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Preface

The idea for this book grew out of a series of workshops on the Maximum Entropy
Production (MaxEP) principle, held annually from 2003 to 2011.1 These work-
shops brought together scientists and students interested in the theory and appli-
cation of MaxEP to non-equilibrium systems across a wide range of disciplines in
physics, chemistry and biology.

A first ‘state of the art’ account of MaxEP research up to 2004 was presented in
a previous book2 within the same Springer series Understanding Complex Systems.
The present volume provides a timely update on the significant progress, both
theoretical and applied, that has been made in this exciting field over the last
9 years. More than that, however, we saw the opportunity to broaden the horizons
of MaxEP research—to make connections between MaxEP and other areas of non-
equilibrium science, such as the Fluctuation Theorem and the Maximum Entropy
(MaxEnt) principle. These areas have largely been developed in isolation from
each other, and yet the concepts of entropy and entropy production play a central
role in all of them.

History in general, and the history of science in particular, has demonstrated
that there is much to be gained when folks with different viewpoints get together
and talk to each other. Therefore, a particular aim of the MaxEP 2011 workshop—
held at the Australian National University, Canberra and co-organised by the four
Editors—was to bring together scientists from traditionally isolated sectors of non-
equilibrium science in order to present their work and ideas on entropy and entropy
production, with a view to exploring potential connections between them.

This also became the key aim of the present volume. This book contains
contributions from participants of MaxEP 2011 as well as others around the globe
who are actively engaged in non-equilibrium science—all of them internationally-
recognised experts in their respective fields. It is organised into three parts. Part I
provides an overview of the landscape of existing non-equilibrium principles
beyond the restrictive scope of the second law of thermodynamics; it also offers a

1 National Institute for Agronomy Research, Bordeaux, France (2003–2005), University of Split,
Croatia (2006), Max-Planck Institute for Biogeochemistry, Jena (2007–2010), The Australian
National University, Canberra, Australia (2011).
2 Kleidon and Lorenz [1].
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tentative road map of potential connections and future research directions within
that landscape, based on the material presented in Parts II and III which deal,
respectively, with theoretical perspectives on entropy production and applications.

Topics covered include the theoretical basis of MaxEP, non-equilibrium prin-
ciples associated with Ziegler and Prigogine, the Fluctuation Theorem and related
theorems, and MaxEnt, as well as the many applications of these principles to such
diverse fields as biogeochemistry, cosmology, crystal growth morphology, Earth
system science, evolution of enzyme kinetics, fluid mechanics, land–atmosphere
interactions, landscape topography, macroscale technology, planetary climatology,
plasma physics and radiative transfer. This volume also brings together a wide
variety of analytical and experimental techniques: stability analysis, climate
models of varying complexity, fluid mechanics experiments, microbial growth
experiments, molecular dynamics and lattice gas simulations, and variational
approaches.

Running through it all is the recurring leitmotiv of entropy production. We hope
that this book will provide readers with an understanding of entropy production as
a key unifying concept in non-equilibrium science—one that provides a link
between different theoretical approaches as well as between theory and
applications.

We thank Thomas Ditzinger at Springer for his kind encouragement and help
with this project. We wish to express our warm thanks to the contributing Authors
for their hard work and patience in bringing this volume to completion. We are
also very grateful to the following reviewers for their advice and expertise: Bjarne
Andresen, Debra Bernhardt, Jason Bertram, Thomas Christen, James Dyke, Itai
Einav, Chris Essex, Klaus Fraedrich, Kingshuk Ghosh, Guy Houlsby, Ali Karrech,
Axel Kleidon, Kevin Knuth, Bernd Noack, Dider Paillard, Salvatore Pascale,
Joachim Pelkowski, Carsten Herrmann-Pillath, Angelo Plastino, Ralph Sutherland,
Joe Vallino, Ashwin Vaidya, Manolis Veveakis, Xiaolin Wang, Paško Županović
and one anonymous reviewer.

Finally, we thank the many participants and support staff of the MaxEP
workshops (2003–2011) for their contributions over the years. Their enthusiasm,
encouragement and camaraderie have sustained and enriched our own scientific
journeys beyond the Second Law.

Canberra and Perth, Australia, October 2013 Roderick C. Dewar
Charles H. Lineweaver

Robert K. Niven
Klaus Regenauer-Lieb
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Chapter 1
Beyond the Second Law: An Overview

Roderick C. Dewar, Charles H. Lineweaver, Robert K. Niven
and Klaus Regenauer-Lieb

Abstract The Second Law of Thermodynamics governs the average direction of all
non-equilibrium dissipative processes. However it tells us nothing about their actual
rates, or the probability of fluctuations about the average behaviour. The last few
decades have seen significant advances, both theoretical and applied, in under-
standing and predicting the behaviour of non-equilibrium systems beyond what the
Second Law tells us. Novel theoretical perspectives include various extremal
principles concerning entropy production or dissipation, the Fluctuation Theorem,
and the Maximum Entropy formulation of non-equilibrium statistical mechanics.
However, these new perspectives have largely been developed and applied inde-
pendently, in isolation from each other. The key purpose of the present book is to
bring together these different approaches and identify potential connections between
them: specifically, to explore links between hitherto separate theoretical concepts,
with entropy production playing a unifying role; and to close the gap between theory
and applications. The aim of this overview chapter is to orient and guide the reader
towards this end. We begin with a rapid flight over the fragmented landscape that lies
beyond the Second Law. We then highlight the connections that emerge from the
recent work presented in this volume. Finally we summarise these connections in a
tentative road map that also highlights some directions for future research.

R. C. Dewar (&)
Research School of Biology, The Australian National University, Canberra,
ACT 0200, Australia
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C. H. Lineweaver
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at ADFA, Canberra, ACT 2600, Australia

K. Regenauer-Lieb
School of Earth and Environment, The University of Western Sydney and CSIRO Earth
Science and Resource Engineering, Crawley, WA 6009, Australia

R. C. Dewar et al. (eds.), Beyond the Second Law,
Understanding Complex Systems, DOI: 10.1007/978-3-642-40154-1_1,
� Springer-Verlag Berlin Heidelberg 2014

3



1.1 The Challenge: Understanding and Predicting
Non-equilibrium Behaviour

Non-equilibrium,1 dissipative systems abound in nature. Examples span the bio-
logical and physical worlds, and cover a vast range of scales: from biomolecular
motors, living cells and organisms to ecosystems and the biosphere; from turbulent
fluids and plasmas to hurricanes and planetary climates; from growing crystals and
avalanches to earthquakes; from cooling coffee cups to economies and societies;
from stars and supernovae to clusters of galaxies and beyond.

A characteristic feature of all open, non-equilibrium systems is that they import
energy and matter from their surroundings in one form and re-export it in a more
degraded (higher entropy) form. A sheared viscous fluid driven out of thermo-
dynamic equilibrium by the external input of kinetic energy eventually dissipates
and expels that energy to its environment as heat; the Earth absorbs short-wave
radiation at solar temperatures and re-emits it to space as long-wave radiation at
terrestrial temperatures; living organisms use the chemical free energy ultimately
derived from photons to grow and survive, eventually dissipating it to their
environment as heat and carbon dioxide.

In association with these exchanges of energy and matter, spatial gradients in
temperature and chemical concentration are set up and maintained, both internally
and between the system and its environment. The patterns of flows and their
associated gradients self-organize into intricate dynamical structures that contin-
ually transport and transform energy and mass into higher entropy forms: thus
emerge plant vascular systems, food webs, river networks, and turbulent eddies
such as Jupiter’s Red Spot and the convective cells on the Sun’s surface. Idealised
systems in equilibrium with their surroundings exhibit no flows or gradients; they
appear static, structureless, lifeless. In stark contrast, non-equilibrium systems,
even purely physical ones, appear to be alive in a sense that perhaps even defines
life itself, at least thermodynamically [1].

In view of their ubiquity in nature, understanding and predicting the behaviour
of non-equilibrium systems lies at the heart of many questions of fundamental and
practical importance, from the origin of a low entropy universe and the evolution
of life, to the development of nanotechnology and the prediction of climate
change. What is life? And what are the general requirements for its emergence on
Earth and elsewhere? What determines the rate at which the universe tends
towards thermodynamic equilibrium? How is the functioning of nanoscale devices
affected by molecular-scale fluctuations in energy and mass flow? How will the
large-scale flows of energy and mass that characterise Earth’s climate respond to
increased atmospheric greenhouse gas concentrations?

Answering such questions has been a long-standing scientific challenge, largely
because the scientific principles and tools required to understand and predict

1 Equilibrium is used here in the thermodynamic sense, and not in the dynamic sense of
stationarity.
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non-equilibrium behaviour have been lacking. In many cases we may not know the
underlying equations of motion exactly (especially the case in biology); with only
the conservation laws (of energy, mass, momentum and/or charge) as guiding
principles, there remains a large number of possible behaviours to choose from.
Even when the underlying equations of motion are known (more or less) exactly—
for example, the Navier–Stokes equation of fluid mechanics2—computational
limitations may restrict our ability to solve them. One response to this challenge is
to exploit the fact that the macroscopic behaviour of complex, non-equilibrium
systems represents the emergent outcome of a large number of microscopic
degrees of freedom. Some of those underlying degrees of freedom may behave as
‘noise’ that averages out at macroscopic scales. This offers the possibility of
predicting the emergent macroscopic behaviour from the laws of thermodynamics.
We might then hope to understand the behaviour of non-equilibrium systems
statistically, in terms of the average, collective behaviour of a large number of
individual degrees of freedom. Here again, however, traditional thermodynamics
gives us little to go on.

The First Law of Thermodynamics only gives us energy conservation, while the
Second Law is qualitative—it tells us only the direction in which an isolated non-
equilibrium system will evolve on the average: towards the state of equilibrium, in
which the system’s thermodynamic entropy adopts its largest value subject to any
constraints on it. The Second Law thus implies that, on average, the total ther-
modynamic entropy Stot = Ssys ? Senv of an isolated system consisting of an open
non-equilibrium subsystem (sys) plus its environment (env) will not decrease (i.e.
dStot/dt C 0). In particular, if the open subsystem is in a steady state (i.e. dSsys/
dt = 0), then on average the entropy of the environment (Senv) will not decrease
(i.e. dSenv/dt C 0). As noted above, this behaviour is evident in the observed
tendency of open systems to re-export energy and matter to their environment in a
higher entropy form than that in which they receive it.

Crucially, however, the Second Law is mute on two counts. Firstly, it does not
predict the actual value of dStot/dt (i.e. the average rate at which Stot increases).
Secondly, as the mathematical physicist James Clerk Maxwell was one of the first
to appreciate [2], the Second Law is statistical in character, rather than being a
dynamical law. It is a statement about the average behaviour of isolated systems.
However, it does not tell us the probability of statistical fluctuations in energy and
mass flow for which, at least momentarily and locally, dStot/dt \ 0, as when (for
example) a group of gas molecules happens to move collectively from a region of
low concentration to a region of higher concentration. And yet knowing these
quantities—the average rate of entropy increase, and the probability of entropy-
decreasing fluctuations—is central to answering some of the fundamental and
practical questions mentioned above. Beyond the Second Law, the behaviour of
entropy production becomes a key focus of study.

2 Strictly speaking, the Navier–Stokes equation is only approximate; the (linear) expression for
the stress tensor is only valid close to equilibrium.
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The aim of this introductory chapter is to orient and guide the reader of this
book. We begin with a rapid flight over the landscape of non-equilibrium prin-
ciples that have been proposed beyond the Second Law (Sect. 1.2). For now, that
landscape is still forming; it remains a rather fragmented one and we highlight
some of the challenges one encounters in trying to negotiate it (Sect. 1.3). The key
challenge is to find connections within this landscape, to construct bridges between
previously isolated islands. In Sect. 1.4 we highlight some of the connections
suggested to us by the recent work presented in this volume. Summarizing these in
Sect. 1.5, we offer a tentative road map of the current landscape, as well as
possible directions for future research.

Given the current state of play, we attempt no more than a partial synthesis
here—partial in both perspective and scope. Thus Sects. 1.4 and 1.5 present one
particular view of this exciting area of science, and where it might go next. It does
not represent a consensus view of the contributing chapter authors, as will be clear
from the diversity of perspectives this book brings together. And even at that, it
does not pretend to paint a complete picture. Nevertheless, we hope this tentative
road map will encourage the reader to develop his or her own vision of the land-
scape beyond the Second Law, and of the most fruitful paths to explore within it.

1.2 Beyond the Second Law: The Search for New
Principles

Our main aim here is to give a brief overview of the landscape of non-equilibrium
principles that have been proposed beyond the Second Law. Discussion of the key
challenges in negotiating this landscape (ambiguities of meaning etc.) is deferred
to Sect. 1.3.

1.2.1 Paltridge’s MaxEP, the Fluctuation Theorem …

Within the last few decades, significant progress has been made towards developing
and applying new principles of thermodynamics for non-equilibrium systems that
go beyond the Second Law. With regard to the average value of dStot/dt and the
probability of entropy-decreasing fluctuations, two key concepts have emerged:
respectively, the principle of Maximum Entropy Production (MaxEP) and the
Fluctuation Theorem (FT).

MaxEP is often stated verbally as a sort of codicil to the Second Law, according
to which it is asserted that an open system adopts the stationary state (dSsys/dt = 0)
in which dStot/dt = dSenv/dt attains its largest value possible within the constraints
acting on the system. That is, a stationary open subsystem plus its environment not
only tends to equilibrium (dStot/dt = dSenv/dt C 0) but, it is claimed, does so as
fast as possible (maximum dSenv/dt) subject to any constraints.

6 R. C. Dewar et al.



In the seminal work of Garth Paltridge [3–5] in the 1970s and 1980s, MaxEP
was applied to simple steady-state energy balance models of Earth’s climate.
Maximizing the entropy production associated with material heat transport in the
atmosphere and oceans produced realistic predictions of the stationary latitudinal
profiles of surface temperature, cloud fraction and equator-to-pole material heat
transport. Somewhat surprisingly, this success was achieved when the maximi-
zation was subject to the sole constraint3 of global energy balance, in the absence
of any dynamical information such as planetary rotation rate.

Paltridge’s MaxEP principle selects one among several climate states com-
patible with global energy balance [3–6]. It is the archetype for analogous MaxEP
principles constrained only by global mass balance that have been applied with
similar success to other non-equilibrium selection problems (e.g. crystal growth
morphology, macromolecular evolution, plant growth strategies) [7–13]. For
brevity, in the following we will refer to these collectively as ‘Paltridge’s
MaxEP’—i.e. MaxEP principles in which the key constraints are global energy
and/or mass balance. Despite these successes, the theoretical basis for Paltridge’s
MaxEP has remained elusive and this has hampered its acceptance by the wider
scientific community.

The Fluctuation Theorem (FT) [14–16] concerns the probabilities of trajectories
and their time reverse in microscopic phase space. Roughly speaking, the FT states
that the probability of observing an entropy change –d relative to that of an entropy
change +d over a given time period is exponentially small in d. Since d is an
extensive quantity in both space and time (i.e. the entropy change increases with
both the size of the system and the time period), the FT implies that macroscopic
decreases in entropy, although possible, are extremely rare. In contrast, we expect
to see frequent entropy-decreasing fluctuations in small (e.g. nanoscale) systems
observed over short periods. Significantly, the FT also implies the Second Law
inequality, i.e. the ensemble average4 of d is non-negative.

1.2.2 … and other Principles

Prior to Paltridge’s MaxEP principle, several earlier non-equilibrium principles
had also been proposed, involving entropy production or dissipation in one guise
or another (see e.g. the excellent review in [13]). A selection of these are sum-
marised in Table 1.1: they include Onsager’s MaxEP principle [17, 18], Prigo-
gine’s minimum entropy production (MinEP) theorem [19], Kohler’s MaxEP
principle in statistical transport theory [20, 21], and Ziegler’s MaxEP principle for

3 However, Paltridge’s energy balance model still contained a number of ad hoc assumptions
and parameterizations (see Herbert and Paillard Chap. 9).
4 The ensemble average is over the probability distribution of microscopic trajectories in phase
space (see Sect. 1.4.1).
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dissipative materials [22]. Also, starting in the 1950s, several variational principles
for fluid turbulence were developed by Malkus and others, based on maximising
various dissipation-like functions of the flow [23–28]—an approach known as the
Upper Bound Theory (UBT) of fluid turbulence. Table 1.1 also includes three
other variational principles: a variant of Kohler’s principle applied to radiative
transport, in which entropy production is minimized rather than maximized
(Christen and Kassubek Chap. 12); a principle of maximum kinetic energy (KE)
dissipation, suggested by recent climate simulations using a General Circulation
Model (GCM) [29], which is also one of the principles emerging from UBT; and
the Boltzmann-Gibbs-Jaynes Maximum Entropy (MaxEnt) algorithm [30–34].

Anticipating the discussion in Sect. 1.3, the landscape presented by these
principles is a fragmented one. In order to compare and contrast the elements of
this landscape, Table 1.1 describes each principle in terms of the dissipation- or
entropy-related function H that is maximized, the variables (y) being optimised,
and the constraints (C). Key predictions of each principle are given in the last
column.

1.2.2.1 Onsager’s MaxEP, Prigogine’s MinEP

Onsager’s original motivation was to establish a theoretical framework for the
development of near-equilibrium thermodynamics [17, 18]. Specifically, Onsag-
er’s MaxEP principle may be used to derive the near-equilibrium, linear ‘consti-
tutive relations’ between generalised thermodynamic fluxes Ji and forces Xi, i.e.
Ji = RjLijXj (generalisations of the laws of Fick and Ohm, for example), where the
matrix of coupling coefficients5 is symmetric (i.e. Lij = Lji, also known as reci-
procity). Prigogine’s principle [19] assumes linear flux-force relations as a starting
point, and some of the forces are then relaxed: it describes the behaviour of the
entropy production, given by RijLijXiXj, ‘when we let go of some of the leads’ [21].

1.2.2.2 Kohler’s MaxEP, Radiative MinEP

In a separate context, Kohler [20] established a mathematical variational principle
to solve the linearised Boltzmann equation (LBE) describing the statistical
transport properties of a rarified gas. Subsequently, Ziman [21] recast the
Boltzmann equation in the language of thermodynamic fluxes and forces and
showed Kohler’s principle to be mathematically equivalent to Onsager’s MaxEP
principle. This suggested to Ziman that Kohler’s principle was not just a conve-
nient mathematical trick but had the following physical interpretation: the entropy
production of molecular collisions is maximized subject to fixed thermodynamic
forces (e.g. temperature and concentration fields), and to the steady-state condition

5 Here Lij is the inverse of the matrix Rij in Table 1.1.
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that the internal entropy production is balanced by dissipation of heat into the
environment.

For the problem of radiative transfer in gases or plasmas, the relevant principle
appears to be one of MinEP rather than MaxEP (Christen and Kassubek, Chap. 12
and references therein; see also Niven and Noack, Chap. 7). Moreover, when the
radiative transfer equation is considered as a LBE, the linearisation is exact
because photons do not interact with each other, so that the solution is valid for
radiation that is arbitrarily far from thermal equilibrium.

1.2.2.3 Ziegler’s MaxEP

The original motivation behind Ziegler’s MaxEP principle [22] was to derive
the non-linear constitutive relation between generalised forces Xi and fluxes Ji

(e.g. stress–strain relations) in dissipative materials far from equilibrium. What are
the fluxes given the forces (and vice versa)? As Table 1.1 indicates, the key
prediction of Ziegler’s MaxEP (subject to fixed generalised forces Xi = Xi* and
the constraint r(J) = RiJiXi*) is a constitutive relation that satisfies an orthogo-
nality condition (OC), according to which the generalised force X* (considered as
a vector with components Xi*) lies in the direction normal to the contours of
r(J) in flux space.6 Ziegler originally derived the OC using a geometrical argu-
ment, based on the assumption that the vector X can be derived solely from
properties of the scalar dissipation function r(J); the existence and nature of the
function r(J) were also assumptions (Houlsby, Chap. 4).

Ziegler noted the equivalence of the OC to a variational principle (Ziegler’s
MaxEP)—i.e. maximizing r(J) with respect to J under the constraints in
Table 1.1—as a possibly more general thermodynamic basis for the OC. And yet a
fundamental basis for the assumptions underlying either derivation of Ziegler’s
OC (geometrical or variational) has yet to be established; moreover, a direct
experimental test of the OC has yet to be derived [35]. In practice, therefore, the
OC has been adopted as a working hypothesis for classifying different theoretical
behaviours of dissipative materials.

1.2.2.4 Upper Bound Theory of Fluid Turbulence, Maximum KE
Dissipation

The UBT of fluid turbulence was developed by Malkus and others [23–28] to
predict the mean turbulent velocity field, by maximizing various dissipation-
related functionals of the flow. Initially these took the form of maximum transport
principles (maximum heat flow, maximum momentum transport) [23–25, 27].

6 An equivalent orthogonality condition for the direction of the generalised fluxes J in force
space can be stated in terms of the contours of r(X).
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Later, Kerswell [26] analysed a more general family of functionals related to KE
dissipation by the mean and fluctuating components of the flow. Maximum KE
dissipation by the mean flow was also proposed more recently by Malkus [28].

Crucially, the maximization was subject to a restricted number of dynamical
constraints, obtained as integral properties of the Navier-Stokes equation (e.g.
global power balance and horizontal mean momentum balance within a horizon-
tally sheared fluid layer) rather than the full dynamics. The UBT is thus analogous
in spirit to Paltridge’s MaxEP: i.e. select one of many possible stationary states
compatible with a restricted number of constraints representing the relevant
physics on macroscopic scales, the rest being treated as ‘noise’. However, one key
difference is that UBT includes some dynamical information (momentum balance)
in addition to global energy balance; another key difference is in the nature of the
extremized function (e.g. viscous dissipation of KE [28] rather than thermal dis-
sipation [3–6]).

Intriguingly, simulations using the FAMOUS GCM [29] also showed that key
dynamical features of Earth’s climate were close to a maximum of KE dissipation
(Table 1.1).

1.2.2.5 Boltzmann-Gibbs-Jaynes Maximum Entropy

Finally we have the Boltzmann-Gibbs-Jaynes principle of Maximum Entropy
(MaxEnt) [30–34]. This principle stands somewhat apart from the others in
Table 1.1, both conceptually and in practice (see Dewar and Maritan, Chap. 3;
Niven and Noack, Chap. 7). MaxEnt predicts a probability distribution pi over
microscopic outomes i, from which macroscopic quantities may be predicted as
averages over pi. The maximized function H is the relative entropy (or negative
Kullback–Leibler divergence) of pi and a prior distribution qi; H reduces to the
Shannon entropy when qi is uniform. The maximization is subject to constraints on
certain moments of pi (representing available or relevant physical information), as
well as the specified prior probabilities qi. MaxEnt has several interpretations
(Chaps. 3 and 7, and references therein). One fairly concrete interpretation of the
MaxEnt distribution is that it corresponds to the most likely frequency distribution
of outcomes that would be observed in a long sequence of independent observa-
tions of a system that is subject to the given constraints; MaxEnt also has an
information-theoretical interpretation as the ‘least-informative’ pi [32, 33].

MaxEnt has a long history, starting with Boltzmann’s discovery that MaxEnt
expresses the asymptotic behaviour of multinomial probabilities [30], and the early
development of equilibrium statistical mechanics by Gibbs [31]. The later reap-
pearance of –Ripilnpi (Shannon entropy) in the development of information theory
[36, 37], as a measure of missing information, led Jaynes to see MaxEnt as a
general method of statistical inference from incomplete information [32, 33].
In view of its general nature, Jaynes promoted MaxEnt as a theoretical framework
for non-equilibrium as well as equilibrium statistical mechanics. When applied to
non-equilibrium systems, MaxEnt leads to non-linear flux-force relationships that
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automatically satisfy Onsager reciprocity and reduce to linear form in the near-
equilibrium limit [38–40]. Although MaxEnt provides a foundation for equilibrium
and non-equilibrium thermodynamics, its physical interpretation remains a subject
of debate (e.g. [41]) that has, like Paltridge’s MaxEP, hampered its wider
acceptance.

1.3 A Fragmented Landscape

After this rapid tour, the student would be forgiven for being confused by the sheer
number and variety of entropy production-related principles, as well as by the
diverse ways in which they have been applied to non-equilibrium systems. One
sees a fragmented landscape of principles and applications, and faces three key
difficulties in negotiating it.

1.3.1 Different Histories

One difficulty is historical: the above theoretical principles (Table 1.1) were
developed at different times, more or less independently of one other. Some the-
oretical links between the earlier variational principles (Onsager, Prigogine,
Ziegler) have been identified [13]. For example, Ziegler’s MaxEP principle
reduces to Onsager’s in the near-equilibrium limit, while Prigogine’s is a corollary
of Onsager’s that involves additional constraints. However, the links (if any)
between Paltridge’s MaxEP, the Fluctuation Theorem, Kohler’s MaxEP, radiative
MinEP, UBT, maximum KE dissipation and MaxEnt (and between these and
Ziegler’s principle) have remained obscure.

1.3.2 Different Meanings

A second difficulty, and one that compounds the first, is semantic. The terms
entropy production or dissipation are defined and used by different workers in
different ways, creating ample room for confusion. Some approaches take entropy
production as a given function of thermodynamic fluxes and forces [3–9, 11, 12,
17–19, 22–28], while others define entropy production from an underlying
microscopic picture [10, 14–16, 21, 42, 43]. Moreover it does not help that On-
sager called his MaxEP principle ‘least dissipation of energy’, or that Paltridge
originally called his principle ‘minimum entropy exchange’ before resorting to
MaxEP!

Yet further scope for confusion arises in the context of extremal principles. For
example, from the name alone one might conclude that Paltridge’s MaxEP
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principle contradicts Prigogine’s principle of MinEP, whereas these two extremal
principles refer to quite different situations. Paltridge’s MaxEP principle (e.g. as
applied to climate systems [3–6]) is a selection principle between different far-
from-equilibrium stationary states. In contrast, Prigogine’s principle describes the
non-stationary behaviour of the entropy production of near-equilibrium systems7

when a subset of the thermodynamic force constraints is relaxed; it says only that
the unique stationary state has lower entropy production than any non-stationary
state, and does not provide a selection principle in situations where there are
multiple stationary states (for a further critique of Prigogine’s MinEP, see [44]).

To have any chance of making sense of the landscape, one must look beyond
the semantics and identify three key aspects (Table 1.1) of each extremal princi-
ple, which we denote by H(y|C): (1) which entropy production or dissipation
function (H) is being maximised? (2) with respect to which variable(s) (y)? and (3)
subject to which constraint(s) (C)? Unless extremal principles are clearly stated in
this way, the potential for confusing apples with pears is essentially infinite.

1.3.3 Lack of Foundations

A third related difficulty in negotiating the current landscape lies in the somewhat
ad hoc way in which, for example, Paltridge’s MaxEP has been applied in practice,
with many aspects open to ambiguity. Which entropy production function (H) is to
be maximised? In some discussions of the physical interpretation of H, the system
entropy Ssys ¼

R
ssysdV (V = system volume) is treated as a physical quantity

obeying a local continuity equation (ossys=ot ¼ �r � js þ r with entropy flux js

and local entropy production rate r). In a stationary state all the entropy productionR
rdVð� 0Þ within the system is exported to the environment, and by MaxEP is

then meant maximum
R

rdV . However, missing from this interpretation of MaxEP
is a clear definition of r itself! In the definition of r for flow systems, Niven and
Noack (Chap. 7) also reveal some fundamental problems related to decomposition
of the flow into mean and fluctuating parts (the entropy production closure
problem).

Thus it was only through a process of trial and error that Paltridge [3] stumbled
upon maximisation of the entropy production associated with thermal dissipation
by the equator-to-pole heat transport in the oceans and atmosphere,8 rather than the
global entropy production associated with short- and long-wave radiative
exchange at the top of the atmosphere. In contrast, as noted above, simulations

7 The regime of linear force-flux relations.
8 In Paltridge’s zonally-averaged climate model [4], thermal dissipation is given by r = RiJiXi

where Ji = material heat transport between meridional zones i and i ? 1, and Xi = 1/Ti+1-1/Ti is
the corresponding inverse temperature difference.
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using the FAMOUS GCM [29] showed that key dynamical climate features were
close to a maximum of KE dissipation rather than thermal dissipation.

A similar ambiguity about the choice of dissipation function to maximise
afflicts the UBT in fluid turbulence; for example, from among a general family of
dissipation functionals Kerswell [26] was unable to identify a universal one whose
maximization applies to all flow problems. In all of these cases, the main source of
ambiguity in the choice of extremized function is the lack of a rigorous theoretical
foundation for Paltridge’s MaxEP and the UBT. The theoretical basis of Kohler’s
MaxEP is on firmer ground, as it may be proved as the mathematical solution to
the linearized Boltzmann equation [13, 20, 21]. Overall, however, what is lacking
is a selection principle for selection principles!

The debate on the theoretical basis of MaxEP extends to whether MaxEP is
even a physical principle at all [e.g. 13, 41]. Another source of ambiguity lies in
the choice of appropriate constraints, a limitation that applies also to MaxEnt.
Moreover, by its very nature as a generic inference algorithm, applications of
MaxEnt also require a choice to be made for the set of outcomes i whose prob-
abilities pi are to be predicted (Table 1.1); i may represent microscopic paths in
phase space, macroscopic fluxes defined within the system and/or on its boundary,
or indeed any quantity of which we have incomplete information (see Chaps. 3 and
7, and references therein).

Finally, so far we have been referring to near-equilibrium and far-from-
equilibrium principles (Table 1.1) when we have not defined what we mean by
distance from equilibrium. If by near-equilibrium systems we mean systems
obeying linear constitutive relations (Table 1.1 and footnote 7), then the definition
is circular. Of course, entropy production itself is a measure of distance from
equilibrium (since it vanishes in equilibrium) but, as we have seen, there are many
definitions of entropy production!

1.4 Making Connections

Here we try to pull together some of the common threads running through this
book, with entropy production playing a key unifying role. An attempt will be
made to synthesise these connections in Sect. 1.5. In anticipation, the reader is
referred to the tentative road map shown in Fig. 1.1.

1.4.1 The Fluctuation Theorem, MaxEnt, and a Generic
MaxEP Principle

We have seen that the plethora of non-equilibrium extremal principles in Table 1.1
involve various definitions of entropy production and dissipation. Is there a
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fundamental entropy production- or dissipation-like quantity on which we can
build a more coherent picture? Here we suggest there is, defined at the level of
microscopic trajectories in phase space, a definition that links the Fluctuation
Theorem, MaxEnt and MaxEP.

Specifically, let pC denote the probability that the system follows microscopic
trajectory (or path) C in phase space,9 and let C* denote the time-reverse of C.
In equilibrium we expect that pC = pC* (no net fluxes on average); however, when
a system is driven out of equilibrium by an external force (e.g. non-uniform
heating on the boundary), the odds are changed in favour of a particular average
flow direction, and then we expect that pC = pC*. The trajectory-dependent
quantity XC (called the dissipation function in Reid et al., Chap. 2) defined by

XC ¼ ln
pC

pC�
ð1:1Þ

emerges as a central concept in both the Fluctuation Theorem (Reid et al., Chap. 2)
and a proposed generic MaxEP principle derived from MaxEnt (Dewar and

Fig. 1.1 The Second Law and beyond: a tentative road map of theoretical links (solid arrows,
roads 1–11) and future research directions (dashed arrows, roads 12–14). See text for notation

9 The notation is simplified here for clarity. In terms of the notation of Chap. 2, for example,
pC = p(C(0), 0) is the probability of observing the system in an infinitesmal region around C(0)
at time t = 0, where C(t) denotes the phase space vector at time t, and pC* = p(C*(s), 0) where
C*(s) is obtained from C(s) by reversing all the particle velocities.
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Maritan, Chap. 3). Two key results follow as mathematical consequences of the
above definition10:

p XC ¼ Að Þ
p XC ¼ �Að Þ ¼ eA ð1:2Þ

and

Xh i ¼
X

C
pC ln

pC

pC�
� 0; ð1:3Þ

with equality if and only if pC = pC*; the sum in Eq. (1.3) extends over all
microscopic trajectories (i.e. it includes both C and C*). Equation (1.2) is the
Fluctuation Theorem; it implies that trajectories with negative XC are exponen-
tially less likely to be observed than trajectories with positive XC. In Eq. (1.3), hXi
is the Kullback-Leibler divergence of pC and pC*; it is a measure of how different
pC and pC* are. In other words, hXi is a measure of time-reversal symmetry
breaking (or irreversibility in the language of Chap. 3)—and therein lies its fun-
damental character, as well as the key to its eventual physical interpretation as a
thermodynamic entropy production. Equation (1.3) states that the average value of
XC is non-negative; this result, known as the Second Law inequality, is a math-
ematical consequence of Gibbs’ inequality. The value hXi = 0 (i.e. pC = pC*)
corresponds to thermodynamic equilibrium, underpinning the interpretation of hXi
as a measure of distance from equilibrium.

Clearly, the physical consequences of these purely mathematical results can only
emerge when some additional physical information is built into pC. In Chap. 2, this
is done by deriving pC from a microscopic model of the underlying molecular
dynamics. In Chap. 3, pC is derived11 from MaxEnt constrained by a restricted
subset of the underlying dynamics, representing those key aspects of the dynamics
that are known (or assumed) to be relevant on macroscopic scales. Equation (1.3) is
also consistent (up to a factor 2) with the definition of entropy production that
emerges from the MaxEnt analysis of flow systems in Chap. 7, in which constraints
on various mean flow rates are imposed.

In each case, whether pC (or p(f), see footnote 11) is derived from molecular
dynamics (Chap. 2) or macroscopic flux constraints (Chaps. 3 and 7), hXi may be
interpreted physically as a generalised entropy production, defined for systems
arbitrarily far from equilibrium. The FT and Second Law inequality then become
statements about physically-meaningful dissipation-like quantities. The generic

10 If d(i,j) denotes the Kronecker delta function [0 if i = j, 1 if i = j], Eq. (1.2) follows
from p(XC = A) = RCpCd(XC, A) = [change of variable] RCpC*d(XC*, A) = (from Eq. 1.1)
RCpCexp(–XC)d(–XC, A) = eARCpCd(XC, –A) = eAp(XC = –A). Equation (1.3) follows from
Gibbs’ inequality: –Ripilnpi B –Ripilnqi for any probability distributions pi and qi, with equality
if and only if pi = qi for all i.
11 In Chap. 3, MaxEnt is used to construct p(f), the probability distribution of macroscopic fluxes
f, rather than pC; the formalism can be re-expressed in terms of pC as shown in [42].
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MaxEP principle derived from the MaxEnt argument given in Chap. 3 then
supplements the Second Law inequality with the statement that not only is hXi
non-negative but hXi takes on its maximum value attainable under the imposed
constraints.12

1.4.2 Which Entropy Production is Extremised?
An Emerging Pattern

The majority of applications described in Part III of this book pertain to MaxEP
and its variants. In the absence of an accepted theoretical basis for MaxEP, a
pragmatic approach has seemed to be the only way forward. By applying MaxEP
in many different ways, using different candidate entropy production functions,
and seeing in which situations it appears to work in practice, one might gain
insights into its theoretical basis.

Using simple energy balance models (EBMs) that avoid some of the ad hoc
assumptions and parameterizations of Paltridge’s EBM [3–5], Herbert and Paillard
(Chap. 9) and Fukumura and Ozawa (Chap. 11) provide further evidence that the
broad thermal characteristics of some planetary climates (e.g. latitudinal profiles of
surface temperature and meridional heat flows) may be reproduced with reason-
able accuracy by maximizing the thermal entropy production associated with the
material transport of heat across temperature gradients, subject only to the con-
straint of global energy balance. These results do not invoke any dynamical
constraints, but are nevertheless conditional on there being sufficient mass to
sustain advective heat transport (Chap. 11), a conclusion also reached in [45].
Subject to this proviso, the implication then is that fluids with different dynamical
properties (e.g. different viscosities), but subject to the same global energy balance
constraint, will self-organize their velocity fields to achieve the same overall
optimal pattern of heat flow.

In contrast, in order to predict dynamical characteristics that depend explicitly
on the velocity field (including the velocity field itself), a principle of maximum
KE dissipation appears to take precedence. In climatology, this result is suggested
by a dynamic sensitivity analysis of FAMOUS, a GCM of intermediate complexity
[29]; in horizontal shear turbulence, maximum KE dissipation also accurately
reproduces the mean velocity profile over a large range of forcing conditions [28];
the same principle also emerges as an accurate predictor of the steady orientation
of a body settling in a viscous fluid (Vaidya, Chap. 13). Yet another principle,
maximum heat flow, appears to govern the stability of stationary convective states

12 Specifically (see Chap. 3), when the non-equilibrium driving force is such that Xh iC [ Xh iCmin;
then MaxEnt implies Xh i ¼ Xh imax. Here C denotes a restricted set of stationarity constraints, the
nature of which determines the physical nature of Xh iC as an entropy production or dissipation
functional; Xh iCmin and Xh iCmax are the lower and upper bounds on Xh iC.
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in lattice-Boltzmann simulations of Rayleigh-Bénard convection (Weaver et al.,
Chap. 14); under fixed-temperature boundary conditions this is equivalent to
maximum thermal entropy production.

From this pragmatic approach, therefore, the empirical and numerical evidence
appears to suggest that there is no universal entropy production functional that is
maximized in all problems. However, from a variety of different applications two
key principles have emerged—maximum thermal dissipation and maximum KE
dissipation—as a guide to constructing a more fundamental theory. One would like
such a theory to tell us a priori which functional to maximize. What insights do
existing theoretical approaches provide? For example, can we unify at least some
of the extremal functions in Table 1.1 in terms of the generalised entropy pro-
duction hXi discussed in Sect. 1.4.1?

1.4.3 MaxEP and Dynamic Stability: Emerging Theories

Several chapters in the theoretical section of this book (Part II), and studies
elsewhere, suggest that MaxEP and dynamic stability are closely related. For
example, Kleidon et al. (Chap. 8) propose a maximum power principle (equivalent
to maximum KE dissipation) for the selection of different flow structures in a
simple model of Earth system KE; they use a heuristic dynamical stability argu-
ment to suggest that stationary states of maximum KE dissipation are preferred
because they are the most stable. Ozawa and Shimokawa (Chap. 6) come to a
similar conclusion by deriving a necessary condition for the local KE dissipation
rate of a convective fluid to increase over time. In an earlier study, Malkus [28]
derived maximum global KE dissipation by the mean flow as a necessary condition
for the stability of stationary states in horizontal shear turbulence.

Further numerical evidence that MaxEP and dynamic stability are intimately
linked emerges from the stability analysis of crystal growth morphologies
(Martyushev, Chap. 20), which shows that the coexistence of two growth mor-
phologies occurs when their respective entropy productions (defined in terms of
the local velocity of the crystal surface) are equal. Simulations of Rayleigh-Bénard
convection (Weaver et al., Chap. 14) indicate that stationary convective states of
maximum heat transport are the most stable (cf. [25]).

A common feature of the analyses linking dynamical stability to maximum KE
dissipation is their incorporation of momentum balance13 as a constraint, in
addition to the global energy balance constraint under which Paltridge maximized
thermal dissipation. This suggests that there might be a link between the choice of
extremized function and the choice of constraints, and, further, that dynamical
stability underlies that link.

13 In Chap. 8 and [28], only a spatially-averaged momentum balance constraint is imposed,
rather than the full Navier–Stokes equation.
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Dewar and Maritan (Chap. 3) propose such a connection, based on the appli-
cation of MaxEnt to non-equilibrium systems under generic dynamical constraints.
Here, the physical nature of the generalised entropy production hXi indeed depends
on the choice of constraints. Specifically, when only global energy (or mass) bal-
ance is imposed, MaxEnt predicts that hXi is the entropy production by heat (or
mass) flow, consistent with the extremised function in Paltridge’s MaxEP. In
horizontal shear turbulence, when the additional (spatially-averaged) momentum
constraint of Malkus [28] is imposed, MaxEnt predicts that hXi is KE dissipation by
the mean flow, consistent with [28]. Moreover, dynamical stability plays a crucial
role here: when the non-equilibrium driving force is sufficient to make the sta-
tionary state of minimum hXi dynamically unstable (see footnote 12 and Chap. 3),
MaxEnt predicts that hXi adopts its maximum value.

The suggestion here is that there may indeed exist a universal entropy pro-
duction functional that is maximized in all problems—in the form of hXi defined
by Eq. (1.3)—but that hXi manifests itself as thermodynamic entropy production
in different ways (e.g. thermal dissipation, KE dissipation) according to the con-
straints on the system. We might think of this as the result of different constraints
confining the dissipation of free energy to different degrees of freedom, as
described by different thermodynamic dissipation functions.

1.4.4 MaxEnt and Ziegler’s MaxEP

What is the link, if any, between Ziegler’s MaxEP and the other extremal prin-
ciples in Table 1.1? As we noted in Sect. 1.2, Ziegler’s MaxEP lacks a rigorous
theoretical basis. Given the proposed argument for a MaxEnt basis of MaxEP as a
generic stationary state selection principle (Chap. 3), it is natural to examine
whether MaxEnt might also provide a basis for Ziegler’s MaxEP (or equivalently
Ziegler’s orthogonality condition, see Table 1.1).

Such a link was established in [43] for systems close to equilibrium.14

Specifically, under fixed mean fluxes Ji*, MaxEnt yields an orthogonality condi-
tion between the associated Lagrange multipliers ki and Ji*, i.e. Ji* � qr(k)/qki.
Here r(k) = hXi is the dissipation function defined by Eq. (1.3), which according
to MaxEnt can be expressed as a function of either J* or k. Equivalently, we can
consider k* as given and derive the orthogonality condition ki* � qr(J)/qJi. If we
then identify ki with the thermodynamic ‘force’ conjugate to Ji, these results are
identical to Ziegler’s orthogonality condition in, respectively, X-space and J-space
(Table 1.1). Whereas Ziegler’s MaxEP assumes the functional form of r(J) a
priori, this emerges from MaxEnt a posteriori.

Thus, close to equilibrium, Ziegler’s orthogonality condition (OC) characterises
the MaxEnt relation between flux constraints and their Lagrange multipliers. The fact

14 The restriction of the analysis in [43] to near-equilibrium systems was pointed out in [46, 47].
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that Ziegler’s OC can also be derived from a separate maximization principle
(Ziegler’s MaxEP principle, Table 1.1) may perhaps be a ‘red herring’ for two
reasons. Firstly, it is known that the generic relation between MaxEnt Lagrange
multipliers and constraints can be solved mathematically as a variational principle
[48]. Secondly, the max/min character of Ziegler’s OC depends on the nature of the
auxilliary constraints on k; for example, r(k) has a minimum with respect to varia-
tions in k restricted to the plane RikiJi* = constant (cf. Ziegler’s MaxEP, Table 1.1).
Applications to dissipative materials and land-atmosphere energy exchange are
discussed, respectively, by Houlsby (Chap. 4) and Wang et al. (Chap. 16).

The equivalence of Ziegler’s MaxEP and MaxEnt subject to given fluxes J* is
also apparent in the fact that both lead to linear flux-force relations close to
equilibrium [13, 38–40] (see also Seleznev and Martyushev, Chap. 5). Moreover,
the equivalence may be more general: in the derivation of a generic MaxEP
principle from MaxEnt (Dewar and Maritan, Chap. 3), Ziegler’s OC emerges as a
property of MaxEP stationary states arbitrarily far from equilibrium.

1.4.5 The Physical Interpretation of MaxEP

The suggestion, then, is that MaxEnt offers a common theoretical framework that
links at least some of the non-equilibrium extremal principles15 in Table 1.1
(see also Fig. 1.1). If this is correct, the question of the physical significance of
MaxEP (Paltridge, UBT, Ziegler …) boils down to that of MaxEnt itself.

Mathematically, MaxEnt is an algorithm that constructs a probability distri-
bution pi over some set of outcomes i subject to given constraints C (usually a
restricted subset of the full underlying dynamics). The MaxEnt probability dis-
tribution pi coincides with the most likely frequency distribution of outcomes that
would be observed in an infinitely long sequence of independent samples, provided
we have correctly identified the relevant constraints C that apply during the
experiment (see Chap. 3 and references therein; also Chap. 7).

This implies that MaxEnt (hence MaxEP) can be used to answer two com-
plementary questions: Given the constraints, what is the most likely system
behaviour? Or, given the observed system behaviour, what are the key constraints
governing it? Therefore we can use MaxEP in two ways—as a statistical selection
principle or a method for inferring the relevant constraints—depending on which
question we are asking. The latter question is less straightforward to answer than
the former. It requires a trial and error approach in which by comparing MaxEnt
predictions and observations we eventually home in on the relevant constraints
(which usually comprise some restricted subset of the full dynamics, e.g. global
energy balance, global momentum balance). In the former we can interpret

15 For an alternative perspective, see Chap. 5.
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MaxEnt as a physical (statistical) selection principle, just as we do the Second
Law.

While it may be tempting to interpret MaxEP as a dynamical principle that
reflects the evolution of a system towards the most stable stationary state (as
suggested in Sect. 1.4.3), we should recall Maxwell’s insight that the Second Law
is statistical in nature, and not a dynamical principle [2]. Likewise, it may be more
insightful to interpret stability arguments for MaxEP, based on a restricted subset
of the full dynamics, in a statistical sense, as describing the most likely behaviour
under those constraints.

Haff (Chap. 21) discusses the interplay between MaxEP and constraints in the
context of biological and technological evolution. Evolutionary ‘hang-ups’ [49]
may be short-term internal constraints that reflect slow degrees of freedom (e.g. the
long abiotic phase of Earth’s evolution, or the energy that is temporarily stranded
in fossil fuels). Some of those constraints may relax over longer timescales. Thus,
while predicting the current evolutionary state may not be straightforward, MaxEP
may more readily tell us where evolution is heading once only a few easily-
identifiable external constraints remain (e.g. global energy or mass balance).
Dobovišek et al. (Chap. 19) investigate the extent to which the evolution of
enzyme kinetics accords with MaxEP and MaxEnt constrained by mass balance.
Lineweaver (Chap. 22) explores the question of how MaxEP may relate to the rate
of evolution of the universe towards a state of thermodynamic equilibrium.

1.5 Towards a Synthesis

Figure 1.1 depicts a tentative road map of the theoretical links (solid arrows, roads
1-11) suggested in Sect. 1.4, and in addition some directions for future research
(dashed arrows, roads 12-14). We emphasise again that this particular view of the
landscape beyond the Second Law is a partial one, based mainly on the material
presented in Chaps. 2–4, 6, 8, 9, 11–13, 18 and 19. Section 1.5.2 highlights some
of the viewpoints and issues not featured in Fig. 1.1.

1.5.1 A Tentative Road Map

As indicated by roads 1-3, the path probability pC and path dissipation function XC

(Reid et al., Chap. 2) play a unifying role by linking the Second Law inequality,
the Fluctuation Theorem (FT) and Maximum Entropy (MaxEnt). Road 4 links
MaxEnt to a generic MaxEP principle (Dewar and Maritan, Chap. 3), in which the
path relative entropy (H = –RCpClnpC/qC) is maximized with respect to pC, sub-
ject to a restricted set of stationarity constraints (C) together with the criterion that

the state of minimum dissipation is dynamically unstable, hXiC [ hXiCmin. As
indicated by the superscript, the physical nature of the dissipation function hXiC
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(i.e. its interpretation as a thermodynamic entropy production) depends on the
nature of C. MaxEnt implies MaxEP, i.e. hXiC is maximized with respect to the
stationary states compatible with C. When C represents global energy and/or mass
balance (e/m, road 5), we recover Paltridge’s MaxEP (cf. Chaps. 9, 11, 19) in
which hXiC takes the form of flux times force (e.g. heat flux times inverse tem-
perature gradient; or mass flux times chemical affinity). When C includes global
power balance and a spatially-averaged momentum balance constraint in hori-
zontal shear turbulence [28] (e/m, mom, road 6), we recover maximum KE dis-
sipation (cf. Chaps. 6, 8, 13) in which hXiC is the KE dissipation associated with
the mean velocity field (DKE, Fig. 1.1).

The generic MaxEP principle (Chap. 3) also leads to Ziegler’s orthogonality
condition (non-linear constitutive relations, cf. Chap. 4) for systems arbitrarily far
from equilibrium (road 7). This reduces to linear flux-force relationships (road 8)
in the near-equilibrium limit, hXi & 0, a result that can also be obtained directly
from MaxEnt (road 9, [38–40]). As shown by Ziman [21], Kohler’s MaxEP fol-
lows rigorously as the mathematical solution to the linearized Boltzmann equation
for gas transport; and when expressed in the language of thermodynamic fluxes
and forces, it is equivalent to Onsager’s MaxEP (road 10).

In a separate thread, Malkus’s dynamical stability analysis [28], involving the
same constraints as road 6, also leads to maximum KE dissipation by the mean
flow (road 11). This raises the possibility of interpreting hXiC as a fundamental
statistical measure of dynamical stability (road 12). Intuitively, this might reflect
the fact that maximizing hXiC ensures that pC and pC* are maximally different, so
that entropy-decreasing trajectories that would destabilise the stationary state of
maximum entropy production are also maximally improbable. Dynamical stability
might also be understood statistically through the ‘maximum caliber’ interpreta-
tion of MaxEnt [39, 44], in which the predicted macroscopic path of a
non-equilibrium system is representative of the largest number of plausible
microscopic paths. This echoes the interpretation by Malkus [25] that the statistical
stability of maximum-dissipation turbulent states reflects the high local density of
flow solutions in phase space.

Another direction for future study is the link, if any, between Kohler’s MaxEP
and radiative MinEP (road 13). With appropriate constraints, both principles offer
solutions to transport problems that can be expressed mathematically as a line-
arized Boltzmann equation (for mass and radiation, respectively). As far as we are
aware, however, a mathematical derivation of radiative MinEP that follows the
same lines as the mathematical derivation of Kohler’s MaxEP [e.g. 13, 20] has yet
to be given explicitly (cf. Chap. 12).

Finally, can MaxEnt provide a theoretical basis for a non-stationary version of
MaxEP? (road 14). A time-dependent formulation of MaxEP is explored by
Vallino et al. (Chap. 18) in the context of biogeochemistry; see also [39, 50]. If
such a principle could be established, entropy production might be to macroscopic
dynamics what the Lagrangian functional is to microscopic dynamics (cf. Chap. 5,
Sect. 5.5).
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1.5.2 Other Perspectives and Open Questions

So far we have highlighted the role of MaxEnt as a common theoretical framework
for some of the principles in Table 1.1. Its potential in this regard stems largely
from its generic nature—in all problems the same principle is applied (maximum
relative entropy); only the nature of the outcomes i and constraints C differs
between problems. Fig. 1.1 offers a tentative road map centred on MaxEnt subject
to the specific constraints applied by Dewar and Maritan in Chap. 3 (stationarity,
dynamic instability of the MinEP state). In Chap. 7, Niven and Noack apply
MaxEnt to flow systems subject to constraints on mean flow rates. There, the
interplay between changes in entropy within and outside the system can be
described in terms of changes in a potential function, U ¼ �lnZ; where Z is the
partition function. By analogy with equilibrium thermodynamics, a principle
of minimum16 U for open, stationary systems is proposed, with U the non-
equilibrium analogue of the Planck potential (or free energy); from this, principles
of MaxEP or MinEP might then arise depending on the particular constraints on
the system under study. Seleznev and Martyushev (Chap. 5) proposes that MaxEP
is an independent physical principle whose theoretical foundation does not rely on
MaxEnt at all.

Yoshida and Kawazura (Chap. 15) examine the link between entropy production
and stability in a turbulent fluid-plasma system. Using a simple low-
dimensional dynamical model, they find that whether the thermal entropy
production of the (stable) non-linear stationary state is larger or smaller than the
(unstable) linear stationary state depends on the system connectivity (series vs.
parallel) and the type of forcing (flux-driven vs. force-driven). Analyses of pipe
flow systems show a similar dependence of the relative size of the entropy pro-
duction rates of laminar versus turbulent flow on the type of forcing [51–54]. Do
these results challenge emerging theories suggesting that the most stable states
always have the largest entropy production (Chaps. 3, 6, 8 and [28])? Or do the
latter theories only apply to selection of one among several non-linear stationary
states, and not to selection between one linear state and one non-linear state (Chap.
15)? Alternatively, do these results provide evidence for a principle of minimum U,
analogous to the minimum free energy principle of equilibrium thermodynamics,
that might reduce to MaxEP or MinEP under different circumstances (Chap. 7)?

Boshi et al. (Chap. 10) analyse a GCM incorporating the ice-albedo feedback to
show that dynamical transitions between the snowball and warm stationary climate
states are characterised thermodynamically by signature variations in the effective
Carnot efficiency of the climate considered as a heat engine. Herbert et al. [49]
used a simpler energy balance model to demonstrate a close analogy between the
relative stability of snowball and warm states and their thermal entropy produc-
tion rates, suggesting MaxEP as the relevant selection criterion. A MaxEP prin-
ciple also appears to govern selection between crystal growth morphologies

16 The minimum is along a path in the space of flux states.
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(Martyushev, Chap. 20). How do these results relate to the theoretical landscape of
Fig. 1.1, or to the MaxEP/MinEP dichotomy described above?

The emergence of maximum heat transport as characteristic of stable states in
a lattice-Boltmann simulation of Rayleigh-Bénard convection (Weaver et al.,
Chap. 14) echoes the earlier maximum transport principles of UBT [23]. A
subsequent stability analysis by Malkus [25] suggested that, for very high Ray-
leigh number flows, maximum momentum transport takes precedence over
maximum heat transport. How are these results to be reconciled? Does maximum
heat transport take precedence at lower Rayleigh numbers?

Clearly, there is much climbing to be done before we reach a consensus view on
the theoretical basis of the various MaxEP/MinEP principles described in this
chapter. Conquering that lofty peak will require a close interplay between bottom-
up and top-down modelling approaches—numerical simulations (GCMs, lattice-
Boltzmann models, molecular dynamics simulations), dynamical stability
analyses, and variational methods. However, model analyses are not sufficient.
Ultimately the models must be confronted with observational data, as exemplified
by several contributions to this volume (e.g. Chaps. 11–13, 16, 18, 19). Together,
these approaches will continue to provide a fertile testing-ground for emerging
theories of MaxEP and other non-equilibrium principles beyond the Second Law.
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Chapter 2
The Dissipation Function: Its Relationship
to Entropy Production, Theorems
for Nonequilibrium Systems
and Observations on Its Extrema

James C. Reid, Sarah J. Brookes, Denis J. Evans and Debra J. Searles

Abstract In this chapter we introduce the dissipation function, and discuss the
behaviour of its extrema. The dissipation function allows the reversibility of a
nonequilibrium process to be quantified for systems arbitrarily close to or far from
equilibrium. For a system out of equilibrium, the average dissipation over a period,
t, will be positive. For field driven flow in the thermodynamic and small field
limits, the dissipation function becomes proportional to the rate of entropy pro-
duction from linear irreversible thermodynamics. It can therefore be considered as
an entropy-like quantity that remains useful far from equilibrium and for relaxa-
tion processes. The dissipation function also appears in three important theorems
in nonequilibrium statistical mechanics: the fluctuation theorem, the dissipation
theorem and the relaxation theorem. In this chapter we introduce the dissipation
function and the theorems, and show how they quantify the emergence of irre-
versible behaviour in perturbed, steady state, and relaxing nonequilibrium systems.
We also examine the behaviour of the dissipation function in terms of the extrema
of the function using numerical and analytical approaches.
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2.1 Introduction

The treatment of thermodynamic systems can be considered to be split between
systems that are in or near equilibrium, and nonequilibrium systems. Equilibrium
systems are well quantified by a variety of state functions, such as entropy, tem-
perature and free energy, that are independent of the moment to moment behaviour
of the system. Nonequilibrium systems can exhibit a variety of behaviours
including relaxation, ageing, various meta-stable states, and steady states. Even in
a steady state, they are generally more difficult to classify as many of the basic
state functions, including the temperature and entropy, are undefined for far from
equilibrium states and the nonequilibrium distribution function of a steady state
system is fractal and non-analytic.

As discussed recently [1], the Gibbs’ entropy,

SGðtÞ � �kB

Z
dCf ðC; tÞ lnðf ðC; tÞÞ � �kB lnðf ðC; tÞh if ðC;tÞ; ð2:1Þ

is not useful for the description of the relaxation of nonequilibrium Hamiltonian
systems or for steady states because it is constant in the first case and divergent in
the latter. Here the notation . . .h if ðC;tÞ is an ensemble average with respect to the

distribution function f ðC; tÞ. Close to equilibrium and in the thermodynamic limit,
the spontaneous entropy production rate from nonlinear irreversible thermody-
namics [2] can be well defined and is a useful quantity. However, far from
equilibrium where temperature is not well defined a new quantity needs to be
considered. Recently we have shown that the dissipation function, X, is a powerful
quantity which reduces to the spontaneous entropy production rate at small fields
for field driven flow [3]. As discussed below, it also satisfies the inequality,
Xth i[ 0 for nonequilibrium systems and therefore it is considered an entropy-like

quantity or a generalisation of the entropy for far from equilibrium systems.
In this chapter we will first define the dissipation function and give an overview

of some recently derived theorems where dissipation plays a key role. We will also
consider the extremal behaviour of the dissipation function by referring to some
results from previously published work.

2.2 The Dissipation Function and the Fluctuation Theorem

The dissipation function quantifies the thermodynamic reversibility of a trajectory.
It compares the probability of observing an arbitrary system trajectory with the
probability of observing the time reverse of that trajectory (its conjugate anti-
trajectory) in the same ensemble of trajectories [3]:

XtðCð0ÞÞ ¼ ln
PðCð0Þ; 0Þ
PðC�ðtÞ; 0Þ : ð2:2Þ
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Here C � fq1; p1; . . .qN ; pNg is the phase space vector of the system which
corresponds to a system trajectory, XtðCð0ÞÞ is the total dissipation (or time
integral of the dissipation) for a trajectory originating at Cð0Þ and evolving for a
time t, PðCð0Þ; 0Þ ¼ f ðCð0Þ; 0ÞdCð0Þ is the probability of observing a system in an
infinitesimal region around Cð0Þ in the initial system distribution with distribution
function f ðCð0Þ; 0Þ, and C�ðtÞ is the result of applying a time reversal map to CðtÞ.
It can therefore be written in expanded form as,

XtðCð0ÞÞ ¼ ln
f ðCð0Þ; 0ÞdCð0Þ
f ðC�ðtÞ; 0ÞdC�ðtÞ : ð2:3Þ

While the expression above is for a deterministic system, the dissipation
function can be defined for a general dynamic system [4], and has been applied to
quantum and stochastic systems in addition to deterministic ones [5–7].

The time integral of the dissipation is positive when the observed system tra-
jectory, starting at Cð0Þ, is more probable than the conjugate trajectory, starting at
CðtÞ, and negative when the observed trajectory is less likely than its conjugate. In
order for the dissipation function to be well defined for a system we need the
conjugate trajectory to exist for every possible trajectory in the accessible phase
space of the system,1 which for a deterministic system requires ergodic consis-
tency (that the volume of phase space occupied at time t is congruent with or a
subset of the volume at time 0) and time reversal symmetric (any time dependent
external parameters are even around t/2). We can also define an instantaneous
dissipation function:

XðCðtÞÞ ¼ dXtðCð0ÞÞ
dt

: ð2:4Þ

For clarity of notation, we note that XtðCð0ÞÞ ¼
R t

0 XðCðsÞÞds.
The dissipation function evaluates the relative reversibility of a single obser-

vation of a system. To understand the overall system behaviour, we need to look at
the distribution of the dissipation function. The fluctuation theorem does this by
considering the relative probability of observing processes that have positive and
negative total dissipation in nonequilibrium systems. This theorem was first
derived by Evans and Searles [3, 8], and results in the relationship:

PðXt ¼ A� dAÞ
PðXt ¼ �A� dAÞ ¼ eA; ð2:5Þ

where PðXt ¼ A� dAÞ is the probability of observing a trajectory with a dissi-
pation total infinitesimally close to A.

The fluctuation theorem was derived to solve one of the fundamental paradoxes
of statistical mechanics, Lochsmidt’s paradox. In 1876, Lochsmidt pointed out a
fundamental problem associated with nonequilibrium thermodynamics: the

1 Note that this is often trivially satisfied in a stochastic system.
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macroscopic behaviour of a system is irreversible, as embodied in the second law,
but the microscopic motion of all of the individual components is fully time
reversible. Therefore for any system change, the opposite system change must also
be possible. Even at that time, a resolution to the paradox was recognised by some.
As noted by Maxwell [9]:

The truth of the second law is… a statistical, not a mathematical, truth, for it depends on
the fact that the bodies we deal with consist of millions of molecules…

Hence the second law of thermodynamics is continually being violated, and that to a
considerable extent, in any sufficiently small group of molecules belonging to a real body.

and Boltzmann [10]:

…as soon as one looks at bodies of such small dimension that they contain only a very few
molecules, the validity of this theorem [the Second Law] must cease.

This means that the second law of thermodynamics is the limiting result of a
statistical effect where the probability of observing the behaviour predicted from
thermodynamics becomes more and more likely as the system size grows. How-
ever for sufficiently small systems monitored for short periods, we would expect to
observe both types of behaviour. The fluctuation theorem quantifies this result.

The fluctuation theorem is an exact expression that applies to any system for
which the dissipation function is well defined. It tells us that positive dissipation is
exponentially more likely to be observed than negative dissipation. Furthermore,
consideration of the ensemble average of the dissipation function, that is the
average over all the available initial points, must be positive, hXti� 0, a result
known as the second law inequality [11]. These two results expand the generally
irreversible behaviour of macroscopic thermodynamic systems into a finite size
regime where the second law only holds probabilistically, as demonstrated by a
variety of experiments on systems as diverse and optically trapped colloids, tor-
sional pendulums, and electric circuits [12–14].

It is instructive to consider a simple, nonequilibrium, thermostatted system of
volume, V consisting of charged particles driven by a field, Fe. In this case,
Xt ¼ bVFe

R t
0 JcðsÞds where b ¼ 1=ðkBTÞ, T is the temperature that the system

would relax to in the absence of the field (i.e. the temperature of the surroundings),
and Jc is the current density in the direction of the field. Writing the time-average
of the current density along a trajectory as �Jc;t ¼ 1

t

R t
0 JcðsÞds, the fluctuation

relation can then be stated:

Pð�Jc;t ¼ A� dAÞ
Pð�Jc;t ¼ �A� dAÞ ¼ eAbFeVt; ð2:6Þ

From this equation, we can see that as the system size or time of observation is
increased, the relative probability of observing positive to negative current density
increases exponentially so the current density has a definite sign and the second
law of thermodynamics is retrieved. Furthermore, �Jc;t

� �
� 0. In obtaining these

results, nothing is assumed about the form of the distribution of current density (it
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does not have to be Gaussian), and their application is not restricted to this special
case of a field driven system, but is very widely applicable. The conditions of
ergodic consistency and microscopic time reversibility (that is reversibility of the
equations of motion of the particles in the system) are all that are required. Fur-
thermore, in the weak field limit, the rate of entropy production, _S, is given from
linear irreversible thermodynamics as _S �

P
Jih iVXi=T where the sum is over the

product of all conjugate thermodynamic fluxes, Ji and thermodynamics forces, Xi

divided by the temperature of the system, T. Clearly the dissipation here is related
to this: limFe!0 _SðtÞ ¼ kB XðtÞh i. The difference at high fields is because the
temperature that appears in the dissipation function is that which the system would
relax to if the fields were removed rather than any non-equilibrium system tem-
perature observed with the field on.2 The change in entropy for a process will be
similarly related to the time-integral of the dissipation limFe!0 DS ¼ kB Xth i.

The second law of thermodynamics is often stated in terms of the thermody-
namic entropy and this is equivalent to the dissipation in some cases. However we
note that the argument of the fluctuation theorem and second law inequality is the
dissipation function and these results apply widely: to field driven, boundary
driven and relaxation processes arbitrarily close to, or far from, equilibrium.
Therefore we argue that away from equilibrium the dissipation function is the
appropriate property to consider. It is a well defined, unambiguous quantity for
deterministic nonequilibrium systems, given by Eq. (2.3).

2.3 The Dissipation Theorem and the Relaxation Theorem

The dissipation function appears as the central argument of the fluctuation theorem
and the second law inequality. Dissipation is also important in quantifying a range
of nonequilibrium behaviours, including appearing as the argument of exact
expressions for nonlinear response (the dissipation theorem [16]) and relaxation
towards equilibrium (the relaxation theorem [17, 18]).

From the definition of the dissipation function, it can be shown that the time-
evolution of the phase space distribution function is given by [16]:3

f ðC; tÞ ¼ exp �
Z �t

0
XðCðsÞÞds

� �

f ðC; 0Þ ð2:7Þ

2 Outside of equilibrium, microscopic temperature expressions are ill defined. Often expressions
such as the kinetic temperature (the equipartition expression in momenta) or configurational
temperature (a similar expression in position) are used, however these expressions only
correspond to the temperature of the system, and each other, at equilibrium [15].
3 Equation (2.7) applies to systems with no field or a constant field. For the case of a time-
dependent field see [19].
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The time argument in f ðC; tÞ represents the time over which the distribution
function has evolved from the initial distribution function. Using this result, the
dissipation theorem enables the time evolution of ensemble averages of arbitrary
phase variables to be calculated for systems that are arbitrarily close or far from
equilibrium. In its transient time-correlation form it is written [16]:

BðCðtÞÞh i ¼ BðCð0ÞÞh i þ
Z t

0
XðCð0ÞÞBðCðsÞÞh ids; ð2:8Þ

where BðCÞ is a phase function (i.e. a function whose value can be obtained from
the instantaneous value of C) and XðCð0ÞÞ is the instantaneous dissipation at time
0. It was first derived in [16], however a simpler derivation is presented in [20].4

While it may initially appear redundant, as the ensemble average of the quantity of
interest can always be measured directly using the same experiment as the dissi-
pation theorem, in some systems, such as weakly driven ones, the dissipation
average converges more quickly than the direct average [22–25]. It also proves
useful in understanding the response of a system. This relationship is exact at
arbitrary field, and therefore it gives the nonlinear response of a system to an
external field. However, it also applies to nonequilibrium systems where there is
no external field, but there is a change to the system, such as a change in tem-
perature, removal of an applied pressure gradient etc.

The question of how a system relaxes towards equilibrium, and how to deter-
mine the functional form of the equilibrium distribution function can also be
answered by considering the dissipation. Applying the dissipation theorem to a
relaxing system, using the second law inequality and assuming the property of T-
mixing [26] (that is the decay of time-correlations in transients), it has been proven
that a system will relax to a unique equilibrium state. This result is referred to as
the relaxation theorem [17, 18]. If a system that is initially out of equilibrium has a
well defined dissipation function and time decay of correlations then the relaxation
theorem predicts that [17, 18]:

• The instantaneous dissipation will be zero for a system in equilibrium
(XðCðtÞÞ ¼ 0).

• The state where the instantaneous dissipation remains 0 with time is unique and
is the canonical distribution for a thermostatted system [17, 18] and the mi-
crocanonical distribution for a constant energy system [17, 18].

• The ensemble average of the instantaneous dissipation will go to zero as the
relaxing system approaches equilibrium limt!1 XðCðtÞÞh i ¼ 0ð Þ.

• The ensemble average of the time-integrated dissipation will always be positive,
following the second law inequality ( Xth i[ 0), and will reach a limiting value
X1h i at long times. Therefore if the conditions on an equilibrium system are

changed, the system will relax to a new equilibrium state and the total dissi-
pation during the process will be finite and positive.

4 Note that a special case of this relation was derived much earlier, see [21] for details.
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The relaxation theorem does not however say that the average instantaneous
dissipation function must be greater than zero at all times, accommodating non-
monotonic relaxation [27].

We can consider applying Eq. (2.7) to the case where a system initially in
equilibrium state 1 with distribution function f1ðCÞ ¼ f ðC; 0Þ is subject to a change
in conditions and allowed to relax to a new equilibrium state 2 with distribution
function f2ðCÞ ¼ limt!1 f ðC; tÞ. As mentioned previously, the change in Gibbs’
entropy, �kB ln f2h if2þkB ln f1h if1 is zero if the dynamics are Hamiltonian and will
be equal to the heat removed from the system divided by the thermodynamic
temperature of the underlying equilibrium state, with a non-Hamiltonian ther-
mostat [1]. Taking the ensemble average with respect to the initial distribution
function, for the left and right hand side of Eq. (2.7), it can be shown that:5

kB X1h if1¼ kB ln f2h if1�kB ln f1h if1 ð2:9Þ

In obtaining this result, we have made use of the fact that the equilibrium
distributions do not change when the sign of the momentum is changed [16]. This
looks similar to the change in Gibbs’ entropy, however the ensemble averages are
both with respect to the distribution function of the initial state. This clearly shows
the difference between the change in the Gibbs’ entropy and the total dissipation.

The importance of dissipation in all these results shows that apart from being an
entropy-like quantity for field driven flow, it is an important general property for
all nonequilibrium systems.

2.4 Extrema of the Dissipation Function

The dissipation function is similar to the entropy production, and while not directly
connected to a state function, the various fluctuation theorems provide exact,
nonequilibrium relations that are fundamentally important to describing non-
equilibrium systems. Given the similarity between the two functions, it is inter-
esting to consider whether a phenomenological theory such as MaxEnt (maximum
entropy) for equilibrium systems, and MaxEP (maximum entropy production rate)
for nonequilibrium systems can be applied to the dissipation. Several papers have
considered the links between entropy production, maximum entropy production

5 We note that �
R�t

0 XðCðsÞÞds ¼
R t

0 XðC�ðsÞÞds if the dynamics are time reversible and thatR
XðC�; sÞf ðCÞdC ¼

R
XðC�; sÞf ðC�ÞdC� ¼ XðsÞh i since the probability of observing ensemble

members is constant (f ðCÞdC ¼ f ðC�ÞdC�, see [1]). We assume that the system eventually
relaxes to an equilibrium state, f2ðCÞ ¼ limt!1 ln f ðC; tÞ. From Eq. (2.7), limt!1 ln f ðC; tÞ ¼
limt!1ð�

R�t
0 XðCðsÞÞdsþ ln f ðC; 0ÞÞ, which can be expressed ln f2ðCÞ ¼

R1
0 XðC�ðsÞÞdsþ

ln f1ðCÞ. Then taking the ensemble average with respect to the initial distribution function we
obtain ln f2h if1¼ X1h if1þ ln f1h if1 :
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rates, fluctuation theorems and nonlinear response [19, 28–33]. As noted by
Williams and Evans [19], MaxEP cannot be applied rigorously to nonequilibrium
systems in general, as the distribution function at any time (including in the steady
state) is not just a function of the dissipation at that time. However it might provide
a good approximation in some cases.

A system that relaxes towards equilibrium can do so in one of two ways:
conformally and non-conformally.6 From the relaxation theorem, it can be shown
that a system that behaves conformally relaxes monotonically to equilibrium at
teq.7 Given the bounds on the instantaneous dissipation function, XðteqÞ

� �
¼

Xð0Þh i ¼ 0, we expect it to peak at some time before returning to zero. The total
dissipation will therefore reach a maximum at equilibrium, Xteq

� �
[ Xteq�Dt

� �
;

8Dt\teq. That is, the ensemble of systems will move through a number of different
states (with different distribution functions and average values of the average
instantaneous dissipation) as it evolves towards the equilibrium state. However,
because the total dissipation is maximised when the system reaches equilibrium,
we can use Eq. (2.9) to note that the final stable state will have a greater value of
ln f ðC; tÞh if1 than any other state it passes through. This is a special case where it is

clear that this function is a maximum compared with other states that it passes
through. If a system relaxes non-conformally then there is no such extremal result.
This is the most common form of relaxation in nature, and is the one we will study
using numerical simulations.

For systems that reach a nonequilibrium steady state, qualitatively different
behaviour is expected. From the relaxation theorem and the second law inequality,
we know that if a field is applied to a system that is initially at equilibrium the total
dissipation will be positive at all times after application of a field. If a steady state
is ultimately reached, this implies that the ensemble average of the instantaneous
dissipation function in the steady state must be positive, and that the average of the
total dissipation function will approach infinity at long times. Furthermore, con-
sidering Eq. (2.8) with B ¼ X, if the time autocorrelation function XðCð0ÞÞh
XðCðtÞÞi decays monotonically with time, then the value of the ensemble average
of the instantaneous dissipation function, XðtÞh i will be higher when it reaches its
steady state than for any another state it passes through. Therefore the system is in
the state that maximises the dissipation function (rate of entropy production).
Again this is a special case, so we use numerical simulations to study the
behaviour of the instantaneous dissipation function more generally; examining
whether it is a maximum in the steady state or if a transient state has a higher
average instantaneous dissipation value.

6 A conformal system relaxes such that the nonequilibrium distribution is of the form
(f ðC; tÞ ¼ expð�bHðCÞ þ kðtÞgðCÞÞ=Z; 8t) and the deviation function, g, is a constant over the
relaxation.
7 Strictly a system relaxes as time tends towards infinity, but in practice at teq the system has
relaxed.
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2.4.1 Relaxing System: Trapped Particle

We choose a system with non-monotonic relaxation based on an optical trapping
experiment called the capture experiment [12]. In this model a particle is bound by
a harmonic potential to a point in space within a two dimensional fluid surrounded
by thermostatted walls [27]. At the beginning of the experiment we begin with the
test particle in equilibrium with a trapping constant of k0, then at time t ¼ 0þ we
discontinuously change the trap constant to kt, and allow the system to relax to
equilibrium with kt. The system contains a number of energy storage modes
including the optical trap of the particle, the harmonic binding of the walls, and an
integral feedback thermostat; all of which can phase shift the response in dissi-
pation and cause non-monotonic relaxation.

To study this system nonequilibrium molecular dynamics simulations (NEMD)
were performed using a 4th order Runge–Kutta algorithm with k0 ¼ 2, kt ¼ 8, and
therefore it is expected that the particle will move closer to the trap on average.8

From the equations of motion for the system:

_qiðtÞ ¼ piðtÞ=m; ð2:10Þ

_piðtÞ ¼ FI;iðtÞ � d1;iktqiðtÞ � SwaðtÞpiðtÞ þ SwFw;iðtÞ; ð2:11Þ

_aðtÞ ¼ 3kB

Q
ðTkðtÞ � TÞ; ð2:12Þ

and from our definition of the dissipation function, Eq. (2.2), we can derive a
dissipation function of the form:

XtðCð0ÞÞ ¼
bðk0 � ktÞ

2
ðq2

1ðtÞ � q2
1ð0ÞÞ: ð2:13Þ

Here i is the particle index, m is the mass of the particles, d is the Kronecker
delta, Sw is the thermostat switch that is 1 for the wall particles and 0 for the fluid
and trapped particles, FI;i is the intermolecular force acting on the particle, Fw;i is
the harmonic force constraining the wall particles to their positions, a is the
thermostat multiplier that constrains the momenta of the system, Q is the thermal
mass of the thermostat, T is the thermostat target temperature, and Tk is the kinetic
temperature of the walls, b ¼ 1=kBT , q1 is the position of the trapped particle
relative to the harmonic trap centre. The particles interact via the Weeks, Chandler
and Andersen (WCA) potential (i.e. a Lennard-Jones potential that is truncated at
the potential energy minimum) [34].

From this we can fully describe the behaviour of the dissipation: if the initial
trapping constant is greater than the final trapping constant, k0 [ kt, then the
function will be positive when the trapped particle finishes further from the trap

8 Simulation parameters: 50 Fluid particles, 22 Wall particles, T = 1, q ¼ 0:3, 100,000
trajectories.
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centre than it started and negative when it is closer, and if the initial trapping
constant is less than the final trapping constant, kt [ k0, then the function will be
positive when the trapped particle finishes closer to the trap centre than it started
and negative when it is further away. However, there is always a possibility of
observing a negative value for the total dissipation in this system. Finally the
instantaneous form of the dissipation function for this system is easily derived to
be:

XðCðtÞÞ ¼ bðk0 � ktÞq1ðtÞ _q1ðtÞ: ð2:14Þ

Again it can be seen that its sign is connected to the difference in trapping
constants. For example, when the initial trapping constant is greater than the final
trapping constant, k0 [ kt, then the function will be positive when the particle is
travelling away from the trap centre.

We will first examine the fluctuation theorems for this system to show that it is
consistent with their predictions. In Fig. 2.1 we plot the logarithm of both sides of
Eq. (2.5) at the end of the simulation, and see extremely good agreement with the
straight line of slope one predicted by the fluctuation theorem. To test the dissi-
pation theorem, we can take advantage of the fact that the instantaneous dissi-
pation function is a phase function and can be the argument of the theorem,
BðCÞ ¼ XðCÞ in Eq. (2.8). In Fig. 2.2 we see extremely close agreement between
the average as directly measured, and the average as calculated from the dissi-
pation theorem. We also observe that the average of the instantaneous dissipation
function goes to zero as predicted by the relaxation theorem at long times
(Fig. 2.2).

Looking at the extrema, the average of the instantaneous dissipation function
against time in Fig. 2.2 is reminiscent of an underdamped harmonic oscillator; this
means that the maximum and minimum are reached in the first ‘cycle’, before
going to zero at long times. In Fig. 2.3 we plot the average dissipation function
against time. It appears that the average of the total dissipation reaches a maxima
at equilibrium. This suggests that the non-conformal modes relax more quickly
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Fig. 2.1 Plot of the logarithm of both sides of Eq. (2.5) at the end of the simulation, with
standard error bars, and a line that shows the expected relation. Reprinted with permission from
Reid et al. [27]. Copyright 2012 American Institute of Physics
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than the conformal modes, leading to an overall relaxation to the state with
maximum Xt. This is an interesting result, and bears further study to determine if it
is a universal feature of relaxing systems, or merely a feature of this system.

2.4.2 Transient and Steady State System: Poiseuille Flow

Here we examine a simple system, thermostatted Poiseuille flow, that produces a
nonequilibrium steady state. A fluid of identical particles in equilibrium is sub-
jected to a field at time t ¼ 0þ that exerts a constant force on the fluid particles in
the positive x-direction. At short times, the system will exhibit a transient state as
particles begin to accelerate in the appropriate direction, while at long times the
particles will have velocities that are mediated by their interactions with the walls
of the system, and a steady state will be reached with a maximum streaming
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Fig. 2.2 Plot of the average instantaneous dissipation (XðCðtÞÞ, –), and the dissipation theorem
estimate of the average instantaneous dissipation (hðX; tÞ = RHS of Eq. (2.8), - - -), with time.
Note that these results are indistinguishable at this scale. Also note how the function approaches
zero at long time as predicted by the relaxation theorem. Reprinted with permission from Reid
et al. [27]. Copyright 2012 American Institute of Physics

 0

 0.5

 1

 1.5

 2

 2.5

 0  2  4  6  8  10

<
Ω

t>

t
 40  70  100
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velocity in the center of the system, and a minimum streaming velocity proximate
to the walls.

We study this system using nonequilibrium molecular dynamics simulations.9

The equations of motion for the N particles are given by:

_qiðtÞ ¼ piðtÞ=m; ð2:15Þ

_piðtÞ ¼ FI;iðtÞ þ Sf Fei� SwaðtÞpiðtÞ þ SwFw;iðtÞ; ð2:16Þ

aðtÞ ¼
P

SwðFI;i þ Fw;iÞ:piP
Swpi:pi

: ð2:17Þ

Fe is the field which acts in the x-direction on each of the Nf fluid particles and
Sf is the field switch that is 1 for the fluid particles and 0 for the wall particles. As
in the previous example, a WCA interparticle potential is used. In order to better
observe non-linear behaviour in this system, a polymer melt consisting of chains of
4 particles bound by a Finite Extensible Nonlinear Elastic Potential (FENE) [35]
was studied in addition to studying an atomistic fluid. This adds an additional term
into the interparticle force, FI;i, due to interactions of the particle with its neigh-
bours in the chain. We can again derive the dissipation using Eq. (2.2),

XðCðtÞÞ ¼ bFe

XNf

i¼1

pxiðtÞ
m

: ð2:18Þ

This dissipation function is extensive with the number of fluid particles in the
field. Particles give a positive contribution to the dissipation function when they
move in the same direction as the field, and a negative dissipation they move in the
opposite direction to the field, and the dissipation function can be expressed in

terms of a particle current, Jx ¼
PNf

i¼1 _qxi=Nf , as XðtÞ ¼ bJxðtÞNf Fe.
In Fig. 2.4 we plot the logarithm of both sides of Eq. (2.5) at the end of the

simulation, and see extremely good agreement with the straight line of slope one
predicted by the fluctuation theorem. To test the dissipation theorem for this
system, we use the particle current Jx instead of the instantaneous dissipation as
they are proportional, but the particle current is a more familiar property. The
second law inequality predicts that Xth i[ 0 and hence Jx;t

� �
[ 0 at all times for a

nonequilibrium system, however it says nothing about XxðtÞh i or JxðtÞh i. Indeed it
is well known that XðtÞh i can be negative (see [36]). The results presented in
Fig. 2.5 show that hJxðtÞi, and hence the average instantaneous dissipation func-
tion, is positive at all times. It would be interesting to determine if this will always
be the case for systems with a constant field. In Fig. 2.5 we also observe the
numerical utility of the dissipation theorem: at high field the agreement between
the directly calculated current and that obtained from the dissipation theorem is

9 Simulation parameters: 64 Fluid particles, 64 Wall particles, T = 1, q ¼ 0:8, 100,000
Trajectories.
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similar as in the case of the capture experiment; but at low field the dissipation
theorem does a much better job of determining the behaviour of the particle
current. In Fig. 2.6 we plot the average of the particle current normalised by the
field against time for various field strengths. It is notable that the dissipation
average peaks before dropping to a steady state for most field values. Therefore it
is clear that the instantaneous dissipation is not a maximum in the steady state—
the system evolves through an unstable maximum. However for strong fields in the
polymer melt we reach a value that is higher than the transient response. This is
consistent with the arguments of Williams and Evans [19] where they suggest that
under some conditions, (large fields in this case), the state with the maximum
dissipation (or rate of ‘‘entropy’’ production) might be the steady state that is
observed. From these results we infer that the linear response of the system has a
transient peak, but the non-linear response increases with time. In Fig. 2.7, we
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Fig. 2.4 Plot of the logarithm of both sides of Eq. (2.5) at the end of the simulation, with
standard error bars, and a line that shows the expected relation. Reprinted from [24], with
modifications to formatting. Published under licence in Journal of Physics: Conference Series by
IOP Publishing Ltd
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subtract the smallest field response (as a good approximation for the linear
response), and see that this is indeed the case for the polymer melt. Since the
instantaneous dissipation function settles to a steady value as the steady state is
reached, the time integral of the dissipation will be positive at all times (as
determined from the second law inequality), but will diverge to infinity with time.
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The field strengths of the lines are, from lowest to highest at t ¼ 8, (Fe ¼ 0:01; - - - -), (Fe ¼ 0:1;
—̈ –), (Fe ¼ 0:2– . –), (Fe ¼ 0:3; ���), (Fe ¼ 0:5; - - -), (Fe ¼ 1;—). Note that the difference in
peak to asymptotic particle current is 0.17 for the atomic system and 0.18 for the polymer melt.
a Atomic fluid. b 4-Atom polymer melt
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2.5 Discussion and Conclusion

The dissipation function is like entropy production in that it can be used to indicate
whether a system’s behaviour is in accord with the Second ‘‘Law’’ of Thermo-
dynamics. Positive entropy production or dissipation is taken to be in accord with
the Second ‘‘Law’’. Negative dissipation is against the Second ‘‘Law’’ and is seen
by the fluctuation theorems as being unlikely. In most text books negative entropy
production is seen as not only against the Second ‘‘Law’’ but is expressly
impossible.

Close to equilibrium in large systems, where entropy production can be defined,
the average dissipation is equal to the entropy production. However unlike entropy
production, the dissipation function is well defined arbitrarily near or far from
equilibrium and for systems of arbitrary size. Furthermore it obeys a number of
exact theorems: the Fluctuation Theorem, the Second ‘‘Law’’ Inequality and the
various Relaxation Theorems. Dissipation is also the fundamental quantity
required for all linear and nonlinear response theory both for driven and relaxing
systems. Dissipation is the central quantity of nonequilibrium statistical mechan-
ics. It also gives for the first time a definition of equilibrium. An equilibrium phase
space distribution has the property that the dissipation is identically zero every-
where in the ostensible phase space.

The most profound aspect of these theorems concerning the role played away
from equilibrium by dissipation is that the logical status of thermodynamics has
changed. The ‘‘laws’’ of thermodynamics were termed ‘‘laws’’ because, apart from
the first law, they were deemed unprovable from the laws of mechanics. Indeed the
Second ‘‘Law’’ was thought for over 100 years to be in conflict with the time
reversible laws of classical and quantum mechanics. All this changed with the first
proof of a fluctuation theorem in 1994.

In the present chapter we have presented numerical results that demonstrate
many of the various properties of the dissipation, and also provide insight into its
temporal extrema and evolution for relaxing systems and driven T-mixing systems
that must have a unique steady state.

We found that while the time integrated dissipation appears to approach a
maximum for relaxation to equilibrium, in thermostatted, relaxing systems the
instantaneous dissipation function has a peak in the transient response, subse-
quently decaying to zero at equilibrium. For driven thermostatted T-mixing sys-
tems the average instantaneous dissipation often passes through one or more
unstable maxima before reaching a stable final time independent state—a non-
equilibrium steady state. This suggests that a theorem of maximum instantaneous
dissipation for steady states does not generally apply.

MaxEP is a theory focused on identifying which steady state a system will
select if multiple steady states are possible. In order to provide further information
on the behaviour of the dissipation, we can consider a simple system where
multiple steady state solutions are known to exist: the heat flow in a one-dimen-
sional lattice [37]. Here two possible steady states exist which depend on the initial
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conditions: a soliton and a diffusive heat flow. The state with maximum dissipation
should stay the same at all field strengths, however at low fields, the soliton does
not form whereas at high fields it does. This is not consistent with the state of
maximum dissipation being the one that it observed. It would be of interest to
study this system in more detail.

Our results might be interpreted as being in contradiction with MaxEP. How-
ever this may not be the case. We note that the irreversibility defined in Chap. 3,
‘‘A theoretical basis of maximum entropy production‘‘, is equivalent to the time
integral of the dissipation function given by Eq. (2.2) (see discussion in Sect. 3.5.2
). However, the results that we have presented are not necessarily in conflict with
current understanding of MaxEP (see Chap. 3) because MaxEP requires the
external forcing to be sufficiently large that low entropy states are unstable and
because the system is also subject to various constraints. It is clear that the results
will depend on the constraints imposed, and therefore the problem can be refor-
mulated as a problem in identification of the appropriate constraints. Ideally, a
fundamental maximal principle would justify a priori all constraints that are
required, but a theoretical basis for this has not yet been established. Indeed this
might not be possible. However, as discussed above, it may be possible to
determine under what conditions an extremum principle will apply through sys-
tematic analysis of systems at a microscopic level.

As MaxEP is useful at very extreme forcing, it will be difficult to study this
numerically at a microscopic level for the types of system we have considered
here. This is because most systems that generate multiple steady states, such as
convection or turbulent flow, are computationally expensive as they require huge
numbers of particles and strong fields or both. These instabilities are hydrody-
namic rather than molecular in origin and they require large system sizes to
increase the Reynolds numbers above various turbulent thresholds. Traditionally,
turbulence has rarely been studied using molecular dynamics (for early work see
[38, 39]). However modern computing facilities are making this more accessible
(see [40, 41]) and it would be interesting to carry out simulations of these systems.

If some objective way can be found to select these constraints, the MaxEP
formalism, if applied exactly, could still be impractical. This can be seen for the
derivation of the dissipation theorem for driven systems from an extremum
principle. The problem in this case was that the number of constraints required in
order to obtain the exact answer, was in fact infinite [32, 42].

Whether MaxEP can be established as a useful approximation is an open
question. We still need a more objective way of selecting the necessary
constraints.
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Chapter 3
A Theoretical Basis for Maximum
Entropy Production

Roderick C. Dewar and Amos Maritan

Abstract Maximum entropy production (MaxEP) is a conjectured selection
criterion for the stationary states of non-equilibrium systems. In the absence of a
firm theoretical basis, MaxEP has largely been applied in an ad hoc manner.
Consequently its apparent successes remain something of a curiosity while the
interpretation of its apparent failures is fraught with ambiguity. Here we show how
Jaynes’ maximum entropy (MaxEnt) formulation of statistical mechanics provides
a theoretical basis for MaxEP which answers two outstanding questions that have
so far hampered its wider application: What do the apparent successes and failures
of MaxEP actually mean physically? And what is the appropriate entropy
production that is maximized in any given problem? As illustrative examples, we
show how MaxEnt underpins previous applications of MaxEP to planetary
climates and fluid turbulence. We also discuss the relationship of MaxEP to the
fluctuation theorem and Ziegler’s maximum dissipation principle.

3.1 MaxEP: What Does It Mean and How Do We Use It?

The conjecture of maximum entropy production (MaxEP) as a selection criterion
for non-equilibrium stationary states has shown some promising successes in
studies of, for example, planetary climates [1, 2], fluid turbulence [3, 4], crystal
growth morphology [5, 6], biological evolution and adaptation [7–10], and
earthquake dynamics [11]. The practical significance of MaxEP is that it appears to

R. C. Dewar (&)
Research School of Biology, The Australian National University,
Canberra, ACT 0200, Australia
e-mail: roderick.dewar@anu.edu.au

A. Maritan
Department of Physics G. Galilei, University of Padua, Via Marzolo 8, 35131 Padua, Italy

R. C. Dewar et al. (eds.), Beyond the Second Law,
Understanding Complex Systems, DOI: 10.1007/978-3-642-40154-1_3,
� Springer-Verlag Berlin Heidelberg 2014

49



be able to make realistic predictions of non-equilibrium stationary states on the
basis of a limited set of dynamical constraints, without having to solve the
underlying equations of motion in their full complexity. Potentially MaxEP is a
non-equilibrium selection criterion of some generality [12]. However, without a
theoretical basis to underpin MaxEP, its wider application has been hampered by
two unresolved questions, one conceptual, the other practical: What is the physical
interpretation of the apparent successes of MaxEP? And what is the entropy
production (EP) function to be maximized in any given problem? In the absence of
answers to these two questions, to date MaxEP has been applied in a largely ad hoc
manner and its successes remain something of an unexplained curiosity.

For example, the early successes of MaxEP using 1-D zonally-averaged energy
balance models of Earth’s climate [1, 2] were obtained by maximizing the material
EP associated with meridional heat transport in the atmosphere and oceans, even
though radiative EP is numerically by far the dominant contribution to global EP
[13]. More recent studies suggest that the appropriate choice of EP function
depends on the type of climate model used (e.g. energy balance vs. resolved fluid
dynamics). For example, in a study of FAMOUS, a 3-D atmosphere–ocean general
circulation model (GCM) [14], no maximum in the material EP was found.
Instead, realistic climate features were obtained at a maximum in the EP associ-
ated with kinetic energy dissipation. Thus no universal EP function seems to apply
to all climate models. However, to date only an a posteriori justification for the
choice of EP function has seemed possible.

A similar arbitrariness pervades a close relative of MaxEP, namely, the
upper bound approach to fluid turbulence [3, 4, 15], in which mean flow
properties are derived by maximizing various dissipation-related functionals of
the flow. Kerswell [15] analysed a family of dissipation functionals of the form
f ¼ DðDv=DmÞn and f ¼ DmðDv=DmÞn ðn� 0Þ involving the total dissipation D,
dissipation in the mean flow Dm; and dissipation in the fluctuating flow Dv:
Within this family Kerswell was unable to identify a universal dissipation
functional that applies to all flow problems, and he concluded somewhat pes-
simistically [15]:

The challenge therefore remains to find a functional whose optimization over a tractably
reduced set of dynamical constraints leads to the emergence of realistic optimal velocity
fields. Unfortunately, it remains unclear how to construct such a functional beyond
intelligent guessing.

In the absence of a firm theoretical basis for MaxEP, an equally important
uncertainty afflicts the interpretation of apparent failures of MaxEP. In an analysis
of simple dynamical food web models, Meysman and Bruers [16] found that
transitions between steady states under an increase in the external driving force
(chemical potential gradient in resources) did not always lead to a higher EP,
contrary to what some verbal statements of MaxEP might suggest. A similar result
was found for transitions between the linear and non-linear branches in a simple
phenomenological model of heat flow in a plasma/fluid system ([17]; see also
Yoshida and Kawazura, Chap. 15). These results might appear to signal the limits
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of MaxEP as a general physical principle, and yet without a theoretical basis it
remains unclear if and how MaxEP relates to the behaviour of such simple
dynamical models with only a few degrees of freedom. There is also the question
of whether MaxEP is a physical principle at all [18]. The interpretation of apparent
failures of MaxEP is thus fraught with ambiguity.

What is needed, but is currently lacking, is a theoretical foundation for MaxEP
in the form of some underlying principle that underpins and guides its practical
application. In particular, one would like such a foundation to tell us which EP
function to maximize, and whether this function is universal or specific to each
problem. It might also clarify where it would be inappropriate to apply MaxEP.
Only then might we begin to understand what the apparent successes and failures
of MaxEP are actually telling us (if anything) about the real world.

In this chapter we show how Jaynes’ maximum entropy (MaxEnt) formulation
of statistical mechanics [19] provides the theoretical basis for a generic MaxEP
principle. The origins of MaxEnt go back to Gibbs’ formulation of equilibrium
statistical mechanics [20] which, following the work of Shannon [21, 22], was
developed further in the context of information theory by Jaynes [19, 23] and
others [24], and extended to non-equilibrium systems [25]. The MaxEnt basis for
MaxEP proposed here answers the conceptual and practical questions that have
plagued previous applications of MaxEP as a non-equilibrium selection criterion:
what does it mean physically, and what is the EP function that is maximized in any
given problem?

The chapter is organized as follows. In Sect. 3.2 we discuss the interpretation of
MaxEnt and its role in statistical mechanics. This provides the conceptual foun-
dation for Sect. 3.3, in which we show that MaxEnt implies a generic MaxEP
principle, and we derive a general expression for the EP function that is maximized.
Section 3.3 also briefly outlines how the present theory overcomes the problems of
earlier attempts to derive MaxEP from MaxEnt [18, 26–31]. Section 3.4 illustrates
the general theory with two examples: planetary climates [1, 2] and fluid turbulence
[4, 15]. Section 3.5 links MaxEP to two other non-equilibrium results involving EP:
the fluctuation theorem ([32–34]; see also Reid et al., Chap. 2) and Ziegler’s
maximum dissipation principle ([35]; see also Houlsby, Chap. 4; Seleznev and
Martyushev, Chap. 5). We end with an outlook on some challenges for the future
(Sect. 3.6).

3.2 The Role of MaxEnt in Statistical Mechanics:
The Messenger, Not the Message

In Sect. 3.3 we will derive a generic MaxEP principle from MaxEnt. In order to
understand what the apparent successes and failures of MaxEP actually mean
physically, we therefore need to understand MaxEnt and the role it plays in sta-
tistical mechanics. Here we discuss MaxEnt from two alternative viewpoints: as an
inference algorithm in the context of information theory, and as a statistical
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selection principle in the context of experimental frequencies. However, the key
role of MaxEnt in statistical mechanics—translating given dynamical constraints
into macroscopic predictions—does not depend on which viewpoint one adopts.
The discussion here is based on [18].

3.2.1 MaxEnt as an Inference Algorithm

The practical goal of statistical mechanics (equilibrium or non-equilibrium) is to
make predictions of macroscopic behaviour on the basis of a relatively small
number of dynamical assumptions and constraints C, without having to solve the
underlying equations of motion in their full complexity. That such a goal is
attainable is suggested by the empirical observation that, for systems with suffi-
cient degrees of freedom, macroscopic behaviour can be accurately reproduced
experimentally through the control of a relatively small number of macroscopic
parameters. This implies that those microscopic details that are not under exper-
imental control must be largely irrelevant to the experimental result, and behave as
‘noise’. The interpretation of this microscopic irrelevance is that the overwhelming
majority of possible microscopic histories which the system could follow under the
conditions of the experiment look the same on macroscopic scales [19]—so it does
not matter which of these microscopic histories is the one actually followed. The
constraints C represent that subset of the full dynamics which is relevant for
predicting the macroscopic behaviour under investigation. Two practical chal-
lenges then are how to identify the relevant dynamics C in any given problem, and
how to make macroscopic predictions from them.

This is where MaxEnt comes in. In its information theory context, MaxEnt is a
general inference method for updating a prior distribution qi to a posterior dis-
tribution pi in the light of new information [23–25]. MaxEnt consists of maxi-
mizing the relative entropy (negative Kullback–Leibler divergence)

H p qkð Þ ¼ �
X

i
pi ln

pi

qi
ð3:1Þ

with respect to pi, subject to the new information in the form of various moment
constraints on pi (and normalisation of pi). In information terms, -H(pkq) may be
interpreted as the information gained by using pi instead of qi. MaxEnt is the
unique inference algorithm which satisfies a set of four axioms (uniqueness,
invariance under co-ordinate transformations, system independence, subset inde-
pendence) based on the fundamental requirement that the resulting pi should not
depend on how the new information C is taken into account [24].

In its application to statistical mechanics, the new information C represents the
dynamical constraints from which macroscopic predictions are to be made; the
prior qi then describes what is known (if anything) about the system in the absence
of constraints C. We denote the MaxEnt probability distribution by pi*.
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By maximizing H(pkq) (i.e. minimizing the information gain) with respect to pi

subject to C, any other distribution pi
0 6¼ pi

� compatible with C necessarily
encodes more information than just C. In this way MaxEnt ensures that pi*, and the
macroscopic predictions obtained as expectation values over pi*, reflect the con-
straints C and no other assumptions. This is the key feature of MaxEnt that
underpins its role in statistical mechanics [18].

Specifically, we make an initial guess for the relevant dynamics C, then use
MaxEnt to make macroscopic predictions from that guess (via expectation values
over pi*). Disagreement between predictions and experiment informs a new guess
and so on until, by trial and error, acceptable agreement is reached. MaxEnt does
not tell us a priori which dynamical constraints to apply, and therefore it makes no
claim as to the success of its predictions. Instead, its role is simply to ensure that
the macroscopic predictions faithfully reflect the assumed constraints C and no
other assumptions. Only then can we be sure in the end that we have correctly
identified the relevant dynamics.

From this viewpoint, falsification of MaxEnt is meaningless because MaxEnt is
not a physical principle; it is an inference algorithm that passively translates the
information from physical constraints into macroscopic predictions. It is the
assumed set1 of relevant constraints C that is being tested, not MaxEnt. MaxEnt is
the messenger, not the message [18].

3.2.2 MaxEnt as a Statistical Selection Principle

An alternative interpretation of the MaxEnt distribution pi* as the frequency of
experimental observations of i can be given, by considering a sequence of
N independent experimental observations (or trials) of the system [36]. The prior
probability that in such a sequence the outcome i is observed ni times is given by
the multinomial distribution Qð nif gj qif g;NÞ ¼ N!

Q
i qni

i =ni! where qi is the prior
probability of outcome i and

P
i ni ¼ N: We then have the asymptotic result

lim
N!1

1
N

ln Q nif g qif g;Njð Þ ¼ H p qkð Þ ð3:2Þ

where pi = ni/N is the relative frequency of outcome i. By maximising both sides
of (3.2) with respect to pi subject to moment constraints of the form

P
i piaik ¼

Ak k ¼ 1. . .mð Þ and
P

i pi ¼ 1; we see that pi*, which in the context of information
theory represents the state of knowledge about the outcome of a single trial based
on the information {Ak}, coincides numerically with the most probable frequency
distribution ni*/N obtained in an infinitely long sequence of independent trials.

1 The constraints themselves may be perfectly accurate (e.g. global energy balance). In that case
it is the completeness of the chosen set that is being tested.
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The validity of this correspondence rests on the obvious but crucial requirement
that the same constraints {Ak} also apply during the experiment.

The mathematical correspondence described by Eq. (3.2) often appears in sta-
tistical mechanics textbooks as a combinatorial justification for MaxEnt within the
more restricted context of a system of N independent, distinguishable particles or
entities. Then pi represents the fraction of particles in single-particle state i. How-
ever, this does not mean that MaxEnt is only valid for large (N ? ?) systems of
independent, distinguishable particles (cf. [37, 38]). When N refers instead to the
number of independent (and distinguishable) observations, Eq. (3.2) is valid
regardless of the number and distinguishability of the entities making up the sys-
tem, because i then refers to the state of an arbitrary physical system. In particular,
Eq. (3.2) applies equally to equilibrium and non-equilibrium systems; in the latter
case i might represent, for example, the microscopic trajectory of a system over
some time interval (e.g. [26]).

Equation (3.2) thus provides a combinatorial justification of MaxEnt for arbi-
trary physical systems, complementary to its justification from information theory
[24]. MaxEnt can then be viewed also as a statistical selection principle, but only
in the conditional sense that it predicts the most likely frequency distribution of
experimental outcomes provided we have correctly identified the relevant
dynamical constraints that apply during the experiment. But here again MaxEnt
does not tell us a priori what those constraints are.

