
Vincent Gramoli
Rachid Guerraoui (Eds.)

 123

LN
CS

 7
85

3

First International Conference, NETYS 2013
Marrakech, Morocco, May 2013
Revised Selected Papers

Networked Systems

Lecture Notes in Computer Science 7853
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Vincent Gramoli Rachid Guerraoui (Eds.)

Networked Systems
First International Conference, NETYS 2013
Marrakech, Morocco, May 2-4, 2013
Revised Selected Papers

13

Volume Editors

Vincent Gramoli
NICTA and University of Sydney, NSW, Australia
E-mail: vincent.gramoli@sydney.edu.au

Rachid Guerraoui
EPFL, Lausanne, Switzerland
E-mail: rachid.guerraoui@epfl.ch

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40147-3 e-ISBN 978-3-642-40148-0
DOI 10.1007/978-3-642-40148-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013944639

CR Subject Classification (1998): C.2, F.2, E.5, K.4

LNCS Sublibrary: SL 5 – Computer Communication Networks and
Telecommunications

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

NETYS, the International Conference on Networked Systems, provides a fo-
rum to report on best practices and novel algorithms, results and techniques in
networked systems. It brings together researchers and engineers from both the
theory and practice of networked systems: multi-core architectures, middleware
environments, storage clusters, as well as social, peer-to-peer, sensor, wireless,
and mobile networks.

This volume contains the papers selected for NETYS 2013, the First Inter-
national Conference on Networked Systems, held in Marrakech, Marocco. There
were 74 papers submitted to the conference among which the Program Com-
mittee selected 17 contributions for regular presentations (23%). Each regular
presentation is accompanied by a 15-page paper in this volume. Every submit-
ted paper was read and carefully evaluated by the Program Committee in 198
reviews with 20 of them written by external reviewers. Revised and expanded
versions of several selected papers will be considered for publication in a special
issue of the Computing Journal.

The program also included three invited lectures by Willy Zwaenepoel (EPFL,
Switzerland), Jonathan Ledgard (EPFL, Switzerland), and Mira Mezini (Tech-
nische Universität Darmstadt, Germany).

The Best Paper Award was given to Diego Didona, Pascal Felber, Derin Har-
manci, Paolo Romano, and Joerg Schenker for “Identifying the Optimal Level of
Parallelism in Transactional Memory Systems.” The Best Student Paper Award
was given to Yahya Benkaouz and Mohammed Erradi for “A Distributed Pro-
tocol for Privacy Preserving Aggregation.”

The Program Committee also considered 16 papers for short presentations
among the papers that generated substantial interest from the members of the
committee but that could not be accepted as regular presentations. Each short
presentation is accompanied by a five-page paper in this volume and presents
ongoing work or recent results. It is expected that these results will appear as
full papers in other conference proceedings or journals.

We would like to thank the General Co-chairs, Mohammed Erradi and Bernd
Freisleben, for their help, and the numerous sponsors of the event: DAAD, IBM,
Technicolor, INRIA, Telefonica, Google, Microsoft Research, Thinline, Univer-
sity Mohammed V, and ENSIAS.

May 2013 Vincent Gramoli
Rachid Guerraoui

Table of Contents

On the Consensus Number of Non-adaptive Perfect Renaming 1
Armando Castañeda and Michel Raynal

Set Agreement and the Loneliness Failure Detector in Crash-Recovery
Systems . 13

Sergio Arévalo, Ernesto Jiménez, and Jian Tang

Black Art: Obstruction-Free k-set Agreement
with |MWMR registers| < |proccesses| . 28

Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and
Sergio Rajsbaum

Self-stabilizing Byzantine Resilient Topology Discovery and Message
Delivery (Extended Abstract) . 42

Shlomi Dolev, Omri Liba, and Elad M. Schiller

FreeRec: An Anonymous and Distributed Personalization
Architecture . 58

Antoine Boutet, Davide Frey, Arnaud Jégou,
Anne-Marie Kermarrec, and Heverson B. Ribeiro

Establishing Efficient Routes between Personal Clouds 74
Ercan Ucan and Timothy Roscoe

Developing, Deploying and Evaluating Protocols with ManetLab 89
François Vessaz, Benôıt Garbinato, Arielle Moro, and Adrian Holzer

Airtime Ping-Pong Effect in IEEE 802.11s Wireless Mesh Networks 105
Mohamed Riduan Abid and Saâd Biaz

Planning UMTS Base Station Location Using Genetic Algorithm
with a Dynamic Trade-Off Parameter . 120

Mohammed Gabli, El Miloud Jaara, and El Bekkaye Mermri

Video Encryption Based on the Permutation of the (Z/pZ) Fields 135
Younes Benlcouiri, Mohammed Benabdellah,
Moulay Chrif Ismaili, and Abdelmalek Azizi

Improving Resource Location with Locally Precomputed Partial
Random Walks . 144

Vı́ctor M. López Millán, Vicent Cholvi, Luis López, and
Antonio Fernández Anta

VIII Table of Contents

Distributed B-Tree with Weak Consistency . 159
Gregor V. Bochmann and Shah Asaduzzaman

Consistency in Distributed Storage Systems: An Overview of Models,
Metrics and Measurement Approaches . 175

David Bermbach and Jörn Kuhlenkamp

Request Complexity of VNet Topology Extraction: Dictionary-Based
Attacks . 190

Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan

Stability of Adversarial Routing with Feedback . 206
Bogdan S. Chlebus, Vicent Cholvi, and Dariusz R. Kowalski

A Distributed Protocol for Privacy Preserving Aggregation 221
Yahya Benkaouz and Mohammed Erradi

Identifying the Optimal Level of Parallelism in Transactional Memory
Applications . 233

Diego Didona, Pascal Felber, Derin Harmanci, Paolo Romano, and
Jörg Schenker

Biologically Sound Neural Networks for Embedded Systems Using
OpenCL . 248

István Fehérvári, Anita Sobe, and Wilfried Elmenreich

FStream: A Decentralized and Social Music Streamer 253
Antoine Boutet, Konstantinos Kloudas, and Anne-Marie Kermarrec

BFT Selection . 258
Ali Shoker and Jean-Paul Bahsoun

Modeling of Human Head Interaction with Planar Antenna for Multi
Standard Cellular Phones . 263

Ahmed Zakaria Manouare, Abdelilah Ghammaz,
Abdelaziz El idrissi, and Saida Ibnyaich

Modeling the Cut-off Frequency of Acoustic Signal with a Fuzzy Logic
System . 268

Youssef Nahraoui, Elhoucein H. Aassif, Rachid Latif, and
Gérard Maze

Bitbox: Eventually Consistent File Sharing . 274
Erwan Le Merrer, Nicolas Le Scouarnec, and Gilles Straub

Improving Miller’s Algorithm Using the NAF and the Window NAF 279
Siham Ezzouak, Mohammed El Amrani, and Abdelmalek Azizi

Runtime Adaptation of Component Based Systems 284
Sihem Loukil, Slim Kallel, and Mohamed Jmaiel

Table of Contents IX

Comparative Performance Analysis of AODV and AOMDV to Transmit
H.264 Traffic . 289

Adel Echchaachoui, Ali Choukri, Ahmed Habbani, and
Mohammed Elkoutbi

Large Scale 3D Shape Retrieval Based on Multi-core Architectures 295
El Wardani Dadi and El Mostafa Daoudi

New Forwarding Strategy for PROPHET Routing in Delay Tolerant
Networks . 300

Ahmed El Ouadrhiri, Mohamed El Kamili,
Mohammed Raiss El Fenni, and Lahcen Omari

New Validation Approach Based on Group MADM for Network
Selection . 306

Mohamed Lahby, Leghris Cherkaoui, and Abdellah Adib

Secured Geographic Routing Protocol for Vehicular Ad Hoc Networks
(VANETs) . 311

Mohammed Erritali, Bouabid El Ouahidi, and Daniel Bourget

Enhanced AntNet Protocol for Wireless Multimedia Sensor Networks . . . 316
Ismail Bennis, Ouadoudi Zytoune, and Driss Aboutajdine

Forest Fire Detection and Localization with Wireless Sensor
Networks . 321

Yassine Sabri and Najib El Kamoun

On Ensuring End-to-End Quality of Service in Inter-Domain
Environment . 326

Sara Bakkali, Hafssa Benaboud, and Mouad Ben Mamoun

Author Index . 331

On the Consensus Number
of Non-adaptive Perfect Renaming

Armando Castañeda1 and Michel Raynal2,3

1 Department of Computer Science, Technion, Haifa 32000, Israel
2 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

3 Institut Universitaire de France

Abstract. In the (n,M)-renaming problem, there are n processes, each with an
initial name known only from itself, and these processes have to compute new
names from the set {1, ...,M}, despite asynchrony and any number of process
crashes, such that no two processes have the same new name. If M = n, the
renaming is said to be perfect. If M is only on function on the number n of the
processes in the system, the renaming is said to be non-adaptive. In contrast, if
M is on function on the number of processes that actually participate in a given
execution, renaming is adaptive. The consensus number of a concurrent object is
an integer which measures its synchronization power in presence of any number
of process crashes.

This paper investigates the consensus number of non-adaptive perfect renam-
ing objects. It shows that, while a non-adaptive perfect renaming object for two
processes (ports) has consensus number 2, its consensus number decreases to 1
when the number of processes which can access it increases beyond 2.

Keywords: Common2, Computability power, Concurrent object, Consensus
number, Consensus object, Object port, Process failure, Renaming, Task,
Wait-freedom.

1 Introduction

Wait-freedom and the consensus number hierarchy. The notions of wait-freedom and a
consensus number have been introduced by M. Herlihy [11]. The implementation of a
concurrent object is wait-free if any invocation of an object operation does terminate if
the invoking process does not crash, whatever the behavior of the other processes (which
means that these processes can be concurrently accessing the internal representation of
the object, can be very slow, or can even crash in the middle of an operation).

A consensus object for n processes (i.e., an object with n ports), sometimes denoted
n-consensus, provides the processes with a single one-shot operation propose() (one-
shot means that a process invokes the operation at most once). A process pi invokes
propose(vi), where vi is the value it proposes to the consensus object. This invocation
returns it a value v, and we say that the invoking process decides v. The object is de-
fined by the following properties: a decided value is a proposed value (validity), no two
different value are decided (agreement), and if a process invokes propose() and does
not crash while executing this operation it decides a value (termination).

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 A. Castañeda and M. Raynal

A main result of [11] is the design of an algorithm (called universal construction)
that builds, from atomic read/write registers and consensus objects, a wait-free imple-
mentation of any object defined from a sequential specification. This steers the design
of wait-free object implementations back to the implementation of consensus objects.
The notion of a consensus number of a class of objects X , denoted CN(X), has been
introduced to that end. It is defined as follows in [11]:

“The consensus number for X is the largest n for which X solves n-process
consensus. If no largest n exists, the consensus number is said to be infinite.”

This means that, in a read/write system of n processes, enriched with objects whose
consensus number is greater than or equal to n, it is possible to wait-free implement
any object defined by a sequential specification.

It is shown in [11] that consensus numbers define an infinite hierarchy: CN(read/
write registers) = 1, CN(test&set) = CN(queue) = 2, ..., CN(compare&swap) =
CN(LL/SC) = +∞.

The renaming problem. An M -renaming [3] object for n processes (i.e., an object with
n ports), sometimes denoted (n,M)-renaming, provides the processes with a one-shot
operation, denoted rename(), that allows them to obtain distinct names from a name
space whose size is M . It is assumed that processes invoke rename() with distinct
inputs (their initial names) taken from an input space of size N > M .

It has been shown that (n,M)-renaming objects can be wait-free implemented using
only read/write register if and only if M ≥ 2n − 1 [4,12], except for some specific
values of n for which (n,M)-renaming objects can be implemented with M = 2n− 2
[5]. If follows that for M ≥ 2n − 1 (or M ≥ 2n − 2 for the specific values of n)
the consensus number of (n,M)-renaming is the same as the one read/write registers,
namely, it is 1.

Let us observe that a renaming object can output large names (as long as they belong
to the constrained output space) in executions in which few processes invoke the object.
For example, it can be the case that a single process invokes an (n,M)-renaming object
and receives M , the largest name of the output space. That is to say, the output space
does not “adapt” to the number of processes that actually invoke a renaming object, it
does depend only on the total number of processes. Thus, if the size of the new name
space depends only on n, renaming is said to be non-adaptive, denoted NA renaming.

The adaptive version of renaming is defined as follows. Let p, 1 ≤ p ≤ n, denote the
number of processes that invoke the operation rename(). Adaptive renaming, denoted
A renaming, requires that the size of the new name space be a function of p. Several
algorithms implementing (n, 2p− 1)-A renaming objects have been proposed ([6] sur-
veys some of them). M = 2p − 1 is the lower bound for the size of new name space,
for every value of n.

It is known that, for any n, (n, p)-A renaming, also called adaptive perfect renaming,
can be solved from n-port test&set objects (i.e., objects which can be accessed by n
processes) and vice-versa, and consequently adaptive perfect renaming has consensus
number 2 [6].

On the Consensus Number of Non-adaptive Perfect Renaming 3

The family Common2. A noteworthy family of objects whose consensus number is 2
has been identified in [1,2]. This family, called Common2, includes all the objects that
(a) have consensus number 2 and (b), for any n ≥ 2, are wait-free implementable from
any number of objects of a class X such that CN(X) = 2.

The equivalence between adaptive perfect renaming and test&set [6] shows that
adaptive perfect renaming belongs to the family Common2. It has been shown that
test&set objects, swap objects, fetch&add objects, A renaming objects and stacks be-
long to Common2. Differently, while a queue object has consensus number 2, it is still
an open problem to known if it belongs to Common2 [1].

Content of the paper. This paper is on the consensus number of (n, n)-NA renaming,
also called non-adaptive perfect renaming. First, the paper shows that it is possible to
solve 2-process consensus using (2, 2)-NA renaming objects, while it is not possible
to solve 2-process consensus from (m,m)-NA renaming objects, whenever m ≥ 3.
Then, in the light of these results, the paper analyses what is the consensus number
of non-adaptive perfect renaming, according to the classical definition of a consensus
number. Then, the paper proposes a refinement of the definition of a consensus number
that better reflects the computability power of non-adaptive perfect renaming. Finally,
it discusses the relation of non-adaptive perfect renaming with Common2.

2 Computation Model

As the computation model is widely used in the literature, we do not explain it in detail
(see [6] for a detailed description). We restate only the aspects of this model which are
the most important to make the paper self-contained.

Read/write wait-free system model. This paper considers the usual asynchronous, wait-
free shared memory system where at most n − 1 out of n processes p1, ..., pn can
fail by crashing. Processes communicate by accessing single-writer/multi-reader atomic
registers. The subscript i is called the index of pi. The participating processes in a
run are the processes that take at least one step in that run. Those that take a finite
number of steps are faulty (sometimes called crashed), the others are correct (or non-
faulty). A non-participating process is a faulty process. The algorithms designed for this
computation model have to work despite up to n − 1 faulty process. In some sections,
in addition to registers, processes cooperate through objects that implement some tasks.

Identities. Each process pi has an identity denoted idi. An identity is an integer value in
[1..N], where N ≥ 2n− 1. We assume that in every initial configuration of the system,
the identities are distinct: i �= j ⇒ idi �= idj . A process knows n but does not know
the identity of the other processes.

Index-independent algorithm. Generally speaking, in an index-independent algorithm,
indexes are used only for addressing purposes, namely, when a process pi writes a value
to an array of 1WnR registers A, its index is used to deposit the value in A[i], and when
pi reads A, it gets back a vector of n values, where the j-th entry of the vector is
associated with pj ; however, the processes cannot use indexes for computation.

4 A. Castañeda and M. Raynal

Formally, an algorithmA is index-independent if the following holds for every run r
and every permutation π() of the process indexes. Let rπ be the run obtained from r by
permuting the input values according to π() and, for each step, the index i of the process
that executes the step is replaced by π(i). Then rπ is a run ofA. Consider a permutation
π() such that π(i) = j. The index-independence ensures that pj behaves in rπ exactly
as pi behaves in r: it decides the same thing in the same step. In an index-independent
algorithm, if the output of pi in r is v, then the output of pπ(i) in rπ is v, i.e., the output
of a process does not depend on indexes, it depends only on the inputs (ids) and on the
interleaving.

Additional communication objects. In addition to read/write registers, processes may
be allowed to communicate through one-shot (m,m)-NA renaming objects, m ≥ 2.
Hence, each process can invoke a renaming object at most once. Each of these objects
X is assumed to be sequentially deterministic [8]. This means that X behaves deter-
ministically in every non-concurrent invocation by a single process, namely, the output
of X in a non-concurrent invocation only depends on its internal state (just before the
invocation) and the input. In other words, the only source of non-determinism is con-
currency.

An an example, let us consider an execution in which X is invoked first by p, then
q and r invoke it concurrently (after p’s invocation has finished) and finally s invokes
X alone. Then, X behaves deterministically in the non-concurrent invocations of p: the
outputX produces only depends on its initial internal state and p’s input. In contrast,X
behaves non-deterministically in the concurrent invocations of q and r: the behavior of
X depends not only on its current state (after p’s invocation) and the inputs, but also on
the interleaving of the internal computation steps of X during the invocation. Finally,
X behaves deterministically in the last invocation.

Note that (n,M)-NA renaming is trivial if there is no restriction on how a process
can use its index: each process pi just decides i. Therefore, in order to avoid trivial
solutions, it is required that any implementation of an (n,M)-NA renaming object must
be index-independent, namely, the new name of a process is by no means a function of
its index, it is a function of only its input name and the execution.

3 Solving 2-Process Consensus from Non-adaptive Perfect
Renaming

k-set agreement [9] is a generalization of consensus in which at most k distinct values
can be decided (thus 1-set agreement is consensus). The computability power of M -
renaming and k-set agreement [9] is compared in [7]. A consequence of these results is
that:

1. It is possible to solve 2-process consensus from (2, 2)-NA renaming objects.
2. It not possible to solve 2-process consensus from (m,m)-NA renaming objects

where m ≥ 3.

This section presents a simple direct proof of these two results (instead of proving them
using the results in [7]). This proof is based on a sequentially deterministic (m,m)-
NA renaming object X .

On the Consensus Number of Non-adaptive Perfect Renaming 5

Theorem 1. There is an asynchronous wait-free implementation of a 2-process con-
sensus object from read/write registers and (2, 2)-NA renaming objects.

Proof. Let X be a (2, 2)-NA renaming object. A solo-execution of X is an execution
in which exactly one process invokes X . The fact that X is sequentially deterministic
implies that there must be a value xwinner ∈ {1, 2} such that in every solo-execution
with input 1, no matter the participating process p, X outputs xwinner to p. Note that
this is true because X is index-independent, and hence the output of X cannot depend
on the index of p.

function propose(vi) is
(01) M [i]← vi % Each entry of M is initialized to ⊥
(02) j ← (i+ 1) mod 2 % id of the other process
(03) if M [j] = ⊥
(04) then �i ← X .rename(1)
(05) else if i < j
(06) then �i ← X .rename(2)
(07) else �i ← X .rename(3)
(08) end if
(09) end if
(10) if �i = xwinner

(11) then return(M [i])
(12) else return(M [j])
(13) end if

Fig. 1. Solving consensus among two processes from (2, 2)-NA renaming (code for Pi)

Fig. 1 depicts an implementation of a consensus object for two processes, P0 and
P1, using X and xwinner . Each process Pi first announces its proposal in M (line
01), and then checks if (according with its view) the other process, Pj , participates
in the execution (line 03). Then, the processes dynamically compute the values used
for invoking X (recall that processes call an (n,M)-NA renaming object with distinct
inputs in the space [1, . . . , N], N > M). If Pj does not participate (M [j] = ⊥), then
Pi invokes X with input 1 (line 04); if Pj participates, then Pi calls X with either 2 or
3, depending if i (its id) is smaller than j (lines 05-08). Finally, Pi decides its proposal
if it gets xwinner from X , otherwise decides the proposal of Pj (lines 09-12).

The termination property of consensus directly follows from the code and from the
fact that X is wait-free. We now check that the validity and agreement properties also
hold. Consider first a solo-execution of the algorithm. Then, the unique participating
process Pi invokes X with input 1 (line 04). As already explained, in such execution,
Pi gets xwinner from X , and thus it decides its proposal vi (line 10). Now, consider an
execution in which both processes, P0 and P1, participate. Note that it is not possible
that both P0 and P1 see that the condition in line 03 is true (however, it is possible that
both see that the condition is not true, or one processes sees that it is true, while it is not
true for the other process). Therefore, at most one process invokes X with input 1. If

6 A. Castañeda and M. Raynal

P0 and P1 see that the condition is true, then one of them invoke X with input 2, while
the other invokes it with input 3. In any case, P0 and P1 invoke X with distinct input
vales. Since X solves (2, 2)-NA renaming, it outputs xwinner to exactly one process,
which decides its proposal; the other process decides the proposal of the process that
got xwinner . The theorem follows. �Theorem 1

Theorem 2. For every m ≥ 3, there is no asynchronous wait-free implementation of a
2-process consensus object from read/write registers and (m,m)-NA renaming objects.

Proof. Assume, for the sake of contradiction, that there exists such an object A that
implements consensus among 2 processes, P0 and P1, from read/write registers and
(m,m)-NA renaming objects. The idea of the proof is simple, namely, a read/write
based object B is obtained by replacing each (m,m)-NA renaming object in A with
a read/write wait-free object that solves (2, 3)-NA renaming; then we will see that in
every execution ofB, P0 and P1 reach consensus, thus consensus is read/write wait-free
solvable, which is a contradiction.

