
A Linguistic Graph-Based Approach

for Web News Sentence Searching

Kim Schouten and Flavius Frasincar

Erasmus University Rotterdam,
P.O. Box 1738, 3000 DR, Rotterdam,

The Netherlands
{schouten,frasincar}@ese.eur.nl

Abstract. With an ever increasing amount of news being published ev-
ery day, being able to effectively search these vast amounts of information
is of primary interest to many Web ventures. As word-based approaches
have their limits in that they ignore a lot of the information in texts, we
present Destiny, a linguistic approach where news item sentences are rep-
resented as a graph featuring disambiguated words as nodes and gram-
matical relations between words as edges. Searching is then reminiscent
of finding an approximate sub-graph isomorphism between the query
sentence graph and the graphs representing the news item sentences, ex-
ploiting word synonymy, word hypernymy, and sentence grammar. Using
a custom corpus of user-rated queries and sentences, the search algorithm
is evaluated based on the Mean Average Precision, Spearman’s Rho, and
the normalized Discounted Cumulative Gain. Compared to the TF-IDF
baseline, the Destiny algorithm performs significantly better on these
metrics.

1 Introduction

With news information volumes that are already overwhelming, a lot of the hu-
man mental activity is nowadays devoted to gathering, filtering, and consuming
news information. Ingenious as we humans are, we have developed crude ways of
filtering information quickly, using only a fraction of the time actually needed to
process all the information accurately. However, reading only the titles or reading
a text in a ‘quick-and-dirty’ fashion only goes so far. While the trade-off between
speed and accuracy can probably not be broken due to the limitations of our
brain, we do have the possibility to assist ourselves with tools in order to attain
results that were previously impossible. One of these possibilities we would like
to consider is to search for sentences, thus searching both within documents and
across documents.

Despite its simplicity, experience has shown that methods based on TF-
IDF [11], or similar metrics where a document is modeled as a bag of words,
performs good in many circumstances. In our evaluation we therefore use TF-
IDF as a baseline to test our approach against.

To better deal with the peculiarities of language, multiple approaches have
been proposed where text is not regarded as a simple collection of words, but

H. Decker et al. (Eds.): DEXA 2013, Part II, LNCS 8056, pp. 57–64, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



58 K. Schouten and F. Frasincar

where, instead, text is processed using natural language processing techniques to
extract valuable information that is implicitly encoded in its structure. A good
example is the Hermes News Portal [12], where news items are annotated, linking
found lexical representations to instances in an ontology. Queries, comprised of a
selected set of concepts from this ontology knowledge base, can then be executed
to get the news items pertaining to the entities in the query.

Unfortunately, there is an intrinsic problem with ontology-based approaches.
Because not text, but the ontology is used for search, concepts that are not
specified in the ontology cannot be found. An ontology thus makes the approach
domain dependent. Furthermore, since an ontology is formally specified, infor-
mation in the text has to be transformed to the logical form of the ontology. This
is known to be difficult and sometimes even impossible since there are sentences
that cannot be symbolized using first-order logic [1], and most ontologies use
propositional logic or description logic (e.g., the many variants of OWL) which
provides even less expressive power than first-order logic.

Thus, given that the meaning of language is both infeasible to extract and to
represent, one can aim for a processing level just below the semantic interpre-
tation phase [10]. Using the principles of homophonic meaning-representation
and compositionality coming from the philosophy of language [3], we can rep-
resent language as an interconnected collection of disambiguated words, where
the connections represent the grammatical relations that exist between words
in a sentence. The interconnected collection of disambiguated words can then
naturally be represented by a graph model, with nodes representing the words
and edges representing the grammatical relations.

When both the news items and the sentence describing the user query are
represented by the above type of graphs, the problem of searching for the query
answers in the set of news items becomes related to the sub-graph isomorphism
problem. While the standard graph isomorphism problem can be solved by Ull-
mann’s algorithm [13], there are some additional considerations that prevent us
from straightway applying it in this situation, the main one being that we are
not only interested in full matches, but also in partial matches. We therefore
want to measure the degree of similarity between the query sentence graph and
all news item sentence graphs, and return a ranked list of sentences in the set of
news items that are most similar to the user query.

2 The Destiny Framework

Based on the considerations in the previous section, our task is twofold: first, a
process needs to be developed to transform raw text into a graph-based represen-
tation using the grammatical relations between words, and second, an algorithm
needs to be devised that can compare graphs and compute a similarity score
to enable ranking news sentences with respect to a query sentence. The Des-
tiny framework is designed to incorporate both news item processing and query
execution on the set of processed news items.



