

H. Decker et al. (Eds.): DEXA 2013, Part II, LNCS 8056, pp. 141–155, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Efficient Time Aggregation and Querying of Flashed
Streams in Constrained Motes

Pedro Furtado

Univeristy of Coimbra,
Portugal

pnf@dei.uc.pt

Abstract. We propose and evaluate efficient, low-memory and low-
consumption organization and query processing algorithms for a tiny Stream
Management Engine (SME). The target sensor devices have low memory and
computation capabilities, and high wireless data transmission costs. The SME
represents data as streams, we discuss the approach and study how to optimize
group-by aggregation over time-ordered data in that context, and to provide
simple all-purpose group-by and join algorithms. We used an experimental
testbed to evaluate the findings and prove the advantage of the alternatives and
studies that we made.

1 Introduction

Low-cost autonomous wireless sensing devices can be deployed to collect sensor
data, either logging it for later retrieval or sending it wirelessly, possibly in multi-hop
fashion, to some computerized systems. Applications of such systems include envi-
ronmental, medical, industry, smart buildings, warehouse tracking, transport logistics
and surveillance. The devices themselves, a.k.a motes, have computational and wire-
less communication capabilities, being able to sense, store, read and route the data
along one or more hops, and to interface with a collection device, typically through
wireless or USB connections. Operation is frequently supported on top of a tiny oper-
ating system such as TinyOS [26] or Contiki [28]. Motes also have their own battery
power source that provides autonomy and mobility. An example of a mote is the
TelosB [25], with up to 48KB of code memory, which must fit the OS and applica-
tions, and up to 10KB or data memory.

Most mote designs come with support for an external flash memory with MB or
GB of capacity, which enables logging and storage of large quantities of data. In that
context, consider streams of sensed data being acquired and logged into the flash. We
build a tiny Stream Management Engine (SME) that allows users to submit queries
for the data. It does the usual relational algebra data manipulations of data manage-
ment systems, such as selections, projections, aggregations, joins. The SME must fit
into the tiny code base and be efficient. Questions that immediately pops-up are:
whether a stream management system fits well into the memory and computational
constraints of motes; whether it has acceptable performance? Are there advantages
over pushing or pulling detailed log data to a collecting PC?

142 P. Furtado

We propose and evaluate compact and efficient algorithms, in particular time-
ordered group-by aggregations (GBTime) over time-ordered storage, as well as more
generic group-by and join algorithms over the tiny devices. In the process, we provide
answers to the above questions.

Efficiency is measured according to three major metrics: code size, since it must
fit constrained devices, query execution time, and energy consumed to execute
the queries. Query execution efficiency guarantees that clients will have their res-
ponses quick enough, and consumed energy is paramount, since low consumption
avoids frequent battery replacement, which is very undesirable in many practical
deployments.

We propose and test the mechanisms for stream-based data management with the
aggregation and joins over stream data, and we present the SME and query processing
approach. The code size, efficiency and energy savings are evaluated experimentally,
showing that, in spite of the very small data memory, it is advantageous to be able to
store and query locally in the motes, reducing the amount of data that needs to be sent
to PC. We also show that algorithms such as time-ordered aggregation have major
performance and energy saving advantages.

This paper is structured as follows: section 2 reviews related work. Section 3
presents the SME model and shows how it is used to query over sensor networks.
Sections 4 and 5 discuss query-processing algorithms, and Section 6 show experimen-
tal results. Section 7 concludes the paper.

2 Related Work

A mote is a node in a wireless sensor network that is capable of gathering sensory
information, performing some computations, and communicating with other con-
nected nodes in the network. For instance, TelosB features a IEEE 802.15.4/ZigBee
compliant RF transceiver with integrated onboard antenna, achieving a 250 kbps data
rate. It has a 8 MHz TI MSP430 microcontroller with 10kB of RAM and a 1MB ex-
ternal flash for data logging. It also has a programming and data collection USB inter-
face, integrated sensors and interfaces for adding other sensors and actuators. TelosB
runs tiny operating systems such as TinyOS [26] or Contiki [28] and is programmed
using some C-based dialect that is compiled and loaded with the full code image.
TelosB has a line-of-sight reach of about 100 meters. More generically, mote com-
munication ranges go from anywhere between a few meters to kilometers, with a
corresponding bill to pay concerning energy consumption. Power autonomy is an
important aspect in Motes, since it gives them both breadth of deployment in any
place and complete mobility. Communication is by far the costliest part in terms of
power consumption. To decrease consumption, communication should be reduced.
The radio is turned-on only long enough for the node to be able to participate in mul-
ti-hop network communication, if and when necessary. Motes typically have small
data memories, but if the data is logged into flash and queries are posed against that
flash memory, it is possible to reduce the amount of communication significantly.
For instance, in TelosB [25], writing data to flash consumes 15 to 30 times less than

 Efficient Time Aggregation and Querying of Flashed Streams in Constrained Motes 143

sending the same data to another node. This means that logging the data locally and
aggregating it are important strategies for the SME.

