
Chapter 12
Entropy Production-Based Closure
of the Moment Equations for Radiative
Transfer

Thomas Christen and Frank Kassubek

Abstract Heat radiation in gases or plasmas is usually out of local thermodynamic
equilibrium (LTE) even if the underlying matter is in LTE. Radiative transfer can
then be described with the radiative transfer equation (RTE) for the radiation
intensity. A common approach to solve the RTE consists in a moment expansion of
the radiation intensity, which leads to an infinite set of coupled hyperbolic partial
differential equations for the moments. A truncation of the moment equations
requires the definition of a closure. We recommend to use a closure based on a
constrained minimum entropy production rate principle. It yields transport coeffi-
cients (e.g., effective mean absorption coefficients and Eddington factor) in
accordance with the analytically known limit cases. In particular, it corrects errors
and drawbacks from other closures often used, like the maximum entropy principle
(e.g., the M1 approximation) and the isotropic diffusive P1 approximation. This
chapter provides a theoretical overview on the entropy production closure, with
results for an illustrative artificial example and for a realistic air plasma.

12.1 Introduction

Energy transfer by heat radiation in hot gases and plasmas is encountered in many
different contexts like stellar and terrestrial atmospheres [1] and electric arcs [2], to
mention a few examples. Although the energy carriers, the photons, do not interact
with each other, the effective interaction due to scattering, emission, and
absorption via the underlying matter makes the theoretical treatment of radiative
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transfer generally rather complicated [3]. In order to illustrate the possible com-
plexity, the absorption spectrum jm of air at about 10,000 K temperature is shown
in Fig. 12.1. Here, jm is the macroscopic spectral absorption coefficient in units of
m-1, and m is the frequency. It consists of continuous bands and discrete peaks
associated with electronic transitions of free-free, free-bound, and bound-bound
states of the present air molecules, atoms, and ions.

An additional complication appears when the radiation is not in local thermal
equilibrium (LTE). This is usually the case in gases and plasmas due to their
partial transparency, even if the matter is in LTE. Non-LTE radiation refers to a
photon distribution function nm that differs from the equilibrium Bose-Einstein or
Planck distribution [4]

nðeqÞ
m ¼ 1

expðhm=kBTÞ � 1
; ð12:1Þ

where h is the Planck constant, kB the Boltzmann constant, and T the local tem-
perature of the LTE matter.

For simplicity, we consider unpolarized radiation in an isotropic medium. The
basic equation is then the radiative transfer equation (RTE) [1, 3] for the specific
radiation intensity1 [5]

Imðx;XÞ ¼
2hm3

c2
nmðx;XÞ; ð12:2Þ
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Fig. 12.1 Absorption spectrum of air plasma at 10,300 K and 2 bar [28], consisting of
continuous bands (free-free, free-bound, bound-free transitions) superimposed to discrete peaks
(bound-bound transitions) [29, 30]. The spectrum is not only a complicated function of frequency
with huge variations ranging from 10-2 to 107 m-1, but also strongly varies with temperature

1 In the following we will skip the term specific.
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which describes the radiation flux at location x as a function of the direction X and
frequency m. The RTE reads

1
c
otIm þ X � rIm ¼LðBm � ImÞ; ð12:3Þ

where L is linear in its argument Bm � Im (see discussion below) and can be
expressed as

LðBm � ImÞ ¼ jmðBm � ImÞ þ rm
1

4p

Z
S2

d2 ~X pm ðX; ~XÞImð~XÞ � Im

� �
: ð12:4Þ

The RTE can be transformed into a linear transport equation for nm by insertion
of (12.2) in Eq. (12.3). It is a linear Boltzmann transport equation (see also [5] for
further examples), where entropy production is caused uniquely by the term (12.4).
Let us briefly explain the different terms of the RTE (see, e.g., [3]). The expression
on the left hand side of Eq. (12.3) multiplied with c is the substantial derivative
consisting of the explicit time derivative otIm plus the advection term c X � r due to
the motion of the photons with speed c; X � r is the directional derivative. This net
change of Im in direction of X must be equal to the sum of specific source and sink
terms due to the radiation-matter interactions, written on the right hand side of Eq.
(12.3) and detailed in Eq. (12.4). Photons are generated by emission and annihi-
lated by absorption, expressed by jmBm and jmIm, respectively. Here, Bm is the
Planck function for thermal equilibrium,

