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Abstract. Correlated pattern mining has become increasingly an important task
in data mining and knowledge discovery. Recently, concise exact representations
dedicated for frequent correlated and for rare correlated patterns according to the
Jaccard measure were presented. In this paper, we offer a new method of infer-
ring new knowledge from the introduced concise representations. A new generic
approach, called GMJP, allowing the extraction of the sets of frequent correlated
patterns, of rare correlated patterns and their associated concise representations
is introduced. Pieces of new knowledge in the form of associations rules can be
either exact or approximate. We also illustrate the efficiency of our approach over
several data sets and we prove that Jaccard-based classification rules have very
encouraging results.
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1 Introduction and Motivations

Correlated item set mining is at the core of numerous data mining tasks. The enormous
research efforts dedicated to this topic have led to a variety of sophisticated approaches
[2U8U1 112012 1]]. In this regard, a variety of correlation measures were proposed and stud-
ied. In this work, we will focus on the Jaccard correlation measure [9]]. Indeed, the
Jaccard measure was used in many works under various names like coherence [14],
Tanimoto coefficient [24] and bond measure [18]] (). The bond measure was recently
redefined in [3]], where a concise exact representation of the set of frequent correlated
patterns according to the bond measure was also proposed. Moreover, a generic ap-
proach for frequent Jaccard patterns mining was also performed in [20].

Frequent correlated itemset mining was then shown to be an interesting task in data
mining. Since its inception, this key task grasped the interest of many researchers since it
meets the needs of experts in several application fields [3l], such as market basket study.
However, the application of correlated frequent patterns is not an attractive solution for
some other applications, e.g., intrusion detection, analysis of the genetic confusion from
biological data, pharmacovigilance, detection of rare diseases from medical data, to cite
but a few [SU12U15017I19123]. As an illustration of the rare correlated patterns applica-
tions in the field of medicine, the rare combination of symptoms can provide useful

! In the rest of this paper, we used ‘bond" as a reference for the Jaccard measure.
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insights for doctors [25]. We cite that in [6], the authors proposed a concise exact rep-
resentation of the set of rare correlated patterns and designed a rule-based classification
process.

It is to mention, that no previous approach allowing the extraction of both frequent
and rare correlated patterns according to a specified correlation metric was proposed. To
solve this challenging problem, we propose an efficient algorithmic framework, called
GMJP, allowing the extraction of both frequent correlated patterns, rare correlated pat-
terns and their associated concise representations. To achieve the genericity of GMIP,
we distinguish four different running scenarios depending on the required output. We,
also, design a rule-based classifier and we discover meaningful correlations in data for
frequent itemsets as well as for rare ones.

The paper is organized as follows. Section 2] presents the background used through-
out this work. We introduce in Section[3] the recently proposed concise exact represen-
tations of both frequent and rare correlated patterns according to the Jaccard measure.
Sectiondl reviews some related work. The generic proposed approach GMIJP is detailed
in Section[3] We report an empirical study on different datasets and an association-rules
based classifiction process respectively in Sections [6] and [l We conclude and skecth
issues of future work in Section[8]

2 Preliminaries

We start by presenting the key notions related to our work. We first define a dataset.

Definition 1. (Dataset) A dataset is a triplet D = (T, Z, R) where T and T are, respec-
tively, a finite set of transactions and items, and R C T x T is a binary relation between
the transaction set and the item set. A couple (t, i) € R denotes that the transaction t
€ T contains the item i € T.

In this work, we are mainly interested in itemsets as a class of patterns. The two main
kinds of support a pattern can have are defined as follows, for any non-empty pattern /:

- Conjunctive support: Supp(AN)=|{t € T | (Vi€ I,(t,i) € R)} |
- Disjunctive support: Supp(VI)=|{t € T | i€ I,(t,i) € R)} |

Table 1. An example of a dataset

ABCDE

W AW N =
X X

X X X X
X X X

X X X X

X

Example 1. Let us consider the dataset given by Table[Il We have Supp(AAD) = |[{1}]
=1and Supp(vaD) = |{ 1,3,5}| =3.8

2 We use a separator-free form for the sets, e.g., AD stands for the set of items {A, D}.
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An itemset T is frequent if its support Supp(I) is above a user-defined minimum support
threshold minsupp, otherwise the itemset I is said to be infrequent or rare.