Writing and reading data from flash is 10 to 100 times faster than exchanging and
storing the data from the mote where it was acquired to a computer logging the data.
In most cases, the data also needs to go through other nodes in a sensor network be-
fore it arrives at a sink node connected to the computer. If the data is logged locally
and aggregated efficiently before it is sent over the air, considerable speedup can be
achieved. Logging the data locally also results in further autonomy, with the possibili-
ty of using the motes as data loggers for longer spans of time. In certain cases, data
indexes may reduce operation times significantly. While indexes designed for large
databases assume block-based I/O, flash devices have specificities that modify the
design, such as access characteristics and restricting modifications of written data.
Indexes designed for flash memory include FlashDB [13], Lazy-Adaptive Tree [3],
and MicroHash [19]. Because of NAND write restrictions, these approaches use log
structures [26], which need large amounts of memory. We provide a simple and effi-
cient approach for time-wise data and queries.

Sensor data management by means of middleware approaches is also related to this
work. For clarity, we classify middleware as either intra-sensor network approaches,
such as ours, and internet-based sensor data management, which pick sensor data
from a sensor data source, then use internet-connected non-constrained computers
with full sensor data management engines to integrate, compute and share the data.
They do not instrument motes or work inside wireless sensor networks at all.

Intra-sensor network: In [1], the authors share a vision of storage-centric sensor
networks where sensor nodes will be equipped with high-capacity and energy-
efficient local flash storage, arguing that the data management infrastructure will need
substantial redesign to fully exploit the presence of local storage and processing capa-
bility in order to reduce expensive communication. There are several works surveying
middleware managing data over wireless sensor networks, such as [21, 22, 23]. Intra-
network approaches include SQL-based solutions, such as TinyDB [12,8,18], Cougar
[5] or PerLa[24]. These approaches provide a database front-end to a sensor network.
For example, TinyDB runs a small database-like query engine at a sink node. All the
remaining nodes in the WSN load the code that allows them to receive commands
from the sink and reply with the data. These approaches do not provide a stream man-
agement engine for individual nodes, and do not focus on keeping the data in the
nodes for longer.

Most other sensor network middleware approaches aim at simplifying program-
ming and deployment, therefore they do not provide a local stream data management
engine as ours does. The approaches typically allow users to express computations
using a simplified model, or to load pieces of code (agents) for extending functionali-
ty. For instance, Kairos [10] offers a network-programming model that allows the
programmer to express, in a centralized fashion, the desired global behavior of a dis-
tributed computation on the WSN. The Abstract Task Graph (ATaG) [4] is a data
driven programming model for end-to-end application development on networked
sensor systems. SINA (Sensor Information Networking Architecture) [14, 16] is a
middleware architecture that abstracts the network of a sensor node as a distributed

144 P. Furtado

object for query operation,
[11] takes a data-centric ap
based service parts of vario
framework based on agent
Agents migrate to destinatio

Internet-based: an examp
efficient integration of mult
of posing complex queries
sensor sources using wrapp
entirely outside of WSNs)
retrieving the streaming d
middleware architectures in
vide internet-based infrastr
sources. Semantic Streams
interpretations of sensor da
systems also include Pachub

3 Overview of Str

A Stream Management En
processor over ram and fla
metadata structure that is
Streams stored in memory a
in files (each stream is stor
of sensor data into flash an
quire sensor data into a win
window fills-up.

Physical storage on flash
ble-sized tuples. Figure 1 sh
tives. Although SME can h
for our implementations on

(a) Co

Fig. 1. Me

If desired, it is possible t
streams representing period
pair (starting timestamp, a
mined from those. If the str

, and task allocation. Data Service Middleware (DSWa
pproach by defining the common data service and gro
ous applications. SensorWare [6] is a general middlew
technology, where the mobile agent concept is exploit

on areas performing data aggregation reliably.
ple of an internet-based system is GSN [2], whose goa
tiple heterogeneous sensor data sources, with the capabi
on the underlying data. GSN gets the streaming data fr
pers, and GSN’s stream processing engine (which resi
is built on top of a relational database engine, storing

data during GSN’s data processing. Other internet-ba
nclude Hourglass [15], HiFi [7] and IrisNet [9], which p
ructures for connecting sensor networks and sensor d
[20] allows users to pose declarative queries over seman
ata. Other popular internet-based sensor data managem
be [29] and SensorCloud [30].