Bm ¼
2hm3

c2
nðeqÞ

m : ð12:5Þ

By breaking time reversal symmetry, the ‘‘collision term’’ LðBm � ImÞ leads to
the irreversibility that equilibrates nonequilibrium states, and is thus responsible
for entropy production. The absorption coefficient jm is generally a sum of prod-
ucts of particle densities, absorption cross-sections, and contains terms 1�
expð�hm=kBTÞ [5]; it depends thus not only on frequency but also on the partial
pressures of the present species, and the temperature. The expression (12.4)
includes elastic scattering. Incoming photons of frequency m from all directions ~X
are scattered with probability pmðX; ~XÞ into direction X. Among other properties

[1], pm is assumed to be normalized according to ð4pÞ�1 R
S2 d2 ~X pmðX; ~XÞ ¼ 1 with

S2 being the full solid angle 4p, and we denote by d2X the (2-dimensional) volume
angle increment. The strength of the scattering process is quantified by the spectral
scattering coefficient rm in units of m-1. In the absence of any interaction, e.g., in
vacuum or a fully transparent medium, the right hand side of Eq. (12.3) vanishes,
which describes the so-called (free) streaming limit. In the particle picture it can be
interpreted as the limit of ballistic propagation of the photons, i.e., propagation
without any kind of scattering [6].

A number of procedures to solve the RTE exist [3]. In this chapter we discuss a
simple but effective approach based on a truncated moment expansion with an
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entropy production minimization closure [7, 8]. Kohler has shown that entropy
production optimization principles hold for linearized Boltzmann transport equa-
tions [9–12]. He especially discusses the Boltzmann transport equation for gases
and the transport of electrons in a solid near equilibrium. Note that the expression
‘‘near equilibrium’’ is used in this case for the linear nonequilibrium regime, i.e.
where the linearization of the Boltzmann transport equation is an appropriate
approximation. Far from equilibrium, however, higher order terms in the deviation

nm � nðeqÞ
m from equilibrium have to be taken into account, and the entropy pro-

duction principle is no longer applicable. Because the RTE (12.3) for heat radi-
ation has the form of a linearized Boltzmann transport equation, Kohler’s
argument applies here analogously (for similar transfer equations, see also [5, 6]).
The ‘‘collision term’’ LðBm � ImÞ in Eq. (12.3) is indeed a linear function of
Bm � Im: if one replaces �Im by Bm � Im in the large bracket of the right hand side in
Eq. (12.4), the additional terms associated with Bm add up to zero because Bm is
independent of direction X. Because photons do not interact with each other, the
RTE is exactly2 linear over the whole nonequilibrium range, i.e., for arbitrarily
large deviation jBm � Imj from equilibrium. It has been conjectured [7] that this
exact linearity of the RTE is the reason for the success of our approach discussed
below also far from equilibrium.

This chapter is organized as follows. Section 12.2 defines the moments and
their governing equations. In order to truncate the system of equations, a closure
based on entropy production rate is introduced in Sect. 12.3. The main results are
discussed and illustrated in Sect. 12.4. Some remarks on boundary conditions for
the moments are provided in Sect. 12.5.

12.2 The Moment Equations for Radiative Transfer

The macroscopic radiative properties of highest interest are related to those
quantities that occur in the hydrodynamic equations of the underlying matter.
Those are energy density, energy flux, and radiation pressure, and can be obtained
from ImðXÞ by integration over frequency m and angle X. One thus introduces the
moments

E ¼ 1
c

Z
dm d2X Im; ð12:6Þ

Fk ¼
1
c

Z
dm d2XXkIm; ð12:7Þ

2 Three and more photon processes are disregarded.
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Pkl ¼
1
c

Z
dm d2X XkXl Im;

. . . ¼ . . .;

ð12:8Þ

where k; l ¼ 1; . . .; 3 denote the three space directions. The integrations run from
zero to infinity for m and over the whole solid angle (sphere S2) for X. The list of
moments continues with higher order moments XkXl. . .XN to infinite order.
Multiplication of the RTE (12.3) with products and/or powers of Xk’s, and inte-
gration over frequency and solid angle leads to the infinite set of equations