Fig. 2 contains an asynchronous wait-free implementation of a (2, 3)-NA renaming
object for two processes, P0 and P1. It is essentially the same mechanism used in Fig.
1 to decide the input a process uses for invoking X . Clearly, the implementation is
wait-free. Also, it is is index-independent since the output of a process only depends
on if it is running alone, or if its input name is smaller than the input name of the
other process. Also, observe that it is not possible that P0 and P1see that the condition
in line 03 is true, and thus at most one process decides the output name 1. If P0 and
P1 see that the condition is true, then the process with smaller input name decides 2,
while the other process decides 3. In any case, P0 and P1 decide distinct output names
in the range [1, 2, 3]. Therefore, the algorithm in Fig. 1 is a correct implementation of
(2, 3)-NA renaming. Moreover, any instance of the algorithm clearly is sequentially
deterministic.

function rename(vi) is
(01) M [i]← vi; % Each entry of M is initialized to ⊥
(02) j ← (i+ 1) mod 2; % id of the other process
(03) if M [j] = ⊥
(04) then return(1)
(05) else if min

(
M

)
= vi

(06) then return(2)
(07) else return(3)
(08) end if
(09) end if.

Fig. 2. A read/write wait-free algorithm that solves (2, 3)-NA renaming (code for Pi)

From A, we obtain an algorithm B for two processes P0 and P1: each (m,m)-
NA renaming object in A is replaced with a distinct instance of the algorithm in Fig.
2. Thus, in B, each Pi executes exactly the same instructions as in A, except that each

On the Consensus Number of Non-adaptive Perfect Renaming 7

time it invokes an (m,m)-NA renaming object, it actually invokes a read/write wait-
free object solving (2, 3)-NA renaming. Note that the resulting algorithm B uses only
read/write operations.

The key observation is that in every execution ofB, P0 and P1 cannot distinguish that
they are not calling genuine objects that solve (m,m)-NA renaming: each Pi receives
a unique value in the range [1,2,3] which is correct because m ≥ 3, and thus each
each (m,m)-NA renaming object in A can output (valid) values in the range [1,2,3]
whenever invoked. Also, each sequentially deterministic (m,m)-NA renaming object
is replaced with a sequentially deterministic (2, 3)-NA renaming object.

Therefore, for every execution of B, there is an execution of A in which P0 and P1

behave exactly in the same way. This implies the following:

– There cannot be an execution ofB in which a correct process that executes infinitely
many computation steps and does not decide because this would imply that there is
an execution of A in which there is a correct process that executes infinitely many
computation steps and does not decide, contradicting that A is wait-free.

– There cannot be an execution of B in which correct processes decide on distinct
values because this would imply that there is an execution of A in which correct
process decide on distinct values, contradicting that A a solves consensus.

Therefore, we conclude that B is asynchronous read/write wait-free implementation of
a 2-process consensus object. A contradiction. �Theorem 2

4 The Consensus Number of Non-adaptive Perfect Renaming

4.1 Refining the Consensus Number Definition: Definition A

The base consensus number definition does not explicitly consider the number of ports
of an object of the type X (i.e., how many different processes are allowed to access
the object). Hence, what do we mean when we say that test&set, for example, has
consensus number 2? To the best of our knowledge, the literature interprets the base
consensus number definition as considering that every m-port test&set object, m ≥ 2,
can solve consensus among 2 processes. More precisely, this implicit interpreation can
be captured by the following definition (definition A).

The consensus number for X (denoted CNA(X)) is the largest n such that
there is an algorithm that wait-free solves n-process consensus from read/write
registers and m-port objects of type X , for every m ≥ n. If no largest n exists,
the consensus number is said to be infinite.

This definition seems to fit the intuition of [11]. Basically, it places no constraint on
the number of processes that can a priori access objects of the type X (as it places no
constraint on the number of processes that can access atomic read/write registers).

Thus, under Definition A, non-adaptive perfect renaming has consensus number
1. This is because, for n ≥ 3, (n, n)-NA renaming objects cannot solve 2-process
consensus, Theorem 2.

8 A. Castañeda and M. Raynal

4.2 Refining the Consensus Number Definition: Definition B

As we have already seen, (a) it not possible to solve 2-process consensus from (m,m)-
NA renaming objects where m ≥ 3, Theorem 1, but (b) it is possible to solve 2-process
consensus from (2, 2)-NA renaming objects, Theorem 2. This means that, in a sys-
tem of n = 2 processes enriched with (2, 2)-NA renaming objects (two-port objects),
Definition A becomes inconsistent.

So, what is the consensus number of non-adaptive perfect renaming? Hence the
following weaker Definition B, which is an alternate interpretation of the original
definition of consensus numbers [11]. Under this definition the consensus number of
(2, 2)-NA renaming is 2.

The consensus number for X (denoted CNB(X)), is the largest n such that
there is an algorithm that wait-free solves n-process consensus from read/write
registers and n-port objects of type X . If no largest n exists, the consensus
number is said to be infinite.

As we can see, “m-port objects of type X for every m ≥ n” of Definition A is replaced
here by “m-port objects of type X where m = n”. Note that for every class of objects
X , CNB(X) ≥ CNA(X).

Definition B is in agreement with the fact that (2, 2)-NA renaming has consensus
number 2 and (m,m)-NA renaming has consensus number 1 for m > 2. This means
that there are objects whose instances have a consensus number which depends on the
number of processes (ports) m for which they are instantiated.

This seems deeply related to the following observation. As an (m,m)-NA renaming
object is non-adaptive, it follows that, when m > 2 and only two processes invoke this
object, they can obtain new names greater than 2, namely, the object does not behave as
a (2, 2)-NA renaming object, when only two processes participate.

5 (2, 2)-NA Renaming Belongs to Common2

This section shows that (2, 2)-NA renaming belongs to Common2. The proof follows
from the combination of three lemmas [7,6,10].

Theorem 3. Both (m, p)-A renaming and (2, 2)-NA renaming belong to Common2.

First, recall that a test&set object for n processes, denoted n-T&S, provides the pro-
cesses with a single one-shot operation participate(). This operation allow processes to
obtain either 0 (winner) or 1 (looser) in a way that exactly one process gets 0, in every
execution. Let A 	 B means that A and B have the same computational power, namely,
A implements B and B implements A.

Proof. The theorem follows directly from the lemmas below: by Lemmas 1 and 2, it fol-
lows that, for everym ≥ 2, (m, p)-A renaming	 2-T&S; thus, for everym ≥ 2, (2, 2)-
NA renaming 	 (m, p)-A renaming 	 2-T&S 	 m-T&S, from Lemma 3. Therefore,
(m, p)-A renaming and (2, 2)-NA renaming belong to Common2. �Theorem 3

For completeness, the proofs of Lemmas 1, 2 and 3 are presented below.

On the Consensus Number of Non-adaptive Perfect Renaming 9

Lemma 1. [6] ∀m ≥ 2: m-T&S 	 (m, p)-A renaming.

Proof. It is easy to implement m-T&S from (m, p)-A renaming: each pi invokes an
(m, p)-A renaming object X using i as input, and decides 0 (winner) if gets 1, other-
wise decides 1 (looser). Due to the specification of (m, p)-A renaming, in every execu-
tion in which p processes participate, X outputs distinct names in the range [1, . . . , p].
Thus, exactly one process gets 1 from X , and consequently decides 0; the other process
receive values distinct from 1, and hence decide 1.

In an implementation of (m, p)-A renaming from m-T&S, the processes share an n-
dimensional array of m-T&S objects. Each pi invokes in order the objects in the array;
if it gets 0 from the j-th object, then it decides name j (and does not invoke the other
objects). Since a m-T&S object outputs 0 to exactly one process, at most one process
decides j. Also, if exactly p processes participate, in the worst case, a process invoke
the p-th object and then decides. �Lemma 1

Lemma 2. [10] ∀m ≥ 2: m-T&S 	 2-T&S.

Proof. As m ≥ 2, building a 2-TS object from an m-TS object is trivial. So, the inter-
esting construction is the one in the other direction. The corresponding construction is
simple. It is based on the following two principles. Let participate2() denote the opera-
tion on a base 2-TS object, and participatem() denote the operation on the constructed
m-TS object.

First, in order to satisfy the index independence property, the transformation first
uses an underlying renaming object that provides the processes with new names that
they can thereafter use “instead of” their indexes. Renaming algorithms that satisfy the
index independence property and use only atomic registers do exist (e.g., see [6]). These
algorithms provide a new renaming space whose maximal size is M = 2m− 1. So, the
new name of a process pi is an integer in the set {1, . . . , 2m− 1} that is independent of
its index i. This underlying base renaming object is denoted BASE AR.

Let nbc = C(2m− 1, 2) (the number of distinct subsets of two elements in a set of
2m−1 elements). Let us order these nbc subsets in an array SET LIST [1..nbc] in such
a way that SET LIST [x] is the two-process set that define the xth subset. Moreover,
let BASE TS [1..nbc] be an array of nbc base 2-T&S objects.

The principle that underlies the second part of the construction is the following.
First, the two processes that define SET LIST [x] are the only ones that can access
BASE TS [x]. When a process pi invokes participate2(), starting from the first base ob-
ject BASE TS [x] it belongs to, it scans (one after the other and in the increasing order
on their indexes) all the sets BASE TS [x] it belongs to. IfBASE TS [x].participate2()
returns 1 (loser), pi stops scanning and returns 1 as the result of its invocation
participate(). Otherwise, pi is a winner among the processes that access BASE TS [x];
it then proceeds to the next object of BASE TS [1..nbc] to which it belongs. If there
is no such object (pi has then “successfully” scanned all the subsets it belongs to), it
returns 1 as the result of participatem().

The construction is described in Fig. 3. The local variable posi keeps pi’s current
scanning position in SET LIST [1..nbc]. The function next(new namei, posi) returns
the first entry y (starting from posi+1 and in increasing order) of SET LIST [1..a] such

10 A. Castañeda and M. Raynal

operation participatem():
(01) new namei ← BASE AR.rename();
(02) posi ← 0;
(03) while (true) do
(04) posi ← next(new namei, posi);
(05) resi ← BASE TS [posi].participate2();
(06) if (resi = 0) then return (1)
(07) else if

(
posi = last(new namei)

)

(08) then return (0) end if
(09) end if
(10) end while

Fig. 3. From 2-TS objects to an m-TS object (code for pi)

that new namei belongs to SET LIST [y]. Finally, the predicate last(new namei)
returns true iff posi = nbc or new namei belongs to no set from SET LIST [posi+1]
until SET LIST [a]. The statement return(v) terminates pi’s invocation.

It trivially follows from lines 06 and 07 that only the values 0 (winner) or 1 (loser)
can be returned. Let us now show that the invocation of participatem() by a correct
process pi terminates. If pi executes return(0) at line 06, it terminates. So, let us as-
sume that pi never executes return(0) at line 06. It follows that it is a winner in each
base object BASE TS [y] it accesses. These objects define a list that has a last ele-
ment BASE TS [z]. When pi accesses that base object, we have both posi = z and
last(new namei) = z, from which it follows that pi executes return(1) at line 07.

The proof that exactly one process that invokes participatem() is a winner is
decomposed in two steps.

– At most one process is a winner. The proof is by contradiction. Let us assume
that 2 processes are winners. Let S be the set of the new names of these 2 pro-
cesses. There is a set SET LIST [y] such that SET LIST [y] = S. Due to the code
of the construction, a process pj that is a winner (with respect to the constructed
object) has to be a winner in all the base 2-TS objects BASE TS [x] such that
new namej ∈ SET LIST [x]. It follows from that observation that the two pro-
cesses of S invoke BASE TS [y].participate2() and obtain 1 from that base object,
which is impossible.

– At least one process is a winner. Let BASE TS [y] be the “last” 2-TS base object
accessed during a run (“last” means here that this base object is the one with the
largest index y that is accessed during a run). Due to the property of the base ob-
jects, there is at least one process pj that is a winner with respect to the base object
BASE TS [y]. As pj does not access other 2-TS objects, it follows that it returns
the value 1 as the result of its invocation of participatem(). �Lemma 2

Lemma 3. [7] 2-T&S	 (2, 2)-NA renaming.

Proof. It is trivial to implement (2, 2)-NA renaming from 2-T&S: the processes invoke
a 2-T&S object; if a process gets 0, decides 1, otherwise decides 2.

On the Consensus Number of Non-adaptive Perfect Renaming 11

function participate() is
(01) M [i]← i % Each entry of M is initialized to ⊥
(02) j ← (i + 1) mod 2 % id of the other process
(03) if M [j] = ⊥
(04) then �i ← X .rename(1)
(05) else if i < j

(06) then �i ← X .rename(2)
(07) else �i ← X .rename(3)
(08) end if
(09) end if
(10) if �i = xwinner

(11) then return(0)
(12) else return(1)
(13) end if

Fig. 4. Solving 2-T&S from (2, 2)-NA renaming (code for Pi)

We now show how to implement 2-T&S from (2, 2)-NA renaming. Let X be a
(2, 2)-NA renaming object. As explained in the proof on Theorem 1, there is a value
xwinner ∈ {1, 2} such that in every solo-execution of X with input 1, no matter the
participating process, X outputs xwinner . Fig. 4 shows an implementation of 2-T&S
from X and xwinner . This implementation is essentially the same as the in Fig. 1 and
its correctness proofs is left to the reader. �Lemma 3

6 Conclusion

To conclude. Assuming one-shot multi-port objects where each process is attached to
a specific port, this paper has shown that the consensus number of non-adaptive perfect
renaming object depends on the number of distinct processes allowed to access it (num-
ber of ports of the object). It has shown that the consensus number of such an object
is either 1 or 2. It is 2 if and only if the non-adaptive perfect renaming object can be
accessed exactly by 2 processes (i.e., it has two ports). This result, shows that increasing
the number of ports of an object does not necessarily increase its computability power
in asynchronous systems where any number of process may crash. The paper has also
shown that the (2, 2)-NA renaming object is a member of the class of synchronization
objects called Common2.

When the objects are multi-shot objects. The paper focused on a model in which each
process can invoke an object at most once (one-shot object). Namely, every object has
a given number of ports, one for each process (i.e., a porcess cna only acces the object
through the port assigned to it). What does it happen when a process can access sev-
eral ports? In that model of computation, (m,m)-NA renaming can solve two-process
consensus, for any m ≥ 2. Given an (m,m)-NA renaming object X , each process pi,
i = 0, 1, invokes half of the ports of X , in some order. If pi gets (from some port) a

12 A. Castañeda and M. Raynal

value X outputs in a solo-execution, then it decides its proposal, otherwise it decides
the proposal of the other process. In this model of computation it would be interesting to
explore the computability power of (m,m)-NA renaming and (m′,m′)-NA renaming,
when m �= m′.

Acknowledgments. The work of the first author has been partially supported at the
Technion by an Aly Kaufman Fellowship. The work of the second author has been
partially supported by the French ANR project DISPLEXITY devoted to computability
and complexity in distributed computing. The authors want to thank the referees for
their constructive comments.

References

1. Afek, Y., Gafni, E., Morisson, A.: Common2 Extended to Stacks and Unboudned
Concurrency. Distributed Computing 20, 239–252 (2007)

2. Afek, Y., Weisberger, E., Weisman, H.: A Completeness Theorem for a Class of
Synchronization Objects (Extended Abstract). In: Proc. 12th ACM Symposium on
Principles of Distributed Computing (PODC 1993), pp. 159–170 (1993)

3. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuck, R.: Renaming in an Asynchronous
Environment. Journal of the ACM 37(3), 524–548 (1990)

4. Castañeda, A., Rajsbaum, S.: New Combinatorial Topology Upper and Lower Bounds for
Renaming: The Lower Bound. Distributed Computing 22(5-6), 287–301 (2010)

5. Castañeda, A., Rajsbaum, S.: New Combinatorial Topology Upper and Lower Bounds for
Renaming: The Upper Bound. Journal of the ACM 59(1), 3 (2012)

6. Castañeda, A., Rajsbaum, S., Raynal, M.: The Renaming Problem in Shared Memory
Systems: an Introduction. Computer Science Review 5(3), 229–251 (2011)

7. Castañeda, A., Imbs, D., Rajsbaum, S., Raynal, M.: Renaming is Weaker than Set Agreement
but for Perfect Renaming: A Map of Sub-Consensus Tasks. In: Fernández-Baca, D. (ed.)
LATIN 2012. LNCS, vol. 7256, pp. 145–156. Springer, Heidelberg (2012)

8. Castañeda, A., Rajsbaum, S., Raynal, M.: There are plenty of tasks weaker than per-
fect renaming and stronger than set agreement (Brief announcement). In: Proc. 31st ACM
Symposium on Principles of Distributed Computing (PODC 2012), pp. 97–98 (2012)

9. Chaudhuri, S.: More Choices Allow More Faults: Set Consensus Problems in
Totally Asynchronous Systems. Information and Computation 105(1), 132–158 (1993)

10. Gafni, E., Raynal, M., Travers, C.: Test&set, Adaptive Renaming and Set Agreement:
a Guided Visit to Asynchronous Computability. In: Proc. 26th IEEE Symposium on Reli-
able Distributed Systems (SRDS 2007), pp. 93–102. IEEE Computer Society Press (2007)

11. Herlihy, M.: Wait-Free Synchronization. ACM Transactions Programminf Languages and
Systems 13(1), 124–149 (1991)

12. Herlihy, M.P., Shavit, N.: The Topological Structure of Asynchronous Computability.
Journal of the ACM 46(6), 858–923 (1999)

Set Agreement and the Loneliness Failure

Detector in Crash-Recovery Systems�

Sergio Arévalo1, Ernesto Jiménez1, and Jian Tang2

1 Universidad Politécnica de Madrid, 28031 Madrid, Spain
{sergio.arevalo,ernes}@eui.upm.es

2 Distributed System Laboratory (LSD), Universidad Politécnica de Madrid,
28031 Madrid, Spain
tjapply@gmail.com

Abstract. The set agreement problem states that from n proposed val-
ues at most n−1 can be decided. Traditionally, this problem is solved us-
ing a failure detector in asynchronous systems where processes may crash
but not recover, where processes have different identities, and where all
processes initially know the membership. In this paper we study the set
agreement problem and the weakest failure detector L used to solve it in
asynchronous message passing systems where processes may crash and
recover, with homonyms (i.e., processes may have equal identities) and
without a complete initial knowledge of the membership.

1 Introduction

The k-set agreement problem [9] guarantees from n proposed values at most k can
be decided. Two cases of this problem have received special attention: consensus
(when k = 1), and set agreement (when k = n−1). The k-set agreement problem
that is trivial to solve when the maximum number of processes that may crash
(denoted by t) is lesser than k, or the maximum number of different proposed
values (denoted by d) is equal or lesser than k (i.e., t < k or d ≤ k), becomes
impossible to solve in an asynchronous system where processes may crash when
t ≥ k and d > k ([6], [15], [21]). To circumvent this impossibility result, many
works can be found in the literature where the asynchronous system is augmented
with a failure detector [20] to achieve k-set agreement. A failure detector [7] is a
distributed tool that each process can invoke to obtain some information about
process failures. There are many classes of failures detectors depending on the
quality and type of the returned information (�P , Σ, FS∗, ψ, . . .).

A very important issue to solve k-set agreement is to identify the information
needed about processes failures. We say that a failure detector class X is the
weakest [7] to achieve k-set agreement if the information returned by any failure
detector D of this class X is necessary and sufficient to solve k-set agreement.

� This work has been partially funded by the Spanish Research Council (MICCIN)
under project TIN2010-19077, by the Madrid Research Foundation (CAM) under
project S2009/TIC-1692 (cofunded by ERDF & ESF).

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 13–27, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 S. Arévalo, E. Jiménez, and J. Tang

In other words, with the failure information output by any failure detector D′ of
any class Y that solves k-set agreement, a failure detector D ∈ X can be built
on any asynchronous system augmented with a failure detector D′ ∈ Y . We say
that a class X is strictly weaker than Y (denoted by X ≺ Y) if a failure detector
D ∈ X can be obtained from a system augmented with any failure detector
D ∈ Y , and the opposite is not possible.

In message passing systems, Ω is the weakest failure detector to solve con-
sensus (i.e., 1-set agreement) when a majority of processes do not crash [8], and
L [13] is the weakest failure detector to solve set agreement (i.e., (n-1)-set agree-
ment). For all 2 ≤ k ≤ n−2, to find the weakest failure detector to achieve k-set
agreement is an open question.

New assumptions have been studied trying to solve k-set agreement in a more
realistic message passing systems. In [1] consensus and failures detectors are
presented in an extension of the crash-stop model where processes can crash and
recover (called crash-recovery model, and by extension, the systems with this
failure model are denoted by crash-recovery systems). It is easy to see that these
systems are generalizations of systems where processes fail by crashing-stop. A
typical definition of a system [7] defines links between processes as reliable (i.e.,
each sent message is delivered to all alive processes without errors and only
once). For the sake of extending traditional system assumptions, consensus and
failure detectors are studied when fair-lossy links are used [1] (i.e., messages can
be lost, but if a process sends permanently a message m to a same alive process,
message m is also received permanently).

Sometimes the assumption of knowing the membership in advance is not pos-
sible when a run starts (e.g., in a p2p network where servers working as seeds are
unknown a priori, and they are possibly different in each run, or even in the same
run). This assumption is relevant because, for instance, even though Ω is imple-
mentable when the membership is unknown, none of the original eight classes
of failures detectors proposed in [7] (P , �P , S, . . .) are implementable if each
process does not know initially the identity of all processes [17]. Note that any
failure detector implementation for a system S with the assumption of unknown
membership initially also works in any system S′ with the same assumptions
except that the membership is known (we say that S is a generalization of S′).