3.3 MaxEP from MaxEnt

In this section we show how MaxEnt provides a theoretical basis for MaxEP as a
selection criterion for the stationary states of non-equilibrium systems subject to a
given restricted set of dynamical constraints.

As discussed in the previous section, the constraints represent the assumed
relevant dynamics (i.e. a subset of the full dynamics). We therefore begin by
specifying a restricted set of stationarity conditions (e.g. global energy balance).
For a weakly-driven (near-equilibrium) system, typically there is only one non-
equilibrium state compatible with these stationarity conditions. We call this the
basal state. One example would be the laminar flow solution in shear turbulence
(see Sect. 3.4). Another example would be heat transport by conduction in a plane
horizontal layer of fluid heated from below (Rayleigh-Bénard cell). In that case,
there is simply no room for MaxEP (or any other selection criterion) to operate.
Therefore we introduce an additional condition that the basal state is dynamically
unstable, describing a strongly-forced (far-from-equilibrium) system. Then there
are typically many non-equilibrium states compatible with the imposed stationarity
conditions.

Note that, in principle, if we were to integrate the underlying equations of
motion (e.g. the Navier-Stokes equation) in their full complexity, generically only
one stationary state would be predicted and we would not need a selection criterion
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at all. Here, however, we are trying to bypass that complexity by imposing only a
restricted number of stationarity conditions, which then allows a multiplicity of
solutions.

This then is the situation where we seek a selection criterion among different
non-equilibrium states. In the example of shear turbulence to be discussed in
Sect. 3.4, for instance, this situation corresponds to Reynolds numbers larger than
the critical value for the onset of turbulence, when the basal state of laminar flow is
dynamically unstable. In the Rayleigh-Bénard cell, it corresponds to Rayleigh
numbers larger than the critical value for the onset of convection, when the
conductive state is dynamically unstable. We then want to select one from among
the many flow solutions allowed when we apply only a restricted set of stationarity
conditions rather than the full dynamics.

To apply the dynamical instability condition, we introduce an information-
theoretical measure of the distance from equilibrium, or irreversibility I, defined
in terms of the relative probabilities of forward and reverse fluxes. Dynamical
instability is then introduced via the strict inequality constraint I [ Imin, where
Imin is the minimal irreversibility of the basal state. We then show from
MaxEnt that I adopts its maximum possible value under the stationarity con-
straints. With I then interpreted as thermodynamic EP, this result yields a
MaxEP selection criterion. This derivation of MaxEP shows how the physical
nature of the EP function that is maximised depends on the nature of the
applied constraints.

This section ends with a brief outline of the key differences between this and
previous attempts to derive MaxEP from MaxEnt.

3.3.1 Setting up the Constraints

Non-equilibrium stationary states are characterised by the presence of macroscopic
fluxes (e.g. of energy, mass or momentum) within the system, and between the
system and its environment. Here we denote the instantaneous value of these
fluxes by the vector f, which may be finite (e.g. heat fluxes in a discrete box model
of Earth’s climate, [1, 2], to be discussed in Sect. 3.4.1) or infinite dimensional
(e.g. the 3-D velocity field in fluid turbulence, [3, 4, 15], as in Sect. 3.4.2). The flux
vector f (e.g. heat flux, see Sect. 3.4.1) may be related to some local density q (e.g.
internal energy density) through the continuity equation qq/qt = –r� f ? h (or its
discrete equivalent) where h is a local source (e.g. radiative heating rate per unit
volume); alternatively, the components of f might themselves be identified with
local densities (e.g. fluid momentum density, whose local rate of change obeys the
Navier-Stokes equation, see Sect. 3.4.2). The macroscopic state of the system is
then described by f (and/or q), and stationary states are defined in a statistical sense
by the condition that the expectation value of qq/qt over the probability density
function (p.d.f.) p(q) vanishes; non-equilibrium states are characterised by a non-
vanishing expectation value of f over the p.d.f. p(f).
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Here we use MaxEnt to construct p(f); that is, we maximise the relative entropy

H ¼ �
Z

p fð Þ ln p fð Þ
q fð Þdf ð3:3Þ

with respect to p(f), subject to given dynamical constraints C, where q(f) is a prior
p.d.f. By Gibbs’ inequality, H B 0 with equality if and only if p(f) = q(f). Since
C represents non-equilibrium forcing conditions, it is natural to choose a prior
p.d.f. with the symmetry property q(–f) = q(f); this describes the equilibrium
(zero-flux) state F ¼

R
q fð Þfdf ¼ 0: Although in general the detailed form of the

prior depends on the underlying space of microscopic outcomes [23], here the
symmetry property of q(f) is all we will need for the following analysis, which is
therefore quite general. The constraints C (i.e. the assumed relevant dynamics)
typically involve a restricted number of stationarity conditions. In order to keep the
formalism general, these constraints are written in the generic form

Z
p fð Þum fð Þ df ¼ 0 ð3:4Þ

where umðf Þ are given function(al)s of the fluxes, and the constraint label m may
be discrete or continuous. For example, (3.4) might describe steady-state global
energy, mass or momentum balance (as illustrated later in Sect. 3.4). The right-
hand side of (3.4) can be set to zero without loss of generality by suitably defining
the function umðf Þ: We also have the normalization constraint

Z
p fð Þ df ¼ 1 ð3:5Þ

As discussed above, in addition to (3.4) and (3.5), we introduce the condition
that the non-equilibrium forcing is sufficiently strong that the basal stationary state
is dynamically unstable. To enforce this instability condition we introduce the
irreversibility defined by the Kullback–Leibler (KL) divergence of p(f) and p(–f),
i.e. I ¼

R
p fð Þln p fð Þ=p �fð Þf gdf : By Gibbs’ inequality, I C 0 with equality if and

only if p(f) = p(–f), so that I = 0 corresponds to the equilibrium state F = 0. The
irreversibility I is thus a natural information-theoretic measure of the distance from
equilibrium, or time-reversal symmetry breaking, since it measures the extent to
which p(f) differs from p(–f).

The basal state is the non-equilibrium state characterised by minimal irrevers-
ibility, I = Imin(C) [ 0, the value of which depends on the stationarity conditions
C of Eq. (3.4); dynamic instability of the basal state is then enforced by imposing the
strict inequality I [ Imin(C). Given I [ Imin(C), the question naturally arises as to
how large I can be. We assume there is some upper bound Imax(C) also determined
by the stationarity conditions (3.4), so that I B Imax(C). Physically this is reason-
able; under a finite non-equilibrium driving force the system cannot be an infinite
distance from equilibrium. Mathematically, this requires that for any instantaneous
flux state f that has non-zero probability, the reverse flux state –f also has non-zero
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probability (i.e. p(f) [ 0 ) p(–f) [ 0). In the following, it proves convenient to
apply MaxEnt subject to I B I0, where I0 represents a trial estimate of Imax(C), and
then to take the limit I0 ? Imax(C). We therefore impose the lower- and upper-
bound inequality constraints on I as follows:

Imin Cð Þ\ I �
Z

p fð Þ ln p fð Þ
p �fð Þdf � I0 ð3:6Þ

Finally we introduce a trial mean flux F (which is subsequently relaxed) via the
auxiliary constraint

Z
p fð Þfdf ¼ F ð3:7Þ

It might seem artificial to introduce (3.7) as an additional constraint when F is
ultimately determined (selected) by the constraints C, rather than being an inde-
pendent constraint in its own right. The motivation for introducing F in (3.7) is
that F then represents a trial estimate of the actual fluxes F(C) selected under
C. Introducing F in this way allows us to establish an extremal principle whereby
F(C) is determined by varying the trial solution F. The approach here is analogous
to the way in which equilibrium variational principles (e.g. minimum free energy)
can be derived from MaxEnt by enlarging the set of fixed macroscopic variables
X to include one or more free unconstrained variables Y, then maximizing
S = Hmax(X, Y) with respect to Y with X held fixed.

From its definition we intuitively expect the irreversibility I to be closely related
to thermodynamic EP. However, we emphasise that the link between I and ther-
modynamic EP as a function of generalized forces and fluxes emerges only after
we have applied MaxEnt under the conditions (3.4)–(3.7), as shown in Sect. 3.3.3.
This is analogous to the MaxEnt formalism of equilibrium statistical mechanics, in
which only after it is maximized subject to equilibrium constraints is the Shannon
entropy identified with thermodynamic entropy [23].

3.3.2 The MaxEnt Solution

The MaxEnt solution for pðfÞ under constraints (3.4)–(3.7) is given implicitly by

p fð Þ� ¼ q fð Þ
Z

exp k � f þ a � u fð Þ � l d fð Þ � e�d fð Þ
� �n o

ð3:8Þ

where dðfÞ ¼ lnfpðf Þ=pð�f Þg;uðf Þ denotes the vector with components
umðfÞ; Z ¼ Zðk; a; lÞ is a normalisation factor (partition function) that enforces
(3.5), and k; a and l are Lagrange multipliers for (3.7), (3.4) and the upper-bound
inequality constraint (3.6) respectively. The maximised relative entropy is

S F; I0;Cð Þ � Hmax ¼ ln Z k; a; lð Þ � k � Fþ l I0 � 1ð Þ ð3:9Þ
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where we have used (3.4) and the identity
R

pðfÞexpf�dðf Þgdf ¼ 1: Each of the
Lagrange multipliers k; a and l are functions of the trial values F and I0; they also
depend on the functional form of uðfÞ as indicated by the argument C on the l.h.s.
of (3.9). Under small variations in F and I0 that satisfy (3.4), the change in S is

dS ¼ �k � dF þ ldI0 ð3:10Þ

From the Karush–Kuhn–Tucker conditions for optimization under inequality
constraints [39], l = 0 when the upper bound inequality constraint in (3.6) is
inactive (I \ I0), whereas l[ 0 when the inequality constraint is active (I = I0).
The sign of l in the latter case can be understood from the fact that l ¼ oS=oI0 and
that as I0 increases, the feasibility space under which H is maximized becomes
larger so S = Hmax cannot decrease. We also note that the case l[ 0 requires
I0 \ Imax(C), i.e. the trial value I0 is an underestimate2 of the actual upper bound
Imax(C).

The next step is to maximize S(F, I0, C) with respect to the trial flux solution
F with I0 held fixed. The two cases I \ I0 and I = I0 must be treated separately.
For l = 0 (I \ I0) the upper-bound constraint on I is inactive, and the solution that
maximizes S is the basal stationary state I = Imin(C) because this is the state
closest to the equilibrium state S = I = 0 where S has a global maximum and I has
a global minimum. However this solution is excluded by the dynamic instability
condition I [ Imin(C). Therefore the only case consistent with the stationarity
conditions C and I [ Imin(C) is the case l[ 0 (I = I0).

Confining our attention now to the case I = I0, the final step is to take the limit
I0 ? Imax(C)- where the superscript reminds us that the limit is taken from below.
Since l[ 0 for I0 B Imax(C), while l = 0 for I0 [ Imax(C), continuity of the
function l(I0) implies

lim
I0! Imax Cð Þ�

l I0ð Þ ¼ 0þ ð3:11Þ

In summary, in the absence of the dynamic instability condition I [ Imin(C),
MaxEnt predicts the basal state I = Imin(C), i.e. minimal irreversibility. When the
basal state is excluded by the dynamical instability condition I [ Imin(C), MaxEnt
predicts a p.d.f. p(f) for which I = Imax(C)-, i.e. maximal irreversibility. The latter
solution is characterised byl = 0+, which from (3.8) then yields the final result:

p fð Þ� ¼ q fð Þ
Z

exp k � f þ a � u fð Þf g ð3:12Þ

There are no MaxEnt solutions intermediate between I = Imin(C) and I = Imax(C).

2 If instead we had I0 [ Imax(C) then, since I B Imax(C) by definition, we would have I \ I0 and
so l = 0.
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3.3.3 Identifying the Entropy Production Functional

From (3.12) and q(–f) = q(f), the irreversibility I ¼
R

pðfÞlnfpðfÞ=pð�f Þgdf is
given as a functional of F by

I Fð Þ ¼ 2k Fð Þ � Fþ 2a Fð Þ �UA Fð Þ ð3:13Þ

where

UA Fð Þ � 1
2

Z
p fð Þ u fð Þ � u �fð Þf gdf ð3:14Þ

is the expectation value of the anti-symmetric part of uðf Þ: When umð�f Þ ¼
�umðf Þ for all m, i.e. when each constraint function umðfÞ is either a symmetric
(S) or an anti-symmetric (AS) function of f, Eq. (3.4) implies UA ¼ 0 so that

I Fð Þ ¼ 2k Fð Þ � F S=ASð Þ: ð3:15Þ

Alternatively, if not all of the umðfÞ are symmetric or anti-symmetric with respect
to f (i.e. no pure symmetry, NS), then UA 6¼ 0 and in principle the more general
form (3.13) applies. However in this case it can be shown that the MaxEnt solution
implies3 k ¼ 0 so that

I Fð Þ ¼ 2a Fð Þ �UA Fð Þ NSð Þ: ð3:16Þ

In summary, for non-equilibrium stationary systems under given constraints
C for which the basal state I = Imin(C) is dynamically unstable, MaxEnt is
equivalent to an extremal selection criterion of MaxEP:

F Cð Þ ¼ arg max
F Cj

I Fð Þ ð3:17Þ

i.e. F(C) is the value of F that maximizes I(F) under the constraints C, where the
EP functional I(F) is identified as

I Fð Þ ¼ 2k Fð Þ � F
2a Fð Þ �UA Fð Þ

S/ASð Þ
NSð Þ

� �

: ð3:18Þ

Equation (3.18) shows there is no universal EP functional that applies to all
problems. The functional I(F) to be maximized depends on the specific form and
symmetry properties of the constraint functionals umðf Þ describing the assumed
relevant dynamics C. This conclusion is analogous to what one finds in the
MaxEnt formalism of equilibrium statistical mechanics, where the expression for

3 With l = 0+ (Eq. 3.11), S ¼ Sðk; aÞ is a functional of k and a alone. We have Sðk; aÞ� Sðk ¼
0; aÞ because removing a constraint—in this case, the auxiliary constraint (3.7)—cannot lead to
a decrease in S. Therefore the MaxEnt solution for p(f) in the case UA 6¼ 0 has k ¼ 0: Note that
we cannot set k ¼ 0 in the case UA ¼ 0 (i.e. the case S/AS) because (3.13) would then give
I(F) = 0 which contravenes I(F) [ Imin(C); in this case I(F) is given by (3.15).
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the thermodynamic entropy (interpreted as the maximized Shannon entropy) in
terms of extensive and intensive variables depends on the nature of the equilibrium
constraints, i.e. there is no universal expression for thermodynamic entropy
independent of the constraints (e.g. [23], Eq. 11.59 therein).

Note here that we have defined thermodynamic EP as the function I(F) which
emerges naturally from MaxEnt subject to given non-equilibrium constraints. We
have therefore avoided the semantic trap of starting with some pre-conceived
notion of thermodynamic EP (e.g. as the time derivative of some physically
defined entropy) and then tried to show that this is a maximum. That our definition
of thermodynamic EP turns out to be consistent with previously-defined dissipa-
tion functions is illustrated by the examples discussed in Sect. 3.4.

3.3.4 Comparison with Previous Attempts to Derive MaxEP
from MaxEnt

In [26, 27], two different derivations of MaxEP from MaxEnt were attempted,
based on maximizing the Shannon entropy of the probability distribution of
microscopic trajectories, subject to physical constraints. Subsequently, some
technical limitations of these derivations were noted [28, 29].

The first derivation [26] introduced an ad hoc assumption that the Shannon path
entropy is an increasing function of EP, so that MaxEnt would imply MaxEP.
However Bruers [28] presented a counter-example to that assumption, implying
MinEP not MaxEP. A key constraint missing from [26] but included here is the
condition I [ Imin(C) that the basal state is dynamically unstable. Without this
condition MaxEnt indeed predicts the basal state I = Imin(C) (i.e. MinEP), as noted
in [28]. With the condition I [ Imin(C) MaxEnt leads to I = Imax(C) (i.e. MaxEP).

In the second derivation [27], a Gaussian approximation for p(f) was used to
derive an orthogonality condition for EP (first proposed by Ziegler [35]), from
which a version of MaxEP was then derived. But as noted in [28, 29], the specific
argument used in [27] is only valid close to equilibrium. The present theory
overcomes this limitation; the constraints (3.4)–(3.7) and the Karush–Kuhn–
Tucker conditions leading from MaxEnt to MaxEP apply regardless of how far the
system is driven from equilibrium.

Niven [30] proposed a derivation of MaxEP from MaxEnt subject to prescribed
fluxes, analogous to the auxiliary constraint (3.7) on the trial fluxes F in the
present theory (see also Niven and Noack, Chap. 7). As one possibility among
several, he showed that MaxEP for stationary states follows if one assumes there is
a net increase in EP during the dynamic transition from one macrostate to another.
However, the precise conditions under which this assumption is valid were not
specified, so this approach sets out the landscape of possible extremal principles
(which include MinEP) rather than a methodology for deciding which one applies
in any given problem. Virgo [31] gave a heuristic MaxEnt-based argument for
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MaxEP that assumes a relation between thermodynamic entropy at a given time t1
and the Shannon entropy constrained by information at some earlier time t0, the
validity of which remains to be shown; this approach is somewhat tentative and
difficult to formalize.

The two key ingredients missing from these previous studies, but included here,
are (1) the explicit representation of the relevant dynamics in the form of the
stationarity conditions (3.4), from which the EP functional can be determined via
(3.18); and (2) the lower bound I [ Imin(C) enforcing dynamic instability of the
basal state, leading to MaxEP. By itself the auxiliary constraint (3.7) on F is not
enough; rather, its role is to introduce a trial solution whose subsequent variation
to maximise S(F, I0, C) in (3.9) leads to MaxEP as given by (3.17).

3.4 Two Illustrative Examples

In this section we illustrate the above derivation of MaxEP for the two cases
described by (3.18). The first case (S/AS) is illustrated by the application of
MaxEP to simple energy balance models of planetary climates. This example
illustrates the generic case in which the assumed relevant dynamics consists of a
single global energy or mass balance constraint (see Chap. 1, Fig. 1.1, road 5). The
second case (NS) is illustrated by the upper bound approach to fluid turbulence, in
which several stationarity conditions of the form (3.4) are derived from spatial
integrals of the Navier-Stokes equation, reflecting both energy and momentum
balance (Fig. 1.1, road 6). These two examples illustrate how MaxEnt provides a
theoretical justification for previous ad hoc applications of MaxEP to planetary
climates [1, 2] and fluid turbulence [4, 15].

3.4.1 Zonal Energy Balance Models of Meridional Heat
Flow in Planetary Climates

In [1, 2] MaxEP was applied to simple 1-D zonally-averaged energy balance
models of the meridional heat flow in planetary climates. In these models the
assumed relevant dynamics C consisted of the prescribed mean annual short-wave
(SW) irradiance FSW,i; into each latitudinal zone i, and the global radiative bal-
ance between total incoming SW and total outgoing long-wave (LW) radiative
fluxes,

P
i FLW;i " ¼

P
i FSW;i # :

In the derivation of MaxEP from MaxEnt (Sect. 3.3), the basal state of mini-
mum irreversiblity is assumed to be dynamically unstable, and this helps us to
identify the appropriate flux f in any given problem. In the present case the
appropriate identification is f = {fi } where fi is the meridional heat flux from zone
i – 1 to zone i. The basal state then corresponds to zero meridional heat flow
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F = 0 (I = Imin & 0 since we are ignoring heat transport by diffusion), i.e. the
basal state is the state of radiative equilibrium where FLW,i: = FSW,i; in each
zone. With this identification, the condition I [ Imin(C) means that differential
radiative heating is strong enough to set in motion meridional heat flow between
the equator and poles.

Denoting the heat convergence into zone i by DFi ¼ Fi � Fiþ1; global radiative
balance is equivalent to

P
i DFi ¼ 0 which may be written in the form (3.4)

(m = 1), i.e.
R

p fð Þu1 fð Þdf ¼ 0 with u1ðfÞ ¼
P

i Dfi: Since here the constraint
functional u1ðfÞ is anti-symmetric in f (i.e. the case S/AS), from (3.15) the
appropriate EP functional is

I Fð Þ ¼ 2k Fð Þ � F ¼ 2
X

i
kiFi / �

X

i
FiD

1
Ti

� �

¼
X

i

DFi

Ti

� �

: ð3:19Þ

Here we have used local heat balance to identify ki (up to a multiplicative
constant) with the gradient in inverse temperature �Dð1=TiÞ ¼ 1=Tiþ1 � 1=Ti (see
Appendix A). The function (3.19), derived here from MaxEnt, agrees with the
choice of EP function maximized in [1, 2].

In the light of its theoretical basis in MaxEnt, we can now reinterpret previous
applications of MaxEP to planetary climates [1, 2]. Maximizing (3.19) predicts
meridional heat fluxes that faithfully reflect the constraint of global energy bal-
ance, and no other stationarity constraints. Associated predictions for the latitu-
dinal distributions of cloud cover and surface temperature are close to observations
[1, 2]. Although in Paltridge’s 1978 paper [1] the predicted meridional flux itself
was unrealistically low, this was subsequently rectified using a more realistic
definition of the temperature Ti appearing in (3.19) [40]. The predictive successes
of MaxEP4 here indicates that global energy balance captures the relevant
dynamics governing these large-scale thermal features of Earth’s climate.

3.4.2 Shear Turbulence

The upper bound approach to predicting the mean features of turbulent flow has a
history going back to the 1950s [4, 15, 41]. In order to bypass the enormous
computational challenge of numerically solving the Navier-Stokes equation
(NSE), the upper bound approach maximizes various dissipation-like functionals
of the flow subject to a restricted number of dynamical constraints based on spatial
integrals of the NSE. Here we discuss and reinterpret some recent applications of
the upper bound approach to turbulent shear flow [4, 15] in terms of the present
MaxEnt derivation of MaxEP. We largely follow the notation of [15].

4 Paltridge [1] also maximized the vertical flux of latent and sensible heat from ground to
atmosphere in each zone. However, this additional constraint does not alter the MaxEnt
derivation of (3.19) as the appropriate EP function for predicting the meridional flux.
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3.4.2.1 Plane Couette Flow

First we consider plane Couette flow (PCF; see [15], Sect. 2.1) in which a fluid layer
is horizontally sheared between two parallel infinite plates at z = ±�d moving at
constant velocities ;�V0x̂ respectively. Measuring distances and velocities in units
of d and m/d respectively (m = kinematic viscosity), the ith component of the NSE
in dimensionless form is

NSi �
oui

ot
þ ujojui þ oip�r2ui ¼ 0 ð3:20Þ

(sum over repeated index j = x, y, z) where u is the velocity field and p is the
pressure field. We also have the incompressibility condition qjuj = 0 and the
boundary condition u = ;�Rex̂ for z = ±�, where Re = V0d/m is the Reynolds
number.

In [4, 15] the two spatial integrals of the NSE considered were horizontal mean
momentum balance at each z and global power balance:

NSx ¼ 0 � 1
2
� z�þ 1

2
ð3:21Þ

uiNSih i ¼ 0: ð3:22Þ

As in [15], the overbar and angular brackets denote, respectively, a horizontal
(x - y) average and a global (x - y - z) average.

Here we will also introduce double vertical bars k k to denote an ensemble
average, i.e. an expectation value over p(u), the probability density function of the
instantaneous velocity field u. Here p(u) describes both thermal and hydrody-
namical fluctuations. The Reynolds decomposition of the velocity field into mean
and fluctuating components is u ¼ UðzÞx̂þ v; with kvk = 0. By invoking statis-
tical stationarity (i.e. kqui/qtk = 0), and the incompressibility and boundary
conditions, the ensemble averages of (3.21) and (3.22) may be written in the form
(see [15], Eqs. 2.4 and 2.8)

ozux � vxvz þ vxvzh i þ Rek k ¼ 0 � 1
2
� z�þ 1

2
ð3:23Þ

ojuiojui

� ffi
� Re2 � Re vxvzh i









 ¼ 0: ð3:24Þ

In (3.24) the terms D � ojuiojui

� ffi







;Dlam;PCF � Re2 and Dturb � Re vxvzh ik k

are, respectively, the ensemble-average total dissipation rate (per unit mass) of the
fluid, the laminar dissipation and the enhancement in dissipation due to turbulence
(all in units of m3/d4). The sum of Dlam;PCF and Dturb is equal to the total work done
on the fluid by the moving plates, and (3.24) states that this is equal to D, the total
dissipation of kinetic energy to heat. Two other relevant dissipation functionals are
the ensemble-average dissipations in the mean and fluctuating velocity fields,
given, respectively, byDm � U02

� ffi
(where U0 ¼ dU zð Þ=dz) andDv � ojviojvi

� ffi







,

with the Reynolds decomposition implying D ¼ Dm þDv:
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To make the connection with the present MaxEnt theory of MaxEP, as antic-
ipated above we identify f with the instantaneous velocity field u. Then the sta-
tionarity conditions (3.23) and (3.24) are of the general form (3.4) with
u1;z uð Þ ¼ ozux � vxvz þ vxvzh i þ Re and u2 uð Þ ¼ ojuiojui

� ffi
� Re2 � Re vxvzh i; for

which the corresponding Lagrange multipliers will be denoted by a1(z) and a2. We
identify the basal state with the laminar solution ulam ¼ Ulam zð Þx̂ ¼ �Rezx̂: As we
will see, the minimal irreversibility Imin(C) is then just the laminar dissipation rate
Dlam;PCF ¼ Re2: The dynamical instability condition I [ Imin(C) implies that Re
exceeds the critical Reynolds number for the onset of turbulent flow.

It follows5 that U1
A(z) = U0(z) and U2

A = 0 (i.e. case NS), so from (3.16) the
appropriate EP functional for PCF is given by

IPCF ¼ 2
Zþ1=2

�1=2

a1 zð ÞU0 zð Þdz: ð3:25Þ

As shown in Appendix B, we can make the identification a1(z) � U0(z), so that

IPCF / U02
� ffi

¼ Dm: ð3:26Þ

Therefore, MaxEnt subject to constraints (3.23) and (3.24) is equivalent to
maximizing Dm; the dissipation in the mean velocity field. From (3.26), the
minimum value of IPCF is then (up to a multiplicative constant) Imin;PCF ¼
Ulam

02� ffi
¼ Dlam;PCF ¼ Re2; as advertised.

3.4.2.2 Plane Poiseuille Flow

A similar analysis can be done for plane Poiseuille flow (PPF, see [15], Sect. 2.2),
where the plates are stationary and the fluid is forced by a constant pressure
gradient qm2A=d3 (q = fluid density) in the x̂ direction. The dimensionless NSE is
now

NSi �
oui

ot
þ ujojui þ oip� Adi;x �r2ui ¼ 0 ð3:27Þ

which is supplemented by the incompressibility condition and the non-slip con-
dition u = 0 on the plates. As in PCF we set f ¼ u: The basal state is again the
laminar solution, which for PPF is given by ulam ¼ Ulam zð Þx̂ ¼ 1

8 A 1� 4z2ð Þx̂: The
PPF analogues of (3.23) and (3.24) are given by (see [15], Eqs. 2.11 and 2.17)

ozux � vxvz þ vxvzh i þ Azk k ¼ 0 � 1
2
� z�þ 1

2
ð3:28Þ

5 Note that under u! �u; v! �2U zð Þx̂� v so that vxvz ? vxvz ? 2U(z)vz, and since
kvzk = 0 the terms involving vxvz do not contribute to U1

A(z) or U2
A.
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ojuiojui

� ffi
� 16

3
Re2 � 8Re zvxvzh i













 ¼ 0 ð3:29Þ

where the Reynolds number for PPF is Re ¼ 3 Uh i=2 ¼ 1
8 A� 3 zvxvzh i=2 (see [15],

Eq. 2.12). In (3.28) we can set vxvzh ik k ¼ 0 assuming symmetry of U(z) about the
mid-plane z = 0, while in (3.29) Dlam;PPF � 16Re2=3 is the laminar dissipation for
PPF. Then the stationarity conditions (3.28) and (3.29) can be rewritten in the
form (3.4) with u1;zðuÞ ¼ oz�ux � vxvz þ Az and u2 uð Þ ¼ ojuiojui

� ffi
� 16Re2=3�

8Re zvxvzh i: Therefore UA
1 ðzÞ ¼ U0ðzÞ and UA

2 ¼ 0, as for PCF. Again we can
make the identification a1(z) � U0(z) (Appendix B) so that the appropriate EP
functional is

IPPF / U02
� ffi

¼ Dm ð3:30Þ

Thus, for both PCF and PPF, the dissipation in the mean velocity field, Dm,
emerges from MaxEnt as the EP functional appropriate to the stationarity con-
straints (3.23)–(3.24) and (3.28)–(3.29), respectively.

3.4.2.3 The Upper Bound Approach to Turbulence Reinterpreted
as MaxEnt

Dm was indeed one of the dissipation functionals considered by Kerswell [15] in
his application of the upper bound approach to PCF and PPF subject to the sta-
tionarity conditions (3.23)–(3.24) and (3.28)–(3.29), respectively. In fact, among
the family of dissipation functionals he considered, Dm was identified as the only
candidate whose maximization was capable of predicting a vanishing interior
mean shear (i.e. no velocity defect law) in the optimal flow as Re ? ?. This
asymptotic condition is currently believed to hold in real flows for PCF but not for
PPF. From this Kerswell [15] then concluded that Dm cannot be a dissipation
functional for both PCF and PPF and (as quoted in the Introduction) that it remains
unclear how to construct such a universal functional ‘beyond intelligent guessing’.

However, the present MaxEnt theory of MaxEP suggests an alternative con-
clusion. MaxEnt implies that Dm is indeed the appropriate EP functional for both
PCF and PPF, i.e. that maximization of Dm predicts mean velocity fields that
faithfully reflect the stationarity conditions (3.23)–(3.24) or (3.28)–(3.29), and no
other stationarity conditions. The disagreement in the case of PPF between the
predicted and observed interior shear as Re ? ? then signals that some relevant
dynamics is missing from the assumed constraint set C.

A clue to this missing physics was given in a subsequent study by Malkus [4],
who applied the upper bound approach to PPF subject to conditions (3.28)–(3.29),
with two additional stability criteria: (1) Rayleigh’s criterion that d2U(z)/dz2 does
not change sign across the entire channel, and (2) the boundary layer is marginally
stable, which leads to the determination of a smallest spatial scale of momentum
transport. As Malkus [4] showed, maximization of Dm under these additional
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constraints (which do not change the MaxEnt-derived EP functional Dm) repro-
duces to a remarkable extent observed flow features such as the logarithmic region
and the velocity defect law across the entire flow profile and over a large range of
Reynolds numbers (e.g. see [4], Fig. 2.2). Thus, previous results obtained from the
upper bound approach to fluid turbulence can be reinterpreted as the playing out of
statistical mechanics under successive guesses for the relevant dynamics (Sect. 3.2).

Interestingly, Malkus [4, 42] was also led to consider maximization of Dm

through considerations of dynamical stability. He determined a sufficiency con-
dition for a solution of the NSE to be dynamically unstable, leading to maximum
Dm as a necessary condition for reproducibility of the mean flow at a given Re. The
fact that this instability argument, which is specific to the stationarity conditions
derived from (3.21)–(3.22), leads to the same EP functional as MaxEnt (under the
same constraints) supports our interpretation of the lower-bound inequality crite-
rion I [ Imin(C) as a dynamical instability condition.

We recall that it is the EP associated with kinetic energy dissipation, rather than
turbulent heat transport, which also appears to be the appropriate EP functional
whose maximization best describes the dynamic behaviour of the FAMOUS 3-D
atmosphere-ocean GCM [14]. In view of the way Dm emerges here from MaxEnt
as the appropriate EP functional in the case of horizontal shear turbulence subject
to constraints (3.23)–(3.24), this suggests that global energy balance alone is not
sufficient to characterise the relevant dynamics of FAMOUS, and that some
additional momentum constraint—analogous to (3.24)—is required. This is to be
expected when the dynamic behaviour under investigation depends on the velocity
field, not just heat transport.

3.5 Relation to Other Entropy Production Principles

In this penultimate section we discuss the relation between MaxEP, the fluctuation
theorem, and Ziegler’s orthogonality/maximum dissipation principle (see also
Chap. 1, Fig. 1.1).

3.5.1 The Fluctuation Theorem

The irreversibility I defined in (3.6) is related to the dissipation function Xt ([32–
34], see also Chap. 2). For a microscopic trajectory over time interval (0; s), the
dissipation function is defined by XsðC 0ð ÞÞ ¼ lnfpðC 0ð Þ; 0Þ=pðC� sð Þ; 0Þg where
C tð Þ is the phase space vector of the system at time t, pðC 0ð Þ; 0Þ is the probability
of observing the system in an infinitesmal region around C(0) at time t = 0, and
C� sð Þ is the phase space vector obtained from CðsÞ by reversing all the particle
velocities. In fact I ¼ Xsh i if we interpret the flux vector f as a time-average over
(0; s). This equality reflects the fact that, like Xsh i, I can be written as a sum over
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phase space trajectories, in which the density of trajectories is symmetrical under
time reversal. Like Xs; d fð Þ ¼ ln p fð Þ=p �fð Þf g then obeys the fluctuation theo-
rem6 p dð Þ=p �dð Þ ¼ ed.

We can in fact recast the present formalism in terms of pðCð0Þ; 0Þ instead of
p(f), including the expression for the Shannon entropy H, as was done in [19]. This
establishes a direct connection between MaxEP and the fluctuation theorem,
through the dissipation function I ¼ Xsh i. Thus the irreversibility I [the KL
divergence of p(f) and p(–f)], the EP function I(F) [the MaxEnt-predicted value of
I) and the trajectory-based dissipation function XsðCð0Þ] are intimately related.

3.5.2 Ziegler’s Orthogonality/Maximum Dissipation
Principle

The present MaxEnt derivation of MaxEP also sheds new light on the connection
between MaxEP and Ziegler’s maximum dissipation (MaxD) principle ([35], also
Chaps. 4 and 5). Dewar [27] found that, close to equilibrium [29], the MaxEnt-
derived irreversibility I obeys an orthogonality property first noted by Ziegler [35],
which can be expressed in variational form (i.e. MaxD). However, MaxD is not the
same as the MaxEP selection criterion established here. MaxD emerges when
MaxEnt is applied to p(f) in the special case where F is known [27], and expresses
in variational form the constitutive relation between F and the corresponding
Lagrange multiplier k established by MaxEnt in that special case. Unlike MaxEP,
MaxD does not select between different possible F. Nevertheless, we can establish
a more general link between MaxEP and Ziegler’s orthogonality property as
follows.

If there are several possible flux vectors F satisfying the upper bound constraint
I = Imax(C) then, in accordance with MaxEnt, the one with the largest value of S is
to be selected. Assuming a continuum of such vectors F, the variation in S is given
from (3.10) by dS ¼ �k � dF: Since dF is confined to the surface I(F) = Imax(C) in
F-space, and since dS = 0 at the MaxEnt solution F = F(C), the corresponding
Lagrange multiplier vector kðCÞ is normal to the surface I(F) = Imax(C). This is
just the statement of Ziegler’s orthogonality property, which would therefore appear
to hold for systems arbitrarily far from equilibrium (cf. [27, 29]) (see Chap. 1,
Fig. 1.1, road 7).

6 In fact with d so defined, the fluctuation theorem is a purely mathematical result (see Chap. 1,
Footnote 12). As we have seen, the physical interpretation of hdi as entropy production emerges
in MaxEnt through the physical constraints that determine p(f).
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3.6 Conclusion and Outlook

The present theory suggests that MaxEP, like MaxEnt from which it has been
derived, is at heart not a physical principle after all.7 In statistical mechanics,
MaxEP plays the role of an inference algorithm that faithfully translates the
assumed relevant dynamics C into macroscopic predictions. Disagreement
between MaxEP predictions and observations signals an inadequate constraint set
rather than a failure of MaxEP per se. MaxEP successes indicate that we have
identified the relevant dynamics that govern the phenomena under study. Com-
plementing this view, MaxEP (like MaxEnt) can also be viewed as a statistical
principle that selects the most likely state under given dynamical constraints.
However, a key challenge lies in choosing the relevant constraints.

Thus while the present theory may serve to replace ‘intelligent guessing’ [15] of
the EP function with an algorithm (Eq. 3.18), it appears that intelligent guessing is
still required in the choice of constraints. One possible approach to systematizing
this choice might be to use renormalization group techniques (e.g. [43]) to
explicitly construct the relevant dynamics on different spatial and temporal scales,
by successive coarse-graining of the microscopic equations of motion. However,
the technical challenges are formidable.

Nevertheless the present theory may help to underpin and guide the applica-
tion of MaxEP to a wider range of non-equilibrium systems. Moreover, it may
indicate where it might be inappropriate to apply MaxEP. For example, it raises a
question over the analysis of EP in deterministic models with few degrees of
freedom, in which the most stable steady state is already determined by the low-
dimensional dynamics; it is then unclear what role MaxEP (or any selection
principle) has to play. In contrast, MaxEP appears to describe the relative sta-
bility of multiple steady states in models with many degrees of freedom (e.g.
[44]; see also Chaps. 6, 8, 13, 14).

Thus another challenge is to clarify the theoretical relationship between max-
imum irreversibility and dynamic stability (Fig. 1.1, road 11), a link suggested here
by the fact that MaxEnt/MaxEP predicts the same dissipation functional as Mal-
kus’s instability criterion in shear turbulence [4, 42].

Finally, we tentatively suggest that the MaxEnt derivation of MaxEP (i.e.
maximal time-reversal symmetry breaking) might be applicable to other symme-
tries. Thus, if the set of possible physical outcomes x is closed under the trans-
formation x ? Tx (e.g. here x = f, T = time reversal under which f ? –f) then
the KL divergence I ¼

R
p xð Þln p xð Þ=p Txð Þf g is a measure of T-symmetry

breaking. Perhaps MaxEnt then implies maximal symmetry breaking more
generally.

7 For an alternative perspective, see Chap. 5. See also Chap. 1, Sect. 1.4.5.
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Appendix A: Identifying the Lagrange Multiplier k (Sect. 3.4.1)

In Sect. 3.4.1 (zonal energy balance models), the MaxEnt p.d.f. is p(f) � eA where
A ¼

P
i aDfi þ kifið Þ, where fi is the meridional heat flux from zone i - 1 to zone i,

Dfi = fi - fi+1 is the heat convergence into zone i, and a and ki are the Lagrange
multipliers associated with the global energy balance constraint

P
i DFi ¼ 0 and the

trial flux Fi, respectively. Here we show that ki may be identified with the gradient in
inverse temperature –D(1/Ti) = 1/Ti+1 – 1/Ti. Consider local heat balance over some
finite time interval (0, s). Let fi and Dfi denote time-averaged rates over (0; s), and let
ui(t) denote the heat content of zone i at time t. Local heat balance then gives

ui sð Þ � ui 0ð Þf g=s ¼ Dfi � ri where ri = fLW,i: – FSW,i; is the net radiation leaving
zone i, with ensemble average Ri = DFi. By introducing constraints on the ensemble
averages of ui(s) in each zone, for which the corresponding Lagrange multipliers
may be identified with8 -1/Ti we then have A ¼ �

P
i ui sð Þ=Ti þ

P
i aDfi þ kifið Þ

which from heat balance can be rewritten as A ¼ � 1
2

P
i ui 0ð Þ þ ui sð Þf g=TiþP

i Dfi a� 1
2 s=Ti

� �
þ 1

2 s
P

i ri=Ti þ
P

i kifi. Summing by parts reduces this to A ¼
� 1

2

P
i ui 0ð Þ þ ui sð Þf g=Ti þ

P
i fi ki þ 1

2 sD 1=Tið Þ
� �

þ 1
2 s
P

i ri=Ti: Since knowl-
edge of the radiation fluxes Ri is equivalent to knowledge of the heat fluxes Fi, the
second term in A is redundant in the presence of the third term, implying ki ¼
� 1

2 sD 1=Tið Þ as we wished to show. Substituting this into Eq. (3.19) for the mean
entropy production then gives I ¼ 2

P
i kiFi /�

P
i FiD 1=Tið Þ ¼

P
i DFi=Ti:

Appendix B: Identifying the Lagrange Multiplier a1(z)
(Sect. 3.4.2)

In Sect. 3.4.2.1 (shear turbulence in plane Couette flow), the MaxEnt p.d.f. is
p(f) � eA where A ¼ a1 zð Þðozux � vxvz þ vxvzh i þ ReÞh iþ a2ð ojuiojui

� ffi
� Re2�

Re vxvzh iÞ. Ignoring the fluctuation terms involving vxvz and setting u ¼ UðzÞx̂
(mean-field approximation) yields A ¼

R
dzfa1 zð ÞU0 zð Þþ a2U0 zð Þ2g where we

have dropped the constant terms involving Re and Re2. The action A is stationary
with respect to U(z) when a1(z) ? 2a2U0(z) = c with c constant. Substituting this

8 Here we assume units such that Boltzmann’s constant equals 1.
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into Eq. (3.25) for the mean entropy production gives IPCF ¼ 2
R

dza1 zð Þ U0 zð Þ /
R

dzU 0 zð Þ2 (Eq. 3.26), where we have dropped the constant term c
R

dz U0 zð Þ ¼
�cRe: Thus effectively we can set a1(z) � U0(z) in (3.25). A similar argument
applies to plane Poiseuille flow, leading to the same expression for IPPF (Eq. 3.30).
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Chapter 4
Dissipation Rate Functions,
Pseudopotentials, Potentials
and Yield Surfaces

Guy T. Houlsby

Abstract This chapter is about the role of the dissipation rate function—and other
functions derived from it—in determining the constitutive behaviour of dissipative
materials. It consists of a discussion of some general theory, followed by exam-
ples. We address the class of materials for which knowledge of the functional form
of the dissipation rate function supplies the complete constitutive response,
without recourse to further assumptions. A careful distinction is drawn between
functions that are true potentials and those that are pseudopotentials (defined in the
chapter), in order to clarify some aspects of terminology that the Author has
elsewhere found confusing. In plasticity theory the intimate relationship between
the dissipation rate function and the yield surface is explored. The chapter is
illustrated by examples of simple one- and two-dimensional conceptual models, as
well as full continuum models. Both rate independent (plastic) and rate-dependent
(viscous, or viscoplastic) models are addressed.

List of Symbols

Symbol Meaning

Roman Symbols
d x; vð Þ Dissipation rate function
d� x; vð Þ Dissipation rate function (alternative functional form)
IX vð Þ Indicator function of a set X
k Plastic strength
n Order of homogeneous dissipation rate function in velocities
NX vð Þ Normal cone to a convex set X
r Reference velocity
R Reference force
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v Generalised velocity (of state variable)
x State variable
w x; vð Þ Flow potential
y x; vð Þ Yield function
�y x; vð Þ Canonical form of yield function
z x; vð Þ Force potential

Greek Symbols
cX vð Þ Gauge or Minkowski function of a convex set X
h Absolute temperature
k Scalar multiplier
l Viscosity
K Lagrangian multiplier
s Dummy variable in integral transform
v Generalized force

Mathematical Symbolism

S xð Þ ¼
�1; x\0

2 �1; 1½ �; x ¼ 0
þ1; x [ 0

8
<

:

Generalised signum function

xh i ¼ 0; x\0
x; x� 0

�
Macaulay brackets

x; yh i Inner product

4.1 General Theory

In thermodynamic approaches to the mechanics of dissipative materials, the dis-
sipation rate is usually considered as a non-negative function of some generalised
velocities, which we shall denote here as v (which may be scalar, vectorial or
tensorial in character). It is important to note that the generalised velocities may
belong to two major classes: firstly there are the rates of internal variables (e.g. the
plastic strain rate) and secondly there are fluxes of various quantities, which are
driven by spatial gradients of associated variables (e.g. the flux of electrical charge
driven by the voltage gradient). For many applications it is important to make a
distinction between these two very different sources of dissipation, one associated
with a temporal gradient and the other associated with a spatial gradient, but for
our purposes here it is sufficient to treat the two classes together, and use the term
generalised velocity either for a rate of change or for a flux.
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Dissipation only occurs in the presence of non-zero generalised velocity, and it
is a small step (often taken implicitly) to assume therefore that the dissipation rate
can be expressed as a function of these velocities. We need to recognise though
that even the existence of a dissipation rate function is an assumption. For
instance, more generally we could allow the dissipation rate to be a functional
(‘‘function of a function’’) of the entire time-history of the velocities. However, it
is conventional to assume that the dissipation rate can be written simply as a non-
negative function of the velocities and of certain state variables, which we denote
by x (which also may be scalar, vectorial or tensorial in character). Thus
d ¼ d x; vð Þ� 0. The effects of the history of the material are effectively captured
entirely within the current values of the state variables, and need not be treated by
resort to functionals of the history. This is the key feature of ‘‘thermodynamics
with internal variables’’, TIV, otherwise known as generalised thermodynamics
(see for example [7]), as opposed to the so-called ‘‘rational mechanics’’, which
makes much use of functionals (see for example [9]).

As the entropy production is simply d=h, where h is the absolute temperature,
the assumption of the existence of a dissipation rate function is precisely equiv-
alent to the assumption of a function for the entropy production.

The question that is now posed is whether knowledge of the functional form of
d x; vð Þ furnishes us with additional information, possibly even complete infor-
mation, about the constitutive behaviour of the material. Compare, for instance,
with the classical thermodynamics of fluids. In that case (in the absence of dis-
sipation), knowledge of the internal energy as a function of appropriate state
variables is sufficient to define the entire constitutive behaviour. Can a similar
objective be achieved for dissipative materials?

The next step is usually to identify a set of generalised forces v which are work-
conjugate to the generalised velocities, and such that d ¼ v; vh i (where v; vh i
denotes an appropriate inner product). Different authors make different assumptions
about the nature of v. For instance in some texts if v represents the plastic strains then
v is explicitly identified with the stresses. In other texts (e.g. [10]), v is simply
identified with generalised stresses, not necessarily identical to the true stresses.
These distinctions need not concern us at this stage: it is sufficient that we consider a
set of generalised forces of unspecified nature. However, what is common to all the
approaches is that the key to determining the constitutive behaviour is the estab-
lishment of the relationship between v and v. Once this relationship is known, the
constitutive behaviour is fully determined. Clearly the problem can be cast in one of
two explicit forms, either in terms of establishing the velocities v as a function of the
forces v, or in the inverse form of determining the forces v in terms of the velocities
v. Implicit forms are also possible.

One possibility is that the expression d ¼ d x; vð Þ is merely used to calculate the
value of the dissipation rate (and check that it is non-negative) whilst introducing
independently some other specification of the constitutive behaviour; for instance
the velocities may be expressed as explicit functions of the forces (or vice versa).
However, we are interested here in the case where the constitutive behaviour can
itself be deduced from d x; vð Þ without the need to introduce additional
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assumptions. If this objective can be achieved it has a very particular advantage:
the constitutive response can be defined through the knowledge of just the scalar
function d x; vð Þ. Contrast this with the case where the velocities are expressed as
functions of the forces—in that case, if there are n velocities, then n equations have
to be specified, and the dissipation rate then calculated to check that it is non-
negative for all possible conditions.

Perhaps the simplest argument for derivation of the forces from the dissipation
rate was advanced by Ziegler [10] (see his Chap. 14, Sect. 14.3), but his reasoning
may have earlier origins. The argument goes broadly as follows. If the forces v can
be determined from the velocities v and knowledge of d x; vð Þ, then the direction (in
a generalised sense) of v can only be given by a direction that can be obtained
solely from knowledge of d x; vð Þ. Ziegler argues that the only such direction is
od=ov. One might argue that if, for instance, v and v are finite-dimensional vectors,
then v could be in the same direction as v, but Ziegler dismisses this argument by
appealing to the fact that v should properly be definable in terms of some curvi-
linear coordinate system in which a proper distinction is necessary between
covariant and contravariant tensors. In this case, if v is contravariant, then v is
covariant, and it is meaningless to speak of them being in the same direction. By a
similar argument Ziegler dismisses the possibility that the direction of v could be
determined from contracted inner products involving higher derivatives of d x; vð Þ.
The same argument could be advanced in more modern terminology in terms of
vectors and one-forms. Note, however, that Ziegler’s entire argument is based on
the premise that v can be derived from knowledge of v and d x; vð Þ, and some
would argue that this itself is an unjustified assumption.

Ziegler thus argues that v ¼ k od
ov, where k is some yet-to-be-determined scalar.

However, simply by noting that d ¼ v; vh i ¼ k od
ov ; v
� �

, one can immediately derive

k ¼ d
od
ov ; v
� � and therefore v ¼ d

od
ov ; v
� �

od

ov
. Thus we have achieved our objective of

determining v as a function of v entirely from knowledge of d x; vð Þ. This result is
known as Ziegler’s orthogonality condition: v is orthogonal (normal) to a level
set of d x; vð Þ.

Orthogonality can be deduced from other assumptions, or alternatively it can be
interpreted in different ways. For instance one can pose the problem as one of
maximal dissipation rate, or equivalently maximal entropy production. This is an
appealing notion, in that the Second Law requires that the dissipation rate be non-
negative, and it is a logical extension to strengthen this to a statement that (subject
to any relevant constraints) the dissipation rate should be maximal. The main
problem comes in the treatment of the constraints, and many authors simply
acknowledge the issue and then hastily avoid dealing with it in any detail. The
treatment of constraints within the context of a general boundary problem is not
trivial. However, the maximal dissipation rate concept can be posed in the fol-
lowing way: what are the velocities that, for given v, maximise the dissipation rate,
subject just to the side condition that d ¼ v; vh i? We proceed by first forming an
augmented Lagrangian function d0 ¼ d þ K d � v; vh ið Þ in which K is a
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Lagrangian multiplier, and then maximising with respect to v by writing
od0

ov ¼ od
ov þ K od

ov � v
� �

¼ 0:

Rearrangement gives v ¼ 1þK
K

od
ov, the same result as before for the direction of v,

with k ¼ 1þK
K . We then follow the same argument as before to establish the value

of the multiplier k ¼ 1þK
K ¼

d
od
ov ; v
� �:

It is appealing that orthogonality can be derived either from geometric argu-
ments about the direction of v, or from a principle of maximal dissipation rate.
Either way, orthogonality serves as the tool to extract more information from the
dissipation rate function, and allows knowledge of the function to provide us with
the entire constitutive response. In fact this is such a useful result that it could be
advanced as an independent argument for orthogonality: a constitutive model
employing orthogonality requires only the specification of a scalar function, as
opposed to a set of tensorial relationships. It could be argued that the structure of a
constitutive law based on orthogonality is so much simpler than many other
structures that one should explore these materials first, and only reject orthogo-
nality if it proves inadequate for describing real materials (of course, this comes
close to advancing an argument based on the aesthetics of the theory, but we avoid
that pitfall, and prefer an argument simply based on pragmatism).

4.1.1 Materials Obeying Orthogonality

The remainder of this chapter is devoted to materials for which orthogonality
applies. Note that these materials are often referred to as ‘‘standard materials’’ by
authors such as Lemaitre and Chaboche [5], Maugin [6, 7].

When v can be derived from d x; vð Þ by an expression of the form v ¼ k od
ov, and

more specifically from v ¼ d
od
ov ; v
� �

od

ov
, then we say that d x; vð Þ acts as a pseudo-

potential for v. By pseudopotential we mean that the partial derivative of d x; vð Þ
provides the direction, but not the magnitude, of v. Contrast this with the situation
where, if some function z exists such that z ¼ z x; vð Þ and v ¼ oz=ov, then z ¼
z x; vð Þ is a true potential (or just potential) for v, in that it supplies directly both
direction and magnitude of v. There are numerous mathematical advantages if we
can identify such a true potential. Most notably we can then exploit the mathe-
matics of the Legendre transform (or more generally the Fenchel dual) to obtain
from z ¼ z x; vð Þ another potential w x; vð Þ such that zþ w ¼ v; vh i ¼ d, and
v ¼ ow=ov. Thus either of the two fundamental forms of the constitutive rela-
tionships can then be derived.

How can z ¼ z x; vð Þ be derived from d x; vð Þ? First of all we can observe that if
d x; vð Þ is homogeneous and of order n in v, then from Euler’s theorem od

ov ; v
� �

¼ nd

and k ¼ d
od
ov ; v
� � ¼ 1

n
. This is an important and useful special case. For rate-inde-

pendent (plastic) materials d x; vð Þ is homogeneous and of degree 1 in v, so k ¼ 1,
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v ¼ od=ov and we immediately identify that z x; vð Þ ¼ d x; vð Þ. We return to this
case later. For a linear viscous material then d x; vð Þ is homogeneous and of degree
2 in v, so k ¼ 1

2, v ¼ 1
2

od
ov and we can immediately identify z x; vð Þ ¼ 1

2 d x; vð Þ. For
any homogeneous function of degree n, it follows that z x; vð Þ ¼ 1

n d x; vð Þ. For any
function that can be expressed as the sum of homogeneous functions d x; vð Þ ¼P

dn x; vð Þ where dn x; vð Þ is homogeneous of degree n in v, it follows that
z x; vð Þ ¼

P
1
n dn x; vð Þ.

Houlsby and Puzrin [4] show that more generally the true potential can be

derived from the integral transform z x; vð Þ ¼
R 1

0
d x;svð Þ

s ds. The inverse process is of

course much more straightforward: d x; vð Þ ¼ v; vh i ¼ oz
ov ; v
� �

.
To avoid confusion with the dissipation rate, which is a pseudopotential, we

follow Houlsby and Puzrin and call the function z x; vð Þ the force potential (as it
acts as a potential for the determination of the generalised force v). We call w x; vð Þ
the flow potential as it acts as a potential that determines the ‘‘flow’’ v. Confus-
ingly, Maugin [7] refers to both of these functions as the dissipation potential (in
his Sect. 5.3, Maugin’s D is our z, and his D* is our w). This ambiguous termi-
nology has also been used elsewhere.

Now let us consider the case where the dissipation rate can alternatively be
expressed as a function of the forces d ¼ d� ¼ d� x; vð Þ. Note, however, that for the
very important case of rate-independent plasticity this is not possible. The question
now arises as to how the velocities can be derived from the dissipation rate
function. Following exactly Ziegler’s argument above, but with the roles of force
and velocity interchanged, one can deduce v ¼ k� od�

ov , where k� is an undetermined

scalar. Then by noting that d� ¼ v; vh i ¼ k� v; od�

ov

D E
, one can immediately derive

k� ¼ d�

v; od�

ov

D E and therefore v ¼ d�

v; od�

ov

D E
od�

ov
. Thus d� x; vð Þ is a pseudopotential for

v. Clearly we can relate d� x; vð Þ and w x; vð Þ, and a similar process to that used

before yields the result w x; vð Þ ¼
R 1

0
d� x;svð Þ

s ds. Again the inverse process is of

course much more straightforward: d� x; vð Þ ¼ v; vh i ¼ v; ow
ov

D E
:

4.2 Rate-independent Plastic Materials

4.2.1 Legendre Transformations when the Dissipation Rate
is First Order in Velocities

We now turn to the special case where d is homogeneous and first order in v, which
arises in the extremely important problem of rate-independent plasticity. In this
case we have od

ov ; v
� �

¼ d and k ¼ 1, so that z ¼ d and d x; vð Þ is a true potential for
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v, not just a pseudopotential. However, it also follows that w ¼ d � z ¼ 0, so that
we are faced with the fact that the flow potential is always identically zero. This
special case is extensively treated in the Appendix to Collins and Houlsby [1], and
by Houlsby and Puzrin [4]. They observe that in this special case it is possible to
derive a function of the forces that is identically zero when yield occurs and that

this function acts as a pseudopotential for the velocities: y ¼ y x; vð Þ ¼ 0, v ¼ k0 oy
ov.

This function is none other than the yield function (but in generalised force space,
not true stress space) and the fact that it acts as a pseudopotential means that there
is ‘‘associated flow’’ in generalised force space. An important observation, pursued
by Houlsby [2] and in later publications, is that this associated flow does not carry
over to true stress space in the case of ‘‘frictional’’ behaviour, so this approach to
plasticity is able to accommodate non-association in conventional plasticity terms.
(‘‘Frictional’’ behaviour is defined in this context as the explicit dependence of the
dissipation rate on the true stresses. The dependence usually takes the form that the
dissipation rate is proportional to the mean stress.)

4.2.2 Alternative Approach: Fenchel Duals

The Legendre transform of a homogeneous first order function can be treated as a
special case as above, but it is more usefully treated using the language of convex
analysis, in which the Legendre transform is a special case of the Fenchel dual.
Houlsby and Puzrin [4] provide (in their Appendix D) an introduction to convex
analysis in this context. The main restriction is that we have to confine our
attention to dissipation rate functions that are convex, but this does not prove to be
excessively arduous, as virtually every dissipation rate function that might be of
interest satisfies this criterion.

The essential results from convex analysis are as follows. The homogeneous first
order dissipation rate function d x; vð Þ can be interpreted as a support function of a
convex set X in the space of v. This convex set is none other than the set of accessible
values of v, and so its boundary is the yield surface in generalised stress space. The
Fenchel dual of the dissipation rate function is the indicator function IX x; vð Þ of this
set—a function of v that is zero if v is a member of the set X andþ1 if it is not. Whilst
the indicator of the set of course defines the yield surface, it is not in a convenient
mathematical form. A much more convenient function to define is the gauge func-
tion cX x; vð Þ of the set (also called the Minkowski distance function), which is a
homogeneous first order function that is zero at the origin of generalized force space,
and equal to unity at the boundary of the set. The gauge function is formally the polar
of the support function (in this case the dissipation rate function). The restriction that
the set of accessible generalised stress states must include the origin of generalized
force space is also not one that causes difficulty.

The gauge function can be used to define a conventional yield function
�y x; vð Þ ¼ cX x; vð Þ � 1 which is zero at yield, negative for accessible generalised
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stress states and positive for inaccessible generalised stress states. We call this the
canonical yield function, as it is a preferred form of the yield function, and use
the notation �y x; vð Þ to distinguish it from other possible forms of the yield function
y x; vð Þ. Strictly though it is not necessary to introduce the yield function as a
separate function, as the gauge could serve our entire purpose here. We introduce
the yield function principally for comparison with conventional practice in plas-
ticity theory.

The generalised stresses are given by the subdifferential of the dissipation rate
function v 2 ovd x; vð Þ, where we introduce the notation ov to indicate the sub-
differential with respect to the variable v. Alternatively the velocities are given by
the subdifferential of the indicator function v 2 ovIX x; vð Þ ¼ NX x; vð Þ where
NX x; vð Þ is the normal cone of the set X. It can easily be shown that at yield
cX x; vð Þ ¼ 1 and that the normals to the indicator function and the gauge function
are in the same direction, so that one can also write v 2 k0ovcX x; vð Þ. If cX x; vð Þ is
smooth (which is often but not always the case), then this of course simply reduces

to v ¼ k0 ocX

ov . We can then note that d ¼ v; vh i ¼ k0 v; ocX

ov

D E
, but as cX x; vð Þ is by

definition first order in v, it follows that v; ocX

ov

D E
¼ cX, and furthermore at yield we

have cX ¼ 1, so that k0 ¼ d. Thus the multiplier has a particularly simple physical
interpretation. Exactly the same result applies if alternatively we use the canonical

yield function form and define v ¼ k0 o�y
ov :

A summary of the relationships between the different functions, and the
expressions derived from them, is given in Fig. 4.1.
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4.3 Examples

4.3.1 One Dimensional Examples

We first consider some simple examples of analogues for materials in one
dimension, in which both the velocity v and the generalised force v are scalar. The
inner product v; vh i in this case is simply vv. Such models do not allow exploration
of the shapes of yield surfaces, but allow us to explore the implications of some
basic functional forms of d, v, w and d�. We begin with linear viscosity, and go on
to treat rate-independence as a special case of non-linearity.

Note as an aside that in the one-dimensional case, because d ¼ vv ¼ d�, then
trivially v ¼ d=v or v ¼ d�=v furnishes the constitutive response. However, as
these trivial results do not carry over to higher dimensionality we do not pursue
them, but instead use the one dimensional examples to illustrate results that do
generalise to higher dimensionality.

4.3.1.1 Example 1.1: A Linear Viscous Material

Consider d ¼ lv2, which is a homogeneous expression of degree n ¼ 2. The
parameter l is a viscous constant (for consistency with later results we could write
l ¼ k=r where k is a strength parameter and r a reference velocity, or even
l ¼ jR=r where j is a dimensionless strength parameter and R a reference force).

Clearly od
ov ¼ 2lv, the inner product od

ov ; v
� �

¼ od
ov v ¼ 2lv2 ¼ 2d and k ¼ d

od
ov v
� � ¼ 1

2.

We therefore calculate v ¼ k od
ov ¼ lv and thus the constitutive behaviour is

determined. This material behaviour corresponds of course to the well-known
Newtonian fluid with a constant viscosity.

Alternatively we could calculate (using either the special procedure or the
particular formula for a homogeneous function) z ¼ 1

2 lv2 and immediately derive

v ¼ k od
ov ¼ lv.

A further alternative is to take the Legendre transform and determine
w ¼ d � z ¼ 1

2 lv2. Substituting v ¼ lv to convert this to a function of the forces

one obtains w ¼ 1
2l v2. Differentiation then immediately leads to v ¼ ow

ov ¼
v
l.

Finally, one could calculate d� ¼ v2

l . Straightforward manipulation gives k� ¼ 1
2,

from which we obtain v ¼ 1
2

od�

ov ¼
v
l.

Note very importantly that, applying the above procedures, it is only necessary
to know any one of d, z, w and d� in order to define the entire constitutive response,
and (if necessary) to derive all the other functions.
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4.3.1.2 Example 1.2: A Non-linear Viscous Material

Now consider d ¼ kr vj j=rð Þn which is a homogeneous expression of degree
n. Note that we now use k and r so that all parameters have simple dimensionality.
We have to introduce the absolute value of v in order to cope with negative

velocities and non-integer values of n. We can derive od
ov ¼ nk vj j

r

� �n�1
S vð Þ, where

S xð Þ is a generalised signum function (see Notation), so that od
ov v ¼ nkr vj j

r

� �n
¼ nd,

and k ¼ d
od
ov v
� � ¼ 1

n
. We can therefore calculate v ¼ 1

n
od
ov ¼ k vj j

r

� �n�1
S vð Þ. The

behaviour that this describes is that of a non-Newtonian fluid in which the vis-
cosity is a function of shear rate. If n [ 1 the fluid is ‘‘shear thickening’’, and the
apparent viscosity increases with shear rate. If n\1 the fluid is ‘‘shear thinning’’,
with the apparent viscosity decreasing with shear rate. Fluids that exhibit either of
these properties are encountered in practice.

Alternatively we could calculate (again using either the special procedure or the

particular formula for a homogeneous function) z ¼ 1
n d ¼ kr

n
vj j
r

� �n
, and immedi-

ately derive v ¼ oz
ov ¼ k vj j

r

� �n�1
S vð Þ.

Taking the Legendre transform we determine w ¼ d � z ¼ kr n�1
n

� � vj j
r

� �n
, and

recalling that v ¼ k vj j
r

� �n�1
S vð Þ or alternatively vj j

r ¼
vj j
k

� �1= n�1ð Þ
we can convert

w to a function of the forces as w ¼ kr n�1
n

� � vj j
k

� �n= n�1ð Þ
. Differentiation confirms

the result that v ¼ ow
ov ¼ r vj j

k

� �1= n�1ð Þ
S vð Þ.

Finally, one could calculate d� ¼ kr vj j
k

� �n= n�1ð Þ
. Straightforward manipulation

gives k� ¼ n�1
n , from which we obtain as before v ¼ k� od�

ov ¼ r vj j
k

� �1= n�1ð Þ
S vð Þ.

Again it is only necessary to know any one of d, z, w and d� to define the entire
constitutive response.

4.3.1.3 Example 1.3: Rate Independent Plastic Behavior

We now consider the special case of the above when n ¼ 1, and d ¼ k vj j. We can
immediately derive od=ov ¼ kS vð Þ, so that od

ov v ¼ kS vð Þv ¼ k vj j ¼ d and

k ¼ d
od
ov v
� � ¼ 1. We therefore have simply v ¼ k od

ov ¼ kS vð Þ. The physical inter-

pretation of this expression is clearly that either v ¼ 0 and v is undetermined (but
vj j � k), or that v 6¼ 0 and v ¼ �k. This corresponds to simple rigid-plastic

behaviour. Such a model would serve, for example as a first approximation to the
behaviour of a ductile steel in a one-dimensional tension test.
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In this case the dissipation rate is a true potential for the force, not merely a
pseudopotential, and one is justified in calling it a dissipation rate potential.

Alternatively we could calculate (again using either the special procedure or the
particular formula for a homogeneous function) z ¼ d ¼ k vj j, and immediately
derive the force from v ¼ oz=ov ¼ kS vð Þ.

If we try to form the Legendre transform, we note that w ¼ d � z ¼ 0, so the
flow potential is identically zero. As noted above, this case is better pursued using
the language of convex analysis, but let us first simply explore it using ad hoc
procedures.

Here we note that, if v is non-zero, then v ¼ �k, so that we could write an
expression for a ‘‘yield function’’ y ¼ vj j � k ¼ 0. There are numerous alternative
ways we could choose to write the yield function, for instance y ¼ v2 � k2 ¼ 0,

y ¼ v2

k2 � 1 ¼ 0, but the particular form of the canonical yield function (the pre-

ferred form as defined above) is �y ¼ vj j
k � 1 ¼ 0.

Provided that v is non-zero, then �y vð Þ ¼ 0 must be satisfied. Thus, from the
existence of a dissipation rate potential, we have established the existence of a
yield surface.

We observe that we can write v ¼ k0 o�y
ov ¼ k0 S vð Þ

k so that �y is a pseudopotential for

the velocity. In fact in this very simple perfectly plastic model k0 is not further
determined, and can simply take an arbitrary magnitude. Note, however, that

vv ¼ k0 S vð Þ
k v ¼ k0 vj j

k ¼ k0, so that k0 ¼ d, which is an example of the general result
for the canonical yield function.

Now reconsider this case within the formalism of convex analysis. First we note
that the indicator function of the set X of accessible states of v is formally the
Fenchel dual of the dissipation rate function (which in turn can be identified with
the support function of the set). Thus IX vð Þ ¼ sup

v
vv� dð Þ ¼ sup

v
vv� k vj jð Þ. It can

readily be established that if vj j � k, IX vð Þ ¼ 0, whilst if vj j[ k, IX vð Þ ¼ þ1.
We can write this as IX vð Þ ¼ I �1;1½ � v=kð Þ. Although this establishes clearly the
set of accessible force states as X ¼ v j �1� v=k� 1f g ¼ v j vj j � kf g, it is
an inconvenient mathematical form.

More useful is to identify the gauge function, which is the polar of the dissi-

pation rate, cX vð Þ ¼ sup
0 6¼v

vv
k vj j

� �
, and clearly cX vð Þ ¼ vj j

k . This immediately identifies

the canonical yield function as �y vð Þ ¼ cX vð Þ � 1 ¼ vj j
k � 1.

We now explore some more complex forms of the ways that rates can enter the
dissipation process. First of all we look at the case of a compound dissipation rate
function.

4 Dissipation Rate Functions, Pseudopotentials, Potentials 83



4.3.1.4 Example 1.4: A Compound Dissipation Rate
Function—Plasticity and Viscosity

Consider the dissipation rate function d ¼ k vj j þ lv2. The easiest way to proceed
is to use either the special procedure (for a function that can be expressed as a sum
of homogeneous functions) or the general procedure to derive z ¼ k vj j þ l

2 v2. This
can immediately be used to derive v ¼ oz=ov ¼ kS vð Þ þ lv. A little thought
reveals that v and v must have the same sign, and that if v is non-zero vj j[ k.
Conversely if vj j � k then v ¼ 0. We can therefore invert the expression for v to

obtain v ¼ vj j�kh i
l S vð Þ.

The material behaviour described by this model is that of the well-known
‘‘Bingham fluid’’, which is a good approximation to many fluids, e.g. colloidal
systems. If the viscous term is relatively small and the plasticity term dominates
then this model also serves as the starting point for plastic materials that exhibit a
mild rate-dependence, which they commonly do.

Taking the Legendre transform we have w ¼ d � z ¼ vv� k vj j � l
2 v2. After

substituting the solution for v above, we can show that w ¼ vj j�kh i2
2l . It follows of

course that v ¼ ow
ov ¼

vj j�kh i
l S vð Þ.

It is unlikely that one would need to know the form of d�, but for completeness

we note that this can be derived as d� ¼ vv ¼ vj j�kh i vj j
l .

4.3.1.5 Example 1.5: A Complex Dissipation Rate
Function—Rate Process Theory

All the above have involved relatively trivial functional forms for the dissipation
rate. We now illustrate a case where the dissipation rate takes a slightly more
complex form, and in particular one that cannot be decomposed as a finite sum of
homogeneous functions.

Consider d ¼ lrv sinh�1 v=rð Þ, where l ¼ k=r is a viscous constant and r is a
constant that has the dimensions of the velocity. We first determine the force
potential by means of the integral transform:

z vð Þ ¼
Z1

0

d svð Þ
s

ds ¼
Z1

0

lrv sinh�1 sv

r

� �
ds

¼ lrv s sinh�1 sv

r

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ r2

v2

r" #1

0

¼ lr v sinh�1 v

r

� �
þ r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ r2

p� �

Note if y ¼ sinh�1 x
a

� �� �
then dy

dx ¼ 1ffiffiffiffiffiffiffiffiffi
a2þx2
p

� �
.
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It is then straightforward to obtain v ¼ oz=ov ¼ lr sinh�1 v=rð Þ, which can of

course be inverted to v ¼ r sinh v
lr

� �
.

We can form the Legendre transform w ¼ d � z ¼ lr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ r2
p

� r
� �

, and

substitute the above solution for v to obtain w ¼ lr2 cosh v
lr

� �
� 1

� �
. Differenti-

ation easily confirms the result v ¼ ow
ov ¼ r sinh v

lr

� �
.

Again it would be unusual to require the functional form of d�, but we can note

that it is d� ¼ rv sinh v
lr

� �
.

The above results are of interest because the structure of the response

v ¼ r sinh v
lr

� �
is representative of thermally activated processes, also called rate

process theory. At low generalised forces sinh v
lr

� �
� v

lr and v � v
l, so that the

response approaches linear viscous behaviour. At high generalised forces

sinh v
lr

� �
� 1

2 exp v
lr

� �
and v � r

2 exp v
lr

� �
or v ¼ lr log 2v

r

� �
, which is typical of

certain processes in which force increases approximately with the logarithm of
velocity. Materials such as soils exhibit rate-dependence of this type (although the
strength also has a significant plastic component).

4.3.2 Two-dimensional Examples

We now extend the above models to consider some two-dimensional examples.
These give insight into the way the functions determine the ratios between the
forces or velocities. In the case of plasticity they also illustrate the derivation of the
yield surface. It is useful to consider some simple cases with two velocity com-
ponents v ¼ v1; v2ð Þ (it may be useful think of these as shear strain rates) and
corresponding forces v ¼ v1; v2ð Þ (which may be thought of as shear stresses). The
inner product v; vh i is simply the dot product v1v1 þ v2v2.

4.3.2.1 Example 2.1: A Linear Viscous Material
(Based on Example 1.1)

Consider d ¼ l v2
1 þ v2

2

� �
, which is a homogeneous expression of degree n ¼ 2

with the parameter l a viscous constant. Clearly:

od

ov1
¼ 2lv1 and

od

ov2
¼ 2lv2:

The inner product od
ov v is given by od

ov1
v1 þ od

ov2
v2 ¼ 2l v2

1 þ v2
2

� �
¼ 2d, so that

k ¼ d
od
ov v
� � ¼ 1

2
. We therefore calculate:
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v1 ¼
1
2

od

ov1
¼ lv1 and v2 ¼

1
2

od

ov2
¼ lv2:

Thus the entire constitutive behaviour is determined. Importantly, we find that

the forces are in the same ratio as the velocities:
v

1
v

2
¼ v1

v2
: This represents well the

behaviour of most fluids under combined shear stresses.
Alternatively we could calculate (using either the special procedure or the

particular formula for a homogeneous function) z ¼ 1
2 d ¼ l

2 v2
1 þ v2

2

� �
and imme-

diately derive:

v1 ¼
oz

ov1
¼ lv1 and v2 ¼

oz

ov2
¼ lv2:

A further alternative is to take the Legendre transform and determine
w ¼ d � z ¼ l

2 v2
1 þ v2

2

� �
. Substituting v1 ¼ lv1, v2 ¼ lv2 to convert this to a

function of the forces one obtains w ¼ 1
2l v2

1 þ v2
2

� �
. Differentiation then imme-

diately leads to

v1 ¼
ow

ov1
¼ v1

l
and v2 ¼

ow

ov2
¼ v2

l
:

Finally, one could calculate d� ¼ 1
l v2

1 þ v2
2

� �
. Straightforward manipulation

gives k� ¼ 1
2, from which we obtain

v1 ¼
1
2
od�

ov1
¼ v1

l
and v2 ¼

1
2
od�

ov2
¼ v2

l
:

As before in the 1-D case, it is only necessary to know any one of d, z, w and d�

to define the entire constitutive response, and (if necessary) to derive all the other
functions.

4.3.2.2 Example 2.2: A Non-linear Viscous Material
(Based on Example 1.2)

Now consider d ¼ kr
v2

1þv2
2

r2

� �n=2
, which is a homogeneous expression of

degree n. Clearly:

od

ov1
¼ nk

r
v1

v2
1 þ v2

2

r2


 � n=2ð Þ�1

and
od

ov2
¼ nk

r
v2

v2
1 þ v2

2

r2


 � n=2ð Þ�1

:

The inner product is od
ov1

v1 þ od
ov2

v2 ¼ nkr
v2

1þv2
2

r2

� �n=2
¼ nd, so that k ¼ d

od
ov v
� � ¼ 1

n
.

We therefore calculate:
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v1 ¼
1
n

od

ov1
¼ k

r
v1

v2
1 þ v2

2

r2


 � n=2ð Þ�1

and v1 ¼
1
n

od

ov2
¼ k

r
v2

v2
1 þ v2

2

r2


 � n=2ð Þ�1

:

Note that, as for the linear model, the forces are in the same ratio as the
velocities. As in Example 1.2, shear thickening or thinning behaviour can be
described depending on the value of n.

Alternatively we could calculate (again using either the special procedure or

the particular formula for a homogeneous function) z ¼ 1
n d ¼ kr

n
v2

1þv2
2

r2

� �n=2
and

immediately derive the same expressions as above for v1 and v2 by differentiation
of z.

Taking the Legendre transform we determine w ¼ d � z ¼ kr n�1
n

� � v2
1þv2

2
r2

� �n=2
.

Observing that
v2

1þv2
2

k2 ¼ v2
1þv2

2
r2

� �n�1
, we can convert w to a function of the forces as:

w ¼ kr
n� 1

n


 �
v2

1 þ v2
2

k2


 �n=2 n�1ð Þ
:

Differentiation then immediately leads to

v1 ¼
ow

ov1
¼ r

k
v1

v2
1 þ v2

2

k2


 � 2�nð Þ=2 n�1ð Þ

and similarly for v2. It follows that
v2

1þv2
2

r2 ¼ v2
1þv2

2
k2

� �1= n�1ð Þ
, so it can easily be

verified that the constitutive behaviour is the same as derived from d or z.

Finally, one could calculate d� ¼ kr
v2

1þv2
2

k2

� �n=2 n�1ð Þ
. Straightforward manipu-

lation gives k� ¼ n�1
n , from which we obtain the same expressions as above for the

velocities from v1 ¼ n�1
n

od�

ov1
and similarly for v2.

Once again it is only necessary to know any one of d, z, w and d� to define the
entire constitutive response.

4.3.2.3 Example 2.3: Rate Independent Plastic Behaviour
(Based on Example 1.3)

We now consider the special case of the above when n ¼ 1, and d ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2

p
.

We can immediately derive

od

ov1
¼ kv1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
1 þ v2

2

p

and similarly for v2. We obtain k ¼ 1 and so
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v1 ¼
od

ov1
¼ kv1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
1 þ v2

2

p

and similarly for v2. In this case the dissipation rate is a true potential for the
forces, not merely a pseudopotential.

Alternatively we could calculate z ¼ d, and immediately derive the same
expressions for v1 and v2.

If we try to form the Legendre transform, we note that w ¼ d � z ¼ 0, so the
flow potential is identically zero. This case is better pursued using convex analysis,
but again we first explore it using ad hoc procedures.

Here we note that, squaring and adding expressions for v1 and v2 one obtains
v2

1 þ v2
2 ¼ k2. We rearrange this into the form

�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2

p

k
� 1 ¼ 0

and we call �y v1; v2ð Þ the canonical yield function. (Canonical because although the
yield function can be written in many different ways, but this is a preferred form).
The yield surface is shown in Fig. 4.2. Provided that v1; v2ð Þ is non-zero, then
�y v1; v2ð Þ ¼ 0 must be satisfied. Thus, from the existence of a dissipation rate
potential, we have proven the existence of a yield surface.

As for the linear and non-linear viscous models, we can observe that once more
the forces are in the same ratio as the velocities. However, we can also observe in
Fig. 4.2 that (because the yield surface is circular and centered on the origin), it
also follows that the velocity vector is normal to the yield surface. As we shall see
below in Example 2.4, it is this feature of normality that is much more funda-
mental. In anisotropic models the forces are not necessarily in the same proportion
as the velocities.

We observe that v1 ¼ k0 o�y
ov1
¼ k0

k
v1ffiffiffiffiffiffiffiffiffi
v2

1þv2
2

p ¼ k0v1
k2 so that �y is a pseudopotential for

the velocities. Note that one can readily show that k0 ¼ d, an example of the
general result for the canonical yield function.

χ1, v1

χ2, v2

(v1, v2)

k

k

Fig. 4.2 Yield surface and
flow vectors for isotropic
model
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Now reconsider this case within the formalism of convex analysis. First we note
that the indicator function of the set X of accessible states of v1; v2ð Þ is the Fenchel
dual of the dissipation rate function (support function). Thus IX v1; v2ð Þ ¼

sup
v1;v2

v1v1 þ v2v2 � dð Þ ¼ sup
v1;v2

v1v1 þ v2v2 � k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2

p� �
. It can be established that

if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2

p
� k, IX v1; v2ð Þ ¼ 0, whilst if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2

p
[ k, IX v1; v2ð Þ ¼ þ1.

Although this establishes clearly the set of accessible force states as
X ¼ v1; v2ð Þ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2

p
� k

� 
, it is an inconvenient mathematical form.

More useful is to identify the gauge function, which is the polar of the dissi-

pation rate, cX v1; v2ð Þ ¼ sup
0 6¼v1;v2

v1v1þv2v2

k
ffiffiffiffiffiffiffiffiffi
v2

1þv2
2

p

 �

, and with some manipulation one can

show that cX v1; v2ð Þ ¼
ffiffiffiffiffiffiffiffiffi
v2

1þv2
2

p
k . This immediately identifies the canonical yield

function as �y v1; v2ð Þ ¼ cX v1; v2ð Þ � 1 ¼
ffiffiffiffiffiffiffiffiffi
v2

1þv2
2

p
k � 1.

4.3.2.4 Example 2.4: Anisotropic Plasticity (Based on Example 2.3)

It was observed that in for Example 2.3 that the velocities are simply ‘‘in the same

direction’’ as the forces, as v1 ¼ k0v1
k2 and v2 ¼ k0v2

k2 , so that v1
v2
¼ v1

v2
(see Fig. 4.2).

However, this is just a special case. As a counterexample consider the anisotropic

material represented by d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1v2
1 þ k2

2v2
2

p
. It is straightforward to derive

v1 ¼
k2

1v1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1v2
1þk2

2v2
2

p , v2 ¼
k2

2v2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1v2
1þk2

2v2
2

p , leading to v1
v2
¼ k2

2

k2
1

v1
v2

, so that the velocities are not

in the same direction as the forces, see Fig. 4.3. The velocities are, however,

normal to the canonical yield surface, which is �y v1; v2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1

k2
1
þ v2

2

k2
2

r

� 1 ¼ 0, and

this normality is common to both Figs. 4.2 and 4.3. It is widely observed exper-
imentally that plastic strain rates for non-frictional materials obey this ‘‘normality’’
criterion. A number of important theoretical results follow (as pursued by many
authors in the 1950s, with Drucker in particular making numerous notable con-
tributions). For instance, the upper and lower bound theorems of plasticity theory

χ1, v1

χ2, v 2 (v1, v2)

k1

k2

Fig. 4.3 Yield surface and
flow vectors for anisotropic
model
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can be proven for materials that exhibit normality. These allow structural collapse
loads to be bounded from both above and below, in many cases leading to exact
solutions.

4.3.2.5 Example 2.5: A ‘‘Square’’ Yield Surface

The shape of the yield surface depends on the way that the velocities are combined
in the dissipation rate function. We introduce the following as a somewhat arti-
ficial example. However, it has some relationship with ‘‘Tresca’’ plasticity. We
demonstrate that a multilinear yield surface is related to a dissipation rate function
which consists of independent additive terms. Consider the function
d ¼ k v1j j þ v2j jð Þ. We can immediately derive:

od

ov1
¼ kS v1ð Þ

and similarly for v2. We obtain k ¼ 1 and so

v1 ¼
od

ov1
¼ kS v1ð Þ

and similarly for v2. The gauge function is given by

cX v1; v2ð Þ ¼ sup
0 6¼v1;v2

v1v1þv2v2

k v1j jþ v2j jð Þ

� �
. With some manipulation one can show that

cX v1; v2ð Þ ¼ max v1j j; v2j jð Þ
k and the canonical yield surface is therefore

�y v1; v2ð Þ ¼ cX v1; v2ð Þ � 1 ¼ max v1j j; v2j jð Þ
k � 1, a ‘‘square’’ yield surface, Fig. 4.4.

χ1, v1

χ2 , v2
(v1, v2)

k

k

Fig. 4.4 ‘‘Square’’ yield
surface
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4.3.2.6 Example 2.6: More General Shapes of Yield Surface

More generally, consider the function d ¼ k v1j jmþ v2j jmð Þ1=m, 1�m\1. We can
derive

od

ov1
¼ k v1j jm�1S v1ð Þ v1j jmþ v2j jmð Þ 1�mð Þ=m

and similarly for v2. We obtain k ¼ 1 and so

v1 ¼
od

ov1
¼ k v1j jm�1S v1ð Þ v1j jmþ v2j jmð Þ 1�mð Þ=m

and similarly for v2. Adopting the ad hoc approach to derivation of the yield
surface, we observe that, by raising appropriate powers of v1 and v2 and adding,

one obtains v1j j
k

� �m0

þ v2j j
k

� �m0

¼ 1, where m0 ¼ m= m� 1ð Þ. We can rearrange this

into the canonical form of the yield surface:

�y ¼
v1j jm

0
þ v2j jm

0
� �1=m0

k
� 1 ¼ 0:

In general this is a ‘‘superelliptical’’ shaped yield surface. Figure 4.5 shows two
such surfaces—the solid line for the case m\2 and the dotted line for m [ 2. For
m ¼ 1 the surface becomes square (Fig. 4.4), for m ¼ 2 it is the circular surface
(Fig. 4.2) and for m!1 (Example 2.6) it becomes the diamond-shaped surface

�y ¼ v1j jþ v2j j
k � 1 ¼ 0 (Fig. 4.6). In this last case the dissipation rate function can be

written as d ¼ kmax v1j j; v2j jð Þ. The Author is, however, not aware of practical
applications of this sort of model.

χ1, v1

χ2, v2

k

k

Fig. 4.5 Superelliptical yield
surface
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4.3.2.7 Example 2.7: An Asymmetric Yield Surface

Yield surfaces with more specialised application can be derived from more
complex dissipation rate functions. The following model, for instance, serves as
the starting point for the modelling of the behaviour of soft clays in the discipline

of soil mechanics. Consider the dissipation rate function d ¼ k1v1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1v2
1 þ k2

2v2
2

p
,

which gives v1 ¼ k1 þ k2
1v1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
1v2

1þk2
2v2

2

p , v2 ¼
k2

2v2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1v2
1þk2

2v2
2

p , leading immediately to a yield

surface y v1; v2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1�k1ð Þ2

k2
1
þ v2

2

k2
2

r

� 1 ¼ 0, which is shown in Fig. 4.7. This can be

reduced to canonical form as �y v1; v2ð Þ ¼ v1=k1ð Þ2þ v2=k2ð Þ2
2v1=k1

� 1 ¼ 0. (Note that, in

spite of the lack of the modulus sign on the first term in the dissipation rate
function, the dissipation rate function is never negative, as the magnitude of the
second term, which is always positive for non-zero velocities, is never less than the
magnitude of the first.) Yield surfaces of the form shown in Fig. 4.7 find an
important application in soil mechanics, in which v1 would play the role of the
volumetric strain rate and v2 the role of the deviatoric strain rate. In this context the
elliptical yield locus, passing through the origin, is identified as the ‘‘Modified
Cam-Clay’’ yield surface [8]. Note that there are alternative approaches for the
definition of this yield surface which involve use of combined isotropic and
kinematic hardening. To emphasise the link with soil mechanics in which the
p; qð Þ notation is used for the stresses we could rewrite the dissipation rate as

d ¼ pc

2 vp þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

p þM2v2
q

q� �
and the yield surface (in non-canonical form) as

y ¼ vp vp � pc

� �
þ v2

q

M2 ¼ 0. As the generalized stresses are in this case equal to the

true stresses, this also leads to the yield surface y ¼ p p� pcð Þ þ q2

M2 ¼ 0, which is
familiar in soil mechanics.

χ1, v1

χ2 , v2

(v1, v2)

k

k

Fig. 4.6 ‘‘Diamond-shaped’’
yield surface
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Summaries of the key functions used in the above examples are given in
Tables 4.1 and 4.2.

4.3.3 Advanced Considerations in Continuum Mechanics

Each of the above models serves as the starting point for a full continuum model,
which we express here using the subscript tensor notation. In order to avoid
repetition of the development we simply show in Table 4.3 how the dissipation
rate functions for the simpler conceptual models map into the full continuum
models. We introduce the deviator of the velocity tensor v0ij ¼ vij � 1

3 vkkdij, rec-
ognising that in most models the dissipation rate depends only on the deviatoric
strain rate. In the development of such models it is usual also to introduce the
incompressibility constraint vkk ¼ 0. See [3, 4] for discussion of constraints in this
context.

If any of the parameters defining the dimensions of the yield surfaces in the
above models (for example k, k1, k2) is a function of any of the state parameters x,
and furthermore _x ¼ _x vð Þ (where _x vð Þ must be a homogeneous first order function

χ1, v1

χ2, v2 (v1, v2)

k1

k2

k1

Fig. 4.7 Asymmetric yield
surface

Table 4.1 Summary of forms of functions for rate-dependent models

Example z w

1.1: Linear viscosity l
2 v2 1

2l v2

1.2: Nonlinear viscosity kr
n

vj j
r

� �n

kr n�1
n

� � vj j
k

� � n
n�1

1.4: Visco-plastic k vj j þ l
2 v2 vj j�kh i2

2l

1.5: Rate process theory
lr

v sinh�1 v
r

� �
þ r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ r2
p


 �
lr2 cosh v

lr

� �
� 1

� �

2.1: Linear viscosity l
2 v2

1 þ v2
2

� �
1

2l v2
1 þ v2

2

� �

2.2: Nonlinear viscosity kr
n

v2
1þv2

2
r2

� �n
2

kr n�1
n

� � v2
1þv2

2
k2

� � n
2 n�1ð Þ
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of v), then the models involve some form of strain hardening, with the specific
details depending on the forms of the relevant functions. For instance, if we

modify the model in Example 2.3 so that d ¼ k0 þ k1xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2

p
and

_x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2

p
, then the resulting model involves a simple linear hardening with

strain.
Houlsby and Puzrin [4] discuss other ways to develop hardening models,

depending on the functional form of free energy functions in the ‘‘hyperplasticity’’
formulation that they define. In general, kinematic hardening is most naturally
described by an approach in which extra terms are introduced in the energy
functions, whilst isotropic hardening is most naturally described by the approach
outlined above in which the dissipation rate function is altered.

Table 4.2 Summary of forms of functions for rate-independent (plastic) models

Example d ¼ z �y ¼ 0

1.3: Plasticity k vj j vj j
k � 1

2.3: Circular surface k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2

p ffiffiffiffiffiffiffiffiffi
v2

1þv2
2

p
k � 1

2.4: Anisotropy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1v2
1 þ k2

2v2
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1

k2
1
þ v2

2

k2
2

r

� 1

2.5: Square surface k v1j j þ v2j jð Þ max v1j j; v2j jð Þ
k

� 1

2.6: Superelliptical surface k v1j jmþ v2j jmð Þ1=m
v1j jm

0
þ v2j jm

0
� �1=m0

k
� 1

2.6: Diamond-shaped surface kmax v1j j; v2j jð Þ v1j j þ v2j j
k

� 1

2.7: Asymmetric surface k1v1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1v2
1 þ k2

2v2
2

p
v1=k1ð Þ2þ v2=k2ð Þ2

2v1=k1
� 1

Table 4.3 Development of dissipation rate functions for 1-D, 2-D and continuum models

Example 1-D 2-D Continuum

Linear
viscosity

lv2 (Ex. 1.1) l v2
1 þ v2

2

� �
(Ex. 2.1) lv0ijv

0
ji

Nonlinear
viscosity

kr vj j
r

� �n

(Ex. 1.2)
kr

v2
1þv2

2
r2

� �n=2
(Ex. 2.2) l

v0ijv
0
ji

r2


 �n=2

Plasticity k vj j (Ex. 1.3) k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2

p
(Ex. 2.3) k

ffiffiffiffiffiffiffiffiffi
v0ijv
0
ji

q

Visco-
plastic

k vj j þ lv2

(Ex. 1.4)
k
ffiffiffiffiffiffiffiffiffi
v0ijv
0
ji

q
þ lv0ijv

0
ji

Rate process
theory

lrv sinh�1 v
r

� �

(Ex. 1.5) lr
ffiffiffiffiffiffiffiffiffi
v0ijv
0
ji

q
sinh�1

ffiffiffiffiffiffiffiffiffi
v0ijv
0
ji

q

r

0

@

1

A

Critical state
family

k1v1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1v2
1 þ k2

2v2
2

p
(Ex. 2.7) or

pc

2 vp þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

p þM2v2
q

q� � pc

2

vii

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
viivjj þ 2

3 M2v0ijv
0
ji

q
 !
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Houlsby and Puzrin also pursue the fact that orthogonality does not necessarily
imply ‘‘normality’’ or ‘‘associated flow’’ in the sense that is usually meant in
classical plasticity theory: i.e. that the plastic strain vector is normal to the yield
surface in true stress space. In order to address this issue it is necessary to make
careful distinctions between the true stress and the generalised stress, and such
issues lie outside the scope of this chapter.
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Chapter 5
Fluctuations, Trajectory Entropy and
Ziegler’s Maximum Entropy Production
Principle

Vladimir D. Seleznev and Leonid M. Martyushev

Abstract This chapter discusses two current interpretations of the maximum
entropy production principle—as a physical principle and as an inference proce-
dure. A simple model of relaxation of an isolated system towards equilibrium is
considered for this purpose.

Table of Notation

Symbol Meaning

Roman Symbols
t Time
Ai(t) Set of macroscopic state variables
Ai

eq Set of macroscopic state variables in equilibrium
W(a) Probability of finding the equilibrium system in macrostate a

P(a0|a, s) Conditional probability that, given the system is in initial state a0, it
will be in state a after time s

S(a) Entropy in state a

Str(a0|a, s) Trajectory entropy that, given the system is in initial state a0, it will
be in state a after time s

DS(a) S(a) - S(0)
Xi Thermodynamic forces
Ji Thermodynamic fluxes
Lij Kinetic coefficients
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Greek Symbols
ai =Ai(t) - Ai

eq

a Macroscopic (non-equilibrium) state vector with components ai

s Observation time
C(a) Number of microscopic states realizing macrostate a

C(a0|a, s) Number of microscopic trajectories realizing the transition from a0 to
a during time s

X, N Normalization constants
r Entropy production (or entropy production density for the model

under consideration)
bij Coefficient that is inversely proportional to the variance of a relative

to its equilibrium value (a = 0)
cij Coefficient that is inversely proportional to the variance of a relative

to its average (most probable) value a*(a0, s) during the transition
from a0 during time s

cij
0 =cijs

We consider the relaxation of an isolated system towards equilibrium, assuming
detailed balance and Onsager’s fluctuation approximation. Small deviations from
equilibrium are quantified in terms of two state variables. For this system, expres-
sions are obtained for both the dependence of trajectory entropy on random ther-
modynamic fluxes and the dependence of entropy production on the most probable
thermodynamic fluxes. Onsager’s linear relations are obtained from this model
using two methods: maximization of trajectory entropy and Ziegler’s maximization
of entropy production. We discuss two current interpretations of the maximum
entropy production principle—as a physical principle and as an inference procedure.

5.1 Introduction

There are several recent examples of the successful application of the maximum
entropy production (MaxEP) principle in physics (kinetic theory of gases, hydro-
dynamics, theories of crystallization and radiation etc.), biology, and chemistry
(see [1–3] and Part III of this volume). This has led naturally to an interest in the
theoretical basis of MaxEP and its relation to other principles [1–12].

MaxEP has been considered as a natural generalization of the second law of
thermodynamics, starting from the work by Kohler and Ziman [13, 14] that used
MaxEP to solve the Boltzmann equation. While the second law states that the
entropy of an isolated non-equilibrium system increases, MaxEP states that this
increase occurs at the maximum possible rate. Moreover, while the second law
leads to the basic thermodynamics relations and treatment of phase transitions for
equilibrium (quasistatic) processes, MaxEP has led to the basic laws of
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nonequilibrium thermodynamics and nonequilibrium (kinetic) phase transitions
[15–17]. On this basis, MaxEP has been interpreted as an independent entropic
principle that complements and generalises the second law. Such an interpretation
was proposed in particular by Ziegler, who independently developed a version of
MaxEP involving entropy production variation subject to fixed thermodynamic
forces, leading to an expression for thermodynamic fluxes (in particular, Onsager’s
linear relations [1, 15, 16]). As a result, many researchers have considered MaxEP
to be a new and important principle of the physics of nonequilibrium processes;
this viewpoint has been developed either from statistical (kinetic) [13, 14] or
thermodynamic considerations [15, 16].

However, a somewhat different viewpoint on MaxEP has also been developed.
The Boltzmann–Gibbs entropy of a macroscopic state is a measure of the number
of microscopic states that realize this macroscopic state. In equilibrium, the
number of microscopic states is a maximum, corresponding to a maximum in the
entropy. For certain models, this microstate interpretation of entropy represents a
statistical justification of the second law of thermodynamics. Later, Shannon and
Jaynes generalized this view of entropy: by analogy with the Boltzmann–Gibbs
entropy, they introduced the so-called information entropy applicable to the
description of objects of any nature [18, 19]. Maximization of information entropy
(also known in the literature as MaxEnt) is then a general method for determining
the probability of a particular state of the system. Subsequently this approach was
applied to the relationship between the probability of a nonequilibrium process and
the number of microscopic trajectories realizing it, so that maximization of
information entropy (a measure of the number of microscopic trajectories) defines
the most probable macroscopic evolution of a nonequilibrium system (see e.g.
[4–11], [20–25]).

This approach has led to the suggestion that, for non-equilibrium processes,
maximization of information entropy associated with microscopic trajectories
leads to MaxEP. While this suggestion has yet to be established rigorously, it is
very promising for understanding and illustrating (using specific models) the
microscopic interpretation of MaxEP and its relation to other results in non-
equilibrium physics. This approach has given rise to the idea that, if MaxEP is a
simple consequence of Jaynes’ information entropy maximization, then it is
simply ‘‘an inference algorithm that translates physical assumptions into macro-
scopic predictions’’ [4–11], rather than a physical law or principle. For brevity, we
will refer to this as the informational (or MaxEnt) interpretation of MaxEP, as
opposed to the above statistical and thermodynamic interpretation.

In order to obtain a better understanding of these two interpretations of MaxEP,
and to compare them, it would be desirable to find a problem to which both
approaches can be applied independently. In this chapter, our objective is to
consider an elementary transfer problem using these two contrasting approaches—
Ziegler’s MaxEP formalism (thermodynamic) and maximization of trajectory
entropy (informational)—to determine the similarities and differences between
them.
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The remainder of the chapter is structured as follows. Section 5.2 introduces
the problem, the basic model assumptions and equations. Sections 5.3 and 5.4
consider the problem through the trajectory entropy maximization method and
Ziegler’s procedure, respectively. Concluding Sect. 5.5 summarizes the main
results, and briefly discusses the different interpretations of MaxEP.

5.2 Onsager’s Model and Linear Thermodynamic
Relations

We consider an isolated system with possible fluctuations (of molecular speed
distribution, etc.). An arbitrary non-equilibrium macroscopic state of the system
will be described by the set of state variables Ai(t) that acquire the values Ai

eq in
equilibrium. We denote the difference between the state variables and their
equilibrium values by ai = Ai(t) - Ai

eq. For brevity we introduce the state vector a

with components ai. We assume that the observation time s is much smaller than
the time of relaxation to equilibrium, i.e. we consider the instantaneous response of
the system in a non-equilibrium state.

Associated with macroscopic state a is the number of microscopic states C(a)
which, as is known [26, 27], is a maximum in equilibrium. As usual, we assume
that all microscopic states corresponding to a are equiprobable. We define the
probability of finding an equilibrium system in the state a as

WðaÞ / CðaÞ ð5:1Þ

The process of relaxation to equilibrium will be characterized by the condi-
tional probability that, given the system is initially in state a0, it will be in state a

after time s [27]. Here we denote this probability by P(a0|a, s) (Fig. 5.1). We shall
assume that this conditional transition probability is proportional to the number of
microscopic trajectories from state a0 to state a during time s, i.e.

P a0ja; sð Þ / C a0ja; sð Þ: ð5:2Þ

),( 0 τααΡ

),( 0 τααΡ

)),(( 0
*

0 ταααΡ

)),(( * ταααΡ

)(* αα

)( 0
* αα 0ααα =0

Fig. 5.1 Illustrating the transitions between states of the system discussed in the text. The
equilibrium state is a = 0. P(a|a0, s) \ P(a|a*(a), s) = N = P(a0|a*(a0), s) [ P(a0|a, s)
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Let the transition from a0 to a*(a0) during time s be the most probable tran-
sition; according to (5.2), this macroscopic transition is associated with the
maximum number of microscopic trajectories.

Following [26], we define the entropies in the state a and in the equilibrium
state a = 0 by S(a) = lnU(a) and S(0) = lnU(0), respectively. Then their difference
is

DSðaÞ ¼ SðaÞ � Sð0Þ ¼ ln
CðaÞ
Cð0Þ ¼ ln

WðaÞ
Wð0Þ ð5:3Þ

By analogy, we introduce the trajectory entropies Str(a0|a, s) = lnU(a0|a, s) and
Str(a0|a*(a0), s) = lnU(a0|a*(a0), s), so that their difference is

DStrða0ja; sÞ ¼Strða0ja; sÞ � Strða0ja�ða0Þ; sÞ

¼ ln
Cða0ja; sÞ

Cða0ja�ða0Þ; sÞ
¼ ln

Pða0ja; sÞ
Pða0ja�ða0Þ; sÞ

ð5:4Þ

As a result

Pða0ja; sÞ ¼ Pða0ja�ða0Þ; sÞ � eDStrða0ja;sÞ ð5:5Þ

In the following, we will consider processes for which P(a0|a*(a0), s) is inde-
pendent of a0. Such an approximation is quite common [27, 28].

In equilibrium, the number of system transitions in the forward a0 ? a and
reverse a ? a0 directions during time s should be equal. It can then be shown [27,
29, 30] that the condition of detailed balance holds, i.e.

Wða0ÞPða0ja; sÞ ¼ WðaÞPðaja0; sÞ: ð5:6Þ

Condition (5.6) holds for fluctuations of an equilibrium system [27, 29, 30].
Following the classic work of Onsager [29, 30] and the monograph [27] where this
approach is described in its most complete form, we suppose (Onsager’s
hypothesis) that this detailed balance condition also holds for conditions close to
equilibrium. In other words, the evolution of an equilibrium system from initial
state a0 will be similar to the evolution of a specifically prepared close-to-equi-
librium system brought to the same state a0 and then left to spontaneously relax.

