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Abstract. We propose and evaluate efficient, low-memory and low-
consumption organization and query processing algorithms for a tiny Stream 
Management Engine (SME). The target sensor devices have low memory and 
computation capabilities, and high wireless data transmission costs. The SME 
represents data as streams, we discuss the approach and study how to optimize 
group-by aggregation over time-ordered data in that context, and to provide 
simple all-purpose group-by and join algorithms. We used an experimental 
testbed to evaluate the findings and prove the advantage of the alternatives and 
studies that we made. 

1 Introduction 

Low-cost autonomous wireless sensing devices can be deployed to collect sensor 
data, either logging it for later retrieval or sending it wirelessly, possibly in multi-hop 
fashion, to some computerized systems. Applications of such systems include envi-
ronmental, medical, industry, smart buildings, warehouse tracking, transport logistics 
and surveillance. The devices themselves, a.k.a motes, have computational and wire-
less communication capabilities, being able to sense, store, read and route the data 
along one or more hops, and to interface with a collection device, typically through 
wireless or USB connections. Operation is frequently supported on top of a tiny oper-
ating system such as TinyOS [26] or Contiki [28]. Motes also have their own battery 
power source that provides autonomy and mobility. An example of a mote is the  
TelosB [25], with up to 48KB of code memory, which must fit the OS and applica-
tions, and up to 10KB or data memory.  

Most mote designs come with support for an external flash memory with MB or 
GB of capacity, which enables logging and storage of large quantities of data. In that 
context, consider streams of sensed data being acquired and logged into the flash. We 
build a tiny Stream Management Engine (SME) that allows users to submit queries 
for the data. It does the usual relational algebra data manipulations of data manage-
ment systems, such as selections, projections, aggregations, joins. The SME must fit 
into the tiny code base and be efficient. Questions that immediately pops-up are: 
whether a stream management system fits well into the memory and computational 
constraints of motes; whether it has acceptable performance? Are there advantages 
over pushing or pulling detailed log data to a collecting PC?    
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We propose and evaluate compact and efficient algorithms, in particular time-
ordered group-by aggregations (GBTime) over time-ordered storage, as well as more 
generic group-by and join algorithms over the tiny devices. In the process, we provide 
answers to the above questions. 

Efficiency is measured according to three major metrics: code size, since it must  
fit constrained devices, query execution time, and energy consumed to execute  
the queries. Query execution efficiency guarantees that clients will have their res-
ponses quick enough, and consumed energy is paramount, since low consumption 
avoids frequent battery replacement, which is very undesirable in many practical  
deployments.    

We propose and test the mechanisms for stream-based data management with the 
aggregation and joins over stream data, and we present the SME and query processing 
approach. The code size, efficiency and energy savings are evaluated experimentally, 
showing that, in spite of the very small data memory, it is advantageous to be able to 
store and query locally in the motes, reducing the amount of data that needs to be sent 
to PC. We also show that algorithms such as time-ordered aggregation have major 
performance and energy saving advantages.  

This paper is structured as follows: section 2 reviews related work. Section 3 
presents the SME model and shows how it is used to query over sensor networks. 
Sections 4 and 5 discuss query-processing algorithms, and Section 6 show experimen-
tal results. Section 7 concludes the paper.   

2 Related Work 

A mote is a node in a wireless sensor network that is capable of gathering sensory 
information, performing some computations, and communicating with other con-
nected nodes in the network. For instance, TelosB features a IEEE 802.15.4/ZigBee 
compliant RF transceiver with integrated onboard antenna, achieving a 250 kbps data 
rate. It has a 8 MHz TI MSP430 microcontroller with 10kB of RAM and a 1MB ex-
ternal flash for data logging. It also has a programming and data collection USB inter-
face, integrated sensors and interfaces for adding other sensors and actuators. TelosB 
runs tiny operating systems such as TinyOS [26] or Contiki [28] and is programmed 
using some C-based dialect that is compiled and loaded with the full code image. 
TelosB has a line-of-sight reach of about 100 meters. More generically, mote com-
munication ranges go from anywhere between a few meters to kilometers, with a 
corresponding bill to pay concerning energy consumption. Power autonomy is an 
important aspect in Motes, since it gives them both breadth of deployment in any 
place and complete mobility. Communication is by far the costliest part in terms of 
power consumption. To decrease consumption, communication should be reduced. 
The radio is turned-on only long enough for the node to be able to participate in mul-
ti-hop network communication, if and when necessary. Motes typically have small 
data memories, but if the data is logged into flash and queries are posed against that 
flash memory, it is possible to reduce the amount of communication significantly.  
For instance, in TelosB [25], writing data to flash consumes 15 to 30 times less than 
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sending the same data to another node. This means that logging the data locally and 
aggregating it are important strategies for the SME.     