1
c
otE þr � F ¼ PE; ð12:9Þ

1
c
otFþr �P ¼ PF;

. . . ¼ . . .;
ð12:10Þ

where F and P denote the vector and the tensor with components given by Eqs.
(12.7) and (12.8), respectively. The right hand sides are given by

PE ¼
1
c

Z
dmd2X LðBm � ImÞ ¼ jðeffÞ

E ðEðeqÞ � EÞ; ð12:11Þ

PF ¼
1
c

Z
dmd2X XLðBm � ImÞ ¼ �jðeffÞ

F F;

. . . ¼ . . .;

ð12:12Þ

where

EðeqÞ ¼ 4p
c

Z 1
0

dm Bm ¼
4rSB

c
T4 ð12:13Þ

is the LTE radiation energy density (rSB is the Stefan-Boltzmann constant), and for

convenience the effective absorption coefficients jðeffÞ
E and jðeffÞ

F are introduced. In

full equilibrium PE and PF vanish. The transport coefficients (jðeffÞ
E , jðeffÞ

F , …) are
still functionals of the unknown function Im. Once they are known, the moments
(E, F, …), which are the variables of the (still infinite) set of partial differential
equations [(12.9), (12.10), ….], can be determined in principle by solving the
latter, provided appropriate initial and boundary conditions are given.

For practical purposes, one has to truncate the set of equations and to restrict the
model to a finite number N of moments. The equation for the highest order
moment will then contain the moment of the subsequent order, which is not a
variable, but an additional unknown quantity that depends on Im. A closure method
is a procedure that prescribes how to determine all these unknowns, which may
eventually depend on all moments that are variables. In the following, we restrict
ourselves to the two first moment equations (12.9) and (12.10) with variables E
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and F, but we emphasize that our procedure is general and applicable to any order
N of truncation.

Because the second rank tensor P depends only on the scalar E and the vector
F, it can be written by tensor symmetry reasons in the form

Pnm ¼ E
1� v

2
dnm þ

3v� 1
2

FnFm

F2

� �
; ð12:14Þ

where the variable Eddington factor (VEF) v is in general a function of E and
F ¼ Fj j, and dkl ( = 0 if k 6¼ l and dkl ¼ 1 if k ¼ l) is the Kronecker delta. In
thermal equilibrium all fluxes vanish, and the stress tensor is proportional to the
unit tensor with diagonal elements EðeqÞ=3. This follows from Eqs. (12.6) and
(12.8), Xj j ¼ 1 and the isotropy of the equilibrium radiation. Because we assume
that the underlying matter is isotropic, the only distinguished direction is given by

F, and jðeffÞ
E ðE; vÞ, jðeffÞ

F ðE; vÞ, and vðE; vÞ can be expressed as functions of E and

v ¼ F

E
: ð12:15Þ

Note that 0� v� 1, with v ¼ 1 corresponding to the free streaming limit. v can
be roughly understood as the dimensionless average velocity of the photon gas,
where v ¼ 1 is associated with the speed of light c, which cannot be surpassed.

12.3 Closure by Entropy Production Rate Minimization

The task of the closure is to determine the transport coefficients, i.e., the effective

or mean absorption coefficients jðeffÞ
E and jðeffÞ

F , and the VEF v as functions of E
and v (or F). A closure that is often considered is based on entropy maximization
[13–15] (and is in the present context sometimes named ‘‘M1-model’’). However,
Kohler [9] has proved validity of entropy production rate principles for the line-
arized Boltzmann transport equation. According to his results, near equilibrium the
distribution function optimizes the entropy production rate under certain con-
straints, which are associated with fixed moments or fluxes. The type of the
optimum, i.e., whether the optimum is a maximum or a minimum, depends on the
specific choice of constraints. Kohler’s proof has been re-discussed several times
in the literature [10–12]. We mention also three additional works which indicate
the relevance of entropy production principles for radiative transfer. Firstly, Essex
[16] has shown that the entropy production rate is minimum in a grey atmosphere
in local radiative equilibrium. Secondly, Würfel and Ruppel [17, 18] discussed
entropy production rate maximization by introducing an effective chemical
potential of the photons, related to their interaction with matter. Finally, Santillan
et al. [19] showed that for a constraint of fixed radiation power, black bodies
maximize the entropy production rate.
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The closure procedure based on entropy production minimization has been
outlined for photons in [7, 8], and for a gas of independent electrons in [20]. The
receipt, in a nutshell, is to minimize the entropy production rate, which is a
functional of Im, subject to the constraints of fixed moments (given by Eqs. (12.6),
(12.7) etc.). The result of this optimization problem will then be a function
ImðE;FÞ, from which all unknowns (PE, PF , …) can be determined. In order to
derive the expression for the entropy production rate, we start with the entropy per
volume of the photon gas [4, 21, 22]

