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Preface

The Spanish Relativity Meeting (ERE) is a well-established meeting devoted to
General Relativity and Gravitation, and it has been organized in Spain for more
than 30 years. However, in 2012, the Relativity group at the University of Minho
in Portugal, took the challenge of the Spanish Society of Gravitation and Relativity
(SEGRE), and organized the meeting in Portugal, for the first time. The meeting
was organized in Guimarães, a world heritage site, and European Capital of Culture
in 2012.

The ERE2012 was organized under the title “Progress in Mathematical Relativ-
ity, Gravitation and Cosmology”, and we were pleased to host an excellent panel of
invited speakers on topics which ranged from mathematical cosmology, numerical
relativity and black holes to string theory and quantum gravity. We were also very
glad to have an exceptional international list of over a 100 participants from the 5
continents and over 40 countries.

The conference opening, on September 3rd, had the presence of both the Dean
of the School of Sciences of Minho University, Prof. Estelita Vaz, who, luckily,
was one of the meetings’ organizers, and the Secretary of the SEGRE society,
Prof. Jaume Carot. Nineteen plenary lectures took place in the mornings while the
afternoons included 81 talks in 10 parallel sessions as well as 7 poster presentations.

Following the tradition of previous meetings, there were also several social
events, from the memorable Public Lecture by Carlos Herdeiro at “Centro de Artes
e Espetáculos São Mamede” and the cocktail at “Escola de Ciências” to the guided
visit to Porto and the closing dinner at Guimarães historical centre, with the Rector
of Minho University, Prof. António Cunha.

We thank all the participants for creating a very pleasant atmosphere and hope
that our first step can encourage future editions of the ERE in Portugal.

Braga, Portugal Alfonso García-Parrado, Estelita Vaz,
June 2013 Filipe Mena, Filipe Moura
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Linearized Gravitational Waves Near
Space-Like and Null Infinity

Florian Beyer, George Doulis, Jörg Frauendiener, and Ben Whale

Abstract Linear perturbations on Minkowski space are used to probe numerically
the remote region of an asymptotically flat space-time close to spatial infinity. The
study is undertaken within the framework of Friedrich’s conformal field equations
and the corresponding conformal representation of spatial infinity as a cylinder. The
system under consideration is the (linear) zero-rest-mass equation for a spin-2 field.
The spherical symmetry of the underlying background is used to decompose the
field into separate non-interacting multipoles. It is demonstrated that it is possible
to reach null-infinity from initial data on an asymptotically Euclidean hyper-surface
and that the physically important radiation field can be extracted accurately on I C.

1 Introduction

Asymptotically simple space-times as defined by Penrose [21] are distinguished by
their qualitatively completely different structure at infinity. Depending on the sign
of the cosmological constant � their conformal boundary is time-like, space-like
or null. These space-times have been studied extensively from the point of view
of the initial (boundary) value problem and a lot is known about their properties. In
particular, space-times which are asymptotically de Sitter (� > 0) are known to exist
globally for small initial data. The same is true for asymptotically flat space-times
(� D 0) while for asymptotically anti-de Sitter space-times we only have short-time
existence results for the initial boundary value problem. On the contrary, initiated
by an important paper by Bizoń and Rostrowroski [2] and based on numerical and
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perturbative methods, there are now strong hints that these space-times are in fact
non-linearly unstable.

In the present paper we want to focus on asymptotically flat space-times. As we
already mentioned these space-times exist globally for small enough initial data.
However, it is still not completely understood in detail, how to characterize the
admissible initial data from a geometrical or physical point of view. The reason
lies in the fact that in every space-time with a non-vanishing ADM-mass spatial
infinity is necessarily singular for the four-dimensional conformal structure.

In a seminal paper [10], Friedrich shows how to set up a particular gauge near
space-like infinity which exhibits explicitly the structure of the space-time near
space-like and null-infinity. The so called “conformal Gauß gauge” is based entirely
on the conformal structure of the space-time fixing simultaneously a coordinate
system, an orthogonal frame and a general Weyl connection compatible with the
conformal structure. The detailed description of this gauge is beyond the scope
of this paper and we need to refer the reader to the existing literature [8–10, 16].
Suffice it to say that the conformal Gauß gauge is based on a congruence of
time-like conformal geodesics emanating orthogonally from an initial space-like
hyper-surface. The coordinate system, tetrad and Weyl connection are defined
initially on that hyper-surface and are dragged along the congruence of conformal
geodesics so that they are defined everywhere.

It turns out that in this gauge the space-time region near space-like infinity
has a boundary consisting of future and past null-infinity I ˙ together with a
three-dimensional “cylindrical” hyper-surface I connecting them. In a certain sense,
in Minkowski space-time, this cylinder is a blow-up of the (regular) point i 0. The
“general conformal field equations” (GCFE) express the fact that the conformal
class of the space-time contains an Einstein metric. They are a set of geometric
partial differential equations (PDEs) generalizing the standard Einstein equations
with cosmological constant. When split into evolution and constraint equations
within the conformal Gauß gauge the evolution equations take a particularly simple
form and it turns out that the cylinder I becomes a total characteristic. This means
that the evolution equations reduce to an intrinsic system of PDEs on I , i.e.,
they contain no derivatives transverse to I . The intrinsic equations are symmetric
hyperbolic on I except for the locations I˙ WD I \ I ˙, the 2-spheres where I
meets future or past null-infinity. There, the equations loose hyperbolicity. It is this
feature which is responsible for the singular behavior of the conformal structure
near space-like infinity.

In a series of papers [10,12–14], Friedrich has analyzed the behavior of the fields,
in particular of the Weyl tensor components and their transverse derivatives, along
the cylinder I . He has shown that generic initial data lead to singularities at I˙.
The singularities can be avoided if the initial data satisfy certain conditions, one of
them being the geometric condition that the Cotton tensor of the induced geometry
on the initial hyper-surface and all its symmetric trace-free derivatives vanish at the
intersection of I and the initial hyper-surface. It is still not completely clear what
is the correct geometric classification of those space-times which satisfy Friedrich’s
conditions (however, see [12, 14, 15]).
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Here, we want to discuss these issues from the numerical point of view. It is
clear, that the fact that the evolution equations extracted from the GCFE cease to
be hyperbolic is a troublesome feature in a numerical evolution scheme. We want
to see how it manifests itself in the simplest scenario we can think of: linearized
gravitational fields on Minkowski space. If we could not control this situation then
the use of the GCFE for numerical purposes would not be possible.

The plan of the paper is as follows: in Sects. 2 and 3 we give brief summaries of
the basic analytical and numerical results. In Sect. 4 we discuss ways to overcome
the singular behavior at IC while in Sect. 5 we show how we can reach future
null-infinity. The conventions we use and much of the background can be found
in [22].

2 The Spin-2 Zero-Rest-Mass Equations

It is well known [22] that perturbations of the Weyl tensor Cabc
d or, equivalently,

the Weyl spinor �ABCD satisfy the equations for a field with spin 2 and vanishing
rest-mass:

rA
A0�ABCD D 0: (1)

It is also known [22] that this system of equations suffers from Buchdahl conditions,
algebraic conditions relating the conformal curvature �ABCD of the underlying
background geometry with the field

�ABC.D�
ABC

E/ D 0

which severely restrict the possible perturbations in any conformally curved
space-time, rendering (1) inconsistent.

Therefore, we choose flat Minkowski space-time as our background so that �ABCD

describes small amplitude gravitational waves propagating in an otherwise empty
space-time. For a detailed discussion and derivation of the explicit form of the spin-2
equations in the present context we refer to [1]. Here, we focus only on the relevant
points. Starting with the standard Minkowski metric in Cartesian coordinatesXa

Qg D �abdXadXb (2)

where �ab D diag.1;�1;�1;�1/, and performing an inversion at the null-cone of
the origin

Xa D � xa

x � x ; x � x WD �abx
axb D 1

.X �X/
puts the metric into the form
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Fig. 1 The neighborhood of
space-like infinity in two
different .t; r/-coordinate
representations corresponding
to �.r/ D 1 and
�.r/ D 1=.1C r/

Qg D �abdxadxb

.x � x/2 : (3)

This metric is singular whenever x � x D 0, i.e., on the null-cone at infinity. So we
define a conformally related metric

g0 D ˝2 Qg D �abdxadxb; ˝ D �.x � x/ (4)

which extends smoothly to the null-cone of infinity. Note, that space-like infinity is
represented in this metric as the point xa D 0. In order to exhibit the cylindrical
structure referred to above we perform a further rescaling of the metric using a
function �.r/ D r�.r/, where r2 D .x1/2C.x2/2C.x3/2 and� is a smooth function
with �.0/ D 1. Furthermore, we introduce a new time coordinate by defining x0 D
t�.r/. These steps give the final form of the metric

g D 1

�2

�
�2dt2 C 2t��0dtdr � .1 � t2�02/dr2 � r2d!2� : (5)

Here, we have denoted the metric on the unit sphere by d!2. Note, that the metric g
is spherically symmetric.

The function�.r/ determines the “shape” of I ˙ in the .t; r/-coordinate system.
We have chosen the two possibilities �.r/ D 1=.1Cnr/ with either n D 0 or n D 1

with the consequence that I ˙ are represented as either a horizontal (n D 0) or
diagonal (n D 1) line in a .t; r/ diagram, see Fig. 1. They meet the cylinder I in the
spheres I˙ at .t; r/ D .˙1; 0/. We introduce the double null-coordinates .u; v/ by

u D �t � r; v D �t C r; (6)
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which puts the metric into the form

g D 1

�2
dudv � 1

�2
d!2:

Null-infinity is characterized by the vanishing of one of the null coordinates, the
other one being non-zero (u D 0, v ¤ 0 on I C and u ¤ 0, v D 0 on I �).
Both coordinates vanish on the cylinder I . In Fig. 1 we also display the lines of
constant u and v, corresponding to radial null geodesics. There are two families
of null geodesics, one leaving the space-time through I C, the other entering it
through I �.

Since the null coordinates are adapted to the conformal structure, we can see
clearly that the cylinder is “invisible” from the point of view of the conformal
structure. This structure is exactly the same as the representation of space-like
infinity in the coordinates xa, it appears like a point. However, the differentiable
structures defined by the .u; v/ and the .t; r/ coordinates are completely different
near the boundary r D 0 from the one defined by the xa coordinates.

In order to derive the spin-2 equations explicitly we introduce a complex null
tetrad .la; na;ma; Nma/ adapted to the spherical symmetry, i.e.,

la@a D 1p
2

��
1 � t�0� @t C �@r

�
; na@a D 1p

2

��
1C t�0� @t � �@r

�
;

and ma tangent to the spheres of symmetry. Writing the spin-2 equation in the
NP formalism, computing the spin-coefficients and finally introducing the “eth”
operator Ä (see [17,20,22]) on the unit sphere puts (1) into the form of eight coupled
equations

.1 � t�0/@t�k C �@r�k � .3�0 � .5 � k/�/�k D �Ä0�k�1; k D 1 W 4;
.1C t�0/@t�k � �@r�k C .3�0 C .k C 1/�/�k D �Ä�kC1; k D 0 W 3 (7)

for the five complex components of the spin-2 field �ABCD, see e.g. [22]. We exploit
the spherical symmetry of the background Minkowski space-time even further by
decomposing the field components �k.t; r; �; �/ into different multipole moments
using the spin-weighted spherical harmonics sYlm

�k.t; r; �; �/ D
X

l�2�k

lX

mD�l
� lm
k .t; r/ 2�kYlm.�; �/: (8)

Inserting this expansion into (7) and using the action of Ä and Ä0 on the spin-
weighted spherical harmonics [22] the system decouples into a countable family
of 1 C 1 systems indexed by admissible pairs of integers .l;m/. We find that each
mode � lm

k propagates along radial null geodesics, the “inner” modes � lm
1 , � lm

2 , � lm
3

propagate in both directions while the “outer” modes � lm
0 and � lm

4 only propagate
along one null direction.
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The final step in the preparation of the equations is the split into constraint and
evolution equations, which leads to a system of five evolution equations

.1C t�0/@t�0 � �@r�0 D �.3�0 � �/�0 � �˛2�1;

@t�1 D ���1 C 1

2
�˛2�0 � 1

2
�˛0�2;

@t�2 D 1

2
�˛0�1 � 1

2
�˛0�3;

@t�3 D ��3 C 1

2
�˛0�2 � 1

2
�˛2�4;

.1 � t�0/@t�4 C �@r�4 D .3�0 � �/�4 C �˛2�3

(9)

and three constraint equations

�2�@r�1 C 6r�0�1 � 2t�0��1 C ˛0�.1 � t�0/�2 C ˛2�.1C t�0/�0 D 0;

�2�@r�2 C 6r�0�2 C ˛0�.1 � t�0/�3 C ˛0�.1C t�0/�1 D 0;

�2�@r�3 C 6r�0�3 C 2t�0��3 C ˛0�.1C t�0/�2 C ˛2�.1� t�0/�4 D 0:

(10)

Note that we have dropped here the superscripts from � lm
k and we introduced the

quantities ˛0 D p
l.l C 1/ and ˛2 D p

l.l C 1/� 2. Since �.0/ D 0 it is obvious
that the evolution equations reduce to a system intrinsic to I . Since on I also
�0.0/ D 1, it follows that the coefficients in front of the time derivatives of �0
(respectively �4) vanish when t D �1 (respectively when t D 1).

In Fig. 2 we show again the neighbourhood of I and I C for �.r/ D 1=.1C r/.
This time we show the characteristics also in the unphysical part of the diagram.
The non-shaded region bounded partly by the thick broken line is the domain of
hyperbolicity of the evolution equations, i.e., the domain where t < ˙j�0.r/j.
Notice that every neighborhood of IC contains regions where the hyperbolicity
breaks down. Apart from the fact that one cannot hope to get existence and
uniqueness of solutions beyond that region its presence also makes the numerical
evolution challenging. For instance, setting up an initial boundary value problem
with the left boundary at negative values of r does not make sense if the evolution is
to reach up to IC. Even with the left boundary on I it is not possible to go beyond
IC since the evolution hits the non-hyperbolicity region.

3 Numerical Methods and Tests

Again, we give a brief summary and refer to [1] for further details. We have different
equations for different values of the multipole index l . Here, we focus only on the
case l D 2 without mentioning it any further. We have done evolutions with other
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Fig. 2 The characteristics of the evolution equations in a neighborhood of IC in the diagonal
representation. The shaded region is the domain where the equations fail to be hyperbolic, i.e.,
where t < �0.r/. The corresponding neighborhood of I� is obtained by reflection at the lower
border of the diagram accompanied by an interchange of u and v. The thick (green) broken line
indicates the boundary of the domain of non-hyperbolicity

values of l which lead to very similar results. The evolution equations (9) are solved
on a spatial interval 0 � r � 1 as an initial boundary value problem. We use the
method of lines constructing the spatial discretisation using a 4th order accurate
finite difference scheme. The initial data are obtained either from exact solutions or
by solving the constraint equations (10) explicitly in terms of two free functions. The
boundary at r D 0 is a characteristic so we do not need to specify any free functions
there, while the boundary at r D 1 is an artificial boundary, which needs exactly
one free function for the component �0 that propagates through this boundary into
the computational domain. The boundary conditions are implemented using SBP
operators [6, 18, 24] and the SAT penalty method [3, 4, 19, 23]. The semi-discrete
system of ODEs is solved using the standard 4th order Runge–Kutta method.

This code stably propagates the initial data from t D 0 up to any value of
t < 1, independently of whether we use the diagonal or the horizontal representation
of I . The code converges to 4th order, the constraints propagate and the constraint
violations remain bounded. However, the two representations behave differently
when we attempt to reach t D 1.

In the diagonal case we can reach t D 1 exactly and the code converges in
4th order, indicating that the numerical problem is still well-posed. With any fixed
time-step 	 we can also step beyond t D 1 to t D 1C 	 . However, the code fails to
converge at t D 1C 	 for every 	 > 0. Clearly, the loss of hyperbolicity at t D 1 is
also responsible for the lack of well-posedness of the numerical problem. Referring
back to Fig. 2 it is clear that there will always be a sufficiently high resolution in
time and space which will detect the domain of non-hyperbolicity of the evolution
equations beyond IC.
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In the horizontal case the situation is apparently worse. In this case, it is
principally impossible to reach t D 1 simply because the propagation speed of
�4 becomes infinite and so stability is lost not only at the point IC but at the entire
time-slice t D 1 which coincides with I C, a characteristic hyper-surface, in this
representation.

However, in principle we can come arbitrarily close to t D 1 (within numerical
accuracy) if at every time we choose the next time-step small enough so that
the CFL criterion—the numerical domain of dependence includes the analytical
domain of dependence—is satisfied. Such an adaptive time-stepping scheme has
been implemented and we have in fact demonstrated that we can come very close to
t D 1 without loosing convergence. However, since the time-steps decrease to zero
exponentially with the number of steps the simulation takes arbitrarily long.

4 Beyond IC?

Given that we can reach t D 1 in a stable fashion in the diagonal representation
we may ask the question as to whether it is possible to continue beyond IC?
Clearly, for the reasons discussed above we cannot simply continue the computation
because we run into the non-hyperbolicity region near IC. Referring back to
Fig. 2 we see that one family of the characteristics—corresponding to the field
component �4—asymptotes to the cylinder and, subsequently, to I C in a non-
uniform way. This non-uniformity is due to the fact that the coefficient in front
of the time derivative of �4 in the evolution system vanishes at t D 1, causing the
loss of hyperbolicity of the system. Can we avoid this problem? There are a few
possibilities which come to mind:

• Chop the computational domain by dropping points outside I C from the left.
• Change the radial coordinate so that I C becomes the left boundary of the

computational domain. This is a form of I -freezing (see [7]).
• Change the time coordinate so that the (space-like) time-slices tilt upwards

towards I C.

We have considered the first two possibilities. These two methods are complemen-
tary to each other in the sense that in the first case we change the computational
domain but not the system, while in the second case we change the equations but
not the computational domain.

Figure 2 shows the behavior of the characteristics for �0 and �4 as well as the
region in which hyperbolicity fails. The surfaces that we are evolving our data on
are horizontal and to the right of the vertical solid and broken black lines. Note that
for t > 1 these surfaces are guaranteed to intersect the region in which hyperbolicity
fails. In addition, for surfaces with t > 1 a new boundary condition for �4, on the
“left” of the grid is required. However, since I C is one of the characteristics for �4
this boundary condition cannot influence the physical region to the right of I C.
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Table 1 Absolute error 
 compared to an exact solution

�0 �4
Grid points log2.jj
jj2/ Rate log2.jj
jj2/ Rate

100 �28.38 �5.93
200 �31.75 3.37 �5.98 0.05
400 �35.21 3.46 �6.07 0.10
800 �38.71 3.50 �8.41 2.34

L2 norm and convergence rates at time t D 1:1 for �0; �4. The calculation was
done with a fixed time-step

To solve both of these problems we set the values of �0; : : : ; �4 to zero after
some predetermined grid point that is beyond future null infinity, but before the
region in which hyperbolicity fails. That is, between the broken green line and I C.
The equation for the broken green line is

1 � t

.r C 1/2
D 0

and the equation for future null infinity, where t � 1, is

1 � t

r C 1
D 0:

We chose, after some experimentation, that the “cut off” point, after which all data
values would be set to zero would be 10% of all grid points beyond I C. That is, the
values of �0; : : : ; �4 would be set to zero on the 90% of grid points between r D 0

and I C. This condition, of setting values to zero, allows us to numerically provide
the necessary boundary condition for �4 and cope with the lack of hyperbolicity in
the region of the grid to the left of the broken green line.

Other than this technicality, the same evolution scheme, with the same fixed step
size was used to evaluate the initial data up to t D 1:1. We evolved an exact solution
and estimated the error at t D 1:1 by comparing the values of �0; : : : ; �4, on the
“physical” portion of the grid to the exact solution. The L2 measure of the error
is presented in Table 1. We only give the error for the �0 and �4 components. The
convergence rates for �1; �2 and �3 are, roughly, a linear interpolation between those
for �0 and �4. Note, that the error in �0 is of the order of 10�11 while the error in �4
is roughly 10�2.

In the second case we change the r-coordinate in a very simple minded way using
the coordinate transformation

r 7! Nr D r � t C 1; t 7! Nt D t; for t � 1:

This has the effect that I C is given as the locus fNr D 0g. Note, that the coordinate
transformation is only continuous and not even C 1. Since the partial derivatives
transform according to



12 F. Beyer et al.

@t D @Nt � @Nr ; @r D @Nr

we still have the problem that the coefficient in front of the time derivative of
�4 vanishes at t D 1. Clearly, we cannot make the system regular at t D 1

by a coordinate transformation. We can try to avoid the evaluation at t D 1 by
arranging the time stepping to “straddle” t D 1 so that we never actually hit it
exactly. However, this has the consequence that the “kink” that we obtain due to
the non-smoothness of the coordinate transformation induces oscillations at the
right boundary. We would probably be able to avoid those if we used a smoother
coordinate transformation. However, this would change the equations in much more
complicated ways and we have not pursued this any further.

The third possibility mentioned above—changing the time coordinate—has the
effect that the time-slices globally approach I C which is exactly the feature that
we see in the horizontal representation. This prompted us to look at the relationships
between the different conformal representations in more detail.

The two representations are related by a conformal rescaling and a coordinate
transformation. We can derive the corresponding relationships for the field compo-
nents as follows. Let �n.r/ D 1=.1C nr/ and define � D �1=�0. Let g0 and g1 be
the metrics corresponding to the horizontal and diagonal representations, then we
have

g1 D �21
�20
g0 D �2g0: (11)

Furthermore, the two time coordinates t0 and t1 in the two representations are
related by

x0 D r�0t0 D r�1t1 H) t1 D ��1t0: (12)

The spin-2 field has conformal weight �1 under conformal rescalings. This implies
that with (11) we also have

�1ABCD D ��1�0ABCD: (13)

In order to get the behavior of the field components under conformal rescalings we
observe that (11) implies that the tetrad vectors rescale as

la1 D ��1la0 ; etc (14)

and the spin-frame correspondingly rescales with ��1=2. Taken altogether, these
transformation properties imply that

�1k.t1; r/ D ��3�0k.��1t0; r/: (15)
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Fig. 3 Comparison between the two representations. For detailed explanation see text

We can now make use of these relationships in the following way. Suppose we
want to evolve initial data in the diagonal representation. We rescale the data on
the initial hyper-surface t1 D 0 D t0 using (15) into initial data for the horizontal
representation and evolve them with the system for the horizontal representation up
to a time t � 1. Then we undo the rescaling with (15) and obtain the solution in
the diagonal representation. In Fig. 3 we present the results of these operations. The
surface plot in the upper left shows the component �4 evolved with the diagonal
representation n D 1, while the plot on the lower left shows �4 obtained in the
horizontal representation using the same data as for the case n D 1 but rescaled
according to (15). The contour plots on the right show the obtained solutions.
Above is the solution directly obtained in the diagonal representation while below
is the solution obtained after rescaling back from the horizontal representation. The
contour plots agree visually. Note, that the t coordinates in the two surface plots are
not the same. They refer to t0 in the lower plot and to t1 in the other.

In the horizontal representation we come arbitrarily close to t D 1. Hence,
we can “almost” compute the entire space-time (at least in this simple set-up). In
this sense the horizontal representation is much more efficient than the diagonal
one. In Fig. 4 we show the contour plots of the rescaled solution in the diagonal
representation. Clearly, it extends way over the t D 1 time-slice reaching I C to
within the graphical resolution.
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Fig. 4 Contour plots of �0 (left) and �4 (right) computed with n D 0 but rescaled to the diagonal
representation

5 Reaching Null-Infinity

Since the horizontal representation allows us to almost reach null-infinity one may
wonder whether it might be possible to extend the computation to I C from the
last time-level at t D Nt , say? To answer this question we refer back to Fig. 1 where
we showed the space-time in the horizontal representation together with the two
families of characteristics. The “outgoing” characteristics (those intersecting I C)
are well-behaved while the other family asymptotes to I [ I C in a non-uniform
way. Referring to (7) we see that all components except for �4 propagate along
the well-behaved characteristics. This suggests that we use those four propagation
equations to estimate the values of �0, �1, �2, �3 on I C. Since we cannot use any
values of �4 beyond t D Nt we are forced to use an Euler step to get to t D 1.

As for �4 we observe that its propagation equation reduces to an intrinsic
equation on I C, which we could integrate if we had initial conditions for �4 at
r D 0, once we know the values of the other components on I C. The equation for
�4 on I C reduces to

r@r�4 � 2�4 D ˛2�3: (16)

This equation is singular at r D 0 and the requirement that �4 and its derivative be
bounded forces the initial condition

�4.1; 0/ D �˛2
2
�3.1; 0/:

So we see that we can perform the last step to I C, albeit only with a first order
method.

We tested this approach by evolving compactly supported initial data obtained
by explicitly solving the constraints (the same ones as in Sect. 4). The error at
t D 1 was estimated by comparing the values produced in some simulation to the
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Table 2 Absolute error 

compared to a 6,400 grid
point simulation using the L2

norm and convergence rates
at time t D 1 for �0; �4 for
compactly supported data in
the n D 0 space-time

�0 �4
Grid points log2.jj
jj2/ Rate log2.jj
jj2/ Rate

200 �7.99 0.082
400 �11.48 3.49 �0.44 0.52
800 �14.98 3.49 �1.02 0.57
1,600 �18.48 3.50 �1.73 0.71
3,200 �22.07 3.58 �2.81 1.08

values produced in the highest resolution simulation with 6;400 grid points. The L2
measure of the error is presented in Table 2. Since the �0 and �4 components mark
the extreme cases, we do not present the error convergence rates for �1; �2; �3. Their
convergence rates are comparable to �0. Remarkably, the convergence rate for �0 is
close to 4th order, while for �0 we get the expected first order convergence. The
accuracy in the radiation component is roughly 10�7 while for �4 it is not good,
only � 10%. This low accuracy is due to the singular behavior of the propagation
equation (16) for �4 at r D 0, which we might not have taken care of appropriately.
There is still room for improvement because we could use the intrinsic transport
equations (see [1, 11]) along the cylinder—mentioned in the introduction—to drag
along as many derivatives of �4 as we please. These could be used to construct a
Taylor approximation for �4 near r D 0 to get the integration process started more
smoothly.

6 Conclusion

In this paper we have presented a study of the spin-2 equation in the neighborhood
of spatial infinity in Minkowski space-time. Since the perturbations of the Weyl
curvature on flat space obey this equation we can interpret this system as a model
for small amplitude gravitational waves. We used this model to study the asymptotic
properties of the fields—and, hence, to some extent also of the perturbed space-
time—close to spatial infinity. This region is still not completely understood and we
hope that our work will ultimately contribute to the complete understanding of this
issue.

We have shown here that it is possible to generate a complete evolution from
initial data on an asymptotically Euclidean hyper-surface to the asymptotic regime
including null-infinity even though the equations show a certain degeneracy at the
cylinder which represents spatial infinity in Friedrich’s conformal Gauß gauge.
Using the horizontal representation as described in Sects. 4 and 5 we can get
the radiation field �0 quite accurately on I C. The drop in convergence for the
component �4 is akin to the loss of smoothness of null-infinity in the first result
on the global stability of Minkowski space by Christodoulou and Klainerman [5].
This was caused by the loss of peeling in the corresponding component of the Weyl
tensor.
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Of course, we deal here with a highly simplified system and the fact that we
can make things work here does not immediately imply that it will also work in
the physically relevant 3D cases. However, this toy system does provide valuable
insights into the possibilities of and the restrictions imposed by the structure of
spatial infinity. We should point out that the structure of the fully non-linear
general conformal field equations is very similar to the linear spin-2 system. This is
essentially due to the fact that the spin-2 system results from the Bianchi equations
obeyed by the rescaled Weyl spinor.

Our next steps will be the removal of the artificial boundary at r D 1. This
will allow us to perform an entirely global evolution of the mode decomposed
spin-2 field. The challenge here is to get the centre under control because due to
the spherical symmetry this will be a singular point for the equations. Then, we
intend to remove the mode decomposition and look at the linearized system in three
spatial dimensions.
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Lovelock Theory, Black Holes and Holography

José D. Edelstein

Abstract Lovelock theory is the natural extension of general relativity to higher
dimensions. It can be also thought of as a toy model for ghost-free higher curvature
gravity. It admits a family of AdS vacua, most (but not all) of them supporting black
holes that display interesting features. This provides an appealing arena to explore
different holographic aspects in the context of the AdS/CFT correspondence.

1 Lovelock Theory

While classical gravity seems well-described by the Einstein–Hilbert action,
quantum corrections generically involve higher curvature terms. This is the case,
for instance, of ˛0 corrections in string theory. On general grounds, higher curvature
terms arise in Wilsonian low-energy effective descriptions of gravity.

The inclusion of higher curvature corrections customarily leads to higher order
equations of motion. They are consequently argued to be plagued of ghosts. Despite
that, David Lovelock tackled the problem some four decades ago finding the most
general situation leading to second order Euler–Lagrange equations [1]. He showed
that, whereas in four dimensions General Relativity is the natural answer, higher
dimensional scenarios lead to the appearance of higher curvature contributions to
the action, on equal footing with the Einstein–Hilbert term. The action of Lovelock
theory is given, in d space-time dimensions, by a sum of K � Œ d�1

2
� terms,
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I D
KX

kD0

ck

d � 2k
Ik; (1)

which admit a compact expression in terms of differential forms

Ik D
Z

a1 ���ad Ra1a2 ^ � � � ^ Ra2k�1a2k ^ ea2kC1 ^ � � � ^ ead ; (2)

where 
a1 ���ad is the anti-symmetric symbol, Rab WD d!ab C !ac ^ !cb is the
Riemann curvature 2-form, computed from the spin connection 1-form !ab , and ea

is the vierbein 1-form. By construction, Lovelock theories are intrinsically higher
dimensional.

It is easy to see that the first two terms (most general up to d D 4) are quite
familiar; I0 gives the cosmological term while I1 is nothing but the Einstein–
Hilbert (EH) action. Their normalization is fixed along this talk as

L2c0 D c1 D 1; (3)

or, in terms of the more familiar dimensionfull quantities of General Relativity,

� D � .d � 1/.d � 2/

2L2
; 16�.d � 3/ŠGN D 1; (4)

GN being the Newton constant. For d � 5, for instance, we have the Lanczos–
Gauss–Bonnet (LGB) term [2] (c2 D �L2),

I2 ' ddx
p�g �R2 � 4R��R�� CR����R

����
�
; (5)

while for d � 7, we introduce the cubic Lovelock Lagrangian (c3 D �L4),

I3 ' ddx
p�g �R3 C 3RR��˛ˇR˛ˇ�� � 12RR��R��

C 24R��˛ˇR˛�Rˇ� C 16R��R�˛R
˛
� C 24R��˛ˇR˛ˇ��R

�
�

C 8R��˛�R
˛ˇ
��R

��

�ˇ C 2R˛ˇ��R
��˛ˇR����

�
: (6)

By simple comparison of (2) and, say, (6), the advantages of the so-called first
order formalism become manifest. The equations of motion are obtained by varying
independently with respect to the vierbein and the spin connection. The latter can
be solved by simply setting the torsion T a WD dea C!ab ^ eb to zero. This is not the
most general solution, but the one we will consider along this talk, since it allows
us to make contact with the second order metric formulation of gravity.
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The equations of motion, when varying the vierbein, can be cast into the form


aa1 ���ad�1
F a1a2
.1/ ^ � � � ^ F a2K�1a2K

.K/ ^ ea2KC1 ^ : : : ^ ead�1 D 0; (7)

which neatly displays the fact that these theories admit (up to)K constant curvature
maximally symmetric vacua,

F ab
.i/ WD Rab ��i e

a ^ eb D 0: (8)

The effective cosmological constants turn out to be the (real) roots of the character-
istic polynomial � Œ��,

� Œ�� WD
KX

kD0
ck �

k D cK

KY

iD1
.���i/ : (9)

We will see that many important features of these theories and their black hole
solutions are governed by this polynomial. Degeneracies arise when its discrimi-
nant, 
 WD Q

i<j .�i � �j /
2, vanishes. This is typically associated with symmetry

enhancement and/or the emergence of non-generic features of Lovelock theory.
Even though they can be fairly interesting (see [3] for a recent example), we will
mostly deal with the 
 ¤ 0 case throughout this presentation.

For the sake of clarity, let us briefly consider theK D 2 case. This amounts to the
inclusion of the LGB term which, for instance, arises in superstring theory [4–6].
Being quadratic, the roots of the polynomial � Œ�� can be explicitly sorted out:

�˙ D �1˙ p
1� 4�

2�L2
then 
 D 0 , � D �CS WD 1

4
: (10)

The CS subscript in �CS amounts for Chern–Simons, since that is the critical value
of � for which the theory acquires an extra symmetry (in d D 5) becoming a gauge
theory for the AdS group [7]. For 0 < � < �CS the theory has two AdS vacua1; �C
is known to be unstable [8]. For � > �CS there is no AdS vacuum.

The branch corresponding to�� is called the EH-branch, since it is continuously
connected to the solution of General Relativity when � ! 0. It has � 0Œ��� > 0,
which amounts to a positive effective Newton constant. In fact, each vacuum�i has
a different effective Newton constant, Gi

N � 1=� 0Œ�i �, whose sign coincides with
that of � 0Œ�i �. Thus, a given root of Lovelock gravity,�?, must satisfy

� 0Œ�?� > 0; (11)

1If � < 0, there is no a priori lower bound for it and it is clear that �C becomes positive.
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in order to correspond to a vacuum that hosts gravitons propagating with the right
sign of the kinetic term. Else, if � 0Œ�?� is negative, we say that the corresponding
vacuum is affected by Boulware–Deser (BD) instabilities.

On top of the maximally symmetric vacua, we are interested in shockwave
backgrounds of Lovelock theory. We want to show that in the presence of a
shockwave there is room for causality violation [9]. This will raise the question
whether all possible values of Lovelock’s couplings, ck , lead to physically sensible
theories of gravity. The shockwave solution on AdS, with cosmological constant
�?, reads [9]

ds2AdS;sw D L2?
z2
��du dv C dx2 C dz2

�C F.u/$.x; z/ du2; (12)

where z D L2?=r is the Poincaré radial direction, u; v D x0 ˙ xd�1 are light-
cone coordinates, and x are the remaining d � 3 spatial directions. L? is the AdS
radius corresponding to the branch on top of which we construct the shockwave,
L? � .��?/

�1=2. We should think of F.u/ as a distribution with support in u D 0,
which we will finally identify as a Dirac delta function, F.u/ D ı.u/.

The shock wave is parameterized by the function$.x; z/, obeying

2.d � 3/$ C .d � 6/z@z$ � z2.@2z C r2?/$ D 0; (13)

where r2
? is the Laplacian in the x-space. This equation admits the following

solutions, whose holographic counterpart will be briefly addressed later. The
simplest profile

$ D $0 zd�3; (14)

on the one hand, and the x-dependent solution

$ D $0

zd�3

.z2 C .x � x0/2/
d�2 ; x0 D n

1C jnjd�2 ; (15)

where n is a unit vector. We will use these shockwave profiles below.

2 Black Holes

The black holes of Lovelock theory were exhaustively studied in [10]. In this talk
we will just discuss some salient features that are instrumental to their holographic
applications. The solutions can be obtained from the ansatz [8, 11, 12]

ds2 D �f .r/ dt2 C dr2

f .r/
C r2

L2
d˙2

�;d�2; (16)
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where d˙�;d�2 is the metric of a .d � 2/-dimensional manifold, M , of negative,
zero or positive constant curvature (� D �1; 0; 1 parametrizing the different horizon
topologies). A natural frame is given by

e0 D
p
f .r/ dt; e1 D 1

p
f .r/

dr; ea D r

L
Qea; (17)

where a D 2; : : : ; d � 1, and QRab D � Qea ^ Qeb . The Riemann 2-form reads

R01 D �1
2
f 00.r/ e0 ^ e1; R0a D �f

0.r/
2r

e0 ^ ea;

R1a D �f
0.r/
2r

e1 ^ ea; Rab D �f .r/ � �
r2

ea ^ eb: (18)

Strikingly enough, if we insert these expressions into the equations of motion, we
get after some manipulations a quite simple ordinary differential equation—not for
f .r/ but for � Œg.r/�,

�
d

d log r
C .d � 1/

�  KX

kD0
ck g

k

!

D 0; (19)

where g.r/ WD ��f .r/
r2

. It can be straightforwardly solved as

� Œg� D Vd�2
M

rd�1 ; (20)

where the integration constant, through the Hamiltonian formalism [13], can be seen
to be the space-time mass M times the volume Vd�2 of the unit constant curvature
manifold M . The black hole solutions are implicitly (and analytically!) given by this
polynomial equation. The variation of r translates the y-intercept of � Œg� rigidly,
upwards. This leads toK branches, gi .r/, corresponding to the monotonous sections
of � Œg�, associated with each �i : gi .r ! 1/ D �i .

The existence of a black hole horizon requires gC D 0 for planar black holes,
and, since gC D �=r2C,

� ŒgC� D Vd�2 M jgCj.d�1/=2; (21)

for spherical or hyperbolic black holes. In the case of non-planar black holes, the
curve (21) can intersect the polynomial at different points. Several branches can
display black holes with the same mass or temperature. This entails the possibility
of a rich phase diagram, provided that the free energy or entropy of these solutions
differ, which turns out to be the case [14–16].

The plethora of vacua and possibilities for the local behavior of the polynomial
� Œg� lead to a bestiary of black hole solutions that has been analyzed in depth [10].
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We will just review some features of black holes belonging to the EH branch,2 which
are a sort of distorted Schwarzschild-AdS black holes. When real, the effective
cosmological constant associated with this branch,�?, is negative and so the space-
time is asymptotically AdS, regardless of the sign of the cosmological constant
appearing in the original Lagrangian.

Even though the EH-branch is just a deformation of the usual Schwarzschild-
AdS black hole, it can be a quite dramatic one. For instance, it may happen that the
polynomial has a minimum at gmin < 0, such that � Œgmin� > 0. Now, by derivation
of (20) with respect to the radial variable,

g0 D �.d � 1/Vd�2
M

rd
� 0Œg��1: (22)

making clear that the metric is regular everywhere except at r D 0 and at points
where � 0Œg� D 0. A naked singularity would arise at large radius, rnaked, where
g.rnaked/ D gmin. This case was first discussed in [17, 18] for third order Lovelock
theory and planar topology, but the same applies in the general case for a vast region
of the space of parameters that we call the excluded region (see Fig. 1). We will
assume in what follows that the Lovelock couplings do not belong to the excluded
region (in the LGB case, this simply means � � 1=4).

For hyperbolic or planar topology, as this branch always crosses g D 0 with
positive slope, it has always a horizon hiding the singularity of the geometry which
is located either at r D 0 [(a) type] or at the value r? corresponding to a maximum
of � Œg� [(b) type] for which g.r?/ D gmax > 0. Hyperbolic black holes can have a
negative mass above a critical value that is nothing but an extremal solution.

The spherical case is quite more involved. For high enough mass, the existence of
the horizon is ensured, but this is not the case in general. For the (a) type EH-branch
the existence of the horizon is certain for arbitrarily low masses if d > 2KC1. The
critical case, d D 2KC1, is more subtle. There will be a minimal massMcrit related
to the gravitational coupling cK below which a naked singularity appears [10]. For
high enough orders of the Lovelock polynomial, multi-horizon black holes can exist
but for the critical case, at some point, all of them disappear.

The case of a (b) type branch is simpler. There is a critical value of the mass,M?,
for which the horizon coincides with the singularity, rC D r?. Below that mass a
naked singularity forms. The simplest example is LGB gravity with � < 0, where
the EH branch has a maximum at gmax > 0. This is a singularity at finite r that may
or may not be naked depending on the value of the mass in relation to M?,

M? D .�2�L2/.d�3/=2

2Vd�2
.1 � 4�/: (23)

2Recall that it is the branch crossing g D 0 with slope � 0Œ0� D 1.
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For bigger masses we have a well defined horizon while below this bound the
singularity is naked.

Some aspects of Lovelock black holes thermodynamics have been considered in
[19]. The (outermost) event horizon has a well defined (positive) temperature

T D f 0.rC/
4�

D rC
4�

�
.d � 1/

� ŒgC�
� 0ŒgC�

� 2 gC
�
: (24)

It is easy to see that large black holes have M � Vd�2 T d�1. Then, dM=dT >

0 and they can be put in equilibrium with a thermal bath. They are locally
thermodynamically stable. In general, this will not happen for small black holes,
pointing towards the occurrence of Hawking-Page phase transitions, which have
been already studied in the case of LGB gravity [20, 21]. One important feature
regarding the classical stability of these black holes is that

dS

drC
D 1

T

dM

drC
' rd�3C � 0 ŒgC� ; (25)

and, as long as we are in a branch free from BD instabilities, both the radial
derivative of the mass and the entropy are positive. This is necessary to discuss
classical instability, since the heat capacity reads

C D dM

dT
D dM

drC
drC
dT

; (26)

and then the only factor that can be negative leading to an instability is

dT

drC
D �gC

2�

�
.d � 2/� d � 1

2

� ŒgC�
gC� 0ŒgC�

�
1C 2gC

� 00ŒgC�
� 0ŒgC�

��
: (27)

It is not easy to check classical stability in full generality for non-planar black holes,
but in the regimes of high and low masses. In the simplest case of planar black holes,
the thermodynamic variables do not receive any correction from the higher curvature
terms in the action and the expression reduces to the usual formula

dT

drC
D d � 1
4�L2

: (28)

This expression is manifestly positive. Therefore, these black holes are locally
thermodynamically stable for all values of the mass. This is also the case for
maximally degenerated Lovelock theories that admit a single (EH-)branch of black
holes [22]. The entropy can be easily obtained by integrating (25),

S ' rd�2C

 

1C
KX

kD2
k ck

d � 2

d � 2k g
k�1C

!

; (29)
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and it coincides with the prescription obtained by other means such as the Wald
entropy [23] or the euclideanized on-shell action [24]. For planar horizons this
formula reproduces the proportionality of the entropy and the area of the event
horizon, S ' rd�2C , whereas it gets corrections for other topologies. From these
quantities we can now compute any other thermodynamic potential such as the
Helmholtz free energy, F D M � TS,

F ' rd�1C
� 0ŒgC�

KX

k;mD0

2m � 2k C 1

d � 2k k ck cm g
kCm�1
C : (30)

This magnitude is relevant to analyze the global stability of the solutions for
processes at constant temperature. As a function of gC, it has a polynomial of degree
2K � 1 in the numerator. This is the maximal number of zeros that may eventually
correspond to Hawking-Page-like phase transitions. Moreover, taking into account
that (30) is a sum involving the whole set of branches of the theory, phase transitions
involving jumps between different branches are expected [14–16].

3 Holography

The main motivation of our work in Lovelock theory is gaining a better understand-
ing of some aspects of the AdS/CFT correspondence. Since the groundbreaking
paper of Juan Maldacena [25], evidence has been accumulating towards the validity
of the following bold statement: a theory of quantum gravity in AdS space-time is
equal to a corresponding (dual) CFT living at the boundary. The relation between
both descriptions of the same physical system is holographic.

A key ingredient of this highly nontrivial statement is given by the recipe to
compute holographically correlation functions in the CFT [26,27]. Restricted to the
stress–energy tensor, Tab.x/, it reads

Z
	
g��


 � exp
��I Œg���

� D
�

exp

�Z
dx �ab.x/ Tab.x/

��

CFT
; (31)

where Z
	
g��



is the partition function of quantum gravity, and g�� D g��.z; x/

such that gab.0; x/ D �ab.x/. From this expression, correlators of the stress–
energy tensor can be obtained by performing functional derivatives of the gravity
action with respect to the boundary metric. This, in turn, is simply given by
considering gravitational fluctuations around an asymptotically AdS configuration
of the theory.

In the remainder of this presentation, we will investigate the uses of this
framework in the case of Lovelock theory and extract some of its consequences.
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3.1 CFT Unitarity and 2-Point Functions

Consider a CFTd�1. The leading singularity of the 2-point function is fully
characterized by the central charge CT [28]

hTab.x/ Tcd .0/i D CT

x2.d�1/ Iab;cd .x/; (32)

where

Iab;cd .x/ D 1

2

�
Iac.x/ Ibd .x/C Iad .x/ Ibc.x/� 1

d � 1
�ab �cd

�
; (33)

whereas Iab.x/ D �ab � 2 xa xb=x2. For instance, CT is proportional in a CFT4 to
the standard central charge c that multiplies the (Weyl)2 term in the trace anomaly,
CT D 40 c=�4.

The holographic computation of CT was performed in [29] for LGB, and in [30]
for Lovelock theory. According to the AdS/CFT dictionary, it is sufficient3 to take a
metric fluctuation hxy.z; x/ WD L2?=z2 �.z; x/ about empty AdS with cosmological
constant�?. Expanding (1) to quadratic order in �, and evaluating it on-shell,

Iquad D � 0Œ�?�

2.��?/d=2

Z
dx z2�d .� @z�/ : (34)

Imposing the boundary conditions �.0; x/ D O�.x/, the full bulk solution reads

�.z; x/ D d

d � 2
� Œd �

�
d�1
2 �

	
d�1
2




Z
dy

zd�1

.z2 C jx � yj2/d�1Iab;cd .x � y/ O�.y/:
(35)

Plugging this expression into Iquad, we obtain

Iquad D CT

2

Z
dx
Z
dy

O�.x/ Iab;cd .x � y/ O�.y/
jx � yj2.d�1/ ; (36)

where CT is the central charge of the dual CFTd�1,

CT D d

d � 2

� Œd �

�
d�1
2 �

	
d�1
2



� 0Œ�?�

.��?/d=2
: (37)

3Other components of the metric fluctuations must be considered as well, but they are irrelevant
for our current discussion.
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The upshot of this computation in an AdS vacuum,�? < 0, is thought-provoking:

CT > 0 ” � 0Œ�?� > 0: (38)

The latter inequality, in the gravity side, corresponded to the generalized BD con-
dition preventing ghost gravitons in the branch corresponding to the AdS vacuum
with cosmological constant �?. Thereby, unitarity of the CFT and the absence of
ghosts gravitons in AdS, seem to be the two faces of the same holographic coin.

3.2 Positivity of the Energy and 3-Point Functions

The form of the 3-point function of the stress-tensor in a CFTd�1 is highly
constrained. In [28, 31], it was shown that it can always be written in the form

hTab.x/ Tcd .y/ Tef .z/i D


A I .1/

ab;cd;ef C B I .2/

ab;cd;ef C C I .3/

ab;cd;ef

�

jx � yjd�1 jy � zjd�1 jz � xjd�1 ; (39)

where the specific form of the tensor structures I
.i/

ab;cd;ef is irrelevant for us. Ward
identities relate 2-point and 3-point correlation functions, which means that the
central charge CT can be written in terms of the parameters A , B and C ,

CT D �
d�1
2

�
	
d�1
2



.d � 2/.d C 1/A � 2B � 4d C

.d � 1/.d C 1/
: (40)

Nicely enough, an holographic computation of the parameters entering the above
formula can be tackled. It is certainly more intricate than that of CT ; thus we omit
the details. The result is [18]

A D � Œd �

�d�1

�
a1.d/

� 0Œ�?�

.��?/d=2
� a2.d/

� 00Œ�?�

.��?/d=2�1

�
; (41)

and analogous expressions for B and C , where ai .d/ are rational functions of d ,
the space-time dimensionality.

A convenient parametrization of the 3-point function of the stress–energy tensor
was introduced in [32]. The idea is to consider a localized insertion of the form4
R
d! e�i!t 
jk T jk.x/, and to measure the energy flux at light-like future infinity

along a certain direction n,

4Notice that we are splitting time and space indices and, thus, from now on vectors are understood
as .d � 2/ dimensional objects.
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E .n/ D lim
r!1 rd�2

Z 1

�1
dt ni T 0

i .t; r n/: (42)

Given a state created by a local gauge invariant operator O D 
ij Tij , since 
ij is a
symmetric and traceless polarization tensor, the final answer for the energy flux is
fully constrained by conformal symmetry to be [29, 33]

hE .n/i D E

˝d�3

�
1C t2

� jn � �j2
j
j2 � 1

d � 2

�
C t4

� jn � � � nj2
j
j2 � 2

d.d � 2/

��
;

(43)

where E is the total energy of the insertion, n � � D ni 
ik , n � � � n D ninj 
ij , and
j
j2 D 
�

ik
ik , while ˝d�3 is the volume of a unit .d � 3/-sphere. For any CFTd�1,
it is characterized by the two parameters t2 and t4. Being the quotient of 3-point and
2-point correlators, hE .n/i is fully determined by the parameters A , B and C . In
particular [29],

t2 D 2d

d � 1
d.d � 3/.d C 1/ A C 3.d � 1/2 B � 4.d � 1/.2d � 1/ C

.d � 2/.d C 1/ A � 2 B � 4d C
; (44)

and a similar expression for t4. We do not care about the latter for the following
reason. If the CFTd�1 is supersymmetric, t4 vanishes [32, 34]. On the other hand,
even though there is no proof in the literature showing that Lovelock theories admit
a supersymmetric extension, it turns out that the holographic computation suggests
that a CFTd�1 with a weakly curved gravitational dual whose dynamics is governed
by Lovelock theory has a null value of t4 [18],

t4 D 0 ) hE .n/i D E

˝d�3

�
1C t2

� jn � �j2
j
j2 � 1

d � 2

��
: (45)

The existence of a minus sign in (45) leads to interesting constraints on t2, by
demanding that the energy flux be positive for any direction n and polarization 
ij .
For the tensor, vector and scalar channels, we obtain, respectively,

t2 � d � 2; t2 � �2.d � 2/
d � 4

; t2 � �d � 2

d � 4
: (46)

The vector channel constraint is irrelevant. In any supersymmetric CFTd�1, there-
fore, the parameter t2 has to take values within the window

� d � 2

d � 4
� t2 � d � 2; (47)

if the energy flux at infinity is constrained to be positive. For instance, any N D 1

supersymmetric CFT4 has jt2j � 3, with
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t2 D 6
c � a

c
) 1

2
� a

c
� 3

2
: (48)

where a and c are the parameters entering the trace anomaly formula, the bound
being saturated for free theories [32].

We can holographically compute t2 by inserting a shockwave on AdS, which
sources the field theory insertion, and considering a metric fluctuation hxy.z; x/ WD
L2?=z2 �.z; x/ about this background. The 3-point function follows from evaluating
on-shell the effective action for the field � on a particular shockwave solution. The
relevant shockwave profile is given by (15), as discussed in [32]. Up to an overall
factor, the cubic vertex is [29]

Icubic � CT

Z
dx du dv

p�g � @2v� $
�
1 � �? �

00.�?/

� 0.�?/

T2

.d � 3/.d � 4/
�
;

(49)
where

T2 D z2.@2x$ C @2y$/ � 2z@z$ � 4$
$

: (50)

The relevant graviton profile [29]

�.u D 0; v; x; z/ � e�iEv ı.x/ ı.z � 1/; (51)

allows us to impose x D 0 and z D 1 in (50), this yielding the result

T2 D 2.d � 1/.d � 2/

 
n2x C n2y

2
� 1

d � 2

!

: (52)

We therefore read off, by plugging (52) into (49) and comparing against the
expression for hE .n/i in (45), the holographic prescription for t2 in Lovelock theory:

t2 D �2.d � 1/.d � 2/
.d � 3/.d � 4/

�? �
00Œ�?�

� 0Œ�?�
; (53)

and t4 D 0. Needless to say, this is the same expression we would have gotten by
simply plugging the holographic formulas of the parameters A , B and C (41) into
(44). Combining (47) and (53), we obtain [17, 18],

� d � 2

d � 4
� �2.d � 1/.d � 2/

.d � 3/.d � 4/

�? �
00Œ�?�

� 0Œ�?�
� d � 2: (54)

For instance, Fig. 1 displays the two curves that establish the upper (t2 D 5) and
lower (t2 D �5=3) limits of the allowed window for the case of cubic Lovelock
theory in d D 7. It enables us to appreciate how tight this restriction is in terms of
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Fig. 1 The allowed region of gravitational couplings by causality and stability for cubic Lovelock
theory in d D 7 is displayed. The black points are the maximal values of � that can be attained in
LGB [33, 36] and cubic Lovelock [17, 18] gravities, that are related to the lowest possible value of
�=s in a dual CFT6 strongly coupled plasma [30]

the acceptable Lovelock couplings. In the d D 5 case, �3 � t2 � 3, which together
with the dependence of t2 on the LGB coupling leads to [9, 35]

t2 D 12

�
1p
1 � 4�

� 1

�
) � 7

36
� � � 9

100
: (55)

Notice, in particular, from (48), that a D c corresponds to vanishing t2 and �. This
suggests that higher curvature corrections are mandatory to study, for instance, four
dimensional strongly coupled CFTs with a ¤ c under the light of the gauge/gravity
correspondence.

3.3 Gravitons Thrown onto Shock Waves Must Age Properly

Consider a shock wave with profile given in (14) in AdS with cosmological constant
�?. We would like to analyze the following process. A highly energetic tensor
graviton will be thrown from the boundary z D 0 towards the shock wave.5 This

5The same computation can be carried out with vector and scalar gravitons, and the result in these
two cases will be obvious from the present analysis.
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amounts to perturbing the relevant metric up to quadratic order and keeping only
those terms involving derivatives like @2u, @2v and @u@v acting on the perturbation �:

@u@v� C$0 L
2

�
1C 2.d � 1/

.d � 3/.d � 4/
�? �

00Œ�?�

� 0Œ�?�

�
ı.u/ zd�1 @2v� D 0; (56)

assuming � 0Œ�?� ¤ 0, which means that the vacuum we are dealing with is
non-degenerated. Causality problems arise when the coefficient of @2v� becomes
negative. In fact, notice that (56) is a free wave equation except at the locus u D 0.
We must only care about the discontinuity of Pz for a graviton colliding the shock
wave [9, 30]


Pz D .d � 1/

z
jPvj


 z

L

�2
zd�3

�
1C 2.d � 1/

.d � 3/.d � 4/
�? �

00Œ�?�

� 0Œ�?�

�
; (57)

while the shift in the light-like time is [18]


v D

 z

L

�2
zd�3

�
1C 2.d � 1/

.d � 3/.d � 4/
�? �

00Œ�?�

� 0Œ�?�

�
: (58)

Thus, if the quantity in parenthesis is negative, a graviton thrown into the bulk
from the AdS boundary, bounces back, landing outside its own light-cone! This
is understood as a signal of causality violation. If we repeat this computation for
vector and scalar polarizations, we end up with the constant

� d � 2

d � 4
� �2.d � 1/.d � 2/

.d � 3/.d � 4/

�? �
00Œ�?�

� 0Œ�?�
� d � 2: (59)

These are exactly the allowed values for t2—once the holographic dictionary has
been put into work, that ensure positivity of the energy in the dual CFT. This ends
up, once again, in an alluring match between gravity and gauge theory.

3.4 Black Holes and Plasma Instabilities

We could have obtained the results of the previous subsection following a different
approach. Consider Lovelock black holes and study the potentials felt by high
momentum gravitons exploring the bulk. Close to the boundary, z`2zC, for the
different helicities [17, 18]

c2tensor � 1C 1

L2?�?

zd�1

zd�1C

�
1C 2.d � 1/

.d � 3/.d � 4/
�? �

00Œ�?�

� 0Œ�?�

�
; (60)
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c2vector � 1C 1

L2?�?

zd�1

zd�1C

�
1 � .d � 1/

.d � 3/

�? �
00Œ�?�

� 0Œ�?�

�
; (61)

c2scalar � 1C 1

L2?�?

zd�1

zd�1C

�
1 � 2.d � 1/

.d � 3/

�? �
00Œ�?�

� 0Œ�?�

�
: (62)

The argument proceeds as follows [37]. Notice that the potentials are normalized
in such a way that their boundary value is 1, while they need to vanish at the black
hole horizon. These potentials can be understood as the square of the local speed
of gravitons with the corresponding polarization. Even though there is no problem
with a graviton whose local speed surpass that of light measured at the boundary,
any excess would entail the existence of a local maximum.

Therefore, the graviton energy can be fine-tuned in such a way that it stays an
arbitrarily large period of time at the top of the potential. Without the need of an
explicit knowledge of the geodesic, it is clear that the average speed of the graviton
will be bigger than the speed of light at the boundary. Since the graviton bounces
back into the boundary, it means that there would be a corresponding excitation in
the dual gauge theory that becomes superluminal. This should be forbidden in any
sensible theory that respects the principle of relativity.

The conditions c2tensor, c
2
scalar � 1 in the vicinity of the boundary lead to the same

constraints found before. We can argue that this is due to the fact that the shockwave
analysis is related to the current one through a Penrose limit. A more physical
interpretation would be that causality violation is not linked to the existence of a
black hole solution since it is not due to thermal effects.

Once we consider the current setup, there is a second source for pathologies.
If any of the squared potentials becomes negative anywhere, either close to the
black hole horizon or deep into the bulk, an imaginary local speed of light will
reflect an instability of the system. This ceases to exist in the absence of a black
hole. Thus, it seems natural to identify it with a thermal feature of the CFT. They
should correspond to plasma instabilities [29]. Analogously to what happens with
the restrictions coming from the window of allowed values for t2, these restrictions
further constrain the values that Lovelock couplings can take in a sensible theory
[30]. This is explicitly shown in Fig. 1 for the case of cubic Lovelock theory in
d D 7. There, the region of Lovelock couplings leading to causal and stable physics
is given by a connected and compact vicinity of the EH-point (� D � D 0).

4 Final Comments

The study of higher curvature gravity in the context of the AdS/CFT correspondence
appears, at the least, as a territory worth exploring. It allows to further understand
how profound concepts of quantum field theory might be linked, holographically,
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to comparable deep concepts in the realm of gravity. Some examples were briefly
presented above, such as the relation between positivity of the energy in the CFT
and a certain kind of causality violation in the dual gravitational theory. We have not
discussed, although they exist [30], other sources of causality violation occurring in
the bulk, which do not seem to be related to pathologies inherited from the 3-point
stress–energy tensor correlators in the dual CFT.

Lovelock theories are remarkable in that lots of physically relevant information
is encoded in the polynomial � Œg�. BD instabilities, for instance, can be simply
written as � 0Œ�?� < 0, which has a beautiful counterpart telling us that the central
charge of the dual CFT, CT , has to be positive. This is unitarity. Now, � 0Œ�?� is the
asymptotic value of the quantity � 0Œg�, the latter being meaningful in the interior
of the geometry, and positive along the corresponding branch. Recalling that naked
singularities take place at extremal points of � Œg� further suggests that � 0Œg� might
be a meaningful entry in the holographic dictionary (see [38] for related ideas).

In spite of the higher dimensional nature of Lovelock theory, it is important
to mention that there are lower dimensional gravities, dubbed quasi-topological,
whose black hole solutions are alike those discussed in this talk. Many of the results
presented above are pertinent in those “more physical” setups of AdS/CFT [39].
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Braneworld Black Holes

Pau Figueras

Abstract In this article we review the present status of the numerical construction
of black holes in the Randall–Sundrum II braneworld model. After reviewing the
new numerical methods to solve the elliptic Einstein equations, we numerically
construct a black hole solution in five-dimensional anti-de Sitter (AdS5) space
whose boundary geometry is conformal to the four-dimensional Schwarzschild
solution. We argue that such a solution can be viewed as the infinite radius limit
of a braneworld black hole, and we provide convincing evidence for its existence.
By deforming this solution in AdS we can then construct braneworld black holes of
various sizes. We find that standard 4d gravity on the brane is recovered when the
radius of the black hole on the brane is much larger than the radius of the bulk AdS
space.

1 Introduction

String theory is the best candidate for a theory of quantum gravity but its mathemat-
ical consistency requires the existence of extra spatial dimensions beyond the three
that we observe. Almost a century ago Kaluza and Klein (KK) offered an attractive
way of dealing with these extra (and yet unobserved) dimensions and obtain an
effective theory at low energies which is compatible with observations: if these
extra dimensions are compact and sufficiently small (naturally of the Planck radius,
`P � 10�33 cm) then, in four dimensions, they should manifest in experiments as
a tower of massive particles with masses � 1=`P and therefore not detectable in
present day particle accelerators.
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In [1,2] Randall and Sundrum proposed a remarkable alternative to KK compact-
ification in which the extra dimensions are non-compact. In the Randall–Sundrum
infinite braneworld model (henceforth RSII) [2] one takes two copies of AdS5
and glues them together along a common boundary, the brane. This hypersurface
(the brane) represents our 4d world and all Standard Model particles are pinned
there, except for gravity which can propagate in all dimensions. This model provides
a natural solution to the hierarchy problem since gravity is dissolved in the extra
dimension. This construction is motivated by String Theory, where dynamical
.d C 1/-dimensional objects, known as d -branes, with gauge fields living on their
worldvolume, are fundamental objects in the theory.

Considering small fluctuations of the metric around the aforementioned back-
ground, Randall and Sundrum showed that there exists a zero mode of the graviton
localised on the brane, together with continuum of massive KK modes. Moreover,
it was shown [3, 4] that in the linearised regime, an observer living on the brane
would experiment standard 4d gravity plus power law corrections, as opposed to
the exponential corrections that arise in standard KK theory.

However, to validate the RSII model as viable description of our universe, one has
to consider the strong field regime. In particular, one would like to check if there
exist black holes in this model and, if so, understand their properties and compare
them to astrophysical observations. Chamblin et al. [5] was the first one to consider
black holes in RSII, but their solutions are singular and therefore unphysical. On the
other hand, Emparan et al. [6] constructed an explicit (and regular) braneworld
black hole solution in 3 C 1 bulk dimensions and verified that standard 3d gravity
is recovered on the brane. The phenomenologically more interesting case of a
4C 1 braneworld black hole remained elusive to analytical methods and numerical
techniques were used to construct such solutions. However, the works of Kudoh
et al. [7–10] did not succeed to numerically construct black holes on branes in the
phenomenologically interesting regime. In fact, Yoshino [9] even conjectured that
no non-extremal braneworld black holes of any size should exist.

Braneworld black holes can be understood using the AdS/CFT correspondence as
quantum corrected black holes [11]. Using free field theory intuition and motivated
by the previous unsuccessful attempts to numerically construct static braneworld
black holes, Emparan et al. [11] conjectured that no large (compared to the size
of the parent AdS space) static non-extremal braneworld black holes could exist
since they would Hawking radiate and therefore be dynamical. However, Fitzpatrick
et al. [12] provided counterarguments. We should point of that authors of [13–15]
constructed the near horizon geometry of extremal braneworld black holes of any
size. These black holes evade the non-existence conjecture because being extremal
they do not Hawking radiate in the first place.

This was the status of braneworld black holes before the work of Figueras et al.
[16, 17]. In this article, we will review and improve these works, which show that
not only large braneworld black holes exist, but also that 4d gravity on the brane
is recovered. Recently, Abdolrahimi et al. [18] appeared (see also [19]) which
uses a different numerical method than that of [16, 17]. Furthermore, their results
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support those of [16,17], which is rather non-trivial. Therefore, the present evidence
suggests that the RSII model seems to provide a viable description of our universe
even in the strong gravity regime.

2 The Harmonic Einstein Equations

In this section we review the numerical method that we used to construct the
braneworld black holes. This method was first proposed in [20] to construct static
spacetimes containing black holes and then extended in [21] to the stationary case
(see [22] for review). Recently the method has been further extended to construct
stationary spacetimes with non-Killing horizons [23] (see also [24]).

For simplicity, we start considering the Einstein vacuum equations in
D-dimensions:

Rab D 0: (1)

As we shall see shortly, adding a cosmological constant (positive or negative) and/or
matter is straightforward. Furthermore, in this article we will only consider static
spacetimes .M ; g/.

Naively, it appears that in (1) there are as many equations as metric components
and hence one would be tempted to think that they completely determine the
metric. However, closer inspection reveals that this is not the case; the reason is
that because of the underlying diffeomorphism invariance of the the theory, for
any metric the corresponding Ricci tensor satisfies the Bianchi identity. In the
general situation, the Bianchi identity contains D equations, and hence in (1) there
are only D.D � 1/=2 non-trivial equations, rendering the problem for the metric
underdetermined. The difficulty with (1) is that this is not an elliptic equation for
the metric. More precisely, (1) is only an elliptic equation for the dynamical degrees
of freedom but pure gauge modes are annihilated by the principle symbol of the
operator. Therefore, we have to fix the gauge in order to turn (1) into an elliptic
equation that can be solved numerically. The proposal of [20] is just one particular
choice of gauge, but as we shall see shortly, it has great advantages as far as the
numerical implementation is concerned.

The proposal of [20] is as follows. Instead of considering (1) on .M ; g/, we
consider a modified set of equations known as the “harmonic” or “DeTurck”
Einstein equations:

Rab � r.a�b/ D 0; �a D gbc.� a
bc � N� a

bc/; (2)

where N� is a fixed reference connection on M , which for simplicity we take to be
the Levi–Civita connection of a reference metric Ng on M . The virtue of (2) is that
the principle symbol of the operator is simply P D � 1

2
gab@a@b and hence, for any
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Riemannian metric g, (2) is a manifestly elliptic equation for the metric components
and, as such, can be solved as a standard boundary value problem.

Clearly (2) is equivalent to (1) iff �a D 0 everywhere on the spacetime manifold
M .1 This is precisely the gauge condition that we shall be imposing and it provides
D local equations for the spacetime coordinates. More precisely, �a D 0 is
equivalent to 
gx

a D Ha, where 
g is the scalar Laplacian and the source Ha

is specified in terms of the reference metric Ng as Ha D �gbc N� a
bc . Therefore,

the gauge choice that we are implementing is closely related to the celebrated
generalised harmonic gauge [25–28]. There is, however, an important difference:
whilst in generalised harmonic gauge one prescribes the sources Ha, which in
general are not tensors on M , in our method the sources depend on both the metric
g and the reference metric Ng.

Whilst a solution to the Einstein equations (1) in our gauge �a D 0 solves the
harmonic Einstein equations (2), the converse is not true. In fact, there can exist
solutions to (2) with �a ¤ 0 and these are known as Ricci solitons. Since our
ultimate goal is to solve (2) as a boundary value problem and find Einstein metrics
instead of Ricci solitons, we have to supplement (2) with boundary conditions
compatible with �a D 0 at the boundary whilst preserving the ellipticity of the
problem.2 We will come back to this point when we consider the concrete problem
of numerically constructing braneworld black holes. Having specified suitable
boundary conditions, the existence of Ricci solitons on M is constrained by the
fact that �a has to satisfy the following manifestly elliptic equation:

r2�a CRab�
b D 0: (3)

This is a well-posed boundary value problem for �a and, for boundary conditions
compatible with �a D 0j@M , it always admits the zero solution.

Before we continue the discussion about the existence of Ricci solitons, we
note that adding a cosmological constant term to the Einstein equations (1) does
not change the character of the equations because such a term has no derivatives
of the metric. Obviously the same is true for the harmonic Einstein equations
(2). Therefore, from now on we will consider the harmonic Einstein equations
augmented with a cosmological constant term, since these are the equations that
we will have to solve for finding black holes on branes:

RHab 	 Rab ��gab � r.a�b/ D 0: (4)

1In this discussion we are implicitly assuming that �a is not a Killing vector.
2In Riemannian manifolds with boundaries, Anderson [29] has shown that imposing �a D 0 and
Dirichlet or Neumann conditions for the induced metric on an given boundary gives rise to an ill
posed problem.
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It turns out that in favourable circumstances and for suitable boundary conditions
one can prove that no Ricci solitons exist on M . For instance, Bourguignon [30]
proved that there are no Ricci solitons on a compact manifold without boundaries
for any choice of gauge fixing vector �a. More recently, Figueras et al. [16] proved a
similar statement for non-compact and static spacetimes with different asymptotics
of interest (flat, Kaluza-Klein and AdS). Their argument is as follows. Contracting
(3) with �a and using (4) one finds

r2� C �a@a� D �2�� C 2 .ra�b/.ra�b/; � D �a�a: (5)

For static spacetimes with a non-positive cosmological constant (� � 0), the
right hand side of this equation is non-negative and its solutions are governed
by a maximum principle. Therefore, if � is non-constant, its maximum must be
attained at the boundary and the normal outer gradient there must be positive.
Then, imposing suitable regularity conditions and for flat, Kaluza-Klein or AdS
asymptotic boundary conditions, one shows that � D 0 at @M , from which it
follows that � D 0 everywhere. From this and the fact that the metric is static,
one then deduces that �a D 0 everywhere on M .

As we shall see later in the context of the numerical construction of braneworld
black holes, the result of Figueras et al. [16] does not apply for the boundary
conditions that one has to impose on the brane and in this case the existence of
Ricci solitons cannot be ruled out a priori. However, because (4) is elliptic, then for
fixed boundary conditions there exists a locally (in the space of solutions) unique
solution. Therefore, it should always be possible to tell an Einstein metric from
a Ricci soliton. In practice, a posteriori we can check whether �a ! 0 in the
continuum limit. Needless to say, in the numerical results that we will present later
we found no evidence of Ricci solitons.

2.1 Methods for Solving the Harmonic Einstein Equations

In this subsection we will briefly review two general algorithms for solving the
harmonic Einstein equations (2). The first one is based on relaxation whilst
the second one is based on a root finding algorithm.

A standard algorithm to solve a non-linear elliptic equation is to simulate
the associated diffusion equation; then, fixed points of the diffusion equation
are solutions to the original elliptic equation. In the present context of solving the
harmonic Einstein equations (4), the metric is evolved according to the diffusion
equation

@

@�
gab.�/ D �2RHab; (6)



42 P. Figueras

where � is the diffusion time. In the mathematics literature, (6) is known as the
Ricci–DeTurck equation and it is diffeomorphic to Hamilton’s famous Ricci flow
equation. It is worth noting we want to solve (2) to find static (or stationary)
spacetimes containing a black hole, and therefore the metric g Lorentzian. However,
because (2) is elliptic then (6) is a well-posed parabolic equation.

The great advantage of this algorithm is that it is very easy to implement and,
because it is diffeomorphic to Ricci flow, it does not depend on the choice of
reference metric. However, as discussed in [20], some black hole spacetimes may
be unstable fixed points of Ricci flow. The stability of a fixed point under the Ricci–
DeTurck flow is determined by the spectrum of the Lichnerowicz operator, 
L,
about the fixed point. If 
L admits negative modes, then small perturbations about
the fixed point grow exponentially with the diffusion time and any initial data that
does not coincide with the fixed point metric will be diverted away from the latter.
It is well known that for some black hole spacetimes, 
L admits negative modes
[31]. Even in this situation one may still use (6) to find Einstein metrics, but the
initial data has to be suitably fine-tuned so that the flow happens on a hypersurface
(in the space of geometries) orthogonal to the negative modes. See [20] for
more details.

The other standard algorithm to solve (2) (or (4)), is Newton’s method. This
algorithm is more difficult to implement in practice than Ricci flow and its basin
of attraction depends on the choice of reference metric. On the other hand, it is
insensitive to the presence of negative modes and it converges much faster to the
fixed point. In this method, one starts with an initial guess g.old/ that does not solve
(2) and then iteratively corrects it:

g
.new/
ab D g

.old/
ab C 
 hab; .
Hh/ab D �RHabŒg.old/�; (7)

where 
H is the linearisation of RHab around a given background metric (not
necessarily Einstein) and 
 is a parameter (generically between 0 and 1) that controls
the size of the correction. Newton’s method is basically a root finding algorithm and
if the initial guess is sufficiently close to the actual solution, Newton’s method will
converge to it. The performance of Newton’s method is not affected by the presence
of positive or negative modes of 
H ; only zero modes could cause problems, but
because the problem is elliptic, boundary conditions should remove all of them
(in fact, this is how an elliptic problem is defined).

3 An Aside: AdS/CFT on Black Hole Backgrounds

In this section we will use AdS/CFT to construct the gravitational dual of N D 4

super Yang-Mills (SYM) on the background of the 4d Schwarzschild black hole
in a certain vacuum state. At this stage such a solution may seem unrelated to the
problem of constructing braneworld black holes, but as we shall see later, large
braneworld black holes can be understood as perturbations of this solution.
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3.1 Setup

We want to find a static solution to the Einstein equations in five dimensions with a
negative cosmological constant that is asymptotically locally AdS, with a metric
on the conformal boundary in the same conformal class as 4d Schwarzschild.
Furthermore, far from the conformal boundary we want the spacetime to approach
the Poincare horizon of AdS. With these assumptions, the isometry group of the
spacetime is R 
 SO.3/, and the most general metric with this symmetry (which is
closed under diffeomorphisms that preserve it) is given by

ds2 D `2

f .x/2

�
� 4 r2 f .r/2 dt2 C x2 g.x/ eS d˝2

.2/ (8)

C 4

f .r/2
eTCr2 A dr2 C 4

g.x/
eSCx2 B dx2 C 2 r x F

f .r/
dr dx

�
;

where f .�/ D 1 � �2 and g.x/ D 2 � x2, and the range of the coordinates
is r; x 2 Œ0; 1�. The functions X D fT; S;A;B; F g are assumed to be smooth
functions of r and x, and they are the unknowns. With our choice of coordinates,
r D 0 and x D 0 correspond to location of the horizon of the black hole and the axis
of symmetry respectively, and smoothness there requires that all functionsX have to
satisfy Neumann boundary conditions. r D 1 is the Poincare horizon and we impose
a Dirichlet boundary conditionX D 0 there so that the metric reduces to that of the
Poincare horizon of AdS5. Finally, x D 1 corresponds to the conformal boundary
of AdS and we impose X D 0 there so that the induced metric is conformal to that
of 4d Schwarzschild.

Finally, in order to solve the Einstein–DeTurck equation (4) we have to specify a
reference metric. In the original work of Figueras et al. [16], the background metric
was taken to be (9) with X D 0. However, one can show that in this gauge, the
solution near the boundary of AdS (x D 1) has logs (and therefore it is not smooth),
which leads to a poor convergence of the spectral code at sufficiently high resolution.
In order to cure this deficiency, in the present work we take the reference metric to
be (9) with T D S D A D 0, B D � 18

5
f .r/2f .x/2 and F D � 6

5
f .r/2f .x/3. One

can show that in this gauge there are no logs at the order that affected [16] but we
cannot rule out the presence of logs at higher orders.

Henceforth we set the radius of AdS to be one, ` D 1. In addition, note that
because in AdS/CFT we only have to specify a representative of the conformal
class of boundary metrics, we can set, without loss of generality, the radius of the
boundary Schwarzschild solution to be one.

3.2 Results

In this subsection we briefly summarise our results for this AdS/CFT solution.
Firstly we present the numerical solution. As we shall see later in the discussion
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Fig. 1 Embedding of the
horizon of the AdS/CFT
solution as a surface of
revolution into
four-dimensional hyperbolic
space H4, ds2.H4/ D
1
z2 .dz2 C dR2 C R2 d˝2

.2//.
Here z is the standard
Poincare coordinate so that
z D 0 is the boundary of H4,
which coincides with the
boundary of AdS

of braneworld black holes, it is important to show that this AdS/CFT solution exists
and it is smooth. Secondly we will consider the dual stress tensor.

We have solved (4) numerically using a pseudospectral collocation approx-
imation and Newton’s algorithm as described in Sect. 2.1. We have performed
convergence tests and our numerical solution convergences exponentially (with the
number of grid points) to the continuum, at least as far as we were able to check.
This is the expected behaviour if a smooth solution exists. Moreover, for the data
presented here, the maximal fractional error in the Einstein equations is better than
10�9, so these are extremely accurate numerical solutions.

In Fig. 1 we present the embedding of the horizon, as a surface of revolution,
into four-dimensional hyperbolic space, H4. As this figure shows, at z D 0 (i.e., the
boundary of AdS) the horizon has radius one, as it should since the boundary black
hole has radius one by our choice of boundary conditions. In addition, one can see
that the horizon extends from the boundary into to the bulk, and at some finite value
of z the 2-sphere shrinks to zero size smoothly.

One can use the standard holographic renormalisation prescription [32] to extract
the boundary stress tensor. The details of the calculation can be found in [16] and
the result is:

hT j
i i D N2

c

2�2R4
diag

�
3R0

4R

�
1 � 7R0

12R
� R20
2R2

�
C t4.R/;

357R20
80R2

�
1� 18R20

17R

�
� �
t4.R/C 2 s4.R/

�
;�3R0

8R

�
1C 161R0

30R
� 34R20
5R2

�
C s4.R/;

�3R0
8R

�
1C 161R0

30R
� 34R20
5R2

�
C s4.R/

�
; (9)
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Fig. 2 hT tt i (black), hT RR i (red) and hT ˝˝ i (blue) components of the stress tensor as functions of
the Schwarzschild radial coordinate R. The dots correspond to the values of our interpolated data
and the solid lines simply serve to guide the eye. Note that hT tt i D hT RR i at R D R0 (the horizon)
which is necessary and sufficient for the regularity of the stress tensor there. For R ! 1 the
various components of hT j

i i decay as � R�5

where R is the standard Schwarzschild radial coordinate3 and t4 and s4 can be
extracted from the near boundary .x ! 1/ expansion of the metric:

T � 1

5

�
4� 13r2 C 9r4

� �
1� x2

�2 � 18

11

�
1� r2

�2 �
1� x2

�3 C �
1� x2

�4
t4.r/C : : : ;

S � 1

10

�
23� 41r2 C 18r4

� �
1� x2

�2 � 18

11

�
1� r2

�2 �
1� x2

�3 C �
1� x2

�4
s4.r/C : : : ;

where here t4 and s4 should be viewed as functions of the compact radial coordinate
r used in (9). We want to emphasise that with our choice of gauge, terms in the
expansions above up to 5th order do not contain logs. The same is true for the
remaining metric coefficients (not shown here).

Note that the stress tensor (9) is traceless and conserved as consequence of the
bulk Einstein equations. Therefore, t4 and s4 are not independent; they are related
by a differential equation which expresses nothing but the conservation of (9). In
Fig. 2 we plot the various components of the stress tensor of the dual field theory.
First it is worth noting that the stress tensor is static, finite and regular everywhere
in our domain. This is non-trivial since, as we now explain, it corresponds to the
expectation value of the stress tensor of N D 4 SYM in the background of the
4d Schwarzschild black in the Unruh state. Note that our boundary conditions are
such that the bulk solution far from the black hole horizon approaches the Poincare

3The Schwarzschild radial coordinate R is related to the compact radial coordinate r asR D R0
1�r2

.
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horizon of AdS5. From the boundary point of view, this corresponds to the vacuum
of the theory (i.e., zero temperature) and not a thermal state. The latter is given by
the Hartle-Hawking vacuum and from the bulk point of view, it can be obtained by
putting a finite temperature horizon in the IR. The so called static “black funnel”
provides an example of a field theory in a black hole background in the Hartle-
Hawking state and it has been recently constructed in [33]. With our boundary
conditions, the stress tensor is regular on both the future and past event horizons
and hence it cannot correspond to the Boulware state either since in the latter case,
the dual stress tensor should be singular [34]. Therefore, we conclude that our stress
tensor should correspond to the Unruh vacuum. This may seem puzzling at first
sight because one usually associates the Unruh state to an evaporating black hole
and therefore to a dynamical (as opposed to static) situation. The reason why our
stress tensor is static is that our computation, which uses classical gravity in the
bulk, only captures the leading order O.N2

c / piece of the stress tensor, not the full
quantum stress tensor. Time-dependence should only show up as anO.1/ effect and
it can only be detected including 1-loop graviton corrections in the bulk.

This AdS/CFT solution explicitly shows that strong coupling effects significantly
alter the behaviour of quantum fields in black hole backgrounds. In particular, the
arguments of Emparan et al. [11] against the existence of braneworld black holes
should apply to this situation as well and this example shows that they are incorrect.
Therefore, there is no reason why braneworld black holes should not exist.

4 Braneworld Black Holes

In this section we consider the numerical construction of braneworld black holes.
The results in this section will be discussed in detail in a forthcoming paper [35].
In Sect. 4.1 we will argue that large braneworld black holes can be understood as
perturbations of the AdS/CFT solution presented in Sect. 3. In Sect. 4.2 we present
the details of our numerical construction of braneworld black holes and compare
them to the previous results of [17]. In Sect. 4.3 we present our main results.

4.1 Large Braneworld Black Holes from AdS/CFT

Consider the AdS/CFT solution presented in Sect. 3 in Fefferman-Graham coordi-
nates. In the near boundary expansion .z ! 0/, one has

ds2 D 1

z2
.dz2 C Qg.z; x/ dx�dx�/; Qg��.z; x/ D g.0/�� .x/

Cz2

2

�
R.0/�� .x/ � 1

6
g.0/�� .x/R

.0/.x/

�
C z4



g.4/�� .x/C t��.x/

�
C 2 z4 log z h.4/��.x/

CO.z6/:
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Here g.0/�� is the boundary metric and R.0/�� and R.0/ are the associated Ricci tensor
and Ricci scalar respectively. t�� is related to the vev of the stress tensor of the dual

CFT by hT CFT
�� i D t��=.4� G5/ and the expressions for g.4/�� and h.4/�� can be found in

[32]. In our setting g.0/�� is the metric of the 4d Schwarzschild solution gSchw
�� , which

implies that R.0/�� D 0, R.0/ D 0 and h.4/�� D 0.
Now assume that there exists a solution in AdS such that its boundary metric is

given by the 4d Schwarzschild solution plus a small perturbation, g.0/�� D gSchw
�� C


2 h�� where 
 is a small parameter.4 In addition, as in Sect. 3, far from the horizon
the solution should asymptote to the Poincare horizon of AdS5. In this set up, we
now slice the spacetime with an infinitely thin brane (as in the RSII model) located
at z D 
. de Haro et al. [36] (see also [17]) showed that in order for this be possible,
such a perturbation has to satisfy the induced Einstein equations on the brane with
a source given by the expectation value of the CFT stress tensor obtained in Sect. 3:

ıG��Œh� D 16 �G4hT CFT
�� i: (10)

Moreover, the induced metric on the brane is given by the Schwarzschild geometry,
with a radius which is parametrically larger than the radius of the bulk AdS
spacetime ` plus a small perturbation:

��� D `2


2
.gSchw
�� C 
2 h��/: (11)

Therefore, if such a perturbation exists, then one can construct arbitrarily large
braneworld black holes. In the next subsection we shall see how this can be done
numerically.

4.2 Numerical Construction

In the previous subsection we have argued that large braneworld black holes can be
viewed as perturbations of the AdS/CFT solution constructed in Sect. 3. Therefore,
in order to numerically construct the braneworld black holes we shall use a metric
ansatz which is close to (9):

ds2 D `2


.r; x/2

�
� 4 r2 f .r/2 eT dt2 C x2g.x/ eS d˝2

.2/ C 4

f .r/2
eTCr2f .r/Adr2

C 4

g.x/
eSCx2B dx2 C 2 r x

f .r/
F dr dx

�
; (12)

4For a well-posed elliptic problem, as is our case, one should expect that such a solution exists and
it is close to the solution in Sect. 3.
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where
.r; x/ D .1�x2/C
.1�r2/. Here 
 is a parameter that effectively measures
the ratio between the radius of AdS5 and the radius of the black hole on the brane.
Hence, taking 
 ! 0 in (12) corresponds to having an infinitely large braneworld
black hole and we recover the AdS/CFT solution, (9).

Using the ansatz (12) we numerically solve the equations of motion (4) subject to
suitable boundary conditions. As a reference metric we took (12) with X D 0. The
boundary conditions are as in Sect. 3 except at x D 1, where we impose the Israel
junction conditions, K�� D 1

`
��� . This imposes conditions on T; S;A. In addition

we fix F D 0 and �x D 0. These boundary conditions give rise to a regular elliptic
problem and in particular they imply @n�r D 2

`
�r on the brane (where @n denotes

the normal derivative), which is compatible with obtaining an Einstein solution with
�a D 0 everywhere on M . We note that with these boundary conditions the soliton
non-existence result of [16] does not apply and a posteriori we have to check that
our solution is an Einstein metric and not a Ricci soliton. We have performed such
checks and found no evidence of Ricci solitons.

4.3 Results

Following [17] we solved the equations of motion numerically using pseudospectral
collocation approximation (using Newton’s method) and taking the same number of
grid points N in the r and x directions. To characterise the numerical errors we
consider the maximum value of jR=20 C 1j in the whole domain, including the
brane. This quantity should be exactly zero for an Einstein metric and hence it
tells us about the vanishing of both �a and its gradients in the continuum limit.
In Fig. 3 we show two representative plots for the 
 D 0:5; 1 solutions, which
roughly correspond to black holes of size � 2 and � 1 respectively. As these
plots show, jR=20 C 1jmax does not vanish in the continuum limit and therefore
our numerical solutions do not approximate a continuum solution and should be
discarded. Moreover, the smaller the value of 
 (i.e., the larger the black hole
on the brane), the higher the resolution that is needed in order to see this lack
of convergence. Note that depending on the size of the black hole on the brane,
jR=20C1jmax exhibits a spike at a certain value ofN . One can see that this is due to
the appearance of a numerical non-smooth near zero mode; it would be interesting
to understand if our boundary conditions can be improved in order to get rid off
these unphysical modes.

By plotting R=20 C 1 over the whole domain one sees that this lack of
convergence is due to some oscillations that appear to be localised on the brane
and do not go away in the continuum limit. Such a phenomenon is known as
the Gibbs phenomenon and it is known to occur when one tries to approximate a
non-smooth function with smooth polynomials, as in a pseudospectral collocation
approximation. Since in Sect. 3 we convincingly showed the existence of the
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Fig. 3 Maximum (absolute) value of the normalised Ricci scalar over the whole domain (including
the brane) as a function of the number of grid points for the 
 D 0:5; 1 solutions obtained with
pseudospectral methods. This quantity should vanish in the continuum limit but the plots show that
it does not

AdS/CFT solution, from which large braneworld black holes can be perturbatively
constructed, we believe that this lack of convergence is just due to a poor choice
of gauge. One might think that this lack of smoothness comes from the presence of
logs near the brane, but this does not seem to be case. Indeed, we have performed
the same calculation but choosing the same reference metric as in Sect. 3 (which has
smoother near boundary behaviour) or in d D 6 (where no logs are expected) and
found similar results. It would be interesting to understand in detail where this lack
of smoothness comes from.

Since spectral methods seem to fail because of the lack of smoothness of the
solutions, we have constructed braneworld black holes in d D 5; 6 using 3rd and 4th
order finite differences respectively. In either case we have found good convergence
(see Fig. 4 for the 5d results) to the continuum and, more importantly, the finite
difference code is able to find solutions in a region of parameter space (i.e., small
black holes) where the spectral code fails. Moreover, for the highest resolution
solutions that we have constructed, the numerical errors of the finite difference
solutions are smaller than those of the spectral solutions. However, higher order
finite difference methods do not converge, which suggests that in our gauge the
d D 5.6/ solutions are only C3.C 4/.5 Summarising, our finite difference solutions
converge to the continuum according the order of the approximation, therefore
providing good evidence that the continuum solutions do exist. However, in our

5Recall that a classical solution to the Einstein equations need only be C2.
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Fig. 4 jR=20C 1jmax
against the number of grid
points for the 
 D 0:01

(purple), 0:1 (green), 1 (blue),
10 (red) and 100 (yellow)
solutions, together with the
fits (dashed) assuming exact
third order convergence. As
this plot shows, we have good
third order convergence for
braneworld black holes of all
sizes

gauge they do not appear to be very smooth and hence the spectral approximation
fails.