Finally, homonymy is a novel assumption included in current systems where
privacy is an important issue [12]. Homonymy allows to assign the same identity
to more than one process (all processes with the same identity are homonymous).
Note that a classical system of n processes with a different identity per process
is a particular case of an homonymous system (there are n sets of homomymous
processes of size 1). Similarly, anonymity [5] can be considered as a particular
case of homonymy (there is a unique set of homomymous processes of size n, or,
in other words, all processes are homonymous).

Related Work. As we said previously, new assumptions have been studied
trying to solve k-set agreement in a more realistic way. Consensus and failure
detectors were presented in asynchronous systems where processes may crash
and recover [1]. Besides processes that in a run do not crash (permanently-up)

Set Agreement and the Loneliness Failure Detector 15

and processes that crash and stop forever (permanently-down), new classes of
processes may appear in a run of a crash-recovery system: processes that crash
and recover several times but after a time are always up (eventually-up), pro-
cesses that crash and recover several times but after a time are always down
(eventually-down), and processes that are permanently crashing and recovering
(unstable). In these crash-recovery systems a process is said to be correct in a
run if it is either permanently-up or eventually-up. On the other hand, an incor-
rect process in a run is either a permanently-down, eventually-down or unstable
process. In [1] is proven that consensus with the failure detector �P [7] is impos-
sible to solve if the number of permanently-up processes in a run can be lesser
or equal to the number of incorrect processes. There are in the literature several
implementations of consensus and Ω for crash-recovery message passing systems
([1], [16], [18]).

Even though the initial knowledge of the membership is not always possible,
different grades of knowledge are also possible. For example, Ω is implementable
if each process initially only knows its own identity [17], or if each process also
knows n (i.e., the number of processes of the system) [3].

In [2] new classes of failure detectors are introduced to work in homonymous
systems. In that paper consensus is also implemented with the counterparts of
the weakest failure detectors in classical message passing systems with unique
processes’ identities: Ω [8] when a majority of processes are correct (its counter-
part is called HΩ), and 〈Ω,Σ〉 [11] when a majority of processes can crash (its
counterpart is called 〈HΩ ,HΣ〉).

Regarding set agreement in message passing systems, in the literature we find
only two works using the weakest failure detector L in crash-stop asynchronous
systems ([13], [4]). In [13] a total order of process’ identifiers and the initial
knowledge of the membership is necessary. In [4] set agreement is implemented
in systems where the knowledge of n is required.

The failure detector L is defined and implemented for crash-stop message
passing systems in [4] and [19]. L is a failure detector defined for crash-stop
systems in such a way that it always returns the boolean value false in some
process pi, and, if there is only one correct process pj , eventually pj returns true
permanently. Nevertheless, in both implementations the algorithms always out-
put false in all processes in runs where all processes are correct (i.e., in fail-free
runs), which are most frequent in practice. This behaviour is relevant because
the complexity of all algorithms that implement set agreement with L (our algo-
rithm presented in this paper included) is improved if the number of processes
that return true increases.

Our Work. Trying to generalize the results to the maximum number of sys-
tems as possible, this paper is devoted to study set-agreement in message pass-
ing systems with the weakest failure detector L in crash-recovery asynchronous
systems with homonyms and without a complete initial knowledge of the mem-
bership. In our crash-recovery system model the maximum number of different
processes that may crash and recover is so weak (t = n) that set-agreement can
be solved but consensus can not [1]. An algorithm that implements set-agreement

16 S. Arévalo, E. Jiménez, and J. Tang

for crash-recovery systems using L with homonyms and without initial knowledge
of membership is presented in this paper.

We also show in this paper that it is not possible to implement L even in
synchronous crash-recovery systems when t = n, or in partially-synchronous
crash-recovery systems when t = n− 1. We introduce an algorithm that imple-
ments L in synchronous crash-recovery systems when t = n− 1. This algorithm
works when a subset of processes’ identities are known by all processes.

Note that, to our knowledge, both algorithms presented in this paper are the
first that implement set agreement and L in crash-recovery systems. These are
also the first algorithms that work with homonyms and without initial knowledge
of membership in crash-stop systems.

This paper is organized as follows. The crash-recovery model is presented in
Section 2. Definitions of set agreement and failure detector L are included in
Section 3. In Section 4 we have an implementation of set agreement. The imple-
mentability of L is studied in Section 5. An implementation of L is presented in
Section 6. We finish our paper with the conclusions in Section 7.

2 System Model

Processes. The message passing system is formed by a set Π of processes, such
that the size n of Π is greater than 1. We use id(i) to denote the identity of the
process pi ∈ Π .

Homonymy. There could be homonymous processes [2], that is, different pro-
cesses can have the same identity. More formally, let ID be the set of different
identities of all processes in Π . Then, 1 ≤ |ID | ≤ n. So, in this system, id(i) can
be equal to id(j) and pi be different of pj (we say in this cases that pi and pj
are homonymous). Note that anonymous processes [5] are a particular case of
homonymy where all processes have the same identity, that is, id(i) = id(j), for
all pi and pj of Π (i.e., |ID| = 1).

Unknown Knowledge of Membership. Every process pi ∈ Π initially knows
its own identity id(i), but pi does not know the identity of any subset of pro-
cesses, or the size of any subset of Π , different of their trivial values. That is,
process pi only knows initially that id(i) ∈ ID and |Π | > 1.

Time. Processes are asynchronous, and, for analysis, let us consider that time
advances at discrete steps. We assume a global clock whose values are the posi-
tive natural numbers, but processes cannot access it.

Failures. Our system uses basically the failure model of crash-recovery proposed
in [1]. In this model processes can fail by crashing (i.e., stop taking steps), but
crashed processes may have a recovery if they restart their execution (i.e., they
may recover). A process is down while it is crashed, otherwise it is up. Let us
define a run as the sequence of steps taken by processes while they are up. So,
in every run, each process pi ∈ Π belongs to one of these five classes:

– Permanently-up: Process pi is always alive, i.e., pi never crashes.

Set Agreement and the Loneliness Failure Detector 17

– Eventually-up: Process pi crashes and recovers repeatedly a finite number of
times (at least once), but eventually pi, after a recovery, never crashes again,
remaining alive forever.

– Permanently-down: Process pi is alive until it crashes, and it never recovers
again.

– Eventually-down: Process pi crashes and recovers repeatedly a finite number
of times (at least once), but eventually pi, after a crash, never recovers again,
remaining crashed forever.

– Unstable: Process pi crashes and recovers repeatedly an infinite number of
times.

In a run, a permanently-down, eventually-down or unstable process is said to
be incorrect. On the other hand, a permanently-up or eventually-up process in
a run is said to be correct. The set of incorrect processes in a run is denoted by
Incorrect ⊆ Π . The set of correct processes in a run is denoted by Correct ⊆ Π .
Hence, Incorrect ∪ Correct = Π .

Unless otherwise is said, we will assume that there is no limitation in the
number of correct (or incorrect) processes in each run, that is, t = n (being t
the maximum number of different processes that can crash and recover).

Features and Use of the Network. The processes can invoke the primitive
broadcast(m) to send a message m to all processes of the system (except itself).
This communication primitive is modeled in the following way. The network is
assumed to have a directed link from process pi to process pj for each pair of
processes pi, pj ∈ Π (i �= j). Then, broadcast(m) invoked at process pi sends one
copy of message m along the link from pi to pj , for each pj �=i ∈ Π . If a process
crashes while broadcasting a message, the message is received by an arbitrary
subset of processes.

Unless otherwise is said, links are asynchronous and fair-lossy [1]. A link is fair-
lossy if it can lose messages, but if a process pi sends a message m permanently
(i.e., an infinite number of times) to a correct process pj , process pj receives
m permanently (i.e., infinitely often). A fair-lossy link [1] does not duplicate or
corrupt messages permanently, nor generates spurious messages.

Process Status afterRecovery.Following the samemodel of [1], when a process
pi recovers, it has lost all values stored in its variables previously to crash, and it has
also lost all previous received messages. A special case are stable storage variables.
All values stored in this type of variables will remain available after a crash and
recovery. Note that stable storage variables have their cost (in terms of operations
latencies), and the algorithms have to reduce their use as far as possible.

Unless otherwise is stated, we consider, like in [1], that when a process pi
crashes executing an algorithm A, if process pi recovers, it knows this fact, that
is, pi starts executing from a established line of A different of line 1.

Nomenclature. The asynchronous system with homonymy and with unknown
membership previously defined in this section is notated by HASf [∅, ∅, n].

We denote byHASf [X,Y, t] the systemHASf [∅, ∅, n] augmented with the fail-
ure detector X (∅ means no failure detector), and where all processes initially

18 S. Arévalo, E. Jiménez, and J. Tang

know the identities of processes of Y (∅ means unknown membership). The third
parameter t indicates the maximum number of different processes that can crash
and recover (nmeans that all processes can crash and recover). The sub-index f in
the notation is used to denote that links are fair-lossy. For example,HASf [L, Π, n]
denotes the asynchronous systemwith homonymous processes and fair-lossy links,
enriched with the failure detectorL, where all processes initially know the identity
of the members of Π , and where all processes can crash and recover. The classi-
cal definition of asynchronous systems found in the literature could be denoted by
ASr[∅, Π, t]. That is, an asynchronous system without homonymy, with reliable
links (i.e., where each sent message is delivered to all alive processes without er-
rors and only once), where at most t processes can crash, and where all processes
initially know the identity of the members of Π .

We will use HAS to denote a homonymous asynchronous system where the
parameters are not relevant. Similarly, we use AS instead of HAS to indicate
that it is a classical system where each process has a different identity.

3 Definitions

First, we will formalize here the set agreement problem [9].

Definition 1. (Set agreement). In each run, every process of the system pro-
poses a value, and has to decide a value satisfying the following three properties:
1. Validity: Every decided value has to be proposed by some process of the sys-
tem.
2. Termination: Every correct process of the system eventually has to decide
some value.
3. Agreement: The number of different decided values can be at most n− 1.

It is easy to see that if t = n and there is not any stable storage variable, if
all processes crash jointly previously to decide, and after that they recover, all
proposed values will be lost forever. Then, the Validity Property can not be
preserved, and, hence, set agreement can not be solved. Thus, any algorithm
that implements set agreement needs to use stable storage variables.

Like in [1], we consider that a process pi proposes a value v when process
pi writes v into a predetermined stable storage variable. Similarly, a process pi
decides a value v when process pi writes v into another predetermined stable
storage variable. Hence, after a recovery, a process pi, reading these variables,
can know easily if a value has already been proposed and/or decided.

The set agreement problem can not be solved in asynchronous systems where
any number of processes can crash and not recover ([6], [15], [21]). To circumvent
this impossibility result, we use a failure detector [7].

The failure detector L [13] was defined for asynchronous systems with the
crash-stop failure model. We adapt here this definition of L to asynchronous
systems where processes can crash and recover. Let us consider that each process
pi has a local boolean variable outputi. We denote by outputτi this variable at

Set Agreement and the Loneliness Failure Detector 19

time τ . Let us assume that the value in outputi is false while process pi is
crashed (i.e, outputτi = false, for all time τ while pi is down). In each run, a
failure detector of class L satisfies the following two properties:
1. Some process pi always returns in its variable outputi the value false, and
2. If pi is the unique correct process, then there is a time after which pi always
returns in its variable outputi the value true.

More formally, the definition of L for crash-recovery systems is the following.

Definition 2. (Failure detector L). For all process pi ∈ Π and run R, outputτi =
false if process pi is down at time τ in run R. Furthermore, the variable outputi
of every process pi ∈ Π must satisfy in each run R:
1. ∃pi : ∀τ , outputτi = false, and

2. (Correct = {pi}) =⇒ ∃τ : ∀τ ′ ≥ τ, outputτ
′

i = true

To solve set agreement, we augment our asynchronous system HASf [∅, ∅, n]
with the loneliness failure detector L, which is the weakest failure detector to
achieve set agreement in classical asynchronous message passing systems AS
with the crash-stop failure model [13]. As we said previously, we denote this
system enhanced with L as HASf [L, ∅, n].

4 Implementing Set Agreement in the Crash-Recovery
Model

In this section we present the algorithm Aset (see Figure 1) that implements set
agreement in homonymous asynchronous systems with unknown membership
and with the failure detector L, that is, in HASf [L, ∅, n].

Differently from Aset, all algorithms presented in the literature to solve set
agreement with L ([4] and [13]), besides working in crash-stop asynchronous
systems, they need to know the system membership to work.

4.1 Explanation of Aset

Aset is the algorithm of Figure 1 executed in HASf [L, ∅, n] to solve set agree-
ment. Let id(i) be the identifier of process pi. Note that the values of these
process identifiers could be whatever that imposes an order that allows to com-
pare them. Also note that several identifiers can be the same (homonymous
processes).

Like in [1], we consider that a process pi proposes a value v (that is, proposei(v)
is invoked) by writing v into a stable storage variable PROPi . Similarly, a pro-
cess pi decides a value v (that is, decidei(v) is invoked) by writing v into another
stable storage variable DECi . Let us suppose that both variables have the value
⊥ previously to any invocation. If a process pi recovers, it can see easily if it has
already proposed or decided a value (that is, if proposei(v) or decidei(v) were
invoked) reading these stable storage variables and checking if their values are
different of ⊥.

20 S. Arévalo, E. Jiménez, and J. Tang

proposei(v): % by writing v into PROPi

(1) vi ← v;

(2) start task 1

task 1:

(3) endi ← false;

(4) repeat each η time

(5) % Phase 0

(6) broadcast (PH0, id(i), vi);

(7) if (PH0, id(k), vk) is received then

(8) if (〈id(k), vk〉 ≤ 〈id(i), vi〉) then

(9) vi ← vk;

(10) decidei(vk); % by writing vk into DECi

(11) endi ← true

(12) end if

(13) else

(14) % Phase 1

(15) if (PH1, vk) is received then

(16) vi ← vk;

(17) decidei(vk); % by writing vk into DECi

(18) endi ← true

(19) else

(20) if (L.outputi=true) then % returned by L
(21) decidei(vi); % by writing vi into DECi

(22) endi ← true

(23) end if

(24) end if

(25) end if

(26) until endi;

(27) start task 2

task 2:

(28) repeat forever each η time

(29) broadcast (PH1, vi);

(30) end repeat

when process pi recovers:

% by checking PROPi

(31) if (proposei() was invoked) then

% by checking DECi

(32) if (decidei() was invoked) then

(33) vi ← DECi;

(34) start task 2

(35) else

(36) vi ← PROPi;

(37) start task 1

(38) end if

(39) end if

Fig. 1. The algorithm Aset for set agreement in HASf [L, ∅, n]

The variable vi is used by process pi to keep the current estimate of its decision
value (lines 9 and 16). This variable vi contains initially the value v proposed by
process pi when it invokes proposei(v) (line 1). In order to remember, in case of
recovering, the changes in vi before crashing, a process pi uses the stable storage
variables PROPi and DECi (lines 33 and 36).

proposei(v) starts task 1. This task is a loop that executes lines 6-25 each η
time until a decision is taken (and, hence, variable endi = true).

Each process pi in phase 0 broadcasts a (PH0, id(i), vi) message with a pro-
posal vi (initially vi is pi’s proposal v, line 1) to the rest of processes of the system.
After that, process pi can decide a proposed value if a (PH0, id(k), vk) message
is received. This value vk is only decided if the condition 〈id(k), vk〉 ≤ 〈id(i), vi〉
happens. This condition is a shortcut for (id(k) < id(i)) ∨ [(id(k) = id(i)) ∧
(vk ≤ vi)]. That is, process pi decides vk if process pk has a lesser identifier or, if
they have the same identifier, vk is lesser or equal than vi. When a process de-
cides, it moves to phase 1. If process pi has not decided in phase 0, it can decide
a value already decided by another process if a (PH1, vk) message is received. If
after that phase 1 process pi has not decided yet, it can decide its value vi if the
failure detector L returns true (i.e., L.outputi = true). Note that at most n− 1
processes can get true in this variable outputi (from Condition 1 of Definition 2).

Finally, if process pi decided in phase 0, phase 1, or locally because L.outputi =
true, the loop of lines 6-25 finishes, and task 2 starts. As links are not reliable (but

Set Agreement and the Loneliness Failure Detector 21

fair-lossy) and processes may crash and recover, with task 2 process pi guarantees
the propagation of its decided value vi to the rest of processes. This value is
broadcast in a (PH1, vi) message. The propagation is preserved repeating forever
this broadcast invocation (lines 28-30).

If a process pi crashes and recovers while running the algorithm, it always
executes, after the recovery, lines 31-39. If process pi proposed a value v but it
crashed before writing any decision value in DECi, then pi will get the proposed
value from the stable storage variable PROPi (line 36). In other case, vi will
obtain its decided value from stable storage variable DECi (line 33). If it has
already proposed and decided a value, process pi starts task 2 to propagate this
decided value (line 34). If process pi has proposed a value but it has not decided
yet, it starts task 1 to look for a value to decide (line 37).

4.2 Proofs of Aset in HASf [L, ∅, n]

Lemma 1. (Validity) For each run, if a process pi of the system HASf [L, ∅, n]
decides a value v′, then v′ has to be proposed by some process of the system
HASf [L, ∅, n].

Proof. The variable vi has initially, when pi starts for the first time, the value v
proposed by process pi when it invokes proposei(v) (line 1). Note that if process
pi recovers after proposing a value v but before writing any value in DECi, then
vi = v (line 36). Thus, vi = v is broadcast in (PH0, vi) messages permanently
(line 6 of pi). So, this value vi = v only changes if:

Case 1: (PH0, id(k), v′) is received from some process pk such that
〈id(k), v′〉 ≤ 〈id(i), v〉 (lines 7-12 of pi). Then, vi = v′ and DECi = v′, being
v′ the initial value proposed by process pk.

Case 2: (PH1, v′) is received (lines 15-18 of pi). We have three subcases:
Case 2.1: (PH1, v′) was broadcast by some process pj after receiving (PH0,

id(k), v′) of pk (pk �= pj) such that 〈id(k), v′〉 ≤ 〈id(j), v〉 (lines 7-12 and task
2 of pj). Then, vi = v′ and DECi = v′, being v′ the initial value proposed by
process pk.

Case 2.2: (PH1, v′) was broadcast by some process pj after receiving
(PH1, v′) of other process px (lines 15-18 and task 2 of pj). Note that this
(PH1, v′) is broadcast, like in Case 2.1, when process px receives (PH0, id(k), v′)
of some process pk such that 〈id(k), v′〉 ≤ 〈id(x), v〉. Then, vi = v′ and DECi =
v′, being v′ the initial value proposed by process pk.

Case 2.3: (PH1, v′) was broadcast by process pk when outputk = true
(lines 20-23 and task 2 of pk). Then, vi = v′ and DECi = v′, being v′ the initial
value proposed by process pk.

Therefore, for each run, if a process pi of the system decides a value v′, then
v′ has to be proposed by some process of the system.

Lemma 2. (Agreement) For each run, the number of different decided values in
the system HASf [L, ∅, n] is at most n− 1.

22 S. Arévalo, E. Jiménez, and J. Tang

Proof. Let us suppose, by the way of contradiction, that there is a run R such
that the number of different decided values is n. From Lemma 1, each decided
value in R has to be one of the proposed values. Hence, if we find in this run R
a proposed value which is not decided, we reach a contradiction.

Note that if in run R there are two processes pi and pj such that pi proposes
vi, and pi proposes vj being vi = vj , then the statement of this lemma is trivial.
So, we consider that vi �= vj , for all pi and pj of the system.

Let us denote by G the set of processes that decide in this run R not executing
lines 20-23. Note that G �= ∅ from Condition 1 of Definition 2. Also note that
this implies that every process pj /∈ G decides its own proposed value.

Let us assume that pi ∈ G is the process with the greatest pair 〈id(i), v〉
among processes in G. Let us also assume that pi proposes vi. So, if contradic-
tion holds, vi has to be decided by pi or by another different process pj . We
now analyze both cases and we will see that it is impossible that some process
decides this value vi in run R. Hence, we reach a contradiction.

Case 1: Process pi decides vi. As pi, by definition, has the greatest pair
〈id(i), v〉 among processes in G, it did not receive any (PH1, vi) message from
any process in G. Due to the fact that every process pj /∈ G decides its own
proposed value vj (being vj �= vi), process pi did not receive any (PH1, vi) mes-
sage from any process pj. Then, it is impossible that process pi decides its own
proposed value vi.

Case 2: Process pj decides vi, being j �= i. As every process pk /∈ G decides its
own proposed value vk (being vk �= vi), then process pj ∈ G. Hence, if process pj
decides vi, which is a different value of its own proposed value vj , it is because pj
receives a (PH0, id(l), vi) or (PH1, vi) message from some process pl ∈ G. This
is impossible because, by definition, pi has the greatest pair 〈id(i), vi〉 among
processes in G, and 〈id(i), vi〉 ≤ 〈id(x), vx〉 is always false for all px ∈ G (line 8).

Therefore, we reach a contradiction, and, for each run, the number of different
decided values is at most n− 1.

Lemma 3. (Termination) For each run, every process pi ∈ Correct of the sys-
tem HASf [L, ∅, n] eventually decides some value.

Proof. Let us suppose, by the way of contradiction, that there is a run R such
that a correct process pi never decides. Hence, if process pi ∈ Correct never
decides in run R it is because lines 10, 17 and 21 are never executed.