Furthermore, for notational simplicity, here we consider that a has only two
components; the results below may be generalized to any number of components.
According to (5.6), we have:

Wða1; a2Þ
Wða10; a20Þ

¼ Pða10; a20ja1; a2; sÞ
Pða1; a2ja10; a20; sÞ

: ð5:7Þ

Using (5.3)–(5.5), Eq. (5.7) can also be written in the form

DSðaÞ � DSða0Þ ¼ DStrða0ja; sÞ � DStrðaja0; sÞ: ð5:8Þ
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In Onsager’s classic study [29, 30], the condition of detailed balance, together
with the assumption that the mean change of a during time s is linearly related to a

itself, leads to the so-called reciprocal relations and to Gaussian forms for W(a)
and P(a0|a, s). Here we consider an inverse problem: the Gaussian forms for W(a)
and P(a0|a, s) are postulated and the linear relations for the change of a are
obtained using the principle of detailed balance. As we will show in Sects. 5.3 and
5.4, this statement of the problem provides the shortest route to expressions for the
trajectory entropy, the entropy production, and other quantities required for the
objective set out in the Introduction.

Thus, we assume only small deviations from equilibrium. In this case, the
Gaussian distribution is a frequently used approximation for the probability of
deviations from equilibrium [26, 27]:

WðaÞ ¼ X expð�b11a
2
1 � b22a

2
2 � 2 b12a1a2Þ; ð5:9Þ

and for the trajectory probability [27–30]:

Pða0ja; sÞ ¼ N � expf�c11ða�1ða0; sÞ � a1Þ2Þ
� c22ða�2ða0; sÞ � a2Þ2 � 2c12ða�1ða0; sÞ � a1Þða�2ða0; sÞ � a2Þg

ð5:10Þ

where X, N are normalization constants (independent of a, a0, but dependent on
Ai

eq); bij is a coefficient that is inversely proportional to the variance of a relative to
its equilibrium value (a = 0); and cij is a coefficient1 that is inversely proportional
to the variance of a relative to its average (most probable) value ai

*(a0, s) during
the transition from state a0 during time s. It should be noted that, within this
approximation, these variances are assumed independent of a0, a [27–30].
It should also be emphasized that bij does not dependent on s (because it char-
acterizes fluctuations in the equilibrium state); in contrast, cij increases with
decreasing s (for s ? 0, ai

* ? ai0 and the distribution tends to a delta function).
We make the simple assumption that cij = cij

0/s [27–30], where cij
0 is some

constant.
By substituting (5.9) and (5.10) into (5.7), we obtain

exp �b11a
2
1 � b22a

2
2 � 2b12a1a2

� �

exp �b11a
2
10 � b22a

2
20 � 2b12a10a20

� �

¼
exp �c11 a�1 a0; sð Þ � a1

� �2�c22 a�2 a0; sð Þ � a2
� �2�2c12 a�1 a0; sð Þ � a1

� �
a�2 a0; sð Þ � a2
� �� �

exp �c11 a�1 a; sð Þ � a10
� �2�c22 a�2 a; sð Þ � a20

� �2�2c12 a�1 a; sð Þ � a10
� �

a�2 a; sð Þ � a20
� �� �

ð5:11Þ

Here ai
*(a, s) is the most probable state in the case of the transition from a

during the time s.

1 According to their definitions [27–29], cii [ 0 and c11c22-c12
2 C 0.
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Taking the logarithm of (5.11), we obtain

b11ða2
10 � a2

1Þ þ b22ða2
20 � a2

2Þ þ 2b12ða10a20 � a1a2Þ
¼ c11ðða�1ða; sÞ � a10Þ2 � ða�1ða0; sÞ � a1Þ2Þ þ c22ðða�2ða; sÞ � a20Þ2 � ða�2ða0; sÞ � a2Þ2Þ
þ 2c12ðða�1ða; sÞ � a10Þða�2ða; sÞ � a20Þ � ða�1ða0; sÞ � a1Þða�2ða0; sÞ � a2ÞÞ:

ð5:12Þ

Recalling the definitions of the state entropy and the trajectory entropy intro-
duced above, from (5.8) and (5.12) we then find

DSða0Þ ¼ �b11a
2
10 � b22a

2
20 � 2b12a10a20; ð5:13Þ

DSðaÞ ¼ �b11a
2
1 � b22a

2
2 � 2b12a1a2; ð5:14Þ

DStrða0ja; sÞ ¼ � c11ða�1ða0; sÞ � a1Þ2 � c22ða�2ða0; sÞ � a2Þ2;
� 2c12ða�1ða0; sÞ � a1Þða�2ða0; sÞ � a2ÞÞ

ð5:15Þ

DStrðaja0; sÞ ¼ � c11ða�1ða; sÞ � a10Þ2 � c22ða�2ða; sÞ � a20Þ2:
� 2c12ða�1ða; sÞ � a10Þða�2ða; sÞ � a20ÞÞ

ð5:16Þ

In order to find the relationship between the forward and reverse trajectories, let
us transform (5.12); for this purpose, we consider a small time interval s and apply
the Taylor expansion:

a�i ða0; sÞ ¼ ai0 þ s
oa�i ða0; sÞ

os

�
�
�
�
s¼0

þ. . . ð5:17Þ

In the following, we apply two consecutive expansions: first in terms of s near
zero, then in terms of ai near ai0:

a�i ða; sÞ ¼ ai þ s
oa�i ða; sÞ

os

�
�
�
�
s¼0

þ. . .

¼ ai þ s
oa�i ða0; sÞ

os

�
�
�
�
s¼0

þs
X2

i¼1

oa�i ða; sÞ
os oai

�
�
�
�
�
s¼0;ai¼ai0

ðai � ai0Þ þ . . .

ð5:18Þ

By neglecting the second-order terms (�s(ai - ai0)), we then obtain

a�i ða0; sÞ � ai0 ¼ a�i ða; sÞ � ai: ð5:19Þ

We now introduce the quantities Dai
* = ai0 - ai

*(a0, s), Dai = ai0 - ai that
characterize the most probable and actual (random) change in the state variables
Ai(s) relative to the original Ai(0) during the time s. From (5.19), we can then write

a�i ða0; sÞ � ai ¼ Dai � Da�i ;

a�i ða; sÞ � ai0 ¼ ða�i ða0; sÞ � ai0 þ aiÞ � ai0 ¼ �Da�i � Dai
ð5:20Þ
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Using the last two expressions, Eq. (5.12) can then be written as2:

2Da1ða10b11 þ b12a20Þ þ 2Da2ðb22a20 þ b12a10Þ
¼ 4Da1ðc11Da�1 þ c12Da�2Þ þ 4Da2ðc22Da�2 þ c12Da�1Þ:

ð5:21Þ

Since the deviations (Da1, Da2,) from the initial state are independent, Eq.
(5.21) implies

2ðb11a10 þ b12a20Þ ¼ 4c11Da�1 þ 4c12Da�2
2ðb22a20 þ b12a10Þ ¼ 4c22Da�2 þ 4c12Da�1:

ð5:22Þ

We now introduce a number of important thermodynamic quantities. Since the
system is assumed to be isolated, its rate of change of entropy is equal to
the entropy production r [1, 27]. Following [26, 27, 29, 30], we then introduce the
thermodynamic forces Xi and fluxes Ji:

r ¼ dSðaÞ
dt
¼ oS

oa1

da1

dt
þ oS

oa2

da2

dt
¼ X1J1 þ X2J2; ð5:23Þ

where:

Xi ¼ �
oS

oai
ð5:24Þ

Ji ¼ �
dai

d t
ð5:25Þ

According to (5.13) and (5.24), the thermodynamic forces at the initial moment
of relaxation to equilibrium are given by

X1 ¼ 2ðb11a10 þ b12a20Þ
X2 ¼ 2ðb22a20 þ b12a10Þ

ð5:26Þ

Using (5.25) (5.26),3 and the relation between cij and cij
0, expression (5.22) can

be rewritten in the form

X1 ¼ 4c0
11J�1 þ 4c0

12J�2

X2 ¼ 4c0
12J�1 þ 4c0

22J�2 ;
ð5:27Þ

or, by inversion,

J�1 ¼ L11X1 þ L12X2

J�2 ¼ L21X1 þ L22X2;
ð5:28Þ

2 For small s values: bijDaiDaj � cijDaiDaj
* (because cij = cij

0/s).
3 For small s values: dai

*/dt & -Dai
*/s. The minus sign arises from the fact that Dai

* is the
difference between the initial and final value.
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where the kinetic coefficients are given by

L11 ¼ c0
22=4ðc0

22c
0
11 � ðc0

12Þ
2Þ;

L12 ¼ L21 ¼ �c0
12=4ðc0

22c
0
11 � ðc0

12Þ
2Þ; ð5:29Þ

L22 ¼ c0
11=4ðc0

11c
0
22 � ðc0

12Þ
2Þ:

Based on the properties of c0
ij (see footnote 1): Lij [ 0 and L11L22 � L2

12� 0.
Thus, we have shown that the Gaussian assumption given by (5.9), (5.10) and the

principle of detailed balance given by (5.6) lead to Onsager’s linear flux-force
relations [26, 27, 29, 30]. These relations link the most probable flux in the system
with the thermodynamic force during the time interval s. Our derivation here fol-
lows from studying the problem opposite to that considered by Onsager [29, 30].

We conclude this section with a number of useful relations that follow from the
above equations. Using Eqs. (5.19), (5.20), we rewrite Eqs. (5.15), (5.16) in the form

DStrða0ja; sÞ ¼ � c11ðDa1 � Da�1Þ
2 � c22ðDa2 � Da�2Þ

2

� 2c12ðDa1 � Da�1ÞðDa2 � Da�2Þ
ð5:30Þ

DStrðaja0; sÞ ¼ � c11ðDa1 þ Da�1Þ
2 � c22ðDa2 þ Da�2Þ

2

� 2c12ðDa1 þ Da�1ÞðDa2 þ Da�2Þ
ð5:31Þ

According to (5.8) and (5.23), for small s we have

s r ¼ SðaÞ � Sða0Þ ¼ DStrða0ja; sÞ � DStrðaja0; sÞ ð5:32Þ

Or, according to (5.23)–(5.26),

s r ¼X1Da1 þ X2Da2

¼ 2Da1ða10b11 þ b12a20Þ þ 2Da2ðb22a20 þ b12a10Þ
ð5:33Þ

We are now ready to consider the extremal properties of the trajectory entropy
and the entropy production for the above model.

5.3 Information Approach: Maximizing the Trajectory
Entropy

When describing nonequilibrium processes using the information approach, first
the trajectory entropy is maximized in order to determine the maximum-entropy
(MaxEnt) probability distribution over trajectories in phase space. The maximi-
zation is subject to certain given (or assumed) constraints (which may be relations
between physical quantities that are more or less evident for the process under
study). Then MaxEnt distribution function is used to calculate non-equilibrium
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properties of the process. Importantly, disagreement between predicted nonequi-
librium properties and experimental data indicates incorrect constraints only
[1, 19]. These constraints are then adjusted and the procedure is repeated. As a
result, the information approach is a method of identifying the set of constraints
consistent with experimental data.

Thus, such a method is some kind of mathematical device (algorithm).
However, this mathematical procedure entails problems. The first problem is that
there is too much freedom to choose the constraints and there is no criterion for
agreement between predictions and experiment. This ‘‘liberty of action’’ may
either yield no desired results at all or allow several solutions that meet the
selected criterion but substantially differ in terms of both the constraints and
predictions (outside the scope of the selected criterion). The second problem is
connected with the choice of the measure of information and, correspondingly, the
formula of informational entropy. From the logical viewpoint, there is no best
option. There are multiple variants besides the Shannon formula; and many of
them prove to be useful in different applications [31].

Here we simply go ahead and maximize the trajectory entropy for the problem
under consideration. In the present model, the trajectory entropy as a function of
random deviation of a is given by (5.15) or (5.30). The explicit form of this
entropy was obtained using a Gaussian form for P(a0|a, s) together with the
assumption of detailed balance. Consequently, the trajectory entropy depends not
on the distribution function itself but on other variables, and trajectory entropy
maximization should lead to relations between these variables. The maximization
should be considered as unconstrained because all constraints have already been
introduced into the explicit expression for trajectory entropy.

According to Eq.(5.4), the trajectory entropy for the forward trajectory Str(a0|a, s)
is related to DStr(a0|a, s) and to the trajectory entropy for the most probable forward
trajectory Str

*(a0|a*(a0), s) by

oStrða0ja; sÞ
oDai

¼ oðS�trða0ja�ða0Þ; sÞ þ DStrða0ja; sÞÞ
oDai

¼ oDStrða0ja; sÞ
oDai

ð5:34Þ

By substituting the expression for DStr(a0|a, s) (Eq. (5.30)), and setting (5.34)
equal to zero, it is easily shown that the trajectory entropy maximum leads to the
condition Dai = Dai

*. According to (5.10) and (5.20), the most probable trajectory
also satisfies the condition Dai = Dai

*.
Since the maximum of the trajectory entropy deviation is obtained when

Dai = Dai
*, then using (5.31)–(5.33) we have

oDStrða0ja; sÞ
oDai

�
�
�
�
Dai¼Da�i

¼oðs r þ DStrðaja0; sÞÞ
oDai

�
�
�
�
Dai¼Da�i

¼oðXiDai þ DStrðaja0; sÞÞ
oDai

�
�
�
�
Dai¼Da�i

¼Xi � 4ciiDa�i � 4cijDa�j ¼ 0;
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and hence

Xi ¼ 4ciiDa�i þ 4cijDa�j : ð5:35Þ

This expression coincides with Eq. (5.27). Thus, Onsager’s linear relations
correspond to a maximum in the trajectory entropy. This result indicates that, for
the present model, trajectory entropy maximization with a number of constraints
leads to a macrotrajectory that satisfies the valid linear relation between thermo-
dynamic fluxes and forces (5.35). This points to the possibility of generalizing the
conventional method of equilibrium entropy maximization to non-equilibrium, as
proposed by Jaynes and others (see e.g. [4]).

5.4 Thermodynamic Approach: Ziegler’s MaxEP

In contrast to the information method (MaxEnt), Ziegler’s approach focuses
directly on the search for relationships between the most probable quantities.
Random variables and their probability distributions lie beyond the scope of this
approach. The entropy production is considered to be a known function of ther-
modynamic fluxes [1, 15, 16]. The relationship between the thermodynamic fluxes
and forces is then derived through maximization of entropy production in the space
of independent fluxes, subject to fixed thermodynamic forces [1, 15, 16].

In contrast to the informational approach, Ziegler’s method is falsifiable (sensu
Popper). Entropy production is a physically well-defined macroscopic property of
the system connected with energy dissipation to heat. Thermodynamic forces and
fluxes also have a clear physical meaning and are measurable in experiments.
Consequently, if Ziegler’s MaxEP principle yields predictions different from
experiment (in particular, concerning the relationship between fluxes and forces),
then the principle will have been disproved (or at least its validity will have been
limited). One disadvantage of this approach is that, for specific systems, finding
the entropy production as a function of fluxes is not always straightforward. There
are no standard procedures, each specific case requiring an individual approach.
The fact that Ziegler has developed his method only for the systems with a unique
correspondence between the thermodynamic force and flux represents another
disadvantage.

Formally, Eqs. (5.27) or (5.28) can be derived using Ziegler’s procedure [1, 15, 16].
For this purpose, the entropy production was postulated to be a bilinear function of
thermodynamic fluxes, and then maximization was carried out subject to fixed forces.
In the present model, it is possible to explicitly obtain both the form of the entropy
production and the constraint for its maximization. We show this as follows.

Let us rewrite the detailed balance relation (5.32) for the most probable tra-
jectory ðDai ¼ Da�i Þ. In this case, DStrða0ja; sÞ ¼ 0 [see Eq. (5.30)], and as a result
[see Eq. (5.31)], we have
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s r ¼ �DStrðaja0; sÞ ¼ 4c11Da�21 þ 4c22Da�22 þ 8c12Da�1Da�2

Or, using Eqs. (5.25), (5.33), we have

X1Da�1 þ X2Da�2 ¼ 4c11Da�21 þ 4c22Da�22 þ 8c12Da�1Da�2;

X1J�1 þ X2J�2 ¼ 4c0
11J�21 þ 4c0

22J�22 þ 8c0
12J�1J�2 : ð5:36Þ

Clearly, the left-hand side of (5.36) is the entropy production r(J*) as a function
of the thermodynamic forces and fluxes, whereas the entropy production on the
right-hand side is written in the terms of thermodynamic fluxes alone. Maximizing
r(J*) = 4c11

0 J1
*2 ? 4c22

0 J2
*2 ? 8c12

0 J1
*J2

* subject to (5.36) is equivalent to setting

o

oJ�i
rðJ�Þ � lðrðJ�Þ � X1J�1 � X2J�2Þ
� �

¼ 0; ð5:37Þ

(where l is the Lagrange multiplier), from which it is then easy to obtain
Onsager’s linear flux-force relations (5.27). See details in [1, 15, 16].

5.5 Conclusion

We have considered the simplest model of a close-to-equilibrium system described
by two thermodynamic forces. We assumed the detailed balance condition and
Gaussian distributions for the equilibrium and transition probabilities.

Within the scope of this model, we derived an expression for the trajectory
entropy as a function of deviations from equilibrium, from which we have shown,
for the first time, that maximization of the entropy of microscopic trajectories
(MaxEnt) leads to Onsager‘s linear force-flux relations. We also derived an
expression for the entropy production as a function of thermodynamic fluxes, as a
necessary starting point for Ziegler’s MaxEP procedure. The bilinear expression
we obtain agrees with that previously postulated by Ziegler and used by him to
derive Onsager’s linear flux-force relations.

In other words, Onsager’s linear flux-force relations can be obtained using at
least two independent methods: Ziegler’s MaxEP principle, or maximization of
trajectory entropy (MaxEnt). Within the scope of the present model, we cannot say
that MaxEnt is more general than Ziegler’s MaxEP or that the latter follows from
MaxEnt (or vice versa). All we can say is that these two different methods4 lead to
the same result, within the near-equilibrium model approximations we made.
This model implies linear relationships between fluxes and forces, as shown in

4 For one approximation, extremization is carried out for a random deviation from the
equilibrium, whereas for the other approximation, it is carried out for a thermodynamic flux, i.e.
the most probable deviation.
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Sect. 5.2. Sections 5.3 and 5.4 show how these relationships can be given a
variational interpretation. Here an analogy from mechanics can be drawn, in which
Newton’s laws of motion can be derived from variational methods (Hamilton,
Lagrange).

We conclude with a summary of our view on MaxEP and its two interpreta-
tions, as outlined in the Introduction.

1. MaxEP is an important physical principle with empirical support [1–3]. In this
interpretation, MaxEP extends the second law of thermodynamics that may be
stated as follows: at each level of description the relationship between the
cause and the response of a nonequilibrium system is one that maximizes
(under constraints) the entropy production density [17, 32]. This statement
significantly generalizes Ziegler’s MaxEP principle, which requires a unique
correspondence between the thermodynamic fluxes and forces. This require-
ment has substantially limited the wider application of Ziegler’s principle, in
particular to the study of nonequilibrium phase transitions [17, 32].

2. The second law of thermodynamics (i.e. non-negativity of entropy production)
identifies a unique direction of time [33]. Time is the most complex and elusive
physical concept that still lacks a universally acknowledged definition [33–35].
Despite having learned to measure time, we still fail to understand its nature.
In this regard, we suggest that considering MaxEP as a new and important
extension of the second law of thermodynamics will increase our understanding
of the nature of time, as discussed further in [12, 32].

3. MaxEP is a relatively new principle. Its range of validity has yet to be clearly
defined, but it should be based primarily on experiment.5 MaxEP is best tested
using relatively simple experimental systems; in this regard, climate, biological
and similar systems may not be ideal for testing (and/or falsifying) MaxEP due
to their complexity and ambiguous interpretation (see e.g. criticisms in [36,
37]). We suggest non-equilibrium phase transitions of homogeneous systems as
a fruitful experimental testing ground for MaxEP. For example, if the phase
with the smallest entropy production is observed to be statistically the most
probable phase in the case where a fixed thermodynamic force admits multiple
nonequilibrium phases, then MaxEP will have been disproved (or at least its
range of validity will have been narrowed).

Microscopic interpretations of MaxEP are certainly important for understanding
its range of validity. However, their significance should not be exaggerated. In our
view, statistical physics has always played a subordinate role. So, scientists tried to
understand and define macroscopic properties that were experimentally discovered
and integrally generalized in the thermodynamic postulates (laws) using simple

5 Mathematical models are absolutely unsuitable for falsification. So, a model is only some more
or less crude and often one-sided reflection of some part of a phenomenon, whereas MEPP is the
principle reflecting the dissipative properties that are observed in nature rather than in its model.
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statistical models (of ideal gas, Markovian processes, etc.). However, disagree-
ment between statistical predictions and thermodynamics has always implied that
the statistical model was erroneous, leading to a modified model (whereas the
opposite—modification of thermodynamical laws—has never occurred). It is
therefore misleading to suppose that the microscopic view on the world somehow
explains or proves MaxEP. It is as misleading to suppose that Boltzmann’s
H-theorem proves the second law of thermodynamics.

4. The interpretation of MaxEP from the viewpoint of Jaynes’ information
approach (MaxEnt, see e.g. Sect. 5.3) should not be identified with the
microscopic interpretation. MaxEnt is a particular approach to the foundation of
statistical physics, which has supporters and opponents (see e.g. [38]). The
simplicity of the MaxEnt formulation of equilibrium statistical physics is one of
its strengths. Its subjective nature has been considered a weakness.

MaxEnt-based attempts to derive MaxEP (considered as a principle of non-
equilibrium physics) [4–11] are a very interesting area of study. However, we
would like to conclude by raising a number of concerns here.

First, in our view, such attempts still lack rigour, and will require additional
assumptions. It is these extra assumptions that will indicate that MaxEP is an
independent physical principle.

Second, MaxEnt is a type of microscopic approach. The incompleteness of
statistical methods for justifying empirical laws/principle (e.g. MaxEP) is men-
tioned in point 3 above. However, MaxEnt also has particular limitations of its
own. While it is useful as a simple algorithm for obtaining the known (generally
accepted) solution,6 any desired result can be obtained when the solution is
unknown (or several solutions are possible).7 Thus, Jaynes’ mathematical proce-
dure (MaxEnt) can be used for obtaining multiple other procedures, but the value
of such mathematical exercises becomes, nevertheless, rather doubtful for physics.

In summary, these considerations form the basis of our objection to the
informational (as opposed to physical) justification of MaxEP. If MaxEP is a
physical principle, then it will be fundamentally distinct from MaxEnt because
then MaxEP itself is the key physical constraint, like the first and second law of
thermodynamics or charge conservation.

6 Indeed, the researcher’s intention to mathematically make the most unprejudiced prediction in
the conditions of incomplete information about the system is the essence of this method.
Therefore, if a phenomenon is very poorly experimentally studied (i.e. there are insufficient
constraints), then anything can be predicted using MaxEnt (i.e. there are no truth criteria). In
contrast, when MaxEP or MaxEnt are considered as physical principles, there are far fewer
possibilities for drawing arbitrary conclusions. Methods that predict something specific for poorly
studied phenomena (from which their falsifiability derives) are especially valuable.
7 If this cannot be achieved by selecting the constraints, then other kinds of informational
entropy can always be used, for example, by Tsallis, Abe, Kullback, and many others [23, 30].
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Chapter 6
The Time Evolution of Entropy
Production in Nonlinear Dynamic Systems

Hisashi Ozawa and Shinya Shimokawa

Abstract General characteristics of entropy production in a fluid system are
investigated from a thermodynamic viewpoint. A basic expression for entropy
production due to irreversible transport of heat or momentum is formulated
together with balance equations of energy and momentum in a fluid system. It is
shown that entropy production always decreases with time when the system is of a
pure diffusion type without advection of heat or momentum. The minimum
entropy production (MinEP) property is thus intrinsic to a pure diffusion-type
system. However, this MinEP property disappears when the system is subject to
advection of heat or momentum due to dynamic motion. When the rate of
advection exceeds the rate of diffusion of heat or momentum, entropy production
tends to increase over time. The maximum entropy production (MaxEP), sug-
gested as a selection principle for steady states of nonlinear non-equilibrium
systems, can therefore be understood as a characteristic feature of systems with
dynamic instability. The observed mean state of vertical convection of the
atmosphere is consistent with the condition for MaxEP presented in this study.

List of Symbols

Symbol Meaning (SI Units)

Roman Symbols
A Surface of a system or the Earth (m2)
cv Specific heat at constant volume (J K-1 kg-1)
e Unit vector (–)
Fc Convective heat flux density (sensible and latent heat) (J m-2 s-1)
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Fr Radiation flux density (J m-2 s-1)
FLW Longwave radiation flux density (J m-2 s-1)
FSW Shortwave radiation flux density (J m-2 s-1)
Ji Diffusive flux density of i-th component
Jh Diffusive flux density of heat (J m-2 s-1)
Jm Diffusive flux density of momentum (kg m-2 s-1)
k Thermal conductivity (J m-1 K-1 s-1)
Lh Kinetic coefficient for heat diffusion (J m-1 K s-1)
n Unit vector normal to system’s surface (–)
p Pressure (Pa)
t Time (s)
T Temperature (K)
Te Effective radiation temperature at the top of the atmosphere (K)
Tr Effective radiation temperature (K)
Ts Surface temperature (K)
Tsun Emission temperature of the sun (K)
V Volume of a system (m3)
v Velocity (m s-1)
Xi Gradient of intensive variable for i-th diffusive flux

Greek Symbols
d Unit tensor (–)
j Thermal diffusivity (m2 s-1)
k Second viscosity (kg m-1 s-1)
l Viscosity (kg s-1 m-1)
m Kinematic viscosity (m2 s-1)
P Viscous stress tensor (Pa)
q Density (kg m-3)
rB Stefan–Boltzmann constant & 5.67 9 10-8 (J m-2 K-4 s-1)
_r Rate of entropy production (J K-1 s-1)
_rconv Rate of entropy production due to convective heat flux (J K-1 s-1)
_rh Rate of entropy production due to heat diffusion (J K-1 s-1)
_rm Rate of entropy production due to momentum diffusion (J K-1 s-1)
_rrad Rate of entropy production due to absorption of radiation (J K-1 s-1)
_rtot Total rate of entropy production in the atmosphere (J K-1 s-1)

Suffixes to _r
stat Static state with no motion
lam Laminar flow state
adv State with advection
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6.1 Introduction

Since an early investigation by Ziegler [1], maximum entropy production (MaxEP)
has been suggested as a general thermodynamic property of nonlinear non-
equilibrium phenomena, with later studies showing that the MaxEP state is con-
sistent with steady states of a variety of nonlinear phenomena. These include the
general circulation of the atmosphere and oceans [2, 3], thermal convection [4],
turbulent shear flow [5], climates of other planets [6], oceanic general circulation
[7, 8], crystal growth morphology ([9]; Martyushev, this volume) and granular
flows [10]. While the underlying physical mechanism is still debated, the MaxEP
state is shown to be identical to a state of maximum generation of available energy
[11, 12]. Moreover, recent theoretical studies suggest that the MaxEP state is the
most probable state that is realized by non-equilibrium systems ([13, 14]; Dewar
and Maritan, this volume).

It is known, however, that entropy production in a linear process tends to decrease
with time and reach a minimum in a final steady state when a thermodynamic
intensive variable (such as temperature) is fixed at the system boundary. This ten-
dency was first suggested for a linear chemical process in a discontinuous system by
Prigogine [15], and then extended to the case of a linear diffusion process in a
continuous system [16]. Since then, this minimum entropy production (MinEP)
principle has become widely known in the field of non-equilibrium thermodynamics.
Although a number of attempts have been made to extend this MinEP principle to a
general one including nonlinear processes, the results remain controversial and
inconclusive (e.g. [17, 18]). In fact, Prigogine [19] explained the situation as:

It came as a great surprise when it was shown that in systems far from equilibrium the
thermodynamic behavior could be quite different—in fact, even directly opposite that
predicted by the theorem of minimum entropy production.

Sawada [20] pointed out the limitations of the MinEP principle, and instead
proposed the MaxEP principle as a general variational principle for nonlinear systems
that are far from equilibrium. More recently, Dewar and Maritan (this volume)
showed using Jaynes’s maximum entropy method that a state of minimum dissipation
(MinEP) is selected for a system without dynamic instability, whereas that of
maximum dissipation (MaxEP) is selected for a system with dynamic instability. It
seems therefore that the existence of dynamic instability plays a key role in deter-
mining the behavior of entropy production in nonlinear non-equilibrium systems.
However, the nature of the dynamic instability as well as its relation to nonlinearity
remains unclear. Moreover, until now, we do not have a reasonable specification of
the dynamic conditions under which the MinEP or MaxEP state is realized.

In order to clarify the issues in the phenomena mentioned above, we have
investigated the behavior of time evolution of entropy production in a fluid system.
Based on a general expression of entropy production and balance equations of
energy and momentum, we present a condition under which the MinEP state is
realized in the course of time in a system of linear diffusion (Sect. 6.2). We then
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add nonlinear advection terms in the balance equations, and examine the condition
under which the MinEP state becomes unstable and the MaxEP state is realized in
the system (Sect. 6.3). We show that the rate of advection of heat or momentum
plays an important role in the enhancement of entropy production in a fluid system
that possesses dynamic instability. Results obtained from this study are compared
with the observed state of vertical atmospheric convection, a typical example of
nonlinear dynamic phenomena (Sect. 6.4).

6.2 Linear Diffusion

Let us consider a fluid system in which several irreversible processes take place.
These processes can be molecular diffusion of heat under a temperature gradient,
molecular diffusion of momentum under a velocity gradient, or diffusion of a
chemical component under a gradient of density of the chemical component. All
these diffusion processes contribute to an increase in entropy of the whole system
consisting of the fluid system and its surroundings. A general expression for the
rate of entropy production per unit time by these irreversible processes is given by

_r¼
Z

V

X

i

Ji � Xi dV ; ð6:1Þ

where Ji is the i-th diffusive flux density, Xi is the gradient in the corresponding
intensive variable that drives the flux, and the integration is taken over the total
volume of the system (e.g. [17]). If the flux density is heat, momentum, or a
chemical component, the corresponding intensive variable is temperature (1/T),
velocity (-v/T), or chemical potential (-l/T) respectively. It should be noted that
the diffusive flux Ji does not, in principle, include a flux due to advection (i.e.
coherent motion of fluid), which is intrinsically a reversible process.1 However,
advection significantly enhances the local gradient of the intensive variable at the
moving front, and hence entropy production is also enhanced. We will see how
entropy production can change with and without advection.

6.2.1 Heat Diffusion

As the simplest example, let us discuss diffusion of heat under temperature gradient
in a fluid system. In this case, Eq. (6.1) is

1 One can include a reversible flux due to advection in the balance equation of entropy, but it
results in no contribution to entropy production after the integration over the whole volume of a
fluid system (see, e.g., [21], Sec. 49; [12], Sec. 2.4).
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_rh ¼
Z

V

Jh � r
1
T

� �

dV ¼
Z

V

Lh r
1
T

� �� �2

dV ; ð6:2Þ

where Jh is the diffusive heat flux density due to heat conduction, T is the tem-
perature and Lh is the kinetic coefficient relating the diffusive heat flux and the
temperature gradient: Jh = Lhr(1/T) = -krT, with k = Lh/T2 being the thermal
conductivity in Fourier’s law. In Eq. (6.2) we have assumed linearity between the
diffusive heat flux and the temperature gradient.

We can show that the entropy production due to heat diffusion [Eq. (6.2)] is a
monotonically decreasing function of time when the intensive variable (T) is fixed
at the boundary of the system and when there is no advective heat transport in the
system. Taking the time derivative of Eq. (6.2), and assuming a constancy of Lh in
the temperature range of the system (dLh/dt = 0), we get

d _rh

dt
¼ 2

Z

V

Lhr
1
T

� �

� o
ot
r 1

T

� �� �

dV ¼ 2
Z

V

Jh � r
o

ot

1
T

� �� �

dV : ð6:3Þ

This expression leads, with integration by parts, to

d _rh

dt
¼ 2

Z

A

o

ot

1
T

� �� �

Jh � n dA� 2
Z

V

o

ot

1
T

� �� �

r � JhdV; ð6:4Þ

where n is the unit vector normal to the system boundary and directed to outward,
and A is the surface bounding the system. The first surface integral varnishes when
the temperature is fixed at the boundary (i.e. qT/qt = 0). Using Fourier’s law
(Jh = -krT) and assuming the uniformity of k in the system (rk = 0), the
second volume integral leads to

d _rh

dt
¼ 2

Z

V

kr2T
o

ot

1
T

� �

dV: ð6:5Þ

Equation (6.5) shows that the rate of change of entropy production is a function
of the heat diffusion rate (kr2T) and the rate of change of temperature (qT/qt). The
heat diffusion rate is related to the balance equation for internal energy (e.g. [22])
as

q
o

ot
cvTð Þ¼ �qv � r cvTð Þ þ kr2 T � pr � v þ P : rv; ð6:6Þ

where q is the fluid density, cv is the specific heat at constant volume, v is the fluid
velocity, p is the pressure and P is the viscous stress. This equation shows that the
rate of temperature increase is caused by the sum of the rates of heat advection,
heat diffusion, cooling by volume expansion and viscous heating. Substituting
kr2T from Eq. (6.6) into Eq. (6.5), and assuming a constancy of cv in the fluid
system (dcv/dt = 0), we get
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d _rh

dt
¼ 2

Z

V

qcv

oT

ot
þ qcvv � rT þ pr � v � P : rv

� �
o

ot

1
T

� �

dV : ð6:7Þ

If we consider a situation with no convective motion (v = 0), Eq. (6.7) reduces
to

d _rh;stat

dt
¼� 2

Z

V

qcv

T2

oT

ot

� �2

dV � 0; ð6:8Þ

where the suffix stat denotes the static state with no motion. The rate of change of
entropy production is negative in this static case, because q and cv are positive
definite. Equation (6.8) shows that entropy production due to pure heat conduction
tends to decrease with time, and reaches a minimum in the final steady state
(qT/qt = 0) provided there is no convective motion in the fluid. This tendency was
first suggested by Prigogine [15], and is called the minimum entropy production
(MinEP) principle. While several attempts have been made to extend this principle
to a general one including dynamic motion, the results remain controversial and
inconclusive [16, 17]. As we shall see in Sect. 6.3.1, when advection due to
dynamic motion is nonzero, the local rate of entropy production can either increase
or decrease, depending on the rate of heat advection (v�rT); the sign of d _rh=dt
becomes indefinite and even positive in some cases.

6.2.2 Momentum Diffusion

A similar result can be obtained for momentum diffusion due to viscosity under a
velocity gradient. Suppose that a viscous fluid with a uniform viscosity is flowing
in a system with a constant temperature T. In this case, entropy production due to
momentum diffusion is given by

_rm¼
Z

V

P : rv

T
dV: ð6:9Þ

Here, the numerator represents the scalar product of the viscous stress tensor and
the velocity gradient, and is identical to the heating rate due to viscosity per unit
volume per unit time in the fluid. Assuming a linear relation between the viscous
stress and the velocity gradient, we can drive the time derivative of the rate of
entropy production after a few manipulations2:

2 Assuming linearity, P : rv ¼ ½2lðrvÞs � 2=3ð Þlðr � vÞd :� ½ðrvÞs þ ðrvÞa� ¼ 2lðrvÞs :

ðrvÞs � 2=3ð Þlðr � vÞ2; with d denoting the unit tensor, and Ts and Ta denoting symmetric
and asymmetric parts of a tensor T. Then, oðP : rvÞ=ot ¼ 2½2lðrvÞs � 2=3ð Þlðr � vÞd :�
½rðov=otÞ�s ¼ 2P : rðov=otÞ.
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d _rm

dt
¼
Z

V

o

ot
P : rv

T

� �

dV ¼ 2
Z

V

1
T

P : r ov

ot

� �� �

dV : ð6:10Þ

By a sequence of transformations similar to those from Eq. (6.3) to Eq. (6.5),
we get

d _rm

dt
¼� 2

Z

V

1
T

lr2v þ l
3
r r � vð Þ

h i
� ov

ot

� �

dV; ð6:11Þ

where l is the viscosity of the fluid. Here we have assumed that velocity is fixed at
the boundary (qv/qt = 0). The diffusion rate of momentum [lr2v ? lr(r�v)/3] is
related to the balance equation of momentum—the Navier–Stokes equation3—as

q
ov

ot
¼� qðv � rÞv � rp þ lr2v þ l

3
rðr � vÞ: ð6:12Þ

Substituting Eq. (6.12) into Eq. (6.11) and eliminating the momentum diffusion
rate, we get after a few transformations

d _rm

dt
¼�2

Z

V

1
T

q
ov

ot
þ qðv � rÞv

� �

� ov

ot

� �

� p
o

ot
ðr � vÞ

� �

dV

� �2
Z

V

1
T

q
ov

ot
þ qðv � rÞv

� �

� ov

ot

� �

dV:

ð6:13Þ

Here we have assumed incompressibility (r�v = 0) in Eq. (6.13). If we further
assume a situation with no advection of momentum, then (v�r)v = 0; that is, there
is no velocity gradient along the flow direction, corresponding to a laminar flow in
the Stokes approximation.4 In this specific laminar flow case, we get

d _rm;lam

dt
¼� 2

Z

V

q
T

ov

ot

�
�
�
�

�
�
�
�

2

dV � 0; ð6:14Þ

where the suffix lam denotes the laminar flow with no momentum advection. The
rate of entropy production in an incompressible laminar flow tends to decrease
with time and reach a minimum in the final steady state (qv/qt = 0). This result
shows another aspect of MinEP for a laminar flow. In an isothermal condition, this
tendency is akin to that of minimum dissipation of kinetic energy in a slow

3 In a general case, the forth term in the right-hand side of Eq. (6.12) should be expressed as a
sum of the viscosity l and the second viscosity k. Using Stokes’ relation (k = -2l/3),
l ? k = l/3.
4 There are a few exceptions. Laminar (or non-turbulent) flow can be realized even with
advection of momentum, e.g., in a converging nozzle. However, the flow direction is not parallel
in this case, and it may not be regarded as ‘‘laminar’’ in the strict sense of the word.
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incompressible steady flow suggested by Helmholtz [23] and Rayleigh [24].
However, as we shall see in Sect. 6.3.2, when advection of momentum is nonzero
(i.e. turbulent flow), the sign of d _rm=dt becomes indefinite, and the entropy
production can either decrease or increase depending on the rate of advection
determined by the flow pattern produced in the fluid system.

6.3 Nonlinear Advection

We now discuss the effect of advection of heat or momentum on entropy pro-
duction in a fluid system. The advection process is a typical nonlinear process
since it is described as the product of the velocity and gradient of an intensive
variable, which is also a function of the velocity. A fundamental difficulty arises
from the presence of this nonlinear term in solving the balance equation of energy
or momentum [Eq. (6.6) or (6.12)]. Exactly the same difficulty arises from this
advection term in solving the equation of entropy production. We do not know, in
a deterministic sense, how the rate of entropy production will change once
advection becomes a dominant process in the transport of heat or momentum.
However, advection of heat or momentum generally increases the local gradient of
temperature or velocity at the moving front, which results in an enhancement of
entropy production. Here we discuss the conditions under which advection
enhances entropy production, using the general equations of entropy production
[Eqs. (6.5) and (6.11)] as follows.

6.3.1 Heat Advection

Let us go back to the example of entropy production due to heat diffusion. With the
presence of convective motion, the MinEP condition [Eq. (6.8)] cannot be justified
since it requires v = 0. Even in this case, Eq. (6.5) for the rate of change of entropy
production remains valid. Assuming a constancy of cv (dcv/dt = 0) in Eq. (6.6), and
substituting the rate of change of temperature (qT/qt) into Eq. (6.5), we get

d _rh;adv

dt
¼� 2

Z

V

qcv

T2
jr2T jr2T � v � rT � pr � v

qcv

þ P : rv

qcv

� �

dV

� �2
Z

V

qcv

T2
jr2Tðjr2T � v � rTÞ dV ;

ð6:15Þ

where the suffix adv denotes the presence of heat advection and j ¼ k=qcv is the
thermal diffusivity. The approximation in Eq. (6.15) corresponds to an assumption
that the cooling rate by volume expansion (r�v) and the heating rate by viscous
dissipation (P:rv) are negligibly small compared with diffusive heating
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(jr2T) and advective cooling (v�rT). Under this assumption, we can get a suf-
ficient condition for the increase of entropy production d _rh;adv=dt� 0

� �
as

v � rT � jr2T � 0 or v � rT � jr2T � 0 ) d _rh;adv

dt
� 0: ð6:16Þ

Condition (6.16) means that, when advective cooling (v�rT) is greater than
diffusive heating (jr2T), the local temperature decreases further (qT/qt B 0)
because of Eq. (6.6), and thus entropy production increases because of Eq. (6.5).
Alternatively, when advective heating (–v�rT [ 0) is greater than diffusive cooling
(–jr2T [ 0), the local temperature increases further (qT/qt C 0) because of
Eq. (6.6), and thus entropy production increases because of Eq. (6.5). These con-
ditions generally hold true during the development of convective motion (qv/qt [ 0)
in a fluid system whose Rayleigh number is larger than the critical value for the onset
of convection. The rate of entropy production thus tends to increase to a certain
maximum value through the development of convective motion with time, as
suggested from previous investigations [4, 5]. Moreover, it is known from numerical
simulations that a state of convection tends to move to a state with higher rate of
entropy production when the system has multiple steady states and the system is
subject to external perturbations [7, 8, 25]. These results are consistent with
condition (6.16) under which entropy production increases with time through the
development of convective motion in a system with dynamic instability. It should be
noted that condition (6.16) represents a condition for the increase of entropy
production with time, whereas MaxEP has been suggested as a selection principle of
the most stable steady state from a set of possible steady states ([12–14, 20]; Dewar
and Maritan, this volume). However, when we observe time evolution of a system,
the transition to the most stable MaxEP state must occur from a state with lower
entropy production, so the two concepts are related through the actual time evolution
of the system.5 Condition (6.16) then shows the actual dynamic process along the
evolution towards the MaxEP state inferred from the selection principle.

One can see from condition (6.16) that entropy production can decrease with
time when the heat advection rate is smaller than the heat diffusion rate, i.e.,
v � rTj j � jr2T

�
�

�
�. Such a situation can be realized in the relaxation period of a

convection system towards a steady state, or in a convection system whose
boundary temperature is unbounded so that the mean temperature gradient
becomes weaker through the development of convective motion. We shall discuss
vertical convection of the atmosphere as a typical example in Sect. 6.4. Another
such example is thermal convection of a fluid system under fixed heat flux at the
boundary. Entropy production as well as the overall temperature contrast at the
boundary decreases with the onset of convection in this case (e.g. [26]). A
quantitative analysis on the reduction of entropy production using Eq. (6.16) may

5 The exact correspondence between the time evolution of a system and the probability of states
requires an additional assumption, which is related to profound and not yet fully solved problems
of the ergodic hypothesis.
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therefore be attractive. It should be noted, however, that the decrease of entropy
production in this case is not in direct contradiction to the stability criterion of
MaxEP, because relative stability of each steady state should in principle be
compared under the same boundary forcing condition, i.e., the same temperature
contrast at the boundary characterized by the same Rayleigh number.

6.3.2 Momentum Advection

We can obtain a similar result for entropy production due to momentum diffusion.
With the presence of advection of momentum v � rð Þv 6¼ 0½ �, the MinEP condition
[Eq. (6.14)] cannot be justified. Even in this case, Eq. (6.11) for the rate of change
of entropy production remains valid. Assuming incompressibility of fluid and
substituting the rate of change of velocity from Eq. (6.12) into Eq. (6.11), we get

d _rm;adv

dt
¼ �2

Z

V

q
T

mr2v
� �

� mr2v� ðv � rÞv�rp

q

� �

dV ; ð6:17Þ

where the suffix adv denotes the presence of momentum advection and m = l/q is
the kinematic viscosity. We can then find a sufficient condition for the increase of
entropy production d _rh;adv=dt� 0

� �
as

ðv � rÞv þ rp

q

� �

� e � mr2v
�
�

�
� ) d _rm;adv

dt
� 0; ð6:18Þ

where e ¼ r2v= r2v
�
�

�
� is the unit vector in the direction of r2v.

Condition (6.18) means that, when advective export of momentum [(v�r)v] plus
pressure deceleration [rp/q] in the e direction is greater than diffusive import of
momentum mr2v

�
�

�
�, the local velocity in that direction decreases further because of

Eq. (6.12), and thus entropy production increases because of Eq. (6.11). Alterna-
tively, when advective import of momentum [-(v�r)v] plus pressure acceleration
[-rp/q] in the -e direction is larger than diffusive export of momentum mr2v

�
�

�
�,

the local velocity increases further because of Eq. (6.12), and thus entropy pro-
duction increases because of Eq. (6.11). It is known that advection of momentum is
negligibly small in laminar flows whereas it is considerably large in turbulent flows.
Thus, this condition generally holds true during the development of turbulent
motion in a fluid system whose Reynolds number is larger than the critical value for
the onset of turbulence. The rate of entropy production thus tends to increase to a
maximum value through the development of turbulent motion [5]. Malkus [27] and
Busse [28] suggested that the observed mean state of turbulent shear flow corre-
sponds to the state with the maximum rate of momentum transport by turbulent
motion. Malkus [29] also showed that velocity profiles estimated from maximum
dissipation of kinetic energy due to the mean velocity field and a smallest scale of
motion at the system boundary resemble those of observations. Dewar and Maritan
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(this volume) showed using Jaynes’s maximum entropy method that the inferred
state is the one with maximum dissipation of kinetic energy due to the mean
velocity field in a system with dynamic instability. Since the dissipation rate is
proportional to the entropy production rate, these results are consistent with con-
dition (6.18) under which entropy production increases with time towards a max-
imum value when the system is in a state of dynamic instability. As is the case for
thermal convection, when we observe time evolution of such a system, the tran-
sition to the most stable MaxEP state must occur from a state with lower entropy
production. Condition (6.18) then shows the actual dynamic process along the
evolution towards the MaxEP state inferred from the selection principle.

One can also see from this condition (6.18) that entropy production can decrease
with time when the momentum advection is less than the rates of diffusion and
acceleration by the pressure gradient: ðv � rÞv þ rp=q½ � � e � mr2v

�
�

�
�. Such a

condition can be realized in the relaxation period of a turbulent fluid system, or in a
fluid system whose boundary velocity is unbounded so that the momentum advection
becomes less significant than the sum of momentum diffusion and pressure accel-
eration. Examples include turbulent shear flow under a fixed shear stress and
turbulent pipe flow under a fixed pressure gradient. Entropy production as well as the
overall velocity gradient is known to decrease with the onset of turbulence in these
cases [30, 31]. Again, notice that the decrease of entropy production in these cases is
not in direct contradiction to the stability criterion of MaxEP, because relative
stability of each steady state should in principle be compared under the same
boundary forcing condition, i.e., the same velocity contrast between the boundary
and the interior that is characterized by the same Reynolds number.

It should be noted that the condition [(6.16) or (6.18)] is a sufficient condition
rather than a necessary and sufficient condition for d _radv=dt� 0—the total entropy
production can increase even if local entropy production decreases in specific
places. Also, this condition does not ensure that the total entropy production is to
be a maximum; it describes a condition necessary for entropy production to
increase locally. Nevertheless, this condition clearly shows the importance of
advection for the behavior of entropy production caused by dynamic instability
inherent to a nonlinear fluid system. Without advection, entropy production always
decreases to a minimum value with time. With dynamic advection, entropy
production can be enhanced to a greater value with a completely different mode of
dynamic motion. In what follows, we shall examine a typical example of dynamic
phenomena and discuss the behavior of entropy production with the presence of
advection, in the light of the above analysis.

6.4 Atmospheric Convection

As a typical example of dynamic phenomena, let us discuss vertical convection
of the atmosphere. Figure 6.1a shows a schematic of the global-mean energy
balance of the Earth. The Earth absorbs solar shortwave radiation of about
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FSW = 238 W m-2 as the global-mean, and this energy is transferred to various
energy transport processes in the system. The energy is eventually emitted back to
space by longwave emission at the top of the atmosphere, with an effective tem-
perature Te & 255 K according to the Stefan–Boltzmann law (238 = rBTe

4, with
rB being the Stefan–Boltzmann constant), thereby maintaining global energy
balance. Energy balance is also maintained at the Earth’s surface: absorbed solar
radiation of 149 W m-2 is transported upward by convective transport6 of latent
and sensible heat Fc and by net longwave radiation FLW. If convection were more
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Fig. 6.1 a Global-mean energy balance of the earth. Shortwave solar radiation absorbed at the
surface (FLW = 149 W m-2) is balanced by convective transport of latent and sensible heat (Fc)
and by net longwave radiation (FLW). Ts is surface temperature. b Entropy production rates per
unit surface as a function of the surface convective heat flux Fc, calculated with a vertical grey
atmosphere model. The convective entropy production _rconv reaches a maximum at
Fc = 91 W m-2 and TS = 289 K. In this state the radiative entropy production _rrad is a
minimum (see text for details)

6 There is also generation of mechanical energy by volume expansion of the air at the surface.
The rate of energy conversion is about 2 W m-2, which thereafter dissipates into heat in the
atmosphere. We have included this rate in the convective energy transport considered here.
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active (inactive) the surface temperature would decrease (increase). It is known
from long-term observations that the convective heat transport is
Fc & 100 W m-2 and surface air temperature is Ts & 287 K for a global-mean
state of the present climate.

Entropy production in this climate system is mainly due to irreversible
absorption of radiation _rrad, irreversible heat transport by thermal convection
_rh; conv and irreversible diffusion of momentum (viscous dissipation of kinetic
energy) in the convective atmosphere _rm; conv:

_rtot ¼ _rrad þ _rh; conv þ _rm; conv; ð6:19Þ

where _rtot is the total rate of entropy production in the climate system. In a steady
state, the total rate of entropy production is equal to the rate of entropy discharge
into outer space:

_rtot ¼ FSW

1
Te

� 1
Tsun

� �

A; ð6:20Þ

where Tsun is the sun’s emission temperature of about 5,760 K and A is the surface
area of the Earth. Among these irreversible processes, entropy production due to
momentum diffusion _rm; conv is smaller than other terms _rrad and _rh; conv since the
viscous dissipation rate is about 2 W m-2, which is one or two orders of
magnitude smaller than the convective or radiative energy fluxes in this system
(e.g. [12]). This contribution of viscous heating has already been incorporated in
the convective heat flux considered here. For a one-dimensional atmosphere we
then have

_rtot � _rrad þ _rconv ¼ A

Z
Fr

o

oz

1
Tr

� �

dz þ A

Z
Fc

o

oz

1
T

� �

dz; ð6:21Þ

where _rconv is the entropy production due to convective heat transport, Fr is the
radiation flux density defined as positive upward, Tr is the corresponding radiation
effective temperature (mean temperature of the atmospheric medium over a unit
optical thickness) and Fc is the convective energy flux density defined as positive
upward. The transfer of radiant energy in a semi-transparent medium such as the
atmosphere is caused by a gradient in the fourth power of temperature (the Planck
function) in the medium. In this process, there is no direct advection of radiation
due to dynamic motion of the atmosphere. According to the results of Sect. 6.2, we
then expect that the radiative entropy production _rrad will decrease with time and
reach a minimum in the final steady state [Eq. (6.8)]. By contrast, entropy
production due to heat diffusion is highly sensitive to advection when the atmo-
sphere is in a state of convective instability. In this case, we can expect that
entropy production will evolve with time towards a maximum value when the
atmosphere satisfies condition (6.16).

Figure 6.1b shows steady-state total entropy production as a function of
convective heat flux Fc, calculated with a vertical grey atmosphere model [32].
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Longwave and shortwave optical depths are set at 3 and 0.43 respectively, and
total shortwave absorption is assumed to be FSW = 238 W m-2 consistent with
the observations. The abscissa shows the convective heat flux Fc at the surface, and
the ordinate shows corresponding rates of entropy production per unit surface and
surface temperature. We can see that, if there is no convection Fc = 0, the surface
temperature has its maximum value at Ts = 324 K and convective entropy pro-
duction is zero. In this state, radiative entropy production is largest. This static
state is unstable against perturbations, however, since the vertical temperature
gradient in most of the lower troposphere is larger than the dry adiabatic lapse rate
(see, e.g., Fig. 2b in [32]). Convective motion therefore develops in the atmo-
sphere, and the convective heat flux Fc as well as convective entropy production
increases. This growth process is consistent with condition (6.16) under which
entropy production due to heat diffusion tends to increase with time through the
development of convective motion produced by dynamic instability. In the final
steady state, the rate of convective entropy production reaches a maximum at
Fc = 91 W m-2 and Ts = 289 K, in remarkable agreement with observations. In
this state, the radiative entropy production is at its minimal value. Further increase
in Fc reduces the convective entropy production because the vertical temperature
gradient decreases. This situation is also understood from condition (6.16); entropy
production decreases when the boundary temperature is unbounded and the mean
temperature gradient becomes so small that the advection term becomes less
significant than the diffusion term.

6.5 Concluding Remarks

In this chapter, we have discussed some general characteristics of entropy pro-
duction in a fluid system. We have shown that entropy production always decreases
with time when the system is of a pure diffusion type without advection of heat or
momentum. Thus, the minimum entropy production (MinEP) property is intrinsic
to a system of a pure diffusion type, e.g., heat conduction in a static fluid or
momentum diffusion in laminar flow. However, this MinEP property is no longer
guaranteed when the system is subject to advection due to dynamic motion. In this
case, entropy production increases with time when the rate of advection exceeds the
rate of diffusion of the corresponding extensive quantity. The hypothesis of
maximum entropy production (MaxEP) suggested as a selection principle for
multiple steady states of nonlinear non-equilibrium systems ([1, 5, 12–14, 20];
Dewar and Maritan, this volume) can therefore be seen to be a characteristic feature
of systems with nonlinear dynamic instability.

A few remarks may be in order to specify the current situation of the research.
As stated in Sect. 6.3.2., the derived condition [(6.16) or (6.18)] is a sufficient
condition for the increase of entropy production of a system, but not a necessary
and sufficient condition. Thus, total entropy production can increase even if this
condition does not hold in local specific places in the system. More rigorous study
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based on the integral Eqs. [(6.15) or (6.17)] is therefore needed to derive the exact
condition for d _radv=dt� 0. Intuitively, the exact condition obtained from the
integration over a system should lead to a certain Rayleigh or Reynolds number for
the entire system, although our previous attempts could not have been completed
yet. This issue thus remains to be a future challenge. It should also be noted that,
while we have examined the effects of nonlinear advection terms on entropy
production in a fluid system, the constitutive relation between the diffusive flux
and the driving force has been assumed to be linear in this study [Eq. (6.2) or
(6.10)]. This linear assumption may not hold true, however, when the system is far
from equilibrium. In a highly nonlinear regime of a compressible fluid, a dis-
continuity is known to be produced in the medium, and it propagates as a shock
front with a supersonic speed. The dynamic process of each shock front is highly
complicated, but its net effect is known to enhance entropy production [33]. The
dynamic behavior of the shock front is therefore a fascinating topic, and remains a
subject of future researches. While the local dynamic process of a nonlinear system
is highly intricate because of its nonlinear nature, the ensemble of each process
seems to be regulated at a state with a maximum rate of entropy production due
to the dynamic processes. In a steady state, the entropy produced by all these
irreversible processes is completely discharged into the surrounding system. We
therefore suggest that local nonlinear dynamic processes tend to be organized so as
to increase entropy in the surrounding system at a possible maximum rate when the
system is in a state of nonlinear dynamic instability.
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Chapter 7
Control Volume Analysis, Entropy
Balance and the Entropy Production
in Flow Systems

Robert K. Niven and Bernd R. Noack

Abstract This chapter concerns ‘‘control volume analysis’’, the standard engi-
neering tool for the analysis of flow systems, and its application to entropy balance
calculations. Firstly, the principles of control volume analysis are enunciated and
applied to flows of conserved quantities (e.g. mass, momentum, energy) through a
control volume, giving integral (Reynolds transport theorem) and differential
forms of the conservation equations. Several definitions of steady state are dis-
cussed. The concept of ‘‘entropy’’ is then established using Jaynes’ maximum
entropy method, both in general and in equilibrium thermodynamics. The ther-
modynamic entropy then gives the ‘‘entropy production’’ concept. Equations for
the entropy production are then derived for simple, integral and infinitesimal flow
systems. Some technical aspects are examined, including discrete and continuum
representations of volume elements, the effect of radiation, and the analysis of
systems subdivided into compartments. A Reynolds decomposition of the entropy
production equation then reveals an ‘‘entropy production closure problem’’ in
fluctuating dissipative systems: even at steady state, the entropy production based
on mean flow rates and gradients is not necessarily in balance with the outward
entropy fluxes based on mean quantities. Finally, a direct analysis of an infini-
tesimal element by Jaynes’ maximum entropy method yields a theoretical
framework with which to predict the steady state of a flow system. This is cast in
terms of a ‘‘minimum flux potential’’ principle, which reduces, in different cir-
cumstances, to maximum or minimum entropy production (MaxEP or MinEP)
principles. It is hoped that this chapter inspires others to attain a deeper
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understanding and higher technical rigour in the calculation and extremisation of
the entropy production in flow systems of all types.

List of Symbols

Symbol Meaning (SI Units)

Roman Symbols
A Area m2ð Þ
B; b Conserved quantity (½B�); specific (per fluid mass) density ð½B� kg�1Þ
c0 Speed of light in vacuum ms�1ð Þ
f ; F Generic parameter; generic gradient or driving force (various)
FB Bulk flow rate of quantity B ð½B� s�1Þ
gc Specific body force on species c ðN kg�1 ¼ m s�2Þ
G; g Gibbs free energy (J); specific Gibbs free energy ðJ kg�1Þ
D~Gd Change in molar Gibbs free energy of reaction d ðJ mol�1Þ
h Net heat transfer rate by radiation ðJ s�1 m�6Þ
H Generic (information) relative entropy function (-)
Im; Lm Energy radiance ðW m�2 s sr�1Þ; entropy radiance ðW K�1 m�2 s sr�1Þ
jc Molar flux of chemical species c ðmol m�2 s�1Þ
jQ; jE Heat flux; energy flux ðJ m�2 s�1Þ
jS; JS Non-fluid entropy flux; total entropy flux ðJ K�1 m�2 s�1Þ
k; kSB Boltzmann constant ðJ K�1Þ; Stefan-Boltzmann constant ðW m�2 K�4Þ
K Steady-state flow constant ðJ K�1 m�3 s�1Þ
m Fluid mass (kg)
m; n Unit normal to area element; outward unit normal to control surface (-)
Mc Molar mass of chemical species c ðkg mol�1Þ
nc Molar density of chemical species c ðmol kg�1Þ
ni; N Number of elements (balls) in partition i; total number of elements (-)
pi; qi Inferred probability, prior probability (-)
P Absolute pressure (Pa)
R Number of constraints (-)
S; Ŝ; s Thermodynamic entropy ðJ K�1Þ; entropy per volume ðJ K�1m�3Þ;

specific entropy ðJ K�1 kg�1Þ
t Time (s)
T ; Tm Absolute temperature (K); radiative temperature (K)
U; Û; u Internal energy (J); internal energy per volume ðJ m�3Þ; specific

internal energy ðJ kg�1Þ
v Mass-average velocity vector ðm s�1Þ
V Volume ðm�3Þ
x Position vector (m)
Z Partition function (-)
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Greek Symbols
c Degeneracy of state (-)
e Energy level (J)
k; f Lagrangian multiplier (various)
lc Molar chemical potential of species c ðJ mol�1Þ
m Frequency of radiation ðs�1Þ
vcd Stoichiometric coefficient of species c in the dth reaction ðmol mol�1Þ
_̂nc; _̂nd

Rate per volume of species c; of chemical reaction d ðmol m�3 s�1Þ
q Fluid density ðkg m�3Þ
r Amount of thermodynamic entropy produced ðJ K�1Þ
_r; _̂r; _r

^ Rate of thermodynamic entropy production ðJ K�1 s�1Þ; rate per volume
ðJ K�1 m�3 s�1Þ; rate per area ðJ K�1m�2 s�1Þ

s Viscous stress tensor (Pa)
U; / Potential (negative Massieu) function (-); Planck potential ðJ K�1Þ
wc Mass-weighted body force potential on species c ðs�2Þ
X Solid angle (sr)

_x
^ Rate of entropy production on one side of area ðJ K�1m�2 s�1Þ

Superscripts, Subscripts and Indices
� Stationary state
þ;� Final, initial
c; d Chemical species index, chemical reaction index
C; C Thermodynamic path index, set of allowable paths
eq; st Equilibrium system, steady-state system
f ; nf ; tot Fluid, non-fluid, total
m; m Material, radiative
i; j; k; i State indices
in; out In or out of control volume
‘; r Constraint indices
a; b Compartment indices
j Compartment boundary index

Mathematical Symbols

f ; ef ; f 0 Time mean; ensemble mean; fluctuating component

_f ; f̂ ; f
^

; ~f Per unit time; per unit volume; per unit area; per mole

hf i Expectation
fb c; fj jð Þ In-the-mean (product of means) form; mean fluctuating component
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7.1 Introduction

Over the past half-century, there has been a growing interest in the analysis of non-
equilibrium systems—which by their nature involve flow(s) of one or more
quantities—using variational (extremum) principles based on the rate of thermo-
dynamic entropy production and/or allied concepts. These include the maximum
dissipation methods first proposed by Helmholtz [1] and Rayleigh [2] and their
extension to the upper bound theory of turbulent fluid mechanics [3–5]; Onsager’s
‘‘minimum dissipation’’ method [6, 7]; Prigogine’s near-equilibrium minimum
entropy production (MinEP) theorem [8, 9]; the far-from-equilibrium maximum
entropy production (MaxEP) principle advocated by Paltridge [10, 11], Ziegler
[12] and others [13–16], the main focus of this book; a MinEP framework for
engineering design advocated particularly by Bejan [17]; a MinEP limit on tran-
sitions between equilibria [18–20] or steady states [21] respectively in thermo-
dynamic or flow systems; and various minimum and maximum power methods
applied to electrical circuits [9, 22–26] and pipe flow networks [27–30]. A broader
category of variational technique consists of the maximum relative entropy
(MaxEnt) method of Jaynes [31–35], which has seen myriad applications in many
fields [36] and has been used in efforts to explain the above MaxEP/MinEP
principles [37–41]. Such a zoo of different variational principles provides con-
siderable scope for confusion, especially given their competing claims and parti-
sanship. The entropy concept itself—and in consequence the thermodynamic
entropy production—also provides a fertile ground for misunderstanding, which
never ceases to yield unexpected traps for beginners and (even) well-established
researchers.

In engineering, the method of control volume analysis is generally regarded as
the most important tool for the analysis of flow systems, underpinning virtually all
vehicular, fluid transport, energy generation, manufacturing, civil infrastructure
and environmental control systems, and whose basic principles apply to all flows
[42–47]. Recently, the authors have been surprised by the lack of appreciation of
the control volume method throughout the sciences, even in those disciplines
which—one would think—might gain the most from their use. For example, both
an ‘‘ecosystem’’ and a ‘‘soil’’ are control volumes, which experience various
material and energy flows (inputs and outputs) through their boundaries, and which
undergo various internal processes. Their mathematical modelling therefore
requires careful control volume analysis. Indeed, although not commonly calcu-
lated by engineers, the concept of entropy production itself arises from a control
volume analysis of a dissipative system, and can be fruitfully examined from this
perspective.

The aim of this chapter is to clarify the basis of the entropy production concept
of non-equilibrium thermodynamics—and in consequence its extremisation—
using the principles of control volume analysis. In Sect. 7.2, the control volume
method and its main results are presented, and applied to flows of various quan-
tities, for both integral and differential forms. Several definitions of steady state are
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then discussed. In Sect. 7.3.1, we examine the (generic) entropy concept (here
labelled H), which in turn reduces, by a Jaynes’ MaxEnt analysis of an equilibrium
system, to the thermodynamic entropy S (Sect. 7.3.2). Control volume analysis of
the latter (Sect. 7.3.3) enables rigorous definitions of the total thermodynamic
entropy production _r and its local form _̂r. Several special features of the entropy
balance are examined, including discrete and continuum representations, radiative
effects, compartmentalisation and the definition of steady state. In Sect. 7.3.4, a
Reynolds decomposition is used to reveal an ‘‘entropy production closure prob-
lem’’, manifested as a discrepancy between the overall mean and mean-of-prod-
ucts components. Finally, in Sect. 7.4 we analyse an infinitesimal control volume
by Jaynes’ MaxEnt method to directly predict the steady state. This yields a
theoretical framework which reduces to (secondary) MaxEP or MinEP principles
in different circumstances. The main motivation for this chapter is to inspire others
to attain a deeper understanding and higher technical rigour in the calculation and
extremisation of the entropy production in flow systems of all types.

7.2 Justification and Principles of Control Volume
Analysis

Two Descriptions: Historically, two approaches have been developed for the
analysis of flow systems [42–47]:

1. The Lagrangian description, which follows the behaviour of individual parti-
cles (either molecules or infinitesimal fluid elements) as they move, and so
examines individual trajectories within the flow; and

2. The Eulerian description, which examines particular points or regions in space
through which the flow passes, and so considers the flow field.

The Lagrangian approach has attained a high prominence in physics, giving rise to
the field of classical mechanics (e.g. equations of motion, action integrals, principle
of least action, Hamiltonian function, Liouville’s theorem) and the concept of
position-momentum phase space [48]. It also provided the basis of 19th century
statistical physics, including Maxwell’s velocity distribution, Boltzmann’s H-the-
orem and their successors (including modern lattice-Boltzmann methods) [49], and
of 20th century stochastic analyses, such as Markov processes and the Fokker–
Planck and Master equations [50]. For all this prominence, however, Lagrangian
methods impose considerable computational difficulties and are not widely used in
engineering practice, except in specific cases where their use becomes essential
(e.g. early re-entry of spacecraft through rarefied gases). Instead, the vast bulk of
engineering fluid flow, heat and mass transfer calculations are conducted using the
Eulerian description, necessitating a control volume analysis.

Control Volume Analysis: We now introduce the engineering concept of a
control volume (CV), a geometric region through which one or more fluid(s) can
flow, surrounded by a well-defined boundary or control surface (CS). The control
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volume is assumed to be embedded within a surrounding environment (or ‘‘rest of
the universe’’) which maintains the flow(s). We also require the concept of a fluid
volume (FV) (in some references a material volume [42] or system [45, 47]), an
identifiable body of fluid particles (or differential ‘‘fluid elements’’) which moves
with time, bounded by its fluid surface (FS). We therefore analyse the motion of a
fluid volume through a control volume.

Consider the simple fixed, non-deforming control volume shown in Fig. 7.1a,
which experiences a discrete set of time-varying flow rate(s) across its control
surface, and may also undergo various time-varying rate processes within its
volume. We also consider the fluid volume coincident with the control volume at
time t; which migrates downstream to a different position at time t þ dt. For each
conserved quantity B (e.g. mass, energy, momentum), the rates of change of B
within the fluid and control volumes are connected by the conservation equation
[42–47]:

DBFVðtÞ
Dt

¼ oBCV

ot
þFout

B;f �Fin
B;f ð7:1Þ

where DBFVðtÞ
�

Dt is the substantial, material or total derivative of B; denoting its
rate of change in motion with the fluid; oBCV=ot is the rate of change of B within
the control volume1; and Fout

B;f and Fin
B;f are respectively the outward and inward

flow rates of B due to fluid flow through the control surface.2 In (7.1), the flow
rates only refer to fluid-borne flows; all other flows of B are accounted within the
substantial derivative DBFVðtÞ=Dt. Note the ‘‘out—in’’ form of (7.1): in many texts
it is written in the opposite sense (often in different notation):

(a) (b)

Fig. 7.1 Example control volumes for the analysis of a simple (flow rate) and b integral (vector
flux) flow systems, showing representative fluid and non-fluid flow parameters

1 Strictly, for a fixed and non-deforming control volume, this should be written dBCV=dt. The
partial derivative is adopted to avoid confusion with some authors’ use of dBCV=dt to denote
the substantial derivative, and for consistency with broader applications to moving control
volumes.
2 In engineering, it is standard practice to designate flow rates by an overdot, here _B. In
deference to the different meaning of the overdot in physics, to signify a rate of production
within a system, FB is used herein for a bulk flow rate of B.
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oBCV

ot
¼

DBFVðtÞ
Dt

þFin
B;f �Fout

B;f ð7:2Þ

but the meaning is identical. If we understand the processes by which B changes
within its fluid volume (both internal and external), their rate of change can be
equated to DBFVðtÞ=Dt; yielding an overall balance equation for B.

Now consider the more complicated geometry of Fig. 7.1b, in which the flow of
B is represented by its time-varying fluid-borne flux qbv (measured in SI units of
½B� m�2s�1) through the control surface, where qðx; tÞ is the fluid density, bðx; tÞ is
the specific (per unit fluid mass) density of B and vðx; tÞ is the local (mass-average)
velocity, in which x denotes position and t time. The B balance equation becomes:

DBFVðtÞ
Dt

¼ oBCV

ot
þ
ZZ
�
CS

qbv � ndA ð7:3Þ

where nðx 2 CSÞ is the unit normal to the control surface (positive outwards), A is

the surface area and
ZZ
�
CS

denotes integration around the control surface. Expressing

BCV ¼
ZZZ

CV
qbdV ; where V is the volume, (7.3) reduces to [42–47]:

DBFVðtÞ
Dt

¼ o

ot

ZZZ

CV

qbdV þ
ZZ
�
CS

qbv � ndA

ð7:4Þ

Equation (7.4) is known as Reynolds’ transport theorem.
Since the control volume used here is stationary and non-deforming, the partial

derivative in (7.4) can be brought inside the integral. Furthermore, from Gauss’

divergence theorem,
ZZ
�
CS

qbv � ndA ¼
ZZZ

CV
r � ðqbvÞdV , so (7.4) can be written:

DBFVðtÞ
Dt

¼
ZZZ

CV

o

ot
qbþr � ðqbvÞ

� �

dV ð7:5Þ

Also, by integration over mass elements dm ¼ qdV of the fluid mass M [46]:

DBFVðtÞ
Dt

¼ D

Dt

ZZZ

FVðtÞ

qbdV ¼ D

Dt

Z

M

bdm ¼
Z

M

Db

Dt
dm ¼

ZZZ

FVðtÞ

q
Db

Dt
dV ð7:6Þ

using the local substantial derivative Db=Dt ¼ ob=ot þ v � rb.
Equations (7.5)–(7.6) are valid for fluid and control volumes of any size,

including infinitesimal volumes dV . It is therefore permissible to equate their
integrands, assuming coincident fluid and control volumes in the infinitesimal
limit, to give a differential conservation equation for each element dV in the fluid
[46, 51]:
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q
Db

Dt
¼ o

ot
qbþr � ðqbvÞ

ð7:7Þ

The left-hand term can be further equated to the sum of rates of change of qb in the
infinitesimal fluid volume, due to internal and external processes, giving a local
balance equation for B. As with all local formulations, (7.7) employs the contin-
uum assumption, in which the system is assumed much larger than the molecular
scale, so that its behaviour can be considered continuous even in the infinitesimal
limit [42]. Equations (7.4) and (7.7) represent two long-standing traditions of fluid
mechanics, integral (global) and local conservation laws, for the analysis of flow
systems.

The particular forms of (7.7) for seven physical quantities are listed in
Table 7.1. Here ‘‘�’’ is the vector scalar product, ‘‘:’’ is the tensor scalar product, >
is a vector or tensor transpose, ½d; e� are the Kronecker delta and third-order

permutation tensors; qc; nc;Mc; jc;
_̂nc

h i
are respectively the mass density, molar

density (molality), molar mass, molar flux and molar rate of production of species
c; ½P; s;w� are the pressure, stress tensor (positive for compression) and mass-
weighted potential; ½gc;wc� are the specific body force and potential on species c;

and e; eM; u; jQ

� �
are the specific total energy, specific kinetic ? potential energy,

specific internal energy and heat flux. All fluxes jQ and jc are measured relative to
the local mass-average fluid velocity v. The listed equations are valid for com-
pressible flow under fairly broad assumptions, assuming conservative body forces

Table 7.1 Seven differential balance equations (7.7) for compressible flow (adapted after [51–53])

Property B b Balance equation (differential form)

Fluid mass 1
0 ¼ o

ot
qþr � ðqvÞ

Species moles Nc
m ¼ nc q

Dnc

Dt
¼ o

ot
qnc þr � ðqncvÞ ¼ �r � jc þ _̂nc

Linear momentum v
q

Dv

Dt
¼ o

ot
ðqvÞ þ r � ðqvvTÞ ¼ �rP�r � sþ

X

c
qcgc

Angular
momentum

x� v
q

D

Dt
ðx� vÞ ¼ o

ot
qðx� vÞ þ r � qvðx� vÞ

¼ �r � ðx� PdÞT �r � ðx� sÞT þ
P

cðx� qcgcÞ � e : s

Total energy e ¼ eM þ u
q

De

Dt
¼ o

ot
ðqeÞ þ r � ðqevÞ

¼ �r � jQ �r � ðPvÞ � r � ðs � vÞ �
P

c Mcr � ðwcjcÞ
Kinetic ? potential

energy
eM ¼ 1

2 jvj
2 þ w q

DeM

Dt
¼ o

ot
ðqeMÞ þ r � ðqeMvÞ

¼ �v � rP� v � ðr � sÞ �
P

c Mcwcr � jc

Internal energy u
q

Du

Dt
¼ o

ot
ðquÞ þ r � ðquvÞ

¼ �r � jQ � Pr � v� s : rv�
P

c Mcjc � rwc

Assumptions and relations:
(i) qc ¼ qncMc;

P
c qcvc ¼ qv;

P
c ncMc ¼ 1;

P
c ncMcvc ¼ v;

P
c jcMc ¼ 0 and

jc ¼ qncðvc � vÞ.
(ii) _̂nc ¼

P
d vcd

_̂nd and
P

c vcd ¼ 0. (iii) gc ¼ �rwc; qw ¼
P

c qcwc and
P

c wcvcd ¼ 0.

136 R. K. Niven and B. R. Noack



gc ¼ �rwc on each species c. Other formulations can be derived for different
circumstances [52, 54, 55].

Steady State: We now define oBCV=ot ¼ 0 as the stationary or steady state of a
control volume. From (7.4) to (7.5):

oBCV

ot
¼ 0 )

DBFVðtÞ
Dt

�
�
�
�
st

¼
ZZ
�
CS

qbv � ndA ¼
ZZZ

CV

r � ðqbvÞ dV ð7:8Þ

where st denotes steady state. We see that at steady state, the internal change of
quantity B within the fluid volume is exactly balanced by its flux out of the control
surface, and hence its integrated divergence. Similarly, using (7.7) and the defi-
nition of divergence [44, 56], we can define the steady state for an infinitesimal
element:

o

ot
qb ¼ 0 ) q

Db

Dt

�
�
�
�
st

¼ lim
CV!0

ZZ
�
CS

qbv � ndA

ZZZ

CV

dV
¼ r � ðqbvÞ ð7:9Þ

Since both vðx; tÞ and BFVðtÞ (or bðx; tÞ) are time-dependent, a steady state can
involve time-varying fluxes, provided these are exactly balanced by time-varying
internal changes. In practice, however, any variability in the fluxes and/or rates will
render (7.8)–(7.9) almost impossible to achieve (we could call them a strict steady
state). It is therefore common in fluid mechanics (but not stated explicitly) to
consider the mean steady state ohBiCV=ot ¼ 0; where hBi denotes some mean
(stationary first central moment) of B; referred to as a Reynolds average [46, 51, 57,

58]. Usually, hBi is equated with the time mean B ¼ limT!1 T�1
R T

0 Bdt. In some

situations, the ensemble mean ~B ¼ limK!1 K�1
PK

k¼1 BðkÞ is used, where BðkÞ is the
kth realisation of B [46]. For the latter, it is usual practice to invoke the ergodic
hypothesis, in which the ensemble mean is assumed equivalent to the time mean;
this assumption is correct only for certain types of flows. From (7.4) and (7.7):

o Bh iCV

ot
¼ 0)

D Bh iFVðtÞ
Dt

¼
ZZ
�
CS

qbvh i � ndA ¼
ZZZ

CV

r � qbvh idV ð7:10Þ

o

ot
qbh i ¼ 0) q

Db

Dt

� ffi

¼ r � qbvh i ð7:11Þ

These give much more useful definitions than (7.8)–(7.9).3 Importantly, since

hBiCV ¼
ZZZ

CV
hqbidV for a stationary control volume, the global and local mean

3 In consequence, the mean steady state need not be steady! Indeed the Fluctuation Theorem
provides a strong argument that, far from equilibrium, it cannot be steady [40].
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steady states (7.10)–(7.11) are equivalent, provided both are measured over long
time periods. In contrast, the global and local strict steady states (7.8)–(7.9) are not
equivalent, except for time-invariant fluxes and internal processes at both global
and infinitesimal scales.

Throughout this chapter, the term equilibrium is used exclusively in its ther-
modynamic sense, to indicate the stationary state of a thermodynamic system,
while steady state (usually qualified) refers to the stationary state of a control
volume.

Further Remarks: Control volume analysis thus provides a rigorous frame-
work for the analysis of flow systems, but like all mathematical methods, it holds
some traps for beginners. Firstly, it is essential that the control volume and its
control surface be clearly defined. This almost always requires a schematic dia-
gram. Different control volumes represent different systems (with different steady
states) and in general will yield different results. Where is the control surface?
Which flows actually pass through the boundary and so must be included? Which
flows are internal and so can be neglected? This study also considers only sta-
tionary control volumes. A moving and/or deforming control volume may be
advantageous in some circumstances, but requires additional care [42–44, 47].
Finally, if a control volume is compartmentalised into sub-volumes, each of which
is analysed by balance equations (7.1) or (7.4), the geometry of each compartment
must be clearly defined, so that all flows can be identified and attributed to the
correct compartments and external or internal boundaries.

7.3 Concept of Entropy

7.3.1 Generic (Information) Entropy

We now turn to the entropy concept, which causes many difficulties but in actual
fact is very simple. While many justifications are available, arguably the most
profound is the combinatorial basis expounded by Boltzmann and Planck [59, 60],
in which we seek the most probable state of a probabilistic system. The system is
typically represented by an allocation scheme in which N entities (balls) are dis-
tributed amongst I categories (boxes), forming individual microstates or config-
urations of the system. These are then grouped into observable macrostates or
realizations of the system, specified by the number of balls ni in each ith box. For
distinguishable balls and boxes, the probability of a specified realization is given
by the multinomial distribution:

P ¼ Probðn1; . . .; nI jN; q1; . . .; qIÞ ¼ N!
YI

i¼1

qni
i

ni!
ð7:12Þ

138 R. K. Niven and B. R. Noack



where qi is the prior or source probability of a ball in the ith box or, in other words,
its assigned probability before observation. Seeking the maximum of P we rec-
ognise (as did Boltzmann [59]) that it is easier to maximise lnP ¼ ln N!þ
PI

i¼1ðni ln qi � ln ni!Þ. Introducing the Stirling approximation ln N! � N ln N � N
in the asymptotic limit N !1 (or alternatively the Sanov [61] theorem), with
some rearrangement we obtain:

H ¼ lim
N!1

1
N

lnP ¼ �
XI

i¼1

pi ln
pi

qi
ð7:13Þ

where we take pi ¼ limN!1 ni=N as the actual (observed or a posteriori) proba-
bility of a ball in the ith box. The function H is referred to as the relative entropy
or (negative) Kullback–Leibler function [62]. For equal priors qi ¼ I�1; this
simplifies to the Shannon entropy [63]:

lim
N!1

1
N

lnPequal qi ffi HSh ¼ �
XI

i¼1

pi ln pi ð7:14Þ

modulo a constant. Provided the system is indeed multinomial (7.12), maximising
the relative entropy (7.13) (or Shannon entropy (7.14) for equal qi), subject to any
constraints, gives the most asymptotically probable realization of the system.

Adopting this probabilistic (or combinatorial) basis of entropy, we see that
Jaynes’ MaxEnt method [31–33] can be applied to any probabilistic system, not
just in thermodynamics. For maximisation, it is necessary to incorporate the
normalisation constraint and (usually) R moment constraints, respectively:

XI

i¼1

pi ¼ 1; and
XI

i¼1

pifri ¼ hfri; r ¼ 1; . . .;R; ð7:15Þ

where fri is the ith value of property fr and hfri is the expectation of fri. Applying
the calculus of variations, we write the Lagrangian:

L ¼ �
XI

i¼1

pi ln
pi

qi
� k0

XI

i¼1

pi � 1

 !

�
XR

r¼1

kr

XI

i¼1

pifri � hfri
 !

ð7:16Þ

where kr is the Lagrangian multiplier for the rth constraint. Maximising (7.16)
then gives the most probable realization and maximum relative entropy [31–33]:

p�i ¼
qi

Z
exp �

XR

r¼1

krfri

 !

; with Z ¼ ek0 ¼
XI

i¼1

qi exp �
XR

r¼1

krfri

 !

ð7:17Þ

H� ¼ ln Z þ
XR

r¼1

kr frh i ¼ �Uþ
XR

r¼1

kr frh i ð7:18Þ

7 Control Volume Analysis, Entropy Balance and the Entropy Production 139



where * denotes the inferred state, Z is the partition function and U ¼ � ln Z is the
potential (negative Massieu) function. By further analysis of first and second
derivatives under this generic framework, it can be shown that H�ðhf1i; . . .; hfRiÞ
and Uðk1; . . .; kRÞ are Legendre transforms [31–33].

A caveat to the foregoing analysis is that the MaxEnt method is not a method of
deductive reasoning, but should instead be viewed as a method of probabilistic
inference [31, 33, 39–41, 64]. The distribution inferred by MaxEnt is not neces-
sarily the ‘‘most correct’’ representation, but simply the one which is most prob-
able given the imposed choices of constraints, prior probabilities, state space and
the relative entropy function itself. If these assumptions are incomplete or incor-
rect, the discrepancy will be incorporated in the resulting model. Furthermore,
there may be dynamical restrictions which prevent a system from attaining its most
probable state. Such phenomenology (metastable states, supersaturated solutions,
reaction kinetics, etc.) is well-known in equilibrium thermodynamics and, if
necessary, can be handled by the incorporation of additional constraints, restric-
tions to the state space or additional theoretical apparatus.

7.3.2 Thermodynamic Entropy

The thermodynamic entropy S can now be interpreted as a special case of the
generic entropy H, for a physical system constrained by its contents (usually
expressed by mean extensive variables). Consider a container of N interacting
molecules, for which it is infeasible to examine the allocation of individual
molecules to energetic or other states. We therefore consider the canonical
ensemble of all possible configurations of the system [65–70], in which replicas of
the system are allocated to a coupled bivariate classification scheme according to
their energy eij and volume Vij; where i and j respectively index the discrete energy
and volume states of the ensemble. This is illustrated schematically in Fig. 7.2.
The probabilities pij of the ijth energy-volume state of the ensemble are then
considered to be constrained by normalisation (7.15), the mean internal energy
U ¼

P
ij pijeij and mean volume V ¼

P
ij pijVij. Adopting the bivariate relative

entropy H ¼ �
P

ij pij ln pij

�
qij


 �
, the Lagrangian is:
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Fig. 7.2 Allocation scheme for the canonical ensemble of equilibrium thermodynamics
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L ¼ �
X

ij

pij ln
pij

qij
� k0

X

ij

pij � 1

 !

� kU

X

ij

pijeij � U

 !

� kV

X

ij

pijVij � V

 !

ð7:19Þ

where kU and kV are Lagrangian multipliers for U and V . Maximisation then
yields the most probable realization and maximum relative entropy:

p�ij ¼
qij

Z
exp �kUeij � kVVij


 �
; with Z ¼

X

ij

qij exp �kUeij � kV Vij


 �
ð7:20Þ

H� ¼ ln Z þ kUU þ kV V ¼ �Uþ kUU þ kV V ð7:21Þ

These are interpreted to represent the inferred or equilibrium state of the ensemble
[31]. From the empirical body of thermodynamics, or from monotonic
considerations, we recognise kU ¼ 1=kT and kV ¼ P=kT , where k is Boltzmann’s
constant, T is absolute temperature and P is absolute pressure, while qij ¼
cij=
P

ij cij is commonly expressed in terms of the degeneracy cij of the ijth energy-

volume level. Furthermore, we can identify S ¼ kH� as the thermodynamic entropy
at equilibrium, while /G ¼ kU ¼ G=T is the Planck potential,4 wherein G is the
Gibbs free energy. Equations (7.20)–(7.21) thus provide the core equations of
equilibrium thermodynamics [31–35, 69]:

p�ij ¼
cij

Ẑ
exp

�eij � PVij

kT

� 

; with Ẑ ¼ Z
X

ij

cij ¼
X

ij

cij exp
�eij � PVij

kT

� 

ð7:22Þ

S ¼ k ln Z þ U

T
þ PV

T
¼ �/G þ

U

T
þ PV

T
ð7:23Þ

Further analysis using generalised heat and work concepts [31] gives the
differential:

d/G ¼ �dSþ 1
T

dU þ P

T
dV

ð7:24Þ

Equations (7.22)–(7.24) in turn give a set of derivative relations and Legendre
duality between S and /G [31–36, 69]. Many other formulations are available for
different thermodynamic ensembles subject to various constraints [35, 36, 67].

We can now interpret the physical meaning of the potential /G [39, 69, 72, 73].
Consider a ‘‘universe’’ divided into a system of interest and an external environ-
ment. From the second law (7.25), an incremental increase in entropy of the
universe can be expressed as a sum of changes within and external to the system

4 Strictly, Planck used the negative of /G as his potential function [71, 72].
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dSuniv ¼ dSþ dSext 
 0. Although dSext cannot be measured directly, if it alters the
system in any way, it must produce a change in its constraints and/or multipliers,
hence dSext ¼ � 1

T dU � P
T dV; where the negative sign accounts for positive dSext.

Substituting in (7.20), we identify dSuniv ¼ �d/G. In consequence, if a thermo-
dynamic system can interact with an external environment, its equilibrium state is
determined by minimising its Planck potential /G; thereby maximising the entropy
of the universe, rather than by maximising the entropy of the system S alone. For
constant T ; this reduces to the well-known principle of minimum Gibbs free
energy [74].

Minimising /G requires integration D/G ¼
R

C2C d/G over some path C;
selected from the set of paths C with a specified starting point /G;0 and an endpoint
at the minimum potential /G;min. Since /G is a state function, its difference D/G ¼
/G;min � /G;0 is path-independent, but there may be restrictions on the set of
allowable paths C (e.g., only adiabatic paths or only isobaric paths), causing further
restrictions on the minimum potential /G;min, or the set of such minima, which can
be accessed by the system. Denoting dr ¼ �ðdU þ PdVÞ=T ¼ �dH=T as the
increment of entropy produced by a system, where H is the enthalpy, (7.20)
reduces to d/G ¼ �dS� dr. Since S and r are also state functions, the step
change can be written as D/G ¼ �DS� Dr. Minimisation of /G to give D/G\0
can therefore occur in three ways:

1. By a coupled increase in both S and r along path C to give D/G\0, hence with
DS [ 0 and Dr[ 0;

2. By a coupled increase in S and decrease in r along C; hence DS [ 0 and
Dr\0; provided that DS [ jDrj[ 0 to ensure D/G\0; or

3. By a couple decrease in S and increase in r along C; hence DS\0 and Dr [ 0;
provided that Dr[ jDSj[ 0 to ensure D/G\0.

The choice of scenario is governed by the set of allowable paths C, which controls
the flow of various quantities (in this example, heat) through the control surface
and hence the competition between dS and dr. The first and third scenarios can be
interpreted as a constrained maximisation of r (hence minimisation of H=T) over
the set of paths C, while the second can be viewed as a constrained minimisation.
Similarly, the first and second scenarios also involve constrained maximisation of
S over C, while the third involves its minimisation. This three-fold structure is well
established in equilibrium thermodynamics, although is usually presented in terms
of the Gibbs free energy rather than the Planck potential [68]. Rather than adopt
separate extremum principles for different processes, and to correctly account for
changes in entropy within and outside the system, the three scenarios are unified
by an overarching minimum Planck potential principle [72, 73], which at constant
T reduces, as noted, to that of minimum Gibbs free energy [74].

As will be shown, the above thermodynamically-inspired principle can be
established—using the MaxEnt framework—in other, quite different kinds of
systems.
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7.3.3 Entropy Balance and Entropy Production

Entropy Balance Equations: With the entropy concept in hand, we can now
consider the thermodynamic entropy balance in a control volume, such as that
shown in Fig. 7.1a. Our first difficulty is that S is not conserved. However, from
the second law of thermodynamics, within any closed physical system:

dS
 0 ð7:25Þ

where dS implies a mean differential over a minimum time scale, to allow for brief
excursions in the opposite sense. So, despite not being conserved, we can say that
S is preserved: once created, it cannot be destroyed. In consequence, for an
entropically open system—which can exchange entropy with its external envi-
ronment—(7.1) provides a control volume balance (‘‘law of preservation’’) for S:

DSFVðtÞ
Dt

¼ oSCV

ot
þFout

S;f �Fin
S;f ð7:26Þ

where Fout
S;f and Fin

S;f are the outflow and inflow rates of S due to fluid flow through
the control surface. The substantial derivative can also be separated, by the de
Donder technique, into externally- and internally-driven rates of change of entropy
within the fluid volume, giving the overall entropy balance equation (c.f. [75]):

DSFVðtÞ
Dt

¼ oSCV

ot
þFout

S;f �Fin
S;f ¼

DeSFVðtÞ
Dt

þ
DiSFVðtÞ

Dt ð7:27Þ

where DeSFVðtÞ=Dt represents the rate of change of entropy in the fluid volume due
to non-fluid flows (positive inwards), i.e.

DeSFVðtÞ
Dt

¼Fin
S;nf �Fout

S;nf ð7:28Þ

Similarly, DiSFVðtÞ=Dt denotes the (rate of) entropy production in the fluid volume
due to internal processes, henceforth labelled _r. The latter serves as a book-
keeping term in (7.27), ensuring that the rate of creation of entropy in the fluid
volume satisfies the second law of thermodynamics (7.25):

_r ¼
DiSFVðtÞ

Dt
¼ oSCV

ot
þFout

S;tot �Fin
S;tot 
 0

ð7:29Þ

where FS;tot ¼FS;f þFS;nf is the total entropy flow rate. Thus, by definition, the
rate of entropy production _r cannot be negative, regardless of whether the newly
created entropy is retained in the control volume or exported from it (i.e., inde-
pendent of the sign of the rate of change of S). Equation (7.29) may therefore be
viewed as a powerful manifestation of the second law, applicable to all non-
equilibrium systems.

For the integral control volume of Fig. 7.1b, from (7.4):
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DSFVðtÞ
Dt

¼ o

ot

ZZZ

CV

qsdV þ
ZZ
�
CS

qsv � ndA ð7:30Þ

where s is the specific entropy. From (7.27), this is equal to the internal rate of
entropy production in the fluid volume, _r; plus the external rate of input due to

non-fluid transport processes, �
ZZ
�

FSðtÞ
jS � ndA; where jS is the non-fluid entropy

flux:

DSFVðtÞ
Dt

¼
DiSFVðtÞ

Dt
þ

DeSFVðtÞ
Dt

¼ _r�
ZZ
�

FSðtÞ

jS � ndA ð7:31Þ

Equating (7.30)–(7.31), for coincident fluid and control volumes at time t; gives:

_r ¼
ZZZ

CV

oqs

ot
dV þ

ZZ
�

coincident CS and FSðtÞ

½jS þ qsv� � ndA ¼
DSFVðtÞ

Dt
þ
ZZ
�

FSðtÞ

jS � ndA

ð7:32Þ

Applying (7.6) and Gauss’ theorem then yields:

_r ¼
ZZZ

CV

o

ot
qsþr � JS

� �

dV ¼
ZZZ

FVðtÞ

q
Ds

Dt
þr � jS

� �

dV ð7:33Þ

where JS ¼ jS þ qsv. Finally, subdividing _r ¼
ZZZ

CV
_̂rdV; where _̂r is the (rate of)

entropy production per unit volume, and equating integrands (assuming validity at
all scales) gives the differential entropy balance equation [9, 52, 53, 76]:

_̂r ¼ o

ot
qsþr � JS ¼ q

Ds

Dt
þr � jS
 0

ð7:34Þ

By a scale invariance argument [9], _̂r cannot be negative locally (at least over a
minimum time scale) at any location, since this would continuously destroy
thermodynamic entropy within an identifiable control volume, and so violate the
second law of thermodynamics. This is entirely separate to the rate of change of
the specific entropy s; which can be positive or negative locally, depending on the
sign of the divergence term (i.e. on the local entropy flux out of the element).

Local Entropy Flux and Entropy Production: To reduce (7.34), we seek

functional forms of the non-fluid entropy flux jS and local entropy production _̂r.
For non-radiative processes, the standard approach is to start from the substantial
derivative of the specific form of Gibbs’ relation (7.23)–(7.24) [8, 52, 53, 76]:

Ds

Dt
¼

D/g

Dt
þ 1

T

Du

Dt
þ P

T

Dq�1

Dt
ð7:35Þ
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where /g ¼ g=T is the specific Planck potential and g the specific Gibbs free
energy. This adopts the local equilibrium assumption, where each infinitesimal
element is assumed to be in thermodynamic equilibrium and so can be described
by local intensive variables 1=T ; P=T and flc=Tg; where lc is the molar chemical
potential of species c. Including the work of chemical diffusion g ¼ �

P
c lcnc,

and substituting for the substantial derivatives of specific volume q�1; species
molar densities nc and specific internal energy u (see Table 7.1) gives:

q
Ds

Dt
¼ � 1

T
r � jQ þ

X

c

lc

T
r � jc �

1
T

X

c

Mcjc � rwc �
1
T

s : rv�
X

d

_̂nd D
~Gd

T

ð7:36Þ

This is expressed in terms of the molar rate of the dth reaction _̂nd ¼
P

c vcd
_̂nc ([ 0

if a product) and change in molar Planck potential of the dth reaction, D~/G ¼
Dð~Gd=TÞ ¼

P
c vcd lc=T (\ 0 if spontaneous), where vcd is the stoichiometric

coefficient of species c in the dth reaction. Comparison to (7.34), with some vector
calculus, gives the entropy flux and local entropy production [52, 53]:

jS;m ¼
1
T

� 

jQ �
X

c

lc

T

� �
jc ð7:37Þ

_̂rm ¼ jQ � r
1
T

� 

�
X

c

jc � r
lc

T

� �
þMcrwc

T

� �

� s : rv

T
�
X

d

n̂dD
~Gd

T
ð7:38Þ

These do not include the effect of radiation, examined in a later section, and so are
labelled m to signify the material or thermodynamic component. In generic form,
we identify the entropy flux (7.37) as jS;m ¼

P
r jrkr, a sum of products of fluxes

and conjugate spatial intensive variables selected from jr 2 fjQ; jcg and

kr 2 f1=T ;�lc=Tg, while the entropy production (7.38) is _̂rm ¼
P

r jr � Fr, a sum
of products of all fluxes or rates and their conjugate gradients or driving forces
Fr 2 frð1=TÞ;�rðlc=TÞ;�rwc=T ;�rv=T ;�Dð~Gd=TÞg [8, 9, 52]. Usually, _̂rm

is further simplified—assuming conditions close to thermodynamic equilibrium—
using the linear Onsager phenomenological relations and the Curie postulate, to
give a bilinear sum of thermodynamic forces [52, 53, 77].

Thermodynamic Representations: Before embarking on further analyses, it is
worth scrutinising the physical representation of the bilinear, non-radiative local
entropy production (7.38). As evident, it includes two quite different types of
physical processes:
Type I Processes: Those which can be represented to occur within an infinitesimal
volume element at local spatial equilibrium with respect to the spatial intensive
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variables kr 2 f1=T ;�lc=T;�wc=T ;�v=Tg, as shown in Fig. 7.3a.5 In (7.38),
only the final chemical reaction term falls into this category. In this case, the
volume element need not be in chemical equilibrium, but may be maintained at a
higher Planck potential by its chemical composition. This category also includes
nuclear and subatomic decay processes, not usually represented in (7.38).
Type II Processes: Those which—although formulated in terms of an infinitesimal
volume element—are in fact associated with a physical flux which diminishes (or
acts conjugate to) a spatial gradient. For the rth process, this can be written as
_̂rm;r ¼ jr � rkr. The heat, species mass and momentum transport terms in (7.38) all
fall into this category. These have two possible physical representations:

(a) If each volume element is considered to be in local spatial equilibrium, as
shown in Fig. 7.3a, then no Type II entropy production could occur within an
element, but only between elements. This necessitates analysis of the boundary
entropy production terms, which must be integrated over the internal bound-
aries and/or somehow assigned to each element.

(b) If each volume element need not be in local spatial equilibrium, it can be used
to directly represent both the fluxes and gradients, as shown in Fig. 7.3b.
Arguably, this gives a more physically defensible representation of a non-
equilibrium system—dependent upon the continuum assumption—and for this
reason is almost universally adopted throughout fluid mechanics and heat
transfer analysis (e.g. in differential derivations of the continuity, Navier–
Stokes and energy equations). However, it contradicts the assumption of local
equilibrium, creating a philosophical difficulty in the use of intensive variables
which, strictly, are defined only at equilibrium [69]. Instead, in this repre-
sentation, both a value and gradient in each intensive variable are assigned to
each point within the infinitesimal element.

Representations II(a) and II(b) involve fundamentally different idealisations of
physical transport processes. Their analysis requires different mathematical tools,
respectively a hybrid difference-differential calculus and the usual differential
calculus.

dy

dx

dz rdy

dx

dz

r r
+

r(a) (b)
Fig. 7.3 Infinitesimal
volume elements for a local
spatial equilibrium (Type I
and II(a)) and b continuum
(Type II(b)) representations,
showing the rth flux and its
intensive variables

5 Some authors unite the variables conjugate to the species flux jc into a local electrochemical or
gravichemical potential divided by temperature, �lg

c=T [73].
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To tease out the distinction between Type II(a)–(b) representations, consider an
individual boundary between two infinitesimal elements, as shown in Fig. 7.3a, b.
For Type II(b) elements, there is no discontinuity in the rth intensive variable at
each boundary, and—by continuity—no change in the rth flux, causing no (or an
infinitesimal) change in each non-fluid entropy flux. The fluid-borne entropy flux
qsv is similarly unaffected. In consequence, no (or an infinitesimally small)
entropy production occurs at the boundary. Type II(a) elements, in contrast,
exhibit a step change Dkr ¼ kþr � k�r in each spatial intensive variable across the
boundary, giving the net entropy production per unit area J K�1m�2s�1


 �
due to

thermodynamic processes at the boundary:

_r
^

m ¼ DðqsÞvþ
X

r

jr Dkr

" #

�m ¼ ½DðqsÞvþ DjS;m� �m ¼ DJS;m �m
 0 ð7:39Þ

where jr is the flux of the rth conserved quantity, m is the unit normal to the
boundary, DjS;m is the net non-fluid, non-radiative entropy flux and DJS;m also
includes the net fluid-borne entropy flux (all positive in the direction Dkr [ 0). In
(7.39), it is assumed the fluid-borne entropy flux undergoes a step change at the
boundary (e.g. due to a discontinuity Dq or Ds caused by a step change in 1=T or
lc=T). No step changes are considered in v or jr, being fluxes of conserved
quantities. The non-radiative entropy production along a boundary C is then

_rC;m ¼
ZZ

C
_r
^

m dA.

Often it is desirable to account separately for each side of the boundary, leading
to the absolute or half-boundary entropy production per unit area due to outward
flow from a specified face of a volume element:

_x
^

m ¼ qsvþ
X

r

jr kr

" #

� n ¼ ½qsvþ jS;m� � n ¼ JS;m � n? 0 ð7:40Þ

where n is the outward unit normal. As expected, this depends on the material

entropy flux JS;m at the boundary. From (7.39), _r
^

m ¼ _x
^þ

m � _x
^�

m . The total entropy
production along C is thus given by the two-sided surface integral

_rC;m ¼
ZZ

Cþ
_x
^þ

m dA�
ZZ

C�
_x
^�

m dA ¼
ZZ
�

C
_x
^

m dA ¼
ZZ
�

C
JS;m � ndA. Applying

Gauss’ divergence theorem to the surface C enclosing the ‘‘internal volume’’ Co,

we obtain the interesting result that _rC;m ¼
ZZZ

Co
r � JS;m dV 
 0, even though

ZZZ

Co
dV ¼ 0.

From the second law (7.25), each net boundary entropy production (7.39) is
non-negative (over a minimum observation time). In contrast, the half-boundary
terms (7.40) can be of arbitrary sign, so long as their difference across each
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internal boundary is non-negative.6 As a test of consistency, integration of (7.40)

over the external control surface yields the net entropy flow rate
ZZ
�

CS
JS;m � ndA

contained in (7.32).
Equations (7.39)–(7.40) are used in later sections. They cannot, however, be

reconciled in a straightforward manner to the differential equation in (7.34), which
corresponds strictly to the Type II(b) or continuum representation.

Effect of Radiation: An important category of processes, omitted from the
standard analysis (7.36)–(7.38)—and indeed from most references on non-equi-
librium thermodynamics—is the entropy production associated with electromag-
netic radiation. Its major principles were however enunciated by Planck [60, 71]
over a century ago, and further developed over the past century (e.g. [78–86]).
However, there still remains widespread confusion in its calculation, over choices
of symbols and preferred parameters, and even in the most appropriate theoretical
approach.7 Many renowned texts on radiation omit the topic entirely (e.g. [87]).