The constraint of rarity is monotone, i.e., V I, Iy C Z, if Iy O I and Supp(AIl) <
minsupp, then Supp(AI1) < minsupp since Supp(Al1) < Supp(AI). Thus, it induces
an order filter [[1] on the set of all the subsets of Z, P(Z). Contrariwise, the frequency
constraint induces an order ideal [7].

The bond measure [[18]] is mathematically equivalent to Jaccard [9]. It was redefined
in [3]] as:

Supp( N 1)

bond(I) = Supp(V 1)

The set of correlated patterns associated to the bond measure is defined as follows.

Definition 2. (Correlated patterns) Considering a minimum correlation threshold min-

%ond, the set C'P of correlated patterns is equal to: CP = {I C T | bond(I) > minbond}
)

The bond measure takes its values within the interval [0, 1]. While considering the uni-
verse of a pattern I [[14], i.e., the set of transactions containing a non empty subset of
1, the bond measure represents the simultaneous occurrence rate of the items of the
pattern [ in its universe. Thus, the more the items of I are dependent on each other,
(i.e. strongly correlated), the higher the value of the bond measure is, since Supp(AI)
would be closer to Supp(VI). We present in what follows the concise exact representa-
tions associated to correlated patterns.

3 Concise Exact Representations of Correlated Patterns

In [3]] and in [6]], the authors introduced concise exact representations of respectively
frequent correlated and rare correlated patterns. The proposed approaches are based
on the concept of correlated equivalence classes induced by the fp,,q closure operator
associated to the bond measure.

In each equivalence class, all the elements have the same fj,,,4 closure and the same
value of bond. The minimal patterns of a bond equivalence class are the smallest in-
comparable members, w.r.t. set inclusion and are called Minimal correlated patterns,
while the closed pattern is the largest one and is called Closed correlated patterns.
These two sets are defined [3] as follows:

Definition 3. (Closed correlated patterns by fy,,q) The set CCP of closed correlated
patterns by fuona is equal to: CCP = {I € CP| B I D I: bond(I) = bond(I})}.

Definition 4. (Minimal correlated patterns) The set MCP of minimal correlated pat-
terns is equal to: MCP = {I € CP| 3 I, C I: bond(I) = bond(I)}.

While integrating the frequency constraint with the correlation constraint, we can dis-
tinguish between two sets of correlated patterns, which are the “Frequent correlated

3 We refer in the rest of the paper to the minimum support threshold by minsupp and to the
minimum correlation threshold by minbond.
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patterns” set and the “Rare correlated patterns” set. Now, based on these two previ-
ous sets, the concise exact representation of frequent correlated patterns was studied
and proposed in [3], in addition to the concise exact representation of rare correlated
patterns which was proposed in [6].

Definition 5. (The set of frequent correlated patterns) [3] The set FCP of frequent
correlated patterns is equal to: FCP = {I C T | Supp(A\I) > minsupp and bond(I) >
minbond}.

Definition 6. (Concise exact representation of the FCP set) [3|] The representation
RFCCP is based on the set of frequent closed correlated patterns:

RFCCP = {(I, Supp(Al), Supp(VI)) | I € CCP and Supp(NI) >= minsupp}.

Border seperating Border seperating
correlated patterns from rare patterns from
not correlated ones frequent ones

I:l Frequent correlated pattern D Belongs to the RFCCP representation

D Rare correlated pattern D Belongs to the RCPR representation

Fig. 1. Localization of the frequent correlated and the rare correlated patterns, and their associated
condensed representation for minsupp = 4 and minbond = 0.2

Now, we present the rare correlated patterns associated to the bond measure:

Definition 7. (The set of rare correlated patterns) [6|]] The RCP set of rare correlated
patterns is equal to: RCP = {I C T | Supp(AI) < minsupp and bond(I) > minbond}.

Definition 8. (Concise exact representation of the RCP set) [6] Let RCPR be the
concise exact representation of the RCP set based on the CRCP set of closed rare
correlated patterns and on the MRCP set of the minimal rare correlated patterns. The
RCPR representation is equal to: RCPR = CRCP U MRCP, with

CRCP = {, Supp(NI), Supp(VI)) | I € CCP and Supp(NI) < minsupp} and,
MRCP = {, Supp(AD), Supp(VD)) | I € MCP and Supp(NI) < minsupp}.