There are various reasons why [17] could not observe this lack of convergence.
First, the metric ansatz used in this other paper is different from ours, and therefore
the gauge is different. As we have argued above, this lack of convergence should be a
gauge issue and therefore different gauges should give rise to different convergence
properties of the numerical solutions. Secondly, and perhaps more fundamentally,
the resolutions used in [17] were quite modest and as we have seen above, the lack
of convergence only becomes apparent at sufficiently largeN . Finally, Figueras and
Wiseman [17] monitored � D �a�a to estimate the numerical error and one can see
that this quantity is better behaved than jR=20C 1j.

Finally, in Fig. 5 we display the area of the horizon of the full five-dimensional
black hole as a function of the radius of the black hole on the brane. On this plot
we also display the behaviour of the area as a function of the horizon radius for the
5d asymptotically flat Schwarzschild solution (in red) and the 4d asymptotically
flat Schwarzschild solution times one AdS radius. As one can see from this plot,
the geometry of the braneworld black holes smoothly interpolates between the 5d
behaviour for small black holes .R4`2`/ and the 4d behaviour for large black holes
.R4 � `/. Therefore, we confirm that standard 4d gravity on the brane is recovered
for large black holes and that the latter can indeed be seen as small deformations of
the 4d asymptotically flat Schwarzschild solution.
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Fig. 5 AH=`
3 vs. R4=` in a

log–log plot. For small
braneworld black holes, the
area function approaches that
of the 5d asymptotically flat
Schwarzschild solution (in
red). For large braneworld
black holes it approaches of a
4d Schwarzschild solution
which extends one AdS
length into the bulk (in blue)

5 Summary and Conclusions

In Sect. 2 we have briefly reviewed a new method for casting the Einstein equations
into a manifestly elliptic form which is amenable for numerics. We have also
reviewed two standard algorithms for solving the equations numerically, namely
the Ricci–DeTurck flow and Newton’s method.

Using this machinery, in Sect. 3 we have numerically constructed a static
black hole solution in (the Poincare patch of) AdS whose boundary metric is
conformal to the 4d asymptotically flat Schwarzschild solution. Using AdS/CFT
we have identified this solution as the gravitational dual of N D 4 SYM in the
background of Schwarzschild in the Unruh vacuum. Interestingly, for this solution
the Lichnerowicz operator 
L is positive definite which implies that it is a stable
fixed point of Ricci flow [16].

Naive arguments [11] would have suggested that such a black hole cannot be
static. However, our construction shows that this is not the case, and the leading
O.N2

c / solution is both smooth and static. We have also argued that one can perturb
this black hole by deforming the boundary metric and construct an arbitrarily large
braneworld black hole.

In Sect. 4 we have numerically constructed braneworld black holes of various
sizes. Rather surprisingly, we have found that, at least in our gauge, the solutions
do not appear to be very smooth. It would be interesting to understand in detail
why this is so. Using our numerical solutions we have checked that 4d gravity on
the brane is recovered for braneworld black holes which are large compared to the
radius of AdS. Therefore, the RSII model can be in agreement with astrophysical
observations.
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One can check that for all braneworld black holes that we have constructed

L has one, and only one, negative mode. Moreover, for large black holes,
the negative mode that we find approaches the celebrated negative mode of 4d
Schwarzschild. These results suggest that braneworld black holes should be stable
under gravitational perturbations. Further evidence for this has been noted recently
by Abdolrahimi et al. [18, 19], who have shown that braneworld black holes have
greater entropy than a 4d Schwarzschild black hole with the same mass.
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BPS Black Holes in String Theory

Gabriel Lopes Cardoso

Abstract We give an overview of four-dimensional BPS black holes in supergrav-
ity and string theory from both a macroscopic and a microscopic perspective.

1 Introduction

Black holes play an important role for testing theories of quantum gravity.
Classically, they are solutions of the equations of motion of General Relativity
that have an event horizon shielding a space-time singularity. When taking quantum
effects into account, a black hole turns out to have a temperature, the so-called
Hawking temperature. A black hole is therefore a thermodynamical system with a
thermodynamic entropy. Entropy is also a measure for the number of microstates of
the system. Therefore, an essential requirement for any quantum theory of gravity is
that it has to be able to derive the thermodynamics of black holes by identifying and
counting microstates. String theory, a mathematically consistent theory of quantum
gravity, is capable of providing an answer to this question [1, 2].

In string theory, the class of black holes for which there has been a detailed study
of the matching of the thermodynamic entropy with the counting of microstates is
the class of supersymmetric black holes, also called BPS black holes. In this review,
we shall focus on BPS black holes in four dimensions. These are black holes that are
asymptotically flat, charged and extremal. BPS solutions may be single-centered or
have multiple centers. At the two-derivative level, single-center BPS solutions are
static. Thus, they are distinct from the near-extremal spinning black holes, such
as the near-extremal Kerr black hole GRS 1915 C 105 [3], whose existence has
been confirmed by astrophysical measurements. A conjecture for the microscopic
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description of extremal Kerr black holes has been proposed in [4] in terms of two-
dimensional chiral conformal field theories. We refer to [5] for a review of this
subject. Here, we will mainly focus on single-center static black holes.

Charged black holes arise as solutions of gravity coupled to abelian gauge fields
and neutral scalar fields. In four dimensions, they may, in general, carry both electric
and magnetic charges with respect to these gauge fields (we allow for the presence
of various such Maxwell fields). Extremal black holes are charged black holes that
carry the minimum mass possible for a given set of charges, and their mass is
uniquely fixed in terms of the charges and the asymptotic values of the scalar fields.
These black holes have zero temperature and a very high entropy. BPS black holes
constitute a subset of extremal black holes, and it is for BPS black holes in string
models with a high amount of supersymmetry that there exist exact formulae for the
number of microstates in terms of the charges carried by the BPS black hole. This
is the case for string models with N D 4 supersymmetry [6–9] and with N D 8

supersymmetry [10].
The role of supersymmetry in the successful matching of the thermodynamic

entropy with the microscopic entropy based on state counting in string theory
can be understood as follows. String theory has a length scale ˛0 D l2s and a
string coupling constant gs . In string theory, Newton’s constant GN is a derived
quantity given by GN � g2s ˛

0. Let us consider an extremal Reissner–Nordstrom
black hole solution to the equations of motion of the Einstein–Maxwell theory. Its
thermodynamic entropy, computed by the area law of Bekenstein and Hawking,
is given by (in units kB D c D „ D 1) Smacro D A=4GN D � Q2, where Q
denotes the electric charge carried by the black hole. Thus, its entropy is independent
of GN , and the same holds for BPS black holes in string theory. Therefore, the
thermodynamic entropy of a supersymmetric black hole is independent of the string
coupling constant gs . In string theory, a charged black hole (carrying a number of
Maxwell charges which we generically denote byQ) is a system with two different
descriptions that hold in two different regimes [11]. The macroscopic regime, where
the system is described by a gravitational solution (a black hole), corresponds to the
regime where jQj gs >> 1. In this regime, the entropy of the system is given by
the thermodynamic entropy Smacro.Q/ of the black hole. Smacro.Q/ is determined
in terms of the charges Q carried by the black hole, and is independent of gs .
The microscopic description of the system corresponds to the opposite regime
jQj gs << 1. In this regime, the system is described in terms of a boundstate of
excited strings and branes [1], and it is possible to count microstates (excitations) of
this system. This, in turn, defines a microscopic entropy Smicro.Q/. Supersymmetry
gives rise to various non-renormalization theorems. Due to these theorems, the
entropy of a supersymmetric black hole is independent of gs , and therefore one
may compare the entropy calculation in the macroscopic regime with the entropy
calculation in the microscopic regime, and check whether the microscopic picture
(based on strings and branes) gives results in agreement with the macroscopic
description. This is what has been achieved for BPS black holes in string models
with a high degree of supersymmetry.
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In addition, the power of supersymmetry also helps in determining the precise
form of the low-energy effective actions of these string models, and this in turn
results in a precision calculation of the macroscopic entropy which, for large
charges, has the following expansion (schematically),

Smacro.Q/ D a0 A.Q/C a1 lnA.Q/C a2

A.Q/
C : : : :C e�c0 A.Q/ C : : : (1)

For large charges, the leading term (proportional to a0) describes the area law of
Bekenstein and Hawking. The subleading terms include a power series expansion
in A.Q/, logarithmic corrections as well as non-perturbative corrections. On the
other hand, supersymmetry also allows for the exact determination of the spectrum
of boundstates of strings and branes in certain string models, resulting in a precision
calculation of the microscopic entropy which, for large chargesQ, takes a form that
is similar to (1),

Smicro.Q/ D b0 A.Q/C b1 lnA.Q/C b2

A.Q/
C : : : :C e�d0 A.Q/ C : : :

Then, the matching of macroscopic and microscopic entropies requires checking
whether ai D bi and ci D di for i D 0; 1; : : : , and this turns out to be the case
in the string models for which a detailed comparison has been performed, namely
models with N D 4; 8 supersymmetry, as mentioned above. A detailed account of
these precision tests can be found in [12, 13].

2 Macroscopic Aspects of BPS Black Holes

We focus on four-dimensional models derived from string theory with N D 4

supersymmetry. These models are obtained by compactifying superstring theory
in ten dimensions down to four dimensions on suitably chosen six-dimensional
manifolds X . The resulting low-energy effective action describes gravity coupled
to a number of abelian gauge fields F I as well as neutral scalar fields �I (I D
1; : : : ; n). It also includes higher-derivative terms, in particular higher-curvature
terms, that represent ˛0-corrections to the two-derivative action. The associated
equations of motion allow for single-center BPS black holes that are charged. These
may be electrically charged, or they may be dyonic and carry electric/magnetic
charges .QI ; P

I / associated with the F I . The characteristic features of the
dyonic solutions can be summarized as follows. They are supersymmetric solitons
[14], i.e.

• they are static and have finite energy. Their mass satisfies the BPS bound;
• they have residual supersymmetry and interpolate between two maximally

supersymmetric vacua, namely Minkowski spacetime at spatial infinity, and
AdS2 
 S2 at the horizon;

• they are stable. They have vanishing temperature.
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An important feature of these single-center BPS black holes is that they are
supported by the neutral scalar fields. In the black hole background these scalar
fields �I .r/ vary radially as one moves from spatial infinity to the horizon of
the black hole, and they get attracted to specific values at the horizon which are
determined by the black hole charges .QI ; P

I /. These values are independent of
the asymptotic values of the fields at spatial infinity. This is the so-called attractor
mechanism, which was first noted in the context of supergravity [15, 16] and then
generalized to theories with higher-curvature terms in [17, 18]. The horizon values
of the scalar fields are determined by extremising an entropy function , whose value
at the extremum gives the macroscopic entropy Smacro.Q;P / [19, 20]. Thus, as a
result of the attractor mechanism, the macroscopic entropy is entirely determined in
terms of the black hole charges. We note that since the scalar fields parametrize the
size and shape of the internal six-dimensional manifoldX , the latter changes as one
moves around in the black hole background.

In models with N D 4 supersymmetry, the macroscopic entropy of a
single-center dyonic BPS black hole is invariant under electric–magnetic duality
(also called S-duality), a property that has to be respected by any candidate
microstate counting formula for these black holes [21].

As mentioned above, the low-energy (Wilsonian) action of a four-dimensional
string model contains higher-curvature terms. These affect and modfiy the black
hole solution. Moreover, in the presence of higher-curvature interactions, the
macroscopic entropy Smacro is no longer given by the area law of Bekenstein and
Hawking. Instead, one uses Wald’s definition of black hole entropy based on a
Noether surface charge [22], which ensures the validity of the First Law of black
hole mechanics. For stationary black holes in local, generally covariant theories of
gravity, such as the low-energy Wilsonian actions derived from string theory, Smacro

is expressed as a local geometric density integrated over a space-like cross section
of the event horizon [22],

Smacro D 2�

Z

Hor
d2x

p
hQ�� 
��; (2)

where h�� and 
�� denote the induced metric and the binormal on the horizon,
respectively, andQ�� D �Q�� is the so-called Noether potential. Wald’s definition
of entropy

• is based on a Lorentzian signature derivation of the First Law of black hole
mechanics,

• assumes a non-vanishing surface gravity,
• and assumes that the event horizon is a Killing horizon.

Thus, in order to define the entropy of an extremal black hole (which has vanishing
temperature) one has to work slightly away from extremality, compute the entropy
of the associated non-extremal black hole using Wald’s formula and then send the
extremality parameter to zero.
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The Noether potential Q which enters Wald’s definition of entropy is related to
diffeomorphisms under the Killing vector field associated with the horizon of the
stationary black hole, as follows. Given a general covariant Lagrangian L D L. /,
one constructs a Noether current J. ; �/ associated with diffeomorphisms x !
x C �, which is conserved when the equations of motion are satisfied, r�J

� D 0.
Then, it can be shown [22] that J� D r�

QQ�� with QQ�� D � QQ�� globally defined.
This is the Noether potential. Now, consider identifying � with the Killing vector
field generating the Killing horizon, and define

Q�� D QQ�� j�D0;rŒ����D
�� : (3)

Observe that Q only depends on the dynamical fields  and on the binormal 
,
i.e. Q�� D Q��. ; 
/. Then, the surface integral at the horizon over Q yields the
entropy. Hence, black hole entropy is Noether charge [22].

We note that the power of Wald’s definition of entropy lays in its generality.
It applies to stationary black holes in any spacetime dimensions. When applied to
BPS black holes, it yields a macroscopic entropy that is reproduced by microstate
counting in string theory, as we will see.

Let us consider a low-energy Wilsonian action described by a Lagrangian L D
L.g��; R���� I�;r��/ which is allowed to depend on any number of powers of the
Riemann curvature tensorR���� , but not on derivatives thereof. The fields � denote
matter fields. Then, the resulting black hole entropy is given by [23, 24]

Q�� D @L

@R����

�� �! Smacro D 2�

Z

Hor
d2x

p
h

@L

@R����

�� 
��: (4)

At the two-derivative level, this yields the area law of Bekenstein and Hawking. For
a static black hole, the binormal is non-vanishing in the subspace orthogonal to the
horizon associated with the time and the radial coordinates.

Let us now turn to the Wilsonian action of the four-dimensional string models
under consideration. The higher-derivative terms arising in these actions correspond
to either supersymmetric F-terms or supersymmetric D-terms. Not much is known
about D-term contributions to these actions, but it is believed that they do not
contribute to the entropy of BPS black holes. This has been explicitly confirmed
recently for a class of D-terms that are quartic [25]. Thus, we will only be
concerned with F-terms in the following. F-term contributions to the Wilsonian
action have been extensively discussed in the supergravity and string literature
[26, 27]. In the following, we will focus on a particular string model with N D 4

supersymmetry, for concreteness, namely heterotic string theory compactified on a
six-torus X D T 6. At order ˛0, the associated Wilsonian action is, schematically,
given by

L D RC gIJ .�/@��
I @��

J C fIJ .�/F
I
�� F J

�� C ˛0 F .1/.�/ C 2
���� : (5)

It contains an F-term proportional to the square of the Weyl tensor C���� .
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As mentioned above, the associated equations of motion allow for both elec-
trically charged and dyonic solutions. Let us first consider electrically charged
solutions. At the two-derivative level, i.e. when switching off ˛0-corrections, these
solutions are singular: they have a null singularity, and there is no horizon to shield
it. However, when including ˛0-corrections, in particular when taking into account
the term proportional to F .1/, the singularity gets cloaked [28]. A horizon forms,
with the near-horizon geometry of the modified solution given by AdS2 
 S2.
The aforementioned attractor mechanism ensures that the near-horizon solution
is entirely determined in terms of the electric charges carried by the black hole.
To be specific, let us consider an electrically charged black hole carrying two
electric charges, which we denote by n and w. Then, after cloaking, the area of the
two-sphere is given by 1

4
A.S2/=GN D 2�

p
nw. Using (4) one obtains for Wald’s

entropy,

Smacro D 4�
p

nw � 12 ln.nw/: (6)

The first term equals 1
2
A.S2/=GN , while the second term is of the form lnA.S2/,

as in (1).
On the other hand, in the case of a dyonic black hole carrying electric/magnetic

charges .QI ; P
I /, the solution has a horizon at the two-derivative level, and the area

of the horizon two-sphere is given by 1
4
A.S2/=GN D �

p
Q2P 2 � .Q � P/2. This

is invariant under the interchange of electric and magnetic charges, i.e. invariant
under S-duality transformations. In the presence of ˛0-corrections, such as the term
proportional to F .1/ in (5), the thermodynamic entropy ceases to be given by the
area law. Using (4) to compute Wald’s entropy, one obtains corrections to the area
law that are subleading. These include the following logarithmic correction,

Smacro D �
p
Q2P 2 � .Q � P/2 � 12 lnŒ.Q2P 2 � .Q � P/2/=P 2�C : : : (7)

In the next section, we turn to the microscopic derivation of (6) and (7). This
will require specifying the statistical ensemble that underlies the computation of the
microscopic entropy.

So far, we focussed on single-center BPS black hole solutions. Multi-center
solutions describing bound states can be constructed as well [29]. For instance, a
BPS solution with total charge .QI ; P

I / and describing a two-center bound state
with charges .QI ; 0/ and .0; P I / each, is a stationary solution constructed in terms
of harmonic functions

HI D CI C P I

j Ex � ExP j ;
QHI D DI C QI

j Ex � ExQj : (8)

Here, .C I ;DI / denote integration constants that parametrize the asymptotic moduli
space. This boundstate carries intrinsic angular momentum J D 1

2
Q � P . The

distance j ExQ � ExP j between the two centers is fixed and given by [29, 30]
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1

j ExQ � ExP j D �C �Q
Q � P D �D � P

Q � P > 0: (9)

When changing the values of the parameters .C I ;DI /, it may happen that j ExQ �
ExP j ! 1, in which case the two-center bound state will cease to exist. This happens
at so-called walls of marginal stability in asymptotic moduli space [29–32].

3 Microscopic Aspects of BPS Black Holes

Let us begin by considering the microscopic description of the two-charge BPS
black hole discussed in (6). As mentioned earlier, we work in the regime jQjgs <<
1. At zero string coupling, the microstates are described by elementary string states,
as follows [33,34]. Consider a fundamental heterotic string wrapped w times around
one circle in X D T 6, and add n units of left-moving momentum along the
string. For this to describe a BPS state, the string must oscillate in 24 transverse
dimensions, with the total oscillator numberN satisfyingN �1 D nw. The number
of distinct states that can be obtained in this way is given by ˝.n;w/ D p24.N /,
where p24.N / is the number of partitions of N into the sum of 24 integers. The
associated generating function is

1X

ND0
p24.N / q

N D
 1Y

nD1
.1 � qn/

!�1
: (10)

The large N -expansion of ˝.n;w/ is given by [35]

˝.n;w/ D
1X

cD1
c�14 KL.nw C 1;�1I c/ OI13

�
4�

c

p
nw

�
; (11)

where OI13 denotes a modified Bessel function, and where the KL are the so-called
Kloosterman sums. Thus, for large values of N D 1C nw, we obtain

ln˝.n;w/ � 4�
p

nw � 27

4
ln.nw/: (12)

Comparing (12) with the thermodynamic entropy (6) shows that there is agreement
at leading order, but also a mismatch at subleading order. This suggests that the
microcanonical ensemble implied by (12) is not the correct statistical ensemble
to consider in order to define the microscopic entropy of electrically charged BPS
black holes. Instead, let us consider the grand canonical ensemble defined by [36]

eF .�/ D
1X

ND0
˝.N � 1/ e��.N�1/; (13)
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and define the microscopic entropy by the Legendre transform

Smicro D F .�/C � .N � 1/; (14)

with � given by

@F

@�
C .N � 1/ D 0: (15)

Evaluation of Smicro then yields a result that is in agreement with (6). Thus, the
correct statistical ensemble to use when dealing with electrically charged BPS black
holes is the grand canonical ensemble.

Next, let us turn to the microscopic description of dyonic BPS black holes. The
microstate degeneracy ˝.Q;P / of BPS dyons must, for large charges, reproduce
the leading contribution to the macroscopic entropy (7). It must also be compatible
with S-duality, which is a symmetry of heterotic string theory compactified on a
six-torus X D T 6, as mentioned above. In addition, it must take into account
that a single-center dyonic black hole with total charge .Q;P / may fragment into
a two-center black hole solution, where one center carries charge .Q; 0/ and the
other center carries charge .0; P /. This may happen at so-called walls of marginal
stability, as mentioned below (9).

A proposal for the microstate degeneracy of N D 4 dyons satisfying these
various requirements was put forward in [6], and is based on the unique automorphic
form ˚10 of weight 10 under the genus two modular group Sp.2;Z/,

˝.Q;P / D
Z

C

d�d�dv
ei�.� Q

2C� P2C.2v�1/Q�P/

˚10.�; �; v/
(16)

where a shift of v has been included, following [37]. Here, .�; �; v/ parametrize the
Siegel upper half-plane Im� > 0; Im� > 0; Im� Im�� .Imv/2 > 0, and the contour
C denotes a suitably chosen three real-dimensional subspace.˚10 is invariant under
S-duality transformations, which are the transformations that belong to the subgroup
SL.2;Z/ � Sp.2;Z/. The computation of (16) proceeds by evaluating residues
associated with the zeroes of ˚10. These are double zeroes that are labelled by four
independent integers, one of which is called n2 � 0 [6].

The statistical ensemble that defines the microscopic entropy of dyonic BPS
black holes is the microcanonical ensemble, Smicro D ln˝.Q;P /. The leading
contribution to ln˝.Q;P / comes from the double zero n2 D 1, and precisely
reproduces the macroscopic result (7) [38]. The double zeroes with n2 > 1

contribute exponentially suppressed terms [39],

ln˝.Q;P /exp �
X

n2>1

�
p
Q2P 2 � .Q � P/2=n2: (17)



BPS Black Holes in String Theory 63

And finally, the contour C may, or may not, encircle the double zero n2 D 0. If it
does, it produces a jump in ˝ given by [30, 32]


˝.Q;P / D .�1/Q�PC1 jQ � P j˝.Q/˝.P /: (18)

The macroscopic interpretation of the contribution from the double zero n2 D 0

is the one described in (9). It describes the jump in the entropy associated with the
decay of a single-center BPS black hole into a two-center black hole system, with
one center carrying the electric charges, and the other center carrying the magnetic
charges. As already mentioned, the resulting boundstate carries intrinsic angular
momentum J D 1

2
Q �P which, upon quantization, results in a 2JC1 D Q �P - fold

degeneracy [29]. For large separations of the centers, one expects the jump in the
degeneracy to be given by by the product of the individual degeneracies, multiplied
by the angular momentum degeneracy, and this is precisely the contribution (18)
stemming from the double zero n2 D 0. Thus, we see that the exact degeneracy
formula for N D 4 dyons encodes information about single-center BPS black holes
as well as black hole bound states with total charge .Q;P /.

On the other hand, the macroscopic interpretation of the exponentially
suppressed corrections steming from the zeroes with n2 > 1 requires going beyond
the framework of Wald’s entropy. Wald’s definition of entropy is based on a local
action principle. The low-energy string effective action is, however, in general
non-local due to quantum corrections. This requires going beyond Wald’s formalism
and introducing a generalization that correctly reduces to Wald’s definition of
entropy when dealing with local actions. Such a concept was introduced in [40] and
is called the quantum entropy function. It assumes that the black hole is extremal
(not necessarily supersymmetric), and that is has an AdS2 type near horizon
geometry. It is defined in terms of an Euclidean path integral over two-dimensional
field configurations that asymptote to AdS2, with a Wilson line insertion,

W.Q;P / D he�i QI

H
AI� d� iAdS2 ; (19)

where � denotes Euclidean time. In this proposal, the asymptotic values of fields are
specified by the near-horizon black hole solution which is determined in terms of the
charges .Q;P / by the aforementioned attractor mechanism. The path integral runs
over all string modes. In the supersymmetric context, this complicated path integral
can be evaluated using so-called localization techniques [41]. In the classical limit,
the functional integral is dominated by the saddle point describing the near-horizon
black hole solution, and lnW.Q;P / becomes Wald’s entropy. Other saddle points
contribute exponentially suppressed contributions, reproducing (17) in the case of
N D 4 BPS black holes [39].

Summarizing, we appear to have a (very) good understanding of N D 4

black holes in four dimensions. BPS black holes arising in models with less
supersymmetry, such as N D 2 supersymmetry, are far more complicated, and
there are currently no exact microscopic degeneracy formulae available for these
black holes. Clearly, much more work needs to be done to fully understand BPS
black holes in N D 2 theories.
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Geometry of General Hypersurfaces, Constraint
Equations and Applications to Shells

Marc Mars

Abstract The constraint equations are well-understood for hypersurfaces which
are either everywhere non-null or null everywhere. The corresponding form of the
equations is very different in both cases. In this paper, I discuss a general framework
capable of analyzing the intrinsic and extrinsic geometry of general hypersurfaces
of a spacetime. This framework is then applied to derive the form of the constraint
equations in this general context. As an application, I will generalize the Israel
equations for spacetime shells to the case when the shell is allowed to have varying
causal character.

1 Introduction

The evolution problem in General Relativity (and many other geometric theories of
gravity) consists in prescribing suitable initial data for the metric and determining
the spacetime metric from this data. This requires a splitting of the spacetime so that
it makes sense to talk about “evolution”. The most widely used splitting consists
in foliating the spacetime into a one-parameter family of spacelike hypersurfaces.
The initial data are then fields defined on one such hypersurface (taken as the
initial one), and the field equations become partial differential equations once a
suitable coordinate system (or, alternatively, evolution direction) has been chosen.
The initial data on the hypersurface takes different forms depending on the particular
choice of fields in which the evolution equations are written. However, in all cases,
this data is not free but subject to the so-called constraint equations. The specific
form of the constraints obviously depends on the choice of fields, but, in one
way or another, it always involves the induced metric on the hypersurface and
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its time derivative. In more geometric terms, let ˙ be a spacelike hypersurface
embedded in a spacetime .M ; g/ of arbitrary dimension m C 1 (m � 2) and let
n be the unit, future directed one-form orthogonal to the hypersurface. Spacetime
tensors will carry Greek indices (˛; ˇ; � � � D 0; � � � ; m) which will be raised and
lowered with the spacetime metric and its inverse. If we denote by ˚ W ˙ ! M the
embedding of˙ into the spacetime,˙ inherits a first fundamental form �

defD ˚?.g/

and a second fundamental formK
defD ˚?.rn/, where r is the Levi–Civita covariant

derivative of .M ; g/ and n has been extended arbitrarily off ˙ . Tensors on ˙ will
carry Latin indices .a; b; � � � D 1; � � �m).

The Gauss and Codazzi identities relate suitable components of the Riemann
tensor of the ambient spacetime (evaluated on ˙) to � and K and their derivatives.
Taking traces of these identities, the ambient geometry terms become expressions
involving the Einstein tensor G of .M ; g/ as follows (see e.g. [23])

2� WD 2G˛ˇn
˛nˇj˙ D R.�/�KabK

ab CK2; K WD �abKab; (1)

�Ja WD G˛ˇe
˛
an

ˇ j˙ D Db

�
Kb

a �Kıba
�

(2)

where D is the Levi–Civita covariant derivative of .˙; �/ and R.�/ its curvature
scalar. The constraint equations determine the normal–normal component (�) and
the normal–tangential component (Ja) of the Einstein tensor.

Given a matter model, the Einstein field equations provide expressions for �
and Ja in terms of the matter variables (e.g. in vacuum � D 0; Ja D 0) and
hence, identities (1)–(2) become a set of partial differential equations for �ab, Kab

and the matter variables. These are the constraint equations of General Relativity
in the spacelike case. The constraint equations, although obtained via geometric
identities for submanifolds, become equations intrinsic to ˙ . This is important
for the initial value problem since it detaches the initial data from the spacetime.
This is accomplished by defining an initial data set as an abstract m-dimensional
manifold ˙ endowed with a positive definite metric �ab, a symmetric tensor Kab,
a scalar � and a one-form Ja (typically given in terms of other fields on ˙ which,
possibly, satisfy their own equations) such that (1)–(2) are satisfied. The five-tuple
f˙; �ab; Kab; �; Jag is called an initial data set. The connection with the spacetime
comes via a well-posedness theorem, which states that, given appropriate matter
fields (e.g. vacuum), then an initial data set generates a spacetime (maximally
unique) satisfying the Einstein field equations in which the data can be embedded.
Embedded here means not only that there exists an embedding ˚ W ˙ ! M
but also that (a) the corresponding induced metric and second fundamental form
defined by this embedding agree respectively with �ab, Kab and (b) G˛ˇn˛nˇ

˙D
�;G˛ˇe

˛
an

ˇ ˙D �Ja.
Initial value problems arise not only in the spacelike context. A useful alternative

is the characteristic initial value problem, where initial data is given on two
null hypersurfaces which intersect transversally on a spacelike, codimension-two
surface. Without going into details, the constraint equations in this setting are
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S

Σ−

Σ+

Fig. 1 Schematic figure for
the well-posedness of the
characteristic initial value
problem

essentially (see e.g. [19]) a hierarchical set of ODEs along the null direction tangent
to each hypersurface. The formulation of the constraints typically requires a 2C1
splitting of the null hypersurfaces. Thus, the constraints in this setting take a
completely different form than in the spacelike case. However, such characteristic
initial data also gives rise to a well-posed evolution problem [20] (see Fig. 1).

The limiting case where there is only one null hypersurface with a conical
singularity (representing the future null cone of a point) has been dealt with
recently [6] and both the constraint equations and the well-posedness of the
evolution problem has been established in this case. The last situation I am aware
of where the initial value problem has been set up and solved is the so-called
Cauchy-characteristic initial value problem [24], where the initial configuration
consists of suitable fields defined on two hypersurfaces, one spacelike and one null,
intersecting on a codimension-two surface.

Despite the very different nature of the constraint equations (and of the evolution
problem) in the settings described above, a natural question that arises is whether
there is any framework which is capable of dealing with all cases at once. More
generally, one would like to know how do the constraint equations look like in
completely general hypersurfaces, with no restriction whatsoever on their causal
character (note that a general hypersurface may perfectly have portions where it
is spacelike, portions where it is timelike and portions—or subsets—where the
first fundamental form degenerates). The motivation for doing so is not only in
order to have a common framework for all the cases described above, but also as a
tool to generalize well-posedness results to more general settings. For example, by
causality arguments it is reasonable to expect that appropriate initial data prescribed
on a hypersurface with everywhere positive semidefinite first fundamental form
should define a well-posed evolution problem (see Fig. 2).

Besides its unifying power, this problem is relevant also from a more practical
point of view because hypersurfaces of varying causal character with physical
relevance are much more common that one may think at first sight. One example are
the so-called marginally outer trapped tubes (also called trapping horizons [10], and
dynamical/isolated horizons [3] with slight variations in their definitions). These
are hypersurfaces foliated by codimension-two spacelike surfaces with one of its
null expansions identically vanishing. A priori, these hypersurfaces may have any
causal character. Under appropriate stability and energy conditions, no timelike
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Spacelike

Spacelike

Null

Null

Σ

Fig. 2 Representation of a hypersurface ˙ for which initial data satisfying the constraint
equations are expected to produce a unique maximal spacetime (the portion to the future is shown
in grey in the figure) satisfying the Einstein field equations

portion may exist [1, 2] but they can still vary their causal character from spacelike
to null. Marginally outer trapped tubes are physically very relevant since they are
suitable quasi-local replacements for black hole event horizons, and are analyzed
routinely in any numerical evolution of “black hole” mergers of in any collapsing
process. Other examples of physically relevant hypersurfaces of varying causal
character can be found in the introduction of [17] where the geometry or arbitrary
hypersurfaces in the spacetime was studied. The developments of that paper were
focused in generalizing the matching conditions from the case of constant causal
character (well-developed both in the spacelike and timelike cases [8, 15, 22] and
in the null case [4]) to the arbitrary case of varying causal character and this
required a better understanding of the geometry of general hypersurfaces in a
spacetime.

In this work I will report recent work where the geometry of general hypersur-
faces is developed further with the aim of writing down the constraint equations for
arbitrary hypersurfaces. As an application, the field equations for thin shells will be
derived as a simple consequence. Here, only a summary of results will be given.
Details will be given elsewhere [16]. The plan of the paper is as follows. In Sect. 2, I
will recall some fundamental notions for the geometry of general hypersurfaces [17]
and I will identify the intrinsic information on the hypersurface that can be extracted
from this construction. This will lead us to the notion of hypersurface data, that
will play a central role in the rest of the paper. In Sect. 3, I will describe how
the constraint equations may be derived and I will present the explicit expression
they take in the case of general hypersurfaces. Finally, in Sect. 4, I will describe
briefly the matching theory between two spacetimes and I will explain how the
Israel equations for thin shells can be derived in the arbitrary causal character case
(even changing one) as a simple consequence of the constraint equations obtained
in the previous section.
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2 Geometry of General Hypersurfaces in a Spacetime

Our setup for discussing the geometry of hypersurfaces consists on an .m C 1/-
dimensional spacetime .M ; g/, i.e. a smooth manifold M of dimensionmC1 with
m � 2 endowed with a smooth metric g of Lorentzian signature.1 We assume the
spacetime to be oriented and time oriented. The covariant derivative associated to
the spacetime metric is denoted by r. The term “hypersurface” stands for smooth,
embedded and orientable submanifold of codimension one (embedding is in the
sense of injective immersion such the image of any open set is open in the subset
topology of the image). The manifold will be denoted by ˙ and the embedding by
˚ W ˙ �! M . Since ˙ is a homeomorphic with its image, it is safe to identify ˙
and ˚.˙/. We will therefore use ˙ for both objects and let the context determine
the precise meaning that is intended.

As before, ˙ inherits a first fundamental form �
defD ˚?.g/. ˙ being orientable,

its normal bundle admits global, nowhere vanishing, sections. Let n be any such
section. This defines a “normal one-form” to ˙ . Obviously, two normal one-forms
n and n0 are necessarily related by a smooth, nowhere zero function F by n0 D Fn.
For general hypersurfaces there is no canonical way of choosing a representative for
“normal one-form”. In the everywhere spacelike case n can be uniquely selected
by making it unit and future directed. Already in the null case n has a built-in
scaling freedom that cannot be fixed and this obviously remains true in the general
case. A second fundamental form is associated to each choice of normal one-form,
according to the same definition as before

Kn defD ˚?.rn/;

where n in the right-hand side is any smooth extension of the normal one-form
to a neighbourhood on ˙ . All the second fundamental forms contain the same
information, given the transformation law KFn D FKn. However, given the
absence of a canonical choice, we add a superscript n in order to identify the normal
one-form to which the second fundamental is attached.

In the general case, the first fundamental form is not a metric (it may degenerate
on a non-empty subset) and its signature is not constant. This means, in particular,
that˙ inherits no canonical connection from the ambient manifold. It is well-known
that � is degenerate precisely at those points where n is null, i.e. g[.n;n/ D 0. We
will call them “null points”. At null points, the vector n (obtained by raising the
index to n with the spacetime metric) is both normal and tangential to ˙ . As a
consequence, at null points, Kn does not measure “extrinsic” properties of ˙ in
.M ; g/ and hence loses all relationship with a transversal derivative of the first
fundamental form.

1In fact, with only minor changes, everything below would apply equally well to Riemannian man-
ifolds of arbitrary (non-degenerate) signature. We work with Lorentzian signature for definiteness
and because it is the most interesting case in the context of gravitation.
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It is clear that additional structure is required on ˙ to encode the extrinsic part
of the geometry. The fundamental idea is due to Schouten [21] and consists in
assigning to each point p 2 ˙ a vector which is transverse to TpN . It can be proven
that, irrespective of the causal character of ˙ , this choice of transverse vector can
be made smoothly on ˙ (for this, it is crucial that ˙ is orientable). This transverse
vector field is called “rigging”. The formal definition is as follows.

Definition 2.1 (Rigging vector [21]). A rigging ` is a vector field along ˙

satisfying `jp 62 Tp˙ for all p 2 ˙ .

Alternatively, a rigging can be defined as a vector field along ˙ satisfying
n.`/ ¤ 0 everywhere for one (and hence any) choice of normal one-form n. It
is clear that the choice of rigging is highly non-unique and everything we say
concerning the geometry of ˙ will have to take this fact into account. The rigging
`jp being transversal to ˙ implies TpM D h`jpi ˚ Tp˙ , where h`jpi is the one-
dimensional vector space generated by `jp . This fact can be stated equivalently
as follows. Choose any basis f Oeajpg (a D 1; � � � ; m) of vectors of Tp˙ . These
vectors can be pushed forward to the ambient spacetime to define a set ofm linearly
independent vectors eajp of TpM tangent to ˙ . Adding the rigging, we have a
basis feajp; `jpg of TpM . From now on, let us assume that we have chosen a set
of m vector fields f Oeag on ˙ which are linearly independent at each point. If such
choice does not exist globally, then the basis should be selected on each open set of
a suitable open cover of˙ . This adds no complications to the discussion except for
the need of a more cumbersome notation.

Given a rigging, the choice of normal one-form n can be fixed uniquely and
unambiguously by the condition n.`/ D 1. Obviously, this does not remove the
intrinsic freedom in the choice of normal. It simply shifts it to the choice of rigging
vector. The normalization n.`/ D 1 will be assumed from now on.

As briefly explained above in the spacelike case, it is necessary to define the
data on an abstract manifold without reference to any spacetime. The first step is to
encode the spacetime metric along˙ in this abstract manner. In the spacelike case,
all this information lies in the induced metric (this is because the normal vector can
be chosen to be unit). In the general case, we need to transform the spacetime metric
along ˙ in terms of objects defined on ˙ . To that aim, let us define a one-form `a
and a scalar `2 on ˙ by

`a
defD g.`; ea/; `2

defD g.`; `/:

It is clear that the collection f�ab; `a; `
2g corresponds to the tensor representation of

g in the basis fea; `g and, hence, it contains the same information as g on ˙ . Since
the signature of g is Lorentzian at every point (and no other restriction, except for
smoothness, is required in order to define a spacetime metric along˙), this leads to
the following definition.

Definition 2.2 (Hypersurface metric data). Let ˙ be a smooth m-dimensional
orientable manifold. Let �ab be a symmetric tensor field, `a a one-form and `2 a
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scalar on ˙ . The four-tuple f˙; �ab; `a; `
2g define a hypersurface metric data set

provided the square .mC 1/-matrix

�
�ab `b

`a `
2

�

has Lorentzian signature at every point.

Note that a similar definition can be given for any other signature of the ambient
metric by simply replacing “Lorentzian” in the definition by the new choice of
signature. I also emphasize that `2 in this definition is a scalar on its own and not the
square of any quantity (the definition is given at the abstract level on ˙ and hence
requires no embedding, nor rigging).

Given hypersurface metric data, we can define immediately a symmetric tensor
P ab, a vector na and a scalar n2 on˙ by the following definition.

�
P ab nb

na n2

�
defD
�
�ab `b
`a `

2

��1
: (3)

It is obvious that all these objects are tensorial on ˙ . Given hypersurface metric
data we will always define P ab, na and n2 according to this definition.

In order to make contact from the abstract level to the spacetime level, we need a
definition that states under which conditions metric hypersurface data corresponds
to a spacetime hypersurface endowed with a rigging vector. The definition is natural
and reads

Definition 2.3. A metric hypersurface data f˙; �ab; `a; `
2g is embedded in a

spacetime .M ; g/ if there exists an embedding˚ W ˙ ! M and a rigging vector `
such that

� D ˚?.g/; `a D ˚?.`/a; `2 D ˚?.g.`; `//;

where ` is obtained by lowering the index to ` with the spacetime metric g.

Assume that we are given metric hypersurface data .˙; �; `a; `2/with embedding
˚ and rigging `. Let f!a;ng be the dual basis of fea; `g. We can lower the indices
to fea; `g to definemC1 one-forms fea; `g and raise the indices to f!a;ng to define
mC 1 vectors f!a; ng. Then the following expressions hold

n D naea C n2`; (4)

` D `a!
a C `2n; (5)

ea D �ab!
b C `an; (6)

!a D P abeb C na`: (7)
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Fig. 3 Decomposition of a
vector V into a transversal
component V ?` ` and a
tangential component V k` .
This decomposition
obviously depends on the
choice of rigging

Consequently, n2 (which we have defined by (3)) happens to be in the embedded
case the square norm of the normal vector n, n2 D g.n; n/. In addition na has the
spacetime interpretation of being the tangential component of the vector n. Indeed,
the direct sum decomposition TpM D h`jpi ˚ Tp˙ allows us to decompose any
vector V 2 TpM as V D V ?``C V k` , where V ?`` is the transversal part and V k`
is the parallel part of V (see Fig. 3).

As a consequence of (4) we have nk` D naea. For notational simplicity we will
denote this tangential vector as On from now on. Note that the decomposition of
a vector V into transversal and tangential parts depends strongly on the choice of
rigging. However, when n is null, then On is independent of the rigging (see (4)). This
is just a consequence of the fact that a null normal is tangent to the hypersurface and
hence defined intrinsically. In any other case na is a vector that depends on the
choice of rigging.

A rigging allows us not only to encode the spacetime metric along˙ in terms of
hypersurface data, but also to define a natural connection on the hypersurface.

Proposition 2.4 (Rigging connection [17, 21]). Let .M ; g/ be a spacetime and
˙ a hypersurface. Given X; Y vector fields tangent to ˙ define rXY

defD .rXY /
k.

Then r is a torsion-free covariant derivative on˙ .

We will denote by �
a

bc the Christoffel symbols of r in a basis f Oeag. From the
definition of second fundamental form, we have [17]

rea eb D �Kn
ab `C �

c

ba ec:

Decomposing rea` in transversal and tangential components defines two tensor
fields 'a, �a

b on ˙ by [17]

rea` D 'a `C �b
a eb: (8)

These tensors are not independent from each other and must satisfy appropriate
equations, which follow from the condition that the spacetime connection is metric.
As an example, we compute the directional derivative of the first fundamental form
along Oea,
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Oea .�bc/Drea heb; eci D g.rea eb; ec/C g.eb;rea ec/ D
D�Kn

ab`c �Kn
ac`b C �

d

ab�dc C �
d

ac�db:

A similar computation on `a and `2 leads to the following set of compatibility

equations for the unknowns f� b

ab; K
n
ab; �

b
a; 'ag.

ra�bc C �
`bK

n
ac C `cK

n
ab

� D 0; (9)

ra`b � 'a`b C `2Kn
ab � �bc�

c
a D 0; (10)

1

2
ra`

2 � `2'a � �b
a`b D 0: (11)

The following result provides the general solution of these equations in terms of free
data on ˙ (see [16] for the proof).

Proposition 2.5. Let f˙; �ab; `a; `
2g be hypersurface metric data and Yab an

arbitrary symmetric tensor. Define Fab as the two-form Fab
defD 1

2
.@a`b � @b`a/.

Choose a coordinate basis f Oeag and let

�
c

ab
defD 1

2
P cd .@a�bd C @b�ad � @d�ab/ Cnc

�
�Yab C 1

2
.@a`b C @b`a/

�
; (12)

Kn
ab

defD n2Yab C 1

2
L On�ab C 1

2



`a@bn

2 C `b@an
2
�
; (13)

'a
defD 1

2
n2@a`

2 C nb .Yab C Fab/ ; (14)

�b
a

defD P bc .Yac C Fac/C 1

2
nb@a`

2: (15)

Then �
b

ab defines a torsion-free connection on˙ and f� b

ab; K
n
ab; �

b
a; 'ag solves the

compatibility equations (9)–(11).
Conversely, any solution of these equations can be written in this form for some

symmetric tensor Yab.

Given hypersurface data, we will always associate to it a linear connection with
connection coefficients �

a

bc (in a coordinate basis) given by (12) and tensors Kn
ab,

'a and �b
a by the expressions (13)–(15).

Having obtained the general solution of the compatibility equations, it makes
sense to define abstract data, independently of any spacetime or choice of rigging.

Definition 2.6 (Hypersurface data). A five-tuple f˙; �ab; `a; `
2; Yabg is called

hypersurface data provided f˙; �ab; `a; `
2g is metric hypersurface data and Yab

is a symmetric tensor on˙ .

Similarly as before, a notion of embedding of hypersurface data becomes natural.
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Definition 2.7 (Embedding of hypersurface data). Let f˙; �ab; `a; `
2; Yabg be

hypersurface data. We will say that this data is embedded in a spacetime .M ; g/

if there exists an embedding˚ W ˙ �! M and a choice of rigging ` such that

˚?.g/ D �; ˚? .`/a D `a; ˚?.g.`; `// D `2; 1
2
˚? .L` g/ D Y:

For this definition to make sense it is necessary to check that ˚?.L` g/ D Y

is a consistent requirement. This follows easily because from the expressions in
Proposition 2.5, the following identity on ˙ holds

Yab D 1

2



ra`b C rb`a

�
C `2Kn

ab:

Once the data is embedded in a spacetime, it is immediate to check that the right
hand side of this expression equals ˚?.L` g/.

As we have already mentioned, general hypersurfaces admit no canonical choice
of rigging. We can deal with this freedom by introducing a gauge transformation
on the initial data. Assume first that the hypersurface data is embedded, consider a
change of rigging and evaluate the changes that it induces in the data. The last step
is to ignore the process and simply define the final result as gauge transformation of
the data. Two rigging vectors `, `0 are necessarily related by `0 D u`C v, where u
is a positive function on ˙ and v is a vector field tangent to ˙ . The process above
leads to the following definition [16].

Definition 2.8 (Gauge transformation). Two hypersurface data f˙; �ab; `a;

`2; Yabg and f˙; �ab; `
0
a; `

20; Y 0
abg are related by a gauge transformation if there

exists a scalar u and a vector va on˙ such that

`0
a D u.`a C vb�ab/;

`20 D u2.`2 C 2va`a C vavb�ab/;

Y 0
ab D uYab C 1

2
Luv�ab C 1

2



`arbu C `brau

�
:

3 Constraint Equations for General Hypersurfaces

With the geometric considerations of the previous section, we are ready to obtain
the constraint equations on general hypersurfaces. Let us start noting that, given
hypersurface data embedded in a spacetime, all the tangential derivatives rea`,
rea eb can be computed. On the other hand, from the definition of the Riemann
tensor of the ambient spacetime

rXrY Z � rYrXZ � rŒX;Y �Z D R.X; Y /Z;
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it follows that, along ˙ , the components of the Riemann tensor of the type
R˛ ˇ�ıe

�
a e

ı
b can be computed in terms of hypersurface data. The question is, hence,

whether the knowledge of these components is sufficient or not to determine the
componentsG˛ˇnˇ of the Einstein tensor in terms of hypersurface data. The answer
turns out to be yes, and the relationship is given by the following identities (see [16]
for the proof)

G˛
ˇn˛`

ˇ D �R˛ˇ�ı`˛e
ˇ

b e
�
c e

ı
dn

cP bd � 1
2
R˛ˇ�ıe˛a e

ˇ

b e
�
c e

ı
dP

acPbd ; (16)

G˛
ˇn˛e

ˇ
c D R˛ˇ�ı`˛e

ˇ

b e
�
c e

ı
d

�
n2P bd � nbnd

�C R˛ˇ�ıe˛a e
ˇ

b e
�
c e

ı
dn

aP bd : (17)

In order to make contact with the constraint equations in the spacelike case, let
us define a scalar �` and a one-form Ja on ˙ by

�`
defD � G˛

ˇn˛`
ˇ; Ja

defD � G˛
ˇn˛e

ˇ
a : (18)

To motivate these definitions, we note that in the case of a spacelike hypersurface,
the natural choice of rigging is along the normal direction. If we let n to be the
future directed unit vector orthogonal to ˙ , then the condition g.`; n/ D 1 (which
we have imposed all along) together with the choice that ` is parallel to n force the
relationship ` D �n. As a consequence `a D 0, na D 0, P ab is the inverse of
�ab and the rigging connection is simply the Levi–Civita connection of the positive
definite metric � (see (12)). Hence, in this case, �` as defined in (18) matches exactly
the definition of energy density in the spacelike case (this explains the choice of sign
we have made in (18)). For general hypersurfaces we call �` the “energy along `”,
although in physical terms it does not correspond to the energy of any observer.
Similarly, we will call Ja the “energy flux along n”. Note that Ja is independent
of the choice of rigging. Nevertheless, the name is not intended to mean that Ja is
any physical energy flux for a spacetime observer. The names are simply adequate
for a decomposition of the one-form G˛ˇn

ˇ in terms of transversal and tangential
components.

Inserting the expressions for R˛ˇ�ıe
�
a e

ı
b into (16)–(17), the following theorem

can be proved [16].

Theorem 3.1 (Constraint equations). Let f˙; �ab; `a; `
2; Yabg be hypersurface

data embedded into a spacetime .M ; g/. Then the following identities hold:

“Hamiltonian” constraint:

2�` D P ab
h
nc


rb

�
`2Kn

ac

� � rc

�
`2Kn

ab

�C `dRdacb
�

CRcacb

CP cd
�
Kn

acYbd �Kn
abYcd

� i
:

“Momentum” constraint:

�Ja D �
Pbd � `2nbnd

� 
rdK
n
ab � raK

n
bd

�
� nbnd `cR

c
bad



78 M.Mars

C 1
2

�
n2P bd � nbnd � 






Kn

abrd `
2 �Kn

bdra`
2
�

C Pbdnc
h
Kn

ba



rd `c C `2Kn

dc

�

�Kn
bd



ra`c C `2Kn

ac

�i
:

When˙ is spacelike and the rigging is chosen as ` D �n (with n future directed
and unit, as before), these identities become the standard constraint equations
(1)–(2) after simply setting na D `a D 0; n2 D 1 and P ab D ��1ab. We emphasize,
however, that even in the spacelike case, there is no need to choose the rigging
as ` D �n. It is perfectly possible that, in certain circumstances, a different
choice of rigging may be more convenient. Thus, the general and unified framework
developed above may be useful not only in order to deal with general hypersurfaces,
but also to look at the standard constraint equations in the spacelike case from a
different, and probably useful, new perspective.

4 An Application: Barrabès–Israel Equations for Arbitrary
Shells

An important method to build physically interesting spacetimes consists in the
matching of two spacetimes with boundary. This theory is useful to describe many
physical systems composed of several parts with intrinsically distinct properties
(e.g. a vacuum region outside a matter region which ends sharply on some hyper-
surface). This theory was developed first for the case when the boundaries of the
spacetimes to be matched were spacelike or timelike. The main contributions here
are due to Darmois [8], Lichnerowicz [15] and O’Brien–Synge [22]. Their proposals
were different but a close relationship between them could be established [5]. There
is now consensus that the matching conditions to be imposed in the spacelike
(or timelike) case are the Darmois matching conditions which demand that the
boundaries to be matched are diffeomorphic to each other and that the diffeomor-
phism transforms the first and second fundamental forms of one boundary onto the
corresponding fundamental forms of the other boundary (with the restriction that
the second fundamental forms are computed with respect to unit normals with,
for one spacetime points inwards and for the other spacetime points outwards).
When the matching is such that there is energy and/or matter concentrated on
the matching hypersurface, then the second fundamental forms jump across the
matching hypersurface a certain amount related to the energy-momentum tensor
on the shell. This are the so-called Israel conditions [11–13]. By performing a
suitable limit of these conditions from the spacelike to the lightlike case, Barrabès
and Israel were able to derive the shell equations for null hypersurfaces (and
hence also the matching conditions across null hypersurfaces by simply setting the
energy-momentum tensor on the shell equal to zero). In all works quoted above, the
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Fig. 4 The matching of two spacetimes has as basic ingredient that the boundaries are diffeomor-
phic to each other and that each boundary admits a choice of rigging such that the hypersurface
metric data they define on the abstract manifold ˙ are the same. Moreover, the choice of riggings
must be such that it points inwards in one spacetime and outwards in the other

necessity of imposing the continuity of the first fundamental form was always added
as a requirement. A firm basis for this came from the work of Clarke and Dray [7],
who showed that this condition is necessary and sufficient for the existence of a
matched spacetime with continuous metric in a suitable atlas. The work by Clarke
and Dray was performed in the case of constant signature (including null). However,
the arguments could be generalized to the arbitrary signature case [17]. The precise
statement (see Fig. 4 for a schematic representation) can be written as follows (we
adapt the statement to the notions introduced above).

Theorem 4.1 ([7, 17, 18]). Consider two .m C 1/-dimensional spacetimes
.M ˙; g˙/ with boundaries @M ˙. They can be matched across their boundaries
to produce a spacetime .M ; g/ with continuous metric (in a suitable differentiable
atlas) if and only if:

(i) There exists metric hypersurface data .˙; �ab; `a; `
2/ which can be embedded

both in .M C; gC/ and in .M �; g�/ with respective embedding and riggings
˚˙ and `˙. Moreover, the embeddings satisfy ˚˙.˙/ D @M ˙.

(ii) The rigging vectors `˙ point, respectively, inside and outside of M ˙.

The original statements in [7,17] demanded only that the first fundamental forms
on ˙ induced by the two embeddings were the same. It was taken for granted that
under these circumstances, the existence of suitable riggings satisfying (i) and (ii)
always exist. This is indeed true for nowhere degenerate hypersurfaces (timelike or
spacelike everywhere), but it need not be true when the hypersurface has null points.
This was first realized in [18]. Hence the necessity of stating the theorem in terms
of existence of suitable riggings on each boundary.

In order to discuss the shell equations (or, in particular, the Darmois matching
conditions) in the general case let us consider two spacetimes .M ˙; g˙/ that can
be matched across @M C ' @M � ' ˙ to produce a spacetime with continuous
metric. We can extract two hypersurface data on ˙ , one from each embedding
which, according to Theorem 4.1, are of the form f˙; �ab; `a; `

2; Yȧ g. For any

quantity A.Y / depending on Y let us define ŒA�
defD A.Y C/� A.Y �/.

In the nowhere null case, let 
 D g.n; n/ D ˙1, depending on whether
the hypersurface is timelike or spacelike. For any choice of rigging `, it follows
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from (13) that ŒKab� D 
ŒYab�. The Darmois matching conditions require the
“continuity” of the second fundamental forms i.e. ŒKab� D 0 (or equivalently
ŒYab� D 0). Then, it follows that there is a subatlas of .M ; g/ in which the metric is
in fact C1 [5, 11]. The Riemann tensor of .M ; g/ may be discontinuous at ˙ but it
is otherwise regular everywhere. This is interpreted physically as saying that there is
no matter-energy, or gravitational field concentrated on the matching hypersurface.

On the other hand, if ŒKab� ¤ 0, then the Riemann tensor (viewed as a tensor
distribution in .M ; g/, see [9,14,15,17] for details on how to define and use tensor
distributions in this setting) has a Dirac delta function supported on ˙ . In physical
terms, this means that the hypersurface˙ carries energy and momentum and hence
should be interpreted as a thin shell (also called “surface layer”) of matter-energy.
It turns out that the Dirac delta part of the Einstein tensor is (still in the nowhere
null case)

G �� D 	 abe�a e
�
b ıN with 	ab D � .ŒKab� � ŒK��ab/ ; ıN W Dirac delta on .˙; �/:

The (distributional) conservation equations r�G
�
� D 0 imply

.KC
ab CK�

ab/	
ab D 2ŒG��n

�n��; rb	
b
a D ŒJa�; (19)

which are field equations for the shell. We note that these equations can be derived
directly from the constraint equations (1)–(2) by simply taking the difference of
both equations at each side of the matching hypersurface, and using the fact that
the metric and the connection do not jump across the shell. As already mentioned,
these field equations were extended to the null case by Barrabès and Israel [4]
with an argument based on taking limits where the spacelike/timelike matching
hypersurface becomes null.

Regarding general hypersurfaces, the Darmois matching conditions (which
demand that the Riemann tensor has no singular distribution on the matching
hypersurface) were extended to this case in [17], the main result being that the
necessary and sufficient conditions for the matched spacetime .M ; g/ to admit a
C1 atlas (which happens to be equivalent to the absence of Dirac delta part in
the distributional Riemann tensor) is that ŒYab� D 0 (this was written differently
in [17], but it is easy to check that ŒYab� D 0 gives an equivalent formulation of
the conditions). This result was derived by first obtaining an explicit form of the
Dirac delta part of the distributional Riemann tensor in the atlas where the matched
spacetime metric is continuous. It turned out that this Dirac delta part vanishes
identically if and only if ŒYab� D 0. We note that, as a by-product of the analysis
in [17], an explicit form of the Dirac delta part of the Einstein tensor was obtained.

At this point, two natural questions arise. The first one is what is the expression
for the singular part of the Einstein tensor in terms of hypersurface data and the
second, what are the field equations for thin shells or arbitrary causal character.
These two questions could be addressed using distributions, as done in the nowhere
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null case (recall that the null case was obtained as a limiting case of those). However,
we noticed before that the shell equations in the nowhere null case can also be
derived directly and easily from the constraint equations (1)–(2). Having obtained
general expressions for the constraint equations in arbitrary hypersurfaces it makes
sense to try and derive the shell equations from them. This method is, on the one
hand, simpler than the previous one because there is no need to introduce spacetime
distributions nor specific atlas in the matched spacetime in order to perform the
calculation. But even more, it does not even need to assume that a spacetime exists.
This may seem spurious, but it is not so. The initial data on a hypersurface does not
immediately generate a spacetime. A well-posed problem is required for that, and
in some cases such a result is not yet available (or even expected). Nevertheless,
jump discontinuities on the data may still be considered and the field equations that
they need to satisfy can be derived from the constraint equations. This makes all the
sense already at the initial data level, and may be used for several things, ranging
from studying shell equations on their own (i.e. detached from the spacetime) to
more practical purposes like obtaining new solutions of the constraint equations
from a seed solution and a solution of the shell equations.

Let us therefore try and find the shell equations from the expressions in
Theorem 3.1. Assume we are given two hypersurface data f˙; �ab; `a; `

2; Yȧb g and

let us define Vab
defD ŒYab�. We first give the answer to the first question posed above

(details will be given in [16]).

Definition 4.2 (Energy-momentum of the shell). The energy-momentum tensor
on the shell 	ab is defined as

	ab defD �
naP bc C nbP ac

�
ndVcd � �

n2P acPbd C P abncnd
�
Vcd

C �
n2P ab � nanb�P cdVcd:

Although the final motivation for this definition comes from the distributional part
of the Einstein tensor in a matched spacetime, there are several indications at the
initial data level which makes this definition adequate. First of all the definition is
intrinsic to the initial data, and there is no need to invoke any spacetime to write it
down. Moreover, the following are properties that can be checked directly from the
definition:

(a) The energy-momentum tensor is symmetric, 	ab D 	ba.
(b) At any point p 2 ˙ where n2.p/ ¤ 0, 	fa vanishes if and only if Vab D 0.

At any point where n2.p/ D 0, 	fa vanishes if and only if Vabn
b D 0 and

P abVab D 0.
(c) Under a gauge transformation defined by .u; v/ one has

V 0
ab D uVab; 	 0ab D 1

u
	ab:
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It is clear that the jump Vab D ŒYab� induces jumps on other quantities, for
instance on the connection coefficient or on the second fundamental form, which
satisfy

Œ�
c

ab� D �ncVab; ŒKn
ab� D n2Vab:

The first expressions implies that we need to choose which connection should be
used in order to write down the equations. One possibility is to use as connection
coefficients the semi-sum of the previous two, i.e.

�
a

bc D 1

2

�
� � a
bc C � Ca

bc

�
:

This was the choice made by Barrabès and Israel [4] to derive the shell equations in
the null case. However, this choice has the inconvenience that the unknown Vab

appears in the covariant derivative itself, and this obscures the meaning of the
equations. Since we have explicit expressions for the connection coefficients in
terms of the hypersurface metric data, a direct inspection suggests the following
choice of connection, which depends only on the hypersurface metric data (i.e. it is
completely independent of Yab),

ı
�

c
ab

defD 1
2
P cd .@a�bd C @b�ad � @d�ab/C nc@.a`b/ ” �

a

bc D ı
�

c
ab � ncYab:

Its corresponding covariant derivative will be denoted by
ır. It is now a matter

of simple subtraction (we first need to transform the r covariant derivatives into
ır covariant derivatives) in Theorem 3.1 to obtain the field equations on arbitrary
shells. The result is [16].

Theorem 4.3 (Field equations for shells). The jump Vab satisfies the following
identities:

ıra

�
	ab`b

� � 1
2
	ab

�
Y C

ab C Y �
ab

�C 1
2

�
n2

ıra`
2 C nd

� ıra`d � ırd `a

��




	ab`b D Œ�`�;

ırb	
b
a C 1

2

�
n2

ırb`
2 C nc

� ırb`c � ırc`b

��
	ba C

�
1
2
L On�ab C `.a

ırb/n
2

�




	bc`c D ŒJa�;

where 	ab
defD 	ac�cb.

It is straightforward to check that, in the spacelike (or timelike case), these equations
become exactly the Israel equations (19).
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Cosmological Gravitational Waves
and Einstein–Straus Voids

Marc Mars, Filipe C. Mena, and Raül Vera

Abstract The Einstein–Straus model results from the embedding of a Schwarzs-
child spherically symmetric region on a FLRW dust spacetime. It constituted the
first, and most widely accepted, model to answer the question of the influence of
large scale (cosmological) dynamics on local systems. The conclusion drawn by the
model was that there is no influence from the cosmic background, since the spherical
vacuole is static. However, apart from being highly inflexible, the model has been
proved to be remarkably reluctant to admit non-spherical generalizations. This led
us to consider the problem of the linearised perturbations of the Einstein–Straus
model, first from a purely geometrical point of view. We now concentrate on impos-
ing the Einstein field equations and in understanding the mixing between vector and
tensor modes in the FLRW side, which arises as a consequence of the existence
of an inner boundary. In particular, we analyse the relationship between exterior
gravitational waves and the stationary and axial vacuum perturbations inside.
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1 Introduction

The historical starting point is the long standing question in Cosmology that
concerns the influence of the dynamics of the Universe on local systems. Related
to this lies the problem of the relationship between the large scale “macroscopic”
gravitational cosmology and the “microscopic” gravitational physics, and in fact, of
understanding the scales of their applicability.

While the large scale dynamics is taken to be described by a Friedman–Lemaître–
Robertson–Walker (FLRW) cosmological model, or perturbations thereof, at
smaller scales the surroundings of astrophysical objects—planetary orbits, galaxies,
clusters, voids, etc.—are many times modelled by nearly vacuum and stationary
regions, since the most common view is that the cosmic dynamics does not affect
the local physics. The main argument supporting this conclusion is based on the
Einstein–Straus (ES) model, which consists of a vacuum spherical—and hence
static—cavity, i.e. Schwarzschild, embedded in an expanding (dust) FLRW model.
The local physics would take place inside the Schwarzschild static cavity, not
perceiving any effect of the cosmological expansion.

Although the ES model provides a clear physical interpretation, it presents
serious problems and involves a number of idealisations. Indeed, more sophisticated
models have been constructed by using Lemaître–Tolman–Bondi regions for the
cosmological part and other type of cavities (see [5]). However, all those models
are spherically symmetric. An important question was whether the Einstein–Straus
conclusion is robust with respect to non-spherically symmetric generalisations.

The first conclusive discussion of different metrics and shapes of the static region
[16] showed that a locally cylindrically symmetric static region cannot match an
expanding FLRW model, irrespective of the matter content. A subsequent detailed
analysis decided that the assumption of spherical symmetry of the static region was
a fundamental ingredient for the models: in two steps, [6, 7], it was shown that a
static region matched to a FRLW cosmological model is forced to be spherically
symmetric under very weak conditions on the matter content which, in particular,
allow for vacuum. As a result, the only static vacuum region that can be matched to
a non-static FLRW is a spherically shaped region of Schwarzschild.

Regarding the assumption of staticity, it was then shown [15] that if a stationary
and axially symmetric region is to be matched to a FLRW preserving the axial
symmetry, then the stationary region must be static. Thence, by the results in [6, 7],
the only stationary and axisymmetric vacuum region that can be matched to FLRW
is a spherically shaped region of Schwarzschild.

Summarising, the ES model, thought of as the embedding of a static vacuole in
FLRW, does not allow any non-spherical generalisation, and it is thus “unstable”,
and it does not admit a stationary rotation in an axisymmetric vacuole either.

One is thus faced with the necessity of going beyond FLRW. Taking the “exact”
approach, it was found in [13] that there is no reasonable evolving spatially
homogeneous (LRS) spacetimes surrounding a locally cylindrically symmetric
static compact region, and vacuum is never possible. The other possibility is to
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study non-spherical, completely general inhomogeneous, perturbations of the whole
model. With that aim, we presented in [9] an initial framework to study the linear
perturbations of the ES model, consisting of stationary and axisymmetric perturba-
tions of Schwarzschild in the cavity and arbitrary perturbations (scalar, vector and
tensor modes) in the FLRW region, matched through a general perturbation of the
sphere.

Apart from the inherent interest of studying the perturbed ES, from the point
of view of mathematical cosmology it is also relevant to ascertain how the usual
scalar, vector and tensor decomposition transforms due to the existence of spacetime
boundaries. Note that the usual decomposition relies on the non existence of
boundaries and convenient boundedness and decay of the FLRW perturbations,
which ensure the uniqueness of the decomposition and also imply the decoupling
of the Einstein equations for a perfect fluid for each type of mode. However, in
order to describe the existence of voids or, more generally, underdense regions
with a different dynamical regime, it seems necessary to introduce certain kind
of boundaries. By studying the linearised ES model we consider an (arbitrary)
boundary shared with a stationary axisymmetric (vacuum or not) region and explore
the consequences.

Perturbed scenarios closely related to the present work have been already
considered in the literature. Chamorro presented the first order matching of a Kerr
cavity in an expanding perturbed FLRW [2]. The linearised matching conditions
around spherical symmetry in terms of gauge invariants was introduced by Gerlach
and Sengupta (GS) [4], (see also [12]). A matching perturbation theory in general
relativity has been developed in full generality for first order perturbations in [1,14]
and to second order in [8]. A critical review about the study of linear perturbations
of matched spacetimes including gauge problems has been recently presented in [9].

Another interesting approach has been followed in [3], studying slowly rotating
voids in cosmology with a model consisting on an interior Minkowskian void, a
matter shell between the void and the cosmological model and a FLRW universe
with a particular type of perturbation describing rotation. We emphasise that we
focus on generalisations of the ES model without surface layers of matter, and we do
not restrict the FLRW perturbations in any way.

The usual way of exploiting the underlying spherical symmetry of the back-
ground configuration has been by resorting to decompositions of all objects in terms
of scalar, vector and tensor harmonics on the sphere. Instead, we have preferred to
use an alternative method based on the Hodge decomposition of all tensor objects
on the sphere in terms of scalars. The two approaches are obviously related to
each other. However, by working with Hodge scalars, although depending on three
coordinates, allows us to avoid the need to deal with infinite series of objects (one
for each l and m in the spherical harmonic decomposition).

Before entering into the linearised ES model we devote a couple of sections to
introduce the tools used in its present derivation: the theory of linearised matching
and the Hodge dual decomposition, which we complement now with an analogous
to the GS 2 C 2 formalism [4]. Although the use of gauge invariants is not necessary
[9], it is a suitable choice. For now, we concentrate on the odd sector of the
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perturbations. After presenting the equations that govern the linearised ES model,
and in the form of conclusions, we discuss the possible generation of gravitational
waves in the perturbed FLRW region due to the matching to stationary vacuoles,
which is still work in progress.

Indices i; j; : : : D 1; 2; 3 refer to objects on constant cosmic time hypersurfaces
in FLRW, a; b; : : : D 1; 2; 3 on the matching hypersurface, A;B; : : : D 2; 3 on
the sphere while I; J; : : : D 0; 1 on the surfaces orthogonal to the spheres. Greek
indices ˛; ˇ; : : : D 0; 1; 2; 3 refer to general spacetime objects.

2 Linearised Matching Theory in Short

Perturbing a matching involves perturbing a background which is already given by
the matching of two regions with boundary, say .MC; gC/ and .M�; g�/ with
corresponding boundaries ˙˙. The “gluing” of the boundaries amounts to the
fact that they are diffeomorphic to each other (thence identified as the matching
hypersurface ˙). This amounts to write down two embeddings ˚˙ W ˙ �! M˙
such that ˚˙.˙/ D ˙˙. The identification is thus given through ˚C ı ˚�1� . The
preliminary junction conditions demand the equality of the first fundamental forms
qȧb 	 ˚ �̇g˙̨̌ so that ˙ is endowed with a metric qab 	 qC

ab D q�
ab. Assuming ˙˙

not to be null at any point, there is a unique up to orientation unit normal vector n˛˙.
The orientation of one of the normals can be chosen arbitrarily but the other must be
chosen accordingly so that both point to the same region after the matching, allowing
for its eventual identification. The second fundamental formsKȧb D ˚ �̇ r˙̨n˙̌ can

then be constructed. The second matching conditions,KC
ab D K�

ab, are the necessary
and sufficient conditions so that the Riemann tensor of the matched spacetime,
which can be defined in a distributional sense, does not have a term with support
on ˙ (i.e. a Dirac delta term).

The first order perturbation of the matching is defined by the following ingredi-
ents defined on both M˙: the perturbed metric tensors, g.1/˛ˇ

˙, and the perturbation
vectors of ˙ , Z˛

˙ D Q˙n˛ C T ˛˙j˙ , with corresponding quantities defined on ˙
given byQ˙ 	 ˚�Q˙ and T ˛˙ D ˚�.T a˙/. With these quantities at hand, as shown
in [1, 8, 14], one constructs the first and second perturbed fundamental forms

q
.1/
ab D LT qab C 2QKab C˚�

ab.g
.1/

˛ˇ /

K
.1/
ab D LTKab �DaDbQ CQ.˚�

ab.n
�n�R˛�ˇ�/CKacK

c
b/

C1

2
˚�.g.1/˛ˇ n

˛nˇ/Kab � ˚�
ab.n�S

.1/�

˛ˇ /

where 2S.1/˛ˇ� 	 rˇ g
.1/˛
� C r� g

.1/˛
ˇ � r ˛ g.1/ˇ� , and the perturbed matching

conditions read

q.1/Cab D q.1/�ab ; K.1/C
ab D K.1/�

ab : (1)
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Let us insist that it is important to note that these conditions concern quantities
defined on ˙ , and are therefore independent of the coordinates used in MC and
M� for their computation. As a result, these conditions are (spacetime) gauge
independent by construction. This makes unnecessary the use of gauge independent
quantities in order to establish the perturbed matching conditions, although they turn
out to be convenient in the end.

3 Spherical Symmetry: GS Formalism and Hodge
Decomposition

Consider the round unit metric ˝ABdxAdxB D d#2 C sin2 #d'2, with �AB and
DA denoting the corresponding volume form and covariant derivative respectively,
and .?dG/A D �CADCG the Hodge dual with respect to ˝AB. The usual Hodge
decomposition on S2 states that any one-form VA can be canonically decomposed
as VA D DAF C .?dG/A; where F and G are functions on S2, and any symmetric
tensor TAB as TAB D DAUB CDBUA CH˝AB; for some UA, which can be in turn
decomposed in terms of scalars as before.

It is convenient to define the following two functionals. Given three scalars
Xtr;X1 and X2 on .S2;˝AB/ we define the functional one form VA.X1;X2/ as

VA.X1;X2/ D DAX1 C .?dX2/A;

and the functional symmetric tensor TAB.Xtr;X1;X2/ as

TAB.Xtr;X1;X2/ D DAVB.X1;X2/CDBVA.X1;X2/C Xtr˝AB:

Let us recall that the decomposition defines these X ’s on S2 up to the kernels of
the operators VA and TAB. To fix the decomposition uniquely we define a canonical
dual decomposition. by demanding that VA.X1;X2/ applies to functions X1;X2

orthogonal (in the L2 sense on S2) to 1, and TA.Xtr;X1;X2/ applies to X1;X2

orthogonal to 1 and to the l D 1 spherical harmonics. Schematically we may use

WA

S2! X1;X2 to indicate WA D VA.X1;X2/, and WAB
S2! Xtr;X1;X2 when

WAB D TAB.Xtr;X1;X2/. The scalars with subscripts 1 and tr remain unchanged
under reflection, and are typically called longitudinal, even or polar quantities, while
those with subscripts 2 change sign, and correspond to the transversal, odd or axial
quantities.

Let us consider now the general spherically symmetric spacetimeM D M2
S2
with metric g˛ˇ D !IJ ˚ r2˝AB; so that .M2; !IJ/ is a 2-dimensional Lorentzian
space and r > 0 a function on M2, and an orthonormal basis fuI ;mI g: !IJ D
�uIuJ C mImJ . The dual in .M2; !IJ/ will be indicated by 
 and the covariant
derivative by r.
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We can now decompose the metric perturbation tensor g.1/˛ˇ using g.1/IJ D ZIJ ,

g
.1/
IA

S2! ZI1;ZI2, g
.1/
AB

S2! Z S2
tr ;Z

S2
1 ;Z S2

2 and the deformation vector by Z˛ !
fZI ! Q;T g ˚ fZA S2! T1;T2g; this is, the part of Z˛ orthogonal to the spheres
gets decomposed, in turn, onto the normal and tangential parts to ˙ , Q and T
respectively. The deformation of ˙ gets encoded in Q.

Let us now concentrate on the odd (axial) sector. Odd (axial) gauge invariant
quantities are encoded in the vector [11] (c.f. [4])

KI 	 ZI2 � rIZ
S2
2 C 2Z S2

2 r�1rI r:

Note that KI as defined above contains l D 1 harmonics, from ZI2, but only the
l � 2 sector is gauge invariant. After decomposing the equations of the perturbed
matching (1), and once the orthonormal basis fuI ;mI g has been identified at both
sides, the linearised matching (odd sector) is found to be equivalent to [11] (c.f. [4])

K C
m

˙D K �
m ; K C

u
˙D K �

u ; 
 d.r�2K C/ ˙D 
d.r�2K �/ (2)

together with an equation for T C
2 � T �

2 .

4 Linearised ES Model: Matching Conditions
for the Odd Sector

Consider the linearised matching of the perturbed Schwarzschild and FLRW
spacetimes. Take the FLRW geometry gC D a2.	/

��d	2 C �ijdxidxj
�

where
�ijdxidxj D dR2 C f 2.R; 
/.d�2 C sin2 �d�2/ with f D sinhR;R; sinR for

 D �1; 0; 1 respectively. The background matching hypersurface ˙ is found to
be necessarily ˙C W f	 D �;R D Rc; � D #; � D 'g. The orthonormal basis is
formed by u˛ D ad	 , m˛ D adR. Let us define fc 	 f .Rc; 
/, a˙ 	 a.�/. Dots
and primes will indicate differentiation with respect to � and R respectively.

Take the first order perturbations of FLRW, in no specific gauge, formally
decomposed into the usual scalar, vector and tensor (SVT) modes, i.e. g.1/C00 D
�2a2� , g.1/C0i D a2Wi , g.1/

C
ij D a2.�2˚�ij C �ij/ with Wi D @iW C QWi ,

�ij D .rirj � 1
3
�ijr2/�C2r.iYj /C˘ij satisfying the constraints r i Yi D ˘ i

i D 0,
r i˘ij D 0, r i QWi D 0. The canonical Hodge decomposition is then used to
encode the part tangent to the spheres into S2 scalars in the following schematic

way: vector QWi ! QWR ˚ f QWA

S2! W1;W2g, and Yi ! YR ˚ fYA S2! Y1;Y2g,

tensor ˘RA
S2! Q1;Q2, ˘AB

S2! H ;U1;U2. All in all, encoding g.1/C using the
SVT and the Hodge decomposition leaves us with 15 quantities, only 4 in the odd
sector; vector: fW2;Y2g tensor: fQ2;U2g, not all independent due to the previous
constraints, and, on the other hand, not unique. The components of the gauge
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invariant odd vector of the above construction, K C
I , in terms of the SVT-Hodge

quantities read

K C
u D a



W2 � . PU2 C PY2/

�
; K C

m D a
�
Q2 � U2

0 C 2U2f
0f �1� :

Regarding the Schwarzschild region, we consider the Schwarzschild metric of
mass M in standard coordinates, and stationary and axially symmetric vacuum
perturbations in the Weyl gauge, so that they can be described in terms of two func-
tions U .1/.r; �/ and A.1/.r; �/ (see [10]). The Schwarzschild/FLRW background
matching implies ˙� D fr D r0.�/; t D t0.�/; � D #; � D 'g with r0 D fca˙

and Pt0 D a2˙fcf
0

c

fca˙�2M . Moreover, the FLRW must be dust and the energy density obeys

� D 6M
f 3c a

3 .

At first order only A.1/.r; �/ enters the odd sector, and the Hodge decomposition

leads to A.1/ D sin �@�G , where G 	 � �1 � 2M
r

��1
Z �
t2 is a convenient

redefinition. The odd gauge invariant vector K �
I now reads K �

r D 0, K �
t D

� �1 � 2M
r

�
G . Equations (2) eventually read (En points towards the FLRW region)

K C
u

˙D �G f 0
c ; K C

m
˙D �G a�1

˙ Pa˙fc; En.K C
u /

˙D G
f 3c a˙
 � 3M

f 2c a
2
˙

C G;r .f
2
c 
 � 1/:

(3)

The first direct consequence of the above equations is that if the FLRW remains
unperturbed then the stationary region must be static in the range of variation of
r0.�/. This result generalises that in [15] because now the matching hypersurface
does not necessarily keep the axial symmetry. Thus, the only way of having a
stationary and axisymmetric vacuum arbitrarily shaped (at the linear level) region
in FLRW is to have the ES model.

5 Conclusions: On Cosmological Gravitational Waves

From the previous set of equations we obtain, in particular, K C
I rI .af /

˙D 0: This
involves only quantities on FLRW, and thus constitutes a constraint. This constraint
implies that if the perturbed FLRW contains vector modes with l > 1 harmonics
on ˙ , then it must contain also tensor modes there. Eventually, the existence of
a rotation in the stationary region G implies [10] the existence of both vector and
tensor modes on ˙ .

This may indicate the existence of some kind of gravitational waves on FLRW
near˙ . In order to analyse further this issue we now take the Einstein field equations
(odd sector for now) into consideration. In FLRW, the dust perturbation is described
by the first order perturbations of the dust 4-velocity v� and density �: v.1/� D vI ˚
fvA S2! v1; v2g and �.1/, respectively. The odd equations read [11] (c.f.[4])
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rIK C
I D 0 (4)

rIrI .
1

f
K C
m /C .

1

.af /2
4S2 C �

6
/
1

f
K C
m D 0 ! Wave equation; (5)

plus an equation for v2, which is gauge invariant. The linearised matching conditions
(3) together with (4) provide now the value of both K C

m and En.Km/
C on˙ . Since˙

is timelike, this leads to an overdetermined boundary value problem for a wave
equation. Existence and uniqueness is hence a non-trivial problem that needs to be
analysed.

Exact Schwarzschild: It can be proved that the trivial data implies K C
m D 0,

and therefore the only odd perturbation allowed is an arbitrary K C
u .R/ restricted

to K C
u

˙D @RK C
u

˙D 0. Thus, odd gravitational waves cannot exist. The
complementary argument states that if gravitational waves are present, they must
“enter” the vacuole somehow.

Schwarzschild l D 1modes perturbation: One should obtain Chamorro’s model
[2] but, firstly, we find that it is not unique and, secondly, that the “freedom” in
the FLRW part is pure gauge, so no waves are present. G satisfies a well known
second order ODE, and we plan to study its general solution, including that branch
diverging at 1. That would provide us with a link between the FLRW perturbations
and the inner dynamics of a local system being a simple implementation of Ellis’
“finite infinity” which would generalise Hartle’s model.

Schwarzschild l D 2 modes perturbation: The general solution for G is known,
and the Cauchy data for FLRW can be written down. Although there are non-trivial
solutions K C

m =f to the wave equation it remains to be seen whether these can be
interpreted as gravitational waves.
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Construction of Oscillatory Singularities

Alan D. Rendall

Abstract One way to understand more about spacetime singularities is to con-
struct solutions of the Einstein equations containing singularities with prescribed
properties. The heuristic ideas of the BKL picture suggest that oscillatory singu-
larities should be very common and give a detailed picture of how these could
look. The more straightforward case of singularities without oscillations is reviewed
and existing results on that subject are surveyed. Then recent theorems proving
the existence of spatially homogeneous solutions with oscillatory singularities of
a specific type are presented. The proofs of these involve applications of some ideas
concerning heteroclinic chains and their stability. Some necessary background from
the theory of dynamical systems is explained. Finally some directions in which this
research might be generalized in the future are pointed out.

1 Introduction

One of the characteristic features of general relativity is its prediction of space-
time singularities. These can already be observed in explicit solutions of the
Einstein equations such as the Schwarzschild solution and the Friedman–Lemaitre–
Robertson–Walker (FLRW) solutions. These explicit solutions have a high degree
of symmetry. The question arose early whether the known singularities might be
artefacts of symmetry. The work of Lifshitz and Khalatnikov [13] supported this
idea. These authors made what they believed to be a general ansatz for the form
of the geometry near the singularity and found that it could not accommodate the
full number of free functions expected. They concluded that generic solutions of the
Einstein equations do not develop singularities. The result was heuristic in nature.
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The conclusions of [13] were shown to be invalid by the singularity theorems
of Penrose and Hawking [5]. In contrast to the arguments in [13] the results
of the singularity theorems were based on mathematical proofs. It was shown
that singularities occur for open sets of solutions of the Einstein equations. More
specifically, using the point of view of the initial value problem, they occur for the
solutions arising from open sets of initial data. This means that the occurrence of
singularities is stable in a certain precise sense. A positive feature of these theorems
is that the hypotheses are relatively weak. On the other hand the conclusions are also
relatively weak. What is proved is that the spacetimes to which the theorems apply
are geodesically incomplete. Very little is said about the nature of the singularities.
There is no information on whether the singularities are accompanied by large
energy densities or tidal forces, as might be expected on the basis of physical
intuition.

Later, Belinskii, Khalatnikov and Lifshitz (abbreviated in what follows by BKL)
presented a more detailed picture of spacetime singularities [3]. Their arguments
are heuristic. They are similar to the work of [13] with the important difference that
this time the ansatz used is more complicated, including oscillatory behaviour. This
allows the full number of free functions to be included. Some of the main assertions
belonging to the BKL picture are:

1. the solutions of the partial differential equations are approximated by solutions
of ordinary differential equations near the singularity

2. the approach to the singularity is oscillatory
3. solutions of the Einstein equations with matter are approximated by solutions of

the vacuum equations near the singularity

The solutions of the ordinary differential equations in point (1) correspond to
spatially homogeneous solutions of the Einstein equations. In the original work one
of the most general classes of spatially homogeneous solutions, the Bianchi type IX
solutions, played a central role. These solutions were also studied independently
at about the same time by Misner [14] who called them the Mixmaster model.
On the basis of heuristic and numerical work the conclusion was reached that these
solutions show a highly oscillatory behaviour near the singularity. This statement
is correct but, as will be discussed below, it took a long time to prove it. Here the
connection to point (2) above can be seen. Moreover, the oscillations are observed
in the vacuum case and this makes contact with point (3). From these remarks it
follows that if the BKL picture is correct then spatially homogeneous solutions of
the vacuum equations are very important in understanding singularities in solutions
of the Einstein equations without symmetries and with quite general matter. Note,
however, that after 40 years it is still not known whether the BKL picture is correct.
At least there have been many studies of solutions with symmetries which give good
agreement with the conclusions obtained by specializing the general BKL picture to
symmetric cases.

Since the general case is very complicated to treat it makes sense to start looking
for a better understanding of the question of the validity of the BKL picture by
concentrating on the spatially homogeneous case. This is especially true due to
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the fact that the wider significance of the homogeneous case is intimately related
to the main claims of the BKL picture. This leads to the study of certain systems
of ordinary differential equations. A concept from the theory of ODE which turns
out to be of particular relevance in this context is that of heteroclinic chains. They
will be discussed in Sect. 4. In special cases the dynamics near the singularity is
convergent rather than oscillatory and in this easier case there do exist results for
inhomogeneous spacetimes. Since these are relevant for the conceptual approach
used in the case of oscillatory asymptotics they will be discussed in Sect. 3. In order
to even define the concepts “monotone” and “oscillatory” being used it is necessary
to introduce some basic notation and terminology and this is the subject of Sect. 2.

2 Notation and Terminology

Let M be a four-dimensional manifold and g˛ˇ a Lorentzian metric on M . Let
St be a foliation by spacelike hypersurfaces whose leaves are parametrized by t .
Let gab.t/ and kab.t/ be the induced metric and the second fundamental form of
the leaves of the foliation. Define the Hubble parameter as H D � 1

3
gabkab. It is

possible to do a 3 C 1 decomposition of the Einstein equations for the metric g˛ˇ
based on the foliation St which brings in a lapse function and a shift vector. This
can of course be done in the presence of matter and also in a closely analogous way
in other dimensions.

Let �i be the eigenvalues of kab with respect to gab, i.e. the solutions of
kabX

b D �igabX
b for some vector Xb . For a well-behaved foliation approaching

the singularity towards the past H > 0 in a neighbourhood of the singularity.
Hence the quantities pi D ��i=3H , the generalized Kasner exponents, are
well-defined functions of t and x, where x denotes a point on one of the leaves
of the foliation. It follows from the definition that

P
i pi D 1 so that only two

of the pi are independent. The way in which different leaves are identified with
each other depends on the choice of the shift vector. Suppose that the limit t ! 0

corresponds to the approach to a singularity. Fix a point x0 and consider the
functions pi .t; x0/. A function pi is said to be oscillatory near the singularity if
lim inft!0 pi .t/ < lim supt!0 pi .t/. It is said to be convergent near the singularity
if lim inft!0 pi .t/ D lim supt!0 pi .t/, in other words if pi tends to a limit as
t ! 0. Similar definitions can be made for other geometric quantities. Informally,
a singularity is said to be oscillatory or convergent if some important geometric
quantities have the corresponding properties. It is important that the quantities
concerned are dimensionless, since otherwise they could be expected to diverge as
the singularity is approached.

These definitions depend a lot on the choice of 3C1 decomposition. Things are
simpler in the case of spatially homogeneous spacetimes. There it is natural to
choose the foliation to consist of level hypersurfaces of a Gaussian time coordinate
based on a hypersurface of homogeneity. Then geometric quantities such as pi
depend only on t .
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3 The Convergent Case

Points (2) and (3) listed above as parts of the BKL picture are only supposed to hold
in this form with certain restrictions on the type of matter which is coupled to the
Einstein equations. Assuming the validity of point (1) this is directly related to the
behaviour of homogeneous models with that type of matter. Two related types of
matter which are known to be exceptional from this point of view are the scalar
field and the stiff fluid. Here we will concentrate on the second. Consider a perfect
fluid with linear equation of state p D .� � 1/� for a constant � . An extreme
case of this from the point of view of ordinary physics is � D 2. This is the stiff
fluid where the velocity of sound of the fluid

p
� � 1 is equal to the velocity of light.

(We use geometrical units.) It is also possible to consider ultrastiff fluids with � > 2.
These very exotic matter models have been considered in certain scenarios for the
early universe. According to the BKL picture the generalized Kasner exponents in
a general spatially homogeneous solution of the Einstein–Euler equations with a
linear equation of state are oscillatory near the singularity in the case 1 � � <

2 and convergent for 2 � � . (The case � < 1 will not be considered in what
follows.) In fact for � > 2 the pi all converge to the limit 1

3
. These limiting values

agree with the values of these quantities in the FLRW solutions and correspond to
isotropization. In the case � D 2, on the other hand, the pi may converge to different
limits in different solutions and at different spatial points in a single inhomogeneous
solution.