Firstly, the energy of unpolarised electromagnetic radiation per unit frequency
travelling through an infinitesimal area (of unit normal m) and infinitesimal solid
angle per unit time is represented by its specific energy intensity or energy radi-
ance Im (SI units: W m�2s sr�1). This is a function of the direction m. The radi-
ative energy flux or energy irradiance W m�2


 �
of radiation striking an

infinitesimal area with unit normal n is then obtained by integration over all
incident directions and the spectrum [71]:

jE;m ¼ n

Z1

0

ZZ

XðmÞ

ImðmÞ m � n dXðmÞdm ð7:41Þ

where X is the solid angle (in steradians) and m is the frequency. Most authors
employ m � n ¼ cos h in (7.41), with h a function of m. Here, (7.41) is integrated
over a sphere XðmÞ 2 ½0; 4p� to account for travelling radiation from all directions
(the net flux); for radiation incident on a solid surface, (7.41) is integrated over a
hemisphere XðmÞ 2 ½0; 2p� (the absolute flux). For polarised radiation, the two
orthogonal components must be examined separately [84]; an even more general
description invokes the two-dimensional complex polarisation tensor, involving
conservation of linear and angular momentum as well as energy [88]. Note that
(7.41) describes a reversible energy flux; this only becomes irreversible in the
event of changes in radiance, which necessarily require the interaction of radiation
and matter [84].

Similarly, we can consider the specific entropy intensity or entropy radiance
Lm W K�1m�2s sr�1

 �

of radiation. This is given by [71, 78, 79, 81–85]:

6 In this respect, the half-boundary entropy production terms _x
^

m are analogous to half-reaction
electrode potentials.
7 For consistency with this chapter, some notational changes are also necessary here.
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LmðmÞ ¼
2km2

c2
0

c2
0ImðmÞ
2�hm3

þ 1

� 

ln
c2

0ImðmÞ
2�hm3

þ 1

� 

� c2
0ImðmÞ
2�hm3

ln
c2

0ImðmÞ
2�hm3

� �

ð7:42Þ

where k is Boltzmann ‘s constant, c0 is the speed of light in a vacuum and �h is
Planck’s constant. Equation (7.42) can be obtained from the Bose–Einstein entropy
function, needed to describe electromagnetic radiation [60, 71, 78, 79, 89–91], and
is a property of the radiation itself, independent of the entropy produced by its
conversion to heat. A different (Fermi–Dirac) relation applies to neutrinos [92]. The
radiative entropy flux or entropy irradiance W K�1 m�2


 �
is then given by:

jS;m ¼ n

Z1

0

ZZ

XðmÞ

LmðmÞ m � n dXðmÞdm ð7:43Þ

For unpolarised radiation emitted from a black-body of temperature T , the specific
energy intensity is given by the well-known Planck equation [60, 71]:

Im ¼ 2Bm ¼
2�hm3

c2
0

1
expð�hm=kTÞ � 1

ð7:44Þ

whereupon (7.43) reduces to jjS;mj ¼ 4
3 kSBT3, where kSB is the Stefan-Boltzmann

constant [81, 82].
We can now construct the local entropy production as the sum of non-radiative

(material) and radiative components [81–86]:

_̂r ¼ _̂rm þ _̂rm ð7:45Þ

From (7.34), applicable equally to either component:

_̂rm ¼
o

ot
qsþr � JS;m ¼

o

ot
qsþr � jS;m þr � ðqsvÞ ð7:46Þ

_̂rm ¼
o

ot
Ŝm þr � jS;m ð7:47Þ

where Ŝm is the entropy per volume due to radiation. Note that only the radiative
entropy flux jS;m appears in (7.47); the Clausius heating term jE;m=T due to the
radiative energy flux must be incorporated into the thermodynamic entropy flux in
(7.46) [81, 82]. Putting these together, the total local entropy production due to
material processes and radiation is:

_̂r ¼ o

ot
qsþ o

ot
Ŝm þr � ðqsvÞ þ r � jS;m þr � jS;m ð7:48Þ

To reduce (7.48), several approaches have been taken in the literature. Essex
[81, 82] applies a volumetric form of the Gibbs equation (7.23) and total energy
conservation, for flows only of heat, radiation and chemical constituents, to give:
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_̂r ¼ jQ � r
1
T

� 

�
X

c

jc � r
lc

T

� �
( )

� 1
T

o

ot
Ûm þ

o

ot
Ŝm �

r � jE;m

T
þr � jS;m

ð7:49Þ

where Ûm is the energy per volume of radiation, and the braces enclose the material
component. Essex [83] extended this to fluid flows with viscous dissipation.
Alternatively, Callies and Herbert [84] and Goody and Abdou [86] adopt a Gibbs-
like equation for radiation:

dŜm ¼
1
Tm

dÛm ð7:50Þ

where Tm is a radiative temperature, defined based on (7.44) as the temperature of
matter in equilibrium with radiation of frequency m. Non-black-body radiation can
thus exhibit different radiative temperatures at different wavelengths. For heat and
radiative transport only, this leads to [80, 82, 84, 86]:

_̂r ¼ jQ � r
1
T

� 

þ
Z1

0

ZZ

XðmÞ

1
c0

oIm
ot
þm � rIm

� 
1

TmðmÞ
� 1

T

� 

dXðmÞdm ð7:51Þ

Kröll [80] and Callies and Herbert [84] argue that the integral in (7.51) provides a
bilinear formulation of the radiative entropy production, with the first term in
brackets (the source function) behaving as an extensive variable. Essex [81, 82],
however, disputes this view, since the bilinearity applies to each wavelength and
direction. In any case, further corrections are needed in the event of scattering.

As pointed out by Essex [82], integration of the local radiative entropy pro-
duction (7.48) over a control volume is not straightforward, due to the emission
and absorption of radiation by non-adjacent volume elements. This creates direct,
non-local connections between every element dV , creating a very different control
volume to those usually examined in fluid mechanics. This gives the entropy
production term:

_rheat
m ¼ 1

2

ZZZ

CV

ZZZ

CV

hðx1; x2Þ
1

Tðx2Þ
� 1

Tðx1Þ

� 

dVdV ð7:52Þ

where hðx1; x2Þ is the net rate at which heat from position vector x1 is delivered to
x2 via radiation. Allowing for the loss of energy and entropy radiation from the
control volume then gives:

_rm ¼
1
2

ZZZ

CV

ZZZ

CV

hðx1; x2Þ
1

Tðx2Þ
� 1

Tðx1Þ

� 

dVdV �
ZZZ

CV

fCSðxÞ
TðxÞ dV

þ
ZZ

CS

jS;m � ndA
ð7:53Þ
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where fCSðxÞ is the component of radiative energy from position x which escapes
through the control surface. For a control volume which completely encloses a
planet, all terms in (7.53) and all material terms vanish except the entropy radi-

ation, giving _r ¼
ZZ

CS
jS;m � ndA [81, 84]. On these grounds, Essex [81] argues

against the MaxEP hypothesis of Paltridge [10], on the grounds that the dominant,
radiative entropy production term is missing.

A rather different approach for radiative transfer, involving a minimum entropy
production closure of the radiative energy flux (7.41) and higher-order moments, is
outlined in [93]. Further treatments of entropy production due to radiative
absorption, scattering and other interactions lie beyond the scope of this chapter,
and are discussed in the above-cited works.

Compartmentalisation: For many applications, it is desirable to subdivide a

control volume into K contiguous compartments. From _r ¼
ZZZ

CV
_̂rdV , it might

be assumed that the global entropy production is simply the sum of that in each
compartment. However, this depends on the representation used. For compart-
ments composed of Type II(b) elements, with no intensive variable discontinuities
at their boundaries, this assumption is correct. If, however, the compartments are
composed of Type II(a) elements, it is also necessary to account for the entropy
production due to flows between compartments. In consequence, for purely
material flows:

_rm ¼
XK

a¼1

_ra
m þ

XK

a¼2

Xa�1

b¼1

ZZ

CSab

_r
^ab

m dA

¼
XK

a¼1

_ra
m þ

XK

a¼2

Xa�1

b¼1

ZZ

CSab

DðqsÞabvab þ
X

r

jab
r Dkab

r

" #

�mdA

ð7:54Þ

where _ra
m is the material entropy production in the ath compartment, while _r

^ab

m is
the material entropy production per area on the control surface CSab between the
ath and bth compartments (counted only once and for a 6¼ b). In terms of bulk flow
rates:

_rm ¼
XK

a¼1

_ra
m þ

XK

a¼2

Xa�1

b¼1

DFab
S;f þ DFab

S;nf ;m

h i
¼
XK

a¼1

_ra
m þ

XK

a¼2

Xa�1

b¼1

DFab
S;m ð7:55Þ

where DFab
S;f , DFab

S;nf ;m and DFab
S;m respectively designate the bulk net fluid-borne,

non-fluid (non-radiative) and total thermodynamic entropy flow rates normal to the
ab control surface. If radiative transfer can also take place, (7.54)–(7.55) must be
augmented by the three terms in (7.53), with attention to boundary transitions.
Relations (7.54)–(7.55) do not require steady state; by definition (7.29), each
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measurable entropy production term is independently non-negative and therefore
additive.

Steady State: Since most entropy-producing systems involve fluctuating con-
ditions, a strict steady state (7.8) or (7.9) is not meaningful. We thus consider the
mean steady state ohSiCVot ¼ 0, for which the bulk balance (7.27) gives, in
general:

h _ri ¼
X

j2CS

½hFj
S;f i þ hFj

S;nf i� ¼
X

j2CS

hFj
S;toti

ð7:56Þ

where hFj
S;f i, hFj

S;nf i and hFj
S;toti are respectively the bulk mean fluid-borne,

non-fluid and total entropy flow rates through portion j of the control surface.
Similarly, (7.32)–(7.33) and (7.34) (hence (7.48)) give, respectively:

o Sh iCV

ot
¼ 0) _rh i ¼

ZZ
�
CS

JSh i � ndA ¼
ZZZ

CV

r � JSh idV ð7:57Þ

o

ot
qsh i ¼ 0 ) _̂r

� �
¼ r � Jsh i ¼ r � qsvh i þ r � jSh i ð7:58Þ

From (7.56)–(7.58), the mean steady state is quite special, since under this con-
dition, all of the entropy production is exported from the control volume. This
restricts the total mean entropy flow terms in (7.56)–(7.58) to be nonnegative.
Accordingly, at mean steady state, the total mean entropy production can be
calculated either by integration of the mean of (7.38) over the control volume, or
more directly from the sum (7.56) or integral (7.57) of mean entropy flows through
the control surface.

We therefore see that (7.56)–(7.57) express an internal-external entropy bal-
ance: at mean steady state, the total mean entropy produced within a control
volume will exactly balance the total mean entropy flow out of its external
boundaries. Often this is assumed without proof, but it requires the mean steady
state, and applies only to the total quantities. In the presence of radiation, the
radiative transport terms must be included within these totals.

7.3.4 Reynolds-Averaged Entropy Production
and Closure Problem

We now raise an objection to one feature of previous studies of the MaxEP
principle or hypothesis, as applied to planetary climate and other fluid flow sys-
tems [10, 11, 13–16]. This objection applies only to the material (non-radiative)
component of time-varying, stationary flows, amenable to the Reynolds decom-
position and averaging method [46, 51, 57, 58]. Although not stated explicitly, the
vast majority of such studies do not actually use the mean steady-state entropy
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production h _̂rmi ¼
P

‘hj‘ � F‘i (7.58) or its global form (7.56)–(7.57). Instead,
they invoke a different quantity: the steady-state entropy production in the mean,

_̂rm

� �
¼
P

‘hj‘i � hF‘i, based on products of mean fluxes or rates and their conjugate
mean gradients or forces. These two quantities are not the same. By Reynolds
decomposition of each independent quantity a ¼ hai þ a0, where a0ðx; tÞ is the
time-varying component, subject to the usual averaging rules,8 the difference is:

_̂rm

�
�
�
�
 �
¼h _̂rmi � _̂rm

� �
¼
X
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� 0� ffi
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d
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0
d D

~Gd

T

� 0* +


 0

ð7:59Þ

Usually the flux and rate terms in (7.59) are linearised using Onsager coefficients
as functions of the forces, giving a sum of quadratic fluctuation terms (see [94,
95]). Depending on its cause, the body force may be strictly steady and so dis-
appear from (7.59). All other terms, however, consist of nonzero nonlinear
products, except under strict steady-state conditions.

In dissipative systems far from equilibrium, the mean fluctuating entropy
production _̂rm

�
�
�
�
 �

(7.59) can be considerably larger—in many cases by orders of

magnitude—than the entropy production in the mean _̂rm

� �
[46, 51, 57, 58]. It is

therefore difficult, a priori, to see why the latter should constitute the objective
function for a variational principle. As shown in Sect. 7.4, however, precisely this
function emerges from a judicious MaxEnt analysis of a non-equilibrium system at
steady state.

We now incorporate fluctuating radiation with mean entropy production h _̂rmi
and mean net entropy flux hjS;mi. Writing jS;m

� �
¼
P

‘hj‘ihk‘i for the material

entropy flux in the mean and jS;m

�
�

�
�
 �
¼
P

‘hj0lk
0
‘i for its mean fluctuation, Reynolds

averaging of the local entropy balance (7.48) yields:

h _̂ri ¼ _̂rm

� �
þ _̂rm

�
�
�
�
 �
þ h _̂rmi ¼ r � f qsvb c þ 1vj jð Þ þ jS;m

� �
þ jS;m

�
�

�
�
 �
þ hjS;mig

ð7:60Þ

with qsvb c ¼ hqihsihvi and 1vj jð Þ ¼ hq0s0ihvi þ hs0v0ihqi þ hq0v0ihsi þ hq0s0v0i. On
integration and application of Gauss’ theorem:

8 Typical Reynolds averaging rules for irreducible parameters a and b are: h1i ¼ 1, hhaii ¼ hai,
haþ bi ¼ hai þ hbi, hahbii ¼ haihbi, ha0i ¼ 0, hoa=oxi ¼ ohai=ox and h

R
adxi ¼

R
haidx [46,

51, 57, 58].
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or, in macroscopic terms:

h _ri ¼ _rmb c þ _rmj jð Þ þ h _rmi ¼
P

j2CS
Fj

S;m

j k
þ Fj

S;m

�
�
�

�
�
�

� �
þ hFj

S;mi
n o

ð7:62Þ

The non-vanishing mean fluctuation terms of the material flows in (7.60)–(7.62)
create many difficulties. Firstly, there is no guarantee—even at steady state—that
the material entropy production in the mean _rmb c will be in balance with the net

outward material entropy flow in the mean
P

j2CS Fj
S;m

j k
. In other words, it is

possible that part of the mean fluctuating component of the material entropy

production _rmj jð Þ is converted into outward entropy flows in the mean Fj
S;m

j k
, or

into the mean radiative flux hFj
S;mi. Alternatively, some of the material entropy

production in the mean _rmb c could be converted into mean fluctuating entropy

flows Fj
S;m

�
�
�

�
�
�

� �
or carried by radiation. It is therefore not possible to claim, without

further proof, that the extremum calculated using one of _rmb c or
P

j2CS Fj
S;m

j k
, or

one such term plus its corresponding radiative term, is equivalent to the extremum
based on the other. Secondly, it is not possible, even in principle, to calculate the
fluctuation terms from the mean quantities, since they contain additional unknown
(and correlated) parameters, unless some other theoretical principles or constitu-
tive relations can be invoked.

These features of fluctuating, dissipative flow systems are well-known in fluid
mechanics, but are here generalised to all non-equilibrium systems with fluid and
non-fluid flows. They can collectively be referred to as the entropy production
closure problem. This problem affects the vast majority of previous studies on
entropy production extremum principles, in which the distinction between in-the-
mean and total mean components is not taken explicitly into account.

7.4 MaxEnt Analysis of Flow Systems

We now close our discussion of control volume analysis and entropy balance by a
direct MaxEnt analysis of a flow system [39–41]. This provides a fundamental
framework for the analysis of non-equilibrium systems—indeed, as fundamental
as thermodynamics itself—yet underpinned by the same generic foundation
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provided by Jaynes’ method. The analysis can be applied at any scale, integral or
differential [41]; here we only examine the local scale, in the absence of radiation.

Consider an infinitesimal volume element within a control volume, as shown in
Fig. 7.1b, using the Type II(b) continuum representation. Such a fluid element

experiences instantaneous values of various fluxes and rates j‘;i 2 fjQ; jc; s; _̂ndg. At
the mean steady state, these are constrained by their mean values hj‘i 2 fhjQi; hjci;
hsi; h _̂ndig. We therefore adopt the multivariate relative entropy
Hst ¼ �

P
i pi lnðpi=qiÞ—here termed the flux entropy [39]—as a measure of the

variability or uncertainty in the allocation of fluxes and rates to possible instan-
taneous values. Combining the entropy and constraints gives the Lagrangian:

Lst ¼ �
X

i

pi ln
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qi
� f0

X

i

pi � 1

 !

�
X

‘

f‘ �
X

i

pi j‘;i � hj‘i
 !

ð7:63Þ

where f0 and f‘ are Lagrangian multipliers for normalisation and the ‘th constraint.
Maximisation yields the most probable realization and maximum flux entropy:

p�i ¼
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Zst
exp �
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X

‘
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ð7:64Þ

H�st ¼ ln Zst þ
X

‘

f‘ � hj‘i ¼ �Ust þ
X

‘

f‘ � hj‘i ð7:65Þ

where Zst is the flux partition function and Ust ¼ �f0 can be interpreted as a local
flux potential for non-equilbrium systems, analogous to the Planck potential in
equilibrium thermodynamics. Comparing (7.65) to the local material entropy
production (7.38), we recognise the multipliers as proportional to the mean gra-
dients or forces:
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where K is a positive constant J K�1 m�3 s�1

 �

. Equations (7.64)–(7.65) then give:

p�i ¼
qi

Zst
exp

_̂rm;i

K ð7:67Þ

H�st ¼ �Ust �
_̂rm

� �

K ð7:68Þ

where _̂rm;i ¼
P

‘hF‘i � j‘;i is the local material entropy production for the ith
category or state, based on mean gradients or forces. We therefore obtain a Gibbs-
like relation (7.68) for a steady-state flow system, analogous to (7.23) for equi-
librium systems, which contains the local material entropy production in the mean
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_̂rm

� �
. Further analyses, analogous to those in Sect.3.1, provide a set of derivative

relations and Legendre duality between H�st and Ust [39–41].
Just as in equilibrium thermodynamics (see Sect. 7.3.2), we can interpret the

potential Ust as the state function which is minimised to give the most probable
state of a ‘‘universe’’, consisting of the flow system (control volume) and its
controlling environment. Rewriting (7.68) using generalised heat and work con-
cepts [31]:

dUst ¼ �dH�st �
d _̂rm

� �

K ð7:69Þ

in which each quantity Ust, H�st and _̂rm

� �
is a state function, we again obtain the

step change DUst ¼ �DH�st � D _̂rm

� �
=K, given by integration

R
Cst2Cst

D/st over

some path Cst from a set of allowable paths Cst. We again see that minimisation of
Ust to give DUst\0 can occur in three ways:

1. By a coupled increase in both H�st and _̂rm

� �
along Cst, whence DH�st [ 0 and

D _̂rm

� �
[ 0;

2. By a coupled increase in H�st and decrease in _̂rm

� �
along Cst, such that

DH�st [ jD _̂rm

� �
=Kj[ 0; or

3. By a coupled decrease in H�st and increase in _̂rm

� �
along Cst, such that

D _̂rm

� �
=K[ jDH�stj[ 0.

The first and third scenarios can be interpreted as a constrained maximisation of
the entropy production (MaxEP) in the mean, over the set of paths Cst. In contrast,
the second scenario can be viewed as a constrained minimisation of the entropy
production (MinEP) in the mean, over Cst. Such interpretations do not, however,
represent the whole picture, since they fail to account for changes in the flux
entropy H�st, which can also be interpreted as being maximised in scenarios 1 and 2
and minimised in scenario 3. For maximum generality, the three scenarios can be
united into a minimum flux potential principle which controls the state of an
infinitesimal flow system.

Further treatments of this analysis are available elsewhere [39–41, 96, 97]. An
integral formulation can also be developed, applicable to an entire control volume
at mean steady state [41]. The connection between global and local formulations—
especially a formulation which includes radiation (7.48) or which takes account of
the entropy production closure problem (Sect. 7.3.4)—remains unresolved and
requires further research.

To summarise, the foregoing MaxEnt analysis indicates that there is no uni-
versal MaxEP or MinEP principle applicable to non-equilibrium flow systems.
Instead, such ‘‘principles’’ emerge—in the mean—as subsidiary effects under
particular conditions. This conclusion is supported by convincing experimental
evidence, at least at the integral scale of analysis. This includes inversion of the
Paltridge MaxEP principle for fluid flow in pipes, subject either to constraints on
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the flow rates or the conjugate pressure gradients [27–30]. Analogous extremum
inversions are also observed or suggested by theoretical analyses of plasmas [98,
99], turbulent shear flows [100], Rayleigh-Bénard convection [101], heat or
momentum transfer with advection [102] and flows around particles [103].
According to the present analysis, such phenomena will be governed by a more
general principle involving minimisation of some quantity, related to the flux
potential Ust; the ongoing challenge is to enlarge the underlying theoretical
framework.

7.5 Conclusions

This chapter explores the foundations of the entropy and entropy production
concepts, using the engineering tool of ‘‘control volume analysis’’ for the analysis
of fluid flow systems. Firstly, the principles of control volume analysis are
enunciated and applied to flows of conserved quantities (e.g. mass, momentum,
energy) through a control volume, giving integral (Reynolds transport theorem)
and differential forms of the conservation equations. Strict (instantaneous) and
mean definitions of the steady state are provided, based on a stationary first
moment or ‘‘Reynolds average’’. The generic entropy concept H—and the purpose
of the maximum entropy (MaxEnt) principle—are established by combinatorial
arguments (the Boltzmann principle). An entropic analysis of an equilibrium
thermodynamic system is then conducted, giving the thermodynamic entropy S.
Control volume analyses of a flow system then gives the ‘‘entropy production’’
concept for simple, integral and infinitesimal flow systems. Some technical fea-
tures of such systems are then examined, including discrete and continuum rep-
resentations of volume elements, the effect of radiation, and the analysis of
systems subdivided into compartments. A Reynolds decomposition of the entropy
production equation then reveals an ‘‘entropy production closure problem’’ in
fluctuating dissipative systems: even at steady state, the entropy production based
on mean flow rates and gradients is not necessarily in balance with the outward
entropy fluxes based on mean quantities. Finally, the direct application of Jaynes’
MaxEnt method yields a theoretical framework with which to predict the steady
state of a flow system. This is cast in terms of a ‘‘minimum flux potential’’
principle, which reduces, in different circumstances, to maximum or minimum
entropy production (MaxEP or MinEP) principles based on mean flows and
gradients.

Further, substantial research is required on many of the formulations presented
in this chapter, especially on the newly disclosed entropy production closure
problem (Sect. 7.3.4) and on the MaxEnt analysis of steady-state flow systems
(Sect. 7.4). Within the MaxEnt formulation, the effects of local to global scaling
(see Sect. 7.2 and [39–41, 96]) and compartmentalisation (Sect. 7.3.3); of time
versus ensemble averaging and associated ergodic and transient effects; of non-
local interactions by electromagnetic, neutrino or other radiation Sect. 7.3.3); and
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of the closure problem Sect. 7.3.4), remain unresolved. It is hoped that this chapter
inspires others to attain a deeper understanding and higher technical rigour in the
calculation and extremisation of the entropy production in flow systems of all
types.
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Chapter 8
Earth System Dynamics Beyond
the Second Law: Maximum Power Limits,
Dissipative Structures, and Planetary
Interactions

Axel Kleidon, Erwin Zehe, Uwe Ehret and Ulrike Scherer

Abstract Planet Earth is a thermodynamic system far from equilibrium and its
functioning—obviously—obeys the second law of thermodynamics, at the detailed
level of processes, but also at the planetary scale of the whole system. Here, we
describe the dynamics of the Earth system as the consequence of sequences of
energy conversions that are constrained by thermodynamics. We first describe the
well-established Carnot limit and show how it results in a maximum power limit
when interactions with the boundary conditions are being allowed for. To
understand how the dynamics within a system can achieve this limit, we then
explore with a simple model how different configurations of flow structures are
associated with different intensities of dissipation. When the generation of power
and these different configuration of flow structures are combined, one can associate
the dynamics towards the maximum power limit with a fast, positive and a slow,
negative feedback that compensate each other at the maximum power state. We
close with a discussion of the importance of a planetary, thermodynamic view of
the whole Earth system, in which thermodynamics limits the intensity of the
dynamics, interactions strongly shape these limits, and the spatial organization of
flow represents the means to reach these limits.
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8.1 Introduction

Heat flows from warm to cold, water flows from the mountain top to the valley
floor and wood burns into ashes. The reverse direction for these processes does not
quite make sense. Heat does not spontaneously flow from cold to warm, water does
not flow uphill, and wood does not emerge from the ashes. These directions reflect
the fundamental direction imposed by the second law of thermodynamics. Yet, at
the same time, this implication is almost trivial, in the sense that nobody would
seriously question these directions as this is what we observe in nature over and
over again. In this respect, the second law does not seem to contain much value to
learn more about these processes because this knowledge is already established in
the many mathematical descriptions we use to describe Earth system processes. So
the basic question is whether there is more to learn from the second law of
thermodynamics beyond these general trivialities?

The proposed principle of Maximum Entropy Production (MaxEP) seems to
suggest that there is more to learn. The MaxEP principle states that processes do not
merely follow the second law, but proceed at a maximum rate at which the rate of
entropy production is maximized. This would essentially mean that the dynamics of
isolated systems do not merely evolve towards a state of thermodynamic equilib-
rium, but that they would do so at the fastest possible rate. At the core of the
thermodynamic interpretation of MaxEP is a trade-off, by which a greater flux is
associated with a more depleted gradient. Since entropy production is expressed by
the product of flux and gradient, the trade-off between flux and gradient results in a
state of maximum entropy production at intermediate values for the flux and gra-
dient. Over the last 15 years, renewed attention has been given to this principle, in
terms of its theoretical basis [1–5] as well as its application to Earth and envi-
ronmental processes [6–8]. While there are some indications for support, e.g.
regarding heat transport by planetary atmospheres in simple climate models [9, 10]
as well as general circulation models [11, 12], there are also quite a number of
issues that still need to be resolved [13–15]. For instance, why should environ-
mental systems ‘‘care’’ about entropy production, rather than more traditional
quantities such as mechanical forces or mass fluxes? How would systems know that
they ‘‘need’’ to maximize entropy production? With the breadth of competing
processes shaping the Earth system, how do we know which entropy production
should be maximized? And what new insights can be provided by MaxEP or similar
maximization principles that we cannot get without these principles?

In this chapter we provide a brief overview of how these shortcomings of the
proposed MaxEP principle can be overcome by shifting the focus onto the max-
imization of power, i.e. work through time, within an Earth system context. This
maximization of power yields states that are nearly indistinguishable from
equivalent MaxEP states, but it provides a clearer basis to understand which aspect
is maximized within a system and to understand how this maximization is
achieved. To do so, we first derive the Carnot limit from the laws of thermody-
namics and then relate it to the maximum power limit in the next section. Then we
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illustrate how maximization can be achieved by the organization of flow and how
it relates to basic feedbacks that shape the evolutionary dynamics. This is then
applied to the Earth system at large to explain how the dynamics and couplings of
the planet essentially reflect the acceleration of the second law at the planetary
scale. We close with a brief summary and conclusions.

8.2 Maximum Power Limits

Thermodynamics informs us about the limits of how much work can be derived
from a heating gradient. The best known limit is the Carnot limit, which represents
the best case for extracting work from a heating gradient that satisfies the first and
second law of thermodynamics. For its derivation, we consider a system shown in
Fig. 8.1a as a dashed box labeled ‘‘heat engine’’ that is situated between a hot
reservoir with temperature Th and a cold reservoir with temperature Tc. Applied to
this setting, the first law in a steady state in which the internal energy does not
change in time is represented by the balance of the heating by the heat flux Jin, the
cooling by Jout, and the mechanical work done through time (or power), Pex:

0 ¼ Jin � Jout � Pex ð8:1Þ

To identify the constraints imposed by the second law, we need to consider the
entropy balance of the system . When we consider this balance in a steady state in
which the entropy of the system does not change in time, this balance is repre-
sented by the entropy production due to irreversible processes within the system,
r, the entropy import by heating, Jin=Th, and the entropy export by cooling,
Jout=Tc:

0 ¼ r þ Jin

Th
� Jout

Tc
ð8:2Þ

The second law requires that r� 0. With this requirement, we can combine
Eqs. (8.1) and (8.2) and solve for Pex:

Pex� Jin
Th � Tc

Th
ð8:3Þ

The best case is given when the power equals the right hand side of this
equation and this is known as the Carnot limit. It expresses the maximum rate by
which heat can be converted into mechanical work that is permitted by the first and
second law. Greater values of Pex ¼ Jin � Jout would require r\0 in Eq. (8.2),
which would violate the second law. Such conditions are shown in the upper right
in Fig. 8.1a by the shaded area.

In this derivation of Pex, it is assumed that no entropy is associated with Pex, so
that all of Pex is associated with performing work. In the Earth system, such work
is needed, for instance, to generate kinetic energy associated with motion, or to lift
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material against gravity and generate potential energy. We will refer to the gen-
erated form of energy as ‘‘free energy’’ here in a general sense because it is
equivalent to the capacity of a system to perform work. The free energy is asso-
ciated with a gradient of a different variable. For instance, when work is performed
to generate motion, the form of free energy is kinetic energy, and the associated
gradient is in the associated momentum. Hence, the Carnot limit can be seen as the
maximum rate by which a heating gradient can be converted into a gradient of
another variable.

The derivation of the Carnot limit makes two, important assumptions: (1) the
two heat reservoirs that drive the heat engine remain at fixed temperatures and are
not affected by the generation of work within the system; and (2) no irreversible
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Fig. 8.1 Systems used in the text to describe a the Carnot limit and b the maximum power limit.
The dashed line in the figures on the left show the delineation of the system boundary. The right
panels show the sensitivity of the heat fluxes Jin and Jout, the temperature gradient DT ¼ Th � Tc

and the extracted power Pex to the heat flux utilized by the engine. The area shaded grey in the
upper right plot shows conditions that is not permitted by the second law as it would require
negative entropy production within the system, so that the Carnot limit of maximum power in the
upper system is located at the edge of the shaded area. In the system shown in b, the maximum
power limit results from the trade-off between a greater heat flux Jex and the reduced temperature
difference DT . After [17]
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process takes place within the system. These assumptions cannot be made for
many Earth system processes. Atmospheric convection, for instance, is driven by
the heating associated with the absorption of solar radiation at the surface and the
cooling aloft through the emission of terrestrial radiation. The convective motion
transports about 99 W m-2 from the surface to the atmosphere in the global mean
[16], which is more than half of the surface solar radiative heating of 160 W m-2.
Hence, the surface temperature is not a fixed boundary condition that drives the
convective heat engine, but it is strongly affected by the intensity of convective
cooling. In addition to this convective cooling, the surface is cooled by the net
emission of terrestrial radiation of about 61 W m-2, which is associated with
irreversible radiative transfer that produces considerable entropy. Hence, the
assumption that no entropy is produced is not fulfilled either. Similar arguments
can be made for the large-scale poleward transport of heat by the climate system as
well as for other processes, e.g. mantle convection in the Earth’s interior. It would
thus seem that the assumptions being made to derive the Carnot limit would not
apply to quite a range of Earth system processes while the laws of thermodynamics
naturally apply and limit the rate at which these processes can perform work.

We can nevertheless derive a maximum power limit for a slightly altered setup
as shown in Fig. 8.1b that is more representative of Earth systems [17]. The two
differences to the typical Carnot limit are that (1) the heat balances for Th and Tc

are part of the system and can therefore react to the rate at which work is per-
formed within the system, and that (2) there is an additional process (radiative
transfer, Jr, in Fig. 8.1b) that depletes the temperature gradient and produces
entropy within the system. In this setup, we can use the steady-state surface energy
balance (i.e. dTh=dt ¼ 0) as a constraint to express the temperature gradient Th �
Tc as a function of the surface solar radiative heating, Jin, and the convective heat
flux Jex utilized by the convective heat engine:

0 ¼ Jin � krðTh � TcÞ � Jex ð8:4Þ

For simplicity, the net radiative exchange between the reservoirs is represented
in a linearized way by Jr ¼ krðTh � TcÞ, which is derived from the linearization of
the Stefan-Boltzmann law.

To derive the maximum in power that can be derived from the heating dif-
ference Th � Tc, we apply the Carnot limit to Jex, use Eq. (8.4) to express Th � Tc

in terms of Jin and Jex, and get an expression of power Pex that depends qua-
dratically on Jex:

Pex ¼ Jex
Th � Tc

Th
¼ Jex

ðJin � JexÞ
krTh

ð8:5Þ

When we neglect the dependence of Th on Jex in the denominator, this
expression achieves a maximum value Pmax for a convective heat flux Jex ¼ Jin=2
of
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Pmax ¼
J2

in

4krTh
¼ 1

4
Jin

Th; 0 � Tc; 0

Th
ð8:6Þ

where Th; 0 and Tc; 0 are the temperatures for Jex ¼ 0.
The maximum power limit expressed in Eq. (8.6) looks like a Carnot limit [cf.

Eq. (8.3), in particular when approximating Th � Th; 0] with fixed, radiative
equilibrium temperatures, except that it is reduced by a factor of 4. This reduction
can directly be seen when comparing the maximum values of Pex in Fig. 8.1a and
b. The lower limit results from the reduction of the temperature gradient to half its
maximum value and from the ‘‘competing’’ process of radiative transfer that
consumes some of the heat flux Jin. This expression is essentially identical to the
maximum power limit that is well known in electrical engineering and, when
applied to typical atmospheric conditions, yields maximum estimates of power
involved in atmospheric motion that are consistent with observations [17].

The maximum power limit is nearly identical to the Maximum Entropy Pro-
duction (MaxEP) state reported earlier in atmospheric applications [9, 18]. This
can be seen when considering the entropy budget of the system. In steady state,
this budget is given by the import of entropy associated with the absorption of Jin

at a temperature Th, and the export of entropy associated with the emission of
Jout ¼ Jin at a temperature Tc. The entropy production within the system due to
radiative exchange, rr, and due to the convective heat flux, rex, is balanced by the
net entropy export by the system, so that

0 ¼ rr þ rex þ
Jin

Th
� Jin

Tc
ð8:7Þ

Noting that Jin ¼ Jr þ Jex and rr ¼ Jrð1=Tc � 1=ThÞ, we obtain

rex ¼ Jex
1
Tc
� 1

Th

� �

¼ Jex
Th � Tc

ThTc
¼ Pex

Tc
ð8:8Þ

where we used the expression of Pex from Eq. (8.5). In steady state, power equals
dissipation, Pex ¼ D, in this closed system, so that the maximum power limit is
equivalent to the maximization of rex if all of the mechanical energy generated by
Pex is dissipated at the temperature Tc of the cold reservoir. This is typically not the
case for the Earth’s atmosphere. About half of the generated kinetic energy is
either dissipated near the heated surface or is transferred into the ocean. Hence, the
maximum power limit should be slightly below the MaxEP state. Nevertheless, the
difference is hardly distinguishable using realistic numbers, so that the examples
that provide support for the MaxEP principle concerning atmospheric heat trans-
port [9–12], can equally be interpreted as an indication that the atmospheric cir-
culation operates very close to the maximum power limit.
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8.3 Maximization Through Structure

The maximum power limit given by Eq. (8.6) establishes the upper limit to how
much dynamics can be generated within a system, but it does not tell us how this
maximization would be achieved, neither in terms of the evolutionary dynamics
nor which aspect of motion would allow for the needed flexibility to achieve
maximization. To explore the latter aspect (the former is dealt with in the next
section), we need to look at how the flow is organized in space and time and how
this organization affects the ability of the flow to generate and dissipate kinetic
energy. This is done in the following using simple, conceptual considerations with
some quantitative illustrations.

When motion is generated at a certain rate, the resulting flow can take various
forms, as illustrated in Fig. 8.2. For instance, the flow can be accomplished by few,
or many, convection cells N , and it can be associated with different areas over
which updrafts take place. The physical balances that constrain these flow struc-
tures are the conservation of energy, mass and momentum, which apply to the
local scale, but also at the global, system-level scale. At the local scale, momentum
conservation leads to the well-known Navier–Stokes equation of fluid dynamics.
What we aim for here is a system-level description of the dynamics that does not
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(d) N = 4, Au < Ad(c)  N = 2, Au > Ad
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Fig. 8.2 Four examples of different flow structures that differ in the number of convection cells
N and the areas of updraft Au (shaded grey) in relation to the area of downdraft Ad of each cell.
These different arrangements result in different intensities of frictional dissipation
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require the information from the local scale, but only considers the balances at the
global, aggregated level. The maximum power limit applied to the system level
would then act as a constraint to the overall dynamics within the system. To
understand how different flow configurations affect the system-level properties,
particularly dissipation, we consider a simple, aggregated description of the system
shown in Fig. 8.2 in the following.

The system depicted in Fig. 8.2 is a closed system that only exchanges heat
with its environment. The dynamics of the total kinetic energy, Ake, within the
system then include only the generation and dissipation of kinetic energy, but does
not include its exchange associated with mass exchange across the system
boundary:

dAke

dt
¼ Pex � D ð8:9Þ

where Pex is the generation rate of kinetic energy (being equivalent to the power of
the heat engine from the previous section), and D is the rate of frictional dissi-
pation. The main point about structure and maximization made here is that the
many different ways in which the flow takes place (as, e.g., those shown in
Fig. 8.2) are associated with different intensities of D, so that for the same Pex,
different values of Ake can be achieved. Since a higher value of Ake transports more
heat, i.e. results in a greater value of Jex, rearrangements in the flow can then form
the basis for a positive feedback by which a higher value of Ake results in a greater
value of Pex (which is explored further in the next section).

To demonstrate the different intensities of D associated with different flow
patterns, we consider an area of size Atot ¼ L2, where L is the horizontal dimen-
sion, a height of convection z and a boundary layer height of zs. The updraft in
each cell is assumed to take place with a uniform updraft velocity vu through a
horizontal, circular cross-sectional area of one updraft cell, Au ¼ pr2

u , the down-
draft takes place with a uniform downdraft velocity vd and a cross-sectional area of
Ad ¼ Atot=N � Au, and a velocity vs near the surface through a vertical, cylin-
drical cross-section at the bottom of the updraft cells of As ¼ 2pruzs.

Continuity requires that the mass fluxes Jm within a convection cell balance, i.e.
that the mass lifted in the updraft is balanced by the mass transported by the
downdraft and along the surface:

Jm ¼ qAuvu ¼ qAdvd ¼ qAsvs ð8:10Þ

where we assume the same air density q for simplicity. This requirement yields the
following expressions for the three velocities:

vu ¼
Jm

qAu
vd ¼

Jm

qðAtot=N � AuÞ
vs ¼

Jm

2
ffiffiffi
p
p

q
ffiffiffiffiffi
Au
p

zs
ð8:11Þ

noting that ru ¼
ffiffiffiffiffiffiffiffiffiffi
Au=p

p
.

The total frictional dissipation D results from the friction within the fluid
between the updrafts and downdrafts, Da, from the contact with the surface, Ds,
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and at the upper boundary at the top of the convection cell Du, which we will
assume to be equal to Ds for simplicity in the following (although friction at a solid
surface may not be equal to internal friction within air):

D ¼ Da þ 2Ds ð8:12Þ

Frictional dissipation within the fluid, Da, is given by the viscosity of the fluid,
l, the velocity gradient between the cells, which is approximated by the difference
in updraft- and downdraft velocities ðvu � vdÞ divided by the mean distance
between the up- and downdraft within a cell, L=2N, through the vertical, cylin-
drical surface area of the updraft cell, 2pruðz � 2zsÞ:

Da ¼l
ov

ox

� �2

A ¼ l
vu � vd

L=2N

� �2

2pruð Þ z� 2zsð ÞN

¼ l
q2

caJ2
m; tot

ð8:13Þ

where the geometric factor ca is given by

ca ¼ 8
ffiffiffi
p
p Atot

A3=2
u Atot � NAuð Þ2

z � 2zsð ÞN ð8:14Þ

In other words, the overall frictional dissipation within the fluid depends on
material properties (viscosity l and density q), the total mass flux Jm; tot ¼ NJm that
is associated with the kinetic energy of convective motion, but also to some extent
on a purely geometric factor, ca, that is associated with the organization of the
mass flux in terms of the number of convection cells N as well as the cross section
of the updraft Au.

Frictional dissipation at the surface, Ds, is expressed similarly in terms of a
velocity gradient, vs=zs, and the surface area, Atot:

Ds ¼l
vs

zs

� �2

Atot

¼ l
q2

csJ
2
m; tot

ð8:15Þ

where the geometric factor cs is given by

cs ¼
1

4p
Atot

Au

1
z2

s

1
N2

ð8:16Þ

This expression is similar to Eq. (8.13) above in that it also depends on purely
material properties, the total mass flux, as well as a geometric factor cs.

The total frictional dissipation D can then be expressed as:

D ¼ l
q2

ca þ 2csð ÞJ2
m; tot / cAke ð8:17Þ
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which, by using the continuity requirement (Eq. 8.10), could be formulated in
terms of the square of a velocity (e.g. vu) to yield a typical parameterization for
frictional dissipation, or in terms of the kinetic energy Ake within the system.

Figure 8.3 shows the extent to which the total dissipation, D, depends on the
flow configuration, as characterized by the geometric factors. As can be seen by
the sensitivities, the geometric factors vary by an order of magnitude or more by
the variation of Au and N. Both sensitivities of the total geometric factor,
c ¼ ca þ 2cs, exhibit a characteristic minimum at which frictional dissipation is
reduced merely by rearrangement of the flow.

As a consequence of this sensitivity of D to the arrangement of the flow, different
values of the kinetic energy Ake of the system can be achieved for the same gen-
eration rate Pex. The critical link between this flexibility in Ake and maximum power
Pex is that the amount of kinetic energy Ake reflects the speed of motion within the
convection cell, which in turn is related to the convective heat flux Jex by

Jex ¼ cp Th � Tcð ÞJm; tot / DT
ffiffiffiffiffiffiffi
Ake

p
ð8:18Þ

In other words, a rearrangement in the flow can lower its frictional dissipation D
(through the effect on c in Eq. 8.17), enhance the flow velocity, transport more
mass and heat (cf. Eq. 8.18), and thereby generate more power Pex to drive the
flow (cf. Eq. 8.5). This latter enhancement of Pex through structured flow results
from the concentration of the driving gradient at the boundary of the system (see
also [19]). This effect can be seen by reformulating the expression of maximum
power Pex (Eq. 8.6) in terms of the temperature gradient by using the energy
balance (Eq. 8.4):

Pmax ¼
kr

Th
Th � Tcð Þ2 ð8:19Þ
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Fig. 8.3 Sensitivity of the geometric factors of flow organization related to interior friction
within the fluid, ca, friction with the surface, cs, and total, c ¼ ca þ 2cs, a to the total updraft
area, NAu=Atot and b the number of convection cells, N. For both plots, the values Atot ¼ 106 m2,
z = 1,000 m, and zs ¼ 100 m are used. For the left plot a value of N ¼ 40 was used, for the right
plot a value of NAu=Atot ¼ 0:5
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In other words, Pmax depends quadratically on the temperature gradient. The
implication of this is that for the same rate of heating, Jin, a uniform distribution of
the temperature gradient yields less power than a non-uniform distribution of the
gradient at the system boundary. This effect is qualitatively illustrated in Fig. 8.4.
With stronger motion, more cooled air is advected by the convection cell to the
heated surface, thereby concentrating the temperature gradient to the area near the
surface. The key insight here is that a non-uniform distribution of the driving
temperature gradient is intimately linked with the development of structured flow
and that this affects the ability of the system to derive power from the temperature
gradient.

Of course, this simple example makes several assumptions, such as constant
density and a simple geometry, and treats convection in a highly simplistic way. It
nevertheless substantiates the point that the formation of specific flow structures
such as convection cells affect the intensity by which kinetic energy is dissipated
and thereby constitute ‘‘degrees of freedom’’ that allow the fluid to adjust to a state
of maximum power.

8.4 Dynamics and Feedbacks Associated
with Maximization Through Structure

We now ask why the evolution and the dynamics of a system would inevitably
evolve to a maximum power state. The following discussion on feedbacks show
rather general mechanisms that, in principle, should be transferrable to very
different structures as well (for instance water flow in river basin networks, [20]).

(a) uniform temperature gradient (b) spatially structured

Fig. 8.4 Schematic illustration of the effect of structured flow on the distribution of temperature
gradients. a In the absence of motion, the temperature gradient is uniformly distributed across the
system between the heating source below, and the cooling source aloft. b When structured flow
takes place, temperature gradients are confined to small regions at the interface to the heating and
cooling source and are able to enhance the generation rate of motion
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We illustrate these feedbacks in the following specifically with the example of
convective motion given above, bringing together and summarizing the previous
sections. We describe these feedbacks similar to the feedback analysis that is
common in climatology [21].

Imagine if the system shown in Fig. 8.1b is initially at rest, i.e. in a state of no
convective heat flux Jex ¼ 0ð Þ and no kinetic energy ðAke ¼ 0Þ. This state satisfies
the energy-, mass-, and momentum balances of the system. We now need to
understand why such a state, when perturbed, would evolve towards a dynamic
state with Ake [ 0, and why this evolution would ‘‘stop’’ at a maximum power
state. In the context of feedbacks, we need to identify a positive feedback that
amplifies the growth of the initial perturbation, and a negative feedback that stops
the growth at the maximum power state. Before we identify these feedbacks, let us
first go through the relationships between the different variables of the system as
shown in Fig. 8.5 and relate them to the above equations.

The source for the dynamics is the temperature difference ðDT ¼ Th � TcÞ in
the system that develops due to the uneven heating and cooling of the system due to
Jin and Jout. This gradient generates buoyancy and motion, and enters directly the
expression for the generation rate of kinetic energy (Pex, Eq. 8.5). This power ðPexÞ
generates kinetic energy (Ake, Eq. 8.9), which is then subsequently dissipated ðDÞ.
The rate of dissipation ðDÞ depends on the kinetic energy ðAkeÞ as well as the spatial
organization of the flow, characterized by the geometric factor c (Eq. 8.17). Motion
in the system results in the convective heat flux ðJexÞ, so that this heat flux depends
on the kinetic energy Ake and the temperature difference DT (Eq. 8.18).

temperature 
difference T

power PexJex

kinetic energy 
Ake

dissipation
D

geometric 
factor 

+

+

+

+

+

loop B:
slow, negative

feedback

loop A: 
fast, positive

feedback

loop C:
positive

feedback

+

+

loop D:
positive

feedback

Fig. 8.5 A feedback diagram to illustrate how the dynamics of kinetic energy generation and
dissipation relate to the maximization of power and structure formation. Solid lines with ‘‘+’’
indicate positive influences (e.g., a larger temperature difference results in a greater power, i.e.
the derivative oPex=oDT [ 0). Dashed lines with ‘‘-’’ show negative influences (e.g., an
enhanced heat flux reduces the driving gradient, i.e. oDT=oJex\0). Four feedback loops (A, B, C,
D) are shown: Feedbacks A and B on the left relate to the maximum power limit, and the
feedbacks C and D on the right relate to how structured flow can achieve this limit. After [20]
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The following feedbacks are established because the temperature difference ðDTÞ
as well as the power ðPexÞ depend on the convective heat flux Jex (Eqs. 8.4 and 8.5).

We now look at the consequences of a perturbation in the temperature differ-
ence ðdDTÞ on the generation of kinetic energy ðdPexÞ. The generation rate ðPexÞ
depends on the convective heat flux ðJexÞ and on the temperature difference ðDTÞ,
so that, effectively, Pex ¼ Pex Jex Ake Pex; Dð Þð Þð ; DTexÞ. Hence, the overall change
in dPex depends on the direct effect of DT on Pex (i.e. oPex=oDT), and indirect
effects due to the various interdependencies, which are described by a product of
partial derivatives

dPex

dDT
¼ oPex

oJex

oJex

oAke

oAke

oPex

oPex

oDT
þ oPex

oDT

oDT

oJex

oJex

oAke

oAke

oPex

oPex

oDT
ð8:20Þ

The first term on the right hand side represents a positive feedback (feedback A
in Fig. 8.5). An increase in the generation rate results in an increase in kinetic
energy ðoAke=oPex [ 0Þ, which causes an increase in the heat flux ðoJex=oAke [ 0Þ
which in turn results in greater power ðoPex=oJex [ 0Þ. Since all derivatives are
positive, the initial change is amplified and this constitutes a positive feedback.
The second term on the right hand side represents a negative feedback (feedback
B). The last three derivatives are the same as in the first term and describe the
increase of the heat flux Jex due to the initial change in DT . The greater heat flux
also results in a decrease in the temperature difference ðoDT=oJex\0Þ, and a
decrease in temperature difference decreases the power ðoPex=oDT [ 0Þ. Hence,
the product of these derivatives is negative, so that these effects constitute a
negative feedback. Since temperature changes involve changes in thermal inertia,
this feedback is likely to act more slowly than feedback A.

With increasing values of kinetic energy ðAkeÞ in the system, the derivatives
change their values, and so do the strengths of the two feedbacks. The deciding
difference in these feedbacks relates to the terms ðoPex=oJexÞ and
ðoPex=oDTÞðoDT=oJexÞ, while the other terms could be factored out in the above
Eq. (8.20). Because ðoPex=oJexÞ ¼ DT=Th, ðoPex=oDTÞ ¼ Jex=Th, and
ðoDT=oJexÞ ¼ �1=kr, the sum of these terms ðoPex=oJexÞ þ
ðoPex=oDTÞðoDT=oJexÞ decreases with an increasing values of Jex, and cancel each
other exactly at the maximum power state, when DT=Th � Jex=ðkrThÞ ¼ 0, or
Jex ¼ krDT ¼ Jin=2. In other words, at the maximum power state, the feedbacks A
and B operate with same strength, but with opposite signs, so that the maximum
power state should be the state that is dynamically the most stable. Noting that
power equals dissipation in steady state, this line of reasoning is consistent with the
dynamic stability analysis of Malkus [22], with the derivation by Dewar and
Maritan (Chap. 3), and with the reasoning behind the MaxEP state by Ozawa et al. [6].

The spatial organization of the flow affects the two feedbacks described above.
In steady state, we have Pex ¼ D / cAke, so that Ake / Pex=c. Hence, the deriv-
ative oAke=oPex / c�1 depends on the spatial arrangement of the flow. To relate
structure formation to the maximization of power, we note that changes in DT can
also result from the internal dynamics and, specifically, the spatial organization as
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shown in Fig. 8.4. The feedbacks that are related to structure formation are shown
in Fig. 8.5 in terms of feedbacks C and D. Feedback C characterizes the reduction
in frictional dissipation due to the development of structured flow that is captured
by the geometric factor c. In other words, when an increase in kinetic energy
results in a change in spatial organization and a reduction in the geometric factor
ðoc=oAke\0Þ, this would reduce dissipation ðoD=oc [ 0Þ, resulting in an increase
in kinetic energy ðoAke=oD\0Þ. Overall, this feedback constitutes a positive
feedback related to the reduction of internal dissipation due to spatial reorgani-
zation of the flow. The implication of this feedback is that for a given generation
rate Pex, a reduction in c would enhance Ake, Jex, and thus Pex. Hence, those
perturbations in the spatial organization of the flow that enhance power would
continue to grow and play an important part of feedback A. The confinement of
temperature gradients to the system boundary that was qualitatively discussed
above constitutes a further feedback (feedback D, see also Schneider and Kay [19]
for relevant discussion on temperature profiles in convective cells), in which a
change in spatial organization would affect the temperature difference ðDTÞ, power
ðPexÞ, kinetic energy ðAkeÞ, which could then feed back to the value of the geo-
metric factor. While we did not provide mathematical relationships to express this
feedback in detail, these effects would be reflected in the partial derivatives of
oAke=oPex and oDT=oJex, thereby affecting feedback B.

To sum up, this discussion on dynamics and feedbacks suggests that a state of
maximum power would naturally emerge from the dynamics within a system.
First, a fast, positive feedback enhances free energy generation within the system
through the formation of structured flow. This positive feedback is eventually
balanced by the development of a negative feedback associated with the depletion
of the driving gradient through the enhanced heat transport, so that the dynamics
should be maintained in a steady state near the maximum power limit.

8.5 Implications of Maximum Power for Planetary
Interactions

When we apply maximum power limits to the Earth system, we need to recognize
that essentially all forms of free energy originate directly or indirectly from the
planetary drivers: solar radiation and the cooling of the Earth’s interior. These
maintain the ultimate driving gradients from which free energy is generated, which
is then either dissipated directly, or converted into other forms of free energy and
dissipated subsequently. For instance, heating gradients generated by differences
in the absorption of solar radiation result in the generation of kinetic energy and
associated momentum gradients. These gradients are either dissipated by friction,
or used to dehumidify the atmosphere and lift water vapor to the height at which it
condenses. Subsequently, surface evaporation dissipates the gradient in specific
humidity and falling raindrops dissipate the potential energy. Hence, the dynamics
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of the Earth system can be viewed as an interconnected cascade of energy con-
versions, as illustrated in Fig. 8.6.

The second law and the maximum power limit have five important, broader
implications for the cascades of energy conversions within the Earth system:

Hierarchy of free energy generation and driving gradients. The generation of
different forms of free energy within the Earth system do not take place inde-
pendently, but the free energy and the associated gradients generated by one
process typically form the driving gradient of another process. This connectedness
of the free energy generation terms is shown by the solid lines in Fig. 8.6. For
instance, the gradient dðNhmÞ in radiative exchange at the Earth-space boundary
causes gradients in radiative heating, dðTSÞ, which is in part converted into the
kinetic energy, dðpvÞ, associated with atmospheric motion and gradients in
velocity v. Motion in turn is in part dissipated by friction, that is, kinetic energy
dðpvÞ is converted into heat dðTSÞ, but also performs other types of work, e.g.
lifting dust and moisture or forming waves and currents in the ocean. These
transfer processes generate potential energy, dð/mÞ, out of the kinetic energy of
motion dðpvÞ. As a consequence, the dynamics of free energy are then not simply
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formed by generation and dissipation terms, as it is often being done (e.g. in the
form of the Lorenz energy cycle in atmospheric dynamics [23, 24], or as repre-
sented by the simple representation in Eq. 8.9 above), but include transfer terms to
other forms of free energy. These transfer terms of energy play the critical role of
the ‘‘glue’’ that connects processes and that in the end result in the highly complex
and interacting Earth system. The formulation of these dynamics in terms of
driving gradients and resulting forms of free energy provides a clear direction and
causality despite the complexity that is involved.

Interactions and feedbacks to driving gradients at higher levels. When free
energy is generated from a driving gradient, the driving gradient is inevitably
depleted. In the simple example in Sect. 8.2, the generation of motion inevitably
results in a convective heat flux that depletes the temperature gradient (as also
shown in the feedbacks in Fig. 8.5). Consequently, each conversion along the solid
lines shown in Fig. 8.6 is associated with inevitable effects on the driving gradi-
ents, as indicated by the dashed lines in Fig. 8.6, and therefore on the whole chain
of conversions. For instance, when motion is generated by differential radiative
heating, the resulting motion transports heat that accelerates the depletion of the
differential radiative heating. When motion lifts vapor to greater heights and colder
temperatures, it brings vapor to condensation. This dehumidification of the
atmosphere by motion results in the transport of latent heat that reduces the heat
available for driving the atmospheric heat engine [25–28]. Hence, each conversion
along the solid lines in Fig. 8.6 results in inevitable interactions between processes
that affect free energy generation by these processes and, ultimately, the exchange
of radiation and entropy with space.

Maximum power limits. The conversions of gradients into different forms of free
energy down the hierarchy shown by the solid lines in Fig. 8.6 is restricted by the
rate by which the gradient is generated in the layer above. At best, all of the
driving gradient can be converted into free energy. For most of the conversions,
however, free energy can either be dissipated directly or converted into another
form of free energy further down the layers and dissipated subsequently. These two
‘‘options’’ for the fate of the free energy imply maximum power limits akin to the
one shown in Sect. 8.2 in which the direct dissipation is associated with radiative
transfer ðJrÞ, while the conversion to free energy and its subsequent dissipation is
associated with Pex and D, respectively. Consequently, each of the free energy
conversions down from the planetary driver involves some direct dissipation, so
that less free energy can be generated with each additional conversion.

What this then implies is that because of these limits, abiotic processes cannot
generate substantial amounts of chemical free energy (dðAiniÞ and dðAjnjÞ in
Fig. 8.6) that could transform the chemical composition of the atmosphere. In
contrast, photosynthetic life avoids these dissipative losses by generating chemical
free energy (dðAbnbÞ in Fig. 8.6) directly by exploiting dðNhmÞ by photochemistry.
This insight is consistent with the common attribution of the chemical disequi-
librium in the Earth’s atmosphere to the presence of abundant life [29, 30]. By
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formulating biotic activity in such thermodynamic terms, one may also explore
maximum power limits in biochemical processes [31] and the biosphere [32, 33].

Maximization by dissipative structures. Maximization of the different rates of
free energy conversions can take place by developing structures that are able to
reduce the extent of internal friction and dissipation. While the maximum power
limit is given by the constraints imposed by the driving gradient, this limit can
only be achieved by adjustments of the dynamics associated with the generated
form of free energy. This possibility of the flow to adjust its level of frictional
dissipation was demonstrated in Sect. 8.3 for convective flow. The widespread
presence of similar, reproducible structures, such as convection cells, waves or
fractal networks in Earth system processes can be seen as the manifestation of
maximization through structure at different spatial and temporal scales. This
interpretation of dissipative structures as the means to achieve the maximum
power limit provides a new and broader basis to link previous work along similar
lines (e.g. Prigogine’s ‘‘dissipative structures’’ [34], Bejan’s ‘‘constructal law’’
[35] and the assumption of minimum energy dissipation in fractal networks by
[36]) to the flexible boundary conditions and interactions within the planetary
context.

The Second Law at the planetary scale. Each of the conversions of gradients
among the different layers in Fig. 8.6 obey the second law, which is contained in
the maximum power limit by the assumption that Pex operates at the Carnot limit.
In fact, the dynamics of free energy generation, transfer, and dissipation are such
that they enhance gradient depletion and thereby accelerate processes in the
direction of the second law when evaluated at the scale of the gradient that is at a
higher layer within the hierarchy. In the simple example in Sect. 8.2 this accel-
eration is reflected in the depleted temperature gradient Th � Tc, with a maximum
possible reduction at the maximum power limit to Th � Tc ¼ ðTh; 0 � Tc; 0Þ=2. In
the Earth’s atmosphere, this depletion is reflected in the reduced gradient in the net
radiative exchange at the top of the atmosphere as a result of large-scale atmo-
spheric heat transport (which, in the context of the system described here, would
correspond to spatial differences in Jin � Jout). When we generalize this effect and
apply it to the planetary system, this would imply that the overall dynamics of free
energy generation and transfer among the different layers in Fig. 8.6 are such that
these deplete gradients faster, possibly as fast as possible (cf. ‘‘maximization by
structure’’), so that the whole system should deplete the driving, radiative gradients
by as much as possible. This would then imply that the complex dynamics of the
Earth system would result in the maximum rate of radiative entropy production to
the extent that this is possible by the dynamics associated with free energy
transformations. This latter restriction is important: The heat transport by con-
vection, for instance, could not completely level out the temperature gradient (i.e.
Th � Tc ¼ 0 cannot be achieved by the heat transported by motion in steady state)
but is restricted to states below or at the maximum power limit in steady state (as
discussed above in the context of feedbacks). This perspective of the hierarchy
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shown in Fig. 8.6 as the implementation of a ‘‘planetary accelerator’’ of the second
law provides a powerful general direction to the complex and seemingly arbitrary
conversions and interactions within the Earth system.

8.6 Summary and Conclusions

In this chapter, we described how the second law of thermodynamics sets the
direction and constraints for the dynamics of the whole Earth system, but also how
the dynamics act to accelerate the second law towards a state of thermodynamic
equilibrium. The sequence of generation, dissipation, and transfer of free energy to
different forms acts to accelerate the progress into the direction imposed by the
second law. At the same time, the second law imposes a fundamental constraint on
the strength of this sequence by setting the maximum power limit. This limit can be
achieved by the internal dynamics of the system through adjustments of the flow
into structures, such as convection cells. The development of such ‘‘dissipative
structures’’ reduces internal dissipation, so that for the same generation rate, more
free energy can be maintained within the system. This results in a positive feedback
that enhances free energy generation and structure formation up to the maximum
power limit. At this limit, the negative feedback resulting from the accelerated
depletion of the driving gradient compensates the positive feedback, resulting in
dynamics that should be maintained near a steady state of maximum power.

When this perspective is applied to the dynamics of the Earth system as a
whole, this results in a hierarchy of free energy generation and transfer, where one
form of generated free energy constitutes the driving gradient for the generation of
another form of free energy. Overall, such a planetary hierarchy of free energy
conversions should represent a ‘‘planetary accelerator’’ towards a state of ther-
modynamic equilibrium and, when maintained at maximum power, reflect the
means to deplete the planetary driving gradients as fast as possible. Since the Earth
exchanges mostly radiation of different entropy with space, this would constitute
the means to overall produce radiative entropy at the maximum possible rate by
these dynamics that involve the conversions and dissipation of the various forms of
free energy.

The thermodynamic limits in this chapter were formulated in terms of maxi-
mum power limits rather than in terms of the proposed principle of Maximum
Entropy Production (MaxEP). The outcomes of both, maximum power or MaxEP,
are essentially indistinguishable in terms of the associated temperature gradients
and heat fluxes when applied to e.g. a convective system. The maximum power
limit has the advantage that it specifically describes the driving gradient and the
dynamical processes involved, which should facilitate the application of this limit
to Earth system processes. In comparison, the use of MaxEP is often ambiguous
because it is not clear which entropy production is to be maximized and why the
dynamics would be such that they result in maximization of entropy production
compared to other aspects that are more directly involved in the dynamics (such as
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forces, energy or power). In this sense, the shift in focus to maximum power
should not be seen as a contradiction to previous work on MaxEP, but rather as a
continuation and sharpening of the application of thermodynamic limits to Earth
system processes. It is quite likely that the maximization of power by systems can
be derived as a form of entropy production maximization that is constrained by
more than the energy- and mass balance, e.g. by the momentum balance [22]
(Dewar and Maritan, Chap. 3). No matter whether power or entropy production is
maximized, the key aspect in the maximization is that the boundary conditions are
not fixed, but react to the dynamics within the system and accelerate the depletion
of the driving gradient. Hence, the maximization reflects the central role of
interactions between the system dynamics and the boundary conditions. The shift
in emphasis from MaxEP to maximum power led to the insight that systems are
able to adjust to maximum power states through the development of structured
flow that reduces frictional dissipation within the system.

This perspective needs to be developed further in the future, as it allows us to
become more specific regarding the conditions under which the maximum power
state is achievable. For instance, the minimum dissipation solution in the example
presented in Sect. 8.3 depends on the total size of the system (i.e. Atot), while the
value of N is constrained to integer values N� 1. Even in this simple example one
can envision situations where the system is too small to be flexible enough to
minimize internal dissipation and therefore being unable to evolve to the maxi-
mum power state. In such a case, the dynamics are too constrained, or, formulated
differently, the degrees of freedom within the system are too low to achieve the
maximum power state.

Overall, the progression presented here from a relatively simple MaxEP view of
the dynamics of Earth system processes to ‘‘maximization of power through
structure’’ within the context of the whole Earth system should provide a much
more specific basis to demonstrate the relevance of thermodynamic limits to the
structure and functioning of the planetary dynamics of the Earth system.
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Part III
Applications to Non-equilibrium Systems



Chapter 9
Predictive Use of the Maximum Entropy
Production Principle for Past
and Present Climates

Corentin Herbert and Didier Paillard

Abstract In this chapter, we show how the MaxEP hypothesis may be used to build
simple climate models without representing explicitly the energy transport by the
atmosphere. The purpose is twofold. First, we assess the performance of the MaxEP
hypothesis by comparing a simple model with minimal input data to a complex,
state-of-the-art General Circulation Model. Next, we show how to improve the
realism of MaxEP climate models by including climate feedbacks, focusing on the
case of the water-vapour feedback. We also discuss the dependence of the entropy
production rate and predicted surface temperature on the resolution of the model.

9.1 Introduction

Although it is not straightforward to define what climate is precisely, one may
suggest that what we call the climate system is made up of the atmosphere, the
oceans, the cryosphere, the biosphere and the lithosphere [1]. The different com-
ponents interact in various ways, and their relative importance depends on the
question asked. For instance in numerical weather prediction, taking place on a
timescale of a few days, the main dynamical component is the atmosphere and all
the other components may be regarded as prescribed. On the contrary, the evo-
lution of climate on very long timescales (of the order of tenths or hundreds
million year) is essentially determined by the exchanges of carbon between the
land, the oceans and the atmosphere.
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The distribution of surface temperature is of primary interest. It depends on a
large number of factors, such as the composition of the atmosphere (upon which
the radiative energy exchanges depend), the circulation of the atmosphere and
oceans, the ocean salinity, the presence of ice-sheets, the type of terrestrial veg-
etation cover,… State-of-the-art climate models, usually referred to as General
Circulation Models (GCMs), now include many of the above factors (the term
Earth System Models is starting to emerge).

However, not all this complexity is necessary to obtain a rough estimate of the
temperature of a planetary atmosphere: perhaps the simplest approach is to balance
the incoming solar radiation with the outgoing planetary radiation. Again this can
be done at various levels of accuracy, depending on the knowledge we have of the
concentration of the radiatively active constituents of the atmosphere (e.g. water-
vapour and carbon dioxide). Imposing a local radiative equilibrium is in fact
misleading: latitudinal and vertical differential heating trigger atmospheric
motions, which carry heat to mitigate the temperature gradients that would exist at
radiative equilibrium. The resulting energy transport term can be parametrized (for
instance as a diffusion process with empirical diffusivity) as a function of the
temperature distribution, so that we can solve the model without resolving
explicitly the motions of the atmosphere. Such models, consisting of a radiative
model and a parameterization of the energy transport by the atmosphere are called
Energy Balance Models (EBMs). Alternatively, one may solve the fluid dynamics
problem and compute explicitly the velocity field: this is what GCMs do. The
hierarchy of climate models, ranging from simple EBMs to complex GCMs, also
comprises the so-called intermediate complexity models (EMIC), which offer a
variety of simplified representations of the atmospheric and oceanic circulation
and other phenomena [2]. The main interest of EMICs is their relatively low
computational cost, compared to GCMs, which make them particularly suitable for
the study of palaeoclimates. Indeed, the timescales involved in such problems
reduce the role of GCMs to simulating snapshots. Both GCMs and EMICs require
a certain amount of parameter tuning. This is sometimes a problem when studying
past climates for which little data is available on which to base adjustment pro-
cedures, and even more so for other planetary climates, where many features differ
tremendously from the terrestrial conditions on which the empirical parameter-
izations were tested.

Nevertheless, the laws of physics remain the same when going back into time or
out into the cosmos. The three branches of physics which play a fundamental part in
setting the climate of a planet are radiation physics [3], fluid dynamics [4, 5] and
thermodynamics [6]. One fundamental principle which is always present, even in
simple models like EBMs, is the first law of thermodynamics, because it describes
the exchanges of energy in a system. To energy exchanges are associated equi-
librium temperature distributions. On the other hand, even in the most sophisticated
climate models to date, the second law of thermodynamics, which also describes
the exchanges of energy in a system but in a qualitative rather than quantitative
way, is not taken into account. When subgrid-scale parameterizations are involved,
classical models may even violate the second law of thermodynamics [7]. It has
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also been suggested that spurious sources of entropy production could lead to a
global cold bias in climate models [8]. Henceforth, a number of diagnostic tools
emerged to study the thermodynamic properties of climate models [9] (see also
Chap. 10). Besides, postulating that the system chooses the steady-state with
maximum entropy production given certain constraints leads to a variational
problem which has proved very efficient for predictive use. This is the so-called
Maximum Entropy Production principle [10–12]. We shall not discuss here the
theoretical foundations (or lack thereof) of this hypothesis (see [13–16]), but only
its consequences for climate modelling. Hitherto, mainly two approaches have been
developed. One point of view is that the MaxEP principle can be useful to select the
value of adjustable parameters in empirical parameterizations from existing
models, in an objective way [17–21]. In the second approach, the purpose is to build
simple climate models based on the MaxEP hypothesis for describing unresolved
processes. We shall present the latter approach in this chapter. After briefly
reviewing earlier attempts (Sect. 9.2) we build a MaxEP climate model devoid of
ad hoc assumptions and we show how to include feedbacks like the water-vapour
feedback (Sect. 9.3). The model is then tested for pre-industrial and Last Glacial
Maximum conditions (Sect. 9.4).

9.2 The Paltridge Model

A typical one-dimensional EBM consists of a certain number of boxes, repre-
senting latitudinal zones, characterized by a single temperature. Each box receives
energy from the outside in the form of solar radiation, and radiates back to space in
the longwave domain. The difference of these two terms, which is usually called
the radiative budget of the box, does not necessarily vanish: there are also energy
exchanges with the neighbouring boxes due to atmospheric (and oceanic) transport
of heat. Hence, for box i, the total energy budget reads

cpi
dTi

dt
¼ Ri þ ci; ð9:1Þ

where cpi, Ti, Ri and ci denotes respectively the heat capacity, temperature, radi-
ative budget and atmospheric (or oceanic) convergence for box i. A radiative
scheme provides Ri as a function of Ti: e.g. Ri ¼ niS� eirT4

i where S is the solar
constant, ni represents the projection of the surface of the latitude belt onto the
sphere centered on the sun, r is the Stefan-Boltzmann constant and ei the emis-
sivity of the surface. In such a radiative scheme, the greenhouse effect is not taken
into account. In contrast, there is no simple expression for ci which can be justified
from first principles. A standard parameterization in this context is to assume a
diffusion-like term, but there is no justification for this hypothesis and the diffusion
coefficient has to be chosen empirically.

Paltridge [22] suggested a model, with a more elaborate radiative scheme—
involving in particular a cloud cover variable hi in each box—than our above
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example, in which ci is not empirically parameterized as a function of the
temperatures Ti, but instead satisfies a maximum entropy production principle. He
postulates that the steady-state temperature distribution Ti is such that the material
entropy production rate r ¼

P
i
ci
Ti

is maximum, subject to the global steady-state

constraint
P

i ci ¼ 0. At steady state, ci ¼ �Ri and r is a function of the tem-
peratures Ti only. At steady-state, the distributions of temperature, cloud cover,
atmospheric and oceanic meridional fluxes obtained are in striking accordance
with observations. In spite of this apparent success, some major criticism remain.
First of all, the planetary rotation rate is believed to be a major driver of the
latitudinal distribution of temperatures, but it does not appear at all in Paltridge’s
model. Besides, it is clear that the principle does not hold in the case of a planet
without atmosphere (see Chap. 11). One may thus wonder if it is not pure coin-
cidence that it seems to apply to the Earth’s atmosphere [23]. Last but not least,
there is no theoretical justification for the principle of maximum entropy
production.

The thread was taken up in a series of papers [24–27], verifying Paltridge’s
results in different variants of the original model, but the fundamental objections
mentioned above remained unanswered. More recently, Lorenz [28] added some
support to the idea that the agreement between the model and observations is not a
coincidence, by showing that it gives acceptable results for Titan and Mars as well.
The question of the independence with respect to the planetary rotation rate was
also adressed by Jupp [29] in a MaxEP model with a simple parameterization of
atmospherics dynamics. Nevertheless, one fundamental concern remains: the
Paltridge model and its variants still contain a large number of parameterizations,
ad hoc hypothesis and empirical coefficients, for instance in the radiative scheme,
in the cloud parameterization or in the treatment of surface heat fluxes (maximum
convective hypothesis). Is it possible to get rid of these potential biases to assess
the intrinsic value of the MaxEP conjecture in the climate modelling framework?
This is the question we address in the next section.

9.3 A Simple MEP Model with Water-vapour Feedback

9.3.1 NEF Radiative Scheme

A possible strategy to assess the degree of coincidence in Paltridge’s results may be
to build a MaxEP model devoid of any ad-hoc parameter and assumptions. To that
end, we suggest a new radiative scheme based on the Net Exchange Formulation
(NEF), which only involves physical quantities (values of which are known a
priori). Following [30], we introduce a two dimensional model with two layers: for
each grid point characterized by a latitude and a longitude, there is a surface layer
with a temperature Tg and an atmospheric layer with a temperature Ta.

Each layer absorbs an amount of solar radiation (WSW
gs for the surface layer and

WSW
as for the atmosphere) given by (Fig. 9.1):
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WSW
gs ¼ ð�sðagÞ � sÞð1� agÞnS; ð9:2Þ

WSW
as ¼ ðsþ ags�ÞnS; ð9:3Þ

where S is the solar constant, n the projection of the cell area onto the sphere, ag

the surface albedo, and the coefficients s; s� and �s are adapted from the classical
Lacis and Hansen scheme [31]:

�sðagÞ ¼ 0:353þ 0:647� �RrðnÞ � AozðMuO3Þ
1� ��R�r ag

; ð9:4Þ

s ¼ AwvðM~uÞ; ð9:5Þ

s� ¼ Awv M þ 5
3

� �

~u

� �

� AwvðM~uÞ: ð9:6Þ

Here uO3 ; ~u represent respectively the vertically integrated ozone and water vapour
density (including pressure scaling [32]), M accounts for the slant path of solar

rays, �RrðnÞ and ��R�r account for Rayleigh scattering in the atmosphere, and Aoz;Awv

are absorption functions for ozone and water vapour. See [30–32] for details.
The long-wave radiative exchanges can be written in a simple form using the

Net Exchange Formulation [33]. The surface layer and the atmosphere exchange a
net amount of energy WIR

ag through infrared radiation, while the surface and the

atmosphere radiate respectively WIR
sg and WIR

sa to space (see [30] for a derivation):

WIR
ag ¼ tðTgÞrT4

g � tðTaÞrT4
a ; ð9:7Þ

Fig. 9.1 One grid cell of a two-layer MEP model. The surface layer has temperature Tg and
exchanges heat q (thick solid red arrow) with the overlying atmospheric layer of temperature Ta.
Both layers absorb solar radiation (thin solid yellow arrows) and emit and absorb longwave
radiation (thin dashed blue arrows). The atmospheric layer exchanges energy with the
surrounding cells: the convergence of the atmospheric heat flux is f (thick solid red arrow)
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WIR
sa ¼ tðTaÞrT4

a ; ð9:8Þ

WIR
sg ¼ 1� tðTgÞ

l

� �

rT4
g ; ð9:9Þ

where l is the Elsasser factor arising from the angular integration, and tðTÞ ¼
l 1�

Rþ1
0

BmðTÞ
rT4 smdm

� �
represents the emissivity of the atmosphere (Bm is the

Planck function). The transmission function sm depends on the vertical profiles of

absorbing gases, pressure and temperature: sm ¼ exp � 1
l

RH
0 kmðzÞdz

� �
, where km is

the absorption coefficient, and H the total height of the atmosphere. To sum up, the
only parameters required by the radiative scheme are the vertically integrated
concentrations of water vapour ~u, carbon dioxide uCO2 (they determine km), ozone
uO3 and the surface albedo ag.

The steady-state condition for each box reads, for every grid point:

WSW
gs þWSW

as �WIR
sg �WIR

sa þ f ¼ 0; ð9:10Þ

WSW
gs �WIR

ag �WIR
sg � q ¼ 0; ð9:11Þ

where f is the horizontal convergence of atmospheric heat fluxes and q the surface
to atmosphere heat flux. The total material entropy production is given by

rMðfTa;ij; Tg;ijgÞ ¼
XNlat

i¼1

XNlon

j¼1

qij

Ta;ij
� qij

Tg;ij
þ

fij

Ta;ij

� �

Aij; ð9:12Þ

where Aij is the area of the grid cell in position ði; jÞ and qij; fij are functions of
Ta;ij; Tg;ij given by (9.10), (9.11). We are interested in the fields that maximize rM

while satisfying the global constraint
P

i;j Aijfij ¼ 0, which can be translated into
an unconstrained variational principle using Lagrange multipliers.

9.3.2 Different Versions of the Model

The MaxEP model described in the previous section requires only physical
parameters as an input. In a first step, we compute the horizontal distribution of ~u
(vertically integrated water vapour density) and uO3 by linear interpolation of
standard atmospheric profiles [34] (depending only on the latitude). To compare
with the results of Paltridge, we also assume that the coefficients tðTÞ in Eq. 9.7
are fixed, with a prescribed reference temperature Tref (dependent on the latitude)
also computed from the standard profiles [34] (version v0 in Table 9.1). However,
the assumption of constant tðTÞ coefficient is very unrealistic: the shift in the
Planck spectrum associated with a variation in temperature of the surface or
atmospheric layer has a strong impact on the optical properties of the atmosphere.
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In version v1, we retain the dependence of the emissivity of the atmosphere on
surface and atmospheric temperatures. Besides, fixing the profiles of water-vapour
and ozone is also a restrictive hypothesis, especially in view of potential appli-
cations to different climates for which standard profiles are not well known. As far
as ozone is concerned, we can simply examine a version of the model in which we
completely ignore ozone (version v2). For water-vapour, the situation is slightly
more complicated: the atmospheric temperature is linked via the Clausius-Cla-
peyron relation to the water vapour content, which itself feeds back onto the
temperature via the greenhouse effect. Yet, in the previous versions (v0–v2) of the
MaxEP model, we kept fixed the absolute amount of water vapour in the atmo-
sphere, independently of the temperature. In version v3, we fix the relative
humidity RH ¼ PH2O=PsatðTÞ. The vertically integrated density of water vapour is
related to the relative humidity, temperature and pressure profiles through:

u�H2O ¼
1
g

MH2O

Mair

Z Ps

0
RH � PsatðTÞ

dp

p
; ð9:13Þ

where MH2O;Mair are the molar masses of water and air, g is the gravity and Ps the
surface pressure. In our model with one atmospheric layer, we may assume that the
relative humidity is uniformly distributed in each atmospheric cell, with a vertical
extent equal to the scale height for water vapour. Relation (9.13) then becomes
u�H2O � MH2O=ðgMairÞ � RH � PsatðTÞ (version 3). The different versions are
summarized in Table 9.1. The purpose of comparing these different versions of the
model is at the same time to test the impact of reducing the quantity of input
parameters (no Tref , no uO3 ) and to improve the realism (Planck spectrum, water-
vapour feedback).

9.3.3 Water-vapour Feedback and Multiple Steady States

The physical quantities involved in the climate system are related in many ways,
so that a change in one of these quantities can have an influence on another one,

Table 9.1 Different versions of the MaxEP model and the resulting global mean surface tem-
perature for pre-industrial (PI) and last glacial maximum (LGM) climates, compared to GCM
runs with the IPSL_CM4 model.

Model version ~u uO3 uCO2 (ppmv) tðTÞ hTPIi (�C) hTLGM � TPIi
MaxEP v0 MC MC 280 T ¼ Tref (MC) 22.9 -1.98
MaxEP v1 MC MC 280 T ¼ Ta; Tg 22.3 -1.84
MaxEP v2 MC 0 280 T ¼ Ta; Tg 22.5 -1.84
MaxEP v3 u�ðTaÞ 0 280 T ¼ Ta; Tg 19.9 -2.9
IPSL – – 280 – 15.7 -2.53

‘‘MC’’ stands for the integrated standard McClatchey profiles, and the angular brackets mean
global average. See Sect. 9.3.2 for the definition of the different versions and Sect. 9.4 for the
discussion of the results
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feeding back onto the original quantity, either moving it closer (negative feedback)
or farther (positive feedback) from its initial value. A classical example of positive
feedback is the water-vapour feedback. If the temperature increases locally, the
water vapour saturation pressure will increase so that more water (if available)
may evaporate in the atmosphere, leading to stronger greenhouse effect and thus
further increase of the temperature. Feedbacks of this sort can lead to multiple
equilibria, bifurcations and hysteresis phenomena. For a given relative humidity
distribution, equilibrium states with radically different temperatures are simulta-
neously possible [35]. The water-vapour feedback has been shown to play a major
part in important climate problems [36], exactly like feedbacks of different natures
[37, 38]. Hence, it is essential to be able to represent them correctly in a climate
model. In the context of MaxEP models, it was shown in [39] that the ice-albedo
feedback gives rise to multiple local maxima in the entropy production rate,
corresponding to the multiple equilibria that appear in a traditional EBM (see also
Chap. 10). Here, we observe multiple local maxima of the entropy production rate
in a certain range of solar constant and relative humidity. One great advantage of
MaxEP is the small computational cost of maximizing a function as compared to
integrating a complex differential equation. Of course this is no longer true if the
function, or the submanifold on which to search for the maximum, becomes too
complicated. Already, in the presence of multiple maxima, this difficulty has to be
dealt with as the steady-state selected by the maximization algorithm may depend
on the initial value. To avoid being trapped in an irrelevant state, several methods
may be investigated. First it is possible to further restrict the manifold defined by
the constraints to ensure that it contains only one local maximum of the entropy
production. In the case of the water-vapour feedback in our two-layer model,
solving the radiative balance for the whole column in terms of the atmospheric
temperature may lead to several solutions. Selecting systematically one of them
before computing the entropy forces the system to remain on the portion of interest
in phase space. This is the technique that we use here. Alternatively, introducing
the time dimension and assuming that at each time step, the system maximizes
instantaneous entropy production with an additional term corresponding to time
derivatives, it was suggested in [39] to use relaxation equations as a numerical
algorithm to compute the final state (see also Chap. 18).

9.4 Results: Present and Last Glacial Maximum Climates

We compared the surface temperature distribution obtained from MaxEP with that
obtained from a state-of-the-art GCM, the IPSL_CM4 model. The IPSL model is a
coupled atmosphere–ocean model [40] used for the Fourth Assessment Report
(AR4) of the Intergovernmental Panel on Climate Change (IPCC) [41]. For pre-
industrial climate, the forcings in the IPSL model are: pre-industrial greenhouse
gas concentration (CO2 = 280 ppm, CH4 = 760 ppb, N2 = 270 ppb), insolation,
coastlines, topography and land-ice extent. The surface albedo is computed from
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the IPSL_CM4 pre-industrial simulation and used as a forcing for the MaxEP
model (Fig. 9.2, left).

The surface temperature distribution obtained with the MaxEP model is rep-
resented in Fig. 9.3 along with the difference between the MaxEP model and the
IPSL model. The global mean surface temperature for the MaxEP model is
hTPIi ¼ 22:9 �C. By comparison, hTPIi in the IPSL simulation is approximately
7 �C lower (Table 9.1); as Fig. 9.3 reveals, the major part of this difference comes
from areas where the cloud cover is important, or elevated areas like the Ant-
arctica. It is shown in [30] that a crude estimation of the effect of clouds and
elevation suffices to explain the major part of the difference with the IPSL model.
Figure 9.4 shows the meridional energy transport as a function of latitude for both
the MaxEP model and the IPSL model for pre-industrial conditions. The agree-
ment is remarkable given the simplicity of the MaxEP model.

Fig. 9.2 Surface albedo ag in the IPSL model, for pre-industrial (left) and Last Glacial
Maximum (right) conditions

Fig. 9.3 Left surface temperature Tg for pre-industrial conditions obtained with the MaxEP model
(version v0). Right Difference between the surface temperature Tg in the MaxEP model and the
IPSL model for pre-industrial conditions. Contour lines interval is 10 �C, positive contours are
drawn in solid lines, negative contours in dashed lines and the null contour as a dotted line
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One advantage of the reformulation of the Paltridge model presented here is
that due to the absence of ad-hoc parameters, it is possible to test the model on
climates other than the Pre-Industrial period. For instance, it is possible to change
the surface albedo to take into account the variations of ice or vegetation extent.
A time period which is well documented and for which simulations with GCMs
are available is the Last Glacial Maximum (LGM). It corresponds to the time
during the last glacial period when the ice-sheets extent was maximum, roughly
21,000 years ago [42]. At that time, large ice-sheets covered North America and
Northern Europe, and the global mean temperature was approximately 5 �C lower
than present. In the MaxEP model, it is only possible to take into account the effect
in surface albedo due to the presence of the ice-sheets at the LGM (Fig. 9.2, right),
and not, for instance the associated topography effect. To ensure the comparison
with the IPSL model is as direct as possible, we use a simulation where only the
albedo effect is taken into account in the GCM. The resulting surface temperature
difference between the LGM and the PI is shown in Fig. 9.5 for both models. The
global mean difference is &-2 �C in the case of the MaxEP model and &-2.5 �C
for the IPSL model. However, in the IPSL model the temperature anomaly spreads
over a large area in the Northern Hemisphere, while in the MaxEP model, it
concentrates over the area where the ice-sheets are.

Table 9.1 compares the global mean surface temperatures obtained using the
different models, for both Pre-Industrial and Last Glacial Maximum conditions.
Including the interactive Planck spectrum (version v1 compared to version v0)
leads to a slight cooling (0.6 �C) and a smaller albedo sensitivity, while turning off
the ozone (version v2 compared to version v1) yields a very small warming
(0.2 �C) and does not change the sensitivity. Figure 9.6 shows the dependence of

Fig. 9.4 Meridional energy
transport as a function of the
latitude in the MaxEP model
(version v0, solid red line)
and the IPSL model (dashed
black line), for pre-industrial
conditions
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the global mean surface temperature on relative humidity. For simplicity, a hori-
zontally homogeneous relative humidity distribution is used. The global mean
surface temperature spans a wide interval, between approximately 14 and 24 �C.
In particular, it encompasses the global mean surface temperature obtained with
other versions of the MaxEP model and with the IPSL model.

The latitudinal dependence of surface temperature distributions obtained from
the different models1 is shown in Fig. 9.7, for both pre-industrial and LGM con-
ditions. When the water vapour feedback is active (version v3), the surface

Fig. 9.5 Surface temperature difference between the Last Glacial Maximum and the pre-
industrial, in the MaxEP model (left, version v0) and in the IPSL model (right). Contour lines
space is 10 �C, positive contours are drawn in solid lines, negative contours in dashed lines and
the null contour as a dotted line

Fig. 9.6 Solid blue curve Global mean surface temperature Tg as a function of relative humidity
(with a homogeneous distribution). The horizontal lines indicate the temperature obtained by
fixing the absolute humidity in the MaxEP model, versions v0 (dashed blue), v1 (dotted red) and
v2 (dashed-dotted yellow), and for the IPSL model (green solid line)

1 The uniform relative humidity in version 3 is chosen as the mean relative humidity in the
MaxEP v0 case.
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temperature is much lower in the polar regions than with other versions of the
MaxEP model. For the same reason, the response to the albedo change at the LGM
is also stronger (Fig. 9.7, right). Globally, the temperature response is approxi-
mately 1 �C stronger than in the absence of the water vapour feedback (Table 9.1).

9.5 The Importance of Spatial Resolution

In the MaxEP procedure, it is traditionally argued that maximizing the entropy
production constitutes a way to represent the effect of small, unresolved scales, on
the large, resolved scales. In the case of meridional heat transport in (dry) plan-
etary atmospheres, the energy is carried partly by the mean flow and partly by
turbulent fluctuations. Nevertheless, even a model accounting for no dynamics at
all like the MaxEP model shown here presents reasonable transport curves. For the
sake of the comparison with the IPSL model, we started with an identical reso-
lution for the GCM and the MaxEP model (Nlat ¼ 72 and Nlon ¼ 96, corre-
sponding to a 3.7 9 2.5� grid). In the MaxEP model, the resolution is somewhat
arbitrary as the computational cost is negligible. In the light of the interpretation of
MaxEP as a parameterization of small-scale processes, one may naturally ask how
the results of the MaxEP model depend on the resolution.

Figure 9.8 shows the curves of total material entropy production and globally
averaged surface temperature obtained with the MaxEP v0 model with different
resolutions. We keep a constant aspect ratio Nlat=Nlon ¼ 3=4 and vary the total
number of boxes. Both curves are monotonically increasing with resolution.
Although there is no explicit representation of the dynamics here, the dependence
on resolution is very similar to the findings of [19] for a GCM. In particular, it
shows that the results of the MaxEP model converge when the resolution increase.

Fig. 9.7 Left Surface temperature Tg for pre-industrial conditions, for the different versions of
the MaxEP model: version v0 (solid blue), v2 (dotted red), v3 (dashed yellow) and for the IPSL
model (solid green). Right Surface temperature difference between the Last Glacial Maximum
and pre-industrial
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9.6 Future Challenges for MaxEP Climate Modelling

In this chapter, we have presented a detailed account of how the MaxEP conjecture
can be applied to climate modelling. We have shown how a MaxEP model without
ad-hoc hypotheses could be built and we have compared its performances in
simulating both the pre-industrial and Last Glacial Maximum climates with a
coupled atmosphere–ocean GCM. The results appear to be robust with respect to
minor modifications (versions v0–v2) of the model. To go beyond these results, we
argue that it is necessary to account for some feedbacks, and show how to treat
them in the MaxEP framework. We stress the importance of the water vapour
feedback (version v3) on the surface temperature. Going further would now require
the ability to include a water-cycle model in our MaxEP model. From there one
may hope to be able to represent clouds in a more robust way than in the original
Paltridge model. To become a realistic climate model, the MaxEP model would
still require important features, like a seasonal cycle (see [43]), a representation of
atmospheric dynamics, a more accurate description of the vertical structure, etc.,
but there are reasons to believe that this would not be completely out of reach. This
key challenge would have to be taken up without sacrificing the original strengths
of the MaxEP model (absence of empirical parameterizations and ad-hoc coeffi-
cients, rapidity, conceptual simplicity). Another major point which would deserve
clarification is the theoretical basis of the MaxEP principle (see Chap. 3). In
particular, it would be desirable to establish which entropy production should be
maximized: Is it always the material entropy production? (See for instance [21]).

If this program could be achieved, the climate modelling community would
acquire a valuable new tool, in addition to the existing hierarchy of models, to
improve our understanding of past, present and future climates, on Earth and
beyond.

Fig. 9.8 Total material
entropy production r (solid
blue) and global mean surface
temperature hTgi (dashed
red) as functions of the
resolution (number of cells).
The aspect ratio is maintained
equal to 3/4
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Chapter 10
Thermodynamic Insights into Transitions
Between Climate States Under Changes
in Solar and Greenhouse Forcing

Robert Boschi, Valerio Lucarini and Salvatore Pascale

Abstract A detailed thermodynamic, sensitivity analysis of the steady state
climate system is performed with respect to the solar constant S* and the carbon
dioxide concentration of the atmosphere, [CO2]. Using PlaSim, an Earth-like
general circulation model of intermediate complexity, S* is modulated between
1,160 and 1,510 Wm-2 for values of [CO2] ranging from 90 to 2,880 ppm. It is
observed that in a wide parameter range, which includes the present climate
conditions, the climate is multistable, i.e. there are two coexisting attractors, one
characterised by warm, moist climates (W) and the other by a completely frozen
sea surface (Snowball Earth, SB). For both sets of states, empirical relationships
for surface temperature, material entropy production, meridional energy transport,
Carnot efficiency and dissipation of kinetic energy are constructed in the para-
metric plane ([CO2], S*). Linear relationships are found for the two transition lines
(W ? SB and SB ? W) in ([CO2], S*) between S* and the logarithm of [CO2].
The dynamical and thermodynamical properties of W and SB are completely
different. W states are dominated by the hydrological cycle and latent heat is
prominent in the material entropy production. The SB states are mainly dry cli-
mates where heat transport is realized through sensible heat fluxes and entropy
mostly generated by dissipation of kinetic energy. It is also shown that the Carnot-
like efficiency regularly increases towards each transition between W and SB and
that each transition is associated with a large decrease of the Carnot efficiency
indicating a restabilisation of the system. Furthermore, it has been found that in SB
states, changes in the vertical temperature structure are responsible for the
observed changes in the meridional transport.
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10.1 Introduction

Probably the most notable examples of climate change events occurred during the
Neoproterozoic (period spanning from 1,000 to 540 million years ago), when the
Earth is believed to have suffered two of its most severe periods of glaciation [16]
and entered into what is often referred to as a snowball Earth (SB) climate state.
The SB climate is characterized by an almost completely ice covered planet with
global temperatures well below 0 �C and an extremely dry atmosphere. This
period coincided with large carbon dioxide fluctuations, while the solar constant
(about 1,365 Wm-2 in present conditions) is believed to have been 94 % of
current levels, rising to 95 % by the end of the Neoproterozoic [15, 49].

The two main factors effecting the concentration of atmospheric CO2 are biotic
activities and volcanism. Volcanic eruptions bring about very sudden and dramatic
increases in CO2 concentration ([CO2]). This is a short-lived process and provides
a means by which to exit a SB climate state by increasing the opacity of the
atmosphere and enhancing the greenhouse effect. By contrast, biospheric effects
tend to occur more gradually as biotic activity and atmospheric composition are
coupled so that large fluctuations in the carbon pools occur over relatively long
time scales.

The effect of SB events on the biosphere is believed to have been disastrous.
Carbon-isotope ratios characteristic of Earth’s mantle [19, 23] rather than of life
processes, were recorded immediately below and above the glacial deposits,
implying that oceanic photosynthesis was effectively non-existent during SB
events. The result of this and anoxic conditions beneath the ice should have lead to
the disappearance of most forms of life except bacteria. The final disappearance of
snowball conditions since the Neoproterozoic may have been the main contrib-
uting factor in the development of complex multi-cellular life that began around
565 million years ago.

Based on the evidence supported by [18, 19], it is therefore expected that the
Earth is potentially capable of supporting multiple steady states for the same
values of some parameters such as the solar constant and [CO2], which directly
affect the radiative forcing. It is important therefore to explore this hypothesis, due
to the relevance for the history of our planet but also to help understand other
planets capabilities for supporting life.

Initial research using simple 0-D models [2, 51], 1-D models [3, 13] as well as
more recent analyses performed using complex 3-D general circulation models
[39, 49, 56], provide support for the existence of such bistability. The SB ? W and
W ? SB transitions tend to occur in an abrupt rather than a smooth transition. The
main mechanism triggering such abrupt transitions is the positive ice-albedo
feedback [2, 54]. Such a feedback is associated with the fact that as temperatures
increase, the extent of snow and ice cover decreases thus reducing the albedo and
therefore increasing the amount of sunlight absorbed by the Earth system. Con-
versely, a negative fluctuation in the temperature leads to an increase in the albedo
therefore reinforcing the cooling.

202 R. Boschi et al.



The presence of such catastrophic climate shifts [1] suggest the existence of a
global bifurcation in the climate system for certain combinations of its descriptive
parameters [8]. The loss of stability realized in the W ? SB and SB ? W transi-
tions is related to the catastrophic disappearance of one of the two attractors
describing the two possible climatic states, as a result of a set of complicated
bifurcations.

Starting from present conditions, the most obvious physical parameters to
modulate in order to bring about the transition to the SB state is the solar constant
[37, 38]. Even if other model experiments [56] show that a decrease in CO2 alone
can bring about transition to the SB state, though this requires a reduction of more
than 80 %, compared to a decrease of less than 10 % for the solar luminosity. The
Neoproterozoic however highlights the importance of considering changes in the
levels of [CO2] as a mechanism for the transitions to and from the SB climate state,
and therefore the dramatic impact it can have on the overall state of the climate
system. It is therefore interesting to alter both the solar luminosity and the
atmospheric opacity as these are two important parameters affecting the overall
properties of the system. If one wants to explore extensively the parametric space
of climate steady states, it is therefore necessary to consider a wide range of values
for both of these parameters. The originally of the work present in the following
sections, comes from exploring both the solar and greenhouse forcings together but
also from our analysis of the transitions between both states of the climate system
from the point of view of the Carnot-like efficiency.

When using a complex climate model to study transitions, it is important to
choose the correct physical observables to provide information about the global
properties of the system. The temperature, which is the variable traditionally
investigated in climate sciences, gives an overall view of the state of the system
but does not give immediate information about the processes occurring within it.
In addition to temperature, it is therefore important to consider diagnostic quan-
tities that provide information on the behaviour of processes occurring within the
system. Since the climate system is in a non-equilibrium state [5, 25] the best way
is to approach this problem from a non-equilibrium thermodynamics point of view.
This means introducing diagnostic tools which complement the more traditional
diagnostics based on classical climatological fields as temperature, precipitation
and winds. It will be discovered at the end of this study that the temperature is a
good physical observable for the climate as it is intimately interconnected with the
thermodynamical quantities.

Recently a great deal of work has been carried out in studying climate irre-
versibility and entropy production in the climate system associated with dissipative
processes [9, 11, 14, 24, 42–46]. In particular, a recent study by [37] focused on
investigating the multiple steady states of SB and W and the SB ? W and W ? SB
transitions in terms of the thermodynamic properties of the system. The [CO2] was
fixed at present levels while the solar constant was varied. Initially, S* was
decreased from present levels until transition to the SB state (see Fig. 10.1a and b).
The solar constant was again increased moving right along the blue line until the
transition back up to the red line. The area marked by the solid and dashed lines
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indicates the hysteresis of the climate and was found in terms of the surface
temperature, TS and material entropy production, _Smat: As shown in Fig. 10.1a and
b, _Smat is an even clearer indicator of the W ? SB and SB ? W transitions than
temperature, because while temperature difference between two coexisting states
is of the order of 50 K (or 20 %), in the case of the material entropy production the
W state features values larger by a factor of 4 than the corresponding SB state.

The work presented in this chapter builds on and unifies the work done by [37]
with the analysis performed in [38], where [CO2] variations alone are considered,
in order to obtain a more complete picture of how radiative and dynamical pro-
cesses are coupled in a vast range of climates. Specifically, a detailed thermody-
namic, parametric sensitivity study of the steady state climate system is performed
with respect to S* and [CO2]. Using PlaSim, a general circulation model of
intermediate complexity [10], we study the climate states realised when the solar
constant is modulated between 1,160 and 1,510 Wm-2 and the values of [CO2] are
varied between 90 and 2,880 ppm. Our aim here is to produce a simulation-based
reconstruction of the global structural properties of the climatic attractors. For both
W and SB states we compute surface temperature, material entropy production,
meridional energy transport, Carnot efficiency [22, 35] and dissipation of kinetic
energy and propose empirical relationships in the parametric plane ([CO2], S*). We
will look for an empirical relation for the two transition lines (W ? SB and
SB ? W) in the parametric plane between S* and the natural logarithm of [CO2]
which marks the boundaries of the hysteresis in the climate system. The afore-
mentioned quantities will be used to explain changes in large-scale climate
behaviour and the effect of climate change on features such as stratification and
baroclinicity in order to understand changes in the meridional heat transport across
the parameter range. It will also be shown that the Carnot-like efficiency has a key
role in defining the stability of the system, which is related to abrupt climatic
shifts. Note, our work differs from most other work done on the snowball state, in
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Fig. 10.1 (a) Surface temperature and (b) material entropy production for steady states obtained
for different values of the solar constant S* while maintaining [CO2] at 360 ppm. The present
climate is marked with a black circle, the warm (W) states in red and the snowball (SB) states in
blue. From [38]. W states are warm moist climates similar to our own while the SB states are
climates very dry atmospheres, with an Earth’s surface almost completely covered in ice
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the sense that we explore the snowball state using the Earth’s present land con-
figuration as opposed how it was during the Neoproterozoic era.

The chapter is structured in the following way: in Sect. 10.2 we will describe
details of the non-equilibrium thermodynamics of the climate and the diagnostic
tools used. Section 10.3 will describe the PlaSim climate model and the steps taken in
the simulation procedure, the results of which are discussed in Sects. 10.4 and 10.5.

10.2 Non-equilibrium Thermodynamics of the Climate

In this section we recapitulate some thermodynamic properties of the climate
system and introduce the notation used throughout this chapter. We follow what
has been previously presented in [35]. If the Earth’s global climate system (surface
and atmosphere) is encompassed by a domain X, the total energy budget is given
by EðXÞ ¼ PðXÞ þ KðXÞ; where K represents the total kinetic energy and P is the
moist static potential energy, in which we adopt the usual Lorenz approach of
combining the contributions from the thermal (including latent heat) and potential
energy [22, 46]. The time derivative of K and P can be found to be _K ¼ �DþW
and _P ¼ wþ D�W ; where D is the dissipation and therefore always positive, W
is the instantaneous work done by the system and w which is the heating due to
convergence of turbulent heat fluxes and radiative heat, such that _E ¼ w (see
Fig. 10.2). The dependence on X has been dropped for convenience. The total
heating rate can therefore be written as _Q ¼ wþ D: Considering the climate as a

non-equilibrium steady state system (NESS, see [12]), over long time scales �_E ¼
�_P ¼ �_K ¼ 0 (the bar indicates averaging over long time periods).