These previous sets are depicted by Figure[Il The support shown at the top left of each
frame represents the conjunctive support.
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After presenting the Jaccard patterns, we propose in the next section, an overview of
the approaches dealing with concise representations of correlated patterns.

4 Related Work

The problem of mining concise representations of correlated patterns was thoroughly
studied in various works in the literature. The bond measure was studied in [[13]], the
authors proposed an apriori-like algorithm for mining classification rules. Moreover,
the authors in [20] proposed a generic approach for correlated patterns mining. Indeed,
the bond correlation measure and eleven other correlation measures were used, all of
them fulfill the anti-monotonicity property. Correlated patterns mining was then shown
to be more complex and more informative than frequent patterns mining [20]]. Also, in
[22], a study of different properties of interesting measures was conducted in order to
suggest a set of the most adequate properties to consider while mining rare associations
rules. However, it is important to highlight that the extraction of rare correlated patterns
was not carried out in [20] nor in [22]].

Many other works have also emerged. In [26], the authors provide a unified definition
of existing null-invariant correlation measures and propose the GAMINER approach al-
lowing the extraction of frequent high correlated patterns according to the Cosine and
to the Kulczynski measures. In this same context, the NICOMINER algorithm was also
proposed in [[10] and it allows the extraction of correlated patterns according to the Co-
sine measure. In this same context, we cite also the AETHERIS approach [21] which
allow the extraction of condensed representation of correlated patterns according to
user’s preferences. In [2]], the authors introduced the concept of flipping correlation pat-
terns according to the Kulczynsky measure. However, the Kulczynsky does not fulfill the
interesting anti-monotonic property as the bond measure. To the best of our knowledge,
this work is the first one that puts the focus on mining concise representations of both
frequent and rare correlated patterns according to the bond measure.

We introduce, in what follows, our new GMIP approach .

S The GMJP Approach

We introduce in this section the GMJP approach which allows, according to the user’s
input parameters, the extraction of the desired output. As shown by Figure 2] four dif-
ferent scenarios are possible for running the GMJP approach:

First Scenario: outputs the whole set FCP of frequent correlated patterns,

Second Scenario: outputs the RFCCP concise exact representation of the FCP set,
Third Scenario: outputs the whole set RCP of rare correlated patterns,

Fourth Scenario: outputs the RCPR concise exact representation of the RCP set.

The GMJP algorithm takes as an input a dataset D, a minimal support threshold min-
supp and a minimal correlation threshold minbond. We mention that GMJP determines
exactly the support and the bond values of each pattern of the desired output according
to the user’s parameters.

* GMIP stands for Generic Mining of Jaccard Patterns.
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Fig. 2. Overview of GMJP

5.1 Overview of the Algorithm

We illustrate the different steps of GMJP when running the fourth script aiming to ex-
tract the RCPR representation. Our choice of this fourth scenario is motivated by the
fact that the extraction of the RCPR representation corresponds to the most challeng-
ing mining task for GMJP.

In fact, RCPR is composed by the set of rare correlated patterns which results from
the intersection of two theories [16] induced by the constraints of correlation and rar-
ity. So, this set is neither an order ideal nor an order filter. Therefore, the localization
of the elements of the RCPR representation is more difficult than the localization of
theories corresponding to constraints of the same nature. Indeed, the conjunction of
anti-monotonic constraints (resp. monotonic) is an anti-monotonic constraint (resp.
monotonic) [4]. For example, the constraint “being a correlated frequent pattern” is
anti-monotonic, since it results from the conjunction of two anti-monotonic constraints
namely, “being a correlated pattern” and “being a frequent pattern”. This constraint in-
duces, then, an order ideal on the itemsets lattice. In fact, the GMJP algorithm mainly
operates in three steps as depicted by Figure[3

1. A first scan of the dataset is performed in order to extract all the items and assigning
to each item the set of transactions in which it appears. Then, a second scan of the
dataset is carried out in order to identify, for each item, the list of the co-occurrent
items.

2. The second step consists in integrating both the constraints of rarity and of corre-
lation in a mining process of RCPR. In this situation, this problem is split into
independent chunks since each item is treated separately. In fact, for each item, a
set of candidates is generated. Once obtained, these candidates are pruned using the
following pruning strategies:

(a) The pruning of the candidates which check the cross-support property [3]].
(b) The pruning based on the order ideal of the correlated patterns.