ream Model and Its Use

ngine (SME) is installed in nodes and implements a qu
ash, and data exchanges between nodes. A stream ha
stored in flash or ram memory and defines attribu

are arrays of tuples, while flash-resident streams are sto
red in one file). One typical use scenario is to log a stre
nd retrieve it later using queries. Another scenario is to
ndow in memory and to send the data to the PC when

h has two main possible organizations: constant- and va
hows the metadata and data corresponding to both alter

handle both, we focus on the simpler constant-sized tup
motes with small code and data memory.

onstant-sized (b) Variable-sized

etadata and Data: Constant and Variable-sized

to store one timestamp value per stream row. However,
dic acquisitions (e.g. every minute) it is enough to store
acquisition rate). The timestamp of every tuples is de
ream stops execution and restarts later, a new pair need

are)
oup

ware
ted.

al is
ility
rom
ides
and

ased
pro-
data
ntic

ment

uery
as a
utes.
ored
eam
ac-
the

aria-
rna-
ples

 for
the

eter-
ds to

 Efficient Time Aggregation

be added. This timestamp in
called the timestamp index.
over the timestamp.

Queries are submitted u
data logging application, w
time. Since the amount of
logged into the flash. Figure

(a) Data acquisition

F

The next two commands
create the stream to log dat
light data into the stream th

Set timestamp of Sens
YY-HH24:MI:SS');

Create stream environ
Select temperature, l
Sample every 1 minute
Window 1 year
Storage flash;

The following commands e
retrieving per-day temperat

Select nodeID, temper
from environmentData
Where time between to
HH24:MI:SS’) and toda
HH24:MI:SS')

Select nodeID, min(te
avg(temperature), tod
from environmentData
group by todate(times

A stream can be defined wi
against the window with a
window is equivalent to a r
instance, the window may c

 and Querying of Flashed Streams in Constrained Motes

nformation of a stream is stored in a companion file tha
. In the case of variable-sized tuples, a b-tree index is u

using SQL dialect. Consider sensors deployed in a sen
where nodes store collected information for some period

data may increase significantly over time, it needs to
e 2 illustrates the logging (a) and querying (b) operation

n and Logging (b) Querying and Retrieving data

Fig. 2. Logger Application Example

s set the timestamps of sensor nodes to a date and time
ta. From then on, the sensors start logging temperature

hat is resident on the flash.

sorNodes to ('10-SEP-2011-14:10:10’,'DD-MO

nmentData in SensorNodes as
light From me
e

exemplify retrieving all the data for a specific month,
ture statistics (minimum, maximum and average).

rature, light, timestamp

odate(('01-DEC-2011-00:00:00’,'DD-MON-YY-
ate('01-JAN-2012-00:00:00’,'DD-MON-YY-

emperature), max(temperature),
date(timestamp, ‘'DD-MON-YY’)

stamp, ‘'DD-MON-YY’);

ith a window of time-ordered tuples, and a query that is
predefined period (the window size). A stream withou

relational table with a set of time-ordered tuples in it.
collect 60 seconds of sensor data. Then, every 60 secon

145

at is
used

nsor
d of
o be
ns.

and
and

ON-

and

run
ut a
For
nds,

146 P. Furtado

it computes a per-10 seconds summary of the sensor data (average, variance and max-
imum), sends the computed summary to some destination, and empties the window
for the next period of 60 seconds. The definition of the stream for this example is
shown next:

Create stream pressure in SensorNodes as
Select avg(value),stdev(value),max(value)
From adc0
Sample every 1 second
Window 60 seconds
Group by 10 seconds;

This stream with the last 60 seconds of data fits nicely in the small memories of em-
bedded devices. Every 60 seconds, its contents is sent to data consumers. A consumer
stream is a stream that specifies this stream in the from clause, as shown next:

Create stream collectPressure in CollectionPC as
Select nodeID, *
From pressure;

The command syntax is summarized in the appendix.

4 Stream Relational Algebra and Algorithm

The sensor network is a distributed system with at least one SME in a sensor node and
an SME with catalog and a Java console application in one PC. The catalog maintains
all information on node configurations and status. Queries are submitted through the
console. The query is pre-parsed into a query bytecode and nodes run the query and
return the result to the caller. In the case of a stream with a window, when the window
fills-up the query is ran and results forwarded to registered consumers (other streams).

The constrained SME version should occupy very small amounts of code and data
memory, we will describe its query processing algorithms.

The base query-processing algorithm of Figure 3 works on a row-by-row fashion,
retrieving one tuple at a time, applying selection and projection restrictions on the row
and outputting the results if the row is not excluded by evaluated conditions. The
select clause contains a set of expressions (e.g. stream attributes, parameters, con-
stants, function calls such as todate(), aggregation functions applied to attributes, or
simple expressions). These are pre-parsed in the console application into a bytecode
that represents the select fields to be interpreted by the mote. Examples of node para-
meters that can be included in queries include “nodeID” or sensor identifiers. Where
conditions are either “operand operator operand” expressions (binary) or “operand
operator” expressions (unary). Operands are (simple) expressions, and operators are a
set of possible operators (e.g. “>”,”<”,”=”,”!=”,”>=”,”<=”). Multiple where condi-
tions can be “anded” or “ored”.