Let us prove that this situation is impossible. If line 21 is never executed,
then L.outputi = false permanently. If this is so, it is because there is at least
another process pk that is correct (from Condition 2 of Definition 2). Note that pi,
after its last recovery (if any), will be permanently broadcasting (PH0, id(i), vi)
messages, being vi the proposed value of pi (line 6 of pi). Hence, if process pi
never receives (PH1,−) messages (lines 15-18 of pi) it is because all processes
pl (included pk) that receive the messages of pi have a lesser pair 〈id(l), vl〉 than
〈id(i), vi〉 (line 8 of pl). Nevertheless, process pi will receive (PH0, id(k), vk)
messages of pk because links are fair-lossy, and correct process pk also broadcasts
(PH0, id(k), vk) messages permanently (line 6 of pk). Then, pi will execute line
10 because 〈id(k), vk〉 < 〈id(i), vi〉. Hence, process pi will decide vk in run R.

Set Agreement and the Loneliness Failure Detector 23

Therefore, we reach a contradiction, and, for each run, every process pi ∈ Correct
eventually decides some value.

Theorem 1. The algorithm of Figure 1 implements set agreement in the system
HASf [L, ∅, n].
Proof. From Lemma 1, Lemma 2 and Lemma 3, the validity, agreement and
termination properties (respectively) are satisfied in every run. Hence, the algo-
rithm of Figure 1 solves set agreement in the system HASf [L, ∅, n].

5 On the Implementability of L in the Crash-Recovery
Model

In this section we prove that the failure detector L can not be implemented, even
in a synchronous system where the membership is known, if up to n different
processes can crash and recover, that is, L is not realistic [10]. We also prove in
this section that the failure detector L can not be implemented in a partially
synchronous system even if the membership is known and up to n− 1 different
processes can crash and recover.

Let SSr[∅, Π, n] be a system like ASr[∅, Π, n] but synchronous, that is, the
maximum time to execute a step is bounded and known by every process, and
the time to deliver a message is also known by all processes. Hence, SSr[∅, Π, n]
is a synchronous system where all processes have different identities, links are
reliable, the membership is known, and the maximum number of processes that
can crash and recover is t = n. Similarly, let PSSr[∅, Π, n] be a system like
SSr[∅, Π, n] but partially synchronous [14], that is, the maximum time to execute
a step by each process pi is bounded, but unknown by every process different of
pi, and the time to deliver a message is bounded but unknown.

Lemma 4. For every run, if in SSr[∅, Π, t] or PSSr[∅, Π, t] when t ≥ n − 1 a
process pi ∈ Correct stops receiving messages from the rest of processes at some
time τ , there is a time τ ′ ≥ τ where outputτ

′
i = true.

Proof. Let us assume, by the way of contradiction, that there is a run R where
some correct process pi stops receiving messages from the rest of processes at
some time τ , but for all time τ ′ ≥ τ it has outputτ

′
i = false.

Let us consider another run R′ behaving exactly like R until time τ , and at
this time τ all alive processes crash permanently except pi. From Condition 2
of Definition 2 of L, there is a time τ ′ where outputi = true. Note that each
process only knows that in a run the rest of processes can crash, but it does not
know a priori how many processes will crash or who they will be. Then, R and
R′ are indistinguishable until time τ ′ for pi, and, hence, there is a time τ ′ where
outputi = true in R, which is a contradiction.

The following theorem shows that failure detector L can not be implemented in
SSr[∅, Π, n].

24 S. Arévalo, E. Jiménez, and J. Tang

Theorem 2. There is no algorithm A that implements the failure detector L in
every run of a system SSr[∅, Π, n], even if there is not any unstable process.

Proof. Let us assume, by the way of contradiction, that there is an algorithm
A that implements the failure detector L in every run of a system SSr[∅, Π, n],
even if there is not any unstable process.

For simplicity, let us consider that Π = {p1, p2, . . . , pn}, and that all these n
processes of Π are eventually-up (hence, correct). Let us construct a valid run R
of A as follows. For each process pi, at time τi all processes crash except process
pi. From lemma 4, there is a time τ ′i ≥ τi where outputi = true. Now, all crashed
processes recover at this time τ ′i . Let τ1=0, and τ ′i < τi+1, i = 1, . . . , n. Finally,
after time τ ′n all processes keep alive in R (i.e., there is no unstable processes).
Then, at time τ ′n all processes have had output = true at some time, which
violates Condition 1 of Definition 2. Hence, we reach a contradiction.

Therefore, there is no algorithm A that implements the failure detector L in
every run of a system SSr[∅, Π, n], even if there is not any unstable process.

The following theorem shows that failure detector L can not be implemented
in PSSr[∅, Π, n− 1].

Theorem 3. There is no algorithm A that implements the failure detector L in
every run of a system PSSr[∅, Π, n−1], even if there is not any unstable process.

Proof. From Lemma 4, there is a time τi after which each process pi ∈ Correct
sets outputi = true if it stops receiving messages from the rest of processes. Let
us consider that every process pi in a run R is permanenly-up (hence, correct)
and takes an step after a time τ which is greater than the maximum time τi, for
all process pi ∈ Π . Note that processes do not know a piori the time needed by
other processes to take a step in run R, nor the number of other processes that
are correct in R. Hence, there is a time τ ′ ≥ τ after which every process pi has
outputi = true, which violates the Condition 1 of Definition 2 of L. Therefore,
there is no algorithm A that implements the failure detector L in every run of a
system PSSr[∅, Π, n− 1], even if there is not any unstable process.

6 Implementing L in the Crash-Recovery Model

From Section 5, we know that the failure detector L neither can be implemented
in a synchronous system when until t = n processes can crash and recover, that
is, L is not realistic [10], nor in a partially synchronous system where t = n− 1.
Now, we enrich here the system with a property such that we can circumvent this
impossibility result. This property reduces to t = n− 1 the number of processes
that can crash and recover in a synchronous system. Note that all algorithms
found in the literature that implement the loneliness failure detector L ([4],
[19]) work in systems where processes can crash but not recover and where up
to t = n − 1 processes can crash and where the membership is totally known.
Therefore, we present in this section an implementation of L (denote it by AL)

Set Agreement and the Loneliness Failure Detector 25

for a synchronous system with homonymous processes, a partial knowledge of
the membership, and where until t = n − 1 different processes can crash and
recover.

6.1 Model

Let HSS be a system like HAS but synchronous. By synchronous we mean that
processes start their execution at the same time, the time to execute a step is
bounded and known by every process, the time to deliver a message sent through
a link is at most Δ units of time, and this time is also known by all processes. For
simplicity, we consider that the local execution time is negligible with respect to
Δ (i.e., the execution time of a line of the algorithm is zero).

6.2 Algorithm AL

We show in this section that the algorithm AL of Figure 2 implements the
failure detector L in HSSr[∅, Y, n−1] when |Y | ≥ 2 and two processes of Y have
different and known identities.

For each process pi, outputi is initially false (line 3). Process pi uses the
boolean value of the stable storage variable restartedi to communicate to the
other processes if it has ever crashed (initially is false, line 1). If process pi
recovers, it will execute lines 19-20, and restartedi will be true (line 19). By
definition of the system HSS used to execute AL, process pi knows at least
two processes’ identifiers with different values. These two known identifiers of Y
with different value are IDENT1 and IDENT2 in Figure 2. Then, each process
pi whose identifier is neither IDENT1 nor IDENT2 changes outputi to true
(lines 4-6). Every η time, η > Δ, each process pi broadcasts heartbeats with
(alive, restartedi) messages that arrive synchronously (at most Δ units of time
later) to the rest of processes of the system (line 8). Note that we select a value
η greater than Δ to allow that messages broadcast in line 8 arrive to processes
on time in each iteration of line 9.

After Δ units of time, process pi analyzes the messages received (reci) to see if
it has to set outputi to true (lines 11-17). Note that once outputi = true, process
pi never changes it to false again while it is running. Only if process pi crashes
and recovers, line 3 is executed again and outputi is false again, but restartedi
will be true in this case. The variable counti counts the number of heartbeats
received by pi from processes that are up, and that have never crashed (lines
12-14). If this number of messages is 0, then pi sets outputi = true (lines 15-17).

Note that in all algorithms in the literature that implement set agreement
with L (our algorithm Aset included), the performance is improved if processes
obtain true from L as soon as possible. This happens because a process of set
agreement can decide locally (without waiting to receive any message) if true is
returned by L. For that reason, our algorithm AL with a partial knowledge of
the membership immediately sets output = true permanently in n− 2 processes
(lines 4-6 of Figure 2).

26 S. Arévalo, E. Jiménez, and J. Tang

init:
(1) restartedi ← false; % stable storage variable
(2) start task 1

task 1:
(3) outputi ← false;

% IDENT1 and IDENT2 are two
% identifiers known by all processes

(4) if ((id(i) �= IDENT1) ∧ (id(i) �= IDENT2)) then
(5) outputi ← true
(6) end if
(7) repeat forever each η time
(8) broadcast (alive, restartedi);
(9) wait Δ time;
(10) let reci be the set of (alive, restarted) messages received;
(11) counti ← 0;
(12) for each ((alive, restarted) ∈ reci such that restarted = false) do
(13) counti ← counti + 1
(14) end for each
(15) if (counti = 0) then
(16) outputi ← true
(17) end if
(18) end repeat

when process pi recovers:
(19) restartedi ← true; % stable storage variable
(20) start task 1

Fig. 2. Algorithm AL for process pi to implement L

Theorem 4. The algorithm AL implements the failure detector L in a system
HSSr[∅, Y, n− 1] when |Y | ≥ 2 and two processes of Y have different identities.

The proof of this theorem is omitted due to space limitations.

7 Conclusions

We study the set agreement problem in message passing systems with the weakest
failure detectors L in crash-recovery asynchronous systems with homonymous
processes and without a complete initial knowledge of the membership.

References

1. Aguilera, M.K., Chen, W., Toueg, S.: Failure Detection and Consensus in the
Crash-Recovery Model. Distributed Computing 13(2), 99–125 (2000)

2. Arévalo, S., Fernández Anta, A., Imbs, D., Jiménez, E., Raynal, M.: Failure
Detectors in Homonymous Distributed Systems (with an Application to Consensus).
In: Proc. IEEE 32nd IEEE Int. Conf. on Distributed Computing Systems (ICDCS),
pp. 275–284 (2012)

3. Arévalo, S., Jiménez, E., Larrea, M., Mengual, L.: Communication-efficient
and crash-quiescent Omega with unknown membership. Information Processing
Letters 111(4), 194–199 (2011)

4. Biely, M., Robinson, P., Schmid, U.: Weak SynchronyModels and Failure Detectors
for Message Passing (k-)Set Agreement. In: Abdelzaher, T., Raynal, M., Santoro,
N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 285–299. Springer, Heidelberg (2009)

Set Agreement and the Loneliness Failure Detector 27

5. Bonnet, F., Raynal, M.: Anonymous Asynchronous Systems: The Case of Failure
Detectors. Distributed Computing (in press 2013), doi:10.1007/s00446-012-0169-5

6. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient
asynchronous computations. In: Proceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing, STOC 1993, pp. 91–100. ACM, New York
(1993)

7. Chandra, T., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed
Systems. Journal of the ACM 43(2), 225–267 (1996)

8. Chandra, T., Hadzilacos, V., Toueg, S.: The Weakest Failure Detector for Solving
Consensus. Journal of the ACM 43(4), 685–722 (1996)

9. Chaudhuri, S.: More Choices Allow More Faults: Set Consensus Problems in Totally
Asynchronous Systems. Information and Computation 105, 132–158 (1993)

10. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: A Realistic Look At Failure
Detectors. In: Proc. 42th International IEEE Conference on Dependable Systems
and Networks, DSN 2002, pp. 345–353 (2002)

11. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos, V., Kuznetsov, P.,
Toueg, S.: The Weakest Failure Detectors to Solve Certain Fundamental Problems
in Distributed Computing. In: Proceedings of 23th ACM Symp. on Principles of
Distrib. Comp., PODC, pp. 338–346 (2004)

12. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kermarrec, A.M., Ruppert, E.,
Tran, H.: The Byzantine agreement with homonymous. In: Proceedings of 30th
ACM Symp. on Principles of Distrib. Comp., PODC, pp. 21–30 (2011)

13. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Tielmann, A.: The Weakest
Failure Detector for Message Passing Set-Agreement. In: Taubenfeld, G. (ed.)
DISC 2008. LNCS, vol. 5218, pp. 109–120. Springer, Heidelberg (2008)

14. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for
distributed systems. Journal of the ACM 34(1), 77–97 (1987)

15. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
Journal of the ACM 46(6), 858–923 (1999)

16. Hurfin, M., Mostefaoui, A., Raynal, M.: Consensus in asynchronous systems where
processes can crash and recover. In: Proceedings of the 17th IEEE Symposium on
Reliable Distributed Systems, SRDS 1998, pp. 280–286 (1998)

17. Jiménez, E., Arévalo, S., Fernández, A.: Implementing unreliable failure detectors
with unknown membership. Information Processing Letters 100(2), 60–63 (2006)

18. Mart́ın, C., Larrea, M., Jiménez, E.: Implementing the Omega Failure Detector in
the Crash-recovery Failure Model. Journal of Computer and System Sciences 75(3),
178–189 (2009)

19. Mostéfaoui, A., Raynal, M., Stainer, J.: Relations Linking Failure Detectors
Associated with k-Set Agreement in Message-Passing Systems. In: Défago, X.,
Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 341–355. Springer,
Heidelberg (2011)

20. Raynal, M.: Communication and Agreement Abstractions for Fault-Tolerant
Asynchronous Distributed Systems, 250 pages. Morgan & Claypool Publishers
(2010)

21. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of
public knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)

Black Art: Obstruction-Free k-set Agreement

with |MWMR registers| < |proccesses|�

Carole Delporte-Gallet1, Hugues Fauconnier1, Eli Gafni2,
and Sergio Rajsbaum3

1 U. Paris Diderot, France
{cd,hf}@liafa.univ-paris-diderot.fr

2 Computer Science Department, UCLA, USA
eli@ucla.edu

3 Instituto de Matemáticas, UNAM, Mexico
rajsbaum@math.unam.mx

Abstract. When n processes communicate by writing to and reading
from k < n MWMR registers the “communication bandwidth” precludes
emulation of SWMR system, even non-blocking.

Nevertheless, recently a positive result was shown that such a system
either wait-free or obstruction-free can solve an interesting one-shot task.
This paper demonstrates another such result. It shows that (n − 1)-set
agreement can be solved obstruction-free with merely 2 MWMR regis-
ters. Achieving k-set agreement with n−k+1 registers is a challenge. We
make the first step toward it by showing k-set agreement with 2(n− k)
registers.

Keywords: Shared memory, MWMR registers, k-set agreement,
Consensus with bounded memory.

1 Introduction

Designing not to mention proving algorithms for the multi-writer multi-reader
shared memory (MWMR SM) system is still a “Black-Art” (Dictionary: a mys-
terious skill that is difficult to master or describe). Every area of research, at
least at its infancy is a Black-Art. Why do we contend that MWMR, though
chronologically is quite old, is at the Black-Art phase, while, say, designing and
proving well designed algorithms in a single-writer multi-reader shared memory
(SWMR SM) system is not Black-Art any more?

An area of investigation has matured when the Ph.D-worthy results of yester-
year can be given as an homework now. Consider the problem of solving Re-
naming in the SWMR SM system [3]. At the time, the solution was considered
ingenious, its proof called for the hiring of combinatorial guns as coauthors, and
its depth worthy of JACM publication. Today, solving this problem not neces-
sarily in the original way it was solved, and proving the solution is considered a
homework-problem of relatively modest difficulty.

� Supported by ANR DISPLEXITY, ECOS/ANUIES and UNAM-PAPIIT.

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 28–41, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Black Art: Obstruction-Free k-set Agreement 29

What has changed? Few years after the appearance of the Renaming paper it
was realized that the SWMR model is equivalent to one in which read is done
in an Atomic Snapshot [1]. Few years later than that, it was furthermore real-
ized that one can replace Atomic Snapshots with Immediate Snapshots [8], and
furthermore, that one can consider Iterated Models [9]. With all this high-level
techniques and constructs in hand, designing the algorithm can be compared
conceiving an algorithm in JAVA or C++ as opposed to starting and thinking
in BASIC.

On the impossibility side, one later learned of the proof of the impossibility of
set consensus [7,23,25] and reducing Adaptive Renaming to set consensus is again
straightforward [19]. Furthermore, the characterization of wait-free1 solvability
through its connection to Topology in [23], has allowed to infer the implicit
existence of an algorithm, rather than explicit.

In short, with SWMR we acquired many tools and deep understanding.
We contend that our understanding of the MWMR system is still about where

it was 30 years ago. The proof that Mutual-Exclusion in a system of n processes,
requires n MWMR registers [10] is as ingenious as Renaming if not more, yet
essentially that’s where we stand today. It uses a “covering argument” which
time and again has to be reinvented from scratch for the particular problem
at hand, by experienced hands who have acquired the intuition for it in for
example [15]. MWMR algorithms in the “wait” model2 have been dealt with
in [27] and algorithms there are beyond Black-Art, concise, and astonishingly,
work without revealing a hint of how the authors conceived them.

In fact, the simple basic fundamental question, asked almost 3 decades ago,
at the time of the appearance of the Mutual Exclusion lower bound, of whether
to solve (obstruction-free3) n processes consensus require n MWMR registers is
still wide open. All we know is a lower bound of

√
n [16], an order of magnitude

away from the conjectured result.
On the positive side, the question of “time-stamps” was investigated and

shown to be wait-free solvable with less than n registers [15,20].
The first somewhat systematic attempt of dealing with MWMR systems by the

current authors recently appeared in [13]. It shows that like Mutual-Exclusion,
SWMR system emulation even non-blocking requires at least nMWMR registers,
while for wait-free implementation it requires 2n− 1 registers [14].

Our understanding of this Black-Art gives us the intuition that most tasks
which are wait-free solvable are not solvable with k, k < n, MWMR registers.
But there are “few” tasks which are wait-free solvable. In contrast, “most” tasks
are obstruction-free solvable. Yet, we cannot conceive of Adaptive Renaming [4]
being obstruction-free solvable with k < n, let alone Symmetric Renaming [3].
Since we have seen already a task that is solvable with k < n [20] it is valid to
wonder what are necessary conditions on a task that would make it amendable

1 In the wait free model, each process that takes step terminates its operation.
2 In the “wait” model, a process can wait another process if it saw this process taking
steps.

3 In this model, if a process takes step alone it terminates its operation.

30 C. Delporte-Gallet et al.

to obstruction-free solvability with k < n? The first step in this investigation
should collect more examples of tasks obstruction-free solvable with k < n.
That’s what started this paper. Is there a simple yet non-contrived task that
is obstruction-free solvable with k < n MWMR registers? Once this question
is asked, we exhibit a simple, almost an obvious, algorithm for the (n − 1)-set
agreement that uses k = 2 registers. Thus, the contribution of this paper is
in raising this question and as shown below, in explaining, that extending this
result so that with k + 1 registers we can achieve (n − k)-set agreement is a
non-trivial intriguing challenge.

What is the idea behind our algorithm? In [13] it was observed that k processes
with k MWMR registers can non-blocking emulate a SWMR system. If we have
n > k processes, assume processes depart with their own name until there are
just k + 1 processes in the system. Then in an implicit way, unknown to the
processes, they can communicate read-write and therefore emulate say commit-
adopt [18,28,2] to obstruction-free solve consensus. If the “last” k + 1 processes
output a single value we obtain (n − k)-set agreement. Thus, the rough idea
would be to ask processes to follow the read-write algorithm in [13] and never
depart only before commit-adopt of a value.

The complication occurs when we down to k processes, is that commit-
adopt assumes some “initial state” of processes. Now, process’s state is rem-
nants of their interaction with other processes before the number of processes
dropped to k.

Thus, in a way, we need a “self-stabilizing” commit-adopt. We conjecture that
such a self stabilizing algorithm exists, but we haven’t found it yet.

We make the first step toward the result by showing (obstruction-free) k-set
agreement with 2(n− k) registers.

2 Model

We assume a standard asynchronous shared-memory model of computation with
n processes communicating by reading and writing to a fixed set of shared regis-
ters [6,24]. The processes have unique ids in {1, . . . , N}, with N >> n. Processes
know n but don’t know the identities of other processes. Processes may take a
finite or an infinite number of steps but we assume that at least one process
takes an infinite number of steps.

2.1 Progress Condition

Three progress conditions that have received much attention are obstruction-free,
non-blocking and wait-free. The obstruction-free [22] progress condition states
that when a process takes steps alone it terminates its operations. The non-
blocking progress condition states that when there are concurrent operations at
least one process terminates its operations. The wait-free [21] progress condition
states that each process terminates its operations in a bounded number of its
own steps.

Black Art: Obstruction-Free k-set Agreement 31

2.2 Shared Memory

The shared memory consists of a set of atomic Multi-Writer Multi-Readers
(MWMR) registers. We assume that processes can read and write any MWMR
register and these operations are atomic [21]. For short, we usually omit the term
atomic. A process executes its code by taking three types of atomic steps: the
read of a register, the write of a register, and the modification of its local state.

We also consider two more powerful operations: update and scan. The update
operation takes a register and data value as arguments and does not return
a value. It writes the data value in the register. The scan operation has no
arguments and returns a vector of n elements from an arbitrary set of data
values. The vector returned is a snapshot, an instantaneous view of the registers.
In [1], there are non blocking and wait free linearizable implementations of scan
and update for single-writer algorithm (each register may be written by only
one process) and multi-writer algorithm (each register may be written by all
processes).