Fig. 10.2 Schematic figure showing the two main classes of energy: Potential (P) and Kinetic
(K); and the transfer processes ðw;W ;DÞ which exchange energy between them. _E is the total
energy within the system and _Qð¼ wþ DÞ; is the total heating rate due to dissipation ðDÞ and the
convergence of heat fluxes ðwÞ: W is the work done by the system. _w includes the external
radiative input to the climate system from the sun, therefore _E ¼ w
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Let us define _q as the local heating rate so that _q ¼ q 22 � ~r:H
� �

[37] where

22 [ 0 is the local rate of heating due to viscous dissipation of kinetic energy and
H is given by the sum of turbulent heat fluxes plus radiative energy fluxes, such

that over the whole domain, D ¼
R

X dVqe2 and w ¼
R

X dVq ~r:H; respectively.
Dividing X into two subdomains: Xþ; where _q ¼ _qþ[ 0; and X� in which _q ¼
_q�\0; we find that _qþ plus _q� integrated over X equals the derivative of total

heating ð _QÞ due to dissipation ðDÞ and the convergence of heat fluxes ð _wÞ :

wþ D ¼ _PþW ¼
Z

Xþ
dVq _qþ þ

Z

X�
dVq _q� ¼ _Q

þ þ _Q
� ¼ _Q; ð10:1Þ

where the quantities _Q
þ

and _Q
�

are positive and negative at all times, respec-

tively. Since dissipation is positive definite, ��_K þ �W ¼ �D ¼ �_Pþ �W ¼ �W ¼
_Qþ þ _Q�[ 0:

On spatial scales far smaller than X itself, it is practical to assume local
equilibrium (local thermodynamic equilibrium hypothesis, [5]) so that locally _q ¼
_sT with _s the time derivative of the entropy density. The total rate of change of the
entropy of the system is:

_S ¼
Z

Xþ
dVq

_qþ

T
þ
Z

X�
dVq

_q�

T
¼
Z

Xþ
dVq_sþ þ

Z

X�
dVq_s� ¼ _R

þ þ _R
�
; ð10:2Þ

where _R
þ

[ 0 and _R
�
\0: Using Eq. (10.2) and assuming that the Earth system is

in a steady state, over a long time average, _R
þ ¼ � _R

�
as �_S ¼ 0: Therefore,

2 _R
þ ¼

R
X dVq _sj j; so that _R

þ
measures the absolute value of the entropy fluctua-

tions throughout the domain.
When integrating over the whole domain and considering long time averages,

we have the following equivalent expressions for the thermodynamic quantities:
_Qþ ¼ _RþHþand _Q� ¼ _R�H�; where Hþ and H� are the time and space aver-
aged temperatures of the Xþ and X� domains respectively. These expressions are

only valid if correlations between T and _sþ or _s� are ignored. Since _Rþ
�
�
�

�
�
� ¼ _R�

�
�
�

�
�
�

and _Qþ
�
�
�

�
�
�[ _Q�

�
�
�

�
�
�; it can be shown that Hþ[ H�; i.e. absorption typically occurs

at higher temperature than release of heat [21, 22, 46]. The Earth’s climate system
can be considered like a Carnot heat engine. For conceptual purposes, in its
simplest form, we can think of the atmosphere as being a fluid which exchanges
heat between two thermal reservoirs: from a region of net warming mostly in
Tropics and extra Tropics, to a region of net cooling in the extra-tropics and the
poles. The Carnot–like efficiency of the system can therefore be defined as:

g ¼
R

Xþ dVq _qþ þ
R

X� dVq _q�
R

Xþ dVq _qþ
¼

_Qþ þ _Q�

_Qþ
¼

�W

_Qþ
; ð10:3Þ
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where, the work done by the Carnot engine of the climate system is found to be,
�W ¼ g _Qþ:

As shown in [31, 32]—and clarified in [22]—the long term average of the work
performed by the system is equal to the long-term average of the generation of
available potential energy, as typical of forced-dissipative steady states. The Earth
exists in a steady state maintained far from equilibrium by net radiative heating at
the equator and net cooling at the poles which results in its observed vertical and
meridional heat transports. This gives rise to on-going irreversible processes,
including phase transitions in H2O and frictional dissipation, which are charac-
terized by a positive entropy production. The entropy production due to the irre-
versibility of the processes occurring within the climatic fluid is called the material
entropy production, _Smat and can be written in general terms as:

_Smat ¼
Z

X

e2

T
dV þ

Z

X

~FSH � ~r
1
T

dV þ
Z

X

~FLH � ~r
1
T

dV; ð10:4Þ

where the first, second, and third terms on the RHS are related to the dissipation of
kinetic energy, and to the transport of sensible and latent heat respectively. We
now wish to link the terms of the entropy budget in Eq. (10.2) with those of the
entropy production in Eq. (10.4).

The second law of thermodynamics states that the entropy variation of a system
at temperature, T receiving an amount of heat dq is larger than or of equal to dq=T
[29]. In this case:

_SmatðXÞ� _SminðXÞ ¼
R

X dVq _q
R

X
dVqT

0

B
@

1

C
A

¼
_Q
þ þ _Q

�

H

 !

�
_Qþ þ _Q�

hHi
�

_Qþ þ _Q�

Hþ þH�
� �

=2
¼

�W

Hþ þH�
� �

=2
;

ð10:5Þ

where _SmatðXÞ is the long-term average of the material entropy production, _SminðXÞ
is its lower bound, i.e. the minimal value of the entropy production compatible

with the presence of a Lorenz energy cycle with average intensity _W and hHi is the
density averaged temperature of the system. The approximation holds as long as
we can neglect the impact of the cross-correlation between the total net heat
balance and the average temperature and we can assume that hHi can be
approximated by the mean of the two Carnot temperatures Hþ and H�.

This is because on Earth, the regions of net atmospheric warming are well
approximated to be centered around the Equator between about [30�S, 30�N] i.e.
the Tropics, with all other regions associated with net cooling. Therefore, the total
mass in each of these regions is comparable. The boundaries between these two
regions, the tropical/extratropical transition, are located at the peak of the
meridional energy transport, which [55], has shown is constrained to be close to
what is observed today, for a vast array of climates. The dominating factor which
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sets the latitudinal extent of the region of net heating is the incident angle of solar
radiation [6]. This implies that we can assume the regions of net heating and
cooling are comparable in all climate scenarios considered here, assuming the
atmosphere remains relatively transparent to SW radiation.

Note, in the real atmosphere, the vertical structure of the zonally averaged
heating pattern is not homogeneous, in large part, due to the contribution of latent
heat. In particular, we observe regions of net heating in the lowest third of the
troposphere extending towards the poles by up to 60� latitude, while in the top
two-thirds, net heating is mostly seen out to about 15� away from the equator [38].
The masses of the two portion of the atmosphere, characterized by net heating and
net cooling, respectively, are almost the same. We can therefore explicitly write
_SminðXÞ as:

_SminðXÞ �
�_W

Hþ þH�
� �

=2
¼ g _U

þ

Hþ þH�
� �

=2

¼ g
Hþ

Hþ þH�
� �

=2
_R
þ ¼ g

1
1� g=2

_R
þ � g _R

þ
;

ð10:6Þ

where the last approximation holds as long as g � 1, which applies in the case of
the climate system. Therefore, g sets also the proportionality factor relating the

lower bound to the entropy production of the system _SminðXÞ—due to macro-
scopically irreversible processes—to the absolute value of the entropy fluctuations
inside the system due to macroscopically reversible heating or cooling processes.
Note that if the system is isothermal and at equilibrium the internal entropy pro-
duction is zero, since g! 0: The lower bound to the material entropy production
corresponds to the contribution coming from the dissipation of kinetic energy
through viscous processes. Therefore, the average material entropy production can

be expressed as _Smat ¼ _Smin þ _Sexc; where _Sexc is the excess of entropy production
with respect to the minimum, which results from the heat transport down the
temperature gradient [35]. We can define:

a �
_Sexc

_Smin
�
R

X dVH: ~r 1
T

� �

�_W
hHi

� 0; ð10:7Þ

as a parameter of the irreversibility of the system, which is zero if all the pro-
duction of entropy is due to the—unavoidable—viscous dissipation of the

mechanical energy. As _Smat � g _R
þ

1þ að Þ; we have that the entropy production is
maximized if we have a joint optimization of heat transport and the production of
mechanical work. Note that, if heat transport down the temperature gradient is
very strong, the efficiency g is small because the difference between the temper-
atures of the warm and cold reservoirs is greatly reduced (the system is almost
isothermal), whereas, if the transport is very weak, the factor a is small.
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10.3 Simulation Procedure

The dynamical and thermodynamical properties of the Earth’s climate are studied
here using PlaSim [11], a climate model of intermediate complexity, freely
available at http://www.mi.uni-hamburg.de/plasim. Its dynamical core is formu-
lated using the primitive equations for vorticity, divergence, temperature and the
logarithm of surface pressure, solved using the spectral transform method [7, 41],
where the prognostic variables are represented as the sum of a series of complex
exponential functions. Unresolved processes for long [50] and short [28] wave
radiation, shallow, moist [26, 27] and dry convection, cloud formation [52–54] and
large scale precipitation, latent and sensible heat boundary layer fluxes, horizontal
and vertical diffusion [30, 33, 34] are parameterized.

The model is coupled to a 50 m deep mixed layer ocean which contains a
thermodynamic sea-ice model. The advantage of using a slab ocean as opposed to
a full ocean is that it allows for the climate system to reach a stead state in less than
35 years after a change in e.g. the solar constant. With full ocean coupling, the
integration time of the model and the time needed to reach a steady state would be
an order of magnitude larger [56].

We wish to emphasize that whereas most state-of-the-art general circulation
models feature considerable energy imbalances, as highlighted by [36], the energy
bias is of the order of 0.5 Wm-2, almost an order of magnitude less than in most
GCMs and an entropy diagnostic is available [11], thus making it well suited for
this work.

The model is run at T21 resolution (approximately 5.6� 9 5.6�) with 10 vertical
levels. Modulating S* with respect to [CO2] of 90, 180, 270, 360, 540, 720, 1,080,
1,440, 2,160 and 2,880 ppm, we are able to reconstruct the SB and W climate
states. The procedure occurs as follows for each of the considered values of [CO2]:

1. the model is initially run to a W steady state for 100 years with S* equal to
1,415 Wm-2;

2. S* is decreased by a small amount for each value of [CO2] and the model run is
continued until a steady state is reached;

3. step 2 is repeated until S* is reduced to 1,165 Wm-2; the point of W ? SB
transition is noted down;

4. the reverse operation is then performed with S* increased by intervals of
15 Wm-2, from 1,165 Wm-2 up to a value of 1,510 Wm-2, each time allowing
the system to reach a steady state; the point of SB ? W transition is noted
down.

Further to this, we identify the position of the transition to a higher resolution
than the rest of the parameter range in the direction of S*. For values of S* within
10 Wm-2 before the transition, S* is decreased in intervals of 1 Wm-2, each time
permitting 50 years for the system to reach a steady state, until after the transition
is observed.
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10.4 Results: Hysteresis, Bistability and Regime
Boundaries in a Parametric Space

10.4.1 Temperature and Entropy Production

Initially, focus is put on analysing the parametric plane ([CO2], S*), referred to as
the CS space, which in the following shall be considered in terms of global mean
surface temperature, Ts. The transition zones between the main climate states are
clearly defined from the dependence of surface temperature on [CO2] and S*. Note,
the qualitative properties of the climate system in the CS space, namely the
presence of bistability between the SB/W states, can be reconstructed from any
observable of the climate state, but it is most instructive to select first the surface
temperature because it is also experimentally most relevant. The change in surface
temperature through the CS space is illustrated in Fig. 10.3a and b.

We identify two main climatic regimes, observed as two distinct manifolds
([CO2], S*, Ts) and characterized by a sharp change in the profile of Ts when
jumping from one manifold to another. We refer to these as the upper and lower
manifolds, representative of the W and SB regimes respectively. As would be
expected, there is a monotonic increase of temperature with increasing [CO2] or S*

on both manifolds [47, 48, 56]. The temperature range on the SB and W manifolds
are 212–242 K, and 254–326 K respectively, over the parameter range. Note, due
to the different temperature ranges the colour scaling of Fig. 10.3a and b is a factor
of 4 different, with both scales starting from the same lowest value. The tem-
perature range of the bistable region in the SB and W regimes are 218–242 K and
254–300 K respectively, meaning that the rate of change of surface temperature
over the same range of S* and [CO2] is approximately double in the W regime,
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Fig. 10.3 Contour plot of surface temperature (K) as a function of S* and [CO2]. The lower SB
(a) and upper W (b) manifolds are shown. The transition SB ? W and W ? SB are shown by the
upper and lower purple lines respectively. The solid purple line indicating the active transition
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with respect to the SB regime and that the surface temperature difference between
the two manifolds ranges between 40 and 60 K.

The W states (upper manifold) exists only in the region of the CS space above
the W ? SB transition line (the position of this line is expresses as S� ¼ S�wsb)
whereas the SB states (lower manifold) only in the CS region below the
SB ? W transition line (the position of this line is expressed as S ¼ S�sbw). Such
lines, which are well separated and approximately parallel, are illustrated as solid
and dashed purple lines on Figs. 10.3, 10.4, 10.5, 10.6, 10.7, 10.8 and 10.9 and
have been found within an accuracy of 2 Wm-2 of the solar constant. The solid
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Fig. 10.5 Contour plot of: (a) meridional heat transport and (b) Lorenz energy cycle or
dissipation as a function of S* and [CO2] for the W states
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purple lines indicate the ‘active’ transition, dependent on which manifold the
climate system lies in at that moment i.e. the active transition for the SB and
W states are SB ? W and W ? SB respectively. The dashed lines illustrate the
location of the ‘inactive’ transition, when the climate system exists in the alter-
native state. The bistable region is therefore located between the dashed and solid
purple lines. As a result, a property of the system is that regardless of which
combination of [CO2] and S* is used, the transition from one state to another
always occurs at almost exactly the same temperature. This indicates that the
climate system has a low sensitivity to the mechanism of forcing.

The position of the two boundaries can be parameterised in terms of S* and
[CO2] as:
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S�sbw ¼ asbw log10 CO2½ � þ Csbw; S�wsb ¼ awsb log10 CO2½ � þ Cwsb; ð10:8Þ

where asbw & awsb & -72 Wm-2, Csbw & 1,629 Wm-2 and Cwsb& 1,438 Wm-2

for the transition SB ? W and W ? SB respectively and [CO2] is expressed in
ppm. The size of the bistable region, which we define as B, along S* can therefore
be defined by the difference between Csbw and Cwsb:

B ¼ Csbw � Cwsb: ð10:9Þ

It is found that B is approximately 200 Wm-2. The displacement between the
position of the boundaries gives a precise measure of the hysteretic properties of
the climate [2, 37, 51, 56] since it indicates the size of the overlap between the two
manifolds in the CS plane.

The presence of a bistable region implies that when we change the values of S*

and [CO2] from an initial to a final value, the final steady state depends on the
initial steady state and on the change of path in S* and [CO2].

Let us assume that we start from an initial point CO2½ �0; S�0
� �

in the bistable
region of the W state. Let us also assume we perform a closed path when varying
S* and [CO2], so that S�0 ¼ S�f and CO2½ �0¼ CO2½ �f : If the path does not cross S�wsb

the final state will be identical to the initial one, that is, in an averaged sense:

Ts CO2½ �0; S�0
� �

¼ Ts CO2½ �f ; S�f
� �

: ð10:10Þ

On the other hand if the closed path crosses the transition line to the second
manifold, the final state will be different from the initial:

Ts CO2½ �0; S�0
� �

6¼ Ts CO2½ �f ; S�f
� �

: ð10:11Þ
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Fig. 10.8 Contour plot of: (a) meridional heat transport (K) and (b) Lorenz energy cycle or
dissipation as a function of S* and [CO2] for the SB states
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Furthermore, if the closed path crosses first S�wsb and then S�wsb; then once again we

find Ts CO2½ �0; S�0
� �

¼ Ts CO2½ �f ; S�f
� �

; since the system has performed first a

W ? SB, and then a SB ? W transition. The same applies starting from a SB state
and exchanging SB with W in the previous discussion. This is true for any climate
diagnostic. More specifically, in the case of Ts; for W ? SB and SB ? W transitions,

Ts CO2½ �0; S�0
� �

[ Ts CO2½ �f ; S�f
� �

and Ts CO2½ �0; S�0
� �

\Ts CO2½ �f ; S�f
� �

ð10:12Þ

respectively. Note that for S* [ 1,438 Wm-2, even if [CO2] is 0 ppm, no transi-
tion to SB state can occur.

Figure 10.4a and b show the analogous behaviour for the material entropy
production, _Smat in CS space, computed directly as described in [11]. As with
temperature, _Smat increases monotonically with increasing S* and [CO2] on both
manifolds. In the SB state, _Smat is mostly generated by dissipation of kinetic energy
and irreversible sensible heat transport, because the planet is almost entirely dry.
For the W manifold the main contribution to _Smat comes from latent heat due to
large scale and convective precipitation. In the bistable region the range of _Smat is
(10, 19) Wm-2 K-1 and (34, 62) Wm-2 K-1 for the SB and W respectively,
therefore a factor of 3 larger in the W regime respect to the SB regime. This
confirms that _Smat may be a better indicator than temperature for discriminating
between the SB and W states as already discussed in [37].

It is possible to parameterise _Smat as a function of both the solar constant, S* and
the logarithm of the [CO2] (the response of the climate to [CO2] increase is
logarithmic, [40]) as:

_Smat ¼ C þ aS� þ b log10 CO2ð Þ ð10:13Þ
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where the coefficients are indeed different for the W and SB state and are reported
in Table 10.1.

In the bistable region, the SB and W states are quantitatively very different with
respect to their physical properties. Both disjoint attractors can thus be thought of as
representing two different worlds, with completely different dynamical and ther-
modynamical properties. Therefore we treat them separately and then describe how
the system makes a transition between both states. For this reason in the following
two sub-sections dynamical and thermodynamical properties of the manifolds will
be analysed individually in terms of the vertical and horizontal surface temperature
differences, Carnot efficiency, meridional heat transport and dissipation of kinetic
energy. Furthermore we shall relate these properties to the average mean global
temperature and the material entropy production. As is illustrated by the solid and
dashed purple lines, in the CS space Figures, each manifold is divided up into two

sub regions: W ; W/Bistable ~W
� �

on the upper manifold and SB; SB/Bistable ðfSBÞ
on the lower. Then, in a third section, the transitions between both manifolds
occurring in the bifurcation regions are analyzed.

10.4.1.1 The Warm State

The meridional heat transport profile is worked out as explained in [36] and from
this an index is defined as the mean of the magnitude between the Northern and
Southern hemisphere maxima. In a moist atmosphere, the average global tem-
perature and the meridional surface temperature difference (see Fig. 10.6a),
defined as the difference between the mean surface temperature of the tropics
(30�S, 30�N) and the polar regions ([90�S, 60�S] and [60�N, 90�N]), are the main
contributing factors for controlling the meridional heat transport (see Fig. 10.5a).
This is due to the fact that temperature controls the latent heat released in the
atmosphere due to the Clausius-Clapeyron effect [17] and the meridional

Table 10.1 The coefficients of the empirical relationship (10.13) relating Ts, _Smat and the
meridional heat transport to S* and [CO2]

Variable Coefficients

C b a

TS SB [K] 227 (K) 0.498
(K W-1 m2)

0.00899 (K)

TS W [K] 283 (K) 1.364
(K W-1 m2)

0.01427 (K)

Mer. heat transport SB (PW) 2 (PW) 0.011 (m2) 0.00026 (PW)
Mer. heat transport W (PW) 10 (PW) 0.031 (m2) 0.00059 (PW)
_Smat SB (mW m-2K-1) 13 (mW m-2 K-1) 0.147 (K-1) 0.00358

(mW m-2 K-1)
_Smat W (mW m-2 K-1) 49 (mW m-2 K-1) 1.0 (K-1) 0.00492

(mW m-2 K-1)
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temperature gradient controls baroclinicity of the atmosphere [55]. Additionally,
another modulating factor is the vertical stratification of the atmosphere, as con-
ditions of low stratification in the mid-latitudes support stronger baroclinic activity
for a given meridional temperature gradient [20]. In the bistable region of the
warm sector, the meridional heat transport has a flat response to increasing S* and
[CO2] and therefore Ts. With increased Ts, water vapour concentration of the
atmosphere increases, thus leading to the strengthening of the poleward latent heat
fluxes. In addition, the increased Ts causes sea and continental ice as well as
seasonal snow cover to retreat towards the poles, thus lowering the surface albedo
gradient. This contributes negatively to changes in the meridional heat transport,
through a decrease in the baroclinicity.

In the W regime, the boundary between the bistable and the monostable regime
approximately marks the point at which the Earth surface loses its permanent sea-
ice cover, thus supporting the idea that the presence of bistability is intrinsically
linked with the powerful ice-albedo feedback. For Ts larger than approximately
300 K, the meridional temperature gradient decreases at a far slower rate with
increasing Ts. Therefore, in this region the meridional heat transport is controlled
only by the availability of water vapour in the atmosphere. This means, at tem-
peratures above 300 K, the meridional temperature difference becomes decoupled
from the surface meridional heat transport. This analysis consequently shows the
importance of the hydrological cycle as a major contributing factor to the mag-
nitude of the meridional heat transport and moreover, it indicates that when going
from warm to very warm climates the hydrological cycle becomes the dominant
climatic feature, leading to strong positive dependence of the meridional heat
transport on the surface temperature. Our results agree with the findings of [4],
who found in aqua planet simulations, there is little scope for reducing the
meridional temperature gradient further once the sea-ice and snow have melted.
For a constant meridional temperature gradient, an increase in the meridional
latent heat fluxes with increasing global mean temperature was shown.

The conclusions drawn above find further support when looking at the mid-
latitudes vertical temperature difference, DTv; defined as the mean temperature
difference between the surface and the 500 hPa level (see Fig. 10.6b). The vertical
temperature difference is largest along a band of the CS space centered half way
through the bistable region in the direction of S�: Our current climate conditions
would appear to be positioned at the centre along a band where such temperature
differences are at their largest, implying conditions of reduced vertical stratifica-
tion. For colder climates, increasing surface temperature causes the melting of sea-
ice and of seasonal snow cover, so that the ensuing decrease in surface albedo
(leading to increased surface absorption) accounts for the increasing vertical
temperature difference. Instead, in warmer climates, the decrease in equatorial
vertical temperature difference with Ts can be understood in terms of increased
moist convection from warmer surface temperatures, resulting in an increase of
moisture fluxes to the upper atmosphere, which then condense and release latent
heat.
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In the bistable region, for the reasons discussed above, we expect to find a
pronounced weakening of the dynamics of the climate system with increasing sur-
face temperature. We test this hypothesis by computing the strength of the Lorenz
energy cycle (Fig. 10.5b), which is equal to the average rate of dissipation of kinetic
energy, and the Carnot-like efficiency of the system (Fig. 10.7), which measures,
instead, how far the system is from equilibrium. The dissipation, similarly to the
meridional temperature gradient, decreases monotonically with the Ts, and reaches
its largest value just before the W ? SB transition boundary of the W manifold. The
efficiency is maximized before the W ? SB transition and decreases monotonically
with increasing [CO2] or S*: warmer climates are characterised by smaller tem-
perature differences, since the transport of water vapour acts as a very efficient
means for homogenising the temperature across the system. Therefore, the system
has lower ability to produce mechanical work and is characterised by very strong
irreversible processes, as described by the very large values of _Smat shown in the
W region of the CS space on Fig. 10.4b. A high value in the efficiency is closely
related to the maximization of the temperature gradients. Comparison of the CS
space figures show the Carnot efficiency to align much more closely with changes in
the meridional rather than the vertical temperature differences, implying it is the
meridional temperature gradients which contribute most actively in dictating the
amount of work done by the climate system in the ~W region.

10.4.1.2 The Snowball State

The SB state is intrinsically simpler than the W state because the hydrological
cycle has a negligible influence. This is due to the fact that atmospheric temper-
atures are so low that the atmosphere in all cases is almost dry. Moreover, in the
SB state the meridional gradients (and not only the globally averaged values) of
albedo are very low and depend weakly on S* and the [CO2], because under all
conditions the sea surface is frozen almost everywhere and the continents are
covered by ice and snow. The meridional heat transport (Fig. 10.8a) is much
smaller than for the corresponding W states, because in the SB state a large fraction
of the radiation is reflected back to space and the albedo gradients are small, so
that the energy imbalance between low and high latitudes is small.

Throughout the SB state, increases in S* and [CO2], which lead to an increase in
the surface temperature and in the rate of entropy production are accompanied by
increases in the meridional heat transport and in the dissipation of kinetic energy
(Fig. 10.8b). This tells us that with increased meridional heat transport the
intensity of the circulation also increases. However we find that the meridional
temperature difference (not shown) has a very weak dependence on changing
[CO2] and S*, as it varies by only 4K across the explored parameter range, so that
the changes in the baroclinicity of the system cannot be due to changes in the
meridional heat transport and in the intensity of the Lorenz energy cycle. The lack
of large variations in the meridional surface temperature profile are essentially due
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to the fact that the net input of shortwave radiation is rather fixed by the constant
surface albedo and minimal cloud cover. The system therefore can be seen as
rather rigid, as changes in the absorbed radiation are almost exactly compensated
by changes in the meridional heat transport. The re-equilibration mechanism must
then contain elements, which are not present in the classic baroclinic adjustment
[54]. We find that the mid-latitudes vertical temperature gradient (Fig. 10.9a)
increases substantially with increased value of S* and [CO2], as an effect of the
increased absorption of radiation near the surface. The reduced vertical stratifi-
cation leads to more pronounced baroclinic activity even for a fixed meridional
temperature gradient, thus leading to an increase in the meridional heat transport
and the intensity of the Lorenz energy cycle. The argument is made more
straightforward because we are considering an almost dry atmosphere. The effi-
ciency has a dependence on S* and [CO2] which, as in the W case, is most closely
related to the meridional temperature gradient field. In the case of the SB state, the
main signature is given by the vertical gradient (Fig. 10.9a). This further rein-
forces the idea that the investigation of meridional temperature gradients is not
enough to grasp the mechanisms through which the system generates available
potential energy and material entropy production [36].

10.4.1.3 Transition and Comparison Between Manifolds

Up to now, the W and SB states have been characterized as two entirely distinct
climate regimes, and have underlined that the basic mechanisms of re-equilibration
are rather different. In this subsection we would like to present some ideas aimed at
making sense of the transitions between the two states occurring when we get close
to the boundary of the upper or lower manifold. As has been seen, the W ? SB
transition is associated with a large decrease in surface temperature, rate of
material entropy production, and meridional heat transport. This is intimately
related to the fact that whereas in the W state the hydrological cycle is a major
contributor to the climate dynamics, in the SB state the hydrological cycle is
almost absent. Nonetheless, this does not say much about the processes leading
from one state to the other, or better still, describing how one of the attractors
disappears.

We have also discovered that the usual dynamical indicators of the atmospheric
state, i.e. the meridional temperature gradient and the vertical stratification do not
necessarily indicate whether or not we are close to an irreversible transition of the
system, e.g. by signaling something equivalent to a loss of ‘‘elasticity’’ of the
system. In this regard, it is much more informative to observe how the efficiency
behaves near the transitions. We find that, as a general rule, each transition is
associated with a notable decrease (more than 30 %) of the efficiency of the system
(see Figs. 10.7 and 10.9b), and the closer the system gets to the transition in the CS
space, the larger is the value of the efficiency. This can be interpreted as follows. If
the system approaches a bifurcation point, its positive feedbacks become relatively
strong compared to the negative feedbacks, which act as re-equilibrating
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mechanisms, and become less efficient. As a result, the differential heating driving
the climate is damped less effectively, and the system is further from equilibrium,
since larger temperature differences are present. Therefore, the system produces
more work, thus featuring an enhanced Lorenz energy cycle and a stronger cir-
culation. At the bifurcation point, the positive feedbacks prevail and the circula-
tion, even if rather strong, is not able to cope with the destabilising processes, and
transition to the other manifold is realised. The new state is, by definition, more
stable, and thus closer to equilibrium. The decreased value of the efficiency is
exactly the marker of this property. This confirms what has been proposed by [37]
in much greater generality and can be conjectured to be a rather general property
of non-equilibrium systems featuring structural instabilities.

10.5 Summary and Conclusions

Motivated by paleoclimatic evidence and the goal to attain a parametric theory of
climate change, which extends beyond the usual analysis of sensitivities around
the present climate, in this contribution, we have studied how the stability prop-
erties of the climate system depend on the modulation of the two main parameters
describing the radiative forcing, i.e. the solar constant S* and the [CO2]. In our
analysis we propose that the point of view of non-equilibrium thermodynamics is
especially useful for understanding the global properties of the climate system and
for interpreting its global instabilities.

We have discovered that in a rather wide parameter range, which includes the
present climate conditions, the climate is multistable, i.e. there are two coexisting
attractors, one characterised by warm conditions, where the presence of sea ice and
seasonal snow cover is limited (W state), and one characterised by a virtually
completely frozen sea surface, the so-called snowball (SB) state. These qualitative
and structural properties, obtained using the PlaSim climate model, confirm and
extend what has been previously found in various studies using models of varying
degrees of complexity. We point the reader to [49] and [37] for an extensive
discussion. In this regard, the main improvement of this work is that a two
dimensional parameter space is explored (whereas usually variations in the solar
constant or in the opacity of the atmosphere are considered separately), which
allows the gathering of more complete information on the possible states of the
climate system that seem relevant for the actual mechanisms which play a crucial
role in a paleoclimatological context, as explained in [49].

For all considered values of the [CO2], which range from 90 to 2,880 ppm, the
width of the bistable region is about 200 Wm-2 in terms of the value of the solar
constant, and its position depends linearly on the logarithm of the [CO2], being
centered around smaller values of the solar constant for increasing opacity of the
atmosphere, shifting by about 15 Wm-2 per doubling of [CO2]. The W state is
characterized by surface temperatures 40–60 K higher than in the SB state, and by
values of material entropy production which are larger by a factor of 3–4 (order of

10 Thermodynamic Insights into Transitions Between Climate States 219



40–60 mW m-2 vs. 10–15 mW m-2). The boundaries of the bistable region are
approximately isolines of the globally averaged surface temperature, and in par-
ticular, the warm boundary, beyond which the SB state cannot be realized, is
characterized by vanishing permanent sea ice cover in the W regime. This rein-
forces the idea that the ice-albedo feedback is the dominant mechanism for the
multistability properties.

The thermodynamical and dynamical properties of the two states are very
different, as if we were discussing two entirely different planets. In the W state the
climate is dominated by the hydrological cycle and latent heat fluxes are prominent
in terms of redistributing the energy in the system and as contributors to the
material entropy production. The SB state is predominantly a dry climate, where
heat transport is realized through sensible heat fluxes and entropy is mostly gen-
erated through the dissipation of the kinetic energy. The dryness of the SB
atmospheres also explains why the climate sensitivity is much smaller.

In the W state, the meridional heat transport is rather constant throughout the
bistable region, as the contrasting effect of the enhancement of latent heat fluxes
driven by increasing surface temperature and the reduction in the baroclinicity due
to the decrease in the meridional temperature gradient compensate almost exactly.
In the warm range, beyond the bistability region, the meridional heat flux increases
with the surface temperature, the reason being that the compensating albedo
mechanisms are shut off as sea ice is completely removed from the surface.

In the SB state, increased incoming radiation or increased [CO2] lead to
increases in the meridional heat transport. In this case, the water vapor plays no
role, and, somewhat surprisingly, the meridional temperature difference has also a
rather flat response to the parameter modulation. In this case, the dominant
mechanism determining the properties of the meridional heat transfer is the change
in the vertical stratification, which becomes weaker for warmer climate conditions.
This implies that the atmospheric circulation strengthens for increasing values of
the solar constant and of the [CO2]. In fact, the strength of the Lorenz energy cycle
becomes stronger for warmer climate conditions, and the Carnot-like efficiency of
the climate system has an analogous behaviour.

The opposite holds for the W state, where the intensity of the Lorenz energy
cycle and the efficiency decrease for warmer conditions, the reason being that the
water vapor becomes more and more efficient in homogenizing the system and
destroying its ability to generate available potential energy.

A general property we have found is that, in both manifolds, the efficiency
increases when we get closer to the bifurcation point and at the bifurcation point
the transition to the newly realized stationary state is accompanied by a decrease in
the efficiency. This can be framed in a rather general thermodynamical context: the
efficiency gives a measure of how far the system is from equilibrium. The negative
feedbacks tend to counteract the differential heating due to the sun’s insolation
pattern, thus leading the system closer to equilibrium. At the bifurcation point, the
negative feedbacks are overcame by the positive feedbacks, so that the system
makes a global transition to a new state, where, in turn, the negative feedbacks are
more efficient in stabilizing the system.
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The results discussed in this chapter support the adoption of new diagnostic
tools for validating climate models based on the second law of thermodynamics.
The next step in this direction is a more quantitative understanding of the global
relationships between surface temperature, material entropy production, meridio-
nal heat fluxes and Carnot-like efficiency for the SB and W states and to propose
possible parameterisations for the SB and W attractors. Another line of research
will explore the dependence of these quantities on other fundamental parameters,
e.g. the rotation rate and the surface drag, relevant for planetary atmospheres of
terrestrial planets.
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Chapter 11
Entropy Production in Planetary
Atmospheres and Its Applications

Yosuke Fukumura and Hisashi Ozawa

Abstract Distributions of temperature and longwave radiation are predicted from
a state of maximum entropy production (MaxEP) due to meridional heat flux in the
atmospheres of the Earth, Mars, Titan and Venus, and the predicted distributions
are compared with observational results. In the predictions, we use a multi-box
energy balance model that takes into account the effects of obliquity and latitudinal
variation of albedo on shortwave absorption. It is found that the predicted distri-
butions are generally in agreement with observations of the Earth, Titan and
Venus, suggesting the validity of the MaxEP state for these planets. In the case of
Mars, the predicted distributions do not agree well with the observations when
compared with those predicted from a state of no meridional heat flux. A simple
analysis on advective heat flux using a two-box model shows that the Martian
atmosphere is so scant that it cannot carry the heat energy that is necessary for the
MaxEP state by advection. These results suggest that the validity of the MaxEP
state for a planetary atmosphere is limited when the total amount of atmosphere is
not enough to sustain the advective heat flux that is necessary for the MaxEP state.

11.1 Introduction

Planetary atmospheres are known to be inherently turbulent because of their large
length-scales and velocities, resulting in difficulty in estimating heat fluxes and
temperature distributions from dynamic equations. In this respect, the maximum
entropy production (MaxEP) principle is expected to be valid for the mean states of
planetary atmospheres in this chapter. The MaxEP principle was first suggested by
Zeigler [1] as a thermodynamic variational principle for nonlinear, non-equilibrium
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systems. Later studies show that the MaxEP state is consistent with steady states of
a variety of natural phenomena, including the global climate of the Earth [2–4],
those of other planets [5], thermal convection [6], turbulent shear flow [7], oceanic
general circulation [8, 9], and granular flows [10]. While the underlying physical
mechanism is still debated, the MaxEP state is shown to be identical to a state of
maximum generation of available energy [4, 11]. Moreover, several theoretical
studies suggest that the MaxEP state is the most probable state that is realized by
nonlinear, non-equilibrium systems [12–14]. Among phenomenological aspects of
the MaxEP principle, the work by Lorenz et al. [5] is attractive because of the
inherent simplicity of their model. The remarkable feature of this model is that it
consists of only two regions (equator and pole) and it contains only a few model
parameters. One can easily estimate the atmospheric conditions (temperature,
radiation, and heat flux) at the MaxEP state using this simple model. However, the
spatial resolution is crucially limited in their model, resulting in difficulty in
comparing the estimated results with the actual observed distributions of the
atmospheric conditions.

In order to estimate more accurate distributions of the atmospheric conditions
of a planet, we developed a new one-dimensional multi-box model. In this model,
the number of boxes can be increased to an arbitrary value, and the effects of axial
tilt (obliquity) and latitudinal variation of albedo on the absorption of shortwave
radiation are taken into account. By using this model, we estimate surface tem-
perature, longwave and shortwave radiation, and then compare the estimated
distributions with those observed for the Earth, Mars, Venus and Titan. The
validity of MaxEP for the planetary atmospheres is thereby examined. We also
discuss the role of the amount of atmosphere in advective heat flux, and examine
the applicability of MaxEP to the planetary atmospheres from an advective
parameter suggested by Jupp and Cox [15]. Finally, dependency of the MaxEP
state on the optical properties of the atmospheres is investigated.

In what follows, the details of the multi-box model and the method of esti-
mating the effects of obliquity and albedo variation are explained in Sect. 11.2.
The results obtained from this model study are presented in Sect. 11.3. In Sect.
11.4, we discuss the validity of the MaxEP principle for planetary atmospheres
with respect to the advective efficiency of each planet. The effects of the optical
properties of each planet on the MaxEP states are also examined. The conclusions
drawn from this study are contained in Sect. 11.5.

11.2 Multi-box Model

The multi-box energy balance model used in this study is shown in Fig. 11.1. A
planet is divided into n latitude zones of equal surface area. We consider short-
wave absorption SWi (W m-2) and longwave emission LWi (W m-2) from the top
of the atmosphere of the ith zone, as well as meridional heat flux Fi (W) through
the boundary between the ith and (i ? 1)th zones; the heat flux is defined as
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positive northward. The advantage of this multi-box model over previous two-box
models is that it can predict latitudinal distributions of temperature, heat flux and
radiation, which can be compared with observations more quantitatively.

The entropy production rate due to the meridional heat flux in the model system
can be expressed as a sum of entropy production in each zone:

_r ¼
Xn�1

i¼1

Fi
1

Tiþ1
� 1

Ti

� �

; ð11:1Þ

where Ti is the surface air temperature of the ith zone. The steady-state energy
balance condition for each ith zone is given by

ðSWi � LWiÞA ¼ Fi � Fi�1; ð11:2Þ

where A is the surface area of each zone. Using Eq. (11.2), we can rewrite the
entropy production rate (Eq. 11.1) in a different form:

_r ¼
Xn�1

i¼1

Fi
1

Tiþ1
� 1

Ti

� �

¼
Xn

i¼1

Fi�1 � Fi

Ti
¼
Xn

i¼1

LWi � SWi

Ti
A: ð11:3Þ

In this manipulation, we have used no-flux boundary conditions at the polar ends:
F0 = Fn = 0. The right-hand side of the third equality represents the export rate of
entropy from the planetary system. Equation (11.3) shows that the internal entropy
production rate (Eq. 11.1) is balanced by the entropy export rate when the steady-
state energy balance (Eq. 11.2) is maintained in each zone.

The emission rate of longwave radiation from the top of each zone is assumed
to be a linear function of the surface air temperature [5, 16], expressed as:

LWi ¼ aþ bTi; ð11:4Þ

Fi–1

North PoleSouth Pole
A

Fi

SWi LWi

T1 Ti–1 Ti Ti+1 Tn

~i+1i–1Box Number 1 i n~

Fig. 11.1 A schematic representation of a multi-box energy balance model
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where a and b are empirical parameters depending on the optical properties of the
atmosphere of a planet. In this study, these parameters are determined through the
observational relation between LWi and Ti using a least square analysis.

The absorption rate of shortwave solar radiation in the ith zone is expressed by
the solar constant S, the local albedo ai, and the solar elevation angle bi as:

SWi ¼
Sð1� aiÞsinbi 0\bi� p=2;
0 bi� 0;

�

ð11:5Þ

where bi B 0 indicates a night time condition and therefore SWi = 0. Applying
spherical trigonometry to a zenith-pole-sun spherical triangle (e.g. [17]) we can
find

sinbi¼ sin/i sindþ cos/i cosd cos h; ð11:6Þ

where /i is the latitude, d is the solar declination, and h is the hour angle from the
local meridian (where h = 0). At sunrise (h = –h0) and sunset (h = h0), bi = 0 so
that

sin/i sindþ cos/i cosd cos h0 ¼ 0; ð11:7aÞ

or

cos h0 ¼ � tan /i tand: ð11:7bÞ

Daily mean shortwave absorption is thereby evaluated by integration of (11.5)
from sunrise to sunset1:

SWiðday) ¼ 1
2p

Z h0

�h0

Sð1� aiÞ sinbi dh

¼ Sð1� aiÞ
p

ðh0 sin/i sindþ cos/i cosd sin h0Þ:
ð11:8Þ

Yearly mean shortwave absorption is then obtained by integration of (11.8) over a
year:

SWi ¼
Sð1� aiÞ

p t0

Z t0

0
ðh0 sin/i sindþ cos/i cosd sin h0Þ dt; ð11:9Þ

where t0 is the period of the year (orbital revolution). The declination d is a
function of the obliquity (axial tilt) h and time t from vernal equinox2:

sin d ¼ sinh sin
2p t

t0

� �

: ð11:10Þ

1 We have assumed that the declination d is constant with respect to daily change of h.
2 A cyclic orbit is assumed in this study. For a more general case with eccentricity see, e.g., [17].
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The declination d = 0 for t = 0 (vernal equinox) or t = t0/2 (autumnal equinox)
whereas d = h for t = t0/4 (summer solstice) and d = –h for t = 3t0/4 (winter
solstice). If we assume h = 0 (no obliquity), then d = 0 and h0 = p/2. In this case,
Eq. (11.9) reduces to

SWi ¼
Sð1� aiÞ cos /i

p
for h ¼ 0: ð11:11Þ

Equation (11.11) shows the situation of no obliquity or a permanent equinox
planet, which has been assumed for simple box models of the Earth [2, 3].
However, this assumption may not be justified for planets with large obliquity. In
this study, we therefore implement numerical integration of Eq. (11.9), and
examine the effect of obliquity on the MaxEP state.

We selected the Earth, Mars, Titan (the largest satellite of Saturn), and Venus
for evaluation of the MaxEP state. Astronomical parameters of these planets as
used in our estimations are adapted from the NASA Planetary Fact Sheet [18] and
are listed in Table 11.1. The box number N is set at 72, 60, 10 and 100, respec-
tively, corresponding to spatial resolution of observations available for each pla-
net. Using these parameters we calculate the entropy production rate due to
meridional heat flux, and compare the MaxEP state with observations of each
planet. First, we assume an arbitrary distribution of the heat flux Fi at the ith zone
and evaluate the corresponding temperature distribution by the local energy bal-
ance requirement (Eq. 11.2) with the longwave radiation (Eq. 11.4). Second, the
rate of entropy production is calculated with Eq. (11.3). Third, the heat flux Fi is
modified by a finite small amount so that the rate tends to increase. This process is
applied to successive zones and repeated until the rate reaches a maximum value.
It is found that, starting from any initial distribution of Fi, the calculation
converges into a single maximum point. This result suggests the existence of a

Table 11.1 Astronomical parameters for Venus, Earth, Mars and Titan adapted from NASA
Planetary Fact Sheet [18]

Parameter Symbol Units Venus Earth Mars Titan

Radius R km 6,052 6,371 3,390 2,575
Solar constant S W m-2 2,614 1,360 589 14.9
Albedo (bond)a aB – 0.90 0.306 0.25 0.265b

Albedo (geometric) ag – 0.67 0.367 0.17 0.22
Orbital period t0 Days 224.7 365.2 687.0 10,747
Obliquity h Degrees 177.4 23.4 25.2 27.0
Optical parameter a W m–2 – –302 –226 –5.92
Optical parameter b W m–2 K–1 – 1.87 1.65 0.094
Surface gravity g m s–2 8.87 9.80 3.69 1.35
Atmospheric mass M Mg m–2 1,037 10.3 0.17 108.5
Velocity ratio r – 130,300 501 8.0 156,300
a Bond albedo is used for calculation of shortwave absorption unless otherwise noted
b Parameter value from Li et al. [30]
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single maximum in the entropy production rate in the model climate system.3 The
numerical calculations are carried out with the aid of a maximization routine in
Mathematica (for details, see [19]).

11.3 Results

11.3.1 Earth

The results obtained for the Earth from the multi-box model are shown in
Fig. 11.2a–c. Figure 11.2a is the result for the surface temperature, Fig. 11.2b is
that for the longwave emission from the top of the atmosphere, and Fig. 11.2c is
that for shortwave absorption. The solid lines are predictions from the MaxEP state
(Fig. 11.2a, b) and the numerical calculation (Fig. 11.2c), and the dotted lines are
observational results [20–22]. The optical parameters (a and b) are determined
through the observational relation between the surface temperature and longwave
radiation [23]. For comparison, estimations from a state with no entropy pro-
duction ( _r = 0) and that with no obliquity (h = 0) are indicated by dashed lines in
Fig. 11.2a, b and c, respectively.

The predicted distributions are generally in agreement with the observational
results although we can find some discrepancies in the longwave emission. The
longwave emission is overestimated in the central tropical region whereas it is
underestimated in the northern polar region. We attribute the reason for this to
cloud effects. In the central tropics, a large amount of high-level cloud associated
with strong convection exists along the inter-tropical convergence zone. High-
level cloud is known to reduce longwave emission from the atmosphere (e.g. [24]).
In the northern polar region, a large amount of low-level stratus cloud exists over
the Arctic Ocean. This low-level cloud is known to enhance longwave emission
[25]. These cloud effects have not been taken into account in our simple atmo-
sphere (Eq. 11.4). We therefore expect that the discrepancies can be improved by
including the correct cloud effects, as shown by Paltridge [2, 3]. While some
discrepancies exist, the predicted distributions show certain resemblance to the
observations; the resemblance is much better than those with no entropy pro-
duction (dashed lines in Fig. 11.2a, b). These results suggest that the MaxEP state
tends to be realized in the mean state of the Earth’s atmosphere under the cloud
radiative forcing condition.

The predicted shortwave absorption shows a close resemblance to the obser-
vations, indicating the validity of the estimation method (Eq. 11.9). The prediction
with no obliquity shows overestimation of 5 % in the tropics and underestimation
of up to 50 % at the poles (Fig. 11.2c). This result suggests that the effect of

3 In this sense, there do not seem to be multiple maxima for this simple model system with a
fixed albedo distribution (cf. [16]).
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obliquity cannot be neglected in the polar regions when the obliquity is larger than
20�. However, it is also confirmed that the effect of no obliquity is less significant
on the predicted distributions of longwave emission and surface temperature, since
the meridional heat flux is enhanced to compensate the over- and under-estimated
shortwave absorption at the MaxEP state. The reason for this will be discussed
with a simple box model in Sect. 11.4.

Fig. 11.2 Results for the Earth (a–c), Mars (d–f), Titan (g–i), and Venus (j–l). Each figure shows
distribution of surface air temperature (a, d, g), effective radiation temperature (j), longwave
emission (b, e, h, k), and shortwave absorption (c, f, i, l). Solid lines indicate those predicted from
a state of maximum entropy production. Dotted lines and dots indicate those from observations.
Dashed lines (a, b, d, e, g, h, j, k) indicate predictions from a state of no entropy production, and
a dashed line (c) indicates prediction with no obliquity. Error bars (d–f) show standard deviations
due to seasonal changes
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11.3.2 Mars

The results obtained for Mars are shown in Fig. 11.2d–f. Figure 11.2d is the result
for the surface temperature, Fig. 11.2e is that for the longwave emission from the
top of the atmosphere, and Fig. 11.2f is that for shortwave absorption. The solid
lines are predictions from the MaxEP state (Fig. 11.2d, e) and the numerical
calculation (Fig. 11.2f), and the dots are the observational results compiled from
the Mars Climate Database [26–28]. The optical parameters (a and b) are deter-
mined through the relation between the surface temperature and longwave radia-
tion in the database. For comparison, estimations from a state with no entropy
production ( _r = 0) are indicated by dashed lines in Fig. 11.2d, e.

The predicted distributions of temperature and longwave emission are some-
what lower than those observed in the tropics and are higher in the polar regions.
Although these discrepancies are roughly in the range of standard deviation of
seasonal change (error bars), the predictions by the state of no entropy production
show better agreement with the observations than those of the MaxEP state. This
means that the observed state is better represented by the state of no meridional
heat flux than by the MaxEP state. The reason for this will be discussed in relation
to the total mass of the Martian atmosphere and the associated heat advection in
Sect. 11.4. The predicted distribution of shortwave absorption shows reasonable
agreement with the observed state and is within the range of standard deviation
(Fig. 11.2f).

11.3.3 Titan

The results obtained for Titan are shown in Fig. 11.2g–i. Figure 11.2g is the result
for the surface temperature, Fig. 11.2h is that for the longwave emission from the
top of the atmosphere, and Fig. 11.2i is that for shortwave absorption. The solid
lines are predictions from the MaxEP state (Fig. 11.2g, h) and the numerical cal-
culation (Fig. 11.2i), and the dots in surface temperature are observational results
[29]. The optical parameters (a and b) are taken from the values in Lorenz et al. [5],
and the planetary (Bond) albedo is set at 0.265 from recent estimation [30]. In this
case, the surface temperature distribution is compared with the observational data
that are currently available. For comparison, estimations from a state with no
entropy production ( _r = 0) are indicated by dashed lines in Fig. 11.2g, h.

The predicted temperature distribution shows a reasonable agreement with the
observed results within the limit of accuracy of the observational data. Although a
slight deviation can be found in the northern polar region, the agreement between
the prediction and the observations is reasonable, considering the simplicity of the
prediction method. This result suggests that the MaxEP state is realized in the
mean state of Titan’s atmosphere, being consistent with the earlier result obtained
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from a two-box model by Lorenz et al. [5]. More detailed study is, however,
needed to verify the validity of the MaxEP state when more precise observational
data are collected from Titan.

11.3.4 Venus

The results obtained for Venus are shown in Fig. 11.2j–l. Figure 11.2j is the result
for the effective radiation temperature, Fig. 11.2h is that for the longwave emis-
sion from the top of the atmosphere, and Fig. 11.2i is that for shortwave
absorption. The solid lines are predictions from the MaxEP state (Fig. 11.2j, k) and
the numerical calculation (Fig. 11.2l), and the dots are temperatures estimated at
the top of the troposphere [31]. In the case of Venus, no detailed surface tem-
perature data is available because of the presence of the thick atmosphere. For this
reason, we estimate the effective radiation temperature at the top of the atmosphere
from the predicted longwave emission by using the Stefan–Boltzmann law:

Te;i ¼
LWi

rB

� �1
4

; ð11:12Þ

where Te,i is the effective radiation temperature of the ith zone and rB is the
Stefan–Boltzmann constant. This effective radiation temperature is compared with
the temperature distribution estimated at the top of the troposphere in Fig. 11.2j.
Since no detailed surface temperature data is available, we cannot determine the
optical parameters (a and b) of this planet. We therefore assume an arbitrary value
of b (1, 10 and 100) and calculate the corresponding value of a that satisfies the
total energy balance of the planet with the mean surface temperature of 735 K. The
sensitivity of b to the predicted distributions of the surface temperature and the
effective radiation temperature is thereby examined. For comparison, the effective
temperature and longwave emission estimated from a state with no entropy pro-
duction ( _r = 0) are indicated by dashed lines in Fig. 11.2j, k.

The predicted temperature distribution shows an agreement with the observa-
tional results within the limit of accuracy of the observational data. While we can
find some discrepancies in the polar regions (overestimation at the poles and slight
underestimation around the sub-polar regions), these discrepancies are within the
range of accuracy of the observational data. This result suggests that the MaxEP
state is realized in the mean state of the Venusian atmosphere. It is therefore
interesting to conduct more detailed study when more precise observational data
are obtained from the Venusian atmosphere.

It is found that the predicted surface temperature is sensitive to the change of
the parameter b, that is, the temperature contrast between the tropics and poles
tends to decrease with the increase of b. However, the predicted effective radiation
temperature at the top of the troposphere (Eq. 11.12) shows no dependency on the
change in b. This means that the change in the optical parameter b affects
the surface temperature distribution whereas it does not affect the temperature at
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the top of the atmosphere at the MaxEP state. This result suggests the existence of
a unique characteristic that is present at the top of the atmosphere in the MaxEP
state and that is independent of the optical properties of the atmosphere. The
reason for this characteristic will be discussed in the next section.

11.4 Discussion

We have seen in the previous section that the predicted distribution of temperature
and longwave emission by the MaxEP state are generally in agreement with the
observed mean states of the Earth, Titan and Venus. While some discrepancies
exist, they are within the limit of accuracy of the observational data. These results
suggest that the MaxEP state is realized in the mean states of these planets. In the
case of Mars, the predicted distributions do not agree well with the observational
results when compared with those predicted by the state of no meridional heat flux.
This result suggests that the MaxEP state is not realized in the Martian atmosphere.
In the case of Venus, we found that the distribution of the effective radiation
temperature at the top of the atmosphere predicted by the MaxEP state is almost
independent of the optical properties of the atmosphere. In order to clarify the
reasons for these issues, we implement a simple analysis on entropy production in
a simplified model planet.

For simplicity, let us assume a two-box model consisting of an equatorial zone
and a polar zone (Fig. 11.3a). The energy balance requirement (Eq. 11.2) for each
zone is then expressed as

SWe � ðaþ bTeÞ½ �A ¼ F;
SWp � ðaþ bTpÞ
� �

A ¼ �F;

�

ð11:13Þ

where the suffix e and p denote the equatorial and polar regions, and F is the
meridional heat flux from the equatorial zone to the polar zone. The entropy
production rate (Eq. 11.3) is then given by

_r ¼ F
1
Tp

� 1
Te

� �

: ð11:14Þ

Substituting Eq. (11.13) into Eq. (11.14) and eliminating Te and Tp, and differ-
entiating _r with respect to F, we find a maximum in the entropy production rate
ðd _r=dF ¼ 0Þ at

FMaxEP ¼
DSW

2
1� 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� DSW

2b�T

� ffi2
q

2

6
4

3

7
5A � DSW A

4
; ð11:15Þ
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where DSW = SWe-SWp is the difference in the shortwave radiation and �T=
(Te ? Tp)/2 is the mean temperature of the system. In Eq. (11.15), we have
assumed DSW/(2b �T) & DT=�T « 1. Similarly, the difference in the surface tem-
perature DT = Te - Tp at the MaxEP state is given by

DTMaxEP ¼
DSW

b 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� DSW

2b�T

� ffi2
q
 � � DSW

2b
; ð11:16Þ

and the corresponding difference in the longwave emission DLW = LWe - LWp is

DLWMaxEP ¼ bDTMaxEP ¼
DSW

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� DSW

2b�T

� ffi2
q � DSW

2
: ð11:17Þ

We can see in Eqs. (11.16) and (11.17) that the surface temperature difference at
the MaxEP state depends on the optical parameter b, whereas the difference in the
longwave emission (as well as the effective radiation temperature) is independent of
b, as long as the approximation (DSW/(2b �T) & DT=�T « 1) is valid. This explains
the reason why the predicted distribution of the effective radiation temperature Te at
the MaxEP state for Venus is almost constant and is independent of the optical
properties of the atmosphere (Sect. 11.3.4). We can also see in Eqs. (11.16) and
(11.17) that each equation includes a factor of 1/2. This means that the sensitivity of
DLW or DT to a change in DSW at the MaxEP state is about half of that expected at a
state without meridonal heat flux (i.e. pure radiation balance: DLW = DSW). This
explains the reason for the moderate sensitivity (or the stability) of the MaxEP
climate state to the change in the shortwave radiative forcing that we have discussed
in Sect. 11.3.1. This result is also consistent with an analytical result obtained by

σ

V

MaxEP is impossible    MaxEP is possible

Vg

MaxEP

VgV

Vg < VMaxEP MaxEP

MaxEP

Vg V

SWe SWp
LWe LWp

Te Tp

V 

Equator Pole

.

F 

(a) (b)

Fig. 11.3 a A two-box model of a planet. b entropy production rate as a function of mean
velocity of circulation V. The MaxEP state is possible when the velocity of a steady gravity flow
exceeds the velocity needed for the MaxEP state (Vg C VMaxEP), whereas it is otherwise
impossible (Vg \ VMaxEP)
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Rodgers [32] who shows that the longwave emission at the MaxEP state is
approximately proportional to the square root of the shortwave absorption:
LWMaxEP � SW1/2, resulting in dLWMaxEP/dSW & 1/2 at around LW & SW .

The meridional heat flux F is related to the mean velocity of circulation of the
atmosphere (Fig. 11.3a). For a slowly rotating planet, we can write (e.g. [33])

F ¼ cM V
DT

R
A; ð11:18Þ

where c is the specific heat capacity, M is the mass of a unit atmospheric column,
V is the mean velocity of circulation, and R is the radius of the planet (charac-
teristic length of latitudinal zone). Substituting Eqs. (11.15) and (11.16) into Eq.
(11.18), we find the mean velocity at the MaxEP state:

VMaxEP ¼
bR

2 cM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� DSW

2b�T

� �2
s

� bR

2 cM
: ð11:19Þ

Equation (11.19) represents the mean circulation velocity that is needed to
sustain the MaxEP state. The circulation should be driven dynamically in the
atmosphere. Assuming a steady gravity flow, the mean velocity is at most of the
order of the square root of potential energy of the atmosphere (e.g. [15]):

Vg ¼
ffiffiffiffiffiffiffi
gH

p
¼

ffiffiffiffiffiffiffi
gM

qs

s

; ð11:20Þ

where g is the acceleration due to gravity, H = M/qs is the scale height, and qs is
the density at the surface. We can expect that the MaxEP state is dynamically
attainable when Vg C VMaxEP whereas it may not be attainable when Vg \ VMaxEP.
The attainability of the MaxEP state can then be determined by the ratio of the two
velocities:

r � Vg

VMaxEP

¼ 2 c

bR

ffiffiffiffiffiffiffiffiffi
gM3

qs

s

¼ 2 cM

bR

ffiffiffiffiffiffiffiffiffi
R0�T;

p
ð11:21Þ

where R0 is the gas constant for the atmosphere. In this manipulation, we have used
the relation: ps = gM and the equation of state: ps = qs R0 �T , where ps is the surface
pressure. It should be noted that this ratio is proportional to the advective capability
derived from a theoretical study by Jupp and Cox [15], although their derivation
method is quite different from ours.4 The calculated ratio r for each planet is listed
in Table 11.1. We can see that the ratio is large for Venus, Earth and Titan
(r [ 102), because of their large amounts of atmosphere (M [ 10 Mg m–2).

4 The difference can been seen in the numerical factor in each formulation: 2 in Eq. (11.21)
whereas 2(3c)1/2 & 1.62 in their formulation, with c = 31/2/p - 1/3 [15]. Their analysis also
includes the planetary rotation rate, which turns out to be not important for slowly rotating planets
where Eq. (11.18) is approximately valid.
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By contrast, the ratio is relatively small for Mars (r & 8) because of its small
amount of atmosphere (M & 0.2 Mg m-2). This seems to explain the reason why
the MaxEP state is not realized in the Martian atmosphere. The atmosphere is so
scant that it cannot carry the heat energy that is needed for the MaxEP state by
advection (Fig. 11.3b). This result is consistent with the theoretical analysis by
Jupp and Cox [15] who showed that the advective capability of Mars is on the
critical line below which a planet is prevented from achieving the MaxEP state by
dynamical constraints.

11.5 Conclusion

In this chapter, we investigated the distributions of temperature and longwave
radiation from a state of maximum entropy production (MaxEP) due to meridional
heat flux in the atmospheres of the Earth, Mars, Titan and Venus, and compared
the predicted distributions with observational distributions. In the predictions, we
used a multi-box planetary model that took into account the effects of obliquity
and latitudinal variation of albedo on shortwave radiation.

We have shown that the predicted distributions are generally in agreement with
observations for the Earth, Titan and Venus, but not for Mars. While some dis-
crepancies exist, they are within the limit of accuracy of the observational data. In
the case of Mars, the predicted distributions do not agree well with the observa-
tional results when compared with those predicted by a state of no meridional heat
flux. These results suggest that the MaxEP state is realized in the mean states of the
Earth, Titan and Venus, whereas it is not realized in the Martian atmosphere. A
simple analysis on advective heat transport using a two-box model shows that the
Martian atmosphere is so scant that it cannot carry the amount of heat needed for
the MaxEP state by advection. It is suggested that the validity of the MaxEP state
for a planetary atmosphere is limited when the total amount of atmosphere is not
enough to sustain the advective heat flux necessary for the MaxEP state. It was
also shown from this analysis that the distributions of longwave emission and
effective radiation temperature at the top of the atmosphere predicted by the
MaxEP state are determined by the distribution of shortwave absorption, and is
almost independent of the optical properties of a planet. The last result will provide
a useful insight into the validity of MaxEP in planetary atmospheres when top-of-
the-atmosphere temperature data are accumulated through future extra-planetary
explorations.
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Chapter 12
Entropy Production-Based Closure
of the Moment Equations for Radiative
Transfer

Thomas Christen and Frank Kassubek

Abstract Heat radiation in gases or plasmas is usually out of local thermodynamic
equilibrium (LTE) even if the underlying matter is in LTE. Radiative transfer can
then be described with the radiative transfer equation (RTE) for the radiation
intensity. A common approach to solve the RTE consists in a moment expansion of
the radiation intensity, which leads to an infinite set of coupled hyperbolic partial
differential equations for the moments. A truncation of the moment equations
requires the definition of a closure. We recommend to use a closure based on a
constrained minimum entropy production rate principle. It yields transport coeffi-
cients (e.g., effective mean absorption coefficients and Eddington factor) in
accordance with the analytically known limit cases. In particular, it corrects errors
and drawbacks from other closures often used, like the maximum entropy principle
(e.g., the M1 approximation) and the isotropic diffusive P1 approximation. This
chapter provides a theoretical overview on the entropy production closure, with
results for an illustrative artificial example and for a realistic air plasma.

12.1 Introduction

Energy transfer by heat radiation in hot gases and plasmas is encountered in many
different contexts like stellar and terrestrial atmospheres [1] and electric arcs [2], to
mention a few examples. Although the energy carriers, the photons, do not interact
with each other, the effective interaction due to scattering, emission, and
absorption via the underlying matter makes the theoretical treatment of radiative
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transfer generally rather complicated [3]. In order to illustrate the possible com-
plexity, the absorption spectrum jm of air at about 10,000 K temperature is shown
in Fig. 12.1. Here, jm is the macroscopic spectral absorption coefficient in units of
m-1, and m is the frequency. It consists of continuous bands and discrete peaks
associated with electronic transitions of free-free, free-bound, and bound-bound
states of the present air molecules, atoms, and ions.

An additional complication appears when the radiation is not in local thermal
equilibrium (LTE). This is usually the case in gases and plasmas due to their
partial transparency, even if the matter is in LTE. Non-LTE radiation refers to a
photon distribution function nm that differs from the equilibrium Bose-Einstein or
Planck distribution [4]

nðeqÞ
m ¼ 1

expðhm=kBTÞ � 1
; ð12:1Þ

where h is the Planck constant, kB the Boltzmann constant, and T the local tem-
perature of the LTE matter.

For simplicity, we consider unpolarized radiation in an isotropic medium. The
basic equation is then the radiative transfer equation (RTE) [1, 3] for the specific
radiation intensity1 [5]

Imðx;XÞ ¼
2hm3

c2
nmðx;XÞ; ð12:2Þ
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Fig. 12.1 Absorption spectrum of air plasma at 10,300 K and 2 bar [28], consisting of
continuous bands (free-free, free-bound, bound-free transitions) superimposed to discrete peaks
(bound-bound transitions) [29, 30]. The spectrum is not only a complicated function of frequency
with huge variations ranging from 10-2 to 107 m-1, but also strongly varies with temperature

1 In the following we will skip the term specific.
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which describes the radiation flux at location x as a function of the direction X and
frequency m. The RTE reads

1
c
otIm þ X � rIm ¼LðBm � ImÞ; ð12:3Þ

where L is linear in its argument Bm � Im (see discussion below) and can be
expressed as

LðBm � ImÞ ¼ jmðBm � ImÞ þ rm
1

4p

Z

S2
d2 ~X pm ðX; ~XÞImð~XÞ � Im

� �

: ð12:4Þ

The RTE can be transformed into a linear transport equation for nm by insertion
of (12.2) in Eq. (12.3). It is a linear Boltzmann transport equation (see also [5] for
further examples), where entropy production is caused uniquely by the term (12.4).
Let us briefly explain the different terms of the RTE (see, e.g., [3]). The expression
on the left hand side of Eq. (12.3) multiplied with c is the substantial derivative
consisting of the explicit time derivative otIm plus the advection term c X � r due to
the motion of the photons with speed c; X � r is the directional derivative. This net
change of Im in direction of X must be equal to the sum of specific source and sink
terms due to the radiation-matter interactions, written on the right hand side of Eq.
(12.3) and detailed in Eq. (12.4). Photons are generated by emission and annihi-
lated by absorption, expressed by jmBm and jmIm, respectively. Here, Bm is the
Planck function for thermal equilibrium,

Bm ¼
2hm3

c2
nðeqÞ

m : ð12:5Þ

By breaking time reversal symmetry, the ‘‘collision term’’ LðBm � ImÞ leads to
the irreversibility that equilibrates nonequilibrium states, and is thus responsible
for entropy production. The absorption coefficient jm is generally a sum of prod-
ucts of particle densities, absorption cross-sections, and contains terms 1�
expð�hm=kBTÞ [5]; it depends thus not only on frequency but also on the partial
pressures of the present species, and the temperature. The expression (12.4)
includes elastic scattering. Incoming photons of frequency m from all directions ~X
are scattered with probability pmðX; ~XÞ into direction X. Among other properties

[1], pm is assumed to be normalized according to ð4pÞ�1 R
S2 d2 ~X pmðX; ~XÞ ¼ 1 with

S2 being the full solid angle 4p, and we denote by d2X the (2-dimensional) volume
angle increment. The strength of the scattering process is quantified by the spectral
scattering coefficient rm in units of m-1. In the absence of any interaction, e.g., in
vacuum or a fully transparent medium, the right hand side of Eq. (12.3) vanishes,
which describes the so-called (free) streaming limit. In the particle picture it can be
interpreted as the limit of ballistic propagation of the photons, i.e., propagation
without any kind of scattering [6].

A number of procedures to solve the RTE exist [3]. In this chapter we discuss a
simple but effective approach based on a truncated moment expansion with an
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entropy production minimization closure [7, 8]. Kohler has shown that entropy
production optimization principles hold for linearized Boltzmann transport equa-
tions [9–12]. He especially discusses the Boltzmann transport equation for gases
and the transport of electrons in a solid near equilibrium. Note that the expression
‘‘near equilibrium’’ is used in this case for the linear nonequilibrium regime, i.e.
where the linearization of the Boltzmann transport equation is an appropriate
approximation. Far from equilibrium, however, higher order terms in the deviation

nm � nðeqÞ
m from equilibrium have to be taken into account, and the entropy pro-

duction principle is no longer applicable. Because the RTE (12.3) for heat radi-
ation has the form of a linearized Boltzmann transport equation, Kohler’s
argument applies here analogously (for similar transfer equations, see also [5, 6]).
The ‘‘collision term’’ LðBm � ImÞ in Eq. (12.3) is indeed a linear function of
Bm � Im: if one replaces �Im by Bm � Im in the large bracket of the right hand side in
Eq. (12.4), the additional terms associated with Bm add up to zero because Bm is
independent of direction X. Because photons do not interact with each other, the
RTE is exactly2 linear over the whole nonequilibrium range, i.e., for arbitrarily
large deviation jBm � Imj from equilibrium. It has been conjectured [7] that this
exact linearity of the RTE is the reason for the success of our approach discussed
below also far from equilibrium.

This chapter is organized as follows. Section 12.2 defines the moments and
their governing equations. In order to truncate the system of equations, a closure
based on entropy production rate is introduced in Sect. 12.3. The main results are
discussed and illustrated in Sect. 12.4. Some remarks on boundary conditions for
the moments are provided in Sect. 12.5.

12.2 The Moment Equations for Radiative Transfer

The macroscopic radiative properties of highest interest are related to those
quantities that occur in the hydrodynamic equations of the underlying matter.
Those are energy density, energy flux, and radiation pressure, and can be obtained
from ImðXÞ by integration over frequency m and angle X. One thus introduces the
moments

E ¼ 1
c

Z
dm d2X Im; ð12:6Þ

Fk ¼
1
c

Z
dm d2XXkIm; ð12:7Þ

2 Three and more photon processes are disregarded.
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Pkl ¼
1
c

Z
dm d2X XkXl Im;

. . . ¼ . . .;

ð12:8Þ

where k; l ¼ 1; . . .; 3 denote the three space directions. The integrations run from
zero to infinity for m and over the whole solid angle (sphere S2) for X. The list of
moments continues with higher order moments XkXl. . .XN to infinite order.
Multiplication of the RTE (12.3) with products and/or powers of Xk’s, and inte-
gration over frequency and solid angle leads to the infinite set of equations

1
c
otE þr � F ¼ PE; ð12:9Þ

1
c
otFþr �P ¼ PF;

. . . ¼ . . .;
ð12:10Þ

where F and P denote the vector and the tensor with components given by Eqs.
(12.7) and (12.8), respectively. The right hand sides are given by

PE ¼
1
c

Z
dmd2X LðBm � ImÞ ¼ jðeffÞ

E ðEðeqÞ � EÞ; ð12:11Þ

PF ¼
1
c

Z
dmd2X XLðBm � ImÞ ¼ �jðeffÞ

F F;

. . . ¼ . . .;

ð12:12Þ

where

EðeqÞ ¼ 4p
c

Z 1

0
dm Bm ¼

4rSB

c
T4 ð12:13Þ

is the LTE radiation energy density (rSB is the Stefan-Boltzmann constant), and for

convenience the effective absorption coefficients jðeffÞ
E and jðeffÞ

F are introduced. In

full equilibrium PE and PF vanish. The transport coefficients (jðeffÞ
E , jðeffÞ

F , …) are
still functionals of the unknown function Im. Once they are known, the moments
(E, F, …), which are the variables of the (still infinite) set of partial differential
equations [(12.9), (12.10), ….], can be determined in principle by solving the
latter, provided appropriate initial and boundary conditions are given.

For practical purposes, one has to truncate the set of equations and to restrict the
model to a finite number N of moments. The equation for the highest order
moment will then contain the moment of the subsequent order, which is not a
variable, but an additional unknown quantity that depends on Im. A closure method
is a procedure that prescribes how to determine all these unknowns, which may
eventually depend on all moments that are variables. In the following, we restrict
ourselves to the two first moment equations (12.9) and (12.10) with variables E
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and F, but we emphasize that our procedure is general and applicable to any order
N of truncation.

Because the second rank tensor P depends only on the scalar E and the vector
F, it can be written by tensor symmetry reasons in the form

Pnm ¼ E
1� v

2
dnm þ

3v� 1
2

FnFm

F2

� �

; ð12:14Þ

where the variable Eddington factor (VEF) v is in general a function of E and
F ¼ Fj j, and dkl ( = 0 if k 6¼ l and dkl ¼ 1 if k ¼ l) is the Kronecker delta. In
thermal equilibrium all fluxes vanish, and the stress tensor is proportional to the
unit tensor with diagonal elements EðeqÞ=3. This follows from Eqs. (12.6) and
(12.8), Xj j ¼ 1 and the isotropy of the equilibrium radiation. Because we assume
that the underlying matter is isotropic, the only distinguished direction is given by

F, and jðeffÞ
E ðE; vÞ, jðeffÞ

F ðE; vÞ, and vðE; vÞ can be expressed as functions of E and

v ¼ F

E
: ð12:15Þ

Note that 0� v� 1, with v ¼ 1 corresponding to the free streaming limit. v can
be roughly understood as the dimensionless average velocity of the photon gas,
where v ¼ 1 is associated with the speed of light c, which cannot be surpassed.

12.3 Closure by Entropy Production Rate Minimization

The task of the closure is to determine the transport coefficients, i.e., the effective

or mean absorption coefficients jðeffÞ
E and jðeffÞ

F , and the VEF v as functions of E
and v (or F). A closure that is often considered is based on entropy maximization
[13–15] (and is in the present context sometimes named ‘‘M1-model’’). However,
Kohler [9] has proved validity of entropy production rate principles for the line-
arized Boltzmann transport equation. According to his results, near equilibrium the
distribution function optimizes the entropy production rate under certain con-
straints, which are associated with fixed moments or fluxes. The type of the
optimum, i.e., whether the optimum is a maximum or a minimum, depends on the
specific choice of constraints. Kohler’s proof has been re-discussed several times
in the literature [10–12]. We mention also three additional works which indicate
the relevance of entropy production principles for radiative transfer. Firstly, Essex
[16] has shown that the entropy production rate is minimum in a grey atmosphere
in local radiative equilibrium. Secondly, Würfel and Ruppel [17, 18] discussed
entropy production rate maximization by introducing an effective chemical
potential of the photons, related to their interaction with matter. Finally, Santillan
et al. [19] showed that for a constraint of fixed radiation power, black bodies
maximize the entropy production rate.
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The closure procedure based on entropy production minimization has been
outlined for photons in [7, 8], and for a gas of independent electrons in [20]. The
receipt, in a nutshell, is to minimize the entropy production rate, which is a
functional of Im, subject to the constraints of fixed moments (given by Eqs. (12.6),
(12.7) etc.). The result of this optimization problem will then be a function
ImðE;FÞ, from which all unknowns (PE, PF , …) can be determined. In order to
derive the expression for the entropy production rate, we start with the entropy per
volume of the photon gas [4, 21, 22]

Srad½Im� ¼ �kB

Z
d2X dm

2m2

c3
nm ln nm � ð1þ nmÞ lnð1þ nmÞð Þ; ð12:16Þ

where Eq. (12.2) relates nm to Im. The total entropy production rate,
P

, consists of
the two contributions

P
rad and

P
mat associated with entropy production in the

photon gas and in the matter, respectively (cf. [23]). The contribution
P

rad is
obtained from the time-derivative of Eq. (12.16), by making use of Eq. (12.3), and
writing the result in the form otSrad þr � JS ¼

P
rad, which yields

X
rad½Im� ¼ �kB

Z
dm d2X

1
hm

ln
nm

1þ nm

� �

LðBm � ImÞ; ð12:17Þ

here JS is the entropy current density.
The second contribution, the entropy production rate of the LTE matter,

P
mat,

can be derived from the fact that the matter can be considered locally as an
equilibrium bath with temperature TðxÞ. Energy conservation implies that the local
power production W of the matter is related to the radiation power density in Eq.
(12.11) by W ¼ �cPE. The entropy production rate (associated with radiation) in
the local heat bath is thus

P
mat ¼ W=T ¼ �cPE=T . Equation (12.1) implies

hm=kBT ¼ lnð1þ 1=nðeqÞ
m Þ, and one obtains with Eq. (12.11)

X
mat½Im� ¼ �kB

Z
dmd2X

1
hm

ln
1þ nðeqÞ

m

nðeqÞ
m

 !

LðBm � ImÞ : ð12:18Þ

The total entropy production rate
P
¼
P

radþ
P

mat becomes

X
½Im� ¼ �kB

Z
dmd2X

1
hm

ln
nmð1þ nðeqÞ

m Þ
nðeqÞ

m ð1þ nmÞ

 !

LðBm � ImÞ : ð12:19Þ

This quantity has to be minimized by varying Im and considering the constraints
given by Eqs. (12.6) and (12.7) with E, F kept fixed. One has thus to solve

d
dIm

X
½Im� � kE E � 1

c

Z
dm d2X Im

� �

� kF � F� 1
c

Z
dm d2X X Im

� �� �

¼ 0

ð12:20Þ
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for Im, where the Lagrange multipliers kE and kF can be eliminated with the help of
Eqs. (12.6) and (12.7), which leads then to ImðX;E;FÞ. We mention that in the
entropy maximization closure R is replaced by Srad given by Eq. (12.16).

12.4 Results

In the following, we will not re-iterate the analytical calculations reported in [7, 8],

but immediately discuss the results jðeffÞ
E ðE; vÞ, jðeffÞ

F ðE; vÞ, and vðE; vÞ as func-
tions of E and v, and explain their properties for simple illustrative cases.

12.4.1 Equilibrium Limit

If the radiation field (or photon gas) is in LTE with the matter (Im ¼ Bm), all
transport properties can be obtained by considering the leading order deviations
from LTE, dIm ¼ Im � Bm, dE ¼ E � EðeqÞ, and dF ¼ F. A corresponding expan-
sion and subsequent solution of the minimization problem (12.20) leads then to
[7, 8]

jðeffÞ
E ¼ jmh iRo; ð12:21Þ

jðeffÞ
F ¼ jm þ rmh iRo; ð12:22Þ

v ¼ 1
3
; ð12:23Þ

where the Rosseland average of any spectral function hm is defined by

hmh iRo:¼
R1

0 dm m4omn
ðeqÞ
m

R1
0 dm m4h�1

m omn
ðeqÞ
m

; ð12:24Þ

with om being frequency differentiation. If hm is a physical rate (per time or per
length) the Rosseland mean is the inverse of an average of inverse rates. Thus,
frequencies with small jm-values are dominating the Rosseland average, due to a
macroscopic number of absorption-emission events (on the considered length
scale). In order to establish LTE with matter, the medium must behave optically
dense. The result (12.23) means that the stress tensor Pkl ¼ ðE=3Þdkl is associated
with isotropic radiation.

These LTE results are well-known and can be obtained also with other pro-
cedures [3]. Every reasonable closure to the moment equations should provide
Eqs. (12.21)–(12.23). The often considered maximum entropy closure is incorrect
near equilibrium as has been pointed out by Struchtrup [23]. For LTE, it is obvious
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from Kohler’s work [9], that the entropy production rate is the appropriate quantity
to be optimized.

12.4.2 Emission Limit

In this limit emission strongly predominates absorption. It is characterized by very
low radiation intensity, Im � Bm, such that E� EðeqÞ, and is thus far from equi-
librium. One can also derive analytical expressions for the transport coefficients
[8] by an expansion in terms of the small quantities Im, E, and F. Entropy pro-
duction minimization gives [7, 8]

Im ¼
2kB

c

m2jm

kE þ kF � X
nðeqÞ

m ; ð12:25Þ

where the Lagrange multipliers are related to E and F by

E ¼ kBTðjmÞ
c2kF

ln
kE þ kF

kE � kF

� �

; ð12:26Þ

F ¼ kBTðjmÞ
c2kF

2� kE

kF
ln

kE þ kF

kE � kF

� �� �

: ð12:27Þ

Here, we introduced the integral

TðhmÞ ¼ 4p
Z 1

0
dm m2hmn

ðeqÞ
m ð12:28Þ

for frequency dependent functions hm. The transport coefficients are given by [8]

jðeffÞ
E ¼ jmh iPl; ð12:29Þ

jðeffÞ
F ¼Tðjmðjm þ rmÞÞ

TðjmÞ
; ð12:30Þ

vðvÞ ¼ � kE

kF
v; ð12:31Þ

where

hmh iPl¼
R1

0 dm m3hmn
ðeqÞ
m

R1
0 dm m3nðeqÞ

m

ð12:32Þ

is the so-called Planck average of a frequency dependent function hm. Contrary to
the opaque near-equilibrium limit [see Eq. (12.24)] from the previous subsection,
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in the transparent emission limit the effective absorption coefficients are averages
(12.32) of the direct rates, rather than averages of inverse rates.

The VEF can easily be numerically calculated from the above equations. For
small v, an expansion of Eqs. (12.26) and (12.27) gives kE=kF ¼ �1=ð3vÞ, in
accordance with the isotropic limit. In the free streaming limit, v! 1 from below,
one can show that kF ! �kE [8], as one expects that v! 1.

12.4.3 General Case

For arbitrary values of E and v (or F) the radiation intensity and the transport
coefficients must be numerically computed. For use in radiation simulations, it is
thus necessary to calculate the transport coefficients for real gases and plasmas and
tabulate them as functions of all variables, including temperature and pressure of
the LTE matter. In the following, we first consider an illustrative artificial example
with negligible scattering (rm � 0) and an absorption spectrum shown as in
Fig. 12.2. In a frequency band below a certain threshold absorption is low, while at
the threshold frequency absorption strongly increases to a maximum, beyond
which it again decays or remains constant. The entropy production approach then
leads to radiation intensities Im plotted in Fig. 12.3. The equilibrium radiation
associated with E ¼ EðeqÞ and v ¼ 0 corresponds to the well-known Planck dis-
tribution (solid curve). Nonequilibrium occurs if E 6¼ EðeqÞ or v 6¼ 0. Consider first
an isotropic nonequilibrium state where the energy of the radiation is smaller than
the equilibrium energy, for instance E ¼ EðeqÞ=2 and v ¼ 0. According to the
figure, the radiation (dashed curve) is the closer to equilibrium the larger the
absorption constant is. The same holds for the contrary case where the radiation
energy is above the equilibrium value (E ¼ 2EðeqÞ and v ¼ 0, dotted curve).
Because the magnitude of the absorption constant is a measure for the interaction

Fig. 12.2 Artificial spectrum
with low absorption below a
threshold frequency
(1.5 PHz) and high
absorption above, with an
intermediate maximum
below 2 PHz
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strength between radiation and matter, this behaviour reflects the fact that photons
with more intensive interaction with LTE matter are more efficiently equilibrated.
Entropy production rate optimization principles inherently take this general ten-
dency into account [24]. For v 6¼ 0, the intensity Im depends on X [see, e.g., Eq.
(12.25)]; details will not be discussed here.

The mean absorption coefficients are shown in Fig. 12.4. The different limit
cases discussed in the previous subsections are indicated by horizontal lines. At
equilibrium, all effective absorption coefficients equal the Rosseland mean.
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Fig. 12.3 Radiation intensities Im for v ¼ 0, T ¼ 10; 300 K and different values of E=EðeqÞ and
the spectrum given in Fig. 12.2. For E=EðeqÞ ¼ 1 (solid curve), equilibrium radiation is
established (Planck distribution). For other E=EðeqÞ values (dotted E=EðeqÞ ¼ 2; dashed
E=EðeqÞ ¼ 0:5), non-equilibrium occurs with a strength that is related to the magnitude of jm.
The larger jm, the stronger is equilibration

Fig. 12.4 Effective

absorption coefficients jðeffÞ
E

(solid) and jðeffÞ
F (dashed-

dotted) as functions of the
radiation energy for v ¼ 0,
for the spectrum shown in
Fig. 12.2. The Planck mean,
Rosseland mean, and
minimum of jm are indicated
by the dotted, dashed, and
thin solid lines
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A closure by entropy maximization would provide a wrong result [7, 8]. We note
also that for E=EðeqÞ ! 1, the entropy production closure leads to a mean
absorption dominated by the minimum absorption coefficient. In this limit the
overwhelming amount of photons will occupy states with low photon-matter
interaction, while the states with stronger interaction (large absorption) will be
near the equilibrium distribution.

The VEF as a function of v is shown in Fig. 12.5 for two different E-values. It
can be shown that the VEF satisfies a number of conditions [14]. For instance, as
mentioned v ¼ 1=3 for v = 0 (isotropic radiation) and v ¼ 1 for v = 1 (free
streaming limit). Furthermore, the dependence of v on E is weak, and for many
practical purposes vðvÞ is well approximated by Kershaw’s VEF [25]

v ¼ 1þ 2v2

3
; ð12:33Þ

Fig. 12.5 Solid curves: The
Eddington factor vðvÞ for the
spectrum in Fig. 12.2 for two
different values E=EðeqÞ = 1
(lower solid curve) and 0.5
(upper solid curve). Dashed:
Kershaw approximation
Eq. (12.33)
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Fig. 12.6 Effective

absorption coefficients jðeffÞ
E

(solid) and jðeffÞ
F (dashed-

dotted) for an air plasma at
10,000 K and 2 bar (see
Fig. 12.1) as functions of the
radiation energy for v ¼ 0.
The Planck mean, Rosseland
mean, and emission limit for

jðeffÞ
F from Eq. (12.30) are

indicated by the dashed,
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as is illustrated also in Fig. 12.5.
This general behaviour of the transport coefficients observed for the toy

example is also valid for more complex absorption spectra. A calculation with a
spectrum as given by Fig. 12.1 (air plasma at 10,000 K and 2 bar) has to take into
account the small structures from the individual spectral lines and requires a rather
high-frequency resolution. As a side remark, we mention an additional difficulty as
there is a critical value of the Lagrange multiplier kF (for given kE) for which the
solution of the variational equation (12.20) becomes singular. Even for this value,
however, v\1 and hence in order to go to the streaming limit, the intensity
distribution acquires a d-function contribution: part of the photons then concen-
trate (condense) at the frequency with minimal jm in the streaming direction.
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Fig. 12.7 Left: Effective absorption coefficient jðeffÞ
F as a function of radiation energy for v ¼ 0

(solid line, left axis) and v ¼ 0:2 (dashed line, right axis) Right: Absorption power PE as a
function of radiation energy for v ¼ 0 (solid line, left axis) and v ¼ 0:2 (dashed line, right axis).
The inset shows the shift of the zero of PE from E=EðeqÞ ¼ 1; because of this shift it is
inconvenient to directly discuss jE , as it is defined here, in a graph
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v

Fig. 12.8 Variable
Eddington factor (VEF) for
the air spectrum as a function
of v for E=EðeqÞ ¼ 1 (solid)
and E=EðeqÞ ¼ 1=4 (dashed).
Kershaw’s VEF is given as a
reference (dotted)
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Details of the behaviour at large v will be described elsewhere, here we restrict
ourselves to sufficiently small v-values. The effective absorption coefficients for
v ¼ 0 are shown in Fig. 12.6. The span over several orders of magnitude between
the emission limit and a dense medium is remarkable. We mention that the

detailed slightly wavy structures of jðeffÞ
E and jðeffÞ

F are not due to numerical
inaccuracy but due to the specific frequency dependence of the absorption
spectrum.

The numerical solutions show that the v dependence of the effective absorption
coefficients is rather weak. In Fig. 12.7, a comparison between v ¼ 0 and v ¼ 0:2
is shown as an example. For practical use it is much more convenient to depict PE

instead of jE, because for finite v the zero of PE is shifted away from E ¼ EðeqÞ (cf.
definition of jE by Eq. (12.11) and inset in Fig. 12.7).

On the other hand, the VEF depends relatively weakly on the energy of the
radiation field. Fig. 12.8 shows v for two different energies as an example.

12.5 Boundary Conditions

In order to have a well-defined hyperbolic problem associated with the partial
differential equations (PDEs) (12.9) and (12.10), appropriate boundary conditions
on E and F (or v), at solid surfaces, at certain symmetry planes, and/or at infinity
must be added. The qualitative nature of the boundary depends not only on the
radiative behavior of the matter but also on the direction of the characteristics of
the basic PDEs. This is analogous to gas dynamics, where a boundary condition at
an outlet is needless if the Mach number of the flow is larger than one, because no
information can travel from the boundary back into the system. For the Eqs. (12.9)
and (12.10), this appears if v is larger than a critical value vc. This value depends
on the functional dependence of v on v, but is typically around 0.7 [8]. If boundary
conditions are needed for moment equations, they can be derived by projection of
ImðXÞ, expanded in terms of the moments, onto a weight function. Often, the
Marshak boundary condition is considered, which can be generalized in the
present case to [8]

F ¼ e
2ð2� eÞ Ew �

ð3þ 15vÞE
8

� �

; ð12:34Þ

where e is the surface emittance, and Ew is the equilibrium radiation energy density
associated with the wall temperature. In the equilibrium limit (v ¼ 1=3), Eq.
(12.34) reduces to the usual Marshak boundary condition, as applied, for instance,
in the diffusive P1-model [26].

In cases where the surface response to radiation is relevant and a good mod-
elling of the surface behavior is crucial (e.g., if radiation-induced material ablation
occurs), it may be more appropriate to include a solid surface layer in the simu-
lation domain with realistic absorption and scattering coefficients [8].
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12.6 Summary and Conclusion

We conclude that the entropy production rate is an appropriate variational func-
tional for the closure of the moment equations of radiative transfer. Within the
formalism, effective absorption coefficients and variable Eddington factors are
calculated that have the correct limiting behavior in the analytically known cases,
like the Planck and Rosseland mean absorption, and the VEF in the diffusive and
free streaming limits. It turns out that the entropy production principle is superior
to the often considered entropy maximization principle, which disregards the
specific equilibration mechanisms and yields in general wrong results even in the
Rosseland (equilibrium) limit, as has been extensively discussed in general in [23]
and for specific examples in [7, 8]. As demonstrated with a toy example and a
calculation for a realistic spectrum of air, the effective absorption coefficients can
vary over several orders of magnitude in the physically relevant region. This
shows that good models are necessary.

The success of the entropy production approach is related to Kohler’s prin-
ciple [9], because the linearity of the RTE is exact and not restricted to a
linearization region near equilibrium. From the formalism discussed it is obvious
that the approach is not limited to a specific number of moments, and it is
applicable to other types of mutually non-interacting particles like neutrinos [27]
or independent electrons [20].
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Chapter 13
MaxEP and Stable Configurations
in Fluid–Solid Interactions

Ashwin Vaidya

Abstract We review the experimental and theoretical literature on the steady
terminal orientation of a body as it settles in a viscous fluid. The terminal orien-
tation of a rigid body is a classic example of a system out of equilibrium. While the
dynamical equations are effective in deriving the equilibrium states, they are far
too complex and intractable as of yet to resolve questions about the nature of
stability of the solutions. The maximum entropy production principle is therefore
invoked, as a selection principle, to understand the stable, steady state patterns.
Some on-going work and inherent complexities of fluid solid systems are also
discussed.

13.1 Introduction

This chapter is concerned with examining the thermodynamic principles behind
fluid structure interactions. Variational principles abound in physics and much has
been written about the mathematical, physical and philosophical aspects of these
theories. Perhaps the earliest of such explanations came from Fermat through the
principle of least time followed by Maupertius in his formulation of the principle
of least action. One of the most noteworthy versions of these principles is
Hamilton’s principle of least action which is still a part of the standard physics
curriculum and has found use in various applications (Fig. 13.1).

In addition, one can find several other optimal principles such as the principle of
minimum potential, principle of minimum energy and principle of maximum
entropy among others. In this chapter, we discuss the maximum entropy production
principle (MaxEP) which has been gaining ground, particularly in the past decade.

A. Vaidya (&)
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R. C. Dewar et al. (eds.), Beyond the Second Law,
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The purpose of the chapter is to point to some evidence for the utility of this
‘variational principle’ in certain complex problems in fluid mechanics while also
reviewing its successes in other fields with the goal of examining its role as an
overarching optimal principle of nature. The physical sciences have been slow in
accepting this principle despite its many successes in various disciplines for over
half a century now. This reluctance can perhaps be attributed to looming questions
about the teleological nature of the theory which has been a subject of some
controversy in regards to variational arguments [1]. Even historically, the now
universally accepted ‘Least action principle’ and other such variational arguments
have been questioned by philosophers of science who attribute an ‘end purpose’ to
such theories [2] thereby diminishing their value over causal arguments. While
addressing the issue of teleology and science is outside the scope of this chapter, we
approach the issue of an optimal principle in the ‘Popperian’ sense that the theory is
only as good as its ability to withstand the test of falsification. In this article we lend
some credence to this argument by pointing to some interesting examples where the
MaxEP argument can provide valuable insight.

13.2 Orientation of a Sedimenting Body

It is well established that homogeneous bodies of revolution around an axis, a, with
fore-aft symmetry, when dropped in a quiescent liquid, will orient themselves in
certain ways with respect to the direction of gravity. The orientation is seen to
depend upon the shape of the body and also upon the nature of the fluid in which
they are immersed.

13.2.1 The Steady State Case

In a highly viscous fluid, in creeping flow regimes, the body is seen to keep its initial
orientation as it falls [3]. In a Newtonian fluid when the inertia of the fluid exceeds
the viscous forces, the body falls with a eventually becoming perpendicular to the

Fig. 13.1 This figure shows the terminal orientation of a sedimenting cylinder in a a Newtonian
fluid and b viscoelastic fluid (Polyoxide) (Courtsey of Prof. D.D. Joseph). The cartoon in panel
c helps clarify the meaning of the axis a which has been used to describe the terminal orientation
of a sedimenting body
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direction of gravity. If the same body falls in a viscoelastic fluid, such as a polymer,
where the inertial and elastic effects compete, then, a will eventually become
parallel to the direction of gravity. In fact, the orientation behavior becomes very
complex in viscoelastic fluids1 since, at critical concentrations of the polymer, it
can also allow for some intermediate angles, referred to in the literature as tilt
angles [4–6]. In fact the tilt angle varies continuously with the polymer concen-
tration thereby allowing the particle to fall anywhere between the horizontal and
vertical state. Theoretical explanations of these observations have been provided in
a variety of fluid models, Newtonian and non-Newtonian by considering that in the
terminal state, the net torque imposed by the body on the fluid, due to viscosity
(constant and shear dependent), inertia and viscoelasticity (or normal stress) must
be in equilibrium. Hence, in its steady state, the terminal angle can be obtained from
the vanishing of the net torque [7–10]M, which can be decomposed as

MðhÞ ¼ Mv þ ReMI þWeMNN : ð13:1Þ

Here, Mv refers to the viscous component of the torque, MI is the inertial
component and MNN is the non-Newtonian part of the torque. The previous,
mechanical approach successfully explains the orientation phenomena in various
cases at first order in Re and We (where the Reynolds number Re ¼ UL

l measures

the relative strength of fluid inertia to viscosity and the Weissenberg number,
We ¼ aU

Ll, measures the relative strengths of elasticity to viscosity, where L and

U are the characteristic length and velocity, l is the viscosity and a is the normal
stress coefficient of the fluid). In particular previous computations have been
successful at obtaining the equilibrium states of a falling body. The question of
stability is however, not easily addressed; it involves the resolution of complex,
coupled, nonlinear integro-differential equations which are currently being
addressed. In this chapter, we argue that the MaxEP principle serves as a useful
alternative selection principle to identify the appropriate stable steady configura-
tion in this problem.

13.2.2 The Time Dependent Case

The orientational dynamics becomes even more interesting in the unsteady regime
where vortex shedding effects become significant and give rise to oscillations of
the body . In the context of sedimentation, several relevant studies have been
conducted, both experimental and numerical to document the highly nonlinear
dynamics of disk like bodies, i.e. bodies whose aspect ratios (length to diameter
ratio, denoted s) are much less than 1, which typically represent disks or flat plates.

1 Viscoelastic fluids are a class of non-Newtonian fluids which display viscosity and elasticity
and normal stresses which give rise to ‘memory’ effects, as in elastic solids.
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See for instance [11–14] and references therein. It is seen that a sedimenting disk
or flat plate can exhibit (1) fluttering, (2) tumbling and (3) chaotic motions,
depending upon the Re . Attempts have been made to classify these different
phenomena by means of non-dimensional parameters such as particle aspect ratio,
reduced inertia (defined by I� ¼ I

qf d5, where I is the moment of inertia of the body

with respect to the symmetry axis and qf stands for the fluid density and d is the
characteristic length of the cylinder), Froude number and Strouhal number
(Sr ¼ f d

U where f is the frequency of oscillation and U is the characteristic
velocity).

Our preliminary time-dependent experimental study was carried out in a
horizontal recirculating water tunnel (see Fig. 13.2). Most of the previous studies
have been conducted for sedimenting bodies (spheroids, cylinders, spheres etc.)
which are allowed to fall through a fixed height. In such experiments, however the
only way to achieve Re in the intermediate range is by increasing the density of the
particle. This results in a reduction of the observation time with the only possible
solution being the design of a large tank which could be rather expensive.
Therefore we consider a better alternative whereby the particle is fixed in the
center of a recirculating flow tank in which the fluid flow can be controlled, thus
changing the Re (see Fig. 13.2). The advantage of this experiment is that it allows
for very long observation times when compared to the case of sedimentation while
displaying the same orientation dynamics in the range of Re explored. In this case,
however, the particle only has one degree of rotational freedom around its axis of
suspension. For more details about the experiments, the readers are referred to our
earlier chapter on the subject [15]. We investigated the dynamics of cylindrical
bodies in flows with Reynolds numbers based on particle dimensions in the range
0 \ Re \ 6,000 and the non-dimensional inertia, 0 \ I�\ 0:6 by changing the

Fig. 13.2 The Panel (a) shows a schematic of the experimental setup for the time dependent
experiments. The arrows indicate the flow direction of water in the flow chamber. The Panel
(b) shows the details of the particle suspension mechanism which restricts the motion of the body
(cylinder or prolate spheroid) to rotation about the suspension axis alone
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flow speed, particle density and aspect ratio [15]. We examined the various
possible motions based upon variations in Re and I� which range from steady
orientation (S), random fluctuations (O), periodic oscillation (P) to autorotation
(A). Figure 13.3 summarizes the multiple bifurcations observed in this phenomena
and the appropriate steady state case. More details about the oscillatory state are
discussed in our recent chapter on the subject [16] and we refer the readers to a
movie [17] documenting the experiments under discussion here.

13.3 The MaxEP Principle

It is very often found that problems concerning pattern formation are intricately
related to optimal principles and conservation laws such as the principle of
minimum potential energy, principle of least action, Fermat’s principle of least
time etc. It has always seemed to us therefore that some such quantity must be
optimized in the orientation problem since the problem that we are studying is one
of pattern selection. The message of this article are two-fold: (1) The first is to
establish that the problem of terminal orientation of a symmetric body in a fluid is
governed by an optimal principle which is related to the entropy production of the
system, i.e. an optimal principle exists and (2) secondly, we want to show that the
nature of the extremum is also an important issue and is related to the choice of the
extremizing variable.

Fig. 13.3 The figure shows a bifurcation diagram displaying the variety of orientation dynamics
displayed by a cylinder in a flow—based on the experiments in a flow tank—as a function of the
non-dimensional inertia and Reynolds number. In the figure A represents autorotation (or
tumbling of the cylinder), P: periodic oscillations (where the cylinder oscillates with a consistent
frequency), O: flutter (where the oscillations are random and very small) and S: steady state [15]
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In this section, we review some essential points concerning dissipative struc-
tures in fluid mechanics.2 The application of non-equilibrium thermodynamics to
fluid mechanics has been a subject of some importance in the past [21–26] but
seems to have been sidelined in the recent literature. The greatest relevance of this
subject to fluid motion, of course, lies in the regime of turbulence. However, it is
observed that even in the case of slow flows, thermodynamics plays an essential
role, since fluid motion is inherently dissipative in nature. Motivated by the work
of Zeigler [26], there have been several studies, in particular, concerning the
application of thermodynamic principles to the constitutive modeling of complex
fluids (non-Newtonian fluids). Specifically, the requirement that viscous energy
dissipation be non-negative is very useful in obtaining restriction on the material
parameters of the constitutive models [27].

The second law of thermodynamics leads us to the local entropy equation which
describes a system out of equilibrium, namely

oðqf sÞ
ot

þ div js ¼ rs ð13:2Þ

where qf represents the fluid density, s represents the entropy density, js is the
entropy flux density and rs is the local entropy production. It has been established
[28] that the equation for entropy production can be given by the product of forces3

(denoted X) and fluxes (denoted Y)

rs ¼
X

i

XiYi þ
X

j

XjYj þ
X

kl

XklYkl ð13:3Þ

which may be represented as scalars, vectors or second order tensors. Onsager
suggested that for looking at near equilibrium phenomena, we may represent the
fluxes as a linear function of the forces, namely

YiðX1;X2; . . .;XnÞ ¼ Lij Xj; Yið0; 0; . . .; 0Þ ¼ 0

where Lij represent phenomenological constants which satisfy the well known
Onsager reciprocity relations [28, 29],

Lii � 0; LiiLkk �
1
4
ðLik þ LkiÞ2 ð13:4Þ

In the case of motion of an incompressible fluid, rs ¼ rsðxÞ takes the form [19]

rs ¼
1
T

T : Dþ jq � r
 

1
T

!

� 1
T
ðq� qf Þg � U ð13:5Þ

2 See [18–20] for an introduction to the subject of non-equilibrium thermodynamics.
3 The forces may originate from hydrodynamic viscosity, chemical reactions, thermal gradients
etc.
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where T is the temperature, jq is the heat flux, T is the Cauchy stress tensor, D is

the symmetric part of the velocity gradient [30] D ¼ 1
2 ðruþ ðruÞTÞ and q ¼

qðxÞ refers to the density of the material occupying the position X. This choice of
rs is in line with the Curie principle and we will remark on its structure a little
more below once it is written in its integral form. The first term on the right hand
side represents the viscous dissipation term while the second term refers to heat
conduction due to a temperature gradient and the third term refers to the rate of
work done by the system. The integral of the local entropy production over the
entire (unbounded) domain, X1 yields the entropy production P. In order to obtain
a simple form of the total entropy production, we write X1 ¼ X [ B where X
refers to the fluid domain and B refers to the region occupied by the rigid body.4 It
is easy to see that the dissipation term vanishes over B since there is no flow in this
region while the integral of q� qf vanishes over X since the density difference is
zero in this region; the integral of this term over B yields the effective mass of the
body. In the rest of this chapter we assume, as in [23] that the effect of the heat
conduction term is negligible and also that the ambient temperature T = T0 is a
constant (see also [31]). Therefore the integral form of entropy production func-
tional is (see also [32, 33])

P ¼ 1
T0

Z

X
T : D dV � me

T0
g � U ð13:6Þ

where and me ¼ ðqb � qf ÞjBj is the effective mass, where jBj represents the
volume of the body and g refers to the acceleration due to gravity. We decompose
the stress tensor in general into a Newtonian and a non-Newtonian component
T ¼ TN þ aTNN [34, 35] where TN ¼ �pIþ 2lD, p being the isotropic pressure
and a represent the viscoelastic material parameter. The entropy production is
therefore given by

P ¼ 1
T0

Z

X

�
TN : Dþ a

T0

Z

X
TNN : D

�
dV � me

T0
g � U ð13:7Þ

¼ 2l
T0

Z

X
D : D dV þ a

T0

Z

X
TNN : D dV � me

T0
g � U ð13:8Þ

where in the last equation the pressure term drops out of the stress tensor due to the
divergence free nature of the velocity field.