Writing and reading data from flash is 10 to 100 times faster than exchanging and 
storing the data from the mote where it was acquired to a computer logging the data. 
In most cases, the data also needs to go through other nodes in a sensor network be-
fore it arrives at a sink node connected to the computer. If the data is logged locally 
and aggregated efficiently before it is sent over the air, considerable speedup can be 
achieved. Logging the data locally also results in further autonomy, with the possibili-
ty of using the motes as data loggers for longer spans of time. In certain cases, data 
indexes may reduce operation times significantly. While indexes designed for large 
databases assume block-based I/O, flash devices have specificities that modify the 
design, such as access characteristics and restricting modifications of written data. 
Indexes designed for flash memory include FlashDB [13], Lazy-Adaptive Tree [3], 
and MicroHash [19]. Because of NAND write restrictions, these approaches use log 
structures [26], which need large amounts of memory. We provide a simple and effi-
cient approach for time-wise data and queries.  

Sensor data management by means of middleware approaches is also related to this 
work. For clarity, we classify middleware as either intra-sensor network approaches, 
such as ours, and internet-based sensor data management, which pick sensor data 
from a sensor data source, then use internet-connected non-constrained computers 
with full sensor data management engines to integrate, compute and share the data. 
They do not instrument motes or work inside wireless sensor networks at all. 

Intra-sensor network: In [1], the authors share a vision of storage-centric sensor 
networks where sensor nodes will be equipped with high-capacity and energy-
efficient local flash storage, arguing that the data management infrastructure will need 
substantial redesign to fully exploit the presence of local storage and processing capa-
bility in order to reduce expensive communication. There are several works surveying 
middleware managing data over wireless sensor networks, such as [21, 22, 23]. Intra-
network approaches include SQL-based solutions, such as TinyDB [12,8,18], Cougar 
[5] or PerLa[24]. These approaches provide a database front-end to a sensor network. 
For example, TinyDB runs a small database-like query engine at a sink node. All the 
remaining nodes in the WSN load the code that allows them to receive commands 
from the sink and reply with the data. These approaches do not provide a stream man-
agement engine for individual nodes, and do not focus on keeping the data in the 
nodes for longer.  

Most other sensor network middleware approaches aim at simplifying program-
ming and deployment, therefore they do not provide a local stream data management 
engine as ours does. The approaches typically allow users to express computations 
using a simplified model, or to load pieces of code (agents) for extending functionali-
ty. For instance, Kairos [10] offers a network-programming model that allows the 
programmer to express, in a centralized fashion, the desired global behavior of a dis-
tributed computation on the WSN. The Abstract Task Graph (ATaG) [4] is a data 
driven programming model for end-to-end application development on networked 
sensor systems. SINA (Sensor Information Networking Architecture) [14, 16] is a 
middleware architecture that abstracts the network of a sensor node as a distributed 
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it computes a per-10 seconds summary of the sensor data (average, variance and max-
imum), sends the computed summary to some destination, and empties the window 
for the next period of 60 seconds. The definition of the stream for this example is 
shown next: 

Create stream pressure in SensorNodes as 
Select avg(value),stdev(value),max(value)  
From adc0 
Sample every 1 second 
Window 60 seconds 
Group by 10 seconds; 

This stream with the last 60 seconds of data fits nicely in the small memories of em-
bedded devices. Every 60 seconds, its contents is sent to data consumers. A consumer 
stream is a stream that specifies this stream in the from clause, as shown next:  

Create stream collectPressure in CollectionPC as 
Select nodeID, *  
From pressure; 

The command syntax is summarized in the appendix.  

4 Stream Relational Algebra and Algorithm 

The sensor network is a distributed system with at least one SME in a sensor node and 
an SME with catalog and a Java console application in one PC. The catalog maintains 
all information on node configurations and status. Queries are submitted through the 
console. The query is pre-parsed into a query bytecode and nodes run the query and 
return the result to the caller. In the case of a stream with a window, when the window 
fills-up the query is ran and results forwarded to registered consumers (other streams).  

The constrained SME version should occupy very small amounts of code and data 
memory, we will describe its query processing algorithms. 