Recall that the set of correlated patterns induces an order ideal property. Therefore,
each correlated candidate, having a non correlated subset, will be pruned since it
will not be a correlated pattern. Then, the conjunctive, disjunctive supports and the
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bond value of the retained candidates are computed. Thus, the uncorrelated candi-
dates are also pruned. At the level n, the local minimal rare correlated patterns of
size n are determined among the retained candidates. The local closed rare corre-
lated patterns of size n — 1 are also filtered. This process holds up when there is no
more candidates to be generated.

3. The third and last step consists of filtering the global minimal rare correlated pat-
terns and the global rare correlated patterns among the two sets of local minimal
rare correlated patterns and local closed ones.

In what follows, we will explain more deeply these different steps of GMJP. The pseudo
code is given by Procedure[Tl

Step 1
<« — Local MRCP

and Local CRCP

— ltem 1 —> e
Dataset COVector BSVector et N related to item 1
tem2 (Correlation |
NG .
: Based on S : |:> Global MRCP
H 3.Pruning
6 1. Generation B::Ed of candidates - L I:RCP
of candidates . Y ocal
Item n > / MCof 1 and Local CRCP
\ \_rarity /Jf related to item n

2. Supports
counting

Global CRCP

Step? Step 3

&
<

\ 4

‘AMC’ stands for Anti Monotonic Constraint
‘MC* stands for Monotonic Constraint

Fig. 3. Overview of GMJP when extracting the RCPR representation

First Step: The Power of the Bit Vectors and of Co-occurrent Vectors. Initially, the
dataset is scanned in order to extract the items and to build, for each item, the bitset
called here “BSVector”. In fact, a bitset is a container that can store a huge number of
bits while optimizing the memory consumption (For example, 32 elements are stored in
a memory block of 4 bytes). Each block of memory is treated in just one CPU operation
by a 32 bits processor. Therefore, we are very motivated for these kinds of structures
within the GMJP algorithm in order to optimize the conjunctive and the disjunctive
supports computations.

Then, the dataset is scanned again in order to identify, for each item I, the list of the
co-occurrent items which corresponds to the items occurring in the same transactions as
the item I. These latter ones are stored in a vector of integers, called here “COVector”.
We note that one of the main challenges of the GMJP algorithm is that it allows pushing
two constraints of distinct types and to deliver the output with only two scans of the
dataset. We uphold also that the bitsets, when incorporated into the mining process
within the GMJP algorithm, sharply decrease the size of the memory required to store
immediate results and significantly save execution costs.

Second Step: Getting the Local Minimal and the Local Closed Rare Correlated
Patterns without Closure Computations. Worth of mention, the main thrust of the
GMJP algorithm is to break the search space into independent sub-problems. In fact, for
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Algorithm 1. GMJP

Data:
1. A dataset D.
2. A minimal correlation threshold minbond.
3. A minimal conjunctive support threshold minsupp.
4. A specification of the desired result “RCPR".

Results: The concise exact representation RCPR = MRCP U CRCP.
Begin

1. Scan the dataset D twice to build the BS Vector and the COVector
for all the items
2. For each item [
(a) n=2;
(b) Generate the candidates of size n using the COVector of 1
(c) While (The number of the generated candidates is not null) Do
i. Prune these candidates w.r.t. the cross-support property
of the bond measure
ii. Prune these candidates w.r.t. the order ideal property
of correlated patterns
iii. Compute the conjunctive and disjunctive supports
and the bond value of the maintained candidates
iv. For each candidate C
If (IsCorrelated(C) and IsRare(C)) then
/* Ckeck-Local Minimality of the candidate C' */
— Update the set of Local Minimal Rare
Correlated Patterns of size n
v. Find Local Closed Rare Correlated Patterns of size n—1
vi.n =n+1
vii. Generate candidates of size n using the APRIORI-GEN
procedure
3. Find all Global Minimal Rare Correlated Patterns
4. Find all Global Closed Rare Correlated Patterns
5. Return RCPR;

End

each item I, a levelwise mining process is performed using the COVector containing
the co-occurrent items of I. At each level n, starting by the second level, a set of candi-
dates are generated, then pruned according to the different pruning strategies described
previously. The minimal rare correlated patterns of size n associated to the item I are
called Local Minimal Rare Correlated Patterns and they are determined by com-
paring their bond values to those of their respective immediate subsets. Similarly, the
closed rare correlated patterns of size n — 1 associated to the item I are called Local
Closed Rare Correlated Patterns and they are determined by comparing their bond

values to those of their respective immediate supersets.
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It is also important to mention that the implementation of the different stages of this
second step (candidate generation, evaluation and pruning) was based on simple vectors
of integers. Thus, we require no more complex data structure during the implementation
of the GMJP algorithm. This feature makes GMJP a practical approach for handling both
monotonic and anti-monotonic constraints even for large datasets.

