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Abstract The Penrose inequality in terms of the Bondi mass at past null infinity can
be approached with a method due to Ludvigsen and Vickers and clarified later on
by Bergqvist (Ludvigsen and Vickers, J. Phys. A: Math. Gen. 16:3349–3353, 1983;
Bergqvist, Class. Quantum Grav. 14:2577–2583, 1997). In this work, we apply the
method to the special case of null shells of dust collapsing in a four-dimensional
Minkowski background (Penrose construction, 1973). Our main conclusion is that
the class of surfaces covered by the method is severely restricted. We provide
afterwards a wide family of surfaces satisfying the Penrose inequality which
includes the ones determined by the Bergqvist method.

1 Introduction

The Penrose inequality [3] bounds from below the total mass of a spacetime in terms
of the area of suitable surfaces that represent black holes. There are several versions
of the Penrose inequality (see [4] for a relatively recent review). For asymptotically
flat four-dimensional spacetimes with a regular past null infinity, the inequality reads
16�M 2

B � jS0j, where jS0j is the area of any marginally outer trapped surface jS0j
whose outer directed past null cone is smooth and MB is the Bondi mass on the cut
defined by the intersection of the outer past null cone of S0 and past null infinity.
Ludvigsen and Vickers [1] proposed an argument to prove this inequality which used
an implicit assumption that does not hold in general [2]. Moreover, it is not easy
to write down conditions directly on S0 which ensure that this extra assumption
holds true. Therefore the Penrose inequality for the Bondi mass is still an open
problem. The Penrose inequality was originally put forward by Penrose in 1973 [3].
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His strategy consisted of arranging incoming null shells of dust in the Minkowski
spacetime. After the shell has passed, there are two well-differenciated regions with
different geometries separated by a null hypersurface and the energy on the shell can
be arranged so that a trapped surface S0 forms with respect to the exterior geometry.
One of the beauties of the construction is that the Penrose inequality becomes a
geometric inequality in the Minkowski spacetime, with no reference to the shell
construction (see [3, 5] for details).

2 Bergqvist Method

Let M be a four-dimensional asymptotically flat spacetime at past null infinity
satisfying the dominant energy condition. Consider a spacelike two-surface S0 of
spherical topology. The normal bundle NS0 of S0 admits a global basis of future null
vectors k and `. Consider the normalization hk; `i D �1. As usual, the null extrinsic
curvatures are defined by K`.X; Y / D �h`; rX Y i, with X; Y tangent vectors to S0,
and similarly for Kk. The traces of these tensors define the null expansions �`, �k .

Assume S0 to be a marginally outer trapped surface (MOTS), i.e. �` D 0. If we
choose any real number r0, we can consider the unique past directed null geodesics
˛p.r/ starting at ˛p.r D r0/ D p 2 S0, with tangent vector ˛0

p D �kjp and
rkk D 0. Let ˝ be the null hypersurface generated by these geodesics. We will
refer to k as the inner future null direction. In general ˝ will become singular due
to the development of caustics. However, for suitable S0 and appropriate choice of
inner direction, ˝ will be regular everywhere, with no caustics developing even at
past null infinity. Any such S0 will be called spacetime convex.

Let Sr be the surfaces obtained by dragging the initial surface S0 along the null
geodesics after a parameter “r”. Let �Sr be the volume form of Sr . The method used
by Ludvigsen and Vickers [1] and later on by Bergqvist [2] uses as hypothesis the
following conditions at infinity:

lim
r!1

�Sr

r2
D �S2 ; �k D �2

r
C O.r�3/; �` D 1

r
C a

r2
C O.r�2/; (1)

where �S2 is the volume form of a limiting metric of Gauss curvature one (which
may be defined on any of the Sr as they are all diffeomorphic to each other via the
geodesics). Let EB be the Bondi energy on the cut defined by the intersection of
˝ and past null infinity with respect to the reference frame defined by the flow of
the surfaces Sr . With a suitable choice of scaling in k and a choice of r0 the form
for �k given above can always be accomplished. However imposing the rest of the
conditions does in general restrict the original surface S0. The Bondi energy can be
expressed as �8�EB D R

S2 a�S2 . The method involves two functions of r :

Mb.r/ WD 8�EB C
Z

Sr

�`.r/�Sr � 4�r; D.r/ WD
p

4�jSr j � 4�r:
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The Penrose inequality takes the form Mb.r0/ � D.r0/ and the method proves
this by showing Mb � 0 and D � 0 for all r . The function Mb (often called
Bergqvist mass) is nonincreasing as a consequence of the spherical topology of S0

and the dominant energy condition. The asymptotic conditions (1) imply that Mb

approaches zero and that D is nowhere positive, which establishes the inequality
(under assumptions (1)).

