
Chapter 7
Control Volume Analysis, Entropy
Balance and the Entropy Production
in Flow Systems

Robert K. Niven and Bernd R. Noack

Abstract This chapter concerns ‘‘control volume analysis’’, the standard engi-
neering tool for the analysis of flow systems, and its application to entropy balance
calculations. Firstly, the principles of control volume analysis are enunciated and
applied to flows of conserved quantities (e.g. mass, momentum, energy) through a
control volume, giving integral (Reynolds transport theorem) and differential
forms of the conservation equations. Several definitions of steady state are dis-
cussed. The concept of ‘‘entropy’’ is then established using Jaynes’ maximum
entropy method, both in general and in equilibrium thermodynamics. The ther-
modynamic entropy then gives the ‘‘entropy production’’ concept. Equations for
the entropy production are then derived for simple, integral and infinitesimal flow
systems. Some technical aspects are examined, including discrete and continuum
representations of volume elements, the effect of radiation, and the analysis of
systems subdivided into compartments. A Reynolds decomposition of the entropy
production equation then reveals an ‘‘entropy production closure problem’’ in
fluctuating dissipative systems: even at steady state, the entropy production based
on mean flow rates and gradients is not necessarily in balance with the outward
entropy fluxes based on mean quantities. Finally, a direct analysis of an infini-
tesimal element by Jaynes’ maximum entropy method yields a theoretical
framework with which to predict the steady state of a flow system. This is cast in
terms of a ‘‘minimum flux potential’’ principle, which reduces, in different cir-
cumstances, to maximum or minimum entropy production (MaxEP or MinEP)
principles. It is hoped that this chapter inspires others to attain a deeper
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understanding and higher technical rigour in the calculation and extremisation of
the entropy production in flow systems of all types.

List of Symbols

Symbol Meaning (SI Units)

Roman Symbols
A Area m2ð Þ
B; b Conserved quantity (½B�); specific (per fluid mass) density ð½B� kg�1Þ
c0 Speed of light in vacuum ms�1ð Þ
f ; F Generic parameter; generic gradient or driving force (various)
FB Bulk flow rate of quantity B ð½B� s�1Þ
gc Specific body force on species c ðN kg�1 ¼ m s�2Þ
G; g Gibbs free energy (J); specific Gibbs free energy ðJ kg�1Þ
D~Gd Change in molar Gibbs free energy of reaction d ðJ mol�1Þ
h Net heat transfer rate by radiation ðJ s�1 m�6Þ
H Generic (information) relative entropy function (-)
Im; Lm Energy radiance ðW m�2 s sr�1Þ; entropy radiance ðW K�1 m�2 s sr�1Þ
jc Molar flux of chemical species c ðmol m�2 s�1Þ
jQ; jE Heat flux; energy flux ðJ m�2 s�1Þ
jS; JS Non-fluid entropy flux; total entropy flux ðJ K�1 m�2 s�1Þ
k; kSB Boltzmann constant ðJ K�1Þ; Stefan-Boltzmann constant ðW m�2 K�4Þ
K Steady-state flow constant ðJ K�1 m�3 s�1Þ
m Fluid mass (kg)
m; n Unit normal to area element; outward unit normal to control surface (-)
Mc Molar mass of chemical species c ðkg mol�1Þ
nc Molar density of chemical species c ðmol kg�1Þ
ni; N Number of elements (balls) in partition i; total number of elements (-)
pi; qi Inferred probability, prior probability (-)
P Absolute pressure (Pa)
R Number of constraints (-)
S; Ŝ; s Thermodynamic entropy ðJ K�1Þ; entropy per volume ðJ K�1m�3Þ;

specific entropy ðJ K�1 kg�1Þ
t Time (s)
T ; Tm Absolute temperature (K); radiative temperature (K)
U; Û; u Internal energy (J); internal energy per volume ðJ m�3Þ; specific

internal energy ðJ kg�1Þ
v Mass-average velocity vector ðm s�1Þ
V Volume ðm�3Þ
x Position vector (m)
Z Partition function (-)
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Greek Symbols
c Degeneracy of state (-)
e Energy level (J)
k; f Lagrangian multiplier (various)
lc Molar chemical potential of species c ðJ mol�1Þ
m Frequency of radiation ðs�1Þ
vcd Stoichiometric coefficient of species c in the dth reaction ðmol mol�1Þ
_̂nc; _̂nd

Rate per volume of species c; of chemical reaction d ðmol m�3 s�1Þ
q Fluid density ðkg m�3Þ
r Amount of thermodynamic entropy produced ðJ K�1Þ
_r; _̂r; _r

^ Rate of thermodynamic entropy production ðJ K�1 s�1Þ; rate per volume
ðJ K�1 m�3 s�1Þ; rate per area ðJ K�1m�2 s�1Þ

s Viscous stress tensor (Pa)
U; / Potential (negative Massieu) function (-); Planck potential ðJ K�1Þ
wc Mass-weighted body force potential on species c ðs�2Þ
X Solid angle (sr)

_x
^ Rate of entropy production on one side of area ðJ K�1m�2 s�1Þ

Superscripts, Subscripts and Indices
� Stationary state
þ;� Final, initial
c; d Chemical species index, chemical reaction index
C; C Thermodynamic path index, set of allowable paths
eq; st Equilibrium system, steady-state system
f ; nf ; tot Fluid, non-fluid, total
m; m Material, radiative
i; j; k; i State indices
in; out In or out of control volume
‘; r Constraint indices
a; b Compartment indices
j Compartment boundary index

Mathematical Symbols

f ; ef ; f 0 Time mean; ensemble mean; fluctuating component

_f ; f̂ ; f
^

; ~f Per unit time; per unit volume; per unit area; per mole

hf i Expectation
fb c; fj jð Þ In-the-mean (product of means) form; mean fluctuating component

7 Control Volume Analysis, Entropy Balance and the Entropy Production 131



7.1 Introduction

Over the past half-century, there has been a growing interest in the analysis of non-
equilibrium systems—which by their nature involve flow(s) of one or more
quantities—using variational (extremum) principles based on the rate of thermo-
dynamic entropy production and/or allied concepts. These include the maximum
dissipation methods first proposed by Helmholtz [1] and Rayleigh [2] and their
extension to the upper bound theory of turbulent fluid mechanics [3–5]; Onsager’s
‘‘minimum dissipation’’ method [6, 7]; Prigogine’s near-equilibrium minimum
entropy production (MinEP) theorem [8, 9]; the far-from-equilibrium maximum
entropy production (MaxEP) principle advocated by Paltridge [10, 11], Ziegler
[12] and others [13–16], the main focus of this book; a MinEP framework for
engineering design advocated particularly by Bejan [17]; a MinEP limit on tran-
sitions between equilibria [18–20] or steady states [21] respectively in thermo-
dynamic or flow systems; and various minimum and maximum power methods
applied to electrical circuits [9, 22–26] and pipe flow networks [27–30]. A broader
category of variational technique consists of the maximum relative entropy
(MaxEnt) method of Jaynes [31–35], which has seen myriad applications in many
fields [36] and has been used in efforts to explain the above MaxEP/MinEP
principles [37–41]. Such a zoo of different variational principles provides con-
siderable scope for confusion, especially given their competing claims and parti-
sanship. The entropy concept itself—and in consequence the thermodynamic
entropy production—also provides a fertile ground for misunderstanding, which
never ceases to yield unexpected traps for beginners and (even) well-established
researchers.

In engineering, the method of control volume analysis is generally regarded as
the most important tool for the analysis of flow systems, underpinning virtually all
vehicular, fluid transport, energy generation, manufacturing, civil infrastructure
and environmental control systems, and whose basic principles apply to all flows
[42–47]. Recently, the authors have been surprised by the lack of appreciation of
the control volume method throughout the sciences, even in those disciplines
which—one would think—might gain the most from their use. For example, both
an ‘‘ecosystem’’ and a ‘‘soil’’ are control volumes, which experience various
material and energy flows (inputs and outputs) through their boundaries, and which
undergo various internal processes. Their mathematical modelling therefore
requires careful control volume analysis. Indeed, although not commonly calcu-
lated by engineers, the concept of entropy production itself arises from a control
volume analysis of a dissipative system, and can be fruitfully examined from this
perspective.