In the figure, the temporary aggregation structure A maintains additive quantities
(sum s, square sum ss, maximum, minimum and number of tuples processed n) that
allow aggregations to be computed after all the tuples were processed. For instance,
the maximum and minimum are given directly from the current maximum and mini-

 Efficient Time Aggregation and Querying of Flashed Streams in Constrained Motes 147

mum in the structure, the average is a sum divided by the number of tuples, and the
variance is (ss-(s*s)/n)/n.

The query processing algorithm shown in the figure requires only a minimal
amount of memory. It needs one tuple for input stream data, about 100 B for keeping
metadata for each stream, few bytes for local variables used during query processing,
space for the aggregation structure A (less than 50 B), and space for the output buffer
O that holds result tuples. This buffer is flushed into network messages as soon as
there are enough tuples to fill a packet payload, to be sent to the destination computer.
This way, O needs only a packet payload size (about 100 B in telosB). We show re-
sults on the memory space that was consumed in the experimental section.

O= temporary tuple space for output tuples;
A=Aggregation structure, a temporary structure for computing aggrega-
tions;
1. Scan stream, tuple-by-tuple:
For each tuple,
 Apply selection operations (early-select) (where clause conditions)

If selection operations evaluate to false (tuple will not contri-
bute to output),

go to step 2 with next tuple

For each select clause field,
If field is a constant, output it to a temporary output tuple
space O;

 If the field is attribute, copy its value in current tuple to O;
If the field is a function applied to an attribute, call the
function with the attribute value of current tuple, output the
result to O;
If the field is an aggregation (e.g. sum, count, avg, max, min),
the attribute value of the current tuple updates A, a temporary
aggregation computation structure for that attribute (an aggre-
gation hashmap);
If (0 already fills a network packet), fill the packet and send
the results, emptying O)

2. End of query:
If the query is an aggregation, compose final output from aggregation
structure.

Fig. 3. Base Query Processing Algorithm

5 Constrained Group by and Join

The objective concerning constrained group by and join algorithms is to devise effi-
cient solutions that may be run entirely in very small amounts of data memory, and
the code should fit into the code memory of motes.

Sensor data is stored in stream format in monotonically increasing timestamp or-
der, and it is very frequent to aggregate by time units. Therefore, we take advantage
of the timestamp-order to define a simple Group-By Time approach with minimal
memory requirements that is based on ordered aggregation. Only for the more generic
case when the group-by attributes are not ordered we apply an external sort prior to
using the same ordered aggregation algorithm. In the case of Join, a sort-merge join is
implemented, with both relations participating in the join being sorted, followed by a
merge-join. In this section we describe the algorithms, which are evaluated in the
experimental section.

148 P. Furtado

5.1 Time-Interval File Seek Index

Consider a query retrieving logged data for a time interval. Since the stream data is
time-ordered and the stream has a timestamp index (section 3), the appropriate offset
in the stream is calculated from the index and the query timestamp interval start.
Tuples are then read until the timestamp interval end is reached. In the experiments
we include a comparison of this with full table scan (fts) in the context of processing
queries over datasets in TelosB motes.

5.2 GroupBy Time (GBTime) and GB-ALL

The objective of this algorithm together with the time-interval file seek is to run fast,
save battery and to use the minimum possible amount of data memory, so that the
algorithm can run efficiently in 2KB or less of data memory. The algorithm keeps a
single aggregation computation structure (A) in data memory and is useful for group-
ing into time-intervals and to aggregate all the dataset. It is also used as the second
step of the all-purpose group-by algorithm given in the next sub-section.

Consider an acquisition stream, that is, a stream that results from acquiring sensor
data periodically, such as the example of section 3. The time granularity of the stream
is given by the sensor-sampling rate (or the rate at which it receives data from another
stream), and time-aggregated queries aggregate into some other time granularity. The
Group-By Time algorithm of Figure 4 executes when a time argument is used in the
group by clause. If the where clause contains a time interval condition (alone or
“anded” with other conditions), the file seek index (section 5.1) is used to avoid full
table scans. Then the algorithm simply scans the dataset tuples within the time inter-
val specified in the where condition, while updating the aggregation computation for
the current group. When the group changes (group time boundary is passed), the
group aggregation is computed and it switches to compute the next group. The algo-
rithm is described next.

timeF: the time format string used in the query groups

(‘DD-MON-YY,HH’ in the above example);
timeG: the current group identified as a string;
aggregationStructure: A(timeG, s=0,ss=0,max=-1,min=MAXVAL,n=0);

(sum s, square sum ss, maximum max, minimum min,
 and number of tuples processed n)

GBTime Algorithm:
0. timeG=””;
1. If a time interval specified in the where clause restricts the inter-
val that must be considered,

Seek the position on flash corresponding to the start of the
time interval specified in the where clause.