Srad½Im� ¼ �kB

Z
d2X dm

2m2

c3
nm ln nm � ð1þ nmÞ lnð1þ nmÞð Þ; ð12:16Þ

where Eq. (12.2) relates nm to Im. The total entropy production rate,
P

, consists of
the two contributions

P
rad and

P
mat associated with entropy production in the

photon gas and in the matter, respectively (cf. [23]). The contribution
P

rad is
obtained from the time-derivative of Eq. (12.16), by making use of Eq. (12.3), and
writing the result in the form otSrad þr � JS ¼

P
rad, which yields

X
rad½Im� ¼ �kB

Z
dm d2X

1
hm

ln
nm

1þ nm

� �
LðBm � ImÞ; ð12:17Þ

here JS is the entropy current density.
The second contribution, the entropy production rate of the LTE matter,

P
mat,

can be derived from the fact that the matter can be considered locally as an
equilibrium bath with temperature TðxÞ. Energy conservation implies that the local
power production W of the matter is related to the radiation power density in Eq.
(12.11) by W ¼ �cPE. The entropy production rate (associated with radiation) in
the local heat bath is thus

P
mat ¼ W=T ¼ �cPE=T . Equation (12.1) implies

hm=kBT ¼ lnð1þ 1=nðeqÞ
m Þ, and one obtains with Eq. (12.11)

X
mat½Im� ¼ �kB

Z
dmd2X

1
hm

ln
1þ nðeqÞ

m

nðeqÞ
m

 !
LðBm � ImÞ : ð12:18Þ

The total entropy production rate
P
¼
P

radþ
P

mat becomes

X
½Im� ¼ �kB

Z
dmd2X

1
hm

ln
nmð1þ nðeqÞ

m Þ
nðeqÞ

m ð1þ nmÞ

 !
LðBm � ImÞ : ð12:19Þ

This quantity has to be minimized by varying Im and considering the constraints
given by Eqs. (12.6) and (12.7) with E, F kept fixed. One has thus to solve

d
dIm

X
½Im� � kE E � 1

c

Z
dm d2X Im

� �
� kF � F� 1

c

Z
dm d2X X Im

� �� �
¼ 0

ð12:20Þ

12 Entropy Production-Based Closure of the Moment Equations 247



for Im, where the Lagrange multipliers kE and kF can be eliminated with the help of
Eqs. (12.6) and (12.7), which leads then to ImðX;E;FÞ. We mention that in the
entropy maximization closure R is replaced by Srad given by Eq. (12.16).

12.4 Results

In the following, we will not re-iterate the analytical calculations reported in [7, 8],

but immediately discuss the results jðeffÞ
E ðE; vÞ, jðeffÞ

F ðE; vÞ, and vðE; vÞ as func-
tions of E and v, and explain their properties for simple illustrative cases.

12.4.1 Equilibrium Limit

If the radiation field (or photon gas) is in LTE with the matter (Im ¼ Bm), all
transport properties can be obtained by considering the leading order deviations
from LTE, dIm ¼ Im � Bm, dE ¼ E � EðeqÞ, and dF ¼ F. A corresponding expan-
sion and subsequent solution of the minimization problem (12.20) leads then to
[7, 8]

jðeffÞ
E ¼ jmh iRo; ð12:21Þ

jðeffÞ
F ¼ jm þ rmh iRo; ð12:22Þ

v ¼ 1
3
; ð12:23Þ

where the Rosseland average of any spectral function hm is defined by

hmh iRo:¼
R1

0 dm m4omn
ðeqÞ
mR1

0 dm m4h�1
m omn

ðeqÞ
m

; ð12:24Þ

with om being frequency differentiation. If hm is a physical rate (per time or per
length) the Rosseland mean is the inverse of an average of inverse rates. Thus,
frequencies with small jm-values are dominating the Rosseland average, due to a
macroscopic number of absorption-emission events (on the considered length
scale). In order to establish LTE with matter, the medium must behave optically
dense. The result (12.23) means that the stress tensor Pkl ¼ ðE=3Þdkl is associated
with isotropic radiation.

