
Chapter 8
Earth System Dynamics Beyond
the Second Law: Maximum Power Limits,
Dissipative Structures, and Planetary
Interactions

Axel Kleidon, Erwin Zehe, Uwe Ehret and Ulrike Scherer

Abstract Planet Earth is a thermodynamic system far from equilibrium and its
functioning—obviously—obeys the second law of thermodynamics, at the detailed
level of processes, but also at the planetary scale of the whole system. Here, we
describe the dynamics of the Earth system as the consequence of sequences of
energy conversions that are constrained by thermodynamics. We first describe the
well-established Carnot limit and show how it results in a maximum power limit
when interactions with the boundary conditions are being allowed for. To
understand how the dynamics within a system can achieve this limit, we then
explore with a simple model how different configurations of flow structures are
associated with different intensities of dissipation. When the generation of power
and these different configuration of flow structures are combined, one can associate
the dynamics towards the maximum power limit with a fast, positive and a slow,
negative feedback that compensate each other at the maximum power state. We
close with a discussion of the importance of a planetary, thermodynamic view of
the whole Earth system, in which thermodynamics limits the intensity of the
dynamics, interactions strongly shape these limits, and the spatial organization of
flow represents the means to reach these limits.
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8.1 Introduction

Heat flows from warm to cold, water flows from the mountain top to the valley
floor and wood burns into ashes. The reverse direction for these processes does not
quite make sense. Heat does not spontaneously flow from cold to warm, water does
not flow uphill, and wood does not emerge from the ashes. These directions reflect
the fundamental direction imposed by the second law of thermodynamics. Yet, at
the same time, this implication is almost trivial, in the sense that nobody would
seriously question these directions as this is what we observe in nature over and
over again. In this respect, the second law does not seem to contain much value to
learn more about these processes because this knowledge is already established in
the many mathematical descriptions we use to describe Earth system processes. So
the basic question is whether there is more to learn from the second law of
thermodynamics beyond these general trivialities?

The proposed principle of Maximum Entropy Production (MaxEP) seems to
suggest that there is more to learn. The MaxEP principle states that processes do not
merely follow the second law, but proceed at a maximum rate at which the rate of
entropy production is maximized. This would essentially mean that the dynamics of
isolated systems do not merely evolve towards a state of thermodynamic equilib-
rium, but that they would do so at the fastest possible rate. At the core of the
thermodynamic interpretation of MaxEP is a trade-off, by which a greater flux is
associated with a more depleted gradient. Since entropy production is expressed by
the product of flux and gradient, the trade-off between flux and gradient results in a
state of maximum entropy production at intermediate values for the flux and gra-
dient. Over the last 15 years, renewed attention has been given to this principle, in
terms of its theoretical basis [1–5] as well as its application to Earth and envi-
ronmental processes [6–8]. While there are some indications for support, e.g.
regarding heat transport by planetary atmospheres in simple climate models [9, 10]
as well as general circulation models [11, 12], there are also quite a number of
issues that still need to be resolved [13–15]. For instance, why should environ-
mental systems ‘‘care’’ about entropy production, rather than more traditional
quantities such as mechanical forces or mass fluxes? How would systems know that
they ‘‘need’’ to maximize entropy production? With the breadth of competing
processes shaping the Earth system, how do we know which entropy production
should be maximized? And what new insights can be provided by MaxEP or similar
maximization principles that we cannot get without these principles?

In this chapter we provide a brief overview of how these shortcomings of the
proposed MaxEP principle can be overcome by shifting the focus onto the max-
imization of power, i.e. work through time, within an Earth system context. This
maximization of power yields states that are nearly indistinguishable from
equivalent MaxEP states, but it provides a clearer basis to understand which aspect
is maximized within a system and to understand how this maximization is
achieved. To do so, we first derive the Carnot limit from the laws of thermody-
namics and then relate it to the maximum power limit in the next section. Then we
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illustrate how maximization can be achieved by the organization of flow and how
it relates to basic feedbacks that shape the evolutionary dynamics. This is then
applied to the Earth system at large to explain how the dynamics and couplings of
the planet essentially reflect the acceleration of the second law at the planetary
scale. We close with a brief summary and conclusions.

8.2 Maximum Power Limits

Thermodynamics informs us about the limits of how much work can be derived
from a heating gradient. The best known limit is the Carnot limit, which represents
the best case for extracting work from a heating gradient that satisfies the first and
second law of thermodynamics. For its derivation, we consider a system shown in
Fig. 8.1a as a dashed box labeled ‘‘heat engine’’ that is situated between a hot
reservoir with temperature Th and a cold reservoir with temperature Tc. Applied to
this setting, the first law in a steady state in which the internal energy does not
change in time is represented by the balance of the heating by the heat flux Jin, the
cooling by Jout, and the mechanical work done through time (or power), Pex:

0 ¼ Jin � Jout � Pex ð8:1Þ

To identify the constraints imposed by the second law, we need to consider the
entropy balance of the system . When we consider this balance in a steady state in
which the entropy of the system does not change in time, this balance is repre-
sented by the entropy production due to irreversible processes within the system,
r, the entropy import by heating, Jin=Th, and the entropy export by cooling,
Jout=Tc:

0 ¼ r þ Jin

Th
� Jout

Tc
ð8:2Þ

The second law requires that r� 0. With this requirement, we can combine
Eqs. (8.1) and (8.2) and solve for Pex:

Pex� Jin
Th � Tc

Th
ð8:3Þ

The best case is given when the power equals the right hand side of this
equation and this is known as the Carnot limit. It expresses the maximum rate by
which heat can be converted into mechanical work that is permitted by the first and
second law. Greater values of Pex ¼ Jin � Jout would require r\0 in Eq. (8.2),
which would violate the second law. Such conditions are shown in the upper right
in Fig. 8.1a by the shaded area.