2. Scan the tuples one-by-one while the tuple timestamp is lower than
the upper bound on time interval or the end of the dataset is met. Eva-
luate where conditions on the tuple, if tuple is excluded continue (2.)
with next tuple;

if todate(timestamp, timeF) for the tuple equals timeG
update aggregation structure variables by adding the val-
ue(s) from the tuple;

 Efficient Time Aggregation and Querying of Flashed Streams in Constrained Motes 149

 else // ended computing group aggregation for timeG
compute select aggregations and expressions from A and
output to O;
if O fills packet, send packet and empty O;
reset A structure for next group;
timeG= new timeF;

3. Send O;
4. End.

Fig. 4. Group-By-Time Algorithm (GBTime)

GBTime is evaluated in the experimental section and its performance and energy
consumption is compared with alternatives.
Resource use:

I/O (flash): n = number of tuples in dataset, nI in time interval
Constant-sized = nI (Variable-sized = log n + nI)

 Minimum data memory:
sizeOf(A) + sizeOf(Tuple) + sizeOf(O), where O is the temporary output buffer that can be
flushed whenever needed.

5.3 All-Purpose GroupBy (GB) and Join

An all-purpose Group-By is given for processing aggregations over generic non-
stream-ordered attributes. A Sort-Group By algorithm is given. Similarly, an all-
purpose Join is given with the Sort-Merge-Join algorithm. These will be slower when
temporary flash-space is needed, but will handle generic aggregation and join opera-
tions. Figure 5 shows the Sort-GroupBy algorithm that was implemented. In Step 1
(external sort), the data set is sorted by the group-by attributes using an external sort
(flash memory). Step 2 (re-)uses the GBTime algorithm of section 5.2, replacing time
attribute values by the group-by attribute values in the algorithm. This way, the
grouping of the sorted data can be done with small amounts of data memory, and re-
utilizes the aggregation algorithm of GBTime (small code image).

We denote as GB-fts the GB algorithm doing a full-table scan and GB-idx a ver-
sion using the timestamp index when one exists and a where clause restricts retrieval
over a time interval.

GB-fts and GB-idx Algorithms:
Step 1. External Sort (simplified for the sake of brevity):
S= Sort buffer, should fit in memory, S=empty initially
For all tuples of dataset

Apply where conditions, if tuple excluded by where conditions, con-
tinue (1.) with next tuple;
Project attributes and add remaining tuple values to S;
If S full, apply in-mem sort algorithm, store as runfile and empty S;

For each input tuple from all runfiles
Output next tuple in sort order and read next tuple from the runfile
of the chosen tuple;
Output tuples are flushed to flash when output buffer fills up, emp-
tying the buffer;

Fig. 5. Sort-Group By Algorithm for SME

150 P. Furtado

Resource use:
IO (flash): n = number of tuples in dataset, σ is where selectivity

n + 3σ(n) (read dataset, write runfiles, read runfiles, write sorted).
Minimum data memory: sizeOf(S)
For step 2, Sorted Group-By, see section 5.2, replacing time by group-by attribute values.

In the case of the Join algorithm shown in Figure 6, for the sort-merge join both data-
sets need to be sorted. The same external sort algorithm is used, then the algorithm
reads sequentially tuples from both datasets simultaneously, outputting matches.

Sort-Merge-Join of datasets A and B
Run External Sort on A and on B to order by join attribute(s), resulting
in sortedA and sortedB (external sort Algorithm given above)
While there are input tuples from sortedA or sortedB

If join attribute values for sortedA and sortedB match,
Compose output tuple to O, from the sortedA and sortedB tuples;
If O fills a packet, compose the packet and send it, then empty O.
Retrieve next sortedA and sortedB tuples;

 Else
Retrieve next tuple from either sortedA or sorted, by getting the
smallest of the two based on the sort order. Replace the corres-
ponding input tuple;

Fig. 6. Sort-Merge Join for SME

Resource use:
IO (flash): n = number of tuples in dataset, σ is where selectivity
IO(sort A) + IO(sort B) + σAnA+ σBnB
Minimum data memory: sizeOf(S) for sorts, then sizeOf(A Tuple) + sizeOf(B Tuple) + sizeOf(O).