The aim of this chapter is to clarify the basis of the entropy production concept
of non-equilibrium thermodynamics—and in consequence its extremisation—
using the principles of control volume analysis. In Sect. 7.2, the control volume
method and its main results are presented, and applied to flows of various quan-
tities, for both integral and differential forms. Several definitions of steady state are
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then discussed. In Sect. 7.3.1, we examine the (generic) entropy concept (here
labelled H), which in turn reduces, by a Jaynes’ MaxEnt analysis of an equilibrium
system, to the thermodynamic entropy S (Sect. 7.3.2). Control volume analysis of
the latter (Sect. 7.3.3) enables rigorous definitions of the total thermodynamic
entropy production _r and its local form _̂r. Several special features of the entropy
balance are examined, including discrete and continuum representations, radiative
effects, compartmentalisation and the definition of steady state. In Sect. 7.3.4, a
Reynolds decomposition is used to reveal an ‘‘entropy production closure prob-
lem’’, manifested as a discrepancy between the overall mean and mean-of-prod-
ucts components. Finally, in Sect. 7.4 we analyse an infinitesimal control volume
by Jaynes’ MaxEnt method to directly predict the steady state. This yields a
theoretical framework which reduces to (secondary) MaxEP or MinEP principles
in different circumstances. The main motivation for this chapter is to inspire others
to attain a deeper understanding and higher technical rigour in the calculation and
extremisation of the entropy production in flow systems of all types.

7.2 Justification and Principles of Control Volume
Analysis

Two Descriptions: Historically, two approaches have been developed for the
analysis of flow systems [42–47]:

1. The Lagrangian description, which follows the behaviour of individual parti-
cles (either molecules or infinitesimal fluid elements) as they move, and so
examines individual trajectories within the flow; and

2. The Eulerian description, which examines particular points or regions in space
through which the flow passes, and so considers the flow field.

The Lagrangian approach has attained a high prominence in physics, giving rise to
the field of classical mechanics (e.g. equations of motion, action integrals, principle
of least action, Hamiltonian function, Liouville’s theorem) and the concept of
position-momentum phase space [48]. It also provided the basis of 19th century
statistical physics, including Maxwell’s velocity distribution, Boltzmann’s H-the-
orem and their successors (including modern lattice-Boltzmann methods) [49], and
of 20th century stochastic analyses, such as Markov processes and the Fokker–
Planck and Master equations [50]. For all this prominence, however, Lagrangian
methods impose considerable computational difficulties and are not widely used in
engineering practice, except in specific cases where their use becomes essential
(e.g. early re-entry of spacecraft through rarefied gases). Instead, the vast bulk of
engineering fluid flow, heat and mass transfer calculations are conducted using the
Eulerian description, necessitating a control volume analysis.

Control Volume Analysis: We now introduce the engineering concept of a
control volume (CV), a geometric region through which one or more fluid(s) can
flow, surrounded by a well-defined boundary or control surface (CS). The control
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volume is assumed to be embedded within a surrounding environment (or ‘‘rest of
the universe’’) which maintains the flow(s). We also require the concept of a fluid
volume (FV) (in some references a material volume [42] or system [45, 47]), an
identifiable body of fluid particles (or differential ‘‘fluid elements’’) which moves
with time, bounded by its fluid surface (FS). We therefore analyse the motion of a
fluid volume through a control volume.

Consider the simple fixed, non-deforming control volume shown in Fig. 7.1a,
which experiences a discrete set of time-varying flow rate(s) across its control
surface, and may also undergo various time-varying rate processes within its
volume. We also consider the fluid volume coincident with the control volume at
time t; which migrates downstream to a different position at time t þ dt. For each
conserved quantity B (e.g. mass, energy, momentum), the rates of change of B
within the fluid and control volumes are connected by the conservation equation
[42–47]:

DBFVðtÞ
Dt

¼ oBCV

ot
þFout

B;f �Fin
B;f ð7:1Þ

where DBFVðtÞ
�

Dt is the substantial, material or total derivative of B; denoting its
rate of change in motion with the fluid; oBCV=ot is the rate of change of B within
the control volume1; and Fout

B;f and Fin
B;f are respectively the outward and inward

flow rates of B due to fluid flow through the control surface.2 In (7.1), the flow
rates only refer to fluid-borne flows; all other flows of B are accounted within the
substantial derivative DBFVðtÞ=Dt. Note the ‘‘out—in’’ form of (7.1): in many texts
it is written in the opposite sense (often in different notation):

(a) (b)

Fig. 7.1 Example control volumes for the analysis of a simple (flow rate) and b integral (vector
flux) flow systems, showing representative fluid and non-fluid flow parameters

1 Strictly, for a fixed and non-deforming control volume, this should be written dBCV=dt. The
partial derivative is adopted to avoid confusion with some authors’ use of dBCV=dt to denote
the substantial derivative, and for consistency with broader applications to moving control
volumes.
2 In engineering, it is standard practice to designate flow rates by an overdot, here _B. In
deference to the different meaning of the overdot in physics, to signify a rate of production
within a system, FB is used herein for a bulk flow rate of B.
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oBCV

ot
¼

DBFVðtÞ
Dt

þFin
B;f �Fout

B;f ð7:2Þ

but the meaning is identical. If we understand the processes by which B changes
within its fluid volume (both internal and external), their rate of change can be
equated to DBFVðtÞ=Dt; yielding an overall balance equation for B.

Now consider the more complicated geometry of Fig. 7.1b, in which the flow of
B is represented by its time-varying fluid-borne flux qbv (measured in SI units of
½B� m�2s�1) through the control surface, where qðx; tÞ is the fluid density, bðx; tÞ is
the specific (per unit fluid mass) density of B and vðx; tÞ is the local (mass-average)
velocity, in which x denotes position and t time. The B balance equation becomes:

DBFVðtÞ
Dt

¼ oBCV

ot
þ
ZZ

�
CS

qbv � ndA ð7:3Þ

where nðx 2 CSÞ is the unit normal to the control surface (positive outwards), A is

the surface area and
ZZ

�
CS

denotes integration around the control surface. Expressing

BCV ¼
ZZZ

CV
qbdV ; where V is the volume, (7.3) reduces to [42–47]:

DBFVðtÞ
Dt

¼ o

ot

ZZZ

CV

qbdV þ
ZZ

�
CS

qbv � ndA

ð7:4Þ

Equation (7.4) is known as Reynolds’ transport theorem.
Since the control volume used here is stationary and non-deforming, the partial

derivative in (7.4) can be brought inside the integral. Furthermore, from Gauss’

divergence theorem,
ZZ

�
CS

qbv � ndA ¼
ZZZ

CV
r � ðqbvÞdV , so (7.4) can be written:

DBFVðtÞ
Dt

¼
ZZZ

CV

o

ot
qbþr � ðqbvÞ

� �

dV ð7:5Þ

Also, by integration over mass elements dm ¼ qdV of the fluid mass M [46]:

DBFVðtÞ
Dt

¼ D

Dt

ZZZ

FVðtÞ

qbdV ¼ D

Dt

Z

M

bdm ¼
Z

M

Db

Dt
dm ¼

ZZZ

FVðtÞ

q
Db

Dt
dV ð7:6Þ

using the local substantial derivative Db=Dt ¼ ob=ot þ v � rb.
Equations (7.5)–(7.6) are valid for fluid and control volumes of any size,

including infinitesimal volumes dV . It is therefore permissible to equate their
integrands, assuming coincident fluid and control volumes in the infinitesimal
limit, to give a differential conservation equation for each element dV in the fluid
[46, 51]:
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q
Db

Dt
¼ o

ot
qbþr � ðqbvÞ

ð7:7Þ

The left-hand term can be further equated to the sum of rates of change of qb in the
infinitesimal fluid volume, due to internal and external processes, giving a local
balance equation for B. As with all local formulations, (7.7) employs the contin-
uum assumption, in which the system is assumed much larger than the molecular
scale, so that its behaviour can be considered continuous even in the infinitesimal
limit [42]. Equations (7.4) and (7.7) represent two long-standing traditions of fluid
mechanics, integral (global) and local conservation laws, for the analysis of flow
systems.

The particular forms of (7.7) for seven physical quantities are listed in
Table 7.1. Here ‘‘�’’ is the vector scalar product, ‘‘:’’ is the tensor scalar product, >
is a vector or tensor transpose, ½d; e� are the Kronecker delta and third-order

permutation tensors; qc; nc;Mc; jc;
_̂nc

h i

are respectively the mass density, molar

density (molality), molar mass, molar flux and molar rate of production of species
c; ½P; s;w� are the pressure, stress tensor (positive for compression) and mass-
weighted potential; ½gc;wc� are the specific body force and potential on species c;

and e; eM; u; jQ

� �

are the specific total energy, specific kinetic ? potential energy,
specific internal energy and heat flux. All fluxes jQ and jc are measured relative to
the local mass-average fluid velocity v. The listed equations are valid for com-
pressible flow under fairly broad assumptions, assuming conservative body forces

Table 7.1 Seven differential balance equations (7.7) for compressible flow (adapted after [51–53])

Property B b Balance equation (differential form)

Fluid mass 1
0 ¼ o

ot
qþr � ðqvÞ

Species moles Nc
m ¼ nc q

Dnc

Dt
¼ o

ot
qnc þr � ðqncvÞ ¼ �r � jc þ _̂nc

Linear momentum v
q

Dv

Dt
¼ o

ot
ðqvÞ þ r � ðqvvTÞ ¼ �rP�r � sþ

X

c
qcgc

Angular
momentum

x� v
q

D

Dt
ðx� vÞ ¼ o

ot
qðx� vÞ þ r � qvðx� vÞ

¼ �r � ðx� PdÞT �r � ðx� sÞT þ
P

cðx� qcgcÞ � e : s

Total energy e ¼ eM þ u
q

De

Dt
¼ o

ot
ðqeÞ þ r � ðqevÞ

¼ �r � jQ �r � ðPvÞ � r � ðs � vÞ �
P

c Mcr � ðwcjcÞ
Kinetic ? potential

energy
eM ¼ 1

2 jvj
2 þ w q

DeM

Dt
¼ o

ot
ðqeMÞ þ r � ðqeMvÞ

¼ �v � rP� v � ðr � sÞ �
P

c Mcwcr � jc

Internal energy u
q

Du

Dt
¼ o

ot
ðquÞ þ r � ðquvÞ

¼ �r � jQ � Pr � v� s : rv�
P

c Mcjc � rwc

Assumptions and relations:
(i) qc ¼ qncMc;

P

c qcvc ¼ qv;
P

c ncMc ¼ 1;
P

c ncMcvc ¼ v;
P

c jcMc ¼ 0 and
jc ¼ qncðvc � vÞ.