The base query-processing algorithm of Figure 3 works on a row-by-row fashion, 
retrieving one tuple at a time, applying selection and projection restrictions on the row 
and outputting the results if the row is not excluded by evaluated conditions. The 
select clause contains a set of expressions (e.g. stream attributes, parameters, con-
stants, function calls such as todate(), aggregation functions applied to attributes, or 
simple expressions). These are pre-parsed in the console application into a bytecode 
that represents the select fields to be interpreted by the mote. Examples of node para-
meters that can be included in queries include “nodeID” or sensor identifiers. Where 
conditions are either “operand operator operand” expressions (binary) or “operand 
operator” expressions (unary). Operands are (simple) expressions, and operators are a 
set of possible operators (e.g. “>”,”<”,”=”,”!=”,”>=”,”<=”). Multiple where condi-
tions can be “anded” or “ored”.  

In the figure, the temporary aggregation structure A maintains additive quantities 
(sum s, square sum ss, maximum, minimum and number of tuples processed n) that 
allow aggregations to be computed after all the tuples were processed. For instance, 
the maximum and minimum are given directly from the current maximum and mini-
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mum in the structure, the average is a sum divided by the number of tuples, and the 
variance is (ss-(s*s)/n)/n. 

The query processing algorithm shown in the figure requires only a minimal 
amount of memory. It needs one tuple for input stream data, about 100 B for keeping 
metadata for each stream, few bytes for local variables used during query processing, 
space for the aggregation structure A (less than 50 B), and space for the output buffer 
O that holds result tuples. This buffer is flushed into network messages as soon as 
there are enough tuples to fill a packet payload, to be sent to the destination computer. 
This way, O needs only a packet payload size (about 100 B in telosB). We show re-
sults on the memory space that was consumed in the experimental section. 

O= temporary tuple space for output tuples; 
A=Aggregation structure, a temporary structure for computing aggrega-
tions; 
1. Scan stream, tuple-by-tuple: 
For each tuple, 
  Apply selection operations (early-select) (where clause conditions) 
 

If selection operations evaluate to false (tuple will not contri-
bute to output),   

go to step 2 with next tuple 
 

For each select clause field, 
If field is a constant, output it to a temporary output tuple 
space O; 

  If the field is attribute, copy its value in current tuple to O; 
If the field is a function applied to an attribute, call the 
function with the attribute value of current tuple, output the 
result to O; 
If the field is an aggregation (e.g. sum, count, avg, max, min), 
the attribute value of the current tuple updates A, a temporary 
aggregation computation structure for that attribute (an aggre-
gation hashmap);  
If (0 already fills a network packet), fill the packet and send 
the results, emptying O)    

2. End of query: 
If the query is an aggregation, compose final output from aggregation 
structure.  

Fig. 3. Base Query Processing Algorithm 

5 Constrained Group by and Join  

The objective concerning constrained group by and join algorithms is to devise effi-
cient solutions that may be run entirely in very small amounts of data memory, and 
the code should fit into the code memory of motes. 

Sensor data is stored in stream format in monotonically increasing timestamp or-
der, and it is very frequent to aggregate by time units. Therefore, we take advantage 
of the timestamp-order to define a simple Group-By Time approach with minimal 
memory requirements that is based on ordered aggregation. Only for the more generic 
case when the group-by attributes are not ordered we apply an external sort prior to 
using the same ordered aggregation algorithm. In the case of Join, a sort-merge join is 
implemented, with both relations participating in the join being sorted, followed by a 
merge-join. In this section we describe the algorithms, which are evaluated in the 
experimental section.  
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5.1 Time-Interval File Seek Index 

Consider a query retrieving logged data for a time interval. Since the stream data is 
time-ordered and the stream has a timestamp index (section 3), the appropriate offset 
in the stream is calculated from the index and the query timestamp interval start. 
Tuples are then read until the timestamp interval end is reached. In the experiments 
we include a comparison of this with full table scan (fts) in the context of processing 
queries over datasets in TelosB motes.   

5.2 GroupBy Time (GBTime) and GB-ALL 

The objective of this algorithm together with the time-interval file seek is to run fast, 
save battery and to use the minimum possible amount of data memory, so that the 
algorithm can run efficiently in 2KB or less of data memory. The algorithm keeps a 
single aggregation computation structure (A) in data memory and is useful for group-
ing into time-intervals and to aggregate all the dataset. It is also used as the second 
step of the all-purpose group-by algorithm given in the next sub-section.    