In this derivation of Pex, it is assumed that no entropy is associated with Pex, so
that all of Pex is associated with performing work. In the Earth system, such work
is needed, for instance, to generate kinetic energy associated with motion, or to lift
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material against gravity and generate potential energy. We will refer to the gen-
erated form of energy as ‘‘free energy’’ here in a general sense because it is
equivalent to the capacity of a system to perform work. The free energy is asso-
ciated with a gradient of a different variable. For instance, when work is performed
to generate motion, the form of free energy is kinetic energy, and the associated
gradient is in the associated momentum. Hence, the Carnot limit can be seen as the
maximum rate by which a heating gradient can be converted into a gradient of
another variable.

The derivation of the Carnot limit makes two, important assumptions: (1) the
two heat reservoirs that drive the heat engine remain at fixed temperatures and are
not affected by the generation of work within the system; and (2) no irreversible
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Fig. 8.1 Systems used in the text to describe a the Carnot limit and b the maximum power limit.
The dashed line in the figures on the left show the delineation of the system boundary. The right
panels show the sensitivity of the heat fluxes Jin and Jout, the temperature gradient DT ¼ Th � Tc

and the extracted power Pex to the heat flux utilized by the engine. The area shaded grey in the
upper right plot shows conditions that is not permitted by the second law as it would require
negative entropy production within the system, so that the Carnot limit of maximum power in the
upper system is located at the edge of the shaded area. In the system shown in b, the maximum
power limit results from the trade-off between a greater heat flux Jex and the reduced temperature
difference DT . After [17]
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process takes place within the system. These assumptions cannot be made for
many Earth system processes. Atmospheric convection, for instance, is driven by
the heating associated with the absorption of solar radiation at the surface and the
cooling aloft through the emission of terrestrial radiation. The convective motion
transports about 99 W m-2 from the surface to the atmosphere in the global mean
[16], which is more than half of the surface solar radiative heating of 160 W m-2.
Hence, the surface temperature is not a fixed boundary condition that drives the
convective heat engine, but it is strongly affected by the intensity of convective
cooling. In addition to this convective cooling, the surface is cooled by the net
emission of terrestrial radiation of about 61 W m-2, which is associated with
irreversible radiative transfer that produces considerable entropy. Hence, the
assumption that no entropy is produced is not fulfilled either. Similar arguments
can be made for the large-scale poleward transport of heat by the climate system as
well as for other processes, e.g. mantle convection in the Earth’s interior. It would
thus seem that the assumptions being made to derive the Carnot limit would not
apply to quite a range of Earth system processes while the laws of thermodynamics
naturally apply and limit the rate at which these processes can perform work.

We can nevertheless derive a maximum power limit for a slightly altered setup
as shown in Fig. 8.1b that is more representative of Earth systems [17]. The two
differences to the typical Carnot limit are that (1) the heat balances for Th and Tc

are part of the system and can therefore react to the rate at which work is per-
formed within the system, and that (2) there is an additional process (radiative
transfer, Jr, in Fig. 8.1b) that depletes the temperature gradient and produces
entropy within the system. In this setup, we can use the steady-state surface energy
balance (i.e. dTh=dt ¼ 0) as a constraint to express the temperature gradient Th �
Tc as a function of the surface solar radiative heating, Jin, and the convective heat
flux Jex utilized by the convective heat engine:

0 ¼ Jin � krðTh � TcÞ � Jex ð8:4Þ

For simplicity, the net radiative exchange between the reservoirs is represented
in a linearized way by Jr ¼ krðTh � TcÞ, which is derived from the linearization of
the Stefan-Boltzmann law.

To derive the maximum in power that can be derived from the heating dif-
ference Th � Tc, we apply the Carnot limit to Jex, use Eq. (8.4) to express Th � Tc

in terms of Jin and Jex, and get an expression of power Pex that depends qua-
dratically on Jex:

Pex ¼ Jex
Th � Tc

Th
¼ Jex

ðJin � JexÞ
krTh

ð8:5Þ

When we neglect the dependence of Th on Jex in the denominator, this
expression achieves a maximum value Pmax for a convective heat flux Jex ¼ Jin=2
of
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Pmax ¼
J2

in

4krTh
¼ 1

4
Jin

Th; 0 � Tc; 0

Th
ð8:6Þ

where Th; 0 and Tc; 0 are the temperatures for Jex ¼ 0.
The maximum power limit expressed in Eq. (8.6) looks like a Carnot limit [cf.

Eq. (8.3), in particular when approximating Th � Th; 0] with fixed, radiative
equilibrium temperatures, except that it is reduced by a factor of 4. This reduction
can directly be seen when comparing the maximum values of Pex in Fig. 8.1a and
b. The lower limit results from the reduction of the temperature gradient to half its
maximum value and from the ‘‘competing’’ process of radiative transfer that
consumes some of the heat flux Jin. This expression is essentially identical to the
maximum power limit that is well known in electrical engineering and, when
applied to typical atmospheric conditions, yields maximum estimates of power
involved in atmospheric motion that are consistent with observations [17].