(ii) _̂nc ¼
P

d vcd
_̂nd and

P

c vcd ¼ 0. (iii) gc ¼ �rwc; qw ¼
P

c qcwc and
P

c wcvcd ¼ 0.
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gc ¼ �rwc on each species c. Other formulations can be derived for different
circumstances [52, 54, 55].

Steady State: We now define oBCV=ot ¼ 0 as the stationary or steady state of a
control volume. From (7.4) to (7.5):

oBCV

ot
¼ 0 )

DBFVðtÞ
Dt

�

�

�

�

st

¼
ZZ

�
CS

qbv � ndA ¼
ZZZ

CV

r � ðqbvÞ dV ð7:8Þ

where st denotes steady state. We see that at steady state, the internal change of
quantity B within the fluid volume is exactly balanced by its flux out of the control
surface, and hence its integrated divergence. Similarly, using (7.7) and the defi-
nition of divergence [44, 56], we can define the steady state for an infinitesimal
element:

o

ot
qb ¼ 0 ) q

Db

Dt

�

�

�

�

st

¼ lim
CV!0

ZZ

�
CS

qbv � ndA

ZZZ

CV

dV
¼ r � ðqbvÞ ð7:9Þ

Since both vðx; tÞ and BFVðtÞ (or bðx; tÞ) are time-dependent, a steady state can
involve time-varying fluxes, provided these are exactly balanced by time-varying
internal changes. In practice, however, any variability in the fluxes and/or rates will
render (7.8)–(7.9) almost impossible to achieve (we could call them a strict steady
state). It is therefore common in fluid mechanics (but not stated explicitly) to
consider the mean steady state ohBiCV=ot ¼ 0; where hBi denotes some mean
(stationary first central moment) of B; referred to as a Reynolds average [46, 51, 57,

58]. Usually, hBi is equated with the time mean B ¼ limT!1 T�1
R T

0 Bdt. In some

situations, the ensemble mean ~B ¼ limK!1 K�1
PK

k¼1 BðkÞ is used, where BðkÞ is the
kth realisation of B [46]. For the latter, it is usual practice to invoke the ergodic
hypothesis, in which the ensemble mean is assumed equivalent to the time mean;
this assumption is correct only for certain types of flows. From (7.4) and (7.7):

o Bh iCV

ot
¼ 0)

D Bh iFVðtÞ
Dt

¼
ZZ

�
CS

qbvh i � ndA ¼
ZZZ

CV

r � qbvh idV ð7:10Þ

o

ot
qbh i ¼ 0) q

Db

Dt

� 	

¼ r � qbvh i ð7:11Þ

These give much more useful definitions than (7.8)–(7.9).3 Importantly, since

hBiCV ¼
ZZZ

CV
hqbidV for a stationary control volume, the global and local mean

3 In consequence, the mean steady state need not be steady! Indeed the Fluctuation Theorem
provides a strong argument that, far from equilibrium, it cannot be steady [40].

7 Control Volume Analysis, Entropy Balance and the Entropy Production 137



steady states (7.10)–(7.11) are equivalent, provided both are measured over long
time periods. In contrast, the global and local strict steady states (7.8)–(7.9) are not
equivalent, except for time-invariant fluxes and internal processes at both global
and infinitesimal scales.

Throughout this chapter, the term equilibrium is used exclusively in its ther-
modynamic sense, to indicate the stationary state of a thermodynamic system,
while steady state (usually qualified) refers to the stationary state of a control
volume.

Further Remarks: Control volume analysis thus provides a rigorous frame-
work for the analysis of flow systems, but like all mathematical methods, it holds
some traps for beginners. Firstly, it is essential that the control volume and its
control surface be clearly defined. This almost always requires a schematic dia-
gram. Different control volumes represent different systems (with different steady
states) and in general will yield different results. Where is the control surface?
Which flows actually pass through the boundary and so must be included? Which
flows are internal and so can be neglected? This study also considers only sta-
tionary control volumes. A moving and/or deforming control volume may be
advantageous in some circumstances, but requires additional care [42–44, 47].
Finally, if a control volume is compartmentalised into sub-volumes, each of which
is analysed by balance equations (7.1) or (7.4), the geometry of each compartment
must be clearly defined, so that all flows can be identified and attributed to the
correct compartments and external or internal boundaries.

7.3 Concept of Entropy

7.3.1 Generic (Information) Entropy

We now turn to the entropy concept, which causes many difficulties but in actual
fact is very simple. While many justifications are available, arguably the most
profound is the combinatorial basis expounded by Boltzmann and Planck [59, 60],
in which we seek the most probable state of a probabilistic system. The system is
typically represented by an allocation scheme in which N entities (balls) are dis-
tributed amongst I categories (boxes), forming individual microstates or config-
urations of the system. These are then grouped into observable macrostates or
realizations of the system, specified by the number of balls ni in each ith box. For
distinguishable balls and boxes, the probability of a specified realization is given
by the multinomial distribution:

P ¼ Probðn1; . . .; nI jN; q1; . . .; qIÞ ¼ N!
Y

I

i¼1

qni
i

ni!
ð7:12Þ
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where qi is the prior or source probability of a ball in the ith box or, in other words,
its assigned probability before observation. Seeking the maximum of P we rec-
ognise (as did Boltzmann [59]) that it is easier to maximise lnP ¼ ln N!þ
PI

i¼1ðni ln qi � ln ni!Þ. Introducing the Stirling approximation ln N! � N ln N � N
in the asymptotic limit N !1 (or alternatively the Sanov [61] theorem), with
some rearrangement we obtain:

H ¼ lim
N!1

1
N

lnP ¼ �
X

I

i¼1

pi ln
pi

qi
ð7:13Þ

where we take pi ¼ limN!1 ni=N as the actual (observed or a posteriori) proba-
bility of a ball in the ith box. The function H is referred to as the relative entropy
or (negative) Kullback–Leibler function [62]. For equal priors qi ¼ I�1; this
simplifies to the Shannon entropy [63]:

lim
N!1

1
N

lnPequal qi ffi HSh ¼ �
X

I

i¼1

pi ln pi ð7:14Þ

modulo a constant. Provided the system is indeed multinomial (7.12), maximising
the relative entropy (7.13) (or Shannon entropy (7.14) for equal qi), subject to any
constraints, gives the most asymptotically probable realization of the system.

Adopting this probabilistic (or combinatorial) basis of entropy, we see that
Jaynes’ MaxEnt method [31–33] can be applied to any probabilistic system, not
just in thermodynamics. For maximisation, it is necessary to incorporate the
normalisation constraint and (usually) R moment constraints, respectively:

X

I

i¼1

pi ¼ 1; and
X

I

i¼1

pifri ¼ hfri; r ¼ 1; . . .;R; ð7:15Þ

where fri is the ith value of property fr and hfri is the expectation of fri. Applying
the calculus of variations, we write the Lagrangian:

L ¼ �
X

I

i¼1

pi ln
pi

qi
� k0

X

I

i¼1

pi � 1

 !

�
X

R

r¼1

kr

X

I

i¼1

pifri � hfri
 !

ð7:16Þ

where kr is the Lagrangian multiplier for the rth constraint. Maximising (7.16)
then gives the most probable realization and maximum relative entropy [31–33]:

p�i ¼
qi

Z
exp �

X

R

r¼1

krfri

 !

; with Z ¼ ek0 ¼
X

I

i¼1

qi exp �
X

R

r¼1

krfri

 !