Consider an acquisition stream, that is, a stream that results from acquiring sensor 
data periodically, such as the example of section 3. The time granularity of the stream 
is given by the sensor-sampling rate (or the rate at which it receives data from another 
stream), and time-aggregated queries aggregate into some other time granularity. The 
Group-By Time algorithm of Figure 4 executes when a time argument is used in the 
group by clause. If the where clause contains a time interval condition (alone or 
“anded” with other conditions), the file seek index (section 5.1) is used to avoid full 
table scans. Then the algorithm simply scans the dataset tuples within the time inter-
val specified in the where condition, while updating the aggregation computation for 
the current group. When the group changes (group time boundary is passed), the 
group aggregation is computed and it switches to compute the next group. The algo-
rithm is described next.  

 
timeF: the time format string used in the query groups  

(‘DD-MON-YY,HH’ in the above example); 
timeG: the current group identified as a string; 
aggregationStructure: A(timeG, s=0,ss=0,max=-1,min=MAXVAL,n=0); 

(sum s, square sum ss, maximum max, minimum min, 
    and number of tuples processed n)  
 

GBTime Algorithm: 
0. timeG=””; 
1. If a time interval specified in the where clause restricts the inter-
val that must be considered, 

Seek the position on flash corresponding to the start of the 
time interval specified in the where clause. 

2. Scan the tuples one-by-one while the tuple timestamp is lower than 
the upper bound on time interval or the end of the dataset is met. Eva-
luate where conditions on the tuple, if tuple is excluded continue (2.) 
with next tuple; 

if todate(timestamp, timeF) for the tuple equals timeG 
update aggregation structure variables by adding the val-
ue(s) from the tuple; 
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 else // ended computing group aggregation for timeG 
compute select aggregations and expressions from A and 
output to O; 
if O fills packet, send packet and empty O; 
reset A structure for next group; 
timeG= new timeF; 

3. Send O; 
4. End. 

Fig. 4. Group-By-Time Algorithm (GBTime) 

GBTime is evaluated in the experimental section and its performance and energy 
consumption is compared with alternatives. 
Resource use: 

I/O (flash): n = number of tuples in dataset, nI in time interval 
Constant-sized = nI (Variable-sized = log n + nI) 

     Minimum data memory: 
sizeOf(A) + sizeOf(Tuple) + sizeOf(O), where O is the temporary output  buffer that can be 
flushed whenever needed. 

5.3 All-Purpose GroupBy (GB) and Join 

An all-purpose Group-By is given for processing aggregations over generic non-
stream-ordered attributes. A Sort-Group By algorithm is given. Similarly, an all-
purpose Join is given with the Sort-Merge-Join algorithm. These will be slower when 
temporary flash-space is needed, but will handle generic aggregation and join opera-
tions. Figure 5 shows the Sort-GroupBy algorithm that was implemented. In Step 1 
(external sort), the data set is sorted by the group-by attributes using an external sort 
(flash memory). Step 2 (re-)uses the GBTime algorithm of section 5.2, replacing time 
attribute values by the group-by attribute values in the algorithm. This way, the 
grouping of the sorted data can be done with small amounts of data memory, and re-
utilizes the aggregation algorithm of GBTime (small code image).  

We denote as GB-fts the GB algorithm doing a full-table scan and GB-idx a ver-
sion using the timestamp index when one exists and a where clause restricts retrieval 
over a time interval. 

GB-fts and GB-idx Algorithms: 
Step 1. External Sort (simplified for the sake of brevity): 
S= Sort buffer, should fit in memory, S=empty initially 
For all tuples of dataset 

Apply where conditions, if tuple excluded by where conditions, con-
tinue (1.) with next tuple;  
Project attributes and add remaining tuple values to S; 
If S full, apply in-mem sort algorithm, store as runfile and empty S; 

For each input tuple from all runfiles 
Output next tuple in sort order and read next tuple from the runfile 
of the chosen tuple;  
Output tuples are flushed to flash when output buffer fills up, emp-
tying the buffer; 

Fig. 5. Sort-Group By Algorithm for SME 
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Resource use: 
IO (flash): n = number of tuples in dataset, σ is where selectivity 

n + 3σ(n) (read dataset, write runfiles, read runfiles, write sorted).  
Minimum data memory: sizeOf(S) 
For step 2, Sorted Group-By, see section 5.2, replacing time by group-by attribute values. 

 
In the case of the Join algorithm shown in Figure 6, for the sort-merge join both data-
sets need to be sorted. The same external sort algorithm is used, then the algorithm 
reads sequentially tuples from both datasets simultaneously, outputting matches. 