In [1], it is observed that if every write leaves a unique indelible mark when-
ever it is executed in the shared memory, then if two consecutive reads of the
entire shared memory return identical values then the values returned constitute
a snapshot. Using this idea, the paper designed a non-blocking linearizable im-
plementation of scan and update for single-writer algorithm. To leave a unique
indelible mark in a write operation, a process updates a register by writing not
only the data but also the identity of the process and a sequence number (the
number of writes already made by the process). The value in a shared register
may be unbounded. This implementation works in the same way in our case and
we get a non blocking linearizable implementations of scan and update.

Proposition 1 ([1]). There is a non blocking linearizable implementation of
scan/update of n MWMR registers that uses n MWMR registers (and no other
shared register).

2.3 k-set Agreement

A decision task T is described by a triple (I, O,Δ) where I is the set of inputs,
O is the set of outputs, and Δ is the specification of the task mapping every
input to a set of possible outputs.

We consider the classical k-set agreement decision task [11] in which each
process proposes its input value, and after communicating with the others, it
has to decide on one of the proposed inputs, such that there are at most k
decided values. We assume that the input values come from a finite set of values
Values.

There are three requirements:

– at most k values are decided (agreement),
– if a process decides v, this value has been proposed by some process (validity),
– if a process takes an infinite number of steps then it decides (termination).

When k = n− 1, k-set agreement is also known as set agreement.

The well-known consensus task [17] is nothing else than 1-set agreement.

32 C. Delporte-Gallet et al.

For decision tasks, wait-free solvability and non-blocking solvability are
equivalent, see e.g. [6]. It is well known that k-set agreement is not wait-free
solvable [7,23,26] in shared memory, so we study here the obstruction-free solv-
ability of k-set agreement. It is also know that there exits an obstruction-free
k-set agreement implementation (for example [5]). We are interested here on the
space complexity of an implementation.

3 Algorithm

Our algorithm solves obstruction-free k-set agreement with 2(n − k) registers.
The main idea of our algorithm is to ensure that the n − k + 1 processes that
decide last, decide using consensus. In this way, the k − 1 processes that decide
first may decide any value. Thus, the (n − k + 1) last processes decide on one
value, and at most k values are decided in total.

The algorithm is in Figure 1. Processes share an array R of 2(n−k) cells, each
cell is a MWMR-registers. Each process maintains a proposal given by its local
variable prop, initially, this variable contains the proposed value of the process
for the k-set agreement. Each process tries to write prop in all cells of R (using
an update). When a process sees (using a scan of R) that all cells contain the
same value v, it decides v.

More precisely, each process updates prop in a cyclic order on 2(n − k) in
cells of R, and then reads all the cells with a scan. From this scan, if all the
values in R are the same value v, then the process decides this value v. If at
least (n − k) cells among all the cells except the one that the process has just
written contain the same value v, then v will be the value proposed for the next
update. When the process does not change its proposal then it will update with
this proposal the next (in cyclic order) cell, else it will write the same cell.

As noted before the proposed algorithm achieves consensus among the last
(n− k + 1) processes with 2(n− k) registers. Roughly speaking, with less than
(n − k) processes, at least (n − k) registers are not “covered” by processes (a
register is covered if there is a process whose the next step will write it) and
the algorithm ensures that if at some time all cells contain the same value, this
value will remain forever in at least (n − k) cells, avoiding any other decision.
Moreover, if some process eventually takes all its steps alone (the obstruction-
free assumption), it is easy to verify that it will succeed to write the same value
in all cells and then decide.

Now we proceed with the correctness proof of the algorithm.
Each process alternates update and scan of the shared memory R. By defini-

tion scan and update are linearizable and when we say that some scan or update
operation op occurs at some time τop, time τop is the linearization time of this
operation.

For any local variables or shared registers v (including the shared memory R),
we denote by vτ the value of the variable v at time τ .

We say that at time τ process p covers cell i of R if the next operation on R
for p is an update of cell i of R.

Black Art: Obstruction-Free k-set Agreement 33

Shared variables:
R :array of 2(n− k) MWMR-register

initialization: ∀i(0 ≤ i < 2(n− k)) : R[i] = ⊥
Code for process p

1 prop = vp /*p proposal */
2 V iew :array of 2(n− k) V alues ∪ {⊥}
3 i = 0

4 forever do
5 update(R[i], prop)
6 V iew = scan(R)
7 if | {V iew[j]|(0 ≤ j < 2(n− k))} |> 1
8 then /* more than one value in R */
9 if (∃v(v 	= ⊥) :| {j | j 	= i ∧ (0 ≤ j < 2(n− k)) ∧ v = V iew[j]} |≥ (n− k))
10 then
11 let v (v 	= ⊥) such that

(| {j | j 	= i ∧ (0 ≤ j < 2(n− k)) ∧ v = V iew[j]} |≥ (n− k))
12 if prop = v
13 then i := (i+ 1) mod 2(n− k)
14 else prop := v
15 else
16 i := (i+ 1) mod 2(n− k)
17 else /* one value in R */
18 let v such that ∀j(0 ≤ j < 2(n− k)) : v = V iew[j]
19 decide v ; exit

Fig. 1. k-set agreement with 2(n− k) MWMR registers

In the following we say that v is i-critical at time τ if and only if v �= ⊥ and
|{j|j �= i ∧ (0 ≤ j < 2(n− k)) ∧Rτ [j] = v}| ≥ n− k.

We remark that it may happen that at the same time v is i-critical and v′ �= v
is j-critical for some j �= i. However, if v is i-critical then v is the value of a
majority of cells in array R without the cell R[i]. Then:

Lemma 1. At any time at most one v is i-critical.

Directly from the algorithm we have:

Lemma 2. After an update of cell i by p if v is i-critical at the time of the next
scan of p, the proposal value of p for the next update is v.

Consider any process p that decides. Time τpd will denote the (linearization) time
of the last scan made by p. As the decision for p is entirely determined by this
scan, by definition, τpd will be considered as the decision time for p.

We prove now the safety property: no more than k values are decided.
By contradiction assume that strictly more than k values have been decided,

hence strictly more than k processes decide. Let p0 be the process that decides

34 C. Delporte-Gallet et al.

the kth value (ordered by decision times). Hence at most k− 1 processes decide
before p0 and at most n− k processes may decide after p0. Let v0 be the value
decided by p0. Notice that at time τp0

d all values written in R are equal to v0.
We introduce some notations:

– Let Proc(v0)
τ be the processes for which (i) prop �= v0 at time τ and (ii)

the next operation on R is an update.
– For each process p in Proc(v0)

τ
p0
d , ip is the index of the cell of the first

update after time τp0

d .
– L1(τ) = {i|R[i]τ �= v0}.
– L2(τ) = {i| there exists p ∈ Proc(v0)

τ
p0
d such that, between τp0

d and τ , p has
made its first update on cell i and p has not made its second update}.

By construction of τp0

d , and the definition of L2(τ):

Lemma 3. |L2(τ)| ≤ n− k

We have:

Lemma 4. For every time τ ≥ τp0

d ,
(1) L1(τ) ⊆ L2(τ),

(2) for every p in Proc(v0)
τ
p0
d , in every update made by p between τp0

d and τ
except the first one, p updates by v0, and

(3) for every p not in Proc(v0)
τ
p0
d , in every update made by p between τp0

d

and time τ , p updates by v0.

Proof. Initially, at time τp0

d there is no update before τp0

d then L2(τp0

d) is empty
and (2) and (3) are true. At time τp0

d , as p0 decides, all values written in R are
equal to v0, and so L1(τp0

d) = ∅. Then we get (1).
We proceed by induction. Assume that (1), (2), and (3) hold for any time

between τp0

d and τ . A scan operation doesn’t change (1), (2), and (3). Let τ ′ be
the time of the next update on R made by some process say p. We’ll show that
(1), (2) and (3) hold at τ ′.

– If p is in Proc(v0)
τ
p0
d , by induction hypothesis, (3) holds at τ ′. There are

three cases:
• This update is the first update of process p. ip is added to L1(τ) and
L2(τ), the other elements of L1(τ) and L2(τ) are unchanged: L1(τ ′) =
L1(τ) ∪ {ip}, L2(τ ′) = L2(τ) ∪ {ip}. Thus by induction hypothesis, (1)
holds at τ ′. (2) trivially holds.

• This update is the second update of process p. Between the two updates,
following the algorithm, p executes a scan at some time, say φ, between
its first and its second update.
We claim that at the time of this scan, v0 is ip-critical: ip is in L2(φ).
As L1(φ) ⊆ L2(φ) and, by Lemma 3 |L2(φ)| ≤ (n − k), then there is
at least (n − k) cells excluding the cell ip that contains v0. Then v0 is
ip-critical at time φ.
As v0 is ip-critical at the time of the scan after the first update on cell
ip, by Lemma 2, p changes its prop to v0. By the algorithm, the next

Black Art: Obstruction-Free k-set Agreement 35

update of p remains on cell ip. Then at the next update at time τ ′, p
updates cell ip by v0. Then (2) holds.
L2(τ ′) = L2(τ) − {ip} or L2(τ ′) = L2(τ) (it is possible that ip remains

in L2 in case of one process q in Proc(v0)
τ
p0
d has already made its first

update at cell iq = ip but not its second update). After the update
v0 is written in cell ip then L1(τ ′) = L1(τ) − {ip}. Thus by induction
hypothesis, (1) holds at τ ′.

• If this operation is an update of process p different from its first and
second update. At the time φ of the previous update, p is not in L2(φ)
and will be never inserted in L2, then (α) L2(τ ′) = L2(τ).
Between the update at time φ and the next update at time τ ′, following
the algorithm, p executes a scan. At the time ψ of this scan p is not
in L2(ψ), then |L2(ψ)| < n − k. By induction hypothesis (1), L1(ψ) ⊆
L2(ψ), then there is at least n − k + 1 values equal to v0 in R and for
every j, v0 is j-critical. By Lemma 2, the value of propp after this scan
is v0. Thus, (2) holds.
As p updates R by v0, then L1 may decreased. With (α) and the induc-
tion hypothesis, we get (1) at τ ′.

– if this operation is an update of a process that is not in Proc(v0)
τ
p0
d . In

this case (2) holds and we have (a) L2(τ ′) = L2(τ). Furthermore, as L2 is a

subset of Proc(v0)
τ
p0
d , (b) for all time φ ≥ τp0

d , |L2(φ)| < n− k.
If it is the first update of p and there is no scan of p between τp0

d and τ ′ then
by definition of Proc(v0)

τ
p0
d , p updates the cell with v0. (3) holds. L1 may

decreased, with (a) and the induction hypothesis, we get (1) at τ ′.
If it is not its first update or there is a scan of p between τp0

d and τ ′. By
induction hypothesis for every time φ, τ ≥ φ ≥ τp0

d , L1(φ) ⊆ L2(φ), then
with (b) for every time φ, τ ≥ φ ≥ τp0

d , there is at least n−k+1 values equal
to v0 in R. Then for all j, v0 is j-critical at every time φ τ ≥ φ ≥ τp0

d . By
Lemma 2, in the scan before the update at time τ ′, p keeps v0 as proposal,
then (3) holds. L1 may decreased, with (a) we get (1) at τ ′.

From Lemma 4, we deduce the safety property of the algorithm:

Proposition 2. No more than k values can be decided by the processes.

Proof. Let p0, τ
p0

d and v0 defined as before. At most k − 1 processes decide by
times τp0

d . As there is 2(n−k) MWMR registers, by Lemma 4 (1) and Lemma 3,
v0 will always be the value of at least one cell in R then no process may decide
a value different from v0. Then no more than k values may be decided.

Now we prove the liveness property of the algorithm. Assuming obstruction
freedom, there is a process, say p1, that eventually is the only process taking
steps. Then there is a time τ after which no other process takes steps. Notice
that in particular, after time τ , only p1 may modify cells in R. Let τ1 be the
time after τ , at which p1 makes its first update of some cell, say i, in R with
value r1.

36 C. Delporte-Gallet et al.

Lemma 5. If after the update of R[i], v is i-critical at time τ1 then p1 eventually
decides v.

Proof. Assume that after the update ofR[i] v is i-critical at time τ1. By Lemma 1,
v is the only value i-critical. Consider the following two cases:

– (a) the proposal value of p1 is v, v being i-critical and p1 has just written v
in cell i, then SM(v)τ ≥ (n − k) + 1. An easy induction proves that v will
be forever j-critical for any j. Hence p1 never changes its proposal, and p1
will write all cells in R until they all contain v, and then p1 decides.

– (b) if the proposal value for p1 is different from v then p1 changes prop to v
and updates again R[i] but with v, then we are brought back to case (a).

Lemma 6. If no value v is i-critical, eventually a value will be j-critical
for all j.

Proof. Let v be the proposal value of p1. While there is no i-critical value, p1 does
not change prop, then it updates R[i] with v and changes i to (i+1) mod 2(n−
k)(Lines 13 or 16). Eventually SM(v) will be greater than n−k and v is j-critical
for all j.

Then we have:

Proposition 3. If some process p is eventually the only process to take steps,
then p decides.

Together with Proposition 1, we get:

Theorem 1. The algorithm of Figure 1 solves obstruction-free k-set agreement
with 2(n− k) MWMR registers.

At one extreme, we deduce from this theorem that 2 MWMR-registers are
enough to solve set agreement

Corollary 1. There is an algorithm that solves obstruction-free set agreement
with 2 MWMR registers.

4 Remarks

4.1 Processes with a Known Small Set of Identities

Assume that each process p ∈ Π = {p1, . . . , pn} knows its identity pi and the
set Π , the number of registers may be reduced. For this:

– Processes p1, · · · , pk−1 decide their own value.
– Processes pk, · · · , pn share (n − k + 1) MWMR-registers. As the number of

registers is the same as the number of processes writing in these registers,
each process in {pk, · · · , pn} may have its own SWMR register, then any
obstruction-free algorithm solving consensus may be applied and at most
one value is decided.

Black Art: Obstruction-Free k-set Agreement 37

Hence at most k values are decided. In this way with only (n− k + 1) registers
we solve (obstruction-free) k-set agreement.

The point is the fact that here processes have identities and that the identities
of participants of the consensus is known. If this set of identities is not known,
only the set of possible identities that may be very large can be considered. For
example each process may have an IP address as identity and the set of possible
identities is very large even if, n, the number of processes participating to the
k-agreement task is very small.

4.2 Lower Bound on the Number of Registers

In this section we give some partial results concerning the number of MWMR
registers needed.

When k < n/2. When k < n/2, the proposed algorithm uses more than n
MWMR-registers. In this case from [13] it is possible to simulate n SWMR
registers in such a way that each process is the single writer of one register.
Then any obstruction-free consensus algorithm may be applied (e.g. [5,12]) to
get consensus. We can deduce from this that at least when k < n/2, the proposed
algorithm is not optimal concerning the number of registers needed.

Impossibility of Non Trivial Decision Task with One Shared Register.
It is impossible to achieve (n − 1)-set agreement with one register. Moreover
with one register the only decision task that can be solved obstruction-free is a
trivial task in the following sense: the decision of a process is a function of its
own input.

Proposition 4. With one shared register, the only decision task that can be
solved obstruction-free is a task where the output of a process is a function of its
input.

Proof. Consider a distributed algorithm that solves a decision task and assume
that processes share only one register. Construct an execution e that is indistin-
guishable for each process to an execution where this process takes steps alone.
The code of a process is a sequence of scan and update. Assume that the shared
register is initialized to some value v. In e, each process executes its code and
stops just before its first update, if exists. Consider the processes that run, de-
cide and never update the register. These processes see only the initial value v
in the register. Let p be one of these processes, e is indistinguishable from an
execution where p is the only process. So the decision of p is a function of its
input. Consider now processes that are just before their update. Let p be one
of these processes. Now p runs alone. Its first step, an update, covers the value
possibly written by some process. And p reads in the shared register the value
that it has written. Then e is indistinguishable for p from an execution where p
is the only process. So the decision of p is a function of its input.

38 C. Delporte-Gallet et al.

From Proposition 4 and Corollary 1, we get a tight result concerning set
agreement:

Theorem 2. Set agreement is obstruction-free solvable if and only if there are
at least two MWMR registers.

Impossibility of (n − 2)-Set Agreement with 2 Registers and 3
Processes

Proposition 5. With 2 shared registers and 3 processes, it is impossible to im-
plement (n− 2)-set agreement.

Proof. If a process never updates a register then we can construct an execution
where it takes steps before any update and it can only decide it own initial value
(due to the validity property of (n− 2)-set agreement). So if we have 3 processes
that never updates a register we cannot achieve (n− 2)-set agreement. Consider
that it is not the case. As N >> n (in particular N > 6), there are at least 3
identities for which the first update is on R[1] (else swap the two registers). Let
a, b and c be these 3 processes. We construct now an execution. First processes
a, b and c run until they are just before their first update. Then process b runs
until it decides or it is ready to update R[2], the second register. There are two
cases:
Case 1: If b decides, this execution is indistinguishable for b from an execution
where it runs alone, then it decides its own input value vb. Now c runs alone
(its update R[1] covering the value written by b) and decides. This execution
is indistinguishable for c from an execution where it runs alone, then it decides
its own input value vc contradicting the the agreement property of (n − 2)-set
agreement.
Case 2: b is ready to update R[2]. Now c runs alone, its update R[1] covering
the value written by b it runs until it decides. This execution is indistinguishable
for c from an execution where it runs alone, then it decides its own input value
vc. Then process a takes a step: it updates R[1]. And b takes a step : it updates
R[2]. Now in the shared registers there are no traces of c. Then b runs alone
and decides. This execution is indistinguishable for b from an execution where
only processes a and b take steps, then it decides the input value vb or va,
contradicting the agreement property of (n− 2)-set agreement.

5 Conclusion

We have solved obstruction free k-set agreement with 2(n−k) MWMR registers.
We have shown that this result is optimal for set agreement (k = n− 1). But we
think that for the other values of k, this result is not optimal. We do not know if
it is possible or not to achieve (n−2)-set agreement with 2 registers when n > 3.
We may think that in fact the algorithm in Figure 1 with 2 registers allows us
to solve better than (n − 1)-set agreement. Unfortunately, this is not the case.
With our algorithm in Figure 1, there exists an execution with n processes that
decides n − 1 values. We give in Figure 2 one such execution with 4 processes.
Our example can be easily generalized for n processes.