The maximum power limit is nearly identical to the Maximum Entropy Pro-
duction (MaxEP) state reported earlier in atmospheric applications [9, 18]. This
can be seen when considering the entropy budget of the system. In steady state,
this budget is given by the import of entropy associated with the absorption of Jin

at a temperature Th, and the export of entropy associated with the emission of
Jout ¼ Jin at a temperature Tc. The entropy production within the system due to
radiative exchange, rr, and due to the convective heat flux, rex, is balanced by the
net entropy export by the system, so that

0 ¼ rr þ rex þ
Jin

Th
� Jin

Tc
ð8:7Þ

Noting that Jin ¼ Jr þ Jex and rr ¼ Jrð1=Tc � 1=ThÞ, we obtain

rex ¼ Jex
1
Tc
� 1

Th

� �
¼ Jex

Th � Tc

ThTc
¼ Pex

Tc
ð8:8Þ

where we used the expression of Pex from Eq. (8.5). In steady state, power equals
dissipation, Pex ¼ D, in this closed system, so that the maximum power limit is
equivalent to the maximization of rex if all of the mechanical energy generated by
Pex is dissipated at the temperature Tc of the cold reservoir. This is typically not the
case for the Earth’s atmosphere. About half of the generated kinetic energy is
either dissipated near the heated surface or is transferred into the ocean. Hence, the
maximum power limit should be slightly below the MaxEP state. Nevertheless, the
difference is hardly distinguishable using realistic numbers, so that the examples
that provide support for the MaxEP principle concerning atmospheric heat trans-
port [9–12], can equally be interpreted as an indication that the atmospheric cir-
culation operates very close to the maximum power limit.
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8.3 Maximization Through Structure

The maximum power limit given by Eq. (8.6) establishes the upper limit to how
much dynamics can be generated within a system, but it does not tell us how this
maximization would be achieved, neither in terms of the evolutionary dynamics
nor which aspect of motion would allow for the needed flexibility to achieve
maximization. To explore the latter aspect (the former is dealt with in the next
section), we need to look at how the flow is organized in space and time and how
this organization affects the ability of the flow to generate and dissipate kinetic
energy. This is done in the following using simple, conceptual considerations with
some quantitative illustrations.

When motion is generated at a certain rate, the resulting flow can take various
forms, as illustrated in Fig. 8.2. For instance, the flow can be accomplished by few,
or many, convection cells N , and it can be associated with different areas over
which updrafts take place. The physical balances that constrain these flow struc-
tures are the conservation of energy, mass and momentum, which apply to the
local scale, but also at the global, system-level scale. At the local scale, momentum
conservation leads to the well-known Navier–Stokes equation of fluid dynamics.
What we aim for here is a system-level description of the dynamics that does not
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(d) N = 4, Au < Ad(c)  N = 2, Au > Ad

L

vu vd

vs

z

zs

vs

Fig. 8.2 Four examples of different flow structures that differ in the number of convection cells
N and the areas of updraft Au (shaded grey) in relation to the area of downdraft Ad of each cell.
These different arrangements result in different intensities of frictional dissipation
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require the information from the local scale, but only considers the balances at the
global, aggregated level. The maximum power limit applied to the system level
would then act as a constraint to the overall dynamics within the system. To
understand how different flow configurations affect the system-level properties,
particularly dissipation, we consider a simple, aggregated description of the system
shown in Fig. 8.2 in the following.

The system depicted in Fig. 8.2 is a closed system that only exchanges heat
with its environment. The dynamics of the total kinetic energy, Ake, within the
system then include only the generation and dissipation of kinetic energy, but does
not include its exchange associated with mass exchange across the system
boundary:

dAke

dt
¼ Pex � D ð8:9Þ

where Pex is the generation rate of kinetic energy (being equivalent to the power of
the heat engine from the previous section), and D is the rate of frictional dissi-
pation. The main point about structure and maximization made here is that the
many different ways in which the flow takes place (as, e.g., those shown in
Fig. 8.2) are associated with different intensities of D, so that for the same Pex,
different values of Ake can be achieved. Since a higher value of Ake transports more
heat, i.e. results in a greater value of Jex, rearrangements in the flow can then form
the basis for a positive feedback by which a higher value of Ake results in a greater
value of Pex (which is explored further in the next section).

To demonstrate the different intensities of D associated with different flow
patterns, we consider an area of size Atot ¼ L2, where L is the horizontal dimen-
sion, a height of convection z and a boundary layer height of zs. The updraft in
each cell is assumed to take place with a uniform updraft velocity vu through a
horizontal, circular cross-sectional area of one updraft cell, Au ¼ pr2

u , the down-
draft takes place with a uniform downdraft velocity vd and a cross-sectional area of
Ad ¼ Atot=N � Au, and a velocity vs near the surface through a vertical, cylin-
drical cross-section at the bottom of the updraft cells of As ¼ 2pruzs.