A Linguistic Graph-Based Approach for Web News Sentence Searching 59

2.1 News Processing

To transform raw text into a dependencies-based graph representation, we have
developed a pipeline consisting of various components with their own specific
task. The same pipeline is used to process both news items and user queries. In
Figure 1, a schematic overview of the framework is given. On the left hand side,
the process of news item transformation is shown, while on the right hand side,
the process of user query transformation and searching is depicted, each using
the same processing pipeline in the middle.

News 
Repository

Natural Language Processing Pipeline

To
ke

ni
ze

r

Se
nt

en
ce

 
Sp

lit
te

r

Pa
rs

er

M
or

ph
ol

og
ic

al
 

An
al

yz
er

St
em

m
er

Gr
ap

h 
Bu

ild
er

News Item

Query

News Item 
Sentence Graphs

Search EngineResults of Search

W
or

d 
Se

ns
e 

Di
sa

m
bi

gu
at

io
n

Fig. 1. Conceptual representation of framework

The tokenizer and sentence splitter, both standard components in the GATE
framework [2], respectively, determine the word and sentence boundaries, after
which the Stanford Parser [8] can extract the dependencies between words as
well as the Part-of-Speech (POS) tags. Determining the lemma is then performed
by the morphological analyzer, also a standard GATE component, and Porter’s
stemmer [9] algorithm is used to get the word stems.

Based on the information gathered so far, a graph representation of the sen-
tence is built. To that end, we generate a node for each word, and connect these
nodes with directed edges built from the syntactical dependencies output of the
parser. Each node holds all information with respect to the word it represents:
the literal word, lemma, stem, and POS tag. Each edge is labeled with the type
of dependency that exists between these two nodes. As words in a sentence are
uniquely represented by a node, the same word appearing multiple times in a
sentence will result in multiple nodes, one node for each word.

Since words can have multiple senses, just comparing words based on their
lexical representation will result in significant information loss. Therefore, the
correct sense of each word has to be determined. This information is used in
the search algorithm when determining synonym or hypernym relations between
words. As the development of a word sense disambiguation algorithm is not
the core topic of this paper, we have chosen to implement an existing one: the
simplified Lesk algorithm [7].



60 K. Schouten and F. Frasincar

2.2 News Searching

We devise a recursive algorithm for news searching, and the first important
issue is to determine the starting point for the algorithm. As sentences can have
different structures it is often not possible to compare two sentences by simply
starting at the root. However, separately recursing from each node in the graph
is not efficient. To combine efficiency with accuracy, only nouns and verbs in
the query sentence graph are selected as they are the most probable good fits,
the intuition being that these words are most rich in information compared to
other types of words. Each one of these nodes in the query graph is used to find
similar nodes in the news item graphs using an index on the stem values of all
news item nodes. For each matching combination of a node in the query graph
and a similar node in the news item graph, the recursion is performed with that
combination as its starting point. All scores from the various recursion runs are
aggregated on a sentence level so that to each combination of query and news
item sentence, only the highest score is associated.

The algorithm compares the two graphs by starting to compare the two nodes
in the query graph and a news item graph, respectively. After that, it will com-
pare the nodes they are linked to, recursively traversing the graph until the
comparison is complete. Because a node can have multiple parents and multi-
ple children, the algorithm will try to compare edges for both directions. It is
however constrained to only compare edges having the same direction.

There are multiple parameters in this algorithm that can be optimized, for
example the various features that are used to assign similarity scores to nodes
and edges. This optimization has been done using a genetic algorithm which will
be explained later in this section. Besides feature weights, another parameter
is used to control whether the recursion should continue in a given direction. If
there is no direction that has a score (i.e., the similarity score of the edge and the
node it connects to, but not any further in the graph) higher than the threshold
as given by the parameter, than the algorithm will not recurse any further here.

Both the comparison of nodes and edges contributes to the total similarity
score. With features weighted by the genetic optimization, the similarity score
of a node or edge is the sum of all matching features. While edges only have one
feature, the label denoting the type of grammatical relation, nodes have multiple
features.

The five basic features are Boolean comparators on stem, lemma, the full word
(i.e., including affixes and suffixes), basic POS category, and detailed POS cat-
egory. The basic POS category consists of categories like noun, verb, adjective,
etc., while the detailed POS category uses inflections like verb tenses and noun
number (singular or plural) to create more fine-grained POS categories. These
rather simplistic comparators are complemented by a check on synonymy and
hypernymy using the senses acquired by the word sense disambiguation com-
ponent and WordNet. When words are in the same broad POS category (e.g.,
nouns, verbs, adjective, and adverbs), but do not have the same lemma, they
are possibly semantically related by synonymy or hypernymy.



