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Abstract In this talk, we presented the null geodesics of the static charged black
hole in heterotic string theory. The talk is based on a paper published in Physical
Review D (Fernando, Phys. Rev. D 85:02403, 2012). In this paper, a detailed
analysis of the geodesics are done in the Einstein frame as well as in the string
frame. In the Einstein frame, the geodesics are solved exactly in terms of the
Jacobi-elliptic integrals for all possible energy levels and angular momentum of the
photons. In the string frame, the geodesics are presented for the circular orbits. As a
physical application of the null geodesics, we have obtained the angle of deflection
for the photons and the quasinormal modes of a massless scalar field in the eikonal
limit.

1 Introduction to GMGHS Charged Black Holes in String
Theory

In this paper we studied null geodesics of the GMGHS charged black hole in the
string theory. Let us first give an introduction to the theory and the resulting black
hole solution.

The action corresponding to the GMGHS black hole is given by,

S D 1

16�

Z
d 4x

p�g
�
R � 2.5˚/2 � e�2˚ F��F ��

�
(1)

Here ˚ is the dilaton field, R is the scalar curvature and F�� is the Maxwell’s field
strength. The static charged black hole solutions to the above action were found first

S. Fernando (�)
Northern Kentucky University, Highland Heights, KY 41099, USA
e-mail: fernando@nku.edu

A. García-Parrado et al. (eds.), Progress in Mathematical Relativity,
Gravitation and Cosmology, Springer Proceedings in Mathematics & Statistics 60,
DOI 10.1007/978-3-642-40157-2__36, © Springer-Verlag Berlin Heidelberg 2014

267

mailto:fernando@nku.edu


268 S. Fernando

by Gibbons and Maeda[2]. It was also independently found by Garfinkle, Horowitz
and Strominger [3] few years later.

The GMGHS black hole solution to the action in Eq. (1) is given by,

ds2
E D �

�
1 � 2M

r

�
dt2 C 1�

1 � 2M
r

�dr2 C r .r � a/ .d�2 C sin2.�/d�2/ (2)

Here, the electric field strength and the dilaton field are given by,

Frt D Q

r2
I e2˚ D 1 � Q2

Mr
I a D Q2

M
(3)

There is an event horizon at r D 2M . How ever, the area of the sphere of the string
black hole is smaller and the area approaches zero when r D Q2=M . Therefore,
r D Q2=M surface is singular. For Q2 � 2M 2, the singular surface is inside the
event horizon and the Penrose diagram is identical to the one of the Schwarzschild
black hole. When Q2 D 2M 2, the singular surface coincides with the horizon.
This is the extremal limit where a transition between the black hole and the naked
singularity occurs.

2 Null Geodesics

The null geodesics for the above black hole are given by the following three
equations.

R.r/2 P� D L (4)

f .r/Pt D E (5)

Pr2 C f .r/
L2

R.r/2
D E2 (6)

Here f .r/ D 1 � 2M
r

. One can do a change of variable as u D 1
r

and combine the
above Eqs. (4), (5) and (6) to obtain an equation,

�
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where,
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When a ! 0, g.u/ ! 2Mu3 � u2 C E2

L2 as expected for the Schwarzschild black
hole [4]. When a ! 0, g.u/ has maximum three real roots as described in the book
by Chandrasekhar[4].

3 Bending of Light

Once the null geodesics are analyzed in detail for various parameters in the theory
such as E; L; M and Q, it is possible to apply that knowledge to study important
properties of the black hole geometry. One of them is the gravitational lensing
or bending of light by the black hole. We obtained explicit expressions for the
closest approach ro of the light ray in terms of the impact parameter D given in
Eqs. (9), (10) and (11). There after, we compared the deflection angle of light as a
function of D for the GMGHS black hole and the Schwarzschild black hole.
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Here, p and q are given by,

p D a2 � 3D2

3
(10)

q D 54MD2 � 9aD2 � 2a3

27
(11)

4 Unstable Null Geodesics and Quasinormal Modes
of the Massless Scalar Field in the Eikonal Limit

When a black hole is perturbed, it undergoes damped oscillations; the frequencies
of oscillations are called quasinormal modes. Perturbations of a black hole with a
scalar field are given by the equation,

d 2�

dr2�
C
�

!2 �
�

l.l C 1/

R2
C ff 0R0

R
C f 2R00

R

��
� D 0 (12)

Here, l is the spherical harmonic index and r� is the tortoise coordinate. The
computation of quasinormal modes at the eikonal limit and the unstable null
geodesics are related [5]. In the eikonal limit, the quasinormal modes are given as,

!QNM D ˝cl � i.n C 1

2
/j�j (13)
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Here, the value n is a nonnegative integer. ˝c is the coordinate angular velocity

given by
P�
Pt computed at unstable circular radius of the null geodesics which is given

in Eq. (14). � is the Lyapunov exponent which gives the instability timescale of the
unstable circular null geodesics, given in Eq. (15)
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5 Conclusions

We have studied the null geodesics of the GMHHS black hole. The equations for the
geodesics were solved exactly for various values of energy and angular momentum
of the photons.

As physical applications of the properties of the null geodesics obtained here,
we have studied light bending and quasinormal modes of massless scalar field. The
closest approach of the photons bending around the black hole is computed as a
function of the impact parameter. The deflection angle ˛ is computed as a function
of the impact parameter. A comparison is done with the deflection angle of the
Schwarzschild black hole. It was observed that the photons with the same impact
parameter bend less around the string black hole compared to the Schwarzschild
black hole. These results would be beneficial in computations of gravitational
lensing of string black holes.

The unstable circular null geodesics of the black hole are used to compute the
quasinormal modes of the black hole in the eikonal limit. We have followed an
important result by Cardoso et al. [5] in deriving these results. The Lyapunov
exponent �, which gives the instability time scale is also computed. It was noted
that there is a maximum value for � at a D 6M.2 � p

3/.
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