6 Experiments

We have setup a set of experiments to test the approach and algorithms. Those were
based on developing and running the SME for a TelosB mote with flash-stored
streams, queried from a PC. Each TelosB has 48KB of ROM, 10 KB of data memory,
1024 MB of flash and 2 AA 800 mAh batteries. The PC is 2.53 GHz Intel Core 2
Duo, 4 GB 1067 MHz DD33 memory, running Windows 7, a Java Virtual Machine
and a Java version of SME. The commands and data go through a TelosB sink node
connecting to the gateway PC.

6.1 Code size and Data Memory

Figure 7 shows the size of the code composing the SME developed for TelosB. As
shown in the figure, the total code of the SME occupies about 11KB, which together
with about 20KB of the Contiki code size results in 31 KB for the total code size. This
fits well into the 48KB of the code memory of this particular type of mote. Figure
7(b) shows that 63% of the code is occupied by the OS and that the second largest
amount is the query processor (15%), followed closely by the query parser (12%).

 Efficient Time Aggregation

(a) Code Size

Figure 8 shows the min
SME while it was runnin
GBTime. The temporary bu
occupied was between 1.1 K

6.2 Time to Aggregate

Figure 9 shows the time
ContikiTelosB) versus the
TelosBflash) versus the tim
Java version of the SME.
show that memory operatio
aggregation on the PC was

Fig. 8. Memory Occupancy

6.3 GroupBy (GBTime

This experiment evaluates
tion 5.2), GB-fts and GB-id
the data and sending it dir
loaded a dataset representi
scan” alternatives (GB-fts
lifetime is measured in num

 and Querying of Flashed Streams in Constrained Motes

e of Modules (Bytes) (b) code Size (%)

Fig. 7. Code Size of Modules

imum and maximum amount of memory occupied by
ng a query aggregating flash data using the algorit
uffer (O) was set to 500 Bytes. We can see that the mem
KB and 3 KB, fitting in the available data memory.

in Different Contexts

taken to aggregate in SME TelosB in memory (SM
time to aggregate when the dataset is on the flash (SM

me taken to aggregate the same amount in the compu
Window sizes of 10, 50 and 100 were tried. The res

on was 5 to 6 times faster than flash on the TelosB and t
much faster.

y SME (B) Fig. 9. Op. times (sec) vs windows size

e, GB) over Time-Order

both efficiency and energy consumption of GBTime (s
dx (section 5.3), and it also compares those with retriev
rectly to be processed in the PC (Read&Send). We h
ing 6 months of per-minute sensor data. The “full ta
and Read&Send(All)) ran over one-year dataset. Batt

mber of times the query can be submitted repeatedly bef

151

the
thm

mory

ME-
ME-
uter
ults
that

e

sec-
ving
have
able
tery
fore

152 P. Furtado

the battery is depleted. To get it, energy consumption was measured for the query
execution using Energest on Contiki, then the number of queries for battery depletion
was calculated considering two typical 1.5V 800mA AA batteries and a cutoff voltage
of 1.8 V.

Figure 11 shows the execution times of aggregation plus sending the results to the
PC. The per-minute dataset was aggregated per-hour over a time interval of three
months.

Fig. 10. Execution Times for Experiment 1 (secs) Fig. 11. Lifetime for Experiment 1

The GBTime algorithm took 121 seconds (about 2 minutes) to compute the three
months results and send them to the collecting PC. This compares very favorably with
GB-idx. It is also shown that if the data is simply retrieved to the PC without aggrega-
tion, it takes more than 12.5 minutes (748 secs), and full year data takes almost half
an hour to collect. The time taken by GB-fts is worse than the time taken to
Read&Send over 3 months of data because GB-fts is scanning the whole dataset (1
year), so GB-fts should be compared with Read&Send (All) that is also doing an fts.

As conclusion, GBTime is very efficient, and it is important to have a timestamp
index to handle queries over time intervals faster.

Figure 12 shows the expected lifetime measured in number of runs of the query be-
fore batteries are depleted. The results prove that there is a great advantage in terms of
lifetime in executing queries locally to summarize data before sending to the PC. The
Read&Send queries resulted in orders of magnitude lower lifetimes than the aggregat-
ing queries. This is because data transmission consumes much more energy than
computing or accessing flash memory.

Figure 13 is a breakdown of the time spent in each type of operation for each query
type. Read&Send spends most time transmitting a large number of tuples to the col-
lecting PC, and group-by algorithms (GB) other than GBTime spend significant time
reading and writing to the flash, due to sort operations and, in the case of GB fts due
to the full scan of the stream on flash. Figure 14 shows the time taken to execute an
aggregation query using each alternative (GBTime, GB-idx, GB-fts) when the time
interval (in the where clause) increases from 1 hour to 6 months. Once more the re-
sults show the advantage of GBTime and also show the relevance of the timestamp
index (GB-idx vs GB-fts) in (time-)selective queries.