The Eq. (13.6) is not merely a mathematical construct but based on physically
sound reasoning. In order to interpret this equation appropriately, one must see the
problem now from the point of view of the fluid. We interpret the entropy of the
system as the energy dispersed by the system, which cannot be employed to do
useful work, which we also identify with the inertial term i.e. the term involving
the Re [33] in the linear momentum equation. In the Eq. (13.6), we take the first

4 Note that
R

X1
¼
R

Xþ
R

b :
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term on the right hand side to refer to the rate of change of energy entering the
system and the second term to mean the rate at which the fluid performs useful
work (i.e. work done in changing its potential energy). Therefore the excess energy
in the system, which cannot be used to perform useful work, must be dispersed to
the surroundings at a rate given by the rate of change of kinetic energy of the
system [36] which, as stated above is dictated by the Re which can also be
interpreted as a measure of irreversibility. Our definition of entropy production can
be seen to be closely related to the concept of available or excess potential energy
that has been discussed earlier by Lorenz [37], Ozawa [38] and Kleidon [39].

In order to simplify the equations further, we consider a rigid body of any shape
moving in a fluid in its steady state. We consider a frame attached to the body5

with the origin at the center of gravity and hence we can decompose the trans-
lational and rotational motion of the fluid from that of the body in the following
manner:

u ¼
X3

i¼1

Uih
ðiÞ þ XiH

ðiÞ
� �

ð13:9Þ

where h(i) and H(i) (i=1, 2, 3) are the translational and rotational auxiliary
incompressible fields satisfying the steady Stokes equations with no slip conditions
and respectively equal to ei and x� ei as x!1 (see [9, 40] for a discussion about
these auxiliary fields). It must be kept in mind that this approximation is valid for
very small Reynolds numbers, Re. We justify such a linearization using the fact
that experimentally, the orientation phenomena is valid for extremely small Re,
when the system is longer in equilibrium. In fact, the Reynolds numbers in the
experiments performed can be as small as 0.016 (see [9] and references cited
therein). In the rest of this section, we examine the problem of particle orientation
for three different cases (1) Stokes case, (2) Newtonian case in the presence of
small inertial effects and (3) viscoelastic case.

Using the Eq. (13.5), Horne et al. [23], ignoring the heat conduction term, have
shown that steady flow of a viscous Newtonian fluid in some simple geometries is
seen to coincide with the minimum of the entropy production, subject to a constant
pressure gradient. They observe that this principle may be invalid when the system
reaches a state which is far from equilibrium. The extrema (minimization and
maximization) of entropy production in irreversible processes have been found to
be valid in several physical contexts [21, 24, 25, 31, 38, 41–48]. There has been
considerable confusion on whether the appropriate extrema to apply is a maxima
or a minima and how to distinguish between the two states. We refer the readers to
an up to date review about this issue and its relevance to fluid flow, written by
Niven [46]. By analyzing flow in single and parallel pipes, Niven discusses
appropriate conditions under which flows satisfy the minimum or the maximum

5 While the results of our calculations are frame independent, the body frame, if appropriately
chosen to align with the natural symmetries of the body, can make the computations considerably
simple.
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EP principle, while maintaining that the latter is a more fundamental one.
Martyushev and Seleznev [43] state that the two are equivalent concepts and the
MinEP which is limited in its scope is only a special case of the MaxEP principle.
Our own work on particle sedimentation (see [32, 33] and below) seems to indicate
that one possible difference in the maximum and minimum principles arises simply
from the variable with respect to which we choose to extremize P. We provide
more comments on this issue in the concluding section.

13.3.1 Stokes Case

We first consider the problem of sedimentation in a Newtonian fluid, i.e. a ¼ 0.
Putting Eq. (13.9) into Eq. (13.7), we may write P as

T0 P ¼ Ui KijUj � me gi

� �
þ 2UiCijXj

þ XiMijXj
ð13:10Þ

where we define [49]

Kij ¼ 2l
Z

X
DðhðiÞÞ : DðhðjÞÞ dV; ð13:11Þ

Cij ¼ 2l
Z

X
DðhðiÞÞ : DðHðjÞÞ dV ð13:12Þ

Mij ¼ 2l
Z

X
DðHðiÞÞ : DðHðjÞÞ dV: ð13:13Þ

We employ the Einstein summation convention with i, j=1, 2, 3. The appro-
priate Onsager’s phenomenological constants in this problem are Kij; Mij and the
gravity term which are easily seen to satisfy the reciprocity relations given by
Eq. (13.4). In the Stokes regime, when Re = 0, since inertial effects are absent, the
balance of linear and angular momentum yield [49]

KijUj þ CijXj ¼ megi ð13:14Þ

CT
ij Uj þMijXj ¼ 0: ð13:15Þ

Putting Eqs. (13.14) and (13.15) into the entropy equation automatically yields
P ¼ 0. The zero entropy production case is therefore identified with the creeping
flow regime and the vanishing of P indicates that sedimentation if slow enough, is
a reversible process [23]. Also, since P is independent of U ¼ U1;U2;U3ð Þ and
hence is also independent of the orientation of the falling body. In other words, we
see that in the creeping motion regime, the sedimenting body can fall with any
orientation, which is consistent with the observations of Leal [3].
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13.3.2 Irreversible Case

In the case where inertial effects appear, P [ 0 (while still letting a ¼ 0). The
corresponding expression for force displays the emergence of an inertial force term
for non-vanishing Re [32, 33]. As a consequence, there is an interesting transition
in the behavior of the sedimenting body from the earlier case as indicated in
Fig. 13.3 which can be predicted from applying the MaxEP principle to the form
of P in Eq. (13.6). Before we do so, we will follow along the lines of Happel and
Brenner [49] who have studied the various forms that the tensor Kij can take
corresponding to different symmetries of the falling body.

In order to see the relation between the terminal orientation of the body with P
clearly, we write U ¼ ðU cos/sinh;�U sinhsin/;U coshÞ in polar coordinates
(see Fig. 13.4) with U ¼ jUj. As a result, we have

T0P ¼ U2ðK11cos/2sinh2 þ K22sinh2sin/2 þ K33cosh2 � K12sin2/sinh

þK13sin2hcos/ � K23sin2hsin/Þ þ 2UðC11X1 þ C12X2

þC13X3Þcos/sin/ � 2UðC21X1 þ C22X2 þ C23X3Þsin/sinh

þ
X3

i;j¼1

MijXiXj � meg � U

ð13:16Þ

Note that the last term, U � g, in fact depends only on the angle between the
velocity field and direction of gravity and is hence independent of h and /.
Therefore, to estimate the extremum of P, we consider derivatives now with
respect to h;/ð Þ which gives us

Fig. 13.4 A schematic of the
reference frame attached to
the body and the velocity
vector. The origin of the body
frame coincides with the
center of gravity of the body
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oP
oh
¼U2sin2hðK11cos/þ K22sin/� K33Þ � K12sin2/cosh

þ 2K13cos2hcos/� K23cos2hsin/þ 2UðC11X1 þ C12X2

þ C13X3Þcos/coshþ 2UðC21X1 þ C22X2 þ C23X3Þsin/cosh

ð13:17Þ

oP
oh
¼U2ð�K11sin2/sinh2 þ K22sin2/sinh2 � 2K12cos2/sinh

� K13sin2hsin/� K23sin2hcos/Þ � 2UðC11X1 þ C12X2

þ C13X3Þsin/sinhþ 2UðC21X1 þ C22X2 þ C23X3Þcos/sinh

ð13:18Þ

The solutions to (13.17) and (13.18) can be obtained from oP
oh ¼ 0; oP

o/ ¼ 0 which

we denote h0;/0ð Þ. Among the immediate observations that we can make include
the following special cases:

13.3.2.1 Isotropic Symmetry

In the case of isotropic bodies such as a sphere, K11 ¼ K22 ¼ K33 ¼ K and
P ¼ KU2 � meg � U. Since both these terms are independent of the angles h and /,
we can say that for the sphere all angles are permitted.

13.3.2.2 Axis or Revolution and Fore-aft Symmetry

Secondly, for the case of bodies with an axis of revolution and fore-aft symmetry
we can choose the reference frame such that U ¼ ðU cos/;�U sin/; 0Þ, i.e.
h ¼ p=2. Also, for such bodies K12 ¼ 0. Therefore the derivative of P with respect
to / gives us

oP
o/
¼ U2ðK22 � K11Þsin2/ ð13:19Þ

yielding two possible equilibrium states / ¼ 0 and / ¼ p=2 [32, 33]. Numerical
computations for prolate spheroids indicate that K22 [ K11 [32]. In our more
recent study [33], we also observed that this relationship is true for a variety of
other bodies such as oblate spheroids, cylinders and tori provided the symmetry
resulted in K12 ¼ 0 [32]. It is now simple enough to verify that P has a maximum
when / ¼ p=2 corresponding with experimental observations. The MaxEP prin-
ciple therefore serves as a selection principle to find the stable configuration from
the possible equilibrium states.
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13.3.2.3 Orthotropic Symmetry

Consider now an orthotropic body i.e. one with 3 planes of symmetry but without
an axis of revolution such as a tri-axial ellipsoid or a rectangular block with all
three dimensions different. In such cases, choosing the origin at the center of
reaction [49], we have

0 ¼ K12 ¼ K21 ¼ K13 ¼ K31 ¼ K23 ¼ K32 ð13:20Þ

¼ M12 ¼ M21 ¼ M13 ¼ M31 ¼ M23 ¼ M32 ð13:21Þ

¼ Cijði; j ¼ 1; 2; 3Þ: ð13:22Þ

Hence

oP
oh
¼ U2sin2hðK11cos/þ K22sin/� K33Þ ð13:23Þ

oP
o/
¼ U2ðK22 � K11Þsin2hsin2/ ð13:24Þ

The equilibrium states corresponding to Eqs. (13.23) and (13.24) are ðh0;/0Þ ¼
ð0; 0Þ; ð0; p=2Þ; ðp=2; 0Þ; ðp=2; p=2Þ; ð0;/�Þ where /� satisfies the equation

K11cos/ � þK22sin/ � �K33 ¼ 0:

Therefore the second variation of P, gives us an idea about the nature of the
extremum.

Dðh;/Þ ¼ o2P
oh2

o2P
o/2 �

o2P
oho/

� �2

¼ 4U4ðK22 � K11ÞðK11cos/þ K22sin/� K33Þcos2/cos2hsin2h:

ð13:25Þ

Evaluating Dðh;/Þ at the different equilibrium points yields inconclusive
results (i.e. D vanishes) at ð0; 0Þ; ð0; p=2Þ; ð0;/�Þ. However,

Dðp=2; 0Þ ¼ 4U4ðK22 � K11ÞðK33 � K11Þ ¼ D1 6¼ 0 ð13:26Þ

Dðp=2; p=2Þ ¼ 4U4ðK22 � K11ÞðK22 � K33Þ ¼ D2 6¼ 0: ð13:27Þ

The sign of D1;D2 along with that of o2P
oh2 at the two equilibria determines the

appropriate stable configuration. While we have not evaluated the values of the
drag coefficients we make an educated guess below. It is well known that the drag
coefficient is larger for bodies with larger frontal areas. Therefore considering the
rectangular block as in Fig. 13.4 such that the areas of the x2x3; x1x2 and x1x3

planes are bc, ac and ab respectively c [ b [ að Þ, then it follows by geometric
considerations that K11 [ K22 [ K33. As a result D2\0 indicating a saddle point

at ðp=2; p=2Þ. Further, D1 [ 0 and o2P
oh2 jðp=2;0Þ ¼ �2U2ðK11 � K33Þ\0. Therefore

ðp=2; 0Þ represents a maxima for P corresponding to experimental observations.

268 A. Vaidya



13.3.2.4 The MaxEP Path

Perhaps one of the most succinct definitions of the MaxEP principle is due to
Swenson [50] which states: A system will select the path or assemblage of paths
out of available paths that minimizes the potential or maximizes the entropy at the
fastest rate given the constraints. While this statement indicates that it is the
maximum rate of entropy production (with respect to time) which underlies non-
equilibrium behavior, things have not been quite as clear. There has been some
confusion regarding the nature of the extrema of P such as due to Prigogine [18]
who argues for a minimum of entropy production. Martyushev and Seleznev [43]
have quite well articulated this issue and tried to reconcile the problem in their
review chapter. Our own results indicate that the issue of the nature of extrema
could be a ‘red herring’; the extremum could be determined by the form of the
independent variable that is considered. In Eq. (13.16), taking the derivative with
respect to U gives a minimum (although the minimum may not be physical as we
will see soon) while the derivatives with respect to h or / can yield more com-
plicated results as we have seen in the previous section. However, perhaps a more
appropriate way to view this result denoted ‘the path of steepest ascent’ has been
suggested in a series of papers by Beretta [51–54] who has successfully applied
this idea in the area of Quantum Thermodynamics. While the examples considered
by Beretta have no direct bearing upon the problem considered in this article, we
consider it a useful analogy. Let us plot the contours of the equation P ¼ constant
where the value of the constant depends upon the Re or magnitude of irrevers-
ibility in the system (see Fig. 13.5). Therefore increasing Re would be reflected by
an increasing value of the right hand side with P ¼ 0 referring to the reversible
case. On each contour one may identify one or more equilibrium points. The trace
of identical equilibria on increasing level curves (or surfaces) defines a path. The
essential idea behind this argument is that of all the paths allowed by the system
upon the contour ‘surface’ of P, the equilibrium state corresponding to the
steepest one tends to be the most stable. In Fig. 13.5a we indicate the case of
isotropic bodies where the underlying manifold of P is a paraboloid whose cross
section is a circle. Therefore all radial paths along this surface increase at the same

Fig. 13.5 This figure shows the path of maximum entropy production for the case of a
sedimenting a sphere, b spheroid and c tri-axial ellipsoid. It represents the phase space showing
the various states of the system with increasing Re
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rate and so all orientations are equally likely. In the case of a spheroid or cylinder
for instance, the manifold is a paraboloid with an elliptical cross section. In this
case there is a clear path along this surface which is steepest and corresponds to
the one where the body falls along / ¼ p=2. In the case of orthotropic bodies, the
contours are slightly more complicated due to the higher number of degrees of
freedom of this problem. In Fig. 13.5c, we plot the level surfaces of
P ¼ Pðx; y; zÞ; the bold line indicates the maxEP path along the level surfaces and
corresponds to the state of mechanical equilibrium ðh ¼ p=2;/ ¼ 0Þ.

13.3.3 Open Problems and Difficulties

In this section we briefly discuss some on-going issues that we are currently
grappling with. In order to set the MaxEP principle on a firm and rigorous footing,
we need to resolve several loose ends and clarify the looming issues. At the same
time we also need to be able to consider more sophisticated examples than the ones
considered so far allowing us to build the success of the MaxEP. This can help
point to a general overarching argument. The particular problems discussed below
are meant to indicate some such issues related to the sedimentation problem and
the particular complexities that we have encountered.

13.3.3.1 Non-Newtonian Case

Consider the case of a non-Newtonian fluid represented by the Reiner-Rivlin
model where TNN ¼ aD2, the entropy production equation can be given by

T0P ¼Ui KijUj � megi

� �
þ UiCijXj þ XiMijXj þ UiUjUkRijk

þ UiUjXkSijk þ XiXjUkTijk þ XiXjXkZijk
ð13:28Þ

where

Rijk ¼ a
Z

X
DðhðiÞÞDðhðjÞÞ : DðhðkÞÞ dV ; ð13:29Þ

Sijk ¼ a
Z

X
DðhðiÞÞDðhðjÞÞ : DðHðkÞÞ dV; ð13:30Þ

Tijk ¼ a
Z

X
DðHðiÞÞDðHðjÞÞ : DðhðkÞÞ dV ; ð13:31Þ

Zijk ¼ a
Z

X
DðHðiÞÞDðHðjÞÞ : DðHðkÞÞ dV : ð13:32Þ
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In the case of bodies with an axis of revolution and fore-aft symmetry, we can
show that the terms Cij;Rijk; Zijk vanish for all i; j; k ¼ 1; 2; 3 [55]. Therefore the
Eq. (13.28) can be rewritten as

T0P ¼ Ui KijUj þ UjXkSijk � megi

� �
þ Xj XiUkTijk

� �
þ XiMijXj ð13:33Þ

In order to evaluate the appropriate stable configurations, we would now be
required to evaluate several more coefficients, which are not available in the
literature. Our preliminary computations have also shown [56] that the appropriate
creeping flow field that is required is not the Stokes’ flow but the creeping flow for
the viscoelastic fluid under consideration which remains an open problem.

13.3.3.2 Time Dependent Case

As indicated in the earlier section, when Re exceeds a threshold, the particle
undergoes a transition from a steady to an oscillatory state, about the previous
stable configuration. In Fig. 13.6 we indicate this transition on the contour surface
of the corresponding P which can be interpreted as the phase space of P. As
indicated by the figure, the path of maximum Entropy Production transitions from
a monotonic curve to a fluctuation about the stable path (indicated by the shaded
region in the paraboloid), with the oscillations getting larger, as the system is
pushed further and further out of equilibrium.6 The increasing amplitude and
frequency of oscillations with Re is validated by recent experiments and theory
[16]. In such a state it is perhaps not incorrect to say that the system is ‘far from
equilibrium’, a term that is ill-defined despite its frequent use. Oscillatory behavior
far from equilibrium has been noticed in other examples as well [57–61] but the
universality of such behavior and its details require further investigation. For one,
it is not even clear if the oscillation of the body is indicative of an oscillation in P 7

and the depiction in Fig. 13.6 is based upon the universally observed Hopf
bifurcation from steady state which is the central theme of the work by Prigogine
[18]. Could this be a macroscopic manifestation of the microscopic fluctuations in
the system as predicted by the fluctuation theorem [57]?

13.3.3.3 Equivalence to the Dynamical Approach

The relationship between the MaxEP principle and the dynamic equations (i.e.
force and torque equations in our case) merit serious attention. At present, we note
that the derivative of P with respect to Ui and Xi gives

6 The intersection of the dark line and shaded region on the paraboloid with a plane parallel to its
cross-section in Fig. 13.6 gives the number of allowable states at any given Re.
7 The simplistic depiction of P in Fig. 13.6 obviously leaves out ‘memory’ terms which
become dominant at large Re [9].
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T0
dP
dUi
¼ KijUj þ UjXkSijk � megi þ XjCij þ XiXkTijk ð13:34Þ

T0
dP
dXi
¼ UjUkSijk þ UjCij þ UiXkTijk ð13:35Þ

respectively. We recognize the Eqs. (13.34) and (13.35) to be the linearized ver-
sions of the linear momentum and angular momentum equations i.e. the nonlinear
terms involving Re are not present on the right hand side of the above equations.
The entropy production, by definition, contains merely the internal energy
contributions and therefore does not include the inertial terms. Does the entropy
production have an equivalent extremum in the force and torque? In the examples
considered in Sect. 13.3.2, we find that at least for bodies with fore-aft and
orthotropic symmetries, the bodies sediment in the orientation corresponding to
maximum drag. We are looking into the possibility of generalizing this result for
bodies of other symmetries.

13.4 Conclusions

In conclusion, we note that the problem of fluid structure interaction, in particular
the terminal, stable orientation of a body in a fluid during freefall is a problem well
suited to be tackled by the laws of non-equilibrium thermodynamics. It remains to
be seen whether this approach allows for similar successes in other more complex
problems in fluid mechanics. Specifically, we see that the extrema of entropy

Fig. 13.6 The figure depicts a schematic of the path of maximum entropy production as the
particle goes from steady state orientation to a state of periodic oscillations. The figure displays
the appropriate orbits corresponding to steady state (or MaxEP) and the state of fluctuation in the
phase space under a quasi-steady assumption, made by ignoring inertial effects upon entropy
production at larger Re. Each cross section of the paraboloid represents the set of all allowed
states at a fixed Re which is the measure of irreversibility of the system
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production of the system, determines the allowed stable states of a fluid–solid
system where dynamics based techniques fail at present. In the creeping flow
regime, when inertia is absent, the system has already reached a state of maximum
entropy which the second law of thermodynamics dictates and also the rate of
entropy production is in fact zero. This suggests that the body can take on any
orientation which is determined by its initial state. When inertial effects emerge
i.e. 0\Re\Re1 where Re1 refers to a critical value of Reynolds number, the
terminal state corresponds to one of maximum entropy production or one corre-
sponding to maximum drag in the examples of steady orientations of bodies in a
flow.8 Re1 marks the threshold below which the equilibrium orientation (or
maximum entropy production state) is achieved and beyond which the particle
undergoes fluctuations about the MaxEP state.

While our results points to the maximum as the appropriate extrema of P, we
are conscious, in light of the insightful argument made by Niven [46], of the fact
that the nature of the extrema can reverse under different constraints. This subject
requires serious attention and could help in the resolution of the debate concerning
the ‘‘correct’’ nature of the extrema of entropy production. Oddly enough, our
previous and current work [32, 33, 62] on sedimentation suggests that stable
configurations can show up as a maximum or a minimum of P depending upon the
nature of the variable used to compute the variation. As can be seen easily, the
derivative of P with respect to U in Eq. (13.19), for instance, yield a minimum
while the derivatives with respect to h, in the case of a spheroidal body, displays
maxEP corresponding to the stable state. While, this example by no means
resolves the min–max issue, it points to questions that need closer investigation.
We take up this issue in some detail in our forthcoming work [62] on this subject.

All in all, we view this work as another success of the MaxEP principle.
Optimal principles such as the MaxEP have a natural appeal due to their inherent
simplicity, elegance and universality. A rigorous scientific justification is however
slightly harder to provide and a completely convincing one is still forthcoming.
While scientific explanations are not required to be simplistic, they must be the
simplest of the set of all possible correct explanations [63] and must be subject to
experimental verifiability or falsification. We strongly believe that the MaxEP
approach possesses these features. Its survival is based on evidentiary success in
various independent problems. It should also be pointed out that the MaxEP
theorists by no means seek to replace dynamical arguments by this extremum
principle. Instead, they seek to find the relationship between MaxEP and the causal
arguments. The hope is that the MaxEP concept, if validated, can serve to augment
the explanatory power of science and extend its sphere of influence; due to its
natural simplicity, it can provide essential clues into very complex non-linear
phenomena where traditional and causal arguments have been unable to make
headway so far. It has also been suggested in a recent article by Kleidon [64] that

8 The MaxEP does not always seem to correspond with the maximum drag state [33] and this is
an issue that needs further attention.
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the maximum power principle which describes the rate of energy transfer is in fact
a sufficient practical condition to describe out of equilibrium states. This statement
is indeed true in our case as well; the examples that we treat here do not ultimately
rely on the potential energy term but merely on the dissipation. The entropy
production however allows us to verify the reversible cases when P ¼ 0. No
matter what function is adopted for optimization, the underlying connections
between them all must be explored and clearly understood. In our own case, we
fully realize that MaxEP, as we understand it now, fails to capture several aspects
of the physics, especially when the system is very far from equilibrium, such as
when the Re in the problems becomes very large. In such cases, however
dynamical arguments based on linear momentum equations also become analyti-
cally intractable and one must resort to full scale numerical simulations. We are
optimistic that the growing body of work on MaxEP will point to solutions to these
unresolved issues in the very near future.
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Chapter 14
Can the Principle of Maximum Entropy
Production be Used to Predict the Steady
States of a Rayleigh-Bérnard Convective
System?

Iain Weaver, James G. Dyke and Kevin Oliver

Abstract The principle of Maximum Entropy Production (MaxEP) has been
successfully used to reproduce the steady states of a range of non-equilibrium
systems. Here we investigate MaxEP and maximum heat flux extremum principles
directly via the simulation of a Rayleigh-Bèrnard convective system implemented
as a lattice gas model. Heat flux and entropy production emerges in this system via
the resolution of particle interactions. In the spirit of other related works, we use a
reductionist approach, creating a lattice-Boltzmann model to produce steady-
convective states between reservoirs of different temperatures. Convection cells
emerge that show meta-stability where a given lattice size is able to support a
range of convective states. Slow expansion and contraction of the model lattice,
implemented by addition and subtraction of vertices, shows hysteresis loops where
stable convection cells are expanded to regions wherein they become meta-stable,
and eventually transition into more stable configurations. The maximally stable
state is found to be that which maximises the rate of heat transfer, which is only
equivalent to maximum internal entropy production in a strong forcing regime,
while it is consistent with minimising entropy production in a weak forcing case.
These results demonstrate the utility of lattice-Boltzmann models for future studies
of non-equilibrium systems, and highlight the importance of dissipation and
forcing rates in disambiguating proposed extremum principles.
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14.1 Introduction

The power of equilibrium statistical mechanics stems from the very large number
of particles in the systems of study. At equilibrium, deviations from predictions are
so small as to be safely discounted. With unlimited computational resources and
unlimited time it is, in principle, possible to construct numerical simulations of
equilibrium systems from a ‘bottom up’ approach by explicitly modelling the
kinetics of the system. Given that non-equilibrium systems often defy exact
analysis because equilibrium assumptions no longer hold then such an approach is
attractive. For example, a model convective system would be one in which par-
ticles would be resolved and their interactions lead to the bulk properties of
patterns of circulation, heat transport and entropy production. The behaviour of
such simulations could be assessed in terms of the principle of Maximum Entropy
Production (MaxEP). For example, given the known boundary conditions of the
system, would assuming that the system self-organised into a state of MaxEP lead
to predictions in agreement with simulation? There are reasons to think that it
would. The proposed MaxEP principle states that complex-dissipative systems are
characterised by a non-equilibrium thermodynamic state in which the rate of
thermodynamic entropy production is maximised [1, 2]. A number of examples
have demonstrated the utility of the MaxEP principle. For example, the prediction
of atmospheric heat transport from simple considerations [3–5] and geological
process within the Earth [6, 7]. These studies typically proceed on the basis of
formulating a model of the system in question, and using constrained optimisation
to produce a MaxEP state. The resultant model output is then compared to
empirical data. While the success of these studies are both fascinating and very
promising, there is a significant paucity of experimental or simulated validation
which would otherwise shed light on the types of system for which this approach
may be successful [8, 9], and while in progress, a theoretical grounding for MaxEP
is yet to be established [10, 11]. Here we present a series of simulations of
Rayleigh-Bènard convective systems, produced in order to evaluate the applica-
bility of MaxEP and other competing principles. In particular, we ask ‘‘would the
formation of convective cells within the system correlate to entropy production in
a way that would allow certain bulk properties of the system be predicted without
recourse to simulation of the internal kinetics?’’

Convection cells are ubiquitous [12]. They occur in a vast range of systems
across an enormous range of scales, from currents in the core of early stars to a
heated pan of soup, an observation which caused Getling to remark ‘‘Convection
due to nonuniform heating is, without overstatement, the most widespread type of
fluid motion in the Universe’’. In this work, we do not interest ourselves with the
specifics of scale and the fluid properties, rather we are interested in the driving
principles behind convection cells as a generic example of self-organisation.
A specific type of convection cell, known as Rayleigh-Bénard convection cell,
occur where fluids with positive thermal expansion coefficient are heated from
below. Warm parcels of fluid experience an upwards buoyancy force from the
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induced vertical density gradient. At the surface, they are able to deposit, or radiate
heat, eventually becoming more dense than the rising fluid below. Being unable to
descend here, currents form outward from the up-welling point until the inverse
density gradient is encountered, and the parcel descends. Through this mechanism,
a fluid subject to a temperature gradient is able to self-organise to a dissipative
state, transporting energy from the hot to cold reservoir. The internal entropy
production is easily computed for this phenomena, and the associated fluid
mechanics are irrefutably complex, making an ideal case study for the investi-
gation of extremum principles for non-equilibrium systems.

In modelling this type of system from the bottom up, rather than prescribe
system-level properties such as heat flux or rates of convection, we allow these to
emerge via the interaction of the simulated particles within the system. We
implement a lattice gas cellular automata (LGCA) as our approach for modelling
our convecting fluid system [13]. Furthermore, in order to be able to produce
statistically significant results, a novel computational method was developed that
allowed large scale simulations to be conducted.

We introduce the LGCA class of models in more depth, particularly our choice
of lattice gas in Sect. 14.2 along with the necessary modifications to produce
convection cells. Results are presented and discussed in detail in Sects. 14.3 and 14.4.

14.2 A Model of Rayleigh-Bénard Convection

The challenge is to develop a simulation of a convective system that captures the
important processes over sufficient temporal and spatial scales whilst remaining
computationally feasible as well as intuitive. With a number of modifications
(detailed in the following sections) LGCA represent an ideal trade-off in terms of
efficiency and fidelity.

14.2.1 Lattice Gas Cellular Automata

LGCA consist of discrete particles traversing a regular lattice, characterised both by
the choice of lattice vectors, that is the vector describing the edges attached to each
vertex,~ci and collision rules. While in terms of implementation of the model we talk
of particles, we are not constrained to modelling on the molecular scale. Indeed from
this abstraction, the equations of motion of a continuous fluid can be extracted by
application of Chapman-Enskog theory [14]. A commonality shared by all lattice gas
models is that they advance in alternating collision and propagation steps:

• Collision
Particles at a vertex participate in mass and momentum conserving collisions.
Importantly, certain configurations allow for scattering collisions in which
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particles redistribute their momenta. It is these collisions which essentially
provide viscosity, and enable us to recover the Navier–Stokes equations.

• Propagation
Between collisions, particles travel along lattice vectors to neighbouring vertices
separated by the characteristic lattice spacing DL. Particles propagating across a
periodic boundary are re-injected at the corresponding boundary in the same
momentum state, while particles which would travel across a solid surface
instead have their momentum state inverted, known as a no-slip boundary due to
the result of zero net velocity at a boundary.

The original LGCA was developed in 1973 used a simple 2D square lattice and
is commonly named the HPP lattice gas after it’s authors, Hardy et al. [15, 16].
These early LGCA suffered greatly from anisotropy, resulting for example in
curious square vortices, although a similar method was implemented later in 1986
on a hexagonal lattice called the FHP lattice gas, again named after the authors,
Frisch et al. [17]. The increased symmetry of this lattice ensures it does not suffer
so strongly from anisotropy. A thorough account of the zoo of lattice gas models
can be found in Wolf-Gladrow [18].

14.2.2 The FHP Lattice Gas

As a hexagonal lattice with six lattice vectors, each vertex in the FHP lattice has
six momentum states, whose occupancy is denoted by the binary variable ni with
i ¼ 1. . .6. The state ni ¼ 1 corresponds to an occupied vertex while 0 represents a
hole. Almost all collisions are trivial since there is only one mass and momentum
conserving outcome to a collision, such that the state of the vertex~n is unchanged.
The exceptions to this are mainly zero net-momentum collisions which have
multiple mass and momentum conserving outcomes. The choice proves extremely
important to the model dynamics, and scattering (momentum-state altering) col-
lisions are chosen, breaking what would otherwise be unwanted invariants. The
collision rules are summarised in Fig. 14.1 to highlight this distinction. The final
element of the model is the propagation step. Between collision steps, momentum
states travel along lattice vectors to participate in collisions at a neighbouring
vertex.

14.2.3 FHP Buoyancy Modification

The traditional FHP model does not have a defined temperature since for most
hydrodynamical problems thermal anomalies are assumed small, and temperature
is therefore not important [19]. However, the temperature gradient serves as the
driving force for convection for which Schaffenberger et al. [20] modify the usual
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FHP model by introducing an effective particle temperature, along with an asso-
ciated buoyancy force modelled by spontaneous momentum-state flipping. As well
as a momentum-state, particles have a temperature state hi which can take the
value �1 for a hot or cold particle respectively. The temperature state is a passive
scalar; it follows particles passively during the propagation step. Hot particles can
be thought of as being less dense than the surrounding medium and experience a
positive buoyancy force. Cold particles are relatively dense and experience
a negative buoyancy force. The inclusion of h states modifies the lattice gas in the
following ways:

• Collision
In the collision step the total particle thermal energy,

P
i hi, is conserved. That is

to say, the number of 1 and 0 temperature particles are conserved. However, the
temperature states are randomly distributed amongst the participating particles.
The thermal diffusion coefficient then becomes a function of density only.

• Thermal flipping
A force can be simulated by spontaneous flipping of particle momentum states,
resulting in a change of net-momentum [14]. The buoyancy force is simulated
by inverting particle y-momentum, without altering x-momentum. This is only
possible between corresponding pairs of momentum states. Particles in the
negative y-momentum state with h ¼ 1 flip into the corresponding positive
y-momentum state with some small probability, here labelled by x. The thermal
flipping rule is illustrated in Fig. 14.2. While flipping causes spontaneous

Initial n Collision Resultant n

Two-particle head-on collisions scatter.

End-state probabilities are equal to pre-

serve symmetry

Two-particle  head-on  collision  with

spectator particle

Three-particle head-on collisions scatter

Four-particle head-on collisions scatter.

End-state probabilities are equal to pre-

serve symmetry

Fig. 14.1 Explicit definitions of the FHP lattice gas collision rules which change the momentum
states at a vertex. The FHP lattice has six momentum states at each vertex, where arrows indicate
the presence of a particle in momentum state ni and the vector ~n holds all the momentum state
occupancies for a vertex. Two- and four-particle head-on collisions are probabilistic, and the
resulting states occur with equal probability
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changes in local momentum, symmetry of the thermal flipping rule with h
ensures that on the average, global momentum is conserved.

• Propagation
As a passive scalar, h is propagated between lattice points along with particles.
Additionally particles reflected from a boundary set h to �1 depending on the
simulated temperature of the boundary.

14.2.4 A Lattice Boltzmann Model

The simulation results of Schaffenberger et al. [20] included measurement of some
common hydrodynamical quantities, and required coarse-graining and long time
averages to be taken over a very large lattice. Even then, they exhibit large
amounts of noise, and rapid transitions can be seen between different convective
states for parameter values where, say, period-1 (where the lattice is occupied by a
single convection cell) and period-1

2 (where two cells of half the size occupy the
lattice) are similarly favourable. While the effects of such fluctuations may be
important in real systems, we are interested in the thermodynamic properties of
steady-state convection cells, a very difficult parameter to extract from this type
of simulation.

Fortunately, the Boltzmann transport equation grants us reprieve from many of
these problems. The very simple and intuitive lattice gas rules can be transformed
from a binary model of lattice site occupations ni to a continuum model of mean
momentum-state occupancies Ni. Through some careful manipulation, a continuum
model can be made to approximate the real lattice gas dynamics with the advantage
of much smaller lattices, and removing the need for large space and time averages.
In the following steps, we write Nið~x; tÞ to be the mean occupancy of momentum-
state i of the vertex at~x at simulation time t. The collision and propagation steps can
be written as

Initial n
Probability

Resultant n

Hot particles with -ve y-momentum flip

momentum-state with probability

Cold particles with +ve y-momentum flip

momentum-state with probability ω

ω

ω

Fig. 14.2 Explicit definitions of FHP buoyancy rules. Hot particles have positive buoyancy and
flip to positive y-momentum states without altering their x-momentum, and vice versa for
negatively buoyant cold particles. This can be thought of as equivalent to applying a force in ŷ
where the strength of the force is determined by the rate of such transitions
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Nið~xþ~ciDt; t þ DtÞ ¼ Nið~x; tÞ þ Di ð14:1Þ

where~ciDt is a vector of length DL, the lattice spacing, and therefore the left side
of this equation can be thought of as the propagation step, advancing mean
momentum occupancy along lattice vectors. The right side can be thought of as the
collision step, and includes the collision term, Di. This operator adjusts the mean
occupancy propagated between lattice sites according to the collision rules. It
includes all the information in Fig. 14.1. Rather than ennumerating all possible
momentum-state altering collisions here, we can call on the much earlier work of
Bhatnagar et al. and the BGK approximation [21]. The large and highly non-linear
collision operator can be replaced by a less computationally intensive linear

relaxation towards NðeqÞ
i , the local mass and momentum conserving equilibrium

with characteristic timescale s1

Di ¼ �
1
s1

Nið~x; tÞ � NðeqÞ
i ð~x; tÞ

h i
: ð14:2Þ

Frisch et al. [14] proved the equilibrium momentum-state occupancies NðeqÞ
i of

a vertex with a given density q and momentum~v, given by

q ¼
X6

i¼1

nið~x; tÞ ~v ¼
X6

i¼1

Nið~x; tÞ~ci ð14:3Þ

obeys Fermi–Dirac statistics, since the particles are subject to the exclusion
principle; each momentum state may be occupied by at most one particle, and
therefore 0�N� 1. The proof itself is somewhat involved [18, p. 64–67], so here
we present only the result;

NðeqÞ
i ðq;~vÞ ¼ 1

1þ eðhþ~ci�~qÞ
ð14:4Þ

where h and ~q are the Lagrange multipliers associated with our conserved
quantities. The full derivation of these Lagrange multipliers is cumbersome
[18, p. 248–251] and again we give only the result, which can be substituted into
the linearised collision operator of Eq. (14.2)

NðeqÞ
i ðq;~vÞ ¼ d þ dðd � 1Þq1~c �~vþ

1
2

dðd � 1Þð2d � 1Þq2
1c2

i;av2
a þ dðd � 1Þh2~v

2

ð14:5Þ

where the sub-scripted a notation represents a sum over the x and y compenents,
and

d ¼ q
6
; q1 ¼

2
d � 1

and h2 ¼
1� 2d

ðd � 1Þ2
: ð14:6Þ
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In a similar way, we re-implement the buoyancy force as linear relaxation

towards thermal equilibrium occupancy, Nðeq0Þ
i , where the rate of flow between

momentum states due to buoyancy is zero. This necessitates the addition of
another timescale, s2 which parameterises the strength of this buoyancy force in a
similar way to x in the discrete model of Schaffenberger et al. [20]. Momentum
states with ci;y ¼ 0 are unchanged, while the rest are relaxed towards

Nðeq0Þ
i ð~n; hÞ ¼

signðci;yÞ þ hRðpairÞ
i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 RðpairÞ
i � 2

� �
RðpairÞ

i þ 1

r

2h
ð14:7Þ

where sign ci;y

� �
denotes the sign of the y-momentum of momentum state i, and

RðpairÞ
i is the sum of mean-occupancy of corresponding momentum states between

which flipping can occur.

14.2.5 Boundary Conditions

To impose a temperature gradient across the lattice gas, we heat the top and
bottom boundaries at different rates, allowing their temperatures to diverge to Tc

and Th respectively. These temperatures evolve according to our imposed external
heating, and the dissipation of energy between them. This differential heating can
be understood as capturing a number of different real-world processes. For
example, on Earth equatorial regions receive more incident radiation from the sun
than polar regions. Tc and Th would then represent the polar and equatorial tem-
peratures in the absence of any latitudinal heat flux. Newtonian-relaxation refers to
a forcing scheme where the strength of forcing is linearly related to surface
temperature by some characteristic relaxation timescale k. Here, the rate of heating
or cooling of the boundaries is proportional to the difference in temperature
between a surface, T , and its temperature in the absence of any additional dissi-
pation, T�. Such schemes can be used to model sensible heat transfer from ther-
mostats, or in the case of small temperature anomalies (T� � T � T�) it can be
used to approximate flux driven forcing by linearising the Stefan-Boltzmann law.
In this scheme, the rate of change of the boundary temperatures are given by;

dTh

dt
¼ 1

k
T�h � Th

� �
� Qh

dTc

dt
¼ 1

k
T�c � Tc

� �
þ Qc

where T�h and T�c are the steady-state temperatures of the lower and upper
boundaries respectively, and Qh and Qc are rates of heat exchange between the
lower and upper boundaries and the simulated fluid, normalised by the boundary
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width Lx. We define the corresponding normalised rate of entropy production, r,
by considering only internal entropy production;

r ¼ Q
1
Tc
� 1

Th

� �

: ð14:8Þ

In the limit DT ¼ T�h � T�c � T�h , the rate of entropy production, Eq. (14.8)
becomes a parabolic function of Q [22], shown in Fig. 14.3 with a maxima at
Qcrit: ¼ DT

4k :

We define a rapid-forcing regime to be one where k is sufficiently small such
that relaxation of the boundaries to their steady-state temperature occurs on much
shorter timescales than the dissipation of heat between them, and Q\Qcrit:. Here,
MaxEP is indistinguishable from maximising heat flux Q, while in a slow-forcing
regime, where k is large and Q [ Qcrit:, entropy production and heat flux are
anti-correlated, and the maximisation principles could be easily distinguished.
A steady-state can be detected where these boundary variables are constant in time
and Q ¼ Qh ¼ Qc, simply measured to be the rate of exchange of heat between the
reservoirs and particles reflecting from the boundary.

14.3 Model Results

We present results from two sets of simulations, one with rapid forcing, one with
slow forcing. For both sets we find a relationship between the vertical heat flux, Q,
and the stability of the emergent convection cells, where the system favours
configurations that produce the greatest flux of heat from hot to cold reservoir.
This phenomena is responsible for producing hysteresis loops. With rapid forcing,
this maximum rate of heat flux is equivalent to maximum entropy production.
With slow forcing, the maximum rate of heat flux is equivalent to minimum
entropy production. For all simulated results, the model mean particle density

Fig. 14.3 Entropy
production r as a function of
heat flux Q for our Newtonian
relaxation scheme in the limit
DT ¼ T�h � T�c � T�h . In the
rapid-forcing regime,
maximising entropy
production and maximising
heat flux are equivalent,
while in the slow-forcing
regime they are easily
distinguished
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�q ¼ 1:2, upper and lower boundary steady-state temperatures T�c ¼ 273 K,

T�h ¼ 293 K, lattice height Ly ¼ 100
ffiffiffi
3
p

=2DL and characteristic model relaxation
times s1 ¼ s2 ¼ 20.

We examine the rate of heat flux and corresponding entropy production of a
range of convection cell configurations outside the dimensions in which they might
typically occur. To begin with, we initialise a small cavity and evolve the model to
a steady-state convection such as that shown in Fig. 14.4. From here, we increase
the lattice width, Lx, some small fraction, injecting new particles to maintain the
gas density at a constant. Since the gas is already in a steady-state of a specific
period, we expect it will be attracted to a steady-state of the same period in the
new, slightly larger cavity. This process can be used to expand and contract the
lattice for a range of convection configurations.

14.3.1 Meta-stability and Hysteresis

A snapshot of two separate simulations are displayed in Fig. 14.4, highlighting the
ability of the cavity to support a range of convection cell configurations. By slow
expansion, we are able to maintain prescribed convective configurations over a
large range of model dimensions. Additionally, perturbation experiments can be
carried out (simply achieved by applying small, global mass- and momentum-
conserving fluctuations to lattice momentum states), and find transitions to higher
Q states are strongly favoured. This can be seen clearly where the fluctuations
caused by expanding the model lattice produce clean hysteresis loops, illustrated in
Fig. 14.5 for the case of a transition between period-1 and period-1

2 convection
cells. This phenomena is illustrated more generally in Fig. 14.6a. From this, we
infer that maximal Q states are the most stable.

(a) (b)

Fig. 14.4 Example convection cell configurations produced by the modified lattice Boltzmann
model with s1 ¼ s2 ¼ 20, Lx ¼ 200. Contours show isotherms and are shaded light to dark with
increasing temperature. a Period-1 convection cell. b Period-1/2 convection cell
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14.3.2 Heat Flux and Maximum Entropy Production

MaxEP is but one of a plethora of suggested extremum principles, albeit one which
has experienced a wide range of successes. Still the challenge remains of being
able to identify the appropriate principle to apply to a given system a priori. In
part, this is down to the difficulty in disentangling the competing principles for
specific systems. Here, we attempt to disambiguate between a principle of maxi-
mum heat flux, and MaxEP by tuning k such that dissipation through the fluid is
more rapid than forcing, entering the slow-forcing regime of Fig. 14.3 where the
two principles are mutually exclusive.

• Rapid-forcing Regime
In the rapid-forcing regime, the thermal forcing on the model boundaries occurs
on much shorter timescales than the dissipation of the established gradient. This
exists for small k where forcing is sufficiently strong that a principle of MaxEP
and maximum heat flux would be indistinguishable, as illustrated in Fig. 14.3. In
our model, k ¼ 20 results in Q\Qcrit:, shown in Fig. 14.6.

• Slow-forcing Regime
In contrast, k ¼ 100 finds Q [ Qcrit:, where MaxEP and maximum heat flux are
mutually exclusive. The results of simulation are shown in Fig. 14.7. The heat
flux curves of Fig. 14.7a are characteristically identical to those in the strong-
forcing case, Fig. 14.6a, while the corresponding entropy production curves are
inverted. Here, maximum heat flux is equivalent to a minimum entropy
production principle, and we conclude that the model as described appears to be
represented by a principle of maximum heat flux, rather than of MaxEP con-
sidering only internal entropy production.

Fig. 14.5 A hysteresis loop formed from expansion and contraction model with k ¼ 20.
Expanding a period-1 convection cell results in a metastable convection regime. Fluctuations
caused by the slow expansion cause a phase transition to a more stable, more efficient period-1

2
configuration. The same effect is found to exist for the reverse process
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14.4 Discussion

Through a principled and reductionist approach, we have implemented the mod-
ified FHP lattice gas of Schaffenberger et al. [20] as a lattice Boltzmann model,
and mapped the heat flux and entropy production characteristics of a range of
convection cell periods for a range of model dimensions. We find that more
efficient dissipative convection configurations are universally more stable resulting
in hysteresis loops between convection regimes. It is found that in the regime of
rapid forcing, assuming the system self-organises to maximise heat flux or

(a) (b)

Fig. 14.7 Specific heat flux (Fig. 14.7a) and entropy production (Fig. 14.7b) with model width
Lx for k ¼ 100. Labels show the period of the emerging convection cells in terms of Lx. Here we
can see that MaxEP predictions would select inefficient convection cell configurations, while we
find the model to favour maximally efficient configurations. a Heat flux. b Entropy production

(a) (b)

Fig. 14.6 Specific heat flux (Fig. 14.6a) and entropy production (Fig. 14.6b) with model width
Lx for k ¼ 20. Labels show the period of the emerging convection cells in terms of Lx. Dashed
lines indicate metastable states, where transitions to higher Q states are favoured. Crossover
points between different maximally efficient convective regimes are in exactly the same position
in both cases. Here, assuming that the systems self-organises into a maximum heat flux or MaxEP
state accurately represents the system’s behaviour. It is impossible to distinguish between a
maximum heat flux and MaxEP principle, consistent with the expectation of the rapid-forcing
regime. a Heat flux. b Entropy production
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maximum entropy production would lead to accurate predictions of the systems
behaviour. In regimes of slow forcing the two assumptions are diametrically
opposed: the system continues to self-organise into states of maximum heat flux
which are associated with minimum entropy production. Consequently, having
MaxEP emerge within a system is not sufficient evidence for us to conclude that
the principle of MaxEP will accurately predict steady states for that system over a
range of forcing or assumptions.

How are we to understand this result in the light of previous studies that have
accurately reproduced the steady states of non-equilibrium systems by assuming
them to be those characterised by maximum entropy production? It is important to
note that the approach we have taken in allowing the proportion of heat that is
transported from hot to cold to emerge is atypical. We do not tune the model’s
behaviour via a parameter that affects rates of heat flux (for example, convection or
advection in the Earth’s hydrosphere or mantle). We are able to reconstruct the
parabolic entropy production function via altering the rate of thermal forcing
acting on the hot and cold reservoirs. Next, we need to revisit the formulation of
entropy production. We have considered only the aspect of the model which
exhibits self-organisation—the lattice gas between the heated surfaces. However,
if we were to include the entropy production in heating the surfaces, we would find
r to be an linear function of Q since T� are constant—assumptions of maximum
heat flux and entropy production would be equivalent. Finally we need to consider
the epistemological basis of the principle of MaxEP. As has recently been argued,
the principle of MaxEP may not be understood as a physical law, rather an
information theoretic procedure or algorithm [11, 23]. It is when predictions
deviate from observations that we gain information about those systems and
processes we are studying.
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Chapter 15
Bifurcation, Stability, and Entropy
Production in a Self-Organizing
Fluid/Plasma System

Zensho Yoshida and Yohei Kawazura

Abstract The self-organization of macroscopic structure apparently contradicts

the second law of thermodynamics. However, disorder can still develop on

microscopic scales. In nonlinear systems, order and disorder may thus coexist on

different scales. Here we study the self-organization of macroscopic structures in

driven, nonlinear systems. Using a simple phenomenological transport model (of

current in an electric circuit, or heat transport in a turbulent fluid/plasma) with

linear and nonlinear impedances, we analyze the behavior of the rate of entropy

production (σ) as a macroscopic system undergoes a bifurcation between linear

and nonlinear operating points. Here σ acts as a generating function for a Legendre

transformation between flux-driven and force-driven systems, the thermodynamic

potential for which is a generalization of Onsager’s dissipation function. We

derive a duality relation that implies min/max-σ behavior depending on the con-

nectivity of the impedances (series or parallel) and the type of driving.

List of Symbols
Symbol Meaning

Roman Symbols
I Current in circuit

V Voltage in circuit

T Temperature at boundaries in turbulent layer model

TD Minimum temperature at inner boundary achieved by linear branch
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Tc Critical temperature for bifurcation

F Heat flux through boundaries

Fc Critical heat flux for bifurcation

P Free power available to create ordered flow

Greek Symbols
b Inverse temperature ð¼ T�1Þ
η Impedance

v Conductance

aVS Thermodynamic amplification factor in current-driven series model

aIS Thermodynamic amplification factor in voltage-driven series model

aVP Thermodynamic amplification factor in current-driven parallel model

aIP Thermodynamic amplification factor in voltage-driven parallel model

W Thermodynamic potential function as a function of V

U Thermodynamic potential function as a function of I

15.1 Introduction

The aim of this chapter is to describe and analyze a simple mathematical model

that enables a nonlinear driven system to create bifurcated operating points (quasi-

stationary states)—in energetics, the entropy production rate ðrÞ plays an inter-

esting role. The relevant phenomena are taken from fluid or plasma physics.

However, the thermodynamic relations to be derived are general, i.e., mechanism-

independent.

Here we focus on how the behavior of r in the model compares to various min/

max-entropy production conjectures in the literature [1–15]. In this work, r
appears as a generating function of the Legendre transformation relating ther-

modynamic potentials (characterizing the operating points of a nonlinear driven

system) for flux-driven and force-driven conditions [4]. The min/max duality of r
is then a natural consequence of the convexity of the thermodynamic potential.

Before discussing this new aspect of r, we briefly review related (though dis-

tinct) variational principles. We often assume r to be equivalent to energy dissi-
pation rate. The history of the latter concept goes back to Helmholtz’ minimum-

dissipation principle [16], by which the velocity distribution of a slow stationary

incompressible fluid can be determined. The viscous dissipation of the fluid kinetic

energy is an example of Rayleigh’s dissipation function [17] which may be added

to Lagrange’s equations to formulate a dissipative equation of motion.1

1 However, Rayleigh’s dissipation function and a Lagrangian are not on an equal footing to

formulate a unified target functional of a variational principle; in the latter, the velocity v is
related to _q, which must be perturbed as a function of the position q, while the dissipation
function deals the velocity v as a direct state vector.
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Generalizing the notion of force and current (or flux), we may describe ther-

modynamic non-equilibrium in parallel with mechanical non-equilibrium; the

gradient of an intensive quantity (e.g. temperature T or b ¼ T�1) acts as a force

that causes a current of an extensive quantity (e.g. heat flux). Then the mechanical

minimum-dissipation principle (Helmholtz’ principle) extends to thermodynamic

minimum-dissipation principle (Onsager’s principle) [18, 19]. Prigogine’s mini-
mum r principle has an independent origin; first it was applied to linear irreversible
processes in discontinuous systems, and was then extended to some nonlinear and

continuous systems [8, 20]. Interestingly, r becomes equivalent to the energy

dissipation function for some physical systems; the product �F � r/ ¼ �F joj/
measures r by an irreversible current F driven by a non-equilibrium intensive

quantity /, which in the linear regime becomes a dissipation function RjkF
jFk by

an appropriate impedance Rjk, hence both minimum principles are equivalent [21].

In a nonlinear regime of dissipation (the subject of the present study), we need a

different target of variation—the thermodynamic potential to be formulated in

Sect. 15.2 is a nonlinear generalization of Onsager’s dissipation function, which is

no longer equivalent to r [4] (instead, r is a generating function of Legendre

transformation).2

The dissipation function for a diffusion-type equation is a convex (and coersive,

or higher order [22]) functional, thus the variational principle (known as Dirich-

let’s principle) must be a minimum principle [23, 24]. Physically, this is because

diffusion dominates on smaller scales, and the measure of dissipation is unbounded

for small-scale fluctuations [22]. A “maximum” r principle, then, means some-

thing different—it is not the maximum of the dissipation function for a diffusion

process. In a general nonlinear system (like fluid), r may be changed by a process

on large scales, even if the ultimate dissipation (conversion of ordered flow to

random motion) occurs on small scales.3 Then, r may have some different

(bifurcated) modes that are determined by self-organized coherent flows. Each

mode of r may be modeled by a different impedance [15]. Moreover, the mac-

roscopic operating point depends on how the system is driven. We define a max-r
selection principle according to which the actual operating point (as determined by

2 As noticed by some authors, the formula dissipation function ¼ r fails to apply to a strikingly
simple and important example: the stationary distribution of temperature T on a thermal

conductor minimizes the dissipation function
R
DjrT j2 dx (Dirichlet’s principle) if the

conductivity D is given and Fourier’s law applies. The corresponding r is, however,
R
ðDrTÞ �

rT�1 dx ¼
R
Djr ln T j2 dx whose minimizer gives a different temperature distribution; see

also [1].
3 Shock is a well-known example: let us consider a one-dimensional compressible flow uðxÞ with
boundary conditions uð0Þ ¼ u0 and uð1Þ ¼ u1. Obviously the viscous dissipation

R
mðoxuÞ2 dx

is minimized when uðxÞ has a linear distribution: uðxÞ ¼ u0ð1� xÞ þ u1x. Creation of a shock

will increase the variation in ðoxuÞ2, resulting in an enhanced dissipation [24].
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a stability analysis) has the greatest r among all possible operating points. Similar

discussions have been made by different authors, which are known as optimum
theory or upper bound theory [25–27] (see also Chapters by Ozawa & Shimokawa

and Dewar & Maritan). For example, in a Bénard convection, Ozawa [28] pointed

out that a finite depth of the thermal boundary layer yields a bound for r. The
minimum depth is determined by the critical Rayleigh number. Here we inquire

further into the root cause of such bounds; there must be an energy (power)

bound.4 Our phenomenological model of turbulent heat transport (Sect. 15.3)

considers a nonlinear impedance (or conductance) that is a function of a free power
available to cause a macroscopic structure.

In the next section, we analyze simple nonlinear electric circuits that illustrate

the basic idea of operating points, their bifurcations, and stability—in the latter

part of discussion, the current and voltage in the circuit model will be replaced,

respectively, by a heat flux and (inverse) temperature in a plasma or fluid. In

Sect. 15. 3, we will study a phenomenological model of turbulent heat transport in

a plasma (or fluid) layer—an annular thin layer surrounding a high-temperature

core plasma/fluid and surrounded by a cold heat bath. When the plasma/fluid self-

organizes into an ordered shear flow (so-called zonal flow [29, 30]; see also [31,

32] for zonal flow in a plasma), the heat transport through the layer is reduced; this

transition in a plasma is called the H-mode [33]. There is another type of self-

organization of an ordered flow—in fluid mechanics, known as Bénard convection

[34, 35], and in plasma physics, often called a streamer [36–38]—which brings

about an “opposite” effect on heat transport; such a flow is parallel to the direction

of heat flow and causes convective heat transport, resulting in an increased heat

transport. While the zonal flow blocks the thermal conduction, the streamer opens

up a new channel of heat transfer. These two examples allow us to analyze min/

max-r behavior in the context of a simple model.

15.2 Nonlinear Impedance and Equivalent Circuits

15.2.1 Electric Circuit Model

We consider a nonlinear impedance (resistance) g1 which varies as a function of

some power P available in the system (the power is used for self-organization of

some internal structure that affects the impedance). We may consider a more

complex model of g1 that depends on other parameters [4]. The nonlinear

impedance is connected to a linear impedance g0 (� constant) that determines a

baseline dissipation in the system. We will consider two different topologies of

4 Evidently, the averaged dissipation in a quasi-stationary state cannot exceed the energy input.

In the example of Bénard convection, the critical Rayleigh number measures the temperature

difference in a non-equilibrium state, which is primarily caused by a thermal energy input.
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connections [see (Fig. 15.1)]; one is the series connection of g1 and g0, and the

other is the parallel connection (for convenience, we will also use conductances

v1 ¼ g�11 and v0 ¼ g�10 ).

In the series system, we consider a nonlinear impedance g1ðPÞ that is a positive
increasing function of P such that g1ð0Þ ¼ 0 (a finite value of g1ð0Þ can be

absorbed in g0). And, in a parallel system, v1ðPÞ is a positive increasing function

of P such that v1ð0Þ ¼ 0. The series system is a model of the self-organization of

zonal flow [29–32] that is directed perpendicular to a heat flux; its strong shear

suppresses the turbulence, resulting in an increased impedance of heat transport

(for example, see [39]). There is another type of self-organization of an ordered

flow—Bénard convection or streamer—which brings about an opposite effect on

heat transport; such a flow is parallel to the direction of heat flow and causes

convective heat transport, resulting in a reduced impedance of heat transport [36–

38]. While the zonal flow blocks the thermal conduction, the streamer opens up a

new channel of heat transfer.

The other essential element of the circuit model is the power supply. The

operating point of the circuit depends on whether it is driven by a constant-current
supply or a constant-voltage supply. In a more general context, a system driven by

the former will be called a flux-driven system, and the latter a force-driven system.
The power r dissipated by a resistance g is, if the current I is fixed, r ¼ gI2, and, if
the voltage V is fixed, r ¼ V2=g. If g increases with r (as it may occur in a

nichrome-wire resistance), one must be careful in connecting a constant-current

power supply, since an instability (so-called thermal runaway) occurs:

r%) g%) r% � � � :

This well-known precaution of electric engineering is, in fact, the basis of the

present study; a flux-driven system tends to maximize entropy production. To

(a) (b)

Fig. 15.1 Two different topologies of equivalent circuits connecting linear and nonlinear

impedances: a series connection and b parallel connection. In a, the nonlinear impedance works

as a blocking impedance when g1ðPÞ increases. In b, the nonlinear impedance opens a new

channel of current when g1ðPÞ decreases [v1ðPÞ increases]. The operating point of the circuits

depends on how it is driven; two different modes are represented by the constant-current and

constant-voltage power supplies
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make this statement more precise and solid, we need to formulate an appropriate

variational principle by which we can study the bifurcation of operating points and

their stability.

15.2.2 Model of Nonlinear Impedance and Circuit Equations

We formulate a mathematical model of nonlinear impedance. The change of the

impedance (a macroscopic property of the device) is due to some transition in the

device, which is driven by a free power (the time derivative of a free energy to be

denoted by P) available for the device; hence we denote g1ðPÞ. Here we assume a

general form in terms of the current I1 and the voltage V1 on the device, which we

write as

P ¼ }ðI1;V1Þ: ð15:1Þ

First, we consider the series circuit connecting impedances g0 and g1ðPÞ; see
(Fig. 15.1a). The determining equation is Ohm’s law, which reads as

V ¼ ½g0 þ g1ðPÞ�I: ð15:2Þ

Substituting (15.1) with I1 ¼ I and V1 ¼ g1ðPÞI ¼ V � g0I into (15.2), we

obtain

V ¼ ½g0 þ g1ð}ðI;V � g0IÞÞ�I: ð15:3Þ

When this system is driven by a constant-current power supply, we solve (15.3)

for the voltage V with a given current I; this determines V as an implicit function

of I

V ¼VSðIÞ: ð15:4Þ

Depending on the specific form of } and g1, VS (I) may have a singularity5 or

bifurcated branches; in Sect. 15.3 we will see an example of physical system that

has bifurcated solutions. When the same series circuit is driven by a constant-

voltage power supply, we solve (15.3) for the current I with a given voltage V ;

I ¼ ISðVÞ: ð15:5Þ

Next, we consider the parallel circuit (Fig. 15.1b). Ohm’s law reads as

I ¼ ½v0 þ v1ðPÞ�V ; ð15:6Þ

where v0 ¼ g�10 and v1ðPÞ ¼ g1ðPÞ
�1
. Substituting (15.1) with V1 ¼ V and I1 ¼

I � v0V into (15.6), we obtain

5 Thermal runaway occurs if P ¼ W ¼ I1V1 and g1ðPÞ ¼ Z1 þ aP (Z1 and a are positive
constants): then, from (15.3) we obtain, V ¼ I½g0 þ Z1=ð1� aI2Þ�, which blows up at
I ¼ 1=

ffiffiffi
a
p

.
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I ¼ ½v0 þ v1ð}ðI � v0V;VÞÞ�V ; ð15:7Þ

by which we may determine implicit functions

V ¼VPðIÞ; ð15:8Þ

or

I ¼ JPðVÞ; ð15:9Þ

the former applies to the constant-current drive, and the latter to the constant-

voltage drive.

15.2.3 Stability

Here we formulate a general stability condition; explicit examples of stability

analysis will be given in Sect. 15.3 for a plasma/fluid model.

We start by analyzing the series system; see (Fig. 15.1a). Let us first consider

the constant-current drive. When a perturbation in the voltage dV occurs, it causes

a chain of events:

dV ) dP ¼ o}ðI;VÞ
oV

dV ) dg1 ¼
og1ðPÞ
oP

dP

) dV 0 ¼ Idg1 ¼ I
og1ðPÞ
oP

o}ðI;VÞ
oV

dV ¼: aVS ðIÞdV;
ð15:10Þ

where the derivatives are evaluated at the given I, around V ¼ ðVÞSðIÞ, and

P ¼ }ðI;VSðIÞÞ. When aVS ðIÞ[ 1, the corresponding operating point is unstable

because the fluctuation is amplified. If this cycle of perturbations takes a period of

time s, the evolution of the perturbation may be written as dVðtÞ ¼ expðctÞdVð0Þ
with c ¼ log aVS =s.

When the same series system is driven by a constant-voltage supply, we con-

sider a perturbation of the current around I ¼ ISðVÞ evaluating all coefficients at

V :

dI ) dP ¼ o}ðI;VÞ
oI

dI ) dv1 ¼
ov1ðPÞ
oP

dP

) dI0 ¼ V1dv1 ¼ V
g1

g0 þ g1

ov1ðPÞ
oP

o}ðI;VÞ
oI

dI ¼: aISdI:
ð15:11Þ

When aISðVÞ[ 1, the corresponding operating point is unstable.

The amplification factor of the parallel system is evaluated by a similar pro-

cedure: for the constant-current drive, dV 0 ¼ aVP ðIÞdV with [evaluating all coeffi-

cients at I and V ¼VPðIÞ]
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aVP ðIÞ ¼ I
v1

v0 þ v1

og1ðPÞ
oP

o}ðI;VÞ
oV

; ð15:12Þ

and, for the constant-voltage drive, dI0 ¼ aIPðVÞdI with [evaluating all coefficients

at V and I ¼ IPðVÞ]

aIPðVÞ ¼ V
ov1ðPÞ
oP

o}ðI;VÞ
oI

: ð15:13Þ

15.2.4 Thermodynamic Potential and Entropy
Production Rate

We now introduce a thermodynamic potential by which we may characterize the

operating point as its extremal (in fact, a maximum, as shown below).

The following analysis applies to both series and parallel systems. For the flux-

driven (or, constant-current) case, we invoke the dual solution (15.5) for series

system or (15.9) for parallel system to construct a potential function6:

WðVÞ ¼
Z V

0

IðVÞdV ; ð15:14Þ

and

UðV ; IÞ ¼ IV �WðVÞ: ð15:15Þ

The operating point of the system is the extremal of this thermodynamic

potential, because, oUðV ; IÞ=oV ¼ 0 gives I �I Vð Þ ¼ 0.

Evaluating UðV; IÞ at the operating point (i.e., maximizing UðV; IÞ with respect

to V), we define

UðIÞ ¼ max
V

UðV; IÞ ¼ max
V

IV �WðVÞ½ �; ð15:16Þ

which reads as the Legendre transformation of WðVÞ. The generator IV of this

transformation is r. The total derivative of r is

d(IVÞ ¼ IdV þ VdI: ð15:17Þ

On operating points, we may evaluate I as a function of V , i.e., I ¼ I Vð Þ. Then
the first term on the right-hand side of (15.17) may be written as IðVÞdV . Sim-

ilarly, evaluating V ¼V Ið Þ [see (15.4)], the second term reads as VðIÞdI. Hence,
r (on an operating point) splits into two terms:

6 For a linear impedance g � R (constant) and IðVÞ ¼ V=R, thus, WðVÞ ¼ V2=ð2RÞ. If
nonlinearity increases g, the correspondingWðVÞ gets smaller. Provided g[ 0, however, WðVÞ
is a monotonically increasing convex function.
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IV ¼ WðVÞ þ UðIÞ: ð15:18Þ

The evaluation of r by (15.18) must be done with care. In the flux-driven

system, I is the independent variable. For a given I, we maximize UðV; IÞ to find

the operating point—graphically, we draw a line of gradient I which is tangent to

the graph of WðVÞ, and find a tangent point, which we denote by V ¼ V� [see

(Fig. 15.2a)]. In terms of the operating point V�, we can evaluate r as

IV� ¼ WðV�Þ þ UðIÞ: ð15:19Þ

The force-driven (or, constant-voltage) system is dictated by the dual potential
UðIÞ ¼

R
VðIÞ dI, the Legendre transformation of WðVÞ. For a given V , we find

the tangent point I ¼ I� of a line of gradient V (Fig. 15.2b). Then r is given by

I�V ¼ WðVÞ þ UðI�Þ: ð15:20Þ

Alternatively, we may use the graph of WðVÞ to evaluate r of the force-driven

system. For a given V , we evaluate the gradient I� ¼ dWðVÞ=dV and put I�V ¼
WðVÞ þ UðI�Þ (Fig. 15.2d). Similar method applies to derive r of the flux-driven

system from UðIÞ (Fig. 15.2c).

(a) (b)

(c) (d)

Fig. 15.2 Graphical method of evaluating r in the flux-driven (a and c) and force-driven (b and

d) systems. ⓐ Linear graph of IV . For the flux-driven system, the gradient is I, and for the force-

driven system, V . ⓑ Tangent line to the graph of WðVÞ (flux-driven system) or UðIÞ (force-
driven system)
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In the linear regime, our potential WðVÞ, defined by the integral (15.14),

reduces to Onsager’s dissipation function (see footnote 5). As pointed out by

Gyarmati [21], r is equivalent to the dissipation function in the linear regime (i.e.,

dðIVÞ ¼ 2dU ¼ 2dW), thus r determines of the operating point. After the gener-

alization of Onsager’s dissipation functions to our potentials (which encompass

nonlinear relations), however, r is no longer equivalent to the potentials U and W,

and it ceases to be the single determinant of the operating point. In writing the

determining equation of the operating point [I ¼ IðVÞ for the flux-driven system]

as a variational principle (15.16), we maximized UðV ; IÞ; in this case rð¼ IVÞ is
not the target function to be minimized or maximized Instead, it is the generating

function of the Legendre transformation between U and W. The flux-driven and

force-driven systems are connected by this Legendre transformation. In (15.19)

and (15.20), we have given the formal estimates of r for both systems.

15.2.5 Bifurcation and Min/Max Duality of Entropy
Production Rate

As remarked in Sect. 15.2.2, the implicit function VSðIÞ [or its inverse ISðVÞ;
similarly the parallel-connection counterparts VPðIÞ or IPðVÞ] may have bifur-

cated branches. Here we assume that VSðIÞ [thus, ISðVÞ] has two branches (as to

be shown in Sect. 15.3, a plasma/fluid model does have two-branch solutions [15]).

Using the thermodynamic potential, we show that the difference between the

entropy productions r ¼ IV of these two branches changes sign when the drive is

switched from a constant-current supply to a constant-voltage supply.

Here we consider the series system. Figure 15.3 depicts bifurcated thermody-

namic potentials; the branches of larger and smaller values, respectively labeled by

① and ②, correspond to linear and nonlinear impedances. Since the nonlinearity

increases the total impedance, branch-② represents the nonlinear state of the

system. The bifurcation of the nonlinear branch occurs at I ¼ Ic ðV ¼ VcÞ.
First, we show that, in the flux-driven system, r of the branch- ① is smaller

than that of the branch- ②, i.e., for a given I[ Ic (the bifurcation point),

IV�1\IV�2 ; ð15:21Þ

where I ¼ W01ðV�1 Þ ¼ W02ðV�2 Þ. It suffices to show that V�1\V�2 . By definition

(15.14), W01ðVcÞ ¼ W02ðVcÞ and W01ðVÞ[W02ðVÞ[ 0 ðV [VcÞ. Therefore,

V�1\V�2 .
In the force-driven system, we obtain the dual relation, i.e., for a given V[Vc,

I�1V [ I�2V; ð15:22Þ

where V ¼ U01ðI�1Þ ¼ U02ðI�2Þ. This follows from U01ðIcÞ ¼ U02ðIcÞ, U01ðIÞ\U02ðIÞ
ðI[ IcÞ, thus I�1 [ I�2 .
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Figure 15.3 gives a graphical explanation of the min/max duality of r in flux-

driven and force-driven systems. As shown in Sect. 15.2.4, the operating point is

characterized by the critical point of IV �WðVÞ (for the flux-driven system) or

Fb� UðFÞ (for the force-driven system); the criticality condition reads as the

Legendre transformation between WðVÞ and UðIÞ; see (Fig. 15.2). Remembering

that the Legendre transformation seeks tangent lines, with a given gradient I, to the

graph of WðVÞ [see (Fig. 15.2a)], it is evident from (Fig. 15.3a) that the branch-②
yields a larger r ¼ IV�2 . We can use the same graph to derive r in the force-driven

system [see (Fig. 15.2d)]; for a given V , we read the gradient dWðVÞ=dV from the

graph, which evaluates I�. Since branch-② (larger-impedance nonlinear branch)

has a smaller gradient, it yields a smaller r ¼ I�2V ; see (Fig. 15.3b).

As noted in Sect. 15.2.1, a flux-driven system tends to increase r for I[ Ic. In

fact, we will prove, in Sect. 15.3, that the larger r branch is stable, and smaller one

is unstable. By the aforementioned duality of the Min/Max relation of r, we may

also expect that a smaller r branch is chosen in the force-driven condition. This

will be also proven by stability analysis.

15.3 Phenomenological Model of Turbulent Heat Transport

15.3.1 Layer Model

In this section, we describe a thermodynamic model of self-organizing plasma/

fluid turbulence [15]. The force (voltage) and flux (current) in the previous electric

circuit model will be translated into inverse-temperature b (or temperature

T ¼ b�1) and heat flux F. The series-connection model is at the core of the present

discussion —we will compare it with a parallel-connection model in Sect. 15.4.

(a) (b)

Fig. 15.3 Thermodynamic potential WðVÞ evaluated for bifurcated branches; ① linear

impedance branch, ② nonlinear impedance branch. Graphical method to estimate of r in

a the flux-driven system and b the force-driven system
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We consider a thin layer which encloses a high-temperature core plasma. The

outer boundary of the layer domain is connected to a low-temperature ðT0Þ heat
bath. At the inner boundary, heat flux F is given, while the temperature ðTÞ is an
unknown variable. We note that, in usual plasma experiments (as well as in most

natural processes, like atmospheric heat transfer driven by solar heat), the input

power is controlled (or, given as a determining parameter), which must be trans-

ferred to some heat sink in a steady state, thus the flux is the controlling parameter.

On the other hand, theoretical analysis or a computational study often uses a force-

driven model giving a boundary condition on the intensive quantities (like the

temperature). Mathematically, a flux-driven condition and a force-driven condition

correspond to a Neumann boundary condition and a Dirichlet boundary condition,

respectively (one may consider a mixed-type boundary condition if appropriate).

The series-system Ohm’s law (15.2) is now rewritten as

T ¼ T0 þ ½g0 þ g1ðPÞ�F: ð15:23Þ

Here we note the analogy between T � T0 and V (and also between F and I). To

define the model, we have to specify the functions g1ðPÞ and }ðF; TÞ. For g1ðPÞ,
we assume the simplest relation:

g1ðPÞ ¼ aP; ð15:24Þ

where að[ 0Þ is a constant. In the analysis of the bifurcation point and stability,

the first derivative og1=oP is essential [15], hence, this minimum model suffices (a

more complicated graph may cause, for example, hysteresis [4]). A positive a

yields an increased impedance of heat conduction when a positive P creates an

ordered flow (zonal flow) and suppresses turbulent heat transport. In a thermo-

dynamic system, the free power P ¼ }ðF; TÞ must be smaller than the Carnot-

cycle’s power ½Pc ¼ Fð1� T0=TÞ� (the ideal conversion of the internal energy to a

mechanical energy). The difference between Pc and the actually available free

power P is the power dissipation in the background linear impedance, which we

write Fð1� T0=TDÞ introducing TD ¼ T0 þ g0F, i.e.,

P ¼ }ðF; TÞ ¼ F 1� T0

T

� �
� F 1� T0

TD

� �
¼ F

T0

TD
� T0

T

� �
: ð15:25Þ

The non-organized state is such that T ¼ TD and P ¼ 0; this state may be called

a linear branch because (15.23) reduces to a linear relation between T and F. In

the next subsection, we will show how an organized state (or, nonlinear branch)
emerges with T[ TD.

15.3.2 Bifurcation

First, we consider the flux-driven system in which F is a given parameter and T is

an unknown variable. We solve (15.23)–(15.24)–(15.25) for T to obtain a set of

bifurcated solutions:
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T ¼ T1 ¼ TD ðF\FcÞ;
T1 or T2 ¼ aF2T0=TD ðF�FcÞ;

�
ð15:26Þ

where

Fc ¼
T0ffiffiffiffiffiffiffi

T0a
p

� g0
ð15:27Þ

is the critical flux at which the nonlinear branch bifurcates. Stability analysis (Sect.

15.3.3) will show that the organized state (or, nonlinear branch) T ¼ T2 ¼
aF2T0=TD ð� TDÞ is stable, while the non-organized state (or, linear branch) T ¼
T1 ¼ TD destabilizes beyond the bifurcation point [15].

For a force-driven system, where the inner-boundary temperature T is a given

parameter, we solve (15.23)–(15.24)–(15.25) for F to obtain

F ¼
F1 ¼ ðT � T0Þ=g0 ðT\TcÞ;

F1 orF2 ¼
g0Tþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg0TÞ2þ4aT2

0
T

p
2aT0

ðT � TcÞ;

(
ð15:28Þ

where

Tc ¼
T0

ffiffiffiffiffiffiffi
aT0
p

ð
ffiffiffiffiffiffiffi
aT0
p

� g0Þ
ð15:29Þ

is the critical temperature at which the bifurcation occurs. In Sect. 15.3.3, we will

show that the nonlinear branch F ¼ F2 is stable, while the linear branch F ¼ F1

destabilizes beyond the critical temperature.

15.3.3 Thermodynamic Stability

Invoking the method of Sect. 15.2.3, we study the stability of the foregoing

bifurcated solutions.

In a flux-driven system (F is given), we consider a chain of perturbations

dT ) dg1 ) dT 0 ¼ Fdg1 ¼ aTdT . The amplification factor on the temperature

perturbation is

aT ¼ aF2 T0

T2
: ð15:30Þ

When aF [ 1, the system is unstable because the fluctuation amplifies. For

F�Fc, there exists only the linear branch. We denote by aT1 the amplification

factor of this branch. By (15.27), the condition F�Fc reads as TD [F
ffiffiffiffiffiffiffi
T0a
p

. We

thus find

15 Bifurcation, Stability, and Entropy Production 303



aT1 ¼
aT0F

2

T2
D

\
aT0F

2

ðF
ffiffiffiffiffiffiffi
T0a
p

Þ2
¼ 1 ð15:31Þ

before the bifurcation. Beyond the bifurcation point ðF[FcÞ, the linear branch is

unstable, because

aT1 ¼
aT0F

2

T2
1

¼ TD

T2

aT0F
2

TD
¼ T2

T1
[ 1; ð15:32Þ

while the nonlinear branch is stable, because

aT2 ¼
aT0F

2

T2
2

¼ TD

T2
2

aT0F
2

TD
¼ T1

T2
\1: ð15:33Þ

Hence, the nonlinear branch (or, organized state), if it exists, is always stable [15].

For the force-driven case (T is given), we consider a chain of perturbations

dF ) dv1 ) dF0 ¼ ðT � T0Þdv1 ¼ aFdF. The amplification factor of the flux

perturbation is

aF ¼ � ðT � T0Þ

g0 þ aT0F
1
TD
� 1

T

� �2
� 	2 aT0

1

TD
� 1

T

� �
� aT0F

g0
T2
D

� 	
; ð15:34Þ

by which we find that the nonlinear branch, if it exists, is always stable (for the

detail, see [4]).

In Fig. 15.4, we plot the amplification factor of each branch for both flux and

force drives.

(a)

(b)

Fig. 15.4 The amplification

factor aT or aF of each branch

of solutions (solid line linear

branch, dashed line nonlinear

branch) [4]. a Flux-driven

system: aT is evaluated as a

function of the flux F.

b Temperature-driven

system: aF is evaluated as a

function of temperature T . In

these graphs, parameters are

normalized so that g0 ¼ 1 and

T0 ¼ 1. We assume a ¼ 2
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15.4 Concluding Remarks

We have developed a thermodynamic model of bifurcation and stability of self-

organizing driven systems; introducing a nonlinear impedance of heat transfer, the

energetics of self-organization has been analyzed. Creation of a macroscopic

ordered structure affects the heat transport in a layer hemmed by inner and outer

boundaries; on the other hand, the creation of the structure (represented by a

change of the impedance) requires power that is supplied by the heat flux coming

from the inner boundary. The boundary condition on the inner boundary is an

important factor in determining the operating point of the system.

As formulated in Sect. 15.2.1, we have a two-by-two matrix of series/parallel

and flux/force-drive systems. In Sect. 15.3, we have analyzed the series-connection

model of nonlinear impedance pertinent to the self-organization of zonal flow and

suppression of turbulence—the nonlinearity of the impedance works to increase

the impedance of the heat transport. We have shown that the nonlinear branch (or,

the organized state), whenever it exists, is always stable, while the linear branch

(or, the baseline turbulent state) destabilizes beyond the bifurcation point; this

selection rule holds both in flux-driven and force-driven cases. As we have shown

in Sect. 15.2.5, r of a higher-impedance state (nonlinear branch) is larger when it

is flux-driven, is smaller when force-driven.

While we have omitted detailed calculations about the parallel-connection

model pertinent to the Bénard convection or streamer, we reach the same con-

clusion about the bifurcation and stability in the parallel system; the nonlinear

branch (in the parallel model, the nonlinearity works to increase the conductance,

creating a new channel of heat transport), whenever it bifurcates, is always

selected as the stable branch [5]. However, in terms of entropy production, the

selection of this stable branch is characterized by min-r or max-r depending on

how the system is driven; see Sect. 15.2.5.

Table 15.1 summarizes the selection rule of operating points in terms of r on

the two-by-two matrix of series/parallel connections and flux/force drivers. In the

series system, the nonlinear effect is assumed to increase the impedance as a

function of the free power scale by Carnot’s efficiency; in the parallel system, the

nonlinear effect decreases the impedance.

We end this chapter with a short comment on turbulence theory. In two

dimensional ideal fluid, the energy and entrophy conserve simultaneously. When a

Table 15.1 Selection rules of operating points in terms of r. The nonlinear branch, whenever it
exists, is always stable, while the linear branch destabilizes beyond the bifurcation point.

However, the min/max relation of the selected (nonlinear) branch exhibits two-by-two duality.

These selection rules apply whenever dg1ðPÞ=dPjP¼0 [ 0 for series connection and

dv1ðPÞ=dPjP¼0 [ 0 for parallel connection

Flux-driven Force-driven

Series system Maximum Minimum

Parallel system Minimum Maximum
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finite viscosity is added, the entrophy decays faster than the energy (selective

decay), because the entrophy includes higher-order derivatives. The relaxed state

is, then, the minimizer of the entrophy under the constraint on the energy (as well

as the total angular momentum) [40]. The minimum enstrophy principles, natu-

rally, implies minimum entropy production, because the viscous dissipation is

proportional to the enstrophy. However, one may consider the dual variational
principle, i.e., maximization of energy under a given entrophy [22], which is

mathematically equivalent but physically more plausible than the former setting in

the context of turbulence theory; the key assumption in Kolmogorov’s cascade

model is that the energy dissipation rate (= energy transfer rate = energy injection

rate), is a control parameter of the turbulence, and the so-called inverse cascade,

resulting in the energy transfer to a large scale, is the maximization of the energy

in the coherent structure. This min/max duality of dissipation is, in principle,

similar to the duality of r delineated here. However, our problem is somewhat

more complex than the argument about turbulent cascade, because the energy

injection is not directly mechanical, but it is given as a heat flow; r is not directly

the constraint or the target of minimization/maximization, but it is the generating

function of the thermodynamic potentials to be maximized.
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Chapter 16
MaxEnt and MaxEP in Modeling Fractal
Topography and Atmospheric Turbulence

Jingfeng Wang, Veronica Nieves and Rafael L. Bras

Abstract Recent investigations on scale-invariant processes such as topography
and modeling evapotranspiration demonstrate the usefulness and potential of the
principles of maximum entropy (MaxEnt) and maximum entropy production
(MaxEP) in the study of Earth systems. MaxEnt allows theoretical predictions of
probability distributions of geophysical multifractal processes based on a small
number of geometric parameters. MaxEP leads to the prediction of evapotrans-
piration and heat fluxes using fewer input variables than existing process based
models. Encouraging progress in the application of MaxEnt and MaxEP, viewed as
unified principles of inference, paves the way for more approaches of under-
standing, characterizing and predicting the behavior of the complex Earth systems.

List of Symbols

Symbol Meaning (SI Units)

Roman Symbols
Ar=r0 Multiscaling parameter (–)
B Dimentionless function (–)
cp Specific heat of air at constant pressure J kg�1 K�1

� �

D Dissipation function
E Latent heat flux W m�2ð Þ
G Ground heat flux W m�2ð Þ
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H Sensible heat flux W m�2ð Þ
I0; I1; I2 Electric currents (amp)
Is; Ia; Ie Thermal inertia parameters J m�2 K�1 s�1=2

� �

K Moment scaling function (–)
L2 Functions with continuous derivatives (–)
Lv Latent heat of vaporization of liquid water 2:5 � 106

� �
J kg�1
� �

mA Ignorance prior of A (–)
n; N Integer (–)
pA Probability of A (–)
qs Specific humidity kg kg�1

� �

r; r0 Scale parameters (–)
R

2 Two-dimensional real domain (m)
R1; R2 Electrical impedance (Ohm)
Rn Net radiation W m�2ð Þ
Rv Gas constant for water vapor (461) J kg�1 K�1

� �

SSJ Shannon-Jaynes information entropy (–)
Ts Surface temperature (K)
U0; U1; U2 Voltage (Volt)
x Location vector (m)
z Elevation (m)
Dz Incremental elevation (m)
ZA Partition function (–)

Greek Symbols
al; j; k Wavelet coefficients (–)
b Ratio of eddy diffusivity of water vapor to that of heat (–)
gl; j; k Wavelet coefficients (–)
kn; kI ; kU Lagrangian multipliers for the nth (–), current (Volt) and voltage

(amp) constraint, respectively
r Dimensionless parameter (–)

16.1 An Overview

The complexity of Earth systems results from interactions between its interwoven
geo-eco-hydro-atmospheric components. Prediction of the evolution of an earth
system depends on both our understanding of the natural laws governing the
physical processes and our knowledge of the past and current states of the system
over a wide range of scales. The challenges of understanding, characterizing and
predicting the behavior of earth systems have also been related to the fact that we
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either lack full understanding of the mechanisms behind the processes or lack data.
Consequently, earth system science is, in essence, about making inferences, i.e.
reasoning with incomplete information guided by certain principles of inference.

Since its proposition in the late 1950s as an application of information theory in
statistical mechanics [1], the maximum entropy (MaxEnt) principle has been
accepted as a general and powerful inference algorithm in the context of Bayesian
probability theory for finding solutions of ill-posed problems when complete
information is not available [2, 3]. Application of MaxEnt in the study of earth
systems started in early 1960s. One of the earliest works is that of Leopold and
Langbein [4] on river networks. There have been sporadic publications pursuing
this idea since then. Lienhard [5] derived the dimensionless unit hydrograph
through maximizing the Boltzmann entropy based on the argument that such
derived unit hydrograph is the most probable one. Sonuga [6] directly applied the
MaxEnt theory in hydrologic frequency analysis. Fiorentino et al. [7] and Claps
and Fiorentino [8] attempted to explain the fractal structure of river basin networks
based on the MaxEnt formalism. Rodriguez-Iturbe and Rinaldo [9] showed that
some structures of river networks might be explained by the MaxEnt. Niedda [10]
studied the problem of linking measurements at small scales to model output at
large scales from the perspective of information entropy although MaxEnt was not
used explicitly. Recent efforts by the authors expanded these earlier works to
common phenomena in earth system, namely self-similar and multifractal pro-
cesses, for deriving their probability distributions at different spatial scales [11, 12].
Compared to other existing methods of statistical analysis, the MaxEnt method has
evident advantages: (1) it highlights essential information while leaving out
unimportant details of the processes under study; (2) it provides statistics of self-
similar and multifractal processes covering scales beyond those of observations; (3)
it allows derivation of probability distributions without computing histograms that
requires a large volume of data.

The principle of maximum entropy production (MaxEP) evolved out of the
classical treatise of non-equilibrium thermodynamics [13] dealing with thermo-
dynamic entropy production, defined as the ratio of exchange rate of heat to
temperature. An earlier successful application of MaxEP in numerical modeling of
climate [14] has motivated a number of later studies to pursue the idea further.
Recent years have witnessed rapid progress of the application of MaxEP in the
study of earth systems and beyond [15, 16]. Among these efforts was the ground
breaking work of Dewar [17] that laid a theoretical foundation under the intuitive
concept of thermodynamic entropy production by deriving a formalism of MaxEP
from that of MaxEnt. Dewar further emphasized that MaxEP, like MaxEnt, is a
principle of inference in the context of Bayesian probability [18]. The MaxEP
formalism [17] paves the way to modeling a wider class of transport processes that
are not necessarily related to the production of thermodynamic entropy. A recent
study on modeling energy balance over the earth’s surface [19] demonstrated how
MaxEP leads to prediction of evapotranspiration and heat fluxes using a small
number of surface hydro-meteorological variables that would be considered
insufficient according to the classical bulk transfer equation based models.
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16.2 Application of MaxEnt in Modeling Scale-Invariant
Fractal Topography

Natural processes in earth systems often manifest ‘‘scaling’’ behavior, i.e. a part
resembles the whole as quantified by certain statistical properties known as scaling
laws. Familiar examples include rough coast lines [20], meandering river channels
[9] and topographic landscapes [21] that appear to have infinite similar structures
without a characteristic length scale. Processes with such geometric properties are
often classified as self-similar and multifractal. Exact definition of self-similarity
and multifractality may vary. Herein, self-similarity refers to scaling laws asso-
ciated with constant parameters, while multifractality to scaling laws associated
with random-variable parameters (or multiscaling parameter) described by prob-
ability distributions. A graphical illustration of the multifractal processes is given
in Fig. 16.1.

A common tool for studying multifractal behavior is the cascade model that
relates the process at different scales according to some geometric characteristics,
i.e. scale-invariant fractal statistics [22], which can be solved recursively through
the multiscaling parameter (the cascade variable). The cascade model is not
considered a complete characterization of a stochastic process without specifying
the corresponding probability distribution. Identification of probability distribu-
tions through empirical histograms requires a large amount of data that are not
always available. This is the typical situation of incomplete information we always
face in the study of earth systems. The theory of MaxEnt, as an inference algo-
rithm, can help in deriving the probability distribution of a multiscaling parameter
of multifractal process.

Consider the incremental elevation Dz of a field of topographic elevation z
satisfying the multifractal condition [23],

Fig. 16.1 The multifractal
pattern of topography of
Anza-Borrego Desert State
Park in California from the
USGS National Elevation
Dataset (NED) map of
elevation in meters with 1 arc
second resolution. The
domain is covered with
128� 128 pixels with
longitude k and latitude h in
degrees
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Drz _¼Ar=r0Dr0z; ð16:1Þ

where _¼ indicates ‘‘equal in probability’’, Drz � jzðrx2Þ � zðrx1Þj is the rescaled
incremental elevation at the location vector x, Ar=r0 is the multiscaling parameter
independent of z, and r; r0 are a pair of given scales with r0[ r for a downscaling
cascade process. In the study of multifractal processes, Ar=r0 is commonly char-
acterized in terms of several empirical moments, whose estimation requires a large
amount of data. Yet the probability distributions of Ar=r0 are often needed to fully
describe the multifractal processes such as erosion shaped topography [22],
mesoscale rainfall [24], oceanic chlorophyll [25], etc.

MaxEnt allows an analytical expression of the probability distribution of Ar=r0

to be derived based on a given number Nð Þ of moments of Ar=r0 by selecting the
most probable configuration among all possibilities. Define the multiscaling
moments of Ar=r0 ,

Z
pAðAr=r0 ÞAn

r=r0dAr=r0 ¼
r

r0

� �KðnÞ
; 1� n�N; ð16:2Þ

where KðnÞ is the moment scaling function independent of r=r0, and N a fixed
integer [26]. Following the standard MaxEnt formalism [2] to maximize the
Shannon-Jaynes information entropy SSJ of pAðAr=r0 Þ for the continuous variable
Ar=r0 ,

SSJ �
Z

pAðAr=r0 Þ ln
pAðAr=r0 Þ
mAðAr=r0 Þ

� �

dAr=r0 ð16:3Þ

where mA is a prescribed ignorance prior distribution [27] under the constraint as
in Eq. (16.2) leads to,

pAðAr=r0 Þ ¼
mAðAr=r0 Þ

ZA
exp �

XN

n¼1

knAn
r=r0

( )

; ð16:4Þ

with the partition function

ZAðk1; . . .; kNÞ ¼
Z

mAðAr=r0 Þ exp �
XN

n¼1

knAn
r=r0

( )

dAr=r0 : ð16:5Þ

The Lagrangian multipliers kn are uniquely related to the given multiscaling
moments on the RHS of Eq. (16.2) through the Legendre transformation,

o ln ZA

okn
¼ r

r0

� �KðnÞ
; 1� n�N: ð16:6Þ

The probability distribution of Dzr0 for given multiscaling moments and geometric
mean can be obtained in the same way [12] according to Eqs. (16.1) and (16.4).
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Figure 16.2 compares the MaxEnt predicted pA as in Eq. (16.4) with that
estimated from the histogram of Dz at various spatial scales using the tree-structure
of wavelet-based statistical analysis [28–33]. A multi-resolution decomposition of
zðxÞ 2 L2ðR2Þ can be expressed in terms of a dyadic wavelet transform at orien-
tations l ¼ 1; 2; 3 (representing the horizontal, vertical and diagonal, respec-
tively), scale 2 j, and translational vector k ¼ ðk1; k2Þ for integers j; k1 and k2,

zðxÞ ¼
X

j

X

l¼1;2;3

X

k

aj;l;kwj;l;kðxÞ ð16:7Þ

Fig. 16.2 Observed Peð Þ
versus MaxEnt predicted Ptð Þ
probability distribution pA for
N ¼ 2 as in Eq. (16.4) in the
wavelet domain assuming a
uniform ignorance prior mA

[12]. According to the
wavelet decomposition,
jDgj � gj; j; k corresponds to
Ar=r0 at the scale of
observation j ¼ 1 to j ¼ 2
(downscale cascade) using
order 3 Battle-Lemarié basis.
a l ¼ 1, b l ¼ 2 and c l ¼ 3
corresponding to horizontal,
vertical, and diagonal spatial
orientation, respectively
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where wljkðxÞ ¼ 2�jwlð2�jx� kÞ are the mother wavelets and aljk ¼ hwljk; zi the
wavelet coefficients [34, 35] where h�; �i stands for inner product. The wavelet
representations of Drz and Dr0z are given by,

Daj;l;k ¼ jaj;l;kðrx1Þ � aj;l;kðrx2Þj; ð16:8Þ

Daj�1;l; k
2½ � ¼ jaj�1;l; k

2½ �ðr
0x1Þ � aj�1;l; k

2½ �ðr
0x2Þj: ð16:9Þ

where r [ 0. Hence, Eq. (16.1) in the wavelet domain can be expressed as

Daj;l;k¼: gj;l;kDaj�1; l; k
2½ � ð16:10Þ

where gj;l; k is the coefficient relating the wavelet transformation of Drz and Dr0z in
Eq. (16.1). More details can be found in [12].

The close agreement between the observed and MaxEnt predicted pA for dif-
ferent types of wavelet basis (e.g. Haar, Daubechies, Symmlet, Coiflet, Battle-
Lemarié) suggests that pA is adequately quantified by the first two moments of Ar=r0

as long as sufficient number of wavelet coefficients are included. Knowing that the
statistics of the incremental elevation is well captured by its first and second
moment provides more clues about the underlying physical mechanisms [23].
Discrepancies, if any, between the observed and MaxEnt predicted distribution
would indicate that pA must include higher moment(s) or other parameters. Thus,
MaxEnt as an inference algorithm sheds more light on the physical mechanisms
underlying the multifractal processes in particular and other processes of the Earth
systems in general.

16.3 Application of MaxEP in Modeling Atmospheric
Turbulent Transport

Exchange of energy, water, and carbon between the earth and the atmosphere is
driven by radiative energy from the Sun. The partition of solar radiation into
various heat fluxes over the Earth’s surface is strongly influenced by the surface
conditions, e.g. land versus ocean, bare soil versus vegetation, etc. Among the
processes of exchange of energy and mass occurring in the interwoven energy-
water-carbon cycles, evapotranspiration (i.e. the phase change of water between
solid/liquid/vapor state) is presumably the most important one as it couples the
energy, water and carbon cycles. Monitoring and modeling these surface fluxes at
local, regional and global scales using bulk transfer equations based approaches
have been challenging [36, 37]. The difficulty results from lack of either complete
understanding of the underlying mechanisms or observations at desired space–time
coverage and resolution necessary for accurate estimation and prediction. The
theory of maximum entropy production (MaxEP), as an application of MaxEnt to
non-equilibrium systems, offers alternatives to the classical transport models,
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particularly in the representation of evapotranspiration. The added element in the
MaxEP formalism (see [17] for mathematical details) to the MaxEnt formalism is
the concept of a dissipation (or entropy production) function satisfying certain
equations known as the orthogonality conditions. In the information based entropy
production theories [17], the ‘‘orthogonality conditions’’ are the mathematical
relationships between constraints and the corresponding Lagrangian multipliers.
To our knowledge, a rigorous derivation of the orthogonal conditions under the
most general case [38] is underway at the time of writing this chapter. Nonetheless,
there is a plethora of empirical evidence justifying its usefulness. The thermal
dissipation function of an electric circuit [39] is an example. Below we re-analyze
the electric circuits in the context of the MaxEP formalism [17] from a different
angle than that of [40] to provide a unified interpretation of MaxEP as an inference
algorithm and a physical principle.

Consider the problem of finding the electric currents I1 and I2 of an electric
circuit of two parallel resistors R1 and R2 given a total current I0. The solution is
given by the well-known Ohm’s law and Kirchhoff’s laws. This state of the electric
circuit corresponds to minimum heat dissipation for the resistors at different
temperatures or equivalently minimum thermodynamic entropy production for the
resistors at the same temperature [41–44]. Therefore, depending on the tempera-
ture homogeneity of the circuit elements given that Ohms law and Kirchhoff’s
laws are temperature independent, two sets of physical principles are needed to
describe the states of electric circuits. The same solution obtained using the
concept of maximum information entropy [2, 17], avoids such dichotomy.

The thermal dissipation function D resulting from the heat generated by electric
current passing through the resistors is expressed as,

D ¼ I2
1

R�1
1

þ I2
2

R�1
2

: ð16:11Þ

Minimizing D under the constraint of conservation of electric charge, according to
Kirchhoff’s current law, by introducing a Lagrangian multiplier kI ,

I0 ¼ I1 þ I2; ð16:12Þ

leads to,

I1R1 ¼ I2R2 ¼ kI ; ð16:13Þ

where kI is recognized as the voltage. MaxEP predicts that two resistors connected
in parallel have the same voltage, i.e. Ohm’s law. The companion problem of
finding the voltages U1 and U2 of an electric circuit of two serial resistors R1 and
R2 given a total voltage U0 can also be solved in the same way using the MaxEP
method except that D in Eq. (16.11) is expressed as a function of voltages and the
constraint due to conservation of electric charges in Eq. (16.13) is replaced by the
conservation of (potential) energy according to Kirchhoff’s voltage law,
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D ¼ U2
1

R1
þ U2

2

R2
; ð16:14Þ

U0 ¼ U1 þ U2; ð16:15Þ

Minimizing D in Eq. (16.14) under the constraint Eq. (16.15) by introducing a
(different) Lagrangian multiplier kU leads to,

U1R�1
1 ¼ U2R�1

2 ¼ kU ; ð16:16Þ

where kU is recognized as the current. MaxEP again predicts that two resistors
connected in series have the same current, i.e. Ohm’s law, independent of
temperature. This example reveals that whether energy dissipation or entropy
production rate of an electric circuit is maximum or minimum depends on whether
the constraint in the formulation of the problem is linear or non-linear. A non-
linear constraint as in the case of Županovíc et al. [40] corresponds to a maximum
entropy production, while a linear constraint as in the above analysis corresponds
to a minimum entropy production. MaxEP as an inference algorithm selects the
state of an electric circuit (or a transport model) described by Ohm’s law among all
possible states allowed by the conservation of charge and energy represented by
Kirchhoff’s laws. Therefore, maximum and minimum entropy production are seen
as two sides of the same coin from the perspective of information theory.

The thermodynamic dissipation functions defined in Eqs. (16.11)–(16.14) are
formally identical to the dissipation functions associated with the information
entropy introduced in the general formalism of MaxEP (see Eq. (16.17) of [17]).
When applied to the physical system of electric circuit, MaxEP as an inference
algorithm becomes a physical principle of minimum energy dissipation or power
loss. The above analysis shows that the Legendre transform in the MaxEnt for-
malism relating the given constraints to the associated Lagrangian multipliers
reduces to Ohm’s law. Conversely, Ohm’s law implies that D must be minimized
under the conservation laws. Again, D being minimum instead of maximum results
from the conservation laws expressed as linear functions of currents and voltages.
Note that voltage kI turns out to be the equal Lagrangian multipliers associated
with I1 and I2 (equivalent to F1 and F2, respectively, in Eq. (16.18) of [17]) due
also to the conservation law as in Eq. (16.12). MaxEP not only predicts the
macroscopic (i.e. observable and/or controllable) behavior of electric circuits
described by Ohm’s law under conservations of energy and charge represented by
Kirchhoffs laws, but also reveals the underlying mechanisms of microscopic (i.e.
unobservable and/or uncontrollable) variables: the observed electric current as a
macroscopic transport phenomenon results from the most probable or macro-
scopically reproducible microscopic configurations of a non-equilibrium system
(free electrons) under the (macroscopic or observable) constraint of conservation
of electric charges. This is another example of a macroscopic flux-gradient
equation interpreted as an ‘‘inference’’ instead of a ‘‘physical principle’’ in the sense
that it cannot be derived from more fundamental physical principles governing the
microscopic dynamics. An excellent demonstration of this point was the derivation
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of diffusion equation as an inference [45]. Consequently, all constitutive relation-
ships in continuum mechanics (e.g. shear stress proportional to velocity gradient for
Newtonian fluids) can be viewed as inference in the context of MaxEP.