These LTE results are well-known and can be obtained also with other pro-
cedures [3]. Every reasonable closure to the moment equations should provide
Eqs. (12.21)–(12.23). The often considered maximum entropy closure is incorrect
near equilibrium as has been pointed out by Struchtrup [23]. For LTE, it is obvious
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from Kohler’s work [9], that the entropy production rate is the appropriate quantity
to be optimized.

12.4.2 Emission Limit

In this limit emission strongly predominates absorption. It is characterized by very
low radiation intensity, Im � Bm, such that E� EðeqÞ, and is thus far from equi-
librium. One can also derive analytical expressions for the transport coefficients
[8] by an expansion in terms of the small quantities Im, E, and F. Entropy pro-
duction minimization gives [7, 8]

Im ¼
2kB

c

m2jm

kE þ kF � X
nðeqÞ

m ; ð12:25Þ

where the Lagrange multipliers are related to E and F by

E ¼ kBTðjmÞ
c2kF

ln
kE þ kF

kE � kF

� �
; ð12:26Þ

F ¼ kBTðjmÞ
c2kF

2� kE

kF
ln

kE þ kF

kE � kF

� �� �
: ð12:27Þ

Here, we introduced the integral

TðhmÞ ¼ 4p
Z 1

0
dm m2hmn

ðeqÞ
m ð12:28Þ

for frequency dependent functions hm. The transport coefficients are given by [8]

jðeffÞ
E ¼ jmh iPl; ð12:29Þ

jðeffÞ
F ¼Tðjmðjm þ rmÞÞ

TðjmÞ
; ð12:30Þ

vðvÞ ¼ � kE

kF
v; ð12:31Þ

where

hmh iPl¼
R1

0 dm m3hmn
ðeqÞ
mR1

0 dm m3nðeqÞ
m

ð12:32Þ

is the so-called Planck average of a frequency dependent function hm. Contrary to
the opaque near-equilibrium limit [see Eq. (12.24)] from the previous subsection,
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in the transparent emission limit the effective absorption coefficients are averages
(12.32) of the direct rates, rather than averages of inverse rates.

The VEF can easily be numerically calculated from the above equations. For
small v, an expansion of Eqs. (12.26) and (12.27) gives kE=kF ¼ �1=ð3vÞ, in
accordance with the isotropic limit. In the free streaming limit, v! 1 from below,
one can show that kF ! �kE [8], as one expects that v! 1.

12.4.3 General Case

For arbitrary values of E and v (or F) the radiation intensity and the transport
coefficients must be numerically computed. For use in radiation simulations, it is
thus necessary to calculate the transport coefficients for real gases and plasmas and
tabulate them as functions of all variables, including temperature and pressure of
the LTE matter. In the following, we first consider an illustrative artificial example
with negligible scattering (rm � 0) and an absorption spectrum shown as in
Fig. 12.2. In a frequency band below a certain threshold absorption is low, while at
the threshold frequency absorption strongly increases to a maximum, beyond
which it again decays or remains constant. The entropy production approach then
leads to radiation intensities Im plotted in Fig. 12.3. The equilibrium radiation
associated with E ¼ EðeqÞ and v ¼ 0 corresponds to the well-known Planck dis-
tribution (solid curve). Nonequilibrium occurs if E 6¼ EðeqÞ or v 6¼ 0. Consider first
an isotropic nonequilibrium state where the energy of the radiation is smaller than
the equilibrium energy, for instance E ¼ EðeqÞ=2 and v ¼ 0. According to the
figure, the radiation (dashed curve) is the closer to equilibrium the larger the
absorption constant is. The same holds for the contrary case where the radiation
energy is above the equilibrium value (E ¼ 2EðeqÞ and v ¼ 0, dotted curve).
Because the magnitude of the absorption constant is a measure for the interaction

Fig. 12.2 Artificial spectrum
with low absorption below a
threshold frequency
(1.5 PHz) and high
absorption above, with an
intermediate maximum
below 2 PHz
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strength between radiation and matter, this behaviour reflects the fact that photons
with more intensive interaction with LTE matter are more efficiently equilibrated.
Entropy production rate optimization principles inherently take this general ten-
dency into account [24]. For v 6¼ 0, the intensity Im depends on X [see, e.g., Eq.
(12.25)]; details will not be discussed here.