Black Art: Obstruction-Free k-set Agreement 39

a b c d R

initially A B C D (⊥,⊥)
a:update(R[1],A) A B C D (A,⊥)

a:scan() A B C D (A,⊥)
a:update(R[2],A) A B C D (A,A)
b:update(R[1],B) A B C D (B,A)

a:scan() B B C D (B,A)
b:scan() B A C D (B,A)

b:update(R[1],A) B A C D (A,A)
b:scan() B A C D (A,A)

b: decide A
c:update(R[1],C) B - C D (C,A)
a:update(R[2],B) B - C D (C,B)

c:scan() B - B D (C,B)
a:scan() C - B D (C,B)

c:update(R[1],B) C - B D (B,B)
c:scan() C - B D (B,B)

c: decide B
d:update(R[1],D) B - - D (D,B)
a:update(R[2],B) B - - D (D,B)

a:scan() D - - D (D,B)
a:update(R[2],D) D - - D (D,D)

d:scan() D - - D (D,D)
d: decide D
a: scan() D - - - (D,D)

a: decide D

Fig. 2. Execution of (n− 1)-set agreement algorithm with 4 processes

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. Journal of the ACM 40(4), 873–890 (1993)

2. Aspnes, J., Ellen, F.: Tight bounds for anonymous adopt-commit objects. In:
Rajaraman, R., auf der Heide, F.M. (eds.) Proceedings of the 23rd Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA 2011(Co-located
with FCRC 2011), San Jose, CA, USA, June 4-6, pp. 317–324. ACM (2011)

3. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an
asynchronous environment. Journal of the ACM 37(3), 524–548 (1990)

4. Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lattice agreement and
renaming. SIAM J. Comput. 31(2), 642–664 (2002)

5. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P.: The complexity of
obstruction-free implementations. J. ACM 56(4) (2009)

6. Attiya, H., Welch, J.: Distributed Computing. Fundamentals, Simulations, and
Advanced Topics. John Wiley & Sons (2004)

7. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient
asynchronous computations. In: STOC, pp. 91–100. ACM Press (1993)

40 C. Delporte-Gallet et al.

8. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In:
PODC, pp. 41–51. ACM Press (1993)

9. Borowsky, E., Gafni, E.: A simple algorithmically reasoned characterization of
wait-free computation (extended abstract). In: Proceedings of the Sixteenth
Annual ACM Symposium on Principles of Distributed Computing, PODC 1997,
pp. 189–198. ACM Press, New York (1997)

10. Burns, J.E., Lynch, N.A.: Bounds on shared memory for mutual exclusion. Inf.
Comput. 107(2), 171–184 (1993)

11. Chaudhuri, S.: More choices allow more faults: Set consensus problems in totally
asynchronous systems. Information and Computation 105(1), 132–158 (1993)

12. Delporte-Gallet, C., Fauconnier, H.: Two Consensus Algorithms with Atomic
Registers and Failure Detector Ω. In: Garg, V., Wattenhofer, R., Kothapalli, K.
(eds.) ICDCN 2009. LNCS, vol. 5408, pp. 251–262. Springer, Heidelberg (2008)

13. Delporte-Gallet, C., Fauconnier, H., Gafni, E., Rajsbaum, S.: Linear space bootstrap
communication schemes. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K.,
Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 363–377. Springer, Heidelberg
(2013)

14. Delporte-Gallet, C., Fauconnier, H., Gafni, E., Rajsbaum, S.: Linear space
bootstrap communication scheme. Technical report (2013)

15. Ellen, F., Fatourou, P., Ruppert, E.: The space complexity of unbounded
timestamps. Distributed Computing 21(2), 103–115 (2008)

16. Fich, F.E., Herlihy, M., Shavit, N.: On the space complexity of randomized
synchronization. J. ACM 45(5), 843–862 (1998)

17. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374–382 (1985)

18. Gafni, E.: Round-by-round fault detectors (extended abstract): Unifying syn-
chrony and asynchrony. In: Proceedings of the 17th Symposium on Principles of
Distributed Computing (1998)

19. Gafni, E., Mostéfaoui, A., Raynal, M., Travers, C.: From adaptive renaming to set
agreement. Theor. Comput. Sci. 410(14), 1328–1335 (2009)

20. Helmi, M., Higham, L., Pacheco, E., Woelfel, P.: The space complexity of long-
lived and one-shot timestamp implementations. In: Proceedings of the 30th Annual
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
PODC 2011, pp. 139–148. ACM, New York (2011)

21. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming
Languages and Systems 13(1), 123–149 (1991)

22. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-
ended queues as an example. In: 23rd International Conference on Distributed
Computing Systems, ICDCS 2003, Providence, RI, USA, May 19-22, pp. 522–529.
IEEE Computer Society (2003)

23. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
Journal of the ACM 46(2), 858–923 (1999)

24. Herlihy,M., Shavit, N.: TheArt ofMultiprocessor Programming. Morgan Kaufmann
(2008)

25. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology
of public knowledge. In: Proceedings of the 25th ACM Symposium on Theory of
Computing, pp. 101–110. ACM Press (May 1993)

Black Art: Obstruction-Free k-set Agreement 41

26. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of
public knowledge. SIAM J. on Computing 29, 1449–1483 (2000)

27. Styer, E., Peterson, G.L.: Tight bounds for shared memory symmetric mutual exclu-
sion problems. In: Proceedings of the Eighth Annual ACM Symposium on Principles
of Distributed Computing, PODC 1989, pp. 177–191. ACM, New York (1989)

28. Yang, J., Neiger, G., Gafni, E.: Structured derivations of consensus algorithms for
failure detectors. In: Proceedings of the 17th ACM Symposium on Principles of
Distributed Computing, pp. 297–306 (1998)

Self-stabilizing Byzantine Resilient
Topology Discovery and Message Delivery

(Extended Abstract)

Shlomi Dolev1,�, Omri Liba1, and Elad M. Schiller2,��

1 Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
{dolev,liba}@cs.bgu.ac.il

2 Department of Computer Science and Engineering,
Chalmers University of Technology, Goeteborg, Sweden

elad@chalmers.se

Abstract. Traditional Byzantine resilient algorithms use 2f + 1 vertex-disjoint
paths to ensure message delivery in the presence of up to f Byzantine nodes. The
question of how these paths are identified is related to the fundamental problem
of topology discovery. Distributed algorithms for topology discovery cope with a
never ending task: dealing with frequent changes in the network topology and un-
predictable transient faults. Therefore, algorithms for topology discovery should
be self-stabilizing to ensure convergence of the topology information following
any such unpredictable sequence of events. We present the first such algorithm
that can cope with Byzantine nodes. Starting in an arbitrary global state, and in
the presence of f Byzantine nodes, each node is eventually aware of all the other
non-Byzantine nodes and their connecting communication links. Using the topol-
ogy information, nodes can, for example, route messages across the network and
deliver messages from one end user to another. We present the first deterministic,
cryptographic-assumptions-free, self-stabilizing, Byzantine-resilient algorithms
for network topology discovery and end-to-end message delivery. We also con-
sider the task of r-neighborhood discovery for the case in which r and the degree
of nodes are bounded by constants. The use of r-neighborhood discovery facil-
itates polynomial time, communication and space solutions for the above tasks.
The obtained algorithms can be used to authenticate parties, in particular during
the establishment of private secrets, thus forming public key schemes that are
resistant to man-in-the-middle attacks of the compromised Byzantine nodes. A
polynomial and efficient end-to-end algorithm that is based on the established
private secrets can be employed in between periodical secret re-establishments.

� Partially supported by Deutsche Telekom, Rita Altura Trust Chair in Computer Sciences,
Lynne and William Frankel Center for Computer Sciences, Israel Science Foundation (grant
number 428/11), Cabarnit Cyber Security MAGNET Consortium, Grant from the Institute for
Future Defense Technologies Research named for the Medvedi of the Technion, and Israeli
Internet Association.

�� Partially supported by the EC, through project FP7-STREP-288195, KARYON (Kernel-
based ARchitecture for bsafetY-critical cONtrol), the European Commission Seventh
Framework Programme (FP7/2007-2013) under grant agreement 257007 and through the
FP7-SEC-285477-CRISALIS project.

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 42–57, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Self-stabilizing Byzantine Resilient 43

1 Introduction

Self-stabilizing Byzantine resilient topology discovery is a fundamental distributed task
that enables communication among parties in the network even if some of the compo-
nents are compromised by an adversary. Currently, such topology discovery is becom-
ing extremely important where countries’ main infrastructures, such as the electrical
smart-grid, water supply networks and intelligent transportation systems are subject to
cyber-attacks. Self-stabilizing Byzantine resilient algorithms naturally cope with mo-
bile attacks [e.g., 1]. Whenever the set of compromised components is fixed (or dy-
namic, but small) during a period that suffices for convergence of the algorithm, the
system starts demonstrating useful behavior following the convergence. For example,
consider the case in which nodes of the smart-grid are constantly compromised by
an adversary while local recovery techniques, such as local node reset and/or refresh,
ensure the recovery of a compromised node after a bounded time. Once the current com-
promised set does not imply a partition of the communication graph, the distributed
control of the smart grid automatically recovers. Self-stabilizing Byzantine resilient
algorithms for topology discovery and message delivery are important for systems
that have to cope with unanticipated transient violations of the assumptions that the
algorithms are based upon, such as unanticipated violation of the upper number of com-
promised nodes and unanticipated transmission interferences that is beyond the error
correction code capabilities.

The dynamic and difficult-to-predict nature of electrical smart-grid and intelligent
transportation systems give rise to many fault-tolerance issues and require efficient so-
lutions. Such networks are subject to transient faults due to hardware/software tempo-
ral malfunctions or short-lived violations of the assumed settings for the location and
state of their nodes. Fault-tolerant systems that are self-stabilizing [2] can recover after
the occurrence of transient faults, which can drive the system to an arbitrary system
state. The system designers consider all configurations as possible configurations from
which the system is started. The self-stabilization design criteria liberate the system de-
signer from dealing with specific fault scenarios, risking neglecting some scenarios, and
having to address each fault scenario separately.

We also consider Byzantine faults that address the possibility of a node to be compro-
mised by an adversary and/or to run a corrupted program, rather than merely assuming
that they start in an arbitrary local state. Byzantine components may behave arbitrarily
(selfishly, or even maliciously) as message senders and as relaying nodes. E.g., Byzan-
tine nodes may block messages, selectively omit messages, redirect message routes,
playback messages, or modify messages. Any system behavior is possible, when all (or
one third or more of) the nodes are Byzantine nodes. Thus, the number of Byzantine
nodes, f , is usually restricted to be less than one third of the nodes [2, 3].

The task of r-neighborhood network discovery allows each node to know the set of
nodes that are at most r hops away from it in the communication network. Moreover,
the task provides information about the communication links attached to these nodes.
The task topology discovery considers knowledge regarding the node’s entire connected
component. The r-neighborhood network discovery and network topology discovery
tasks are identical when r is the communication graph radius.

44 S. Dolev, O. Liba, and E.M. Schiller

This work presents the first deterministic self-stabilizing algorithms for r-
neighborhood discovery in the presence of Byzantine nodes. We assume that every
r-neighborhood cannot be partitioned by the Byzantine nodes. In particular, we assume
the existence of at least 2f + 1 vertex-disjoint paths in the r-neighborhood, between
any two non-Byzantine nodes, where at most f Byzantine nodes are present in the
r-neighborhood, rather than in the entire network. 1 Note that by the self-stabilizing
nature of our algorithms, recovery is guaranteed after a temporal violation of the above
assumption. When r is defined to be the communication graph radius, our assumptions
are equivalent to the standard assumption for Byzantine agreement in general (rather
than only complete) communication graphs. In particular the standard assumption is
that 2f + 1 vertex disjoint paths exist and are known (see e.g., [3]) while we present
distributed algorithms to find these paths starting in an arbitrary state.

Related Work. Self-stabilizing algorithms for finding vertex-disjoint paths for at most
two paths between any pair of nodes, and for all vertex-disjoint paths in anonymous
mesh networks appear in [4] and in [5], respectively. We propose self-stabilizing Byzan-
tine resilient procedures for finding f + 1 vertex-disjoint paths in 2f + 1-connected
graphs. In [6], the authors study the problem of spanning tree construction in the pres-
ence of Byzantine nodes. Nesterenko and Tixeuil [7] presented preliminary ideas for a
non-stabilizing algorithm for topology discovery in the presence of Byzantine nodes.
Awerbuch and Sipser [8] consider algorithms that were designed for synchronous static
network and give topology update as an example. They show how to use such algo-
rithms in asynchronous dynamic networks. Unfortunately, their scheme starts from a
consistent state and cannot cope with transient faults or Byzantine nodes.

The problems of Byzantine gossip [9–14] and Byzantine Broadcast [15, 16] con-
sider the dissemination of information in the presence of Byzantine nodes rather than
self-stabilizing topology discovery. Non-self-stabilizing Byzantine resilient gossip in
the presence of one selfish node is considered in [10, 12]. In [11] the authors study
oblivious deterministic gossip algorithms for multi-channel radio networks with a ma-
licious adversary. They assume that the adversary can disrupt one channel per round,
preventing communication on that channel. In [13] the authors consider probabilistic
gossip mechanisms for reducing the redundant transmissions of flooding algorithms.
They present several protocols that exploit local connectivity to adaptively correct prop-
agation failures and protect against Byzantine attacks. Probabilistic gossip mechanisms
in the context of recommendations and social networks are considered in [14]. In [9] the
authors consider rules for avoiding a combinatorial explosion in (non-self-stabilizing)
gossip protocol. Note that deterministic and self-stabilizing solutions are not presented
in [9–14]. Drabkin et al. [15] consider non-self-stabilizing broadcast protocols that over-
come Byzantine failures by using digital signatures, message signature gossiping, and
failure detectors. Our deterministic self-stabilizing algorithm merely use the topological
properties of the communication graph to ensure correct message delivery to the appli-
cation layer in the presence of message omission, modifications and Byzantine nodes.

1 Section 4 considers cases in which r and an upper bound on the node degree, Δ, are con-
stants. For these cases, we have O(n) disjoint r-neighborhoods. Each of these (disjoint) r-
neighborhoods may have up to f Byzantine nodes, and yet the above assumptions about at
least 2f + 1 vertex-disjoint paths in the r-neighborhood, hold.

Self-stabilizing Byzantine Resilient 45

A non-self-stabilizing broadcasting algorithm is considered in [16]. The authors assume
the restricted case in which links and nodes of a communication network are subject to
Byzantine failures, and that faults are distributed randomly and independently. We note
that our result can serve as a base for a compiler that convert non-stabilizing algorithm
to a stabilizing algorithm. We facilitate communication among participants that enables
(repeatedly) run of a non-stabilizing algorithm that copes with Byzantine processors,
using the standard re-synchronization technique that is based on self-stabilizing Byzan-
tine clock synchronization [2, 17].

Our Contribution. We present two cryptographic-assumptions-free yet secure algo-
rithms that are deterministic, self-stabilizing and Byzantine resilient.

We start by showing the existence of deterministic, self-stabilizing, Byzantine re-
silient algorithms for network topology discovery and end-to-end message delivery. The
algorithms convergence time is inO(n). They take in to account every possible path and
requiring bounded (yet exponential) memory and bounded (yet exponential) communi-
cation costs. Therefore, we also consider the task of r-neighborhood discovery, where
r is a constant. We assume that if the r-neighborhood of a node has f Byzantine nodes,
there are 2f+1 vertex independent paths between the node and any non-Byzantine node
in its r-neighborhood. The obtained r-neighborhood discovery algorithm requires poly-
nomial memory and communication costs and supports deterministic, self-stabilizing,
Byzantine-resilient algorithm for end-to-end message delivery across the network.
Unlike topology update, the proposed end-to-end message delivery algorithm estab-
lishes message exchange synchronization between end-users that is based on message
reception acknowledgments. Detailed proofs appear in [18].

2 Preliminaries

We consider settings of a standard asynchronous system [cf. 2]. The system consists of
a set, N = {pi}, of communicating entities, chosen from a set, P , which we call nodes.
The upper bound on the number of nodes in the system is n = |P |. Each node has a
unique identifier. Sometime we refer to a set, P \N , of nonexisting nodes that a false
indication on their existence can be recorded in the system. A node pi can directly com-
municate with its neighbors, Ni ⊆ N . The system can be represented by an undirected
network of directly communicating nodes, G = (N,E), named the communication
graph, where E = {(pi, pj) ∈ N × N : pj ∈ Ni}. We denote Nk’s set of indices by
indices(Nk) = {m : pm ∈ Nk} and Nk’s set of edges by edges(Nj) = {pj} ×Nj .

The r-neighborhood of a node pi ∈ N is the connected component that includes pi
and all nodes that can be reached from pi by a path of length r or less. The problem
of r-neighborhood topology discovery considers communication graphs in which pi’s
degree, δi, is bounded by a constant Δ. Hence, when the neighborhood radius, r, and
the node degree, Δ, are both constants the number of nodes in the r-neighborhood is
also bounded by a constant, namely by O(Δr+1).

We model the communication channel, queuei,j, from node pi to node pj ∈ Ni as a
FIFO queuing list of the messages that pi has sent to pj and pj is about to receive. When
pi sends message m, the operation send() inserts a copy of m to the queue queuei,j of
the one destination pj , such that pj ∈ Ni. We assume that the number of messages in

46 S. Dolev, O. Liba, and E.M. Schiller

transit, i.e., stored in queuei,j, is at most capacity. Once m arrives, pj executes receive
and m is dequeued.

We assume that pi is completely aware of Ni, as in [7]. In particular, we assume that
the identity of the sending node is known to the receiving one. In the context of the
studied problem, we say that node pi ∈ N is correct if it reports on its genuine neigh-
borhood, Ni. A Byzantine node, pb ∈ N , is a node that can send arbitrarily corrupted
messages. Byzantine nodes can introduce new messages and modify or omit messages
that pass through them. This way they can, e.g., disinform correct nodes about their
neighborhoods, about the neighborhood of other correct nodes, or the path through
which messages travel, to name a very few specific misleading actions that Byzantine
nodes may exhibit. Note that our assumptions do not restrict system settings in which
a duplicitous Byzantine node, pb, reports about Nb differently to its correct neighbors.
In particular, pb can have {Nb1, . . . Nbδb

} reports, such that pb’s identity in Nbi is dif-
ferent than the one in Nbj , where δx is the degree of node px. One may use a set of
non-duplicitous Byzantine nodes, {pb1 , . . . pbδ}, to model each of pb’s reports. Thus,
for a 2k + 1 connected graph, the system tolerates no more than �k/Δ� duplicitous
Byzantine nodes, where Δ is an upper bound on the node degree.

We denote C and B to be, respectively, the set of correct and Byzantine nodes. We
assume that |B| = f , the identity of B’s nodes is unknown to the ones in C, and B is
fixed throughout the considered execution segment. These execution segments are long
enough for convergence and then for obtaining sufficient useful work. We assume that
between any pair of correct nodes there are at least 2f + 1 vertex-disjoints paths. We
denote by Gc = (C,E ∩C ×C) the correct graph induced by the set of correct nodes.

Self-stabilizing algorithms never terminate [2]. The non-termination property can be
easily identified in the code of a self-stabilizing algorithm: the code is usually a do
forever loop that contains communication operations with the neighbors. An iteration
is said to be complete if it starts in the loop’s first line and ends at the last (regardless of
whether it enters branches).

Every node, pi, executes a program that is a sequence of (atomic) steps. For ease of
description, we assume the interleaving model with atomic step execution; a single step
at any given time. An input event can either be the receipt of a message or a periodic
timer going off triggering pi to send. Note that the system is totally asynchronous and
the (non-fixed) node processing rates are irrelevant to the correctness proof.

The state si of a node pi consists of the value of all the variables of the node (in-
cluding the set of all incoming communication channels, {queuej,i|pj ∈ Ni}. The
execution of a step in the algorithm can change the state of a node. The term (sys-
tem) configuration is used for a tuple of the form (s1, s2, · · · , sn), where each si is
the state of node pi (including messages in transit for pi). We define an execution
E = c[0], a[0], c[1], a[1], . . . as an alternating sequence of system configurations c[x]
and steps a[x], such that each configuration c[x + 1] (except the initial configuration
c[0]) is obtained from the preceding configuration c[x] by the execution of the step a[x].
We often associate the notation of a step with its executing node pi using a subscript,
e.g., ai. An execution R (run) is fair if every correct node, pi ∈ C, executes a step
infinitely often in R. Time (e.g. needed for convergence) is measured by the number of
asynchronous rounds, where the first asynchronous round is the minimal prefix of the

Self-stabilizing Byzantine Resilient 47

execution in which every node takes at least one step. The second asynchronous round
is the first asynchronous round in the suffix of the run that follows the first asynchronous
round, and so on. The message complexity (e.g. needed for convergence) is the number
of messages measured in the specific case of synchronous execution.

We define the system’s task by a set of executions called legal executions (LE) in
which the task’s requirements hold. A configuration c is a safe configuration for an
algorithm and the task of LE provided that any execution that starts in c is a legal
execution (belongs to LE). An algorithm is self-stabilizing with relation to the task LE
when every infinite execution of the algorithm reaches a safe configuration with relation
to the algorithm and the task.

3 Topology Discovery

The algorithm learns about the neighborhoods that the nodes report. Each report mes-
sage contains an ordered list of nodes it passed so far, starting in a source node. These
lists are used for verifying that the reports are sent over f + 1 vertex-disjoint paths.

When a report message, m, arrives to pi, it inserts m to the queue
informedTopologyi, and tests the queue consistency until there is enough indepen-
dent evidence to support the report. The consistency test of pi iterates over each node
pk such that, pk appears in at least one of the messages stored in informedTopologyi.
For each such node pk, node pi checks whether there are at least f + 1 messages from
the same source node that have mutually vertex-disjoint paths and report on the same
neighborhood. The neighborhood of each such pk, that has at least f +1 vertex-disjoint
paths with identical neighborhood, is stored in the array Resulti[k] and the total num-
ber of paths that relayed this neighborhood is kept in Count[k].

We note that there may still be nodes pfake ∈ P \ (N), for which there is an entry
Result[fake]. For example, informedTopology may contain f messages, all orig-
inated from different Byzantine nodes, and a message m′ that appears in the initial
configuration and supports the (false) neighborhood the Byzantine messages refer to.
These f + 1 messages can contain mutually vertex-disjoint paths, and thus during the
consistency test, a result will be found for Result[fake]. We show that during the next
computations, the message m′ will be identified and ignored. The Result array should
include two reports for each (undirected) edge; the two nodes that are attached to the
edge, each send a report. Hence, Result includes a set of directed (report) edges. The
term contradicting edge is needed when examining the Result set consistency.

Definition 1 (Contradicting edges). Given two nodes, pi, pj ∈ P , we say that the edge
(pi, pj) is contradicting with the set evidence ⊆ edges(Nj), if (pi, pj) �∈ evidence.

Following the consistency test, pi examines the Result array for contradictions. Node
pi checks the path of each message m ∈ informedTopologyi with source pr, neigh-
borhood neighborhoodr and Pathr. If every edge (ps, pj) on the path appears in
Result[s] and Result[j], then we move to the next message. Otherwise, we found a
fake supporter, and therefore we reduce Count[r] by one. If the resulting Count[r] is
smaller than f +1, we nullify the r’th entry of the Result array. Once all messages are
processed, the Result array consisting of the (confirmed) local topologies is the output.
At the end, pi forwards the arriving message, m, to each neighbor that does not appear

48 S. Dolev, O. Liba, and E.M. Schiller

in the path of m. The message sent by pi includes the node from which m arrived as
part of the visited path contained within m.

The Pseudocode of Algorithm 1. In every iteration of the infinite loop, pi starts
to compute its preliminary topology view by calling ComputeResults in line 2.
Then, every node pk in the queue InformedTopology, node pi goes over the mes-
sages in the queue from head to bottom. While iterating the queue, for every mes-
sage m with source pk, neighborhood Nk and visited path Pathk, pi inserts Pathk to
opinion[Nk], see line 18. After inserting, pi checks if there is a neighborhood Neigk
for which opinion[Neigk] contains at least f + 1 vertex-disjoint paths, see line 19.
When such a neighborhood is found, it is stored in the Result array (line 19). In
line 20, pi stores the number of vertex disjoint paths relayed messages that contained
the selected neighborhood for pk. After computing an initial topology view (line 3),
pi removes non-existing nodes from the computed topology. For every message m in
InformedTopology, node pi aims at validating its visited path. In line 24, pi checks
if there exists a node pk whose neighborhood contradicts the visited path of m. If
such a node exists, pi decreases the associated entry in the Count array (line 25).
This decrease may cause Count[r] to be smaller than f + 1, in this case pi con-
siders pk to be fake and deletes the local topology of pk from Result[r] (line 26).