What kind of mathematical results could count as a rigorous version of these
expectations? It would be desirable to prove that an open neighbourhood with
respect to some reasonable topology of the FLRW data leads to solutions which have
the predicted asymptotics. This may be called a forwards result since it goes from
the data to the asymptotics. Unfortunately this kind of result is hard to obtain. What
is sometimes easier is to get a backwards result which goes from the asymptotics
to the solution. The solutions with the predicted asymptotics can be parametrized
by certain free functions. (Here we ignore complications arising from the Einstein
constraints.) Call these functions the asymptotic data. The idea is then to ask
whether for asymptotic data belonging to a large class there exists a solution with
the correct asymptotics and exactly those free functions. A theorem of this kind
was proved for stiff fluids in [1] and for ultrastiff fluids in [6]. In this work the
notion of “large class” was defined to mean containing as many free functions as
the general solution. It was only proved in the case that these functions are analytic
(C!). Until very recently the forwards problem was unsolved, even in the stiff case,
but a theorem of this kind has been announced by Rodnianski and Speck [20].

For comparison it is of interest to quote what is known in a case with symmetry,
that of the Gowdy solutions. Note that for the Gowdy solutions the BKL picture
does not predict oscillations and indeed none are found. In this case the backwards
problem was solved in [7] for the analytic case and in [16] for the smooth case. The
forwards problem for Gowdy was solved in [19]. The aim of this section was to
exhibit the backwards problem as a route to obtaining rigorous results and to show
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that at least in some cases it can open the way to obtaining results of the type which
are most desirable.

Just as some matter models such as the stiff fluid can suppress oscillations others
can stimulate them. For instance a Maxwell field can produce BKL type oscillations
within Bianchi types where there are no oscillations in the vacuum case. An example
is discussed in Sect. 6. The BKL picture can be applied in higher dimensions and
gives different results in that case. It says, for instance, that in the case of the Einstein
vacuum equations generic oscillations disappear when the spacetime dimension is
at least eleven but are present in all lower dimensions. The higher dimensional
models come up in the context of string theory and there it is typical that there
are other matter fields present. There is the dilaton which, as a scalar field, tends
to suppress oscillations and the p-forms which, as generalizations of the Maxwell
field, encourage them. Many of the conclusions of the heuristic analysis which lead
to the conclusion that the singularity is convergent can be made rigorous using
techniques generalizing those of [1]. For more information on this the reader is
referred to [4]. To conclude it should be noted that there is not a single rigorous
result which treats solutions which are both inhomogeneous and oscillatory.

4 Heteroclinic Chains

Consider a system of k ordinary differential equations. This can be thought of as
being defined by a vector field defined on an open subset of Rk , a geometrical for-
mulation which corresponds to the point of view of dynamical systems. A stationary
(i.e. time-independent) solution of the ODE system corresponds to a fixed point of
the vector field. A solution of the ODE system which is time-dependent corresponds
to an integral curve of the vector field, an orbit of the dynamical system. An orbit
which tends to a stationary solution p as t ! �1 and a stationary point q ¤ p as
t ! C1 is called a heteroclinic orbit. An orbit which tends to p as t ! �1 and
as t ! C1, but is not itself stationary, is called a homoclinic orbit.

Suppose now that pi is a sequence of points, finite or infinite, such that for
each i there is a heteroclinic orbit from pi to piC1. This configuration is called
a heteroclinic chain. If the chain is finite and comes back to its starting point then
it is called a heteroclinic cycle. It turns out that homoclinic orbits and heteroclinic
cycles are not robust in the sense that a sufficiently general small perturbation of the
vector field will destroy them. It is therefore perhaps surprising that they are found
in models for many phenomena in nature. Given that all physical measurements
only have finite precision it seems difficult to be able to rule out small perturbations
in mathematical models for real phenomena. The answer to this question appears
to be that there is some absolute element in the system whose presence is not
subject to uncertainty and which therefore cannot be perturbed. In the case of
spacetime singularities it is the singularity itself which appears to play this role.
These considerations are admittedly rather vague and it would be desirable to
understand issues of this type more precisely. In any case, heteroclinic cycles do
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seem to be widespread in models for the dynamics of solutions of the Einstein
equations near their singularities.

Coming back to more general dynamical systems, it is of interest to have criteria
for the stability properties of heteroclinic chains. In other words, the aim is to
find out under what conditions solutions which start close to a heteroclinic chain
approach it as t ! 1. The case of most interest is not that where a solution
approaches one of the stationary points belonging to the heteroclinic chain (call
them vertices) but the case where the solution follows successive heteroclinic orbits
within the chain. When the chain is a cycle this means that the solutions exhibit
oscillatory behaviour, repeatedly approaching the vertices of the cycle. In the next
section it is shown that this is exactly what happens in the context of the BKL
picture.

A solution which is converging to a heteroclinic chain spends most of its time
near the vertices. Since the vector field vanishes at the vertices it is small near them
and the solution moves slowly there. This suggests that the behaviour of the solution
while it is near the vertices could have strong influence on the stability of the cycle.
A way of studying the local flow near a vertex is to linearize there and examine the
eigenvalues of the linearization. It turns out that this can give valuable information
about the stability of the cycle.

5 Bianchi Models

A spatially homogeneous solution of the Einstein equations is one which admits a
symmetry group whose orbits are spacelike hypersurfaces. The only case where the
group cannot be assumed to be three-dimensional is the class of Kantowski–Sachs
spacetimes. They are not discussed further in this paper. All the rest are the Bianchi
models. In that case it can be assumed without loss of generality that the spatial
manifold is simply connected and then it can be identified with the Lie group itself.
The reason for this is that the dynamics on the universal covering manifold is the
same as that on the original manifold. Thus in Bianchi models it can be assumed that
M D I 
 G where I is an interval and G is a simply connected three-dimensional
Lie group. These Lie groups are in one to one correspondence with their Lie algebras
and the three-dimensional Lie algebras were classified by Bianchi into types I–IX.
The metric can be written in the form

� dt2 C
X

gij.t/�
i ˝ �j (1)

where �i is a basis of left invariant one-forms onG. Let ei be the dual basis of vector
fields. The evolution equations depend on the Lie group chosen through the structure
constants defined by Œei ; ej � D ckij ek . It is customary to distinguish between Class

A models where ckkj D 0 and Class B models which are the rest.



Construction of Oscillatory Singularities 101

There are many ways in which the evolution equations for Bianchi models can
be written as a system of ordinary differential equations. Consider for simplicity
the vacuum models of Class A. In that case it can be shown that there is a basis
of the Lie algebra with the property that diagonal initial data give rise to diagonal
solutions. This is still true when the matter is described by a perfect fluid but it does
not hold for general matter. A form of the equations for Class A models which has
turned out to be particularly useful for proving theorems is the Wainwright–Hsu
system [21]. The basic variables are called ˙C; ˙�; N1;N2;N3. The first two are
certain linear combinations of the generalized Kasner exponents. The quantity N1
is given in the Bianchi type IX case by 1

H

q
g11

g22g33
and the other two Ni are related

to this by cyclic permutations. The Gaussian time coordinate t is replaced by a
coordinate 	 which satisfies d	

dt
D H . In this time coordinate the singularity is

approached as 	 ! �1. Two important related features of this system is that
the variables are dimensionless and that their evolution equations form a closed
system, not depending on H . They must satisfy one algebraic condition which is
the Hamiltonian constraint in the 3C1 formalism. There results a four-dimensional
dynamical system. Stationary solutions of this system correspond to self-similar
spacetimes. When a solution of the Wainwright–Hsu system is given the quantities
H and t can be determined by integration.

The different Bianchi types are represented by subsets of the state space of the
Wainwright–Hsu system where the Ni have certain combinations of signs (positive,
negative or zero). The simplest Bianchi type is Bianchi type I, the Abelian Lie
algebra. The vacuum solutions of this type are the Kasner solutions. They are
self-similar and form a circle in the state space, the Kasner circle K . Let T be
the equilateral triangle circumscribing the Kasner circle which is symmetric under
reversal of ˙�. It is tangential to K at three points Ti , the Taub points. They
correspond to flat spacetimes. Each solution of Bianchi type II is a heteroclinic
orbit joining two Kasner solutions. Its projection to the .˙C; ˙�/-plane is a straight
line which passes through a corner of T . Concatenating Bianchi type II solutions
gives rise to many heteroclinic chains. Given a point of K which is not one of
the Taub points consider the straight line joining it to the closest corner of the
triangle T . The part of this straight line inside K is the projection of an orbit
of type II and it intersects K in exactly one other point. In this way it is possible
to define a continuous map from K to itself, the BKL map. (The map is defined
to be the identity at the Taub points.) The two most general Bianchi types of Class
A are type VIII and type IX, corresponding to the Lie algebras sl.2; R/ and su.2/.
As already mentioned BKL concentrated on type IX. Type VIII shows many of the
same features but may be even more complicated.

When specialized to the Bianchi Class A case the BKL picture suggests that as
the singularity is approached in a Bianchi type IX solution the dynamics should
be approximated by a heteroclinic chain of Bianchi type II solutions, successive
vertices of which are generated by the BKL map. In particular the solution is
oscillatory in the sense that the ˛-limit set of a solution of this kind should consist
of more than one point. (The ˛-limit set consists of those points x such there
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is a sequence of times tending to �1 along which the value of the solution
converges to x.) In fact there should be three non-collinear points in the ˛-limit
set. This implies that both ˙C and ˙� are oscillatory in the approach to the
singularity. This statement about the ˛-limit set was proved in fundamental work
of Ringström [17]. He showed that there are at least three non-Taub points in the
˛-limit set of a generic Bianchi IX solution. (He also described the exceptions
explicitly.) In addition Ringström showed that the entire ˛-limit set of a Bianchi
type IX solution is contained in the union of the points of type I and II [18]. This
means that in some sense the type IX solution is approximated by solutions of types
I and II. The question of whether the corresponding statement holds for solutions of
Bianchi type VIII is still open.

After the results just discussed it still took a long time before theorems about
convergence to heteroclinic cycles were published. There is a heteroclinic cycle
of Bianchi II solutions which comes back to its starting point after three steps.
Let us call this particularly simple example “the triangle”. It turns out that there
is a codimension one manifold with the property that any Bianchi type IX solution
which starts on this manifold converges to the triangle in the past time direction [11].
This result extends to a much larger class of heteroclinic chains generated by
iterating the BKL map. The essential condition is that the vertices of the chain
should remain outside an open neighborhood of the Taub points. The manifold
constructed in [11], which may referred to as the unstable manifold of the triangle
(unstable towards the future and hence stable towards the past), is only proved
to be Lipschitz continuous. An alternative approach to this problem was given
in [2]. It has the advantage that the stable manifold is shown to be continuously
differentiable. On the other hand it cannot treat all the heteroclinic chains covered
by the results of [11]. In particular, it does not cover heteroclinic cycles such as
the triangle. The reason for this restriction is the need to avoid resonances, certain
linear relations between the eigenvalues with integer coefficients. When this extra
condition is satisfied it can be shown, using a theorem of Takens, that the flow near
any vertex of the chain is equivalent to the linearized flow by a diffeomorphism.
Some investigations of the case of chains which may approach the Taub points have
been carried out in [15].

6 Construction of Solutions Converging to the Triangle

The construction of Bianchi type IX solutions converging to heteroclinic chains
of Bianchi type II solutions in the approach to the initial singularity will be
illustrated by the case of the triangle. The scenario being considered here is related
to that described for more general dynamical systems in Sect. 4 by time reversal.
As indicated in Sect. 4 the stability of heteroclinic chains is related to the eigenvalues
of the linearization about the vertices. Since a vertex of the triangle lies on the
Kasner circle and K consists of stationary points the linearization automatically
has a zero eigenvalue. Of the three other eigenvalues one is negative, call it ��, and
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two are positive, call them �1 and �2. The two positive eigenvalues are distinct and
we adopt the convention that �1 < �2. The eigendirection corresponding to �2 is
tangent to the triangle. The proofs of [11] are dependent on the fact that � is smaller
than both positive eigenvalues.

A solution which converges to the triangle repeatedly passes the vertices.
Consider a point on the triangle which is close to a vertex and on an orbit
approaching it. Let S be a manifold passing through the point which is transverse
to the heteroclinic orbit. Call this an incoming section. Similarly we can consider
an outgoing section close to the vertex and passing through the orbit leaving it.
A solution which starts on the incoming section sufficiently close to the heteroclinic
cycle also intersects the outgoing section. Taking the first point of intersection
defines a local mapping from the incoming section to the outgoing section, the local
passage. There is a similar local mapping from the outgoing section of one vertex to
the incoming section of the next in the cycle. This is called an excursion. Composing
three passages and three excursions gives a mapping from the incoming section of a
vertex to itself. It is important for the proof of [11] that this mapping is Lipschitz and
that by restricting the domain of the mapping to a small enough neighbourhood of
the triangle the Lipschitz constant can be made as small as desired. The norm used
to define the Lipschitz property is that determined by the flat metric dx2Cdy2Cdz2,
where .x; y; z/ are some regular coordinates on the section. The mapping from a
small local section to itself is a contraction. The excursions are expanding mappings
but the expansion factor is bounded. The passages are contractions which can
be made arbitrarily strong and which can therefore dominate the effect of the
excursions. Once the contraction has been obtained the manifold being sought can
be constructed in a similar way to the stable manifold of a stationary solution.

A system similar to the Wainwright–Hsu system can be obtained for solutions
of Bianchi type VI0 with a magnetic field [10]. It also includes certain solutions
of Bianchi types I and II with magnetic fields and the vacuum solutions of types
I, II and VI0. It uses variables ˙C and ˙� which have the same geometrical
interpretation as in the vacuum case. The Kasner circle can be considered as a
subset of the state space for the magnetic system. It has been proved that solutions
of this system are oscillatory [22]. There are two families of heteroclinic orbits
defined by vacuum solutions of type II. The third family in the vacuum case is
replaced by heteroclinic orbits defined by Bianchi type I solutions with magnetic
field. The projections of these heteroclinic orbits onto the .˙C; ˙�/-plane are the
same straight lines as are obtained from heteroclinic orbits in the vacuum case.
Thus the exactly the same heteroclinic chains are present. However their stability
properties might be different. Now the stability of the triangle will be considered in
the case with magnetic field, following [12]. The result is very similar to that in the
vacuum case—there is a one-dimensional unstable manifold—but the proof is a lot
more subtle. The reason that the method of proof of [11] does not apply directly is
that the eigenvalue configuration is different. Compared to the vacuum case one of
the eigenvalues is halved. Then it can happen that the negative eigenvalue is larger
in modulus than one of the positive eigenvalues.
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A problem which results from the different eigenvalue configuration is that the
return map is no longer Lipschitz. More precisely it no longer has this property with
respect to the Euclidean metric dx2 C dy2 C dz2. It does, however, have the desired

Lipschitz property with respect to the singular metric x2Cy2
x2

dx2 C x2Cy2
y2

dy2 C dz2

and this observation allows the proof of [11] to be generalized to the case with
magnetic field. It is important to know that the properties of eigenvalues and
eigenvectors alone are not enough to make this proof work. It is also necessary to
use the existence of certain invariant manifolds which follows form the geometric
background of the problem. At this point it is necessary to remember that we are not
just dealing with a heteroclinic cycle in an arbitrary dynamical system but with one
in a system with very special properties.

It turns out that the difficulties just discussed can be avoided by a clever but
elementary device which comes down to replacing the variable representing the
magnetic field by its square. Although this provides a very simple way of studying
the heteroclinic chains in the Bianchi VI0 model with magnetic field it cannot
be expected that this kind of trick will apply to more general matter models. By
contrast the new method is potentially much more generally applicable. There is
one case where it is already known to give new results, as will now be explained.
In addition to the results obtained on vacuum models results on models with a
perfect fluid with linear equation of state p D .� � 1/� were obtained in [11].
It turns out, however, that the techniques of [11] only work under an assumption
on � which has no physical interpretation. In the case of the triangle the condition

is � < 5�p
5

2
� 1:38. For other chains other inequalities are obtained. These arise

because the linearization has another positive eigenvalue coming from the fluid and
it must be ensured that this eigenvalue is greater than �. With the method of [12]
this restriction can be replaced by the inequality � < 2, saying that the speed of
sound in the fluid is smaller than the speed of light.

7 Future Challenges

This section discusses some directions in which the known results on the construc-
tion of oscillatory singularities might be extended in the future. There are dynamical
systems describing Bianchi models of types I and II with magnetic fields which are
not just special cases of those included in the system describing models of type VI0
[8, 9]. The reason for this is that the Maxwell constraints become less restrictive in
the more special Bianchi types. It is possible to choose the basis so that the magnetic
field only has one non-vanishing component but the price to be payed is that the
metric becomes non-diagonal in that basis. In the dynamical systems describing
solutions of types I and II the already familiar heteroclinic chains are still found.
There are, however, additional heteroclinic orbits corresponding to the off-diagonal
elements of the metric. This means that, in contrast to the models analysed up to
now, the stable manifold of a point on the Kasner circle may be of dimension greater
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than one. This means that when it is desired to continue a heteroclinic chain towards
the past there is not a unique choice any more. New ideas are required to solve this
type of problem.

Similar difficulties are met in Bianchi models of Class B. There it is believed on
the basis of heuristic considerations that there is precisely one type, VI� 1

9
, which

shows oscillatory behaviour similar to that found in types VIII and IX. There are
no rigorous results on Class B comparable to the results of Ringström on models
of Class A. In this case too the stable manifold of a Kasner solution may have
dimension greater than one. It can also not be expected that invariant manifolds of
the type exploited in [12] will exist.

Perhaps the most exciting challenge in this field is to construct inhomogeneous
spacetimes with oscillatory singularities. The simplest class of inhomogeneous
vacuum spacetimes where oscillations are expected are the T 2 models. These
have a two-dimensional isometry group acting on spacelike hypersurfaces and
so are effectively inhomogeneous in just one space dimension. They include
the Gowdy spacetimes as a subset but it is believed that generic T 2-symmetric
vacuum spacetimes have a much more complicated oscillatory behaviour near the
singularity. The models of Bianchi type VI� 1

9
are locally isometric to T 2 models

but not locally isometric to Gowdy models. Thus understanding more about Bianchi
models of Class B appears a very natural first step towards a better understanding of
the inhomogeneous case.
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Inverse Scattering Construction of Dipole Black
Rings

Jorge V. Rocha, Maria J. Rodriguez, Oscar Varela, and Amitabh Virmani

Abstract We describe an approach to systematically generate regular and asymp-
totically flat dipole black rings in a 5D Einstein–Maxwell-dilaton theory obtained
from 6D vacuum gravity by Kaluza–Klein reduction. Our construction employs
the inverse scattering method in six dimensions. We illustrate the scheme with the
explicit construction of the singly-spinning dipole ring. These techniques can also
be used to generate more general five-dimensional black ring solutions, displaying
rotation along the two orthogonal planes, electric charge and magnetic dipole
charge.

1 Introduction

Gravity in higher dimensions is a proficuous subject that has attracted a lot of
attention in the past couple of decades [6]. Its richness, compared to 4D gravity, is
highlighted by some novel features including more than one independent rotation
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plane, black hole event horizons with non-spherical topology, non-uniqueness
and the possibility of non-conserved dipole charges, when coupling gravity to
gauge fields. Considerable amount of guesswork has usually been involved in
the discovery of many higher-dimensional black holes but whenever solution-
generating techniques are available quicker progress has been achieved.

The problem of finding the most general asymptotically flat black ring in a simple
5D supergravity theory is technically involved. Such a solution—carrying mass, two
angular momenta, electric charge and magnetic dipole charge—was conjectured [3]
to exist in minimal supergravity and its counterpart in 5D Einstein–Maxwell-dilaton
theory was expected to exist as well. Until recently all known solutions possessed
three independent parameters at most and there were no methods available that could
handle dipole charge and multiple rotations simultaneously.

Black rings with a single rotation along the S1 and with dipole charge but no
electric charge were first constructed by Emparan [4] in the theory (1) below with
arbitrary dilation coupling a by educated guesswork. Rocha et al. [11] demonstrated
how to systematically construct such solutions for a specific coupling constant,
applying the inverse scattering method (ISM) of Belinsky and Zakharov [1] in six
dimensions. These methods have been extended in [2, 7, 10] to generate a second
rotation along the S2 and electric charge as well, yielding the most general family
of black ring solutions of this theory. Here we describe this systematic approach to
obtain charged black ring solutions of five-dimensional Einstein–Maxwell-dilaton
theory with Kaluza–Klein dilation coupling, following [10, 11].

2 Applying the ISM to Einstein–Maxwell-Dilaton Theory

We will be concerned with finding charged black ring solutions of five-dimensional
Einstein–Maxwell-dilaton (EMd) theory,

S D 1

16�G5

Z
d5x

p�g
�
R � 1

2
@�˚ @

�˚ � 1

4
e�a˚F��F ��

�
; (1)

with specific dilaton coupling a D 2
p
2=3. For this special value the theory can be

obtained by dimensionally reducing 6D vacuum gravity on a circle by means of the
standard Kaluza–Klein (KK) ansatz,

ds26 D e
p̊

6 ds25 C e
�

p

3˚
p

2 .dw C A/2: (2)

Here, the metric ds25 , the dilatonic scalar ˚ and the one-formA constitute the fields
of the five-dimensional theory. The internal KK circle is parametrized by w, and we
denote by F D dA the Abelian two-form field strength of A.

For our purposes, we can then employ the ISM in six dimensions, since the
uplift of a (black ring) solution in 5D EMd is Ricci flat. A six-dimensional solution
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of vacuum gravity with four commuting Killing vector fields—the amount of
symmetry required by the ISM—necessarily features KK asymptotics [5] but this
is desirable because ultimately we want to dimensionally reduce to five dimensions.
The 5D black rings we obtain are asymptotically flat.

3 Inverse Scattering Construction of Dipole Ring Solutions

The ISM [1] is a powerful solution generating technique that, upon assumption of
D � 2 commuting isometries,1 allows to generate solutions of vacuum gravity by
dressing a known seed solution. When the seed is static and the dressing procedure
is restricted to the class of solitonic transformations the whole prescription is purely
algebraic. We refer the reader to [6, 9] for concise accounts of this method.

We take as our seed solution the six-dimensional metric corresponding to the rod
configuration shown in Fig. 1. Note we assume the ordering a0 � a1 � a2 �
a4 � a3 for the rod endpoints. The rod in the t direction is identified with the
horizon. The negative density rod represented by the dashed line in Fig. 1 is included
in the seed to facilitate adding the S1 angular momentum to the ring. The finite rod
along the w direction allows the addition of dipole charge. When a0 D a1 and
a4 D a2, the negative density rod and the rod in the w direction disappear and the
solution describes a neutral static black ring times a flat direction w.

The seed metric corresponding to the rod configuration of Fig. 1 is given in Weyl
coordinates .�; z/ by

ds26 D .G0/ab dx
adxb C e2�0.d�2 C d z2/; (3)

where

G0 D diag

�
��0
�2
;
�2�4

�1�3
;
�1�3

�0
;
�2

�4

�
; detG0 D ��2; (4)

and the conformal factor of the seed is

e2�0 D k2
�1 �3

�0

Z01 Z02 Z03 Z14 Z24 Z34

Z2
13

Q4
iD0 Zii

; Zij 	 .�i�j C �2/: (5)

The integration constant k is determined later by the requirement of asymptotic
flatness. Our ordering of coordinates is xa D .t; �;  ;w/, with t corresponding to
the timelike coordinate, � describing the azimuthal angle on the S2 and  being

1Any solution of the vacuum Einstein equations in D dimensions possessing D � 2 commuting
isometries can be written in the form (3), with G0 and �0 only depending on .�; z/ and with the
constraint detG0 D ��2 [5, 8].
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Fig. 1 Rod diagram corresponding to the seed metric G0. Solid rods have positive density and the
dashed rod has negative density

the angle along the S1 component of the ring. The �i ’s are commonly referred to
as solitons and they are explicitly given by �i D p

�2 C .z � ai /2 � .z � ai /. It is
also convenient to introduce anti-solitons, �i D �p�2 C .z � ai /2 � .z � ai /, and
they are such that �i�i D ��2. The interested reader is referred to [6] for further
notational details.

The seed solution (3)–(5) is singular and not of direct physical interest itself.
However, applying the ISM we can obtain regular solutions by dressing this seed
metric. Specifically, the following steps allow to generate the (six-dimensional
uplift of the) electrically charged doubly spinning dipole ring by a 4-soliton
transformation (see [10] for more details):

1. Perform the following four transformations on the seed (4): remove solitons
at z D a0; a1; a4 with trivial Belinski–Zakharov (BZ) vectors .0; 0; 1; 0/,
.0; 1; 0; 0/, .0; 0; 0; 1/, respectively, and remove an anti-soliton at z D a2 with
trivial BZ vector .0; 1; 0; 0/. For convenience, supplement all this with a rescaling
of the metric by an overall factor � D �2=.�1�4/. The resulting metric is

G0
0 D diag

�
� �0 �

2

�1 �2 �4
;
�4

�22 �3
;��0 �3

�4
;��2
�1

�
: (6)

2. Taking (6) as a seed solution, perform now a 4-soliton transformation that re-adds
the same solitons but with more general BZ vectors, and undo the rescaling. More
precisely,

(a) add a soliton at z D a0 with BZ vector .c1; 0; 1; 0/;
(b) add a soliton at z D a1 with BZ vector .0; 1; b1; 0/;
(c) add an anti-soliton at z D a2 with BZ vector .b2; 1; 0; b3/;
(d) add a soliton at z D a4 with BZ vector .0; c2; 0; 1/;

and rescale by ��1. Denote the final metric byG. The final rescaling ensures that
detG D ��2.

3. Compute the conformal factor of the new metric, given by e2� D e2�0 det�
det�0

,
where the matrix � implements the addition of solitons [6, 9] and �0 	
� jc1;b1;b2;b3;c2D0.
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Fig. 2 Rod diagram for the six-dimensional lift of the doubly spinning charged black ring. The
direction of each rod is indicated

4. Make a coordinate transformation, G ! QG D STG S with S 2 SL.4;R/, to
ensure that the final metric has standard orientation, or equivalently, that it is
asymptotically flat and has correct periodicities for the angular coordinates.

The pair . QG; e2�/ determines the six-dimensional solution we seek. Considering a
mixing matrix of the form

S D

0

B
B
@

1 q0 p0 0
0 q1 p1 0
0 q2 p2 0
0 q3 p3 1

1

C
C
A (7)

a simple counting reveals that the solution depends on 18 parameters.2 However, for
general choices of the parameters the resulting five-dimensional black ring suffers
from singularities in the domain of outer communications. Imposing asymptotic
flatness fixes all components of the matrix S and also the parameter k. In addition,
requiring full regularity of the solution fixes the parameters c1 and c2. When
considering finite BZ parameters bj , a non-trivial constraint also arises from the
requirement that the first three components of the direction of rod Œa2; a4� match
those of rod .�1; a1�; see Fig. 2. This is enforced so that � D 0 defines the axis of
rotation both outside and inside the five-dimensional black ring. Finally, imposing
that the solution is balanced, i.e., that there are no conical singularities along the
disc bounded by the ring, introduces one further constraint, leaving only five free
parameters for the most general solution. These are in correspondence with mass,
two angular momenta, electric charge and magnetic dipole charge.

Example: Construction of the Singly-Spinning Dipole Ring

In this section we illustrate the procedure outlined above for the singly-spinning
dipole black ring. Its construction is simple enough so that we can present it in a

2The parameter counting is as follows: 4 from the rod endpoints (the solution is invariant under
an overall shift in z so we subtract 1), 5 from the BZ parameters ci and bj , 8 from the coordinate
mixing matrix S , and 1 from k.
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concise manner, while retaining the non-trivial features that are common to every
generation of black rings carrying dipole charge. Refer to [10, 11] for more details
about the construction.

6D Solution in Weyl Coordinates. To obtain the singly-spinning dipole ring we
take the steps described in Sect. 3 and set b1 D b2 D b3 D 0.3 This imposes the
vanishing of the angular momentum associated with coordinate � and of the electric
charge. We obtain the following metric, written in Weyl coordinates .�; z/:

Gtt D �
�0

h
�2 �3 Z

2
01 � c21 �1 Y

2
02 Y

2
03 �

4=�20

i

�2

h
�2 �3 Z

2
01 C c21 �1 Y

2
02 Y

2
03 �

2

i ; (8)

Gt D c1 �1 �3 Y02 Y03 Z00 Z01

�0

h
�2 �3 Z

2
01 C c21 �1 Y

2
02 Y

2
03 �

2

i ; (9)

G  D
�1 �3

h
�2 �3 Z

2
01 � c21 �20 �1 Y 202 Y 203

i

�0

h
�2 �3 Z

2
01 C c21 �1 Y

2
02 Y

2
03 �

2
i ; (10)

G�� D
�2 �4

h
�1 �

3
2 Y

4
34 Z

6
34 C c22 �

5
3 Y

2
14 Y

4
24 Z

2
24 �

6=�24

i

�1 �3

h
�1 �

3
2 Y

4
34 Z

6
34 � c22 �53 Y 214 Y 424 Z2

24 �
4

i ; (11)

Gw� D c2 �
2
2 �

2
3 Y14 Y

2
24 Y

2
34 Z24 Z

3
34 Z44 �

2

�4

h
�1 �

3
2 Y

4
34 Z

6
34 � c22 �53 Y 214 Y 424 Z2

24 �
4

i ; (12)

Gww D
�2

h
�1 �

3
2 Y

4
34 Z

6
34 C c22 �

5
3 �

2
4 Y

2
14 Y

4
24 Z

2
24 �

2
i

�4

h
�1 �

3
2 Y

4
34 Z

6
34 � c22 �53 Y 214 Y 424 Z2

24 �
4

i ; (13)

where we have introduced the notation Yij 	 �i � �j for convenience. The
remaining components not related to these by symmetry vanish. The conformal
factor of the solution generated is

e2� D k2
Z02 Z03 Z14 Z24

�0 �
4
2 Y

4
34 Z01 Z

2
13 Z

5
34

Q4
iD0 Zii

(14)



h
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03 �

2
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�1 �

3
2 Y

4
34 Z

6
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5
3 Y

2
14 Y

4
24 Z

2
24 �

4
i
:

3This particular case requires no coordinate mixing to display asymptotic flatness.



Inverse Scattering Construction of Dipole Black Rings 113

Regularity of the solution at the points .�; z/ D .0; a0/ and .�; z/ D .0; a4/ imposes
two constraints [10]:

jc1j D
s

.a1 � a0/
2.a2 � a0/.a3 � a0/ ; jc2j D

s
2.a3 � a4/5

.a4 � a1/.a4 � a2/3
: (15)

6D Solution in C-metric Coordinates. The metric components simplify signifi-
cantly when expressed in terms of so-called C-metric coordinates .x; y/, which are
particularly well adapted for ring-like solutions. The coordinate transformation that
accomplishes this is [8]

� D R2
p

�.1 � x2/.1C �x/.1� y2/.1C �y/

.x � y/2
; z D R2.1� xy/Œ2C �.x C y/�

2.x � y/2 : (16)

Parametrizing the rod endpoints according to

a0 D R2

2
˛; a1 D �R

2

2
�; a2 D R2

2
�; a4 D R2

2
ˇ; a3 D R2

2
; (17)

where R controls the overall length scale of the solution and

˛ D �.1C �/ � 2�
.1 � �/

; ˇ D �.1� �/C 2�

.1C �/
; (18)

the six-dimensional solution defined by (8)–(14) becomes [11]

ds26 D � F.y/

F.x/

�
dt C C R

1C y

F.y/
d 

�2
C H.x/

H.y/

�
dw C QC R1C x

H.x/
d�

�2

C R2F.x/H.y/

.x � y/2



�

G.x/

F.x/H.x/
d�2 C .1 � �/2k2

.1C �/.1 � �/

�
dx2

G.x/
� dy2

G.y/

�
� G.y/

F.y/H.y/
d 2

�
:

(19)

For convenience we introduced the following functions,

F.�/ D 1C ��; G.�/ D .1 � �2/.1C ��/; H.�/ D 1 � ��; (20)

along with the quantities

C D
r

�.� � �/1C �

1� �
; QC D

s

�.�C �/
1 � �
1C �

: (21)
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From 6D to 5D. Finally, we perform the dimensional reduction according to the

KK ansatz (2). The resulting 5D line element, with the choice k D
p
.1C�/.1��/
.1��/ , is 4

ds25 D �F.y/
F.x/

�
H.x/

H.y/

�1=3 �
dt C C R

1C y

F.y/
d 

�2

C R2

.x � y/2
F.x/

�
H.x/H.y/2

�1=3



�
� G.y/

F.y/H.y/
d 2 � dy2

G.y/
C dx2

G.x/
C G.x/

F.x/H.x/
d�2

�
; (22)

and the vector field A and dilaton � are given by

A D QC R
�
1C x

H.x/

�
d�; e�� D

�
H.x/

H.y/

�p
2=3

: (23)

This solution precisely agrees with [4]. Furthermore, the ordering of the rod
endpoints ai , together with Eqs. (17), (18), implies that the parameters of the
solution obey the bounds 0 < � � � < 1 and 0 � � < 1, also in accordance
with [4].5

4 Conclusions

In this contribution we described a systematic approach to construct black rings in
five-dimensional Einstein–Maxwell-dilaton theory with Kaluza–Klein dilaton cou-
pling. The procedure relies on the inverse scattering method in six dimensions and is
sufficiently robust to generate solutions carrying two independent angular momenta,
electric charge and magnetic dipole. In particular, this framework overcomes the
difficulty of adding a dipole charge to neutral solutions—for the specific theory
under consideration—putting it on the same footing as angular momentum. As
an illustration of our method we presented an explicit construction of the singly-
spinning dipole black ring.

4The angular coordinates have periodicity 
� D 
 D 2�k so this choice does not yield
canonically normalized angular variables. Nevertheless, we adopt this convention to more easily
compare our results with [4].
5For general choices of parameters the solution (22), (23) is unbalanced. Avoidance of conical
singularities is obtained by imposing a further constraint [4], yielding a final solution that is fully
regular, balanced, and depending on three parameters, corresponding to mass, angular momentum
and dipole charge.
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Quantum Cosmology: Meeting SUSY

Paulo Vargas Moniz

Abstract Some of the basics of supersymmetric quantum cosmology are briefly
reviewed, pointing to promising lines of research to explore.

1 Motivation and Justification

I have been doing research on Supersymmetric Quantum Cosmology (SQC) for the
past 20 years or so. My claim is that SQC [1–3] constitutes a most interesting and
rewarding research topic. It provides the opportunity, on the one hand, to perform
calculations that may be relevant for phenomenology and, on the other hand, it has
a close connection to exciting new areas of fundamental research such as quantum
gravity, M/string theory and theoretical high energy physics in general.

SQC vast research programme imports some of its guidelines from earlier inves-
tigations in quantum supergravity using canonical methods. It has been gradually
enlarged, with many cosmological scenarios extensively reported in the published
literature [1–3], with the following properties enhancing a significant motivation:

1. SQC subscribes to the idea that treating effects from quantum gravity and
supersymmetry as both dominant, will bring forward an improved description
of the very early universe. This contrasts with conventional quantum cosmology,
where quantum gravity is present but not supersymmetry. In the SQC framework,
we will therefore find a larger set of variables (bosonic and fermionic) as well as
additional symmetries which increase the number of constraints, subsequently
imposing a wider algebra.
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2. Moreover,N D 1 supergravity constitutes a natural “square-root” of gravity, in a
Dirac-like manner: the analysis of a second order equation of the Klein–Gordon
type (i.e., the Wheeler–DeWitt equation) could be substituted by that of a
“supersymmetry induced” set of first order differential equations. This would
then have profound consequences [1–3], regarding the dynamics of the wave
function of the universe.

So far, to this date, no evidence in favor of supersymmetry has been found [4].
The more “energetic” efforts are the recent and forthcoming explorations at
LHC [5]. If supersymmetry exists in nature (meaning it will be eventually detected),
then, most possibly, it will also be present at the scales where gravity unifies with
other interactions, playing therein an active role, in, e.g., supergravity. Let us hope
(at least, I am) that a clear and unequivocal sign proving supersymmetry’s existence
will be the landmark result of the LHC operating years [5].

2 Introduction (Somewhat Technical)

Let us be more precise with respect to what SQC entails [1–3].
Following the Dirac procedure, the canonical representation is performed in the

Hamiltonian formalism. More precisely, this means we find the Hamiltonian and
the diffeomorphism constraint, H and H i , respectively, associated with general
coordinate transformations, together with the supersymmetry constraints, S A,
corresponding to supersymmetry transformations as well as the Lorentz constraints,
J AB, for the Lorentz transformations. These constraints should then be satisfied by
the physical states.

Then, from the form of the constraint algebra it may then be sufficient that only
the Lorentz and supersymmetry constraints have to be solved. It is this exciting
landscape (to explore and venture into) that makes SQC so interesting. In this
context, SQC is usually (!: : :) retrieved from N D 1 supergravity theory by
restricting it to spatial homogenous cosmologies:

• The usual dimensional reduction of the N D 1 supergravity action in four
space-time dimensions to one-dimensional (time-dependent only) “mechanical”
models. This can be made through suitable homogeneous ansätze integrating over
the spatial hypersurfaces, leading to a cosmological minisuperspace character-
ized by a N D 4 local supersymmetry and time-invariance reparametrization.
Friedmann–Robertson–Walker (FRW) models are the simplest to consider and
have been widely investigated in this manner.

• Or, another procedure (not necessarily fully equivalent with the previous but
also often employed within diagonal Bianchi models) can be used. It involves
the use of the constraints of the full theory of supergravity. More precisely,
the constraints are directly evaluated subject to the corresponding spatially
homogenous ansatz on the supergravity physical variables
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Regarding the subsequent quantization, the supersymmetric minisuperspace is
characterized by the existence of second class constraints. These, when eliminated,
replace the usual Poisson brackets by more complicated Dirac brackets. For the
canonical momenta associated with bosonic variables, we can choose a differential
operator representation and a similar procedure can be adopted for the conjugate
momenta associated with the fermionic variables. This scheme has been widely
employed with known results. Another possibility is to adopt a matrix representation
for the fermions complying to the Dirac bracket algebra.

Once the quantum mechanical representation has been chosen for the fermionic
momenta (matrix or differential operator), the next issue is the use of the quantum
Lorentz and supersymmetry constraints (usually under the framework of a factor
ordering prescription). When the Lorentz “annihilation” on the wave function has
been performed, solving the corresponding equations, we get a set of expressions
that must still satisfy the supersymmetry constraints. This is usually achieved by
solving a subsequent set of (coupled) first-order differential equations (equivalent
to a Dirac-like square root of the second order Wheeler–DeWitt equation in
conventional quantum cosmology). This line of approach is usually designated as
the metric representation point of view. Another important approach used instead
Ashtekar (connection and loop) variables.

Other different formalisms have been employed in the literature, with the aim
to approach SQC from alternative (perhaps more feasible) routes. They have had
the merit of bringing contributions to still long standing open questions as well
as allowing to formulate newly pertinent ones. In more detail, a superspace in a
N D 2 conformal supersymmetry context has been explored, a �-model approach
from (N D 2) supersymmetric quantum mechanics has been introduced, while
Darboux transformation and global supersymmetry were also explored. All the
above approaches share some similarities but also have specific differences in
method and results. A clear analysis establishing whether and how they are related
(including if and how they can be equivalent) is yet to be achieved.

In the following sections we will attempt to describe, by means of specific
applications, the main elements and some of the results within SQC. In Sect. 3,
we will illustrate, using a FRW N D 4 supersymmetric setting, the metric and
differential fermion operator approach. It is the simpler set up, but pedagogically
useful to introduce some features. Bianchi and inhomogeneous models would
convey more realistic appraisals for SQC, but they bring far more ingredients and
technical difficulties [1,2]. We will add a few glimpses on the inhomogenous sector
in Sect. 4, perhaps the (currently) more enticing and promising paths. In Sect. 5,
we briefly make a summary and point to some useful references.

I apologize in advance for not being able to be as detailed and complete as it
would be expected from an interested reader. A more complete overview is beyond
the scope and range permitted in this article. In particular, if wanting to look at the
difficulties which have hinder progress (and these surely still exist), the reader can
investigate about them in [1–3]; All the readers that have either become interested
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or got even more curious about SQC, are invited to embark in the route(s), some
still waiting discovery and exploration, charted1 in recent publications [1–3].

3 Metric and Differential Fermion Operator Approach
(Basics)

Let us consider FRW geometries in pure N D 1 supergravity. The tetrad
eAA0� and gravitino  A� fields ought to be chosen accordingly. This can only be
possible for a suitable combination of supersymmetry, Lorentz and local coordinate
transformation. More precisely, closed FRW universes have S3 spatial sections.
A suitable ansatz reduces the number of degrees of freedom provided by eAA0�.
If supersymmetry invariance is to be retained, then we need an ansatz for  A� and
N A0

�, which reduces the number of fermionic degrees of freedom. We take  A0 and
N A0

0 to be functions of time only. We further take

 Ai D eAA0

i
N A0 ; N A0

i D eAA0

i A; (1)

where we introduce the new spinors  A and N A0 , which are functions of time
only. This means we truncate the general decomposition  ABB0 D e i

BB0  
A
i at

the spin 1
2

mode level. That is, with ˇA D 3
4
nAA0 N A0 � N A. This constitutes a

direct consequence of assuming a FRW geometry and it is a necessary condition
for supersymmetry invariance to be retained. It is also important to stress that
auxiliary fields are also required to balance the number of fermionic and bosonic
degrees of freedom. However, these auxiliary fields can be neglected in the end.
The above ansätze preserves the form of the tetrad under a suitable combination of
supersymmetry, Lorentz and local coordinate transformations.

Classically, the constraints vanish and this set of constraints forms an algebra.
The constraints are functions of the basic dynamical variables. For the gravitino
fields, their canonical momenta produce (second-class) constraints. These are
eliminated when Dirac brackets are introduced instead of the original Poisson
brackets.

Our constraints then take the simple form

SA D  A�a � 6ia a; (2)

H D �a�1.�2a C 36a2/; (3)

NSA0 D N A0�a C 6ia N A0 ; (4)

JAB D  .A N B0

nB/B0 : (5)

1For conventions and notation, please consult [1, 2].
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The presence of the free parameters �A; N�A0 shows that this minisuperspace model
has N D 4 local supersymmetry.

Before solving the supersymmetry constraints SA; NSA0 , note that J AB� D 0

implies that � can be written as � D A C B A 
A, where A and B depend only

on a. The quantum solutions from (2), (4) are then

� D C expŒ�3a2=„�CD expŒ3a2=„� A A; (6)

where C and D are independent of a and  A. The exponential factors have a semi-
classical interpretation as exp.�I=„/, where I is the Euclidean action for a classical
solution outside or inside a three-sphere of radius �

�
a with a prescribed boundary

value of  A. That is, we get a Hartle–Hawking solution for C D 0.
Much more has been achieved regarding other more generic homogenous models

and with other matter contents. For more details, in particular regarding methods
and still existing obstacles to progress, please consult [1, 2]. The webpages [3] also
attempt to contain updated and useful information for the interested researcher.

4 “Observational” SQC (Not Basics, Anymore)

Until the late 1990s, most of the research conducted in SQC was aimed at
finding quantum states and overcome consistency problems [1, 2]. But it was
crucial that progress would be made, to find additional quantum states, which
would have a physical significance regarding (a) a period of evolution from
supersymmetric quantum gravitational physics towards a semi-classical stage,
together with (b) identifying the existence of any quantum state associated to
structure formation, (c) followed by establishing how does conventional quantum
cosmology harmonise into this picture, (d) and hence, determining if a path from
supersymmetric quantum cosmology physics down to a classical level can be
consistently established.

To be more precise, it remained to establish if and how the inclusion of super-
symmetry in a quantum cosmological scenario could lead to a spectrum of density
fluctuations compatible with today’s observational data. By then constructing a
model that describes perturbations about a supersymmetric FRW minisuperspace
with complex scalar fields, SQC has been also directed towards an “observational
context”. But plenty of work remains to be done, please see [1, 2].

As far as the perturbations about the background minisuperspace are concerned,
the scalar fields can be taken as

˚.xi ; t/ D �.t/C˙nlmf
lm
n .t/Q

n
lm.xi /; (7)

together with its complex conjugate, where the coefficients f lm
n ;

Nf lm
n are functions

of the time coordinate t and Qn
lm are standard scalar spherical harmonics on S3, xi
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are coordinates on the three-sphere, and with n D 1; 2; 3 : : :, l D 0; : : : ; n � 1,
m D �l; : : : ; l . The fermionic superpartners are expanded as:

XA.xi ; t/ D �A.t/C a�3=2˙mpqˇ
pq
m

	
smp.t/�

nq
A .xi /C Ntmp.t/ N	mq

A .xi /


; (8)

together with its Hermitian conjugate, with m D 1; : : : ;1, p; q D 1; : : : ;

.mC 1/.mC 2/ and where �mq
A ; N�mq

A0 ; 	
mq
A0 ; N	mq

A are spinor hyperspherical harmonics
on S3. In addition, the time-dependent coefficients tmp; smp and their Hermitian
conjugates are odd elements of a Grassmanian algebra, where the matrix ˇnpq satisfy
ˇ2npq D 21n.

Inserting now (7), (8) into the general action of N D 1 supergravity with scalar
supermatter, we can obtain (after integration) a reduced action which includes an
infinite sum of time-dependent harmonic and Fermi oscillators. After some suitable
redefinitions of the  A and �A variables, the quantum supersymmetry constraints of
the model can be constructed from the coefficients in  A0 ; N A0

0 in the Hamiltonian.

They take the form SA D S
.0/
A C S

.pertb:/
A , with [1, 2]

S
.0/
A D �i�A @

@�
� a A

2
p
3

@

@a
� p

3a2 A

� i

8
N��B�B @

@�A

� i

4
N��A B @

@ B
C 3

4
p
3
 A�

B @

@�B

C  B B

8
p
3

@

@ A
; (9)

and

S
.pertb:/
A D  Ap

3
˙m

�
smp

@

@smp
� tmp

@

@tmp

�

C i

2
N�˙m

�
sm

@

@sm
� tm @

@tm

�
�A

� i�A˙n

@

@f lm
n

C 2ia2˙n
Nf lm
n .nC 1/�A; (10)

together with their Hermitian conjugates, NSA D NS.0/A C NS.pertb:/
A . S.0/A ; NS.0/A0 will

denote the supersymmetry constraints of the unperturbed background, while
S
.pertb:/
A ; NS.pertb:/

A correspond to the perturbed sector. A significant point should
be properly stressed at this point: both supersymmetry constraints are linear with



Quantum Cosmology: Meeting SUSY 123

respect to the conjugate momenta of any bosonic variable. Hence, they determine
that a set of coupled first-order differential equations are obtained [1, 2].

This can be better understood if we introduce a natural ansatz for the wave
function of the universe, which has the form

� D AC B C C C iC C�C CD�D�D C
E C C�

D�D

D A.0/˘nA
.n/˘mA

.m/

C B.0/˘nB
.n/˘mB

.m/ C C

C C .0/˘nC
.n/˘mC

.m/ C�C

C D.0/˘nD
.n/˘mD

.m/�C�C

C E.0/˘nE
.n/˘mE

.m/ C C�
D�D; (11)

where the bosonic functionals A.0/; B.0/; C .0/;D.0/, E.0/ depend on the
minisuperspace variables .a; �; N�/, while the bosonic amplitudes A.n/; : : : ; E.n/

and A.m/; : : : E.m/ depend respectively also on the individual perturbation modes
fn; Nfn or sm; tm. Expression (11) satisfies the Lorentz constraints associated with
the unperturbed field variables  A; N A0 ; �A and N�A0 : JAB D  .A N B/ � �.A N�B/ D 0.
Now, let us substitute (11) into the supersymmetry constraint (9), (10) and their
Hermitian conjugates. After having divided SA� D 0 and NSA� D 0 by � as given
in (11), we then obtain the mentioned set of first-order differential equations. It is
straightforward to obtain the following solutions [1, 2]:

E.0/ D OE.0/
0

e3a
2C�.2�6�˝5/�˝5 N�

a˝6
(12)

E.n/ D E
.n/
0 e��7 N�C�.2�8��7/

e2�9
NfnC2a2.n�1/fn Nfn

e�.˝7��9/fnC.˝7��9/ Nfn ; (13)

E.m/ D E
.m/
0 e2�8

N��C2� N��˝9�C˝9 N� QE; (14)

where OE.0/
0 D E

.0/
0 e

�3a2 . E.n/
0 ; E

.m/
0 denote integration constants and QE � smp

or tmp. Let us emphasize the use of � D �1 C i�2 or � D rei� in the process
of integration to decouple the physical degrees of freedom encompassed in �; N�.
Notice as well that �1, �2 . . . and C1; C2 constitute further integration/separation
constants. The quantities ˝1, ˝2, . . . represent back reactions of the scalar and
fermionic perturbed modes in the homogenous modes and are assumed to be of
a very small value.

Characteristic features of the no-boundary (Hartle–Hawking) solution are present
in the bosonic coefficient E (12)–(14). This state requires j˝6j`21 and the term
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e�na2fn Nfn ; .n � 1/ in (13) to dominate over the other remaining exponential terms.
This is equivalent to assume that the corresponding separation/integration constants
in (13), (14) to be very small [1,2]. It thus seems that the presence of supersymmetry
selects a set of solutions, where the no-boundary (Hartle–Hawking) quantum state
is mandatory. Concerning the A;B;C;D coefficients, the corresponding equations
lead to integral expressions.

In addition, the bosonic coefficient E may lead to a satisfactory spectrum of
density perturbations. It thus seems that supersymmetry in a quantum description
of the very early universe intrisically contains the relevant seeds for structure
formation [1, 2]. Finally, notice that each of the several bosonic amplitudes in (11)
corresponds to a specific quantum scenario for the very early universe. Under the
reasonable and desirable assumption that supersymmetry constitutes a mandatory
component in any realistic analysis of a quantum universe, those several, surely
possible, but quite specific scenarios of evolution, can be realistically considered
and tested [1, 2].

5 Discussion and Outlook

SQC is, in this author’s opinion, a most valid and worthy route for high energy
physics exploration in the next decades. There are many open problems, as well
as many others whose corresponding “solution” may still require novel attempts to
address them properly. They are extensively discussed in [1–3], joined with sum-
marized lists of research directions [1–3]. A pedagogical survey of the difficulties
which have hindered progress (and these surely still exist) is also described in [1–3].
I do not think (neither feel it) to be realistic for this author to address all or even a
small set of them. But “eager young minds” should and could consider to take these
routes. Why not? If “yes”, I surely would gladly like to read about it/them. My best
wishes, indeed.
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Avoiding the Trans-Planckian Problem in Black
Hole Physics

Carlos Barceló, Luis C. Barbado, Luis J. Garay, and Gil Jannes

Abstract We describe how the avoidance of the trans-Planckian problem of
Hawking radiation can be used as a guiding principle in searching for a compelling
scenario for the evaporation of black holes or black-hole-like objects. We argue
that there exist only three possible scenarios, depending on whether the classical
notion of long-lived horizon is preserved by high-energy physics and on whether the
dark and compact astrophysical objects that we observe have long-lived horizons
in the first place. Some specific findings along the way are (a) that a theory with
high-energy superluminal signaling and a long-lived trapping horizon would be
extremely unstable in astrophysical terms and (b) that stellar pulsations of objects
hovering right outside, but extremely close to their gravitational radius, can result in
a mechanism for Hawking emission.

1 The Trans-Planckian Problem

It is standardly assumed that the extremely dark and compact bodies existing in
the cosmos are evaporating black holes: black holes, because without invoking
still-uncertain quantum mechanisms, there are no stable stellar bodies with the
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measured characteristics; evaporating, because even the most conservative quantum
correction to classical black holes, based on quantum field theory in curved
spacetimes, leads to the idea that these object should emit Hawking radiation [1].
The presence of Hawking emission would lead black holes to acquire some
metabolism avoiding the “inert end point” character of classical black holes. When
Hawking reached this conclusion it was soon realized that it was, however, not very
trustable [2]. The original calculation seems to depend strongly on assumptions
about the behaviour of fields at absurdly high energies: it invokes absurdly high
trans-Planckian frequencies. Since then, after much work it has been realized that
Hawking emission is quite robust to changes in the behaviour of high-energy
physics: one recovers a Hawking-like emission under quite different high-energy
assumptions and underlying mechanisms (see references in [3]).

These analyses are mostly based on adding modified dispersion relations at high
energies. The modifications can be separated into subluminal and superluminal. The
subluminal modifications avoid directly the trans-Planckian problem by introducing
an effective cut-off to the maximum invoked frequency. The superluminal scenarios
solve the trans-Planckian problem by recovering Hawking radiation independently
of the details of the high-energy modifications. In this work (see the paper [3]
for a more detailed presentation) we first point out collateral problems one might
encounter in accepting any of these two scenarios. Then, we propose a third
scenario able to solve the trans-Planckian problem by assuming in the first place the
hypothesis that quantum effects make possible the existence of objects with surfaces
hovering right outside the place where the horizon would have formed classically.

2 Subluminal Scenarios

Hawking-like radiation in these scenarios proceeds through a mode-conversion
mechanism. To recover it, one only needs to assume, essentially, that the energy
scale at which the modified dispersion shows up is much larger than the typical
energy scale associated with the (low energy) surface gravity of the horizon.

If the quantum gravity theory underlying general relativity incorporated effective
subluminal behaviours, then the existence of horizons (one-way membranes) would
survive beyond its appearance in low-energy general relativity. Once a horizon
is formed the theory would tend to form (close to) singular regions (of course,
unless the modifications to the behaviour of matter lead it to violate some energy
conditions). Again this tendency would not be ameliorated by the high-energy
modifications as this would effectively narrow the light cones. A theory of this
sort, in which even at high energies the transmission of information between the
internal and external regions of the black hole is not possible, would have a severe
information loss problem.

On the other hand, the evaporation of a stellar mass black hole would take 1056

times the current age of the universe. The existence in this scenario of long-lived
trapping horizons enormously delays the time at which we will be able to have
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experimental feedback about the real nature of the underlying high-energy theory.
Therefore, in the absence of primordial black holes or microscopic black holes
at the LHC, these scenarios do not allow an open positive exploration of the full
nature of its underlying physics, at least not to the human race as we understand it.
As physicists we find this idea, to say the least, disturbing.

3 Superluminal Scenarios

Hawking-like radiation in these scenarios proceeds also through a mode-conversion
mechanism. To recover it, one needs to assume, essentially, that the energy scale
at which the modified dispersion shows up is much larger than the typical energy
scale associated with the (low energy) surface gravity of the horizon and that this
surface gravity does not go to zero immediately after crossing the horizon [4].
In addition, is has been repeatedly acknowledged that the existence of Hawking-
like radiation strongly depends on the boundary conditions imposed in the internal
region, specifically on the place where the classical singularity is supposed to reside.

In these types of theories, the notion of horizon is just a low-energy notion.
There are always high-energy signals able to escape from the interior of the black
hole. Under this circumstance, it is not sensible to continue assuming that a system
with a trapping horizon would tend to form a singular region in its interior. Instead,
it is more reasonable to assume that the (quantum) high-energy behaviour would
naturally regularize any potential singularity in the classical theory.

Now, taking this regularization as hypothesis, we have investigated the spec-
tral characteristics of a black-hole-like configuration of this sort. Specifically,
we consider a simple 1C1 spacetime geometry

ds2 D �Œ1 � v.x/2�dt2 C 2v.x/dtdx C dx2; (1)

with a step-like profile v.x/ such that v.x/ D 0 for x 2 .0;C1/ and v.x/ D v > 1

for x 2 Œ�L; 0�. On top of it we analyze the spectral properties of a scalar field with
a quartic superluminal dispersion relation,

	
� � .1=k2P /r4



� D 0; (2)

under reflecting boundary conditions in the internal boundary x D �L. This is
the place where the singularity would have been located in a standard black-hole
configuration. Here, the regularity of the configuration can be seen in both the non-
diverging character of the v profile in the internal region and the reflecting boundary
conditions imposed upon the scalar field. Qualitatively the results obtained do not
depend on the simplifications used in our analysis.

Under these conditions we have found numerically that the system exhibits
unstable modes. We have estimated the number of instabilities ninst, as well as
their maximal typical growth rates �max and the real part !n of their frequencies, as
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functions of v and the size L of the inner region. Overall, the qualitative behaviour
of these quantities is

�max � 2.v � 1/=L; ninst � 2!c=�max; (3)

!n � ˙�maxn .n D 1 : : : ninst=2/; (4)

where !c is the critical frequency (frequency above which there is no more mode
mixing [4]). These results are in agreement with the numerical and analytical
studies carried out for black-hole/white-hole configuration in [5, 6], where similar
instabilities appear.

When inserting realistic astrophysical figures adapted from a one Solar-mass
Schwarzschild black hole, we conclude that �max would be of the order of
microseconds. This means that a Solar mass black hole with superluminal dispersion
would be extremely unstable in astrophysical terms and would tend to eliminate its
horizon in microseconds. Thus, we see that if the singularity is smoothed away due
to the presence of superluminal dispersion relations, black holes as such would be
very unstable. In other words, this analysis suggests that any theory beyond classical
general relativity that incorporates superluminal behaviour will avoid the formation
of long-lived trapping horizons.

4 A Scenario Without Horizons

Finally, we propose a third scenario able to solve the trans-Planckian problem.
Imagine as hypothesis that quantum effects were able to stabilize bodies with radia
extremely close to their gravitational radia. What we have shown in [3] is that
pulsations of such objects between two radia rout > rin, both very close to rg , are
able to produce Hawking-like radiation without invoking absurdly high frequencies.
In this sense this mechanism does not ask for assumptions regarding ultra-high-
energy physics. It is only necessary that the relativistic invariance is maintained up
to a few orders of magnitude beyond Planck scale, something consistent with current
experimental probes.

Objects of this kind, which we called black stars, will not encounter the problems
associated with standard evaporating black holes. Most importantly, they will
be open in principle to astrophysical exploration. Whether there are dynamical
mechanisms able to produce these objects is a matter of on-going investigation.
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A 2D Field Theory Equivalent to 3D Gravity
with No Cosmological Constant

Glenn Barnich, Andrés Gomberoff, and Hernán A. González

Abstract In (2C1) space-time dimensions the Einstein theory of gravity has no
local degrees of freedom. In fact, in the presence of a negative cosmological term,
it is described by a (1C1) dimensional theory living on its boundary: Liouville
theory. It is invariant under the action of the two-dimensional conformal group,
which, in the gravitational context, corresponds to the asymptotic symmetries of
asymptotically AdS geometries. In the flat case, when the cosmological term is
turned off, a theory describing gravity at the boundary is absent. In this note we
show that, in the Hamiltonian setup, such a theory may be constructed. The theory
is BMS3 invariant, as it should, corresponding to the asymptotic symmetry group of
an asymptotically flat spacetime.

1 Introduction

In the last 30 years, gravitational theories in 2C1 spacetime dimensions have
attracted much attention. A celebrated advance in this field is due to Brown and
Henneaux in [1], where they found that asymptotically AdS spacetimes have more
symmetries than one expects. Instead of being symmetric under the SO.2; 2/ group
as one may have guessed, they turned out to be invariant under the whole conformal
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group in two dimensions, whose algebra gets centrally extended. This result is
reminiscent from what was obtained in the study of asymptotically flat spacetimes
where the group of asymptotic symmetries is much bigger than the Poincaré group
one would expect. It is the infinite dimensional BMS group [2–5].

Ten years after it was shown that, in the presence of a negative cosmological
term, Einstein–Hilbert gravity is described by Liouville theory [6], which is known
to be conformally invariant (see, for instance [7]).

In the present talk, which is based on the work originally published in [8], we are
going to show how we may take the limit of vanishing cosmological constant so that
a field theory of asymptotically flat gravity is obtained. Although this procedure may
appear to be trivial, it turns out that the limit is not well defined in the Lagrangian
action when keeping a finite value of Newton’s constant G. We will show, however,
that in the Hamiltonian formulation a well defined limit may be taken for any value
of G.

2 Liouville Theory and Gravity in 3D Spacetime

Liouville theory is defined by the action on the Minkowskian cylinder with time
coordinate t , angular coordinate � 2 Œ0; 2�/

I Œ'� D
Z

dtd�

1
2

P'2 � 1

2l2
' 02 � �

2�2
e�'
�
: (1)

The action has three independent parameters, namely � , � and l . However, � is
irrelevant in the sense that with a redefinition of the field ' ! 'Cconst., its value
may be shifted to any non-zero value. The theory is equivalent to (2C1)-dimensional
gravity [6], when its constants are related to the gravitational ones by,

G D �2l2

32�
; � D � 1

l2
; (2)

where� is the cosmological constant and G is Newton’s constant.
Liouville theory (1) is known to be invariant under the conformal group. Properly

normalized, the corresponding Virasoro algebra gets a central extension [7],

c D 48�

�2l
: (3)

Written in terms of the gravitational parameters (2) this is precisely the
Brown–Henneaux central charge, cBH D 3l=2G.

It is clear, by inspection of (1), that the limit of vanishing cosmological constant
is not immediate if one wishes to keep G finite. Taking, l ! 1 keeping � and �
finite one obtains
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I Œ'� D
Z

dtd�

1
2

P'2 � �

2�2
e�'
�
: (4)

However this leads to G ! 1 and a vanishing central charge c D 0. The resulting
theory is invariant under bms3 transformations, but it is not (2C1)-dimensional
gravity. We will show in the next section how the limit may be taken using the
Hamiltonian formulation keeping G finite. We will also show why this limit may
not be taken in the Lagrangian formulation.

3 Hamiltonian Formulation and the Flat Limit

The Hamiltonian action of Liouville theory is,

I Œ'; �� D
Z

dtd�


� P' � 1

2
�2 � 1

2l2
' 02 � �

2�2
e�'
�
: (5)

When minimizing the action with respect to the canonical momentum � one obtains

� D P'; (6)

as expected. One may recover the Lagrangian action (1) by replacing the
momentum (6) and putting it back in (5).

As is well-known, Liouville theory is invariant under two-dimensional conformal
transformations[7]. In the Hamiltonian framework they are generated by charges
satisfying a centrally extended conformal algebra, with a central charge given by (3).
We are going to skip the derivation in this note. It is a well known result, and a
derivation using the notation and normalizations used here may be found in [8].

We now study the limit l ! 1 in the Hamiltonian version of the theory (5).
We may first consider the limit discussed at the end of Sect. 2, which leads us to a
theory of vanishing central charge, of no use for gravity unless one wishes to study
some strong coupling limit in which G ! 1 is relevant. Doing so, the third term
of (5) drops out. Varying the action with respect to � one again obtains (6), which
once inserted back in the action, produces (4).

In the Hamiltonian version, however, there is a second way of proceeding with
the flat limit, leading us to a theory which is equivalent to (2C1)-dimensional gravity
for generic, finite G. We first rescale the field and its momentum through, ' D l˚;

� D ˘=l; and define ˇ D �l; � D �l2. We obtain,

I Œ˚;˘� D
Z

dtd�


˘ P̊ � 1

2l2
˘2 � 1

2
˚ 02 � �

2ˇ2
eˇ˚

�
: (7)

Since the rescaling of variables is a canonical transformation, the Poisson algebra of
the conformal group keeps its form and the central charge does not change. We now
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take the limit l ! 1 keeping ˇ and � fixed. Note that the second term in the
action is similar to that of a particle of mass l , so that the limit mimics the one of an
ultra-massive particle,

I Œ˚;˘� D
Z

dtd�


˘ P̊ � 1

2
˚ 02 � �

2ˇ2
eˇ˚

�
: (8)

This action has no Lagrangian counterpart. Varying with respect to ˘ gives no
algebraic equation for it, and therefore the action cannot be reduced to a Lagrangian,
second order form. The field ˘ is now a Lagrangian multiplier. The constant G is
kept finite, because ˇ D p

32�G is held fixed in the limit. The centrally extended
Virasoro algebra becomes the centrally extended BMS3 algebra in the way it was
first found in [5]. Note that here there is a subtlety. The generators of BMS3 must
be properly rescaled before taking the limit, so that the central extension becomes
proportional to c=l , which is finite in the limit as one may see from (3) (see also[8]
for details).

The action (8), with ˇ D p
32�G and arbitrary � is equivalent to Einstein

gravity with no cosmological constant in the same way Liouville theory is when
the cosmological constant is turned on.1 The theory is invariant under the BMS3
group, as it must be, because it is the asymptotic symmetry group of asymptotically
flat three-dimensional gravity. The particular form the fields are transformed by the
group may be found in [8].
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The Holographic Ricci Dark Energy
and Its Possible Doomsdays

Moulay-Hicham Belkacemi, Mariam Bouhmadi-López, Ahmed Errahmani,
and Taoufiq Ouali

Abstract It is well known that the holographic Ricci dark energy can induce some
future doomsdays in the evolution of the universe. Here we analyse the possible
avoidance of those doomsdays by invoking a modification to general relativity on
the form of curvature effects.

1 Introduction

A possible approach to explain the current acceleration of the universe is based
on the holographic dark energy [1, 2]. Such a phenomenological model is based
on the idea that the energy density of a given system is bounded by a magnitude
proportional to the inverse square of a length characterising the system [3,4]. When
this principle is applied to the universe as a whole, we obtain the holographic dark
energy [1, 2]. It turns out that there are many different ways of characterising the
size of the universe and one of them is related to the inverse of the Ricci curvature
of the universe. When the size of the universe is characterised in such a way, we end
up with the holographic Ricci dark energy (RDE) model [5], whose energy density
reads:

�H D 3ˇM2
P

�
1

2

dH2

dx
C 2H2

�
; (1)
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where MP is the Planck mass, x D � ln.z C 1/ D ln.a/, z is the redshift and ˇ is a
dimensionless parameter that measures the strength of the holographic component.

A spatially flat Friedmann–Lemaître–Robertson–Walker (FLRW) universe filled
with this kind of matter accelerates and therefore the RDE can play the role of
dark energy on the Universe. It turns our that the asymptotic behaviour of the
Universe depends crutially on the value acquired by ˇ: (a) if ˇ � 1=2 the universe
is asymptotically de Sitter, otherwise (b) the universe faces a big rip singularity [6]
in its future evolution.

Our main purpose in this paper is to see if we can appease the big rip appearing
in some cases on the RDE by invoking some infra-red and ultra-violet curvature
corrections. This two corrections can be quite important to remove the big rip
singularity which takes place on the future and at high energy. The curvature
corrections will be modeled within a five-dimensional brane-world model with an
induced gravity (IG) term on the brane and a Gauss–Bonnet term in the bulk [7].

2 The RDE Model with Curvature Corrections

We consider a DGP brane-world model, where the bulk action contains a GB
curvature term. The bulk corresponds to two symmetric pieces of a five-dimensional
(5d) Minkowski space-time. The brane is spatially flat and its action contains an IG
term. We assume that the brane is filled with matter and RDE. Then, the modified
Friedmann equation reads [7]:

H2 D 1

3M2
P

�C 


rc

�
1C 8˛

3
H2

�
H; (2)

whereH is the brane Hubble parameter, � D �mC�H is the total cosmic fluid energy
density of the brane which can be described through a cold dark matter component
(CDM) with energy density �m and an holographic Ricci dark energy component
with energy density �H. The parameters rc and ˛ correspond to the cross over scale
and the GB parameter, respectively, both of them being positive. The parameter 
 in
(2) can take two values: 
 D 1, corresponding to the self-accelerating branch in the
absence of any kind of dark energy [7]; and 
 D �1, corresponding to the normal
branch which requires a dark energy component to accelerate at late-time (see for
example [8–10]). For simplicity, we will keep the terminology: (a) self-accelerating
branch when 
 D 1 and (b) normal branch when 
 D �1.

The modified Friedmann equation (2) can be rewritten as

dE

dx
D �˝me

�3x C .2ˇ � 1/E2 C 2

p
˝rc .1C˝˛E

2/E

ˇE
; (3)
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Fig. 1 Plot of the parameters
ˇ

˙
and ˇlim, defined in (7)

and (6), respectively, versus
the parameter ˝˛ . We have
used the values q0 � �0:7;
and ˝m � 0:27. The
parameter ˇlim defines the
border line between the
normal branch (ˇlim < ˇ) and
the self-accelerating branch
(ˇ < ˇlim)

where E.z/ D H=H0 and

˝m D �m0

3M2
PH

2
0

; ˝rc D 1

4r2cH
2
0

; and ˝˛ D 8

3
˛H2

0 (4)

are the usual convenient dimensionless parameters and the subscripts 0 denotes the
present value (we will follow the same notation as in [8, 10, 11]). By evaluating
the modified Friedmann equation at present and imposing that the brane is currently
accelerating, we obtain a constraint on the parameterˇ which depends on the chosen
brane

�
ˇ < ˇlim for 
 D C1;
ˇ > ˇlim for 
 D �1; (5)

where

ˇlim D 1 �˝m

1 � q0
: (6)

An estimation of ˇlim can be obtained as follows: the brane would behave roughly (to
be consistent with the present observations) as the�CDM leading to ˇlim � 0:43.

Even though the modified Friedmann equation (3) cannot be solved analytically,
we can obtain the future asymptotic behaviour of the brane which reads: (a) If ˇ <
ˇlim or ˇ� � ˇ, the brane is asymptotically de Sitter. (b) If ˇlim < ˇ < ˇ�, the
brane faces a big freeze singularity in its future [12], where (see also Fig. 1)

ˇ˙ D 1C˝˛ ˙ 2
p
˝˛.1 �˝m/

2
	
1C˝˛ ˙ p

˝˛.1 � q0/

 : (7)

We have completed and confirmed those results by solving numerically the
cosmological evolution of the brane. We refer the reader to [11] for more details. Our
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analysis shows that even though the infra-red and ultra-violet effect can appease the
big rip appearing on the RDE model, it cannot remove them completely. We would
like as well to point out that when the GB term is switched off a little rip event [13]
can show up which is much milder that a big rip or a big freeze. The little rip has
been previously found on brane-world model [14].

3 Conclusions

We present an HRD energy brane-world model of the Dvali–Gabadadze–Porrati
scenario with a GB term in the bulk. The reason for invoking curvature corrections,
for example through a brane-world scenario, is to try to smooth the doomdays
present on a standard four-dimensional HRD energy model. It turns out that the
model presented here can only partially remove those doomsdays.
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Black-Hole Lattices

Eloisa Bentivegna

Abstract The construction of black-hole lattices, first attempted by Richard
Lindquist and John Wheeler in 1957, has recently been tackled with renewed
interest, as a test bed for studying the behavior of inhomogeneities in the context of
the backreaction problem. In this contribution, I discuss how black-hole lattices can
help shed light on two important issues, and illustrate the conclusions reached so
far in the study of these systems.

1 Introduction

The first appearance of the concept of a periodic arrangement of black holes can
be found in [1]. There, the authors discuss a strategy to stitch together patches of
the Schwarzschild solution so as to construct a space with a discrete translational
symmetry but some degree of spatial inhomogeneity.

In their work, the stitching prescription does not lead to a global solution of
Einstein’s equation. Accepting the constraint violations, however, buys one some
freedom in the specification of such prescription, which the authors use to impose
that the time evolution of a suitably-defined scale factor in this space follows that of
a universe filled with dust of the same total mass. One then has a simple, analytical
test bed in which to measure the effect of inhomogeneities in, say, the optical
properties of a cosmological model. In this work and in subsequent ones [2], it was
pointed out how an exact initial-data construction could be obtained.

A few years ago, Clifton and Ferreira extended this model, originally limited to
the positive-curvature case, to zero and negative curvature [3]. Again, the junction
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conditions were designed to reproduce an assigned time evolution, and the models
were used to explore the propagation of null rays in an inhomogeneous universe.

Recently, the first exact initial data describing a black-hole lattice have been
analyzed [4] and evolved in full numerical relativity [5]. This has helped make
progress on two fronts:

1. From a conceptual point of view, it has clarified some of the conditions under
which black-hole solutions can be glued together; this gives some insight into
the requirements for constructing a metric tensor for the universe starting from
the basic building block of a spherically-symmetric, isolated object. It turns out
that these conditions are remarkably close to the conditions for the existence of
homogeneous, periodic solutions of Einstein’s equation. The requirements that
periodic boundary conditions impose on the Hamiltonian constraint are likely at
the root of this correspondence.

2. From a practical standpoint, the time evolution of a lattice gives one example of
the behavior of inhomogeneities in a cosmological setting and in the non-linear
regime, thereby serving as a nice complement to perturbative studies and the
averaging framework. Surprisingly, even the time development of these lattices
remains in some sense close to the counterpart model in the dust Friedmann–
Lemaître–Robertson–Walker (FLRW) class.

In the following two sections, I will discuss the initial-data construction and
illustrate the time evolution of a black-hole lattice with positive conformal curvature.

2 The Construction of Exact Black-Hole-Lattice Initial Data

As pointed out in [1], in order to construct an exact black-hole lattice one should
directly tackle the Einstein constraints. Working in the conformal transverse-
traceless decomposition, these read:

Q
 �
QR
8
 � K2

12
 5 C 1

8
QAij QAij �7 D �2�  5 � (1)

QDi
QAij � 2

3
 6 Q� ij QDiK D 0 (2)

Let us focus on the hamiltonian constraint first. If one integrates this equation over
one of the cells of the black-hole lattice, the following condition is obtained:

Z

D

 QR
8
 C 1

12
K2  5 � 1

8
 �7 QAij QAij

!
p Q� d3x D 2�˙N

iD1mi (3)

where mi represent the masses of the black holes contained in the cell. This con-
dition implies that QR and Kij cannot both be zero. In other words, conformally-flat
lattices do not admit a time-symmetric spatial hypersurface; vice versa, lattices with
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Fig. 1 A two-dimensional
section of the N D 8 S3

black-hole lattice, embedded
in three dimensions

aK D 0 spatial hypersurface must be conformally curved. This mirrors the identical
property of the FLRW class.

The two simplest roads to the construction of a periodic black-hole lattice are
thus the following:

• ChoosingK D 0, and solving:

Q
 �
QR
8
 D 0 (4)

Equation (3) implies that R > 0, so that the spacetime can be foliated by
conformally-S3 hypersurfaces. As shown in [2], this equation can be solved
exactly. Furthermore, it is linear, so one can simply superimpose known solutions
to generate new ones. Notice, however, that if one is interested in regular lattices,
only six possible arrangements of black holes are possible, corresponding to the
six regular tessellations of S3, which consist of N D 5; 8; 16; 24; 120 and 600
cells.

• Choosing QR D 0, and solving:

Q
 � K2

12
 5 C 1

8
QAij QAij �7 D 0 (5)

QDi
QAij � 2

3
 6 Q� ij QDiK D 0 (6)

This system is more difficult to solve, as the Hamiltonian constraint is non-linear
and the momentum constraint is not an identity as in the previous case. For a
numerical approach to the problem, see [6].

3 The Evolution of an S 3 Lattice of Eight Black Holes

In [5], the initial data for the N D 8 S3 lattice (a section of which is shown in
Fig. 1) has been evolved in time for approximately one third of the corresponding
FLRW recollapse time. A scale factor can be defined via the proper length of one of
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the cell edges; its evolution is shown in Fig. 2. This scale factor is compatible with
the FLRW result in this entire time window; eventually, though, due to the gauge
condition used to evolve this system, reaching later and later values of the proper
time is subject to an increasing numerical error, and eventually becomes impossible.
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Axial Quasi-normal Modes of Neutron Stars
with Exotic Matter

J.L. Blázquez-Salcedo, L.M. González-Romero, and F. Navarro-Lérida

Abstract We investigate the axial w quasi-normal modes of neutron stars for 18
realistic equations of state in order to study the influence of hyperons and quarks
on the modes. The study has been developed with a new method based on Exterior
Complex Scaling with variable angle, which allow us to generate pure outgoing
quasi-normal modes. A complete study of the junction conditions has been done.
We have obtained that w-modes can be used to distinguish between neutron stars
with exotic matter and without exotic matter for compact enough stars.

1 Quasi-normal Modes Formalism and Numerical Method

We will consider a spherical and static star. The matter inside of it is considered
to be a perfect fluid. Following the original papers (see reviews [1, 2]), we make
perturbations over the spherical static metric and the stress–energy tensor, taking
into account only the axial perturbations. After some algebra, it can be seen that
the perturbations satisfy the well-known Regge–Wheeler equation [3], both inside
and outside the star. The eigen-frequency of the axial mode is a complex number
! D !< C i!=. Inside the star an equation of state must be provided, so in general
also the static configuration must be solved numerically. Outside the star the metric
is known (Schwarszchild) and only the perturbation must be integrated.
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We are only interested in purely outgoing waves. In general a solution of
the Regge–Wheeler equation will be a composition of incoming and outgoing
oscillating waves. Because the outgoing wave diverges towards infinity, the purely
outgoing quasi-normal mode condition could only be imposed as a behavior far
enough from the star, but every small numerical error in the imposition of this
behavior will be amplified as we approach the border of the star, resulting in a
mixture of outgoing with ingoing waves. Note also that in general the exterior
solution will oscillate infinitely towards infinity. We have developed the following
method, based on the Colsys package [4], to deal with these difficulties. We make
use of previously well known techniques and new ones.

Exterior solution: We study the phase function (logarithmic derivative of the
Regge–Wheeler function), which does not oscillate. Hence, the differential equation
outside the star is reduced to a Riccati equation and we can compactify the radial
variable. The boundary condition must grant the outgoing wave behavior. In order to
impose a constringent enough condition, we make use of Exterior Complex Scaling
method [5] with variable angle, where the integration coordinate is considered to
be a complex variable. The principal advantage with respect other methods is that
in principle no assumption on the imaginary part (i.e. damping time) of the quasi-
normal mode is done.

Interior solution: The interior part of the solution is integrated numerically.
As we want to obtain realistic configurations, we implement the equations of
state in two different ways: (1) A piece-wise polytrope approximation, done by
Read et al. [6], in which the equation of state is approximated by a polytrope
in different density–pressure intervals. (2) A piece-wise monotone cubic Hermite
interpolation satisfying local thermodynamic conditions.

We generate two independent solutions inside of the star for the same static
configuration. These two solutions must be combined to match the exterior solution
with the appropriate junction conditions. We use Darmois conditions (continuity of
the fundamental forms of the matching hypersurface). This formulation allow us to
introduce surface layers of energy density on the border of the star, that allow us to
approximate the exterior crust as a thin layer enveloping the core.

Determinant method: The junction conditions can be used to construct what we
call the determinant method: We construct a matrix in terms of the derivatives of
the Regge–Wheeler function whose determinant must be zero only if the matching
conditions are fulfilled, i.e., when ! corresponds to a quasi-normal mode for the
static configuration integrated. The matrix is calculated using both independent
solutions in the interior of the star together with the exterior phase function.

This method has been successfully extended to study polar modes of realistic
neutron stars. These results will be presented elsewhere.
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2 Numerical Results

We have made several tests on our method successfully reproducing data from
previous works for axial modes. As an example, we reproduce the results from [7]
with a precision of 10�7. In this section we will present our results for new realistic
EOS. Using the parametrization presented by Read et al. [6], we can study the 34
equations of state they considered. We have used, following their notation, SLy,
APR4, BGN1H1, GNH3, H1, H4, ALF2, ALF4. After the recent measurement of
the 1:97Mˇ for the pulsar PSR J164-2230 [8], several exotic matter EOS have
been proposed satisfying this condition. We have considered the following ones
using the cubic Hermite interpolation: two EOS presented by Weissenborn et al.
with hyperons in [9], we call them WCS1 y WCS2; three EOS presented by
Weissenborn et al. with quark matter in [10], we call them WSPHS1, WSPHS2,
WSPHS3; four EOS presented by L. Bonanno and A. Sedrakian in [11]; we call
them BS1, BS2, BS3, BS4; and one EOS presented by Bednarek et al. in [12],
we call it BHZBM.

Empirical relations between the frequency and damping time of quasi-normal
modes and the compactness of the star can be useful in order to use future
observations of gravitational waves to estimate the mass and the radius of the
neutron star, as well as to discriminate between different families of equations of
state. In top of Fig. 1 we present the frequency of the fundamental mode scaled to
the radius of each configuration. The softest equations of state that include hyperon
matter, H1 and BGN1H1, present a quite different behavior than the rest of EOS
considered. Nevertheless, as the detection of the recent 2Mˇ pulsar suggest, these
two particular EOS cannot be realized in nature.

Another exception is found in pure quark matter stars (WSPHS1-2 EOS). Their
behavior is clearly differentiated from the rest because of the different layer structure
found at the exterior of the star.

In general, for hyperon matter EOS and hybrid stars, we obtain linear relations
between the scaled frequency and the compactness. These relations could be used,
applying the technique from [13], to measure the radius of the neutron star and
constrain the equation of state.

We plot at the bottom left of Fig. 1 a new phenomenological relation between
the real part and the imaginary part of the frequency of the w quasi-normal
modes valid for all the EOS. We plot N!R D 2� 1p

pc.cm�2/

103

c
!.Khz/ and N!I D

1p
pc.cm�2/

106

c
1

	.�s/
. Although the empirical relation between N!R and N!I is quite

independent of the EOS, the parametrization of the curve is EOS dependent. So
a possible application of this empirical relation is the following. If the frequency
!.Khz/ and the damping time 	.�s/ are known, we can parametrize a line defining
N!R and N!I with parameter pc using the observed frequency and damping time. The
crossing point of this line with the empirical relation presented in the bottom left
of Fig. 1 gives us an estimation of the central pressure pc independent of the EOS.
Now, we can check which EOS is compatible with this pc , i.e., which one have
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Fig. 1 Top: scaled frequency of the fundamental wI mode vs M/R for stars with hyperon (left)
and quark matter (right). Bottom left: all w-modes in units of the central pressure for all EOS and
different central pressures. Bottom right: scaled frequency of the fundamental wII mode vs e2�.R/

the measured wI0 mode near the crossing point for the estimated central pressure.
Hence, this method could be used to constrain the equation of state. Note that if
mass and radius are already measured, we would have another filter to impose to the
EOS.

Also, the precision of our algorithm allows us to construct explicitly the universal
low compactness limiting configuration for fundamental wII modes (bottom right of
Fig. 1) aroundM=R D 0:106 for which the fundamental wII mode vanishes [14].

We also study the impact of the core-crust transition pressure on the quasi-
normal mode spectrum. We obtain that variations of the transition pressure from
1032dyn=cm2 to 1033dyn=cm2 affect the frequency and damping time order 0:1%.
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The Quantum Scalar Field in Spherically
Symmetric Loop Quantum Gravity

Enrique F. Borja, Iñaki Garay, and Eckhard Strobel

Abstract We consider the quantization of a spherically symmetric gravitational
system coupled to a massless scalar field within the loop quantum gravity frame-
work. Our results rely on the uniform discretizations method developed during the
last years. We minimize the associated discrete “master constraint” using a trial
state whose gravitational part is peaked around the classical Schwarzschild solution.

1 Introduction

Loop Quantum Gravity (LQG) presents a framework towards a canonical quantiza-
tion of general relativity. It provides a rigorous, well defined and non-perturbative
mathematical formulation of the kinematical sector of the theory, with a suitably
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built Hilbert space and rigorous definitions for quantum operators with a clear
geometrical meaning (areas and volumes) [1].

Although LQG showed remarkable results, especially concerning microscopic
pictures of the early universe and black holes, the dynamics of the full theory still
faces problems. The method of uniform discretizations is a promising approach
to obtain a deeper understanding on the LQG dynamics [2]. Here, we consider a
gravitational system with spherical symmetry coupled to a massless scalar field,
and we proceed to minimize the expectation value of the “Master Constraint” (that
plays the role of the Hamiltonian in the discrete theory) over a trial state built as
a tensor product of a quantum state for the gravitational part that corresponds to a
Gaussian peaked around the classical Schwarzschild metric, and the Fock vacuum
of the matter sector of the theory [3–5].

2 Uniform Discretizations

The uniform discretizations method introduced in [2] is a method to quantize totally
constrained systems. As the master constraint program [6], it is an approach to
find an alternative for the Dirac quantization used in canonical LQG. In general,
discretization of constraints and evolution equations does not preserve the original
constraint algebra and the systems become second class constrained systems. The
objective is to construct discretized theories with a well defined continuum limit.

We choose a discretization such that it satisfies the following time evolution for
a discrete variable An

AnC1 D ef �;H
gAn WD An C fAn;H
g C 1

2
ffAn;H
g ;H
g C : : : (1)

where H

 is the discrete “master constraint”, H
 D 1

2

PM
j .�



j /
2; given in terms

of the discretized constraints �
j , with 
 an abstract discretization parameter that
will be, in our context, a spatial lattice separation. Notice that the master constraint
generates no time flow (there is no evolution if the constraints are fulfilled exactly).
As H
 is a constant of motion, we can fix its value to H


 DW ı2=2, where ı can be
interpreted as the size of the discrete time step of the evolution (1).

In the continuum limit we recover the constraint algebra of the continuum
theory, the usual evolution equations for the constraints and, in our case, the Master
constraint of LQG for our system.

3 Trial States and Expectation Value of the Master
Constraint for Spherically Symmetric Systems

We use the invariant connection formulation developed in [7] in order to consider the
constraints of a gravitational system with spherical symmetry coupled to a massless
scalar field. We take into account the “energy of the vacuum”, necessary to obtain
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a zero value of the expectation value of the matter constraint in the semiclassical
limit, by introducing an additional term in our Hamiltonian constraint [3, 4].

After gauge fixing, solving the diffeomorphism constraint Cr and applying the
uniform discretization method to the Hamiltonian constraintH.i/; we construct the
discrete master constraint H
 D P

i .H.i//
2.

Now, in order to compute the expectation value of the master constraint, we
construct a trial state. We consider a polymeric Hilbert space for the gravitational
part (analogous to the one in Loop Quantum Cosmology [8]) and a Fock Hilbert
space for the matter part. Then we write the trial state as

j� trial
� i D j� grav

� i ˝ j0iI
where j� grav

� i is a Gaussian with width � centered around the Schwarzschild metric,
and j0i is the Fock vacuum state of the scalar field. Notice that this decomposition
is only possible for the vacuum state; for higher excitation one would expect
backreaction.

The Fock vacuum is constructed using the matter part of the Hamiltonian
constraint OHmatt.i/. It contains operators acting both on the gravitational part and
on the matter part, so we obtain the effective matter Hamiltonian as

OH eff
matt D h� grav

� j OHmattj� grav
� i:

Going back to the continuum limit (it is easier to solve the differential equations of
motion) and performing a Fourier-like transformation, we construct the creation and
annihilation operators for the matter sector. Finally we define the Fock vacuum as
usual (the state annihilated by the annihilation operator).

At this point, the expectation value of the Master constraint h� trial
� j OHj� trial

� i can
be computed. In the Fig. 1 we plot this expectation value. We observe that the master
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constraint drops very fast for lattice spacings larger than the Planck scale. As in the
Minkowski case [4], we expect the master constraint to increase again because of
the break down of the approximation for 
 > 10�23 cm. So we can conclude that
there is a minimum around 
 � 10�23 cm. Therefore, we can construct the vacuum
state for our minimally coupled system also in the Schwarzschild case [3].

4 Conclusions

We explored an approximation for the vacuum state of a scalar field coupled
to gravity with spherical symmetry within a Loop Quantum Gravity framework.
We focused on the Schwarzschild spacetime for the gravitational sector and we
employed the method presented in [4] for the Minkowski case. The fact that the
techniques already used there are also valid for the Schwarzschild case, provides a
consistency proof of the method.