One of the major challenges in the design of the GMJP algorithm is how to perform
subset and superset checking to efficiently identify Local Minimal and Local Closed
patterns? The answer is to construct and manage a multimap hash structure, ® in order
to store at each level n the rare correlated patterns of size n. This technique is very
powerful since it makes the subset and the superset checking practical even on dense
datasets.

Thus, our proposed efficient solution (as we prove it experimentally later) is to inte-
grate both the monotonic constraint of rarity and the anti-monotonic constraint of cor-
relation into the mining process and to identify the local closed rare correlated patterns
without closure computing.

Third Step: Filtering the Global Minimal and the Global Closed Rare Correlated
Patterns. After identifying the local minimal and the local closed rare correlated pat-
terns associated to each item I of the dataset D, the third step consists in filtering the
MTRCP set of Global Minimal Rare Correlated patterns and the CRCP set of Global
Closed Rare Correlated patterns. This task is performed using two distinct multimap
hash structures. In fact, for each local minimal rare correlated pattern LM previously
identified, we check whether it has a direct subset (belonging to the whole set of local
minimal patterns) with the same bond value. If it is not the case, then the local minimal
pattern LM is a global minimal rare pattern and it is added to the MRCP set. Simi-
larly, for each local closed rare correlated pattern LC' previously identified, we check
whether it has a direct superset (belonging to the whole set of local closed patterns)
with the same bond value. If it is not the case, then the local closed pattern LC is a
global closed rare pattern and it is added to the CRCP set of Closed rare correlated
patterns.
In what follows, we illustrate with a running example of the GMJP algorithm.

5.2 A Running Example

Let us consider the dataset D given by Table[Il First, the BSVectors and the COVectors
associated to each item of this dataset are constructed, as we plot by Figure [4l These
BSVectors are next used to compute the conjunctive and the disjunctive supports. We
have, for example, the item A which belongs to the transactions {1, 3,5} and the item
C' which belongs to the transactions {1,2,3,5}. We, then, have Supp(ANAC) = 3 and
Supp(VAC)) = 4.

The local minimal and the local closed correlated rare patterns associated to each
item I of the dataset D, are extracted. A detailed example of the process of the item A
is given by Figure[3l The finally obtained RCPR representation, for minsupp = 4 and
for minbond = 0.20, is composed by the following global minimal and global closed

5 We used in our implementation the C++ STL Standard Template Library multimap.
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Fig. 4. The BSVectors and the COVectors associated to the items of the dataset D
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Last, it is important to notice that GMJP is not an exclusive approach in the sense
that it can be coupled with other efficient approaches to mine statistically significant
patterns.

In the next section we report our experimental study of the proposed GMJP algorithm.

6 Experimental Evaluation

Datasets and Experimental Environment: Experiments were carried out on different
dense and sparse benchmark datasets (®. Al the tests were carried out on a PC equipped
with a 2.40 GHz Intel Core TM 43 processor and 2.92 GB of main memory, running the
Linux Ubuntu 10.04. Running times were averaged over 5 executions.

Protocol: Our objective is to prove, through extensive carried out experiments, the effi-
ciency of the proposed GMIJP algorithm while running the four different scenarios. Our
first batch of experiments aims to build a quantitative comparison between the FCP,
the RCP sets and their associated condensed representations. Our second batch of ex-
periments focus on studying running times.

Results: As sketched by Table 2] the concise representations FCCPR and RCPR
present very encouraging reduction rates over several datasets and for different ranges
of minsupp and minbond theresholds. We note that, the ‘gain‘ corresponds to the reduc-

tion rate and is equal to : 1 - ‘ﬁgg)ﬁ ! for rare Jaccard patterns, and equal to 1 - |F|j’;cc7;7lz|
for frequent ones.

