
Runtime Adaptation

of Component Based Systems

Sihem Loukil, Slim Kallel, and Mohamed Jmaiel

ReDCAD Laboratory, University of Sfax, Tunisia
sihem.loukil@redcad.org,

slim.kallel@fsegs.rnu.tn, mohamed.jmaiel@enis.rnu.tn

Abstract. The need for continuously available software systems and
their ability to support runtime adaptation is increasingly considered as
one key issue in the software development. In particular, the software
architecture of dynamically adaptive component based systems must
continuously adapt to varying environmental conditions and user require-
ments. Therefore, they propose a wide range of possible adaptations that
can not all be foreseen at design time. In this context, we propose to com-
bine the Architecture Description Languages and the Aspect-Oriented
Software Development which allow to make the adaptation process eas-
ier to design, understand and possible to validate.

1 Introduction

Software architecture modeling using Architecture Description Languages
(ADLs) is becoming increasingly popular in the early phases of system develop-
ment. Such languages facilitate the construction of high-level models in which
systems are described as compositions of components. They play an important
role in developing software systems deployed in large number of domains (com-
panies, banks, air-ports, etc). Such systems must be always available and con-
tinuously adapt to varying environmental conditions and user requirements even
at runtime. Hence, they should be modified/maintained during their execution,
for example to include new functionalities, without being obliged to stop the
system. This dynamic reconfiguration to maintain the system available presents
a tedious task. In fact, not all possible reconfigurations that will be applied to
the system can be foreseen at the time it is initially built and deployed. There-
fore, the system must be flexible to support new needs that may appear during
execution.

Very recently, several approaches like [1] are proposed to synchronize high
level models with the running system. Such approaches focus on managing the
variability of the dynamically adaptive systems by building a causal connection
between abstract design models and the running system. In such approaches, an
application is modeled using a base model and a set of variant models (aspects
that encapsulate the variation points) in order to manage the variability of the
adaptive application. Hence, an adaptation model is established to specify which
variants should be selected according to the adaptation rules and the current

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 284–288, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Runtime Adaptation of Component Based Systems 285

context of the executing system. The main problem of such approaches is the use
of more than one formalism to represent the design model (model representing
at a high level of abstraction the architecture of the initial system before its
deployment) and the execution model (model representing the abstraction of
the architecture of a system at runtime). This forces the use of transformation
languages and/or comparison models which increases the risk errors as it can
give place to problems related to the synchronization of the different models, or
to the propagation of changes among the different views. Moreover, to support
unforeseen adaptations at design time in such approaches, the designer should
manually create the modified model from scratch.

To tackle these issues, we propose an approach to manage the runtime adap-
tation of component based systems that uses one formalism to represent the
design model as well as the execution model. This approach supports the un-
foreseen adaptations at design time by manually editing the parts in question
using a graphical editor without being obliged to design the modified model from
scratch.

In this context, we aim at combining the Architecture Description Languages
(ADLs) and the Aspect-Oriented Software Development (AOSD) [2] paradigm
which allow to make the adaptation process easier to design, understand and
possible to validate.

For this purpose, we selected the Architecture Analysis & Design Language
(AADL) [3], as an ADL, for specifying the architecture of dynamically adaptive
component-based systems. This language uses the same formalism to represent
the runtime model and the design model. Moreover, a previous publication [4]
has provided a general overview of AO4AADL language, an Aspect-oriented
extension for AADL. This aspect-oriented modeling language extended AADL
with aspect-oriented concepts to design the crosscutting concerns related to the
non-functional and technical properties. It is used in this work to allow designer
monitoring the running system and performing the corresponding adaptation.

Our approach supports two types of runtime adaptations. First, the runtime
adaptations resulting from a change in the execution context of the running sys-
tem. Second, the ones resulting from the apparition of new user requirements
that requires the manual intervention of the designer on the architectural speci-
fication of the system. In both cases, the adaptation actions are performed first
on the model representing the architecture of the system. Applying the adap-
tation actions at the model level before applying them to the running system
has the advantage that we can test their effect when applied as a whole without
actually changing the system. Thereby, it is always possible to jump back to the
state before starting to apply the adaptation actions in case an error is detected
saving costly executions of roll-back operations on the system.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the proposed approach. In Section 3, we briefly present the monitor-
ing module of the adaptation process. Section 4 details the related work. Finally,
Section 5 concludes this paper and presents future work.



286 S. Loukil, S. Kallel, and M. Jmaiel

2 Architectural Reconfiguration of Component-Based
Systems

Figure 1 shows the architecture of the proposed approach for managing
component-based systems at runtime. This architecture comprises four levels:
declarative level, instance level, runtime level and adaptation level.

At the declarative level, the designer defines the types of the components that
can be used in the specification of the system. At the instance level, he specifies
the base model that contains instances of the declared types as well as the con-
nections between them. At this level, architectural aspects can be integrated to
specify crosscutting concerns. The runtime level contains the runtime machin-
ery that supports the execution of the system. The executed code is generated
from the instance model and eventually from the defined architectural aspects.
Finally, the adaptation level, which represents our main contribution, is respon-
sible for the management of runtime adaptations that may result from a change
in the execution context or the apparition of new user requirements at runtime.
Then, these adaptations can affect either the running system (change in the
execution context) or the instance model (apparition of new user requirements).

For the adaptations resulting from changes in the execution context, we use
the aspect-oriented technique to define a set of architectural aspects that are
intended to intercept the execution context variables and perform the corre-
sponding reconfigurations. For the other type of adaptations, we employ the
Hook methods technique which is intended to capture any manual intervention
of the designer on the architectural model of the system.