• Insert(m): Insert item m to the queue head.
• Remove(Messagem): Remove item m from the queue.
• Iterator(): Returns an pointer for iterating over the queue’s
items by their residence order in the queue.
• HasNext(): Tests whether the Iterator is at the queue end.
• Next() Returns the next element to iterate over.
• SizeOf() Returns the number of elements in the calling set.
• MoveToHead(m): Move item m to the queue head.
• IsAfter(m,S): Test that item m is after the items m′ ∈
S, where S is the queue item set.

Fig. 1. Queue: general purpose data structure for
queuing items, and its operation list

Upon receiving a message m, node
pi inserts the message to the queue,
in case it does not already exist, and
just moves it to the queue top in case
it does. The node pi now needs to
relay the message pi got to all neigh-
bors that are not on the message
visited path (line 9). When send-
ing, pi also attaches the node iden-
tifier, from which the message was
received, to the message visited path.

Algorithm’s Correctness Proof. We now prove that within a linear amount of asyn-
chronous rounds, the system stabilizes and every output is legal. The proof considers an
arbitrary starting configuration with arbitrary messages in transit that could be actually
in the communication channel or already stored in pj’s message queue and will be for-
warded in the next steps of pj . Each message in transit that traverses correct nodes can
be forwarded within less thanO(|C|) asynchronous rounds. Note that any message that
traverses Byzantine nodes and arrives to a correct node that has at least one Byzantine
node in its path. The reason is that the correct neighbor to the last Byzantine in the path
lists the Byzantine node when forwarding the message. Thus, f is at most the number
of messages that encode vertex-disjoint paths from a certain source that are initiated or
corrupted by a Byzantine node. Since there are at least f + 1 vertex-disjoint paths with
no Byzantine nodes from any source pk to any node pi and since pk repeatedly sends
messages to all nodes on all possible paths, pi receives at least f +1 messages from pk
with vertex-disjoint paths.

Self-stabilizing Byzantine Resilient 49

Algorithm 1. Topology discovery (code for node pi)
Input: Neighborhoodi: The ids of the nodes with which node pi can communicate directly;
Output: ConfirmedTopology ⊂ P × P : Discovered topology, which is represent by a directed edge set;
Variable InformedTopology : Queue, see Figure 1: topological messages,

〈node, neighborhood, path〉;
Function: NodeDisjointPaths(S): Test S = {〈node, neighborhood, path〉} to encode at least f + 1

vertex-disjoint paths;
Function: PathContradictsNeighborhood(k,Neighborhoodk, path): Test that there is no node

pj ∈ N for which there is an edge (pk, pj) in the message’s visited path, path ⊆ P × N , such that
(pk, pj) is contradicting with Neighborhoodk;

1 while true do
2 Result ← ComputeResults()
3 let Result ← RemoveContradictions(Result)
4 RemoveGarbage(Result)
5 ConfirmedTopology ← ConfirmedTopology ∪ (

⋃
pk∈P Result[k])

6 foreach pk ∈ Ni do send(i, Neighborhoodi, ∅) to pk

7 Upon Receive (〈�,Neighborhood�, V isitedPath�〉) from pj ;
begin

8 Insert(p�, Neighborhood�, V isitedPath� ∪ {j})
9 foreach pk ∈ Ni do if k �∈ V isitedPath� then send(p�, Neighborhood�, V isitedPath� ∪ {j})

to pk

10 Procedure: Insert(k, Neighborhoodk, V isitedPathk);
begin

11 if 〈k, Neighborhoodk, V isitedPathk〉 ∈ InformedTopology then
InformedTopology.MoveToHead(m)

12 else if pk ∈ N ∧ Neighborhoodk ⊆ indices(N) ∧ V isitedPathk ⊆ indices(N) then
InformedTopology.Insert(〈k, Neighborhoodk, V isitedPathk〉)

13 Function: ComputeResults();
begin

14 foreach pk ∈ P : 〈k, Neighborhoodk, V isitedPathk〉 ∈ InformedTopology do
15 let (FirstDisjointPathsFound, Message, opinion[]) ←

(false, InformedTopology.Iterator(), [∅])
16 while Message.hasNext() do
17 〈�,Neighborhood�, V isitedPath�〉 ← Message.Next()
18 if � = k then opinion[Neighborhood�].Insert(〈 �, Neighborhood�,

V isitedPath�〉)
19 if FirstDisjointPathsFound = false ∧

NodeDisjointPaths(opinion[Neighborhood�]) then
(Result[k], F irstDisjointPathsFound) ← (Neighborhood�, true)

20 Count[k] ← opinion[k][Result[k.SizeOf()

21 return Result

22 Function: RemoveContradictions(Result);
begin

23 foreach 〈r,Neighborhoodr , V isitedPathr〉 ∈ InformedTopology do
24 if ∃pk ∈ P : PathContradictsNeighborhood(pk, Result[k], V isitedPathr) = true

then
25 if Neighborhoodr = Result[r] then Count[r] ← Count[r]− 1
26 if Count[r] ≤ f then Result[r] ← ∅

27 return Result

28 Procedure: RemoveGarbage(Result);
begin

29 foreach pk ∈ N do
30 foreach m = 〈k, Neighborhoodk, V isitedPathk〉 ∈ InformedTopology :

{k} ∪ Neighborhoodk ∪ V isitedPathk �⊆ P ∨ InformedTopology.IsAfter(m,
opinion[k][Result[k]]) do InformedTopology.Remove(m)

The FIFO queue usage and the repeated send operations of pk ensure that the most
recent f + 1 messages with vertex-disjoint paths in InformedTopology queue are

50 S. Dolev, O. Liba, and E.M. Schiller

uncorrupted messages. Namely, misleading messages that were present in the initial
configuration will be pushed to appear below the new f + 1 uncorrupted messages.
Thus, each node pi eventually has the local topology of each correct node (stored in
the Resulti array). The opposite is however not correct as local topologies of non-
existing nodes may still appear in the result array. For example, InformedTopologyi
may include in the first configuration f + 1 messages with vertex-disjoint paths for a
non-existing node. Since after ComputeResults we know the correct neighborhood
of each correct node pk, we may try to ensure the validity of all messages. For every
message that encodes a non-existing source node, there must be a node p� on the mes-
sage path, such that p� is correct and p�’s neighbor is non-existing, this is true since pi
itself is correct. Thus, we may identify these messages and ignore them. Furthermore,
no valid messages are ignored because of this validity check.

We also note that, since we assume that the nodes of the system are a subset of P ,
the size of the queue InformedTopology is bounded. Lemma 1 bounds the needed
amount of node memory (the proof details appear in [18]).

Lemma 1 (Bounded memory). At any time, there are at most n · 22n messages in
InformedTopologyi, where pi ∈ C, n = |P | and O(n log(n)) is the message size.

r-neighborhood Discovery. Algorithm 1 demonstrates the existence of a determin-
istic self-stabilizing Byzantine resilient algorithm for topology discovery. Lemma 1
shows that the memory costs are high when the entire system topology is to be discov-
ered. We note that one may consider the task of r-neighborhood discovery. Recall that
in the r-neighborhood discovery task, it is assumed that every r-neighborhood cannot
be partitioned by Byzantine nodes. Therefore, it is sufficient to constrain the maximal
path length in line 9. The correctness proof of the algorithm for the r-neighborhood
discovery follows similar arguments to the correctness proof of Algorithm 1.

4 End-to-End Delivery

We present a design for a self-stabilizing Byzantine resilient algorithm for the transport
layer protocol that uses the output of Algorithm 1. The design is based on a function
(named getDisjointPaths()) for selecting vertex-disjoint paths that contain a set of
f +1 correct vertex-disjoint paths. We use getDisjointPaths() and ARQ (Automatic
Repeat reQuest) techniques for designing Algorithm 2, which ensures safe delivery
between sender and receiver.

Exchanging Messages Over f + 1 Correct Vertex-Disjoint Paths. We guarantee
correct message exchange by sending messages over a polynomial number of vertex-
disjoint paths between the sender and the receiver. We consider a set, CorrectPaths,
that includes f + 1 correct vertex-disjoint paths. Suppose that ConfirmedTopology
(see the output of Algorithm 1) encodes a set, Paths, of 2f+1 vertex-disjoint paths be-
tween the sender and the receiver. It can be shown that Paths includes at most f incor-
rect paths that each contains at least one Byzantine node, i.e., Paths ⊇ CorrectPaths.
As we see next, ConfirmedTopology does not always encode Paths, thus, one needs
to circumvent this difficultly.

Self-stabilizing Byzantine Resilient 51

The case of constant r and Δ. The sender and the receiver exchange messages by using all
possible paths between them; feasible considering r-neighborhoods, where the neighborhood
radius, r, and the node degree Δ are constants.
The case of constant f . For each possible choice of f system nodes, p1, p2, . . . pf ,
the sender and the reciter compute a new graph G(p1, p2, . . . pf) that is the result of re-
moving p1, p2, . . . pf , from Gout, which is the graph defined by the discovered topology,
ConfirmedTopology. Let P(p1, p2, . . . pf) be a set of f + 1 vertex-disjoint paths in
G(p1, p2, . . . pf) (or the empty set when P(p1, p2, . . . pf) does not exists) and Paths =⋃

p1,p2,...pf
P(p1, p2, . . . pf). The sender and the receiver can exchange messages over

Paths, because |Paths| is polynomial at least one choice of p1, p2, . . . pf , has a corre-
sponding set P(p1, p2, . . . pf) that contains CorrectPaths, see [18].
The case of no Byzantine neighbors The procedure assumes that any Byzantine node
has no directly connected Byzantine neighbor in the communication graph. Specifically, this
polynomial cost solution considers the (extended) graph, Gext, that includes all the edges in
confirmedTopology and suspicious edges. Given three nodes, pi, pj , pk ∈ P , we say that
node pi considers the undirected edge (pk, pj) suspicious, if the edge appears as a directed
edge in ConfirmedTopologyi for only one direction, e.g., (pj , pk).
The extended graph, Gext, may contain fake edges that do not exists in the communication
graph, but Byzantine nodes reports on their existence. Nevertheless, Gext includes all the
correct paths of the communication graph, G. Therefore, the 2f + 1 vertex-disjoint paths
that exists in G also exists in Gext and they can facilitate a polynomial cost solution for the
message exchange task, see [18].

Fig. 2. Implementation proposals for the function getDisjointPaths()

Note that even though 2f + 1 vertex-disjoint paths between the sender and
the receiver are present in the communication graph, the discovered topology in
ConfirmedTopology may not encode the set Paths, because f of the paths in the set
Paths can be controlled by Byzantine nodes. Namely, the information about at least
one edge in f of the paths in the set Paths, can be missing in ConfirmedTopology.

We consider the problem of relaying messages over the set CorrectPaths when
only ConfirmedTopology is known, and propose three implementations to the func-
tion getDisjointPaths() in Figure 2. The value of ConfirmedTopology is a set of
directed edges (pi, pj). An undirected edge is approved if both (pi, pj) and (pj , pi)
appear in ConfirmedTopology. Other edges in ConfirmedTopology are said to be
suspicious. For each of the proposed implementations, we show in [18] that a polyno-
mial number of paths are used and that they contain CorrectPaths. Thus, the sender
and the receiver can exchange messages using a polynomial number of paths and mes-
sage send operations, because each path is of linear length.

Ensuring Safe Message Delivery. We propose a way for the sender and the receiver,
that exchange a message over the paths in getDisjointPaths(), to stop considering
messages and acknowledgments sent by Byzantine nodes. They repeatedly send mes-
sages and acknowledgments over the selected vertex-disjoint paths. Before message
or acknowledgment delivery, the sender and the receiver expect to receive each mes-
sage and acknowledgment at least (capacity · n + 1) consecutive times over at least

52 S. Dolev, O. Liba, and E.M. Schiller

f + 1 vertex independent paths, and by that provide evidence that their messages and
acknowledgments were indeed sent by them.

We employ techniques for labeling the messages (in an ARQ style), recording
visited path of each message, and counting the number of received message over each
path. The sender sends messages to the receiver, and the receiver responds with ac-
knowledgments after these messages are delivered to the application layer. Once the
sender receives the acknowledgment, it can fetch the next message that should be sent
to the receiver. The difficulty here is to guarantee that the sender and receiver can in-
deed exchange messages and acknowledgments between them, and stop considering
messages and acknowledgments sent by Byzantine nodes.

The sender repeatedly sends message m, which is identified by m.ARQLabel, to
the receiver over all selected paths. The sender does not stop sending m before it is
guaranteed that m was delivered to the application layer of the receiving-side. When the
receiver receives the message, the set m.V isitedPath encodes the path along which m
was relayed over. Before delivery, the receiver expects to receive m at least (capacity ·
n + 1) consecutive times from at least f + 1 vertex independent paths. Waiting for
(capacity · n + 1) consecutive messages on each path, ensures that the receiver gets
at least one message which was actually sent recently by the sender. Once the receiver
delivers m to the application layer, the receiver starts to repeatedly acknowledge with
the label m.ARQLabel over the selected paths (while recording the visited path). The
sender expects to receivem’s acknowledgment at least capacity·n+1 consecutive times
from at least f +1 vertex independent paths before concluding that m was delivered to
the application layer of the receiving-side.

Once the receiver delivers a message to the application layer, the receiver starts to
repeatedly acknowledge the recently delivered message over the selected paths. In ad-
dition, the receiver also restarts its counters and the log of received messages upon a
message delivery to the application layer. Similarly the sender count acknowledgments
to the current label used, when the sender receives at least capacity · n + 1 acknowl-
edgments over f +1 vertex-disjoint paths, the sender fetches the next message from the
application layer, changes the label and starts to send the new message.

The Pseudocode of Algorithm 2. In every iteration of the infinite loop, pi fetches
Message, prepares Message’s label (line 3) and starts sending Message over the
selected paths, see the procedure ByzantineFaultT olerantSend(Message). When
pi gets enough acknowledgments for Message (line 4), pi stops sending the current
message and fetches the next. Upon receiving a message msg, node pi tests msg’s des-
tination (line 6). When pi is not msg’s destination, it forwards msg to the next node on
msg’s intended path, after updating msg’s visited path. When pi is msg’s destination,
pi checks msg’s type (line 9). When msg’s type is Data, pi inserts the message pay-
load and label to the part of the data structure associated with the message source, i.e.,
the sender, and the message visited path (line 10). In line 12, node pi checks whether
f + 1 vertex-disjoint paths relayed the message at least capacity · n+ 1 times, where
capacity is an upper bound on the number of messages in transit over a communica-
tion link. If so, pi delivers the msg to the application layer (line 20), clears the entire
data structure and finally sends acknowledgments on the selected paths until a new
message is confirmed. Moreover, in line 21 we signal that we are ready to receive a

Self-stabilizing Byzantine Resilient 53

Algorithm 2. Self-stabilizing Byzantine resilient end-to-end delivery (pi’s code)
Interface: FetchMessage(): Gets messages from the upper layer. We denote by InputMessageQueue the

unbounded queue of all messages that are to be delivered to the destination;
Interface: DeliverMessage(Source, Message): Deliver an arriving message to the higher layer. We

denote by OutputMessageQueue the unbounded queue of all messages that are to be delivered to
the higher layer. We assume that it always contains at least the last message inserted to it;

Input: ConfirmedTopology: The discovered topology (represented by a directed edge set, see Algorithm 1);
Data Structure: Transport layer messages: 〈Source, Destination, V isitedPath, IntentedPath,

ARQLabel, Type, Payload〉, where Source is the sending node, Destination is the
target node, V isitedPath is the actual relay path, IntentedPath is the planned relay path,
ARQLabel is the sequence number of the stop-and-wait ARQ protocol, and Type ∈ {Data,
ACK} message type, where DATA and ACK are constant;

Variable Message: the current message being sent;
Variable ReceivedMessages[j][Path] : queue of pj ’s messages that were relayed over path Path;
Variable Confirmations[j][Path] : pj ’s acknowledgment queue for messages that were relayed over Path;
Variable label: the current sequence number of the stop-and-wait ARQ protocol;
Variable Approved: A Boolean variable indicating whether Message was accepted at the destination;
Function: NodeDisjointPaths(S): Test S, a set of paths, to encode at least f + 1 vertex-disjoint paths;
Function: FloodedPath(MessageQueue, m) : Test whether m is encoded by the first capacity · n + 1

messages in MessageQueue.;
Function: getDisjointPaths(ReportedTopology, Source,Destination) : Get a set of vertex-disjoint

paths between Source and Destination in the discovered graph, ReportedTopology (Figure 2).;
Function: ClearQueue(Source) : Delete all data in ReceivedMessages[Source][∗];
Function: ClearAckQueue(Destination) : Delete all data in Confirmations[Destination][∗];

1 while true do
2 ClearAckQueue(Message.Destination)
3 (Message, label) ← (FetchMessage(), label + 1modulo 3)
4 while Approved = false do ByzantineFaultTolerantSend(Message)

5 Upon Receive (msg) From pj ;
begin

6 if msg.Destination �= i then
7 msg.V isitedPath ← msg.V isitedPath ∪ {j}
8 send(msg) to next (msg.IntendedPath)

9 else if msg.Type = Data then
10 ReceivedMessages[msg.Source][msg.V isitedPath].insert(〈 msg.Payload,

msg.ARQLabel 〉)
11 let Paths ← {Path : FloodedPath(Confirmations[msg.Source][Path], msg)}
12 if NodeDisjointPaths(Paths) then
13 NewMesssage ← true
14 Confirm(msg.Source,m.ARQLabel,m.Payload)

15 else if msg.Type = ACK then
16 if label = msg.ARQLabel then

Confirmations[msg.Source][msg.V isitedPath].insert(〈msg.Payload,
msg.ARQLabel〉)

17 let Paths ← {Path : FloodedPath(Confirmations[msg.Source][Path],
〈msg.Payload, msg.ARQLabel 〉)}

18 if NodeDisjointPaths(Paths) then Approved ← true

19 Function: Confirm(Source,ARQLabel, Payload);
begin

20 if CurrentLabel �= ARQLabel then DeliverMessage(Source, Payload)
21 (CurrentLabel, NewMessage) ← (ARQLabel, false)
22 ClearQueue(Source)
23 while NewMessage = false do ByzantineFaultTolerantSend(〈 Source, ARQLabel,

ACK, Payload〉)
24 Function: ByzantineFaultTolerantSend(〈Destination, ARQLabel, Type, Payload〉);

begin
25 let Paths ← getDisjointPaths(ConfirmedTopology, i,Destination)
26 foreach Path ∈ Paths do send(〈i,Destination, ∅, Path,ARQLabel, Type, Payload〉) to

first(Path)

54 S. Dolev, O. Liba, and E.M. Schiller

new message. When msg’s type is ACK , we act almost as when the message is of type
Data. When the condition in line 18 holds, we signal that the message was confirmed
at the receiver by setting Approved to be true, in line 18. We note that the code of
Algorithm 2 considers only one possible pair of source and destination. A many-source
to many-destination version of this algorithm can simply use a separate instantiation of
this algorithm for each pair of source and destination.

Correctness Proof. We show that message delivery guarantees hold after a bounded
convergence period. The proof is based on the system’s ability to relay messages over
f + 1 correct vertex-disjoint messages (Figure 2), and focuses on showing safe mes-
sage delivery between the sender and the receiver. After proving that the sender fetches
messages infinitely often, we show that within four such fetches, the message delivery
guarantees hold; receiver-side delivers all of the sender’s messages and just them. The
proof in detail appears in [18]. Let us consider messages, m, and their acknowledge-
ments, that arrive at least (capacity ·n+1) times over f +1 vertex-independent paths,
to the receiver-side, and respectively the sender-side, with identical payloads and labels.
The receiver, and respectively the sender, has the evidence that m was indeed sent by
the sender, and respectively, acknowledged by the receiver. The sender and the receiver
clear their logs whenever they have such evidences about m. The proof shows that, af-
ter a finite convergence period, the system reaches an execution in which the following
events reoccur: (Fetch) the sender clears its log, fetches message m, and sends it to the
receiver, (R-Get) the receiver gets the evidence that m was indeed sent by the sender,
(Deliver) the receiver clears its log, delivers m, and acknowledge it to the sender, and
(S-Get) the sender gets the evidence that m was acknowledged by the receiver. Namely,
the system reaches a legal execution.

First we prove that event Fetch occurs infinitely often, in the way of proof by con-
tradiction. Let us assume (towards a contradiction) that the sender fetches message m
and then never fetches another message m′. The sender sends m and counts acknowl-
edgments that has m’s label. According to the algorithm, the sender can fetch the next
message, m′ �= m, when it has the evidence that m was indeed acknowledged by the
receiver. The receiver acknowledgesm’s reception when it has the evidence that m was
indeed sent by the sender. After nullifying its logs, the receiver repeatedly sends m’s
acknowledgments until it has evidences for other messages, m′, that were indeed sent
by the sender after m. By the assumption that the sender never fetches m′ �= m, we
have that the receiver keeps on acknowledgingm until m′ �= m arrives from the sender.
Therefore, m arrives from the sender to the receiver, and the receiver acknowledges m
to the sender. Thus, a contradiction that the sender never fetches m′ �= m.