Continuity requires that the mass fluxes Jm within a convection cell balance, i.e.
that the mass lifted in the updraft is balanced by the mass transported by the
downdraft and along the surface:

Jm ¼ qAuvu ¼ qAdvd ¼ qAsvs ð8:10Þ

where we assume the same air density q for simplicity. This requirement yields the
following expressions for the three velocities:

vu ¼
Jm

qAu
vd ¼

Jm

qðAtot=N � AuÞ
vs ¼

Jm

2
ffiffiffi
p
p

q
ffiffiffiffiffi
Au
p

zs
ð8:11Þ

noting that ru ¼
ffiffiffiffiffiffiffiffiffiffi
Au=p

p
.

The total frictional dissipation D results from the friction within the fluid
between the updrafts and downdrafts, Da, from the contact with the surface, Ds,
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and at the upper boundary at the top of the convection cell Du, which we will
assume to be equal to Ds for simplicity in the following (although friction at a solid
surface may not be equal to internal friction within air):

D ¼ Da þ 2Ds ð8:12Þ

Frictional dissipation within the fluid, Da, is given by the viscosity of the fluid,
l, the velocity gradient between the cells, which is approximated by the difference
in updraft- and downdraft velocities ðvu � vdÞ divided by the mean distance
between the up- and downdraft within a cell, L=2N, through the vertical, cylin-
drical surface area of the updraft cell, 2pruðz � 2zsÞ:

Da ¼l
ov

ox

� �2

A ¼ l
vu � vd

L=2N

� �2

2pruð Þ z� 2zsð ÞN

¼ l
q2

caJ2
m; tot

ð8:13Þ

where the geometric factor ca is given by

ca ¼ 8
ffiffiffi
p
p Atot

A3=2
u Atot � NAuð Þ2

z � 2zsð ÞN ð8:14Þ

In other words, the overall frictional dissipation within the fluid depends on
material properties (viscosity l and density q), the total mass flux Jm; tot ¼ NJm that
is associated with the kinetic energy of convective motion, but also to some extent
on a purely geometric factor, ca, that is associated with the organization of the
mass flux in terms of the number of convection cells N as well as the cross section
of the updraft Au.

Frictional dissipation at the surface, Ds, is expressed similarly in terms of a
velocity gradient, vs=zs, and the surface area, Atot:

Ds ¼l
vs

zs

� �2

Atot

¼ l
q2

csJ
2
m; tot

ð8:15Þ

where the geometric factor cs is given by

cs ¼
1

4p
Atot

Au

1
z2

s

1
N2

ð8:16Þ

This expression is similar to Eq. (8.13) above in that it also depends on purely
material properties, the total mass flux, as well as a geometric factor cs.

The total frictional dissipation D can then be expressed as:

D ¼ l
q2

ca þ 2csð ÞJ2
m; tot / cAke ð8:17Þ
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which, by using the continuity requirement (Eq. 8.10), could be formulated in
terms of the square of a velocity (e.g. vu) to yield a typical parameterization for
frictional dissipation, or in terms of the kinetic energy Ake within the system.

Figure 8.3 shows the extent to which the total dissipation, D, depends on the
flow configuration, as characterized by the geometric factors. As can be seen by
the sensitivities, the geometric factors vary by an order of magnitude or more by
the variation of Au and N. Both sensitivities of the total geometric factor,
c ¼ ca þ 2cs, exhibit a characteristic minimum at which frictional dissipation is
reduced merely by rearrangement of the flow.

As a consequence of this sensitivity of D to the arrangement of the flow, different
values of the kinetic energy Ake of the system can be achieved for the same gen-
eration rate Pex. The critical link between this flexibility in Ake and maximum power
Pex is that the amount of kinetic energy Ake reflects the speed of motion within the
convection cell, which in turn is related to the convective heat flux Jex by

Jex ¼ cp Th � Tcð ÞJm; tot / DT
ffiffiffiffiffiffiffi
Ake

p
ð8:18Þ

In other words, a rearrangement in the flow can lower its frictional dissipation D
(through the effect on c in Eq. 8.17), enhance the flow velocity, transport more
mass and heat (cf. Eq. 8.18), and thereby generate more power Pex to drive the
flow (cf. Eq. 8.5). This latter enhancement of Pex through structured flow results
from the concentration of the driving gradient at the boundary of the system (see
also [19]). This effect can be seen by reformulating the expression of maximum
power Pex (Eq. 8.6) in terms of the temperature gradient by using the energy
balance (Eq. 8.4):

Pmax ¼
kr

Th
Th � Tcð Þ2 ð8:19Þ
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Fig. 8.3 Sensitivity of the geometric factors of flow organization related to interior friction
within the fluid, ca, friction with the surface, cs, and total, c ¼ ca þ 2cs, a to the total updraft
area, NAu=Atot and b the number of convection cells, N. For both plots, the values Atot ¼ 106 m2,
z = 1,000 m, and zs ¼ 100 m are used. For the left plot a value of N ¼ 40 was used, for the right
plot a value of NAu=Atot ¼ 0:5
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In other words, Pmax depends quadratically on the temperature gradient. The
implication of this is that for the same rate of heating, Jin, a uniform distribution of
the temperature gradient yields less power than a non-uniform distribution of the
gradient at the system boundary. This effect is qualitatively illustrated in Fig. 8.4.
With stronger motion, more cooled air is advected by the convection cell to the
heated surface, thereby concentrating the temperature gradient to the area near the
surface. The key insight here is that a non-uniform distribution of the driving
temperature gradient is intimately linked with the development of structured flow
and that this affects the ability of the system to derive power from the temperature
gradient.