In both cases, the effect of the adaptation actions to perform should be checked
before committing them to the running system. For this purpose, they are applied
first on the model representing the architecture of the system and the obtained
configuration is validated through a set of architectural constraints defined at
the declarative level. If the new configuration is valid, the adaptation actions are
applied on the running system. Otherwise, it is simply discarded which allows
to save costly executions of roll-back operations on the system.

Fig. 1. The proposed architecture



Runtime Adaptation of Component Based Systems 287

As shown in figure 1, the runtime adaptation is composed of a main module
called the monitoring module. This module checks if any change is occurred at
the runtime level resulting from a change in the execution context or at the in-
stance level. For this purpose, we employ an extended version of the declarative
level that supports the specification of the context information. The context in-
formation and the adaptation rules are specified in a set of architectural aspects.
To perform the adaptation actions, this module uses a library of reconfiguration
functions that are included into the Ocarina tool [5].

At the declarative and instance level we use an extended version of AADL
with aspect concepts described in AO4AADL language [4]. The choice of AADL
was driven by many reasons. First, AADL is a standard and the resulting ar-
chitecture enables simulation and analysis of architectural characteristics using
precise execution and communication semantics. Second, AADL introduces two
extension mechanisms (properties and annexes) which make the language much
easier to extend. Moreover, it allows specifying architectural aspects using the
AO4AADL extension. To achieve the step of designing the system, we developed
our own graphical editor that integrates both AADL and AO4AADL concepts
in order to make the job of the designer easier. The declarative model and the
instance model are located at the server machine in the distributed application.

At the runtime level we use the RTSJ (Real Time Specification for Java) plat-
form which allows executing RTSJ code generated from the AADL specification
using Ocarina tool suite and easily weaving the AspectJ aspects generated from
the AO4AADL ones using our AspectJ generator presented in [4].

3 Monitoring Module

The monitoring module is composed of two types of monitors: the running system
monitor which looks at the changes that may be occurred at the runtime level
and the instance model monitor which checks for changes at model level.

The running system monitor checks the changes in the context information
through a set of AspectJ aspects woven into the code of the application. These
aspects are generated from the AO4AADL aspects defined at the declarative
level using our Aspect generator developed in the Ocarina tool suite [5]. The
pointcut of such architectural aspect intercepts the execution of a port of a
component or a parameter of a subprogram through which the information on
the intercepted context variable is transferred. The advice code is fulfilled by the
designer to specify the corresponding adaptation rules.

The instance model monitor is intended to check for changes on the instance
model performed manually by the designer while the system is running. It is
composed of a library of functions called Hook methods. These Hooks allow the
designer to modify the functionalities of his software by realizing customized
actions at well-defined times by inserting entry points to a list of actions. These
methods include listeners to capture the evolution of the instance model.



288 S. Loukil, S. Kallel, and M. Jmaiel

4 Related Work

There are various points of view on how to reconfigure a system at runtime.
Although this technique is recently introduced, several researchers have deepened
their work in this area.

Similarly to our work, some approaches like [1] are based on aspect-oriented
programming and model-oriented techniques to monitor and adapt application
by building a causal connection between design models and the running sys-
tem. Unlike our approach, the designer should manually create the modified
model from scratch to support unforeseen adaptations. The authors present in [6]
model-based traces as runtime models and traces analysis methods. However, the
syntax and semantics of various types of the model-based traces in this work are
not formally defined. Some other existing approaches show how runtime mod-
els can be derived efficiently from the specification, and how they support the
designer in considering the execution of the application in the same formalism
as the specification [7]. Unlike our approach, designers are required to consider
the execution model when specifying any runtime adaptation, forcing them to
understand the different formalisms of both the execution and the specification
models.

5 Conclusion and Future Work

We have proposed an approach to manage the runtime adaption of component-
based systems. Architectural aspects described in AO4AADL are used to catch
the adaptations resulting from context information changes. These adaptations
are foreseen at design time. For the unforeseen adaptations, we propose to man-
ually act on the model to perform the adaptation.

In future work, we plan to extend our approach to support the detection of
potential conflicts between runtime adaptation in a distributed system.

References

1. Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., Solberg, A.: Models@ run.time
to support dynamic adaptation. Computer 42, 44–51 (2009)

2. Filman, R.E., Elrad, T., Clarke, S., Akşit, M. (eds.): Aspect-Oriented Software
Development. Addison-Wesley, Boston (2005)

3. SAE: Architecture Analysis & Design Language (2004), http://www.sae.org
4. Loukil, S., Kallel, S., Zalila, B., Jmaiel, M.: Toward an Aspect Oriented ADL for

Embedded Systems. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285,
pp. 489–492. Springer, Heidelberg (2010)

5. Vergnaud, T., Zalila, B., Hugues, J.: Ocarina: a Compiler for the AADL. Technical
report, Telecom Paristech - France (2006)

6. Maoz, S.: Using model-based traces as runtime models. Computer 42, 28–36 (2009)
7. Saudrais, S., Staikopoulos, A., Clarke, S.: Using specification models for runtime

adaptations. In: International Workshop on Models@RunTime (2009)

http://www.sae.org

	Runtime Adaptation of Component Based Systems
	1 Introduction
	2 Architectural Reconfiguration of Component-Based Systems
	3 Monitoring Module
	4 Related Work
	5 Conclusion and Future Work
	References