% Available at http://fimi.cs.helsinki.fi/data and at http://archive.ics.uci.edu/ml.
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We conclude, according to the results gived by Table 3] @ , that the execution time
varies depending on the number of distinct items of the considered dataset. This is
explained by the principle of GMIP which is based on the idea of processing each item
separately and based on the list of the co-occurrent of each item. For example, the
computational costs are relatively high for the T40I10D 100K dataset, and they are
lower for the MUSHROOM dataset. This is explained by the fact that, the MUSHROOM
dataset contains only /79 items while the T40I110D 100K dataset contains 942 items.
We note also that the highest execution times are obtained with the RETAIL dataset,
since this latter contains a high number of distinct items, equal to 16,470.

The COVector D E
associated to
the item A 4 4 1 a4
Conjunctive
support VAN N\
Level 2 : mm ‘m’ Disjunctive
V N support
2;5 3;4 1;3 2;5

ZaN
Level 3 : ABC ABD ABE ([ACD|»ACE ADE
N

2;5 0o 2;5 1;4 2,5 0

Level 4 @
3 <>
O

Local Closed Rare Correlated Pattern

Local Minimal Rare Correlated Pattern

Fig. 5. Mining Local Minimal and Local Closed Rare Correlated Patterns for the item A

It is worth of mention that the computational time of the fourth scenario dedicated to
the extraction of the RCPR are the highest ones. This can be explained by the fact that
the extraction of the RCPR representation is an NP-hard problem since the localization
of the associated two borders is a complex task. We also highlight that the performance
results of the designed GMJP algorithm can not be compared to any approach of the
literature. Indeed, the proposed approach is the first one dedicated to the extraction of
Jaccard patterns in a generic way.

In the next section, we study the process of classification based on correlated associ-
ation rules derived from the previous presented condensed representations.

7 We note that ‘S1° stands for the First Scenario, ‘S2¢ stands for the Second Scenario, ‘S3° stands
for the Third Scenario and ‘S4° stands for the Fourth Scenario.
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Table 2. Effectiveness of Jaccard patterns mining on UCI benchmarks

Dataset minsupp minbond # FCP # FCCPR Gainof # RCP # RCPR Gain of

FCCPR RCPR

MUSHROOM 30% 0.15 2,701 427 84.19% 98,566 1,704 98.27%
45% 0.15 307 83 72.96% 100, 960 1,985 98.03%

PUuMSB* 40% 0.45 10, 674 1646 84.57% 448,318 3,353 99.25%
40% 0.50 9, 760 1325 86.42% 82,413 3,012 96.34%

CONNECT 10% 0.80 534, 026 15,152 97.16% 56 56 0%
50% 0.80 533,991 15,117 97.16% 91 91 0%

ACCIDENTS 40% 0.30 32,529 32,528 0% 117, 805 1,722 98.53%
60% 0.30 2,057 2,047 0% 148, 259 2,743 98.14%

Table 3. Performance Analysis of GMJP on UCI benchmarks (time in second)

Dataset Number Average Average Average Average Average Average
of Items minsupp minbond Time S1 Time S2 Time S3 Time S4

MUSHROOM 119 58% 0.30 7 114 20 19.6

40% 0.57 3.75 5.25 11 709
ACCIDENTS 468 7.8% 0.50 709 703 793 784.2
RETAIL 16,470 25.83% 0.50 5.83 13.16 1903 1902
T10I4D100K 870 5% 0.20 2 3 163 163

T40I10D100K 942 8.2% 0.50 148 182.6 491 4904

7 Association Rules-Based Classification Process

We present in this section, the application of the RCPR and the RFCCP representa-
tions in the design of an association rules based classifier. In fact, we used the MRCP
and the CRCP sets, composing the RCPR representation, within the generation of
the generic ® rare correlated rules. The RFCCP representation is used to generate
generic frequent correlated rules, of the form Min = Closed \ Min, with Min is a
minimal generator and Closed is a closed pattern. Hence, we implemented a C++ pro-
gram allowing the extraction of the correlated frequent minimal generators. Then, from
the generated set of the generic rules, only the classification rules will be retained, i.e.,
those having the label of the class in its conclusion part. After that, a dedicated clas-
sifier we designed is fed with these rules and has to perform the classification process
and returns the accuracy rate for each class.