A Linguistic Graph-Based Approach for Web News Sentence Searching 61

For synonymy, WordNet is used to check whether both words with that par-
ticular sense are in the same synset, where a synset is used by WordNet to group
words with the same meaning. For hypernymy, WordNet is used to find a relation
of generalization between the two words. Such a relation does not have to be
direct, but can also be indirect, involving multiple words as intermediary steps.
For example, ‘entity’ is the most generalized form of ‘car’, even though there are
multiple words between ‘entity’ and ‘car’ that are thus specializations of ‘entity’
but still generalizations of ‘car’. As the strength of the generalization is depen-
dent on the length of the path between the two words, we use the heuristic that
the score as determined by the genetic algorithm is divided by the length of the
shortest hypernymy path.

The last step in computing the similarity score of a node is an adjustment
factor, which is a value between zero and one denoting how regular this word
is in the news database. Being the inverse of the number of occurrences of this
word in the database, the factor will be zero for the most common word, one for
a word which occurs only once, and somewhere in between for the other cases.

2.3 Genetic Optimization

In order to optimize all parameters, a genetic algorithm was employed to attain
good parameter settings. In Table 1, an overview is given of all parameters and of
the weights assigned to it by the genetic algorithm when applied on the training
set. All weights have values in the interval of 0 and 255. The fitness function the
genetic algorithm maximizes is the normalized Discounted Cumulative Gain, one
of the metrics used in the evaluation. The genetic algorithm itself is a standard
implementation, using random initialization, cross-over, mutation, and elitist
selection.

Interestingly, there seem to be many local optima for this specific optimization
task, as the various cross-validation folds of the genetic algorithm, while roughly
resulting in the same performance, yielded very different weights. The many local
optima are probably due to the redundancy in natural language. For example,
much of the same information can be found in both the literal word, as well as in
the stem and the lemma. The same is true of a word and its context. Given the
context, one is often able to guess a missing word, which means that much of the
information in that word is already covered in the rest of the sentence. Given
this redundancy, it is of no surprise that the features available to the genetic
algorithm have a non-zero correlation.

In spite of the high standard deviations on the set of weights acquired by the
genetic algorithm, there are still some interesting patterns that can be discovered.
For example, we can see that the genetic algorithm clearly prefers the basic POS
tags over the detailed ones. Also interesting is the fact that the fully inflected
word is preferred over the lemma, which in turn is preferred over the stem of
the word. While the fully inflected word represents more information than the
lemma, just like the lemma represents more information than the stem, using
the inflected form of a word makes it less generalizable than using the stem or
even the lemma of a word.



62 K. Schouten and F. Frasincar

Table 1. Optimized features and their weights

feature one set avg stdev
of weights weights weights

search threshold 12.44 95.64 67.42
node: word 182.11 125.30 65.75

node: lemma 50.24 105.11 67.53
node: stem 78.18 82.54 76.20

node: basic POS tag 206.46 119.00 77.96
node: detailed POS tag 2.84 50.62 59.76

node: synonym 106.20 136.90 71.53
node: hypernym 232.88 129.65 64.97

edge: label 200.69 171.82 71.58
significance factor

importance 217.32 109.78 70.68

3 Evaluation

The results of Destiny are evaluated against a user-defined standard and com-
pared with a classical text-based search algorithm. To that end, we have created
a news database, containing 1019 sentences, originating from 19 news items, and
10 query sentences. Queries are constructed by rewriting sentences from the set
of news item sentences. In rewriting, the meaning of the original sentence was
kept the same as much as possible, but both words and word order were changed
(for example by introducing synonyms and swapping the subject-object order).
Each combination of a news sentence and a query was rated by at least three
different persons. This led to a data set of over 30,500 data points (10 queries ×
1019 sentences × at least 3 scores).

The various parameters of the search engine were optimized using a genetic
algorithm, as discussed in the previous section. Therefore, the data set was split
into a training and a test set. Because the results for each query are rather
limited, the data set was split on the query level: 5 queries and their results
went into the training set and the other 5 queries comprised the test set. To
allow for cross-validation, 32 different splits were made. Because some queries
have more results than others, all splits were checked to be balanced in the
number of query results. In this way, the quantity of search results could not
influence the quality of the results.

The baseline to compare our results against is the standard TF-IDF algorithm.
All TF-IDF sores are computed over the test set for each of the 32 splits. As TF-
IDF does not have to be trained, the training set was not used. Three metrics
are used to compare the Destiny algorithm with the TF-IDF baseline, which
are the Mean Average Precision (MAP), Spearman’s Rho, and the normalized
Discounted Cumulative Gain (nDCG) [6].