 Efficient Time Aggregation

Fig. 12. Breakdown of Tim

6.4 All-Purpose Group

For evaluation of performan
5.3), we ran experiments gr
10K, 25K and 50K rows. T
ate a number of distinct gro
that Read&Send was faster
has more overhead with so
results to the PC than Read
Figure 16 shows lifetime fo
GB&Send was slower than
This is because Read&Sen
much more power than com

In what concerns the co
of the upper limit of the da
Join. Join is processing two
other alternatives are proce
twice the execution time, w
tion time of GB&Send on
Join. Both cases sort both d
datasets and do some proce
and GB has to send the agg

7 Conclusion

In this paper we proposed a
efficiently in constrained m
by processing solution, and
posed the Stream Managem
that the approach is very u
data efficiently, and that it
to send data between node

 and Querying of Flashed Streams in Constrained Motes

me in Operations (secs) Fig. 13. Varying Where Conditions

p-By and Join

nce and battery lifetime of GB and Join algorithms (sect
rouping and joining non-ordered datasets A and B with
The group-by attribute in the datasets was chosen to gen
oups that is 10% of the number of tuples. Figure 15 sho
r than GB&Send for this test. This is because GB&S

orting the dataset, computing aggregations and sending
d&Send retrieving all tuples and sending them to the P

or the same experiment. It is interesting to see that althou
n Read&Send, in terms of lifetime it lasts more than tw
nd transmits 90% more tuples, and transmission consum
mputation or accessing the flash memory.
mparison with Join, it is interesting to compare the hei

ashed line on top of GB&Send with the execution time
o datasets with the same size (e.g. 5K with 5K), while
ssing only one such dataset (e.g. 5K). The dashed lines

which corresponds to processing (5K plus 5K). The exe
the two datasets is very similar to the execution time

datasets, and both have to retrieve then every row of b
ssing with them. Finally, Join has to send the joined tup
regated tuples.

algorithms for a stream management engine to process d
mote devices, including a very efficient time-ordered gro
d all-purpose group by and join algorithms. We also p

ment Engine approach to deal with the data. We have arg
useful to allow applications to log data and to query
is prepared to process streams in-memory and in flash

es. We evaluated the approach experimentally and aga

153

tion
5K,
ner-
ows
end
the
PC.
ugh

wice.
mes

ight
for
the
are

ecu-
e of
both
ples,

data
oup-
pro-

gued
the
and

ainst

154 P. Furtado

alternatives, showing that t
fits the memory of constrain

We have proposed and t
test other forms of indexing

Fig. 14. Performance – Gro

References

1. Diao, Y., Ganesan, D., M
rage-centric Sensor Netwo

2. Aberer, K., Hauswirth, M
terconnected sensor netwo

3. Agrawal, D., Ganesan, D
for flash devices. In: Pro
(August 2009)

4. Bakshi, A., et al.: The Ab
Programming of Network

5. Bonnet, P., Gehrke, J., Se
the Second International C

6. Boulis, A., et al.: Design
able sensor networks. In:

7. Franklin, M., Jeffery, S.,
Fan-in Systems: The HiFi

8. Gehrke, J., Madden, S.: Q
ting 3(1), 46–55 (2004)

9. Gibbons, P.B., Karp, B.
World- Wide Sensor Web

10. Gummadi, R., Gnawali, O
using kairos. In: Prasann
2005. LNCS, vol. 3560, p

11. Li, S., et al.: Event Detect
sor Networks. In: Proc.
(2003)

12. Madden, S., Franklin, M
sensor networks. ACM Tr

the devised algorithms and Stream Management appro
ned devices and processes efficiently, while saving energ
tested a base set of algorithms. In the future, we expec
g and processing algorithms.

oupBy and Join Fig. 15. Lifetime – GroupBy and Join

Mathur, G., Shenoy, P.J.: Rethinking Data Management for S
orks. In: CIDR, Asilomar, USA, pp. 22–31 (January 2007)

M., Salehi, A.: Infrastructure for data processing in large-scale
orks. In: Mobile Data Management, Germany (2007)
D., et al.: Lazy- adaptive tree: An optimized index struc

oceedings of IC Very Large Data Bases (VLDB), Lyon, Fra

bstract Task Graph: A Methodology for Architecture-Independ
ked Sensor Systems. In: Proc. EESR (2005)
eshadri, P.: Towards sensor database systems. In: Proceeding
Conference on Mobile Data Management (2001)
and implementation of a framework for efficient and program
Proc. MobiSys (2003)
Edakkunni, A., Hong, W., et al.: Design Considerations for H
i Approach. In: CIDR (2005)
Query Processing in Sensor Networks. IEEE Pervasive Com