ð7:17Þ

H� ¼ ln Z þ
X

R

r¼1

kr frh i ¼ �Uþ
X

R

r¼1

kr frh i ð7:18Þ

7 Control Volume Analysis, Entropy Balance and the Entropy Production 139



where * denotes the inferred state, Z is the partition function and U ¼ � ln Z is the
potential (negative Massieu) function. By further analysis of first and second
derivatives under this generic framework, it can be shown that H�ðhf1i; . . .; hfRiÞ
and Uðk1; . . .; kRÞ are Legendre transforms [31–33].

A caveat to the foregoing analysis is that the MaxEnt method is not a method of
deductive reasoning, but should instead be viewed as a method of probabilistic
inference [31, 33, 39–41, 64]. The distribution inferred by MaxEnt is not neces-
sarily the ‘‘most correct’’ representation, but simply the one which is most prob-
able given the imposed choices of constraints, prior probabilities, state space and
the relative entropy function itself. If these assumptions are incomplete or incor-
rect, the discrepancy will be incorporated in the resulting model. Furthermore,
there may be dynamical restrictions which prevent a system from attaining its most
probable state. Such phenomenology (metastable states, supersaturated solutions,
reaction kinetics, etc.) is well-known in equilibrium thermodynamics and, if
necessary, can be handled by the incorporation of additional constraints, restric-
tions to the state space or additional theoretical apparatus.

7.3.2 Thermodynamic Entropy

The thermodynamic entropy S can now be interpreted as a special case of the
generic entropy H, for a physical system constrained by its contents (usually
expressed by mean extensive variables). Consider a container of N interacting
molecules, for which it is infeasible to examine the allocation of individual
molecules to energetic or other states. We therefore consider the canonical
ensemble of all possible configurations of the system [65–70], in which replicas of
the system are allocated to a coupled bivariate classification scheme according to
their energy eij and volume Vij; where i and j respectively index the discrete energy
and volume states of the ensemble. This is illustrated schematically in Fig. 7.2.
The probabilities pij of the ijth energy-volume state of the ensemble are then
considered to be constrained by normalisation (7.15), the mean internal energy
U ¼

P

ij pijeij and mean volume V ¼
P

ij pijVij. Adopting the bivariate relative

entropy H ¼ �
P

ij pij ln pij

�

qij


 �

, the Lagrangian is:
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Fig. 7.2 Allocation scheme for the canonical ensemble of equilibrium thermodynamics
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L ¼ �
X

ij

pij ln
pij

qij
� k0

X

ij

pij � 1

 !

� kU

X

ij

pijeij � U

 !

� kV

X

ij

pijVij � V

 !

ð7:19Þ

where kU and kV are Lagrangian multipliers for U and V . Maximisation then
yields the most probable realization and maximum relative entropy:

p�ij ¼
qij

Z
exp �kUeij � kVVij


 �

; with Z ¼
X

ij

qij exp �kUeij � kV Vij


 �

ð7:20Þ

H� ¼ ln Z þ kUU þ kV V ¼ �Uþ kUU þ kV V ð7:21Þ

These are interpreted to represent the inferred or equilibrium state of the ensemble
[31]. From the empirical body of thermodynamics, or from monotonic
considerations, we recognise kU ¼ 1=kT and kV ¼ P=kT , where k is Boltzmann’s
constant, T is absolute temperature and P is absolute pressure, while qij ¼
cij=
P

ij cij is commonly expressed in terms of the degeneracy cij of the ijth energy-

volume level. Furthermore, we can identify S ¼ kH� as the thermodynamic entropy
at equilibrium, while /G ¼ kU ¼ G=T is the Planck potential,4 wherein G is the
Gibbs free energy. Equations (7.20)–(7.21) thus provide the core equations of
equilibrium thermodynamics [31–35, 69]:

p�ij ¼
cij

Ẑ
exp

�eij � PVij

kT

� 


; with Ẑ ¼ Z
X

ij

cij ¼
X

ij

cij exp
�eij � PVij

kT

� 


ð7:22Þ

S ¼ k ln Z þ U

T
þ PV

T
¼ �/G þ

U

T
þ PV

T
ð7:23Þ

Further analysis using generalised heat and work concepts [31] gives the
differential:

d/G ¼ �dSþ 1
T

dU þ P

T
dV

ð7:24Þ

Equations (7.22)–(7.24) in turn give a set of derivative relations and Legendre
duality between S and /G [31–36, 69]. Many other formulations are available for
different thermodynamic ensembles subject to various constraints [35, 36, 67].

We can now interpret the physical meaning of the potential /G [39, 69, 72, 73].
Consider a ‘‘universe’’ divided into a system of interest and an external environ-
ment. From the second law (7.25), an incremental increase in entropy of the
universe can be expressed as a sum of changes within and external to the system

4 Strictly, Planck used the negative of /G as his potential function [71, 72].
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dSuniv ¼ dSþ dSext 
 0. Although dSext cannot be measured directly, if it alters the
system in any way, it must produce a change in its constraints and/or multipliers,
hence dSext ¼ � 1

T dU � P
T dV; where the negative sign accounts for positive dSext.

Substituting in (7.20), we identify dSuniv ¼ �d/G. In consequence, if a thermo-
dynamic system can interact with an external environment, its equilibrium state is
determined by minimising its Planck potential /G; thereby maximising the entropy
of the universe, rather than by maximising the entropy of the system S alone. For
constant T ; this reduces to the well-known principle of minimum Gibbs free
energy [74].

Minimising /G requires integration D/G ¼
R

C2C d/G over some path C;
selected from the set of paths C with a specified starting point /G;0 and an endpoint
at the minimum potential /G;min. Since /G is a state function, its difference D/G ¼
/G;min � /G;0 is path-independent, but there may be restrictions on the set of
allowable paths C (e.g., only adiabatic paths or only isobaric paths), causing further
restrictions on the minimum potential /G;min, or the set of such minima, which can
be accessed by the system. Denoting dr ¼ �ðdU þ PdVÞ=T ¼ �dH=T as the
increment of entropy produced by a system, where H is the enthalpy, (7.20)
reduces to d/G ¼ �dS� dr. Since S and r are also state functions, the step
change can be written as D/G ¼ �DS� Dr. Minimisation of /G to give D/G\0
can therefore occur in three ways:

1. By a coupled increase in both S and r along path C to give D/G\0, hence with
DS [ 0 and Dr[ 0;

2. By a coupled increase in S and decrease in r along C; hence DS [ 0 and
Dr\0; provided that DS [ jDrj[ 0 to ensure D/G\0; or

3. By a couple decrease in S and increase in r along C; hence DS\0 and Dr [ 0;
provided that Dr[ jDSj[ 0 to ensure D/G\0.

The choice of scenario is governed by the set of allowable paths C, which controls
the flow of various quantities (in this example, heat) through the control surface
and hence the competition between dS and dr. The first and third scenarios can be
interpreted as a constrained maximisation of r (hence minimisation of H=T) over
the set of paths C, while the second can be viewed as a constrained minimisation.
Similarly, the first and second scenarios also involve constrained maximisation of
S over C, while the third involves its minimisation. This three-fold structure is well
established in equilibrium thermodynamics, although is usually presented in terms
of the Gibbs free energy rather than the Planck potential [68]. Rather than adopt
separate extremum principles for different processes, and to correctly account for
changes in entropy within and outside the system, the three scenarios are unified
by an overarching minimum Planck potential principle [72, 73], which at constant
T reduces, as noted, to that of minimum Gibbs free energy [74].

As will be shown, the above thermodynamically-inspired principle can be
established—using the MaxEnt framework—in other, quite different kinds of
systems.
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7.3.3 Entropy Balance and Entropy Production

Entropy Balance Equations: With the entropy concept in hand, we can now
consider the thermodynamic entropy balance in a control volume, such as that
shown in Fig. 7.1a. Our first difficulty is that S is not conserved. However, from
the second law of thermodynamics, within any closed physical system:

dS
 0 ð7:25Þ

where dS implies a mean differential over a minimum time scale, to allow for brief
excursions in the opposite sense. So, despite not being conserved, we can say that
S is preserved: once created, it cannot be destroyed. In consequence, for an
entropically open system—which can exchange entropy with its external envi-
ronment—(7.1) provides a control volume balance (‘‘law of preservation’’) for S:

DSFVðtÞ
Dt

¼ oSCV

ot
þFout

S;f �Fin
S;f ð7:26Þ

where Fout
S;f and Fin

S;f are the outflow and inflow rates of S due to fluid flow through
the control surface. The substantial derivative can also be separated, by the de
Donder technique, into externally- and internally-driven rates of change of entropy
within the fluid volume, giving the overall entropy balance equation (c.f. [75]):

DSFVðtÞ
Dt

¼ oSCV

ot
þFout

S;f �Fin
S;f ¼

DeSFVðtÞ
Dt

þ
DiSFVðtÞ

Dt ð7:27Þ

where DeSFVðtÞ=Dt represents the rate of change of entropy in the fluid volume due
to non-fluid flows (positive inwards), i.e.