Of course, this simple example makes several assumptions, such as constant
density and a simple geometry, and treats convection in a highly simplistic way. It
nevertheless substantiates the point that the formation of specific flow structures
such as convection cells affect the intensity by which kinetic energy is dissipated
and thereby constitute ‘‘degrees of freedom’’ that allow the fluid to adjust to a state
of maximum power.

8.4 Dynamics and Feedbacks Associated
with Maximization Through Structure

We now ask why the evolution and the dynamics of a system would inevitably
evolve to a maximum power state. The following discussion on feedbacks show
rather general mechanisms that, in principle, should be transferrable to very
different structures as well (for instance water flow in river basin networks, [20]).

(a) uniform temperature gradient (b) spatially structured

Fig. 8.4 Schematic illustration of the effect of structured flow on the distribution of temperature
gradients. a In the absence of motion, the temperature gradient is uniformly distributed across the
system between the heating source below, and the cooling source aloft. b When structured flow
takes place, temperature gradients are confined to small regions at the interface to the heating and
cooling source and are able to enhance the generation rate of motion
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We illustrate these feedbacks in the following specifically with the example of
convective motion given above, bringing together and summarizing the previous
sections. We describe these feedbacks similar to the feedback analysis that is
common in climatology [21].

Imagine if the system shown in Fig. 8.1b is initially at rest, i.e. in a state of no
convective heat flux Jex ¼ 0ð Þ and no kinetic energy ðAke ¼ 0Þ. This state satisfies
the energy-, mass-, and momentum balances of the system. We now need to
understand why such a state, when perturbed, would evolve towards a dynamic
state with Ake [ 0, and why this evolution would ‘‘stop’’ at a maximum power
state. In the context of feedbacks, we need to identify a positive feedback that
amplifies the growth of the initial perturbation, and a negative feedback that stops
the growth at the maximum power state. Before we identify these feedbacks, let us
first go through the relationships between the different variables of the system as
shown in Fig. 8.5 and relate them to the above equations.

The source for the dynamics is the temperature difference ðDT ¼ Th � TcÞ in
the system that develops due to the uneven heating and cooling of the system due to
Jin and Jout. This gradient generates buoyancy and motion, and enters directly the
expression for the generation rate of kinetic energy (Pex, Eq. 8.5). This power ðPexÞ
generates kinetic energy (Ake, Eq. 8.9), which is then subsequently dissipated ðDÞ.
The rate of dissipation ðDÞ depends on the kinetic energy ðAkeÞ as well as the spatial
organization of the flow, characterized by the geometric factor c (Eq. 8.17). Motion
in the system results in the convective heat flux ðJexÞ, so that this heat flux depends
on the kinetic energy Ake and the temperature difference DT (Eq. 8.18).

temperature 
difference T

power PexJex

kinetic energy 
Ake

dissipation
D

geometric 
factor 

+

+

+

+

+

loop B:
slow, negative

feedback

loop A: 
fast, positive

feedback

loop C:
positive

feedback

+

+

loop D:
positive

feedback

Fig. 8.5 A feedback diagram to illustrate how the dynamics of kinetic energy generation and
dissipation relate to the maximization of power and structure formation. Solid lines with ‘‘+’’
indicate positive influences (e.g., a larger temperature difference results in a greater power, i.e.
the derivative oPex=oDT [ 0). Dashed lines with ‘‘-’’ show negative influences (e.g., an
enhanced heat flux reduces the driving gradient, i.e. oDT=oJex\0). Four feedback loops (A, B, C,
D) are shown: Feedbacks A and B on the left relate to the maximum power limit, and the
feedbacks C and D on the right relate to how structured flow can achieve this limit. After [20]
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The following feedbacks are established because the temperature difference ðDTÞ
as well as the power ðPexÞ depend on the convective heat flux Jex (Eqs. 8.4 and 8.5).

We now look at the consequences of a perturbation in the temperature differ-
ence ðdDTÞ on the generation of kinetic energy ðdPexÞ. The generation rate ðPexÞ
depends on the convective heat flux ðJexÞ and on the temperature difference ðDTÞ,
so that, effectively, Pex ¼ Pex Jex Ake Pex; Dð Þð Þð ; DTexÞ. Hence, the overall change
in dPex depends on the direct effect of DT on Pex (i.e. oPex=oDT), and indirect
effects due to the various interdependencies, which are described by a product of
partial derivatives

dPex

dDT
¼ oPex

oJex

oJex

oAke

oAke

oPex

oPex

oDT
þ oPex

oDT

oDT

oJex

oJex

oAke

oAke

oPex

oPex

oDT
ð8:20Þ

The first term on the right hand side represents a positive feedback (feedback A
in Fig. 8.5). An increase in the generation rate results in an increase in kinetic
energy ðoAke=oPex [ 0Þ, which causes an increase in the heat flux ðoJex=oAke [ 0Þ
which in turn results in greater power ðoPex=oJex [ 0Þ. Since all derivatives are
positive, the initial change is amplified and this constitutes a positive feedback.
The second term on the right hand side represents a negative feedback (feedback
B). The last three derivatives are the same as in the first term and describe the
increase of the heat flux Jex due to the initial change in DT . The greater heat flux
also results in a decrease in the temperature difference ðoDT=oJex\0Þ, and a
decrease in temperature difference decreases the power ðoPex=oDT [ 0Þ. Hence,
the product of these derivatives is negative, so that these effects constitute a
negative feedback. Since temperature changes involve changes in thermal inertia,
this feedback is likely to act more slowly than feedback A.