The mean absorption coefficients are shown in Fig. 12.4. The different limit
cases discussed in the previous subsections are indicated by horizontal lines. At
equilibrium, all effective absorption coefficients equal the Rosseland mean.

10
-9

10
-8

10
-7

I
[J

m
-2

sr
-1

]

0 1 2 3

[10
15

s
-1

]

Fig. 12.3 Radiation intensities Im for v ¼ 0, T ¼ 10; 300 K and different values of E=EðeqÞ and
the spectrum given in Fig. 12.2. For E=EðeqÞ ¼ 1 (solid curve), equilibrium radiation is
established (Planck distribution). For other E=EðeqÞ values (dotted E=EðeqÞ ¼ 2; dashed
E=EðeqÞ ¼ 0:5), non-equilibrium occurs with a strength that is related to the magnitude of jm.
The larger jm, the stronger is equilibration

Fig. 12.4 Effective

absorption coefficients jðeffÞ
E

(solid) and jðeffÞ
F (dashed-

dotted) as functions of the
radiation energy for v ¼ 0,
for the spectrum shown in
Fig. 12.2. The Planck mean,
Rosseland mean, and
minimum of jm are indicated
by the dotted, dashed, and
thin solid lines
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A closure by entropy maximization would provide a wrong result [7, 8]. We note
also that for E=EðeqÞ ! 1, the entropy production closure leads to a mean
absorption dominated by the minimum absorption coefficient. In this limit the
overwhelming amount of photons will occupy states with low photon-matter
interaction, while the states with stronger interaction (large absorption) will be
near the equilibrium distribution.

The VEF as a function of v is shown in Fig. 12.5 for two different E-values. It
can be shown that the VEF satisfies a number of conditions [14]. For instance, as
mentioned v ¼ 1=3 for v = 0 (isotropic radiation) and v ¼ 1 for v = 1 (free
streaming limit). Furthermore, the dependence of v on E is weak, and for many
practical purposes vðvÞ is well approximated by Kershaw’s VEF [25]

v ¼ 1þ 2v2

3
; ð12:33Þ

Fig. 12.5 Solid curves: The
Eddington factor vðvÞ for the
spectrum in Fig. 12.2 for two
different values E=EðeqÞ = 1
(lower solid curve) and 0.5
(upper solid curve). Dashed:
Kershaw approximation
Eq. (12.33)
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Fig. 12.6 Effective

absorption coefficients jðeffÞ
E

(solid) and jðeffÞ
F (dashed-

dotted) for an air plasma at
10,000 K and 2 bar (see
Fig. 12.1) as functions of the
radiation energy for v ¼ 0.
The Planck mean, Rosseland
mean, and emission limit for

jðeffÞ
F from Eq. (12.30) are

indicated by the dashed,
dotted, and thin solid lines

252 T. Christen and F. Kassubek



as is illustrated also in Fig. 12.5.
This general behaviour of the transport coefficients observed for the toy

example is also valid for more complex absorption spectra. A calculation with a
spectrum as given by Fig. 12.1 (air plasma at 10,000 K and 2 bar) has to take into
account the small structures from the individual spectral lines and requires a rather
high-frequency resolution. As a side remark, we mention an additional difficulty as
there is a critical value of the Lagrange multiplier kF (for given kE) for which the
solution of the variational equation (12.20) becomes singular. Even for this value,
however, v\1 and hence in order to go to the streaming limit, the intensity
distribution acquires a d-function contribution: part of the photons then concen-
trate (condense) at the frequency with minimal jm in the streaming direction.
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Fig. 12.7 Left: Effective absorption coefficient jðeffÞ
F as a function of radiation energy for v ¼ 0