The vacuum for the coupled system is constructed as the direct product of
the Fock vacuum state for the scalar field and a Gaussian centered around the
classical Schwarzschild solution for the gravitational sector. In order to deal with
the dynamics, the uniform discretization technique is used. This setting allows us to
develop a minimization of the expectation value of the (discrete) master constraint
of the system, after the construction of the Fock vacuum of the matter sector.

There are several ways to extend the results presented here. For example,
performing a polymeric quantization for the coupled system, or trying to work
out this computation avoiding the gauge fixing of the diffeomorphism constraint.
Although these options would clearly rise the technical complexity of the problem,
a deeper understanding of this setting would provide us with a suitable vacuum
state in this context, opening the possibility of performing a detailed study of the
Hawking radiation within the LQG framework.
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The Spectrum of Gravitational Waves
in an f .R/ Model with a Bounce

Mariam Bouhmadi-López, João Morais, and Alfredo B. Henriques

Abstract We present an inflationary model preceded by a bounce in a metric f .R/
theory. In this model, modified gravity affects only the early stages of the universe.
We analyse the predicted spectrum of the gravitational waves in this scenario using
the method of the Bogoliubov coefficients. We show that there are distinctive
(oscillatory) signals on the spectrum for very low frequencies; i.e., corresponding
to modes that are currently entering the horizon.

1 Introduction

We propose a bouncing scenario [1] within the context of a metric f .R/ theory [2]:

S D 1

2�2

Z
d4x

p�gf .R/C S.m/: (1)

The bounce we will consider in our model is followed by an inflationary era which
is asymptotically de Sitter where, in addition, the gravitational action approaches
the Hilbert–Einstein action on that regime, such that the modification to Einstein’s
General Relativity (GR) affects exclusively the very early universe, around the
bounce and a few e-folds after that. We will constrain the model obtaining the
spectrum of the stochastic gravitational fossil as would be measured today.
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Fig. 1 These plots show: (left) the behaviour of f .R/ as a function of R=H2
inf (see the blue curve)

and linear approximation R�6H2
inf, well during inflation (see the red curve); (right) the behaviour

of fR (see the continuous curve) and fRR (see the dashed curve) as functions of R=H2
inf

2 Model for the Early Universe

Inspired on the de Sitter solution for a closed space-time, we define the scale factor
around the bounce as:

a.t/ D ab cosh .Hinft/ ; (2)

where a.t/ is the scale factor, ab is a constant quantifying the size of the universe at
the bounce. The parameter Hinf is related to the energy scale of inflation just after
the bounce.

In a Friedmann–Lemaître–Robertson–Walker (FLRW) universe with a spatially
flat metric and the scale factor defined as in (2), the minimization of the f .R/
action (1) leads to a second order differential equation for the function f . Solving
this equation in conjunction with appropriate physical constraints gives [3]:

f .r/ D 2H2
inf

p
r � 3 cos

"p
3

2

�
� � arccos

9 � r
3

�
� arccos

r
3

2

r � 6
r � 3

#

: (3)

In the above equation r 	 R=H2
inf.

3 Energy Spectrum of the Gravitational Waves

The spectrum of the gravitational waves is determined using the method of the
continuous Bogoliubov coefficients ˛ and ˇ, as in [4]. The graviton density of the
universe is given by jˇj2, while the dimensionless logarithmic energy spectrum of
the gravitational waves (GW) of angular frequency ! is defined at the present time
�0 as [5]:

˝GW .!; �0/ D „�2
3�2c5H2.�0/

!4jˇ.�0/j2 (4)
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Fig. 2 These plots show the spectra of the energy density of GW at present time: (top left) obtained
with an f .R/ treatment for the perturbations (blue continuous curve) and a GR treatment for the
perturbations (red dashed curve). Einf D 1:5	1016 GeV. tini D �arccosh.10/H�1

inf . ab D 2	103.
(Top right) obtained in an f .R/ treatment for different values of ab . The value of ab increases
from the red curve to the blue curve as: ab D 2 	 102; ab D 2 	 103; ab D 2 	 104; ab D
10 	 105. ab D 10 	 106. Einf D 1:5 	 1016 GeV. tini D �arccosh.10/H�1

inf . (Bottom left)
obtained in an f .R/ treatment for different values of tini. The value of tini increases in absolute
value from the red curve to the blue curve as: tini D �arccosh.10/H�1

inf ; tini D �arccosh.20/H�1
inf ;

tini D �arccosh.50/H�1
inf ; tini D �arccosh.100/H�1

inf . Einf D 1:5 	 1016 GeV. ab D 2 	 103.
(Bottom right) obtained in an f .R/ treatment for different values of Einf. A comparison is made
between the results obtained with a fixed value of ab (continuous curves) and a fixed value of
abHini (discontinuous curves). The value of Einf increases from the red curve to the blue curve:
Einf D 1:5 	 1014 GeV; Einf D 0:5 	 1015 GeV; Einf D 1:5 	 1015 GeV; Einf D 0:5 	 1016 GeV;
Einf D 1:5	 1016 GeV. .aini D 10ab . ab D 2	 103/

To calculate the evolution of the gravitational waves, we express the continuous
Bogoliubov coefficients in terms of the variables X and Y , see [6, 7], which obey
the set of differential equations:

X 00 D
�
k2 � z00

z

�
X; and X 0 D �ikX: (5)

Here, k is the wave-number, a prime indicates a derivative with respect to the
conformal time � (a D dt=d�) and z 	 a

p
fR. The differential equations (5) are

integrated from an initial time tini, set before the bounce, until the present time.
We describe the late time evolution of the universe in a GR setup, using the�CDM
model [8] complemented with a radiation phase and making the connection between
the f .R/ driven early inflation and the radiation phase with a model of a modified
Generalized Chaplygin Gas suitable for the early universe [7]. The results obtained
for the GW spectra are shown in Fig. 2.
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4 Conclusions

The existence of the bounce in the early universe affects the spectrum of GWs
only in the low frequency range, .10�12 Hz, where various peaks appear whose
position and intensity depend on the parameters of the mode. The fact that the
oscillatory structure appears in the spectra of (a) the GR treatment and (b) the
f .R/ treatment suggests it is not a consequence of the effects of f .R/-gravity.
Similar oscillations have been obtained in works of loop quantum cosmology first
pointed out by Afonso et al. [9]. Due to the low energy density of the cosmological
GW’s, the results obtained in this work are hard to be detected in the near future
(see Fig. 2 of [10] and Fig. 6 of [11]). The detection of the B-mode polarization of
the CMB radiation seems to be the best candidate to obtain information about the
cosmological GW’s [12].
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On the Isotropization of a 3-Brane
in an Extra-Dimensional Tolman–Bondi
Universe

Philippe Brax, José Pedro Mimoso, and Nelson Nunes

Abstract We report here on the results of Brax et al. (Phys. Rev. D 85:123516,
2012) where we consider the dynamics of a 3-brane embedded in an extra-
dimensional Tolman–Bondi Universe where the origin of space plays a special role.
We study the mirage cosmology on the probe brane, resulting in an inhomogeneous
and anisotropic four dimensional cosmology where the origin of space is also
special. We show that the induced geometry, which is initially inhomogeneous
and anisotropic, converges to an isotropic and homogeneous Friedmann–Lemaitre
4d space-time around the origin of the spatial geometry. For example, when a
3-brane is embedded in a 5d matter dominated model, the 4d dynamics around the
origin converge to a Friedmann–Lemaitre Universe in a radiation dominated epoch.
We analyse this isotropisation process and show that it is a late time attractor.

1 Introduction

In the last 15 years and in particular after the discovery of fundamental branes
and the building of phenomenological brane-world models [1] such as the one
constructed by Randall and Sundrum [2, 3], the emerging possibility of extra
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dimensional cosmology has been considered thoroughly. Recently, the discovery
of the acceleration of the Universe [4] has led to a reappraisal of the underly-
ing assumptions of cosmology. In particular, the cosmological principle, which
states that the Universe is homogeneous and isotropic on large scales, has been
under scrutiny [5]. As a result, Tolman–Bondi models of the Universe where the
earth would lie close to the centre of an inhomogeneous Universe have been
considered [6–8]. Along these lines, it seems to be timely to question the usual
hypothesis that extra dimensions should be a symmetric space.

Here we report on the results of [9] where we consider that the Universe is
a 3-brane embedded in an extra dimensional space with no homogeneity at all.
We study the dynamics of the brane as it responds to the extra-dimensional
cosmology. We assume that the brane is a probe and as a result we only investigate
the mirage cosmology on the brane.

We envisage a .d C 4/-dimensional TB universe with a pressureless fluid and
metric

ds2 D �dt2 C e�.r;t/dr2 CR2.r; t/d˝2
dC2 : (1)

where d˝2
dC2 D .d�1/2C˘dC1

iD1 sin2 � i .d�iC1/2 is the metric on the .dC2/-sphere.
Our choice of embedding corresponds to a two dimensional cross-section of the

.dC2/-sphere. Our 3-brane consists of the cone defined by the angles �3; : : : ; �n D
constant and the free angles �1 and �2. We consider a single uncharged 3-brane
described by its world-volume action

Sb D �T3
Z
d4x

p� Qg; (2)

where T3 is the brane tension and Qg�� is the induced metric on the brane related to

the extra dimensional metric GAB by Qg�� D GAB
@XA

@x�
@XB

@x�
where x� are the brane

coordinates and XA.x�/ the brane embedding.

The Lagrangian is L D �T3
h
�. Qgtt Qgrr � Qg2tr/. Qg�� Qg�� � Qg2��/

i1=2
. We expand

this Lagrangian to second order in the time and radial derivatives as we are interested
in low energy modes

L D �T3R2e�=2j sin �1j
�
@�1

@�

@�2

@�
� @�1

@�

@�2

@�

�

(

1C 1

2
R2e��

"�
@�1

@r

�2
C sin2 �1

�
@�2

@r

�2#

�1
2
R2

"�
@�1

@t

�2
� sin2 �1

�
@�2

@t

�2#)

(3)
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We concentrate on the case of a 3-brane embedding in a TB Universe where the
curvature effects measured by f .r/ can be neglected in the neighbourhood of the
origin. In this case, the extra-dimensional dynamics in a local patch becomes:

R.t; r/ D r

�
t

t0

�2=.nC1/
; e� D

�
t

t0

�4=.nC1/
; (4)

and we focus on the induced metric on the brane, noticing that �2 is cyclic, so
that @�A� D 0, where A� D @L

@.@��2/
, and adopting the simplifying assumptions:

Ar D A� D 0 implying that �2;r D �1;� D 0, e��=2�1;r `2 P�1, and At constant in time.
Then the induced metric takes the form

Qgtt D �1CR2. P�1/2 CR2 sin2 �1. P�2/2 ; Qgrr D e� ; Qg�� D R2 sin2 �1.�2;�/
2 ; (5)

Qg�� D R2.�1;�/
2 CR2 sin2 �1.�2;�/

2 ; Qg�� D R2 sin2 �1�2;��
2
;� : (6)

and we must solve

R�1 �
 

4
PR
R

C 1

2
P�C 2

PA�
A�

!
P�1 � 5

cos �1

sin �1
. P�1/2 D sin2 �1

P�2 P�2;�
�1;�

: (7)

We look for a solution for �1 locally such that �1 � �0 and we write

�1 D �0 � .At /2

2T3s sin3 �0M6
0 c

2
0r
4ge�=2R4

Z
1

f
d�C ˛.t/; (8)

where �0 is a fixed angle arising as an integrating constant, ˛.t/ an unknown
function yet to be determined and we have introducedA�.r; t; �/ D M6

0 r
4f .�/g.t/,

in order to separate the time and �-dependent contributions that make up A� . Here,
M0 is an unspecified energy scale. Notice that the r-dependence cancels if and only
ifAt varies in r4 as required by �2;r D 0. This leads to identify the constant of motion
At as .At /2 D 2T3M

6
0 c

2
0s sin3 �0r8g0, and write the solution for �1 as

�1 D �0 � g0

g
e��=2


 r
R

�4
�C ˛.t/; (9)

which is r-independent, hence satisfying our assumption on the small r variations
of �1. At t D t0 we have that �1 D �0��, and �2 D c0� . Separating the terms in �
from the ones of order zero in �, we obtain two second order differential equations
for ˛ and g

R̨ �
 

4
PR
R

C 1

2
P�C 2

Pg
g

!

P̨ D I˛; (10)
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where I˛ D �.2f1g0M6
0 =T3/e

�=2.g=g0/
3.R=r/4, and

Rg
g

�
� Pg
g

�2
C 4

RR
R

� 4

 PR
R

!2
C 1

2
R� �

 
Pg
g

C 4
PR
R

C 1

2
P�
!2

�
 

2
Pg
g

C 4
PR
R

C 1

2
P�
! 

Pg
g

C 4
PR
R

C 1

2
P�
!

D Ig; (11)

where Ig D �.4f 2
1 g0M

6
0 =T3/e

�.g=g0/
4.R=r/8

We find that the solution of the homogeneous g-equation is

g D g0

�
t0

t

�10=.nC1/ ˇˇ̌
ˇ
ˇ
1C c3

"�
t0

t

�.9�n/=.nC1/
� 1

#ˇˇ̌
ˇ
ˇ

�1=3
; (12)

where c3 is a constant. As long as the term within the power �1=3 does not vanish
(which only depends on the initial conditions), the asymptotic behaviour of the
homogeneous solution is

g � �gt
�10=.nC1/; (13)

where �g is a constant. Using this result one finds that the asymptotic behaviour of
˛ is

˛ � �˛t
.n�9/=.nC1/ C ˛1; (14)

where �˛ and ˛1 are constants, i.e., for n < 9, ˛ converges to a constant at infinity.
Hence we find that the asymptotic metric is isotropic.

In [9] it is shown that this solution is also a global attractor. The global solution
is valid at infinity and around each �0 it is identical to the one obtained from (12)
with c3 D 0. (For more details the reader is kindly referred to [9]).

Summing up our results, the mirage cosmology on the brane reveals that the
late time behaviour metric on the brane becomes isotropic and homogeneous in the
vicinity of the origin, where the effects of curvature in the bulk can be neglected,
even though the initial condition were not so. In this work we have only analysed
the mirage case where matter on the brane is subdominant and the dynamics are
governed by the embedding of the brane in the time-dependent extra dimensional
background. The coupling between matter on the brane and outside the brane in an
inhomogeneous context is left for future work.
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Phase Transitions in General Gravity Theories

Xián O. Camanho

Abstract Phase transitions between two competing vacua of a given theory are
quite common in physics. We discuss how to construct the space-time solutions that
allow the description of phase transitions between different branches (or asymp-
totics) of a given higher curvature gravity theory at finite temperature.

1 Introduction

Higher-curvature corrections to the Einstein–Hilbert (EH) action appear in any
sensible theory of quantum gravity as next-to-leading orders in the low energy
effective action and some, e.g. the Lanczos–Gauss–Bonnet (LGB) action [1], also
appear in realizations of string theory [2]. This particular quadratic combination
is specially important as any quadratic term can be brought to the LGB form,
R2 D R��˛ˇR

��˛ˇ �R��R�� CR2, via field redefinitions.
Non-perturbatively in the couplings and due to the non-linearity of the equations

of motion, these theories generally admit more than one maximally symmetric
solution,R��˛ˇ D �i.g�˛g�ˇ � g�ˇg�˛/; (A)dS vacua with effective cosmological
constants�i , whose values are determined by a polynomial equation [3],

� Œ�� 	
KX

kD0
ck �

k D cK

KY

iD1
.���i/ D 0: (1)
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K being the highest power of curvature (without derivatives) in the field equations.
c0 D 1=L2 and c1 D 1 give canonically normalized cosmological and EH terms,
ck�2 are the LGB and higher order couplings (see [4] for details).

Any vacua is a priori suitable in order to define boundary conditions for the
gravity theory we are interested in; i.e. we can define sectors of the theory as classes
of solutions that asymptote to a given vacuum [5]. In that way, each branch has
associated static solutions, representing either black holes or naked singularities,

ds2 D �f .r/ dt2 C dr2

g.r/
C r2 d˝2

d�2; f; g
r!1���! ��ir

2; (2)

and other metrics with the same asymptotics. The main aim of the present work
is that of studying transitions between the different branches. This is important to
determine whether a new non-perturbative instability occurs in the theory, some
branches decaying by bubble nucleation. This new kind of phase transitions have
been recently investigated in the context of LGB [6] and Lovelock gravities [7].

2 Higher Order Free Particle

The existence of branch transitions in higher curvature gravity theories is a concrete
expression of the multivaluedness problem of these theories. In general the canoni-
cal momenta,�ij , are not invertible functions of the velocities, Pgij [8]. An analogous
situation may be illustrated by means of a simple one-dimensional example [9].
Consider a free particle lagrangian containing higher powers of velocities,

L. Px/ D 1

2
Px2 � 1

3
Px3 C 1

17
Px4 (3)

In the hamiltonian formulation the equation of motion just implies the constancy
of the conjugate momentum, d

dt
p D 0. However, being this multivalued (also the

hamiltonian), the solution is not unique. Fixing boundary conditions x.t1;2/ D x1;2,
an obvious solution would be constant speed Px D .x2 � x1/=.t2 � t1/ 	 v but
we may also have jumping solutions with constant momentum and the same mean
velocity.

In our example, for mean velocities corresponding to multivalued momentum
(see Fig. 1) solutions are infinitely degenerate as the jumps may occur at any time
and unboundedly in number as long as the mean velocity is the same. Nevertheless,
this degeneracy is lifted once the value of the action is taken into account. The
minimal action path is the naive one for mean velocities outside the range covered
by the dashed line whereas in that interval it corresponds to arbitrary jumps between
the velocities of the two extrema. The effective Lagrangian (dashed line) is a convex
function of the velocities and the effective momentum dependence corresponds to
the analogous of the Maxwell construction from thermodynamics (see [7] for a
detailed explanation of this one-dimensional example).
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Fig. 1 Lagrangian and momentum for the action (3). For the same mean velocity v, the action is
lower for jumps between v

˙
(big dot) than for constant speed, the minimum action corresponding

to the value on the dashed line (effective Lagrangian)

3 Generalized Hawking–Page Transitions

In the context of General Relativity in asymptotically AdS spacetimes, the
Hawking–Page phase transition [10] is the realization that above certain temperature
the dominant saddle in the gravitational partition function comes from a black hole,
whereas for lower temperatures it corresponds to the thermal vacuum. The classical
solution is the one with least Euclidean action among those with a smooth Euclidean
section.

When one deals with higher curvature gravity there is a crucial difference that
has been overlooked in the literature. In addition to the usual continuous and
differentiable metrics (2), one may construct distributional metrics by gluing two
solutions corresponding to different branches across a spherical shell or bubble
[11,12]. The resulting solution will be continuous at the bubble—with discontinuous
derivatives, even in absence of matter. The higher curvature terms can be thought of
as a sort of matter source for the Einstein tensor. The existence of such jump metrics,
as for the one-dimensional example, is due to the multivaluedness of momenta in
the theory.

In the gravitational context, continuity of momenta is equivalent to the junction
conditions that need to be imposed on the bubble. In the EH case, Israel junction
conditions [13], being linear in velocities, also imply the continuity of derivatives
of the metric. The generalization of these conditions for higher curvature gravity
contain higher powers of velocities, thus allowing for more general situations.

Static bubble configurations, when they exist, have a smooth Euclidean contin-
uation. It is then possible to calculate the value of the action and compare it to all
other solutions with the same asymptotics and temperature. This analysis has been
performed for the LGB action [6] for unstable boundary conditions [3]. The result
suggests a possible resolution of the instability through bubble nucleation.

In the case of LGB gravity there are just two possible static spacetimes to be
considered in the analysis for the chosen boundary conditions; the thermal vacuum
and the static bubble metric, the usual spherically symmetric solution (2) displaying
a naked singularity. For low temperatures the thermal vacuum is the preferred
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solution whereas at high temperatures the bubble will form, as indicated by the
change of sign on the relative free energy. The bubble pops out in an unstable
position and may expand reaching the boundary in a finite time thus changing the
asymptotics and charges of the solution, from the initial to the inner ones.

Still, if the free energy is positive the system is metastable. It decays by
nucleating bubbles with a probability given, in the semiclassical approximation, by
e�F=T . Therefore, after enough time, the system will always end up in the stable
horizonful branch of solutions, the only one usually considered as relevant. This is
then a natural mechanism that selects the general relativistic vacuum among all the
possible ones, the stable branch being the endpoint of the initial instability.

4 Discussion

The phenomenon described here is quite general. It occurs also for general Lovelock
gravities [7] and presumably for more general classes of theories. In the generic
case, however, the possible situations one may encounter are much more diverse.
We may have for instance stable bubble configurations as opposed to the unstable
ones discussed above or even bubbles that being unstable cannot reach the boundary
of the spacetime. Other generalizations may include transitions between positive and
negative values of �i and even non-static bubble configurations.

Another situation one may think of is that of having different gravity theories on
different sides of the bubble. This has a straightforward physical interpretation if
we consider the higher order terms as sourced by other fields that vary across the
bubble. For masses above m2 > k�˙k a bubble made of these fields will be well
approximated by a thin wall and we may integrate out the fields for the purpose
of discussing the thermodynamics. If those fields have several possible vacuum
expectation values leading to different theories we may construct interpolating
solutions in essentially the same way discussed above. In this case the energy carried
by the bubble can be interpreted as the energy of the fields we have integrated out.
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Concordance Cosmology with Particle Creation

Saulo Carneiro

Abstract A constant-rate creation of dark particles in the late-time FLRW space-
time provides a cosmological model in accordance with precise observational tests.
The matter creation backreaction implies in this context a vacuum energy density
scaling linearly with the Hubble parameter, which is consistent with the vacuum
expectation value of the QCD condensate in a low-energy expanding spacetime.
Both the cosmological constant and coincidence problems are alleviated in this
scenario. We discuss the cosmological model that arises in this context and present
a joint analysis of observations of the first acoustic peak in the cosmic microwave
background (CMB) anisotropy spectrum, the Hubble diagram for supernovas of
type Ia (SNIa), the distance scale of baryonic acoustic oscillations (BAO) and the
distribution of large scale structures (LSS). We show that a good concordance is
obtained, albeit with a higher value of the present matter abundance than in the
standard model.

The gravitation of vacuum fluctuations is in general a difficult problem, since
their energy density usually depends on the renormalization procedure and on an
adequate definition of the vacuum state in the curved background. In the case of
conformal fields in de Sitter spacetime, the renormalized vacuum density is� � H4

[1–4], which in a low-energy universe leads to a too tiny cosmological term.
In the case we consider the vacuum energy of interacting fields, it has been

suggested that in a low energy, approximately de Sitter background the vacuum
condensate originated from the QCD phase transition leads to � � m3H , where
m � 150MeV is the energy scale of the transition [5–11]. These results are in fact
intuitive. In a de Sitter background the energy per observable degree of freedom
is given by the temperature of the horizon, E � H . For a massless free field this
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energy is distributed in a volume 1=H3, leading to a density � � H4, as above.
For a strongly interacting field in a low energy space-time, on the other hand,
the occupied volume is 1=m3, owing to confinement, and the expected density is
� � m3H .

Such a late-time variation law for the vacuum term can also be derived as
a backreaction of the creation of non-relativistic dark particles in the expanding
spacetime [12]. The Boltzmann equation for this process is

1

a3
d

dt

�
a3n

� D � n; (1)

where n is the particle number density and � is a constant creation rate. By taking
�m D nM , it can also be written as

P�m C 3H�m D ��m; (2)

whereM is the mass of the created particle.
Let us take, in addition to (2), the Friedmann equation

�m C� D 3H2; (3)

with the vacuum term satisfying the equation of state p� D ��. Using (2) and (3)
we obtain the conservation equation for the total energy,

P�C 3H.�C p/ D 0; (4)

provided we take

� D 2�H C �0; (5)

where �0 is a constant of integration.1 Since there is no natural scale for this
constant, let us make it zero. Then we have� D 2�H . This is the time-variation law
predicted for the vacuum density of the QCD condensate, with � � m3. Dividing
it by 3H2, we obtain

� D 3

2
.1 �˝m/H; (6)

where˝m D 1�˝� 	 �m=.3H
2/ is the relative matter density (for simplicity, we

are considering only the spatially flat case).

1Strictly speaking, this result is only exact if we neglect the conserved baryons in the balance
equations. Since baryons represent only about 5% of the total energy content, this can be
considered a good approximation.
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In the de Sitter limit (˝m D 0), we have � D 3H=2, that is, the creation rate is
equal (apart from a numerical factor) to the thermal bath temperature predicted by
Gibbons and Hawking in the de Sitter spacetime [13]. It also means that the scale
of the future de Sitter horizon is determined, through � , by the energy scale of
the QCD phase transition, the last cosmological transition we have. For the present
time we have, from (6) (with ˝m � 1=3), H0 � � � m3, and hence � � m6,
where H0 is the current Hubble parameter. The former result is an expression of
the Eddington–Dirac large number coincidence [14]. The later—also known as
Zeldovich’s relation [15]—gives the correct order of magnitude for �.

The corresponding cosmological model has a simple analytical solution, which
reduces to the CDM model for early times and to a de Sitter universe for
t ! 1 [16]. It has the same free parameters of the standard model and presents
good concordance when tested against type Ia supernovas, baryonic acoustic
oscillations, the position of the first peak of CMB and the matter power spectrum
[12,17–21]. Furthermore, the coincidence problem is alleviated, because the matter
density contrast is suppressed in the asymptotic future, owing to the matter
production [12, 20].

With � D 2�H we obtain, from the Friedmann equations, the solution [16–19]

H

H0

�
n	
1 �˝m0 C˝m0.1C z/3=2


2 C˝r0.1C z/4
o1=2

; (7)

where ˝m0 is the present relative matter density, and we have added conserved
radiation with present density parameter ˝r0. As discussed in [17–19], for non-
zero ˝r0 the expression (7) is an approximate solution, differing only 1% from the
exact one, since ˝r0 � 8 
 10�5`21. For ˝r0 D 0, the solution (7) is exact.

For early times we obtain H2.z/ D H2
0˝r0z4, and the radiation era is

indistinguishable from the standard one. On the other hand, for high redshifts the
matter density scales as �m.z/ D 3H2

0˝
2
m0z

3. The extra factor ˝m0—as compared
to the �CDM model—is owing to the late-time process of matter production. In
order to have nowadays the same amount of matter, we need less matter in the past.
Or, in other words, if we have the same amount of matter in the past (say, at the
time of matter-radiation equality), this will lead to more matter today. We can also
see from (7) that, in the asymptotic limit z ! �1, the solution tends to the de
Sitter solution. Note that, like the�CDM model, the above model has only two free
parameters, namely ˝m0 and H0. On the other hand, it can not be reduced to the
�CDM case except for z ! �1. In this sense, it is falsifiable, that is, it may be
ruled out by observations.

The Hubble function (7) can be used to test the model against background
observations like SNIa, BAO and the position of the first peak in the CMB spectrum
[17–19]. The analysis of the matter power spectrum was performed in [20],
where, for simplicity, baryons were not included and the cosmological term was
not perturbed. In a subsequent publication a gauge-invariant analysis, explicitly
considering the presence of late-time non-adiabatic perturbations, has shown that the
vacuum perturbations are indeed negligible, except for scales near the horizon [21].
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Table 1 2� limits to ˝m0 (SNe C CMB C BAO C LSS)

�.t/CDM �CDM

Test ˝m0 �2min=� ˝m0
a �2min=�

Union2 (SALT2) 0:420
C0:009
�0:010 1.063 0:235˙ 0:011 1.027

SDSS (MLCS2k2) 0:450
C0:014
�0:010 0.842 0:260

C0:013
�0:016 1.231

Constitution (MLCS2k2-17) 0:450
C0:008
�0:014 1.057 0:270˙ 0:013 1.384

We show in Table 1 the best-fit results for˝m0 (withH0 marginalized) with three
samples of supernovas: the SDSS and Constitution compilations calibrated with the
MLCS2k2 fitter, and the Union2 sample. For the sake of comparison, we also show
the best-fit results for the spatially flat �CDM model. We should have in mind that
the Union2 dataset is calibrated with the Salt2 fitter, which makes use of a fiducial
�CDM model for including high-z supernovas in the calibration. Therefore, that
sample is not model-independent and, in the case of the standard model, the test
should be viewed as rather a test of consistence. From the table we can see that
for the model with particle creation the concordance is quite good. For the samples
calibrated with the MLCS2k2 fitter it is actually better than in the �CDM case. As
anticipated above, the present matter density is higher than in the standard case.

With the concordance values of˝m0 in hand, we can obtain the age parameter of
the Universe. It is given by [16–19]

H0t0 D 2 ln˝m0

3.˝m0 � 1/ : (8)

In the case of the SDSS and Constitution samples, this leads to H0t0 D 0:97,
in good agreement with standard predictions and astronomical limits. For H0 �
70Km/(s.Mpc), we have t0 � 13:5Gyr.

Article note presented in Relativity and Gravitation: 100 years after Einstein in
Prague (Prague, June 2012). It is dedicated to the memory of Prof. Pedro Félix
González-Díaz.
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Quasinormal Modes from a Naked Singularity

Cecilia Chirenti, Alberto Saa, and Jozef Skákala

Abstract What should be the quasinormal modes associated with a spacetime
that contains a naked singularity instead of a black hole? In the present work
we address this problem by studying the scattering of scalar fields on a curved
background described by a Reissner–Nordström spacetime with q > m. We discuss
the necessary conditions for the well-posedness of the problem, and give some
numerical results for low l . The talk “Quasinormal modes from a naked singularity”
was presented at the Spanish Relativity Meeting 2012 and was based on the results
presented in Chirenti et al. (Phys. Rev. D 86:124008, 2012).

1 Introduction

The naked Reissner–Nordström (R–N) singularity is a classical general relativistic
solution in electrovacuum. It was discovered that the scalar field scattering problem
on such a singular background can be still well defined [2,3,5,7–9], since the waves
remain regular at the origin. Despite this nice property of the scattering problem,
the spacetime is non-globally hyperbolic and the time evolution of the fields is
not unique [4, 6]. This means one has to specify additional boundary condition at
the singularity to obtain a fully unique time evolution. (One “preferred” way in
which such a self-adjoint extension can be always realized is through the so called
Friedrich’s extension [9], which will also be the case of this paper.) After uniquely
specifying the dynamics, one should be able to characterize the scattering by a set
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of characteristic oscillations, the quasi-normal modes. One of the questions that we
want to answer in the present paper is what will be the behaviour of the low damped
quasinormal modes when departing from the R–N black hole to the R–N naked
singularity.

2 The Scalar Wave Scattering on a R–N Naked Singularity

Take the Klein–Gordon equation for the complex (charged) scalar field:

1p�g @�.
p�g g��@��/ D 0; (1)

with the metric line element given as

g��dx
�dx� D �f .r/dt2 C f .r/�1dr2 C r2d˝2: (2)

For the Reissner–Nordström (R–N) singularity the function f .r/ is in Planck units
given as:

f .r/ D 1 � 2m

r
C q2

r2
; .q2 > m2/: (3)

Take the decomposition of the field into the spherical harmonics

�.t; r; �; �/ D
X

l;m

 l .t; r/Yml.�; �/: (4)

After we separate the variables we obtain the following reduced equation

d2 l.t; r/

dt2
D f .r/

r2
d

dr

�
r2f .r/

d l .t; r/

dr

�

� l.l C 1/f .r/

r2
 l.t; r/: (5)

Using �l defined as �l.r; t/ D r l .r; t/ and x the tortoise coordinate given by
the condition:

dr

dx
D f .r/; (6)

one can rewrite the equation (5) into the following form

@2�l.x; t/

@t2
� @2�l.x; t/

@x2
D V.m; q; l; x/�l .x; t/; (7)



Quasinormal Modes from a Naked Singularity 181

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0.2  0.4  0.6  0.8  1  1.2

V
(r

)

r

 0.5

 1

 1.5

 2

 2.5

 0.5  1  1.5  2  2.5

-4e-05

-3e-05

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 4e-05

 0  5  10  15  20  25  30

φ(
r,t

F)

r

Fig. 1 Left: potential V .r/ given by (8) with l D 2, m D 0:5 for q D 0:48; 0:5; 0:52; 0:54 and
0.56. (The curves from left to right correspond to the increase of charge.) Note that the dashed part
of the potential (for q D 0:48 and 0.5) is inside the black hole horizon. Right: behavior of � with
l D 2 as a function of r near the center r D 0 for a late time tF D 350, shown here in order to
exemplify the effect of conditions (10) and (11) in the numerical integration, for a spacetime with
m D 0:5 and q D 0:52

with

V.m; q; l; x/ D
�
l.l C 1/

r2.x/
C 2m

r3.x/
� 2q2

r4.x/

�
f
�
r.x/

�
: (8)

We want to solve Eq. (7) with potential (8) numerically, in the case where q > m

(see the left plot of Fig. 1). To do this, we rewrite Eq. (7) in terms of the light-cone
variables u D t�x and v D tCx, where x corresponds to the tortoise coordinate (6),
as

@2�

@t2
� @2�

@x2
D �4 @

2�

@u@v
D V.r/�; (9)

that can be integrated with the boundary conditions

�.r D 0; t/ D �.u; v D u C 2x0/ D 0; (10)

�.u D 0; v/ D e
� .v�vc /

2

2�2 ; (11)

where condition (10) is a necessary condition on the field � near the origin (see the
discussion on Fig. 1 below) and condition (11) defines an “arbitrary” relevant initial
signal to be propagated.

As we can see in the right plot of Fig. 1, the boundary conditions (10) and (11)
ensure the necessary conditions on the fields � and near the center. The physically
correct boundary condition for  is  .0; t/ D 0. From this we must have for
�.r; t/ D r .r; t/ that �.0; t/ D 0 and �0.0; t/ D 0 [1]. In Fig. 2 we can see
some examples of the time evolution of the scalar field, and the behavior of the
fundamental quasinormal modes as we increase the q=m ratio.
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3 Conclusions

The basic results can be summarized as follows: for the large l there is a continuous
transition in the low damped quasinormal modes between the R–N black hole and
the R–N naked singularity (see [1]). However, when the ratio q2=m2 becomes
larger than approximately 9=8 then the picture becomes significantly different and
the low damped modes do not exist for large l-s [1]. (This is a very different
picture from the BH based intuition.) For the small l numbers the modes face a
discontinuous transition when transiting from the black hole to the naked singularity.
Furthermore, the l dependence j!I j (for small l) changes as q2=m2 becomes
larger than approximately 9=8: j!I j decreases for q2=m2 . 9=8 and increases for
q2=m2 & 9=8. It might be interesting to notice that for q2=m2 & 9=8 the increase of
j!I j as a function of l (for small l-s) matches the behaviour of j!I j for large l-s. In
the case of large l-s and q2=m2 & 9=8 we have shown that j!I j of the fundamental
mode grows at least cubically with l and thus, as we already mentioned, the low
damped modes do not exist [1].
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n-DBI Gravity: A Short Overview

Flávio S. Coelho, Carlos Herdeiro, Shinji Hirano, and Yuki Sato

Abstract We present a model of gravity motivated by the Dirac–Born–Infeld
type conformal scalar theory it yields when the Universe is conformally flat.
We show that, if the Universe is permeated by a perfect fluid of radiation, the
theory naturally predicts two eras of accelerated expansion mediated by a radiation
dominated epoch, with a large hierarchy between the two effective cosmological
constants, thus providing an alternative inflation scenario. This theory, dubbed
n-DBI gravity, contains a preferred unit vector field, everywhere time-like, which
breaks diffeomorphism invariance and gives rise to an extra scalar degree of
freedom. We analyze the dynamics of this mode and conclude that it is free from
some of the pathologies found in similar models, namely the issues of vanishing
lapse short distance instability and strong coupling. We also show that the standard
black holes of General Relativity are solutions of this theory.

1 Motivation: Scale Invariance and Inflation

Observations suggest that the Universe is nearly scale invariant at early and late
times, when it is believed to be approximately de Sitter space. At the present epoch,
the accelerating expansion is thought to be driven by a nearly constant vacuum
energy. To explain the inflation phase after the Big Bang, most current models
involve a scalar field, the inflaton, which acts as the agent of the nearly exponential
expansion of the Universe. However, the nature of such a field is far from clear
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Fig. 1 Left: the effective potential V .�/. Right: time evolution of the conformal factor �.	/

from the particle physics point of view, which means there is room for alternative
explanations of inflation.

With these issues in mind, some of us proposed a new model for the gravitational
field [6], which yields a Dirac–Born–Infeld type conformal scalar theory when the
Universe is conformally flat. It is defined by the action

S D � 3�

4�G2
N

Z
d4x

p�g
(r

1C GN

6�
.RC K / � q

)

C Sm; (1)

where Sm is the matter action, � and q are arbitrary constants, GN is Newton’s
constant, R is the Ricci scalar and K is defined through a unit, everywhere time-
like, vector field n� as K D �2r�.n

�r�n
�/.

Concretely, for the Friedmann–Robertson–Walker ansatz

ds2 D l2P �
2
��d	2 C ıijdxidxj

�
; (2)

where lP is the Planck length, the conformal factor � is governed by

1

2
P�2 C V.�/ D 0; V .�/ D �1

2
��4

"

1 �
�
q C 


��4

��2#
: (3)

The integration constant 
 can be shown to be the energy density of radiation, so we
are actually dealing with a Universe permeated by a perfect fluid obeying � D 3p.

As we can see from Fig. 1, this model naturally results in primordial inflation,
followed by a radiation dominated epoch and subsequent accelerated expansion at
late times. Matter can also be included in this picture without significant qualitative
changes. The current value of the cosmological constant, approximately 10�12 GeV,
and an energy scale of inflation of the order 1015 GeV constrain the free parameters
� � 10�8, q � 1 � 10�110. The required fine-tuning is of the same order as
in standard cosmology, and generates a large hierarchy between the two effective
cosmological constants, 1=

p
1 � q�2.
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2 Breaking Diffeomorphism Invariance: The Emergence
of a Scalar Graviton

The introduction of the vector field n� in the action (1) allows the field equations
to remain second order in time derivatives, while becoming higher order in spatial
derivatives. Furthermore, it breaks the general diffeomorphisms group of General
Relativity down to the subgroup of foliation-preserving diffeomorphisms:

t ! t C �0.t/; xi ! xi C �i .t; x/ : (4)

This gives rise to a scalar degree of freedom in addition to the two tensor modes
of General Relativity, very much alike Hořava–Lifshitz gravity. Its existence was
firmly established through Dirac’s theory of constrained systems [4]. Whereas in
General Relativity the Hamiltonian constraint is automatically preserved, here its
time evolution gives an equation for the scalar mode. By studying perturbations
around flat space, we concluded that this mode is non propagating and carries
no energy. We further argued that it is free from the pathologies that afflict some
versions of Hořava–Lifshitz gravity, namely the issues of vanishing lapse [5],
short-distance instability and strong coupling [1]. This good behaviour stems from
the non-linear lapse terms in the action. Concretely, working in the Arnowitt–
Deser–Misner (ADM) formalism, i.e. foliating space-time by spatial hypersurfaces
orthogonal to n�, we can write

RC K D.3/ R CKijK
ij �K2 � 2N�1
N; (5)

where .3/R is the Ricci scalar of the hypersurface metric, Kij is the extrinsic
curvature or second fundamental form and N is the lapse function. Terms like
N�1@iN where introduced in healthy extensions of Hořava–Lifshitz gravity [2].

3 Einstein’s Gravity Limit and Black Holes

General Relativity is recovered by taking the double limit � ! 1; q ! 1

while keeping the product �.q � 1/ fixed, which yields Einstein’s equations with
a cosmological constant �C D 6�.q � 1/=G2

N . Indeed, for weak curvature, the
leading order term in (1) is the Einstein–Hilbert action with the Gibbons–Hawking–
York boundary term.

The field equations of n-DBI simplify tremendously if we restrict to solutions
with constant R C K , in which case one can prove the following theorem and
corollary [7]:

Theorem 3.1. Any solution of Einstein’s gravity with cosmological constant plus
matter, admitting a foliation with constant RC K , is a solution of n-DBI gravity.
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Corollary 3.2. Any Einstein space admitting a foliation with constant .3/R �N�1

N (where N is the lapse and .3/R the Ricci scalar of the three-dimensional
hypersurfaces), is a solution of n-DBI gravity.

By requiring spherical symmetry, one can explicitly obtain the Schwarzschild,
Reissner–Nordström and (anti) de Sitter black hole solutions, albeit in an unusual
set of coordinates. Unlike General Relativity, however, the cosmological constant
is not determined at the level of the action but appears instead as an integration
constant. Corollary 3.2 can be interpreted as the maximal slicing gauge condition
common in Numerical Relativity, and it is then straightforward to show that the
Kerr metric in Boyer–Lindquist coordinates is also a solution of n-DBI gravity [3].

4 Conclusion

We have presented a model of gravity with interesting cosmological properties,
studied some of its exact solutions and answered most of the doubts on the stability
and self-consistency of the extra scalar degree of freedom. However, its true nature
and possible observational consequences remain to be understood. Maybe the scalar
mode is in fact acting as an inflaton. We anticipate that it could source scalar
perturbations in the Cosmic Microwave Background, which will be the subject of
future work. We believe that models such as n-DBI gravity are interesting learning
grounds for deepening our understanding of (non-) relativistic gravity. Hurdles are
high to self-consistently modify Einstein’s elegant theory of general relativity.
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Radiation from a D-Dimensional Collision
of Shock Waves: A Summary of the First
Order Results

Flávio S. Coelho, Carlos Herdeiro, Carmen Rebelo, and Marco O.P. Sampaio

Abstract We describe how to set up a perturbative framework to compute the
metric in the future of a D-dimensional collision of two high speed black holes,
by superimposing two equal Aichelburg–Sexl shock waves traveling, head-on, in
opposite directions. We then estimate the radiation emitted in the collision using
a D-dimensional generalisation of the Landau–Lifschitz pseudo-tensor—workable
in a first order approach—and compute the percentage of the initial centre of mass
energy emitted as gravitational waves. We shall see that our first order results are
always within the bound obtained from apparent horizons computations.

1 D-Dimensional Head-On Black Holes Collision

The discovery of different vacuum black hole solutions in five dimensions (for a
review see [1]) unveiled that the physics of higher-dimensional black holes can
be markedly different, and much richer, than in four dimensions. In particular,
this motivates the study of General Relativity in higher dimensions in order to
clarify its special behaviour in four dimensions. A relevant question, also taking into
account the ongoing physics runs at the LHC concerning the production of higher
dimensional black holes, is to understand how much energy is lost in gravitational
radiation, in a D-dimensional black hole collision.

To addressed the previous question we should start by considering the simplest
scenario: the head-on collision of two high speed Tangherlini black holes. In this
particular case, the gravitational field of each black hole reduces to a shock wave
solution described by the Aichelburg–Sexl metric [2], and therefore the black holes
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collision can be modelled by the collision of shock waves. By causality, the space-
time where two shock waves travel in opposite directions, is well known everywhere
by superimposing the two shock wave metrics, except in the future light cone of
the collision. In [3] we have generalized a technique first developed in D D 4 by
D’Eath and Payne [4–6] to compute the geometry of the D-dimensional space-time
to the future of the collision using a perturbative approach.

2 Perturbative Metric in the Future of the Shock Waves
Collision

The D-dimensional Aichelburg–Sexl shock wave solution is obtained by boosting
the Tangherlini black hole to the limit of infinite boost and vanishing mass,
keeping the total energy � fixed. Using a coordinate system .u; v; xi /, where
the retarded and advanced times .u; v/ are .t � z; t C z/ in terms of Minkowski
coordinates, and xi are the remaining Cartesian coordinates on the plane of the
shock, i D 1 : : : D � 2, such that the transverse radius is � D p

xixi ; the resulting
geometry for a shock wave travelling in the Cz direction is

ds2 D �dudv C d�2 C �2d˝2
D�3 C �˚.�/ı.u/du2; (1)

where � 	 8�GD�=˝D�3 and the function ˚ depends only on �.
The geometry for an identical shock wave travelling in the �z direction is

obtained by changing z ! �z in (1). Following [4] it is simple to see that in a
boosted frame (moving with respect to the .u; v/ chart with velocity ˇ in the �z
direction), the oppositely directed shock waves keep their form, but with new energy
parameters, respectively,

� ! e˛� 	 �; � ! e�˛� 	 �; (2)

where e˛ D p
.1C ˇ/=.1 � ˇ/.

The main point is that in this boosted frame one may face the wave traveling in
the �z direction as a small perturbation of the wave traveling in the Cz direction,
since

lim
ˇ!1

�

�
<< 1: (3)

Since the geometry of the latter is flat for u > 0, we make a perturbative expansion
of the Einstein equations around flat space, in order to compute the metric in the
future of the collision (v; u > 0).

In [3], a perturbative ansatz was assumed such that, to the future of u D 0 the
metric has an expansion of the type
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g�� D �
2

D�3

"

��� C
1X

iD1

�
�

�

�i
h.i/��

#

; (4)

where ��� is the flat metric. To compute the metric to first order one needs to solve
the linearised Einstein equations around flat Minkowski space-time, subject to a
boundary condition induced by the superposition of the two shock waves on u D 0C,
in order to determine h.1/��.u; v; �/.

In short, imposing the de Donder gauge condition on the trace-reversed metric
perturbation Nh.1/�� , the linearised Einstein equations become simply a set of decoupled
wave equations in Minkowski space for each component:

��2@u@v C @2i
� NhN.1/�� D 0; (5)

the corresponding solution has the form

NhN.1/�� .u; v; xi / D 1

.2�u/
D�2
2

Z
dD�2x0@

D�2
2

v0

NhN.1/�� .0; v0; x0
i /; (6)

where for each x0, v0 defines points at the u D 0 hypersurface, which are on the past
light cone of the event .u; v; xi /.

3 Gravitational Radiation

To extract the gravitational radiation produced in the collision we used the Landau–
Lifshitz pseudo-tensor—t

��
LL, which was generalised to higher dimensions in [7] and

is fully determined by our perturbations hN.1/�� .u; v; xi /.
Despite not being unique or gauge-invariant it is well known that the integral

Eradiated D
Z
t0iLLnidSdt; (7)

computed on a “distant” surface with area element dS outward unit normal ni , is a
gauge-invariant well defined energy.

The total radiation emitted will be computed, to first order, under the assumption
that dE=d cos � is isotropic. Thus we integrate the power emitted inside the narrow
cone around the O� 	 � � � D 0 axis. Using dS D rD�2d˝D�2, taking the limit
close to the axis and multiplying by the area of the sphere of radius r , this energy is

Eradiated D ˝D�3
32�GD

lim
O�!0;r!1

�
r2�D�4

Z
hN.1/ij;v h

N.1/
ij;v dt

�
: (8)
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The results we obtain for the percentage of energy lost in gravitational radiation
are summarised in the following table [3, 8], where the apparent horizon bounds
obtained in [9], are also given for comparison:

Spacetime dimension 4 5 6 7 8 9 10 11

First order perturbation theory (%) 25.0 30.0 33.3 35.7 37.5 38.9 40.0 40.9
Apparent horizon bound (%) 29.3 33.5 36.1 37.9 39.3 40.4 41.2 41.9

Like the apparent horizon bound, which is determined by the area of the apparent
horizon found on the past light cone of the collision between two shock waves, our
results indicate that the energy radiated increases monotonically with D. If this
reduction trend is verified by higher order perturbation theory (or other methods,
such as numerical black hole collisions) this result has important phenomenological
implications. Moreover, our result is always below the bound, as expected. This
suggests that the final black hole will be more massive than previously estimated,
making it more consistent with the semi-classical analysis used for estimating the
potentially observable Hawking radiation. Finally, most remarkably, we have found
a perfect numerical agreement between the percentage of radiated energy compute
at first order, and the simple formula 1=2� 1=D.

The next step in this analytical treatment is to consider second order perturbation
theory. This is challenging since it involves solving the second order Einstein
equations. Moreover, the Landau–Lifschitz method used to extract the gravitational
radiation has to be adapted, since to second order one must consider the angular
dependence for the radiation emitted.

Acknowledgements This work was supported by the grants NRHEP-295189, FP7-PEOPLE-
2011-IRSES and PTDC/FIS/116625/2010. F.C., C.R and M.S. are funded respectively by the
grants SFRH/BD/60272/2009, SFRH/BPD/77223/2011 and SFRH/BPD/69971/2010.

References

1. R. Emparan and H. S. Reall, Living Rev. Rel. 11 6 (2008) [arXiv:0801.3471 [hep-th]].
2. P. C. Aichelburg and R. U. Sexl, Gen. Rel. Grav. 2 303 (1971)
3. C. Herdeiro, M. O. P. Sampaio and C. Rebelo, JHEP 1107 121 (2011) [arXiv:1105.2298

[hep-th]].
4. P. D. D’Eath and P. N. Payne, Phys. Rev. D 46 658 (1992)
5. P. D. D’Eath and P. N. Payne, Phys. Rev. D 46 675 (1992)
6. P. D. D’Eath and P. N. Payne, Phys. Rev. D 46 694 (1992)
7. H. Yoshino and M. Shibata, Phys. Rev. D 80 084025 (2009) [arXiv:0907.2760 [gr-qc]].
8. F. S. Coelho, C. Herdeiro and M. O. P. Sampaio, Phys. Rev. Lett. 108 181102 (2012)

[arXiv:1203.5355 [hep-th]].
9. D. M. Eardley and S. B. Giddings, Phys. Rev. D 66 044011 (2002) [gr-qc/0201034].



Radiation from a D-Dimensional Collision
of Shock Waves: Numerics and a Charged Case

Flávio. S. Coelho, Carlos Herdeiro, Carmen Rebelo, and Marco O.P. Sampaio

Abstract We describe the generalisation to higher orders, of a perturbative
framework to find the metric after the collision of two Aichelburg–Sexl gravitational
shock waves in D-dimensions. A central challenge is to estimate the amount
of gravitational radiation emitted in the collision, at higher orders. We present
an adaptation of the Bondi mass loss formula in D-dimensions which is valid
non-perturbatively, for axially symmetric asymptotically flat space-times. This is
shown to coincide with the Landau–Lifshitz pseudo tensor result at first order in
perturbation theory. We also discuss the validity of the method with a collision of
charged shocks.

1 Transplanckian Collisions

In recent studies [3, 4, 9] we have analysed transplanckian collisions at the speed
of light in D-dimensional general relativity (GR), using Aichelburg–Sexl (AS)
gravitational shock waves [1] and a D D 4 method by D’Eath and Payne [5–7].
Transplanckian collisions have attracted a lot of attention for reasons such as TeV
gravity at the LHC, AdS=CFT (for a review see [2]), or to understand GR by
varyingD. We found the remarkable result that the inelasticity (fraction of radiated
energy) agrees numerically with


1st order D 1

2
� 1

D
; (1)
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within the apparent horizon bound for colliding AS shocks [8] (Fig. 2 right). Some
interesting questions arise which we discuss in the remainder: (a) is there a simple
generalisation of (1) at higher orders? (strikingly the second order D D 4 estimate
of D’Eath and Payne agrees with numerical GR [11]); (b) what is the validity of the
method? Can we use this method for a collision of charged shock waves.

2 The Collision and the Perturbative Framework

To investigate the general formulation with or without charge we consider a charged
shock wave obtained by boosting the D-dimensional Reissner–Nordström solution
with mass M and charge Q to the limit of infinite boost � and vanishing mass and
charge, keeping fixed the following energy and charge parameters [10]

� 	 8�GD�M

˝D�3
; a 	 8�2GD�Q

2

D � 3

.2D � 5/ŠŠ

.2D � 4/ŠŠ
: (2)

The resulting geometry is flat space with a moving impulsive plane in the Cz
direction with a radial profile on the plane (transverse radius �)

˚.�; a=�/ D � 2a=�

.2D � 7/�2D�7 C
8
<

:

�2 ln.�/; D D 4
2

.D � 4/�D�4 ; D > 4
: (3)

Such a geometry describes the gravitational field of a pointlike particle moving at
the speed of light with fixed energy and, when a ¤ 0, a charge parameter. Due to
causality, we can superpose two shock waves moving in opposite directions and the
space-time metric is known everywhere except inside the future light cone of the
collision. Furthermore, in [9] we have shown that, in a boosted frame, the metric on
the future light cone of the collision is expanded perturbatively as

g�� D �
2

D�3
	
��� C h��


 D �
2

D�3

"

��� C
1X

iD1

�
�

�

�i
h.i/��

#

; (4)

where, �; � are the energy parameters of the weak/strong shock in the boosted
frame, respectively, and the background flat metric is written in null coordinates.
The retarded/advanced times are .

p
2u D t�z;

p
2v D tCz/ in terms of Minkowski

time t , z coordinates, and fxi g are Cartesian coordinates on the plane of the shocks,
i D 1 : : : D� 2, such that the transverse radius is � D p

xixi . The superposition of
two shock waves induces boundary conditions on u D 0 (the location of the strong
shock) that at second order are exact. This may be the source of the good agreement
of the D D 4 second order calculation with numerical GR, for a D 0.



Radiation from a D-Dimensional Collision of Shock Waves: Numerics and a. . . 195

Fig. 1 Evolution of the weak shock null generators (incident blue, green and brown arrows) for
D > 4 (left: neutral case, right: charged case). For u < 0 they are at v D 0; then the generators
undergo a discontinuity in v at u D 0. They jump to the collision surface (green and brown lines).
Generically, the rays gain shear and: (a) for large � (green part of the curve) focus along the caustic
(red line); (b) for small � (brown part of the curve) diverge. Undeflected rays are drawn in green

The general perturbative method at higher orders is obtained as follows [4]. The
generic ansatz (4) together with a choice of de Donder gauge order by order, are
used in Einstein’s equations to obtain a tower of decoupled wave equations

�h.i/�� D T .i�1/��

h
h
.j<i/

˛ˇ

i
; (5)

h.i/�� D F:P:

Z

u0>0

dDy0G.y; y0/
h
T .i�1/�� .y0/C 2ı.u0/@v0h.i/��.y

0/
i
; (6)

where the source on the right hand side is generated by lower order perturbations
and we have written the general solution of the decoupled wave equations (5) in
flat space as an integral solution using the flat space Green function G.y; y0/ (F:P:
denotes the finite part of the integral and y D fu; v; xi g). The axial symmetry, allows
to show that the radiative components are written in terms of two functionsE;H :

hij 	 E.u; v; �/
ij CH.u; v; �/ ıij 
ij 	 ıij � .D � 2/�i�j ; �i 	 xi

�
:

(7)

A physical understanding of the problem, is achieved by looking at the rays of
the weak shock wave before and after the collision. In Fig. 1, we have space-time
diagrams for a collision of neutral shock waves (left) and charged shock waves
(right). Focusing on the left neutral case, the weak shock null generators travelling
along v D 0, hit the strong shock at u D 0 jumping to the green collision surface
(corresponding to the shock profile ˚) and are deflected as to converge towards
the axis (blue arrows). On the other hand, the right panel (charged) shows that null
generators which are incident close to the axis, the deflection diverges the rays away
from the axis (brown arrows emerging from the brown line of the profile˚). This is
qualitatively different from the neutral case (left) where all rays are convergent; the
divergent behaviour is caused by the repulsive gravitational effect of the charge.
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Fig. 2 Wave Forms (left) & Extracted inelasticity (right) for a D 0: the two left panels contain
wave form curves for the radiation signal observed close to the axis for various (large) r . The
horizontal axis time has been rescaled and shifted according to two geometrical optics rays

To compute the radiated energy from (6), we derived a higher D generalisation
of the Bondi news function [4,12]. The final result for the inelasticity at all orders is


radiated 	 � 1

ECM

Z
d	

dMB

d O	 D
Z 1

�1
d cos �
2

lim
r!C1

Z
d	W.	; r; �/2; (8)

with ECM the centre of mass energy and

W.	; r; �/ 	
r
.D � 2/.D � 3/

8
r�

D�4
2 .E;v CH;v CE;u CH;u/ : (9)

This (more general) result can be used to compute the second order estimate in
higher D. We have checked numerically that it reduces to the result obtained in [9]
using the Landau–Lifschitz method.

Figure 2 summarises the important results for the neutral case. We observe that
the wave forms for all D start at a first leading optical ray (	 D 0) and peak at
the second optical ray. The right plot shows the perfect agreement of the first order
estimate for the inelasticity as a function of D with the formula (1).

In the charged case, we found [4] that the wave signal contains two distinct
wave forms, corresponding to pairs of convergent rays, the second pair being due
to the divergent (brown) rays that are now allowed from the repulsive region at the
centre. The result for the inelasticity in this case is expected to be unreliable, since
it receives contributions from rays which cross a region inside the apparent horizon.
This is observed when we compute 
1st order with a ¤ 0, which actually becomes
independent of a. This interesting example shows a limitation of the perturbative
method when a repulsive core is present.
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Relativistic Positioning Systems in Flat
Space-Time: The Location Problem

Bartolomé Coll, Joan Josep Ferrando, and Juan Antonio Morales-Lladosa

Abstract The location problem in relativistic positioning is considered in flat
space-time. When two formal solutions are possible for a user (receiver) of the
system, its true location may be obtained from a standard set of emission data
extended with an observational rule. The covariant expression giving the location
of the user in inertial coordinates is decomposed with respect to an inertial observer.

1 Relativistic Positioning Systems

Basically, a relativistic positioning system (RPS) is a set of four clocks or emitters
A .A D 1; 2; 3; 4/, of world-lines �A.	A/, broadcasting their respective proper
times 	A by means of electromagnetic signals. The set R of events reached by
the broadcast signals is called the emission region of the RPS. The characteristic
emission function � of the RPS assigns to each event P in R its four proper times
received by it, f	Ag, �.P / D f	Ag. The region C where � is invertible is called
the emission coordinate region of the RPS, and the four proper times f	Ag received
at every event P are the emission coordinates of P .

The orientation of a RPS at the event P is the orientation of the emission
coordinates at P , O
 	 sgnŒ
.d	1 ^ d	2 ^ d	3 ^ d	4/�, and it coincides with
the sign of the Jacobian determinant of �, O
.P / D sgn j�.P /. The zero Jacobian
hypersurface, J 	 fP j j�.P / D 0g, is of relevant interest in relativistic
positioning, according to the following result by Coll and Pozo [3]: J consists
in those events for which any user at them can see the four emitters on a circle on
its celestial sphere.
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This result (being Lorentz invariant) suggests that at any event of the emission
coordinate region C D R�J , the orientation O
 could be obtained from the relative
positions of the emitters on the celestial sphere of the user at this event. Let us denote
by E�A the unit vectors (E�2A D 1) along the line of sight from the user to the emitter
A, so that the future pointing null vectors mA D .u � mA/.�u C E�A/ describe the
propagation of the signals, u being the unit user velocity (u2 D �1). The following
observational rule to determine O
 has been proved in [5]1:

F Consider the circle of the celestial sphere defined by three emitters a (say
a D 1; 2; 3). Their unit directions E�1, E�2 and E�3 are contained in the cone confined
by this circle. Accordingly, if the fourth emitter is in the interior of the circle, E�4
is in the interior of the cone and O
 is given by O
 D sgnŒ.E�1; E�2; E�3/�. Otherwise,
O
 D �sgnŒ.E�1; E�2; E�3/�
Let fx˛g be any given specific coordinate system covering R. In relativistic

positioning, the location problem consists in determining the coordinates fx˛g
of a user from its emission coordinates f	Ag and a given set of suitable data.
Equation (1) (see below) provides the solution in terms of the emitter trajectories and
the orientation O
. The set of the emitter world-lines referred to the coordinates fx˛g,
and the values of the emission coordinates received by a user, E 	 f�A.	A/; f	Agg,
is called the standard emission data set. This set E allows solving the location
problem only in a part of the emission region R, called the central region of the RPS
(see [4] or footnote 3 below). Out of this region, the setE is unable to determine the
orientation O
 so that it must be extended with, for example, the above observational
rule in order to solve the location problem. This problem and the zero Jacobian
points have been recently studied by using numerical codes (see [6, 7]).

An extended version of this contribution has been presented at the workshop
Relativistic Positioning Systems and their Scientific Applications.

2 The Location Problem in Minkowski Space-Time

In Minkowski space-time, the location problem is formally solved by finding the
coordinate transformation, x˛.	A/, from emission f	Ag to inertial fx˛g coordi-
nates.2 The configuration of the emitters for an event P is the set of the four events

1We use the following notation: .�;C;C;C/ is the signature of the Minkowski metric g; i./
denotes the interior product (if x is a vector and T a covariant 2-tensor, Œi.x/T �� D x�T��);
^ stands for the exterior product; the asterisk � denotes the Hodge dual operator associated to
the metric volume element �, �˛ˇ�ı D �p�det g 
˛ˇ�ı, where 
˛ˇ�ı is Levi–Civita permutation
symbol, 
0123 D 1. For a given inertial observer of unit velocity u, u2 D �1, any vector x splits
as x D x0u C Ex where x0 D �x � u and Ex 2 E? with E? the three-space of u. For vectors Ex,
Ey 2 E?, the vector product is given by Ex 	 Ey D �.u ^ Ex ^ Ey/ and .Ex; Ey;Ez/ 
 .Ex 	 Ey/ � Ez (with
Ez 2 E?) is the scalar triple product.
2It seems that Abel and Chaffee [1, 2] were the first authors in considering the location problem in
connection with Global Positioning System (GPS) by using Lorentzian algebra.
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f�A.	A/g of the emitters at the emission times f	Ag received at P . Let us denote
by x 	 OP the position vector with respect to the origin O of a specific inertial
coordinate system. If a user at P receives the broadcast times f	Ag, �A denote
the position vectors of the emitters at the emission times, �A 	 O�A.	

A/. Let us
choose the fourth emitter as the reference emitter and name the other emitters the
referred emitters, whose relative position vectors with respect the reference emitter
are given by ea D �a � �4 (a D 1; 2; 3). The vectors mA 	 x � �A represent the
trajectories followed by the light signals from the emitters �A.	A/ to the reception
event P . The configuration of the emitters has associated the following quantities:
the configuration scalars˝a D 1

2
.ea/

2, which are the world function of the pairs of
emitters f�a; �4g, the configuration vector � 	 
.e1 ^ e2 ^ e3/ which is orthogonal
to the hyperplane containing the four configuration events, and the configuration
bivector H 	 
.˝1 e2 ^ e3 C ˝2 e3 ^ e1 C ˝3 e1 ^ e2/. All these quantities are
computable from the sole standard data set E because they are defined from ea.
Here, we assume that � ¤ 0, that is, the four emission events f�A.	A/g determine a
hyperplane, the configuration hyperplane forP . Emitter configurations, with � D 0,
can occur in current GPS as it was stressed in [1, 2].

2.1 Covariant Expression of the Solution

In flat space-time, the coordinate transformation x˛.	A/ is given by:

x D �4 C y� � ��; y� D 1

� � � i.�/H; � D y2�
.y� � �/C O
p
; (1)

� being any vector transversal to the configuration, � � � ¤ 0, and 
 being the
following quadratic invariant of H , 
 	 � 1

2
H��H

�� D .y� � �/2 � y2��2, which
is non-negative, 
 � 0 (see [4, 5]). Note that y� and 
 are both computable
from the sole standard data set E . The orientation O
 depends on x and it is not
always computable from the sole set E . In fact, we have: (a) if �2 � 0 there is a
sole emission solution x, and there is no bifurcation. To obtain the solution, take
O
 D sgn.u � �/, where u is any future pointing time-like vector. (b) If �2 > 0

there are two emission solutions, x and x0, which only differ by their orientation
O
 (bifurcation problem). In this case, the sole standard data set E is insufficient to
solve the location problem but our observational rule allows to determine O
 and to
solve it.3

3The region C C 
 fx 2 C j�2 � 0g is called the central region of the RPS. The orientation O
 is
constant on C C , and may be evaluated from the sole standard data set E . The bifurcation problem
always appears in the time-like configuration region Ct 
 fx 2 C j�2 > 0g D C � C C .
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2.2 Splitting of the Solution for an Inertial Observer

Consider the inertial observer associated to the specific inertial coordinate system
fx˛g, of unit velocity u, u2 D �1. Next, we decompose respect to this inertial
observer the quantities appearing in the transformation (1) from emission to inertial
coordinates. The position vector of the emitter A becomes �A D tAu C N�A, tA 	 �0A
being the value of the inertial time of the observer u at the event �A.	A/; then
mA D .x0 � tA/u C Ex � N�A and .x0 � tA/2 D .Ex � N�A/2 with x0 > tA, because each
mA is null and future pointing.

The position vector of the emitter a with respect to the reference emitter splits
as ea D �au C Eea,a D 1; 2; 3, with �a D ta � t4 and Eea D N�a � N�4 and then the
configuration scalars are given by ˝a D 1

2
..Eea/2 � �2a /. The configuration vector

splits as � D �0u C N�, with �0 D .Ee1; Ee2; Ee3/ and N� D �1 Ee2 
 Ee3 C �2 Ee3 
 Ee1 C
�3 Ee1
 Ee2, and the configuration bivector is written asH D u^ ES �
.u^ EB/, where
the electric-like ES 	 �i.u/H and the magnetic-like EB 	 �i.u/
H parts ofH are
expressed as:

ES D ˝1 Ee2 
 Ee3 C˝2 Ee3 
 Ee1 C˝3 Ee1 
 Ee2; (2)

EB D .�2˝3 � �3˝2/Ee1 C .�3˝1 � �1˝3/Ee2 C .�1˝2 � �2˝1/Ee3; (3)

and satisfy ES2 � EB2 and ES � EB D 0. By choosing �0 D 1, � D u C N� , one has
i.�/H D �. N� � ES/u � ES � N� 
 EB , and y� D y0� u C Ey� is provided by:

y0� D �
N� � ES
D

; Ey� D �
ES C N� 
 EB

D
; D 	 N� � N� � .Ee1; Ee2; Ee3/ ¤ 0; (4)

with ES and EB given by (2) and (3). Substituting � in (1) by:

� D �.y0�/2 C Ey 2�
�y0��0 C Ey� � N�C O


p ES2 � EB2

; (5)

the user location is expressed in terms of the orientation O
 (which is obtainable
from the observational rule) and �4 D ft4; N�4g, � D f�0; N�g, H D f ES; EBg and
y� D fy0�; Ey�g (which are obtainable from the sole standard data E). When
.Ee1; Ee2; Ee3/ ¤ 0, one may take N� D 0 to simplify the above expressions.
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BSSN Equations in Spherical Coordinates
Without Regularization

Isabel Cordero-Carrión and Pedro J. Montero

Abstract Brown introduced a covariant formulation of the BSSN equations well
suited for curvilinear coordinate systems. We solve the BSSN equations in spherical
symmetry and the general relativistic hydrodynamic equations written in flux-
conservative form using a second-order partially implicit Runge–Kutta method to
integrate the evolution equations without any regularization algorithm. Some tests
assess the accuracy, numerical stability and expected convergence of the code.

1 Introduction

The BSSN formulation of Einstein equations [1–3] is one of the most used in
numerical simulations. It is particularly tuned for Cartesian coordinates. Brown [4]
introduced a covariant formulation well suited for curvilinear coordinates. The
singularities associated with curvilinear coordinates are a known source of
numerical problems (e.g., 1=r terms near r D 0) and special care should be taken
to avoid numerical instabilities. A regularization procedure [5] has been explored
(see, e.g., [6]) in spherical and axial symmetry. However, it is not easy to implement
numerically and requires auxiliary variables as well as their evolution equations.

Implicit methods are used to deal with equations that require a special numerical
treatment to achieve stable evolutions. Stiff source terms in the equations can lead to
the development of numerical instabilities. Some coordinate systems may introduce
factors which can be numerically interpreted as stiff terms (e.g., 1=r factors due to
spherical coordinates near r D 0 even when regular data is evolved).

Partially implicit Runge–Kutta (PIRK) methods (see [7] for details and applica-
tions in wave equations) have been applied [8] to the hyperbolic part of Einstein
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equations in the Fully Constrained Formulation [9]. A second-order PIRK method
was used in [10] to the BSSN equations in spherical coordinates, assuming spherical
symmetry, without any regularization at the origin. We use c D G D Mˇ D 1.

2 Basic Equations

We solve the BSSN equations in spherical symmetry [6, 10], following the
description in [6]. The spatial line element is written as dl2 D e4�Œa.r; t/dr2 C
r2b.r; t/d˝2�, where d˝2 D d�2 C sin2 �d'2, a and b are the metric functions,
and � is the conformal factor, � WD ln.�= O�/

12
, O� being the determinant of the conformal

metric. We consider O� D r4sin2� . The evolution equations for X 	 e�2� and a are

@tX D ˇr@rX � 1

3
X.˛K � Ormˇ

m/; (1)

@ta D ˇr@raC 2a@rˇ
r � 2

3
a Ormˇ

m � 2˛aAa; (2)

K being the trace of the extrinsic curvature, ˛ the lapse function, Ormˇ
m the

conformal divergence of the shift vector ˇi and OAij the traceless part of the
conformal extrinsic curvature. Note that Aa C 2Ab D 0, where Aa 	 OArr and
Ab 	 OA�� . Due to length restrictions, we refer to [10] for the explicit form of
the evolution equations for b, Aa, K and the radial component of the additional
BSSN variable, O
r . The non-advective 1Clog condition [11] and the Gamma-driver
condition [6, 12] are given by

@t˛ D �2˛K; @tBr D 3

4
@t O
r; @tˇ

r D Br: (3)

The Hamiltonian constraint, H 	 R � .A2a C 2A2b/ C 2
3
K2 � 16�E D 0,

is used as diagnostics of the accuracy. The general relativistic hydrodynamic
equations, r�T

�� D 0 and r� .�u�/ D 0, T �� being the stress–energy tensor
for a perfect fluid and � the density, are written in a conservative form in spherical
coordinates following [13]. We use the � -law equation of state. A second-order
PIRK method [7] is applied to all the evolution equations as it is described in [10].

3 Numerical Results

Spatial derivatives are computed using fourth-order finite differences. We use
Kreiss–Oliger dissipation [14], a second-order slope limiter reconstruction scheme
and a HLLE approximate Riemann solver [15, 16]. Spherical symmetry is imposed
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Fig. 1 Left panel shows radial profile of K for a pure gauge pulse at different times; right panel
shows the (rescaled) Hamiltonian constraint at t D 10 for different resolutions

at the origin and radiative conditions [12] at the outer boundary for the metric
variables.

We first consider the propagation of a pure gauge pulse using the same initial data
as in [6], without regularization at the origin but using a PIRK scheme to achieve
numerical stability. Initially, � D Aa D Ab D K D O
r D 0, a D b D 1,
˛ D 1 C ˛0r

2.1 C r2/�1Œe�.r�r0/2 C e�.rCr0/2 �, ˛0 D 0:01, r0 D 5. We use
zero shift and harmonic slicing, @t˛ D �˛2K . In the left panel of Fig. 1, radial
profiles of K for several times are displayed. The evolution remains well behaved
everywhere. At t D 5, K � 0:1 at the origin but later returns to zero, as shown
by [6]. Hamiltonian constraint shows the expected second-order convergence (right
panel of Fig. 1).

Schwarzschild metric in isotropic coordinates, dl2 D  4.dr2 C r2d˝2/,  D
.1 C M=2r/, M D 1, is evolved within the moving puncture approach with a
precollapsed lapse and initially ˇi D 0. Gauge conditions are given by (3). Our
results agree with previous ones (see, e.g., [17]). A stationary state is reached after
t � 20. The maximum value of the shift settles to �0:15. The time evolution of the
mass of the apparent horizon (AH) is conserved during the evolution (error <0:2%
at t D 2; 500).

We focus now on a relativistic star with polytropic index N D 1, polytropic
constant � D 100 and central density �c D 1:28 
 10�3. Truncation errors excite
small periodic radial oscillations, visible as periodic variations of the central density.
The frequency peaks of the power spectrum of the time evolution of the central
density agree with the fundamental frequency and the first two overtones computed
by [18] (relative error <0.1 %). We obtain stable long-term simulations of non-
vacuum regular spacetimes in spherical coordinates without any regularization at
the origin.

We finally test the gravitational collapse to a black hole of a spherical relativistic
� D 100, N D 1 polytropic star with central density �c D 3:15 
 10�3; initially,
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Fig. 2 Evolution in time of the central density (left panel) and of the AH mass (right panel) in the
gravitational collapse to a black hole

density is increased by 0.5 %. Gauge conditions are given by (3). The star increases
its compactness with time and an AH is formed (t � 167). We plot in Fig. 2 the
time evolution of �c , and of the mass of the AH which relaxes to the ADM mass of
the system (difference about 0:2% at t D 500). The numerical scheme can handle
accurately the transition between a regular spacetime (that of the star) and a singular
one containing a puncture singularity at r D 0.

4 Summary

We have reviewed the work presented in [10], which solves numerically the BSSN
equations in spherical symmetry and the relativistic hydrodynamic equations, using
a second-order PIRK method without any regularization algorithm. Some tests
assess the accuracy and expected convergence. We refer to [19] for details on the
implementation without any symmetry assumptions in three spatial dimensions.
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Hidden Momentum in the Framework
of Gravitoelectromagnetism

L. Filipe O. Costa

Abstract A still not well understood feature of extended bodies in general relativity
is the fact that their momentum is not, in general, parallel to the center of mass
4-velocity—the body is said to have “hidden momentum”. It can be split in two main
types, a physical one that is gauge invariant, and the pure gauge hidden momentum
that arises from the spin supplementary condition. In this paper I focus on the
latter, using the formalism of gravitoelectromagnetism, which yields an easy way
of understanding it, and under which conditions it arises.

1 Introduction: Two Main Types of Hidden Momentum

Extended test bodies in General Relativity can be described through a set of
moments of its energy momentum tensor T ˛ˇ and of its charge current density 4-
vector j ˛ , see e.g. [5, 6]. Herein we are interested in pole–dipole particles, which
amounts to consider only two moments of T ˛ˇ , the momentum P˛ and the angular
momentum S˛ˇ , defined by

P˛ 	
Z

˙.	;U /

T ˛ˇd˙ˇ I S˛ˇ 	 2

Z

˙.	;U /

r Œ˛T ˇ��d˙� ;

(r˛ 	 x˛ � z˛.	/) and three moments of j ˛: the charge q and the electric and
magnetic dipole moments d˛ and �˛ ,
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q 	
Z

˙

j ˛d˙˛I d˛ 	
Z

˙.	;U /

r˛j �d˙� I

�˛ 	 1

2

˛ˇ�ıU

ı

Z

˙.	;U /

rˇj �U �d˙� :

These moments are taken with respect to a reference worldline z˛.	/, of proper time
	 and tangent vector U˛ 	 d z˛=d	 , and a hypersurface of integration ˙.	; U / 	
˙.z.	/; U /, orthogonal to U˛ at z˛.	/. From the conservation equations j ˛I˛ D 0

and .Ttot/
˛ˇ

Iˇ D 0 , T
˛ˇ

Iˇ D F ˛ˇjˇ , follow the evolution equations [5, 6]

DP˛

d	
D qF ˛

ˇU
ˇ C ?F

I˛
ˇ� U ��ˇ C F ˛

� IˇU �dˇ C F ˛
ˇ

Ddˇ

d	
� 1

2
R˛ˇ��S

��U ˇ;

(1)

DS˛ˇ

d	
D 2P Œ˛U ˇ� C 2


�Œˇ

�� F
˛�

��
�U � C 2d Œ˛F ˇ�

�U
� : (2)

These are equations of motion provided that z˛.	/ is some representative point of
the body. The natural choice is the center of mass (CM); the latter however, for a
spinning body, depends on the observer (see [4] and Fig. 1 therein). The so called
spin supplementary condition, S˛ˇuˇ D 0, for some time-like unit vector field u˛,
amounts to require z˛ to be the CM as measured by some observer of 4-velocity
u˛. Contracting Eq. (2) with some time-like vector (for instance Uˇ), we see that
the momentum P˛ is not parallel to the center of mass 4-velocity U˛ . We can
decompose P˛ in its projections parallel (P˛

kin) and orthogonal (P˛
hid) to U˛ ,

P˛ D P˛
kin C P˛

hidI P˛
kin D mU˛I P˛

hid D .hU /˛ˇP
ˇ (3)

where m D �P˛U˛ and .hU /˛ˇ 	 U˛Uˇ C g˛ˇ denotes the projector orthogonal
to U˛ . The “kinetic momentum” P˛

kin is the familiar momentum associated with
the center of mass motion. P˛

hid is the so-called hidden momentum; the reason for
denomination is seen taking the perspective of the center of mass frame, where the
particle is by definition at rest, but at the same time the 3-momentum is in general
not zero: EP D EPhid ¤ 0; hence EP must be somehow hidden in the particle.
P˛

hid consists of two terms. One induced by the electromagnetic field [1],
P˛

hidEM D 
˛ˇ�ıU
ı�ˇE� , which is gauge independent, and causes a magnetic dipole

to accelerate without force, leading e.g. to the bobbing effects studied in [7] (see also
Fig. 1 of [3]), or in opposite direction to the force, as shown in [5] (for a particle
initially in radial motion in a Coulomb field). And a pure gauge one [7] that we dub
“inertial” (P˛

hidI), due to its relation with inertial forces, which is the subject of next
section.
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Fig. 1 (a) A spinning charged particle (with E� D 0) orbiting a Coulomb charge. When the center
of mass (CM) is computed in the “laboratory” frame (which is an inertial frame, so F ˛

GEM D 0),
P˛

hid D 0 and the trajectory is an ellipse. When the CM is computed in the comoving frame

(F ˛
GEM D G˛), there is a hidden momentum EPhid D ES	U

EG along the e� direction, which oscillates
along the orbit; the total momentum along e� however must be constant, P � D P �

kin C P �
hid D 0

(as the Coulomb force is radial); this means that the CM bobs up and down in order for P �
kin D

mU�
kin to cancel out P �

hid. (b) A spinning body in the Kerr spacetime; the situation is opposite: there

are inertial forces in the laboratory frame ( EFGEM D �
h
� EG C EU 	u EH

i
), thus there is hidden

momentum EPhid � ES 	 EFGEM and bobbings when the CM is computed therein, whilst in the
comoving frame these are negligible

2 GEM Formulation of the “Inertial” Hidden Momentum

Let u˛ be the 4-velocity field relative to which the CM is evaluated; that is,
S˛ˇuˇ D 0. Contracting (2) with u˛, we have (� 	 �Uˇuˇ)

P˛
hidI D 1

�
.hU /˛�S

�ˇ Duˇ
d	

D 1

�
.hU /˛�S

�ˇuˇI�U �; (4)

telling us that this form of hidden momentum arises when u˛ varies along the center
of mass worldline z˛ . Taking u˛ to be the tangent vector (i.e., the 4-velocity) of some
congruence of observers O.u/, we can decompose

u˛Iˇ D �a.u/˛uˇ � 
˛ˇ�ı!�uı CK.˛ˇ/

where a.u/˛ 	 u˛Iˇuˇ is the observers’ acceleration (not the particle’s!); !˛ D
1
2

˛��	u	uŒ� I�� their vorticity, and K.˛ˇ/ 	 .hu/�˛.h

u/�ˇu.�I�/ the shear/expansion
tensor. We can thus write

P˛
hidI D � 1

�2
.hU /˛�S

�
ˇF

ˇ
GEMI F ˛

GEM D �
h
�G˛ C 
˛ˇ�ıu

ıU ˇH� �K.˛ˇ/Uˇ

i
;

(5)
where F ˛

GEM is the gravitoelectromagnetic force (resembling the Lorentz force),
describing the inertial “forces” associated with the observer congruence. G˛ 	
�a.u/˛ is the “gravitoelectric field”, H˛ D !˛ is the so-called “Fermi–Walker



214 L.F.O. Costa

gravitomagnetic1 field” [8]. As discussed in [2], in a general formulation H˛

consists on the sum of two terms: the vorticity !˛ of the congruence, plus the
rotation˝˛ of the spatial triads ei carried by each observer O.u/ relative to Fermi–
Walker transport. Hence F ˛

GEM above yields the inertial forces of a frame e˛ whose
time axis is e0 _ u˛, and the spatial triads ei undergo Fermi–Walker transport along
O.u/ (i.e.,˝˛ D 0).

The important statement encoded in (5) is that one has inertial hidden momentum
(P˛

hidI ¤ 0) only when there are inertial forces in the frame where the center of mass
of the particle is evaluated (note that this is not about the frame where the motion is
being described; they are not in general the same).

3 Hidden Momentum Arising in the Different Spin
Conditions

We shall now compare, in simple examples in flat and curved spacetime, the inertial
hidden momentum arising from two types of spin condition: one requiring the
center of mass to be evaluated in a frame comoving with it, which corresponds
to the Mathisson–Pirani (MP) spin condition S˛ˇUˇ D 0 (and usually to a good
approximation also to the Tulczyjew–Dixon condition S˛ˇPˇ D 0, which chooses
the CM as measured in the P i D 0 frame), and other choosing the center of mass
as measured in the “laboratory frame”, that is, S˛ˇuˇ D 0, where u˛, in the case of
a stationary asymptotically flat spacetime, are the “static” observers2 u˛ _ @=@t .

Consider first the situation in Fig. 1a, a spinning charged particle (but with E� D 0,
so that P˛

hid D P˛
hidI, and the only force acting on the particle is the Lorentz force)

in flat spacetime orbiting a Coulomb charge. Consider first the CM as measured by
the static observers; this is an inertial frame, thus there is no hidden momentum:
F ˛
GEM D 0 ) P˛

hidI D 0, and the CM trajectory is an ellipse. Now consider the CM
measured in the comoving frame (MP condition, u˛ D U˛); the hidden momentum
takes in this case the simple form P˛

hidI D S˛ˇaˇ D . ES 
U EG/˛ , where a˛ D �G˛

coincides with the particle’s acceleration. Since a˛ ¤ 0, P˛
hidI ¤ 0; it oscillates

along the orbit, as depicted in Fig. 1a, leading to a bobbing motion of the CM.
Consider now a gravitational system such as the one depicted in Fig. 1b, a

spinning test particle orbiting a spinning mass (e.g., a Kerr black hole). Take the
CM measured by the static observers (CP condition); such congruence is accelerated
and has vorticity; that is, according to these observers, an inertial “force” acts on

1This gravitomagnetic field differs by a factor of 2 from the most usual one in the context of
experimental gravitomagnetism, H˛

.˝D!/ D 2!˛ , obtained by demanding the triads ei to co-rotate
with the congruence (˝˛ D !˛). The frame of “the distant stars”, relative to which gyroscope and
orbital precessions are measured, is set up in this way, see [2] for details.
2This is a generalization of the condition introduced by Corinaldesi–Papapetrou (CP) for the
Schwarzschild spacetime (see in [4]).
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the particle, cf. (5), and thus P˛
hidI ¤ 0 and there are bobbings. Now take the CM

as measured by the comoving observer; the motion is nearly geodesic (apart from
the spin-curvature force, last term of (1)); such observer is thus nearly inertial, and
EPhid � O.S2/ is negligible in a pole–dipole approximation, see [5].

We have thus contrasting effects: for a spinning particle under a force in flat
spacetime, there is hidden momentum and bobbings when the CM is computed in
the comoving frame, which vanish when one evaluates it in the “laboratory” frame;
for a spinning particle in a gravitational field, it is the other way around.

Concluding, the GEM formalism is useful for understanding the hidden momen-
tum that arises in a given system under the different spin conditions; and to
chose the most convenient one for each application. It is important to bear in
mind that, whenever P˛

hid ¤ 0, force does not equal mass times acceleration; the
contribution DP˛

hid=d	 is in principle not negligible to dipole order, for instance
in the application of Fig. 1b (for the laboratory frame) is of the same order of
magnitude (�MSv=r3) of the-spin curvature force.
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Comparing Results for a Global Metric
from Analytical Perturbation Theory
and a Numerical Code

J.E. Cuchí, A. Molina, and E. Ruiz

Abstract We compare the results obtained from analytical perturbation theory and
the AKM numerical code for an axistationary spacetime built from a rotating perfect
fluid interior with the equation of state 
 � 3p D 4B of the simple MIT bag model
matched to an asymptotically flat exterior. We discuss the behaviour of the error
in the metric components of the analytical approximation going to higher orders.
Additionally, we check and comment the errors in multipole moments, central
pressure and some other physical properties of the spacetime.

1 Introduction

The lack of stellar models in General Relativity—i.e. a stationary and axisymmetric
perfect fluid interior matched with an asymptotically flat vacuum exterior—is in
direct contrast with the importance they could have for the astrophysics of compact
stars and in particular the determination of their possible compositions. One of such
possibilities is the interesting case of strange matter. A versatile model for strange
matter is a simple MIT bag model with equation of state (EOS) 
 � 3p D 4B .
We will study this stellar model with the results provided by the CMMR post-
Minkowskian and slow rotation approximation scheme [3] and its behaviour when
we go to higher orders of approximation. Also, we will give the relative error in
these functions and quantities when compared with very precise numerical results
obtained with the AKM code [1, 2].
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2 The Analytical and Numerical Metrics

The stationary and axisymmetric spacetime we study is the following. The interior
V � is filled with a perfect fluid with the EOS 
 � 3p D 
0 and in rigid rotation
so that, if �; � are the Killing vectors, its velocity is u D  .� C !�/, with  a
normalization factor and ! a constant corresponding to the angular velocity of the
fluid as seen by a distant observer. The exterior V C is asymptotically flat vacuum
and is matched with the interior imposing continuity of the metrics and their first
derivatives on the p D 0 surface.

In CMMR, we solve the Einstein equations using a truncated multipolar post-
Minkowskian approximation in spherical-like coordinates associated to harmonic
ones. The post-Minkowskian parameter is � D m=rs, which m the Newtonian
mass of the source and rs the coordinate radius of the static fluid; a different
parameter ˝2 D !2r3s =m (the ratio between Newtonian centrifugal and gravita-
tional forces), gives the truncation point of the expansion in spherical harmonics,
in this case preserving terms up to O.˝3/. The metric in each spacetime g˙.�; ˝/
is decomposed in Minkowski � plus the deviation h˙.�; ˝/ and then Einstein’s
equations can be solved iteratively. The spacetimes are matched on the p D 0

surface which can be expanded as r˙ D rs
	
1C �˝2P2.cos �/


 C O.˝4/ with
� constant. Finally, the global metric depends only on 
0; ! and rs . In [4] (CGMR)
we obtained the O.�5=2; ˝3/ metric for the EOS 
 C .1 � k/p D 
0. Here we use
its .k D 4; 
0 D 4B/ subcase corresponding to the simple MIT bag model but now
including terms up to O.�9=2; ˝3/.

AKM is a multi-domain spectral code that gives the matched metric on a grid
over a quadrant of finite size. The grid coordinates are f�; �g, cylindrical associated
to quasi-isotropic coordinates and the resolution is customizable. It also gives some
physical properties, like the first mass and angular momentum multipole moments
M0 and J1, baryon rest mass Mb, circumpherential radius Rcirc, binding energyEb,
polar and equatorial coordinate radii rp; re, polar redshift zp and central pressure
and specific enthalpy pc; hc. To build a stellar model, it needs goal values for any
pair of these quantities as well as to fix some parameters to specify the EOS and
provide an initial data file. The code is able to obtain initial data for different EOS if
one manages to avoid unphysical configurations in the process. The precision it gets
depends on the number n of Chebyshev polynomials used, and can reach machine
accuracy for high enough n when the deformation of the source is not extreme.
We fix it here to n D 20.