With increasing values of kinetic energy ðAkeÞ in the system, the derivatives
change their values, and so do the strengths of the two feedbacks. The deciding
difference in these feedbacks relates to the terms ðoPex=oJexÞ and
ðoPex=oDTÞðoDT=oJexÞ, while the other terms could be factored out in the above
Eq. (8.20). Because ðoPex=oJexÞ ¼ DT=Th, ðoPex=oDTÞ ¼ Jex=Th, and
ðoDT=oJexÞ ¼ �1=kr, the sum of these terms ðoPex=oJexÞ þ
ðoPex=oDTÞðoDT=oJexÞ decreases with an increasing values of Jex, and cancel each
other exactly at the maximum power state, when DT=Th � Jex=ðkrThÞ ¼ 0, or
Jex ¼ krDT ¼ Jin=2. In other words, at the maximum power state, the feedbacks A
and B operate with same strength, but with opposite signs, so that the maximum
power state should be the state that is dynamically the most stable. Noting that
power equals dissipation in steady state, this line of reasoning is consistent with the
dynamic stability analysis of Malkus [22], with the derivation by Dewar and
Maritan (Chap. 3), and with the reasoning behind the MaxEP state by Ozawa et al. [6].

The spatial organization of the flow affects the two feedbacks described above.
In steady state, we have Pex ¼ D / cAke, so that Ake / Pex=c. Hence, the deriv-
ative oAke=oPex / c�1 depends on the spatial arrangement of the flow. To relate
structure formation to the maximization of power, we note that changes in DT can
also result from the internal dynamics and, specifically, the spatial organization as
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shown in Fig. 8.4. The feedbacks that are related to structure formation are shown
in Fig. 8.5 in terms of feedbacks C and D. Feedback C characterizes the reduction
in frictional dissipation due to the development of structured flow that is captured
by the geometric factor c. In other words, when an increase in kinetic energy
results in a change in spatial organization and a reduction in the geometric factor
ðoc=oAke\0Þ, this would reduce dissipation ðoD=oc [ 0Þ, resulting in an increase
in kinetic energy ðoAke=oD\0Þ. Overall, this feedback constitutes a positive
feedback related to the reduction of internal dissipation due to spatial reorgani-
zation of the flow. The implication of this feedback is that for a given generation
rate Pex, a reduction in c would enhance Ake, Jex, and thus Pex. Hence, those
perturbations in the spatial organization of the flow that enhance power would
continue to grow and play an important part of feedback A. The confinement of
temperature gradients to the system boundary that was qualitatively discussed
above constitutes a further feedback (feedback D, see also Schneider and Kay [19]
for relevant discussion on temperature profiles in convective cells), in which a
change in spatial organization would affect the temperature difference ðDTÞ, power
ðPexÞ, kinetic energy ðAkeÞ, which could then feed back to the value of the geo-
metric factor. While we did not provide mathematical relationships to express this
feedback in detail, these effects would be reflected in the partial derivatives of
oAke=oPex and oDT=oJex, thereby affecting feedback B.

To sum up, this discussion on dynamics and feedbacks suggests that a state of
maximum power would naturally emerge from the dynamics within a system.
First, a fast, positive feedback enhances free energy generation within the system
through the formation of structured flow. This positive feedback is eventually
balanced by the development of a negative feedback associated with the depletion
of the driving gradient through the enhanced heat transport, so that the dynamics
should be maintained in a steady state near the maximum power limit.

8.5 Implications of Maximum Power for Planetary
Interactions

When we apply maximum power limits to the Earth system, we need to recognize
that essentially all forms of free energy originate directly or indirectly from the
planetary drivers: solar radiation and the cooling of the Earth’s interior. These
maintain the ultimate driving gradients from which free energy is generated, which
is then either dissipated directly, or converted into other forms of free energy and
dissipated subsequently. For instance, heating gradients generated by differences
in the absorption of solar radiation result in the generation of kinetic energy and
associated momentum gradients. These gradients are either dissipated by friction,
or used to dehumidify the atmosphere and lift water vapor to the height at which it
condenses. Subsequently, surface evaporation dissipates the gradient in specific
humidity and falling raindrops dissipate the potential energy. Hence, the dynamics
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of the Earth system can be viewed as an interconnected cascade of energy con-
versions, as illustrated in Fig. 8.6.

The second law and the maximum power limit have five important, broader
implications for the cascades of energy conversions within the Earth system:

Hierarchy of free energy generation and driving gradients. The generation of
different forms of free energy within the Earth system do not take place inde-
pendently, but the free energy and the associated gradients generated by one
process typically form the driving gradient of another process. This connectedness
of the free energy generation terms is shown by the solid lines in Fig. 8.6. For
instance, the gradient dðNhmÞ in radiative exchange at the Earth-space boundary
causes gradients in radiative heating, dðTSÞ, which is in part converted into the
kinetic energy, dðpvÞ, associated with atmospheric motion and gradients in
velocity v. Motion in turn is in part dissipated by friction, that is, kinetic energy
dðpvÞ is converted into heat dðTSÞ, but also performs other types of work, e.g.
lifting dust and moisture or forming waves and currents in the ocean. These
transfer processes generate potential energy, dð/mÞ, out of the kinetic energy of
motion dðpvÞ. As a consequence, the dynamics of free energy are then not simply
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Fig. 8.6 Schematic diagram of the planetary hierarchy of free energy generation, transfer and
dissipation to different forms (solid lines) and associated effects on the driving gradients (dotted
lines). The different layers are associated with different forms of gradients, free energy and
disequilibrium. The associated gradients that express these forms of free energy are shown on the
right, with radiant energy expressed by the number of photons N, and the energy per photon hm
with frequency m, thermal energy by temperature T and entropy S, kinetic energy by momentum p
and velocity v, binding energy by chemical potential l and mass m, potential energy by
geopotential / and mass m, and chemical energy by affinity A and extent of reaction n. After [37]
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formed by generation and dissipation terms, as it is often being done (e.g. in the
form of the Lorenz energy cycle in atmospheric dynamics [23, 24], or as repre-
sented by the simple representation in Eq. 8.9 above), but include transfer terms to
other forms of free energy. These transfer terms of energy play the critical role of
the ‘‘glue’’ that connects processes and that in the end result in the highly complex
and interacting Earth system. The formulation of these dynamics in terms of
driving gradients and resulting forms of free energy provides a clear direction and
causality despite the complexity that is involved.

Interactions and feedbacks to driving gradients at higher levels. When free
energy is generated from a driving gradient, the driving gradient is inevitably
depleted. In the simple example in Sect. 8.2, the generation of motion inevitably
results in a convective heat flux that depletes the temperature gradient (as also
shown in the feedbacks in Fig. 8.5). Consequently, each conversion along the solid
lines shown in Fig. 8.6 is associated with inevitable effects on the driving gradi-
ents, as indicated by the dashed lines in Fig. 8.6, and therefore on the whole chain
of conversions. For instance, when motion is generated by differential radiative
heating, the resulting motion transports heat that accelerates the depletion of the
differential radiative heating. When motion lifts vapor to greater heights and colder
temperatures, it brings vapor to condensation. This dehumidification of the
atmosphere by motion results in the transport of latent heat that reduces the heat
available for driving the atmospheric heat engine [25–28]. Hence, each conversion
along the solid lines in Fig. 8.6 results in inevitable interactions between processes
that affect free energy generation by these processes and, ultimately, the exchange
of radiation and entropy with space.

Maximum power limits. The conversions of gradients into different forms of free
energy down the hierarchy shown by the solid lines in Fig. 8.6 is restricted by the
rate by which the gradient is generated in the layer above. At best, all of the
driving gradient can be converted into free energy. For most of the conversions,
however, free energy can either be dissipated directly or converted into another
form of free energy further down the layers and dissipated subsequently. These two
‘‘options’’ for the fate of the free energy imply maximum power limits akin to the
one shown in Sect. 8.2 in which the direct dissipation is associated with radiative
transfer ðJrÞ, while the conversion to free energy and its subsequent dissipation is
associated with Pex and D, respectively. Consequently, each of the free energy
conversions down from the planetary driver involves some direct dissipation, so
that less free energy can be generated with each additional conversion.

What this then implies is that because of these limits, abiotic processes cannot
generate substantial amounts of chemical free energy (dðAiniÞ and dðAjnjÞ in
Fig. 8.6) that could transform the chemical composition of the atmosphere. In
contrast, photosynthetic life avoids these dissipative losses by generating chemical
free energy (dðAbnbÞ in Fig. 8.6) directly by exploiting dðNhmÞ by photochemistry.
This insight is consistent with the common attribution of the chemical disequi-
librium in the Earth’s atmosphere to the presence of abundant life [29, 30]. By
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formulating biotic activity in such thermodynamic terms, one may also explore
maximum power limits in biochemical processes [31] and the biosphere [32, 33].

Maximization by dissipative structures. Maximization of the different rates of
free energy conversions can take place by developing structures that are able to
reduce the extent of internal friction and dissipation. While the maximum power
limit is given by the constraints imposed by the driving gradient, this limit can
only be achieved by adjustments of the dynamics associated with the generated
form of free energy. This possibility of the flow to adjust its level of frictional
dissipation was demonstrated in Sect. 8.3 for convective flow. The widespread
presence of similar, reproducible structures, such as convection cells, waves or
fractal networks in Earth system processes can be seen as the manifestation of
maximization through structure at different spatial and temporal scales. This
interpretation of dissipative structures as the means to achieve the maximum
power limit provides a new and broader basis to link previous work along similar
lines (e.g. Prigogine’s ‘‘dissipative structures’’ [34], Bejan’s ‘‘constructal law’’
[35] and the assumption of minimum energy dissipation in fractal networks by
[36]) to the flexible boundary conditions and interactions within the planetary
context.