Sort-Merge-Join of datasets A and B 
Run External Sort on A and on B to order by join attribute(s), resulting 
in sortedA and sortedB (external sort Algorithm given above) 
While there are input tuples from sortedA or sortedB 

If join attribute values for sortedA and sortedB match,  
Compose output tuple to O, from the sortedA and sortedB tuples;  
If O fills a packet, compose the packet and send it, then empty O. 
Retrieve next sortedA and sortedB tuples; 

 Else 
Retrieve next tuple from either sortedA or sorted, by getting the 
smallest of the two based on the sort order. Replace the corres-
ponding input tuple; 

Fig. 6. Sort-Merge Join for SME  

Resource use: 
IO (flash): n = number of tuples in dataset, σ is where selectivity 
IO(sort A) + IO(sort B) + σAnA+  σBnB 
Minimum data memory:  sizeOf(S) for sorts,  then  sizeOf(A Tuple) + sizeOf(B Tuple) + sizeOf(O). 

6 Experiments 

We have setup a set of experiments to test the approach and algorithms. Those were 
based on developing and running the SME for a TelosB mote with flash-stored 
streams, queried from a PC. Each TelosB has 48KB of ROM, 10 KB of data memory, 
1024 MB of flash and 2 AA 800 mAh batteries. The PC is 2.53 GHz Intel Core 2 
Duo, 4 GB 1067 MHz DD33 memory, running Windows 7, a Java Virtual Machine 
and a Java version of SME. The commands and data go through a TelosB sink node 
connecting to the gateway PC.  

6.1 Code size and Data Memory 

Figure 7 shows the size of the code composing the SME developed for TelosB. As 
shown in the figure, the total code of the SME occupies about 11KB, which together 
with about 20KB of the Contiki code size results in 31 KB for the total code size. This 
fits well into the 48KB of the code memory of this particular type of mote. Figure 
7(b) shows that 63% of the code is occupied by the OS and that the second largest 
amount is the query processor (15%), followed closely by the query parser (12%).  
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the battery is depleted. To get it, energy consumption was measured for the query 
execution using Energest on Contiki, then the number of queries for battery depletion 
was calculated considering two typical 1.5V 800mA AA batteries and a cutoff voltage 
of 1.8 V. 

Figure 11 shows the execution times of aggregation plus sending the results to the 
PC. The per-minute dataset was aggregated per-hour over a time interval of three 
months.  

 

     

Fig. 10. Execution Times for Experiment 1 (secs)  Fig. 11. Lifetime for Experiment 1 

The GBTime algorithm took 121 seconds (about 2 minutes) to compute the three 
months results and send them to the collecting PC. This compares very favorably with 
GB-idx. It is also shown that if the data is simply retrieved to the PC without aggrega-
tion, it takes more than 12.5 minutes (748 secs), and full year data takes almost half 
an hour to collect. The time taken by GB-fts is worse than the time taken to 
Read&Send over 3 months of data because GB-fts is scanning the whole dataset (1 
year), so GB-fts should be compared with Read&Send (All) that is also doing an fts.   

As conclusion, GBTime is very efficient, and it is important to have a timestamp 
index to handle queries over time intervals faster. 

Figure 12 shows the expected lifetime measured in number of runs of the query be-
fore batteries are depleted. The results prove that there is a great advantage in terms of 
lifetime in executing queries locally to summarize data before sending to the PC. The 
Read&Send queries resulted in orders of magnitude lower lifetimes than the aggregat-
ing queries. This is because data transmission consumes much more energy than 
computing or accessing flash memory.  

Figure 13 is a breakdown of the time spent in each type of operation for each query 
type. Read&Send spends most time transmitting a large number of tuples to the col-
lecting PC, and group-by algorithms (GB) other than GBTime spend significant time 
reading and writing to the flash, due to sort operations and, in the case of GB fts due 
to the full scan of the stream on flash. Figure 14 shows the time taken to execute an 
aggregation query using each alternative (GBTime, GB-idx, GB-fts) when the time 
interval (in the where clause) increases from 1 hour to 6 months. Once more the re-
sults show the advantage of GBTime and also show the relevance of the timestamp 
index (GB-idx vs GB-fts) in (time-)selective queries.   
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A Appendix – SME Query Expressions [nodeID| nodeSet] =NODES 

[Create Stream Xpto [in NODES as] 
Select [select expressions][in NODES ]  
From [ sensorID | streamName | me ] [Where clause] 
[Group by clause][sample clause] [window clause] [storageclause] 
 
Update stream sensorID | stream [in NODES ]  
set [set expressions] [Where clause]; 
 
Insert into stream sensorID | stream [in NODES] values [values]; 
 
Del stream sensorID|stream [in [nodeID|nodeSet]][Where clause]; 
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