DeSFVðtÞ
Dt

¼Fin
S;nf �Fout

S;nf ð7:28Þ

Similarly, DiSFVðtÞ=Dt denotes the (rate of) entropy production in the fluid volume
due to internal processes, henceforth labelled _r. The latter serves as a book-
keeping term in (7.27), ensuring that the rate of creation of entropy in the fluid
volume satisfies the second law of thermodynamics (7.25):

_r ¼
DiSFVðtÞ

Dt
¼ oSCV

ot
þFout

S;tot �Fin
S;tot 
 0

ð7:29Þ

where FS;tot ¼FS;f þFS;nf is the total entropy flow rate. Thus, by definition, the
rate of entropy production _r cannot be negative, regardless of whether the newly
created entropy is retained in the control volume or exported from it (i.e., inde-
pendent of the sign of the rate of change of S). Equation (7.29) may therefore be
viewed as a powerful manifestation of the second law, applicable to all non-
equilibrium systems.

For the integral control volume of Fig. 7.1b, from (7.4):
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DSFVðtÞ
Dt

¼ o

ot

ZZZ

CV

qsdV þ
ZZ

�
CS

qsv � ndA ð7:30Þ

where s is the specific entropy. From (7.27), this is equal to the internal rate of
entropy production in the fluid volume, _r; plus the external rate of input due to

non-fluid transport processes, �
ZZ

�
FSðtÞ

jS � ndA; where jS is the non-fluid entropy

flux:

DSFVðtÞ
Dt

¼
DiSFVðtÞ

Dt
þ

DeSFVðtÞ
Dt

¼ _r�
ZZ

�
FSðtÞ

jS � ndA ð7:31Þ

Equating (7.30)–(7.31), for coincident fluid and control volumes at time t; gives:

_r ¼
ZZZ

CV

oqs

ot
dV þ

ZZ

�
coincident CS and FSðtÞ

½jS þ qsv� � ndA ¼
DSFVðtÞ

Dt
þ
ZZ

�
FSðtÞ

jS � ndA

ð7:32Þ

Applying (7.6) and Gauss’ theorem then yields:

_r ¼
ZZZ

CV

o

ot
qsþr � JS

� �

dV ¼
ZZZ

FVðtÞ

q
Ds

Dt
þr � jS

� �

dV ð7:33Þ

where JS ¼ jS þ qsv. Finally, subdividing _r ¼
ZZZ

CV
_̂rdV; where _̂r is the (rate of)

entropy production per unit volume, and equating integrands (assuming validity at
all scales) gives the differential entropy balance equation [9, 52, 53, 76]:

_̂r ¼ o

ot
qsþr � JS ¼ q

Ds

Dt
þr � jS
 0

ð7:34Þ

By a scale invariance argument [9], _̂r cannot be negative locally (at least over a
minimum time scale) at any location, since this would continuously destroy
thermodynamic entropy within an identifiable control volume, and so violate the
second law of thermodynamics. This is entirely separate to the rate of change of
the specific entropy s; which can be positive or negative locally, depending on the
sign of the divergence term (i.e. on the local entropy flux out of the element).

Local Entropy Flux and Entropy Production: To reduce (7.34), we seek

functional forms of the non-fluid entropy flux jS and local entropy production _̂r.
For non-radiative processes, the standard approach is to start from the substantial
derivative of the specific form of Gibbs’ relation (7.23)–(7.24) [8, 52, 53, 76]:

Ds

Dt
¼

D/g

Dt
þ 1

T

Du

Dt
þ P

T

Dq�1

Dt
ð7:35Þ
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where /g ¼ g=T is the specific Planck potential and g the specific Gibbs free
energy. This adopts the local equilibrium assumption, where each infinitesimal
element is assumed to be in thermodynamic equilibrium and so can be described
by local intensive variables 1=T ; P=T and flc=Tg; where lc is the molar chemical
potential of species c. Including the work of chemical diffusion g ¼ �

P

c lcnc,
and substituting for the substantial derivatives of specific volume q�1; species
molar densities nc and specific internal energy u (see Table 7.1) gives:

q
Ds

Dt
¼ � 1

T
r � jQ þ

X

c

lc

T
r � jc �

1
T

X

c

Mcjc � rwc �
1
T

s : rv�
X

d

_̂nd D
~Gd

T

ð7:36Þ

This is expressed in terms of the molar rate of the dth reaction _̂nd ¼
P

c vcd
_̂nc ([ 0

if a product) and change in molar Planck potential of the dth reaction, D~/G ¼
Dð~Gd=TÞ ¼

P

c vcd lc=T (\ 0 if spontaneous), where vcd is the stoichiometric
coefficient of species c in the dth reaction. Comparison to (7.34), with some vector
calculus, gives the entropy flux and local entropy production [52, 53]:

jS;m ¼
1
T

� 


jQ �
X

c

lc

T

� �

jc ð7:37Þ

_̂rm ¼ jQ � r
1
T

� 


�
X

c

jc � r
lc

T

� �

þMcrwc

T

� �

� s : rv

T
�
X

d

n̂dD
~Gd

T
ð7:38Þ

These do not include the effect of radiation, examined in a later section, and so are
labelled m to signify the material or thermodynamic component. In generic form,
we identify the entropy flux (7.37) as jS;m ¼

P

r jrkr, a sum of products of fluxes
and conjugate spatial intensive variables selected from jr 2 fjQ; jcg and

kr 2 f1=T ;�lc=Tg, while the entropy production (7.38) is _̂rm ¼
P

r jr � Fr, a sum
of products of all fluxes or rates and their conjugate gradients or driving forces
Fr 2 frð1=TÞ;�rðlc=TÞ;�rwc=T ;�rv=T ;�Dð~Gd=TÞg [8, 9, 52]. Usually, _̂rm

is further simplified—assuming conditions close to thermodynamic equilibrium—
using the linear Onsager phenomenological relations and the Curie postulate, to
give a bilinear sum of thermodynamic forces [52, 53, 77].

Thermodynamic Representations: Before embarking on further analyses, it is
worth scrutinising the physical representation of the bilinear, non-radiative local
entropy production (7.38). As evident, it includes two quite different types of
physical processes:
Type I Processes: Those which can be represented to occur within an infinitesimal
volume element at local spatial equilibrium with respect to the spatial intensive
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variables kr 2 f1=T ;�lc=T;�wc=T ;�v=Tg, as shown in Fig. 7.3a.5 In (7.38),
only the final chemical reaction term falls into this category. In this case, the
volume element need not be in chemical equilibrium, but may be maintained at a
higher Planck potential by its chemical composition. This category also includes
nuclear and subatomic decay processes, not usually represented in (7.38).
Type II Processes: Those which—although formulated in terms of an infinitesimal
volume element—are in fact associated with a physical flux which diminishes (or
acts conjugate to) a spatial gradient. For the rth process, this can be written as
_̂rm;r ¼ jr � rkr. The heat, species mass and momentum transport terms in (7.38) all
fall into this category. These have two possible physical representations:

(a) If each volume element is considered to be in local spatial equilibrium, as
shown in Fig. 7.3a, then no Type II entropy production could occur within an
element, but only between elements. This necessitates analysis of the boundary
entropy production terms, which must be integrated over the internal bound-
aries and/or somehow assigned to each element.

(b) If each volume element need not be in local spatial equilibrium, it can be used
to directly represent both the fluxes and gradients, as shown in Fig. 7.3b.
Arguably, this gives a more physically defensible representation of a non-
equilibrium system—dependent upon the continuum assumption—and for this
reason is almost universally adopted throughout fluid mechanics and heat
transfer analysis (e.g. in differential derivations of the continuity, Navier–
Stokes and energy equations). However, it contradicts the assumption of local
equilibrium, creating a philosophical difficulty in the use of intensive variables
which, strictly, are defined only at equilibrium [69]. Instead, in this repre-
sentation, both a value and gradient in each intensive variable are assigned to
each point within the infinitesimal element.