3 Comparison and Results

We build stellar models for different values of .Mb; !/ and compare the metrics on
the cylindrical-like coordinate grid of AKM. Working in units where .c D G D
B D 1/, the k D 4 CGMR has only .rs; !/ as free parameters. Unlike !, rs
has no equivalent in AKM, so we must adjust its value. Hence, for each model we
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Fig. 1 Relative error between O.�9=2; ˝3/ CMMR and n D 20 AKM in (a, b) gtt and gt' for
M0 D 8 	 10�3, ! D 0:24 .� � 0:077; ˝ � 0:059/; (c, d) gtt and gt' for M0 D 0:0184,
! D 0:24 .� � 0:12; ˝ � 0:059/. The thin dotted lines represent the AKM and CMMR surfaces

Fig. 2 Relative error for constant density in gtt using M0 D 8 	 10�4; ! D 0:2 using CMMR
up to: (a) O.�5=2; ˝3/; (b) O.�9=2; ˝3/. The thin dotted lines represent the AKM and CMMR
surfaces (indistinguishable in this picture size)
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Table 1 Some CMMR values and relative error with respect to AKM in .c D G D B D 1/ units.
In other units, the three models rotate at � D 102 Hz and their masses in Mˇ appear in the first
row

M0 D 0:054; Mb D 0:06 M0 D 0:51; Mb D 0:6 M0 D 1:39; Mb D 1:7

Mˇ CMMR Error CMMR Error CMMR Error

! 0.24 0.24 0.24
Mb 7.9997e�4 3.2e�5 7.95e�3 6.1e�3 0.02241 0.0406
M0 7.104e�4 6.772e�3 0.0184
J1 8.3609e�8 1e�4 3.586e�6 0.012 1.82e�5 0.034
Rcirc 0.034769 3.6e�5 0.07287 8.6e�3 0.102 0.068
Ebind 8.8730e�6 2.8e�4 3.766e�4 0.040 1.75e�3 0.19
zp 0.021133 7.6e�5 0.1079 0.016 0.24 0.13
V0 �0.020913 4.6e�5 �0.103 0.010 �0.221 0.087
rp 0.033914 4.7e�5 0.0657 9.8e�3 0.0831 0.09
re 0.034055 3.8e�5 0.06593 9.8e�3 0.0834 0.091
rratio 0.995862 9.4e�6 0.9964 2.4e�5 0.997 3e�4

c 4.5935 6.8e�5 4.712 0.019 5.56 0.21
pc 0.043679 2.4–4 0.254 0.052 0.631 0.37
hc 0.908786 1.7e�6 0.9522 2e�3 1.025 0.042

take the value of one of the AKM physical quantities and equating it to its CMMR
counterpart we get rs . Using M0; pc; and J1 for this gives similar results. Here we
use M0.

The results of Fig. 1 show the relative error in the metric .gtt; gt�/ components
for M0 D 0:51Mˇ and the typical M0 D 1:39Mˇ for a moderately fast rotation
frequency � D 102 Hz near the source. The first case has a reasonable error (higher
in gt�) and the second must be improved (Table 1). Going to higher orders in the
� approximation is now automatic with the help of our Mathematica subroutines,
but improving the slow-rotation approximation is more cumbersome. Nevertheless,
Fig. 2 shows the improvement for a 
 D 
0 EOS moving from O.�5=2; ˝3/ to
O.�9=2; ˝3/. It makes us confident that, since our current error graphics do not
show the lobular aspect of Fig. 2b, which means that the truncation of the multipolar
expansion is an important error source, our results can be improved very easily even
in the case of the strong gravitational field of a compact source of realistic mass.

Acknowledgements JEC thanks Junta de Castilla y León for grant EDU/1165/2007. This work
was supported by grant FIS2009-07238 (MICINN).
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Thick Dirac–Nambu–Goto Branes on Black
Hole Backgrounds

Viktor G. Czinner

Abstract Thickness corrections to static, axisymmetric Dirac–Nambu–Goto
branes embedded into spherically symmetric black hole spacetimes with arbitrary
number of dimensions are studied. First, by applying a perturbative approximation,
it is found that the thick solutions deviate significantly in their analytic properties
from the thin ones near the axis of the system, and perturbative approaches around
the thin configurations can not provide regular thick solutions above a certain
dimension. For the general case, a non-perturbative, numerical approach is applied
and regular solutions are obtained for arbitrary brane and bulk dimensions. As a
special case, it has been found that two-dimensional branes are exceptional, as they
share their analytic properties with the thin branes rather than the thick solutions of
all other dimensions.

1 Introduction

The study of higher dimensional black holes, branes and their interactions is an
active field of research in several different areas of modern theoretical physics. One
interesting direction, which has been first introduced by Frolov [1], is to consider a
brane—black hole toy model for studying merger and topology changing transitions
in higher dimensional classical general relativity [2], or in certain strongly coupled
gauge theories [3] through the gauge/gravity correspondence. The model consists of
a bulkN -dimensional black hole and a testD-dimensional brane in it (D � N � 1),
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Fig. 1 A sequence of thin brane equilibrium configurations on Schwarzschild background. The
different configurations belong to different boundary conditions. For simplicity, the horizon radius
is put to be 1, and R and Z are standard cylindrical coordinates

called brane-black hole (BBH) system. The brane is infinitely thin, and it is
described by the Dirac–Nambu–Goto [4] action.

Due to the gravitational attraction of the black hole, the brane is deformed and
there are two types of equilibrium configurations. The brane either crosses the black
hole horizon (supercritical), or it lies totally outside of the black hole (subcritical),
see Fig. 1.

Generalizations of the BBH model by studying the effects of thickness correc-
tions obtained from higher order curvature terms in the effective brane action, have
also been studied by Frolov and Gorbonos [5] within a perturbative approach, near
the critical solution and restricted to the Rindler zone. As an interesting result they
found that when the spatial dimension of the brane is greater than 2, supercritical
solutions behave quite differently from subcritical ones, and according to their
numerical analysis, they did not find evidence for the existence of such solutions.
They suggested that quantum corrections may cure this pathological behaviour.

As a different approach, in three consecutive papers [6–8], we have re-considered
the problem of thickness corrections to the BBH system within a more general
framework than that of [5]. We did not restrict ourselves to work neither in the
Rindler zone, nor in the near-critical solution region, and we also chose to follow a
different path in obtaining the brane Euler–Lagrange equation. As a result we were
able to provide the complete set of regular solutions of the thick-BBH problem
for arbitrary brane and bulk dimensions, and also to clarify the question of phase
transition in the system.

In this paper we present very briefly the outline of our main findings, and refer
the reader to the works [6–8] for details and the complete results.

2 Perturbative Approach

In [6], we applied a linear perturbation method to the thick BBH problem obtained
from the curvature corrected Dirac–Nambu–Goto action:

S D
Z
dD�

p�det���

�
�8�

2

3`
.1C C1RC C2K

2/

�
;
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R

0.5

1

0 1 2

ZFig. 2 The picture shows
two thick (red) brane
configurations together with
their thin (blue) counterparts
in the case of an N D 5,
D D 4 black hole
embedding. The boundary
conditions are �0 D �

4

(bottom curves) and �
17

(top
curves)

and derived the general form of the perturbation equation for the thick branes. From
the asymptotic behaviour of the perturbation equation, in accordance with the results
of [5], we found that there is no regular solution of the perturbed problem in the
Minkowski embedding case, unless the brane is a string, or a two-dimensional sheet.
This restriction, however does not hold for the black hole embedding solutions,
which are always regular within our perturbative approach.

From these results we concluded that the absence of regular solutions above the
dimension D D 3 implies, that the problem can not be solved within perturbative
approaches around the thin solutions which are not smooth on the axis of the system.
For a general discussion, one needs to find a new, non-perturbative solution of the
problem, that is expected to behave differently from the thin solutions by being
smooth on the axis.

After these conclusions, we provided the solution of the perturbation equation
for various brane (D) and bulk (N ) dimensions. The far distance equations were
integrated analytically, while the near horizon solutions were obtained by numerical
computations. The deformations of the perturbed brane configurations were plotted
(see e.g. Fig. 2) and a comparison was made with the corresponding thin brane
configurations with identical boundary conditions.

3 Non-perturbative Solutions

In [7] we further studied the effects of curvature corrections to the BBH system.
Since the results of [6] clearly showed that perturbative approaches fail to provide
regular solutions near the axis of the system in Minkowski type topologies, we
considered a different, exact, numerical approach to the problem. We analysed
the asymptotic properties of the complete, fourth-order, highly non-linear Euler–
Lagrange equation of the thick BBH system, presented its asymptotic solution for
far distances, and obtained regularity conditions in the near horizon region for
both Minkowski and black hole embeddings. We showed that the requirement of
regularity for the thick solution defines almost completely the boundary conditions
for the Euler–Lagrange equation in the Minkowski embedding case. The only
exceptions are the brane configurations with 1, 2 and 3 spacelike dimensions.
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In the cases of 1 and 3, regular solutions of the problem could be found, however,
which was an unexpected result, the problem could not be solved with the applied,
non-perturbative method for the case of 2 spacelike dimensions.

4 The Two-Dimensional Case

In [8] we further studied the problem of a topologically flat 2-brane in the thickness
corrected BBH system. Despite the previously mentioned difficulties, we were
able to find a regular, non-perturbative, numerical solution for this special case
also, based on earlier perturbative considerations [6]. The main result here was
the observation that the two-dimensional case is special as being non-analytic at
the axis of the system, just like the thin solutions. This property makes it unique
in the family of thick solutions, as in all other dimensions both the Minkowski and
black hole embedding solutions are analytic in their entire domain.
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Cosmological Applications of Extended
Electromagnetism

Roberto Dale and Diego Sáez

Abstract Extended electromagnetism (EE) has been applied to cosmology in
various papers. In all of them, the zero order energy density of the EE vector
field plays the same role as vacuum energy. Perturbations of this field have been
studied by using different approaches. Firstly, some basic equations and ideas
are summarized and, then, the CMBFAST code is used to calculate the cosmic
microwave background angular power spectrum for appropriate values of the EE
parameters. Comparisons of the resulting spectra with a good observational one
compatible with WMAP7 (Wilkinson map anisotropy probe 7 years data) seem to
be promising. We are currently looking for a set of parameters leading to the best
fitting between the WMAP7 and EE spectra. Results will be presented elsewhere.

1 Generalities

Some vector tensor (VT) theories were proposed four decades ago [1] as the-
ories of gravitation. Recent papers [2–4] have developed a VT theory which
is a generalization of the Einstein–Maxwell (EM) one. The vector field, A�,
is coupled to the electrical currents and, consequently, it plays the role of the
electromagnetic field. Cosmological perturbations in this theory—which is named
extended electromagnetism (EE)—were studied in [3,4] by using different methods.
In [3], some simplifying assumptions were assumed to compute the CMB angular
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power spectrum. As it is discussed in [4], this spectrum must be estimated again
without simplifying hypothesis. This estimation is studied, for the first time, in this
preliminary paper.

Our signature is (�,C,C,C). Greek indices run from 0 to 3. The symbol r stands
for a covariant derivative. The tensor F�� D r�A� � r�A� may be then defined
from the vector field A� of EE. Whatever quantity N may be, PN and NB are the
time derivative with respect to the conformal time and the background value of N ,
respectively. Units are chosen in such a way that the speed of light is c D 1. In the
framework of EE, the field and motion equations of a charged isentropic perfect
fluid may be obtained from the following Lagrangian (see [4] for details):

I D
Z �

R

16�G
� 1

4
F��F

�� C �.r � A/2 C J�A� � � .1C 
/

�p�g d4x; (1)

where � , G, R, �, 
, and g are an arbitrary coupling constant, the gravitational
constant, the scalar curvature, a conserved energy density, the internal energy
density, and the determinant of the metric matrix g�� .

In [4], the following equations were derived from the Lagrangian (1):

r�F�� D J� C JA� ; (2)

T ��.�; A/D 2�ŒfA˛r˛.r � A/C 1

2
.r � A/2gg�� �A�r�.r � A/�A�r�.r � A/�;

(3)

where T ��.�; A/ is the part of the energy momentum tensor of field A� which does
not appear in EM theory, r � A 	 r�A

�, and J
A

� D �2�r�.r � A/. From the field
equations (2) it follows that J T� D J� C JA� is the conserved current of the theory.

2 Basic EE Cosmological Equations and Results

Our background universe is homogeneous, isotropic, neutral, and flat. The metric
has the Robertson Walker form with scale factor a. The covariant components of
the EE vector field and the four-velocity are [A0B.	/; 0; 0; 0] and [a.	/; 0; 0; 0],
respectively. There are no charges [�q.	/ D 0] and currents [J� D 0]. In this case,
(2) reduces to

�B 	 .r � A/B D � 1

a2
Œ PA0B C 2

Pa
a
A0B� D constant (4)

and, from (3), the energy density and pressure of the field A� are found to be
�AB D �PA

B D ���2
B D constant; hence, constant � must be negative to

have a positive energy density and, then, �AB may play the role of the vacuum
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energy density. The remaining cosmological equations are identical to those of the
standard GR model with cosmological constant (�� D �A).

Let us now use the Bardeen formalism [5] to evolve background perturba-
tions in momentum space. These perturbations are expanded in terms of scalar
(Q.0/), vector, and tensor harmonics. Since vector and tensor modes evolve as in
Einstein–Maxwell (EM) theory [3,4], only scalar modes are considered. A possible
scalar mode associated to the EE vector J� is assumed to be zero. Under this
assumption, it was proved [4] that the mode �.0/, involved in the expansion
r � A D �B.1 C �.0/Q.0//, is the most suitable one to write the equations of
the theory. This mode satisfies the following differential equation:

R�.0/ C 2
Pa
a

P�.0/ C k2�.0/ D 0; (5)

which is fully decoupled from any other equation of this Bardeen first order
approximation. The initial conditions necessary to solve this equation are the values
of �.0/ and P�.0/ at a certain initial time (z D 108). Since one can always take
P�.0/
in ' 0 [4], only the initial value �.0/

in may be varied. This is the unique free
cosmological parameter characteristic of EE.

The code CMBFAST [6] may be used to calculate the CMB angular power
spectrum in standard cosmology. The equations and initial conditions of this code
may be found in [7]. They may be easily extended to EE if the following elements
are used: (a) the Bardeen formalism with the particular modes appearing in [7], and
(b) the synchronous gauge. In this way, the evolution equations for the standard
modes of GR cosmology may be written as follows:

k2�� 1

2

Pa
a

Ph D 4�GŒ�a2�Bı � 2j� j�B.a2�B�.0/ C A0B�
.0//� (6)

k2 P� D 4�GŒa2.�B C PB/� C 2j� jk2A0B�B�.0/� (7)

RhC 2
Pa
a

Ph� 2k2� D �24�GŒa2PB�L � 2j� j�B.a2�B�.0/ � A0B�
.0//� (8)

RhC 6 R�C 2
Pa
a
. PhC 6 P�/ � 2k2� D �24�Ga2.�B C PB/�: (9)

In these equations �, h, ı, � , � and �L are modes of the standard cosmolog-
ical model defined in [7], whereas �.0/ and �.0/ D P�.0/ are new EE modes
(see above). Moreover, �B and PB are the background energy density and pressure
of the cosmological fluid, respectively. The correcting terms—with respect to the
standard GR model—are those involving the constant j� j. These terms and the
new equations describing the evolution of the electromagnetic field A� must be
included in CMBFAST for applications to EE. The modified code has been used
to get the CMB angular power spectrum in four cases, and the resulting spectra
are shown in Fig. 1. The four cases correspond to the same standard parameters
of the concordance model (given in [8]), but to distinct values of �.0/. Solid line
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Fig. 1 Lines display the CMB angular power spectrum corresponding to four realizations (see
text) of the EE cosmological model. Points with error bars are WMAP7 measurements

has been obtained for �.0/ D 0, whereas the dashed, point-dashed, and dotted
lines correspond to three increasing values of �.0/

in . From Fig. 1 it follows that the
deviations with respect to the solid line—which are EE deviations associated to the
value of �.0/

in —are only relevant for ` values smaller than �250 (angular scales

greater than �0:7ı). If �.0/
in is too big (dotted line) the resulting spectrum does not

fit the WMAP7 observations; however, for appropriate �.0/
in values, the deviations

are small, but likely significant in a fitting to WMAP7 spectra based on various
parameters and Markov chains. Results on this subject will be presented elsewhere.
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General Relativistic Simulations of the Collapsar
Scenario

Nicolas de Brye, Pablo Cerdá-Durán, Miguel Ángel Aloy,
and José Antonio Font

Abstract We are exploring the viability of the collapsar model for long-soft
gamma-ray bursts. For this we perform state-of-the-art general relativistic hydro-
dynamic simulations in a dynamically evolving space-time with the CoCoNuT
code. We start from massive low metallicity stellar models evolved up to core
gravitational instability, and then follow the subsequent evolution until the system
collapses forming a compact remnant. A preliminary study of the collapse outcome
is performed by varying the typical parameters of the scenario, such as the initial
stellar mass, metallicity, and rotational profile of the stellar progenitor. 1D models
(without rotation) have been used to test our newly developed neutrino leakage
scheme. This is a fundamental piece of our approach as it allows the central
remnant (in all cases considered, a metastable high-mass neutron star) to cool
down, eventually collapsing to a black hole (BH). In two dimensions, we show that
sufficiently fast rotating cores lead to the formation of Kerr BHs, due to the fall-
back of matter surrounding the compact remnant, which has not been successfully
unbounded by a precedent supernova shock.

1 Introduction

Gamma-ray bursts (GRBs), routinely discovered by means of onboard satellite
observatories, are one of the most luminous astrophysical events known. As they
do not repeat, they must be catastrophic events. The tremendous energy and high
variability at stake hint at the long GRBs to be sequels of the formation process of
hyper-accreting stellar mass BHs. Thus we will focus on modelling massive rotating
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progenitor stars collapsing to BH and developing a thick accretion disk in their
vicinity.

The art of creating a collapsar model is based on selecting the physics playing an
allegedly key part in the process. Still, it has to be simplified with approximations
to be able to simulate it on reasonable CPU times. The final fate of a massive star
is a quite complex process, whose prevailing conditions involve the fundamental
interactions of nature. These are (a) gravity, modelled with general relativity (GR),
approximated by the conformally flat condition [1,3,11], which is exact for spherical
symmetry; (b) the weak interaction between baryonic matter and leptons, modelled
with selected deleptonization processes, that are approximated with a parametric
fit [5] for the collapse phase, and an energy-gray leakage scheme for the post-bounce
evolution; (c) the strong nuclear interaction between baryonic particles, for which
we employ a microphysical equation of state (EoS) [4]; and (d) electromagnetism,
not included in this work, that would be modelled with the MHD theory in the GR
framework, and whose implications are promising for explaining the stellar matter
accretion energy transformation into the GRB jet kinetic energy.

Technically, as the central singularity begins to form, one need to prescribe a
procedure to follow the space-time hypervolume which will end up inside of the
event horizon. Thus, we need to implement an apparent horizon (AH) finder.

Finally, we perform a number of 2D simulations with CoCoNuT [2], in order
to include rotation (breaking the initial spherical symmetry). We will show that
rotating models naturally develop convective motions as well as a handful of
hydrodynamic instabilities, such as the standing accretion shock instability (SASI).
Hereafter, we briefly describe the deleptonization schemes employed and discuss
some preliminary spherical symmetry and 2D equatorial symmetry results.

2 Deleptonization Schemes

The deleptonization schemes employed make the neutrino physics enter the local
hydrodynamics conservation equations in the form of source terms: the nuclear
composition change rate, and the energy-momentum exchange between the fluid
and the radiative neutrino field.

The pre-supernova (SN) initial model starts collapsing due to its baryon self-
gravity. In this hot dense matter, the weak interaction processes timescale becomes
smaller than the dynamical timescale, and the core begins deleptonizing mainly by
electron captures, which yields a copious amount of neutrinos that escape out of
the core. As the collapse proceeds and the density rises (�4 1011 g cm�3), these
neutrinos become trapped, forming a neutrinosphere a few milliseconds before core
bounce. In the trapped core region, neutrinos thermalize by scattering, and diffuse
out, a process that we include with the Liebendörfer prescription [5] that reproduces
the consequences of the delicate neutrino thermalization-diffusion process. A fit of
the electron fraction as a function of the density (obtained in spherical symmetry
simulations including full neutrino transport) permits deleptonizing in a reasonably
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realistic way up to bounce. The electron fraction loss and entropy changes are
deduced from this fit.

Once the saturation density (2 1014 g cm�3) of nuclear matter is reached, the
strong nuclear interaction suddenly turns matter more incompressible, and a shock
wave forms. In this post-bounce phase, the previous Liebendörfer fit cannot repro-
duce the deleptonization, and a neutrino leakage scheme based on [7, 9, 10] serves
as another neutrino cooling approximation. It relies upon splitting up the stellar
core interior in two regions: one denser, where the neutrino diffusion timescale is
longer than the dynamical timescale (neutrinos are trapped and reach “-equilibrium
at center, e.g. PYe D @tYe D 0), and another less dense beyond the neutrinosphere
where neutrinos stream out freely. In the intermediate semi-transparent region,
an empirical opacity-based interpolation allows us approximating the neutrino
transport. Of course, this approximation to the true (much more costly) neutrino
radiative transport shall be regarded as a first step towards implementing more
elaborated schemes.

The neutrino interactions treated in this leakage, exchanging energy and/or lepton
number, are charged current “-processes on nucleons and nuclei, neutral current
elastic scattering on nucleons and nuclei, and thermal neutrino-pair production-
absorption with electron–positron pair and transversal plasmon decay. The neutral
current neutrino-electron inelastic scattering cannot be properly included in this
energy-gray leakage scheme. However, this process is only important before the
shock breaks through the neutrinosphere, i.e. in a dynamical phase where we are
using the Liebendörfer prescription, where the aforementioned microphysics is
properly included. The opacity is mainly due to scattering in this first phase, and
then due to absorption-emission in the second phase.

3 Results and Discussion

We have improved the leakage scheme of [7] to match GR simulations of the
G15 model [6] with full Boltzmann transport up to 250 ms after bounce. We have
performed simulations of several progenitor models of [12] to test for mass and
metallicity effects. Models with initial iron core mass just above the Chandrasekhar
mass form an AH very late (between 3 and 5 s after core bounce). The reason
is the very small accretion rate onto the newly formed proto-neutron star (PNS).
Nevertheless, over such long periods, the validity of our neutrino transport approxi-
mation is doubtful, since a proper transport scheme may well yield a successful SN
explosion. Thus our models predictions regarding late BH formation shall be taken
with special care. We have checked that, in agreement with previous studies [8],
the heavier the core, the faster the AH forms. In the sample of initial models at
hand, the heaviest cores correspond to stars with the lower metallicity. Indeed, the
observed trend confirms that the most likely progenitor stars producing collapsars
are the low metallicity ones, which correlate with those having the most massive iron
cores. It is also worth mentioning that our simulations did not lead to direct collapse
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Fig. 1 Time evolution, for model s40 on the first 1,000 km, of the shock radius (thick solid line),
the isopycnal positions of 107–1015 g cm�3 (grey strip contours), and the equal enclosed mass
positions of 0.1–2:0Mˇ in steps of 0:1Mˇ, and 2.0–2:15Mˇ in steps of 0:05Mˇ (solid and
dashed lines). The bottom-right corner corresponds to the excised region within the AH

to a BH even for the most massive models of 75Mˇ; all BH formation happened
by post-bounce accretion, and driven by neutrino-cooling. Figure 1 shows the 1D
space-time evolution of the pre-SN initial model s40, employing the LS180 EoS
during the collapse phase up to 0.257 s, the PNS phase to 1.206 s, and the BH phase.

After having optimized our leakage scheme, we are currently obtaining a
grid of numerical models with an ad hoc rotational profile on top of 1D stellar
progenitors. Preliminary results show that convection and SASI develop in the
stellar cores, delaying the AH formation. However, a Kerr BH eventually forms,
and the centrifugal barrier halts the accretion onto it, yielding the formation of a
thick accretion disk. More detailed results of this process will be subject of a future
publication.
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Cleaning Up a Tiny Part of the Exact Solution’s
Augean Stable

Liselotte De Groote

Abstract In the past century many exact solutions of Einstein’s field equations have
been found and published. Some of these publications contain metrics which are not
solutions of the Einstein field equations. This is due to typing errors in the one-forms
or metrics, to the introduction of mysterious new coordinates after having carried
out calculations in a different coordinate system or to the presentation of incorrect
or incomplete solutions of some non-linear differential equations, etc. Also, many
publications contain sets of supposedly different solutions to a given problem, which
at a closer look can be seen to be special cases of others. As examples we look
at the Newman Tamburino vacuum solutions and at the twisting type D solutions
published by Frolov and Khlebnicov.

1 Introduction

Publications of exact solutions often contain redundancies in the sense that line-
elements are presented which are special cases of others, or that they contain
non-distinguishing free functions or constants. As an example we look at the
Robinson Trautman pure radiation metrics of Petrov type D, published by Frolov
and Khlebnicov [3]. Eight of their metrics can be shown to be special cases of one
single form. This form, in [5], contains five free functions, where we only expect
four.

Apart from redundancy some publications also contain mistakes. Often this
is due to typing errors, but sometimes more fundamental errors are made: non-
linear differential equations are not given their most general solution, coordinate
transformations are not performed in a correct way, etc.
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Why is that a problem? First of all, publications are often cited or referred to.
Solutions are copied in reference works, such as [5]. If the original papers or the
formulae and expressions in the reference works contain errors or redundancy, this
creates a puzzle for authors trying to construct a generalisation of these solutions,
as it becomes (nearly) impossible to obtain the old metrics as limiting cases of any
new one. Therefore it would be necessary for those who are looking for new exact
solutions to first check the results that were published before. A second occasion
where redundancy causes problems, is in the context of equivalence of metrics: do
two metrics, in different coordinate systems, describe the same geometry, and are in
fact the same? Particularly when a former publication presents a solution with more
free functions than a later one, the second author might think his solution is less
general than the first one, where actually his solution, with fewer free functions or
constants, is equivalent to the previous. This will become more clear in Sect. 3.

2 Frolov and Klebnicov

In 1975 Frolov and Khlebnicov investigated non-twisting Petrov type D pure
radiation fields. These solutions belong to the Robinson Trautman class, and
together with the solutions in [2] they give all aligned Petrov type D pure radiation
metrics. In the original paper [3], the solutions are divided into three classes: A,
B and C, of which the A and B-classes are further subdivided into three and
five subclasses, respectively. As shown in [5], the C-class in the original paper is
incorrect. It is also shown there that both A- and B-classes can be combined into
one form for the line-element:

ds2 D 2r2d�d�

P 2
� 2dudr �

�

 logP � 2r.logP /;u � 2m.u/

r

�
du2; 
 	 2P 2@�@�

(1)

where P D a.u/��Cb.u/�Cb.u/�Ce.u/, with a.u/, e.u/ andm.u/ real functions
of u and b.u/ a complex function of u.

One important remark remains: in (1) five free real functions of u appear, while
a GHP-analysis [1] shows that one would only expect four distinguishing functions.
Therefore a coordinate transformation should exist, which eliminates one of them.
Indeed, if e.u/ ¤ 0, one can easily make it equal to one by replacing a.u/, b.u/ and
r by Qa.u/ e.u/, Qb.u/ e.u/ and Qr e.u/ and by next introducing a new coordinate u for
which du D dQu=e.u/. Absorbing a factor .e.Qu//�3 in m.Qu/ then eliminates e.Qu/.

3 Newman Tamburino Solutions

In 1961 Newman and Tamburino investigated vacuum solutions for metrics which
have non-vanishing shear and divergence, and are further characterised by the
existence of a hypersurface orthogonal and geodesic principal null direction [4].
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They tried to generalise the Robinson Trautman solutions to the shearing case.
However, insisting that the shear is non-zero leads to extra conditions, not present in
the shearfree case, thus preventing the finding of the Robinson Trautman solutions
as a limit.

The Newman Tamburino solutions are divided into two classes, called cylindrical
or spherical,1 according to whether �2 D �� or �2 ¤ �� . In the original paper there
is redundancy in the spherical class, which, as far as the author is aware, was not
noticed before. On the other hand, there are mistakes in the cylindrical class, as
was shown by A. Barnes (private communication) independently from the author’s
calculations. Furthermore it is possible to write the cylindrical metric in a nicer
form, without elliptic functions.

Let us first consider the spherical solutions, published in [4] as follows:

g22 D 2rL

A
� 2r2

q
��

r2 � a2
C
2r2A

�
r


�2 C �

2
�

� 2A


��
�3=2�

�
r2 � a2

�2 ; g12 D 1; (2)

g23 D 4A2x


��
�3=2

 
L

2a3
� r � 2a

2a2
�
r2 � a2

� � r � a
�
r2 � a2

�2

!

; g33 D
�2



��
�3=2

.r C a/2

g24 D 4A2y


��
�3=2

 
L

2a3
� r C 2a

2a2
�
r2 � a2

� � r C a
�
r2 � a2�2

!

; g44 D
�2


��
�3=2

.r � a/2

where A is either a real constant or proportional to u and

a D A.��/1=2; � D x C iy; 2L D log ..r C a/=.r � a// : (3)

We show that both forms can be written in one single form:

ds2 D c � 2L

2
p
x2 C y2

h
2r.x2 C y2/C .c � 2L/



.r C 1/2x2 C .r � 1/2y2

�i
du2 C 1

2

.r C 1/2
p
x2 C y2

dx2

(4)

�
"

2

q
x2 C y2dr � .r C 1/2x

p
x2 C y2

.c � 2L/ dx � .r � 1/
2
y

p
x2 C y2

.c � 2L/dy

#

du C 1

2

.r � 1/2
p
x2 C y2

dy2:

To see this, first apply the coordinate transformation r ! a Qr to the original
metric (2)–(3). If A is proportional to u also apply a coordinate transformation

x �! 64. Qxu2c2/�1; y �! 64. Qyu2c2/�1:

1The terminology refers to the geometry of the u D constant, r D constant surfaces (using the
original coordinates), which admit a single Killing vector in the “cylindrical” class and which
resemble distorted spheres in the “spherical” class.
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Next, replace u by exp .�3Qu=64/ and c D 3 Qc=2. The corresponding line-element is
then identical to (4).

If A is a constant scale x and y by a factor A�2 and u by a factor A in order to
put A D B equal to one. The corresponding line-element is then precisely (4) for
c D 0.

This shows that both spherical metrics can be written in a single form (4).
An even more interesting result can be found when considering the cylindrical

metric. First of all, this metric is wrong in [4], as well as in both editions of [5].
In all three publications different mistakes occur, leading to metrics which are not
vacuum solutions of the Einstein field equations. The correct version of the general
cylindrical vacuum metric is the following:

ds2 D
h

4C cn4

�
log r2

�2 C log.r2cn4/
�
b2 C c

i
=cn2du2 � 2drdu

C �
r2=2C 8u2b4

�
1 � cn4

��
dx2 C 4cn

p
2u

p
1 � cn4b2dxdy C cn2dy2

C 2
p
2b
�
2u cn2b2 log r2 C r

�p
1 � cn4=cndxdu C 2cn2b log r2dydu; (5)

where b, c 2 R, and where cn D cn.bx/ is a Jacobi elliptic function for which

dcn=dx D �b
p
.1 � cn4/=2; d2cn=dx2 D �b2cn3: (6)

The misprint in the original paper is to be found in the coefficient of dx2. In [4] the
authors also determine the Sachs metric as a limiting case of (5)2:

ds2 D �
log

�
r2x4

� � g
�
=x2du2�.2dr C 4r=xdx/ duCx2dy2Cr2dx2; g 2 R

Now look at the general cylindrical vacuum metric (5) which contains two constants,
b and c, and is written out by making use of an elliptic function cn.bx/. We show
that one of the constants is redundant, and that it is possible to write the line-element
without elliptic functions. Apply the coordinate transformation

y ! p
2 Qy=2C b u log.2cn4=b2/; r ! �p

2b Qr=.2cn2/;

use cn as coordinate x (taking into account (6)), replace u D p
2Qu=.2b/, introduce

a new constant c D b2.�a � 4 � log.b2=2//, and drop the tildes:

ds2 D x4
�
log r2

�2 � log r2 � a

2x2
du2 C dudr

x2
C x2 log r2dudy C x2dy2

2
C r2dx2

2x4.1 � x4/
:

2Note that g can always be put equal to zero, and is therefore redundant. To see this, scale r and y
by a factor exp.�g=2/ and x and u by a factor exp.g=2/.
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This metric is easier to use than the original one, for example in the context of
equivalence of metrics or to find it as a limiting case of charged metrics [1].
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Towards Degeneracy Problem Breaking
by Large Scale Structures Methods

Álvaro de la Cruz Dombriz

Abstract An arguable aspect of the modified gravity theories is that many of them
present the so-called degeneracy problem. For instance, the cosmological evolution,
gravitational collapse and the main features of standard black-hole configurations,
can be mimicked by many of those theories. In this communication we revise briefly
the appropriate observable quantities to be measured in order to discard alternative
theories to �CDM, such as the observed growth of scalar perturbations with Sloan
data and the CMB tensor perturbations evolution.

1 Introduction

Modified gravity [1] has been shown to be able to mimic both the dark energy
(DE) and the inflationary eras [2]. However the use of large scale observations,
such as Ia type supernova, baryon acoustic oscillations, or the cosmic microwave
background (CMB), which only depend upon the expansion history of the Universe
is not enough to determine uniquely the nature and the origin of DE. Let us rephrase
the argument: identical cosmological background evolutions can be explained by
a pleiad of theories. This is the so-called degeneracy problem, whose breaking
requires measurements not only sensitive to the cosmological expansion but, for
instance, the evolution of scalar perturbations [3], the stability of cosmological
solutions when subjected to small perturbations [4] and the existence of General
Relativity (GR)-predicted astrophysical objects such as black holes [5]. Finally, the
study of CMB tensor perturbations may also shed some light about the viability of
modified gravity theories [6–11].
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In this realm, the simplest and in fact the most studied modification of the
Hilbert–Einstein action is generalized to a general function of the Ricci scalar R,
dubbed f .R/ gravity theories [12, 13] whose action can be written as >

A D 1

16�G

Z
d4x

p�g .RC f .R/C 2Lm/; (1)

where the symbols hold their usual meanings. In addition to reproducing the entire
cosmological history [14] and despite some shortcomings [13], these theories may
behave quite well on local scales, where the GR limit must be recovered [15]. As for
any alternative theory of gravity, in f .R/ theories, the density contrast evolution, the
CMB perturbations and the backreaction mechanism [16], if the latter is assumed to
be true, need to be studied in order to unveil the potential distinct features of these
scenarios. In the present investigation we sketch the main features and steps to study
the two first issues in f .R/ theories.

2 Scalar Perturbations in f .R/ Theories

The density contrast evolution for f .R/ theories obeys a fourth-order differential
equation [17]. The resulting equation for the density contrast ı can be written as
follows:

ˇ4;f ı
iv C ˇ3;f ı

000 C .˛2;EH C ˇ2;f /ı
00 C .˛1;EH C ˇ1;f /ı

0

C.˛0;EH C ˇ0;f /ı D 0 (2)

where the coefficients ˇi;f .i D 1; : : : ; 4/ involve terms that disappear for f .R/
functions linear in R (i.e., GR) whereas ˛i;EH .i D 0; 1; 2/ involve the linear part
in R of f .R/. Thus, the quasi-static limit (k >> H ) of (2) becomes [17]

ı00 C H ı0 C .1C fR/
5H 2.�1C �1/.2�1 � �2/� 16

a8
f 4
RR.�2 � 2/k88�G�0a2

.1C fR/5.�1C �1/C 24
a8
f 4
RR.1C fR/.�2 � 2/k8

ı D 0 (3)

Contrarily to its counterpart for �CDM, the coefficients in (2) depend both upon
the model under consideration and the wavenumber k. This fact gives rise to k-
dependent transfer functions that may alter dramatically the matter power spectra
[17–19]. Available data [20] using luminous red galaxies in the Sloan Digital Sky
Survey (SDSS) were able to measure the large-scale real-space power spectrum.
These measurements were used to sharpen the constraints on cosmological param-
eters [21] and may be straightforwardly compared with the predictions made by
gravity theories [18, 22]. Very recently a full study for the Rn models [19] have
stressed the importance of the initial conditions in the perturbed equations which
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determine the evolution of the transfer function. Consequently, this method provides
an excellent arena to impose tight constraints for modified gravity models that are
claimed to be valid once compared with existing and future data [23].

3 CMB Perturbations in f .R/ Theories

The study of the CMB tensor perturbations in modified gravity theories has not
received much interest in comparison with the scalar counterpart. This fact has laid
in the difficulty of obtaining the required tensor perturbed equations which are in
general of higher order. An alternative route in order to circumvent this difficulty
consists of tackling the problem by using the simulations performed by several
codes available such as CAMB [24] based upon modifications of CMBFast [25].

Different attempts were made for several modified gravity scenarios [8] but most
of the attention was devoted to the study of the tensor perturbations evolution
in the brane-world theories context [9, 10]. Finally, with regard to f .R/ fourth
order gravity theories, the only attempts to encapsulate the main features of tensor
perturbation were made in [11] and more recently in [6, 7]. The authors of the first
investigation analyzed the tensor perturbations of flat thick domain wall branes in
f .R/ gravity. They showed that under the transverse and traceless gauge, the metric
perturbations decouple from the perturbation of the background scalar field which
generates the brane. Authors in [6, 7] addressed for the first time in literature the
tensor perturbations full calculations for the f .R/ gravity theories in the metric
formalism and Jordan frame. These general results were applied to Rn models
for different values of n describing the features that may distinguish those models
from Concordance model predictions. This implementation proved the importance
of considering the correct background when alternative theories of gravity are
subjected to this kind of analyses since a relevant contribution to the cTT

l and cEE
l

CMB coefficients comes from the background implementation.
Thus, exclusions tests for f .R/ models can be performed since data for cTT

l are
already available from WMAP [26] once the scalar contribution are also included.
With respect to cEE

l once Planck [27] measurements are ready, some data may be
compared with theoretical predictions.
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Geometric and Thermodynamic Aspects
of Charged Black Holes in Nonlinear
Electrodynamics

Joaquín Díaz-Alonso and Diego Rubiera-García

Abstract A brief summary of the new features and properties of four-dimensional
charged black holes supported by general nonlinear models of electrodynamics
minimally coupled to gravity, as compared to the usual Reissner–Nordström
solution, is provided. These models are chosen as arbitrary function of the two field
invariants and constrained by several physical admissibility requirements.

1 Introduction

It is well known that the theorems on singularities in General Relativity (GR) [1]
lead to the Reissner–Nordström (RN) solution of the Einstein–Maxwell field equa-
tions as the final outcome of (nonrotating) charged matter. This solution describes
the gravitational and electromagnetic fields of a collapsed spherically symmetric
charged object of mass M and charge Q, to which a system of Schwarzschild-like
coordinates is adapted. Depending on whether the constraint M2 � Q2 is satisfied
or not, the solution corresponds to a black hole (BH) with two horizons (Cauchy and
event) or a naked singularity (NS) (to be ruled out from the spectrum of physically
meaningful solutions by the cosmic censorship conjecture), with an extreme black
hole (EBH) (defined by a single degenerate horizon) in between these two states.
Deep inside the event horizon of the BH, a (timelike) singularity always dwells.
However, the RN solution is not taking into account the expected effects of the
quantum vacuum close to the singularity, that should modify the charge distribution
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of the Maxwell lagrangian leading to nonlinear electrodynamics (NED) as a more
realistic description of the configuration [2]. Moreover, other NEDs (as the Born–
Infeld-like ones [3]) also arise in other contexts, such as in the low-energy regime
of string/D-Brane physics [4]. Thus, a definitive answer to the question of which is
most appropriate NED lagrangian in describing the final state of the BH collapse is
not available yet. According to this, in this work we make a short review of the new
BH configurations and features that may arise when elementary solutions of general
physically reasonable NEDs are considered as sources of the gravitational field.

2 Geometry, Singularities and Thermodynamics of NEDs

In four space-time dimensions a NED is defined by a function '.X; Y / of the two
field invariantsX D � 1

2
F��F

�� and Y D � 1
2
F��F

��� , which are constructed with
the field strength tensor F�� D @�A� � @�A� and its dual F ��� D 1

2
"��˛ˇF˛ˇ . The

Einstein–Maxwell action is thus modified as

SMAXWELL D
Z
d4x

p�g
�

1

16�G
� X

�
! SNED

D
Z
d4x

p�g
�

1

16�G
� '.X; Y /

�
(1)

so '.X; Y /Maxwell D X . The function '.X; Y / is assumed to be continuous and
differentiable on its domain of definition, satisfy the parity invariance condition
('.X; Y / D '.X;�Y /), and fulfil the weak energy condition, requirements defining
the set of admissible models considered here. The Einstein-NED equations for
electrostatic spherically symmetric (ESS) solutions can be solved as [5]

ds2 D �.r/dt2 � ��1.r/dr2 � r2d˝2 I �.r/ D 1 � 2M

r
C 2

r
"ex.r;Q/ (2)

r2'XE.r/ D Q (3)

where d˝2 D d�2 C r2 sin2 �d�2, M is the ADM mass and "ex.r;Q/ D
4�
R1
r R2T tt .R;Q/dR, dubbed as the external energy function, is a monotonically

decreasing function of r for admissible models [6]. Restricting to NED models
modifying the Coulomb behaviour near the center, we can distinguish three
admissible ESS behaviours, namely, UVD, whenE.r/ � 1=rp, with p > 1 (p D 2:
Maxwell), A1, when E.r/ � 1=rp, with 0 < p < 1 (p D 2=3: Euler–Heisenberg
[2]), and A2, with E.r/ � a C brq (q D 4: Born–Infeld [3]). The last two cases
lead to finite energy solutions ".Q/ D 4�

R1
0 r2T tt .r;Q/dr < 1 if the large-r

behaviour is Coulombian.
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From (2) the horizons rh can be found as M � r=2 D "ex.r;Q/ and thus are
given by the cut points between the function "ex.r;Q/ and the beam of straight
lines M � r=2. Its analysis for admissible models leads to the full classification of
all the available gravitating structures [6], which we summarize here.

The family UVD leads always to a similar BH structure as the RN solution:
two-horizon BHs, EBHs or NS. A timelike singularity is always found at the center.

For the case of family A1 there are new configurations depending on the sign of
C D M � ".Q/. When C > 0 the structure is similar as the RN one (and again a
timelike singularity). But when C < 0 we always have a single-horizon BH, and a
spacelike singularity. The case C D 0 requires an expansion of the metric around
the center, but leads again to a spacelike singularity cloaked by a single (event)
horizon.

In case A2, for C ¤ 0, when Q > Qc D 16�qa we have either two-horizon
BHs, EBHs or NS, while forQ < Qc only single-horizon BHs or NS exist. And for
C D 0 an expansion around r D 0 reveals that the metric is finite everywhere, but
the curvature invariants diverge also in that case (as � 1=r4). When Q > Qc we
have gtt .r D 0/ < 0, revealing the existence of a single (nondegenerate) horizon,
while for Q < Qc then gtt .r D 0/ > 0 and we have a NS. The case Q D Qc

leads to the so-called “black points” [7], which possess a rich thermodynamic
behaviour [5].

Focusing now on the thermodynamics, the first law of BH thermodynamics

dM D T .rh;Q/dS C ˚.rh;Q/dQ D T .S;Q/dS C ˚.S;Q/dQ; (4)

where the temperature T , entropy S , and electric potential ˚ , are given by

T D �

2�
D 1 � 8�r2hT 00

4�rh
I S D A

4
D �r2h I ˚.r;Q/ D 8�A0.r;Q/; (5)

hold for asymptotically fast enough damping (E.r ! 1;Q/ � rp/; p < �1
[8] (see [9] for proof of the Coulombian case). Moreover, a generalized Smarr law
(M D 2TS CQ˚ for Maxwell) can be obtained for any NED model as

M D
p
S=.9�/C 2.TS CQ˚/=3: (6)

From the field equations for general NEDs in flat space it can be proven the existence
of a multiplicative group of scale transformations between the thermodynamic
variables associated to the corresponding black hole solutions. The structure of this
group is the same for all NEDs and leads to new relations between these variables
[5]. An example of these renormalization group-like equations is

@z

@x
C @z

@y
� 1 D 0: (7)
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where x D ln.Q/Iy D ln.S/I z D ln.˚2/. This is a first-order, linear, partial
differential equation whose system of ESS BH solutions associated to a given
NED are represented by ruled surfaces generated by the beam of characteristics of
these equations (here, straight lines parallel to the vector .1; 1;�1/ in the .x; y; z/
space [5]).

For the behaviour of some state variables, let us consider the case of the
temperature-horizon radius T .rh/. In the RN case this function begins from zero at
finite rh D rhEBH (corresponding to an EBH), grows up to a maximum Tmax.rhmax/

and then it decreases as � 1=rh (Schwarzschild behaviour) as rh ! 1. The specific
heat CQ D .@M/=.@T /jQ splits into two phases, the first one comprised between
rhEBH and rhmax with a positive value for CQ, and a second one rh > rhmax for
which CQ < 0. This behaviour is qualitatively similar for the families UVD and A1.

In case A2, however, the behaviour splits in three branches. When Q < Qc

the behaviour is similar as in the previous case. However, when Q > Qc , we
have T .rh D 0/ ! C1 and either T .rh/ decreases monotonically, thus CQ
showing a single negative phase (similar as the Schwarzschild solution) or there
is both a minimum and a maximum in T .rh/, thus corresponding to three phases
in CQ (negative, positive and negative, as rh grows). Finally, when Q D Qc then
T .rh D 0/ ! 0 andCQ has a similar behaviour as the RN solution with rhEBH ! 0.

In more general cases the sign of dT .rh/=drh at constant Q can change many
times as rh increases, leading to several minima/maxima of T .rh/ and thus to more
phases for CQ. This behaviour can be illustrated with a family of NEDs whose
ESS solutions are of the form E.r;Q/ D 1

R2
C ˛Rn

.ˇCRn/2 , where R D r=
p
Q and

˛ > 0, ˇ > 0 and the integer n � 2 being fixed constants for a given model
of the family, which must satisfy ˛ < 6

nC2ˇ.
1� 1

n / for positive definiteness of the
energy density. For some combinations of the parameters (e.g. n D 4; ˛ D 1=ˇ D
1=5:2) the temperature T .rh/ exhibits three extrema, and thus CQ has four phases
(C, �, C, �) [5].

In summary, in RN solutions one finds BHs with either two horizons, a single
(degenerate) one or a NS. The strength of this (timelike) singularity in all cases
runs at �1=r8. The zeroth and first laws of thermodynamics, as well as the Smarr
law, hold. For other physically admissible NEDs there exist, in addition, BHs
with a single (nondegenerate) horizon, black points, and metrics which are finite
everywhere. There is always a curvature singularity at r D 0 (timelike, spacelike, or
null) running at a minimum divergence of �1=r4. The zeroth and first laws always
hold, and there exists a generalized Smarr law, besides other finite relations. More
involved behaviours for the temperature exist, with the possibility of many phases
forCQ depending on the existence of a ESS field satisfyingE 00.r/ D 0 several times
[5]. As a conclusion, the problem of singularities cannot be avoided in physically
reasonable NED models within GR, which motivates the stufy of generalizations of
GR, such as f .R/ and beyond, or to consider nonabelian gauge fields.



Geometric and Thermodynamic Aspects of Charged Black Holes in Nonlinear. . . 253

References

1. B. Carter, Phys. Rev. Lett. 26, 331 (1971); R. Penrose, Riv. Nuovo Cim. Numero Speciale 1,
252 (1969) [Gen. Rel. Grav. 34, 1141 (2002)] S. W. Hawking and G. F. R. Ellis, The large scale
structure of space-time; Cambridge University Press, Cambridge, UK, 1973).

2. W. Heisenberg and H. Euler, Z. Phys. 120, 714 (1936); J. Schwinger, Phys. Rev. 82, 664 (1951);
A. Dobado, A. Gómez-Nicola, A. L. Maroto, and J. R. Peláez, Effective Lagrangians for the
Standard Model (Springer, Berlin, 1997);

3. M. Born and L. Infeld, Proc. Roy. Soc. London. A 144, 425 (1934).
4. E. Fradkin and A. A. Tseytlin, Phys. Lett. B 163, 123 (1985); D. Brecher, Phys. Lett. B 442, 117

(1998); D. Brecher and M. J. Perry, Nucl. Phys. B 527, 121 (1998).
5. J. Diaz-Alonso and D. Rubiera-Garcia, arXiv:1204.2506 [gr-qc].
6. J. Diaz-Alonso and D. Rubiera-Garcia, Phys. Rev. D 81, 064021 (2010).
7. H. H. Soleng, Phys. Rev. D 52, 6178 (1995).
8. J. Diaz-Alonso and D. Rubiera-Garcia, Phys. Rev. D 82, 085024 (2010).
9. D. A. Rasheed, hep-th/9702087.



Properties of Holographic Dark Energy
at the Hubble Length

Ivan Duran and Luca Parisi

Abstract We consider holographic cosmological models of dark energy in which
the infrared cutoff is set by the Hubble’s radius. We show that any interacting dark
energy model, regardless of its detailed form, can be recast as a non interacting
model in which the holographic parameter c2 evolves slowly with time. Two specific
cases are analyzed. We constrain the parameters of both models with observational
data, and show that they can be told apart at the perturbative level.

1 Introduction

Whatever the nature of DE it seems reasonable that it fulfills the holographic
principle [1]. Based on this, Li [2] proposed for the density of DE the expression

�X D 3M2
P c

2

L2
: (1)

where c2 is a dimensionless parameter and L the IR cutoff.
We will take L as the Hubble radius, L D H�1, see e.g. [3]. See e.g.[2, 4–7] for

other choices. It has been argued that an IR cutoff defined byH�1 cannot lead to an
accelerated Universe. However, if DM and DE interact according to

P�M C 3H�M D Q and P�X C 3H.1C w/�X D �Q; (2)

whereQ > 0 is the interaction term, an accelerated expansion can be achieved [8].
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In [9] the c2 parameter was considered to increase slowly with time in such a way
that 0 <

�
c2
�P� H . In what follows, quantities referring to models with variable c2

will be noted by a tilde. By assumption their energy densities conserve separately,

PQ�M D �3H Q�M and PQ�X D �3H.1C Qw/ Q�X : (3)

By considering both points of view it was demonstrated that identical backgrounds
evolutions can be described by an interacting holographic DE model, with c2 strictly
fixed, or by a non-interacting holographic DE model in which Qc2 depends weakly on
time [10]. In spite that the global evolution is identical in both scenarios, the energy
densities and the EoS parameters can behave rather differently.

2 Proposed Models: Model 1 and Model 2

Here we consider the holographic interacting model studied in [11] in order to
construct its equivalent Qc2.t/ model. In the former the IR cutoff was also set by the
Hubble’s length and the interaction term wasQ 	 3AH0�M , with A a semipositive
definite constant, related to the constant decay rate of DE into DM, � , byA 	 �

3H0r
,

with r 	 �M=�X . Thus, the Hubble function takes the form

H D H0



AC .1 �A/.1C z/

3
2

�
; (4)

We expand H2.z/ assuming that the .1C z/3 term corresponds to DM and identify
the remainder of the expression as the DE energy density. Thus,

M�2
P

3H2
0

Q�M D .1�A/2.1Cz/3 and
M�2
P

3H2
0

Q�X D A2C2A.1�A/.1Cz/
3
2 ; (5)

alongside with

Qc2 D 2A.1 �A/.1C z/
3
2 C A2



AC .1� A/.1C z/

3
2

�2 : (6)

The best fit values are found to be H0 D 69:4˙ 1:7 and A D 0:588˙ 0:004, while
�2=dof D 1:00. For details see [10]. As the top right panel of Fig. 1 shows, the
coincidence problem (i.e., “why the densities of DM and DE are of the same order
precisely today?”) gets solved (r stays constant) in the interacting case (solid green
line). In the Qc2 model (thin dot-dashed red lines) it is not solved but results much
less severe than in �CDM (thick short dashed blue line).
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Fig. 1 Top panels are for model 1 and bottom panels for model 2. Left panels: EoS parameter for
the interacting (w thin line, and weff thick line), the Qc2 and �CDM models. Right panels: energy
densities ratios, r 
 �M=�X , versus 1C z for the�CDM, the interacting and the Qc2 models. Solid
(green) lines are used for the interacting case, thin dot dashed (red) lines for the Qc2 model, and
thick short dashed (blue) for �CDM

We next propose model 2. In this model DM and DE evolve separately but Qc2 varies
slowly with time. In order to have 0 � Qc2 � 1, and

� Qc2�P� 0 we define

Qc2 D 1

1C Qr0.1C z/

(7)

where Qr0 	 Q̋M0Q̋X0 and 
 a semipositive definite constant. In this case

H D H0

q
Q̋
M0.1C z/3 C Q̋

X0.1C z/3�
 (8)

is identical to a spatially flat wCDM model with Qw D � 

3
. If we consider Eq. (8) as

resulting from some interaction between DE and DM, the interacting term would be

Q D �3 c2 w�MH; (9)

Detailed calculations can be found in [10]. The best fit values are ˝X 0 D 0:73 ˙
0:007, H0 D 71:5 ˙ 2:6 and 
 D 2:97C0:16

�0:14 , being �2=dof D 0:97. As the
bottom right panel of Fig. 1 shows the interacting model (solid green line) solves
the coincidence problem.
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Fig. 2 Left panel: evolution of the growth function, f , versus redshift for model 1. Right panel:
the same for model 2. The dashed (green) lines describe the interacting scenario, the dot-dashed
(red) lines the Qc2, and the solid (blue) line the �CDM. The observational data were borrowed
from [13]

3 Evolution of the Subhorizon Perturbations

In the interacting case, the energy-momentum tensors of DM and DE are not
independently conserved, T ��i I� D Q�

i . For subhorizon scales, i.e., k � aH, the
density and energy and momentum conservation equations simplify to

PıM D ��M
a

and P�M D �H�M C k2

a
� (10)

PıX D � .1C w/
�X

a
� 3H .1 � w/ ıX C 1

�X
.QıX � ıQ/ ; (11)

P�X D 1

.1C w/

k2

a
ıX � Q

.1C w/ �X
.�M � 2�X/ ; (12)

See [10] for the description of the ıQ in each model. To confront it with
observations, we resort to the growth function, f 	 d ln ıM=d ln a [12]. We can
see in Fig. 2, that matter density perturbations clearly different in the interacting and
the Qc2 scenarios.
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Complete Quantization of Scalar
Cosmological Perturbations

Mikel Fernández-Méndez, Guillermo A. Mena Marugán, and Javier Olmedo

Abstract We quantize a perturbed Friedmann–Lemaître–Robertson–Walker model
coupled to a massive scalar field. We consider only scalar perturbations, in a
universe whose spatial sections have the topology of a three-sphere. The local gauge
freedom is fixed at the classical level. We choose a preferred parametrization of the
system by adapting uniqueness criteria for the quantization of scalar fields with
time-dependent mass. The Hilbert space of the theory is constructed combining a
polymer representation for the homogeneous background and the preferred Fock
quantization for the perturbations. Finally, we propose a prescription to promote the
Hamiltonian constraint to a quantum operator, and characterize the states annihilated
by it in terms of their initial data at the minimum-volume section.

1 Introduction

The lack of a quantum theory of gravity has prevented a complete quantum
description of cosmological inflation. Even so, one expects that quantum field
theory in a suitable curved spacetime can provide a good approximation to the full
theory in a certain regime. On the other hand, the application of the techniques of
Loop Quantum Gravity (LQG) [8] to cosmological models such as the Friedmann–
Lemaître–Robertson–Walker (FLRW) universe has proven very successful, giving
rise to the field known as Loop Quantum Cosmology (LQC) [3]. The treatment
of anisotropic or inhomogeneous models has also received considerable attention.
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In particular, the combination of the loop quantization of the global degrees of
freedom and a standard Fock quantization of the local ones has allowed one to
attain a complete hybrid quantization of Gowdy models [7]. In this work, this hybrid
quantization approach is applied to scalar perturbations of a FLWR model coupled
to a massive scalar field. We consider the case of spatial sections with the topology
of the three-sphere.

2 The Classical System

The Arnowitt–Deser–Misner metric variables and the scalar field can be expanded
using the hyperspherical harmonics fQEng. The mode QEn is an eigenfunction of
the Laplace–Beltrami operator, with eigenvalue �!2n. The zero modes must satisfy
Friedmann equations, so we treat them as the FLRW background in which the
perturbations propagate (e˛ and ' being proportional to the scale factor and
the homogenous part of the field, respectively). Up to quadratic order in the
inhomogeneities, the modes are decoupled and the Hamiltonian is a linear combi-
nation of constraints of different nature. The homogeneous Hamiltonian constraint,
multiplied by the homogeneous lapse N0, is corrected with quadratic terms, while
the diffeomorphism and the linear Hamiltonian constraint, which appear with local
Lagrange multipliers, are of first order in the perturbations. By fixing the local
gauge freedom, we can remove all the constraints except for the one related
to the homogeneous lapse. However, care must be taken that the gauge fixing
conditions are well-posed and consistent with the dynamics. Here, we consider the
longitudinal gauge, in which the shift vector vanishes and the three-metric of the
spatial sections is conformal to the round metric. After the reduction of the system,
the Hamiltonian takes the form H D N0.H0 C P

En H En
2 /, where H0 and H En

2 are,
respectively, of zeroth and second order in the perturbations. The inhomogeneous
sector can be parametrized by the coefficients of the mode decomposition of the
scalar-field perturbation, fEn, and their momenta �f

En
. In terms of them, the second-

order Hamiltonian reads H En
2 D 1

2
e�˛�E���2f

En
C 2Ef�fEn�fEn

C En
fff

2
En
�
, where the

coefficients E�� , Ef� , and Eff depend exclusively on the homogeneous variables.
We must bear in mind that our aim is to carry out a Fock quantization of the
perturbation. However, it is known that there is an infinite ambiguity in doing
this: firstly, in the choice of fundamental variables (as we can scale the field
configuration with background functions, and change the canonical momentum),
and also in the choice of representation for them. Nevertheless, we can appeal to
some uniqueness results for the quantization of a scalar field with time-dependent
mass in a compact manifold. The requirements of (a) invariance of the vacuum state
under the spatial symmetries of the field equations, and (b) unitarily implementable
field dynamics, select a preferred scaling of the field, its momentum, and a unique
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unitary equivalence class of Fock representations for this canonical pair [4]. We can
apply these results to our case and attain a unitary quantization in the limit in which
the background behaves effectively in a classical way. Since the uniqueness results
depend only in the ultraviolet behavior, it proves sufficient to reach a Klein–Gordon
Hamiltonian with subdominant corrections in the large-!n limit [6]. This can be
done with the change of variables: NfEn D e˛fEn, �f

En
D e�˛.�f

En
� 3�˛fEn � 3�'aEn/;

N' D ' C 3
P

En aEnfEn, with momentum � N' D �' ; and N̨ D ˛ C 1
2

P
En.f 2

En C a2En/,
with momentum � N̨ D �˛ �PEn.fEn�fEn

��˛f 2
En �3�'aEnfEn/. Here aEn D 3Œ�'�f

En
C

.e6˛ Qm2' � 3�˛�'/fEn�=Œ9�2' C .!2n � 3/e4˛�, Qm being proportional to the inflaton
mass m. These new variables are canonical with respect to the reduced symplectic
structure up to the considered perturbative order.

3 Hybrid Quantization

The hybrid quantization that we employ combines a polymer representation for
the homogeneous degrees of freedom of the geometry, a standard Schrödinger
representation for the homogeneous matter field � / ', and a Fock represen-
tation for the inhomogeneities. The polymer approach starts with the variables
N� D exp.i�c=2/ and p, which parametrize the holonomies of the Ashtekar–
Barbero connection along straight edges of length �l0 in the directions of a fiducial
triad (l30 being the fiducial volume of the three-sphere) and the fluxes of the
densitized triad through “square surfaces” of geodesic edges, respectively. In the
improved dynamics scheme [1], one considers edges of length N�l0, related to
the minimum non-zero area eigenvalue allowed in LQG, 
, by the expression
N� D p


=p. These new variables parametrize the homogeneous sector and
are canonical up to a constant, fc; pg D 8�G� , G being the Newton constant
and � the Barbero–Immirzi parameter. They are to be represented in the space
of square-integrable functions in the Bohr compactification of the real line with
respect to the corresponding Haar measure, L2.RB; d�B/. It is convenient to adopt
the orthonormal basis fjvijv 2 Rg in which ON N�jvi D jv C 1i and Opjvi D
p.v/jvi, with p.v/ / sgn.v/jvj2=3. As for the inhomogeneities, we choose the
quantization selected by the uniqueness results mentioned above. In particular, we
adopt the massless representation, which can be constructed from the annihilation-
like variables af

En
D .!nfEn C i�f

En
/=

p
2!n and their creation-like counterpart a�

f
En
.

We denote by F the corresponding Fock space.
The total kinematical Hilbert space is then L2.RB; d�B/ ˝ L2.R; d�/ ˝ F .

This is the space in which the Hamiltonian constraint must now be represented.
The homogeneous part of the constraint, OC0, can be regularized as in the unperturbed
case [2]. With a suitable factor ordering:
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OC0 D
2

�

1
jpj

�

3
4

�
8�G. O�2� Cm2j Opj3 O�2/� 6. Ő 2C.1C�2/l20 Op2�j Opj

3 sin2. ON�l0/=
/
�2

�
2

�

1
jpj

�

3
4 ; (1)

Ő D 1

4i
p



j Opj 34

h
1sgn.p/; e�i ON�l0=2 ON2 N�e

�i ON�l0=2 � ei
ON�l0=2 ON�2 N�e

i ON�l0=2
i

C

j Opj 34 : (2)

Here, Œ�; ��C is the anticommutator and the inverse powers of p are regularized in
the usual way [1]. The (second-order) difference operator Ő 2 connects only states
jvi with v 2 L"̇ D f˙." C 4n/jn 2 Ng. Therefore, the Hilbert spaces H ˙

"

of states with support in the semilattices L"̇ are superselection sectors. Now we
need a prescription to quantize the part of the Hamiltonian constraint quadratic in
the perturbations [5], OC En

2 . Since the variable c has no corresponding operator in the
quantum theory, we promote the even powers .cp/2k to operators Ő 2k, and the odd
powers .cp/2kC1 to j Ő jk O�j Ő jk . The operator O� is introduced so as to preserve the
superselection sectors, and is defined like Ő but with a 1=2 factor and steps of 4 N�
instead of 2 N�. The complete Hamiltonian constraint OC D OC0 C P

En OC En
2 is thus a

difference operator whose solutions are characterized in each sector H ˙
" by their

“initial data” at the minimum volume sector v D ". Endowing this space with an
inner product (e.g., by imposing reality conditions on a complete set of observables),
we can provide it with the structure of a Hilbert space—the physical Hilbert space
L2.R; d�/˝ F .

4 Conclusions

We have presented a complete hybrid quantization of the scalar perturbations of a
closed FLRW universe filled with a scalar field. The local gauge freedom has been
fixed classically (nonetheless, the physical degrees of freedom of the perturbations
can equivalently be described in terms of gauge invariants [5]). The combination
of polymer and Fock techniques has allowed us to construct a rigorous quantum
theory. Criteria of symmetry and unitary dynamics have been used to select a
preferred Fock representation for the inhomogeneities. A quantum representation
of the Hamiltonian constraint has been proposed, and it has been noted that its
solutions can be identified with the space of initial data in the minimum volume
section.
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Null Geodesics of Black Holes in String Theory

Sharmanthie Fernando

Abstract In this talk, we presented the null geodesics of the static charged black
hole in heterotic string theory. The talk is based on a paper published in Physical
Review D (Fernando, Phys. Rev. D 85:02403, 2012). In this paper, a detailed
analysis of the geodesics are done in the Einstein frame as well as in the string
frame. In the Einstein frame, the geodesics are solved exactly in terms of the
Jacobi-elliptic integrals for all possible energy levels and angular momentum of the
photons. In the string frame, the geodesics are presented for the circular orbits. As a
physical application of the null geodesics, we have obtained the angle of deflection
for the photons and the quasinormal modes of a massless scalar field in the eikonal
limit.

1 Introduction to GMGHS Charged Black Holes in String
Theory

In this paper we studied null geodesics of the GMGHS charged black hole in the
string theory. Let us first give an introduction to the theory and the resulting black
hole solution.

The action corresponding to the GMGHS black hole is given by,

S D 1

16�

Z
d4x

p�g 	R � 2.5˚/2 � e�2˚F��F ��



(1)

Here ˚ is the dilaton field, R is the scalar curvature and F�� is the Maxwell’s field
strength. The static charged black hole solutions to the above action were found first

S. Fernando (�)
Northern Kentucky University, Highland Heights, KY 41099, USA
e-mail: fernando@nku.edu

A. García-Parrado et al. (eds.), Progress in Mathematical Relativity,
Gravitation and Cosmology, Springer Proceedings in Mathematics & Statistics 60,
DOI 10.1007/978-3-642-40157-2__36, © Springer-Verlag Berlin Heidelberg 2014

267

mailto:fernando@nku.edu


268 S. Fernando

by Gibbons and Maeda[2]. It was also independently found by Garfinkle, Horowitz
and Strominger [3] few years later.

The GMGHS black hole solution to the action in Eq. (1) is given by,

ds2E D �
�
1 � 2M

r

�
dt2 C 1

�
1 � 2M

r

�dr2 C r .r � a/ .d�2 C sin2.�/d�2/ (2)

Here, the electric field strength and the dilaton field are given by,

Frt D Q

r2
I e2˚ D 1 � Q2

Mr
I a D Q2

M
(3)

There is an event horizon at r D 2M . How ever, the area of the sphere of the string
black hole is smaller and the area approaches zero when r D Q2=M . Therefore,
r D Q2=M surface is singular. For Q2 � 2M2, the singular surface is inside the
event horizon and the Penrose diagram is identical to the one of the Schwarzschild
black hole. When Q2 D 2M2, the singular surface coincides with the horizon.
This is the extremal limit where a transition between the black hole and the naked
singularity occurs.

2 Null Geodesics

The null geodesics for the above black hole are given by the following three
equations.

R.r/2 P� D L (4)

f .r/Pt D E (5)

Pr2 C f .r/
L2

R.r/2
D E2 (6)

Here f .r/ D 1 � 2M
r

. One can do a change of variable as u D 1
r

and combine the
above Eqs. (4), (5) and (6) to obtain an equation,

�
du

d�

�2
D g.u/ (7)

where,

g.u/ D �2aMu4 C .aC 2M/u3 C u2
�
a2
E2

L2
� 1

�
� 2aE

2

L2
u C E2

L2
(8)
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When a ! 0, g.u/ ! 2Mu3 � u2 C E2

L2
as expected for the Schwarzschild black

hole [4]. When a ! 0, g.u/ has maximum three real roots as described in the book
by Chandrasekhar[4].

3 Bending of Light

Once the null geodesics are analyzed in detail for various parameters in the theory
such as E;L;M and Q, it is possible to apply that knowledge to study important
properties of the black hole geometry. One of them is the gravitational lensing
or bending of light by the black hole. We obtained explicit expressions for the
closest approach ro of the light ray in terms of the impact parameter D given in
Eqs. (9), (10) and (11). There after, we compared the deflection angle of light as a
function of D for the GMGHS black hole and the Schwarzschild black hole.

r string
o D 2

r
�p
3

cos

 
1

3
cos�1

 
3q

2p

s

� 3
p

!!

C a

3
(9)

Here, p and q are given by,

p D a2 � 3D2

3
(10)

q D 54MD2 � 9aD2 � 2a3
27

(11)

4 Unstable Null Geodesics and Quasinormal Modes
of the Massless Scalar Field in the Eikonal Limit

When a black hole is perturbed, it undergoes damped oscillations; the frequencies
of oscillations are called quasinormal modes. Perturbations of a black hole with a
scalar field are given by the equation,

d2�

dr2�
C
�
!2 �

�
l.l C 1/

R2
C ff 0R0

R
C f 2R00

R

��
� D 0 (12)

Here, l is the spherical harmonic index and r� is the tortoise coordinate. The
computation of quasinormal modes at the eikonal limit and the unstable null
geodesics are related [5]. In the eikonal limit, the quasinormal modes are given as,

!QNM D ˝cl � i.nC 1

2
/j�j (13)
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Here, the value n is a nonnegative integer. ˝c is the coordinate angular velocity

given by
P�
Pt computed at unstable circular radius of the null geodesics which is given

in Eq. (14). � is the Lyapunov exponent which gives the instability timescale of the
unstable circular null geodesics, given in Eq. (15)

˝c D
P�.rc/

Pt .rc/ D
s
f .rc/

R.rc/2
D
s
rc � 2M

r2c .rc � a/
(14)

� D
s
.2M � rc/.3r3c � 12Mr2c � 3ar2c C 16aMrc C a2rc � 6a2M/

r4c .rc � a/2 (15)

5 Conclusions

We have studied the null geodesics of the GMHHS black hole. The equations for the
geodesics were solved exactly for various values of energy and angular momentum
of the photons.

As physical applications of the properties of the null geodesics obtained here,
we have studied light bending and quasinormal modes of massless scalar field. The
closest approach of the photons bending around the black hole is computed as a
function of the impact parameter. The deflection angle ˛ is computed as a function
of the impact parameter. A comparison is done with the deflection angle of the
Schwarzschild black hole. It was observed that the photons with the same impact
parameter bend less around the string black hole compared to the Schwarzschild
black hole. These results would be beneficial in computations of gravitational
lensing of string black holes.

The unstable circular null geodesics of the black hole are used to compute the
quasinormal modes of the black hole in the eikonal limit. We have followed an
important result by Cardoso et al. [5] in deriving these results. The Lyapunov
exponent �, which gives the instability time scale is also computed. It was noted
that there is a maximum value for � at a D 6M.2� p

3/.

References

1. S. Fernando, Null geodesics of charged black holes in string theory, Physical Review D 85
02403 (2012)

2. G.W. Gibbons & K. Maeda, Black holes and membranes in higher dimensional theories with
dilaton fields, Nucl. Phys. B298 741 (1988)

3. D. Garfinkle, G.T. Horowitz & A. Strominger, Charged black holes in string theory, Phys. Rev.
D43 3140 (1991)

4. S. Chandrasekhar, The Mathematical Theory of Black holes, Oxford, UK (1983)
5. V. Cardoso, A.S. Miranda, E. Berti, H. Witeck & V.T. Zanchin, Geodesics stability, Lyapunov

exponents and quasinormal modes, Phys.Rev. D79 064016 (2009)



The Causal Boundary of Spacetimes Isocausal
to Standard Stationary Ones

José L. Flores

Abstract We present some recent results in Flores et al. (ArXiv:1011.1154)
about the relation between the causal boundary of standard stationary spacetimes
(previously studied in Flores et al. (Memoirs A.M.S. ArXiv:1011.1154)) and that of
a wide class of spacetimes which are isocausal to them.

1 Introduction

In the last years the causal boundary has been computed for some well-known
classes of spacetimes, as standard stationary ones [4]. In order to extend these
results to other spacetimes of interest, it is natural to argue that spacetimes with
similar causal structure will present similar causal boundaries. This is the case of
conformally equivalent spacetimes, which trivially have the same causal boundary.
The notion of isocausality, introduced by García-Parrado and Senovilla in [7],
provides a relation of equivalence between spacetimes which is more flexible than
the conformal one. So, it is natural to ask if isocausal spacetimes will also present
the same causal boundary. Here, we will see that, even if the answer to this question
is negative in general [2], it is possible to relate the causal boundary of standard
stationary spacetimes with that of a wide class of spacetimes isocausal to them [5].
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2 C-Boundary of Spacetimes

The causal boundary of a strongly causal spacetime .V; g/ was introduced in [8]
(see, e.g., [1] for an outline and terminology). In this paper we will consider the
most recent redefinition of the causal boundary developed in [3], called c-boundary.

Denote by OV ( LV ) the future (past) c-completion of a strongly causal spacetime
.V; g/, i.e. the set of IPs (IFs) in .V; g/ endowed with the topology associated to
the limit operator OL ( LL), where P 2 OL.Pn/ iff P � lim inf.Pn/ and P maximal
in lim sup.Pn/ ( LL is defined analogously). The c-completion V and the c-boundary
@V of .V; g/ are defined as follows:

V WD f.P; F / 2 . OV [ ;/ 
 . LV [ ;/; P �S F g n f.;;;/g; @V WD V n V;

where P �S F iff P is a maximal IP in # F WD I�.fq 2 V W q`2p;8p 2 F g/
and F is a maximal IF in " P WD IC.fp 2 V W q`2p;8q 2 P g/. If P (F) does
not satisfy previous property for any F (P ), we assume P �S ; (; �S F ). The
c-completion V is endowed with the following chronological relation:

.P; F /`2.P 0; F 0/ iff F \ P 0 ¤ ;:

The c-completion is also endowed with a structure of topological space just by
considering the topology associated to the limit operator L, where

.P; F / 2 L.f.Pn; Fn/g/ ,
�
P 2 OL.Pn/ if P ¤ ;
F 2 LL.Fn/ if F ¤ ;:

3 Isocausal Comparison

The isocausal comparison between spacetimes was introduced by García-Parrado
and Senovilla in [7]. First, V is said to be causally related with V 0, denoted V � V 0,
if there exists a diffeomorphism � W V ! V 0 mapping causal vectors to causal
vectors (preserving time-orientation). Then, V and V 0 are isocausal if they are
causally related in both directions (perhaps by using different diffeomorphisms).
Note that isocausality is more flexible than conformal equivalence. Moreover,
it preserves some relevant global properties associated to the conformal structure
of the spacetime (but not all of them, as remarked in [6]).

In [2] the authors showed the existence of two isocausal spacetimes with different
future c-boundaries.
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4 Standard Stationary Framework

A standard stationary spacetime .V; g/ is a product manifold V D R
M endowed
with a metric g D �dt2 C ! ˝ dt C dt ˝ ! C h; where ! is a one-form on M and
.M; h/ a Riemannian manifold. For every standard stationary spacetime, there exist
two Finsler metrics of Randers type overM :

F˙.v/ D
p
h.v; v/C !2.v/˙ !.v/; v 2 TM:

The Finsler metric F D FC defines a distance map d W M 
 M ! R in the
natural way. As F is only positively homogeneous,d may not be symmetric, and so,
it may not be a real distance, but a generalized distance, that is, d satisfies the three
properties of a quasi-distance (a distance which is not necessarily symmetric) plus
this other one: limn d.xn; x/ D 0 iff limn d.x; xn/ D 0. The possible non-symmetry
of d provides two possible Cauchy completions MĊ for the generalized metric
space .M; d/, whose corresponding Cauchy boundaries @Ċ M satisfy the relation
@sCM D @C

CM \ @�
CM , being @sCM the Cauchy boundary for the symmetrized

distance ds.x; y/ WD 1=2.d.x; y/ C d.y; x//. The (forward) Cauchy completion
MC
C is endowed with the natural extension dC

Q of d , which becomes a quasi-

distance. In order to get good topological properties, MC
C is endowed with the

topology induced by the backward dC
Q -balls, instead of that induced by the forward

ones.

5 Main Results

We are now in conditions to state the main results. We want to study the c-boundary
of spacetimes .V; g/ of the form

V D R 
M and g D �dt2 C !t ˝ dt C dt ˝ !t C ht ;

where now !t and ht depend on t . To this aim, we will assume

gcl �0 g �0 gop; being

�
gcl D �dt2 C ! ˝ dt C dt ˝ ! C h

gop D �dt2 C ˛.t/! ˝ dt C ˛.t/dt ˝ ! C ˛2.t/h;

for some positive function ˛ W R ! R (�0 means causally related by using � 	 Id).
Under these conditions gop is conformal to gcl, and the metrics g, gcl (and gop) are
isocausal. In order to relate the future c-completions OV and OVcl of .V; g/ and .V; gcl/,
resp., first consider the following relation: P1; P 2 2 O@V are st-related, P1 �st P

2,
if there exists a TIP Pcl for gcl such that Pcl � P1 \ P2 and I�

op.P
1/ D I�

op.Pcl/ D
I�

op.P
2/ (where I�

op.�/ means I�.�/ computed with metric gop).
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Theorem 5.1. Let .V; g/ be a spacetime as above. If the integral condition

Z 1

0

�
1

˛.s/
� 1

�
ds < 1

holds, dC
Q is a generalized distance andMC

C is locally compact then the map

OJ D Ŏ ı Oj W OVcl ! OV = �st; with Oj .Pcl/ WD I�.Pcl/ and Ŏ W OV ! OV = �st

is bijective and continuous.
If, in addition, OV = �st is Hausdorff, then OJ is an homeomorphism.

An analogous result can be established for the past c-completions LV and LVcl.
Finally, in order to relate the c-completions V and V cl of .V; g/ and .V; gcl/,

resp., we consider a map j W V cl ! V satisfying

.Pcl; Fcl/ 7! j ..Pcl; Fcl// WD
8
<

:

.I�.Pcl/;;/ if Fcl D ;

.;; IC.Fcl// if Pcl D ;

.P0; F0/ otherwise,

for some P0 2 Ŏ �1. OJ .Pcl//, F0 2 L̆ �1. LJ .Fcl// such that P0 �S F0. Such a
map exists and is injective. Then, consider the relation �st on V defined by

.P; F / �st .P
0; F 0/ ” .P; F /; .P 0; F 0/ 2 ST..Pcl; Fcl// for some .Pcl; Fcl/ 2 V cl;

where .P; F / 2 ST..Pcl; Fcl// ”

8
ˆ̂
<

ˆ̂:

P ¤ ; ¤ Pcl ) P 2 Ŏ �1. OJ .Pcl//

F ¤ ; ¤ Fcl ) F 2 L̆ �1. LJ .Fcl//

Pcl D ; ) P D ;
Fcl D ; ) F D ;:

Theorem 5.2. Let .V; g/ be a spacetime as above. If the integral conditions

Z 0

�1

�
1

˛.s/
� 1

�
ds < 1;

Z 1

0

�
1

˛.s/
� 1

�
ds < 1

hold, dC
Q is a generalized distance and Ms

C D M [ @sCM is locally compact, then

J D ˘ ı j W V cl ! V = �st; with ˘ W V ! V = �st

is injective and continuous.
If, in addition, V = �st is Hausdorff, then J is an homeomorphism.
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A New Numerical Approach to Estimate
the Sunyaev–Zel’dovich Effect

Màrius Josep Fullana i Alfonso, Josep Vicent Arnau i Córdoba,
Robert J. Thacker, Hugh M.P. Couchman, and Diego P. Sáez Milán

Abstract Several years ago, we designed a particular ray tracing method. Com-
bined with a Hydra parallel code (without baryons), it may compute some CMB
anisotropies: weak lensing (WL) and Rees–Sciama (RS) effects. Only dark matter
is fully necessary to estimate these effects. For very small angular scales, we made
an exhaustive study leading to a lensing contribution slightly—but significantly—
greater than previous ones. Afterwards, the same ray tracing procedure was included
in a parallel Hydra code with baryons. The resulting code was then tested. This
code is being currently applied to the study of the thermal and kinetic Sunyaev–
Zel’dovich (SZ) contributions to the CMB anisotropies. We present here our first
results.

1 Introduction

In order to improve on previous estimates of CMB anisotropies based on PM
methods (see [1] and [2]), AP3M codes are used. First, a Hydra AP3M sequential
code [3] was used. Only dark matter was taken into account to evolve structures and
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compute gravitational CMB anisotropies. Afterwards, a Hydra AP3M parallel code
was used, which allowed us to get a higher resolution [4]. Now, we are moving CMB
photons along the simulation boxes of a Hydra AP3M parallel code with baryons.
RS and WL CMB anisotropies have been calculated again—with similar boxes and
resolution—. Comparisons with previous computations give consistent results. Now,
calculation of SZ effect is being performed by using appropriate resolutions and
our ray-tracing techniques (designed to move CMB photons thorough the simulated
boxes while running the code). The peculiar gravitational potential, its gradients,
the electron number density ne , the electron temperature Te , and other necessary
quantities are calculated and used at every time step of the Hydra simulation. More
details about previous work may be found in other publications [1, 3–6]

2 On the Computation of Thermal and Kinetic SZ Effects

In order to estimate the relative temperature variation (
T=T ), in the En direction,
due to the thermal and kinetic SZ effects, the integrals involved in the following
equations [7]:


T

T
.En/ D �2 �T

mec2

Z l0

li

ne k .Te � TCMB/ dl; (1)


T

T
.En/ D � �T

c

Z l0

li

ne vr dl (2)

must be numerically computed. In these equations, TCMB; vr ; �T ; k; me and c
are the CMB average temperature, the radial peculiar velocity, the Thompson
cross section, the Boltzmann constant, the electron mass and the speed of light,
respectively. The integrals in (1) and (2) are performed along background null
geodesics (Born approximation) using the following method:

1. Select the propagation directions of the CMB photons (ray-tracing).
2. Use the photon spatial step to determine all the evaluation events (positions and

times) on the background null geodesics, from the initial to the final redshift.
Then, localize each of these positions inside one of the simulation boxes and
place there a test particle.

3. At each time step of the simulation (while running), try to calculate ne , Te and vr
at the test particle position as it is done in the Hydra algorithm for the positions
of the baryon particles. Alternatively, use an appropriate approximating method
to get a good enough estimate of ne , Te and vr . Our approximation involves
3 quantities: the distance R (Rmax) from the position of the test particle to the
nearest baryon (the 32nd baryon), and the Hydra effective spatial resolutionRmin.

4. Multiply the integrands of Eqs. (1) and (2)—evaluated at the position of the
nearest baryon—by a factor f .R/ defined as follows:
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Rmax=h(i) SZ Thermal vs Kinetic

Thermal
Kinetic

104103

101
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I
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l+
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C

l /
 2

   
μK

2

Fig. 1 Thermal and Kinetic SZ contributions computed with one test simulation

(a) For R � Rmin W f .R/ D 1. The integrand is then evaluated at the position of
the nearest baryon.

(b) For, Rmin � R � Rmax:

f .R/ D 1 �
"�

R � Rmin

Rmax �Rmin

�2 �
1� 2

R � Rmax

Rmax �Rmin

�#

(3)

Therefore f .Rmin/ D 1 and f .Rmax/ D 0. This is a Hermite interpolation
with null derivatives at R extremes, i.e. a cubic kernel of spline type.

(c) For R > Rmax W f .R/ D 0. The integrand is taken to be zero since the
nearest baryon is too far away.

3 Current Work and Projects

A version of Hydra code with baryons has been modified to include CMB photons.
Some subroutines and the computational load allocation configuration of the initial
code have been remodeled. The resulting code has been tested. We are computing
RS, WL and SZ contributions together. In this way, we can also compute the
coupling of all contributions to the CMB spectrum. One of the most powerful tests
is based on the comparison of the WL and RS power spectra obtained by using
simulations with and without baryons, which have given very similar results [6].
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We have started SZ computation using test simulations. The main parameters
of such simulations are: box size Lbox D 512h�1Mpc, number of particles Np D
2
2563, number of cellsNc D 5123, number of photon directionsNdir D 512
512
and initial redshift for computation of SZ contribution at Zin D 6, see Fig. 1. We
obtain acceptable values (compare with Fig. 5 of [7]).

We are running by now higher resolution simulations based on the following
main parameters: box sizeLbox D 200h�1Mpc, number of particlesNp D 2
6403,
number of cells Nc D 10243, number of photon directions Ndir D 512 
 512

and initial redshift for computation of SZ contribution at Zin D 6. The angular
resolution of these simulations is Dang � 0:120, and the map size is � 1ı 
 1ı.
We think these simulations will improve on previous results allowing us: (i) a better
estimate of the SZ effect by using our ray-tracing procedure, (ii) the simultaneous
calculation of the total anisotropy produced by the RS, WL, and SZ effects, whose
superposition may be nonlinear, and (iii) the comparison of the resulting total
anisotropy with recent observations at very small angular scales [8, 9].
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Hawking Radiation for a Proca Field: Numerical
Strategy

Carlos Herdeiro, Marco O. P. Sampaio, and Mengjie Wang

Abstract We compute the Hawking radiation for a Proca field in the D-dimensional
Schwarzschild background. We construct a numerical strategy to solve the coupled
system which describes a coupling between two physical degrees of freedom of the
field due to the mass term. We show how to define the transmission factors for the
coupled system from an S matrix and compute them to generate the Hawking fluxes.

1 Introduction

Hawking radiation [1] is black body like radiation emitted by black holes when one
considers quantum fields near the event horizon. An intuitive way to understand
this effect is to consider vacuum fluctuations near the event horizon, which create
virtual particle/anti-particle pairs. When the virtual particles with negative energy
are absorbed by the hole while the corresponding anti-particles become real outside
of the hole, Hawking radiation appears.

In brane-world scenarios, it has been argued that miniature black holes may be
produced in colliders if the true fundamental Planck scale is as low as the TeV
scale [2–5]. The miniature black holes should decay promptly due to Hawking
radiation, so in principle we can search for black hole events via Hawking radiation.
Event generators such as CHARYBDIS2 and BLACKMAX are currently in use at the
LHC. In such event generators, the longitudinal modes of Proca fields are modeled
by scalar fields. In [6] we show that the longitudinal modes couple with a transverse
mode. This implies that for Proca fields we have to solve coupled equations as well
as decoupled single equations, rather han just solve decoupled single equations.
In the remainder, we will present the method we have used and some main results.
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2 Numerical Strategies and Results

We start from the Lagrangian which describes the Z particle in the Standard Model

L D �1
2
W %
��W

�� CM2W %
�W

�; (1)

where W�� D @�W� � @�W�, and M is the field mass. Then the equations of
motion can be derived directly when the background is fixed. For the gravitational
background, we consider Einstein symmetric spaces of the form [7]

ds2 D hab.y/dyadyb � r.y/2d�2n ; d�2n D �ij.x/dxidxj ; (2)

where �n is an n-dimensional Einstein space with metric �ij.
In the equations of motion we decompose the vector field in tensorial types [7].

Wa are m-scalars, with respect to �n, so they obey (�20 is the spin-0 eigenvalue)

 O
C �20

�
Wa D 0; (3)

Wi is a vector field which is decomposed as a scalar ˚ , and a transverse vectorW T
i

Wi D ODi˚ CW T
i ;

ODi
OW T i D 0; (4)

where ODi is the covariant derivative on �n. Since ˚ is a scalar, it obeys (3). The
transverse vector obeys (�21 is the spin-1 eigenvalue)


 O
C �21

�
W T
i D 0; (5)

Specifying our background geometry to be Schwarzschild–Tangherlini case and
expanding the field equations with the decomposition (4), using conditions (3)
and (5), we obtain coupled equations for two modes ( ; �) when �20 ¤ 0

�
V 2 d

dr

�
1

rn�2
d

dr
rn�2

�
C !2 �

�
�20
r2

CM2

�
V

�
� � i!V 0 D 0; (6)

�
V 2

rn
d

dr

�
rn
d

dr

�
C !2 �

�
�20
r2

CM2

�
V

�
 C i!

�
2V

r
� V 0

�
� D 0; (7)

with V D 1 � �=rn�1, �20 D `.`C n � 1/ and a set of decoupled single equations.
There are a lot of studies on decoupled case, so here we focus on the coupled case.