, Ke, Y., Nath, S., Seshan, S.: IrisNet: An Architecture fo
b. IEEE Pervasive Computing 2(4) (2003)
O., Govindan, R.: Macro-programming wireless sensor netwo

na, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCO
pp. 126–140. Springer, Heidelberg (2005)
tion Services Using Data Service Middleware in Distributed S
Int. Workshop on Information Processing in Sensor Netwo

M., et al.: TinyDB: an acquisitional query processing system
rans. on Database Systems 30(1), 122–173 (2005)

oach
gy.
ct to

n

Sto-

e in-

cture
ance

dent

gs of

mm-

High

mpu-

or a

orks
OSS

Sen-
orks

m for

 Efficient Time Aggregation and Querying of Flashed Streams in Constrained Motes 155

13. Nath, S., Kansal, A.: FlashDB: Dynamic self-tuning database for NAND flash. In: Interna-
tional Conf. on Information Processing in Sensor Networks Cambridge, USA (April 2007)

14. Shen, C.C., et al.: Sensor Information Networking Architecture and Applications. E Per-
sonal Communications Magazine 8(4), 52–59 (2001)

15. Shneidman, J., Pietzuch, P., et al.: Hourglass: An Infrastructure for Connecting Sensor
Networks and Applications. Technical Report TR-21-04, Harvard University, EECS
(2004)

16. Srisathapornphat, C., et al.: Sensor Information Networking Architecture. In: Proc. Int.
Workshops on Parallel Processing (2000)

17. Rosenblum, Ousterhout, J.: The design and implementation of a log structured file system.
In: ACM Sympo. on Operating Systems Principles, Pacific Grove, USA (1991)

18. Woo, A., Madden, S., Govindan, R.: Networking support for query processing in sensor
networks. Commun. ACM 47(6), 47–52 (2004)

19. Zeinalipour-Yazti, Lin, S., et al.: MicroHash: An efficient index structure for flash-based
sensor devices. In: USENIX FAST 2005, San Francisco, CA, USA (2005)

20. Whitehouse, K., Zhao, F., Liu, J.: Semantic Streams: A Framework for Composable Se-
mantic Interpretation of Sensor Data. Wireless Sensor Networks, 5–20 (2006)

21. Yoneki, E., Bacon, J.: A survey of Wireless Sensor Network technologies: research trends
and middleware’s role. Tech. R. of Univ of Cambridge, UCAM-CL-TR-646 (2005)

22. Wang, M.M., Cao, J.N., Li, J., et al.: Middleware for wireless sensor networks: A survey.
Journal of Computer Science and Technology 23(3), 305–326 (2008)

23. Mottola, L.: Programming Wireless Sensor Networks: From Physical to Logical Neigh-
borhoods. PhD Thesis, Politecnico di Milano, Italy (2008)

24. Schreiber, F.A., et al.: PERLA: a Data Language for Pervasive Systems. In: Sixth Interna-
tional Conf. on Pervasive Computing and Communications, Hong Kong, pp. 282–287
(2008)

25. Polastre, J., Szewczyk, R., Culler, D.E.: Telos: enabling ultra-low power wireless research.
In: IPSN 2005. IEEE, Los Angeles (2005)

26. Levis, P., Madden, S., et al.: The Emergence of Networking Abstractions and Techniques
in TinyOS. In: NSDI 2004, pp. 1–14. USENIX (2004)

27. http://www.arduino.cc/
28. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - A Lightweight and Flexible Operating Sys-

tem for Tiny Networked Sensors. In: LCN 2004 (2004) ISBN 0-7695-2260-2
29. Pachube [Pachube], https://cosm.com/
30. SensorCloud [SC], http://www.sensorcloud.com/

A Appendix – SME Query Expressions [nodeID| nodeSet] =NODES

[Create Stream Xpto [in NODES as]
Select [select expressions][in NODES]
From [sensorID | streamName | me] [Where clause]
[Group by clause][sample clause] [window clause] [storageclause]

Update stream sensorID | stream [in NODES]
set [set expressions] [Where clause];

Insert into stream sensorID | stream [in NODES] values [values];

Del stream sensorID|stream [in [nodeID|nodeSet]][Where clause];

	Efficient Time Aggregation and Querying of FlashedStreams in Constrained Motes
	1 Introduction
	2 Related Work
	3 Overview of Str ream Model and Its Use
	4 Stream Relational Algebra and Algorithm
	5 Constrained Group by and Join
	5.1 Time-Interval File Seek Index
	5.2 GroupBy Time (GBTime) and GB-ALL
	5.3 All-Purpose GroupBy (GB) and Join

	6 Experiments
	6.1 Code size and Data Memory
	6.2 Time to Aggregate in Different Contexts
	6.3 GroupBy (GBTime e, GB) over Time-Order
	6.4 All-Purpose Group p-By and Join

	7 Conclusion
	References