Representations II(a) and II(b) involve fundamentally different idealisations of
physical transport processes. Their analysis requires different mathematical tools,
respectively a hybrid difference-differential calculus and the usual differential
calculus.

dy

dx

dz rdy

dx

dz

r r
+

r(a) (b)
Fig. 7.3 Infinitesimal
volume elements for a local
spatial equilibrium (Type I
and II(a)) and b continuum
(Type II(b)) representations,
showing the rth flux and its
intensive variables

5 Some authors unite the variables conjugate to the species flux jc into a local electrochemical or
gravichemical potential divided by temperature, �lg

c=T [73].
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To tease out the distinction between Type II(a)–(b) representations, consider an
individual boundary between two infinitesimal elements, as shown in Fig. 7.3a, b.
For Type II(b) elements, there is no discontinuity in the rth intensive variable at
each boundary, and—by continuity—no change in the rth flux, causing no (or an
infinitesimal) change in each non-fluid entropy flux. The fluid-borne entropy flux
qsv is similarly unaffected. In consequence, no (or an infinitesimally small)
entropy production occurs at the boundary. Type II(a) elements, in contrast,
exhibit a step change Dkr ¼ kþr � k�r in each spatial intensive variable across the
boundary, giving the net entropy production per unit area J K�1m�2s�1


 �

due to
thermodynamic processes at the boundary:

_r
^

m ¼ DðqsÞvþ
X

r

jr Dkr

" #

�m ¼ ½DðqsÞvþ DjS;m� �m ¼ DJS;m �m
 0 ð7:39Þ

where jr is the flux of the rth conserved quantity, m is the unit normal to the
boundary, DjS;m is the net non-fluid, non-radiative entropy flux and DJS;m also
includes the net fluid-borne entropy flux (all positive in the direction Dkr [ 0). In
(7.39), it is assumed the fluid-borne entropy flux undergoes a step change at the
boundary (e.g. due to a discontinuity Dq or Ds caused by a step change in 1=T or
lc=T). No step changes are considered in v or jr, being fluxes of conserved
quantities. The non-radiative entropy production along a boundary C is then

_rC;m ¼
ZZ

C
_r
^

m dA.

Often it is desirable to account separately for each side of the boundary, leading
to the absolute or half-boundary entropy production per unit area due to outward
flow from a specified face of a volume element:

_x
^

m ¼ qsvþ
X

r

jr kr

" #

� n ¼ ½qsvþ jS;m� � n ¼ JS;m � n? 0 ð7:40Þ

where n is the outward unit normal. As expected, this depends on the material

entropy flux JS;m at the boundary. From (7.39), _r
^

m ¼ _x
^þ

m � _x
^�

m . The total entropy
production along C is thus given by the two-sided surface integral

_rC;m ¼
ZZ

Cþ
_x
^þ

m dA�
ZZ

C�
_x
^�

m dA ¼
ZZ

�
C

_x
^

m dA ¼
ZZ

�
C

JS;m � ndA. Applying

Gauss’ divergence theorem to the surface C enclosing the ‘‘internal volume’’ Co,

we obtain the interesting result that _rC;m ¼
ZZZ

Co
r � JS;m dV 
 0, even though

ZZZ

Co
dV ¼ 0.

From the second law (7.25), each net boundary entropy production (7.39) is
non-negative (over a minimum observation time). In contrast, the half-boundary
terms (7.40) can be of arbitrary sign, so long as their difference across each
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internal boundary is non-negative.6 As a test of consistency, integration of (7.40)

over the external control surface yields the net entropy flow rate
ZZ

�
CS

JS;m � ndA

contained in (7.32).
Equations (7.39)–(7.40) are used in later sections. They cannot, however, be

reconciled in a straightforward manner to the differential equation in (7.34), which
corresponds strictly to the Type II(b) or continuum representation.

Effect of Radiation: An important category of processes, omitted from the
standard analysis (7.36)–(7.38)—and indeed from most references on non-equi-
librium thermodynamics—is the entropy production associated with electromag-
netic radiation. Its major principles were however enunciated by Planck [60, 71]
over a century ago, and further developed over the past century (e.g. [78–86]).
However, there still remains widespread confusion in its calculation, over choices
of symbols and preferred parameters, and even in the most appropriate theoretical
approach.7 Many renowned texts on radiation omit the topic entirely (e.g. [87]).

Firstly, the energy of unpolarised electromagnetic radiation per unit frequency
travelling through an infinitesimal area (of unit normal m) and infinitesimal solid
angle per unit time is represented by its specific energy intensity or energy radi-
ance Im (SI units: W m�2s sr�1). This is a function of the direction m. The radi-
ative energy flux or energy irradiance W m�2


 �

of radiation striking an
infinitesimal area with unit normal n is then obtained by integration over all
incident directions and the spectrum [71]:

jE;m ¼ n

Z

1

0

ZZ

XðmÞ

ImðmÞ m � n dXðmÞdm ð7:41Þ

where X is the solid angle (in steradians) and m is the frequency. Most authors
employ m � n ¼ cos h in (7.41), with h a function of m. Here, (7.41) is integrated
over a sphere XðmÞ 2 ½0; 4p� to account for travelling radiation from all directions
(the net flux); for radiation incident on a solid surface, (7.41) is integrated over a
hemisphere XðmÞ 2 ½0; 2p� (the absolute flux). For polarised radiation, the two
orthogonal components must be examined separately [84]; an even more general
description invokes the two-dimensional complex polarisation tensor, involving
conservation of linear and angular momentum as well as energy [88]. Note that
(7.41) describes a reversible energy flux; this only becomes irreversible in the
event of changes in radiance, which necessarily require the interaction of radiation
and matter [84].

Similarly, we can consider the specific entropy intensity or entropy radiance
Lm W K�1m�2s sr�1

 �

of radiation. This is given by [71, 78, 79, 81–85]:

6 In this respect, the half-boundary entropy production terms _x
^

m are analogous to half-reaction
electrode potentials.
7 For consistency with this chapter, some notational changes are also necessary here.
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LmðmÞ ¼
2km2

c2
0

c2
0ImðmÞ
2�hm3

þ 1

� 


ln
c2

0ImðmÞ
2�hm3

þ 1

� 


� c2
0ImðmÞ
2�hm3

ln
c2

0ImðmÞ
2�hm3

� �

ð7:42Þ

where k is Boltzmann ‘s constant, c0 is the speed of light in a vacuum and �h is
Planck’s constant. Equation (7.42) can be obtained from the Bose–Einstein entropy
function, needed to describe electromagnetic radiation [60, 71, 78, 79, 89–91], and
is a property of the radiation itself, independent of the entropy produced by its
conversion to heat. A different (Fermi–Dirac) relation applies to neutrinos [92]. The
radiative entropy flux or entropy irradiance W K�1 m�2


 �

is then given by:

jS;m ¼ n

Z

1

0

ZZ

XðmÞ

LmðmÞ m � n dXðmÞdm ð7:43Þ

For unpolarised radiation emitted from a black-body of temperature T , the specific
energy intensity is given by the well-known Planck equation [60, 71]:

Im ¼ 2Bm ¼
2�hm3

c2
0

1
expð�hm=kTÞ � 1

ð7:44Þ

whereupon (7.43) reduces to jjS;mj ¼ 4
3 kSBT3, where kSB is the Stefan-Boltzmann

constant [81, 82].
We can now construct the local entropy production as the sum of non-radiative

(material) and radiative components [81–86]:

_̂r ¼ _̂rm þ _̂rm ð7:45Þ

From (7.34), applicable equally to either component:

_̂rm ¼
o

ot
qsþr � JS;m ¼

o

ot
qsþr � jS;m þr � ðqsvÞ ð7:46Þ

_̂rm ¼
o

ot
Ŝm þr � jS;m ð7:47Þ

where Ŝm is the entropy per volume due to radiation. Note that only the radiative
entropy flux jS;m appears in (7.47); the Clausius heating term jE;m=T due to the
radiative energy flux must be incorporated into the thermodynamic entropy flux in
(7.46) [81, 82]. Putting these together, the total local entropy production due to
material processes and radiation is:

_̂r ¼ o

ot
qsþ o

ot
Ŝm þr � ðqsvÞ þ r � jS;m þr � jS;m ð7:48Þ

To reduce (7.48), several approaches have been taken in the literature. Essex
[81, 82] applies a volumetric form of the Gibbs equation (7.23) and total energy
conservation, for flows only of heat, radiation and chemical constituents, to give:
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_̂r ¼ jQ � r
1
T
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�
X

c

jc � r
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( )

� 1
T

o

ot
Ûm þ

o

ot
Ŝm �

r � jE;m

T
þr � jS;m

ð7:49Þ

where Ûm is the energy per volume of radiation, and the braces enclose the material
component. Essex [83] extended this to fluid flows with viscous dissipation.
Alternatively, Callies and Herbert [84] and Goody and Abdou [86] adopt a Gibbs-
like equation for radiation:

dŜm ¼
1
Tm

dÛm ð7:50Þ

where Tm is a radiative temperature, defined based on (7.44) as the temperature of
matter in equilibrium with radiation of frequency m. Non-black-body radiation can
thus exhibit different radiative temperatures at different wavelengths. For heat and
radiative transport only, this leads to [80, 82, 84, 86]:

_̂r ¼ jQ � r
1
T

� 


þ
Z

1

0

ZZ

XðmÞ

1
c0

oIm
ot
þm � rIm

� 


1
TmðmÞ

� 1
T

� 


dXðmÞdm ð7:51Þ

Kröll [80] and Callies and Herbert [84] argue that the integral in (7.51) provides a
bilinear formulation of the radiative entropy production, with the first term in
brackets (the source function) behaving as an extensive variable. Essex [81, 82],
however, disputes this view, since the bilinearity applies to each wavelength and
direction. In any case, further corrections are needed in the event of scattering.