(solid line, left axis) and v ¼ 0:2 (dashed line, right axis) Right: Absorption power PE as a
function of radiation energy for v ¼ 0 (solid line, left axis) and v ¼ 0:2 (dashed line, right axis).
The inset shows the shift of the zero of PE from E=EðeqÞ ¼ 1; because of this shift it is
inconvenient to directly discuss jE , as it is defined here, in a graph
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0.0 0.2 0.4 0.6
v

Fig. 12.8 Variable
Eddington factor (VEF) for
the air spectrum as a function
of v for E=EðeqÞ ¼ 1 (solid)
and E=EðeqÞ ¼ 1=4 (dashed).
Kershaw’s VEF is given as a
reference (dotted)
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Details of the behaviour at large v will be described elsewhere, here we restrict
ourselves to sufficiently small v-values. The effective absorption coefficients for
v ¼ 0 are shown in Fig. 12.6. The span over several orders of magnitude between
the emission limit and a dense medium is remarkable. We mention that the

detailed slightly wavy structures of jðeffÞ
E and jðeffÞ

F are not due to numerical
inaccuracy but due to the specific frequency dependence of the absorption
spectrum.

The numerical solutions show that the v dependence of the effective absorption
coefficients is rather weak. In Fig. 12.7, a comparison between v ¼ 0 and v ¼ 0:2
is shown as an example. For practical use it is much more convenient to depict PE

instead of jE, because for finite v the zero of PE is shifted away from E ¼ EðeqÞ (cf.
definition of jE by Eq. (12.11) and inset in Fig. 12.7).

On the other hand, the VEF depends relatively weakly on the energy of the
radiation field. Fig. 12.8 shows v for two different energies as an example.

12.5 Boundary Conditions

In order to have a well-defined hyperbolic problem associated with the partial
differential equations (PDEs) (12.9) and (12.10), appropriate boundary conditions
on E and F (or v), at solid surfaces, at certain symmetry planes, and/or at infinity
must be added. The qualitative nature of the boundary depends not only on the
radiative behavior of the matter but also on the direction of the characteristics of
the basic PDEs. This is analogous to gas dynamics, where a boundary condition at
an outlet is needless if the Mach number of the flow is larger than one, because no
information can travel from the boundary back into the system. For the Eqs. (12.9)
and (12.10), this appears if v is larger than a critical value vc. This value depends
on the functional dependence of v on v, but is typically around 0.7 [8]. If boundary
conditions are needed for moment equations, they can be derived by projection of
ImðXÞ, expanded in terms of the moments, onto a weight function. Often, the
Marshak boundary condition is considered, which can be generalized in the
present case to [8]

F ¼ e
2ð2� eÞ Ew �

ð3þ 15vÞE
8

� �
; ð12:34Þ

where e is the surface emittance, and Ew is the equilibrium radiation energy density
associated with the wall temperature. In the equilibrium limit (v ¼ 1=3), Eq.
(12.34) reduces to the usual Marshak boundary condition, as applied, for instance,
in the diffusive P1-model [26].

In cases where the surface response to radiation is relevant and a good mod-
elling of the surface behavior is crucial (e.g., if radiation-induced material ablation
occurs), it may be more appropriate to include a solid surface layer in the simu-
lation domain with realistic absorption and scattering coefficients [8].
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12.6 Summary and Conclusion

We conclude that the entropy production rate is an appropriate variational func-
tional for the closure of the moment equations of radiative transfer. Within the
formalism, effective absorption coefficients and variable Eddington factors are
calculated that have the correct limiting behavior in the analytically known cases,
like the Planck and Rosseland mean absorption, and the VEF in the diffusive and
free streaming limits. It turns out that the entropy production principle is superior
to the often considered entropy maximization principle, which disregards the
specific equilibration mechanisms and yields in general wrong results even in the
Rosseland (equilibrium) limit, as has been extensively discussed in general in [23]
and for specific examples in [7, 8]. As demonstrated with a toy example and a
calculation for a realistic spectrum of air, the effective absorption coefficients can
vary over several orders of magnitude in the physically relevant region. This
shows that good models are necessary.

The success of the entropy production approach is related to Kohler’s prin-
ciple [9], because the linearity of the RTE is exact and not restricted to a
linearization region near equilibrium. From the formalism discussed it is obvious
that the approach is not limited to a specific number of moments, and it is
applicable to other types of mutually non-interacting particles like neutrinos [27]
or independent electrons [20].
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