We report in Table (] ® the impact of integrating the correlation constraint for a
fixed minsupp and minconf thresholds. We remark, for the frequent patterns, that while

8 By “generic”, it is meant that these rules are with minimal premises and maximal conclusions,
w.r.t. set-inclusion.

° We note that Accuracy Rate = T?;Z%‘;;;T , with NorC'cT'r stands for the number of the cor-
rectly classified transactions and 7Total NbrT'r is equal to the whole number of the classified
transactions, and minconf corresponds to the minimum threshold of the confidence measure [1].
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Table 4. Evaluation of the classification accuracy versus minbond variation for frequent and rare
Jaccard patterns

Dataset minsupp minconf minbond # Exact # Approximate # Classification Accuracy Response Property of

Rules Rules Rules rate Time (sec)  Patterns

WINE 1% 0.60 0 387 5762 650 97.75% 1000 Frequent
0.10 154 2739 340  95.50% 13.02  Frequent

0.20 60 1121 125 94.38% 1.00  Frequent

0.30 20 319 44 87.07% 0.01  Frequent

Z00 50% 0.70 0.30 486 2930 235  89.10% 40 Rare
0.40 149 436 45 89.10% 3 Rare

0.50 38 88 11 83.16% 0.01 Rare

0.60 12 31 6 73.26% 0.01 Rare

increasing the minbond threshold, the number of exact and approximate association
rules decreases while maintaining always an important accuracy rate. Another benefit
for Jaccard measure integration, is the improvement of the response time, it varies from
1000 to 0.01 seconds. Whereas, for the rare patterns, we highlight that the increase of
the minbond threshold induces a reduction in the accuracy rate. This is explained by the
decrease in the number of the obtained classification rules.

Table 5. Evaluation of the classification accuracy of frequent patterns vs rare patterns

Dataset minbond minsupp minconf # Exact # Approximate # Classification Accuracy Property of

Rules Rules Rules rate Jaccard

patterns

WINE 0.1 20% 0.60 7 274 25 76.40% Frequent
0.80 7 86 10 86.65%  Frequent

0.90 7 30 4 84.83%  Frequent

0.1 20% 0.60 91 1516 168 95.50% Rare

0.80 91 449 84 92.69% Rare

0.90 91 100 48 91.57% Rare

IRrIS 0.15 20% 0.60 3 22 7 96.00% Frequent
0.95 3 6 3 9533%  Frequent

0.15 20% 0.60 17 32 8 80.06% Rare

0.95 17 7 5  80.00% Rare

0.30 20% 0.60 3 22 7 96.00% Frequent

0.95 3 6 3 9533%  Frequent

0.30 20% 0.60 8 14 4 70.00% Rare

0.95 8 6 3 69.33% Rare

TICTACTOE 0 10% 0.80 0 16 16 69.40%  Frequent
0.05 10% 0.80 0 16 16 69.40%  Frequent

0.07 10% 0.80 0 8 8 63.25%  Frequent

0.1 10% 0.80 0 1 1 60.22%  Frequent

0 10% 0.80 1,033 697 192 100.00% Rare

0.05 10% 0.80 20 102 115 100.00% Rare

0.07 10% 0.80 8 66 69  97.07% Rare

0.1 10% 0.80 2 0 1 65.34% Rare

We note according to the results sketched by Table 3 that for the datasets WINE
and TICTACTOE , the highest values of the accuracy rate are achieved with the rare
correlated rules. Whereas, for the IRIS dataset, the frequent correlated rules performed
higher accuracy than rare ones. In this regard, we can conclude that for some datasets,
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the frequent correlated patterns have better informativity than rare ones. Whereas, for
other datasets, rare correlated patterns bring more rich knowledge. This confirms the
beneficial contribution of our approach in inferring new knowledge from both frequent
and rare Jaccard patterns.

8 Conclusion and Future Works

We proposed, in this paper, GMIP the first approach to mine Jaccard patterns in a
generic way (i.e., with two types of constraints: anti-monotonic constraint of frequency
and monotonic constraint of rarity). Our approach is based on the key notion of bit-
sets codification that supports efficient Jaccard patterns computation thanks to an ad-
equate condensed representation of patterns. Experiments realised on several datasets
show the efficiency of GMJP according to both quantitative and qualitative aspects. An
important direction for future work is to extend our approach to other correlation mea-
sures [10418120.22] through classifying them into classes of measures sharing the same
properties.
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