While this example highlights the physical and mathematical significance of
MaxEP, it is important to emphasize that the dissipation function (or entropy
production function) defined in the MaxEP formalism of [17], contrary to that
implied by the misleading name, is not limited to the cases of thermal energy
dissipation (or thermodynamic entropy production when D defined in Eq. (16.11)
is divided by a constant temperature of the resistors). When applied to the process
of heat transfer for example, the dissipation function associated with heat fluxes
[46] following the MaxEP formalism, is not the thermal energy dissipation as for
the case of electric circuit or thermodynamic entropy production discussed in other
studies [15, 16]. The generality of MaxEP for solving less intuitive inference
problems (in terms of the physical meaning of the dissipation function) than the
previous example can be demonstrated with a MaxEP model of evapotranspiration.
Nonetheless, the example of electric circuits as an analogy gives a clue of how to
formulate dissipation functions for non-equilibrium systems.

Let’s now consider the partition of net radiative energy at the Earth’s surface
(from solar and atmospheric radiation) into fluxes of latent heat or evapotranspi-
ration for phase change of water, sensible heat warming or cooling the air and
ground heat into the Earth. The problem of finding evapotranspiration knowing
only the surface thermal and water state is ill-posed because more information is
needed to model the fluxes based on the classical flux-gradient relationships [47].
MaxEP as an inference algorithm offers an alternative approach to finding a
solution by selecting the most probable partition of net radiation into evapo-
transpiration and heat fluxes among all possibilities allowed by the conservation of
energy. Guided by the example of electric circuits, a dissipation function was
formulated using an analogy between heat fluxes and electric currents with elec-
trical impedances replaced by thermal inertia [19],

D ¼ G2

Is
þ H2

Ia
þ E2

Ie
; ð16:17Þ

where E, H and G are the unknown latent, sensible and ground heat flux,
respectively. The thermal inertia of heat conduction Is is a physical property of the
soil matrix, and the thermal inertia of turbulent transport Ia and Ie can be for-
mulated as functions of H using the Monin–Obukhov similarity theory [19, 46]. It
turns out that the dissipation function D as in Eq. (16.17) is not thermal energy
dissipation or thermodynamic entropy production function as in the case of electric
circuit discussed above. Although the (thermal) dissipation functions defined in
Eqs. (16.11) and (16.14) is not directly related to the dissipation function defined
in Eq. (16.17), they are the specific formula of the generic dissipation function,
defined using the concept of information entropy in the MaxEP formalism of [17],
applied to different physical phenomena. D expressed in terms of E, H, and G is
more non-linear than quadratic due to the dependence of Ia and Ie on H,
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representing a thermodynamic system far-from equilibrium. Minimizing D under
the constraint of energy conservation, G þ H þ E ¼ Rn where Rn is the net
radiation at the surface, leads to non-trivial algebraic equations from which E must
be solved simultaneously with G and H, referred to as the MaxEP (or MEP) model
of evapotranspiration,

1þ BðrÞ þ BðrÞ
r

Is

Ia

� �

H ¼ Rn; ð16:18Þ

E ¼ BðrÞH; ð16:19Þ

G ¼ Rn � H � E; ð16:20Þ

with

BðrÞ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 11
36

r

r

� 1

 !

; r ¼
ffiffiffi
b

p L2
v

cpRv

qs

T2
s

; ð16:21Þ

leading to the solution of H from Eq. (16.18) (a nonlinear algebraic equation for H
due to the dependence of Ia on H) and that of E and G from Eqs. (16.19)–(16.20)
where the variables are defined in the List of Symbols. Note that the
MaxEP (MEP) solution of E, H and G is expressed in terms of given Rn, Ts and qs.
A field test of Eqs. (16.18)–(16.20) is shown in Fig. 16.3. The power of the MaxEP
is not only about the MaxEP model predictions being in close agreement with
observations, as illustrated in Fig. 16.3. Rather, it is the fact that the MaxEP model
predictions are based on far less information than the classical models requiring
only three surface hydro-meteorological variables, i.e. net radiation, temperature
and humidity.

16.4 Conclusion

We have demonstrated the usefulness of MaxEnt and MaxEP as inference algo-
rithms in modeling multifractality and evapotranspiration. The maximum entropy
probability distributions of multifractal processes based on a limited number of
physical constraints is a straightforward application of MaxEnt. The seemingly
trivial example of simple electric circuits may serve as a prototype of MaxEP
modeling framework of transport processes in Earth systems as illustrated by the
MaxEP model of evapotranspiration. Our results add to a growing number of
applications of MaxEP in modeling Earth systems; some of the new developments
are reported in this volume. On-going research by the authors: (1) incorporates the
distribution of scale-invariant processes in the design of an optimal hydro-mete-
orological network; (2) generalizes the MaxEP model of evapotranspiration to all
types of surfaces including the ocean, snow and ice. Preliminary tests look
promising. As unified principles of inference, MaxEnt and MaxEP are applicable
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to any situation where we lack complete information, especially in remote sensing
of the environment and numerical simulations of climate change. The possibilities
are unlimited and more exciting findings can be expected once the concept of
MaxEnt and MaxEP as principles of inference is understood and accepted.
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Chapter 17
Entropic Bounds for Multi-Scale
and Multi-Physics Coupling in Earth
Sciences

Klaus Regenauer-Lieb, Ali Karrech, Hui Tong Chua, Thomas Poulet,
Manolis Veveakis, Florian Wellmann, Jie Liu, Christoph Schrank,
Oliver Gaede, Mike G. Trefry, Alison Ord, Bruce Hobbs,
Guy Metcalfe and Daniel Lester

Abstract The ability to understand and predict how thermal, hydrological,
mechanical and chemical (THMC) processes interact is fundamental to many
research initiatives and industrial applications. We present (1) a new Thermal–
Hydrological–Mechanical–Chemical (THMC) coupling formulation, based on
non-equilibrium thermodynamics; (2) show how THMC feedback is incorporated
in the thermodynamic approach; (3) suggest a unifying thermodynamic framework
for multi-scaling; and (4) formulate a new rationale for assessing upper and lower
bounds of dissipation for THMC processes. The technique is based on deducing
time and length scales suitable for separating processes using a macroscopic finite
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time thermodynamic approach. We show that if the time and length scales are
suitably chosen, the calculation of entropic bounds can be used to describe three
different types of material and process uncertainties: geometric uncertainties,
stemming from the microstructure; process uncertainty, stemming from the correct
derivation of the constitutive behavior; and uncertainties in time evolution, stem-
ming from the path dependence of the time integration of the irreversible entropy
production. Although the approach is specifically formulated here for THMC
coupling we suggest that it has a much broader applicability. In a general sense it
consists of finding the entropic bounds of the dissipation defined by the product
of thermodynamic force times thermodynamic flux which in material sciences
corresponds to generalized stress and generalized strain rates, respectively.

17.1 Introduction

The Earth is a complex system in which non-linear feedbacks lead to critical point
phenomena. Classical modelling and simulation approaches are based on forward
prediction of basic scenarios without any, or with only limited, capability to
comprehensively assess the multitude of dissipative patterns emerging from
nonlinear, multi-scale non-equilibrium thermodynamic feedbacks. Moreover, in
classical mechanical and fluid dynamic modelling of Earth processes the variable
time is often neglected. Processes are deemed to occur at a very slow, geological
pace, therefore in most cases kinetic energy does not play a role. Hence, it is
thought that classical dynamics does not apply and the mechanical framework can
be reduced to an isothermal, quasi-static case where time is replaced, for instance,
by the position of a reference point. For fluid flow modelling, steady state solutions
are often sought without considering chaotic time evolution or system transients.
Chemical modelling likewise is classically reduced to equilibrium thermody-
namics; that is, time is assumed to be infinite. Through these assumptions we are
throwing overboard all insights into the natural processes underpinning localiza-
tion phenomena, which require modelling of the slow dynamics underpinning the
creation of dissipative patterns that we can see in nature. It follows that by
explicitly solving for time-dependent dissipative processes, the newly emerging
methods for thermo-hydro-chemo-mechanical-chemical THMC modelling have
the potential to deliver a new class of predictive models that can accurately
describe the slow dynamic processes that we see in nature. The next step would be
to recognize the value of slow dynamic time-dependent data from dissipative
processes at multiple scales in order to nudge THMC solutions forward into the
actual dynamic state occupied by the modeled natural system. Such cross-scale
inversion is beyond the current aim of the formulation presented here. An
extension of the present theory for data compaction and data assimilation is found
elsewhere [1]. In this chapter we aim to deliver the basic non-equilibrium ther-
modynamic framework for multi-scale THMC data assimilation. We also explain
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explicitly how recently postulated extremum principles for dissipative processes
[2] can be applied to coupled THMC modelling.

17.2 Non-equilibrium Thermodynamic Approach
for THMC Coupling

17.2.1 The Role of Irreversible Entropy Production

The theory of thermodynamics covers the energetics of THMC processes. In the case
of classical thermodynamic equilibrium it is assumed that the energy fluxes have
relaxed to some form of equilibrium, that is, the system is assumed to have been given
sufficient time to home in on an energy attractor such that time-dependent terms in the
energy balance equations can be neglected. Here, we summarize the key ingredient
of such time-dependent terms that appear as additional feedback parameters in the
energy equation of non-equilibrium thermodynamic approaches. We assume
familiarity with basic thermodynamic concepts and refer to our earlier work [2] and
references cited therein for more in-depth thermodynamic formulations.

We first define the irreversible entropy production by using the concept of
generalized stress and generalized strain rate on a given volume element to cal-
culate their product. This product is the internal power of a given volume element,

~Sir ¼ ~Wdiss ¼
Z

Fdiss
ij vdiss

ij dV � 0 ð17:1Þ

where Fdiss
ij is the generalized stress and vdiss

ij the generalized strain rate [3]. The
generalized stress corresponds to a thermodynamic force and the generalized strain
rate corresponds to a thermodynamic flux. In a purely mechanical problem gen-
eralized stresses and strain rates are the classical stresses and strain rates. In the
more general case the thermodynamic force can for instance be a pressure dif-
ference, a temperature difference, a difference in chemical potentials, and electrical
potential. The conjugate thermodynamic fluxes can be a volume change, a heat
change, a change in chemical species and electrical current. The work rate is
denoted by ~Wdiss. The use of the tilde instead of the overdot for time derivatives is
to emphasize that the work rate is an incomplete differential of time. This leads to
uncertainties due to the inherent path dependence of the time integration.

According to the second law of thermodynamics the constraint for time evo-
lution is that for the thermodynamic reference volume under consideration Sir is
always positive or equal to zero. It is possible that the system does not obey the
laws of thermodynamics but rather obeys the laws of statistical mechanics, if the
reference volume for the energy consideration is too small. For now we consider
that the reference volume is large enough to employ the laws of thermodynamics
where Sir is bound by two entropic bounds, the minimum and maximum of irre-
versible entropy production, respectively, which we will come back to later.
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We emphasize first the role of the irreversible entropy production on assessing
the overall behavior of a dissipative system. The important role of the irreversible
entropy production is that it appears as an additional source term in the energy
equation. In Earth Sciences we are dealing with multi-physics mechanical prob-
lems for which the role of the irreversible entropy production is well understood
[4–7]. We find that the deforming system forms a new dissipative pattern if it
breaches a critical mechanical dissipation level or a critical rate of entropy pro-
duction. This critical level of entropy production forms an attractor of the par-
ticular multi-physics feedback system [8] and we propose here a method for
deriving estimates of entropic bounds of the system and thereby an estimate of the
uncertainty of the thermo-mechanical system.

In order to derive these bounds we need to address the problem of time inte-
gration of Eq. (17.1). We consider entropy production of a far from equilibrium
system over a predefined time scale. This time scale can be derived through
consideration of the concept of finite time thermodynamics [9]. Finite-time ther-
modynamics is developed from a macroscopic point of view (with heat conduc-
tance, friction coefficients, overall reaction rates) rather than based on a
microscopic knowledge (with phonons, yielding of asperities on contacts, local
chemical reactions) of the processes involved. In order to assess this macroscopic
behavior a critical aspect is that the system has to be given sufficient time for the
development of the material attractor that is derived from the boundary value
problem of the material volume under consideration. In Earth Sciences the multi-
physics problem is often defined by a thermal (T), hydro (H), mechanical (M) and
chemically (C) coupled system.

For THMC coupling, a natural time scale is defined by the availability of a
thermodynamic force such as (T) a temperature difference, (H) a pressure differ-
ence, (M) an applied force or (C) a difference in chemical concentration. The so
defined finite-time provides a link to a finite length scale of the dissipative
mechanism and the possible emergence of a dissipative structure. In the geome-
chanical problem the time scale is often given by the inverse of the background
strain rate and the corresponding length scale is given by the diffusive length scale.
Since the diffusivities of THMC in many Earth Science problems are orders of
magnitude apart, we can simplify fully coupled modelling of the non-equilibrium
thermodynamic processes by the selection of spatial dimensions and their asso-
ciated diffusive or convective time and length scales over which the dissipative
structures develop.

For THMC coupling the thermodynamic force can either be:

• (T) a temperature difference
• (H) a pressure difference
• (M) an applied force
• (C) a difference in chemical species concentration

and the thermodynamic flux can be a:

• (T) a heat flow
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• (H) a fluid flow
• (M) a velocity
• (C) a chemical flux.

The explicit forms of these equations will be described in the next two sections.

17.2.2 Balance Laws for Thermodynamic Forces

The general framework for thermodynamic forces and fluxes was described in
Coussy [10], Poulet et al. [11], Regenauer-Lieb et al. [2] and Karrech et al. [12] to
mention a few. In this section we summarize the basic local forms of these
equations of conservation of thermodynamic force that read:

qCp _T þ qf Cf
pviTi þ qT

i;i ¼ rT ð17:2aÞ

1
M

_pþ b_eii þ qf
i;i ¼ rf ð17:2bÞ

r0ij;j � bp;i ¼ 0 ð17:2cÞ

u _ca þ uvi � ca
i þ qa

i;i ¼ ura a ¼ 1; 2. . . ð17:2dÞ

where e.g.: qT
i;i ¼

P

i

oq
oxi
:

We use compact index notation with implicit summation. The subscripts i and
j denote the directions of space. The superscripts f, T and a denote respectively the
fluid phase, temperature and chemical species. Equation (17.2a) spells out the
conservation of energy and where qCP is the overall volumetric heat capacity of the

solid-fluid mixture, qCf
P is the volumetric heat capacity of the fluid content, miTi

accounts for the advective thermal contribution, qi
T is the conductive heat flux and rT

is the volumetric heat source. In the geomechanical problems it is often identified as
shear heating being a driving force for emergence of dissipative structures. Equation
(17.2b) derives from the conservation of fluid mass and describes the pore pressure
evolution. In the first transient term of this equation, 1=M ¼ U=Kf þ 1=N, where U
is the matrix porosity, Kf is the fluid bulk modulus, and N is the Biot modulus. The
second transient term describes the effect of the rate of volume change (denoted by
_eii) on the pressure variation, the third term represents the fluid flux and the right

hand side term denotes the fluid source. Equation (17.2c) represents the conservation
of momentum, which involves the effective stress tensor r0ij as well as the fluid pore
pressure p, and the Biot coefficient b (see Coussy [10]). Equation (17.2d) is similar to
(17.2b), it represents the mass transfer of chemical concentrations ca with the cor-
responding concentration flux, qa

i and sources ra.
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17.2.3 Balance Laws for Thermodynamic Fluxes

The system of Eq. (17.2a–d) is ill-posed and requires additional constraints which
derived from the framework of thermodynamics [10]. These constraints are often
identified experimentally in order to relate the thermodynamic fluxes to their
corresponding forces. In this chapter, we limit ourselves to the following classical
first order relationships for isotropic media:

qf
i ¼ �kTi þ hot ð17:3aÞ

qf
i ¼ �

j
lf

p;i þ hot ð17:3bÞ

_r0ij ¼ Cep
ijkl _eij þ hot ð17:3cÞ

qa
i ¼ �1aca

;i þ hot 8a ð17:3dÞ

Equation (17.3a) represents Fourier’s law where k is the thermal conductivity.
Higher order terms (hot) may need to be considered for special cases. In Fourier’s
law, for instance, higher order terms are necessary when the finite speed of the
phonons must be considered leading to a relativistic heat wave equation. In Earth
Sciences this is most often neglected owing to the large time scales considered and
the lack of THMC cross coupling (e.g. Dufour effect and Sorret effect in Fick’s
law). Equation (17.3b) describes Darcy’s law, where j is the rock permeability and
lf is the fluid viscosity. Equation (17.3c) represents the incremental relationship
between effective stresses and matrix deformation with a Jacobian tensor Cep

ijkl.
Similar forms were used to describe the mass flux using Fick’s law (17.3d), where
1a is the chemical diffusivity of the chemical species ca.

17.3 THMC Feedbacks and Dissipative Patterns

THMC feedbacks manifest themselves in the formation of dissipative patterns.
A well known pattern is the one that is caused by chemical feedbacks [13].
However, dissipative patterns are much more widespread in geological applica-
tions and well known throughout all of the THMC couplings in geology [14].
There is a succinct relationship between the dissipative pattern and its length
and time scale which can be identified from Eqs. (17.2a–d) and (17.3a–d). This
relationship is known as the diffusive scaling length.

li ¼ 2
ffiffiffiffiffiffi
git
p ð17:4Þ

where the index i, refers to the diffusional process identified in Eq. (17.3a–d) and
the diffusivity g to the corresponding diffusion coefficient, that is, the thermal,
pressure, mechanical and chemical diffusivities, respectively. This equation offers
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the identification of space–time coupling for a particular feedback process and its
associated dissipative pattern. An explicit example for the identification of time
and length scales for a simple thermal–mechanical coupling problem can be found
in [15]. It is a fundamental relationship that separates out the space–time con-
tinuum of THMC couplings of thermal, hydrological, mechanical and chemical
feedbacks. We know that thermal diffusivities of rocks are of the order of 10-6 m2/s
while chemical diffusivities are easily ten orders of magnitude lower. Therefore,
there is a hierarchy of scales for a given geological time scale. Even when con-
sidering the square root relationship between length and time scale there should be
enough separation of scales of THMC feedbacks to clearly identify the dominant
dissipative feedback mechanism for a given geological time scale. We will use this
scale separation to recommend a multi-scale framework in the next chapter.

17.4 Thermodynamic Framework for Multi-Scaling

The link between time scale, length scale and diffusivity allows us to define a
multi-scale framework for non-equilibrium thermodynamics processes. We first of
all define a relevant time scale for THMC coupling, which by way of the diffusive
length scale Eq. (17.4) directly defines the associated length scale.

For this, we need to extend the second law of thermodynamics so that it applies
to finite systems observed for finite times. This formulation is known as the
‘‘fluctuation theorem’’ [16]. We can derive the time-scale necessary for separation
of scales from the fluctuation theorem of thermodynamics:

P ~Sir ¼ A
� �

P ~Sir ¼ �A
� � ¼ eAt ð17:5Þ

The fluctuation theorem simply states that for any dissipative process the
probability P of positive entropy production over that of negative entropy pro-
duction increases exponentially with time. That is to say, for infinite time, we can
expect the process to evolve to a state of maximum dissipation characterized by a
new dynamic quasi-steady state. Since we are dealing with finite systems we can
use the fluctuation theorem to define a time scale where the system approaches that
of an infinite time system for the particular dissipation mechanism under con-
sideration. In the case of simple thermal–mechanical coupling the most probable
dynamic attractor of the dissipative pattern is the maximum of entropy production
[8]. An extension to all THMC diffusive processes is natural and allows us to
define a complete multi-scale framework for non-equilibrium thermodynamics.

The simple assumption is that if the diffusivities of the individual feedback
processes are far enough apart we can consider a macro-time/spatial scale for
which the micro-system is approaching its maximum entropy, that is, it behaves in
a similar manner as for infinite time (Fig. 17.1). For the micro-system we can
obtain a solution by minimizing the stored (potential) energy, whereas for the

17 Entropic Bounds for Multi-Scale and Multi-Physics Coupling in Earth Sciences 329



macro-system we still have to solve the full time dependent energy equation under
the constraint of the second law of thermodynamics [9]. Repeating this process
over the different length scales in nested calculations, we can in theory obtain a
full assessment of the THMC dissipative pattern.

Complexities arise for similar diffusivities with overlapping scales, which
prompt the requirement for an explicit fully coupled treatment of the various
dissipation mechanisms. In forthcoming contributions, we will introduce a method
to deal with the upscaling of such more general systems. In simple cases, we can
assume that for the time scale of the longer-term geological process the smaller
scale geological feedback process has converged and the basic dynamic attractor
for each length scale can be found.

17.5 Upper and Lower Bound Approach

Before we deal with uncertainties from the time integration of Eq. (17.1), stem-
ming from the dissipative force, we consider a simpler system where a conser-
vative force does work on the thermodynamic system independent of its path. That
implies that the system recovers it original state after removal of the conservative
force. The time derivative of the work is hence a complete differential, which does
not depend upon the path.

_Wcons ¼
Z

Fcons
ij vcons

ij dV ð17:6Þ

Macroscale

Microscale

maximum
entropy
method

minimum
potential energy
method

t(macro) >> t(micro)

l(macro) >> l(micro)

Fig. 17.1 The different diffusivities of the THMC feedback processes in geological applications
allow a clear separation of scales. If such a separation of scales is given and one is interested in
the macroscopic behavior, one can describe the micro-system by solving the minimum Helmholtz
or Gibbs free energy (minimum potential energy method) or the macroscale by explicitly solving
the time-dependent energy equation under the constraint of maximum dissipation (maximum
entropy method) [10]
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where Fcons
ij denotes the conservative force and vcons

ij the rate of displacement. The
force can hence be described as a gradient of a potential function and be described
in the framework of equilibrium thermodynamic since there is no time dependent
dissipation. Equation 17.3a–d simply becomes:

rij ¼ Celastic
ijkl eelastic

ij ð17:7Þ

Let us now consider in addition a microstructure as shown in Fig. 17.2 where
the matrix property is described by Eq. (17.7) and the pore space is assumed to
have no mechanical strength. For this problem an asymptotic computational
homogenization method has been devised [17] whereby through a stepwise
increase in microstructural cell size the apparent material property can be derived
asymptotically. The material property (e.g. Young’s modulus) is found to be
consistently overestimated (stronger) for the choice of a displacement boundary
condition (constant thermodynamic flux) while the property is consistently
underestimated through the choice of a traction boundary condition (constant
thermodynamic force).

Using variational extremum principles the above described boundary value
problem of the asymptotic homogenization technique can be shown to always
deliver an absolute lower bound for a constant force boundary while a constant
displacement boundary problem always gives an absolute upper bound of the work
done. When the volume is sufficiently large the two bounds are the same [18]
(Fig. 17.3).

It is curious to note that these limit theorems on upper and lower bounds
initially have been developed for the more complicated case of dissipative elasto-
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Fig. 17.2 Modified after a plenary lecture by Robert L. Taylor, University of Berkeley,
California, on ‘‘Computational Mechanics Today’’ 2008. We have extended the approach by
considering combinations of constant thermodynamic force and constant thermodynamic flux as
shown in Table 17.1. We propose this method as a new thermodynamic homogenization
procedure
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plastic systems to overcome the problem of lack of uniqueness of predicted
velocity fields in incomplete semi-analytical solutions [19] of rigid-plastic con-
tinua. They were later on generalized to elasto-plastic cases and the method was
called limit analysis design. These elasto-plastic solutions were derived for the
time independent, isothermal situation where the derivation of the constitutive
laws were constrained by the postulate of maximum entropy production [20]. The
interested reader can find a good review on the origin of the principle of maximum
entropy production elsewhere [21].

17.6 Entropic Bounds for Time Dependent Processes

The choice of entropic bounds to deal with the non-uniqueness of the velocity field
in elasto-plastic continua and the uncertainty of the material heterogeneity in
elastic continua lays the theoretical ground for the time dependent non-isothermal
Earth Science THMC problem. The generalized thermodynamic process according
to Eq. (17.1) leads to an additional uncertainty owing to the path dependence of the
integration of the deformational work. We have already discussed the definition of
the relevant ‘‘finite time thermodynamic’’ time for the generalized process and
have shown the importance of the coupling between the irreversible entropy
production and the diffusion of the entropic source term in Eq. (17.4). We have
also shown that the fluctuation theorem defines a maximum of the irreversible
entropy production if the time scale is sufficiently long. It remains to show how to
derive the minimum of the entropy production. This minimum of entropy pro-
duction can also be derived by the theory of ‘‘finite time thermodynamics’’ through
variational principles, or alternatively, optimal control theory. It is in fact defined

Fig. 17.3 A typical result for computational homogenization of the elastic modulus from our
laboratory. Note that for small subvolumes the asymptotic trend oscillates and in severe cases
(not shown here) the lower bound (pressure BC) predicts a higher modulus than the upper bound
(displacement BC). When this is the case the laws of thermodynamics break down and the
problem has to be dealt with by a statistical mechanics approach
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by the optimal path where the system delivers the maximum rate of available work

to its exterior _W
ext
max.

_W
ext
max = max _Wext

tðiÞ � _Wext
tðf Þ � T0

Z tðf Þ

tðiÞ
_Stotdt

" #

ð17:8Þ

where _Stot is the total entropy production, i.e. the sum of the irreversible entropy
production inside the control volume plus the entropy flux through its boundaries
and the time interval is defined by t(i) - t(f) where i and f stand for initial and final
configurations. The entropic bounds for the generalized time dependent process is
therefore given by the minimum entropy production (Eq. 17.8) and the maximum
entropy production (Eq. 17.5).

17.7 Upper and Lower Bounds of Dissipation
in THMC Processes

While Fig. 17.1 provides the basis for dealing with multi-scale THMC problems
we have so far only used Eq. (17.4) to identify an empirical thermodynamic ruler,
which is the length scale of the thermodynamic feedback underpinning the
intrinsic dissipative patterns. This can at best be understood as semi-quantitative
guidance of scale separation. This is because the fluctuation theorem does not
allow us to specify quantitatively how close we are to the maximum entropy
production for a given time scale and a certain number of degrees of freedom and
the diffusion length-scale is only calculated in 1-D. In order to assess this quan-
titatively, we have to give up the macroscopic view and explicitly calculate the
fully coupled THMC problem, that is, solve the five basic conservation equations,
conservation of mass, conservation of linear momentum, conservation of angular
momentum, conservation of energy, and the explicit formulation of the entropy
production under the constraint of the second law of thermodynamics.

In order to quantify whether our calculations have converged such that they can
deliver homogenized values as input parameters for the THMC coupled problems
at the next larger scale we make use of the thermodynamic upper and lower bound
principles first postulated in Regenauer-Lieb et al. [2]. Table 17.1 spells out what
these boundary conditions are.

Note that our choice of neglect of higher order terms in the thermodynamic
fluxes in Eq. (17.3a–d) was based on the vast separation of diffusional length
scales in Earth Science problems. This does not intrinsically rule out complex
nonlinear coupling required to identify dynamic attractors. We have been able to
show that thermodynamic bounds (maximum and minimum entropy production
defined by the product of thermodynamic force times flux) can be employed to
address the non-uniqueness problem arising from non-linear interactions [2]. This
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approach has so far only been used as a method in continuum mechanics [22] for
isothermal dissipative processes where stresses (resp. forces) and strain (resp.
displacements) are applied alternatively to obtain converging solutions representing
the responses of structures (Fig. 17.2). The extension to coupled non-equilibrium
THMC problems is natural and involves the use of thermodynamic duals to esti-
mate the responses of materials and structures as specified in Table 17.1.

17.8 Conclusions

We have presented here a basic non-equilibrium thermodynamic framework for
multi-scale THMC coupling. We have derived from this formulation a basic 1D
diffusive scaling length for the formation of dissipative patterns stemming from
non-equilibrium thermodynamic feedback. Considering the separation of diffu-
sivities of THMC systems we have identified a wide separation of scales of the
dissipative structures beginning with chemical feedback at sub-mm level, to fluid
flow feedbacks from meters to hundreds of meters, to thermal feedback from
hundreds of meters to kilometer scale and mechanical feedbacks operating at all
scales but particularly at coarse scales. The introduction of finite time thermody-
namics and the fluctuation theorem allows an application of the second law of
thermodynamics to finite systems observed for finite times. It spells out the
probability of entropy production from a macroscopic view. Based on this for-
mulation we have developed suitable energy solution methods for macro- and
microstates for a given macroscopic process time scale (Fig. 17.1). We have also
introduced a new homogenization method (Table 17.1) for coupled THMC solu-
tions for convergence of the upper and lower bounds of dissipation.
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Table 17.1 Boundary conditions to obtain upper and lower bounds of dissipation

Upper bound (constant thermodynamic flux) Lower bound (constant thermodynamic force)

T Constant heat flow Constant temperature difference
H Constant fluid flow Constant pressure difference
M Constant velocity Constant force
C Constant chemical flux Constant difference in chemical concentration
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Chapter 18
Use of Receding Horizon Optimal Control
to Solve MaxEP-Based Biogeochemistry
Problems

Joseph J. Vallino, Christopher K. Algar, Nuria Fernández González
and Julie A. Huber

Abstract The maximum entropy production (MaxEP) principle has been applied to
steady state systems, but biogeochemical problems of interest are typically transient in
nature. To apply MaxEP to biogeochemical reaction networks, we propose that living
systems maximum entropy production over appropriate time horizons based on
strategic information stored in their genomes, which differentiates them from inani-
mate chemistry, such as fire, that maximizes entropy production instantaneously.
We develop a receding horizon optimal control procedure that maximizes internal
entropy production over different intervals of time. This procedure involves opti-
mizing the stoichiometry of a reaction network to determine how biological structure
is partitioned to reactions over an interval of time. The modeling work is compared to a
methanotrophic microcosm experiment that is being conducted to examine how
microbial systems integrate entropy production over time when subject to time
varying energy input attained by periodically cycling feed-gas composition. The
MaxEP-based model agrees well with experimental results, and model analysis shows
that increasing the optimization time horizon increases internal entropy production.

Accepted (July 2012) in: Beyond the Second Law: Entropy Production and
Non-Equilibrium Systems. R. C. Dewar, C. H. Lineweaver, R. K. Niven and
K. Regenauer-Lieb, Springer.

18.1 Introduction

In this chapter we examine the application of the maximum entropy production
(MaxEP) principle for describing microbial biogeochemistry. Biogeochemistry
enlists the fields of biology and geochemistry to understand chemical transfor-
mations and element cycling that occur in natural environments. Because the
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majority of biologically catalyzed reactions that occur on Earth, such as nitrogen
fixation, denitrification, metal redox reactions, sulfate reduction, etc., are orches-
trated by bacteria and archaea [12], we restrict our current focus to microbially
catalyzed reactions. Microbes (including viruses, bacteria and archaea) are the
simplest living organisms and are at the interface between chemistry and biology,
because they catalyzed reactions that also occur abiotically, such as the oxidation
of iron (rusting), oxidation of hydrogen sulfide and methane, fixing N2 into NH3

and HNO3 (lightening and combustion). Since we can view bacteria and archaea as
simple molecular machines [12], they are most likely amendable to thermody-
namic description. They are critical for the support and functioning of all higher
life on Earth, so it is particularly important to understand how their presence and
growth controls the chemistry at local, regional and global scales. Our expectation
is that by employing MaxEP we will be able to develop more robust models that
can be used to study how biogeochemistry changes as the environment is altered
by natural phenomena and human actions.

Biogeochemistry can be viewed from two extreme perspectives. In the classic
perspective, organisms determine the overall biogeochemical processes that occur
in an ecosystem. This organismal centric view derives naturally from reduction-
ism, as biogeochemistry is by definition a product of organismal growth. However,
the organismal centric view implies that changing species composition will likely
produce different biogeochemistry. Furthermore, this approach requires detailed
knowledge on organism growth kinetics, predator–prey interactions, as well as on
how community composition may change as a result of internal dynamics or
external drivers. Except for extremely simple systems, this information is usually
lacking. Despite these short comings, the majority of biogeochemical models use
the organismal perspective as a basis of their design [13].

The second perspective on biogeochemistry takes a systems approach and
views ecosystems thermodynamically as open, non-equilibrium systems. In this
case, it is free energy potential, resource availability and information that deter-
mine ecosystem biogeochemistry. While organisms ultimately carry out the pro-
cess, thermodynamics determines which metabolic functions will dominate.
Organisms are viewed as interchangeable components, similar to microstates that
underlie macrostates in equilibrium thermodynamics [44]. It is this thermody-
namic perspective that we will employ to describe ecosystem biogeochemistry,
where MaxEP will serve as the governing principle. Because we will limit our
analysis to microbial processes, we will remove the typical organismal emphasis
and instead view a microbial community in functional terms as a collection of
catalysts (or molecular machines [12]) that are synthesized and degraded to
achieve MaxEP.

In this chapter we develop a MaxEP-based biogeochemical (BGC) model of a
distributed metabolic network. Model degrees of freedom are determined by
solving a receding horizon optimal control problem that maximizes entropy pro-
duction over successive intervals of time. Results from the model are compared to
data from two methanotrophic microcosm experiments, a control, and a treatment
where energy input is cycled over a 20 day period.
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18.2 MaxEP and Living Systems

The MaxEP conjecture [8, 10, 35, 36] states that steady state, non-equilibrium
systems with many degrees of freedom will likely be found in a state that
maximizes internal entropy production. If internal self-organization, such as
vortices and macroscopic structures, facilitates internal entropy production, then
those structures will likely develop [26]. Similar to equilibrium thermodynamics
that requires systems to be found in the state of maximum entropy, MaxEP
indicates that nonequilibrium systems will head towards equilibrium along the
fastest possible pathway. That is, they will dissipate free energy as fast as
possible within the constraints imposed on the system [28, 44]. As discussed in
this book and elsewhere, several phenomena appear consistent with MaxEP,
including planetary-scale heat transport [19, 27], laminar to turbulent flow
transition [29], plant evapotranspiration [46], and many others (see [35] and
references therein).

18.2.1 Living Systems as Catalysts

If MaxEP indicates that systems should race down free energy surfaces towards
equilibrium as fast as possible, then why isn’t the universe already at equilibrium?
The answer is because systems often get trapped in metastable states. For instance,
a mixture of methane and air at 20 �C, even within the combustible mixture
envelope (5–15 % CH4), will remain in this metastable state for a considerable
length of time due to the high activation energy required to overcome the repulsive
force of the electron cloud that prevents spontaneous reaction. Of course, if a spark
is introduce, then the highly exothermic reaction proceeds in a MaxEP manner due
to the increase in temperature. Another means in which the free energy can be
released is by introducing a catalyst. By reducing the activation energy, the cat-
alyst frees the system from its metastable state, so the reaction can proceed at room
temperature even if the system lies outside the combustion envelope or the reac-
tants are dissolved in water.

While most man-made catalysis are crude and exhibit poor selectivity, enzyme
catalysts synthesized by bacteria, as well as all living organisms, achieve extreme
reductions in activation energies along very selective reaction pathways. It is the
presence of these enzyme catalysts that hastens the dissipation of free energy and
entropy production through the destruction of chemical and electromagnetic
potentials. However, the increase in reaction rates provided by catalysts is pro-
portional to the amount of catalyst present. To maximize entropy production, it is
necessary for a system to rely on autocatalytic reactions that not only dissipate
chemical potential but also synthesize more catalyst in the process, such as the
methane oxidation reaction given by,
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OHCOHO2CH 23224 ++→Σ++ ð18:1Þ

where is a catalyst, or biological structure, synthesized from available resources,
such as C, N, P, Fe, in the environment, R. Because catalyst is produced as a
product of methane oxidation in Eq. (18.1), the reaction will proceed exponentially
provided resources, R, needed to build catalyst are not limiting. Of course,
Eq. (18.1) also represents growth of methanotrophs (specialized bacteria that eat
methane), but we are placing emphasis here on catalyst synthesis for the dissi-
pation of chemical potential, not on the nature of bacterial growth. This distinction
represents a paradigm shift from ‘we eat food’ to ‘food has produced us to eat it’
[25].

In order to calculate the rate of reaction, Eq. (18.1), we need to know the
standard molar entropy associated with biological structure, . Unfortunately,
there is considerable confusion associated with entropy calculations involving
living organisms. It is often believed that living organisms represent extremely low
entropy structures. This misconception can be attributed to confusion over the
association between entropy and order. Order, as might be represented by a pat-
tern, does contribute to entropy, but the entropy (or free energy) of the material the
pattern is constructed from must also be accounted for in the entropy calculation.
As Morrison [34] has shown, only when the pattern is written at the atomic scale
does the entropy of the pattern become significant compared to the entropy of the
material the pattern is written in.

Consider the words written on this page. Because the ink on the page forms a
pattern that contains information, the entropy of the page is lower than a page with
randomized letters [5]; however, the reduction of entropy is trivial compared to the
entropy of the paper the ink is written on. If the paper is burned, it hardly matters
in a thermodynamic context if the text contains the meaning of life or only jib-
berish; the difference in the amount of free energy dissipated, or entropy produced,
between the two cases is virtually undetectable, because the pattern on this page is
written at a macroscopic scale. Likewise, entropy associated with information
contained in DNA/RNA or protein is small compared to the entropy associated
with the nucleic or amino acid polymers the information is written in [45]. All too
often the entropy of the material a pattern is written in is overlooked, which leads
to incorrect assessments, such as the popular statement that a clean desk has lower
entropy than a messy one; both have the same thermodynamic entropy or free
energy. In terms of entropy and free energy calculations, a gram of freeze-dried
yeast or bacteria, which are viable upon rehydration, has the same molar entropy
and free energy of formation as an equivalent weight of a macromolecules in the
appropriate proportions [3]. To paraphrase Morrison [34], the élan vital carries no
thermodynamic burden.

While the entropy associated with the information content of a cell is trivial
compared to the material of a cell, it is nevertheless of critical importance. It is
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useful information [1] contained in the genome that allows for the construction of
complex macromolecules that gives rise to the catalytic nature of biological
structure, . Ultimately, then, it is information that releases systems from
metastable states to flow down free energy surfaces and produce entropy.
Evolution works to refine this information and thereby increase the rate of entropy
production. Information and entropy are intimately coupled [17]. Philosophically,
we postulate that free energy spawns the creation of information that hastens free
energy’s destruction.

18.2.2 MaxEP and Transient Systems

An element of time has been implied in the MaxEP description above for con-
structing biological structure to dissipate free energy; however, all MaxEP theories
to date have been applied to steady state systems only, where time is not involved
in the equations. There currently does not exist a MaxEP theory for transient
systems where the state is allowed to vary with time, but it is transient systems we
are often most interested in. The objective in modeling is usually to understand and
predict how a system of interest will respond to perturbations or changes in
external drivers. To build a transient biogeochemistry model based on MaxEP
requires that we speculate as to how time may affect the MaxEP solution.

For any particular system we can define internal entropy production once the
system boundaries have been defined [32, 35], as well as formulate an entropy
balance equation, such as

dS

dt
¼ JS þ _r ð18:2Þ

where S is system entropy (kJ K-1), JS is the entropy flux into the system (from
mass and heat transport) and _r is the entropy production rate due to irreversible
processes occurring within the system. The second law requires that _r� 0 [20].
We also define r as

R
_rdt, which is the amount entropy that derives from internal

irreversible processes over some interval of time. Throughout this manuscript we
will only be concerned with r or _r, but not S, because MaxEP applies to internal
entropy production only.

For a transient system, internal entropy production is a function of time, _rðtÞ, so
how can MaxEP be defined when _r varies with time? One special case would be to
maximize _r at every instance in time, which would be equivalent to taking a steepest
decent pathway along the free energy surface defined by the current state and all
possible pathways leading from that point, similar to water flowing downhill.
However, following a steepest decent pathway at each instance in time may not lead
to the greatest internal entropy production over an interval of time. Consider
Fig. 18.1 for example. Instantaneous internal entropy production at time tn is greater
along pathway PA than along pathway PB, since _rAðtnÞ[ _rBðtnÞ. But taking the
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steepest descent pathway at point P sets the system along a trajectory that ultimately
produces less internal entropy than had the system followed pathway PB, since
rB tn þ Dt�ð Þ[ rA tn þ Dt�ð Þ. If the system had a means to explore all possible future
pathways leading from P over Dt� time, then the system could increase entropy
produced over the steepest descent pathway, PA, by following pathway PB. That is, if
the system has a way to generate predictions, then forgoing the steepest descent
pathway can lead to greater internal entropy production over time. We postulate that
this is precisely what living systems do.

Because living systems can store information in their genome, they can develop
temporal strategies based on passed events that become refined via evolutionary
selection. Genomic information not only allows organisms to access free energy
trapped in metastable states, but also allows them to follow pathways that avoid
the steepest decent route and produce more entropy over time. For instance, some
bacteria form spores or dormant cells that increase their fitness when conditions
become hostile [23, 24]. Likewise, many organisms will increase fat storage in the
fall to survive the winter months. While temporal strategies are well recognized,
they are often not accounted for in models. Instead, most biogeochemistry models
view the system as a type of Markov process where system response only depends
on the current state. We believe what differentiates abiotic systems from biotic
ones, is the ability of the latter to store information that allows them to develop
temporal strategies and out compete abiotic systems over time in internal entropy
production [44]. Maximizing internal entropy produced over intervals of time is
the basis of the model and associated experiment discussed in the next section.

18.3 Methods

Discussed below are descriptions of a microbial microcosm experiment and an
associated mathematical model that are intended to explore the idea that living
systems develop temporal strategies that increase entropy production when aver-
aged over time. The experimental setup employs methanotrophic microcosms
whose energy input is cycled over time, while the modeling of the microcosms is
based on a distributed metabolic network of biochemical reactions that are
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Fig. 18.1 Increases in
internal entropy over two
possible pathways starting
from point P at time tn.
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controlled to maximize averaged entropy production over intervals of time using a
receding horizon optimal control approach.

18.3.1 Experimental System

The experiment is designed to examine how microbial communities adapt and
evolve to cope with periodic energy inputs using methane plus air as the sole
source of energy. The experimental setup [44] consists of four 18 L microcosms
that are operated in chemostat mode at a dilution rate of 0.1 d-1 and are sparged at
a gas flow rate of 20 mL min-1 (0 �C, 101.3 kPa). Two control microcosms are
sparged continuously with a gas mixture of 4.9 % CH4, 19.6 % O2, 0.03 % CO2,
balance N2, while two other microcosms are cycled between the methane plus air
mixture and just air (20.95 % O2, 0.033 % CO2, balance N2) over a 20 d period
(10 days with CH4 on, 10 days with CH4 off). All microcosms were inoculated
approximately 4 years ago with whole water samples collected from a coastal
pond and cedar bog (1 L each). A mineral salts medium (10 mM K2HPO4, 50 lM
KNO3, 100 lM MgSO4, 100 lM CaCl2, 100 lM NaCl, plus trace elements
solution) adjusted to pH 6.8 is used as feed.

Output gas composition is analyzed on-line every 5 h for CH4 (NDIR,
California Analytical Instruments), O2 and CO2 (laser diode adsorption spectros-
copy, Oxigraf) concentrations, and analyzer drift is compensated for by monitoring
input gas composition. Dissolved oxygen and pH electrodes are measured and
recorded every hour. Gas cycling and all data acquisition are under computer
control and posted on-line (http://ecosystems.mbl.edu/MEP). Periodically, liquid
samples are withdrawn for both nutrient analysis (NO3

-, NH3, particulate organic
C (POC), N (PON), dissolved organic C (DOC), and N (DON)) and microbial
community assessment via cell counts and 454-tag pyrosequencing of the V4-V6
hypervariable regions of the 16S rRNA gene [16].

18.3.2 Metabolic Network Model

The MaxEP-based biogeochemistry model uses a distributed metabolic network
approach to simulate the functional attributes of a microbial community [43]. For
the methanotrophic microcosms, four biological structures are used to capture
methane oxidation to methanol , methanol to CO2 , the turnover of biological
structures , and the consumption of recalcitrant (i.e., hard to decompose) organic
C (dC) and N (dN), (Table 18.1 and Fig. 18.2). This metabolic network
structure differs significantly from our previous approach [44]. Here, we use whole
reactions instead of half reactions to represent metabolism, which has two main
advantages: (1) since half reactions produce (or consume) electrons, we do not need
equations and constraints to insure electron conservation and (2) biological
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structure synthesis is directly coupled to its associated redox reaction pair.
Nevertheless, networks based on half reactions are useful for discovering important
reaction pairs that evade detection, such as anammox [21], because models based
on half reactions build their own redox pair combinations.

Reaction stoichiometries are parameterized by two types of optimal control
variables, ej and xi;j, where the former controls the efficiency of biological
structure synthesis, and the latter controls how biological structure is allocated to

Table 18.1 Reaction stoichiometries and optimal control variables (OCV: ej and xi;j in
Eq. 18.4) associated with the four biological structures used to represent methanotrophic
communities

Biological structure is unit carbon based and its composition is given by CHaj Obj
Ncj

. The
stoichiometric coefficients, ai;j, bi;j and d1;4 are determined from O, H and N elemental balances
for each reaction as necessary

Fig. 18.2 Distributed
reaction network for
methanotrophic communities.
dC and dN: recalcitrant
organic C and N,
respectively. Lines of similar
color and style represent a
single reaction group. H2CO3

not shown to improve
readability. See Table 18.1
for stoichiometry
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sub-reactions associated with each biological structure (Table 18.1). For instance,
x1;1 determines how is partitioned between nitrate uptake (r1;1) and ammonia
uptake (r2;1). The value of ej plays a critical role in the model, because as ej

approaches 0 the reaction behaves as pure combustion dissipating substantial
amounts of free energy, while as ej approaches 1 biological structure is synthesized
with minimum free energy dissipation and maximum conversation of C substrate
into biomass. As discussed above and elsewhere [45], reaction free energy for
biological structure synthesis as ej approaches 1 is still negative or within the
neighborhood of 0, but in order to achieve a growth efficiency of near 100 %,
reactions must proceed reversibly (i.e., infinitely slowly). This thermodynamic
constraint explains why we do not find bacteria opting for an ej near 1 strategy.

The partitioning of labile (i.e., easily degraded) versus detrital C and N in the
four reactions associated with biological structure decomposition, ri;3, is solely
determined by e3. While this is a crude approximation, it has the advantage that no
additional parameters are needed. One of the objectives of the model is to limit the
number of adjustable parameters and place as many degrees of freedom as possible
in the optimal control variables ej and xi;j. The detrital C (dC) and N (dN) pools
are modeled separately, but are treated as a single molecule, dCN, in reaction r1;4

with its concentration, cdCN, set to cdC and its N:C ratio given by cdCN ¼ cdN=cdC.
Total internal entropy produced by the microbial community (kJ K-1), ignoring

small contributions from mixing entropy [45], is readily calculated from the
product of reaction rate (ri;j) and the associated reaction free energy (DrGri;j )
summed over each reaction in the network, as given by,

_rðtÞ ¼ �VL

T

XnS

j¼1

XnSj

i¼1

ri;jðtÞDrGri;jðtÞ ð18:3Þ

where VL is the liquid volume of the microcosms (m3), T is temperature (K), nS is
the number of biological structures (4 in this case), and nSj is the number of sub-
reactions associate with (Table 18.1). We use Alberty’s [2] approach for cal-
culating reaction free energies, DrGri;j , that accounts for species concentrations and
activity coefficients, and Battley’s [4] value for the free energy of formation of
biological structure (see also [44, 45]).

Reaction rates are given by the following modified Monod kinetics expression
[45]

ri;j ¼ mje
2
j ð1� e2

j Þ
Ync

k¼1

ck

ck þ jje4
j

 !Ki;j;k

xi�1;j

YnSj�1

l¼i

ð1� xl;jÞfGðDrGri;jÞcSj : ð18:4Þ

The parameters mj and jj were chosen to capture bacterial growth kinetics
observed in nutrient deplete (i.e., oligotrophic) to nutrient abundant (i.e., eutro-
phic) conditions. That is, mj and jj are independent of community composition.
The exponent Ki;j;k is set to either 0 or 1 depending on reaction stoichiometry
(Table 18.1) for the nc state concentration variables, ck, and xl;j determines how
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is partitioned to its associated nSj sub-reactions, where x0;j ¼ 1 for all reac-
tions. For all model runs, we assume decomposition of biological structure occurs

indiscriminately, so that xi;3 ¼ cSiþ1=
Piþ1

k¼1
cSk for i ¼ 1; . . .; 4. To insure no reaction

proceeds if its free energy of reaction, DrGri;j , is greater than zero, the function fG

is set to,

fGðDrGri;jÞ ¼
1� evGDrGri;j DrGri;j � 0

0 DrGri;j [ 0

�

; ð18:5Þ

where vG is chosen for numerical integration criteria, because the ð1� e2
j Þ term in

Eq. [18.4] imposes an empirical thermodynamic constraint as ej approaches 1.
Once again, the motivation for Eq. (18.4) is based on minimizing the number of

free parameters. Since mj and jj have predetermined values for all reactions [45],
except for reaction r1;4 discussed below, reaction rates solely depend on the values
of the optimal control variables and the concentration of the state variables.

A process that is difficult to model is biofilm formation in the MCs. After
several hundred days of operation, considerable biomass accumulated on the
reactor walls, even though the MCs were gently mixed. While we could have
developed a sophisticated biofilm sub-model, this would result in numerous poorly
defined additional parameters. Instead, we simply introduce one parameter, fPL, to
represent the fraction of particulate matter (both living and detrital) that is not
subject to chemostat washout because it is associated with the biofilm (see
Table A.1).

18.3.3 Optimization Model

To determine how ej and xi;j must vary over time in order to maximize internal
entropy production, we formulate and solve a receding horizon optimal control
(RHOC) problem [7, 30]. RHOC is used in many fields. For example, in eco-
nomics RHOC is used to determine how short-term investments should be allo-
cated to maximize long-term returns, such as in retirement fund management.
Because long-term prediction of markets is not perfect, short-term strategies are
updated periodically based on current market conditions. We implement a similar
approach and maximize internal entropy production over successive intervals of
time as given by,

max
uðtnþ1Þ

1
Dt�

ZtnþDt�

tn

_rðsÞe�kwðs�tnÞds where u ¼ eT xT
� �T ð18:6aÞ

subject to :
dxðtÞ

dt
¼ fðxðtÞ; uðtÞÞ and 0\uðtÞ� 1 ð18:6bÞ
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where Dt� is the long-term optimization interval from the current time, tn, over
which entropy production, _r, is maximized. A conventional weighting function,
e�kwðt�tnÞ, discounts the importance of entropy production as time increases beyond
tn due to uncertainties in predicting future states. After the value of the optimal
control variables ej and xi;j, are determined over the optimization interval
½tn; tn þ Dt��, the state equations are updated only to tnþ1 ¼ tn þ Dt, where
Dt�Dt�, as illustrated in Fig. 18.1. The updating interval, Dt, is typically less than
Dt� to minimize discontinuities in state and control variables at the end of
an interval. Average internal entropy production over the update interval, Dt, is
given by,

_rðtnþ1Þh i ¼ 1
Dt

ZtnþDt

tn

_rðsÞds: ð18:7Þ

Total internal entropy produced over k intervals is given by rðtn : tnþkÞ ¼

Dt
Pk

i¼1
_rðtnþiÞh i. Once the state and control variables are updated to tnþ1 ¼ tn þ Dt,

Eq. (18.6) is used to solve the next optimization interval, tnþ1 þ Dt� to extend the
solution to tnþ2 ¼ tnþ1 þ Dt; this iteration is repeated until the desired final sim-
ulation time is reached.

The optimization, Eq. (18.6a), is subject to box constraints on the control
variables between 0 and 1, and by mass balance constraints on the state variables,
xðtÞ, given by the differential equations defined by fðxðtÞ; uðtÞÞ in Eq. (18.6b). The
state variables for the microcosm experiment consist of nutrient concentrations,
cðtÞ, gas partial pressures, pðtÞ, and concentration of biological structures, cSðtÞ, so

that xðtÞ ¼ cTðtÞ; pTðtÞ; cT
SðtÞ

� �T
. The mass balance equations are listed in the

Appendix (Table A.1). The differential equations were numerically integrated
using a high precision method [6] and the optimization problem was solved using a
derivative free algorithm (BOBYQA [39]). Control variables are discretized over
the ½tn; tn þ Dt�� interval using nknots grid points and linear interpolation is used to
produce continuous control functions.

18.4 Results

Time zero of the microcosm experiments corresponds to 00:00 20 Aug 2010, and
on day 210.5 gas cycling of microcosms (MC) 1 and 4 commenced after experi-
mental operating conditions had been finalized, in particular nitrogen-limited
growth was achieved. Numerical simulations using the MaxEP-based BGC model
were initialized on day 100, which provided sufficient time to achieve steady state
conditions prior to gas cycling. Both experimental and modeling results are
compared over days 200–500.
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Only two model parameters were qualitatively adjusted to achieve reasonable
agreement between model results and observations for all four MCs (Figs. 18.3
and 18.4). Because detritus is a rather amorphous, non-polymeric material, its
decomposition is difficult and is often the rate limiting step in microbial BGC [14].
Consequently, we reduced m4 in Eq. (18.4) to 35 d-1 from the standard value of
350 d-1 [45]. We also tuned the biofilm parameter, fPL, to 0.2. All other parameter
values are well-defined constants, such as MC volume, dilution rate, feed con-
centrations, etc. All model degrees of freedom, other than m4 and fPL, reside in the 6
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optimal control variables and the three interval optimization parameters, kw, Dt
and Dt�.

To examine how the optimal interval parameters affect the solution and overall
internal entropy production, we conducted several simulations by varying kw, Dt
and Dt� for both the control and the gas-cycled simulations (Table 18.2). In
general, these results show that as the optimization interval increases, total internal
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Fig. 18.4 Simulated data [orange (or grey) lines] compared to observations of nitrate and
ammonium concentrations for the control MCs (MC 2 and 3, left column) and the methane cycled
MCs (MC 1 and 4, right column). Also see caption to Fig. 18.3

Table 18.2 Internal entropy produced over 400 days for the control and gas-cycled simulations
for different optimal interval parameters values: kw, Dt and Dt�

Dt Dt� kw nknots rð100 : 500Þ (kJ K-1)

(d) (d) (d-1) Control Cycled

0.1 0.1 0 1 2.07 1.45
0.1 1 3.00 5 18.56 7.71
1 1 0 1 16.82 6.94
1 5 0.921 5 22.85 9.05
10 20 0.230 15 24.19 10.53
20 40 0.115 20 24.64 14.55
20 50 0.0921 25 24.77 15.15
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entropy produced (r) over the 400 days of simulation increases, but asymptotes to
approximately 25 and 15 kJ K-1 for the control and gas-cycled simulations,
respectively. Except for very short intervals, entropy production in the control
simulations is not strongly affected by choices of Dt or Dt� (Table 18.2). However,
for very short optimization intervals (Dt� ¼ 0:1 d), entropy production is signifi-
cantly depressed (Table 18.2). A similar phenomenon occurs in the gas-cycled
simulations, but the decrease in total entropy production as Dt� decreases is more
gradual.

As Dt� becomes small, biological structures are allocated to maximize entropy
production in a manner that resembles abiotic systems, such as fire. In particular,
examination of the control simulations reveals that the system does not sufficiently
allocate resources to biological structure turnover, . The concentration of in
the control simulation with Dt� ¼ 0:1 is approximately equal to and , but in
the simulation with larger Dt� values, concentration is twice that of and .
The optimal controller attains higher concentration of by setting e3 to approx-
imately 0.62, while in the low entropy producing case e3 is only set to 0.34. The
higher concentration of allows the system to achieve much higher remineral-
ization rates, so that reactions r2;1 and r2;2 can attain much higher rates due to the
increase in NH3 availability from turnover. However, under short optimization
intervals, the system’s time horizon is too short to realize a return on investment in

with respect to entropy production or utilization of available chemical potential.
When the time scale is short, the system does not make best use of available
resources.

The gas-cycled simulations also generate interesting results when different
ðDt;Dt�Þ values are examined. Figure 18.5a shows methanol dynamics over two
gas cycling periods (40 d, beginning on day 300) for four selected simulations
in Table 18.2 based on the ðDt;Dt�Þ values. When time scales are short,
ðDt;Dt�Þ = (0.1, 1 d) and (1, 5 d), methanol (CH3OH) accumulates immediately
after methane gas is turned on (at 300.5 and 320.5 d; Fig. 18.5a, dashed lines).
However, when the time scale specified by the optimization parameters approach
the period length of the gas cycling, ðDt;Dt�Þ = (10, 20 d) and (20, 50 d),
methanol accumulation occurs immediately before methane is switched off (at
310.5 and 330.5 days; Fig. 18.5a, solid lines). When the optimization time scales
are long, the model develops an anticipatory control strategy, where methanol is
produced as a storage compound that can be utilized during the phase when
methane is absent. By storing some of the methane captured in the first half of the
cycle as methanol, the system is able to oxidize more methane and produce more
internal entropy compared to the simulations using short term optimization
parameters. The strategy only accumulates methanol near the end of the period,
because methanol is also lost due to dilution, which does not contribute to internal
entropy production.

We can see how the control strategy achieves methanol accumulation by
examining the concentration of biological structures and growth efficiencies for the
case where ðDt;Dt�Þ equals (20, 50 d) over the two gas cycling periods
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(Fig. 18.5b, c). Just prior to the loss of methane (310.5 and 330.5 d), there is an
increase in and a decrease in (Fig. 18.5b). Based on the reaction network
(Fig. 18.2, Table 18.1), this allocation of catalyst favors methanol overproduction,
so methanol accumulates rapidly. Immediately following the addition of methane,
there is a rapid rise in concentration and a decrease in , which drives methanol
consumption up. To attain these changes in and abundances, there are the
expected changes in the associated growth efficiencies (Fig. 18.5c), but there is also
a large change in e3. In particular, e3 is driven to 1 following the loss of methane
feed, which allows all biological structures to remain at high concentrations in the
absence of methane because ri;3 is driven to zero (Eq. 18.4). Just prior to the
introduction of methane, e3 is reduced significantly, which causes a large turnover of

i
(μ

M
)

0

100

200

300

400

500

600

3

1

4

2

Time (d)

ε i

300 310 320 330 340
0

0.2

0.4

0.6

0.8

1

ε3

ε1

ε4

ε2

C
H

3
O

H
(

μM
)

0

500

1000

1500

2000 (0.1,1)
(1,5)
(10,20)
(20,50)

(a)

(b)

(c)

Fig. 18.5 (a) Methanol
accumulation over two cycles
for the optimization intervals
given in the legend: ðDt;Dt�Þ.
The bar along the x axis
shows when CH4 gas is on
(black) and off (white).
Biological structures (b) and
growth efficiencies (c) over
two cycle periods for
ðDt;Dt�Þ ¼ ð20 d; 50 dÞ.
All data are from the
gas-cycled simulations only

18 Use of Receding Horizon Optimal Control 351



biological structure (Fig. 18.5b), but biological structure concentrations quickly
rebound once methane is again made available. To examine if these changes are
occurring in the actual microcosms, we are currently sampling for cell abundances,
DNA/RNA, and methanol concentration.

18.5 Discussion

In this chapter we have shown that a microbial biogeochemistry model based on
the MaxEP principle produces results that are comparable to those obtained
experimentally from microbial methanotrophic microcosms (Figs. 18.3 and 18.4).
Unlike most microbial biogeochemistry models, the MaxEP model contains very
few adjustable parameters, because we have been able to place most of the model’s
degrees of freedom into the optimal control variables, ej and xi;j, whose values are
determined by maximizing internal entropy production. By placing emphasis on
catalytic activity at the system level, rather than on competition of individuals, the
MaxEP approach provides a unique perspective on how ecosystems may function
and evolve. Due to the novelty of the MaxEP approach, many of the ideas and
conjectures that derive from MaxEP need to be tested, or at least shown to be
improvements over canonical approaches. Microbial microcosms provide excel-
lent experimental systems for testing MaxEP-based approaches for describing
living systems, as microbial systems have fast characteristic times scales, high
population densities and high biodiversity, all of which can be readily manipulated
and monitored.

The MaxEP-BGC model predicts a comprehensive suite of output variables that
can be compared to observations, only some of which were presented here. In
addition to providing concentration data and reaction efficiencies, the model
predicts reaction rates through the metabolic network (Table 18.1), reaction free
energies, and how biological structure partitioning among sub-reactions changes
over time (i.e., xi;j). We expect our on-going measurements of community com-
position from 454-tag pyrosequencing and quantitative PCR analysis of function
gene levels and expression will assist in comparing model output to observations
[15]. Preliminary molecular results show that very high microbial diversity is
maintained in the microcosms (*600 operational taxonomic units); however,
community composition of the methanotrophs changes substantially over time
(microscopic behavior), but this does not alter methane oxidation rates (macro-
scopic behavior), a characteristic consistent with MaxEP [9].

Perhaps the most intriguing result from our implementation of MaxEP for
describing microbial biogeochemistry is the proposed distinction between abiotic
and biotic systems based on instantaneous versus averaged entropy production.
When entropy production is maximized instantaneously, no biological structure is
produced because some of the free energy would simply be converted to another
form of chemical potential instead of being destroyed. This problem is solved by
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maximizing entropy produced over an interval of time, which leads to the
hypothesis. Because biotic systems are able to store information in their genome,
they can implement temporal strategies that can out-compete abiotic processes in
some situations. Because of genomic complexities, we do not know a priori the
nature of the temporal strategies at this time, but this lack of knowledge can be
circumvented by assuming that evolution has produced systems that extract the
greatest possible free energy from a system over some appropriate characteristic
time scale. Our results indicate (Table 18.2) that the longer the time scale, the
more entropy that can be produced, but longer time scales require higher fidelity in
predicting future states. Prediction in this case simply means that some of the
temporal strategies the system possesses will be successful. Mismatches between
prediction and the true state, due to perturbations, noise and uncertainties, ulti-
mately limit the time scale interval for entropy production.

Our receding horizon optimal control implementation of the MaxEP problem
shows that when time scales are short, biological structure should be invested for
immediate entropy production, which leads to methanol production following the
introduction of methane (Fig. 18.5a, dashed lines). This is an R-selection strategy
[38], which is a possible driving mechanism for cross feeding [40], because partial
substrate oxidation can increase growth rate [37]. When time scale is increased,
the system allocates resources to (the equivalent of grazers) as well as the later
production of methanol that acts as a storage compound (Fig. 18.5a, solid lines).
Systems oriented analyses of natural ecosystems indicate that the presence of
grazers increases nutrient recycling and ecosystem productivity [31, 41, 42].
Predators, and trophic structures in general, increase the characteristic time scale
of an ecosystem. It appears reasonable that organisms with long development
times, or life histories, impart the long characteristic time scales observed in
mature ecosystems, such as forests. Under this conjecture, bacterial systems may
be closer to fire than an ecosystem composed of macroscopic organisms that
provide the long characteristic time scale with respect to entropy production.

Experimentally, we expected more effective use of CH4 in the gas-cycled
treatment; that is, we expected entropy production to be similar between the
control and gas-cycled MCs. Interestingly, the MaxEP-BGC model also has dif-
ficulties in producing entropy in the gas-cycled MCs (Table 18.2), but matches the
experimental data well (Figs. 18.3 and 18.4). Because of methanol washout from
the chemostat, the model only uses methanol as a storage compound near the end
of the CH4-on cycle, which limits the system’s ability to store chemical potential.
Storage of free energy in biological structure is also limited due to N requirements
for . Perhaps the experiment and model are lacking higher trophic levels (i.e.,
macrofauna) that would provide a time scale relevant to the 20 day gas-cycle
period. Currently, the model uses cannibalism of as a means of trophic closure
[33], so adding additional trophic levels may be one means of increasing the
characteristic time scale in the model. As for the experiment, we are currently
characterizing the eukaryotic community structure via cell counts.

Our MaxEP-BGC model currently focuses on microbes as reaction catalysts
that dissipate chemical potential, but the MaxEP concept can be extended to
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macro-fauna and-flora as well. Metabolically, macroorganisms are rather prosaic;
however, in addition to their longer characteristic time scales, they provide physical
structure, increase the surface area of particulate matter via mastication and greatly
enhance transport processes that often limit reaction rates [11, 18, 22]. Application
of MaxEP to natural ecosystems will require understanding the functional contri-
butions of macroorganisms, in particular with respect to transport processes, which
is not a typical focus in ecology. More research needs to be done in this area.

18.6 Conclusions

We have been able to use the MaxEP conjecture to develop a microbial biogeo-
chemistry model that reproduces reasonably well experimental data obtained from
a methanotrophic microcosm experiment. By assuming that genomic information
allows living systems to maximize entropy production over a characteristic time
scale, we have been able to formulate the model as a receding horizon optimal
control problem. Most of the model’s degrees of freedom have been captured by
the optimal control variables whose values are determined by maximizing entropy
production over successive intervals of time. This approach greatly reduces the
number of adjustable parameters whose values are often unknown, poorly con-
strained and seldom constant. Our results indicate that temporal strategies that are
successful over greater durations of time will result in greater entropy production.
From this hypothesis, we have developed a methanotrophic microcosm experiment
to study how microbial communities respond, adapt and evolve to time varying
inputs of energy. Based on experimental data to date, there appears to be good
agreement between the MaxEP-BGC model results and experimental data.

All organisms possess genomic and acquired information that dictates survival
strategies and life cycles that operate over defined characteristic time scales. These
time scales can be as short as minutes or hours (i.e., for some bacteria) to as long
as centuries or more (i.e., some tree species). Our approach has illustrated the
importance that temporal strategies have on ecosystem dynamics, but our choice of
time scale (for both Dt and Dt�) has been somewhat arbitrary based on our intuitive
understanding of bacterial growth and the reduced complexity of our experimental
microcosms. Natural ecosystems are comprised of populations of different
organisms that operate over a multitude of time scales. However, we hypothesize
that organisms with long time scales can access more free energy (and ultimately
producing more entropy) than those operating on short time scales provided the
system is stable enough for long term predictions. Viewing ecosystems as a col-
lection of free energy dissipating machines adaptively operating over a spectrum of
time scales may help us understand how these systems assemble, operate and
respond to disturbances of differing magnitude and frequency. Further research is
needed relating the ecological concepts of temporal strategies and succession to
quantitative measures and representations of time scales for the dissipation of free
energy.
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Appendix

Tables A.1 and A.2.

Table A.1 Mass balance equations for the rates of change of chemical species concentrations in
the microcosm model used for constraints in Eq. (18.6b)*

_cCH4 ðtÞ ¼ �r1;1 � r2;1 þ FLðcf
CH4
� cCH4 Þ þ kLaðpCH4=kCH4 ðTÞ � cCH4 Þ

� �
=VL

_cCH3OHðtÞ ¼ ð1� e1Þðr1;1 þ r2;1Þ � r1;2 � r2;2

þ FLðcf
CH3OH � cCH3OHÞ þ kLaðpCH3OH=kCH3OHðTÞ � cCH3OHÞ

� �
=VL

_cH2CO3 ðtÞ ¼ð1� e2Þðr1;2 þ r2;2Þ þ e3ð1� e3Þ
X4

i¼1

ri;3 þ ð1� e4Þr1;4

þ FLðcf
H2CO3

� cH2CO3 Þ þ kLaðpCO2=kH2CO3 ðTÞ � cH2CO3 Þ
� �

=VL

_cdCðtÞ ¼ ð1� e3Þ2
P4

i¼1
ri;3 � r1;4 þ FLðcf

dC � fPLcdCÞ=VL

_cHNO3 ðtÞ ¼ �e1c1r1;1 � e2c2r1;2 þ FLðcf
HNO3

� cHNO3 Þ=VL

_cNH3 ðtÞ ¼ �e1c1r2;1 � e2c2r2;2 þ e3
P4

i¼1
ð2� e3Þci � c3ð Þ ri;3 þ d1;4r1;4 þ FLðcf

NH3
� cNH3 Þ=VL

_cdNðtÞ ¼ ð1� e3Þ2
P4

i¼1
ciri;3 � cdCNr1;4 þ FLðcf

dN � fPLcdNÞ=VL

_cO2 ðtÞ ¼ �
P2

i¼1

P2

j¼1
ai;jri;j �

P4

i¼1
ai;3ri;3 � a1;4r1;4 þ FLðcf

O2
� cO2 Þ þ kLaðpO2=kO2 ðTÞ � cO2 Þ

� �
=VL

_pCH4 ðtÞ ¼ FGðpf
CH4
� pCH4Þ þ kLa RTðcCH4 � pCH4=kCH4 ðTÞÞ

� �
=VG

_pCH3OHðtÞ ¼ FGðpf
CH3OH � pCH3OHÞ þ kLa RTðcCH3OH � pCH3OH=kCH3OHðTÞÞ

� �
=VG

_pCO2 ðtÞ ¼ FGðpf
CO2
� pCO2Þ þ kLa RTðcH2CO3 � pCO2=kH2CO3 ðTÞÞ

� �
=VG

_pO2 ðtÞ ¼ FGðpf
O2
� pO2 Þ þ kLa RTðcO2 � pO2=kO2 ðTÞÞ

� �
=VG

_cSjðtÞ ¼ ej
PnSj

i¼1
ri;j � rj;3 þ FLðcf

Sj
� fPLcSjÞ=VL for j ¼ 1; . . .; 4

*The superscript f refers to concentration of variables in the feed stream, FL and FG are the liquid
and gas volumetric feed rates, respectively, kLa is the liquid-side mass transfer coefficient, khðTÞ
is a Henry’s law coefficient for solute h, VG is the gas headspace volume, and fPL is the fraction of
particulate matter loss due to dilution; that is, not associated with the biofilm
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Table A.2 Nomenclature

Variable Definition Units

ai;j Oxygen stoichiometric coefficient for reaction ri;j (see Table 18.1)
bi;j Water stoichiometric coefficient for reaction ri;j (see Table 18.1)
ci Concentration of species i (c in vector form) mmol m-3

cf
i

Concentration of species i in microcosm feed mmol m-3

cSj Concentration of biological structure j mmol m-3

di;j Ammonia stoichiometric coefficient for reaction ri;j (see Table 18.1)
dC Detrital organic carbon
dN Detrital organic nitrogen
fPL Fraction of particulate matter loss due to dilution
f Vector function of state equations (see Table A1)
kiðTÞ Henry’s law coefficient for solute i Pa m3 mmol-1

kLa Air–water gas transfer coefficient, liquid side m3 d-1

kw Optimization discounting parameter d-1

nc Number of chemical species
nknots Number of grid points for discretizing control variables over an

optimization interval (see Table 18.2)
nS Number of biological structures,

nSj Number of sub-reactions associated with

pi Partial pressure of gas species i Pa

pf
i

Partial pressure of gas species i in feed gas Pa

ri;j Reaction rate mmol m-3 d-1

Dt Optimization update interval d
Dt� Optimization interval d
t Time d
u Vector of control variables (e, x)
x Vector of state variables (c, p, cS)
FG Gas flow rate to microcosms m3 d-1

FL Liquid flow rate to microcosms m3 d-1

DrGri;j Gibbs free energy of reaction for reaction ri;j kJ mmol-1

R Gas constant (units depend on equation)
S System entropy kJ K-1

Biological structure j that catalyzes reaction ri;j

T Temperature K
VG Gas volume of microcosm m-3

VL Liquid volume of microcosm m-3

ai Hydrogen atoms in unit carbon formula for biological structure i
bi Oxygen atoms in unit carbon formula for biological structure i
ci Nitrogen atoms in unit carbon formula for biological structure i
ej Growth efficiency for biological structure j. (Optimal control variable)
jj Substrate affinity parameter in reaction ri;j mmol m-3

mj Maximum specific reaction rate for reaction ri;j d-1

r Entropy produced from irreversible processes within system kJ K-1

_r Rate of internal entropy production kJ K-1 d-1

vG Parameter in free energy weighting function, fG mmol kJ-1

(continued)
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Chapter 19
Maximum Entropy Production
and Maximum Shannon Entropy
as Germane Principles for the Evolution
of Enzyme Kinetics

Andrej Dobovišek, Paško Županović, Milan Brumen
and Davor Juretić

Abstract There have been many attempts to use optimization approaches to study
the biological evolution of enzyme kinetics. Our basic assumption here is that the
biological evolution of catalytic cycle fluxes between enzyme internal functional
states is accompanied by increased entropy production of the fluxes and increased
Shannon information entropy of the states. We use simplified models of enzyme
catalytic cycles and bioenergetically important free-energy transduction cycles to
examine the extent to which this assumption agrees with experimental data. We
also discuss the relevance of Prigogine’s minimal entropy production theorem to
biological evolution.

19.1 Introduction

During biological evolution, the earliest cells already contained complex macro-
molecules with a remarkable capacity to speed up chemical reactions. These mac-
romolecules are proteins, called enzymes. The kinetic and structural properties of
enzymes are outcomes of evolution. Are present-day enzymes optimized by evo-
lution, and if so, what physical or statistical principles govern their optimization?
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These are the questions that will be considered in this chapter, within the broader
picture connecting enzymes to the energy conversions that are crucial to life.

As a rule, biological processes are non-linear and take place far from the
equilibrium. They require an input of free energy to operate and hence do not
support blockages in the hierarchy of free-energy conversion. Energy conversion
(also called transduction) is thus the central concept in bioenergetics. Many free-
energy transducers are integral membrane proteins, i.e. proteins embedded in
biological membranes. For example, inner mitochondrial membranes and chlo-
roplast thylakoid membranes convert redox and light energy, respectively, into a
trans-membrane electrochemical potential difference. In this way, free-energy
input from photons or from carbohydrates is converted into a ‘‘user-friendly’’
form, as gradients in ion concentration and potential, which cells or organelles can
then use at their convenience. This primary step in energy conversion is performed
by specialized membrane proteins that act as ion pumps.

The next steps in the hierarchy of free-energy transduction are also performed
by integral membrane proteins, which use electrochemical potential gradients to
drive the synthesis of ATP from ADP. ATP molecules are converted back to ADP
in living cells as soon as they are created, the free energy thus generated being
used to drive all the subsequent steps of free-energy transduction involved in
enzyme kinetics and biochemistry. A dynamic equilibrium is established such that
sustained high ATP and low ADP concentrations maintain cells far from ther-
mochemical equilibrium.

Energy transduction is also a central concept in physics, from the energy
conservation principle to thermodynamics. One of the better known results from
non-equilibrium thermodynamics is Prigogine’s theorem of minimal entropy
production [1]. It is a simple consequence [2] of Onsager’s linear relationships
between fluxes and forces [3, 4] valid close to thermodynamic equilibrium. The
theorem defines a non-equilibrium stationary state, called the static head state.
Non-equilibrium stationary states are the main interest to us here. Free-energy
transduction and efficiency are zero in the static head stationary state, which can be
considered as the closest non-equilibrium relative of the equilibrium state. Cou-
pling downhill and uphill free energy changes is essential for all life, but this is
impossible in the static head state. Life must look to other non-equilibrium steady
states with a non-vanishing efficiency of free-energy transduction.

Elevating Prigogine’s theorem to a general principle [5], or fundamental law of
nature relevant for biochemical processes [6], has been criticized from a mathe-
matical stance [7]. Technically, the differentiation of the entropy production
expression in its most general form, and with all constraints taken into account,
should be done first, before introducing the assumption of being close to equi-
librium. This procedure does not lead to Prigogine’s principle.

An excellent test case is photosynthesis. Bacterial and chloroplast photosyn-
thesis is responsible for free-energy transduction on Earth that is much more
intensive than that of a comparable Sun volume [8]. High free-energy-transduction
in macroscopic systems is closely associated with high entropy production, a
convenient measure of how far such systems are from thermodynamic equilibrium.
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By assuming or requiring minimum entropy production in photosynthesis (i.e. by
assuming that photosynthesis operates close to equilibrium), Andriesse and Hol-
lestelle [9] introduced the mathematical error noted by Ross and Vlad [7]. Closer
inspection of the mathematical restrictions used by Andriesse [10] revealed that
the close-to-equilibrium state assumed by Andriesse and Hollestelle [9] cannot be
different from thermodynamic equilibrium, where entropy production is zero in
accordance with the second law of thermodynamics. The claim that photosynthesis
is associated with negative entropy production, and that photosynthesis violates the
second law [11], has been amply criticized elsewhere [12, 13] and will not be
discussed here.

The application of other optimization principles to enzyme kinetics, such as the
maximal metabolic flux principle [14], has two problems besides lacking a basis in
physics. First, if one tries to apply it to branched biochemical networks, it is not
clear which flux should be maximized. Therefore, its application is restricted to the
cyclic processes [14–17]. Secondly, the maximum flux principle involves no trade-
off between fluxes and forces. As a result, an infinite flux could be predicted [18].
To exclude such a non-physical situation, one is then forced to introduce various
ad hoc flux limitations [14].

The maximal metabolic flux principle is also challenged by the observation that
most metabolic enzymes operate far below their maximal capacities in vivo [19]
(where capacities are defined as the upper limits of flux rates). In principle,
capacities should match maximum loads, so that an optimality hypothesis can be
proposed [20] according to which natural selection eliminates excess capacities.
This ad hoc and non-physical optimization principle is also challenged by the
observation that excess capacities are also ubiquitous in vertebrate bodies [21].
The entrance of system biology into this field contributed to the realization that
distributed control and conservation of optimal metabolic flux within given
external constraints are much more important objectives for natural selection than
maximal metabolic flux [22, 23] or maximal catalytic efficiency (the ‘‘perfect
enzyme theory’’ proposed by Albery and Knowles in 1976 [15]). However, this
development still leaves open the possibility of a role for general physical prin-
ciples governing inorganic and organic matter alike.

In this chapter we analyze kinetic schemes common to biochemistry
(Michaelis-Menten kinetics) and bioenergetics (photosynthesis, ATP synthesis).
Our aim is to compare the predictions of the maximum entropy production
(MaxEP) and maximum Shannon entropy (MaxEnt) principles with experimental
data. MaxEnt is a powerful statistical principle that, according to Jaynes [24],
predicts the best unbiased distribution of probabilities (see also Dewar and Maritan
Chap. 3 [25]). For enzyme kinetics and bioenergetics, MaxEnt pertains to the
probability of occupation of molecular states, while MaxEP pertains to the fluxes
and corresponding thermodynamic forces. Taking all constraints into account
(such as the generalized Kirchhoff’s laws for networks of enzyme functional
states) MaxEnt predicts a maximally-diverse occupancy distribution in a stationary
non-equilibrium system, which must be based on a complex and flexible enzyme
structure. It has been proposed that MaxEnt provides a theoretical basis for MaxEP
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[25], in which case MaxEP, like MaxEnt, is also a statistical principle which can
serve as the selection criterion for the most probable states and transition fluxes
between states under given constraints. In the majority of stationary states with
known constraints considered here, we find qualitative agreement (within an order
of magnitude or better) between MaxEP and MaxEnt predictions for forward
kinetic constants and their measured values.

On the basis of this agreement, we suggest that physical and biological evo-
lution can be considered from a common perspective. They are coupled such that
the increase in entropy export associated with the evolution of biological macro-
molecules and bioenergetic processes also serves to increase the probability of
functionally important states. In other words, biological evolution serves to
accelerate the thermodynamic evolution of the system and its environment.

The remainder of this chapter is structured as follows. Section 19.2 extends a
recent study [26] by presenting new results for the application of MaxEnt to
generalised Michaelis-Menten kinetics. Section 19.3 focuses on the light-driven
bacteriorhodopsin photocycle, from the viewpoint of MaxEnt and MaxEP.
Section 19.4 applies MaxEnt and MaxEP to a kinetic model for chloroplast ATP-
synthase, to predict a key transition state parameter. The Discussion brings these
results together and offers a new statistical interpretation for the evolution of
enzyme kinetics and bioenergetics.

19.2 Entropy Production and Shannon Entropy
for Reversible Michaelis-Menten Kinetics

In this section we use a simple single-substrate model to suggest that biological
evolution is accompanied by an increase in the entropy production of the internal
transition of an enzyme reaction, as well as an increase in the Shannon information
entropy of the entire enzyme reaction scheme.

19.2.1 General Considerations and Basic Assumptions

The simplest generally accepted model for basic one-substrate enzyme reactions is
the Michaelis-Menten mechanism. Following its introduction 100 years ago, it is
now a standard feature in all textbooks on biochemistry and enzyme kinetics. Here
we consider the generalized three-state reversible enzyme reaction scheme shown
in Fig. 19.1. Forward and backward transitions occur between the free enzyme
molecule (E), the enzyme molecule in complex with a substrate molecule (ES),
and the enzyme molecule in complex with a product molecule (EP).

Reactions E ? S ? ES and E ? P ? EP involve binding of a substrate (S) or
product (P) molecule to the active site of the enzyme; consequently, their
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metabolic fluxes depend on the substrate (S) and product (P) concentrations. Both
reaction steps are thus parameterised by second order rate constants k1

+* and k3
-*

measured in units s-1lM-1 (see Fig. 19.1). Quasi first order rate constants can
then be defined for these reactions by k1

+ = k1
+* [S] and k3

- = k3
-* [P] (s-1).

Metabolic fluxes of the other reactions in Fig. 19.1 are independent of [S] and
[P] and so can be described by first order rate constants (k1

-, k2
+, k2

- and k3
+, s-1).

Equilibrium constants Ki for individual transitions are defined as the ratios of the
forward and backward rate constants. Thus the equilibrium constants for transi-
tions ES$EP, E ? S$ES and E ? P$EP are K2 = k2

+/k2
-, K1

* = k1
+*/k1

- and
K3

* = k3
+/k3

-*, respectively. In the latter two cases, the equilibrium constants are
denoted with an asterisk, because they involve the second order rate constants k1

+*

and k3
-*. For any steady state, the product of the equilibrium constants defines the

overall thermodynamic force (or affinity) X [27]. For the equilibrium state, the
overall equilibrium constant is the ratio of the equilibrium product and substrate
concentrations ([P]e and [S]e respectively) and can also be expressed as the product
of transition equilibrium constants: Koverall

eq = [P]e/[S]e = K1
*K2 K3

*. In Fig. 19.1,
the transition ES$EP is the internal enzyme transition.

Enzyme reactions involve metabolic fluxes (J) and thermodynamic forces
(X) that govern these fluxes. The associated entropy production rate is defined as
the product of the metabolic flux and the corresponding thermodynamic force,
divided by absolute temperature (T)

r ¼ JX

T
: ð19:2:1Þ

For the three-state model (Fig. 19.1), J is the net flux of any given transition,
because there is only one cycle and only one flux (which must be the same for all
transitions in accordance with Kirchhoff’s junction rule). For given substrate and
product concentrations, the total thermodynamic force of the overall reaction is a

Fig. 19.1 Reversible three-state kinetic scheme for a single-substrate enzyme reaction. State
1 = free enzyme (E), state 2 = enzyme—substrate complex (ES), state 3 = enzyme—product
complex (EP), substrate (S), product (P). k1

+* and k3
-* are second order rate constants and k1

-, k2
+,

k2
-, k3

+ are first order rate constants
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constant. The sum of the affinities (i.e. thermodynamic forces) associated with
chosen transitions equals the total thermodynamic force X (in accordance with
Kirchhoff’s loop rule). One of our basic results from previous research [26] shows
that there is a unique maximum for the entropy production of any given transition
with respect to variation in its forward rate constant. This is because the associated
transition flux and affinity are, respectively, monotonically increasing and
decreasing functions of the forward rate constant. In other words, there is a simple
trade-off between thermodynamic flux and force.

The Shannon information entropy of the enzyme model in Fig. 19.1 is defined
as

H ¼ �
X3

i¼1

pi lnðpiÞ; ð19:2:2Þ

where pi (i = 1…3) are probabilities that the enzyme is found in one of its
functional states (E, ES or EP, respectively). These probabilities are given by:

pi ¼
Xi½ �
E½ �t

ð19:2:3Þ

where [E]t is the total enzyme concentration and [Xi] are the concentrations of the
enzyme species E, ES or EP (for i = 1, 2, 3, respectively). It follows that Rpi = 1.
The pi are thus functions of the rate constants and of the concentrations [S] and [P].
Pettersson [16] showed that, at the early stages of evolution, rate constant of the
reaction ES ? E ? S was very high, suggesting that early enzymes were most
probably free molecules. In terms of the probabilities pi (i = 1…3) this means that
p1 % 1 and p2 = p3 % 0. According to Eq. (19.2.2) the associated Shannon
information entropy of the entire reaction is close to zero. Pettersson [16] also
claims that in early evolution, the metabolic flux of the internal transition
ES ? EP was very low due to the low value of its forward reaction constant, k2

+. In
view of the above trade-off between flux and force, this means that the low
metabolic flux of this transition was associated with a high thermodynamic force
(i.e. high affinity).

This situation would undoubtedly have been very unfavourable for enzyme
catalysis. In such a situation, progress in enzyme evolution would have occurred
through the spontaneous evolutionary increase in the value of the forward rate
constant k2

+. This would have caused an increase in the transition flux of reaction
ES ? EP (Eq. 19.2.4) and an increase in the associated entropy production, (until
the associated affinity had decreased too much). Because the Shannon information
entropy was close to zero at the early stages of evolution, and because the pi are
functions of k2

+, an evolutionary increase in k2
+ would have increased the Shannon

information entropy. In other words, due to the increase in k2
+ other functional

enzyme states could now also be occupied with higher probability.
This suggests that the reaction ES ? EP could have been an important link in

the entire enzyme reaction, as one of the main targets for evolutionary change.
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Another reason for the evolutionary importance of the ES ? EP transition is that,
in contrast to the other two transitions, ES ? EP does not depend on the substrate
or product concentrations. Since this transition involves the enzyme-mediated
decrease in activation energy for the formation of ES and for the emergence of EP,
it is expected to be the most sensitive to evolutionary pressure. Therefore we have
applied optimization principles to the ES ? EP transition, focusing on optimi-
zation of the forward rate constant k2

+ (although other rate constants are probably
appropriate candidates for optimization too).

It is important to note that enzyme reaction rate constants are not independent.
An increase in k2

+, as demanded by evolutionary pressure, must be followed by
changes in other rate constants. However, those changes are subject to certain
constraints. Based on previous work, we assumed the following key constraints:

Assumption 1 As mentioned above, Koverall
eq = [P]e/[S]e = K1

*K2K3
*. Because the

transition equilibrium constants can be further expressed by forward and backward
rate constants, a given set of kinetic parameters has to meet the same equilibrium
condition. Thus, in any steady state with constant non-equilibrium concentrations
of product [P] and substrate [S], Koverall

eq = K1
*K2K3

* is a fixed parameter, inde-
pendent of the catalytic properties of the enzyme [14].

Assumption 2 The second order rate constants k1
+* and k3

-* are not under evo-
lutionary pressure since their values are limited by the diffusion of substrate and
product molecules to the active site of the enzyme. The maximal values of these
two rate constants are usually taken as equal, i.e. k3

-* = k1
+* = constant [14].

Assumption 3 From assumption 2, only first order rate constants are subject to
evolution. Here we focused on the optimization of the internal enzyme transition,
taking k1

- and k3
+ as fixed constants [26].

Assumptions 2 and 3 imply that the equilibrium constants K1
* and K3

* are fixed
parameters. It then follows from assumption 1 that the equilibrium constant of the
internal transition K2 is also fixed. Overall, these assumptions imply that only the
rate constants k2

+ or k2
- can be targets of evolution. We chose k2

+ as the variable to
be optimized, with k2

- expressed as k2
- = k2

+/K2. The entropy production of the
internal enzyme transition and the Shannon information entropy of the entire
reaction can then be calculated as functions of the forward rate constant k2

+ (see
Sect. 19.2.2).

We did this for the three-state reversible enzyme reaction scheme of b-Lacta-
mase enzymes. b-Lactamase enzymes are interesting for three reasons. Firstly,
experimental kinetic studies suggest that these enzymes are almost fully evolved.
Secondly, the kinetics of these enzymes is well known. Thirdly, b-Lactamase
enzymes play an important role in the resistance of pathogens to b-lactam anti-
biotics [17]. Both MaxEP and MaxEnt principles were used to assess whether the
enzyme has approached a fully evolved state. However, fully evolved enzymes are
rare in nature, if they exist at all, and we do not expect to find more than an order
of magnitude agreement between predicted optimal rate constants and measured
rate constants.
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19.2.2 Entropy Production and Shannon Information
Entropy in the Three-State Enzyme Kinetic Scheme

Here we calculate the entropy production of the internal enzyme transition
ES$EP, and the Shannon entropy of the entire reaction, as functions of the
forward rate constant k2

+. The net metabolic flux for ES$EP is

J � d P½ �
dt
¼ kþ2 ES½ � � k�2 EP½ � ð19:2:4Þ

and the corresponding thermodynamic force (or affinity) is the difference in
chemical potentials between states ES and EP,

A23 ¼ RT ln

 

K2
ES½ �
EP½ �

!

ð19:2:5Þ

where R is the gas constant and K2 is the equilibrium constant for ES$EP. While
the overall thermodynamic force X is assumed to be constant, the affinity (19.2.5)
is a function of the concentrations [ES] and [EP].

The concentrations [E], [ES] and [EP] are calculated from the enzyme kinetic
equations

d E½ �
dt
¼ �kþ�1 S½ � E½ � þ k�1 ES½ � � k��3 P½ � E½ � þ kþ3 EP½ � ð19:2:6Þ

d ES½ �
dt
¼ kþ�1 S½ � E½ � � k�1 ES½ � � kþ2 ES½ � þ k�2 EP½ � ð19:2:7Þ

d EP½ �
dt
¼ kþ2 ES½ � � k�2 EP½ � � kþ3 EP½ � þ k��3 P½ � E½ �: ð19:2:8Þ

We assume that the enzyme reaction takes place in a non-equilibrium stationary
state with fixed, known concentrations of [S] and [P]. Summing Eqs. (19.2.6)–
(19.2.8) implies that the total enzyme concentration [E]t is constant, i.e. d[E]t/dt = 0
where

E½ �t¼ E½ � þ ES½ � þ EP½ �: ð19:2:9Þ

In this stationary state, the time derivatives on the left-hand sides of
Eqs. (19.2.6)–(19.2.8) are then zero. Equations (19.2.6)–(19.2.8) then form a
system of three equations in the three unknown stationary concentrations [E], [ES]
and [EP], whose solutions can be expressed in terms of [S], [P], [E]t and all the
rate constants. In these equations all parameters except k2

+ and k2
- are fixed. Since

the equilibrium constant K2 is also a fixed parameter, the rate constant k2
- is given

by k2
- = K2/k2

+. Thus, the solutions depend only on the forward rate constant k2
+,

and are given by
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E½ � ¼ E½ �t
Akþ2 þ B

Gkþ2 þ H
ð19:2:10Þ

ES½ � ¼ E½ �t
Ckþ2 þ D

Gkþ2 þ H
ð19:2:11Þ

EP½ � ¼ E½ �t
Ekþ2 þ F

Gkþ2 þ H
ð19:2:12Þ

where A = k3
+ ? k1

-/K2, B = k3
+k1

-, C = (k1
+*[S] ? k3

-*[P])/K2, D = k3
+k1

+*[S],
E = CK2, F = k1

-k3
-*[P], G = A ? C ? E, H = B ? D ? F.

The transition flux (J) and affinity (A23) as functions of k2
+ are then obtained by

substituting (19.2.11) and (19.2.12) into (19.2.4) and (19.2.5), and the associated
entropy production is then given from (19.2.1) by

rðkþ2 Þ ¼ R E½ �t
kþ2 ðDK2 � FÞ
K2ðGkþ2 þ HÞ ln K2

Ckþ2 þ D

Ekþ2 þ F

� �

: ð19:2:13Þ

Likewise, the Shannon information entropy as a function of k2
+ is obtained from

Eqs. (19.2.2), (19.2.3) and (19.2.10)–(19.2.12), giving

Hðkþ2 Þ ¼ �
1

kþ2 Gþ H

� �

ðkþ2 Aþ BÞ ln kþ2 Aþ B

kþ2 Gþ H

�� �

þðkþ2 C þ DÞ ln kþ2 C þ D

kþ2 Gþ H

� �

þ ðkþ2 E þ FÞ ln kþ2 E þ F

kþ2 Gþ H

� �� : ð19:2:14Þ

The optimal values of the forward rate constant k2
+ predicted by MaxEP and

MaxEnt are then obtained from the conditions

dr

dkþ2
¼ 0 ð19:2:15Þ

dH

dkþ2
¼ 0; ð19:2:16Þ

respectively.

19.2.3 Comparison with Experimental Results

In this section we compare experimental values of the forward rate constants k2
+ for

three types of b-Lactamase enzymes [17] with the optimal values predicted by
MaxEP and MaxEnt. Here we assume [E]t = 1 lM and [S] = 1,500 lM for all
three types of b-Lactamase enzymes. Other parameters are given in Table 19.1.
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Previous analysis indicated that all b-Lactamase reactions take place far from
equilibrium [26].

The comparison of observed and predicted values of k2
+ is presented in

Table 19.2.
The values of k2

+ predicted by MaxEP and MaxEnt are of the same order of
magnitude as the observed values. In all cases, observed values of k2

+ are higher
than those predicted by MaxEnt and lower than those predicted by MaxEP. These
results are reasonable given that the model neglects interactions between mole-
cules, while the Michaelis-Menten mechanism assumes very dilute solutions and
neglects macromolecular crowding and the gel-like state of water near hydrophilic
surfaces in living cells. These effects can significantly alter enzyme reaction rates,
as well as association and dissociation rates.

Our results using the parameter values in Table 19.2 also show that an evo-
lutionary tendency towards maximal entropy production (r), simulated by an
increase in the forward rate constant k2

+, would result in state probabilities
p2 = p3 % 0.5 and p1 % 0, consistent with theoretical results [15] showing that,
for nearly fully evolved enzymes, the condition k2

+ = k3
+ holds. Based on this

result, Christensen [17] also concluded that b-Lactamase enzymes are nearly fully
evolved enzymes.

Thus our theoretical predictions from MaxEnt are consistent with existing
theoretical and experimental studies. In a fully evolved enzyme, one might argue
that all functional states should be occupied with the same probability. There is no
reason why evolution would favour one functional state over another, because this
would limit the reaction rate. All reaction steps should be equally fast and this
would be achieved by a uniform probability distribution in a fully evolved state.
The Shannon information entropy H attains its maximum when probability values
are equal (p1 = p2 = p3 = 1/3) for the condition k1

*[S] = k2
+ = k3

+. When

Table 19.1 Model parameters values used for three types of b-Lactamase enzymes

Enzyme kþ�1 ¼ k��3
[l M-1 s-1]

k�1
[s-1]

kþ2
[s-1]

k�2
[s-1]

kþ3
[s-1]

K�1
[l M-1]

K2 K�3
[l M]

P½ �
[l M]

PC1 b-
Lactamase

22 196 173 1.3 96 0.11 133 4.4 7.9

RTEM b-
Lactamase

123 11,800 2,800 47 1,500 0.01 59 12 23

b-Lactamase I 41 2,320 4,090 141 3,610 0.018 29 88 95

Table 19.2 The comparison of experimental and predicted values of the forward rate constants
k2

+ for three types of b-Lactamase enzymes

Enzyme k2
+ [s-1] (MaxEP) k2

+ [s-1] (MaxEnt) k2
+ [s-1] (Observed)

PC1—b-Lactamase 281 94.5 173
RTEM b-Lactamase 4,034 1,091 2,800
b-Lactamase I 6,669 3,548 4,090
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constraints are introduced (such as experimentally measured rate or equilibrium
constants) the optimal rate constants lead to lower maximal H or r values.

19.3 The Five-State Model for Bacteriorhodopsin
Photosynthesis

In this section we explore whether MaxEnt and MaxEP can be applied to bioen-
ergetics at the next level of complexity beyond enzymes in solution. Most enzymes
important in free-energy transduction are integral membrane proteins embedded in
topologically closed membranes. Such enzymes can be conveniently classified into
primary and secondary proton pumps. The former can be involved in respiration or
photosynthesis, while the latter (e.g. ATP synthase) use the proton motive force
created by the primary pumps to drive ATP synthesis. In this section we consider a
proton pump involved in photosynthesis, while ATP synthase will be considered in
Sect. 19.4.

Firstly, we address the question of whether photosynthesis is open to thermo-
dynamic analysis. Some scientists have answered in the negative [27] and have
even claimed that photosynthesis violates the second law of thermodynamics [11].
In contrast, Meszena and Westerhoff [28] developed a thermodynamic description
of the light absorption transition during photosynthesis. We have also pointed out
that the separation of the light and dark reactions is an essential step [29] which
allows the concepts from enzyme kinetics and irreversible thermodynamics of the
previous section to be applied to thermodynamic analysis of the photocycle here.

Bacteriorhodopsin (bR) from Halobacterium salinarium is probably the sim-
plest photosynthetic system where free-energy transduction theory and experi-
ments may meet in the future. However, there is still a lack of consensus as to the
best kinetic model for the bR-photocycle [30, 31]. Here we used the five-state
kinetic model [29] also used by Juretić and Westerhoff [32].

There are seven possible transitions and six cycles in this model, but only four
internal transitions (with forward rate constants k1–k4) are directly connected with
the proton uptake and export responsible for generating proton motive force
(Fig. 19.2, bold arrows). Stationary state probabilities, state transition fluxes J and
corresponding affinities A are all functions of the rate constants and may be cal-
culated using Hill’s diagram method [27]. Only the forward rate constants k1–k4

are optimized. The application of the generalized Kirchhoff’s laws for enzyme
kinetic schemes (junction and loop rules) gives relationships between fluxes and
affinities. The latter are related to equilibrium constants. Among the affinities, we
may single out the primary and secondary force. Kirchhoff’s loop law applied to
the light-activated cycle of excitation and direct relaxation gives the primary force

Xprim ¼ RT ln
a01kd

a10k�d

� �

ð19:3:1Þ
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where a and k are the relevant rate constants as shown in Fig. 19.2. Bacterio-
rhodopsin is a light-driven proton pump, which transfers protons from the space of
low proton concentration (cytoplasmic side of membrane) to the space of high
proton concentration (extracellular side), thereby creating the proton motive
(secondary) force Xsec. Kirchhoff’s loop rule applied to the cycle containing proton
release and proton uptake transitions gives this as

Xsec ¼ DlHþ ¼ FDWþ RT ln Hþin
� ��

Hþout

� �� �
; ð19:3:2Þ

where F is the Faraday constant, while DW is the transmembrane potential. We fix
the ratio between photon energy and external temperature at hm/kBT = 84.67 and
the secondary force at either the commonly measured value Xsec = -

18.84 kJ mol-1 (-195 mV) or the maximal observed [33] value Xsec = -

26.82 kJ mol-1 (-278 mV). Equilibrium constants in productive transitions B1 to
B4 (Fig. 19.2) are assumed to be high so that a forward net flux for these tran-
sitions is preferred.

The optimization procedure consisted in searching for models that have free-
energy transduction efficiency greater than 10 % and maximal entropy production
with respect to each of the four forward rate constants k1–k4. The optimal values of
these rate constants are found iteratively. When the lower value of proton motive
force was used (Xsec = -195 mV), the optimal rate constants from seven opti-
mized kinetic models (Table 2 in the [29]) fell within the following ranges: k1

from 109 to 1010 s-1, k2 from 103 to 107 s-1, k3 from 102 to 103 s-1 and k4 from
102 to 103 s-1. The light absorption rate in these models varied from a01 = 20 to
100 s-1, while the slip rate constant (for unproductive return to the ground state)
varied from 102 to 106 s-1. Due to the non-linear flux-force relationships
(Eqs. 19.3.1 and 19.3.2), and in spite of the slip transition presence, the affinity

Fig. 19.2 The five-state kinetic model for the bacteriorhodopsin photocycle. The five states are
spectroscopic states bR570 (the ground state), bR* (excited state), L550, M412 and N550. Proton
transfer is assumed to take place through the B2 transition (proton release to the extracellular
space) and B4 transition (proton absorption from the cytoplasmic space). The slip transition S is a
non-productive transition

372 A. Dobovišek et al.



transfer efficiency and quantum yield had high optimal values of[95 and[89 %,
respectively, in all of the seven models. This result implies that most (about 90 %)
of the thermodynamic force and flux is channelled through the charge separation
pathway, representing an enormous advantage for the non-linear mode of opera-
tion, which overcomes the impedance matching requirement derived from the
maximum power transfer theorem [34]. The latter theorem restricts the affinity
(power) transfer efficiency to 50 % in the linear mode of operation.

In order to calculate the affinity transfer efficiency and quantum yield, we used
the chemical analogue of Kirchhoff’s laws for the enzyme ‘‘circuit’’ of functionally
important states. This was done first for a three-state toy model for photosynthesis
[29] consisting of ground state (P), excited state (P*), and charge separated state
(P+) connected with light-activated transition (L) between states P and P*, non-
productive relaxation (D) between states P* and P, and charge separation transi-
tions B1 and B2 between states P*–P+ and states P+–P respectively. From [29], the
corrected Eq. (22) for total entropy production r of the three-state model reads:

rT ¼ APP� ðLÞJðLÞ þ AP�PðDÞJðDÞ þ AP�PþðB1ÞJðB1Þ þ APþPðB2ÞJðB2Þ

The corrected1 Eq. (24) from [29] are applications of the Kirchhoff’s loop rule to:

a. the ‘‘light-cycle’’ with ‘‘light-force’’ XL [28], and the maximal free-energy Aoc

that the system can absorb while in chemical equilibrium with radiation at
higher effective temperature:

AP�PðDÞ ¼ Aoc � XL

b. the charge separation (productive) pathway where the secondary force Xsec is
generated:

AP�PþðB1Þ þ APþPðB2Þ � AP�PðDÞ ¼ Xsec

The affinity transfer efficiency is defined as:

AP�PðDÞ=Aoc ¼ 1� XL=Aoc

in which AP*P(D) is the sum of the affinities in the charge separation pathway. The
quantum yield is calculated as J(B2)/J(L) in the three-state model, and as J(B4)/J(L)
in the five-state model.

