	1 Introduction
	2 Background
	3 Prediction for Process Model Matching
	3.1 Prediction Based on Process Properties
	3.2 Prediction Based on Similarity Measures
	3.3 Assessing the Confidence in Match Results

	4 Related Work
	5 Conclusion
	References

	Increasing Recall of Process Model Matchingby Improved Activity Label Matching
	1 Introduction
	2 Prior Research on Process Model Matching
	3 Activity Label Similarity
	4 Evaluation
	5 Conclusion
	References

	A Visualization Approach for DifferenceAnalysis of Process Models and Instance Traffic
	1 Introduction
	2 Related Work
	3 BasicConcepts
	3.1 Difference Model
	3.2 Instance Traffic

	4 Visualization Design and Implementation
	5 Use Case
	6 Conclusion
	References

	Process Architectures and Collaboration
	Business Process Architectures with Multiplicities:Transformation and Correctness
	1 Introduction
	2 Related Work
	3 Foundations
	3.1 Business Process Architectures
	3.2 Open Nets

	4 Transformation of BPA Multiplicities
	4.1 Multiplicity in BPA
	4.2 Transforming Business Process Architectures
	4.3 Composition and Analysis

	5 Conclusion
	References

	Optimal Resource Assignment in Workflowsfor Maximizing Cooperation
	1 Introduction
	2 Basic Framework
	3 Model – Optimal Work Assignment (OWA)
	4 A Greedy Heuristic and Results
	5 Automatically Computing the Compatibility Matrix
	6 Empirical Evaluation
	7 Further Extensions
	7.1 Varying Degrees of Required Cooperation
	7.2 Multiple Paths in a Process
	7.3 Optimization of Cost, Time, Resource

	8 Discussion and Related Work
	9 Conclusions
	References

	Accelerating Collaboration in Task Assignment Usinga Socially Enhanced Resource Model
	1 Introduction
	2 Socially Enhanced Resource Model
	3 Case Study – IT Incident Management
	3.1 IT Incident Management Process
	3.2 Resource Social Network, Communities, and Social Positions
	3.3 Using Resource Model in Task Assignment

	4 Related Work and Conclusion
	References

	Alternative Perspectives
	Splitting GSM Schemas: A Framework for Outsourcingof Declarative Artifact Systems
	1 Introduction
	2 Motivating Example
	2.1 The Guard-Stage-MilestoneModel of IGF
	2.2 Outsourcing GSM Schemas and Maintaining Privacy

	3 The Formal GSM Model
	4 GSM Splitting
	4.1 Splitting a Single B-Step
	4.2 Splitting with Multiple B-Steps

	5 Outsourcing with Hidden Rules
	5.1 Hidden Rules in a Centralized GSM Schema
	5.2 Hidden Rules in a Split GSM Schema

	6 Related Work
	7 Conclusions
	References

	Composing Workflow Activitieson the Basis of Data-Flow Structures
	1 Introduction
	2 Motivating Example
	2.1 Product Data Model
	2.2 Activity Design

	3 Activity Composition
	3.1 Data Element Importance
	3.2 Semantic Relatedness

	4 Conclusions
	References

	Mixing Paradigmsfor More Comprehensible Models
	1 Introduction
	2 Combined Models
	2.1 Analysis
	2.2 Implementation

	3 Conclusion
	3.1 Related Work
	3.2 Future Work

	References

	Industry Papers
	An Agile BPM Project Methodology
	1 Motivation
	2 Preliminaries: IBPM and Scrum
	2.1 The Integrated BPM Project Methodology
	2.2 The Scrum Software Development Framework

	3 Foundations of Agile BPM Projects
	4 An Agile BPM Methodology
	4.1 Agile BPM Meta Model
	4.2 Tools and Techniques

	5 Experience
	5.1 Service Portal Project
	5.2 Lessons Learned

	6 Related Work
	7 Conclusions
	References

	Declarative Modeling–An Academic Dreamor the Future for BPM?
	1 Introduction
	2 Declare and DCR Graphs by Example
	2.1 Declare
	2.2 DCR Graphs
	2.3 Comparison

	3 Method
	4 Quantitative Evaluation
	4.1 Demographics
	4.2 Validity and Reliability
	4.3 Results

	5 Qualitative Evaluation
	5.1 Modeling Assignment
	5.2 Opportunities for a Declarative Approach
	5.3 Requirements Concerning a Declarative/Hybrid Approach
	5.4 Use Cases for a Declarative/Hybrid Approach
	5.5 Limitations of a Declarative/Hybrid Approach
	5.6 Requirements Concerning Tool Support

	6 Research Agenda
	7 Conclusion
	References

	Investigating Clinical Care Pathways Correlatedwith Outcomes
	1 Introduction
	2 Related Work
	3 Identifying Care Pathways Correlated with Outcomes
	3.1 Segmenting Patients by Outcome and Hierarchical Renaming of Events
	3.2 Same Day Concurrent Event Collapse
	3.3 Frequent Pattern Mining
	3.4 Clustering
	3.5 Overlaying Frequent Patterns on a Mined Process Model

	4 Results and Discussion
	5 Conclusions
	References

	Exformatics Declarative Case ManagementWorkflowsas DCR Graphs
	1 Introduction
	2 DCR Graphs by Example
	2.1 Execution Semantics
	2.2 DCR Graphs with Global Data

	3 Exformatics Workflows as DCR Graphs
	4 Tool Support
	4.1 DCR Graphs XML Format
	4.2 Process Engine
	4.3 DCR Graphs Editor

	5 Related Work
	6 Evaluation
	7 Conclusion
	References

	Author Index