In order to solve Eqs. (6) and (7), firstly we expand  and � at the horizon as

 D y�
1X

jD0
�j y

j ; � D y�
1X

jD0
�j y

j ; (8)
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to initialize the coupled system numerically (y D r � rH and rH is the horizon
radius). Then integrating them up to large r , we can factor out the coefficients for
outgoing/ingoing waves at infinity through far field expansions

 ! 1

r
n
2 �1

" 

aC
0 C aC

1

r
C : : :

!

ei˚ C
�
a�
0 C a�

1

r
C : : :

�
e�i˚

#

;

� ! 1

r
n
2�1

���
� k
!

C cC

r

�
aC
0 C : : :

�
ei˚ C

��
k

!
C c�

r

�
a�
0 C : : :

�
e�i˚

�
:

(9)

In one of the asymptotic regions (either at the horizon or at infinity), we need 4
independent coefficients to parameterize these two fields. Let us denote the ingoing
and outgoing wave coefficients (�=C respectively) at the horizon and at infinity by

Eh D .hC;h�/ D .hC
i ; h

�
i /; Ey D .yC; y�/ D .yC

i ; y
�
i /;

where i D 1; 2. Due to linearity, we can define a scattering matrix

Ey D SEh ,
�

yC
y�
�

D
 

SCC SC�
S�C S��

!�
hC
h�
�

,
�
yC
i

y�
i

�

D
X

j

 
SCC

ij SC�
ij

S�C
ij S��

ij

! 
hC
j

h�
j

!

;

which contains all the information on the scattering process. At the horizon we
impose an ingoing boundary condition hC D 0. We can define a reflection matrix

yC D SC�.S��/�1y� 	 R y�; (10)

and fix the freedom of this definition by computing the energy flux

F jr D �
Z

Sn
d˙ T r

t ; (11)

where d˙ is the volume element on the Einstein space. At infinity we get

F coupled1 D .y�/%
�
1 � R%R

�
y� 	 .y�/%T y�; (12)

where we have defined a (hermitian) transmission matrix T. Using energy flux
conservation, one obtains an alternative definition of T at the horizon

T D .S��S%��/�1 : (13)
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Fig. 1 Transmission factors and Number fluxes: the first row shows transmission factors of
coupled modes (`1; `2), transverse vector mode `T and electromagnetic mode `E ; the second row
shows number fluxes for a Maxwell field (left panel) and the small M limit of a Proca field (right
panel)

Through the standard Hawking formulas [6], the number and energy fluxes can be
computed after obtaining the transmission factors.

As a summary of our results, we present plots showing transmission factors in
the first row and the number fluxes in the second row in Fig. 1. The left panel of
the first row shows that in the small mass limit one of the coupled modes (`1)
coincides with the electromagnetic mode (`E), which can be used to check the
coupled results because the transmission factor of the decoupled mode is easier to
define and calculate. The right panel of the first row shows that in the large mass
limit the transmission factors start from a non-zero value at the threshold ! D M

for small `. Since the mass term of Proca theory introduces a longitudinal mode,
from the second row we find that this extra mode contributes considerably.

Our results have been extended to charged Proca fields in [8], and they can be
used to improve the black hole event generators currently used at the LHC.
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Perturbations of Kantowski–Sachs Models
with a Cosmological Constant

Z. Keresztes, M. Forsberg, M. Bradley, P.K.S. Dunsby, and L.Á. Gergely

Abstract We investigate perturbations of Kantowski–Sachs models with a positive
cosmological constant, using the gauge invariant 1 C 3 and 1 C 1 C 2 covariant
splits of spacetime together with a harmonic decomposition. The perturbations are
assumed to be vorticity-free and of perfect fluid type, but otherwise include general
scalar, vector and tensor modes. In this case the set of equations can be reduced to
six evolution equations for six harmonic coefficients.

1 Introduction

In this work we consider perturbations of Kantowski–Sachs models with a positive
cosmological constant. Some of these models can undergo an anisotropic bounce
where the universe changes from a contracting to an expanding phase. A simple
argument used by Börner and Ehlers, [1], to show that an isotropic bouncing
universe is excluded by observations does not hold for the Kantowski–Sachs
models [2]. Hence it is of interest to study the evolution and propagation of
perturbations in these models and their possible effects on observables, like the
Sachs–Wolfe effect [8]. To do this we use the 1 C 3 and 1 C 1 C 2 covariant splits of
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spacetime, [3–6], that are suitable for perturbation theory, as they employ variables
that vanish on the background and hence their perturbations are gauge invariant [9].
The perturbations are assumed to be vorticity-free and of perfect fluid type, but
otherwise include general scalar, vector and tensor modes. The evolution equations
for the perturbative variables are then derived in terms of harmonics.

2 The 1 C 3 and 1 C 1 C 2 Covariant Formalisms

A covariant formalism for the 1 C 3 split of spacetimes with a preferred timelike
vector, ua, was developed in [5, 6]. The projection operator onto the perpendicular
3-space is given by hba D gba C uaub. With the help of this vectors and tensors can
be covariantly decomposed into “spatial” and “timelike” parts. The covariant time
derivative and projected spatial derivative are given by

P a::b 	 ucrc a:::b and Dc a:::b 	 hfc h
d
a : : : h

e
brf  d:::e (1)

respectively. The covariant derivative of the 4-velocity, ua, can be decomposed as

raub D �uaAb CDaub D �uaAb C 1

3
�hab C !ab C �ab (2)

where the kinematic quantities of ua, acceleration, expansion,vorticity and shear
are defined by Aa 	 ubrbua, � 	 Daua, !ab 	 DŒaub�, and �ab 	 D<aub>
respectively. These quantities, together with the Ricci tensor (expressed via the
Einstein equations by energy density � and pressure p for a perfect fluid) and the
electric, Eab 	 Cacbducud , and magnetic, Hab 	 1

2
�adeC

de
bcuc, parts of the Weyl

tensor, are then used as dependent variables. From the Ricci and Bianchi identities
one obtains evolution equations in the ua direction and constraints.

A formalism for a further split (1 C 2) with respect to a spatial vector na (with
uana D 0) was developed in [3, 4]. Projections perpendicular to na are made
with Nb

a D hba � nan
b , and in an analogous way to above “spatial” vectors and

tensors may be decomposed into scalars along na and perpendicular two-vectors
and symmetric, trace-free two-tensors as Aa D A na C A a, !a D ˝na C ˝a,
�ab D ˙.nanb � 1

2
Nab/ C 2˙.anb/ C ˙ab and similarly for Eab and Hab in terms

of E , Ea, Eab and H , Ha, Hab respectively. Derivatives along and perpendicular to
na are

O a:::b 	 ncDc a:::b D nch
f
c h

d
a : : : h

e
brf  d:::e and ıc a:::b 	 N

f
c N

d
a : : : N

e
b Df  d:::e

(3)

respectively. Similarly to the decomposition of raub, Danb and Pna can be decom-
posed into further “kinematical” quantities of na as
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Danb D naab C 1

2
�Nab C �
ab C �ab and Pna D A ua C ˛a (4)

where aa 	 Ona, � 	 ıan
a, � 	 1

2

cabdıanbucnd , �ab 	 ıfanbg, A 	 naAa,

˛a 	 Nb
a Pnb .

The Ricci and Bianchi identities are then written as evolution and propagation
equations in the ua and na directions and constraints.

3 Perturbations of Kantowski–Sachs

As backgrounds we take the Locally Rotationally Symmetric (LRS) Kantowski–
Sachs cosmologies [7]

ds2 D �dt2 C a21.t/dz2 C a22.t/
�
d#2 C sin2 �d'2

�
(5)

with cosmological constant � > 0 and matter given by a perfect fluid with
barytropic equation p D p.�/. The shear˙ , energy density � and the expansion �
evolve as

Ṗ D �1
2
˙2 � 2

3
˙� � E ; P� D ��.�C p/; P� D .� � 1

2
� � 3

2
p/ � 1

3
�2 � 3

2
˙2

(6)

where the electric part of the Weyl tensor is E D � 2
3
� � 2

3
� �˙2 C 2

9
�2 C 1

3
˙� .

Instead of the background variables �;˙;E ; � we use their gradients

Wa 	 ıa�; Va 	 ıa˙; Xa 	 ıaE ; �a 	 ıa�; (7)

which vanish on the background and hence are gauge invariant (the derivatives
O� 	 naDa� etc. can be given in terms of the ıa derivatives due to commutation
relations in the case of no vorticity). Similar variables vanishing on the background
are aa; �; �; �ab; ˛a;A ;Aa, ˙a;˙ab;Ea;Eab;H ;Ha;Hab where aa can be put to
zero by choice of frame.

The scalar, vector and tensor variables are expanded in harmonics according to

� D
X

kk;k?

�kkk?
Pkk

Qk?
; �a D

X

kk;k?

Pkk



�V
kkk?

Qk?

a C �
V

kkk?

Q
k?

a

�
;

�ab D
X

kk;k?

Pkk



�T
kk;k?

Q
k?

ab C �
T

kk;k?

Q
k?

ab

�
(8)

where Qk?
, Qk?

a , Q
k?

a , Qk?

ab and Q
k?

ab are harmonics on the 2-spheres of constant
z and Pkk

the corresponding expansion functions in the z-direction.
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All coefficients can be given in terms of �Vkk;k?

, ˙T
kk;k?

, E T
kk;k?

, H
T

kk;k?

and

E
T

kk;k?

, H T
kk;k?

, so the system has six degrees of freedom. The first four coefficients
form a closed system of evolution equations coupled to the density gradient, in
agreement with the results for scalar perturbations in [2]. This reads

P�Vkk;k?

D
�
˙

2

�
1 � 6�C p

B

�
� 4�

3

�
�Vkk;k?

C (9)

a2

2
.�C p/

h
.1 � C/



B˙T

kk;k?

C E T
kk;k?

�
� PH

T

kk;k?

i
;

Ṗ T
kk;k?

D � 1

a2 .�C p/

dp

d�
�Vkk;k?

C
�
˙ � 2�

3

�
˙T
kk;k?

� E T
kk;k?

; (10)

PE T
kk;k?

D� 3˙

2a2B
�Vkk;k?

� �C p

2
˙T
kk;k?

� 3

2
.F C˙C/E T

kk;k?

C P

2
H

T

kk;k?

;

PH T

kk;k?

D � ikk
a1a2B

�Vkk;k?

� RH
T

kk;k?

� ikk
a1

�
1 � 3

2

�
C � E

B

��
E T
kk;k?

; (11)

where we have introduced the notations B D 2k2
k

a21
C k2

?

a22
C 9

2
˙2 C 3E ,

C D B�1


2�k2

?

a22
C 3E

�
, D D C C �Cp

B
, E D ˙

2

�
C � E

B

� C �E
3B

, F D
˙ C 2�

3
, P D a1

ikk

�
2k2

k

a21
.1 � C/� k2

?

a22

2�k2
?

a22B

�
and R D 3

2
F � �

˙ C �
3

� k2
?

a22B
�

1
2B

�
˙ � 2�

3

� �
D � 2k2

k

a21

�
. The two last coefficients form a closed system for free

waves

PE T

kk;k?

D �3
2
.FC˙D/E T

kk;k?

C ikk
a1

.1 �D/H T
kk;k?

;

PH T
kk;k?

D � a1

2ikk

 
2k2k
a21

� BC C 9˙E

!

E
T

kk;k?

� 3

2
.2E C F /H T

kk;k?

: (12)

These sets of equations can be used to study the propagation of gravitational
waves and the coupling between scalar and tensor perturbations. Furthermore, from
the null geodesics of photons, equations for the redshift in different directions can
be given completely in terms of the 1 C 1 C 2 quantities. From their solutions the
Sachs–Wolfe effect and the corresponding variations in the CMB temperature can
be calculated.
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On the Uniqueness of the Energy and Momenta
of an Asymptotically Minkowskian Space-Time:
The Case of the Schwarzschild Metric

Ramon Lapiedra and Juan Antonio Morales-Lladosa

Abstract Some theorems about the uniqueness of the energy of asymptotically
Minkowskian spaces are recalled. The suitability of almost everywhere Gauss
coordinates to define some kind of physical energy in these spaces is commented.
Schwarzschild metric, when its source radius is larger than the Schwarzschild
radius and in the case of a black hole, is considered. In both cases, by using a
specific almost everywhere Gaussian coordinate system, a vanishing energy results.
We explain why this result is not in contradiction with the quoted theorems. Finally
we conclude that this metric is a particular case of what we have called elsewhere a
creatable universe.

1 Introduction

Let it be an asymptotically flat space-time, V4. Choose a symmetric complex to
allow for a definition of the angular 4-moment of V4. More precisely, let us take
the Weinberg complex [1]. As it is well known, the energy of V4 associated to this
complex is just the Arnowitt, Deser, Misner energy [2]. Now, refer V4 to coordinates
fx˛g which are rectilinear ones at the spatial infinity r ! 1, such that g˛ˇ ��˛ˇ D
O.1=r/, where g˛ˇ is the V4 metric and �˛ˇ is the Minkowski metric. Then, well-
known theorems (cf. [3,4]) state that the corresponding energy,P0, of V4 is positive
and vanishes if and only if V4 becomes the Minkowski space, M4.
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2 Gauss Coordinates and V4 4-Momenta

In some previous papers [5–7], the present authors and others have explained why
in order to define consistent linear, P˛ , and angular, J ˛ˇ , 4-momenta of V4, we
should use, at least in the infinity r ! 1, Gaussian coordinate systems. These
coordinate systems can always be implemented almost everywhere in the present
case of Schwarzschild metric and can be defined as the ones where g00 D �1 and
g0i D 0. They correspond to families of free falling observers and the coordinate
time corresponds to a universal (see [8]) and, at the same time, proper time. Because
of this property, the different elementary contributions to P˛ and J ˛ˇ , when these
4-momenta are expressed as 3-space volume integrals at a given time, are calculated
in simultaneous physical times in a natural way; the same happens when we express
these 4-momenta as 2-surface integrals on the boundary r ! 1.

Starting from P˛ and J ˛ˇ written as 3-space volume integrals, we can write
these 4-momenta as 2-surface integrals on the boundary r ! 1 by applying Gauss
theorem, provided that the first 3-space derivatives of the metric be continuous
everywhere. Notice, by the way, that rectilinear coordinates at this boundary are
trivially a particular kind of Gaussian coordinates on it.

3 The Case of the Schwarzschild Metric

Let us consider the metric of an ideal spherical, static, non rotating star, whose
source radius a (the star radius) is larger than the Schwarzschild radius, r0 	 2m,
wherem is the star mass, and we have taken the gravitational constant and the speed
of light equal to 1. This metric is regular everywhere when a > r0. For r > a, using
the standard static coordinates, it can be written

ds2 D �


1 � r0

r

�
dt2 C dr2

1 � r0
r

C r2d�2; (1)

where d�2 	 d�2 C sin2 � d�2 is the metric on the unit 2-sphere. These
coordinates are manifestly Gaussian for r ! 1, but not everywhere since
g00 D �1C r0=r ¤ �1.

Imagine that we want to calculate the energy, P0, of this metric with respect to
Gauss coordinates everywhere and not only at the infinity r ! 1. For instance,
with respect to the new coordinates .T; �/ defined as

T D t C 2
p
r0r C r0 ln

ˇ
ˇ
ˇ
p
r � p

r0p
r C p

r0

ˇ
ˇ
ˇ; r3=2 D �3=2 � 3

p
r0 T=2C C; (2)

with C an arbitrary constant.
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In these coordinates we have for the metric (1),

ds2 D �dT2 C �

r
d�2 C r2d�2; (3)

showing that the new coordinates with .T; �/ are Gauss coordinates almost every-
where for r > a. Further, it can be easily seen that for each constant value, T0 of T ,
they are rectilinear coordinates for � ! 1. More precisely, for g˛ˇ in the metric (3)
we have g˛ˇ � �˛ˇ D O.1=�3=2/ D O.1=r3=2/.

Since this metric, when completed with its inner (r < a) part, is regular
everywhere, starting from the expression of P0 as a 3-space volume integral,
and using Gauss theorem, we can write P0 as a 2-surface integral over the
boundary r ! 1:

16�P 0 D
Z
@i .@j gij � @igjj/dx1dx2dx3 D lim

r!1

Z
.@j gij � @igjj/x

i r sin �d�d�;

(4)

where the contractions are performed with the Kronecker ıij, and r2 D ıijx
ixj .

Then, using the metric (3) in (4), taking into account the above asymptotic behaviour
for g˛ˇ , straightforwardly produces the result P0 D 0, to be compared with the
well-known result P0 D m, for the standard static coordinates. The new result is
not in contradiction with the positiveness of P0, quoted in the Introduction, since
the ancient condition g˛ˇ � �˛ˇ D O.1=r/ has now been replaced by g˛ˇ � �˛ˇ D
O.1=r3=2/.

On the other hand, it can be easily seen that coordinates .T; �/ are associated to
free falling observers, which are asymptotically at rest since for � ! 1, we have
� ! r . So,P0 D 0 could be considered as the intrinsic energy of the Schwarzschild
metric [9].

4 The Energy of a Black Hole

Imagine that differently to the precedent section we have a black hole, i.e., a < r0.
Then, the above standard static coordinates .t; r/ in (1) can no longer be used to
calculate P0. This happens that way because, when expressing P0 as a 3-space
volume integral, the contribution of the interval .r > r0;1/ to this integral goes
to infinite when r ! r0, which means in particular that we cannot apply Gauss
theorem in order to transform this volume integral in the corresponding 2-surface
integral. Thus, if we want to calculate some physical value ofP0 for a black hole, we
have to leave the standard, and now no more static everywhere coordinates .t; r/.
This leaving was an avoidable option that we took in the precedent section when
going to the new coordinates .T; �/, but now this is actually a need. Thus, let us
fulfill this need by taking the Gauss coordinates .T; �/. In order to calculate the P0

value associated to these Gauss coordinates, let us fix a given time value, T0, of T .
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Then, in (2), let us take the particular C value, C D 3
p
r0 T0=2. Therefore, we

are left with the instantaneous equality � D r , which means that the Schwarzschild
metric (3) becomesM4 for T D T0 (discarding the value r D 0 from this slice since
the intrinsic singularity at r D 0 did not belong to the original space-time manifold,
V4), which is in itself a very remarkable result. Then, trivially, the corresponding
value of P0, defined in a natural way as the corresponding integral limit when
we approach r D 0, vanishes, whatever be the selected T0 value (each time, of
course, selecting as explained a suitable different C value). Notice that this result
is in accordance with the above vanishing of P0 for the ideal star of the precedent
section. Actually, we could imagine an ideal star having enough mass to undergo
an ideal collapse preserving the spherical symmetry and without expelling any mass
(of course, without radiating any gravitational energy too). Thus, if initially it was
P0 D 0, according to the precedent section, this should be the remaining value
when the collapse has been completed, which is just the result we have obtained in
the present section for the resulting black hole.

5 The Creatable Character of the Schwarzschild Metric

We have seen that the energy, P0, of the Schwarzschild metric in Gaussian coordi-
nates .T; �/ vanishes. But, these coordinates are adapted to the spherical symmetry
of the metric. Thus, the linear 3-momentum, P i , the angular 3-momentum, J ij,
and also the J 0i components of the 4-angular momentum, vanish too. In all, the
two 4-momenta of Schwarzschild metric vanish. In [5–7, 9] we have called such
an space-time with vanishing 4-momenta a creatable universe. The name comes
from the speculation [10] that our Universe could have raised as a vacuum quantum
fluctuation, in which case one could expect that these momenta would vanish. But,
P0, for instance, does not vanish for the Schwarzschild metric when we use standard
static coordinates. This seems to remove any intrinsic meaning to the concept of
creatable universe. However, our point of view is that we have a creatable universe
each time we have at least a coordinate system where all two 4-momenta vanish,
assuming that other coordinate systems where we have not such a vanishing simply
are breaking some symmetry of the metric. Which one? Just some of the ones that
allow to obtain the above vanishing in the above singled out coordinate system.
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Matter and Ricci Collineations

Josep Llosa

Abstract The infinitesimal transformations that leave invariant a two-covariant
symmetric tensor are studied. The interest of these symmetry transformations lies in
the fact that this class of tensors includes the energy-momentum and Ricci tensors.
Moreover, all curvature collineations are necessarily Ricci collineations. We find
that in most cases the class of infinitesimal generators of these transformations is a
finite dimensional Lie algebra but also, in some cases exhibiting a higher degree of
degeneracy, this class is infinite dimensional and may fail to be a Lie algebra.

1 Introduction

The interest in the study of symmetries in General Relativity is long-standing.
Some of them, namely isometries and affine transformations and their infinitesimal
counterparts, Killing vector fields and affine vector fields, are well understood since
long ago [1]. In the last 20 years, there has been an steady interest in curvature
collineations, Ricci collineations and even matter (Einstein) collineations [2, 3].
Their infinitesimal counterparts, namely collineation fields, are characterized by the
vanishing of the Lie derivative of the curvature tensor (resp., the Ricci or the energy-
momentum tensor). Collineation fields are thus an extension of the aforementioned
Killing fields and affine fields in that every Killing vector field is an affine vector
filed which in turn is a curvature collineation field and also a Ricci and a matter
collineation field. However it is well known that collineation fields present new
features and, contrarily to the case of Killing and affine fields, the class C of cur-
vature (resp., Ricci and matter) collineation fields is a real vector space which may
be infinite dimensional; this is due to the dependence on arbitrary functions, which
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also results in the fact that a collineation field needs not to be smooth and, as a
consequence, C may not be a Lie algebra [3].

Given a 4-manifold M and a smooth field of symmetric 2-covariant tensors T ,
we shall concentrate on finding the class C of vector fields X such that LXT D 0

and try to answer the questions of whether the number of dimensions of C is finite,
X is smooth or C is a Lie algebra.

The answers to these questions depend, but not exclusively, on the rank of T .
Particularly, if rankT D 4, T itself can be taken as a non-degenerate metric tensor
and the collineation equation is actually a Killing equation, X is a smooth vector
field, C is a Lie algebra and dim C � 10.

For rankT < 4, we come across an assorted casuistry which depends not only on
the rank of T but also on the derivatives of T . In many instances X is a solution of
a complete partial differential system that gives all derivatives up a certain order of
Xa as functions of lower order derivatives. In these cases, X is smooth and depends
on a finite number of real parameters, and C is a finite dimensional Lie algebra. In
what follows we list a classification of the tensor fields T according to its class C
of collineation fields (the reader can find the details in [4]).

Let T be a 2-covariant symmetric smooth tensor field on a 4-manifold M , with
constant rankT D m < 4. At each p 2 M it exists a base, f�agaD1:::4, of �1M
such that

T D �˛ˇ�
˛ ˝ �ˇ; with �˛ˇ D diag.C1 r: : : C1;�1 s: : : �1/ (1)

and r C s D m ( ˛; ˇ D 1 : : :m; A;B D m C 1 : : : 4; a; b D 1 : : : 4 and the
summation convention is always understood).

The set of 1-forms f�˛g˛D1:::m is called a T -frame and is determined up to a
T -rotation:

Q�˛ WD R˛ˇ�
ˇ; where R�˛R

�
ˇ��� D �˛ˇ (2)

i.e. R˛ˇ is a field of �-orthogonal matrices.

2 Rank 3 Tensors

The T -frame f�˛g˛D1:::3 determines an integrable Pfaff system and local charts exist
such that T D T˛ˇ.y

a/ dy˛ ˝ dyˇ . Let us now write

X D Z C f @4 and consider K˛ˇ WD 1

2
@4T˛ˇ

• If K˛ˇ D 0, then Z is a Killing vector of the 3-metric T˛ˇ.y
�/ on the

submanifolds y4 D constant and f is an arbitrary function.
• If @4K˛ˇ is not proportional to K˛ˇ, then C is a Lie algebra and dimC � 6.
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• If @4K˛ˇ / K˛ˇ , but K˛ˇKˇ� ¤ 0 and K˛ˇ is not proportional to T˛ˇ , then C is
a Lie algebra and dimC � 7.

In the nongeneric cases that one of the above inequalities fails, our analysis has
been left incomplete and they probably involve arbitrary functions, i.e. C is infinite
dimensional.

3 Rank 1 Tensors

We write T D � ˝ � and LXT D 0 amounts to LX� D 0. Several possibilities
arise, depending on the class of � [5].

Class 4 d� is simplectic and, in canonical coordinates .qi ; pj /, we have that

X D f ji @i � fjj @j ; with f ji WD @f

@pi
; fji WD @f

@qi

where f .qi ; pj / is homogeneous and of first degree on the “momenta” pj .
Class 3 Coordinates .qi ; pj / exist such that

X D f j1@1 � fj1@1 C .f � p1f j1/ @2 CX2@
2; f .p1; q

1/; and X2 arbitrary

Class 2 Coordinates .qi ; pj / exist such that

X D F @1 � p1F 0@1 CX2@2 CX2@
2; F.q1/; X2 and X2 arbitrary

Class 1 In this case coordinates xa, a D 1 : : : 4 exist such that � D dx1 and

X D C@1 C
4X

iD2
Xi@i ; C constant and Xi.qj ; pl / arbitrary

4 Rank 2 Tensors

We take the canonical expression, T D ����
� ˝ �� , �; � D 1; 2, and classify T on

the basis of the volume forms˙�� D d�� ˝ d�� and � � D d�� ˝ �1 ˝ �2.

Type 2.I.a There is a T -frame in which ˙11 ¤ 0, � 1 D 0 and � 2 ¤ 0 and a
canonical base f�agaD1:::4 exists such that LX�

a D 0. In this case dim C � 4.
Type 2.I.b There is a T -frame in which ˙11 D � 1 D 0 and � 2 ¤ 0. Then it

exists a base, f�agaD1:::4, in which

d�2 D s

2
�1 ^ �2 C �3 ^ �4; d�1 D r �1 ^ �2 C v˛�

˛ ^ �3
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• If v˛ D 0, then X contains arbitrary functions and
• if v˛ ¤ 0 and �3 ^ d�3 ¤ 0, then dim C � 4.

Type 2.N This case, � 1 D � 2 ¤ 0, only occurs if the tensor T has no definite
sign, and a canonical base f�agaD1:::4 exists such that

d�1 D t

2
�1^�2C�3^�4; d.�2��1/ D r

2
�1^�2C	w.�2 � �1/C u�2


^�3

with either u ¤ 0 or u D r D 0.

Subtype 2.N.1 If u ¤ 0 and �3^d�3 ¤ 0, then dim C � 5 but, if �3^d�3 D 0,
X might contain arbitrary functions, and

Subtype 2.N.0 if u D r D 0, then X might depend on arbitrary functions.

Type 2.H If � 1 D � 2 D 0, local charts exist such that T D T˛ˇdx˛ ˝ dxˇ .
Writing then X D Z C f A@A, with Z D Z�@� , and KAj˛ˇ WD 1

2
@AT˛ˇ , we have

that

Case 2.H.0 If KAj˛ˇ D 0, then Z is a Killing vector of the 2-metric T˛ˇ.x�/
and f A are arbitrary functions.

Case 2.H.2 If KAj˛ˇ ¤ 0, A D 3; 4, then there is a linear system connecting
f A and @Bf A and another one connecting the derivatives @bf A.

• If the first of these is a Cramer’s system, then dim C � 3 and,
• if it is not, but the second system is, then dim C � 5.

We have left unsolved the highly nongeneric case when none of the above
mentioned systems is a Cramer’s systems. This might involve arbitrary
functions.

Case 2.H.1 K4j˛ˇ D 0 but K3j˛ˇ ¤ 0, then X involves one arbitrary function
at least.
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Self-Gravitating Newtonian Disks Revisited

Patryk Mach, Edward Malec, and Walter Simon

Abstract Recent analytic results concerning stationary, self-gravitating fluids in
Newtonian theory are discussed. We give a theorem that forbids infinitely extended
fluids, depending on the assumed equation of state and the rotation law. This part
extends previous results that have been obtained for static configurations. The
second part discusses a Sobolev bound on the mass of the fluid and a rigorous
Jeans-type inequality that is valid in the stationary case.

1 Introduction

In a series of papers [1–3] we deal with the properties of self-gravitating, stationary
configurations of barotropic fluids. In the Newtonian theory, the underlying set of
equations consist of the continuity equation

r � .�U/ D 0; (1)

the Euler equation

r � .�U ˝ U/C rp C �r˚ D 0; (2)

and the Poisson equation for the gravitational potential
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˚ D 4�G�: (3)

Here � denotes the mass density, p is the pressure, U the velocity of the fluid, and˚
the gravitational potential. The above system is closed by the barotropic equation of
state p D p.�/ and the rotation law.

From the physical point of view solutions of Eqs. (1)–(3) serve as simple models
of rotating stars, or self-gravitating accretion disks (note that a disk-like or toroidal
shape of the fluid region is allowed). The key mathematical questions include the
existence of solutions, their uniqueness, possible parametrization and stability.

In the following we will restrict ourselves to configurations for which the term
.U � r/U can be expressed as a gradient of a potential, i.e., .U � r/U D r˚c. In this
case the Euler equations can be integrated, yielding

hC ˚c C ˚ D C; (4)

where h denotes the specific enthalpy dh D dp=�, and C is an integration constant.
Equation (4) is only valid in the closure of a region where � ¤ 0. In what follows,
this region will be denoted by ˝ .

2 Finite or Infinite?

In this section we formulate simple criteria on the equation of state p D p.�/

and the rotation law ˚c D ˚c.x/ that guarantee finite spatial extent of a stationary
configuration of the rotating fluid. The detailed discussion can be found in [3].
It extends previous results that have been obtained for the static case, both in General
Relativity and in Newtonian Theory [4–6].

The argument is based on the suitable form of the virial theorem. Consider a
vector field w D �

.x � r/˚ C 1
2
˚
�r˚ � 1

2
jr˚ j2x C 4�Gpx. A simple calculation

making use of Eqs. (1)–(3) shows that r � w D 4�G
�
1
2
�˚ � �x � r˚c C 3p

�
.

Integrating the above equation over R3 one obtains

1

2

Z

R3

d 3x�˚ �
Z

R3

d 3x�x � r˚c C 3

Z

R3

d 3xp D 0; (5)

provided that the surface integral of w vanishes at infinity. This is assured by
requiring that � 2 W 0;2

�3�
 , 0 < 
 < 1. Then ˚ 2 W 2;2
loc , and ˚ � M=� 2 W 2;2

�1�
 .
Here we are using weighted Sobolev spaces W k;p

ı (1 � p 2 R, ı 2 R, k 2 N0)
based on weighted Lebesgue norms

kukk;p;ı D
X

0�j˛j�k
kD˛ukp;ı�j˛j; kukp;ı D

�Z

R3

d 3xjujp��ıp�3
�1=p
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with � D .1C jxj/1=2. The total mass of the fluid M D R
R3
d 3x� is assumed to be

finite. We also require that p 2 W 1;1
�4�
 .

The integrated Euler equation (4) and Eq. (5) yield MC D R
R3
d 3x .F C 2�D/,

where F D �h � 6p, D D x � r˚c C 1
2
˚c. The key observation, following from

Eq. (4), is that an infinite configuration with a finite mass requires C D 0. Thus if
F > 0 and D > 0, or F < 0 and D < 0, the fluid must be finite.

We would like to point out the role of the assumed rotation law D D D.x/.
Former results on the finiteness of configurations were basically amendments to
existence theorems [7], and finiteness was assured by imposing stringent conditions
on the equation of state only.

The limiting-case conditions F 	 0 and D 	 0 lead to a polytropic equation of
state p D K�1C1=n with n D 5, and ˚c D z�1=2	.x=z; y=z/, where 	 is an arbitrary
function, and .x; y; z/ denote Cartesian coordinates. Remarkably, the resulting
equation for h is invariant under the scaling transformation h.x/ 7! h.x=�/=

p
�,

� 2 RC.
Another result can be obtained for axially symmetric systems. Let .r; �; z/

denote the cylindrical coordinates. A classic theorem due to Poincaré and Wavre [8]
states that for barotropic fluids with U D !.r; z/@� one has in fact ! D !.r/, and
˚c D � R r dr0r 0!2.r 0/. In this case the fluid cannot extend to infinity in the z
direction, unless it is static. This follows by contradiction from Eq. (4).

Systems with a central point mass Mc, that resemble disk-like configurations
around compact objects, should be discussed separately. The suitable form of the
virial theorem for such systems was formulated in [2], and the reasoning concerning
finite extent of stationary configurations was done in [5, 9].

3 Mass Estimates

In the following, we give a strict derivation of a new mass estimate valid for a class
of stationary configurations of perfect fluids. The discussion is based on a paper by
Mach and Malec [1]. We specialize to polytropic equations of state p D K�1C1=n,
whereK and n are constant, and assume that the fluid is finite. From Eqs. (1) and (2)
one obtains


h D �Ahn �
˚c; (6)

where A D 4�G=.K.1 C n//n. Assume now that 
˚c � 0. Multiplying Eq. (6)
by h and integrating over˝ we get

�
Z

˝

d3xh
hD
Z

˝

d3xjrhj2 DA

Z

˝

d3xhnC1 C
Z

˝

d3xh
˚c �A
Z

˝

d3xhnC1;
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because h D 0 on @˝ . The last integral in the above expression can be estimated
making use of the Hölder inequality. For n > 1, we have

Z

˝

d3xhnC1 D
Z

˝

d3xhn�1h2 � khn�1kL3=2.˝/kh2kL3.˝/:

The Sobolev inequality yields khkL6.˝/ � C.3; 2/krhkL2.˝/, where the constant

C.3; 2/ D 41=3=.
p
3�2=3/ is a universal number in R

3. This gives

khn�1kL3=2.˝/ D
�Z

d3xh3.n�1/=2
�2=3

� 1

AC2.3; 2/
:

The remaining steps are simple. Introducing the mass of the fluid M DR
˝
d3x� D A=.4�G/

R
˝
d3xhn we get

M >


4�G

p
AC3.3; 2/h.n�3/=2

max

��1
(7)

for n � 3. Here hmax denotes the maximum value of the specific enthalpy. For
the ideal gas the temperature is given by T D p�mp=.�kB/, where � is the mean
molecular weight, mp denotes the proton mass, and kB is the Boltzmann constant.
In this case the inequality (7) can be written as

M >
3
p
3�

32

�
.1C n/kB

G�mp

�3=2
T
3=2

maxp
�max

:

An interesting corollary follows from the above discussion for n D 3. Let N� and
NT denote volume averaged mass density and temperature, respectively. A simple

calculation involving Hölder’s inequality yields NT � .K�mp=kB/ N�1=n. The mass
estimate can be now written as

M >
3
p
3�

4

�
kB

G�mp

�3=2 NT 3=2p N� ;

i.e., in a form of a Jeans inequality for a bound system.
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Weyl Curvature Hypothesis in Terms
of Spacetime Thermodynamics

Takuya Maki and Masaaki Morita

Abstract We formulate Penrose’s Weyl curvature hypothesis from an aspect of
spacetime thermodynamics, which has been proposed by Jacobson. Using the
evolution equation for the shear tensor of a null congruence in a local Rindler
frame, we show that the entropy variation can be expressed in terms of the Weyl
curvature. This result supports Penrose’s hypothesis, which claims that entropy of
the gravitational field is somehow linked to the Weyl curvature. We point out that
Penrose’s hypothesis corresponds to Clausius’ relation for a quasi-equilibrium state
in spacetime thermodynamics.

Recent cosmological observations have revealed that a standard cosmological model
called a �-CDM model successfully explains the evolution of large-scale structure
of the universe [1,2]. This fact leads us to describe the universe as a physical system
with the following property: it has an almost homogeneous initial state and a present
state with highly inhomogeneous structures of the spacetime due to cosmological
structure formation. Considering the second law of thermodynamics as a funda-
mental law, it is even a natural idea that an entropy increases through the evolution
of the universe. Penrose [3, 4] has proposed that the gravitational field itself should
carry an entropy, and it may be related to the Weyl tensor C˛ˇ�ı. This proposal
is known as Penrose’s Weyl curvature hypothesis (or conjecture), which has been
explored by several authors, employing specific models [5–8]. In this article, we
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point out that a natural formulation of Penrose’s Weyl curvature hypothesis arises,
from an aspect of Jacobson’s spacetime thermodynamics.

First we give an outline of Jacobson’s spacetime thermodynamics and the
derivation of the Einstein equation as an “equation of state of spacetime” [9–11].
Let P be a point in a spacetime, and consider an infinitesimal region around P
as a local inertial frame (local Minkowski spacetime) with coordinates X�. This
is always possible because of the Equivalence Principle. The line element of the
neighborhood of P is then written as

g��.X/dX
�dX� D 	

��� CO.`2/



dX�dX�; (1)

where ` denotes the size of the region considered. The local Rindler frame can be
obtained by the transformation X0 D � sinh.��/; X1 D � cosh.��/, where � is a
constant. The line element near P is transformed as

ds2 D ��2�2d�2 C d�2 C d`2?; (2)

where d`2? is the line element of the transverse space. The null geodesics X0 ˙
X1 D 0 correspond to the trajectories of light. We consider an observer near P
accelerating uniformly to the direction of X1, and the observer in the front of null
geodesic of the X0 � X1 D 0 plane looks on the null geodesic as a causal horizon
(named ‘local Rindler horizon’). The trajectory of the observer is a hyperbolic curve
which asymptotically approaches the X0 � X1 D 0 plane. The null geodesic is
parameterized by an affine parameter �, so that � D 0 at P . The observer sees that
the light wavefront behind him approaches him, and an energy flow ıQ into the
horizon behind him is measured by �. Note that � < 0 on the local Rindler horizon.
We introduce a vector �� tangent to the observer’s trajectory. When the observer’s
trajectory is close enough to the causal horizon, we have �� � ���k�, and

ıQ D
Z

d�
Z

NS
T���

�k�dA � ��
Z
� d�

Z

S
T��k

�k� dA; (3)

where k� denotes a unit null vector, and T�� an energy-momentum tensor of a matter
field. The NS denotes an infinitesimal two-dimensional spatial area of the timelike
surface near the causal horizon, and S is that of the causal horizon. We assume the
following:

1. The observer measures the Unruh temperature TU D „a=.2�/ (a denotes the
acceleration) [12] from the wavefront, and the local Rindler horizon is regarded
as a heat bath of the temperature T D TU

p�g00 D „�=.2�/.
2. Clausius’ relation ıQ D T ıS for an equilibrium state holds.
3. The entropy S is proportional to horizon area A with a constant ˛ and hence
ıS D ˛ıA.

The change of the horizon area is given as
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ıA D
Z

S
� d� dA; (4)

where the expansion � WD .��/2h��r�k� with h�� WD g�� C ��k� C ��k�, and r�

denoting the covariant derivative associated with g�� . The expansion � in Eq. (4) is
approximated for small � as

� � �P C �
d�

d�

ˇ
ˇ
ˇ
ˇ
P

CO.�2/: (5)

The second term of the right-hand side of Eq. (5) can be evaluated by the
Raychaudhuri equation:

d�

d�
D �1

2
�2 � ������ � R��k

�k�; (6)

where the shear tensor ��� WD r�k� C r�k� � .1=2/�h��. Thus the change of area
ıA is expressed by substituting Eqs. (5) and (6) into Eq. (4) as

ıA D
Z

d�
Z

S
dA

�
� � �

�
1

2
�2 C ����

�� CR��k
�k�

��

P

: (7)

Using Eqs. (3) and (7), and choosing the null congruence so that � D 0 and ��� D 0

at P , we obtain

T ıS � ıQ D �

Z
� d�

Z

S

dA

�
T��k

�k� � ˛ „
2�
R��k

�k�
�

D 0: (8)

To hold Eq. (8) for an arbitrary null vector k�, we have .2�=„˛/T�� D R�� C
˚g�� , where ˚ is an integration function. From equation of motion for the
matter field, r�T�� D 0, and the Bianchi identity r�R�� D 1

2
r�R, we find

˚ D �.1=2/R C �, where � is a constant. Imposing the relation ˛ D 1=.4G„),
where G is Newton’s gravitational constant, the Einstein equation is shown to be
reproduced.

Next we explore the way to describe a quasi-equilibrium state, taking the shear
term into account as the effect of next order with respect to the affine parameter �.
For this purpose, we alter the assumptions of Clausius’ relation as ıQ � T ıS . The
evolution equation for the shear tensor is [13]

d���
d�

D ����� C C˛��ˇk
˛kˇ: (9)

If we choose the null congruence so that � D 0 and ��� D 0 at P again, Eq. (9) is
integrated for small � as

��� D � OE�� CO.�2/; (10)
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where OE�� WD C˛��ˇk
˛kˇ, and with the method of iteration, Eq. (6) is integrated to

obtain

� D ��R��k�k� � �3

6

�
R��k

�k�
�2 � �3

3
OE�� OE�� CO.�4/: (11)

Therefore we can write the entropy variation up to O.�3/ as

ıS D �˛
Z

d�
Z

S
dA

�
�R��k

�k� C �3

6

�
R��k

�k�
�2 C �3

3
OE�� OE��

�
; (12)

and Clausius’ relation for a quasi-equilibrium state becomes

T ıS � ıQ D �

Z
� d�

Z

S

dA

�
T��k

�k� � „˛
2�



R��k

�k� C �2

6

�
R��k

�k�
�2

C�2

3
OE�� OE��

��
� 0: (13)

If the Einstein equation holds, Eq. (13) is reduced to

T ıS � ıQ D � �

8�G

Z
�3

6
d�
Z

S
dA

h�
R��k

�k�
�2 C 2 OE�� OE��

i
� 0: (14)

Note that the integration with respect to � is performed on the interval Œ�j�j; 0�, and
hence Eq. (14) implies that the integral over the two-dimensional area S should
be non-negative for an arbitrary null vector k�. The term .R��k

�k�/2 in Eq. (14)
can be rewritten in terms of the energy-momentum tensor T�� by using the Einstein
equation, and thus this term corresponds to the entropy variation associated with
the matter field. On the other hand, the term 2 OE�� OE�� , which contains the Weyl
curvature, can be regarded as “intrinsic” entropy variation that comes from the
gravitational field. Thus we can say that Eq. (14) is compatible with Penrose’s Weyl
curvature hypothesis.

We have elaborated spacetime thermodynamics, which have been originally
proposed by Jacobson, taking the shear effect into account. Approximating the
expansion and the shear tensor of a null congruence perturbatively with respect to
the affine parameter �, we have confirmed that the Einstein equation is reproduced
at the lowest order, and have found that the shear term naturally generates the Weyl
tensor at the next order. We have written a formula of gravitational entropy in terms
of the Weyl tensor, and have shown that it does not decrease if Clausius’ relation for
a quasi-equilibrium state holds in the sense of spacetime thermodynamics. We hope
that the entropy formula presented in this article plays an important role in exploring
the problem of time asymmetry in gravitational dynamics.
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On the Properties of Exact Solutions Endowed
with Negative Mass

Vladimir S. Manko

Abstract It is shown that various pathological properties of spacetimes can be
explained by the presence of negative mass, including the cases when the total
mass of the solution is a positive quantity. As an illustration, we consider sev-
eral well-known stationary axisymmetric vacuum and electrovac solutions of the
Einstein–Maxwell equations. Our investigation naturally leads to a critique of the
known maximal extensions of the Kerr and Kerr–Newman spacetimes which turn
out to be neither analytic nor physically meaningful.

1 Introduction

The study of equilibrium configurations in the original and extended double-Kerr
solutions [1, 2] revealed a close connection between negative mass and pathologies
of a spacetime: a source carrying a negative mass necessarily develops a massless
ring singularity off the symmetry axis [3, 4], even in the situations when the total
mass of the equilibrium configuration is positive. Negative mass could be also
responsible for the formation of the regions with closed timelike curves (CTC),
as in the case of the NUT solution where negative mass has been shown to be
distributed along a part of the semi-infinite massive source [5]. Since many other
stationary axisymmetric spacetimes with positive total mass are known to have
massless ring singularities outside the symmetry axis and regions with CTCs, it
is of interest to find out whether these pathologies are also due to the presence
of some negative mass distributions. In the present communication several recent
results demonstrating the relation that exists between negative mass and space-time
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pathologies will be discussed. These results suggest in particular that the known
maximal extensions of the Kerr and Kerr–Newman spacetimes need a critical
reconsideration.

2 Negative Mass in ı D 2 Tomimatsu-Sato, Kerr
and Kerr–Newman Solutions

The well-known ı D 2 Tomimatsu-Sato (TS2) solution for a spinning mass was
discovered in 1972 and is defined by an Ernst complex potential [6] of the form [7]

E D .A � B/=.AC B/;

A D p2.x4 � 1/C q2.y4 � 1/� 2ipqxy.x2 � y2/;

B D 2px.x2 � 1/C 2iqy.y2 � 1/; (1)

where the real parameters p and q are subject to the constraint p2 C q2 D 1,
while the prolate spheroidal coordinates .x; y/ are related to the cylindrical
Weyl-Papapetrou coordinates .�; z/ by the formulae

x D 1

2�
.rC C r�/; y D 1

2�
.rC � r�/; r˙ D

p
�2 C .z ˙ �/2; (2)

� being a positive constant.
The total mass MT of the TS2 solution is given by the expression MT D 2�=p,

so it is a positive quantity for p > 0. However, this solution has both a massless
ring singularity outside the symmetry axis [7] and a region with CTCs [8]. In a
recent paper [9] the exact analytic formulae defining the negative mass distribution
in the TS2 spacetime have been obtained with the aid of Komar integrals [10],
and evidence relating negative mass to the pathologies of this spacetime has been
provided. Moreover, the analysis of the TS2 solution with total negative mass
(p < 0) carried out in [9] shows that the case MT < 0 is characterized by
appearance of new pathological features: the ring singularity changes its location,
passing from the inner to the outer stationary limit surface (SLS), while the region
with CTCs, now located outside the outer SLS, becomes visible to a distant observer.
It is of interest to compare the latter case with the Kerr [11] and Kerr–Newman [12]
spacetimes endowed with negative mass.

2.1 The Kerr Solution with M < 0

Due to the simple form of the Kerr solution, the corresponding negative-mass
case permits a purely analytic investigation to be carried out in [9]. Quite
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interestingly, the ring singularity of the Kerr metric withM < 0 lies in the equatorial
plane (z D 0) off the symmetry axis (at � D jaj, a being the angular momentum per
unit mass). It is massless and thus reminiscent of the case of the TS2 spacetime. The
ring singularity is a locus of points where the SLS touches the region with CTCs,
the latter region having a toroidal topology.

2.2 The Kerr–Newman Solution with M < 0

According to a recent study [13], the presence of an electromagnetic field in
the Kerr–Newman (KN) solution slightly affects the location of the singularity
developed by the negative mass compared with the vacuum Kerr case. In particular,
the ergoregion and the region with CTCs do not intersect, neither do they touch each
other, and the massless ring singularity is located entirely inside the latter region of
the causality violation.

3 Some Remarks on the Maximal Extensions of the Kerr
and KN Spacetimes

A thorough analysis of the Kerr and KN solutions with negative mass by
García-Compeán and Manko [14] leads to the conclusion that the known maximal
analytic extensions of the stationary black-hole spacetimes proposed by Boyer
and Lindquist [15] and by Carter [16] are erroneous. As a matter of fact, the
known extensions are physically inconsistent because each of them represents
an artificial unification of two different spacetimes corresponding to masses of
opposite signs (the region r < 0;M > 0 is similar to the region r > 0;M < 0 via
the invariance of the Kerr and KN metrics under the change r ! �r , M ! �M ).
As a consequence, these extensions are not analytic on the disk joining the two
asymptotically flat regions. A correct extension of r into negative values must be
accompanied by the simultaneous extension of M into negative values too. Then
the region r < 0; M < 0 will be identical (up to the change � ! ��) with the
region r > 0; M > 0, and thus the gluing of two identical spacetimes on the disk
encircled by the ring singularity will be analytic.
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On the Bergqvist Approach to the Penrose
Inequality

Marc Mars and Alberto Soria

Abstract The Penrose inequality in terms of the Bondi mass at past null infinity can
be approached with a method due to Ludvigsen and Vickers and clarified later on
by Bergqvist (Ludvigsen and Vickers, J. Phys. A: Math. Gen. 16:3349–3353, 1983;
Bergqvist, Class. Quantum Grav. 14:2577–2583, 1997). In this work, we apply the
method to the special case of null shells of dust collapsing in a four-dimensional
Minkowski background (Penrose construction, 1973). Our main conclusion is that
the class of surfaces covered by the method is severely restricted. We provide
afterwards a wide family of surfaces satisfying the Penrose inequality which
includes the ones determined by the Bergqvist method.

1 Introduction

The Penrose inequality [3] bounds from below the total mass of a spacetime in terms
of the area of suitable surfaces that represent black holes. There are several versions
of the Penrose inequality (see [4] for a relatively recent review). For asymptotically
flat four-dimensional spacetimes with a regular past null infinity, the inequality reads
16�M2

B � jS0j, where jS0j is the area of any marginally outer trapped surface jS0j
whose outer directed past null cone is smooth and MB is the Bondi mass on the cut
defined by the intersection of the outer past null cone of S0 and past null infinity.
Ludvigsen and Vickers [1] proposed an argument to prove this inequality which used
an implicit assumption that does not hold in general [2]. Moreover, it is not easy
to write down conditions directly on S0 which ensure that this extra assumption
holds true. Therefore the Penrose inequality for the Bondi mass is still an open
problem. The Penrose inequality was originally put forward by Penrose in 1973 [3].
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His strategy consisted of arranging incoming null shells of dust in the Minkowski
spacetime. After the shell has passed, there are two well-differenciated regions with
different geometries separated by a null hypersurface and the energy on the shell can
be arranged so that a trapped surface S0 forms with respect to the exterior geometry.
One of the beauties of the construction is that the Penrose inequality becomes a
geometric inequality in the Minkowski spacetime, with no reference to the shell
construction (see [3, 5] for details).

2 Bergqvist Method

Let M be a four-dimensional asymptotically flat spacetime at past null infinity
satisfying the dominant energy condition. Consider a spacelike two-surface S0 of
spherical topology. The normal bundleNS0 of S0 admits a global basis of future null
vectors k and `. Consider the normalization hk; `i D �1. As usual, the null extrinsic
curvatures are defined byK`.X; Y / D �h`;rXY i, withX; Y tangent vectors to S0,
and similarly for Kk. The traces of these tensors define the null expansions �`, �k .

Assume S0 to be a marginally outer trapped surface (MOTS), i.e. �` D 0. If we
choose any real number r0, we can consider the unique past directed null geodesics
˛p.r/ starting at ˛p.r D r0/ D p 2 S0, with tangent vector ˛0

p D �kjp and
rkk D 0. Let ˝ be the null hypersurface generated by these geodesics. We will
refer to k as the inner future null direction. In general ˝ will become singular due
to the development of caustics. However, for suitable S0 and appropriate choice of
inner direction, ˝ will be regular everywhere, with no caustics developing even at
past null infinity. Any such S0 will be called spacetime convex.

Let Sr be the surfaces obtained by dragging the initial surface S0 along the null
geodesics after a parameter “r”. Let �Sr be the volume form of Sr . The method used
by Ludvigsen and Vickers [1] and later on by Bergqvist [2] uses as hypothesis the
following conditions at infinity:

lim
r!1

�Sr
r2

D �S2 ; �k D �2
r

CO.r�3/; �` D 1

r
C a

r2
CO.r�2/; (1)

where �S2 is the volume form of a limiting metric of Gauss curvature one (which
may be defined on any of the Sr as they are all diffeomorphic to each other via the
geodesics). Let EB be the Bondi energy on the cut defined by the intersection of
˝ and past null infinity with respect to the reference frame defined by the flow of
the surfaces Sr . With a suitable choice of scaling in k and a choice of r0 the form
for �k given above can always be accomplished. However imposing the rest of the
conditions does in general restrict the original surface S0. The Bondi energy can be
expressed as �8�EB D R

S2
a�S2 . The method involves two functions of r :

Mb.r/ WD 8�EB C
Z

Sr

�`.r/�Sr � 4�r; D.r/ WD
p
4�jSr j � 4�r:
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The Penrose inequality takes the form Mb.r0/ � D.r0/ and the method proves
this by showing Mb � 0 and D � 0 for all r . The function Mb (often called
Bergqvist mass) is nonincreasing as a consequence of the spherical topology of S0
and the dominant energy condition. The asymptotic conditions (1) imply that Mb

approaches zero and that D is nowhere positive, which establishes the inequality
(under assumptions (1)).

3 Bergqvist Method in M 1;3

We focus now on the Penrose construction of null shells in the four-dimensional
Minkowski spacetime M 1;3. Let S0 be any embedded spacetime convex surface
in M 1;3. Let � 0 be the future directed, unit generator of a time translation and
fk0; `0g the future null basis of the normal bundle of S0 satisfying hk0; � 0i D �1 and
hk0; `0i D �1, with k0 inner. Objects defined with respect to the geometry exterior
and interior to the shell will be distinguished with signs C and � respectively. The
energy density �0 of the shell satisfies the equation k0.�0/ D ��k0�0 and is adjusted
so that S0 is a MOTS with respect to the outer geometry. The jump of �`0 across the
shell satisfies (see e.g. [4]) �C

`0 � � �̀
0 D �8��0

0 (we use 0 for all objects depending
on � 0). The integral of the energy density on any spatial section of ˝ equals the
Bondi energy E 0

B with respect to the reference frame determined by the flow of
surfaces generated by k0. The Penrose inequality can be rewritten [3, 5] as

Z

S0

� �̀
0 �S0 �

p
4�jS0j:

For any other inner future null section k of NS0, let f WD �hk; � 0i. Define `
as the null normal vector satisfying hk; `i D �1. S0 being spacetime convex,
the intersection of ˝ with a constant time hyperplane ˙ 0

0 orthogonal to � 0 and
completely to the past of S0 is a (strictly) convex hypersurface of Euclidean space,
which we will denote by bS00. We define also 	 0

r (‘time height’ to ˙ 0
0) as the

orthogonal distance of any point of each Sr to ˙ 0
0. Since bS00 is convex, we can

endow it with the standard two-sphere metric � 0 via the Gauss map and introduce
the support function h0, which measures the signed distance from the euclidean
origin to each tangent plane of bS00. All geometric objects on Sr can be expressed
in terms of the geometry of the standard two sphere .S2; � 0/, and in terms of h0,
f , 	 0

0 D 	 0
r jrDr0 and r0. A straightforward calculation shows that the asymptotic

behaviour at r D C1 of the null expansions is

�k D �2
r

C C

r2
CO.r�3/; � �̀ D � 1

f 3
.4� 0f � f .1C 1

f 2
jDf j2

� 0//
1

r
CO.r�2/;
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C D u0=f �2r0 with u0 D 4� 0h0C2.h0�	 0
0/. A fundamental input of the Bergqvist

method is that �C
` D 1

r
CO.r�2/. It can be checked that the leading term of �` does

not jump across the shell, and hence the leading coefficient of � �̀ must equal 1 for
the method to apply. This happens if and only if f satisfies 4� 0 logf C f 2 D 1.
We can characterize the solutions of this equation as follows:

Theorem 1 (Choice of the Killing). f satisfies 4� 0 logf C f 2 D 1 if and only if
there is a new unit time translation � satisfying hk; �i D �1.

In terms of the new Killing �, the explicit expressions for �k and �` simplify
notably, even though the objects themselves remain unaltered (note that neither k,
nor the parametrization of the geodesics has been changed). From hk; �i D �1 and
using the jump equation for �` and

R
S ��S D EB , the expression for Mb becomes

Mb.r/ D R
Sr
� �̀.r/�Sr � 4�r . It is easy to see that the limits of Mb and D as

r ! 1 coincide and are equal to Lr0 WD 1
2

R
S2
C�S2 , where C (which, recall, has

not changed) can now be written in the form u �2r0, with u D 4�hC2.h� 	0/ and
all quantities are determined with respect to the geometry of the plane˙0 orthogonal
to �. Comparing with Sect. 2 the Bergqvist approach requires setting C D 0, i.e.

u D 2r0. This is equivalent to 	0 D H.bS0/
Scal.bS0/

�ˇ, ˇ > 0, where 	0 is the ‘time height’

from S0 to ˙0, and H.bS0/ and Scal.bS0/ are, respectively, the mean and the scalar
curvature of the projected surface bS0 in ˙0. It follows that the class of surfaces for
which the method applies depends on a single parameter for each choice of convex
bS0 and hence it is severely restricted, as claimed.

If we completely relax the condition C D 0 we can still apply a suitable
modification of the method. Recall that Mb � Lr0 . A different way of obtaining
Mb � D is imposing conditions so that D � Lr0 . Since lim

r!1D.r/ D Lr0 , we can

ask D to satisfy dD
dr
.r/ � 0. This leads to the following condition (see Theorem 6

in [6]):

4�

Z

S2

�
.4�h/

2 C 2h4�h
�
�S2 � 4�

Z

S2

u2�S2 �
�Z

S2

u�S2

�2
:

The class of surfaces satisfying this inequality is quite large as it depends on
arbitrary functions for each choice of bS0. It is also immediate to check that it
includes the class covered by the Bergqvist method.
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Inhomogeneous Loop Quantum Cosmology:
Hybrid Quantization and Approximated
Solutions

Daniel Martín-de Blas, Mercedes Martín-Benito,
and Guillermo A. Mena Marugán

Abstract We study approximation methods to construct physical solutions for the
hybrid quantization of the Gowdy model with linear polarization and a massless
scalar field. The loop quantization of the Bianchi I background and the presence
of inhomogeneities lead to a very complicated Hamiltonian constraint. Therefore,
the extraction of physical predictions calls for the introduction of well justified
approximations. We show that, for specific regimes of physical interest, one can
approximate the Hamiltonian constraint by a more simple one and obtain its
solutions.

1 Introduction and Motivation

Loop quantum cosmology (LQC) [2, 4] is the application of the quantization
techniques and methods of loop quantum gravity (LQG) [9] to symmetry reduced
gravitational systems in cosmology. The quantization within LQC of simple cosmo-
logical models, such as the Friedmann–Robertson–Walker (FRW) model coupled to
a massless scalar, leads to a remarkable result: the resolution of the initial Big-Bang
singularity by means of a quantum bounce [1].

In order to study inhomogeneous systems in the context of LQC, one can
use a hybrid quantization, combining a LQC quantization of the homogeneous
degrees of freedom with a Fock quantization of the inhomogeneities [6]. This
hybrid quantization allows one to deal with the field complexity, and in particular

D. Martín-de Blas (�) � G.A. Mena Marugán
Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
e-mail: daniel.martin@iem.cfmac.csic.es; mena@iem.cfmac.csic.es

M. Martín-Benito
Perimeter Institute, 31 Caroline St N, Waterloo ON, Canada N2L 2Y5
e-mail: mmartinbenito@perimeterinstitute.ca

A. García-Parrado et al. (eds.), Progress in Mathematical Relativity,
Gravitation and Cosmology, Springer Proceedings in Mathematics & Statistics 60,
DOI 10.1007/978-3-642-40157-2__47, © Springer-Verlag Berlin Heidelberg 2014

327

mailto:daniel.martin@iem.cfmac.csic.es
mailto:mena@iem.cfmac.csic.es
mailto:mmartinbenito@perimeterinstitute.ca


328 D. Martín-de Blas et al.

to construct operators representing the quantum constraints that are well defined.
Nevertheless, these quantum constraints are typically very complicated and it
seems necessary to develop approximation methods and perturbative approaches
to solve them. With this aim, we study the hybrid quantization of the Gowdy model
with three-torus spatial topology, linear polarization, and a minimally coupled
massless scalar field [7]. We focus our study in the subsystem with local rotational
symmetry (LRS).

2 Hybrid Gowdy Model

Gowdy cosmologies are globally hyperbolic spacetimes with two axial and hyper-
surface orthogonal Killing vectors. For the model with three torus topology, after
a partial gauge fixing, the reduced system can be seen as a Bianchi I background
coupled to a homogeneous massless scalar � and coupled to two kind of inhomo-
geneities that propagate in one of the cyclic directions of the three torus. These are
linear gravitational waves and matter inhomogeneities.

The hybrid quantization of this system is given in [7]. We briefly summarize it.
The Bianchi I (LRS) background geometry is quantized using LQC techniques.
Hence, the basic operators are densitized triad components constructed out of the
scale factors in each of the three directions, and the holonomies of their conjugate
variables. The prescription used for quantization, known as improved dynamics [3],
is such that the volume is discretized and the holonomies cause a constant shift in
the volume, but with a complicated action in the variable measuring the anisotropy.
An orthonormal basis of the Hilbert space is given by states jv;�i, where v 2 RC
is proportional to the Bianchi I volume and � 2 R is (essentially) the logarithm of
the scale factor in the homogeneous direction. The massless scalar � is quantized
using a standard Schrödinger representation such that p� D �i„@� .

Concerning the inhomogeneities, both kinds can be treated in the very same
way, owing to the fact that, mathematically speaking, they are two copies of the
same field and they take part identically in the system. They are quantized adopting
the privileged Fock quantization that is obtained by demanding unitary evolution
and invariance under the spatial symmetries of the system [5]. These criteria select
a time dependent scaling for the fields and a unique Fock representation for the
corresponding canonical commutation relations. An orthonormal basis of the Fock
spaces is that given by the corresponding n-particle states. The kinematical Hilbert
space is just the tensor product of the Hilbert spaces mentioned above.

The resulting reduced model is subject to two global constraints: a momentum
constraint and a Hamiltonian one. Once one has defined the quantum representation,
one can build the operators that correspond to these constraints. The momentum
constraint operator only acts on the Fock spaces, imposing a mild condition in the
occupation numbers of the n-particle states [7].

On the other hand, the (densitized) Hamiltonian constraint operator can be
written (up to a constant factor) as
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OC D 4 Op2�
�G„2 � 3

�2
Ő 2� 1

�2
. Ő O� C O� Ő /C 16

ˇ
be2� OH0C 2ˇ

�2
be�2� OD Ő 2 OD OHI ; (1)

where � is some constant involving parameters of the quantization. The two first
terms in Eq. (1) correspond to the FRW Hamiltonian constraint in LQC [1]. The
third term is the anisotropy term. The last two terms couple the background
with the inhomogeneities, and contain respectively the free contribution of the
inhomogeneities ( OH0), an interaction term ( OHI ), and a regularization of the inverse
of the volume ( OD) (see [7] for more details).

The action of the Hamiltonian constraint does not relate all the states with
different labels v and � but it superselects them: v is superselected in semilattices
of step four, labeled by 
 2 .0; 4�, and � is superselected in a numerable dense set
of the real line that depends on 
 [6].

When looking for quantum solutions of this Hamiltonian constraint, the prob-
lematic terms are (1) the anisotropy term, because Ő and O� do not commute,
(2) the interaction term that creates and annihilates infinite pairs of particles and
that goes multiplied by OD, whose action in v is complicated.

3 Approximations

With the aim of dealing with such a complicated Hamiltonian constraint, one can
introduce approximations to reach a simpler constraint. In order to do that, we
make use of the behavior of the (generalized) eigenfunctions e�.v/ of the FRW
operator Ő 2 with eigenvalue �2. This behavior is well known [8], with an oscillating
Wheeler-De Witt limit for large v’s, and highly suppressed wavefunctions for
v < �=2�.

One can then show that, for eigenstates such that � � 8�, the contributions of
the OD operators can be disregarded in the interaction term and, more importantly,
the anisotropy term “factorizes”, so that . Ő O�C O� Ő / � 2 Ő 0 O��, whenever smooth
profiles f .�/ are considered. Here, the operator Ő 0 is the counterpart of Ő , but
defined in semilattices of step four in v, instead of step two [8]. Besides, the operator
O�� is given by

O��j�i D �i 2�
q

Œj�� q
i � j�C q
i� : (2)

This is essentially the discretization with step q
 of the derivative with respect
to �. The spectral properties of this self-adjoint operator are well known. It
has a bounded, doubly degenerated absolutely continuous spectrum equal to
Œ�4�=q
; 4�=q
�. Given an eigenvalue p, the eigenstates are given (up to nor-
malization factors) by e

.1/
p .�/ D ei�x=q
 and e

.2/
p .�/ D ei�.��x/=q
 , where

q
p D 4� sin x. The step q
 can be chosen by demanding that the superselection
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sectors in � are preserved (therefore, q
 depends on 
) and such that the “best
possible approximation” is obtained. It is worth noting that the operators Ő 2 and
O�� commute.

In this situation, one can consider (Gaussian) profiles  .p/ in the eigenvalues of
O�� peaked on p D 0 and such that the profiles in �,

N .�/ D
Z
dp .p/e.1/p .�/; (3)

are peaked on large values of �. For such profiles, the expectation values of
both the anisotropy term and the interaction term in the Hamiltonian constraint
(with reasonable inhomogeneities content) are negligible. Therefore, approximate
solutions to the Hamiltonian constraint would be provided by the solutions of the
solvable constraint obtained by disregarding these two terms and considering the
above mentioned profiles.

4 Conclusions

We have studied approximation methods in the context of LQC in order to construct
physical solutions of inhomogeneous and anisotropic systems. We have applied such
methods to the hybrid quantization of the Gowdy T 3 model with linear polarization
and a massless scalar field. Taking into account the behavior of the eigenstates of
the FRW operator, we have obtained that, on the one hand, one can disregard the
contributions coming from the regularization of the inverse volume operator and,
on the other hand, the anisotropy term can be approximated by a tensor product of
one operator that only acts in the label v and another operator that only acts in the
label�. In addition, the latter is a well known operator that commutes with the FRW
one, being possible to find states whose profiles in � allow one to disregard both
the interaction and the anisotropy terms. By considering such profiles, one would
obtain approximate solutions to the original constraint.
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Black Holes in Extended Gravity Theories
in Palatini Formalism

Jesús Martínez-Asencio, Gonzalo J. Olmo, and Diego Rubiera-García

Abstract We consider several physical scenarios where black holes within classical
gravity theories including R2 and Ricci-squared corrections and formulated à la
Palatini can be analytically studied.

1 Palatini Approach and Black Holes

In General Relativity (GR) the field equations are obtained by assuming a
Riemannian geometry and performing variations of the action with respect to the
metric. If the Riemannian condition is relaxed and the connection is allowed to vary
independently of the metric (Palatini formalism) the resulting field equations for
GR turn out to be equivalent to those obtained under the Riemannian assumption
though, in general, they are different. This is so because in the case of GR the
connection field equation can be solved in terms of the Christoffel symbols
of the metric (Levi–Civita connection). This compatibility between metric and
connection and thus the identification between both approaches has mostly become
implicitly assumed in any extension of GR that includes curvature corrections
to the Einstein–Hilbert action. We note that, in particular, quadratic curvature
terms are required for a high-energy completion of the theory and indeed arise
in the quantization of fields in curved spacetime [1] and in several approaches to
quantum gravity such as those based on string theory [2]. However, the physical and
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mathematical properties of extended gravity theories formulated in the metric or
Palatini approaches are very different. While the former is affected by a number of
problems such as higher-order field equations or the existence of ghosts and other
perturbative instabilities, the latter provides always second-order field equations
and absence of ghosts. In the particular case of Lovelock gravities [3], metric and
Palatini formulations yield the same field equations [4]. Here we briefly summarize
some scenarios concerning black holes in quadratic (Palatini) extensions of GR,
where the connection equation can be algebraically solved and the properties of the
theories formulated in this way are physically appealing.

For a theory f .R;Q/ depending on the invariants R D g��R
�� and Q D

R��R
�� the variation with respect to the connection � �

˛ˇ leads, in the most general

case (admitting both nonvanishing torsion � �

Œ˛ˇ� and antisymmetric-Ricci RŒ���),
to [5]

1p�g
Qr˛Œ

p�gM.ˇ�/� D �.C/ˇ���
˛ MŒ��� (1)

1p�g
Qr˛Œ

p�gM Œˇ��� D �.�/ˇ���
˛ M.��/ (2)

where M.ˇ�/ D fRg
ˇ� C 2fQR

.ˇ�/.� /, MŒˇ�� D 2fQR
Œˇ��.� / and �.˙/ˇ���

˛ D
Œ QS�˛�gˇ� ˙ QSˇ˛�g�� �g��. The symmetric connection QCˇ

˛� in the covariant derivative
Qr˛ in (1) and (2) has been introduced by convenience, and is related to the original
connection � ˇ

˛� D C
ˇ

˛� C S
ˇ

˛� (with Cˇ

˛� and Sˇ˛� its symmetric and antisymmetric
components, respectively) as (with S� D S���)

C�
�� D QC�

�� � 1

3
.ı�� S� C ı��S�/ I S��� D QS��� � 1

3
.ı�� S� � ı��S�/: (3)

Equations (1) and (2) constitute a system such that the symmetric and antisym-
metric parts of M�� are coupled to each other through the torsion tensor QSˇ˛�. The

simplest solutions to this system of equations correspond to putting both QSˇ˛� and
RŒ��� to zero, so that (2) becomes trivially satisfied and (1) reads simply

1p�gr˛Œ
p�g.fRg�� C 2fQR

.ˇ�//� D 0: (4)

On the other hand, the variation of the action with respect to metric leads to

fRR�� � f

2
g�� C 2fQR�˛R

˛
� D �2T��; (5)

where T�� is the energy-momentum tensor of the matter. If fQ Dconstant, taking the
trace in this equation one gets an algebraic equation implying that R D R.T /, with
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T the trace of T�� . Because in Palatini f .R/ theories the modifications with respect
to GR lie in a number of T -dependent terms on the right-hand-side of the field
equations [6], it follows that for traceless matter-energy sources the dynamics in
Palatini theories is exactly the same as in the case of GR (C a cosmological constant
term, depending on the Lagrangian chosen). However, nonlinear electrodynamics
(NED) are able to yield T ¤ 0 and thus provide modified dynamics. In such
a case the connection equation (4) may be solved by defining a rank-two tensor
h�� D fRg�� such that r�.

p�hh��/ D 0 and thus � �

˛ˇ becomes the Levi–Civita
connection of h�� . In terms of h�� , the field equations of pure f .R/ theories read

R�
�.h/ D 1

f 2
R

�
�2T�

� C f

2
ı��

�
: (6)

Dealing with this equation for a given gravity and matter Lagrangians, and putting
the result in terms of the physical metric g�� , provides a full solution. In [6] the
particular case of f .R/ D R ˙R2=RP (RP 	 Planck curvature) coupled to Born-
Infeld electrodynamics [7] was analyzed, finding the existence of black holes with
up to three horizons, and a singularity of minimum divergence � 1=r2, which is
milder than in GR (� 1=r4 for Schwarzschild and � 1=r8 for Reissner–Nordström).

This procedure also works for the general f .R;Q/ case. Now there is deviance
from GR even for traceless matter-energy sources. The connection equation (4)
leads to the following relation between the auxiliary h�� and physical g�� metrics

h�� D g�˛˙˛
�

p
det Ȯ ; h�� D .

p
det Ȯ /˙�

˛g˛� : (7)

where ˙�
� D .fRı

�
� C 2fQP�

�/ with P�� 	 R�˛g
˛� . In terms of h�� the field

equations read as (6) with the replacement f 2
R !

q
det. Ȯ /. When T�� represents

a monopolar Maxwell field, a generalization of the Reissner–Nordström solution is
obtained [8]. Taking the Lagrangian density f .R;Q/ D R C l2P .R

2 C bQ/ where
lP 	 Planck’s length and b a constant, solving (6) and writing the final result for a
static, spherically symmetric metric ds2 D gttc

2dt2 C grrdr2 C r2d˝2 leads to

gtt D �A.z/
�C

; grr D �C
��A.z/

; A.z/ D 1 � Œ1C ı1G.z/�

ı2z�1=2�
; (8)

where z 	 r=rc, rc 	 p
rqlP , �˙ D 1˙ 1=z4, r2q D �2q2=4� and the parameters

ı1 D 1

2rS

q
r3q= lP ; ı2 D

p
rqlP

rS
: (9)

where rS D 2GM=c2 and the function dG
dz D z4C1

z4
p

z4�1 . These equations define black

holes that recover their GR counterparts for r � lP but which undergo relevant



336 J. Martínez-Asencio et al.

non-perturbative changes near z D 1. Indeed when ı1 D ı�
1 ' 0:5720 an expansion

of the curvature invariants about z D 1 reveals that the spacetime is nonsingular.
Moreover, the metric can be extended beyond z D 1 revealing a wormhole structure
whose properties are currently under investigation. When rq < 2lP the event
horizon of these objects disappears, making them stable against Hawking decay and

with a mass spectrum M � 1:23605


Nq=N

c
q

�3=2
mP , where Nq < Nc

q ' 16:55 is

the number of charges and mP the Planck mass.
The Palatini approach also allows to study the black hole formation process from

a null fluid [9] in exact analytical form. Consider an ingoing stream of neutral
particles with an energy-momentum tensor T�� D �inl�l� , where �in is the energy
density of the stream and l� a null radial vector, l�l� D 0. In this case, the matrix
˙�

� relating the metrics h�� and g�� is given by ˙�
� D ı�� C 2l2P �

2�inl�l
� .

Considering a Vaidya-type metric ds2 D �Be2�dv2 C 2e�dvdr C r2d˝2 the field
equations lead to � D 0 and

B D 1 � 2
R v
L.v0/dv0

r
� 4L.v/

�P r2
; (10)

where �P D c2

l2P G
� 1096kg=m3 is Planck’s density and L.v/ D �2r2�in=2 is the

luminosity function. Equation (10) describes a Reissner–Nordström solution with
a wrong-sign charge term, that interpolates between two Schwarzschild solutions
of masses M and M 0 through a transient (charge-term) contribution to the mass
function.

2 Concluding Remarks

Palatini theories containing R and R��R�� terms have a rich structure in terms
of black hole solutions. In these theories the connection can be algebraically
determined and the field equations cast in terms of the metric h�� associated to
a Levi–Civita connection. Transforming back to the physical metric g�� provides
a full solution to a given problem. More results on this line will be presented
elsewhere.
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What Is a Reasonable Spacetime? Some
Remarks on the Hole-Free Condition

Ettore Minguzzi

Abstract The notion of hole-free spacetime, initially introduced by Geroch, is
reformulated, improved and commented. It is argued that any reasonable spacetime
should satisfy it.

1 Introduction

As today, the best definition of spacetime has been provided by the General Theory
of Relativity, according to which the physical spacetime is best mathematically
modeled as a

Definition 1.1 (Spacetime). A connected Hausdorff (paracompact) time-oriented
Lorentzian four-dimensional (C r , r � 2) manifold.

It is usually denoted .M; g/ where g is the Lorentzian metric.
It is easy to forget that the concept of spacetime appears already in Aristotelian

mechanics and that it passed through successive, very interesting, revolutions which
had the effect of refining its formulation and enriching its properties. Indeed, with
the development of Galilean Mechanics we understood that it was meaningless to
speak of events happening “at the same place”. Analogously, with the the advent
of Special Relativity we understood that it was meaningless to speak of events
happening “at the same time”. Following these type of conceptual revolutions we
finally arrived at the above definition of spacetime. In this work I wish to comment
on some of its limits, taking the move from some criticisms by Robert Geroch [4].
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The spacetime of General Relativity has a distinguished feature with respect to
all previous formulations, including that of Special Relativity, namely, while the
former definitions involved a static mathematical entity (think at the direct product
M D R
 S of Aristotelian Mechanics, at the fiber bundle structure � W M ! R of
Newtonian Mechanics, or at the Minkowskian spacetime of Special Relativity) the
latter becomes a dynamical entity controlled by some partial differential equations:
the Einstein equations. Here we might take the view that Definition 1.1 really defines
the extended configuration space of an evolution problem determined by Einsten’s
equation.

In this work we shall not be interested in the details of the dynamics, as we shall
focus instead on the nature of the extended configuration space. Indeed, whatever
the dynamics, our definition of spacetime suffers already some problems connected
to its evolution. In order to make an example, let us observe that if we remove a point
or a set from a spacetime we still get a spacetime. The dynamics cannot determine
a single object, as removing points outside the (partial Cauchy) hypersurface where
we put the initial data, still returns a solution to the problem. Similarly, imagine to
remove a point from an observer’s (i.e. timelike) worldline. The initial segment
of the curve could still represent an observer who, however, cannot tell that he
will disappear in the next instants without any warning. In this situation it seems
impossible to use this type of configuration space to make any kind of prediction.
The conclusion is that Definition 1.1 gives really a too broad definition of spacetime.

As a first attempt, we can try to improve the definition introducing an inex-
tendibility condition. Let us recall that an isometry is an imbedding ' W M ! M 0,
from .M; g/ to .M 0; g0/ such that g D '�g0. A spacetime .M; g/ inextendible
if it is not a proper subset of another spacetime. In other words, every isometry
' W M ! M 0 is surjective.

Intuitively, in an inextendible spacetime no observer will see or experience a
spacetime singularity if there is the possibility of removing it by enlarging the
manifold. The inextendibilty condition allows us to discard as unreasonable those
spacetimes which are obtained from proper subsets of other spacetimes. Null or
timelike geodesically complete spacetimes are necessarily inextendible, for any
extension would allow one to extended a geodesic with this causal type which, as a
consequence, had to be incomplete in the original spacetime.

The condition of inextendibility, as that of geodesic completeness, is a met-
ric concept. Thus, a spacetime can be conformally extendible but inextendible.
Indeed, every conformally extendible non-total imprisoning spacetime can be made
geodesically complete and hence inextendible [1].

Unfortunately, the inclusion of the inextendibility condition does not lead to a
satisfactory definition. Let us consider the inextendible examples of Fig. 1 which
are obtained from Minkowski 1 C 1 spacetime, by removing a set and making some
identifications (following the integral lines of a Killing vector field k D t@x C x@t ).

While true that we do not fix the dynamics, we expect DC.S/ to be determined
by the dynamics and by the initial conditions on S , whatever they could be. In these
inextendible examples, instead, it depends on the spacetime as a whole, whether



What Is a Reasonable Spacetime? Some Remarks on the Hole-Free Condition 341

D+(S) D+(S)

Partial Cauchy hypersurface S Partial Cauchy hypersurface S

Remove and identify

Remove and identify

p

p

Fig. 1 Two spacetimes obtained by making some identifications in a subset of Minkowski
spacetime. The domain of dependence of S depends on the already fully developed spacetime,
whether it is that depicted in the figure or Minkowski

it is 1 C 1 Minkowski spacetime or a just locally so version obtained from cut and
paste.

We might consider two types of evolutions depending on the development
DC.S/ which follows from the initial data. There is a conceptual difference as to
whether it is maximal or maximum, where these terms are used in their usual partial
order sense.

(i) If we demand that for every initial data, there should be a maximum develop-
ment, then we demand determinism.

(ii) If we demand that there should be just a maximal development then we
allow for random ingredients in the spacetime dynamics. We cannot tell which
development we will get from the initial condition, but we want it to be
maximal. This means that the dynamics, deterministic or not, shapes spacetime
as far as possible.

The Choquet–Bruhat–Geroch theorem

Theorem 1.2. For every sufficiently smooth vacuum initial data .S; h;K/, there
exists a unique, up to isometric diffeomorphism, vacuum development .M; g/, which
is globally hyperbolic and contains any other globally hyperbolic development (in
particular it is maximal).

implies that if the dynamics is determined by the vacuum Einstein’s equation,
then the restrictive condition (i) applies. However, there is no fundamental reason
for this to be the case for say, general matter fields, and option (ii) might be
expected to apply instead. The precise formulation of the term maximal in (ii) is
given by the hole-free condition. Roughly speaking a spacetime is not holed if for
every hypersurface S its Cauchy developmentD.S/ is maximal, that is, we cannot
modify the spacetime outsideD.S/ so as to extend the Cauchy development. It turns
out that making this idea precise presents several difficulties. There is not enough
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space here to make a full account of the history of the various definitions that have
been proposed [2–6]. A completely satisfactory one is [7] (here QD.S/ D D.S/, and
a partial Cauchy hypersurface is an acausal edgeless set).

Definition 1.3. A spacetime .M; g/ has a future Cauchy hole (or simply a future
hole) if there is a partial Cauchy hypersurface S and an isometry ' W QD.S/ ! N ,
on a spacetime .N; �/, such that '.S/ is acausal and

'.HC.S//\DC.'.S// ¤ ;:

The definition of past Cauchy hole is given dually. A spacetime is Cauchy holed if
it has a future or a past hole.

The main idea is that there is a hole if the initial Cauchy development can
be attached to a different spacetime in such a way that, not only the Cauchy
development gets enlarged, but also, the previous horizon gets at least in part
canceled by the new Cauchy development. That is: we can extend prediction passing
through the former horizon.

Let us now recall that a spacetime is causally simple if it is causal (no closed
causal curves) and if it has a closed causal relation JC. Globally hyperbolic
spacetimes are causally simple. An inspection of available examples of causally
simple spacetimes shows, rather intuitively, that they have no holes. I was indeed
able to prove this fact, obtaining the next result [7].

Theorem 1.4. Every inextendible causally simple spacetime is hole-free.

If the spacetime is holed we can also infer the existence of singularities [7]

Theorem 1.5. Every inextendible future holed spacetime admits a future lightlike
incomplete geodesic and a future timelike incomplete geodesic. These geodesics are
contained in D(S) and the Riemann tensor, and its covariant derivatives at any order,
evaluated on a parallely transported base over them have a finite limit.

In conclusion, the hole-free condition should be included in the very definition
of spacetime. Hopefully, it will lead to new physically interesting results.
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Optimal Time Travel in the Gödel Universe

José Natário

Abstract Using the theory of optimal rocket trajectories in general relativity, we
present a candidate for the minimum total integrated acceleration closed timelike
curve in the Godel universe, and give evidence for its minimality. The total
integrated acceleration of this curve is lower than Malament’s conjectured value
(Malament, 1984); however, Malament’s conjecture does seem to hold for periodic
closed timelike curves.

1 The Gödel Universe

Recall that the Gödel universe is given in appropriate units by the line element

ds2 D �
h
dt � p

2.cosh.r/ � 1/d'
i2 C dr2 C sinh2.r/d'2 C dz2: (1)

It is a solution of the Einstein equations with cosmological constant � D �1=2,
sourced by a dust of density 1=8� and four-velocity @=@t . Ignoring the trivial
z-direction, we notice that this metric can be written as ds2 D �.dt C p

2�/2 C dl2,
where dl2 is the metric for the unit hyperbolic plane and � is the Liouville form
(that is, d� is the area form). From this, it is easy to obtain the geodesics, whose
projections on the hyperbolic plane are circles, represented in Fig. 1. Famously, the
Gödel universe contains closed timelike curves (CTCs), whose projections can also
be circles, as depicted in Fig. 1. Note that these CTCs are never geodesics.

The endpoints of the lift of a closed curve � in the hyperbolic plane to the Gödel
universe have a coordinate time difference
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Timelike geodesic

Null geodesic

Caustic Closed timelike curve

Fig. 1 Projections on the
hyperbolic plane of timelike
and null geodesics, and of
closed timelike curves


t D
I

�

dt D
I

�

p
2 � C

p
d	2 C dl2 D p

2AC
I

�

dl

v
; (2)

where A is the signed area enclosed by � and v is the velocity with respect to the
dust. From this and the isoperimetric inequality in the hyperbolic plane one can
deduce that the projections of closed timelike curves must be traversed clockwise,
enclose an area jAj > 4� , have length l > 4�

p
2 and attain a maximum velocity

vmax >
p
2=2.

2 Total Integrated Acceleration

The initial and final masses of a rocket exhausting matter with constant velocity ve
are related by

m1

m0

D exp

�
� 1

ve

Z 	1

	0

a.	/d	

�
; (3)

where a is the magnitude of the proper acceleration [1]. The total integrated
acceleration TA D R 	1

	0
a.	/d	 is therefore an interesting measure of the failure

of a CTC to be a geodesic.
Malament [2] proved that TA � ln.2 C p

5/ ' 1:4436 for any CTC in the

Gödel universe, and conjectured that in fact TA � 2�
p
9C 6

p
3 ' 27:6691

(corresponding to a certain circle in the hyperbolic plane). This would mean that
m0=m1 > 1012 for any rocket traversing a CTC, a calculation performed by Gödel
himself [3] when arguing for the physical plausibility of his universe.

However, Manchak [4] recently gave a counter-example to Malament’s con-
jecture. This counter-example is a non-periodic CTC, that is, the initial and final
four-velocities are different.
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3 Rocket Theory

The problem of finding the curve that minimizes TA D R 	1
	0
a.	/d	 is a difficult

problem in the Calculus of Variations, because the second order Lagrangian L D
a D jrUU j is not differentiable at zero, while one can expect the optimal curve to
contain portions where a D 0 (geodesics). A closely related issue is the occurrence
of instantaneous accelerations, unlike for, say,L D a2 (the Lorentzian equivalent of
the Lagrangian for Bernoulli’s elastic curves). In fact, if we consider Lagrangians of
the form L D ap , it is easy to see that instantaneous accelerations have infinite cost
for p > 1 (and so do not occur in the minimizing curve), and zero cost for p < 1

(so that the minimum is trivially zero). The case p D 1 is the borderline case,
where instantaneous accelerations have a finite nonzero cost. It can be treated using
Optimal Control Theory with a restriction a � Na and taking the limit as Na ! C1.
The resulting optimality conditions were recently obtained in [1]:

8
<

:

rUU
� D aP�

rUP
� D �q� C aU�

rU q� D R�˛ˇ�U
˛P ˇU �

(4)

Here U is the optimal curve’s four-velocity,P is the vector of Lagrange multipliers,
andR˛ˇ�ı is the Riemann tensor. Note that for geodesic arcs (a D 0) these equation
reduce to the geodesic and Jacobi (geodesic deviation) equations. The optimality
conditions also require that jP j � 1, with jP j D 1 if a ¤ 0 and at instantaneous
accelerations. If the initial (final) value of U is not specified, then we must have
P D 0 at the beginning (end) of the curve.

4 Optimal Time Travel

Since we are looking for the CTC that minimizes TA, we do not want to fix the initial
and final values of U , and so P D 0 at the endpoints of the optimal curve. This
means that the optimal curve must begin and end with a geodesic arc. The simplest
arrangement of this type is depicted in Fig. 2: an initial geodesic arc, followed by
an accelerated circle, followed by a final geodesic arc identical to the initial arc
(possibly with instantaneous accelerations at the junction points). This type of curve
depends on a finite number of parameters R; r; x; y; ˛; ˇ; "; �; ';  , which we can
(numerically) adjust so as to minimize TA. It can then be checked that the curve
thus obtained satisfies the optimality conditions, and is therefore a candidate to be
the CTC with minimum TA in the Gödel universe (see [5] for details). The optimality
conditions, however, are necessary but not sufficient, and there is no guarantee that
this curve is indeed the minimum. A conclusive answer would require searching
over all possible arrangements of geodesic and accelerated arcs with instantaneous
accelerations at the junction points, clearly not a feasible task.
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Fig. 2 Projection of the
candidate optimal trajectory
on the hyperbolic plane
(circles and lines represent
circles and geodesics of the
hyperbolic plane)

Our candidate curve satisfies TA ' 24:9927, substantially less than the value
TA ' 27:6691 given by Malament’s conjecture. However, if we include the
instantaneous acceleration necessary to boost the final four-velocity to the initial
four-velocity we obtain TA ' 28:6085 > 27:6691. It is therefore conceivable that
Malament’s conjecture still hold for periodic CTCs.
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Diagonal Future of Some Non-diagonal Bianchi
A Spacetimes with Matter of Vlasov Type

Ernesto Nungesser

Abstract We have been able to show that after a possible basis change the future
of the non-diagonal Bianchi II and VI0 spacetimes with collisionless matter is
asymptotically diagonal assuming small data. More precisely these solutions are
asymptotic to the Collins-Stewart solution with dust and the Ellis–MacCallum
solution respectively.