The Second Law at the planetary scale. Each of the conversions of gradients
among the different layers in Fig. 8.6 obey the second law, which is contained in
the maximum power limit by the assumption that Pex operates at the Carnot limit.
In fact, the dynamics of free energy generation, transfer, and dissipation are such
that they enhance gradient depletion and thereby accelerate processes in the
direction of the second law when evaluated at the scale of the gradient that is at a
higher layer within the hierarchy. In the simple example in Sect. 8.2 this accel-
eration is reflected in the depleted temperature gradient Th � Tc, with a maximum
possible reduction at the maximum power limit to Th � Tc ¼ ðTh; 0 � Tc; 0Þ=2. In
the Earth’s atmosphere, this depletion is reflected in the reduced gradient in the net
radiative exchange at the top of the atmosphere as a result of large-scale atmo-
spheric heat transport (which, in the context of the system described here, would
correspond to spatial differences in Jin � Jout). When we generalize this effect and
apply it to the planetary system, this would imply that the overall dynamics of free
energy generation and transfer among the different layers in Fig. 8.6 are such that
these deplete gradients faster, possibly as fast as possible (cf. ‘‘maximization by
structure’’), so that the whole system should deplete the driving, radiative gradients
by as much as possible. This would then imply that the complex dynamics of the
Earth system would result in the maximum rate of radiative entropy production to
the extent that this is possible by the dynamics associated with free energy
transformations. This latter restriction is important: The heat transport by con-
vection, for instance, could not completely level out the temperature gradient (i.e.
Th � Tc ¼ 0 cannot be achieved by the heat transported by motion in steady state)
but is restricted to states below or at the maximum power limit in steady state (as
discussed above in the context of feedbacks). This perspective of the hierarchy

8 Earth System Dynamics Beyond the Second Law 179



shown in Fig. 8.6 as the implementation of a ‘‘planetary accelerator’’ of the second
law provides a powerful general direction to the complex and seemingly arbitrary
conversions and interactions within the Earth system.

8.6 Summary and Conclusions

In this chapter, we described how the second law of thermodynamics sets the
direction and constraints for the dynamics of the whole Earth system, but also how
the dynamics act to accelerate the second law towards a state of thermodynamic
equilibrium. The sequence of generation, dissipation, and transfer of free energy to
different forms acts to accelerate the progress into the direction imposed by the
second law. At the same time, the second law imposes a fundamental constraint on
the strength of this sequence by setting the maximum power limit. This limit can be
achieved by the internal dynamics of the system through adjustments of the flow
into structures, such as convection cells. The development of such ‘‘dissipative
structures’’ reduces internal dissipation, so that for the same generation rate, more
free energy can be maintained within the system. This results in a positive feedback
that enhances free energy generation and structure formation up to the maximum
power limit. At this limit, the negative feedback resulting from the accelerated
depletion of the driving gradient compensates the positive feedback, resulting in
dynamics that should be maintained near a steady state of maximum power.

When this perspective is applied to the dynamics of the Earth system as a
whole, this results in a hierarchy of free energy generation and transfer, where one
form of generated free energy constitutes the driving gradient for the generation of
another form of free energy. Overall, such a planetary hierarchy of free energy
conversions should represent a ‘‘planetary accelerator’’ towards a state of ther-
modynamic equilibrium and, when maintained at maximum power, reflect the
means to deplete the planetary driving gradients as fast as possible. Since the Earth
exchanges mostly radiation of different entropy with space, this would constitute
the means to overall produce radiative entropy at the maximum possible rate by
these dynamics that involve the conversions and dissipation of the various forms of
free energy.

The thermodynamic limits in this chapter were formulated in terms of maxi-
mum power limits rather than in terms of the proposed principle of Maximum
Entropy Production (MaxEP). The outcomes of both, maximum power or MaxEP,
are essentially indistinguishable in terms of the associated temperature gradients
and heat fluxes when applied to e.g. a convective system. The maximum power
limit has the advantage that it specifically describes the driving gradient and the
dynamical processes involved, which should facilitate the application of this limit
to Earth system processes. In comparison, the use of MaxEP is often ambiguous
because it is not clear which entropy production is to be maximized and why the
dynamics would be such that they result in maximization of entropy production
compared to other aspects that are more directly involved in the dynamics (such as
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forces, energy or power). In this sense, the shift in focus to maximum power
should not be seen as a contradiction to previous work on MaxEP, but rather as a
continuation and sharpening of the application of thermodynamic limits to Earth
system processes. It is quite likely that the maximization of power by systems can
be derived as a form of entropy production maximization that is constrained by
more than the energy- and mass balance, e.g. by the momentum balance [22]
(Dewar and Maritan, Chap. 3). No matter whether power or entropy production is
maximized, the key aspect in the maximization is that the boundary conditions are
not fixed, but react to the dynamics within the system and accelerate the depletion
of the driving gradient. Hence, the maximization reflects the central role of
interactions between the system dynamics and the boundary conditions. The shift
in emphasis from MaxEP to maximum power led to the insight that systems are
able to adjust to maximum power states through the development of structured
flow that reduces frictional dissipation within the system.

This perspective needs to be developed further in the future, as it allows us to
become more specific regarding the conditions under which the maximum power
state is achievable. For instance, the minimum dissipation solution in the example
presented in Sect. 8.3 depends on the total size of the system (i.e. Atot), while the
value of N is constrained to integer values N� 1. Even in this simple example one
can envision situations where the system is too small to be flexible enough to
minimize internal dissipation and therefore being unable to evolve to the maxi-
mum power state. In such a case, the dynamics are too constrained, or, formulated
differently, the degrees of freedom within the system are too low to achieve the
maximum power state.

Overall, the progression presented here from a relatively simple MaxEP view of
the dynamics of Earth system processes to ‘‘maximization of power through
structure’’ within the context of the whole Earth system should provide a much
more specific basis to demonstrate the relevance of thermodynamic limits to the
structure and functioning of the planetary dynamics of the Earth system.
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