As pointed out by Essex [82], integration of the local radiative entropy pro-
duction (7.48) over a control volume is not straightforward, due to the emission
and absorption of radiation by non-adjacent volume elements. This creates direct,
non-local connections between every element dV , creating a very different control
volume to those usually examined in fluid mechanics. This gives the entropy
production term:

_rheat
m ¼ 1

2

ZZZ

CV

ZZZ

CV

hðx1; x2Þ
1

Tðx2Þ
� 1

Tðx1Þ

� 


dVdV ð7:52Þ

where hðx1; x2Þ is the net rate at which heat from position vector x1 is delivered to
x2 via radiation. Allowing for the loss of energy and entropy radiation from the
control volume then gives:

_rm ¼
1
2

ZZZ

CV

ZZZ

CV

hðx1; x2Þ
1

Tðx2Þ
� 1

Tðx1Þ

� 


dVdV �
ZZZ

CV

fCSðxÞ
TðxÞ dV

þ
ZZ

CS

jS;m � ndA
ð7:53Þ
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where fCSðxÞ is the component of radiative energy from position x which escapes
through the control surface. For a control volume which completely encloses a
planet, all terms in (7.53) and all material terms vanish except the entropy radi-

ation, giving _r ¼
ZZ

CS
jS;m � ndA [81, 84]. On these grounds, Essex [81] argues

against the MaxEP hypothesis of Paltridge [10], on the grounds that the dominant,
radiative entropy production term is missing.

A rather different approach for radiative transfer, involving a minimum entropy
production closure of the radiative energy flux (7.41) and higher-order moments, is
outlined in [93]. Further treatments of entropy production due to radiative
absorption, scattering and other interactions lie beyond the scope of this chapter,
and are discussed in the above-cited works.

Compartmentalisation: For many applications, it is desirable to subdivide a

control volume into K contiguous compartments. From _r ¼
ZZZ

CV
_̂rdV , it might

be assumed that the global entropy production is simply the sum of that in each
compartment. However, this depends on the representation used. For compart-
ments composed of Type II(b) elements, with no intensive variable discontinuities
at their boundaries, this assumption is correct. If, however, the compartments are
composed of Type II(a) elements, it is also necessary to account for the entropy
production due to flows between compartments. In consequence, for purely
material flows:

_rm ¼
X

K
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_ra
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X
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X
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ð7:54Þ

where _ra
m is the material entropy production in the ath compartment, while _r

^ab

m is
the material entropy production per area on the control surface CSab between the
ath and bth compartments (counted only once and for a 6¼ b). In terms of bulk flow
rates:

_rm ¼
X

K

a¼1

_ra
m þ

X

K

a¼2

X

a�1

b¼1

DFab
S;f þ DFab

S;nf ;m

h i

¼
X

K

a¼1

_ra
m þ

X

K

a¼2

X

a�1

b¼1

DFab
S;m ð7:55Þ

where DFab
S;f , DFab

S;nf ;m and DFab
S;m respectively designate the bulk net fluid-borne,

non-fluid (non-radiative) and total thermodynamic entropy flow rates normal to the
ab control surface. If radiative transfer can also take place, (7.54)–(7.55) must be
augmented by the three terms in (7.53), with attention to boundary transitions.
Relations (7.54)–(7.55) do not require steady state; by definition (7.29), each
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measurable entropy production term is independently non-negative and therefore
additive.

Steady State: Since most entropy-producing systems involve fluctuating con-
ditions, a strict steady state (7.8) or (7.9) is not meaningful. We thus consider the
mean steady state ohSiCVot ¼ 0, for which the bulk balance (7.27) gives, in
general:

h _ri ¼
X

j2CS

½hFj
S;f i þ hFj

S;nf i� ¼
X

j2CS

hFj
S;toti

ð7:56Þ

where hFj
S;f i, hFj

S;nf i and hFj
S;toti are respectively the bulk mean fluid-borne,

non-fluid and total entropy flow rates through portion j of the control surface.
Similarly, (7.32)–(7.33) and (7.34) (hence (7.48)) give, respectively:

o Sh iCV

ot
¼ 0) _rh i ¼

ZZ

�
CS

JSh i � ndA ¼
ZZZ

CV

r � JSh idV ð7:57Þ

o

ot
qsh i ¼ 0 ) _̂r

� �

¼ r � Jsh i ¼ r � qsvh i þ r � jSh i ð7:58Þ

From (7.56)–(7.58), the mean steady state is quite special, since under this con-
dition, all of the entropy production is exported from the control volume. This
restricts the total mean entropy flow terms in (7.56)–(7.58) to be nonnegative.
Accordingly, at mean steady state, the total mean entropy production can be
calculated either by integration of the mean of (7.38) over the control volume, or
more directly from the sum (7.56) or integral (7.57) of mean entropy flows through
the control surface.

We therefore see that (7.56)–(7.57) express an internal-external entropy bal-
ance: at mean steady state, the total mean entropy produced within a control
volume will exactly balance the total mean entropy flow out of its external
boundaries. Often this is assumed without proof, but it requires the mean steady
state, and applies only to the total quantities. In the presence of radiation, the
radiative transport terms must be included within these totals.

7.3.4 Reynolds-Averaged Entropy Production
and Closure Problem

We now raise an objection to one feature of previous studies of the MaxEP
principle or hypothesis, as applied to planetary climate and other fluid flow sys-
tems [10, 11, 13–16]. This objection applies only to the material (non-radiative)
component of time-varying, stationary flows, amenable to the Reynolds decom-
position and averaging method [46, 51, 57, 58]. Although not stated explicitly, the
vast majority of such studies do not actually use the mean steady-state entropy
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production h _̂rmi ¼
P

‘hj‘ � F‘i (7.58) or its global form (7.56)–(7.57). Instead,
they invoke a different quantity: the steady-state entropy production in the mean,

_̂rm

� �

¼
P

‘hj‘i � hF‘i, based on products of mean fluxes or rates and their conjugate
mean gradients or forces. These two quantities are not the same. By Reynolds
decomposition of each independent quantity a ¼ hai þ a0, where a0ðx; tÞ is the
time-varying component, subject to the usual averaging rules,8 the difference is:
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ð7:59Þ

Usually the flux and rate terms in (7.59) are linearised using Onsager coefficients
as functions of the forces, giving a sum of quadratic fluctuation terms (see [94,
95]). Depending on its cause, the body force may be strictly steady and so dis-
appear from (7.59). All other terms, however, consist of nonzero nonlinear
products, except under strict steady-state conditions.

In dissipative systems far from equilibrium, the mean fluctuating entropy
production _̂rm

�

�

�

�


 �

(7.59) can be considerably larger—in many cases by orders of

magnitude—than the entropy production in the mean _̂rm

� �

[46, 51, 57, 58]. It is
therefore difficult, a priori, to see why the latter should constitute the objective
function for a variational principle. As shown in Sect. 7.4, however, precisely this
function emerges from a judicious MaxEnt analysis of a non-equilibrium system at
steady state.

We now incorporate fluctuating radiation with mean entropy production h _̂rmi
and mean net entropy flux hjS;mi. Writing jS;m

� �

¼
P

‘hj‘ihk‘i for the material

entropy flux in the mean and jS;m

�

�

�

�


 �

¼
P

‘hj0lk
0
‘i for its mean fluctuation, Reynolds

averaging of the local entropy balance (7.48) yields:

h _̂ri ¼ _̂rm
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þ hjS;mig

ð7:60Þ

with qsvb c ¼ hqihsihvi and 1vj jð Þ ¼ hq0s0ihvi þ hs0v0ihqi þ hq0v0ihsi þ hq0s0v0i. On
integration and application of Gauss’ theorem:

8 Typical Reynolds averaging rules for irreducible parameters a and b are: h1i ¼ 1, hhaii ¼ hai,
haþ bi ¼ hai þ hbi, hahbii ¼ haihbi, ha0i ¼ 0, hoa=oxi ¼ ohai=ox and h

R

adxi ¼
R

haidx [46,
51, 57, 58].
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or, in macroscopic terms:

h _ri ¼ _rmb c þ _rmj jð Þ þ h _rmi ¼
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j2CS
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þ Fj
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þ hFj
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ð7:62Þ

The non-vanishing mean fluctuation terms of the material flows in (7.60)–(7.62)
create many difficulties. Firstly, there is no guarantee—even at steady state—that
the material entropy production in the mean _rmb c will be in balance with the net

outward material entropy flow in the mean
P

j2CS Fj
S;m

j k

. In other words, it is

possible that part of the mean fluctuating component of the material entropy

production _rmj jð Þ is converted into outward entropy flows in the mean Fj
S;m

j k

, or

into the mean radiative flux hFj
S;mi. Alternatively, some of the material entropy

production in the mean _rmb c could be converted into mean fluctuating entropy

flows Fj
S;m

�

�

�

�

�

�

� �

or carried by radiation. It is therefore not possible to claim, without

further proof, that the extremum calculated using one of _rmb c or
P

j2CS Fj
S;m

j k

, or

one such term plus its corresponding radiative term, is equivalent to the extremum
based on the other. Secondly, it is not possible, even in principle, to calculate the
fluctuation terms from the mean quantities, since they contain additional unknown
(and correlated) parameters, unless some other theoretical principles or constitu-
tive relations can be invoked.