1 Introduction

In presence of a cosmological constant isotropization has been shown for a wide
class of different matter models. This no longer can be expected in absence of
this constant and it for different Bianchi types the asymptotic behaviour towards
the future has been established to a large extend in the case that the Universe is
modelled by a perfect fluid with linear equation of state. For a non-tilted single fluid
in a homogeneous spacetimes if the initial data, i.e. metric, second fundamental form
and energy momentum tensor are diagonal initially, they will remain diagonal. The
same happens if one assumes extra symmetries. In the case of Bianchi spacetimes
which are locally rotationally symmetric the problem is also diagonal for matter
of Vlasov type. For the latest result on these spacetimes we refer to [2]. The
diagonal assumption is not possible without these restrictions for collisionless
matter. However we have been able to show that after a possible basis change the
future of the non-diagonal Bianchi II and VI0 spacetimes with collisionless matter
is asymptotically diagonal. That these basis changes are possible is probably related
to the existence of a hierarchical structure of conserved quantities and monotonic
functions (see [1] for details).
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Without going into the details which can be found in [3] we want to present its
main results. It is a small data result where we assume that certain quantities are
close to the ones corresponding to special solutions. In the case of Bianchi II, we
assume that we are close to the Collins-Stewart solution with dust and the case of
Bianchi VI0 we are close to the Ellis–MacCallum solution. In order to be more
specific let us introduce some notation. We can decompose the second fundamental
form introducing �ab as the trace-free part

kab D �ab �Hgab

and using the Hubble parameter

H D �1
3
k

we define

˙b
a D �ba

H

and

˙C D �1
2
.˙2

2 C˙3
3 /I ˙� D � 1

2
p
3
.˙2

2 �˙3
3 /

We will also need some curvature quantities scaled by the Hubble parameter as
N D R=H2 and

N
j
i D R

j
i

H2

where R and Rji are the Ricci scalar and tensor respectively. In the Bianchi II
case we also use the notation .N1/2 D �2N and for Bianchi VI0 we also use the
following notation

nij D gijp
gH

where g is the determinant of the 3-metric. The smallness assumption then means
that the difference of these quantities with respect to the quantities in the model
case is small. In addition to that, there is also a smallness assumption concerning
the dispersion of the velocities which can be described by P . This quantity

P.t/ D ˙fjpj D .gabpapb/
1
2 jf .t; p/ ¤ 0g

is assumed to be small, i.e. the spacetime is close to dust.
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2 Main Results

2.1 Bianchi II

With the following transformation of the basis vector

Qe1 D e1

Qe2 D e2 C ae1

Qe3 D e3 C be1

which preserves the Lie-algebra, i.e. the Bianchi type, we obtain the same asymp-
totics as in the diagonal case, in fact we are able to conclude

Theorem 1. Consider any C1 solution of the Einstein-Vlasov system with Bianchi
II symmetry and with C1 initial data. Assume that j˙C.t0/� 1

8
j, j˙�.t0/j, j˙1

2 .t0/j,
j˙1

3 .t0/j, j˙2
3 .t0/j, j˙3

2 .t0/j, j˙2
1 .t0/j, j˙3

1 .t0/j, jN1.t0/� 3
4
j, jN1

2 .t0/j, jN1
3 .t0/j and

P.t0/ are sufficiently small. Then at late times, after possibly a basis change, the
following estimates hold:

H.t/ D 2

3
t�1.1CO.t�

1
2 //; P.t/ D O.t�

1
2 /

˙C � 1

8
D O.t�

1
2 /I ˙� D O.t�1/

˙1
2 D O.t� 1

2 /I ˙1
3 D O.t� 1

2 /

˙2
3 D O.t�1/I ˙3

2 D O.t�1/

˙2
1 D O.t�1/I ˙3

1 D O.t�1/

N1 � 3

4
D O.t�

1
2 /

N 1
2 D O.t� 1

2 /I N1
3 D O.t� 1

2 /

2.2 Bianchi VI0

This time we can make the following basis change

Qe1 D e1 C ae2 C be3

Qe2 D e2

Qe3 D e3
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such that we obtain the following result:

Theorem 2. Consider any C1 solution of the Einstein-Vlasov system with Bianchi
VI0 symmetry and with C1 initial data. Assume that j˙C.t0/ C 1

4
j, j˙�.t0/j,

j˙1
2 .t0/j, j˙1

3 .t0/j, j˙2
3 .t0/j, j˙3

2 .t0/j, j˙2
1 .t0/j, j˙3

1 .t0/j, jN.t0/ C 9
8
j, jN2

2 .t0/j,jn23.t0/j, jn12.t0/j,jn13.t0/j and P.t0/ are sufficiently small. Then at late times, after
possibly a basis change, the following estimates hold:

H.t/ D 2

3
t�1.1CO.t�

1
2 //I P.t/ D O.t�

1
2 /

˙C � 1

4
D O.t�

1
2 /I ˙� D O.t�

1
2 /

˙1
2 D O.t�1/I ˙1

3 D O.t�1/

˙2
3 D O.t�1/I ˙3

2 D O.t�1/

˙3
1 D O.t�

1
2 /I ˙2

1 D O.t�
1
2 /

n12 D O.t� 1
2 /I n13 D O.t� 1

2 /

n23 D O.t�
1
2 /I N2

2 D O.t�
1
2 /

N C 9

8
D O.t� 1

2 /

Apart from that the spacetimes become asymptotically diagonal, they become
asymptotically dust-like since the ratio between the trace of the spatial part of the
energy-momentum tensor and the energy-density can be bounded byP2 which tends
to zero. In fact one can show that the distribution function becomes a Dirac delta
with respect to the momentum variable asymptotically.

3 Outlook

There is a correspondence between the Bianchi types and Thurstons classification
of 3-manifolds. It is thus of interest to explore possible links to results of dynamical
nature, like for instance results concerning the Einstein flow. We refer the interested
reader to [4] and references therein.
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Stability of the Einstein Static Universe
in Massive Gravity

Luca Parisi, Ninfa Radicella, and Gaetano Vilasi

Abstract We discuss the stability of static cosmological solutions in the framework
of the dRGT theory of massive gravity (de Rham and Gabadadze, Phys. Rev.
D82:044020, 2010). These solutions, only sourced by a perfect fluid, are either neu-
trally stable or unstable against spatially homogeneous and isotropic perturbations
thus generalizing the Einstein static universe found in General Relativity. This paper
summarises the results presented in (Phys Rev D 86:024035, 2012).

1 Introduction

The Einstein Static (ES) Universe is the simplest closed Friedmann–Robertson–
Walker model i.e. a static cosmological solution of the Einstein equations sourced
by a perfect fluid and a cosmological constant (see [5]). The renewed interest in the
ES Universe, besides its historical importance, comes from the Emergent Universe
scenario [4], an inflationary cosmological model in which it plays a crucial role as
initial state.

The stability properties of this cosmological model and those of some analogous
solutions in modified gravity and quantum gravity have been widely investigated
(see [1,9] and references therein). Indeed, when dealing with modified cosmological
equations, many new static solutions are present whose stability properties are
substantially different from those of the classical ES solution of General Relativity
(GR). In particular, neutrally stable solutions are present thus ameliorating the
fine-tuning problem of the emergent Universe scenario [7].

Here we study static cosmological solutions in the framework of a covariant
Massive Gravity (MG) model recently proposed in [3]. In contrast with GR where,
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in order to have static solutions, a cosmological constant term and a positive
curvature term are needed in addition to a suitable perfect fluid source term, we find
that in the considered MG theory it is possible to have static cosmological solutions
only sourced by a perfect fluid. These solutions can be either unstable or neutrally
stable and they exist even for spatially flat (i.e. K D 0) cosmological models.

2 Cosmological Equations

In the considered theory [3] the Friedmann equations for a Robertson-Walker
Universe with three-dimensional spatial curvature K D 0;˙1 read

H2 D �

3
� � K

a2
C m2

3

�
A1 C A2

a
C A3

a2

�
(1)

PH D ��
2
�.1C w/C K

a2
� m2

6

�
A2

a
C 2

A3

a2

�
: (2)

whereH D Pa=a, � D 8�G, and the coefficientsA1 D �3c4�6,A2 D 3 .3C 2c4/ ,
A3 D �3 .1C c4/ depend on the arbitrary dimensionless real constants c3 and c4
arising from the theory. In the following analysis we assume a constant equation of
state parameter w thus p D w�. Moreover, the parameter space is reduced imposing
c3 D �c4 since, this is the simplest choice that presents a successful Vainshtein
effect in the weak field limit [6].1

Matter couples minimally to gravity thus its equation of motion is

P� C 3H.�C p/ D 0: (3)

Making use of the Friedmann constraint Eq. (1) one can recast Eq. (2) as a second
order nonlinear differential equation in a and its first and second derivatives which,
in turn, can be easily recast as a proper two-dimensional autonomous dynamical
system by introducing the variables:

q D a; p D Pa: (4)

Thus, the system to be considered is the following:

Pq D p; (5)

Pp D m2

2

�
A1.1C w/q CA2

2C 3w

3

�
C �1
2q
.1C 3w/

�
A3

3
m2 C .K C p2/

�
:

(6)

1For a full-fledged analysis of the spatially flat case where the model parameters are constrained
using cosmological data, see [2].
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The dynamics described by the above equations is globally Hamiltonian with respect
to the symplectic structure ! D q1C3wdq ^ dp which is singular in q D 0. Indeed
iX! D �dH where

H D q3.1Cw/

2

"�
p

q

�2
C K

q2
�m

2

3

�
A1 C A2

q
C A3

q2

�#

; (7)

and iX is the contraction operator with respect to the vector field

X D p
@

@q
C
�
m2

2

�
A1.w C 1/q C A2

2C 3w

3

�
C

�1
2q
.3w C 1/

�
A3

3
m2 C .K C p2/

��
@

@p
;

which is singular in q D 0 and p D 0. The Hamilton’s equations read

Pq D q�.1C3w/ @H

@p
; Pp D �q�.1C3w/ @H

@q
: (8)

3 Static Solutions and Their Stability

The system of Eqs. (1)–(3) admits the following static solutions

a˙ D �mA2.2C 3w/˙ p
˝

6m.1C w/A1
I �˙ D 3

�

�
K

a2˙
� m2

3

�
A1 C A2

a˙
C A3

a2˙

��

(9)

with

˝Dm2.2C 3w/2A22 C12.3K �m2A3/.1C4w C3w2/A1: (10)

Two kinds of solutions are present: neutrally stable solutions and unstable solutions
(of the saddle type). The stability properties have been characterized considering
the dynamical system in Eqs. (5)–(6) and performing a linearised stability analysis,
some numerical integrations and, for the non-hyperbolic fixed points, applying
Lyapunov’s second criterion using the function H in Eq. (7) (after a suitable
rescaling) as Lyapunov function. The results can be summarized as follows.

Spatially closed (K D 1) models

• both the unstable and the neutrally stable solutions are admitted;
• neither the unstable solution or the neutrally stable solution is admitted;
• no static solutions are admitted.
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Fig. 1 .w; c4/-plane for (a) the K D 0 case, (b) the K D �1 case and (c) the K D 1 case. In
the considered subset of the parameter space, �3 < c4 < 1 and �2 < w < 1, the two solutions
behave differently, one being unstable (U, red), the second being stable (S, blue), their stability
regions overlapping only partially

Spatially flat (K D 0) and open (K D �1) models

• both the unstable and the neutrally stable solutions are admitted;
• only the unstable solution is admitted;
• no static solutions are admitted.

In the considered region of the parameter space, the neutrally stable solution
requires a negative equation of state parameter w; in particular it must be �1 < w <
�2=3 in the K D 0;�1 cases and �1:2 < w < 0 in the K D 1 case (Fig. 1).

The effect of a massive graviton is to enrich the phase space of the cosmological
equations modifying its global structure, enlarging the ranges of existence of static
solutions and affecting their stability properties. In particular, it is possible to
construct models in which the Universe oscillates indefinitely about an initial static
state, thus the fine-tuning problem suffered by the emergent Universe scenario in
GR [4] is ameliorated. On the other hand, in order to break the regime of infinite
oscillations and enter the current expanding phase undergone by the Universe [7] a
mechanism is needed whose description is beside the scope of our work.
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Tilted Lemaître Model and the Dark Flow

Julio J. Fernández and José-F. Pascual-Sánchez

Abstract In the last years, the peculiar velocities of many X-ray galaxies clusters
with respect to the distance have been measured directly in the rest frame of the
cosmic microwave background radiation (CBR), using the kinematic Sunyaev–
Zeldovich (kSZ) effect. These measures prove that exists a highly coherent motion,
extending out to at least to 1Gpc, of the matter rest frame with respect to the CBR
rest frame. This global motion was named “dark flow”. By using an inhomogeneous
spherically symmetric “tilted” Lemaître model, we could explain the dark flow if
we assume a linear increase with distance of the peculiar velocities, which is in
principle allowed by these observations. This linear increase of the dark flow with
the distance has the same behavior that the intrinsic dipole, due to the kinematic
acceleration, which appears in the Hubble law of the Lemaître model. In the “tilted”
Lemaître model considered, we consider that the radiation orthogonal congruence
is a perfect fluid and the matter “tilted” congruence is an imperfect fluid with heat
flux.

1 Tilted Cosmological Models

In cosmology it is essential to specify the set of observers, or rather, the congruences
of world-lines from which observations are made.

Cosmological quantities depend on the choice of these congruences, specified by
4-velocities fields. For instance, with the same spacetime metric, one can have two
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different stress-energy-momentum tensors, corresponding to two different congru-
ences, both satisfying the Einstein equations. The interpretation of the universe of
two observers, associated with two different congruences, can be radically different.
These models are named “tilted” in the literature, which begins with [1].

If ˙ is a global 3D spacelike space, which exists assuming zero vorticity, n�˛
is the four velocity of the normal or orthogonal congruence to ˙ and u˛ the four
velocity of the tilted one.

The relationship between both velocities is, at low speed, a galilean transfor-
mation: u˛ D n�˛ C v˛ . The relative (“tilting”) peculiar velocity v˛ between the
two congruences may be related to a physical phenomenon such as the observed
motion of our galaxy relative to the cosmic microwave background radiation, the
CBR dipole, which is usually interpreted as a Doppler effect.

Previous works on tilted models have been realized by using FLRW [2], Bianchi
[1] and, recently, Lemaître–Tolman–Bondi (LTB) [3] and Szekeres metrics [4].

In this work and in the more detailed article [5], we will consider a different
case: the Lemaître model. This is the generalization of the LTB model to the case of
non-dust matter with a non-null pressure gradient, which gives rise to a kinematic
acceleration. This can explain the acceleration of the expansion obtained by the
SN1a supernovae distance measures, without considering dark energy, see [6].

2 The Tilted Lemaître Model

The metric of the Lemaître model in comoving coordinates is:

ds2 D �N.r; t/2 dt2 C B.r; t/2 dr2 CR.r; t/2 .d�2 C sin2�d�2/; (1)

Where N.r; t/ is the lapse and R.r; t/ is the areal radius (or warp factor). It is
spherically symmetric, with three Killing vectors. Its symmetry group is a G3=S2.
and it has a “local” preferred radial spatial direction at each point. Also, it belongs
to Petrov type D and it has null magnetic Weyl tensor.

This metric is compatible with a general non-perfect (with heat flux and
anisotropic pressures) comoving fluid, as Lemaître first pointed out in [7].

The comoving congruence is normal to a foliation of global 3D spacelike
hypersurfaces, n�

˛ D N�1ıt˛ .
The kinematical quantities, expansion, shear tensor and acceleration four-vector

of the Lemaître spacetime are all non-null and can be reduced to scalars. Moreover,
as the vorticity !�

˛ˇ D 0, it admits a global 1C3 splitting. Also, as a LRSIIb model,
it admits a 1C 1C 2 threading.

Choosing the radially “tilted” non-comoving congruence u˛ as

u˛ D
�
1

N
;
vr

B
; 0; 0

�
; (2)
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where vr means the radial peculiar velocity w.r.t. the normal n�˛ frame. Due the
spherical symmetry of the Lemaître model, vr is a spherical average.

All the kinematical quantities of the “tilted” Lemaître spacetime w.r.t. the “tilted”
congruence u˛ can be computed and related to the non-tilted ones.

Consider the Lemaître metric g˛ˇ as the solution of the Einstein equations for the
two different fluid congruences. Where the two stress-energy-momentum tensors
T �̨̌ and T˛ˇ are:

T �̨̌ D 4

3
��n�̨n�̌ C 1

3
�� g˛ˇ; (3)

which corresponds to an inhomogeneous radiation fluid with energy density��.r; t/
and

T˛ˇ D .�C p/u˛uˇ C p g˛ˇ C q˛uˇ C u˛qˇ; (4)

which corresponds to an inhomogeneous imperfect matter fluid, with heat flux, q˛ D
q s˛.r; t/, in the radial direction of the observer.

Since the Einstein tensor is the same for the tilted (matter) and orthogonal
(radiation) congruences, imposing

T˛ˇ D T �̨̌ ;

we should have the following relations between dynamical quantities:

� D �� C 1

3
��v2r I p D 1

3
.�� C ��v2r / I q D 4

3
vr : (5)

3 The CBR Dipole and the Dark Flow

In the �CDM model the Hubble expansion is assumed to be uniform, so that the
differences between peculiar velocities of galaxies (or clusters) vr and the observer
velocity, are deviations from the isotropy of the usual Hubble law of the FLRW
models. In the concordance �CDM model, the spherically averaged peculiar bulk
velocity has a hyperbolic 1=r dependence with distance.

On the other hand, the kinematic Sunyaev–Zeldovich (kSZ) effect, which
measures the dipole anisotropy of the CBR through a tiny temperature shift (of the
order of �K) in the spectrum of CMB photons scattered from hot gas in clusters of
galaxies, gives us the peculiar velocity of any cluster directly in the rest frame of the
CMB. By using the kSZ effect, the authors in the review [8] claim to have detected
a highly significant CBR dipole for � 1200 clusters with redshift z � 0:12 up to
z D 0:6.
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Fig. 1 In colored rectangles, the kSZ measured peculiar velocities as a function of the distance.
Shaded grey region shows the peculiar velocity in the concordance �CDM model. The red line
is our hypothesis of linear increasing with the distance of the kinematic dipole of the dark flow.
Figure taken, without the red line, from A. Kashlinsky et al. [8]

This detection proves that exists a highly coherent motion, extending out to
at least to 1Gpc, of the matter rest frame with respect to the CBR rest frame
congruence. This global motion was named “dark flow” by the authors of [8] and
supposed by them to be approximately constant, but see Fig. 1. This dark flow do
not has the 1=r dependence with distance, so is in contradiction with the result of
the �CDM model. Also, it appears that the dark flow may extend across the entire
observable Universe horizon. This can be considered as an evidence for a “tilted”
Universe. In [9] it was shown that, in the Lemaître model, the following generalized
Hubble law is verified:

c z D
 PR
R

� A cos� C p
3 � cos2 �

!

0

ra: (6)

This law shows an intrinsic dipole, due to the acceleration, increasing linearly with
the distance as in our hypothesis. Where, � is the angle between the direction of
observation of a light ray and the preferred radial vector er of the Lemaître model,
� is the scalar shear, A is the kinematic acceleration and ra is the angular diameter
distance. However, up to now, there is not the necessary accuracy to obtain the
possible shear using the kSZ effect. Note that in the pure dust Lemaître–Tolman–
Bondi model the intrinsic dipole, due to the acceleration, is absent.

In conclusion, accepting that the dark flow is real and that it increases linearly
with the distance, the tilted Lemaître model could be considered as a candidate to
explain it. Then there exists a preferred radial spatial direction in the Universe, given
by the matter dark flow. Is this “the axis of evil” or better “the rebel or guerrillero
axis”, because it reappears when the dark flow is considered?.
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Accelerating f .T / Gravity Models Constrained
by Recent Cosmological Data

Ninfa Radicella, Vincenzo F. Cardone, and Stefano Camera

Abstract Generalised Teleparallel gravity, also referred to as f .T / gravity, has
been recently proposed as an extended theory of gravitation able to give rise to an
accelerated expansion in a matter only universe. We focus on two particular choices
for f .T / and we check their viability contrasting the predicted background dynam-
ics to the Hubble diagram as traced by both Type Ia Supernovae (SNeIa) and Gamma
Ray Bursts (GRBs), the measurement of the rate expansion H.z/, the Baryon
Acoustic Oscillations (BAOs) at different redshifts, and the Cosmic Microwave
Background Radiation (CMBR) distance priors. Both f .T / models turn out to be
in very good agreement with this large dataset so that we also investigate whether it
is possible to discriminate among them relying on the different growth factors.

1 Introduction

The discovery of the acceleration of the universe through the SNeIa Hubble diagram
has been latter confirmed by wide range of data, from more recent SNeIa data to
BAOs and CMBR anisotropies. On the other hand, such overwhelming abundance
of observational evidences in favour of the cosmic speed up does not fit in the
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framework of General Relativity (GR) making clear that out theoretical background
is seriously flawed.

In as much the same way as for f .R/ theories, one can obtain a generalised
teleparallel gravity replacing T with a generic function f .T / thus opening the way
to a rich phenomenology. A particular important consequence is the breakdown
of the equivalence with the classical GR with the two theories now predicting
a radically different dynamics [1]. Modified teleparallel gravity preserves the
advantage of giving equations that are still second order in field derivatives opposite
to the fourth order equations deduced in f .R/ gravity thus avoiding unpleasant
pathologies. On the other hand, it suffers from the lack of Local Lorentz Invariance
(LLI) so that all the 16 components of the vierbien are independent and one cannot
simply fix 6 of them by a gauge choice [2].

A critical role in generalised teleparallel theories is played by the choice of
the functional expression for f .T /. The lack of firmly established theoretical
constraints leaves open the way to a wide range of possibilities which can only be
validated a posteriori, i.e. by contrasting their predictions with the observational
data. This is the aim of the present work where we focus our attention on two
particular classes able to give rise to a phantom-like behaviour of the effective
torsion fluid.
There are actually almost no theoretical hints on the functional form of f .T / with,
on the contrary, many possible expressions leading to an accelerated expansion.Two
recently proposed model of this kind can be obtained setting [3]

f .T / D

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂:

˛.�T /n tanh

�
T0

T

�

˛.�T /n
�
1 � exp

�
�pT0

T

�� ; (1)

where the subscript 0 denotes present day quantities.
We then test these two models against SNeIa C GRB Hubble diagram, H.z/

measurements from cosmic chronometers, BAOs data and the CMBR distance
priors. Although wide, the present dataset only traces the background expansion
so that we will also investigate whether further insight into the properties of these
models can be obtained by the analysis of the growth factor being this latter a
quick way to look at how perturbations evolve in the proposed modified teleparallel
scenarios.

2 f .T / Models Versus Data

In order to answer the question whether f .T / gravity can reproduce the observed
Universe, we will explore the model parameter spaces by investigating the following
likelihood function

L .p/ D L�.p/ 
 LH.p/ 
 LBAO.p/ 
 LCMB.p/: (2)
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Table 1 Constraints on the parameters for the tanh model. Columns
are as follows : (1.) id parameter, (2.) best fit, (3.) mean, (4.) median,
(5.), (6.) 68% and 95% confidence levels

Id xBF hxi Qx 68% CL 95% CL

˝M 0.286 0.286 0.287 (0.274, 0.299) (0.264, 0.311)
h 0.719 0.722 0.722 (0.712, 0.734) (0.702, 0.745)
n 1.616 1.610 1.615 (1.581, 1.636) (1.547, 1.667)

The first term refers to the Hubble diagram, i.e. the distance modulus � as function
of the redshift z. While SNeIa and GRBs probe the distance-redshift relation as
standardizeable candles, Baryon Acoustic Oscillations (BAOs) work as standard
rulers. We therefore add the term LBAO to the full likelihood following the method
detailed in [4]. The last term in the likelihood finally refers to the WMAP7 distance
priors which have been recommended as a quick and efficient way to include the
CMBR constraints without computing the full anisotropy spectrum. The observable
quantities are the redshift z? to the last scattering surface the acoustic scale `A D
�r.z?/=rs.z?/ and the shift parameter R.

In order to efficiently explore the parameter space, we use a Markov Chain Monte
Carlo (MCMC) code running multiple chains and checking the convergence through
the Gelman–Rubin criterium. The best fit parameters will be the ones maximizing
the full likelihood, but the most reliable constraints on each single parameter pi are
obtained by marginalizing over all the parameters but the i -th one.

3 Results and Conclusions

The best fit parameters and marginalized constraints for the tanh and exp model are
given in Tables 1 and 2, while Fig. 1 shows the remarkable agreement among the
best fit models predictions and the SNeIa C GRB Hubble diagram and H.z/ data.
The overall good quality of the fit may be further appreciated by comparing the
model predictions for the BAO and CMB quantities with the observed values.

Having been designed to give an accelerated expansion, the parameter space of
both models collapses into a region giving rise to a background dynamics similar
to the �CDM one. As a consequence, the two models can be hardly discriminated
based on the dataset we have used. It is worth stressing that this is not a limitation
of the data, but rather an intrinsic feature of how the models have been worked out.
As such, improving the precision of the measurements or increasing the statistics
does not help in discriminating among the f .T / models and the �CDM one.
On the contrary, one has to resort to different tracers which are related to the
evolution of the perturbations, the simplest one being the growth factor g.z/. On
small scales, the impact of torsion only introduces a redshift dependent rescaling
of the gravitational constant which now becomes Geff D G=.1 C fT /. On the
largest scales, the torsion field modifies the growth of perturbations by altering
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Table 2 Same as Table 1 but for the exp model

Id xBF hxi Qx 68% CL 95% CL

˝M 0.284 0.286 0.287 (0.276, 0.297) (0.265, 0.308)
h 0.724 0.731 0.731 (0.723, 0.740) (0.713, 0.749)
n 1.152 0.757 0.736 (0.577, 0.939) (0.514, 1.103)
p 0.814 -0.110 -0.100 (-0.263, 0.046) (-0.395, 0.131)
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Fig. 1 Best fit curves superimposed to the SNeIa C GRB Hubble diagram (left) and H.z/ data
(right) for the tanh (red solid) and exp (blue dashed) models. Note that the �.z/ curves are almost
perfectly superimposed so no difference is seen in the plot

both the gravitational constant and the friction term. As a consequence a richer
phenomenology is achieved possibly leading to other ways to discriminate among
f .T / models and dark energy ones. Two candidate probes are the matter power
spectrum P.k/ and cosmic shear and deserve a detailed analysis to a forthcoming
publication.

This contribution is based on [5].
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Kasner Solution in Brans–Dicke Theory
and Its Corresponding Reduced Cosmology

Seyed M.M. Rasouli

Abstract We present a brief review of the modified Brans–Dicke theory (MBDT)
in arbitrary dimensions, whereby the (N C 1)-dimensional field equations reduce to
the N -dimensional .ND/ configuration with sources and an effective induced scalar
potential. We then investigate a generalized Bianchi type I anisotropic cosmology in
5D BD theory that leads to an extended Kasner solution. By employing the original
equations of MBDT, we probe the reduced Kasner cosmology on the hypersurface
with proceeding the investigations for a few cosmological quantities, explaining
their properties for some cosmological models.

1 Dimensional Reduction of Brans–Dicke Theory
in Arbitrary Dimensions

The original motivation of the induced-matter theory (IMT) [1] was to achieve the
unification of matter and geometry. Recently, the idea of the IMT has been employed
for generalizing BD theory, as a fundamental underlying theory, in four [2] and
arbitrary dimensions [3]. In the following, we present only a brief review of the
latter.

The variation of the .N C 1/D BD action in vacuum with respect to metric and
BD scalar field, �, give the equations

G
.NC1/

ab D !

�2

�
.ra�/.rb�/� 1

2
�ab.rc�/.rc�/

�
C 1

�



rarb���abr2�

�
; (1)

r2� D 0; (2)

S.M.M. Rasouli (�)
Departamento de Física, Universidade da Beira Interior, 6200 Covilhã, Portugal
e-mail: mrasouli@ubi.pt

A. García-Parrado et al. (eds.), Progress in Mathematical Relativity,
Gravitation and Cosmology, Springer Proceedings in Mathematics & Statistics 60,
DOI 10.1007/978-3-642-40157-2__55, © Springer-Verlag Berlin Heidelberg 2014

371

mailto:mrasouli@ubi.pt


372 S.M.M. Rasouli

where the Latin indices run from 0 toN ; �ab is the metric associated to the .NC1/D
space-time, r2 	 rara and ! is a dimensionless parameter. Here, we have chosen
c D 1.

In the following, we only employ the equations of the MBDT in arbitrary
dimensions, which convey relations between the .N C 1/D field equations to the
corresponding ones with sources in ND space-time in the context of BD theory [3].

We can find the reduced field equations on the ND hypersurface by employing
the BD field Eqs. (1), (2) and a .N C 1/D space-time with a line element

dS2 D �ab.x
c/dxadxb D g��.x

˛; l/dx�dx� C 
 2 .x˛; l/ dl2; (3)

where the Greek indices run from zero to .N � 1/, l is a non-compact coordinate
associated to .N C 1/th dimension, the parameter 
 D ˙1 allows we to choose the
extra dimension to be either time-like or space-like, and  is the another scalar field
taken as a function of all the coordinates.

Here, we only present some of the reduced equations on the ND hypersurface.
These equations will be described in two separated parts with a short interpreta-
tion.

1. We can construct the Einstein tensor on the hypersurface as

G
.N/

�� D 8�

�
T
.BD/

�� C !

�2

�
.D��/.D��/� 1

2
g��.D˛�/.D

˛�/

�

C 1

�

	
D�D�� � g��D2�


 � g��
V .�/

2�
; (4)

where D˛ is the covariant derivative on ND hypersurface, which is calculated
with g˛ˇ , and D2 	 D˛D˛ .

The above equations correspond to the BD equations, obtained from the standard
BD action containing a scalar potential, but here there are some differences which
we clarify them in the following

• The quantity introduced by V.�/ is actually the effective induced scalar potential
on the hypersurface which will be determined by a relation in part 2.

• The quantity T
.BD/

�� , can be interpreted as an induced energy-momentum tensor
(EMT) for a BD theory in N -dimensions and it, in turn, contains three compo-
nents as

T
.BD/

�� 	 T
.I/

�� C T
.¥/

�� C 1

16�
g��V .�/; (5)

where 8�=�T
.I/

�� is the same as the induced EMT appearing in IMT, while

8�

�
T
.¥/

�� 	 
�;N

2 2�

�
g��;N C g��

�
!�;N

�
� g˛ˇg˛ˇ;N

��
; (6)
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where A;N is the partial derivative of the quantity A with respect to l .

2. The wave equation on the hypersurface is given by

D2� D 8�T
.BD/

.N � 2/!C .N � 1/ C 1

.N � 2/! C .N � 1/
�
�
dV.�/

d�
� N

2
V.�/

�
; (7)

where

�
dV.�/

d�
	 �.N � 2/.! C 1/

�
.D˛ /.D˛�/

 
C 


 2

�
�;NN �  ;N �;N

 

��
(8)

� .N � 2/
!�;N

2 2

�
�;N

�
C g��g��;N

�
C .N � 2/
�

8 2

h
g˛ˇ;N g˛ˇ;N C .g˛ˇg˛ˇ;N /

2
i
:

Actually in this approach, the .NC1/D field equations (1) and (2) split naturally
into four sets of equations on every ND hypersurface, in which we only have
introduced the two sets (4) and (7). Regarding the geometrical interpretation of the
other two sets, we will not discuss them and leave them for next paper in this series.

In the following, we investigate the Kasner solution in BD theory in a 5D space-
time; then, as an application of the MBDT in cosmology, we present the properties
of a the reduced cosmology on the hypersurface.

2 Kasner Solution in Brans–Dicke Theory and Its
Corresponding Reduced Cosmology

We start with the generalized Bianchi type I anisotropic model in a 5D space-time as

dS2 D �dt2 C
3X

iD1
a2i .t; l/dx2i C h2.t; l/dl2; (9)

where t is the cosmic time, .x1; x2; x3/ are the Cartesian coordinates, l is the non-
compactified extra dimension, and ai .t; l/, h.t; l/ are different cosmological scale
factors in each of the four directions. We assume that there is no matter in 5D space-
time and � D �.t; l/. In addition, based on the usual spatial homogeneity, we solve
the field equations (1) and (2) by assuming separation of variables as

�.t; l/ D �0t
p0 ls0 ; ai .t; l/ / tpi l si ; h.t; l/ D hot

p4 ls4 ; (10)

where h0 and �0 are constants, and the pa ’s and sa ’s (a D 0; 2; 3; 4 ) are parameters
satisfying field equations. By replacing the ansatz (10) into Eq. (2) and using (9), we
get five classes of solutions. In the following, we are interested to investigate just
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the solutions that leads to a generalized Kasner relations in five dimensions. Also,
we then apply the MBDT to obtain the corresponding reduced cosmology on a 4D
hypersurface.

In order to have consistency and ignoring the trivial solutions we set p4 ¤ 1 and
s4 ¤ �1. Also for simplicity, we assume ho D 1 in ansatz (10). Hence after a little
manipulation, we can obtain the following relations among the generalized Kasner
parameters [4]

4X

aD0
pa D 1; .! C 1/p20 C

4X

mD1
p2m D 1;

3X

�D0
s� D 1C s4; (11)

.! C 1/s20 C
3X

iD1
s2i D .1C s4/

2; .! C 1/p0s0 C
3X

iD1
pi si D p4.1C s4/ :

Equation (11) lead to a few constrains, so that there are only five independent
relations among the Kasner parameters, designated as the generalized Kasner
relations in 5D BD theory.

In what follows, for the sake of brevity, we would like to present a brief review
of the results of the reduced Kasner cosmology on the 4D hypersurface [4]: the
pressure and energy density of the specified induced matter on any 4D hypersurface
can be derived from (5). These results show that, in general, we cannot consider it
as a perfect fluid. By applying (8), (10) and (11), the induced scalar potential is
obtained to be either in the power law or in the logarithmic form, in which we
only investigate the properties of the former. The properties of a few cosmological
quantities as well as physical quantities such as the average scale factor, the
mean Hubble parameter, the expansion scalar, the shear scalar and the deceleration
parameter have been studied. First, these quantities have been derived in terms of
the generalized Kasner parameters. Then, we find that the induced EMT satisfies the
barotropic equation of state, where the equation of state parameter, w, is a function
of the Kasner parameters. And thus, the evolution of all the quantities has been
represented with respect to w, ! and the deceleration parameter, q. We then probe
the quantities, in the general case, versus q, t and ! for the stiff fluid and the
radiation-dominated universe. We have shown that, for both of the fluids, there is
an expanding universe commenced with a big bang, and there is a horizon for each
of them. Also, we have shown that the rate of expansion slows down by time. By
employing the weak energy condition, the allowed (or the well-behaved) ranges of
the deceleration and the BD coupling parameters have been obtained for each of the
fluids. The behavior of the quantities, in the very early universe and the very large
time show that the models yield empty universes when the cosmic time tends to
infinity. However, both of the models, in general, do not approach isotropy for large
values of the cosmic time.
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Revisiting Hartle’s Model for Relativistic
Rotating Stars

Borja Reina and Raül Vera

Abstract The key paper that has served as the basis for the models describing the
equilibrium configuration of a rotating isolated compact body using perturbation
theory in General Relativity is due to Hartle (Astrophys J 150:1005–1029, 1967).
Apart from a number of very restrictive explicit assumptions on the interior, the
construction of the perturbed configuration hides some seemingly important implicit
assumptions. In this work we focus on the study of these implicit assumptions, and
therefore, on the rigorousness of the model. In order to do that we use a relatively
recent framework following a proper theoretical analysis of a completely general
perturbative approach to second order around static configurations of the exterior
(asymptotically flat) vacuum problem of stationary and axisymmetric bodies with
arbitrary matter content.

1 Hartle’s Model in Brief

The search for global models in General Relativity to describe rotating isolated
self-gravitating bodies in equilibrium has proven to be very difficult. In particular,
there are no exact solutions suitable to describe the global gravitational field of
such a situation so far. In contrast, some approximate solutions are known, as the
recent CMMR [1], where the perturbative approach is based on two parameters,
controlling a post-Minkowskian expansion and a slow rotation respectively. But
it is Hartle’s model [3] which is considered the basis for the perturbation theory
of rotating stars. In this model the interior of the body is a perfect fluid which
satisfies a barotropic equation of state, does not have convective motions and rotates
rigidly. This is matched to a stationary and axisymmetric asymptotically flat vacuum
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exterior region across a timelike hypersurface, and the whole model is assumed to
have an equatorial symmetry. This analytic approach makes use of a perturbative
method for slow rotation around a spherically symmetric static configuration, driven
by a parameter ˝H defined as the ratio of the angular and time components of the
velocity of the fluid. The metric is taken up to order˝2

H , and it is written as [3]

ds2 D �e�.r/ .1C 2h.r; �// dt2 C e�.r/
�
1C 2m.r; �/

r � 2M
�

dr2

Cr2.1C 2k.r; �//
	
d�2 C sin2 �.d' � !.r; �/dt/2



; r 2 .0;1/: (1)

The first order perturbation only appears in the crossed term !, and it accounts
for the rotational dragging of inertial frames, but it does not change the shape of the
surface of the star. The second order perturbation, in contrast, does affect the original
spherical shape of the body, since this must be independent of the sense of rotation.
The metric second order terms are h, m and k. In addition to the deformation of
the star, these terms give the relation between the central density of the star, which
is kept unperturbed, and the excess of mass between the perturbed and the static
background configuration, in analogy to the Newtonian approach [2].

Both the first and the second order perturbations are solved assuming that the
coordinates chosen are (Lichnerowicz) admissible, in which the metric is of class
C1. Thus, boundary conditions are taken both at the origin (regularity) and at infinity
(asymptotic flatness) using the same radial coordinate r , for which continuity of the
relevant functions (and first derivatives) across the surface is taken for granted.

The existence of admissible coordinates once the matching of spacetimes is
performed is known (c.f. [5]), but the a priori explicit choice of coordinates in which
the metric is C1 constitutes an implicit assumption that, in principle, could subtract
generality to the model. To study the rigorousness of this generality we plan to study
the whole problem independently of the coordinates used.

2 Existence of the Exterior for Slowly Rotating Interior
Candidates

The problem of a slowly rotating stationary and axisymmetric isolated object can be
studied within the framework described in [4], which is coordinate independent and
does not assume any particular matter model for the interior. The exterior, being a
stationary and axisymmetric asymptotically flat vacuum region, is fully determined
by two potentials ˝ and U , that depend on two of the Weyl coordinates f�; zg
spanning the surfaces orthogonal to the orbits of the Killing vector fields [8]. These
potentials satisfy an elliptic system of PDEs, known as the Ernst equations [8],
with boundary data consisting in the values of the potentials at infinity (asymptotic
flatness) and the data on the matching hypersurface ˙ arising from the Darmois
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matching conditions with the interior. These data involve the values and the normal
derivatives of the potentials on ˙ : U j˙ , En.U /j˙ , ˝j˙ , En.˝/j˙ , where En is the
unit normal to ˙ pointing towards the exterior. Since the elliptic problem is
overdetermined, there will be some compatibility conditions to be satisfied by the
boundary data to ensure the existence of a regular exterior solution [4].

The perturbative approach is built by considering the family of exterior space-
times .�
; g
/ using the Weyl gauge. The metric and hence the potentials depend
on the parameter 
, and the perturbation fields (denoted with 0

0) correspond to their
derivatives with respect to 
 evaluated at 
 D 0. The Ernst equations are found to
each order, as well as the expressions of the boundary data in terms of the interior
geometry on ˙0 (the matching hypersurface of the static configuration). Since ˙0

is axisymmetric, its projection onto the space f�; zg is a curve f�0.�/; z0.�/g where
the parameter � runs from the south (S, � D 0) to the north (N, � D �) pole
of ˙0. Although this framework contemplates any stationary and axisymmetric
perturbation around any static and axisymmetric configuration, we need to focus
only on Hartle’s problem, for which, firstly, U0 corresponds to the Schwarzschild
geometry (with mass M given by the interior spherical static configuration) and,
secondly, U 0

0 D ˝ 00
0 D 0 are compatible with the interior due to symmetry

reasons.
The problems for ˝ 0

0 and U 00
0 can be written in terms of the metric � D d�2 C

dz2 C �2d�2, and Q� D e�8U0� , as follows [4]

.i/ 4 Q�˝ 0
0 � 4

�
d˝ 0

0; dU0
�

Q� D 0; given ˝ 0
0j˙0 D f0; En.˝ 0

0/j˙0 D f1;

.ii/ 4�U
00
0 C e�4U0 �d˝ 0

0; d˝
0
0

�
�

D 0; given U 00
0 j˙0 D g0; En.U 00

0 /j˙0 D g1;

recalling lim�2Cz2!1˝ 0
0 D 0, lim�2Cz2!1U 00

0 D 0: We refer to [4] for the explicit
expressions of the data f0.�/; : : : in terms of the interior geometry. Corresponding
necessary and sufficient conditions on the first and second order boundary data
ff0; f1g, fg0; g1g for the existence of a solution are found to be [4]

Z �

0

	
�y f1 � f0 En.�y/



�e�4U0 j˙0d� D 0;

Z �

0

	
 y g1 � g0 En. y/ � T1

�En�
 �j˙0d� D 0;

where y and �y are families of regular axially symmetric harmonic functions: they
solve the Laplace equation for � and Q� respectively, admit a C1 extension to˙0 and
decay at infinity at least as .�2 C z2/�1=2. The former reads explicitly  y.�; z/ 	

1p
�2C.z�y/2 , while the latter is more complicated. Since the above integrals depend

on the parameter y 2 .zS ; zN /, each one gives an infinite set of conditions. The
vector T1 is used to transform volume integrals into surface integrals and its explicit
expression is too long to be included here, but for more details about the derivation
and the exact meaning of each term, see [4].
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3 Application to Hartle’s Model for the Interior

We can apply the framework introduced in the previous section to Hartle’s model,
but strictly restricted to his analysis of the interior. Now ˙0 is spherically
symmetric, and from the interior, and in terms of Hartle’s coordinates, it reads, ˙0 W
ft D 	 , ' D ˚ , r D R0, � D � � � 	 #g. The boundary data for ˝ 0

0 is computed
in terms of the first order perturbation for the interior, !.r; �/j˙0 D !.R0; #/. It
reads [7]

˝ 0
0j˙0 D M sin#

�
2.b1 � !.R0; #//

�
3 � R0

M

�
CR0

�
R0

M
� 2

�
@r!jrDR0;�D#

�
;

En.˝ 0
0/j˙0 D p

R0.R0 � 2M/ Œ2 cos#.b1 � !.R0; #// � sin#@#.!.R0; #//� :

The first order constant b1 comes from the freedom in the choice of the interior
timelike Killing vector [6]. Performing the change ! D Q̋ � Q!, where Q̋ is defined

in analogy to ˝H , and expanding Q!.r; �/ D
1P
lD1

Q!l.r/
�� 1

sin �
dPl
d�

�
, restrictions for

each Q!l.R0/ are found:

• There is a relation for Q!1 and its derivative: @r Q!1.R0/D 3
R0

	
. Q̋ � b1/� Q!1.R0/



.

• The ratios between Q!l and @r Q!l on R0 8 l > 1 are negative.

But given the interior ODE for Q!l , regularity at the origin requires those ratios
to be positive for any r [7]. Therefore, the only possibility compatible with the
disagreement of the signs of the ratios at r D R0 is that Q!l.r/ D 0 for l > 1. As a
result ! is a function of r alone, and satisfies the aforementioned constraint at R0
between the function and its derivative. This result on Q! coincides with that in [3]
once the constant b1 is reabsorbed in the interior after a redefinition of˝H (c.f. [6]).

The previous result simplifies a lot the expressions for the boundary data of the
second order perturbation U 00

0 and also for the vector T1, which carries explicitly
the boundary data for ˝ 0

0, but they are still rather lengthy to be written here.
However, the compatibility condition has already been evaluated and we find
relations between h,m and k and their normal derivatives at˙0, but the latter can be
removed by using the field equations for the interior. The l D 0 and l D 2 sectors do
not get mixed since they are splitted by independent polynomials in y. The whole
analysis of the second order is work in progress [7].
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Is General Relativity a v=c ! 0 Limit
of a Finsler Geometry?

Martin Rivas

Abstract Gravity is understood as a geometrization of spacetime. But spacetime
is also the manifold of the boundary values of the spinless point particle in a
variational approach. The manifold of the boundary variables for any mechanical
system, instead of being a Riemannian space it is a Finsler metric space such that
the variational formalism can always be interpreted as a geodesic problem on this
manifold. This manifold is just the flat Minkowski spacetime for the free relativistic
point particle. Any interaction modifies its flat Finsler metric. In the spirit of
unification of all forces, gravity cannot produce, in principle, a different and simpler
geometrization than any other interaction. This implies that the basic assumption
that what gravity produces is a Riemannian metric instead of a Finslerian one is a
strong restriction so that general relativity can be considered as a low velocity limit
of a more general gravitational theory.

1 The Geodesic Interpretation of the Variational Formalism

Let us consider any mechanical system of n degrees of freedom described by a
Lagrangian, L.t; qi ; q

.1/
i /. The variational approach means that the path followed

by the system makes stationary the action functional

A Œq.t/� D
Z t2

t1

L.t; qi ; q
.1/
i /dt;

between the initial state x1 	 .t1; qi .t1// and final state x2 	 .t2; qi .t2//. If the
evolution is described in parametric form t.	/, qi .	/ in terms of some arbitrary
parameter 	 , then q.1/i .	/ D Pqi=Pt , the variational approach will be written as [1]
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Z 	2

	1

L.t; qi ; Pqi=Pt/Ptd	 D
Z 	2

	1

QL.x; Px/d	; QL D LPt ;

QL is independent of 	 and is a homogeneous function of first degree of the
derivatives Px. QL2 is a positive definite homogeneous function of second degree of Px.
Therefore QL2 D gij.x; Px/ Pxi Pxj , and the definite positive metric gij are computed
as [2, 3]

gij.x; Px/ D 1

2

@2 QL2
@ Pxi @ Pxj D gji: (1)

The variational formalism looks now
Z 	2

	1

QL.x; Px/d	 D
Z 	2

	1

q
QL2.x; Px/d	 D

Z 	2

	1

q
gij.x; Px/ Pxi Pxj d	 D

Z x2

x1

ds;

where ds is the arc length on the X manifold w.r.t. the metric gij. The variational
statement has been transformed into a geodesic problem with a Finsler metric.

The relativistic point particle of massm has a kinematical space spanned by time
t and the position of the point r, so that the free Lagrangian QL0 D ˙mc

p
c2 Pt2 � Pr2,

is a homogeneous function of first degree of the derivatives Pt and Pr.

2 Examples of Finsler Spaces

In the case of a uniform gravitational field g, the dynamical equations dp=dt D mg,
come from the Lagrangian

QLg D QL0 Cmg � rPt : (2)

It corresponds from (1) to an evolution in a spacetime with the Finsler metric:

g00 D m2c2 Cm2.g � r/2=c2 � m2c.g � r/
.c2 � u2/3=2

.2c2 � 3u2/;

g11 D �m2c2 C m2c.g � r/
.c2 � u2/3=2

.c2 � u2y � u2z /; g22 D �m2c2 C m2c.g � r/
.c2 � u2/3=2

.c2 � u2x � u2z /;

g33 D �m2c2 C m2c.g � r/
.c2 � u2/3=2

.c2 � u2x � u2y/;

g01 D � m2u2.g � r/
.c2 � u2/3=2

ux; g02 D � m2u2.g � r/
.c2 � u2/3=2

uy ; g03 D � m2u2.g � r/
.c2 � u2/3=2

uz;

g12 D m2c.g � r/
.c2 � u2/3=2

uxuy ; g23 D m2c.g � r/
.c2 � u2/3=2

uyuz; g13 D m2c.g � r/
.c2 � u2/3=2

uxuz:
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If the velocity is negligible with respect to c, the nonvanishing coefficients are

g00 D m2c2


1 � g � r

c2

�2
; gi i D �m2c2



1 � g � r

c2

�
; i D 1; 2; 3;

where g00 is the same as the component of the Rindler metric.
The dynamics of a point particle in a Newtonian potential and its Lagrangian

dp
dt

D �GmM

r3
r; QLN D QL0 C GmM

cr
c Pt :

and from (1) the metric coefficients are

g00 D m2c2 C G2m2M2

c2r2
� Gm2Mc

r.c2 � u2/3=2
.2c2 � 3u2/;

g11 D �m2c2 C Gm2Mc3

r.c2 � u2/3=2
� Gm2Mc.u2y C u2z /

r.c2 � u2/3=2
;

g22 D �m2c2 C Gm2Mc3

r.c2 � u2/3=2
� Gm2Mc.u2x C u2z /

r.c2 � u2/3=2
;

g33 D �m2c2 C Gm2Mc3

r.c2 � u2/3=2
� Gm2Mc.u2x C u2y/

r.c2 � u2/3=2
;

g01 D � Gm2Mu2ux
r.c2 � u2/3=2

; g02 D � Gm2Mu2uy
r.c2 � u2/3=2

; g03 D � Gm2Mu2uz

r.c2 � u2/3=2
;

g12 D Gm2Mcuxuy
r.c2 � u2/3=2

; g23 D Gm2Mcuyuz

r.c2 � u2/3=2
; g31 D Gm2Mcuzux

r.c2 � u2/3=2
;

It is a Finsler metric, which in the case of low velocities it becomes

g00 D m2c2
�
1 � GM

c2r

�2
; gi i D �m2c2

�
1 � GM

c2r

�
; i D 1; 2; 3:

This corresponds to the static and spherically symmetric Riemannian metric

�
1 � GM

c2r

�2
c2dt2 �

�
1 � GM

c2r

�
.dr2 C r2d˝2/:

This metric is not a vacuum solution of Einstein’s equations, so that it cannot be
transformed into the Schwarzschild metric in isotropic coordinates.

In all the examples, the free Lagrangian QL0 of the spinless particle, has been
transformed by the interactions in the Finsler metric

QL20 D m2c2��� Px� Px� ) QL2 D g��.x; Px/ Px� Px�: (3)
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The low velocity limit produces a Riemannian approximation which does not give
rise to the usual dynamical equations.

However, General Relativity states that gravity modifies the metric of spacetime
producing a new (pseudo-)Riemannian metric g��.x/, which is related through
Einstein’s equations to the energy momentum distribution T �� . The motion of
a point particle is a geodesic on spacetime, and therefore can be treated as a
Lagrangian dynamical problem with a Lagrangian

QL2g D g��.x/ Px� Px�: (4)

In the spirit of unification of all interactions, one is tempted to extend the
formulation of gravity (4) to (3) by allowing the metric to be also a function of
the derivatives. Otherwise, to assume only a Riemannian metric is to consider that
gravity produces a different geometrization than any other interaction. In a region of
a uniform gravitational field, the Lagrangian dynamics is equivalent to a geodesic
problem where the metric is necessarily a Finsler metric. The elimination of the
velocities in the metric coefficients could be interpreted as a low velocity limit of a
more general gravitational theory.

3 Conclusions

The manifold of the boundary variables of any Lagrangian system is a Finsler space.
Any variational approach is equivalent to a geodesic statement on this manifold. The
metric, is a function of the x 2 X and Px, depends on the interaction, and to assume
that gravitation only produces a modification of the metric which is only a function
of the x, is a restriction of a more general formalism.

In all examples we have seen the Finsler structure of spacetime under different
gravitational interactions, although the metrics are obtained by pure Lagrangian
statements and not by any field equations. The new metrics are true Finsler metrics
which in the case of v=c ! 0, resemble the metrics obtained in a general relativity
formalism but they are not strict vacuum solutions of Einstein’s equations. This
could suggest some relationship between general relativity and the low velocity limit
of the corresponding Finsler structure of the gravitational problems.
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Phenomenology of Unified Dark Matter Models
with Fast Transition

Alberto Rozas-Fernández, Marco Bruni, and Ruth Lazkoz

Abstract A fast transition between a standard matter-like era and a late
�CDM-like epoch generated by a single Unified Dark Matter component can
explain the observed acceleration of the Universe. UDM models with a fast
transition should be clearly distinguishable from �CDM (and alternatives) through
observations. Here we focus on a particularly simple model and analyse its viability
by studying features of the background model and properties of the adiabatic UDM
perturbations.

1 Introduction

A possible framework explaining the acceleration of the Universe is provided
by models of Unified Dark Matter (UDM) where a single matter component is
supposed to source the acceleration and structure formation at the same time
(see e.g. [1], for a recent review).

UDM models with fast transition were introduced in [2] and show interesting
features [2, 3]. The single UDM component must accelerate the Universe and
provide acceptable perturbations which evolve in a scale-dependent fashion. In view
of testing models against observations this may become computationally expensive.
It is therefore essential to consider simple phenomenological models of the fast-
transition paradigm for which as much theoretical progress as possible can be made
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from analytical calculations. This then can be used to increase the efficiency of
numerical codes in dealing with these models.

It turns out that the best receipt to proceed analytically is to prescribe the
evolution of the energy density of UDM.

2 Generalities of UDM Models

2.1 The Background and the Perturbations

We assume a flat Friedmann–Lemaître–Robertson–Walker (FLRW) cosmology
where w D p=� characterises the background of our UDM model.

We assume adiabatic perturbations. The squared Jeans wave number plays a
crucial role in determining the viability of a UDM model, because of its effect on
perturbations, which is then revealed in observables such as the CMB and matter
power spectrum [2, 4]. The explicit form of the Jeans wave number is [2]

k2J D 3

2
�a2

.1C w/

c2s

ˇ̌
ˇ
ˇ
1

2
.c2s � w/ � �dc2s

d�
C 3.c2s � w/2 � 2.c2s � w/

6.1C w/
C 1

3

ˇ̌
ˇ
ˇ ; (1)

where c2s is the effective speed of sound. So if we want an analytic expression for k2J
in order to obtain some insight on the behaviour of perturbations in a given UDM
model, we need to be able to obtain analytic expressions for �, p, w and c2s .

3 Prescribing �.a/

Given a function (at least of class C3) � D �.a/, we can obtain the following
expressions for the quantities that enter into k2J (1):

w D �a
3

�0

�
� 1; (2)

c2s D �a
3

�00

�0 � 4

3
; (3)

dc2s
d�

D � 1

3�02

�
a�000 C �00 � a

�002

�0

�
: (4)

where a prime indicates derivative with respect to a.
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4 Phenomenological UDM Models with Fast Transition

4.1 A Simple Model for the Background

We introduce an “affine” model [4]:

� D �t


at

a

�3 C
�
�� C .�t � ��/


at

a

�3.1C˛/ � �t


at

a

�3�
Ht.a � at/ : (5)

Ht is compatible with having c2s > 0:

Ht.a � at/ D 1

2
C 1

�
arctan.ˇ.a � at//; (6)

where the parameter ˇ represents the rapidity of the transition. For ˛ D 0, Eq. (5)
reduces to

� D �t


at

a

�3 C ��

�
1 �


at

a

�3�
Ht.a � at/; (7)

representing a sudden transition to �CDM. In the following, we shall restrict our
attention to this sub-class of models. Here �t is the energy scale at the transition, ��
is the effective cosmological constant and the redshift for the transition zt D a�1

t �1.

5 The Jeans Scale and the Gravitational Potential

5.1 The Jeans Wave Number

We require k2`2k2J for all scales of cosmological interest to which the linear
perturbation theory applies. A large k2J can be obtained not only when c2s ! 0,
but when Eq. (1) is dominated by the � dc2s=d� term.

Thus, viable adiabatic UDM models can be constructed which do not require
c2s `

21 at all times if the speed of sound goes through a rapid change, a fast transition
period during which k2J can remain large, in the sense that k2`2k2J .

In general k2J becomes larger, with a vanishingly small Jeans length (its inverse)
before and after the transition. Although it becomes vanishingly small for extremely
short times, the effects caused by its vanishing are negligible (see the behaviour of
the gravitational potential ˚ below).



390 A. Rozas-Fernández et al.

zt 1

0 1 2 3 4 5
0.75

0.80

0.85

0.90

0.95

1.00

z

k CDM
500
50
5

zt 2

0 1 2 3 4 5
0.75

0.80

0.85

0.90

0.95

1.00

z

k CDM
500
50
5

zt 3

0 1 2 3 4 5
0.75

0.80

0.85

0.90

0.95

1.00

z

k CDM
500
50
5

Fig. 1 Illustrative plots of the gravitational potential ˚.kI z/ as a function of the redshift z for
�CDM and for our UDM model for k D 0:2 h Mpc�1 and different values of ˇ and zt . The black
solid line corresponds to the gravitational potential in the �CDM model with˝�;0 D 0:72

5.2 The Gravitational Potential

The equation that governs the behaviour of the gravitational potential ˚ is [5]:

d2˚.k; a/

da2
C
�
1

H

dH

da
C 4

a
C 3

c2s
a

�
d˚.k; a/

da
C

�
2

aH

dH

da
C 1

a2
.1C 3c2s /C c2s k

2

a2H 2

�
˚.k; a/ D 0; (8)

where H D da
d�
=a is the conformal time Hubble function. Also, H D aH .

From Fig. 1 we see that for an early enough fast transition with ˇ > 500 and
zt > 2 our UDM model should be compatible with observations. On the other hand,
a study of the matter and CMB power spectra is needed to study the viability of
models with 10 . ˇ < 500, and those with ˇ > 500 and zt < 2.
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Locating Objects Away from Earth
Surface: Positioning Accuracy

Diego Sáez and Neus Puchades

Abstract The motion of the Galileo and GPS satellite constellations is simulated in
Schwarzschild space-time, whereas photons travel in Minkowski space-time. This
is a good enough approach to deal with the main goal of this paper: the study
of positioning accuracy in the framework of the so-called relativistic positioning.
Our study is based on numerical 4D simulations. In this meeting, the contribution
of J.A. Morales-Lladosa contains some basic ideas which have been important to
perform our numerical calculations. For four chosen emitters (satellites) of a certain
constellation, many receivers located at different distances from Earth surface and in
distinct directions are considered. Thus, we verify that, in some space-time regions,
the Jacobian of the transformation giving the emission coordinate in terms of the
inertial ones vanishes. For receivers placed close to these regions, positioning errors
due to uncertainties in the satellite trajectories are too great. Our results suggest that,
given a receiver, the 4-tuple of satellites used for location must be carefully chosen
to minimize positioning errors (large enough Jacobian values).

1 Positioning Accuracy: Basic Ideas, Calculations
and Results

In an ideal relativistic positioning system (RPS), there is a well defined inertial
reference, in which, the equations of the satellite world lines are known; however,
in a realistic RPS, there are uncertainties in the satellite world lines which lead to
positioning errors. Some aspects of the error analysis are numerically considered
here. In order to define our ideal RPS, it is assumed that the Earth gravitational
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field is well described by the Schwarzschild space-time, which asymptotically
tends to a Minkowski geometry allowing us to define the inertial references of
the RPS. In this spherically symmetric space-time, it is assumed that free satellites
are moving along circular orbits with a well known angular velocity (other orbits
exist). In reference [1], the equations of the satellite world lines were given to first
order in the small parameter GM˚=R, where G, M˚, and R are the gravitational
constant, the Earth mass, and the orbit radius, respectively. The explicit form of these
equations –unnecessary in this paper– was given in terms of asymptotic inertial
coordinates. In these coordinates the metric is diagonal, and its non vanishing
components are �11 D �22 D �33 D 1, and �44 D �c2. Photons are moved in
this asymptotic Minkowski space-time by using the same coordinates (corrections
to first order in GM˚=R are negligible in our calculations). The effects of the
gravitational field on the clocks attached to the satellites is taken into account in
our ideal RPS. Units are taken in such a way that the speed of light is c D 1. Times
are given in hours.

In any RPS, there are four satellites broadcasting their proper times by mean of
codified signals. The inertial coordinates of an user, x˛ , are related to the emission
ones, which are the four proper times, 	A, simultaneously received by the user at
time x4. Index A labels the four satellites. The equations of the satellite world lines
are known. Their generic form is y˛ D x˛A.	

A/. These equations give the satellite
inertial coordinates x˛A in terms of the proper times 	A (see [1]). A well known
formula derived in [2] and discussed in [3, 4] gives the inertial coordinates (user
position) in terms of the emission ones. Moreover, given the inertial coordinates of
an user, the emission ones may be calculated by solving the system

�˛ˇŒx
˛ � x˛A.	

A/�Œxˇ � x
ˇ
A.	

A/� D 0: (1)

These four equation may be numerically solved by using the Newton-Rhapson
method (see [1, 5]) to get the unknowns 	A. Let us now suppose a real RPS. The
equations of the satellite world lines may be written as follows: y˛ D x˛A.	

A/ C
�˛A.	

A/, where �˛A are deviations with respect to the world lines of the ideal RPS.
The subsequent discussion is independent from the origin of the deviations. In the
real RPS, the following equations must be solved to find the emission coordinates
from the inertial ones:

�˛ˇŒx
˛ � x˛A.	A/ � �˛A�Œxˇ � x

ˇ
A.	

A/� �
ˇ
A� D 0: (2)

In conclusion, for ideal orbits in Schwarzschild space-time as well as for real
ones with �˛A deviations, we may find the inertial (emission) coordinates from the
emission (inertial) ones. Therefore, in order to study the positioning errors we
may proceeds as follows. First of all, we take inertial coordinates x˛ and, then,
we use the Newton-Raphson method to solve Eqs. (1) and (2). In the first case,
the resulting emission coordinates are 	A, whereas in the second case we get new
emission coordinates 	A C 
	A. Let us now use the analytical formula giving the
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inertial coordinates from the emission ones (see [2]), to find the inertial coordinates
in the ideal case (circular orbits in Schwarzschild geometry), and also in the real
one (with deviations �˛A). In the ideal case, this process must recover the chosen
initial x˛ coordinates with small errors which are strictly numerical, since we
use multiple precision codes these errors have been proved to be fully negligible
(accuracy test for our codes). In the real case –with deviations �˛A– the resulting
inertial coordinates are x˛ C 
x˛ . Quantities 
x˛ measure the positioning errors
due to the satellite world line uncertainties �˛A. A good estimator of these errors is
the quantity 
d D Œ.
x1/2 C .
x2/2 C .
x3/2�1=2. It is worthwhile to notice that
quantities �˛A.	

A/may be assumed to be constant in the small intervals
	A defined
above, in which, the real and ideal satellite world lines do not have enough time to
undergo significant deviations.

Positioning errors strongly depend on the Jacobian J of the transformation giving
the emission coordinates in terms of the inertial ones. These errors tend to infinity as
J tends to zero and, consequently, they are expected to be uncomfortably large close
to Minkowski events (users) with vanishing J . This is verified in this paper, whereas
a more detailed study of positioning errors –related to the so-called dilution problem
[6]– will be presented elsewhere. It has been shown that J vanishes at a certain user
position (see [3, 4] and references cited therein) if and only if the user sees the four
satellites –at emission times– along generatrices of a certain cone. Equivalently, let
us consider the cone generated by the lines of sight of satellites A D 1; 2; 3, and the
angle ˛1 (˛4) formed by the cone axis and any generatrix (and the line of sight of
the satellite A D 4). Then, the Jacobian vanishes if and only if ˛1 D ˛4.

In the technical literature about RPS [2, 3], the reader may find the definition
of functions �2 and 
, which may be calculated at any user position by using:
its emission coordinates, and the world line equations of the four satellites used
for relativistic positioning. Moreover, in the same articles, it is proved that the
Jacobian J vanishes if and only if function 
 takes on the zero value. This fact
may be used to find users with J ' 0, which have too small positioning accuracy.
In order to get these users, sections x4 D constant of the Minkowski space-time –
surrounding a point E located on Earth surface– are systematically covered by
points (x1; x2; x3), which are placed along a large number of segments starting
from E and having appropriate directions; thus, we define users with inertial
coordinates (x1; x2; x3; x4). The corresponding emission coordinates 	A may be
found by solving Eq. (1) and, then, functions �2 and 
 may be evaluated. In some
segments there are pairs of neighbouring points where the continuous function 

has different signs. So, function 
 and, consequently, the Jacobian J must vanish
between these pairs of points. Representations of the regions of vanishing Jacobian
will be shown elsewhere. Here, a point P , with vanishing J and located in a certain
direction on section x4 D 17, has been chosen. Many points have been placed –in
the same section and direction– along a segment of length 
L D 200 Km, which
has the point P at the centre. Finally, the estimator 
d of positioning errors and
the angle ˛1 � ˛4 have been calculated in each of the points placed on the segment.
Results are shown in Fig. 1. From the bottom panel it follows that J vanishes at
a point, P , where ˛1 � ˛4 D 0, and in the top panels it is shown that positioning
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Fig. 1 Top: Quantity 
d v.s. the distance L to point E in a segment of length 
L D 200 Km.
Bottom: Angle ˛1 � ˛4 in terms of L

errors are very big close to P . In a certain zone around P , these errors become too
large.
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SN and BAO Constraints on (New) Polynomial
Dark Energy Parametrizations

Irene Sendra and Ruth Lazkoz

Abstract In this work we introduce two new polynomial parametrizations of
dark energy equation of state, w, and explore their correlation properties. The
parameters to fit are the equation of state values at z D 0 and z D 0:5, which
have naturally low correlation and have already been shown to improve the popular
Chevallier–Polarski–Linder (CPL) parametrization. We test our models with Type
Ia Supernovae (SNeIa) and Baryon Acoustic Oscillations (BAO), in the form of both
current and synthetic data. On one hand, we investigate the degree of improvement
in dark energy constraints that can be achieved with future data. On the other hand,
according to the Bayesian deviance information criterion (DIC), which penalizes
large errors and correlations, we show that our models perform better than the CPL
re-parametrization proposed by Wang (in terms of z D 0 and z D 0:5). This is due to
the combination of a lower correlation and smaller relative errors. The same holds
for a frequentist perspective: our Figure-of-Merit is larger for our parametrizations.

1 Dark Energy EoS Parametrizations

The two new polynomial parametrizations we propose are inspired by the CPL
parametrization, w.z/ D w0Cwaz=.1Cz/, and represent a small departure from the
�CDM case (w D �1).

• Conventional Polynomial parametrization

The first parametrization we present is expressed in terms of conventional polyno-
mial and has the form: w.z/ D �1 C c1 .1C z=.1C z// C c2 .1C z=.1C z//2.
However, it is desirable to fit parameters which are physically transparent and
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lightly correlated. In [7], a new parametrization for the dark energy EoS in terms
of its value at present, w0, and at redshift z D 0:5, w0:5, was given: w.z/ D
3w0:5 � 2w0 C 3.w0 � w0:5/=.1C z/ (Wang’s parametrization). It is shown that this
reformulation of the classic CPL minorates the correlation between the parameters.
Thus, we follow the same procedure and we move on to a scenario in which w0 and
w0:5 are the parameters subject to estimation:

w.z/ D .4
�
1 � 4z2

�
w0 C 9z .1C 2z/w0:5 C z.1 � 2z//=.4.1C z/2/: (1)

• Chebychev polynomial parametrization

In the second parametrization we propose, we want to make a further generalisation
by considering a bit more involved functions. In this case we make use of Chebychev
polynomials, which have a significant role in most areas of numerical analysis,
as well as in other areas of Mathematics. Specifically, we propose w.z/ D �1 C
c1T1.1C z=.1C z//C c2T2.1C z=.1C z//, with Tn being the first kind Chebyshev
polynomial of degree n. As before, we switch to the less correlated set of parameters
fw0;w0:5g, having:

w.z/ D .w0.11� z.38z C 3//C z.9w0:5.5z C 3/� 4z C 2//=.11.z C 1/2/: (2)

2 Observational Data and Results

We test these new models with low redshift astronomical probes: Type Ia Super-
novae and Baryon Acoustic Oscillations (BAO). However, for this analysis we
consider not only currently available datasets, but also mock data of forthcoming
surveys. Specifically, we have used the BAO data presented in [5] and the largest
SNeIa data sample up to date, the Union2 [2]. At the same time and making use
of the iCosmo software, we have carried out simulations of measurements of the
radial and transversal BAO scales similar to those expected in a BAO high precision
spectroscopic redshift survey [4] and pre-WFIRST supernovae data following the
specifications reported in [1].

Following Bayesian Statistics, we have inferred the values ˝m and the dark
energy parameters for the models considered. We report our findings in two main
ways: on the one hand we present our best fits, errors and derived quantities in
Table 1; on the other hand we present credible contours obtained after a numerical
marginalization over ˝m. As mentioned, we have considered the combination of
real and mock SN and BAO data, and in addition we have introduced in all cases a
Gaussian prior on ˝m and ˝b deduced in [3] with h D 0:742 as is given by [6].

As a general trend, we see that choosing w0 and w0:5 as the parameters to
constrain is worthy as percentual errors are low. However, another interesting point
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Fig. 1 Credible contours for the four parametrizations using current and mock data

of view to interpret our results is Pearson’s correlation coefficient, �1;2 D �212=�1�2
which can be used to study the lineal correlation between the two dark energy
parameters. Here �12 is the non-diagonal element of the covariance matrix for
the parameters 1 and 2. A related magnitude is the (frequentist) Figure-of-Merit
(FoM), which has been defined [7] as FoMWang D 1=

p
det C.c1; c2; c3; : : :/; where

C.c1; c2; c3; : : :/ is the covariance matrix of the corresponding ci dark energy
parameters. Results on the FoM get summarized very simply: the conventional
polynomial has the largest value of the FoMWang.

For both sorts of data the conventional polynomial parametrization is naturally
less correlated than all three others. The second best is the Chebyshev one, and all
three are considerably less correlated than CPL. In agreement with our discussion
the degree of correlation at a certain low redshift in our two new parametrizations
immediately drives to very narrow errors on the total w at that location (Fig. 1).

The last criterion we resort to is the Bayesian deviance information criterion
(DIC). When applied for model selection the setting with the lowest DIC is in
principle the best. The behaviour of the DIC follows the same pattern as the FoM.
Basically, the conventional polynomial model is the best one, then we have the
Chebyshev polynomial model, then Wang’s scenario, and finally, the CPL model
closes the ranking with the highest DIC by far.

Finally, we can see that the FoM values obtained with the mock data are typically
better than those for currently available data. This fact proves the capability of the
forthcoming surveys to describe the evolutionary features of dark energy.
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3 Conclusions

The conclusions that emerge from our analysis is that our new parametrizations
perform better in the sense that they allow to obtain tighter constraints on the
dark energy EOS at present and its derivative, and they are also favoured by the
statistical indicator we mention above (DIC). The main reason why we feel they
fare better than their competitors is that they represent rather flexible perturbations
of the �CDM scenario, which in many respects still remains the best description of
the accelerated universe, and not surprisingly is often referred to as the concordance
model. In contrast, either CPL or Wang are models which when taken as perturba-
tions of �CDM are left with one free parameter only, and then one could expect
less ability to accommodate themselves to the data.
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Remarks on the Stability Operator for MOTS

José M.M. Senovilla

Abstract Deformations of marginally outer trapped surfaces (MOTS) and
tubes (MOTT) are studied by using the stability operator introduced by
Andersson–Mars–Simon. Novel formulae for the principal eigenvalue are presented.
The possibility of selecting a privileged MOTT is discussed. This is related to the
concept of ‘core’ of black holes. In spherical symmetry the spherical MOTT is
the boundary of a core. I argue how similar results may hold in general black-hole
spacetimes.

1 Basic Concepts and the Stability Operator

Let S be a closed marginally outer trapped surface (MOTS): its outer null expansion
vanishes �Ek D 0 [4, 5]. Here, the two future-pointing null vector fields orthogonal

to S are denoted by El and Ek with l�k� D �1. I will also use the concept of outer
trapped surface (OTS, �Ek < 0 ). A marginally outer trapped tube (MOTT) is a
hypersurface foliated by MOTS.

As proven in [1], the variation ıf En�Ek of the vanishing expansion along any normal
direction f En such that k�n� D 1 reads

ıf En�Ek
D �
Sf C 2sBrBf C f

�
KS � sBsB C rBs

B � G��k
�l�
ˇ̌
S

� n�n�

2
W

�

(1)

whereKS is the Gaussian curvature on S ,
S its Laplacian,G�� the Einstein tensor,
r the covariant derivative on S , sB D k�e

�
Br� l

� (with EeB the tangent vector fields

on S ), andW 	 G��k
�k�

ˇ
ˇ
S

C�2 with �2 the shear of Ek at S . Note that En is selected
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by fixing its norm En D �El C n�n
�

2
Ek and that its causal character is unrestricted. Due

to energy conditions [4, 5] W � 0 and W D 0 requires G��k�k�
ˇ
ˇ
S

D �2 D 0

leading to Isolated Horizons [2]. I shall assume W > 0 throughout, W � 0 being
more involved.

The righthand side in (1) defines a linear differential operator LEn acting on
f : ıf En�Ek 	 LEnf . LEn is an elliptic operator on S , called the stability operator
for S in the normal direction En. LEn is not self-adjoint in general (with respect
to the L2-product on S ). Nevertheless, it has a real principal eigenvalue �En, and
the corresponding (real) eigenfunction �En can be chosen to be positive on S . The
(strict) stability of the MOTS S along a spacelike En is ruled by the (positivity) non-
negativity of �En.

The formal adjoint operator with respect to the L2-product on S is given by

L
%

En 	 �
S � 2sBrB C
�
KS � sBsB � rBs

B � G��k
�l�
ˇ̌
S

� n�n�

2
W

�

and has the same principal eigenvalue�En asLEn [1]. I denote by �%En the corresponding
principal (real and positive) eigenfunctions.

2 Possible MOTTs Through a Single MOTS

For each normal vector field En, the operator LEn � �En has a vanishing principal
eigenvalue and �En as principal eigenfunction: LEn � �En corresponds to the stability
operatorLEn0 along another normal direction En0 given by n0�n0

� D n�n�C.2=W /�En,
so that ı�

EnEn0�Ek D 0. If En is spacelike and S is strictly stable along En (�En > 0), then
En0 points “above” En (as n0�n0

� > n�n�). The directions tangent to MOTTs through
S belong to (but may not exhaust!) the set f�EnEn0g. These MOTTs are generically
different: given two normal vector fields En1 and En2 the corresponding “primed”
directions are equal if and only if En1 � En2 D const.

W
Ek. On the other hand, for any

such two En1 and En2
.W=2/f

�
n
�
1n1� � n�2n2�

� D �
LEn2 � LEn1

�
f (2)

providing the relation between two deformation directions pointwise.
For any given En one easily gets

I

S

LEnf D
I

S

�
KS � sBsB � rBs

B � G��k
�l�
ˇ
ˇ
S

� n�n�

2
W

�
f

I

S

L
%

Enf D
I

S

�
KS � sBsB C rBs

B � G��k
�l�
ˇ
ˇ
S

� n�n�

2
W

�
f
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in particular for the principal eigenfunctions

�En
I

S

�En D
I

S

�
KS � sBsB � rBs

B � G��k
�l�
ˇ
ˇ
S

� n�n�

2
W

�
�En

�En
I

S

�
%

En D
I

S

�
KS � sBsB C rBs

B � G��k
�l�
ˇ
ˇ
S

� n�n�

2
W

�
�
%

En

which are two explicit formulas for the principal eigenvalue bounding it

min
S

�
KS � sBsB ˙ rBs

B � G��k
�l�
ˇ
ˇ
S

� n�n�

2
W

�
� �En

� max
S

�
KS � sBsB ˙ rBs

B � G��k
�l�
ˇ
ˇ
S

� n�n�

2
W

�
: (3)

Furthermore, the two functions�En�


KS � sBsB ˙ rBs

B � G��k
�l�
ˇ̌
S

� n�n�
2
W
�

must vanish somewhere on S for all En.
There are two obvious simple choices En˙ leading to a vanishing principal

eigenvalue: n�˙n˙� D 2
W



KS � sBsB ˙ rBs

B � G��k
�l�
ˇ̌
S

�
. The correspond-

ing stability operators areL˙ D �
S C2sBrB C.1�1/rBs
B . The corresponding

principal eigenfunctions �˙ > 0 satisfy L˙�˙ D 0. The respective formal adjoints
read: L%˙ D �
S � 2sBrB � .1 ˙ 1/rBs

B with vanishing principal eigenvalues

too. Observe thatL� andL%C are gradientsL�f D �rB



rB
f � 2f sB

�
,L%Cf D

�rB



rB
f C 2f sB

�
.

3 A Distinguished MOTT

L� has special relevant properties, because (2) leads to

.W=2/f
�
n�n� � n��n��

� D L�f � ıf En�Ek (4)

For any other direction En0 defining a local MOTT

.W=2/


n0�n0

� � n��n��
�

D �En�
�
KS � sBsB � rBs

B � G��k
�l�
ˇ̌
S

� n�n�

2
W

�

and, as remarked above, the righthand side must change sign on S .

Theorem 3.1. The local MOTT defined by the direction En� is such that any other
nearby local MOTT must interweave it: the vector En0 � En�./ Ek/ changes its causal
orientation on any of its MOTSs.



406 J.M.M. Senovilla

From (4), deformations using c�� with constant c lead to outer untrapped (resp.
trapped) surfaces if c

�
n�n� � n��n��

�
< 0 (resp. > 0) everywhere. Integrating (4)

on S one thus gets

1

2

I

S

Wf
�
n�n� � n��n��

� D �
I

S

ıf En�Ek

hence the deformed surface can be outer trapped (untrapped) only if
f
�
n�n� � n��n��

�
is positive (negative) somewhere. If the deformed surface has

f
�
n�n� � n��n��

�
< 0 (respectively > 0) everywhere then ıf En�Ek must be positive

(resp. negative) somewhere.
Choose the function f D a0�� C Qf for a constant a0 > 0 so that, as �� > 0 has

vanishing eigenvalue, (4) becomes .W=2/.a0�� C Qf / �n�n� � n��n��
� D L� Qf �

ıf En�Ek . This can be split into two parts:

.W=2/a0��
�
n�n� � n��n��

� D �ıf En�Ek;
W

2

�
n�n� � n��n��

� D L� Qf
Qf (5)

The first of these tells us that ıf En�Ek < 0 whenever En points “above” En�. But then

the second in (5) requires finding a function Qf such that L� Qf = Qf is strictly positive
on S . This leads to the following interesting mathematical problem:

Is there a function Qf on S such that (i) L�
Qf = Qf � 
 > 0, (ii) Qf changes sign on S , and

(iii) Qf is positive in a region as small as desired?

To prove that there are OTSs penetrating both sides of the MOTT it is enough to
comply with points (i) and (ii). If the operatorL� has any real eigenvalue other than
the vanishing principal one, then these two conditions do hold for the corresponding
real eigenfunction because integration of L� D � implies

H
S
 D 0 (as � > 0)

ergo  changes sign on S . However, even if there are no other real eigenvalues the
result might hold. Point (iii) would ensure, then, that the deformed OTS intersects
the trapped region “above” the MOTT only in a portion that can be shrunk as much
as desired. This is important for the concept of core and its boundary, see [3].

As illustration of the above, consider a marginally trapped round sphere & in a
spherically symmetric space-time, that is, any sphere with r D 2m where 4�r2 is
its area and m D .r=2/.1� r;�r

;�/ is the “mass function”. For any such & , sB D 0

and �2 D 0, ergo the directions En˙ and operators L˙ coincide: EnC D En� 	 Em,
LC D L� D L Em D �
& . As it happens, Em is tangent to the unique spherically
symmetric MOTT: r D 2m [3]. Therefore, points (i) and (ii) are easily satisfied by
choosing Qf to be an eigenfunction of the spherical Laplacian 
& , say Qf D cPl for
a constant c and l > 0, where Pl are the Legendre polynomials. Actually, one can
find an explicit function satisfying point (iii) too, proving that the region r � 2m is
a core in spherical symmetry, [3]. This is a surprising, maybe deep result, because
the concept of core is global and requires full knowledge of the future, however its
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boundary r D 2m is a MOTT, hence defined locally. Whether or not this happens
in general is an open important question.
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CMB Anisotropies by Collapsing Textures

Kepa Sousa and Jon Urrestilla

Abstract CMB photons passing through a collapsing texture knot receive an
energy shift, creating characteristic cold and hot spots on the sky. We calculate
the anisotropy pattern produced by collapsing texture knots of arbitrary shape. The
texture dynamics are solved numerically on a Minkowski background.

1 Introduction

Textures are an unstable type of topological defect which are generically formed
whenever there is a complete spontaneous breaking of a non-abelian global
symmetry, what can be easily implemented in the context of Grand Unified
Theories [6]. Unlike other topological defects textures are unstable, and collapse
roughly at the speed of light as soon as they enter the horizon. When the defect
size falls below the symmetry breaking scale the topological charge is no longer
conserved and the texture decays into the vacuum (unwinding). The integrated
Sachs–Wolfe effect causes the CMB photons passing near the texture to be
typically red-shifted or blue-shifted, leaving characteristic hot and cold spots in
the cosmic background. The interest on textures increased after Cruz et al. and
Feeney et al. [3, 4] considered the texture model as one of the most plausible
hypothesis to explain the CMB anomaly known as the Cold Spot.
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Fig. 1 Prediction of the time
evolution of the temperature
fluctuation at the center of the
anisotropy by different
methods: field theory
simulations (solid line),
self-similar collapse (dashed
line) (2)

These analyses rely on the existing predictions for the anisotropy pattern
produced by global textures. In particular they use a very idealized analytical result
obtained by Turok et al. in [6], who studied the simplest model admitting texture
solutions, the O.4/-model, which is characterized by the Lagrangian

L D 1
2
@��a @

��a � �.�a�a � �2/2; a D 1; : : : ; 4 : (1)

This model describes the dynamics of four real scalar fields �a, with their
interactions given by a Mexican-hat type potential, where � is the self coupling
and � the expectation value, which determines the symmetry breaking scale. The
analytical solution found by Turok et al. relies on the non-� model approximation
to solve the dynamics (i.e. �a�a D �2 is assumed at all times), which breaks down
at the unwinding event, and describes spherically symmetric texture collapsing in a
self-similar way. The anisotropy pattern produced by such a texture is given by


T

T
.r; t0/ D t0

.2r2 C t20 /
1=2

"; " 	 8�2G�2; (2)

where r is the impact parameter of the photon respect to the center of the texture,
and t0 the time at which it is closest to the texture, with t0 D 0 being the time at
unwinding. Such a solution has been known for a long time to be unlikely to occur
in a cosmological context [1]. Actually, the authors of [3, 4] truncated the radial
profile (2) and matched it with a Gaussian at its half-maximum because it is known
not to be valid for large values of the impact parameter where it has a very slow
decay as r�1, leading to an unrealistically large spot. Moreover, the amount of red-
shift or blue-shift received by the photons crossing the center of the texture is the
same independently of the time of crossing t0, (dashed line in Fig. 1), even at very
early times when the texture size is large, and thus the energy density is very diluted.

The purpose of the present work is to provide a more realistic prediction of the
anisotropy pattern left by a random texture, without making any assumption about
the initial configuration of the texture, through numerical simulations of the full
dynamics of a texture configuration in the O.4/-model.
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2 Numerical Methods

In order to characterize the anisotropy produced by textures with arbitrary shape we
proceed as in [2]. To simplify the dynamics it is assumed that the gravitational field
produced by the texture is small, which implies that the texture can be evolved on
the unperturbed background and the CMB photons travel along the unperturbed
geodesics. The dynamics of the O.4/-model are solved evolving numerically a
discretized version of the equations of motion for Minkowski background on a
lattice of 963 grid points. The lattice has periodic boundary conditions, and the
grid spacing is 
x D p

2=��2. These results can be extended to the cosmological
case as long as all the length-scales and time-scales involved in the simulation are
small compared with the size of the horizon H�1. We have evolved 1300 random
initial configurations with a correlation length of 36 lattice spacings, and during
a time interval of 96
x � c, so that the boundary effects can be ignored. The
corresponding anisotropy pattern is calculated only for those initial configurations
leading to isolated unwinding events which happen away from the start and the end
of the evolution (33 in total), so that photons have time enough to cross the complete
texture. In a Minkowski background the Sachs–Wolfe formula can be solved
explicitly in terms of the energy momentum tensor of the texture configuration.
The anisotropy is calculated using an approximation of this solution valid for
anisotropies covering small angular scales (see [2]).

3 Summary of the Results and Conclusions

In order to compare our results with the self-similar solution (2), we have measured
the fractional temperature change for photons crossing the center of the texture for
each of the 33 initial configurations, and then we have averaged over the whole
ensemble. The result is represented by the solid line in Fig. 1. The plot shows
how our numerical simulation resolves the unwinding event, which lasts about
ıt � 10 ��1=2��1, in contrast with the analytic solution in [6] which has a step-like
behavior (dashed line). Moreover, we can also see how the brightness of the spot
decays at early and late times, implying that textures are only observable during a
finite interval around the unwinding event. This might have important consequences
for the Bayesian analyses in [3,4], which requires an estimate of the number of cold
and hot spots due to textures which can be observed in the sky at a given time, and
of a given angular size. In particular, as the size of the texture configuration grows
with time as we go far from the unwinding event [2, 6], we expect the angular scale
distribution of spots to decay faster for large spots than the estimate made in [6].
We have also recovered results in [2] which show that the average cold and hot
spots produced by random textures are significantly less pronounced than the Turok
solution (20� 50%):


T

T
jmax D .C0:77˙ 0:21/";


T

T
jmin D .�0:49˙ 0:13/"; (3)
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Fig. 2 Averaged radial profiles of a hot spot (left) and a cold spot (right) at maximum brightness.
The continuous lines represent our results and the dashed line corresponds to Eq. (2)

which is specially relevant in order to estimate the symmetry breaking scale, as it
can be extracted from the spot brightness [3, 4].

In order to characterize the anisotropy pattern we have obtained the radial profiles
of a cold and a hot spot at maximum brightness. Since textures become spherical
close to the time of the unwinding [5], after averaging over the whole ensemble of
initial conditions, we have also averaged the profile over the azimuth angle. The
result is represented in Fig. 2 (continuous lines). In these plots we can see again the
differences between the maxima and minima of the calculated profiles and the Turok
solution (dashed line). In addition, it is also evident that the profiles we found are
significantly more localized than the analytic solution. These results, together with
the expected corrections to the angular scale distribution of observed spots suggest
a revision of the analyses done by Cruz et al. and Feeney et al. [3, 4].

The present study is a first approach to improve the existing predictions for the
anisotropy pattern produced by a collapsing texture. Future work involves repeating
these simulations in a larger lattice in order to reduce the boundary effects, and
to study the dependence of the profiles on the photon emission and reception times.
In addition we intend to evolve the texture configurations in a Friedman–Robertson–
Walker metric in order to characterize the effect of the expansion of the universe on
the anisotropy pattern produced.
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Relative Motions of Free Test Particles
in Robinson–Trautman Spacetimes
of Any Dimension

Robert Švarc and Jiří Podolský

Abstract Using the invariant form of equation of geodesic deviation we analyze the
relative deformations of a congruence of free test particles in general non-twisting,
shearfree and expanding geometries. In four dimensions this class of exact solu-
tions includes important classes of expanding gravitational waves. On the other
hand, higher-dimensional Robinson–Trautman spacetimes can only be of algebraic
type D. We emphasize the difference between the standard four-dimensional
solutions and their arbitrary-dimensional extensions from the physical point of view
of a geodesic observer.