3 Bergqvist Method in M 1;3

We focus now on the Penrose construction of null shells in the four-dimensional
Minkowski spacetime M 1;3. Let S0 be any embedded spacetime convex surface
in M 1;3. Let � 0 be the future directed, unit generator of a time translation and
fk0; `0g the future null basis of the normal bundle of S0 satisfying hk0; � 0i D �1 and
hk0; `0i D �1, with k0 inner. Objects defined with respect to the geometry exterior
and interior to the shell will be distinguished with signs C and � respectively. The
energy density �0 of the shell satisfies the equation k0.�0/ D ��k0�0 and is adjusted
so that S0 is a MOTS with respect to the outer geometry. The jump of �`0 across the
shell satisfies (see e.g. [4]) �C

`0 � � �̀
0 D �8��0

0 (we use 0 for all objects depending
on � 0). The integral of the energy density on any spatial section of ˝ equals the
Bondi energy E 0

B with respect to the reference frame determined by the flow of
surfaces generated by k0. The Penrose inequality can be rewritten [3, 5] as

Z

S0

� �̀
0 �S0 �

p
4�jS0j:

For any other inner future null section k of NS0, let f WD �hk; � 0i. Define `

as the null normal vector satisfying hk; `i D �1. S0 being spacetime convex,
the intersection of ˝ with a constant time hyperplane ˙ 0

0 orthogonal to � 0 and
completely to the past of S0 is a (strictly) convex hypersurface of Euclidean space,
which we will denote by bS0

0. We define also � 0
r (‘time height’ to ˙ 0

0) as the
orthogonal distance of any point of each Sr to ˙ 0

0. Since bS0
0 is convex, we can

endow it with the standard two-sphere metric � 0 via the Gauss map and introduce
the support function h0, which measures the signed distance from the euclidean
origin to each tangent plane of bS0

0. All geometric objects on Sr can be expressed
in terms of the geometry of the standard two sphere .S2; � 0/, and in terms of h0,
f , � 0

0 D � 0
r jrDr0 and r0. A straightforward calculation shows that the asymptotic

behaviour at r D C1 of the null expansions is

�k D �2

r
C C

r2
C O.r�3/; � �̀ D � 1

f 3
.4� 0f � f .1 C 1

f 2
jDf j2

� 0//
1

r
C O.r�2/;
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C D u0=f �2r0 with u0 D 4� 0h0C2.h0�� 0
0/. A fundamental input of the Bergqvist

method is that �C
` D 1

r
CO.r�2/. It can be checked that the leading term of �` does

not jump across the shell, and hence the leading coefficient of � �̀ must equal 1 for
the method to apply. This happens if and only if f satisfies 4� 0 log f C f 2 D 1.
We can characterize the solutions of this equation as follows:

Theorem 1 (Choice of the Killing). f satisfies 4� 0 log f C f 2 D 1 if and only if
there is a new unit time translation � satisfying hk; �i D �1.

In terms of the new Killing �, the explicit expressions for �k and �` simplify
notably, even though the objects themselves remain unaltered (note that neither k,
nor the parametrization of the geodesics has been changed). From hk; �i D �1 and
using the jump equation for �` and

R
S ��S D EB , the expression for Mb becomes

Mb.r/ D R
Sr

� �̀.r/�Sr � 4�r . It is easy to see that the limits of Mb and D as

r ! 1 coincide and are equal to Lr0 WD 1
2

R
S2 C �S2 , where C (which, recall, has

not changed) can now be written in the form u �2r0, with u D 4�hC2.h� �0/ and
all quantities are determined with respect to the geometry of the plane ˙0 orthogonal
to �. Comparing with Sect. 2 the Bergqvist approach requires setting C D 0, i.e.

u D 2r0. This is equivalent to �0 D H.bS0/

Scal.bS0/
�ˇ, ˇ > 0, where �0 is the ‘time height’

from S0 to ˙0, and H.bS0/ and Scal.bS0/ are, respectively, the mean and the scalar
curvature of the projected surface bS0 in ˙0. It follows that the class of surfaces for
which the method applies depends on a single parameter for each choice of convex
bS0 and hence it is severely restricted, as claimed.

If we completely relax the condition C D 0 we can still apply a suitable
modification of the method. Recall that Mb � Lr0 . A different way of obtaining
Mb � D is imposing conditions so that D � Lr0 . Since lim

r!1D.r/ D Lr0 , we can

ask D to satisfy dD
dr

.r/ � 0. This leads to the following condition (see Theorem 6
in [6]):

4�

Z

S2

�
.4�h/2 C 2h4�h

�
�S2 � 4�

Z

S2

u2�S2 �
�Z

S2

u�S2

�2

:

The class of surfaces satisfying this inequality is quite large as it depends on
arbitrary functions for each choice of bS0. It is also immediate to check that it
includes the class covered by the Bergqvist method.
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