Kirchhoff’s rules may be applied similarly to the five-state model (Fig. 19.2).
Our five-state model for the bacteriorhodopsin photosynthesis can be compared
with the similar kinetic model bR* ? L?M ? O?bR that also has four pro-
ductive transitions in the fast decay route of the bR-photocycle [35]. Experimental
values for the forward rate constants associated with these four internal transitions
depend on the experiments and the models used to interpret them:

1 Expressions given in [29] involve printing errors.
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(k1)exp = 1.67 9 105 s-1, (k2)exp = 3.03 9 104 s-1, (k3)exp = 556 s-1, (k4)exp =

233 s-1.
When the lower value for the proton motive force is used (Xsec = -195 mV),

the optimal rate constants from the optimized kinetic models (Table 2 in the Ref.
[29]) span the range of experimental values. The exception is the much shorter
time constant for the first forward transition, for which the optimal k1 lies in the
range from 109 to 1010 s-1 in all such models. However, the relaxation of the
excited state to the first spectroscopically detectable subsequent state (K590) indeed
happens in nanoseconds or picoseconds [36] rather than microseconds.

A maximal proton motive force of about 280 mV has been achieved in
experiments [33]. When this value is used (Xsec = -278 mV) in the optimized
model of bacteriorhodopsin light cycle (Fig. 19.3), we obtain an optimal overall
free-energy transduction efficiency that exceeds 13 %. As in most models of the
bacteriorhodopsin photocycle [37], here we have assumed that the first and the last
relaxation steps are essentially irreversible, with high equilibrium constants.

The optimal free-energy transduction efficiency was calculated as:

gopt ¼ �
XsecJðB4Þ
AocJðLÞ ð19:3:3Þ

in which the optimal values for the fluxes were used.
The optimal values for the recovery rate constant k4 predicted by MaxEP and

MaxEnt differ by a factor of about two. However, it should be noted that more up-
to-date kinetic schemes for bacteriorhodopsin light-activated cycle could also be
used (e.g. including the K590 spectroscopic state). More important than the com-
parison of measured and predicted kinetic constants, however, is our MaxEP
prediction (see also [29] and the chapter by Juretić and Županović in [38]) of a
wide range of forward kinetic constants values in the descending order from
109 s-1 to about 102 s-1. This result agrees with experimental observations of the
slowing down of the bacteriorhodopsin light cycle in all subsequent steps. We

Fig. 19.3 The dependence of
the entropy production r and
Shannon’s information
entropy H on the recovery
rate constant k4. Maximal
values for r and H
correspond to optimal k4

values of 177 and 81 s-1

respectively. Other optimal
forward constants in this case
are k1 = 3.32 9 109 s-1,
k2 = 9.2 9 103 s-1 and
k3 = 1,570 s-1
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suspect that this MaxEP-predicted hierarchy of optimal kinetic constants will
emerge regardless of the kinetic scheme used for bacteriorhodopsin photocycle,
although this conjecture remains to be tested.

So far we have applied MaxEP and MaxEnt independently. The question of
how to apply these principles simultaneously in bioenergetics is the subject of the
next section.

19.4 MaxEnt, MaxEP and the Functional Design
of the Rotary Enzyme ATP Synthase

ATP synthase is an important biomolecular nanomotor. From an evolutionary
viewpoint it is a very ancient secondary proton pump, which exploits the proton
motive force created by respiration or photosynthesis to drive the synthesis of
adenosine triphosphate (ATP), the most commonly used ‘‘energy currency’’ in
living cells. ATP synthase is embedded in the inner membrane of mitochondria or
in the thylakoid membrane of chloroplasts. ATP is formed from adenosine
diphosphate (ADP) and inorganic phosphate (P), assuming that activation energy
is available. This activation energy is stored and released as elastic energy in the
stalk-like axle of the ATP synthase nanomotor. The rotary mechanism is well
understood [39]. The stator is an ensemble of three structural subunits. Translo-
cation of protons through this protein, driven by the transmembrane electro-
chemical proton gradient, is accompanied by a stepped rotation of the stalk-like
axle. Each 120� clockwise (or counter-clockwise) rotation is accompanied by the
synthesis (or hydrolysis) of ATP. Here we will consider only the ATP synthase of
chloroplast thylakoid membranes.

The number of protons translocated through the thylakoid membrane that is
necessary for the synthesis of one ATP molecule is called the gearing ratio, g �
Hþ=ATP: The gearing ratio g is related to the free energy E input per revolution,

E ¼ 3gDlHþ ; ð19:4:1Þ

where

DlHþ ¼ 2:3RTDpH � FDW ð19:4:2Þ

is the transthylakoid proton motive force. F is the Faraday constant, while DpH
and DW are the transmembrane differences in pH and electric potentials, respec-
tively. The 120� stalk rotation has a short ð� 2msÞ pause, called the catalytic
dwell, at a certain relative angular position of stalk, denoted by j (with 0� j� 1).
The catalytic dwell is so-called because it is associated with the internal transition
(synthesis or hydrolysis of ATP) of ATP synthase. In accordance with our
assumptions (see Sect. 19.2), this internal transition is most sensitive to evolution.
Therefore we take j as the variable that is optimised during evolution. The free
energy ðEÞ partly depends on external conditions (the difference between pH
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factors outside and inside of the membrane), and we take this to be an adjustable
parameter as explained below.

We describe the synthesis and hydrolysis of ATP using the five-state kinetic
model shown in Fig. 19.4. The problem can be solved analytically, either by
solving the steady-state rate equations directly [40] or by using Hill’s diagram
method [27]. Using experimental data obtained by Pänke and Rumberg [40, 41],
we calculated the state probabilities pEðijjÞ; the forward fluxes,

JEþðjÞ ¼ kEsynðjÞpðO�P�ADP jj ÞE ð19:4:3Þ

and the backward fluxes

JE�ðjÞ ¼ kEhydðjÞpðO�ATP jj ÞE ð19:4:4Þ

Rate coefficients kEsynðjÞ and kEhydðjÞ are calculated within the transition state
theory [42] and are given by

kEsynðjÞ ¼ k0
syn exp jE=3RTð Þ; ð19:4:5Þ

kEhydðjÞg ¼ k0
hyd exp �ð1� jÞE=3RTð Þ: ð19:4:6Þ

The values of specific binding change constants k0
syn ¼ 1:15ffi 10�3s�1 and

k0
hyd ¼ 4:5ffi 105s�1 are taken from [40, 41]. Under controlled experimental con-

ditions, the enzyme was illuminated in the presence of 1 mM ADP, 1 mM P and
10 lM ATP at T = 300 K [40, 41]. Fixed kinetic rate constants are given in the
legend of Fig. 19.4.

The number of ATP molecules produced per enzyme per second is then

JEðjÞ ¼ JEþðjÞ � JE�ðjÞ: ð19:4:7Þ

O

O*PO*P*ADP

O*ADP

O*ATP
k -ATP
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k-ADP
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Fig. 19.4 Kinetic model of ATP synthase cycle for transitions between enzyme open (O) states.
O*P, O*ADP, O*ATP and O*P*ADP are states which bind P, ADP, ATP, and ADP with P,
respectively. Rate constants are expressed in same units when second-order rate constants are
multiplied by substrate concentrations: kATP = 20.8 s-1, k-ATP = 270 s-1, kADP = 8,900 s-1,
k-ADP = 490 s-1, kP = 810 s-1 and k-P = 2,030 s-1
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The Shannon information entropy of state probabilities, and entropy production
of the internal enzymatic transitions, are

HE jð Þ ¼ �
X5

i¼1

pE i jjð Þ log pE i jjð Þ; ð19:4:8Þ

rE jð Þ ¼ RJEðjÞ log
JEþðjÞ
JE�ðjÞ

; ð19:4:9Þ

respectively.
Our hypothesis is that the information entropy HðjÞ and entropy production

rðjÞ of a fully evolved enzyme are maximized at a common value of j; the
relative angular position of the catalytic dwell. That is,

oHEðjÞ
oj

¼ 0; ð19:4:10Þ

orEðjÞ
oj

¼ 0: ð19:4:11Þ

In order to obtain a solution, we adjust the free energy input E until there is a
common value of j that satisfies both Eqs. (19.4.10) and (19.4.11). In other words,
we are simultaneously optimizing j and E:

The numerical calculations are shown in Fig. 19.5. The solution yields optimal
values jopt ¼ 0:598 and Eopt ¼ 161:4 kJ=mol: The former value is very close to the
empirical estimate jopt ¼ 0:6 [40]. From Eq. (19.4.1), Eopt ¼ 161:4 kJ=mol cor-
responds to an optimal gearing ratio equal to the observed value g ¼ 4 in chlo-
roplasts [43] and to optimal proton motive force of DlHþ ¼ 13:4 kJ=mol (2:43 pH

difference equivalent) when information entropy is maximal with respect to DlHþ

too [42].
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In summary, our calculations show that ATP synthase is a fully evolved enzyme
in the sense of MaxEnt and MaxEP. It is also interesting that the optimal solution
of MaxEnt and MaxEP coincides with an inflection point of the curve of ATP
synthesis rate ðJEÞ versus both proton motive force and j (Fig. 19.5 and [42]); this
feature allows fast metabolic control with respect to short-term changes in proton
motive force, as well as a high optimal output/input free energy ratio of 69 % [42].

MaxEnt is a powerful inference algorithm for solving problems with incomplete
available information. In physics, the whole of equilibrium statistical physics can
be derived from this principle [44, 45]. At first sight, it might seem that biological
evolution, by building ever more structurally complex macromolecules (i.e. of low
configurational entropy), has proceeded in the direction of entropy decrease rather
than entropy increase. But when we look at the functional design of ATP synthase,
as we have done here, we find that biological evolution is consistent with MaxEnt.
There is no contradiction with the second law. The evolutionary optimization of
ATP synthase can be interpreted as selection of the most probable functional
design within the constraints considered here.

19.5 Discussion and Conclusions

In this chapter we asked: which optimality principles (if any) govern biological
evolution, and in particular the evolution of enzyme kinetics? Might such a
selection principle be found in physics? One of the first studies in this direction, by
Prigogine and Wiame [46], correctly noted that biological processes are irre-
versible, and as such should be describable by irreversible thermodynamics. Since
irreversible processes are characterised by entropy increase, entropy production
was identified as a fundamental quantity in the description of biological processes,
leading to the introduction of the concept of dissipative structures [1, 2, 47].

There were many attempts to extend Prigogine’s theorem of minimum entropy
production (MinEP) [1] from linear non-equilibrium thermodynamics to the realm
of biological processes which, as a rule, are nonlinear and take place far from
equilibrium [2]. However, Ross and Vlad [7] showed that Prigogine’s MinEP
principle did not apply far from equilibrium. Nevertheless, the question remains
whether some other variational principle involving entropy production applies far
from equilibrium. In the context of enzyme catalyzed reactions, we have shown
that biological systems conform more closely to MaxEP than MinEP. From a
physical stand point, MaxEP also seems more appropriate to the evolution of
enzyme kinetics and bioenergetics than other principles such as maximum meta-
bolic flux, because MaxEP takes into account the fact that evolution acts on
thermodynamic forces (affinities) as well as fluxes.

One of our key results is that a unique maximum exists in the entropy pro-
duction of an enzyme transition ij such that the associated flux and thermodynamic
force are, respectively, increasing and decreasing functions of the forward rate
constant kij

+ resulting in a trade-off between flux and force.
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The fact, that the optimization of entropy production gives a more complete
understanding of enzyme evolution than the maximization of metabolic flux, is
also reflected mathematically. Specifically, the optimization of entropy production
could be performed with a lower number of starting assumptions than the maxi-
mization of metabolic flux and thus gives more complete physical information.

The MaxEP principle also provides a specific prediction for the metabolic flux
(substrate conversion into product) and transition affinity. This prediction can be
understood from Fig. 19.6, where metabolic flux, affinity and entropy production
are qualitatively represented as functions of the forward rate constant k2

+. As
discussed in Sect. 19.2.1, in early enzyme reactions low metabolic fluxes were
governed by high thermodynamic forces, which does not seem to be beneficial for
enzyme kinetics. As Fig. 19.6 also shows, early enzymes were operating in the
regime of low entropy production. Spontaneous evolutionary increase in the for-
ward rate constant k2

+ leads to higher metabolic flux, lower affinity and higher
entropy production. According to our hypothesis, evolutionary pressure on
enzymes is directed towards the state of maximum entropy production, which is
achieved when k2

+ = k2
+

opt (Fig. 19.6). Our model results presented in Sect. 19.2.3
(Table 19.2) show that b-Lactamase enzymes are indeed very close to the optimal
state with maximal entropy production. However, since the metabolic flux (J) and
transition affinity (A23) are, respectively, monotonically increasing and decreasing
functions of k2

+ we see that, close to the optimal state of maximum entropy pro-
duction, J and A23 are already close to their maximal and minimal values,
respectively, which are achievable during evolution. Higher or lower values of flux
and affinity can also be achieved, but only with further substantial increase in k2

+

(several orders of magnitude) above k2
+

opt.
All this leads us to the following hypothesis: ‘‘A fully evolved kinetic scheme

of an enzyme is characterized by maximal entropy production (MaxEP prediction)
for functionally important internal enzyme transitions. A broad distribution of
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functionally important enzyme states is then established such that Shannon
information entropy achieves the maximal value possible within external con-
straints (MaxEnt prediction).’’

The results described in this chapter point to MaxEP as a relevant principle for
the evolution of enzyme kinetics, and for biological evolution more generally. The
intensive free-energy transduction that occurs during bacterial photosynthesis and
respiration is more consistent with MaxEP than MinEP, as discussed in [29]. This
has led us to postulate the Evolution Coupling Hypothesis [38] that biological
evolution accelerates the thermodynamic evolution of life’s environment, and that
this holds at all levels of biological organization, from enzymes to biosphere.

The values of the forward rate constant k2
+ predicted by the MaxEP and MaxEnt

principles for b-Lactamase enzymes are approximately equal. For the bacterio-
rhodopsin kinetic scheme, the MaxEnt- and MaxEP-predicted values for the
relaxation constant to the ground state differ by a factor of two (Fig. 19.2) for a
proton motive force Xsec = -278 mV but by only 5 % for Xsec = -195 mV (not
shown). Is this mere coincidence or does it reflect a deeper cause? For the case of
ATP-synthase, MaxEnt and MaxEP together predict the optimal relative angular
position of the catalytic dwell and gearing ratio in remarkable agreement with
experiments [42]. It thus seems desirable to extend the application of these two
principles to other bioenergetic systems.

Reaction cycles abound in biology and bioenergetics. For example, many types
of molecular nanomotors, essential for cell functioning, operate in a cyclic manner,
which should be amenable to analysis similar to that presented here; other schemes
such as the Krebs cycle may require modification of these methods. In any case,
we anticipate that future research will involve the profound theoretical break-
throughs that have been achieved in system biology during the last 20 years [23] in
some combination with MaxEP and MaxEnt. In this way we may hope to further
elucidate the connection between statistical physics and biological evolution.
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kinetics and the maximum entropy production principle. Biophys. Chem. 154, 49–55 (2011)

27. Hill, T.L.: Free Energy Transduction in Biology. The Steady State Kinetic and
Thermodynamic Formalism. Academic Press, New York (1977)

28. Meszena, G., Westerhoff, H.V.: Non-equilibrium thermodynamics of light absorption.
J. Phys. A: Math. Gen. 32, 301–311 (1999)
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42. Dewar, R.C., Juretić, D., Županović, P.: The functional design of the rotary enzyme ATP
synthase is consistent with maximum entropy production. Chem. Phys. Lett. 430, 177–182
(2006)

43. Turina, P., Samoray, D., Graeber, P.: H +/ATP ratio of proton transport-coupled ATP
synthesis and hydrolysis catalysed by CF0F1-liposomes. Eur. Mol. Biol. Org. J. 22, 418–426
(2003)

44. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)
45. Jaynes, E.T.: Information theory and statistical mechanics II. Phys. Rev. 108, 171–190 (1957)
46. Prigogine, I., Wiame, J.M.: Biologie et thermodynamique des phénomènes irréversibles.

Experientia 2, 451–453 (1946)
47. Kondepudi, D., Prigogine, I.: Modern Thermodynamics: From Heat Engines to Dissipative

Structures. Wiley, Chichester (1998)

382 A. Dobovišek et al.



Chapter 20
Entropy Production and Morphological
Selection in Crystal Growth

Leonid M. Martyushev

Abstract This chapter discusses morphological transitions during non-
equilibrium crystallization and coexistence of crystals of different shapes from the
viewpoint of the maximum entropy production principle (MEPP).

Notation
Symbol Meaning

Roman Symbols
D Diffusion coefficient
V Local velocity of the crystal
k, l Wave-numbers of perturbing modes
u Solute concentration
u1 Equilibrium solute concentrations near the crystal surface
u2 Density of the crystal
R Size of a crystal
R* Critical radii of nucleation of a crystal
Rcrit Critical size for instability of a crystal
Rmax Maximal size for instability of a crystal (spinodal)
Rmin Minimal size for instability of a crystal (binodal)
REP

min Minimum critical size, which was calculated using entropy production

Greek Symbols
a Dimensionless parameters characterizing the growth regime
b Coefficient of attachment kinetics

L. M. Martyushev (&)
Institute of Industrial Ecology, Russian Academy of Sciences, 20A Sophy Kovalevskaya
Street, Ekaterinburg, Russia 620219,
e-mail: Leonidmartyushev@gmail.com

L. M. Martyushev
Ural Federal University, 19 Mira Street, Ekaterinburg, Russia 620002,

R. C. Dewar et al. (eds.), Beyond the Second Law,
Understanding Complex Systems, DOI: 10.1007/978-3-642-40154-1_20,
� Springer-Verlag Berlin Heidelberg 2014

383



d Initial amplitude of perturbation
R Local entropy production
X The equation of the crystal surface

Subscripts
C Cylindrical
S Spherical

This chapter discusses morphological transitions during non-equilibrium crystal-
lization and coexistence of crystals of different shapes from the viewpoint of the
maximum entropy production principle (MEPP). We advance the following
hypothesis: a necessary condition for a morphological transition is a larger entropy
production in the final non-equilibrium phase, and equality of the entropy pro-
ductions of two non-equilibrium phases is a condition for their coexistence. The
basic results are as follows. (1) We explain the experimentally observed phe-
nomenon of coexistence of morphological phases during non-equilibrium crys-
tallization by metastability of crystallization growth regimes. (2) We prove by
analytical and numerical methods that metastable regions limited by a minimum
size (binodal) and a maximum size (spinodal) exist for simple morphological
transitions during non-equilibrium crystallization. (3) Considering an agreement
between analytical and numerical calculations, we infer that the maximum entropy
production principle allows finding the binodal of a morphological transition
during non-equilibrium crystallization.

20.1 Morphological Stability and the Coexistence
of Morphological Phases

In the non-equilibrium phenomenon of crystal growth from a supersaturated/
supercooled solution/vapor/melt, a regular-shaped nucleus starts distorting and
transforming into, for example, dendrite structures upon reaching a certain size.
The formation of snowflakes (ice crystals) from supersaturated water vapour
(Fig. 20.1) is the most common example of non-equilibrium crystal growth. Such
changes from one crystal shape to another during the growth process signal a loss
of morphological stability of the initial shape.

This loss of morphological stability arises as follows. In the case of growth
under condition very close to equilibrium (as it is called equilibrium growth), the
external shape (morphology) of crystals is determined by a minimum of the sur-
face energy, and as a result crystals have a cylindrical (spherical) or a regular
polyhedral shape. Such a perfect shape rarely persists in the process of growth
under conditions far from equilibrium (as it is called non-equilibrium growth).
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Indeed, the solute concentration becomes highly inhomogeneous around the
crystal, which grows relatively rapidly (the concentration rapidly increases with
distance from the crystal surface). A distortion appearing for one reason or another
on the surface (e.g., due to an external mechanical disturbance) will find itself in a
region of greater solute concentration and can therefore grow at a faster rate. On
the other hand, such a distortion has greater curvature, which results in a decrease
of the local supersaturation near this irregularity (because the equilibrium con-
centration of solute is dependent on surface energy and curvature). Thus, two
competing effects are at play. Diffusion processes in the solution promote the
growth of the irregularity and so contribute to instability of the crystal shape,
whereas surface phenomena contribute to its stability. The stabilising surface
phenomena overcome the destabilising diffusion processes for small crystal sizes,
but not for large crystal sizes. There is therefore a critical size (Rcrit) beyond which
a crystal morphology becomes unstable.

The results of numerous experiments and computer simulation [1–12] have
shown that in some case of non-equilibrium crystallization the coexistence of
different crystal growth morphologies is possible. Figure 20.2 shows two examples
of the coexistence observed in experiments on the crystallization of ammonium
chloride from an aqueous solution. The studies [12–14] indicate that the transition
from one morphology to another under changing conditions (e.g., the extent of
supercooling/supersaturation) can involve discontinuities in both the growth rate
and its slope. On this basis, an analogy between equilibrium phase diagrams and
morphological diagrams can be drawn, and the notions of morphological transi-
tions of the first and the second order can be introduced [14]. For example,
Shibkov and co-authors [12] have investigated the non-equilibrium growth of ice
in a film of supercooled water. In the case of supercooling by 7.5 �C, these authors

Fig. 20.1 Timeseries of a growing snow crystal. Reproduced with permission from
www.its.caltech.edu/*atomic/snowcrystals (Kenneth G. Libbrecht) where details of the exper-
iment and other splendid photos of snow crystals can be found
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have found a morphological transition of the first order from needle-shaped ice
crystals to the so-called plate ice crystal.

The important question arising in theory of morphology transitions is as fol-
lows: what can be considered as a principle for a morphology selection? The
hypothesis that maximum entropy production can determine this selection far from
equilibrium is proposed [13, 14]. A considerable development of this idea has been
recently accomplished. Brief and accessible presentation of these results is the
objective of this chapter.

Fig. 20.2 Structures observed during crystallization of ammonium chloride from an aqueous
solution initially saturated at 40 �C. a Coexistence of dendrites and seaweeds; b Coexistence of
dendrites of 110h i and 100h i type
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20.2 Classical Stability Analysis and Numerical Solution
of a Simple Model

Here we consider the simplest (but, equally, the most mathematically developed)
model used for studying the above phenomena for almost half a century [15, 16].1

The following approximations are used: quasi-stationarity of the growth process
(valid at low supersaturation); isotropy of surface attachment kinetics and surface
tension, and an initially cylindrical (C) or spherical (S) morphology. The mathe-
matical representation of the problem is as follows:

r2u ¼ 0; ð20:1Þ

DrnujX¼ bðu� u1ÞjX; ð20:2Þ

uðr1Þ ¼ u1; ð20:3Þ

V ¼ D

u2 � u
rnu

�
�
�
�
X

; ð20:4Þ

The first equation is the Laplace equation for a solute concentration u (u is a
function of cylindrical or spherical coordinates). The second equation defines the
solution concentration at the crystal boundary under arbitrary attachment kinetics.
Here D is the diffusion coefficient; b is the coefficient of attachment kinetics; u1 is
the equilibrium solute concentrations near the crystal surface; X is the equation of
the crystal surface; rn is the component of the nabla operator normal to the
surface. The third equation is the boundary condition for the solute concentration
at a distance r? from a crystal (it is constant and is equal to u?); r? is finite for
cylindrical and infinite for spherical crystal morphology. The Eq. (20.4) defines the
local velocity of the crystal V. Here u2 is the density of the crystal.

Stability analysis are traditionally performed using perturbations of the crystal
surface by single harmonics of initial amplitude d, with equations (20.1)–(20.4)
being used to determine the critical size of the crystal at which the perturbation
amplitude begins to grow. Thus, the critical size of a crystal (Rcrit) is the main
characteristic of a morphological transition. If we assume that d is infinitely small
and limit ourselves to the linear perturbation theory, the critical sizes for instability
are known for the growth of a spherical RS

max and a cylindrical RC
max crystal2

[15–20]. These critical sizes (normalized by the critical radius (size) of homoge-
neous nucleation3), are as follows:

1 It is only in this approximation that the analytical solutions can be advanced sufficiently far.
2 Superscript ‘‘Max’’ refers the fact that this is the largest possible critical size; the actual critical
size will be smaller under finite-amplitude perturbation.
3 Above this size the crystal itself growth and below this size it shrinks.
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Rmax
S ¼ ð1þ 0:5ðlþ 1Þðlþ 2ÞÞ

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2aS
ðlþ 1Þðlþ 2Þ

ð1þ 0:5ðlþ 1Þðlþ 2ÞÞ2

s" #

;

ð20:5Þ

Rmax
C ¼

1þ Akkðk þ 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Akkðk þ 1Þð Þ2þ4aCkðk þ 1Þ

q

2
; ð20:6Þ

where aS = D/(bRS
*) and aC = D/(bRC

* ) are dimensionless parameters character-
izing the growth regime (diffusion-limited at small values, and surface-limited
phenomena at large values); Ak is a dimensionless parameter related to r?; l and
k are wave-numbers of perturbing modes; RS

* and RC
* are critical radii of nucleation

of spherical and cylindrical crystals.
Formulas (20.5)–(20.6) fully determine stability of growing spherical and

cylindrical particles with respect to infinitely small perturbations. Using the ter-
minology available in physics of equilibrium phase transitions, these sizes can be
thought of as spinodals of morphological transitions.

The above linear analysis says nothing about what will happen if the pertur-
bation amplitude d is finite. To address this shortcoming, a weakly non-linear
analysis (to third order in d) of Eqs. (20.1)–(20.4) for a cylindrical crystal has been
made [21–25]. It was found that the critical size for instability (Rcrit) decreases as
the initial perturbation amplitude d is increased (and, in some cases, reaches a
constant nonzero value). The results of this weakly non-linear analysis hold for
relatively small perturbation amplitudes. The behavior of Rcrit for arbitrary-
amplitude perturbations can only be understood from a numerical solution of
Eqs. (20.1)–(20.4).

This numerical approach to the study of morphological stability under arbitrary-
amplitude perturbations has been investigated in work by the present author and
colleagues [26–28]. Our calculations were performed using a finite element
method. Equations (20.1)–(20.4) were solved numerically for growing cylindrical
and spherical crystals. Perturbations were imposed as cosine functions in the first
case and axial-symmetric spherical functions in the second case. The results of the
above linear and third-order non-linear analyses were used to check the algorithm
for low-amplitude perturbations. The computed dependence of the critical size Rcrit

on the perturbation amplitudes d for the cylindrical (Fig. 20.3) and spherical
problems were qualitatively similar [27, 28]. We found that for any growth regime
(from diffusion-limited to surface-limited) and for any modes of the initial har-
monic perturbations, the dependences of Rcrit on d are similar and have two
characteristic specific points: at d ? 0 (where Rcrit = Rmax) and a minimum point
(where Rcrit = Rmin). While the first point (RC

max—in Fig. 20.3) has been well-
studied in analytical terms by methods of classical linear analysis for stability
[Eqs. (20.5) and 20.6], the presence of the minimum point (RC

min in Fig. 20.3) is an
interesting and non-trivial result.

The signification of this minimum for the morphological stability of crystal may
be understood as follows. Consider a growing crystal of cylindrical shape. Assume
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that it is growing in a solution subject to perturbations of a certain wave-number
k and an arbitrary amplitude d. Then, in accordance with the results shown in
Fig. 20.3, the loss of stability and the transition to a new growth morphology first
takes place at some critical size RC

min corresponding to the minimum in the
dependence of Rcrit on d which occurs at some value d = dmin. If the amplitude of
the perturbations is reduced to a value d\ dmin, the critical size for instability
(Rcrit) will increase (corresponding to points in Fig. 20.3 lying to the left of the
minimum).4 Thus, the transition to a new growth morphology can be observed in
the range RC

min \ R \ RC
max depending on the amplitude of perturbations. This

range will be referred to as a metastable region by analogy with the theory of
equilibrium phase transitions.

Figure 20.4 shows how the extent of the metastable region depends on the
growth regime at different harmonics (i.e. different perturbation wave-number k).
In the diffusion-limited regime a\ 1, the metastable regions corresponding to
different harmonics do not intersect. In the intermediate regime (1 \ a\ 10) the
minimum critical size (RC

min) of the harmonic k ? 1 and the maximum critical size
(RC

max) of the harmonic k approach each other, and at a[ 10 they intersect. As a
result, the metastable regions overlap at adjacent harmonics. If a[ 100 (in the
surface-limited regime), three or more metastable regions can intersect. Therefore,
in the intermediate and surface-limited regimes of growth in a medium with

C=100

RC
min

RC
max

R
cr

it

C=0.1

R
cr

it

Fig. 20.3 For cylindrical crystals, the dependence of the critical size for morphological
instability (Rcrit) on the perturbation amplitude (d) in two growth regimes (aC) and perturbation
modes (k). The points are numerical solution of Eqs. (20.1)–(20.4); the solid lines are cubic
polynomial interpolations

4 In line with the terminology accepted in the theory of equilibrium phase transitions, it is
reasonable if the calculated minimum critical size RC

min is called, by analogy, a binodal, and the
stability size RC

max, which was observed when the perturbation amplitude was almost zero, is
termed a spinodal of a non-equilibrium transition.
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perturbations of different amplitudes (d) and wave-numbers (k), a large number of
crystals of different shapes—different morphological phases—can coexist and
develop from nuclei.

To take a particular example, suppose we have a number of cylindrical crystals
growing in a medium with fluctuations at k C 4 of arbitrary amplitude d, leading
to distortions of the crystal surface. We shall assume that large amplitude per-
turbations are rarer than small amplitude perturbations. Let the physico-chemical
properties of the solution and growing crystal correspond to the growth regime
aC = 100. Then the growth of the crystals follows a straight line CE (Fig. 20.4a).
Up to the point C, all crystals have a cylindrical shape (Fig. 20.4b). In the interval
CD, two different morphologies can be observed simultaneously (Fig. 20.4c–d):
cylindrical crystals (which are more probable in view of the above assumptions of
the perturbation statistics) and crystals that have lost stability under perturbations
with k = 4. Beyond the point D (corresponding to the minimal critical size RC

min

for instability under perturbations with k = 5), a third morphology can appear on
account of the loss of stability by cylindrical particles under perturbations with
k = 5. Thus, three morphological phases coexist within the interval DE
(Fig. 20.4e). Beyond the point E (corresponding to the maximum critical size RC

max

for instability under perturbations with k = 4) all the remaining cylindrical par-
ticles become unstable with respect to perturbations with k = 4 (Fig. 20.4f).

In summary, the numerical calculations of the morphological stability of
growing cylindrical and spherical particle [26–28] have revealed the presence of
metastable regions, leading to the possibility that crystals of different morpholo-
gies can appear and grow simultaneously.

C

R
C

m
ax

,
R

C
m

in
(a)

(b)

(c)

(d)

(e)

(f)

Fig. 20.4 a For cylindrical crystals, the dependence of the maximal critical size (RC
max, solid

lines) and the minimal critical size (RC
min, dashed lines) on the growth regime (aC) for different

perturbation modes (k). b–f The possible time evolution of crystals of different morphologies for
perturbation modes k C 4 (the growth conditions correspond to the trajectory CDE)
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20.3 Maximum Entropy Production Principle
and Morphology Selection

The previous section we saw how metastable regions, delimited by minimum
(binodal, Rmin) and maximum (spinodal, Rmax) critical size for instability, can exist
for simple morphological transitions during non-equilibrium crystallization. While
an analytical solution for Rmax can be found [Eqs. (20.5), (20.6)]. But is there an
analytical method for calculating the minimum critical size Rmin?

As is seen from above calculations, the coexistence of crystals of different
morphologies is possible for R [ Rmin. These crystals have different velocities
and, as result, different energy dissipations per unit of time (entropy productions).
Maximum entropy production principle5 (MEPP) has been theoretically developed
and successfully applied in various domains of physics and chemistry (see over-
view works [31–33]) for more than fifty years. According to this principle, the
process with maximum entropy production is most preferred among the possible
non-equilibrium processes. As a consequence, a hypothesis on the use of the
entropy production for selection of crystal pattern formations has been advanced in
a number of works [13, 14, 17, 29, 34–40]. This hypothesis may be stated as
follows [29, 30]: a necessary condition for a transition from one crystal mor-
phology to another is a larger entropy production in the final morphological phase,
and equality of the entropy productions of two non-equilibrium phases determines
the condition (curve, point) at which two distinct phases may coexist.6

As is shown in [17–20, 40, 41], the local entropy production R in an element of
solution volume dt near the crystal surface can be written as

R / V2dt; ð20:7Þ

where V is the local velocity of the crystal surface. According to the above MEPP
hypothesis, if DR denotes the difference between the local entropy productions
near the surface of two morphological phases,7 then the solution of DR = 0 for the
crystal size R determines the minimum critical size Rmin for the transition between
them. The solution of this equation for spherical and cylindrical geometries in the
case of the mathematical model (20.1)–(20.4) gave expressions for the minimum
critical sizes of spherical and cylindrical crystals of the form8 [17–20]:

5 This principle can be most generally formulated as follows [29–31]: at each level of
description, with preset external constraints, the relationship between the cause and the response
of a non-equilibrium system is established such as to maximize the entropy production.
6 In line with the terminology used in the theory of equilibrium phase transitions, this curve is
named as binodal (it separates the region, in which the phase is stable, from the region, in which it
is metastable and unstable).
7 For example, one morphological phase implies the initial (spherical or cylindrical) form of
growth, and the other phase means the initial form with some added harmonic.
8 These radii were rendered dimensionless to the critical radius of nucleation.
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Rmin
S;EP ¼

l3 þ 2l2 þ l� 2� 2aSðlþ 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þ 2l2 þ l� 2Þ2 þ 4a2

Sðlþ 1Þ2 þ 4aSðl4 þ l3 � l2 þ lþ 2Þ
q

4l
; ð20:8Þ

Rmin
C;EP ¼

1
2

1� aCk

2k � 1
þ 2Akk k2 � 1ð Þ

2k � 1

�

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� aCk

2k � 1
þ 2Akk k2 � 1ð Þ

2k � 1

� �2

þ4aC
k 2k2 � 1ð Þ

2k � 1

s 9
=

;
: ð20:9Þ

Using (20.5), (20.6), (20.8), and (20.9), full morphological phase diagrams of
the regions of stable (R \ REP

min), metastable (REP
min \ R \ Rmax), and unstable

(R [ Rmax) growth of spherical and cylindrical crystals can be easily analyzed as a
function of the model parameters [17–20]. In a wide interval of aS and aC the
metastable regions corresponding to different perturbing harmonics overlap
(similar to those determined numerically, see, e.g., Fig. 20.4), pointing to the
possibility that a great number of morphological phases can coexist. It was found
theoretically [17–20] that there is a discontinuous increase in the mass of a crystal
at the morphological transitions. The value of this stepwise change decreases as
the kinetic crystallization coefficient diminishes; the relative supersaturation
decreases; the surface tension coefficient increases; and the numbers of perturbing
harmonics grow.

The most important question is to what extent the minimum critical radius,
which was calculated using the entropy production (REP

min), coincides with its
numerically predicted counterpart (Rmin). A quantitative comparison of the results
obtained for a cylindrical crystal9 [26, 27] is given in Table 20.1. Whatever the
perturbation mode, the accuracy of prediction based on (20.9) for the diffusion and
intermediate regimes of growth was very high, with the discrepancy being just
2–10 %. However, for aC = 10, the coincidence was much worse at perturbations
with small k (a maximum discrepancy as large as 35 % at k = 2).

This discrepancy may reflect insufficient accuracy of the analytical calculations
performed in this range of the parameters. The analytical calculations are based on
a comparison of the entropy production in a solution at the surface of unperturbed
and perturbed growing crystals. The entropy production is essentially a measure of
non-equilibrium, but non-equilibrium is extremely small for this parameter range.
Indeed, the farther we are from the diffusion growth regime (aC increases), the
more homogeneous is the diffusion field at the surface of a particle. Also, the

Table 20.1 For a cylindrical crystal, the minimal critical size for instability determined numeri-
cally (RC

min, Fig. 20.4a) and analytically from entropy production (RC,EP
min , Eq. 20.9)

aC k RC
min RC,EP

min aC k RC
min RC,EP

min aC k RC
min RC,EP

min

0.1 2 11.3 10.8 1 2 11.8 10.6 10 2 14.2 9.2
3 23.6 24.6 3 23.9 24.4 3 25.1 23.0
4 41.7 43.2 4 42.0 43.0 4 40.9 41.7
5 63.8 66.6 5 63.8 66.5 5 60.8 65.2
6 93.7 94.9 6 92.5 94.5 6 89.3 93.6

9 The results were similar for a spherical crystal [28].
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longer the wavelength of the surface perturbation (i.e. the smaller the value of k),
the closer is the curvature (and, hence, the equilibrium concentration) of such a
perturbed surface to its unperturbed value. For these reasons, both the absolute
value of the entropy production and the difference of the entropy productions for
perturbed and unperturbed forms of the crystal growth are very small, and this can
lead to inaccurate analytical result for the large aC.

In summary, good quantitative agreement has been shown between the mini-
mum critical sizes for instability predicted analytically using the entropy pro-
duction and those calculated numerically, especially when there is a relatively
large concentration gradient near the crystal surface.

20.4 Conclusion

This brief review summarizes the results of recent studies of the morphological
stability of growing crystals from the viewpoint of the maximum entropy pro-
duction principle. The key findings are as follows:

1. As the perturbation amplitude increases from zero, the critical size for mor-
phological instability decreases from a maximum value (spinodal) Rmax (the
boundary of stability under infinitely small perturbations) to a minimum value
(binodal) Rmin. The morphological transition occurs in the metastable region
Rmin B R B Rmax. The notion of the metastable region and its dependence on
the amplitude of perturbations allows us to understand the experimentally
observed coexistence of different growth morphologies.

2. The hypothesis that a necessary condition for the occurrence of a morpholog-
ical transition is a larger entropy production in the final phase is verified. So, the
minimum critical size (binodal) Rmin can be found from the condition that the
difference of the entropy productions in the first (unperturbed) and second
(perturbed) growth regimes is zero.

The thermodynamic approach applied here to morphological transitions during
crystallization can be used to study pattern formation in other non-equilibrium
systems. Examples include hydrodynamic and thermal instabilities in liquids or
plasmas, and the fracture of solids under deformations. Work in this direction is
now underway [42–44].

Glossary

Binodal (binodal curve or coexistence curve) denotes the condition at which two
distinct equilibrium or non-equilibrium phases may coexist. Beyond the binodal,
the perturbations (or fluctuations) of phase will lead to phase transition. Before the
binodal, the phase will be stable with respect to any perturbations (or fluctuations).
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For equilibrium phase transition, the binodal is defined by the condition at which
the chemical potential is equal in each equilibrium phase. There is hypothesis that
for non-equilibrium phase transition, the binodal is defined by the condition at
which the entropy production is equal in each non-equilibrium phase.

Spinodal (spinodal curve) denotes the boundary of absolute instability of equi-
librium or non-equilibrium phases. Beyond the spinodal, infinitesimally small
perturbations (or fluctuations) of phase will lead to phase transition. Before the
spinodal, the phase will be at least stable or metastable with respect to perturba-
tions (or fluctuations).
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Chapter 21
Maximum Entropy Production
by Technology

Peter K. Haff

Abstract The dominant mode of entropy production enabled by the large-scale
technological systems that power the world economy is the degradation of
chemical energy in fossil fuels. One key parameter determining the rates of fossil
fuel consumption and entropy production is the price of energy. The Rayleigh-
Benard cell provides a laboratory analog in which, for a given driving force, the
rate of entropy production is determined by the value of the thermal boundary
layer thickness, whose inverse plays a role similar to that of price in large fossil
fuel systems. In steady, serial systems like the diffusion-advection-diffusion
Rayleigh-Benard cell or the oilfield-pipeline-city ‘‘technology cell’’, an auto-
control parameter like price or boundary layer thickness is required to coordinate
spatially separated energy source and sink dynamics. For complex fossil fuel
technologies the implicit and often unknown dependence of such control param-
eters on intrinsic system variables can hide internal constraints. If applied in the
absence of knowledge of such constraints, the principle of Maximum Entropy
Production (MaxEP) would yield, for sufficiently complex systems, an upper limit
to rather than the actual value of the entropy production rate. Internal constraints
on technology-enabled energy consumption, however, may represent only tem-
porary hangups on the road toward a larger entropy production rate.

List of Symbols

Symbol Meaning (SI units)

Roman Symbols
CP Specific heat capacity at constant pressure (m2 s-2 K-1)
D Separation of Rayleigh–Benard (RB) plates (henceforth ‘‘plates’’) (m)
g Acceleration of gravity (m s-2)
k Thermal conductivity (kg m s-3 K-1)
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i Index identifying plate
q Heat flux between plates (kg s-3)
qi Heat flux through boundary layer at plate i (kg s-3)
P Price per unit energy ($ kg-1 m-2 s2)
Pe Equilibrium price per unit energy ($ kg-1 m-2 s2)
Ra Rayleigh number
Ra� Critical Rayleigh number
Ti Temperature of plate i (K)
DT Temperature difference between plates (K)
DTi Temperature difference across thermal boundary layer at plate i (K)
Dx Distance increment (m)

Greek Symbols
a Thermal volumetric expansion coefficient (K-1)
d Thermal boundary layer thickness (m)
di Thermal boundary layer thickness at plate i (m)
dmin Constant (m)
n Fluid constant (m-3 K-1)
c Transport control parameter (m-1)
ce Equilibrium transport control parameter (m-1)
j Thermal diffusivity (m2 s-1)
q Mass density (kg m-3)
r Rate of entropy production (kg s-3 K-1)
m Kinematic viscosity (m2 s-1)

21.1 Technology, The Economy, and Entropy

By the term ‘‘technology’’ we refer collectively to the interlinked regional and
global systems associated with processes such as communication, transportation,
power generation and transmission, food production, the manufacture of goods and
their distribution, and so on. Technology as defined here is similar to the concept of
technology used by Arthur [1], and includes not just artifacts like shovels, trans-
mission lines, and computers, but also the people, processes, shared-knowledge,
rules, protocols, and social organizations without which technology would be only a
large and inert collection of stuff. In this view, technology is more than just a form
of material capital subject to human use and deployment. As is evident from a
consideration of the surprising (i.e., unpredicted and unanticipated) emergence and
developmental trajectory of the internet, cellular telephony, nuclear weapons sys-
tems, and other large-scale expressions of technological change, technology at
large-enough scale is in essence an autonomous phenomenon beyond the control or

398 P. K. Haff



detailed understanding of any person or organization. Technology is an emergent
phenomenon representing a new phase or paradigm in earth evolution. Humans are
essential components of technology and ‘‘the economy’’ is the part of technology
that is directly connected with decision making, entrepreneurship, money, finance,
consumption, markets, and other phenomena whose use reflects human behavior. In
a crude way one could say that the rules of economics are elements of the software
on which the hardware or material part of technology runs.

The attempt to connect entropy considerations to technology (or economics) is
motivated by the example of thermodynamics, especially its second law, as a
branch of physics that can be usefully applied to analyses of many complex
systems whose dynamics is incompletely known, such as the earth’s atmosphere. It
has also been motivated by the example of statistical mechanics which treats in a
probabilistic way the relation between system micro and macro variables, such as
molecular velocities and pressure values in a gas. Treated as a method of infer-
ence, relations originating in statistical mechanics have application to non-ther-
modynamic systems, perhaps even economic systems. An interesting question is,
is it possible to replace with a cleaner physical explanation at least some of the
more opaque (at least to physical scientists) relations of apparently messy social
sciences like economics? Below we argue that although it is not likely that a social
science understanding of either economics or technology will be replaced by
thermodynamics or statistical mechanics, the maximum entropy production
framework might still provide a useful perspective on technological change.

Discussion of entropy, maximum entropy, maximum entropy production, and
related concepts such as maximum power production in relation to systems outside
basic physics, including biological and economic systems, began to appear in the
last century. In the early and mid-twentieth century Schrodinger [2], Bertalanffy
[3], Odum [4], and others and more recently authors such as Harte [5] and Dewar
[6] discussed entropy and entropic processes in biological organisms and eco-
systems. The connection between entropy and economics was the main focus of
the treatise by Georgescu-Roegen [7] and more recently has been discussed by
Ruth [8], Annila and Salthe [9], and others. In the present work we compare
entropy production in a simple (to define) physical system, the Rayleigh-Benard
cell, with that in an idealized, energy consuming, technological system. Our aim is
to identify more clearly the limitations and the potential applications of the
principle of Maximum Entropy Production (MaxEP) in technological systems.

21.2 Technology as a Geologic Phenomenon

The principle of Maximum Entropy Production suggests that sufficiently complex
dynamic systems will configure themselves, when driven hard enough by an
external force, to produce entropy at the maximum rate allowed by existing
constraints [10]. Where more than one dynamical configuration is allowed by these
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constraints and the equations of motion, then MaxEP may provide a closure
criterion that allows determination of the rate of system entropy production or the
rate of energy dissipation.

A role for MaxEP has been suggested in the evolution of earth systems over
geologic time [11]. For example, plants capture a fraction of the low entropy
sunlight that impinges on the surface of the earth and support entropy production at
a higher rate per unit area of the earth’s surface than was possible with the
prebiotic mineral surface. A strong interpretation of MaxEP would suggest that the
biotic surface, evidently one solution to the earth’s equations of motion, was
selected by entropy maximization. The fact that the earth’s land surface was nearly
abiotic over most of its history (vascular land plants emerged about 450 million
years ago during the Silurian period) would be explained by the fact that the
transformation of available free energy to unusable low temperature heat is often
subject to delays. The degradation of usable energy to heat from the energy
available in the gravitational potential energy of the universe (the ultimate source
of free energy) is subject to many internal constraints or hangups [12]. For
example our galaxy has been preserved for billions of years by a spin hangup that
prevents a rotating extended object from immediately collapsing under its own
gravitational attraction. At a smaller scale a mechanical hangup delays for a short
period of time the transformation of food calories into heat whenever we exert
ourselves to set a mouse trap.

An energy hangup is a temporary condition, subject to change. A radical change
in consumption rate of free energy and rate of entropy production by earth surface
systems has occurred in recent geologic history with the emergence of technology.
The strata of coal, pools of oil, and deposits of natural gas that power the lion’s
share (80 %) of modern technology [13] represent metastable accumulations of
free energy that Nature has not hitherto been able to convert to heat. These
stranded energy resources have languished for millions of years in the earth’s
crust. Nature has occasionally been able to find ingenious ways to access otherwise
inaccessible energy resources. One spectacular example is the Oklo natural nuclear
reactor in Gabon [14] in which uranium atoms became sufficiently concentrated by
natural hydrogeological processes to support a fission chain reaction. Technology,
an even more startling innovation of Nature, has emerged as the principal
mechanism by which the earth degrades deeply buried chemical energy, and, far
from being a curiosity like Oklo, has come to define the latest epoch of the
evolution of the earth. (This epoch has been dubbed the Anthropocene [15],
although, given the insignificance of humans as agents of geological change prior
to the emergence of technology, I am tempted to call it the Technocene).

The emergence of large-scale fossil fuel technology is intimately connected
with the emergence of transport mechanisms able to advect large quantities of
chemical energy across the surface of the earth. For quasi-steady-state systems, on
which we focus here, rapid consumption of chemical energy on a large scale
generally requires a fast transport mechanism that can carry energy originating in a
low entropy resource to points of consumption and entropy generation. There are
two principal ways to transport the energy-rich mass—by diffusion and by flow or
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advection. In the present context the word ‘‘diffusion’’ is shorthand for ‘‘diffusion-
like’’, and refers to a mode of mass transport which, in comparison to advection in
the same system, is characterized by short displacements with frequent changes in
direction of motion [16, 17]. Under otherwise similar conditions, advection of a
resource, when it occurs, is generally faster than diffusion of the same resource.
The short randomly directed mean free paths characteristic of diffusion are not
well suited to compete with unidirectional displacements of the same quantity,
unless the system is only weakly driven. If an energy resource is momentarily
being consumed at a high rate, as wood is consumed in a fire, the local rate of
energy consumption will diminish as the resource becomes depleted unless
additional energy is supplied from another location. In the absence of an advected
supply the subsequent rate of energy consumption would be limited by the usually
slow rate of diffusion of the resource into the consumption zone. For this reason,
on the earth’s surface high steady-state rates of entropy production are generally
associated with systems like highways and rivers that can support advective
transport of energy from more distant sources to a location where it is consumed.

Entropy generation by the earth’s atmosphere through global advective trans-
port of energy originating in solar radiation is a well-discussed example of an
apparently successful application of MaxEP [10, 18]. The solid earth on the other
hand, until recently, had offered no advective mechanism of comparable (global)
scale able to support rapid sustained consumption of energy like that stored in
fossil fuels. After hundreds of millions of years from the time of formation of
many of today’s fossil fuel deposits, one might have thought that such a mecha-
nism did not exist. Alternatively one might have viewed this situation as a tem-
porary state of affairs dictated by the existence of an energy hangup, and that
eventually the barrier to consumption would be surmounted. This turned out to be
the case. The relevant mechanism(s) for effecting rapid fossil energy consumption
became available with the emergence of technology. Its global reach, large rate of
energy consumption, massive cooption of planetary resources, and independence
(at large scale) from human control lead us to consider technology as the most
recent paradigm of earth evolution. Other geologic paradigms include systems
such as the hydrosphere, atmosphere, and biosphere.

21.3 Advective Pathways

In discussing MaxEP it is useful to think about advection in the following way.
From the point of view of statistical mechanics advection is, under a suitable
driving force, always a potentially available, and indeed statistically likely,
transport mechanism in the following sense. Consider a blob of material that forms
part of a larger system. This might be a blob of air in the atmosphere, a blob of
water in a reservoir, a blob of dirt on a hillside, and so on. Under differences in
temperature or of elevation these blobs may be transported to lower temperature
regions, or points of lower elevation, generating entropy in the process. The
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macroscopic state of such a blob is realized by many distinct microstates, defined
for example by different arrangements of accessible molecular coordinates and
velocities. If the blob macrostate is one of thermal equilibrium, then that macro-
state can be realized by more microstates than can any other blob macrostate, i.e.,
it is the most probably macrostate.

If we imagine ourselves co-moving with a hypothetical uniformly translating
blob, then, under the principle of Galilean invariance, the microscopic probability
distribution underlying the macrostate of the subsystem as observed in the co-
moving frame would be identical to that of the stationary blob. The co-moving
system, seen from the original ‘‘stationary’’ frame, corresponds to an advective
state and in this sense the advecting blob is as statistically likely as the thermal
equilibrium state. That is, in reference to the usual (approximate) classical picture
of stationary system microstates [19], there exist the same number of distinct
microscopic pathways (we are considering configuration space pathways not phase
space pathways) corresponding to advection at a given speed and in a given
direction as there are microstates that realize the macrostate of the stationary blob,
i.e., a maximal number. If one imagined each molecule to be tagged with fluo-
rescent paint then each microstate of the blob would be the starting configuration
for a bundle of fluorescent streaks that traced out the advective evolution of that
microstate. The potential number of advective pathway bundles would equal the
number of stationary system microstates. Advection does not occur unless a force
is available that can enable access to these pathways, but, nonetheless, pathways
for fast transport and thus fast entropy production are always potentially available.
The unanswered question is whether system dynamics can enable access to them.

21.4 Hidden Constraints

MaxEP implies that under broad conditions system dynamics of sufficiently
complex dynamical systems should converge to that of a maximum entropy pro-
duction state [20, 21]. Theories of MaxEP are not based on details of system
dynamics but on general considerations of statistical mechanics. A necessary
assumption is that there are no hidden (to us) internal dynamical constraints that
would reduce entropy production from what we would otherwise infer on the basis
of a given global driving force such as the temperature drop across a Rayleigh-
Benard cell or a chemical affinity like that which underlies the flux of fossil fuels
from mines and wells to homes, cars, and factories. In these formulations of
MaxEP it is assumed that a complex system will have enough internal flexibility to
‘‘find’’ one of the maximum-entropy-producing microstates that are potentially
available to it. The present chapter emphasizes that we should not be surprised to
see this assumption fail in certain kinds of complex systems.

The earth’s atmosphere, evidently, does fulfill the conditions required of
MaxEP. However, what is true for a relatively free-flowing fluid like the earth’s
atmosphere may not be true for systems with more enduring structural elements.
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For example, in the fossil-fuel-based technological systems of interest here, the
discreteness of parts, the high friction that exists between moving solid compo-
nents, the frozen design of transport systems (e.g., railroads) and other compo-
nents, and the dependence of function on poorly understood or unrecognized
political, cultural and economic factors, whose physical manifestation is unclear,
may conceal obstacles to advective flow and thus to entropy production. Even if
the system is eventually able to breach such choke points, we know from the
history of the earth—from the long time delay between the formation of the earth’s
mineral surface and the emergence of its biological surface for example, and the
additional delay prior to the emergence of oil and coal burning technology—that
the transition from potential to realized transport pathways even in the presence of
exceptional complexity can be difficult for a system to discover.

As a general principle, MaxEP may have a wider applicability as a limiting or
asymptotic (in time) condition than as a statement of what to expect from the
behavior of a system at a particular instant. MaxEP in the event could still provide
clues about what might be expected of the future behavior of a complex system of
interest, in which case it would become more a tool of anticipation and expectation
than of specific prediction. The probabilistic basis for our understanding of MaxEP
also has another implication. If a condition of maximum entropy production
obtains for the reason that there is an overwhelming number of ways in which it
could be realized, then we should expect, if a system subject to an internal con-
straint finds a way around the constraint, that the constrained state, which would ex
post facto be a statistically rare configuration, will not be likely to reappear. In
other words, under MaxEP a driven complex system should tend to evolve ratchet-
like over time toward a maximum entropy production state.

21.5 Jevons’ Paradox

A possible example of such a ratchet effect and an illustration of how MaxEP
might eventually play a role in analysis of economic processes is provided by what
in economics is called Jevons’ Paradox [22]. This is the proposition that increasing
the efficiency of, or the efficient use of, technological systems may offer more
rather than less opportunity to satisfy the incentives that drive human energy
consumption, leading to an increase rather than a decrease in energy consumption.
Thus increasing efficiency might decrease energy consumption but by less than the
amount of energy nominally saved by the efficiency measure (rebound effect), or
might cause consumption to actually increase (Jevons’ Paradox or backfire effect).
Jevons’ Paradox is controversial and arguments have been adduced both sup-
porting and opposing its validity [23, 24]. The rebound effect has been documented
in a number of specific cases, but direct evidence for the backfire effect is sparse
and arguments in its support are mainly theoretical. Historically, increases in
technological efficiency have been accompanied by increases in energy use, but
the causal relationship is unclear [24].
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Difficulty in documenting Jevons’ Paradox might be expected if the backfire effect
is mainly a macroeconomic phenomenon, with the energetic consequences of
increases in efficiency in a specific technology diffusing out along complex and
difficult to trace causal chains from the micro to the macro realm before the aggre-
gated effect of increased energy use finally becomes measurable (but difficult to
attribute). This is reminiscent of the conditions under which MaxEP is supposed to
apply—the existence of a complex system powered by a large supply of free energy
in the presence of multiple pathways by which that energy can be dissipated. Jevons’
Paradox is usually explained as being a consequence of the introduction of techno-
logical efficiency ‘‘causing’’ an increase in energy consumption. The problem with
such a causal explanation in which one tries to trace through a series of specific cause-
and-effect relations is the same as the problem of causal explanation in any system
where detailed dynamics is drowned in complexity—namely, it is not in practice
possible to anticipate complex emergent (macro) behavior by simply following
micro-variables [25]. MaxEP attempts to solve this problem by discarding micro-
variables and appealing to statistics. The effects of system dynamics and structure are
retained in a generalized way in the form of constraints which the statistics must
respect. For example in the application of MaxEP to the transport of heat by the
earth’s atmosphere, energy loss to space is constrained to occur according to the
requirements of the Stefan-Boltzmann radiation law [10]. In the context of Jevons’
Paradox, adoption of energy-efficient technology can be considered in essence the
removal of a constraint. Processes that could not previously be executed and gizmos
that could not previously be fabricated can now be performed and manufactured. If
for the sake of illustration we took the total pool of energy potentially available for
consumption to be that contained in the world’s recoverable fossil fuel deposits, then
MaxEP would imply that the removal of constraints would result in an increased rate
of energy drawdown from that pool, because there are more ways (pathways) by
which this could occur than there are ways in which it could be avoided. Roughly
speaking it is easier to squander a new resource than to use it wisely because there are
more opportunities to do the former than the latter. The alleged ‘‘paradoxical’’ nature
of backfire can thus be given a natural if qualitative explanation in the context of
MaxEP, and at the end of this chapter we make some comments based on MaxEP
about possible future rates of consumption of fossil fuel energy. However, MaxEP,
like Jevons’ Paradox, remains a hypothesis or conjecture rather than an established
physical principle, and thus our discussion of energy efficiency and, more broadly, of
energy consumption by the technosphere represents only a suggestive framework for
thinking about the role of maximum entropy production in a technological world.

21.6 Entropy Production in the Rayleigh-Benard Cell

Because internal constraints affect system function, it is useful to consider in some
detail a constrained entropy producing system about which we have some physical
understanding before looking at entropy production in more complex technological
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systems. For this purpose we consider the Rayleigh-Benard (RB) cell, a constrained
entropy producing system that has been offered [26] as an example of a system that
generates entropy at the maximum possible rate. Here we reinterpret entropy
production in this system and use the results of this reinterpretation to suggest how
we might think about maximum entropy production in large-scale fossil-fuel-
consuming technological systems, where, we argue, analogous constraints operate.

In an RB cell, Fig. 21.1, the space between two horizontal parallel plates is
filled with a fluid having a positive coefficient of thermal expansion. The bottom
plate is maintained at a temperature T1 (K) and the top plate at a temperature T2,
with T1 [ T2. At low enough temperature difference, DT ¼ T1 � T2, heat simply
diffuses from bottom to top, with the heat flux given by q ¼ �kDT=Dx (kg s-3)
where k (kg m s-3 K-1) is the thermal conductivity of the fluid and Dx ¼ D (m) is
the separation of the plates. The rate of entropy production and export by the cell is
r ¼ q 1=T2 � 1=T1ð Þ (kg s-3 K-1). As DT increases, buoyancy forces become
important and advective pathways become accessible. Thus at some value of DT
buoyancy is strong enough that a hot blob of fluid is propelled upward toward the
cold plate. If its velocity is high enough the advected heat flux will exceed the
diffusive heat flux calculated above, and the rate of entropy production will
increase. Advective motion begins when the dimensionless Rayleigh number Ra ¼
D3gaDT=mj exceeds a certain critical value Ra�. Here, a (K-1) is the thermal
volumetric expansion coefficient, m (m2 s-1) is the kinematic viscosity of the fluid,
j (m2 s-1) is its thermal diffusivity, g(m s-2) is the acceleration of gravity, and q
is fluid density (kg m-3). The variables k and j are related by CP ¼ k=qj, where
CP (m2 s-2 K-1) is the specific heat capacity of the fluid at constant pressure.

For Ra [ Ra�, most of the space between the plates is occupied by advecting
fluid at relatively uniform temperature. Immediately adjacent to each boundary,

1T

1q

2T

2
q

2δ

1δ

Fig. 21.1 Schematic drawing of Rayleigh-Benard apparatus showing convection cells and
thermal boundary layers d1;2. The temperature of the bottom plate T1 is higher than that T2 of the
upper plate. In steady-state the average heat flux through the bottom plate q1 equals the average
heat flux q2 through the upper plate, and under steady conditions the average boundary layer
thicknesses d1;2 are equal
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however, there exists a thin layer, the thermal boundary layer, of thickness d (m),
where diffusion dominates advection. Diffusion dominates here because the
effective Rayleigh number of the layer is smaller than Ra�. Physically, the
boundary layer remains diffusive even for large DT because there is always some
short-enough distance near the plates for which the diffusive transport time scale is
shorter than the corresponding advective transport time scale The boundary layer
thickness is determined [26] by the critical Rayleigh number, Ra� ¼ d3

i gaDTi=

mj ¼ nd3
i DTi, where n ¼ ga=mj (m-3 K-1) is a constant, characteristic of the fluid,

and di and DTi refer respectively to the boundary layer thickness and to the
temperature drop that occurs across the boundary layer at plate i, with i ¼ 1 for the
hot lower plate and i ¼ 2 for the cold upper plate.

Diffusion and advection operate in series in the RB cell, with advection dom-
inating long distance transport through most of the interplate volume, and diffusion
dominating transport across the thin boundary layer at each plate. Most of the
temperature drop in the cell occurs in the thermal boundary layers, whereas
the flow across the main body of the cell generates relatively little entropy. The
thermal boundary layer, though thin, is critical to the dynamics of the cell. It can
be thought of as a localized auto-control subsystem that determines the overall
heat flux through the cell. A diffusive boundary layer is necessary in a standard RB
cell in order to communicate heat from the plate to the flow (and vice versa).
A flowing fluid is essentially a mechanical part whose macroscopic (flow) degrees
of freedom cannot directly absorb or emit heat or entropy. Entropy (and heat) is
transferrable to and from the flow only by microscopic diffusion.

Since presumably the steady-state value of d cannot be not less than the value
determined above in terms of the critical Rayleigh number, Ra�, because that
relationship is what defines the range of diffusive dominance, the rates of heat
transport and thus entropy production in the RB cell appear to be as large as they
can be, i.e., maximal. However, we have inferred this fact independently of
MaxEP by considering the physical meaning of the critical Rayleigh number.
Moreover, we might just as well argue that the rate of entropy production is
minimal, since d cannot assume any larger value on average than that determined
by Ra�, else buoyancy forces would dominate transport in the boundary layer. That
is, a straight forward application of MaxEP does not apply to the RB cell because
there is nothing to vary—there is no variational parameter that would allow us to
find a maximum entropy production state. If we knew nothing about the internal
dynamics of the cell and blindly applied MaxEP using say the flux q as a varia-
tional parameter, then there would be nothing to limit the flux of energy through
the cell, and entropy production predicted on the basis of MaxEP would be infinite,
or, rather, a value limited by the capacity of the laboratory power supply.

Nonetheless, the RB cell example can provide insight into entropy production
and the role of MaxEP in more complex systems for which one does not have as
clear a picture of internal dynamics. In the RB cell the time average heat flux
through the hot boundary layer is q1 ¼ kDT1=d1, where DT1 is the temperature
drop across d1. Under steady-state conditions, q1 ¼ q2, where q2 is the flux
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through the cold boundary layer. The average temperature drops at the two plates,
as well as the average boundary layer thicknesses, are also equal,
DT1 ¼ DT2 ¼ DT=2, and d1 ¼ d2, respectively. With the plate temperatures held
constant, we now imagine a small fluctuation in the temperature drop DT1 across
the hot layer, so that DT1 and DT2 become momentarily unequal. From the defi-

nition of the critical Rayleigh number d1;2 ¼ Ra�=nDT1;2
� �1=3

or DT1;2 ¼ Ra�=

nd3
1;2, so that 1=d3

2 ¼ 1=d3
min � 1=d3

1, where dmin ¼ Ra�=nDTð Þ1=3 is a constant.
Thus, at fixed DT , an increase in DT1 is accompanied by a decrease in d1 and a
corresponding increase in d2, and vice versa. The dependence of the virtual fluxes
q1;2 ¼ kRa�=nð Þd�4

1;2 on the transport control parameter c ¼ 1=d1 (m-1) is shown
qualitatively in Fig. 21.2.

The steady state or ‘‘equilibrium’’ condition of the cell corresponds to the value
c ¼ ce where the two curves cross. If, due to a fluctuation in DT1, the hot boundary
layer thickness d1 momentarily decreases in value, so that c exceeds ce, then the
hot plate would begin to supply an increased heat flux to the main body of the cell.
The cold boundary layer system under this condition, however, can absorb only a
decreased heat flux in virtue of the corresponding increase in d2. The increased
heat flow at the hot plate tends to reduce the temperature fluctuation, and the
energy flux through the hot boundary layer subsequently decreases (relaxes toward
equilibrium). At the same time, the heat flux to the cold plate increases as the
system moves back toward steady-state at c ¼ ce. The boundary layer provides the
mechanism by which the physically separate energy source and sink coordinate
their behavior. Such a mechanism is needed in any system in which two remote
regions must agree on the serial production and consumption of the same packet of
energy. It is worth noting that the present analysis at or near steady-state says
nothing about the dynamical route that a system may take in arriving at a steady
condition, whose resolution presents a much harder problem.
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Fig. 21.2 Energy fluxes at
hot plate, q1, and cold plate,
q2, in an RB cell, versus
transport parameter c ¼ d�1

1 .
The steady-state condition is
at c ¼ ce
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21.7 Boundary Layers in the Technology Cell: The Role
of Price

The problem of coordinating the rate of energy production and consumption in the
RB cell is similar to that faced by technological systems that rapidly advect energy
from a localized resource to a distant consumption zone. For simplicity we con-
sider an idealized ‘‘technology cell’’ in which energy consumption is located at B,
say a major city or industrialized zone, and the source of energy is located at some
distant point A, such as an oil field or coal mining region. Region A corresponds to
the hot plate in the RB cell, and region B to the cold plate. For simplicity we only
consider transport of chemical energy. Energy-rich mass must be transported from
A to B, where we assume each unit of chemical energy is soon dissipated (burned)
to produce heat at ambient temperature T together with a corresponding quantity of
entropy. The technology cell, as the concept is used here, includes the economic
mechanisms associated with energy use as well as the physical operations of
energy production, transport, and consumption.

The dynamics of the entropy production process in the technology cell is
similar to that in the RB system in that a low-entropy-producing advective
transport corridor (shipping lanes, highways, railroads, etc.) is bounded on one end
by a non-advective consumptive zone (population center) and at the other end by a
non-advective production zone (the location of the physical oil or coal operation).
The source and sink zones of the technology cell are taken to be ‘‘diffusive’’ in the
sense that the slower speed of local transport and the spatial complexity of
extraction and preparation for long distance transport in the production zone, and
the low speed and finely reticulated delivery pathways to individual customers in
the populated consumption zone, are easily distinguished from the long pathways
and high-speed transport characterized by directed conveyance through the
intervening advective zone. As in the RB cell, a diffusive boundary layer is needed
at the consumptive end of the technology cell to handle what would otherwise be a
mismatch between the amount of energy each consumer can absorb per unit time
and the quantity of energy delivered to the consumption zone per unit time by rail,
highway or other advective mode. A similar boundary layer is needed in the
production zone to match the size of the units of energy extracted from the ground
and their rate of extraction, to the bulk advective transport mechanisms by which
the energy is moved to distant locations.

The differences between the RB cell and the technology cell are many of
course, including that fossil-energy flux is powered by a chemical affinity rather
than a temperature gradient, that the length scale of the technological system may
be thousands of kilometers rather than a few centimeters, that truck, rail, and/or
ship transport typically substitute for an advecting fluid, that source and sink zones
in the technology cell have distinct dynamics, such as pumping or mining on one
end and factory operation and home heating on the other unlike in the RB cell
where each zone operates by the same mechanism, and that the function of the
technology cell depends on economic as well as physical variables. Despite these
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differences the similarities are strong enough that we are led to analyze entropy
production in the technology cell using what we have learned from the RB cell.
Thus we identify a variable that plays a role similar to c in the RB cell, i.e., that
coordinates the rate of energy transport through two widely separated diffusive
‘‘chemical’’ boundary layers. That variable is price per unit energy,
P ($ kg-1 m-2 s2), where an equilibrium price per unit energy Pe determines the
average energy flux through the cell, Fig. 21.3. Physical properties, such as sys-
tem-wide advection for fast long-distance transport, localized diffusion zones as
the sources of usable energy and as sinks for degraded energy, and the necessity in
a steady-state system of a control parameter jointly shared by both source and sink,
survive the transformation from the RB cell to large-scale technological systems
because they represent functionality essential to a high-metabolism bipolar system.

There may be other determinants of the rate of energy consumption besides
price—under some circumstances gasoline can be rationed, for example. One
might also argue that market mechanisms that enable meeting of supply and
demand are better represented by transaction costs than price, which costs might
thus be a preferred mirror to the role of the thermal boundary layer. However, in
the present exploratory study we stick to price to illustrate the main concepts.

It is worth noting that the condition of equilibrium or steady-state is defined
here for the relatively fast time scales in which the dynamics of interest plays out,
and not for much slower time scales over which otherwise effectively constant
parameters that define the background conditions of the dynamic state may
change. For example, a drift in the temperature difference between the plates in the
RB cell can be ignored (up to a point) if the drift time is slow relative to time
scales such as the mean recycle time of a parcel of water as it makes the rounds
from hot to cold plate and back to hot again. Similarly, in the technology cell,
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Fig. 21.3 Energy supply (S) and demand (D) curves for the technology cell. Curve D is the
putative energy consumption rate in the ‘‘cold’’ zone of the technology cell and curve S is the
putative energy production rate in the ‘‘hot’’ zone. Point e is the equilibrium point that defines the
realized energy flow between the two ends of the cell. The axis orientations on this ‘‘supply/
demand’’ graph are reversed from the usual convention in economics (where the vertical axis
usually represents the price per unit good and the horizontal access the quantity of goods per unit
time)
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equilibrium is defined for short enough periods of time that factors such as the
regulatory climate or availability of new technical means can be considered fixed.
Such assumptions are similar to those that are routinely made in thermodynamics,
which is seldom applied to a body in true thermal equilibrium, but is assumed to be
valid when applied to bodies where rates, such as the rate of change of temperature
of a heat reservoir, whose nonzero value would violate strict equilibrium, can
nonetheless be taken effectively to vanish.

A steady-state analysis of the technology cell, as in the case in the RB cell, is
limited by its inability to specify the approach to ‘‘equilibrium’’; for example, the
above analysis does not address the role that profits and entrepreneurship play in
reaching the condition of equilibrium, nor in general answer the question of how
the behavior of many individual microscale entities in the pole regions (buyers and
sellers) results in macroscale phenomena such as the bulk transfer of goods. The
response of the macro regime reflects the specific conditions of the system in
question—for example the (macro) advective, buoyant response to the (micro)
diffusive heating of the fluid in the RB cell is a mechanism specific to that system.
The model offered here treats only the requirement of a certain relation between
two types of dynamics (diffusive or advective) in a high-speed production-
advection-consumption system.

21.8 Entropy Production in the Technology Cell

In the technology cell there is an intermediate value of price that can accommodate
a flow rate of energy that will simultaneously satisfy the requirements for transport
through both the production and consumption zones. In an economic analysis this
‘‘equilibrium’’ price is determined by the crossing of supply and demand curves,
Fig. 21.3. Here the supply curve represents the amount of free energy per year or
other unit of time that the supplier (producer) wants to provide at a given price,
and the demand curve is the amount of free energy that a potential buyer is willing
to buy (consume) at the given price, all other factors remaining constant.

The interpretation of the supply and demand curves in the technology cell is
similar to the interpretation of the flux curves in the RB cell. If the price of oil or
coal in the technology cell should fluctuate upward from the equilibrium price,
then in the consumption zone the diffusive throughput of fuel, that is, the quantity
of fuel demanded per unit time for burning in houses, offices, and factories, as
shown by the demand curve, would decrease, even though at the higher price the
production zone could supply a flux of energy in excess of demand. A higher price
in the technology cell would generate the analog of a larger (than equilibrium
value) thermal boundary layer thickness at the cold plate in the RB cell. If instead
the price should fluctuate downward, in analogy to an increase in boundary layer
thickness in the hot layer in the RB cell, the transport rate of free energy through
the production zone, i.e., the supply rate, would decrease, even though under these
conditions demand, reflected in the willingness of the consumptive layer to absorb
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additional energy if it were supplied at such a price, would increase. As in the RB
cell, in the technology cell average energy consumption is set by the equilibrium
value of the control parameter, the equilibrium price, Pe. If the price drifts away
from the equilibrium price, ‘‘market forces’’ work to push it back toward the
equilibrium value. The idea of an equilibrium price for a good is conditioned on
other variables that might potentially affect price remaining constant. These
include variables that describe the effects of costs, tax policy, government regu-
lations, the state of extraction technology and of technology-enabled efficiency,
degree of competitiveness in the market, and so on. Fixing these variables is
equivalent to imposing constraints on energy consumption by the technology cell.

Some factors that appear in the short term as constraints on energy consumption
are probably more realistically identified as slower modes of system dynamics that
are potentially subject to relaxation, with consequent increase in rate of entropy
production. For example, a fixed number of consumers represents a constraint that
limits the ways in which the entropy production rate could increase. But over
longer time scales products of technology, including increased availability of food,
sanitation and other goods and services conducive to health and longevity, may
lead to an increase in population and a consequent increase in rate of energy use.
An increase in technological efficiency may also increase the rate of energy usage
(Jevons’ Paradox). If MaxEP is applicable to such systems it would be a condi-
tional applicability. At any point in time the technology cell would be in a con-
ditional state of maximum entropy production as determined by the equilibrium
price, with the conditioning provided by constraints many of which are only
nominal. In that case one expects that over time the technology cell would discover
ways to change the supply–demand relation in a way that increases energy flow.

An argument against the idea that equilibrium price defines a state of maximum
entropy production is the observation that someone could simply set fire directly to
the oil production fields, burning the oil at a high rate that has nothing to do with
supply and demand, as happened in the torching of the Kuwaiti oil fields in 1991
[27]. It may seem that if oil were pumped at the maximum possible rate (according to
the capacity of oil field extraction technology) and immediately burned then entropy
production would increase above the supply–demand crossing point determined in
the absence of burning. Such a condition, however, would be only a fluctuation, and
could not be maintained in the long run. For steady entropy production, with which
we are concerned here, a steady driving force is required. In the case of the burning
oil field there is no force to drive a sustained flow of oil because there is no demand
for what under these circumstances would be a useless product. The price to burn oil
on the spot would be too low to sustain a significant energy flux.

Relaxation of constraints can be illustrated by considering a gedanken experi-
ment in which an RB cell is able to change its own rate of entropy production. In the

RB cell the boundary layer thickness d ¼ 2mjRa�=gaDTð Þ1=3 and the steady

equilibrium energy flux, q ¼ kDT=2d ¼ k2qCPga=16mRa�ð Þ1=3
DT4=3 reflect the

combined effects of system properties such as viscosity, thermal diffusivity, den-
sity, and volumetric expansion coefficient. To the extent that these parameters are
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fixed the above relations describe a constraint on cell dynamics. However, if the RB
cell had the capability of spontaneously changing one or more system parameters,
then it would be able to increase its rate of entropy production. For example, if, with
fixed driving force DT , the system were able to spontaneously reduce fluid kine-
matic viscosity m, then energy flux through the cell as well as the rate of entropy
production would increase. What is in essence a mechanical constraint (due to
friction) would have been relaxed, d would decrease, and the same driving force
would become capable of moving more energy per unit time through the cell.
MaxEP implies that if the RB cell were able to access a dynamical state of lower
viscosity, it would switch to that state, increasing its entropy production as a result.

If MaxEP, in the conditional form described above, applies to large-scale, high-
metabolism technological systems like those fossil fuel systems that power the
economy, then we might expect these systems to behave as if they were trying to
circumvent the effects of any constraints on energy consumption. Oil companies
display their implicit belief in an intuitive version of this prediction of MaxEP
when they invest billions of dollars in cutting edge technology (like horizontal
drilling) with no real assurance that new policies or political constraints will not
make those investments a failure. They believe that if known physical barriers to
production (e.g., known external constraints due to difficulty of accessing deposits)
are reduced, then one way or another political or other internal constraints will
eventually give way and the newly accessible energy resources will be consumed
(and entropy production increased).

The interpretation of MaxEP presented here may also, and for the same reason,
raise our own skepticism about the likely long-term effectiveness on constraining
fossil fuel use of instruments like policy statements, regulations, treaties, and
political decisions, which, from the point of view of MaxEP, would appear as rules
made to be broken. Even what appears as a straightforward and foolproof strategy
for decreasing the rate of energy use, namely, increasing the energy efficiency of
technology, may backfire to result in increased energy consumption.

The line of argument presented above suggests that the principle of Maximum
Entropy Production when applied to complex technological systems like those that
(literally) power the economy may find greater utility in indicating where world
energy consumption is headed than as an explanation of its present state of energy
use. The latter would appear to lie in the details of system dynamics, i.e., in the
bailiwick of economics. If MaxEP should finally be put on a sound theoretical
footing, the resulting psychological impact of the knowledge that an increasing
rate of energy use is not something humans can ultimately control might be a more
important practical consequence of MaxEP than would be any purely physical
application of the principle, because it would change the way that humans look at
their place in the world.
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Chapter 22
The Entropy of the Universe
and the Maximum Entropy Production
Principle

Charles H. Lineweaver

Abstract If the universe had been born in a high entropy, equilibrium state, there
would be no stars, no planets and no life. Thus, the initial low entropy of the universe
is the fundamental reason why we are here. However, we have a poor understanding
of why the initial entropy was low and of the relationship between gravity and
entropy. We are also struggling with how to meaningfully define the maximum
entropy of the universe. This is important because the entropy gap between the
maximum entropy of the universe and the actual entropy of the universe is a measure
of the free energy left in the universe to drive all processes. I review these entropic
issues and the entropy budget of the universe. I argue that the low initial entropy of
the universe could be the result of the inflationary origin of matter from unclumpable
false vacuum energy. The entropy of massive black holes dominates the entropy
budget of the universe. The entropy of a black hole is proportional to the square of its
mass. Therefore, determining whether the Maximum Entropy Production Principle
(MaxEP) applies to the entropy of the universe is equivalent to determining whether
the accretion disks around black holes are maximally efficient at dumping mass onto
the central black hole. In an attempt to make this question more precise, I review the
magnetic angular momentum transport mechanisms of accretion disks that are
responsible for increasing the masses of black holes

22.1 The Entropy of the Observable Universe

Stars are shining, supernovae are exploding, black holes are forming, winds on
planetary surfaces are blowing dust around, and hot things like coffee mugs are
cooling down. Thus, the entropy of the universe Suni, is increasing, and has been
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increasing since the hot big bang 13.8 billion years ago [1]. The universe obeys the
second law of thermodynamics:

dSuni� 0: ð22:1Þ

In the entropy literature there is often confusion about both the boundary of
‘‘the system’’ and the distinction between the rate of increase of the entropy of the
system dS/dt, and the rate entropy is produced by the system r [2]. For example, in
the Earth system, many processes are producing entropy (therefore, naively, the
entropy of the Earth should be increasing), but the entropy produced is being
exported into the interstellar radiation field (therefore the entropy of the Earth
could be constant). Assuming a steady state for the Earth means that the amount of
entropy exported is equal to the amount of entropy produced, thus dS/dt = 0 but,
r[ 0 [3]. Such an entropy-producing steady state can only happen when the
system, or control volume, is different from (e.g. hotter than) the environment.
This difference allows the system to export the entropy it produces, to the
environment.

The entropy of the universe is more simple to deal with because the boundaries
of the system are not an issue. We have much evidence that the universe is
homogeneous on scales above *100 million light years [4]. This homogeneity
makes the distinction between a very large control volume (100 million light
years)3 and its environment, meaningless. Volumes of the universe that are at least
that big are essentially identical. That is, they are so large that their average
density of black holes, supernovae, stars and planets, accurately represents the
average density of these objects everywhere in the universe. Thus, the amount of
entropy being produced by these structures in any large control volume, is the
same as the entropy being produced in the neighbouring control volumes. Thus, in
cosmology we can ignore the system boundary problem. Without an environment
into which to dump entropy, we have,

dSuni=dt ¼ runi [ 0: ð22:2Þ

Thus, we can ignore the distinction between dSuni/dt and runi. We can consider
a representative sample volume of the universe (say the current observable uni-
verse) without worrying about the net import or net export of heat or mass or
entropy across any boundary, because there is no net import or export. For smaller,
unrepresentative volumes of the universe, V \ (million light years)3, this sim-
plicity does not exist because there can be local inhomogeneities: an over-density
of matter such as a galaxy cluster or a giant wall of galaxies, or an under-density of
matter such as a cosmic void. In our analysis of cosmic entropy [5] the control
volume is the observable universe—the sphere around us with a radius equal to the
distance light has traveled since the big bang.
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22.1.1 Expansion of the Universe is Isentropic

Since 1929, we have known that the universe is expanding. This expansion is
isentropic [1, 6]. That is, the entropy of relativistic particles such as photons,
gravitons and neutrinos does not increase or decrease with the expansion. This is
because the entropy of a gas of relativistic particles is proportional to the number
of particles N, which does not change as the universe expands. If we follow the
entropy of a comoving volume of the universe, forward or backward in time, the
number of photons in that volume does not change.

Another way to understand that the expansion of the universe is isentropic is to
use the fact that the entropy density s of photons (or any relativistic particle) is
proportional to the temperature cubed: s * T3. Also, the temperature of relativ-
istic particles is inversely proportional to the size of the universe (represented by
the scale factor a): T * 1/a (the particles lose energy since their wavelengths
expand with the universe, k * a). Also, the volume under consideration is pro-
portional to the cube of the size of the universe: V * a3. Combining these facts
lets us derive that the entropy S of the photons in any volume expanding with the
expansion of the universe, is S = sV * a-3a3 = constant. In addition, the
expansion of the universe does not increase the rate at which mass accretes into
black holes. Thus, expansion does not increase the entropy of the universe. The
adiabatic expansion of an ideal gas into empty space is irreversible and thus the
entropy, which is proportional to volume, increases. This is not the case in cos-
mology because the CMB photons are not expanding into empty space.

22.1.2 The Entropy Budget of the Universe

The entropy of a black hole of mass MBH is proportional to the square of the mass
[7–9]:

SBH ¼ k 4pG=c⁄ð Þ M2
BH ð22:3Þ

where k is Boltzmann’s constant, G is Newton’s constant, c is the speed of light
and ⁄ is Planck’s constant divided by 2p. To obtain the entropy of black holes in
the universe, we multiplied Eq. (22.3) by the mass function of black holes and then
integrated over mass and volume [5]. The result is: SBHs * 3.1 9 10104 k. The
MBH

2 -weighted black hole mass function peaks in the range *109 * 1010 solar
masses. Therefore, such supermassive black holes at the cores of the most massive
elliptical galaxies (which are in the central regions of the most massive clusters of
galaxies), are the source of most of the entropy in the universe (Fig. 22.1).

The entropy density of non-relativistic particles can be computed from the
Sakur-Tetrode equation [10] which gives the entropy per baryon, which we then
multiplied by the density of baryons. The second largest contribution to the
entropy comes from the photons of the cosmic microwave background and a close
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third is from cosmic neutrinos. Both of these are a quadrillion (=1015) times
smaller than the entropic contribution from black holes. An important distinction
to make is between the entropy content of various components of the universe
(Table 22.1) and entropy production. The dominant sources of entropy production
are the accretion disks around black holes (Sect. 22.3).

22.2 The Entropy Gap and the Initial Entropy
of the Universe

The early universe was close to thermal equilibrium. Direct evidence for this
comes from the high level of isotropy of the temperature maps of the cosmic
microwave background (CMB) [11, 12]. CMB photons give us a direct view of the
universe as it was *380,000 years after the big bang when the entire universe had
a temperature of *3,000 K. Tiny temperature fluctuations in the CMB maps have
a DT/T * 10-5. That is, the anisotropies seen in the maps (hot spots and cold
spots) are deviations of amplitude DT * 30 lK around the current average tem-
perature T = 3 K. If CMB photons were its only component, the universe would

Fig. 22.1 M87 is the closest giant elliptical galaxy at the core of the Virgo Cluster of galaxies, of
which our galaxy is an outlying member. The black hole at the center of M87 has a mass
*7 9 109 MSun. Black holes of this mass are called supermassive black holes and dominate the
entropy budget of the universe. The central black hole is larger than the radius of Pluto’s orbit.
The accretion disk which feeds the central black hole is *0.4 light years in diameter and is
rotating at velocities of up to *1,000 km/s. The accretion rate onto the black hole is 0.1 MSun/
year. Magnetic fields in the accretion disk collimate the ejected material forming the prominent
relativistic jet coming out of the black hole in the upper left of the image. Image Hubble Space
Telescope/STScI/AURA
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have started out in equilibrium, at maximum entropy (DS = 0) and would have
stayed there. Nothing would have happened and no life would be possible. Such a
universe is unobservable by life forms of any kind. The second law of thermo-
dynamics (Eq. 22.1) tells us that as long as life or any other irreversible dissipative
process exists in the universe, the entropy of the universe Suni will increase. Thus
the entropy of the very early universe had to have some initially low value Sinitial,
where ‘‘low’’ means low enough compared to the maximum possible entropy Smax

so that the entropy gap DS (=Smax - Suni(t)) was large and could produce and
support irreversible processes, such as stars and life forms [1] (Fig. 22.2).

Trying to understand the low initial entropy of the universe is an important
unresolved issue of cosmology [13–16]. Figure 22.3 summarizes a few hypothe-
ses. The ‘‘uniform’’ distribution in Fig. 22.3 is just a toy model without physical
justification. However, physically plausible arguments can be made for both the
‘‘Penrose’’ and the ‘‘smooth energy dump’’ distributions. In standard

Table 22.1 Entropy [k] of the various components of the observable universe

Black holes SBHs * 3.1 9 10104

Cosmic microwave background photons Sphotons * 5.4 9 1089

Cosmic neutrinos Sneutrinos * 5.2 9 1089

Dark matter SDM * 2 9 1088

Cosmic graviton background Sgravitons * 6.2 9 1087

Interstellar medium and intergalactic medium SISMIGM * 7.1 9 1081

Stars Sstars * 9.5 9 1080
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Fig. 22.2 The Entropy of the Universe as a Function of Time. Suni(t) monotonically increases.
We define Smax as a constant equal to the largest entropy that the universe will ever have,
Suni(t ? ?) = Smax. We define the entropy gap as DS(t) = Smax - Suni(t). When DS = 0, the
universe reaches an equilibrium heat death [13]. The low initial entropy of the universe is due to
the low gravitational entropy [1, 14, 16], which, one day, should be parametrized by the large
scale structure normalization A (a parameter used by cosmologists to quantify the initial
clumping of matter). If the universe were born with a high entropy, we would have
Sinitial * Smax, and DS * 0, and a lifeless universe. Figure from [1]
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thermodynamics there are many more ways to be at high entropy than at low
entropy. Motivated by this idea and applying it to the early universe, Penrose
makes the assumption that there are many more ways for the universe to have had
high initial entropy than low initial entropy. Thus he refers to ‘‘our extraordinarily
special big bang’’ ([14], p 726, Chap 27 and Fig. 27.4) because contrary to his
assumption and expectation, our universe started out at low entropy.

If there are many more ways to be at Smax (in the absence of other constraints)
Penrose would be correct that it is much more likely that the universe should have
been born at or near maximum entropy (and our expectations should be that
Sinitial * Smax). However, at the beginning, did the universe have access to all
those ways? Or were there constraints associated with the origin of matter that
restrict the universe to having a smooth matter distribution and therefore low
gravitational entropy?

It is possible that there were physical constraints associated with the physics of
inflation. Inflation starts from an initially smooth distribution of false vacuum
energy (quantum fluctuations of false vacuum, this can also be understood as a
higher zero-point energy than the current zero-point energy of the vacuum state of
the universe). See [15]. Part of the definition of vacuum energy is that it does not,
and cannot clump. This false vacuum energy is homogeneously distributed (sub-
ject to quantum fluctuations). When the false vacuum decays during reheating
creating all the energy and matter in the universe, it may only be possible for this
to happen as a smooth energy dump, resulting in a universe with a relatively

Fig. 22.3 Three conflicting expectations about the origin of the initial entropy of the universe.
P(Sinitial) is the probability distribution from which the initial entropy of our universe Sinitial (or of
other universes) could have been drawn. One could imagine a uniform distribution in which all
values between Smin and Smax are equally likely (horizontal line). Penrose’s idea ([14], Chap. 27)
is that there are many more ways to have high initial entropy than low initial entropy. In
inflationary models, a ‘‘smooth energy dump’’ of the non-clumpable false vacuum energy
constrains the resulting matter to a smooth homogeneous distribution with low gravitational
entropy [15]
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smooth distribution of matter (and therefore low initial gravitational entropy).
Thus inflation provides a natural initial condition that could explain why the initial
entropy of our universe (Sinitial in Fig. 22.2) is so low. Homogeneously distributed
matter (i.e. with low gravitational entropy) could well be an initial constraint
(boundary condition) associated with the origin of matter from false vacuum
energy.

The low gravitational entropy of the homogeneously distributed matter is what
gives the universe its low initial entropy [1, 16]. Penrose ([14], p 706) explains:

A uniformly spread system of gravitating bodies would represent relatively low entropy
(unless the velocities of the bodies are enormously high and/or the bodies are very small
and/or greatly spread out, so that the gravitational contributions become insignificant),
whereas high entropy is achieved when the gravitating bodies clump together.

For an elaboration of this view see [17–19].

22.2.1 Anthropic Reasoning Cannot Rescue Penrose’s
Model

In Penrose’s model, if the initial entropy is too close to Smax, the entropy gap
DS will not be large enough to produce stars and life. Thus, in Penrose’s model, an
anthropic argument (in the context of a multiverse scenario in which the proba-
bility distribution of Sinitial, P(Sinitial) is exhaustively sampled) has to be invoked to
explain why Sinitial � Smax [20]. That is, although universes with Sinitial * Smax

greatly outnumber universes with low initial entropy, life (and observers like us)
are only possible in universes with low initial entropy.

Sagan [21] has poetically described the low entropy requirements for life: ‘‘If
you wish to make an apple pie from scratch, you must first invent the universe.’’
However, the entire universe did not have to be at low entropy in order for our part
of the universe to have low entropy. Feynman [22] discussed the idea of whether
our low entropy part of the universe could be a low entropy fluctuation, i.e. a low
entropy sub-set of a larger universe that is much closer to maximum entropy:

[F]rom the prediction that the world is a fluctuation, all of the predictions are that if we
look at a part of the world we have never seen before, we will find it mixed up, and not like
the piece we just looked at. If our order were due to a fluctuation, we would not expect
order anywhere but where we have just noticed it…Every day [astronomers] turn their
telescopes to other stars, and the new stars are doing the same thing as the other stars. We
therefore conclude that the universe is not a fluctuation, and that the order is a memory of
conditions when things started. This is not to say that we understand the logic of it. For
some reason, the universe at one time had a very low entropy for its energy content, and
since then the entropy has increased.

Feynman’s argument, based on new stars coming into view, can be made more
rigorous by basing it on the increasing particle horizon. If we are living in a rare
low entropy fluctuation that has enabled us to be here, then when we view
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previously unobserved parts of the universe (more specifically when we observe
parts of the universe that we had not been in causal contact with), we should find
them to be close to maximum entropy. The entropy fluctuation that made us should
be of minimal extent. As the size of the observable universe increases, new parts of
the universe that were out of causal contact, come into causal contact—new
regions of the universe appear over the horizon [23]. If our part of the universe
were a low entropy fluctuation, then the new parts coming over the horizon would
tend to be of higher entropy. This does not seem to be the case. The distant
universe seems to be at low gravitational entropy. Our observations that the distant
universe is in a state of low entropy is inconsistent with the expected rarity of such
low entropy states. This rarity can be quantified by the ratio of the probability of
the high entropy state (with Whi microstates) to the probability of the low entropy
state (with fewer Wlo microstates) [24]:

P Shið Þ=P Sloð Þ ¼ Whi=Wlo ¼ exp Shi � Sloð Þ=k½ � ð22:4Þ

Low entropy regions of the universe are not only rare, they are also much more
likely to fluctuate to higher entropy than to fluctuate to lower entropy. How much
more likely is given by the fluctuation theorem [25]:

PðdSi=dt ¼ rÞ=PðdSi=dt ¼ �rÞ ¼ expðrt=kÞ ð22:5Þ

which can be cosmologically interpreted as follows: If some part of the universe
(indexed by the subscript i) is not at equilibrium (Si \ Si,max), then during a
subsequent time t, this part of the universe is much more likely to increase its
entropy at a positive rate r and fluctuate toward equilibrium (Si,max) than it is to
fluctuate further from equilibrium at a rate -r. How much more likely is given by
the expression exp(rt/k).

The Feynman quote ends with an unresolved issue: ‘‘For some reason, the
universe at one time had a very low entropy for its energy content…’’ To resolve
the issue of the initial entropy of the universe, Carroll [16] has suggested that
either we just accept the initial condition without asking why, or that the big bang
is not the beginning. The first is the abandonment of scientific cosmology and the
second is a very poorly supported speculation. Penrose and Tegmark [14, 20] use
anthropic reasoning, but it seems like overkill since it should only apply to the
minimal sized local patch needed to create us. However, as mentioned earlier, the
inflationary origin of matter from unclumped false vacuum energy may produce a
low gravitational entropy universe everywhere it has produced matter. This could
be the reason for the initial low entropy of the universe.
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22.3 Maximum Entropy Production Principle
in Cosmology

22.3.1 Entropy Production Around Supermassive Blackholes

Mass spiralling around a black hole in an accretion disk, can only fall into the black
hole if there are mechanisms to remove its angular momentum and load it onto
other mass that is then ejected from the system. How efficient those mechanisms are
is the main issue. Since the largest component of the current entropy of the universe
is the entropy of supermassive black holes, their growth by accretion of mass is the
largest source of entropy in the universe. Since the entropy of a black hole is
proportional to the square of the mass, SBH * MBH

2 (Eq. 22.3), the entropy pro-
duced during the formation and growth of a black hole is dSBH/dt * MBH dMBH/dt.
Thus, dSBH/dt is a maximum when MBH dMBH/dt is a maximum. Therefore, to
evaluate the Maximum Entropy Production Principle (MaxEP), we need to ask if
the structure of accretion disks around black holes of a given mass, maximizes
dMBH/dt. Less ambitiously, we can try to use MaxEP predictions to identify new
constraints that need to be included in accretion disk models.

How can we determine whether the structure of an accretion disk arranges itself
such that dMBH/dt = (dMBH/dt)max? We need to understand the details of the
angular momentum transfer and to evaluate if, under the constraints given, the
material around a black hole arranges itself optimally to transport angular
momentum and concentrate it into a relatively small amount of mass that gets
ejected from the system.

For mass to accrete onto a black hole, the angular momentum and energy of the
mass has to be gotten rid of. Energy from accretion can easily be radiated away
through the high luminosity of the inner edge of accretion disks. So the rate
limiting step controlling mass infall is the transfer of angular momentum. The
angular momentum L, of the mass that is going to fall in, has to be transferred to
mass that will be ejected (Figs. 22.1, 22.4). Therefore, to evaluate MaxEP, we
need to ask if black hole accretion disks are structured in such a way that they are
maximally efficient at exporting angular momentum. The efficiency of an accretion
disk can be quantified by how much L it can concentrate in the smallest amount of
ejected mass.

Accretion discs are ubiquitous structures in the astrophysics of black holes (i.e.
quasars, active galactic nuclei, binary X-ray sources), star formation and even
massive planet formation. When an accretion disk around a star runs out of mass to
accrete and is no longer able to transport angular momentum, the skeleton it leaves
behind is a angular-momentum dominated disk of material, also known as a
planetary system. Jupiter and Saturn have been stranded with *85 % of the
angular momentum of our solar system.

Accretion disks are differentially rotating Keplerian disks. That is, the velocity

of material at a distance r from the central mass M is v(r) *
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGM=rÞ

p
. Since
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velocity is not a constant but depends on radius, we have the frictional sheer of
molecular viscosity in the disk. This dissipation has been parametrized in the
earliest accretion disk models as the dimensionless parameter alpha [26]. How-
ever, ordinary molecular viscosity is not sufficient to explain the amount of angular
momentum transport needed to account for the observed accretion rate in accretion
disks [27]. Blandford and Payne [28] showed that magnetic stresses are more
efficient at transporting angular momentum as they convert centrifugal outflow
into the oft-observed collimated jets (see Figs. 22.1, 22.4).

The role of angular momentum in preventing accretion can be seen in the
effective potential (Fig. 22.4) of a mass m, with angular momentum L in the
accretion disk at a distance r from a black hole of mass MBH, located at r = 0, with
an event horizon radius (=Schwarzschild radius) rs [29]:

Veff ¼ �GMBHm=r þ L2= 2mr2
� �

1� rs=r½ � ð22:6Þ

For the mass m to sink into the potential well of the black hole, we need to
reduce the angular momentum L that m has. This reduction lowers the hill of high
angular momentum associated with the centrifugal force felt by the orbiting mass.

Fig. 22.4 Effective potential (Eq. 22.6) of material in an accretion disk for three values of
angular momentum L. The Newtonian 1/r gravitational potential is shown for comparison
(dashed line). The grey representative magnetic field line (‘‘B’’) is anchored to the partially
ionized material of the accretion disk (large black circle, also ‘‘m’’ in Eq. 22.6). Mass m is
whipping around the black hole at Keplerian velocities v(r) * r-1/2 carrying the magnetic field
line with it. Partially ionized particles above and below the accretion disk spiral around the
magnetic field lines. Since the magnetic field line is rotating, centrifugal forces accelerate and
eject these ionized particles like beads on a bullwhip. The acceleration of these particles comes at
the expense of the deceleration of the particles anchoring the field lines in the disk. Thus, the
transfer of angular momentum from material in the accretion disk to material ejected above and
below the disk, occurs through rotating magnetic field lines
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The ‘‘high L’’ curve drops down to become the ‘‘low L’’ curve. In Fig. 22.4, a
representative magnetic field line, is threaded through the large black circle (mass
‘‘m’’). As m circles around the black hole, it carries the B-field with it. Ionized
particles (represented by the small black circles) above (and below) the plane of
the accretion disk spiral around the B-field line and get accelerated out and up, like
beads on a whip. This transfers some of the angular momentum of m to the bead,
lowering the L of m. In this way, magnetic braking of m allows it to accrete onto
the central black hole [28].

The efficiency with which partially ionized material can be magnetically
whipped to high velocities and thus simultaneously loaded with angular momen-
tum is difficult to quantify because it depends on the complex profiles of ioniza-
tion, magnetic field strength, density, pressure and temperature above, below and
in the disk. It depends on an impedance matching between the magnetic braking of
material near the black hole and the magnetic acceleration of material further
away. For example, if the ionization fraction is too low, there will not be much
material to spiral around the field lines and get ejected. If the density of neutral
particles is too high in the region of acceleration, collisions with neutral particles
produces an ‘atmospheric friction’ that will slow down the acceleration (it is
difficult to crack a bullwhip underwater in order to accelerate a bead on it). The
high density impedes the transport of angular momentum. Magnetohydrodynamics
(MHD) is needed to model the system and feedback is important since magnetic
fields accelerate the spiraling particles, while at the same time, the spiraling
particles maintain the magnetic fields.

Since the amount of matter that could fall into a black hole is limited to how
much matter is nearby, the most ‘‘efficiently structured’’ accretion disks (the ones
that MaxEP would predict) are the ones that can concentrate angular momentum
into the smallest amount of mass and then eject only the smallest fraction of the
mass available. This allows a larger fraction of the mass to lose enough angular
momentum to fall into the hole and contribute to entropy production (Fig. 22.4).
One way to quantify the efficiency of L-transport in an accretion disk is to estimate
its ratio of mass accretion to mass ejection. In protostellar accretion disks (e.g.
around T-Tauri stars) this ratio is *5–10 [30]. In the accretion disks of SMBHs, it
may be comparable, but high angular resolution observations and modeling of
these systems are not good enough to say more. The efficiency cannot be infinite.
All the angular momentum cannot be concentrated in one ejected proton. The
constraints of the MHD angular momentum transfer, combined with MaxEP would
predict that there will be a maximum value to the mass accretion/mass ejection
ratio (somewhat analogous to the Carnot efficiency of a reversible heat engine).

Angular momentum is also transported magnetically within the disk. Modeling
by Balbus and Hawley [31, 32] showed that the magneto-rotational instability
(MRI) produces turbulent viscosity and accounts for additional outward angular
momentum transport [33]. The cause of MRI is the tendency of a weak magnetic
field to try to enforce corotation on displaced fluid elements. This results in excess
centrifugal force at large radii, and a deficiency of centrifugal force at smaller
radii. This drives fluid elements away from their equilibrium positions and
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produces interpenetrating fingers of high and low angular momentum fluid—
leading to angular momentum transport [31].

Can we arrange the magnetic field and all the other characteristics of an
accretion disk (in the context of the given specific environments around super-
massive black holes) to maximize dMBH/dt? Or does Nature do that by herself as
MaxEP would predict? As we obtain higher angular resolution images of a sig-
nificant sample of nearby supermassive blackholes, and as we make more accurate
and detailed computer MHD models of their mass accretion, we will get closer to
answering this question.
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