1 Robinson–Trautman Geometries

The optical scalars A2 (twist), �2 (shear) and � (expansion) characterizing affinely
parameterized null geodesic congruence ka are in arbitrary dimensionD given by

A2 D �kŒaIb�kaIb ; �2 D k.aIb/kaIb � 1

D � 2
.kaIa/2 ; � D 1

D � 2
kaIa : (1)

The Robinson–Trautman class of spacetimes is defined as the geometries admitting
nontwisting (A D 0), shearfree (� D 0) and expanding (� ¤ 0) null geodesic
congruence. The line element of a general nontwisting spacetime takes the form
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ds2 D gij.r; u; x/ dxidxj C 2gui.r; u; x/ dxidu � 2dudr C guu.r; u; x/ du2 ; (2)

where i; j D 2; : : : ; D � 1, u D const defines null hypersurfaces with normal
ka D @r , r is an affine parameter along the geodesic congruence, and xi represent
D � 2 spatial coordinates in a transverse Riemannian space. As shown in [1], the
shearfree condition � D 0 and the vacuum Einstein equations than imply gui D 0

in (2) and fully determine the r-dependence of the D-dimensional Robinson–
Trautman metric as

ds2 D r2hij.u; x/ dxidxj � 2 dudr � 2H.r; u; x/ du2 ; (3)

with the function 2H given by

2H D R

.D � 2/.D � 3/
C 2.ln

p
h/;u

D � 2 r � 2�

.D � 2/.D � 1/ r
2 � �

rD�3 ; (4)

where R.u; x/ is the scalar curvature calculated with respect to the spatial metric hij,

hij.u; x/ D P�2.u; x/ �ij.x/ and det �ij D 1 ; (5)

h.u; x/ is defined as h 	 dethij D P2.2�D/, � is a cosmological constant, and
�.u; x/ is an arbitrary function. For this general form of the vacuum Robinson–
Trautman line element (3) the nonvanishing components of the Weyl tensor
explicitly become

Cruru D �.D � 2/.D � 3/
�

2rD�1 ; Crpuq D � r2hpq

D � 2Cruru ;

Ckplq D r2Rkplq � 2r2hkŒlhq�p

.D � 2/.D � 3/

�
2r2Cruru C R

�
;

Cupkq D 2rR;Œkhq�p

.D � 2/2.D � 3/
; Cruup D R;p

.D � 2/2r ;

Cupuq D 2HCrpuq CWpq � hpq

D � 2 h
ij Wij ; (6)

where Rkplq is the Riemann tensor of the transverse space hij, and Wpq denotes

Wpq 	 H;pq � 1

2
H;k h

kl
�
2hl.p;q/ � hpq;l

�
: (7)

Other restrictions on the transverse metric hij and the parameters contained in
the metric function H (in general depending on u and xi coordinates) follow from
the remaining vacuum Einstein equations and significantly depend on the number of
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dimensionsD, see the detailed discussion in [1]. For our purpose here notice that in
any higher dimensionD > 4 the coordinate dependence of these metric functions is

R D R.u/ ; � D �.u/ ; P.x/ ; P.u; x/ for � D 0 ; (8)

while in standard four-dimensional case we obtain

R D R.u; x/ ; � D �.u/ ; P.u; x/ ; hij D P�2.u; x/ ıij : (9)

2 Geodesic Deviation

In our work [2] we discussed specific influence of an arbitrary gravitational field in
any dimension D on relative motion of geodesic particles. In the case of vacuum
spacetimes the equation of geodesic deviation takes the invariant form

RZ.1/ D 2�

.D � 2/.D � 1/
Z.1/ C �2S Z

.1/ C 1p
2
. �1T j � �3T j /Z

.j / ;

RZ.i/ D 2�

.D � 2/.D � 1/
Z.i/ � �2T .ij/ Z

.j / C 1p
2
. �1T i � �3T i / Z.1/

�1
2
. �0ij C �4ij/Z.j / ; (10)

with i; j D 2; : : : ; D � 1. Here Z.1/; Z.2/; : : : ; Z.D�1/ are spatial components of
the separation vector Z D Za ea between the test particles in a natural interpretation
orthonormal frame feag, i.e., ea � eb D �ab, where e.0/ 	 u D Pr@r C Pu@u C Pxi @i is
the velocity vector of the fiducial test particle, RZ.1/; RZ.2/; : : : ; RZ.D�1/ are the corre-
sponding relative accelerations, and the scalars �A::: are defined as the components
of the Weyl tensor in the null frame fk; l;mi g adapted to observer’s D-velocity u,
namely,

k D 1p
2
.u C e.1// D 1p

2Pu@r ;

l D 1p
2
.u � e.1// D

�p
2 Pr � 1p

2Pu
�
@r C p

2Pu @u C p
2 Pxi@i ;

mi D e.i/ D 1

Pu gkl Pxkml
i@r Cm

j
i @j ; (11)

and the projections of the Weyl tensor (grouped by their boost weight) are

�0ij D Cabcd k
a mb

i k
c md

j ;

�1ijk D Cabcd k
a mb

i m
c
j m

d
k ; �1T i D Cabcd k

a lb kc md
i ;
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�2ijkl D Cabcd m
a
i m

b
j m

c
k m

d
l ; �2S D Cabcd k

a lb lc kd ;

�2ij D Cabcd k
a lb mc

i m
d
j ; �2T ij D Cabcd k

a mb
i l

c md
j ; (12)

�3ijk D Cabcd l
a mb

i m
c
j m

d
k ; �3T i D Cabcd l

a kb lc md
i ;

�4ij D Cabcd l
a mb

i l
c md

j ;

where i; j; k; l D 2; : : : ;D � 1 .
However, for the vacuum Robinson–Trautman spacetimes using the explicit form

of the Weyl tensor (6) we find that �0ij , �1ijk and �1T i (which correspond to the
highest boost weights C2 and C1) vanish identically. The only non-trivial Weyl
scalars (12) with respect to the null frame (11) that are present in (10) take the form

�2S D �Cruru ; �2T ij D m
p
i m

q
j Crpuq ; (13)

�3T j D p
2m

p
j

	 Pxk.gkpCruru � Crkup/� PuCruup


; (14)

�4ij D 2m
p

.im
q

j /

˚ Pxk Pxl 	gklCrpuq � gpk.2Crluq � glqCruru/C Ckplq



C2 Pxk Pu.Cupkq � gkqCruup/C Pu2.Cupuq � 2HCrpuq/
�
; (15)

where the Weyl tensor components are explicitly given by (6) and, due to (8) and (9),
significantly depend on the number of dimensionsD.

The Weyl scalars (13)–(15) represent specific combinations of observer’s kine-
matics with the curvature of the spacetime. The overall relative motion measured
by an arbitrary geodesic observer in any dimension D with velocity u described
by equations (10) thus, in general, consists of the isotropic influence of the
cosmological constant �, Newton-like deformation induced by the terms �2S and
�2T .ij/ , the longitudinal effects encoded in �3T i , and the transverse deformations
corresponding to �4ij , see [2] for the physical interpretation of the �A::: scalars.

However, the terms in (13)–(15) containing spatial components Pxi of observer’s
velocity u can be (at least locally) removed by a suitable particular choice of the
fiducial geodesic with Pxi D 0. These ‘radial’ observers thus measure ‘pure’ effects
of the vacuum Robinson–Trautman gravitational field and are able to distinguish
between four and a higher dimensional spacetime. To be more specific:

• The higher-dimensional constraints (8) imply than in the case Pxi D 0 the only
nonvanishing Weyl scalars are �2S and �2T .ij/ representing Newton-like tidal
deformations governed by the ‘mass’ parameter �, see (13) and (6).

• From (9) in four dimensions it follows that all Weyl scalars �2S , �2T .ij/ , �3T i
and �4ij are in general nonvanishing and the test particles in vacuum Robinson–
Trautman spacetimes are thus affected by Newton-like tidal deformation (13),
the longitudinal effects (14), and by the transverse gravitational waves (15).
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This agrees with previous results of [1, 3] that vacuum Robinson–Trautman
spacetimes in D > 4 are only of algebraic type D, while in D D 4 they are of
type II, or more special.
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References

1. Podolský, J., Ortaggio, M.: Robinson–Trautman spacetimes in higher dimensions. Class.
Quantum Grav. 23, 5785–5797 (2006)

2. Podolský, J., Švarc, R.: Interpreting spacetimes of any dimension using geodesic deviation. Phys.
Rev. D 85, 044057 (2012)

3. Ortaggio, M., Pravda, V., Pravdová, A.: Algebraic classification of higher dimensional space-
times based on null alignment. Class. Quantum Grav. 30, 013001 (2013)



Connection Between Horizons and Algebraic
Type

Otakar Svítek

Abstract We study connections between both event and quasilocal horizons and
the algebraic type of the Weyl tensor. The relation regarding spacelike future outer
trapping horizon is analysed in four dimensions using double-null foliation.

1 Introduction

We would like to, at least partially, understand how does the presence of some form
of horizon restrict the possible algebraic types on it. Since algebraic type of a tensor
is determined locally we need to characterize the horizon without employing global
notions. We will concentrate on the Weyl tensor and Petrov types derived from it.

Event horizon is a global characteristic and the full spacetime evolution is
necessary in order to localize it. In many situations this is not desirable or even
attainable and therefore, over the past years different quasi-local characterizations
of black hole boundary were developed. The most important ones being apparent
horizon [1], trapping horizon [2] and isolated or dynamical horizon [3]. The basic
local condition in the above mentioned horizon definitions is effectively the same:
these horizons are sliced by marginally trapped surfaces with vanishing expansion
of outgoing (ingoing) null congruence orthogonal to the surface. We adopt the so
called spacelike future outer trapping horizon (SFOTH) which merges the properties
of trapping and dynamical horizons.

Since event horizon in a static spacetime with a well-behaved matter is a Killing
horizon one can use the local condition on stationary Killing field in such a situation
avoiding the global nature of event horizon. This case was investigated by Pravda
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and Zaslavskii [4] and we summarize their results in the next section. In the third
section the relation of SFOTH to the algebraic type is derived.

2 Killing Horizons

Pravda and Zaslavskii [4] studied curvature scalars in a general static spacetime
possessing Killing horizon (generalizing previous results of [5] on high degree of
symmetry of the Einstein tensor to the non-extremal case). They assumed regularity
of all polynomial invariants of the Riemann tensor on a horizon and used two
naturally preferred frames for calculations—the static observer and the freely falling
observer frames. Note that the static frame is singular on the null horizon.

Assuming 1C 1C 2 decomposition and using the Gauss normal coordinates the
metric takes the following form

ds2 D �M2dt2 C dn2 C �abdxadxb (1)

The stationary Killing field is �� D .1; 0; 0; 0/ with M2 	 ���� D 0 on the
horizon. The tetrad adapted to the static observer’s four-velocity and the Gaussian
normal direction has the form

l� D 1p
2
. 1
M
; 1; 0; 0/; n� D 1p

2
. 1
M
;�1; 0; 0/; m� D .0; 0;ma/ (2)

which immediately implies �4 D N�0 and �3 D � N�1. Next, one can express the
Weyl tensor, the Riemann tensor etc. using the above decomposition in terms of
2-metric �ab, extrinsic curvatureKab, lapseM and their derivatives. Upon projecting
the Weyl tensor onto the tetrad and taking the horizon limit M ! 0 one gets the
Weyl scalars on the horizon. Petrov type is then determined based on curvature
invariants I; J and coefficientsK;L;N

I D �0�4 � 4�1�3 C 3�2
2 ; J D det

0

@
�4 �3 �2
�3 �2 �1
�2 �1 �0

1

A (3)

K D �1�
2
4 � 3�4�3�2 C 2�3

3 ; L D �2�4 � �2
3 ; N D 12L2 � �2

4 I (4)

The resulting Petrov type is either D (�2 ¤ 0) or O (�2 D 0).
In the case of the freely falling observer the adapted tetrad is given by simple

transformation from (2)

Ol� D zl�; On� D z�1n� (5)
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where z D exp.�˛/, cosh˛ D E
M

, with E being an energy per unit mass for radially
infalling geodesic. In this frame invariants I; J do not change but the coefficients
are modified

OK D z�3K; OL D z�2L; ON D z�4N (6)

Since z ! 0 on the horizon the coefficients OK; OL; ON can be nonzero in the limit
(unlike for static observer). The Petrov type is either II (�2 ¤ 0) or III (�2 D 0)
here. Due to singular nature of the static frame on the horizon these results are more
physically relevant.

3 Quasilocal Horizons

As mentioned in the Introduction in the general dynamical situation we use
the SFOTH—spacelike future outer trapping horizon—which has the following
properties:

1. spacelike submanifold foliated by closed 2-surfaces with null normal fields l; n
2. expansion�l D 0 (marginal)
3. expansion�n < 0 (future)
4. Ln�l < 0 (outer)

We employ a double-null foliation developed by Hayward [2] (mainly for the
characteristic initial value problem and the trapping horizon definition) and adapted
by Brady and Chambers [6] to study a nonlinear stability of Kerr-type Cauchy
horizons.

The procedure is based on a local foliation by closed orientable 2-surfaces S with
smooth embedding � W S 
 Œ0; U / 
 Œ0; V / ! M and induced spatial metric hab

on S with corresponding covariant derivativeDa. Null vectors l�, n� are normal to
S and there is a spatial two vector sa called shift (encoding freedom in identifying
points on subsequent surfaces). Evolution of the induced metric is described using
Lie derivatives along l and n

˙ab D Llhab ; Q̇ab D Lnhab (7)

� D 1
2
hab˙ab ; Q� D 1

2
hab Q̇ab (8)

�ab D ˙ab � �hab ; Q�ab D Q̇ab � Q�hab (9)

!a D 1
2
habLl s

b (10)

�; Q� being expansions, �ab; Q�ab shears and !a anholonomicity (related to normal
fundamental form). We assume normalized null vectors thus having zero inaffinities.
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From vacuum Einstein equations and contracted Bianchi identities one obtains

Ll � D � 1
2
�2 � 1

4
�ab�

ab (11)

Llh D �h (12)

Ll!a D ��!a C 1
2
Db�ab � 1

2
Da� (13)

Ll .h
�1=2hab/ D h�1=2�ab (14)

After expressing curvature tensors in the given frame we get the following Weyl
scalars in vacuum

4�0 D .2Ll˙ab �˙amh
mn˙bn/m

amb (15)

4�1 D .2!m˙am C 4Ll!a/m
a (16)

4�2 D .2Ln˙ab � 4Da!b �˙amh
mn Q̇bn � 4!a!b/ma Nmb (17)

4�3 D �.2!m Q̇am C 4Ln!a/ Nma (18)

4�4 D .2Ln
Q̇ab � Q̇amh

mn Q̇bn/ Nma Nmb (19)

Next, we use the vanishing of expansion and further fixing of the spatial part
of the frame for simplification. We evaluate the first term on the right-hand side of
equation (15) noting that

Ll˙ab D Ll�ab C �˙ab C habLl � (20)

Using the projection and the horizon condition we obtain

mambLl˙ab D mambLl�ab (21)

Assuming (see [6]) the Lie-propagated spatial part of the frame and equation (14)
we arrive at

0 D Ll .h
�1=2habm

amb/ D h�1=2�abm
amb (22)

Next, we may assume that !a D 0 initially on S and would like to have Ll!a D 0

as well. Indeed, the first and the last terms of equation (13) vanish on the horizon
and by further locally fixing the spatial part of the frame we obtain maDb�ab D 0.
In a similar way, one can show that ˙amh

mn˙bnm
amb D 0 on the horizon.

Then �0 D 0 and �1 D 0. Assuming regularity of �f2;3;4g we have I 3 D 27J 2

and therefore Petrov type II. Clearly the spacetime is generically type I away from
the horizon.

In the future, we would like to check whether stronger statements are possible
(with additional assumptions), generalize the results to well-behaved matter fields
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and nonzero cosmological constant. Also, we would like to extend the analysis to
other important tensors (Ricci etc.).
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Dynamics of Apparent Horizons in Quantum
Gravitational Collapse

Yaser Tavakoli, Andrea Dapor, and João Marto

Abstract We study the gravitational collapse of a massless scalar field within the
effective scenario of loop quantum gravity. Classical singularity is avoided and
replaced by a quantum bounce in this model. It is shown that, quantum gravity
effects predict a threshold scale bellow which no horizon can form as the collapse
evolves towards the bounce.

1 Gravitational Collapse with a Massless Scalar Field

Loop quantum gravity (LQG) provides a fruitful ground to investigate the resolution
of the classical singularities which arise in the gravitational collapse. In view of this
approach, it is of interest and well motivated to further assess how LQG can affect on
the evolution of the trapped surfaces and the horizon formation during the collapse.
In this paper we introduce a spherically symmetric framework for the gravitational
collapse. We consider the dynamical space-time inside the collapsing sphere to be
homogeneous and is given by the flat Friedmann–Robertson–Walker (FRW) metric
as [1],

g�
abdxadxb D �dt2 C a2.t/dr2 CR2.t; r/d˝2; (1)

where R.t; r/ D ra.t/ is the area radius of the collapse. In terms of the SU.2/
variable of LQG we introduce the phase space variables for the interior space-time
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to be c D � Pa and p D a2 [2]. Considering a homogeneous and massless
scalar field for the collapsing matter source, the four dimensional phase space
.c; pI�; p�/ is governed by the fundamental Poisson brackets fc; pg D .8�G=3/� ,
and f�; p�g D 1. Then, the total classical Hamiltonian constraint for the system can
be written as [2]

C D Cgr C C� D �.6=�2/c2
p

jpj C 8�Gp2�=jpj3=2 D 0; (2)

where p� is a constant of motion in the classical theory. In addition, the energy
density and pressure of the collapsing matter reads

�� D p2�=2V
2 D p2�=2jpj3 D �p�: (3)

The point p D 0 characterizes a situation where the volume V D jpj3=2, of the
collapsing matter is zero and the energy density of the matter cloud diverges.
Therefore, if this point lies on any dynamical trajectory, it is an end point of that
trajectory corresponding to a curvature singularity which characterizes the collapse
end state.

Interior space-time should be matched at the boundary to a sufficient exterior
geometry such as the generalized Vaidya metric (c.f. see [1]):

gC
abdxadxb D �.1 � 2M=rv/dv2 � 2dvdrv C r2vd˝

2: (4)

The formation or avoidance of a black hole in the exterior region depends on
developing an apparent horizon in the interior space-time. Therefore, in this paper
we are mainly concerned with whether or not horizons can form during the evolution
of the interior space-time in the presence of the quantum effects (c.f. Sect. 2).

In order to study the geometry of trapped surfaces inside the star, let us
introduce the radial null geodesics satisfying g�

abdxadxb D 0, whose expansions,
�˙, measure whether the bundle of null rays normal to the collapsing sphere is
diverging .�˙ > 0/ or converging .�˙ < 0/. Let us define the useful parameter
� 	 �C�� [3]:

� D � PR2=R2 � 1=R2� =2: (5)

So that, the space-time is referred to, respectively, as trapped, untrapped and
marginally trapped if: �.t; r/ > 0; �.t; r/ < 0, and �.t; r/ D 0.

2 Quantum Geometry of Trapped Surfaces

The strategy here is to consider the interior space-time as a classical phase space,
of the FRW model, coupled to matter that is equipped with a quantum corrected
Hamiltonian constraint; the effective scenario of LQG. This constraint and its
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resulting Hamilton equations of motion, provide the full set of effective Einstein’s
equation for the collapsing model herein. In this quantization scheme, the curvature
2-form c2 is modified by SU.2/ holonomy along suitable loops; the leading order
quantum corrections are captured in the following effective Hamiltonian [4]:

Ceff D �.3=8�G�2�2o/
p

jpj sin2.�oc/C B.p/p2�=2; (6)

where B.p/ is the eigenvalues of operator 2jpj�3=2 [4]. Consider a new variable v,
given as the eigenvalue of the volume operator OV jvi D .8��=6/

3
2 K�1jvj`3Pljvi:

then, equations of motion can be obtained by using the Hamilton’s equation [4]:

Pv D fv; Ceffg D .2jvj1=3=��oK/.8��`2Pl=6/
1=2 sin.�oc/ cos.�oc/; (7)

P� D .1=16�G/f�;Ceffg D .8��`2Pl=6/
�3=2Kp� jvj�1 : (8)

where K D .2
p
2=3

p
3
p
3/. Using Ceff D 0 in Eqs. (7) and (8), the modified

Friedmann equation reads

Pa2=a2 D Pv2=.9v2/ D .8�G=3/��.1 � ��=�cr/; (9)

where �cr D p
3=.16�2�3G2„/ � 0:82�Pl. Notice that, in the effective scenario of

LQG, the energy density �� D p2�=2jpj3 holds in the range �i < �� < �cr. In the
limit ��`2�cr, the standard classical Friedmann equation, Pa2=a2 D .8�G=3/�� ,
is recovered. Equation (9) shows that, the speed of collapse j Paj starts to increase
initially and reaches its maximum when �� D 0:4�cr:

j Pajmax D p
4�G=5.0:4�cr/

1=3p� ; (10)

at the scale amax, given by amax � 1:16 acr, where acr WD .p2�=2�cr/
1=6. Hereafter,

j Paj decreases by time and vanishes as �� ! �cr; thus, the collapsing star bounces at
the minimum volume Vmin D a3cr � .1:3 
 10�33cm3/p� .

To discuss the quantum geometry of the trapped region from the perspective of
the effective scenario of LQG, it is convenient to rewrite � in Eq. (5) as [1]

�.a/ D 4�G=3��.1 � ��=�cr/� 1=.2r2ba
2/; (11)

where we have replaced Pa2=a2 here by the effective Hubble rate Eq. (9), and
�� D p2�=.2a

6/. Figure 1 shows the behavior of � against the scale factor a for
the different choices of the initial conditions for constants rb and p� . Equation of
apparent horizon on the effective geometry can be obtained by setting � D 0. The
left plot in Fig. 1 (solid curve) indicates an untrapped interior space-time without
any horizon forming, whereas two others show trapped regions; the middle and the
right plots correspond to one and two horizons forming, respectively. Notice that,
only one horizon would always form classically (dashed curves in Fig. 1).
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Fig. 1 Behaviors of �.a/ in the classical (dashed curve) and quantum (solid curve) regimes for
the value of parameter G D clight D 1, p� D 10 000, and the different values of rb
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Fig. 2 Left figure shows behavior of the scale factor, a.t/, with time in classical (dashed curve)
and semiclassical (solid curve) regimes. The right plot shows the speed of collapse, j Paj, with
respect to the scale factor a, in classical (dashed curve) and semiclassical (solid curve) regimes.
The horizontal dotted lines correspond to different values of rb; the upper, middle and the lower
lines are, respectively, the cases rb < rth, rb D rth, and rb > rth

Using Eq. (5), we can determine the speed of the collapse at which horizon can
form, where� D 0, from which we get PR2 D 1, and whence, j PajAH D 1=rb. When
the speed of collapse, j Paj, reaches the value 1=rb, apparent horizons form (Fig. 2).
In other words, in order to have the horizon formation, rb must satisfy rb � j Paj�1max.
It is convenient to introduce a radius rth as,

rth WD j Paj�1max: (12)

Therefore, as it is shown in Fig. 2, radius rth is a threshold radius for the horizon
formation. More precisely, for the case rb < rth, no horizon would form as collapse
evolves; the case rb D rth, corresponds to the formation of a dynamical horizon at
the boundary of two regions; and finally, for the case rb > rth, two horizons will
form, one inside and the other outside of the collapsing matter.
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Thermodynamical Inequivalence
of Stress-Energy and Spin Tensors

Leonardo Tinti

Abstract It is shown that different pairs of stress-energy-momentum and spin
tensors of quantum relativistic fields, which are commonly believed to be equivalent
in special relativity, are in fact inequivalent. Different tensors imply different mean
values of physical quantities like four-momentum and angular momentum density,
and, in non-equilibrium situation, entropy production and transport coefficients.
This result implies that specific stress-energy-momentum and spin tensors are
physically meaningful even in the absence of gravitational coupling and raises the
issue of finding the right pair (or the right class of pairs) of tensors. The existence
of a non-vanishing spin tensor and, especially, a non symmetric stress-energy-
momentum tensor would have major consequences in hydrodynamics, gravity and
cosmology.

1 Introduction

It is commonly known that stress-energy and spin tensors are not uniquely defined in
field theory. Distinct stress-energy tensors differing by the divergence of a rank three
tensor provide, once integrated in three-dimensional space, the same generators of
space-time translations provided that the flux of the additional rank three tensor
field vanishes at the boundary. Within quantum field theory on a flat space-time,
it is possible to generate apparently equivalent stress-energy-momentum tensors
which are, for instance, symmetric or non symmetric. Indeed, gravitational coupling
provides an unambiguous way of defining the stress-energy tensor. Using Einstein–
Hilbert action, the stress-energy-momentum tensor in Einstein field equation is
symmetric by construction [1]; but, relaxing the torsion free requirement of the
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connection (for instance [2]) the Einstein tensor is no longer symmetric, and
therefore the stress-energy tensor itself ought to be non symmetric in the most
general case.

Studying relativistic hydrodynamics we found that, even on a flat space time, it is
possible to discriminate between different microscopic (quantum) spin tensors, and,
consequently, between different quantum stress-energy-momentum tensors.

2 Transformation of Stress-Energy and Spin Tensors

Relativistic hydrodynamics can be seen as the theory describing the dynamical
behavior of the stress-energy-momentum tensor T �� ( the mean value of the
underlying quantum stress-energy tensor T �� D tr. O� OT ��/) and the spin tensor1

S�;�� (S�;�� D tr. O� OS�;��/), fulfilling the continuity equations:

@�T
�� D 0 @�S

�;�� D T �� � T �� (1)

The total four-momentumP� and angular momentum J�� read:

P� D
Z

d3x T 0� J �� D
Z

d3x
	
x�T 0� � x�T 0� C S0;��



(2)

so equations (1) ensure the conservation of energy, momentum and total angular
momentum, provided that fluxes at the spatial boundary vanish.

Applying Noether’s theorem to the action of a quantum field we get [3], from
space time translation invariance:

@� OT �� D 0 OP� D
Z

d3x OT 0� (3)

where OP is the conserved charge, the generator of space-time translations, the four
momentum operator. While from rotation and boost invariance we have:

@� OS�;�� D 0 OJ�� D
Z

d3x
h
x� OT 0� � x� OT 0� C OS0;��

i
(4)

If we take the average values of equations (3), (4) we recover the classical relations
(1) and (2).

The canonical couple from Noether’s theorem however is not the only one
fulfilling (3) and (4). Once a particular couple . OT ; OS/ is found, for instance the

1Here the comma divides the antisymmetric indices �� from the other one �, it is not a partial
derivation.
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canonical one, it is possible to generate new couples . OT 0; OS 0/ through the following
pseudo-gauge transformation:

OT 0�� D OT �� � 1

2
@˛


 O̊ ˛;�� � O̊ �;˛� � O̊ �;˛��

OS 0�;�� D OS�;�� � O̊ �;�� � @˛ OZ˛�;�� (5)

where O̊ is a rank three tensor field antisymmetric in the last two indices (often
called and henceforth referred to as superpotential) and OZ is a rank four tensor
antisymmetric in the pairs ˛ $ � and � $ �.

The new pair . OT 0; OS 0/ fulfills by construction the same continuity equations of
the starting couple . OT ; OS/, and the spatial integrals are still the Poincaré generators.2

The couples . OT ; OS/ and . OT 0; OS 0/ are regarded as equivalent3 in quantum field theory
because they give the same total energy, momentum and angular momentum, in the
operator sense.

3 Equilibrium Inequivalence

In classical physics we have a stronger requirement with respect to a quantum
theory: we would like the energy, momentum and angular momentum of any arbi-
trary macroscopic spatial region to be well defined concepts. Otherwise stated, we
would like to have objective values for energy, momentum and angular momentum
densities.

The change that classical quantities (i.e. average values of operators) undergo
as a reflection of a variation of quantum tensors crucially depends on the physical
state of the system O�. The freedom of varying the stress-energy and spin tensors
at a quantum level depends on the symmetry features of the physical state: a
highly symmetric state allows more changes of quantum tensors than a state with
little symmetry does. For instance, the familiar grand-canonical equilibrium density
matrix O� D 1=Z expŒ� OH=T C � OQ=T � enjoys space-time translation invariance,
the average value of a gradient is then vanishing. Therefore the average value of the
first equation in (5) simply is T 0�� D T �� , and in general [5] any pair of quantum
tensors will yield the same energy, momentum and angular momentum density.

The situation is remarkably different for a thermodynamical system having a
macroscopic non-vanishing total angular momentum. Having lost space translation
invariance, the mean values of gradients are not vanishing any longer. We performed

2Assuming suitable boundary conditions for O� and OZ.
3It is usually taken, among all possible stress-energy-momentum tensors, the most convenient one,
based on computational considerations. For instance, the Spin 1/2 case in [4].
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an explicit calculation for the simplest theory having a non vanishing canonical
spin tensor, namely the free Dirac field. We compared the results for the canonical
pair of tensors and the Belinfante symmetrized couple.4 We found [5] that the
linear and angular momentum density calculated from the two pairs differ, and
the difference persist in the non-relativistic limit. From an experimental viewpoint,
in principle, we could decide if a pair of tensor is wrong by measuring with
sufficient accuracy the angular momentum density of a rotating system at full
thermodynamical equilibrium.

4 Non-equilibrium Inequivalence

The inequivalence extends to non-equilibrium thermodynamical quantities. The use
of different stress-energy-momentum tensors, related by a pseudo-gauge transfor-
mation (5), to calculate transport coefficients with the relativistic Kubo formula
leads, in general, to different results.

A suitable formalism to calculate transport coefficients for relativistic quantum
fields without going through kinetic theory was developed by Zubarev [6], extending
to the relativistic domain a formalism already introduced by Kubo. We extended the
framework of the non-equilibrium density operator to the case of a non-vanishing
spin tensor [7]. We found that in general the non-equilibrium density operator is not
invariant under a pseudo-gauge transformation, therefore transport coefficients are
also modified. In particular we focused on the modification of the Kubo formula for
shear viscosity:

�0 � � D � lim
k!0

Im
Z

d3x eikx
1h
h O�012.	; x/; O�012.0; 0/

i
i0 C

� 2 lim
"!0

lim
k!0

Im
Z 0

�1
dt e"t

Z
d3x eikx

1h
h O�012.x/; OT 12S .0; 0/

i
i0 (6)

where O���� D 1=2. O̊ �;�� C O̊ �;��/ and OT ��S D 1=2. OT �� C OT ��/.
An important point to make is that the found dependence of the transport

coefficients is indeed physically meaningful. The variation of some coefficient is not
compensated by a corresponding variation of another coefficient so as to eventually
leave measurable quantities unchanged. This has been proved, also in [7], where it
was shown that total entropy itself undergoes a variation under a transformation of
the stress-energy and spin tensor.

4This is the transformation using the spin tensor itself as the superpotential OS D O̊ and OZ D 0.
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Wormholes and Off-Diagonal Solutions
in f(R,T), Einstein and Finsler Gravity Theories

Sergiu I. Vacaru

Abstract The aims of this work are (1) to sketch a proof that there are such
parameterizations of the local frame and canonical connection structures when the
gravitational field equations in f(R,T)-modified gravity, MG, can be integrated in
generic off-diagonal forms with metrics depending on all spacetime coordinates and
(2) to provide some examples of exact solutions.

1 Nonholonomic Deformations in Modified Gravity Theories

We study gravity theories formulated on a spacetime manifold V; dimV D n � 4

(for Finsler models, on tangent bundle TV) endowed with metric, g, and compatible
linear connection D, structures, Dg D 0, see details in Refs. [1–4]. Our goal is to
prove that there are such local frame and canonical connection structures when the
gravitational field equations in f .R; T /-modified gravity, MG, see reviews [5–8],
can be integrated in generic off-diagonal forms with metrics depending on all
spacetime coordinates. We provide explicit examples when generalized solutions
in MG can be equivalently modelled as effective Einstein spaces and determine
deformations of wormhole spacetimes in general relativity (GR).

1.1 Geometric Preliminaries

We consider a conventional horizontal (h) and vertical (v) splitting of the tangent
space TV; when a non-integrable (equivalently, nonholonomic, or anholonomic)
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Corpus R, UAIC, office 323; Iaşi, 700057, Romania
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distribution N W TV D hV ˚ vV (for Finsler theories, N W TTV D hTV ˚ vTV).
Locally, such a h–v-splitting is determined by a set of coefficients N D fNa

i .x; y/g
and coordinates parameterized: u D .x; y/, u� D .xi ; ya/; where the h–(v-)indices
run i; j; : : : D 1; 2; : : : ; n (a; b; : : : D nC1; : : : ; nCn). There are N-adapted frames
e� D .ei ; ea/, e� D .ei ; ea/;

ei D @=@xi � Na
i .u/@=@y

a; ea D @a D @=@ya; ei D dxi ; ea D dya C Na
i .u/dxi ;

(1)

which satisfy the conditions Œe˛; eˇ� D e˛eˇ � eˇe˛ D W
�

˛ˇe� , with anholonomy

coefficientsW b
ia D @aN

b
i ;W

a
ji D ˝a

ij D ej
�
Na
i

� � ei .N a
j /.

On a nonholonomic manifold .V;N/, and/or nonholonomic bundle .TV;N/,
we can represent any data .g;D/ in N-adapted form (preserving under parallel
transport a chosen h–v-splitting) parameterized as: 1) a distinguished metric,
d-metric,

g D g˛.u/e˛ ˝ eˇ D gi .x/dxi ˝ dxi C ga.x; y/ea ˝ ea: (2)

and 2) a distinguished connection, d-connection, D D .hD; vD/.
Any d-connection is characterized by d-torsion, nonmetricity, and d-curvature

structures: T .X;Y/ WD DXY�DYX�ŒX;Y�;Q.X/ WD DXg;R.X;Y/ WD DXDY �
DYDX � DŒX;Y�, where X;Y 2 TV (or 2 TTV, in Finsler like theories).

There are two “preferred” linear connections which can be defined for the same
data .g;N/: 1) the canonical d-connection OD uniquely determined by the conditions
that it is metric compatible, ODg D 0; and with zero h-torsion, h OT D f OT ijkg D 0;

and zero v-torsion, v OT D f OT abcg D 0; 2) the Levi–Civita (LC) connection, r, when
T D 0 and Q D 0, if D ! r. Such linear connections are related via a canonical
distortion relation OD D r C OZ. We can work equivalently on V and TV using both
linear connections. For any data .g;N; OD/, we can define and compute in standard
form, respectively, the Riemann, OR D f OR˛

ˇ�ıg; and the Ricci, ORic D f OR˛ˇ WD
OR�

˛ˇ�g d-tensors; for OR WD g˛ˇ OR˛ˇ , we can introduce OE˛ˇ WD OR˛ˇ � 1
2
g˛ˇ OR.

1.2 Nonholonomically Modified Gravity

We study theories with action

S D 1

16�

Z
ıunCn

q
jg˛ˇjŒf . OR; T /C mL�; (3)

generalizing the so-called modified f .R; T / gravity [5–7] to the case of
d-connection OD, which can be considered for (pseudo) Riemannian spaces (as an
“auxiliary” one) [1], for Hořava–Lifshits type modifications [3, 9] and on (non)
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commutative Finsler spaces [2, 4, 8]. In (3), T is the trace of the stress-energy
momentum tensor constructed for the matter fields Lagrangian mL. It is possible
to elaborate a N-adapted variational formalism for a large class of models with
perfect fluid matter with mL D �p, for pressure p, and assuming that f . OR; T / D
1f . OR/ C 2f .T /, where 1F. OR/ WD @ 1f . OR/=@ OR and 2F.T / WD @ 2f .T /=@T .
We obtain a model of MG with effective Einstein equations, OE˛ˇ D �ˇı , for source
�ˇı D ef � G Tˇı C ef Tˇı , where ef � D Œ1 C 2F=8��= 1F is the effective
polarization of cosmological constantG, Tˇı is the usual energy-momentum tensor
for matter fields and the f -modification of the energy-momentum tensor results in
ef Tˇı D Œ 1

2
. 1f � 1F ORC 2p 2F C 2f /gˇı � .gˇı OD˛

OD˛ � ODˇ
ODı/

1F �= 1F .
The effective Einstein equations decouple for parameterizations of metrics (2)

when the coefficients Na
i .u/ in (1) are such way prescribed that the corresponding

nonholonomic constraints result in OD with OR D const and � ˇ

ı D .� C �/‹ˇı for
an effective cosmological constant � for modified gravity and � for a possible
cosmological constant in GR. This results in ODı

1Fj�D�C� D 0, see details in [1–3].

2 Ellipsoid, Solitonic and Toroid Deformations of Wormholes

The general stationary ansatz for off-diagonal solutions is

ds2 D e
Q .Q�;�/.d Q�2 C d#2/C Œ@'$. Q�; #; '/�2

�C �

 

1C "
@'Œ�4. Q�; #; '/$. Q�; #; '/�

@'$. Q�; #; '/

!

r2. Q�/ sin2 �. Q�; #/.ı'/2 � e2$.
Q�;#;'/�

j�C �j Œ1C "�4. Q�; #; '/�e2B.Q�/.ıt/2; (4)

ı' D d' C @Q� Œ
� QA. Q�; #; '/C "A. Q�; #; '/�d Q� C @# Œ

� QA. Q�; #; '/C "A. Q�; #; '/�d#;
ıt D dt C @Q� Œ

�n. Q�; #/C "@in. Q�; #/� d Q� C @# Œ
�n. Q�; #/C "@in. Q�; #/� d#;

where Q� D R
dr=

pj1 � b.r/=r j for b.r/; B. Q�/ determined by a wormhole metric
in GR. For 4-d theories, we consider xi D . Q�; �/ and ya D .'; t/.

2.1 Rotoid-Configurations

with a small parameter (eccentricity) " are “extracted” from (4) if we take for the

f -deformations �4 D �4.r; '/ WD 2M.r/

r



1 � 2M.r/

r

��1
� sin.!0' C '0/, for r

considered as a function r. Q�/. Let us define

h3 D Q�3. Q�; #; '/Œ1C "�3. Q�; #; '/� 0h3. Q�; #/; h4 D Q�4. Q�; #; '/Œ1C "�4.
Q�; '/� 0h4. Q�/; for
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0h3 D r2. Q�/ sin2 �. Q�; #/; 0h4 D q. Q�/; Q�3 D Œ@'$. Q�; #; '/�2
�C �

; Q�4 D e2$.
Q�;#;'/�

j.�C �/jq. Q�/ e
2B.Q�/;

(5)

where e2B.Q�/ ! q. Q�/ if Q� ! �: For a prescribed Q$. Q�; #; '/; we compute

Q�3 D �3. Q�; #; '/ D @'Œ�4 Q$�=@' Q$ , wi D @i . r.Q�/ sin �.Q�;#/
p

jq.Q�/j@'Œ�4$�/
e$ r.Q�/ sin �.Q�;#/

p
jq.Q�/j@'$

D
@iA. Q�; #; '/; for xi D . Q�; #/: We model an ellipsoid configuration with rC. Q�C/ '

2 M. Q�C/
1C"� sin.!0'C'0/ , for constants �; !0; '0 and eccentricity ": We obtain

ds2 D e
Q .Q�;�/.d Q�2 C d#2/C Œ@' Q$�2

�C �
.1C "

@'Œ�4 Q$�
@' Q$ / 0h3Œd' C @Q� .

� QAC "A/d Q� C @# .
� QAC

"A/d#�2 � e2 Q$

j�C �j Œ1C "�4.
Q�; '/�e2B.Q�/Œdt C @Q� .

�nC "n/ d Q� C @# .
�nC "n/ d#�2:

(6)

If the generating functions Q$ and effective sources are such way chosen that the
polarization functions (5) can be approximated Q�a ' 1 and � QA and �n are “almost
constant”, the metric (6) mimics small rotoid wormhole like configurations.

2.2 Solitonic Waves, Wormholes and Black Ellipsoids

An interesting class of off-diagonal solutions depending on all spacetime coordi-
nates can be constructed by designing a configuration when a 1-solitonic wave
preserves an ellipsoidal wormhole configuration. Such a spacetime metric can be
written in the form

ds2 D e
Q .xi /.d Q�2 C d#2/C !2

�
Q�3.1C "

@'Œ�4 Q$�
@' Q$ / 0h3.ı'/

2 � Q�4Œ1C "�4.
Q�; '/� 0h4.ıt/2

�
;

(7)

for ı' D d' C @i .
� QA C "A/dxi ; ıt D dt C 1ni . Q�; #/dxi , xi D . Q�; #/ and ya D

.'; t/: The factor !. Q�; t/ D 4 arctan em�.Q��vt/Cm0 , where �2 D .1 � v2/�1 and
constants m;m0; v; defines a 1-soliton for the sine-Gordon equation, @

2!
@t2

� @2!

@Q�2 C
sin! D 0.

For ! D 1; the metrics (7) are of type (6). A nontrivial value ! depends on the
time like coordinate t and has to be constrained to certain conditions which do not
change the Ricci d-tensor, which can be written for 1n2 D 0 and 1n1 D const in the
form @!

@Q� � 1n1
@!
@t

D 0. A gravitational solitonic wave propagates self-consistently

in a rotoid wormhole background with 1n1 D v which solve both the sine-Gordon
and constraint equations. Re-defining the system of coordinates with x1 D Q� and
x2 D �; we can transform any 1ni . Q�; �/ into necessary 1n1 D v and 1n2 D 0:
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2.3 Ringed Wormholes

We can generate a rotoid wormhole plus a torus,

ds2 D e
Q .xi /.d Q�2 C d#2/C Q�3.1C "

@'Œ�4 Q$�
@' Q$ / 0h3.ı'/

2 � f Q�4Œ1C "�4.
Q�; '/� 0h4.ıt/2;

for ı' D d' C @i .
� QA C "A/dxi ; ıt D dt C 1ni . Q�; #/dxi , when xi D . Q�; #/ and

ya D .'; t/;where the function f . Q�; #; '/ can be rewritten equivalently in Cartesian

coordinates, f . Qx; Qy; Qz/ D


R0 �p Qx2 C Qy2

�2CQz2�a0, for a0 < a;R0 < r0. We get

a ring around the wormhole throat (we argue that we obtain well-defined wormholes
in the limit " ! 0 and for corresponding approximations Q�a ' 1 and � QA and �n

to be almost constant). The ring configuration is stated by the condition f D 0:

In above formulas, R0 is the distance from the center of the tube to the center of
the torus/ring and a0 is the radius of the tube. If the wormhole objects exist, the
variants ringed by a torus may be stable for certain nonholonomic geometry and
exotic matter configurations.
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Conformally Reducible Perfect Fluids
with 2-Spaces of Constant Curvature

Norbert Van den Bergh

Abstract I discuss conformally reducible but non-conformally flat space-times,
which are solutions of the Einstein field equations with a perfect fluid source and
for which the factor spaces are 2-spaces of constant curvature. These space-times
are necessarily of Petrov type D. When the fluid velocity is aligned with the plane
of principal null directions, they are locally rotationally symmetric of Stewart–Ellis
class II and are determined up to two first order partial differential equations. When
the fluid is non-aligned, the general solution can be given in terms of elementary
functions.

1 Introduction

A space-time is called reducible if it admits a rank-2 symmetric, covariantly
constant tensor field. It is then the product of two 2-dimensional manifolds, the
line element being the sum of the line elements of the factor manifolds. The
Petrov type is necessarily D or O [2, 3]. These space-times are likely to be of little
interest, as their Ricci tensor is of Segre type Œ.11/; .1; 1/� (or its degeneracies)
and, with the exception of the conformally flat Bertotti–Robinson solution of the
Einstein–Maxwell equations [1, 4], no physical interpretation is known. However,
among the conformally reducible perfect fluids there are numerous physically
relevant examples, for example all spherically symmetric space-times. As even for
this simple sub-family the general solution for a perfect fluid is not known, it appears
sensible to impose some extra restriction in order to obtain new classes of exact
solutions. In [2] a classification was made of the perfect fluid metrics, in which
the fluid’s 4-velocity was aligned with the plane of real principal null directions
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of the Weyl tensor. It was shown that, when the factor manifolds have constant
curvature, perfect fluid solutions are necessarily conformally flat or warped. This
result suggested a closer look at the non-aligned conformally 2C2-reducible perfect
fluids for which both 2-spaces have constant curvature. Remarkably the non-aligned
case, which at first sight looks vastly more complicated than the aligned case, can be
completely solved in terms of elementary functions (see [5]). During this analysis
some side-results on the aligned case were obtained, which I report here and which
can shed a new light on the results obtained in [2]. Notations and sign conventions
are as in [3].

2 Aligned Perfect Fluid

We introduce a NP tetrad e1 D ı; e2 D ı; e3 D 
; e4 D D for the reducible metric
ds2 D 2.P�2d�d� � Q�2dudv/. Here 2P�2d�d� and 2Q�2dudv are metrics of
2-spaces of constant curvature, with signatures 2 and 0 respectively:P D 1C2k��,
Q D 1C 2Kuv (k;K constants). Defining the dual basis by

!1 D P�1d�;!2 D P�1d�;!3 D Q�1du;!4 D Q�1dv;

the non-vanishing spin coefficients are 
, � , ˛ and ˇ D �˛, with ˛ D 1
2
P�1ıP D

k�, 
 D � 1
2
Q�1DQ D �Ku, � D 1

2
Q�1
Q D Kv being solutions of the NP

equations

D� �

 C 4
� D 2K; (1)

ı˛ C ı˛ � 4˛˛ D 2k: (2)

The non-vanishing curvature components are

�2 D � 1

12
R D 2

3
.K � k/; ˚11 D K C k:

Using the transformation formulae for the components of the Ricci tensor under a
conformal transformation one can express that ˝�2ds2, with ˝ D ˝.u; v; �; �/, is
the metric of a perfect fluid with energy-momentum tensor Tab D .w C p/uaub C
pgab (u2 D �1). This results in an over-determined system of partial differential
equations for˝ .

The integrability conditions for this system are equivalent with the Bianchi
equations for the perfect fluid metric ˝�2ds2. Assuming that �2 D 2

3
.K � k/ ¤ 0

(hence excluding the conformally flat case), one can eliminate the derivatives of
na D .w C p/1=2ua from the latter and obtain the following key equations:

n4ı˝ C n1D˝ D 0 (3)

n1.n4
˝ � n3D˝/ D 0: (4)
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A distinction should now be made between the aligned and non-aligned situation. In
the following we investigate the aligned case only. One has then n1 D n2 D 0 and
(3) immediately implies ı˝ D 0 and hence ˝ D ˝.u; v/, in accordance with the
results of [2]. From the Bianchi equations one furthermore infers that ın3 D ın4 D
0 and hence also S 	 w C p D 2n3n4 D S.u; v/. The resulting perfect fluid space-
times are then (pseudo-)spherically symmetric or plane symmetric. Substitution of
ı˝ D 0 in the Bianchi equations leads to an expression for �:

� D 4˝2.2k CK/� 3

4
S C 6D˝
˝: (5)

Parametrizing the velocity components by means of a boost factorA, n3 D A
p
S=2,

n4 D A�1pS=2, and using (5), the Bianchi equations reduce to the following pair
of differential equations for A,

Q2
.Q�2SA�2˝�1/ �DŒS˝�1 � 8.k �K/˝� D 0;

Q2D.Q�2SA2˝�1/ �
ŒS˝�1 � 8.k �K/˝� D 0: (6)

The integrability conditions for the latter eventually lead to a wave equation,

.Q2.Q�2SA�2˝�1/;u/;u C .Q2.Q�2SA�2˝�1/;v/;v D 0; (7)

with general solution given by S D QA2˝.S1 C S2/ and with S1 and S2 functions
of u C v and u � v respectively. For each choice of S1; S2 one can solve (6) for
A, after which ˝ can be found from the Bianchi equations. The resulting perfect
fluids form a highly restricted sub-class of the (pseudo-)spherically symmetric or
plane symmetric ones, as can be seen from their kinematical quantities, � �
.k �K/.A�1
 C AD/˝ , Pu � .A�1
 � AD/.S � 2.k � K/˝2/ and � D
1p
2
.4˝2.k � K/ C 3S/.A�1
 C AD/˝ . The vorticity is zero as a consequence

of the symmetry. Non-conformally flat (k � K ¤ 0) and shear-free members of
the aligned family therefore have zero expansion, in contrast to the general aligned
case, for which large classes of shear-free and expanding spherically symmetric
perfect fluids are known to exist[3]. While it is not possible to write down a general
solution for the system (6), special solutions can be constructed by making extra
assumptions. If, for example, the fluid velocity is taken parallel to the gradient of˝ ,

.A�1
 �AD/˝ D 0; (8)

one obtains a sub-family of the general non-aligned solution.1 The acceleration
is then zero, as acting with the D and 
 operators on (8) implies that .A�1
 �
AD/S D 0 as well and

1Note that, as a consequence of (3,4) the non-aligned solutions have fewer degrees of freedom than
the aligned ones.
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A2.D˝/2 D S

4

k CK

k �K (9)

(showing that kCK ¤ 0). It follows that S D S.˝/, which is found by integrating

the integrability condition for (6): S D 2.K2 � k2/K�1.˝2 C c˝2 k�K
kCK /, or, if

K D 0, S D .�8k log˝ C c/˝2, with c a constant of integration. By (5, 9) and
S D S.˝/ all these solutions admit a barotropic equation of state. Integrating the

D2˝ Bianchi equation one furthermore finds D˝ D ˝
k�K
kCK Q�1f , with Df D 0

i.e. f D f .u/. Together with .A�1
 � AD/˝ D 0 one obtains from the Œ
; D�
commutator applied to ˝ ,

˝
2K
kCK D 1

k CK
.2Kf vQ�1 � 1

2
f;u/: (10)

When K ¤ 0 the function f follows from integrating the ı2˝ Bianchi equations,
leading to an ODE, 2ff 00 � f 02 � 4c.k CK/2 D 0, the general solution of which
is given by

f .u/ D 1

c2
.c1u C c2/

2 C 2
c

c2
.k CK/2u2; (11)

with c1; c2 constants of integration. Using the isometries of the .u; v/ factor space
one can put c1 D 0 and assign an arbitrary (non-zero) value to c2. Choosing
c2 D k CK it follows that ˝ is given by

˝
2K
kCK D Q�1.Kv � 2cu/: (12)

Notice also that a � -law equation of state is only possible when c D 0, implying
p D ˝2.K � k/2=K and w D ˝2.3k C K/.K � k//=K . In that case (9) and the
dominant energy condition requireK < 0, which forces the pressure to be negative.

When K D 0 one has Œ
; D�˝ D 0 and the function f is restricted to
be linear in u. ˝ can now be obtained by integrating the expressions for D˝
and 
˝: using the translational degree of freedom in u and v to eliminate
two constants of integration, one finds (modulo a globally constant scale factor)
˝ D exp.�2kuv/, with the boost factor, energy density and pressure given by
A2 D v=u, w D 8k˝2.1C 3kuv/, p D �8k˝2.1C kuv/. The latter solutions are
restricted to the interior of the 2D-light cone uv > 0, independently of the sign of k.
For k > 0 one obtains the metric (155) of [2], which satisfies the dominant energy
condition in the 2D-light cone, but which again has negative pressure. For k < 0 on
the contrary one obtains a solution with positive energy density and pressure in the
region 1=3 < jkjuv < 1.

Further examples of aligned perfect fluid solutions can be found in [2].
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Abstract We report on head-on collisions of charged black holes. We focus on
non-spinning black holes, starting from rest and with the same charge to mass ratio
Q=M . The addition of charge to black holes introduces a new interesting channel of
radiation and dynamics, most of which seem to be captured by Newtonian dynam-
ics and flat-space intuition. The amount of gravitational-wave energy generated
throughout the collision decreases by about three orders of magnitude as the charge-
to-mass ratio Q=M is increased from 0 to 0.98. This decrease is a consequence of
the smaller accelerations present for larger values of the charge.

1 Introduction

We here summarize our study of non-linear dynamics of binary systems of charged
black holes [1], building on previous numerical evolutions of the Einstein–Maxwell
system [2–5]. For reasons of simplicity, we focus in this study on binary systems
for which initial data can be constructed by purely analytic means [6]: head-on
collisions, starting from rest, of non-spinning black holes with equal charge-to-
mass ratio. This implies in particular that the black holes carry a charge of the
same sign so that the electromagnetic force will always be repulsive. We will extract
both gravitational and electromagnetic radiation and monitor their behaviour as the
charge-to-mass-ratio parameter of the system is varied.

2 Numerical Setup

Following the approach outlined in [4, 7] we consider an enlarged system of the
form

R�� � R

2
g�� D 8�T�� ;

r� .F
�� C g���/ D ��n�� ;

r� .?F
�� C g��˚/ D ��n�˚ ;

(1)

where ?F �� denotes the Hodge dual of the Maxwell–Faraday tensor F�� , � is a
constant and n� the four-velocity of the Eulerian observer. We recover the standard
Einstein–Maxwell system of equations when � D 0 D ˚ . With the scalar field
� and pseudo-scalar ˚ introduced in this way, the natural evolution of this system
drives � and ˚ to zero (for positive �), thus ensuring the magnetic and electric
constraints are controlled [2, 7]. The electromagnetic stress-energy tensor takes the
usual form.
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We employ a Cauchy approach so we further introduce a 3C 1 decomposition of
all dynamical quantities [6]; see [1] for details. We focus on black-hole binaries with
equal charge and mass colliding from rest. For these configurations, it is possible to
construct initial data in an analytical fashion [6].

To extract physical information, we calculate the Newman–Penrose scalars �4,
˚1 and ˚2 [8]. We refer the interested reader to [9] for more details about the
numerical implementation and [10] for a review of the formalism.

At a given extraction radius Rex, we perform a multipolar decomposition by
projecting�4,˚1 and˚2 onto spherical harmonics of spin weight s D �2, 0 and �1
respectively. In terms of these multipoles, the radiated flux and energy is [8]

FGW D dEGW

dt
D lim

r!1
r2

16�

X

l;m

ˇ
ˇ
ˇ̌
Z t

�1
dt 0 lm.t 0/

ˇ
ˇ
ˇ̌
2

; (2)

FEM D dEEM

dt
D lim

r!1
r2

4�

X

l;m

ˇ
ˇ�lm2 .t/

ˇ
ˇ2 : (3)

3 Numerical Results

The numerical integration of the Einstein–Maxwell equations has been performed
using fourth-order spatial discretization with the LEAN code, originally presented
in [9] for vacuum spacetimes. For further details see [1, 9].

All binaries start from rest with a coordinate distance d=M ' 16 while the
charge-to-mass ratio has been varied from Q=M D 0 to Q=M D 0:98.

The dynamical behaviour of all our simulations is qualitatively well represented
by the waveforms shown in Fig. 1 normalized with respect to B D 1 � Q2=M2.
The panels show the real part of the gravitational (left) and electromagnetic (right)
quadrupole extracted at Rex D 100 M as a function of time with 
t D 0 defined as
the time of the global maximum of the waveform (approximately when formation
of a common apparent horizon occurs).

The electromagnetic and gravitational wave fluxes are given by Eqs. (2) and (3).
We observe that the energy carried by gravitational radiation decreases with
increasing Q=M , as the acceleration becomes smaller and quadrupole emission is
suppressed. This is further illustrated in Fig. 2, which illustrates the radiated energy
carried in the gravitational quadrupole and the electromagnetic quadrupole as well
as their ratio as functions of the charge-to-mass ratio Q=M .

In contrast to the monotonically decreasing gravitational-wave energy, the elec-
tromagnetic signal reaches a local maximum aroundQ=M D 0:6. The existence of
such a maximum is expected as the electromagnetic radiation necessarily vanishes
for Q=M D 0 (no charge) and Q=M D 1 (no acceleration) but takes on non-zero
values in the regime in between.
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–

–

–

– – –––

–

–

Fig. 1 Real part of the .2; 0/mode of�4 normalized to B 
 1�Q2=M2 (left) and ˚2 normalized
toQB (right) extracted atRex D 100M , for simulations with initial (coordinate) distance d=M '
16 and Q=M D 0; 0:5; 0:9

D

x

x

x

–

––

Fig. 2 Radiated fluxes for simulations with Q=M D 0:5, 0:9 and 0 (left) and energy radiated in
the gravitational and electromagnetic quadrupole as well as the ratio of the two as a function of
Q=M (right)

4 Final Remarks

Our present study paves the way for various future extensions. A non-zero boost,
for instance, will allow us to study both binary black hole systems that will coalesce
into a Kerr–Newman black hole and the impact of electric charge on the dynamics
of wave emission (electromagnetic and gravitational) in high energy collisions, of
interest in TeV gravity scenarios (see [11] for a review). Another extension presently
under study is the case of oppositely charged black holes.
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Velocity-of-Light Surfaces in Kerr and Extreme
Kerr

Jan E. Åman and Helgi Freyr Rúnarsson

Abstract The extreme limit of the Kerr solution has recently attracted much
attention, see (Compère, arXiv:1203.3561 [hep-th]) and references therein. We have
investigated hypersurfaces called velocity-of-light surfaces for extreme and near
extreme Kerr.

1 Killing Vector Fields in Kerr

The Kerr solution possesses two linearly independent Killing vector fields, namely
@t and @� in Boyer–Lindquist coordinates. Constant linear combinations of these are
also Killing vectors. The linear combination � D @t C a

2mrC

@� is known to be null
at the outer horizon r D rC. The norm of � is

k�k2 D
�
�
�
�@t C a

2mrC
@�

�
�
�
�

2

D gttC a

mrC
gt�C

�
a

2mrC

�2
g�� D � r � rC

4m2r2C�2
f .r; �/;

where rC D mC p
m2 � a2, r� D m � p

m2 � a2, �2 D r2 C a2 cos2 � ,
f .r; �/ D 4m2r2C .r � r�/� a2 sin2 �

�
4m2 .r � rC/C .r � r�/

�
�2 C 2mr

��
.

However, an interesting fact is that there are also solutions to f .r; �/ D 0 which
correspond to other hypersurfaces where the Killing vector field � becomes null;
this hypersurface is called the velocity-of-light surface [1].
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Fig. 1 Polar and orthogonal plots for extreme Kerr, a D m. In our plots we take m D 1. The
blue line(s) represent f .r; �/ D 0. The green line is the outer limit of the ergosphere re D m Cp
m2 � a2 cos2 � . In the orthogonal plot also the solution where r < 0 is shown

The general solution of f .r; �/ D 0 gives three roots for r , one of them for
r < 0 [2]. The solutions for r are somewhat long and complicated, involving third
degree roots, but the solution for � can easily be presented [3]:

� D arcsin

s
h �p

h2 � g

2a2

;

where h D .r2 C a2/2 � 4m2.a2 C 2rC.r �m//; g D 16m2
2.2mrC � a2/;

 D r2 C a2 � 2mr:

2 Extreme Kerr, a D m

For extreme Kerr a D m, f .r; �/ factorizes into:

f .r; �/ D m2.r�m/.m sin �2C.rCm/ sin ��2m/.m sin �2�.rCm/ sin ��2m/:

Thus the Killing vector � is also null when

r=m D 2 � sin � � sin2 �

sin �
; and r=m D �2 � sin � C sin2 �

sin �
:
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Fig. 2 Polar plot for Kerr with a=m D 999999=1000000. The null hypersurfaces are close to the
a D m line, except near the horizons

Fig. 3 Polar and orthogonal plots for Kerr with a=m D 999=1000. The red lines represent
the outer and inner horizons, rC and r�. The inner velocity-of-light hypersurface (blue) always
touches the inner horizon at the north pole

Fig. 4 Polar and orthogonal plots for Kerr with a=m D 99=100
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Fig. 5 Polar and orthogonal plots where the hypersurface touches the ergosphere at the equator,

a=m D
q
2.

p
2� 1/ � 0:91018

Fig. 6 Polar plot for Kerr with a=m D 1 and a=m D 1� 10�˛ with ˛ D 6; 5; 4; 3; and 2

The latter solution is always negative. The former hits the singularity at � D �=2,
r D 0 and is defined for all r � 0 and crosses the horizon, r D m, at sin � Dp
3 � 1 (� � 47ı) (Figs. 1–6).

3 Plots

Acknowledgements We thank Ingemar Bengtsson for discussions.
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The Spin-2 Equation on Minkowski Background

Florian Beyer, George Doulis, Jörg Frauendiener, and Ben Whale

Abstract The linearised general conformal field equations in their first and second
order form are used to study the behaviour of the spin-2 zero-rest-mass equation on
Minkowski background in the vicinity of space-like infinity.

1 Introduction

In [5], a completely novel finite representation of space-like infinity was proposed.
In this setting, space-like infinity i 0 “blows up” to a cylinder I and, consequently,
asymptotically flat initial data become regular near i 0 and can be prescribed on
generic space-like Cauchy surfaces, i.e., the use of hyperboloidal hypersurfaces may
ultimately be unnecessary [8]. It turns out that, in this representation, Friedrich’s
general conformal field equations (GCFE) acquire a very simple form and the
cylinder becomes a total characteristic of the system in the sense that there are no
radial derivatives in the equations restricted to I . In addition, the coordinate location
of null infinity is now known beforehand and it does not have to be determined
during the evolution. All these features, namely the regularity of the initial data,
the a-priori fixed finite coordinate location of null infinity, the fact that in the
Minkowski case the entire physical space-time can be covered by one computational
domain, and the extremely simple form of the evolution equations (especially on
the cylinder), make the general conformal field equations suitable for numerical
manipulations. However, as expected, the intrinsic system of evolution equations
on the cylinder degenerates at the interface of the cylinder I with null infinity. In
general, the solutions generate logarithmic singularities at these regions which are
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expected to travel along null infinity and spoil its smoothness, making it impossible
to read-off the gravitational radiation at I C. The way out of this problem is to
prescribe initial data that respect the regularity conditions proposed in [5].

In this short contribution, we use Friedrich’s general conformal field equations
to evolve generic asymptotically flat initial data near space-like infinity. We begin
our endeavour from the simplest possible case: linearised gravitational fields on a
Minkowski background. Although simple, this “toy model” encapsulates most of
the crucial characteristics of the full non-linear system described above. The initial
data are evolved as close as possible to the ill-behaved regions I˙ and study the
behaviour of the numerical solutions there. This procedure is carried out twice
by using the linearised general conformal field equations in their first and second
order form. Analytically the two approaches are equivalent, but their numerical
implementation could very well differ. The latter statement is partly based on the
claim made in [6] that writing the equations of general relativity as a system
of second order PDE’s is more advantageous numerically than writing them as
a system of first order PDE’s. According to [6], numerical simulations based on
second order PDE’s have better numerical accuracy and avoid the appearance of
spurious waves travelling against the characteristic curves.

2 The Spin-2 Equations

We use the spin-2 zero-rest-mass equation for a totally symmetric spinor field
�ABCD in the 2-spinor formulation, i.e. rA0

A�ABCD D 0, to model linearised
gravitational fields on a Minkowski background. Taking the components of the
above expression, decomposing the five independent components �k of the spin-2
into harmonic modes .l;m/, introducing coordinates .t; r; �; '/ and an adapted
spin-frame on the cylinder, the above spin-2 equation splits into the eight coupled
equations (for details see [1])

.1 � t�0/@t�k C �@r�k � .3�0 � .5 � k/�/�k D �ck �k�1; k D 1 W 4;
.1C t�0/@t�k � �@r�k C .3�0 C .k C 1/�/�k D ��ck �kC1; k D 0 W 3;

(1)

where �.r/ D r �.r/, �.0/ D 1, ck D p
l.l C 1/� .2 � k/.1 � k/, and 0 denotes

differentiation with respect to r . Equations (1), when appropriately combined, split
into three constraint equations and a symmetric hyperbolic (in the domain jt j < ��1)
system of five evolution equations, see [1].

By differentiating the above spin-2 equation, one can derive (see [4]) the second
order spin-2 wave equation ��ABCD D 0. Decomposing again the components of
the spin-2 field into harmonic modes and introducing coordinates .t; r; �; '/, the
spin-2 wave equation splits into a hyperbolic (in the domain jt j < ��1) system of
five wave equations
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.1 � t2�02/@t t�k � �2@rr�k C 2 t��0@tr�k C 2 r��0@r�k

C 2 Œ.2 � k/�0 � t.�02 C r �0�0 � 1

2
� �00/�@t�k

C Œ.2 � k/.��00 C .1 � k/�02/C k.5 � k/r2�02��k

D ��2 c2k�k � r ��0..4 � k/ck �kC1 C k ck�1 �k�1/:
(2)

Notice that the domain of hyperbolicity for both sets of equations is the same,
namely jt j < ��1. Thus, as expected, in both approaches the equations degenerate at
.t; r/ D .˙1; 0/, i.e. at the regions I˙ where null like infinity I ˙ meets the
cylinder.

In order to compute the same solution as with the first order system (1) we have
to use all the available information from the first-order system to determine initial
and boundary conditions for the second order system (2). In [4] it was shown that
the two formulations are equivalent provided the initial and boundary data for the
second order system are determined from the first order system.

3 Numerical Results

The PDE systems (1), (2) are discretised according to the method of lines. An
equidistant grid on the computational domain D D Œ0; 1� is used to discretise the
spatial coordinate r . The spatial derivatives are approximated by summation by parts
(SBP) finite difference operators [7].

The boundary conditions are implemented with a very simple, but highly
efficient, simultaneous approximation term (SAT) penalty method [3]. The temporal
integration is based on a standard explicit fourth order Runge–Kutta scheme. The
code has been written form scratch in Python.

The comparison of the numerical properties of the two approaches is based on
their ability to reproduce a specific family of exact solutions of the spin-2 equation
developed in [1]. As was shown in [1, 4], the critical sets IC, located at t D 1,
can be reached in both approaches without loss of the expected 4th order accuracy;
in addition, the constraint quantities are preserved to sufficient accuracy during the
evolution. A comparison of the accuracy with which the two approaches numerically
reproduce the exact solution is shown in Table 1. Better accuracy was achieved in
the second order formulation, a result that confirms the first claim in [6]. The second
claim made therein that the spurious waves disappear in the second order case is also
confirmed as the high frequency features disappear in the convergence plots of the
second order formulation, see [4].
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Table 1 The logarithm of the normalized l2 norm of the absolute error E ,
log2.jjEjj2/, between the exact solution and the solutions computed from
the 1st-order system (1) and the 2nd-order system (2) at time t D 1

�0 �4

Grid 1st order 2nd order 1st order 2nd order
50 �25.2218 �27.6006 �11.1643 �12.3418
100 �29.3956 �31.5941 �13.9924 �15.1743
200 �33.7109 �35.6075 �16.9978 �18.1782
400 �38.1000 �39.6068 �20.1075 �21.2850

4 Conclusion

In this work, two distinct approaches to the linearised general conformal field
equations were developed and subsequently implemented numerically. In both
approaches we managed to reach without loss of accuracy the ill-behaved region
IC. It is principally not possible to go beyond I˙ since the equations loose
hyperbolicity. A possible way to resolve this problem is presented in [2]. We have
also shown that the second order formulation of the spin-2 equation leads to a
better accuracy by a factor of 3-4 and the spurious waves travelling against the
characteristics disappear, confirming the claims made in [6].
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Matching the Linet–Tian Spacetime
with Conformally Flat Cylindrically
Symmetric Sources

Irene Brito, Maria de Fátima A. da Silva, Filipe C. Mena, and Nilton O. Santos

Abstract We derive conformally flat cylindrically symmetric solutions for space-
times with a cosmological constant and investigate the matching problem of these
solutions with the exterior Linet–Tian spacetime.

1 Introduction

In General Relativity, cylindrical solutions have been used to study various fields
such as cosmic strings, exact models of rotation matched to different sources and
models for extragalactic jets and gravitational radiation. The generalization of the
Levi–Civita spacetime to include a nonzero cosmological constant � was obtained
by Linet [1] and Tian [2]. It was shown by da Silva et al. [3] and Griffiths and
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Podolsky [4] that it changes the spacetime properties dramatically. The Linet–Tian
(LT) solution has also been used to describe cosmic strings and, in [5], static
cylindrical shell sources have been found for the LT spacetime with negative
cosmological constant. Considering the extensive interest in cylindrically symmetric
solutions it is worthwhile to analyse some further properties of LT spacetimes.

In this note, we summarize the results of [6], which show that it is possible to
match static cylindrically symmetric conformally flat solutions of the Einstein field
equations with a cosmological constant� with the exterior Linet–Tian spacetime if
� > 0.

2 Static Cylindrically Symmetric Anisotropic Sources
with � ¤ 0

Consider static cylindrically symmetric anisotropic matter bounded by a cylindrical
surface S and with energy momentum tensor given by

Tab D .�C Pr/VaVb C Prgab C .Pz � Pr/SaSb C .P� � Pr/KaKb;

where � is the energy density, Pr , Pz and P� are the principal stresses and Va, Sa
and Ka satisfy V aVa D �1; SaSa D KaKa D 1; V aSa D V aKa D SaKa D 0:

For the interior to S the static cylindrically symmetric metric can be written as

ds2 D �A2dt2 C B2.dr2 C d z2/C C2d�2; (1)

where A, B and C are functions of r . The non-zero components of the Einstein
Field EquationsGab D Tab ��gab 	 NTab are

G00 D �
�
A

B

�2 ��
B 0

B

�0
C C 00

C

�
D .�C�/A2 D N�A2;

G11 D A0C 0

AC
C
�
A0

A
C C 0

C

�
B 0

B
D .Pr ��/B2 D NPrB2;

G22 D A00

A
C C 00

C
C A0

A

C 0

C
�
�
A0

A
C C 0

C

�
B 0

B
D .Pz ��/B2 D NPzB

2;

G33 D
�
C

B

�2 �
A00

A
C
�
B 0

B

�0�
D .P� ��/C 2 D NP�C 2;

where the primes stand for differentiation with respect to r . The regularity condi-
tions at the axis are A0.0/ D B 0.0/ D C 00.0/ D C.0/ D 0; B.0/ D C 0.0/ D 1

(see [7]).
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3 Conformally Flat Solutions

For a conformally flat interior spacetime, all Weyl tensor components vanish and
one obtains the following non-linear second order ordinary differential equations
for h and S (see [8]):

S 0 C S2 � 2h0

h
S C h00

h
D 0; S 0 C S2 C h0

h
S � 2h00

h
D 0;

where S D A0

A
� B0

B
; h D C

B
:

Integrating these equations and using the regularity conditions gives h D a1
sinh.a2r/ and A D a3 cosh.a2r/BI where a1; a2 and a3 are non-zero integration
constants,.

Considering the case NPr D NP� , it follows that the metric functions A, B and C
in (1) are (see [6])

A D cosh.a2r/B; B D 1

a4Œcosh.a2r/ � 1�C 1
; C D sinh.a2r/

a2
B;

where a2 and a4 ¤ 0 are constants. The density and pressures are given by

N� D 2 a22 a4 Œ.1 � a4/ cosh.a2r/C a4 C 1�� a22

NPr D 2a22a4Œ.a4 � 1/ tanh.a2r/ sinh.a2r/ � 1�C a22

NPz D 2a22a4

�
1 � a4

cosh.a2r/
C a4 � 3

�
C 3a22:

4 Matching to an Exterior

Consider the exterior Linet–Tian spacetime .MC; gC/ whose metric is given by

ds2C D �a2Q2=3P�2.1�8�C4�2/=3˙dt2 C d�2 C b2Q2=3P�2.1C4��8�2/=3˙d z2

Cc2Q2=3P 4.1�2��2�2/=3˙d�2;

where ˙ D 1 � 2� C 4�2; and for � > 0; Q.�/ D 1p
3�

sin.2R/; P.�/ D
2p
3�

tanR; with R D
p
3�
2
�. Matching this metric to the interior solution presented

in the previous section, one obtains from the equality of the first fundamental forms:

cosh.a2r/

a4Œcosh.a2r/ � 1�C 1

SD aQ1=3P�.1�8�C4�2/=3˙ ; (2)
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1

a4Œcosh.a2r/ � 1�C 1

SD b Q1=3P�.1C4��8�2/=3˙ ; (3)

sinh.a2r/

a2Œa4Œcosh.a2r/ � 1�C 1�

SD c Q1=3P 2.1�2��2�2/=3˙ ; (4)

and from the equality of the second fundamental forms:

a2.1 � a4/ tanh.a2r/
SD
r
�

3

3� �˙ sin2 R

˙ sinR cosR
; (5)

a2a4 sinh.a2r/
SD
r
�

3

3�.1 � 2�/C˙ sin2 R

˙ sinR cosR
; (6)

a2Œcosh.a2r/.1 � a4/C a4�

sinh.a2r/
SD
r
�

3

3.1� 2�/ � 2˙ sin2 R

2˙ sinR cosR
; (7)

where
SD denotes equality on the matching hypersurface only. From these equations

one obtains

sin2 R
SD 3�

˙

"

1C 2.a4 � 1/.1� �/
p
1 � 4�

a4
p
1 � 4�2 � .a4 � 1/p1 � 4�

#

; (8)

sinh2.a2r/
SD 4�.1 � �/

1 � 4�
(9)

and

a22
SD �

"

2a4 � 1 � 2a4.a4 � 1/
4�.1 � �/

p
.1 � 4�/.1 � 4�2/

#�1
: (10)

The inequality 0 � sin2 RS � 1 in (8) and the positivity of the right hand side of
(10), for any 0 < � < 1=4, are satisfied if 1=2 � a4 � 1.

The parameter a2 is fixed by (10) whilst �S and rS are determined from (8) and
(9); equations (2)–(4) fix the exterior parameters a; b and c. Thus we conclude that
the matching is possible for any 1=2 � a4 � 1, 0 < � < 1=4 and � > 0. See [6]
for more details.
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Phase Structure of Black Di-ring
in Five-Dimensional Asymptotically
Flat Vacuum Gravity

Hideo Iguchi

Abstract We analyze the phase structure of five-dimensional black di-ring in
asymptotically flat vacuum gravity. We numerically plot the points of black di-rings
in the phase diagram to search the region covered by black di-rings. The distribution
of black di-ring shows that the area of black di-ring is always less than the maximum
value of black ring. The plot indicates that there are black di-ring configurations
whose area parameters are close to zero.

1 Introduction

In five dimensions, in addition to the solutions with single horizon, there exist
solutions with disconnected event horizons. Black Saturn which is a spherical
black hole surrounded by a black ring was constructed by the inverse scattering
method [1]. It was shown that the black rings can be superposed concentrically
by using the Bäcklund transformation [4]. This black di-ring solution also can be
constructed by the inverse scattering method [3].

The existence of multi-black hole configurations implies continuous non-
uniqueness of five-dimensional black holes. The phase diagram of the black
Saturn was investigated in [1, 2]. The plot of random sets of points in the phase
diagram showed that the black Saturn covers the wide region of the phase diagram.
The phases of black Saturn were investigated based on the thin and long ring
approximation in which the black Saturn can be modeled as a simple superposition
of an Myers–Perry black hole and a very thin black ring [1]. It was argued that
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the configurations that approach maximal entropy for fixed mass and angular
momentum are black Saturns with a nearly static black hole and a very thin black
ring.

The black di-ring also indicates infinite non-uniqueness [4]. It was confirmed
that there are infinite number of black di-rings for same mass and same angular
momentum. Distributions of black di-rings in the phase diagram have not been fully
investigated. When we approximate the black di-ring as a simple superposition of
two concentric black rings, we can roughly estimate the region covered by the black
di-ring in the phase diagram. The maximum of the area would be smaller than the
one of black Saturn for the same mass and angular momentum. Because of the
strong non-linearity, however, we need rigorous analysis for the distributions of
black di-ring in the phase diagram for the decisive conclusion.

2 Phase Structure of Black Di-ring

The physical variables of black di-ring are calculated from the exact expressions of
the solution. Following [1], we normalize the ADM angular momentum and the area
of horizons as

j 2 D 27�

32G

J 2

M3
; ah D 3

16

r
3

�

Ah

.GM/3=2
; (1)

to compare the physical properties of black objects with same ADM mass.
The rod structure of black di-ring is composed by two semi-infinite rods and

four finite rods. Two of four finite rods are timelike and the other two finite and
two semi-infinite rods are spacelike. The seed solution of black di-ring has six finite
rods. We define six parameters by using the lengths of these finite rods as in Fig. 1.
Physical variables of black di-ring are expressed by using these six parameters.

We fix the scaling freedom by d1 C d2 C d3 C d4 D 1. The balance conditions
impose two constraints on the parameters. As a result, the balanced black di-ring has
three dimensionless parameters. In the analysis, we choose d2, d3 and d4 as the three
parameters for the balanced black di-ring. The parameter d1 is determined by the
scaling. The parameters p and q are determined by solving the balance conditions.

To investigate the region of the phase diagram covered by black di-ring, we plot
the point .j 2; ah/ corresponding to the sets of parameters .d2; d3; d4/. The result is
shown in Fig. 2.

The total area of black di-ring can not become larger than the maximum of black
ring ah D 1. There are black di-ring configurations with total area ah greater than
the black ring with the same j 2. It can be confirmed that the black di-ring solution
with j D 0 is possible while maintaining balance as similar as black Saturn. In the
plot of Fig. 2 the low entropy black di-ring ah � 0:2 is scarcely distributed except
around j 2 D 1. When d1 D d3 D 0 the area of black di-ring becomes exactly zero.
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Fig. 1 Rod structure of seed
solution of black di-ring with
S1 rotation

Fig. 2 Distribution of black
di-rings in the phase diagram.
The black bold curves are the
phases of the Myers–Perry
black hole and the black ring

Fig. 3 Plots for parameters
which satisfy d1`2d2 and
d3`

2d4

Fig. 4 Plots for parameters
which satisfy d1; d3; d4`2d2
and d3 � d4

If we simply set d1 D d3 D 0, it can be easily shown that the balance condition for
spacelike rod d4 is violated. Therefore we have to chose parameters such that p and
q become very small in addition to d1 and d3 for the small area back di-ring.

The low entropy black di-ring would be constructed by two different
configurations. One is a double thin ring and the other is a combination of a
nearly extremal fat ring with large thin ring. The double thin ring configuration
will be constructed by choosing the rod parameters as d1`2d2 and d3`2d4. The
corresponding plot of phase diagram becomes like Fig. 3. The second configuration
will be constructed by d1; d3; d4`2d2 and d3 � d4. The corresponding plot is given
in Fig 4. Both plots show that the black di-rings can exit in the region 0 < a < 0:2

of phase diagram.
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3 Black Di-ring with Zero Length Timelike Rods

It was argued that the black di-ring rotating in the S1 direction whose timelike rods
are shrunk down to zero length can be constructed from S2-rotating black ring [5].
We start the metric of the black ring with a rotating 2-sphere

ds2 D �H.y; x/
H.x; y/

�
dt � 20maAy.1 � x2/

H.y; x/
d'

�2
C H.x; y/

A2.x � y/2

�
� dy2

.1 � y2/F.y/

C dx2

.1 � x2/F.x/ � .1 � y2/F.x/

H.x; y/
d 2 C .1 � x2/F.y/

H.y; x/
d'2

�
(2)

where

F.�/ D 1C 2mA� C .aA�/2; H.�1; �2/ D 1C 2mA�1 C .aA�1�2/
2: (3)

At first, we construct the magnetically charged accelerating dihole solution in
Kaluza–Klein theory by performing the analytic continuation and dimensionally
reduction. Next we take the electric dual of the dihole solution and lift it back to five
dimensions with the appropriate analytic continuation. The metric of the obtained
solution is

ds2 D �H.x; y/
H.y; x/

�
dt C 2maAx.1 � y2/

H.x; y/
d 

�2

C H.y; x/

A2.x � y/2
�
1

K2
0

�
� dy2

.1 � y2/F.y/ C dx2

.1 � x2/F.x/

�

� .1 � y2/F.x/

H.x; y/
d 2 C .1� x2/F.y/

H.y; x/
d'2

�
; (4)

where, now,

F.�/ D 1C 2mA� � .aA�/2; H.�1; �2/ D 1C 2mA�1 � .aA�1�2/
2: (5)

It would be important to study features of the solution in detail. It is pointed out
in [5] that the rings are rotating in opposite directions to each other. It can be shown
that the solution does not satisfy the balance conditions.

4 Summary

We analyzed the phase structure of black di-ring. The distribution of black di-rings
in the phase diagram shows infinite non-uniqueness of the black di-ring. The
configurations of black di-ring distribute in the open strip 0 < ah < 1 and j 2 > 0.
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Spectrum from an Initially Anisotropic Universe

Hyeong-Chan Kim and Masato Minamitsuji

Abstract We revisit the issue on signatures of pre-inflationary background
anisotropy by considering the quantization of a massless and minimally coupled
scalar field in an axially symmetric Kasner background, mimicking cosmological
perturbations. We show that the power spectrum of the scalar field fluctuation has a
negligible difference from that in the standard inflation in the non-planar directions,
but it has a sharp peak around the symmetry plane. This note is based on our recent
paper (Kim and Minamitsuji, JCAP 1103:038, 2011).

1 Introduction

Inflation has become one of the paradigms of modern cosmology. First of all,
inflation elegantly solves many problems which are present in the standard
Big-Bang model such as the horizon and flatness problems. Secondly, inflation
accounts for the origin of the large scale structure of the universe in terms
of the quantum fluctuations originated from the adiabatic vacuum structure
in the early universe. Remarkably, the nature of the primordial fluctuations is
understood in terms of symmetries of the de Sitter spacetime. In general, we need
n-point correlation functions to characterize the statistical nature of the primordial
fluctuations. However, these symmetries lead to the power spectrum with a scale
invariant form. These predictions from symmetries are robust and universal in
inflationary scenarios. In fact, the above predictions have been confirmed by
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the measurements of the cosmic microwave background (CMB) [2, 3]. As the
observational precision increases, we have to go beyond the power spectrum to look
at the fine structures of the primordial fluctuations. Since in the realistic inflationary
universe the symmetries of the de Sitter spacetime do not hold exactly, violation
of them provides a measurable effect. A measurable effect may be induced by
rotational symmetry breaking in the early universe [4]. Such cosmological models
have been considered in e.g., [5, 6]. From the observational point of view, a lot of
anomalies indicating the statistical anisotropy have been reported [7–9].

We work on the observational signatures from the preinflationary anisotropy [1].
We start from the discussion on the evolution of anisotropic universe in the Einstein
gravity minimally coupled to a massive scalar field which plays the role of the
inflation. Under the slow-roll approximations, the background metric can be well
approximated by the Kasner de Sitter spacetime with a positive cosmological
constant, �.D 3Hi

2/. Among the Kasner de Sitter solutions, we are interested in
the regular branch with the two dimensional axial symmetry with metric,

ds2 D �d	2 C sinh
2
3 .3Hi	/

h
tanh� 2

3


3Hi	

2

�
.dx21 C dx22/C tanh

4
3


3Hi	

2

�
dx23
i
:

(1)

This spacetime provides a good ground to test the anisotropic universes. Firstly,
it bears various important features of the whole anisotropic universes including large
anisotropy at 	 D 0. Secondly, only for this solution we can impose the adiabaticity
condition and define an adiabatic vacuum state [1]. In this work, we are interested
in the evolution of a massless, minimally coupled scalar field � propagating on the
background anisotropic universe (1). Note that this scalar field is not the inflation
but just a mimic of the metric perturbations.

2 Quantization of the Scalar Field

The canonical quantization of a massless, minimally coupled scalar field � is done
in the standard manner:

� D
Z
d3k



ukak C u�

ka
%

k

�
; (2)

where the creation and annihilation operators satisfy the commutation relations	
ak1 ; a

%
k2


 D ı.k1 � k2/ (others are zero) and uk D eikx�k=.2�/
3=2. We normalize

the mode function as �k@	�
�
k � �

@	�k
�
��

k D i
e3˛

, where e˛ D sinh
1
3 .3Hi	/ is

the averaged scale factor of the three-dimensional space, obtained from Eq. (1).
We introduce a dimensionless time x by sinh."x/ D 1

sinh.3Hi 	/
D e�3˛ , where "

denotes a small expansion parameter. The arrow of time for x is inverted since it
varies from 1 to 0C as the comoving time 	 increases from 0C to 1.
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The equation of motion for the scalar field is written in the form of a
time-dependent oscillator


 d2

dx2
C˝k.x/

2
�
�k D 0 ; ˝2

k.x/ D 2. Nk"2=3/2
9

�
e"x

sinh "x

�1=3 �
1

e2"x � 1 C r2
�
:

(3)

Here we define a scaled wave-number and a measure of planarity of a given mode
by Nk D "1=3 k

Hi
; r D k3

k
, where k2 WD k21 C k22 C k23 D k2? C k23 . From now

on, we omit the subscript k in the frequency squared ˝2
k for simplicity. The power

spectrum is defined by

˝
0j�2j0˛ WD

Z
d ln k

Z
d�k

2
P; P D k3

2�2

ˇ
ˇ�k
ˇ
ˇ2: (4)

In contrast to the case of the standard inflationary models, the power spectrum would
contain the direction dependence. The vacuum is chosen at the initial anisotropic
era: 	 ! C0 to satisfy akj0i D 0. We choose the solution to be purely positive
frequency mode with respect to 	 at the early stage.

3 Non-planar High-Momentum Modes

The WKB approximation is valid if
ˇ
ˇ̌ d˝

2.x/
dx

˝3.x/

ˇ
ˇ̌
`21. For the non-planar modes which

are not propagating along the .x1; x2/-plane, this condition is always satisfied
if x � Nk�3. One order higher WKB expansion improves the accuracy of the
approximation by the factor EWKB.x/ � 1

Nk2 x2=3 . In the asymptotic de Sitter region,

0 < x < "�1, we can consider the other approximation based on the asymptotic
approximation in the limit "x`21. In terms of the series expansion ˝2.x/ DP1

nD0 "nVn.x/ in this limit, the zeroth order solution obtained from V0 is the well-
known mode function in the de Sitter spacetime and the higher order solutions
can be obtained iteratively. One order higher order iterative solution improves the
accuracy of the approximation by the factor Easym.x/ � " Nk x4=3.

For a given high-momentum mode k � Hi , there is a period where both
approximations are valid: Nk�3`2x`2"�1. During this period, we can match both
solutions when the accuracies of the two solution coincide, EWKB D Easym, which

gives x� D ." Nk3/�1. We set x� D 1, and hence " D Nk�3 D �
Hi
k

�3=2
, This choice is

consistent with the assumptions that " is small and Nk�3 < x� < "�1.
After the matching of the solutions in these two regions, we find that the power

spectrum including the corrections becomes

P D Hi
2

4�2

(

1C 9.11� 90r2 C 99r4/

32

�
Hi

k

�6
CO

�
Hi

k

�7�
)

: (5)
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The correction O..Hi=k/
6/ is highly dependent on k and the anisotropy effect is

significantly suppressed.

4 Planar Modes

For the planar modes r2 � 0, there appears a region where the WKB approximation
may not be valid during a period in "x � 1. This results in a large contribution of
the negative frequency modes to the final power spectrum. The mode r D 0 behaves
classically, not quantum mechanically, and will be out of scope.

Matching the solutions in the three regions yields the final amplitude and hence
the power spectrum:

P D

Hi

2�

�2
 

coth� Nr � cos
�
2�
�

sinh� Nr

!

; (6)

where �.k/ D Nkx1=3� � R x�

x1
˝.x/dx C Nqe�"x1 � �

4
. In the planar limit, the deviation

of the power spectrum from the ansatz in [4] is quite clear.

5 Discussions

We have reinvestigated the quantization of a massless and minimally coupled scalar
field as a way to probe the signature of pre-inflationary background anisotropy in
the spectrum of cosmological perturbations.

Firstly, we have dealt with the non-planar modes. We have shown that the
power spectrum of the scalar field acquires non-vanishing corrections only when we
execute the approximation up to 6th order. Hence, the direction dependence appears
only at the order O..Hi=k/

6/. For the planar mode, the temporal breaking of the
WKB approximation relatively enhances the effects of the primordial anisotropy in
the power spectrum.
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