These features of fluctuating, dissipative flow systems are well-known in fluid
mechanics, but are here generalised to all non-equilibrium systems with fluid and
non-fluid flows. They can collectively be referred to as the entropy production
closure problem. This problem affects the vast majority of previous studies on
entropy production extremum principles, in which the distinction between in-the-
mean and total mean components is not taken explicitly into account.

7.4 MaxEnt Analysis of Flow Systems

We now close our discussion of control volume analysis and entropy balance by a
direct MaxEnt analysis of a flow system [39–41]. This provides a fundamental
framework for the analysis of non-equilibrium systems—indeed, as fundamental
as thermodynamics itself—yet underpinned by the same generic foundation

154 R. K. Niven and B. R. Noack



provided by Jaynes’ method. The analysis can be applied at any scale, integral or
differential [41]; here we only examine the local scale, in the absence of radiation.

Consider an infinitesimal volume element within a control volume, as shown in
Fig. 7.1b, using the Type II(b) continuum representation. Such a fluid element

experiences instantaneous values of various fluxes and rates j‘;i 2 fjQ; jc; s; _̂ndg. At
the mean steady state, these are constrained by their mean values hj‘i 2 fhjQi; hjci;
hsi; h _̂ndig. We therefore adopt the multivariate relative entropy
Hst ¼ �

P

i pi lnðpi=qiÞ—here termed the flux entropy [39]—as a measure of the
variability or uncertainty in the allocation of fluxes and rates to possible instan-
taneous values. Combining the entropy and constraints gives the Lagrangian:
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� f0

X

i

pi � 1

 !

�
X

‘

f‘ �
X

i

pi j‘;i � hj‘i
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ð7:63Þ

where f0 and f‘ are Lagrangian multipliers for normalisation and the ‘th constraint.
Maximisation yields the most probable realization and maximum flux entropy:
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ð7:64Þ

H�st ¼ ln Zst þ
X

‘

f‘ � hj‘i ¼ �Ust þ
X

‘

f‘ � hj‘i ð7:65Þ

where Zst is the flux partition function and Ust ¼ �f0 can be interpreted as a local
flux potential for non-equilbrium systems, analogous to the Planck potential in
equilibrium thermodynamics. Comparing (7.65) to the local material entropy
production (7.38), we recognise the multipliers as proportional to the mean gra-
dients or forces:
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where K is a positive constant J K�1 m�3 s�1

 �

. Equations (7.64)–(7.65) then give:

p�i ¼
qi

Zst
exp

_̂rm;i

K ð7:67Þ

H�st ¼ �Ust �
_̂rm

� �

K ð7:68Þ

where _̂rm;i ¼
P

‘hF‘i � j‘;i is the local material entropy production for the ith
category or state, based on mean gradients or forces. We therefore obtain a Gibbs-
like relation (7.68) for a steady-state flow system, analogous to (7.23) for equi-
librium systems, which contains the local material entropy production in the mean
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_̂rm

� �

. Further analyses, analogous to those in Sect.3.1, provide a set of derivative
relations and Legendre duality between H�st and Ust [39–41].

Just as in equilibrium thermodynamics (see Sect. 7.3.2), we can interpret the
potential Ust as the state function which is minimised to give the most probable
state of a ‘‘universe’’, consisting of the flow system (control volume) and its
controlling environment. Rewriting (7.68) using generalised heat and work con-
cepts [31]:

dUst ¼ �dH�st �
d _̂rm

� �

K ð7:69Þ

in which each quantity Ust, H�st and _̂rm

� �

is a state function, we again obtain the
step change DUst ¼ �DH�st � D _̂rm

� �

=K, given by integration
R

Cst2Cst
D/st over

some path Cst from a set of allowable paths Cst. We again see that minimisation of
Ust to give DUst\0 can occur in three ways:

1. By a coupled increase in both H�st and _̂rm

� �

along Cst, whence DH�st [ 0 and

D _̂rm

� �

[ 0;

2. By a coupled increase in H�st and decrease in _̂rm

� �

along Cst, such that

DH�st [ jD _̂rm

� �

=Kj[ 0; or

3. By a coupled decrease in H�st and increase in _̂rm

� �

along Cst, such that

D _̂rm

� �

=K[ jDH�stj[ 0.

The first and third scenarios can be interpreted as a constrained maximisation of
the entropy production (MaxEP) in the mean, over the set of paths Cst. In contrast,
the second scenario can be viewed as a constrained minimisation of the entropy
production (MinEP) in the mean, over Cst. Such interpretations do not, however,
represent the whole picture, since they fail to account for changes in the flux
entropy H�st, which can also be interpreted as being maximised in scenarios 1 and 2
and minimised in scenario 3. For maximum generality, the three scenarios can be
united into a minimum flux potential principle which controls the state of an
infinitesimal flow system.

Further treatments of this analysis are available elsewhere [39–41, 96, 97]. An
integral formulation can also be developed, applicable to an entire control volume
at mean steady state [41]. The connection between global and local formulations—
especially a formulation which includes radiation (7.48) or which takes account of
the entropy production closure problem (Sect. 7.3.4)—remains unresolved and
requires further research.

To summarise, the foregoing MaxEnt analysis indicates that there is no uni-
versal MaxEP or MinEP principle applicable to non-equilibrium flow systems.
Instead, such ‘‘principles’’ emerge—in the mean—as subsidiary effects under
particular conditions. This conclusion is supported by convincing experimental
evidence, at least at the integral scale of analysis. This includes inversion of the
Paltridge MaxEP principle for fluid flow in pipes, subject either to constraints on
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the flow rates or the conjugate pressure gradients [27–30]. Analogous extremum
inversions are also observed or suggested by theoretical analyses of plasmas [98,
99], turbulent shear flows [100], Rayleigh-Bénard convection [101], heat or
momentum transfer with advection [102] and flows around particles [103].
According to the present analysis, such phenomena will be governed by a more
general principle involving minimisation of some quantity, related to the flux
potential Ust; the ongoing challenge is to enlarge the underlying theoretical
framework.

7.5 Conclusions

This chapter explores the foundations of the entropy and entropy production
concepts, using the engineering tool of ‘‘control volume analysis’’ for the analysis
of fluid flow systems. Firstly, the principles of control volume analysis are
enunciated and applied to flows of conserved quantities (e.g. mass, momentum,
energy) through a control volume, giving integral (Reynolds transport theorem)
and differential forms of the conservation equations. Strict (instantaneous) and
mean definitions of the steady state are provided, based on a stationary first
moment or ‘‘Reynolds average’’. The generic entropy concept H—and the purpose
of the maximum entropy (MaxEnt) principle—are established by combinatorial
arguments (the Boltzmann principle). An entropic analysis of an equilibrium
thermodynamic system is then conducted, giving the thermodynamic entropy S.
Control volume analyses of a flow system then gives the ‘‘entropy production’’
concept for simple, integral and infinitesimal flow systems. Some technical fea-
tures of such systems are then examined, including discrete and continuum rep-
resentations of volume elements, the effect of radiation, and the analysis of
systems subdivided into compartments. A Reynolds decomposition of the entropy
production equation then reveals an ‘‘entropy production closure problem’’ in
fluctuating dissipative systems: even at steady state, the entropy production based
on mean flow rates and gradients is not necessarily in balance with the outward
entropy fluxes based on mean quantities. Finally, the direct application of Jaynes’
MaxEnt method yields a theoretical framework with which to predict the steady
state of a flow system. This is cast in terms of a ‘‘minimum flux potential’’
principle, which reduces, in different circumstances, to maximum or minimum
entropy production (MaxEP or MinEP) principles based on mean flows and
gradients.

Further, substantial research is required on many of the formulations presented
in this chapter, especially on the newly disclosed entropy production closure
problem (Sect. 7.3.4) and on the MaxEnt analysis of steady-state flow systems
(Sect. 7.4). Within the MaxEnt formulation, the effects of local to global scaling
(see Sect. 7.2 and [39–41, 96]) and compartmentalisation (Sect. 7.3.3); of time
versus ensemble averaging and associated ergodic and transient effects; of non-
local interactions by electromagnetic, neutrino or other radiation Sect. 7.3.3); and
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of the closure problem Sect. 7.3.4), remain unresolved. It is hoped that this chapter
inspires others to attain a deeper understanding and higher technical rigour in the
calculation and extremisation of the entropy production in flow systems of all
types.
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