The main concern when using MAP is that it is Boolean with respect to the
relevance of a certain sentence given a query, while the user scores return a
gradation of relevance. This means that in order to compute the MAP, the user



A Linguistic Graph-Based Approach for Web News Sentence Searching 63

scores have to split into two groups: relevant and not relevant, based on some
cut-off relevance score c. Since this value is arbitrary, we have chosen to compute
an average MAP score over all possible values of c, from 0 to 3 with a step size
of 0.1.

The results, shown in Table 2, clearly show that Destiny significantly out-
performs the TF-IDF baseline. For nDCG and Spearman’s Rho, the p-value is
computed for the paired one-sided t-test on the two sets of scores consisting of
the 32 split scores for both Destiny and TF-IDF, respectively. For MAP, because
we computed the average over all cut-off values, the same t-test is computed over
30 cut-off values × 32 folds which results in 960 split scores.

Table 2. Evaluation results

TF-IDF mean score Destiny mean score rel. improvement t-test p-value

nDCG 0.238 0.253 11.2% < 0.001
MAP 0.376 0.424 12.8% < 0.001
Sp. Rho 0.215 0.282 31.6% < 0.001

4 Concluding Remarks

By developing and implementing Destiny, we have shown that it is feasible to
search news sentences in a linguistic fashion. Using a natural language process-
ing pipeline, both news items and queries are transformed into a graph repre-
sentation, which are then compared to each other using the degree of sub-graph
isomorphism as a measure for similarity. By representing text as a graph, the
original semantic relatedness between words in the sentence is preserved, thus
allowing the search engine to utilize this information.

Words, represented as nodes in the graph, are compared not only lexically, but
also semantically by means of a word sense disambiguation algorithm present
in the natural language processing pipeline. This allows for checks on both syn-
onymy and hypernymy between words. The Mean Average Precision, Spearman’s
Rho, and normalized Discounted Cumulative Gain achieved by Destiny are sig-
nificantly better than the scores obtained from the TF-IDF baseline.

As future work we would like to improve the accuracy of the search results by
adding named entity recognition and co-reference resolution. The graph-based
approach from [5] seems especially suitable for co-reference resolution. Further-
more, we would like to investigate the benefits of using a graph edit distance [4]
measure, to mitigate problems with varying graph structures which are now not
processed correctly.

Acknowledgement. The authors are partially supported by the Dutch national
program COMMIT.



64 K. Schouten and F. Frasincar

References

1. Barwise, J., Cooper, R.: Generalized Quantifiers and Natural Language. Linguistics
and Philosophy 4, 159–219 (1981)

2. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I.,
Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M.A.,
Saggion, H., Petrak, J., Li, Y., Peters, W.: Text Processing with GATE (Version
6). University of Sheffield Department of Computer Science (2011)

3. Devitt, M., Hanley, R. (eds.): The Blackwell Guide to the Philosophy of Language.
Blackwell Publishing (2006)

4. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph Matching Algorithms for
Business Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg
(2009)

5. Haghighi, A., Klein, D.: Coreference Resolution in a Modular, Entity-Centered
Model. In: Human Language Technology Conference of theNorth American Chapter
of the Association for Computational Linguistics (HLT-NAACL 2010), pp. 385–393.
ACL (2010)

6. Järvelin, K., Kekäläinen, J.: Cumulated Gain-Based Evaluation of IR Techniques.
ACM Transactions on Information Systems 20(4), 422–446 (2002)

7. Kilgarriff, A., Rosenzweig, J.: English SENSEVAL: Report and Results. In: 2nd
International Conference on Language Resources and Evaluation (LREC 2000),
pp. 1239–1244. ELRA (2000)

8. Klein, D., Manning, C.: Accurate Unlexicalized Parsing. In: 41st Meeting of the
Association for Computational Linguistics (ACL 2003), pp. 423–430. ACL (2003)

9. Porter, M.F.: An Algorithm for Suffix Stripping. In: Readings in Information Re-
trieval, pp. 313–316. Morgan Kaufmann Publishers Inc. (1997)

10. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall
(2002)

11. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-
Hill (1983)

12. Schouten, K., Ruijgrok, P., Borsje, J., Frasincar, F., Levering, L., Hogenboom, F.:
A Semantic Web-based Approach for Personalizing News. In: ACM Symposium on
Applied Computing (SAC 2010), pp. 854–861. ACM (2010)

13. Ullmann, J.R.: An Algorithm for Subgraph Isomorphism. J. ACM 23(1), 31–42
(1976)


	A Linguistic Graph-Based Approachfor Web News Sentence Searching
	1 Introduction
	2 The Destiny Framework
	2.1 News Processing
	2.2 News Searching
	2.3 Genetic Optimization

	3 Evaluation
	4 Concluding Remarks
	References