The rest of the proof shows that (eventually) between every two event of type Fetch,
also the events R-Get, Deliver and S-Get occur (and in that order). We show that this
is guaranteed within four occurrences of event Fetch. Following the fetch of each of
the first three messages and before the next one, the sender must have evidence that
the receiver executed event Deliver, i.e., clearing the receiver’s log. Note that during
convergence, this may surely be false evidence. Just before fetching a new message in
event Fetch, the sender must clear its logs and reassign a label value, say, the value is
0. There must be a subsequent fetch with label 1, because, as explained above, event
Fetch occurs (infinitely often). Since the sender clears its logs in event of Fetch, from

Self-stabilizing Byzantine Resilient 55

now on and until the next event Fetch, any corrupted message found in the sender’s log
must be of Byzantine origin. Therefore, the next time sender gets the evidence that m
was acknowledged by the receiver, the receiver has truly done so. Note that between any
such two (truthful) acknowledgments (with different labels), say with label, 1, 2, . . ., the
receiver must execute event Deliver and clean its log, see Algorithm 2, line 22. Since
the sender sends over f+1 correct paths, and the receiver’s logs are clear, eventually the
receiver will have evidence for the message with label 0. As corrupted messages origi-
nate only from Byzantine nodes and there are at most f such nodes, the receiver’s log
may not contain evidence for non-sender messages. To conclude, starting from the 4-th
message, the receiver will confirm all of the sender’s messages, and will not confirm
non-sender messages.

5 Extensions and Conclusions

As an extension to this work, we suggest to combine the algorithms for r-neighborhood
network discovery and the end-to-end capabilities in order to allow the use of end-
to-end message delivery within the r-neighborhoods. These two algorithms can be
used by the nodes, under reasonable node density assumptions, for discovering their r-
neighborhoods, and, subsequently, extending the scope of their end-to-end capabilities
beyond their r-neighborhood, as we describe in the following. We instruct further re-
mote nodes to relay topology information, and in this way collect information on remote
neighborhoods. One can consider an algorithm for studying specific remote neighbor-
hoods that are defined, for example, by their geographic region, assuming the usage of
GPS inputs; a specific direction and distance from the topology exploring node defines
the exploration goal. The algorithm nominates 2f + 1 nodes in the specific direction
to return further information towards the desired direction. The sender uses end-to-end
communication to the current 2f + 1 nodes in the front of the current exploration, asks
them for their r-neighborhood, and chooses a new set of 2f + 1 nodes for forming a
new front. It then instructs each of the current nodes in the current front to communicate
with each node in the chosen new front, to nominate the new front nodes to form the
exploration front.

To ensure stabilization, this interactive process of remote information collection
should never stop. Whenever the current collection process investigates beyond the
closest r-neighborhood, we concurrently start a new collection process in a pipeline
fashion. The output is the result of the last finalized collection process. Thus, having a
correct output after the first time a complete topology investigation is finalized.

In this work we presented two deterministic, self-stabilizing Byzantine-resilience al-
gorithms for topology discovery and end-to-end message delivery. We have also consid-
ered an algorithm for discovering r-neighborhood in polynomial time, communication
and space. Lastly, we mentioned a possible extension for exploring and communicating
with remote r-neighborhoods using polynomial resources as well.

The obtained end-to-end capabilities can be used for communicating the public keys
of parties and establish private keys, in spite of f corrupted nodes that may try to con-
duct man-in-the-middle attacks, an attack that the classical Public key infrastructure
(PKI) does not cope with. Once private keys are established encrypted messages can

56 S. Dolev, O. Liba, and E.M. Schiller

be forwarded over any specific f + 1 node independent paths, one of which must be
Byzantine free. The Byzantine free path will forward the encrypted message to the
receiver while all corrupted messages will be discarded. Since our system should be
self-stabilizing, the common private secret should be re-established periodically.

References

[1] Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended ab-
stract). In: 10th Symposium on Principles of Distributed Computing, Montreal,
Quebec, Canada, August 19-21, pp. 51–59 (1991)

[2] Dolev, S.: Self-Stabilization. MIT Press (2000)
[3] Lynch, N.: Distributed Computing. Morgan Kaufmann Publishers (1996)
[4] Al-Azemi, F.M., Karaata, M.H.: Brief announcement: A stabilizing algorithm

for finding two edge-disjoint paths in arbitrary graphs. In: Défago, X., Petit, F.,
Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 433–434. Springer, Heidelberg
(2011)

[5] Hadid, R., Karaata, M.H.: An adaptive stabilizing algorithm for finding all disjoint
paths in anonymous mesh networks. Comp. Comm. 32(5), 858–866 (2009)

[6] Dubois, S., Masuzawa, T., Tixeuil, S.: Maximum metric spanning tree made
byzantine tolerant. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 150–164.
Springer, Heidelberg (2011)

[7] Nesterenko, M., Tixeuil, S.: Discovering network topology in the presence of
byzantine faults. IEEE Trans. Parallel Distrib. Syst. 20(12), 1777–1789 (2009),
see errata via http://vega.cs.kent.http://vega.cs.kent.edu/
∼mikhail/Research/topology.errata.html

[8] Awerbuch, B., Sipser, M.: Dynamic networks are as fast as static networks (pre-
liminary version). In: Proceedings of the 29th Annual Symposium on Foundations
of Computer Science (SFCS 1988), pp. 206–220. IEEE Computer Society (1988)

[9] Minsky, Y., Schneider, F.B.: Tolerating malicious gossip. Distributed Computing
16(1), 49–68 (2003)

[10] Li, H.C., Clement, A., Wong, E.L., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: Bar
gossip. In: 7th Symposium on Operating Systems Design and Implementation,
OSDI 2006, Berkeley, CA, USA, pp. 191–204. USENIX Association (2006)

[11] Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.C.: Gossiping in a multi-channel
radio network. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222.
Springer, Heidelberg (2007)

[12] Alvisi, L., Doumen, J., Guerraoui, R., Koldehofe, B., Li, H.C., van Renesse, R.,
Trédan, G.: How robust are gossip-based communication protocols? Operating
Systems Review 41(5), 14–18 (2007)

[13] Burmester, M., Le, T.V., Yasinsac, A.: Adaptive gossip protocols: Managing secu-
rity and redundancy in dense ad hoc networks. Ad Hoc Net. 5(3), 313–323 (2007)

[14] Fernandess, Y., Malkhi, D.: On spreading recommendations via social gossip. In:
Proceedings of the 20th Annual ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA 2008), pp. 91–97. ACM (2008)

http://vega.cs.kent.edu/~mikhail/Research/topology.errata.html
http://vega.cs.kent.edu/~mikhail/Research/topology.errata.html

Self-stabilizing Byzantine Resilient 57

[15] Drabkin, V., Friedman, R., Segal, M.: Efficient Byzantine broadcast in wireless
ad-hoc networks. In: Proceedings of IEEE International Conference on Depend-
able Systems and Networks (DSN 2005), pp. 160–169. IEEE Computer Society
(2005), Self-stabilizing Byzantine Resilient 57

[16] Paquette, M., Pelc, A.: Fast broadcasting with byzantine faults. Int. J. Found.
Comput. Sci. 17(6), 1423–1440 (2006)

[17] Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for build-
ing self-stabilizing distributed protocols (extended abstract). In: Proceedings of
the 32nd Annual Symposium on Foundations of Computer Science (SFCS 1991),
pp. 258–267. IEEE Computer Society (1991)

[18] Dolev, S., Liba, O., Schiller, E.M.: Self-stabilizing Byzantine resilient topology
discovery and message delivery. CoRR abs/1208.5620 (2012)

FreeRec: An Anonymous and Distributed

Personalization Architecture

Antoine Boutet1, Davide Frey1, Arnaud Jégou1, Anne-Marie Kermarrec1,2,
and Heverson B. Ribeiro1

1 INRIA Rennes, France
{antoine.boutet,davide.frey,arnaud.jegou,anne-marie.kermarrec,

heverson.ribeiro}@inria.fr
2 EPFL, Switzerland

Abstract. We present and evaluate FreeRec, an anonymous decentral-
ized peer-to-peer architecture, designed to bring personalization while
protecting the privacy of its users. FreeRec’s decentralized approach
makes it independent of any entity wishing to collect personal data
about users. At the same time, its onion-routing-like gossip-based overlay
protocols effectively hide the association between users and their inter-
est profiles without affecting the quality of personalization. The core
of FreeRec consists of three layers of overlay protocols: the bottom
layer, rps, consists of a standard random peer sampling protocol ensur-
ing connectivity; the middle layer, PRPS, introduces anonymity by hid-
ing users behind anonymous proxy chains, providing mutual anonymity;
finally, the top clustering layer identifies for each anonymous user, a
set of anonymous nearest neighbors. We demonstrate the effectiveness
of FreeRec by building a decentralized and anonymous content dis-
semination system. Our evaluation by simulation and through extensive
PlanetLab experiments show that FreeRec effectively decouples users
from their profiles without hampering the quality of personalized content
delivery.

1 Introduction

The Web 2.0 has transformed the way users interact with the Internet. Users are
no longer pure consumers, but they now generate a large portion of the avail-
able content. As a result, personalized services have become a requirement for
most online applications. While personalization and social applications greatly
enhance user experience, they amplify the Internet’s inherent privacy risks and
concerns. For instance, personalization in a social application can lead to the
revelation of potentially embarrassing information to friends, family, and col-
leagues. In addition, users publishing controversial or prohibited information on
social platforms can easily be identified and located through their IP addresses.

The reason for the privacy risks associated with personalized services lies in
their inevitable dependence on personal data. As another example, consider one
of the most common forms of personalized services: recommendation. A common

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 58–73, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

FreeRec: An Anonymous and Distributed Personalization Architecture 59

technology providing this service is user-based Collaborative Filtering (CF) [24].
This paradigm leverages interest similarities to identify correlations between
the preferences of different users. While users are not generally aware of who
else shares their own interests, their centralized implementation requires service
providers to store accurate information about the interests of users. This clashes
with the need to protect personal data.

Anonymity services provide an attractive way to overcome the privacy
issues associated with personalized services. They hide the real identity (i.e. IP
address) of a user through pseudonym (e.g. IP address of another node). Several
such solutions are available on the Internet [1] and offer users the possibility
to navigate anonymously behind a proxy. However, the use of a single proxy is
vulnerable to adversaries that can observe traffic going in and out of the proxy.
Distributed solutions, such as Tor [11] provide better guarantees. Nonetheless,
they do not eradicate the concentration of personal data within the servers of a
single provider. Decentralized personalization based on the P2P paradigm [5,8]
addresses the issue of concentrated data while providing naturally scalability.
Yet, they remain vulnerable to the presence of malicious users.

Clearly anonymity alone does not protect users privacy, nor does decentral-
ization alone. In this work, we seek to address these issues by combining the
benefits of decentralized personalization and anonymity. The result is FreeRec,
an anonymous and distributed personalization architecture. Our solution imple-
ments a distributed user-based (CF) scheme through an anonymous and interest-
based topology and uses the resulting overlay to recommend items to users.
Unlike existing decentralized personalization platforms, FreeRec protects the
interest profiles stored at every node by means of anonymous exchanges with
other peers. This makes FreeRec a generic personalization architecture that
can be leveraged to build a number of distributed applications that may benefit
from recommendation services.

FreeRec builds anonymous chains of nodes by relying on three layers of
gossip protocols providing mutual anonymity. A standard random-peer-sampling
protocol provides nodes with the members of their anonymous chains. A sec-
ond private peer-sampling protocol uses these chains to provide each node with
an anonymous sample of the network. A top clustering layer implements a
decentralized collaborative-filtering overlay by creating decentralized clusters of
anonymous profiles. This layered architecture makes FreeRec self organizing
and capable to adapt to the arrival and departure of nodes and to changes in
the interests of users. We evaluate FreeRec using both simulation and a real
deployment on PlanetLab. Our results on a news-personalization use case show
that users are able to effectively receive and publish content even in presence of
path failure with reasonable overhead.

2 System Model

We consider a decentralized user-based collaborative filtering (CF) system [5,8].
Such systems build interest-based overlay networks by clustering nodes according

60 A. Boutet et al.

to the similarity among their interest profiles1. This task relies on two protocols:
a random peer sampling (rps) and a clustering protocol (clustering). The
rps [26] protocol ensures connectivity by providing each node with a continu-
ously changing random sample of the graph. This comes in the form of a view
data structure: a list of references to other nodes. Each entry in a view consists
of (i) a node’s IP address and port, (ii) a profile describing the node’s inter-
ests, and (iii) a timestamp indicating when the associated profile was generated.
While the rps allows nodes to continuously discover new nodes, the clustering
protocol identifies, at each node, the k-nearest neighbors in term of interests, and
ensures connectivity between the node and this neighborhood.

Periodically, each protocol selects the node in its view with the oldest times-
tamp and sends it a message containing its profile with half of its view for the
rps and its entire view in case of the clustering protocol (standard parame-
ters [14,27]). In the rps, the receiving node renews its view by keeping a random
sample of the union of its own view and the received one. In the clustering
protocol, it computes the union of its own and the received view, and selects
the nodes whose profiles are closest to its own according to a similarity metric.
Several similarity metrics have been proposed [25], we use the Jaccard index in
this paper.

3 FreeRec

Our anonymous personalization architecture extends the model described in
Section 2 to achieve anonymity by executing gossip exchanges through onion-like
encryption chains: the proxy chains. The proxy chain of a node n is a sequence
starting with n and containing a random number of other nodes – from chmin

to chmax – as depicted in Figure 1. We refer to node n, the first node in the
chain, as its initiator. The last, p, is the chain’s proxy, (or n’s proxy), while the
remaining ones are intermediate nodes. Messages can travel along the chain in
two directions: forward, from the initiator to the proxy; or backward, the other
way around. The proxy acts as a placeholder for n, hiding n’s identity in all the
gossip exchanges that include n’s interest profile.

Proxy chains effectively hide the very fact two nodes are communicating.
Two nodes n and m can learn their respective profiles without knowing their
respective identities. Moreover, their profiles are hidden from all other nodes
in the chains. A node n that wishes to send a message to another node builds
a sequence of encryption layers around it, including the corresponding routing
information. Each of the nodes along its proxy chain removes one of these layers
and sends the inner encrypted layer to the next hop indicated in the message.
The process continues until the destination node’s proxy. At this point, the
message goes through the destination chain in the backward direction using
routing information and encryption keys maintained by each node in the chain.
Each of these, starting from the proxy, adds one encryption layer and routes the
message until it arrives at the destination node, which removes all the layers.

1 We use the term node to refer both to a user and to her machine.

FreeRec: An Anonymous and Distributed Personalization Architecture 61

3.1 Chain-Based Routing

We now present the data structures that allow nodes to build, maintain, and use
proxy chains.

Chain and Message Keys. The onion-like encryption process outlined above
relies on three types of keys: two sets of public/private key pairs, and one set of
secret keys. First, each node, n, maintains a key pair, (Kn, kn)

2, called message
key pair. Nodes use it to send and receive encrypted messages through proxy
chains to and from any other node while preventing the proxies and the other
chain nodes from accessing the content of this communication.

Each node also maintains a second key pair: the chain key pair, (Cn, cn).
While the message key pair hides the content of a message from the nodes in the
chain, the chain key pair makes it possible to construct the onion-like encryption
layers when traversing the chain in the forward direction.

Finally, each node, n, generates and dispatches a secret key, sni , to each node,
i, in its own proxy chain. Nodes use this key to add onion layers to messages
that travel along the chain in the backward direction, i.e. towards n. The use of
onion-like encryption in the forward and backward directions causes messages
to change at each hop, thus preventing external observers from recognizing the
messages in a proxy chain. We summarize the roles of the three types of keys in
Table 1, and provide details about their distribution in Section 3.3.

Data Structures and Routing IDs. To route messages along proxy chains
we use a combination of source and hop-by-hop routing. Each node maintains
information about the members of its own proxy chain in a chainTable. This
data structure is essentially a list: each entry consists of the identifier of a node,
and of its associated public chain key. The information in the table allows the
initiator of a chain to encrypt messages in onion layers.

The destination proxy, however, cannot use source routing to reach the des-
tination node: a node may in fact act as a proxy or an intermediate node in
multiple proxy chains. To route backwards along the chain, we therefore use a
set of routingIds as depicted in Figure 2. For routing purposes, all the nodes
in a chain could use the same routingId to identify their next hops. However,
this would easily allow colluding nodes to verify if they are part of the same
chain. We therefore associate a unique (with high probability) routingId with
each link in a chain. The proxy routingId (e.g. pa and pb in Figures 1 and 2)
serves as a pseudonym for the destination node, while the remaining ones (rij
in the figures) enable backward routing on the destination chain.

Nodes store the routingIds of the chains they belong to in a routingTable.
With reference to Figure 2, let node p be a proxy in the chain of node b. p’s
routingTable contains an entry indexed by b’s proxy routingId (pb in the
figure). This entry contains (i) p’s secret key for the chain (sbp), (ii) the identifier
of the previous node in the chain (v), (iii) the public chain key of v (Cv), and (iv)

2 We use uppercase characters for public keys and lowercase for private or secret keys.

62 A. Boutet et al.

the routingId of the link between p and v (rpv). Intermediate chain nodes also
have an analogous entry in their routing tables, but indexed by the routingId

of the link to the next node in the chain. Node v therefore has an entry indexed
by rpv and containing (i) v’s secret key for the chain (sbv), (ii) the identifier of z,
(iii) z’s public chain key (Cz), and (iv) the routingId of the link to z (rzv).

Fig. 1. Proxy chain creation

3.2 FreeRec Three-Layer Architecture

Our goal in building proxy chains is to enable the architecture described in
Section 2 to operate anonymously. To make this possible, we replace the two
protocols of Section 2 with a three-layer architecture. We introduce a rps pro-
tocol layer, which provides each node with a sample of the network from which
to choose the members of its proxy chain. The rps operates like a normal peer
sampling protocol with one addition: it associates each node n with the informa-
tion required for creating the chains. This comprises only the node’s IP address,
its public chain key Cn, and a timestamp. Interest profiles do not appear in the
rps views: they are protected by the anonymous prps layer.

The prps (Proxied Random Peer Sampling) uses the information provided by
the rps to build a proxy chain for each node. It then exploits these chains in
gossip exchanges thereby providing each node with a random sample of anony-
mous nodes. In doing this, it also allows nodes to learn about the necessary
information to route messages anonymously to other nodes. Consider a prps

view containing an entry for node b. The entry does not include b’s IP address
and port. Rather, it is identified by b’s proxy routingId (pb). In addition, it
contains the IP address and port of b’s proxy (p), p’s public chain key (Cp), b’s
public message key (Kb), and b’s interest profile.

prps views allow nodes to learn about the anonymous information referring to
another node without being able to associate it with the node’s precise identity.
Nodes exchange views like in a standard rps. However, they channel all view
exchanges through their proxy chains. The prps thus replaces the rps protocol
of the architecture of Section 2, thus enabling anonymous profile exchanges.

The prps serves as a basis for the top layer of our architecture: a clustering

protocol, like the one in Section 2. However, unlike in Section 2, the clustering

FreeRec: An Anonymous and Distributed Personalization Architecture 63

Table 1. Data structures maintained on a node v, followed by p and preceded by z in
b’s chain

(Cn, cn) Chain key pair of node n cn private key, Cn public key

(Kn, kn) Message key pair of node n kn private key, Kn public key

sxn Secret key generated by node x and shared with node n

rps Random peers sampling @ip, timestamp, Cn

prps Random proxies sampling @ip, timestamp, routingId, Cn, profile, Kn

clustering Interest-based neighborhoods @ip, timestamp, routingId, Cn, profile, Kn

RT routingTable [rpv] sbv, z, Cz, rzv

protocol also performs all its view exchanges using the proxy chains built by
the prps layer. This allows our architecture to build decentralized personalized
services in a completely anonymous manner.

3.3 Protocol Details

In the remainder of this section, we provide additional details about how the
prps protocol manages chains and encrypted routing.

Building Proxy Chains. A node a can start building its proxy chain once
its rps view is filled with a random set of nodes. Specifically, a first determines
how many other nodes should be in its chain by extracting a random number
k from chmin to chmax included. Then it extracts k nodes from its rps view and
it sets the first extracted node as a proxy p and the remaining ones (if any) as
intermediate nodes i in the order they were extracted. a builds a create-chain
message as described on Figure 1.

The message consists of concentric onion layers. Each layer is a createChain

message encrypted with the chain key of one of the nodes that will constitute the
chain. The innermost message, M3 in the figure, is encrypted with the proxy’s
chain key and contains (i) the proxy’s secret key (saq), (ii) the proxy routingId

for the chain (pa in the figure), and (iii) the routingId for the link between
the proxy and the last intermediate node (ryq in the figure), (iv) the previous
node’s IP address and port (y), and (v) its public chain key (Cy).

After creating M3, the initiator creates a message for the last intermediate
node in the chain (y in the figure). This message contains (i) the previously
encrypted message for the proxy (M3), (ii) the next node’s IP address (the IP
address of the proxy q in this case) and port (q), (iii) node y’s secret key (say), (iv)
the routingId of the link between y and the next node in the chain (ryq), (v) the
routingId of the link between y and the previous node in the chain (rxy), (vi)
the previous node’s IP address and port (x), and (vii) its public chain key (Cx).
The initiator encrypts M2 with y’s chain key and then it repeats the process
by adding a layer for each of the nodes it selected for its chain, the last of these

64 A. Boutet et al.

being the one closest to the initiator itself, x in the figure. The initiator then
sends the outermost message to this node initiating the chain-creation process.

Each node receiving a createChain message decrypts it and uses its content
to update the information in its routing table. It then forwards the encrypted
inner-layer message to the next node in the chain, which operates analogously.
The proxy performs the same operations except that it does not forward the
message further. If a chain node is already part of another chain with the same
routingId, it replies with an error message to the initiator, which will recreate
the chain using a different routingId.

Sending Messages through Chains. FreeRec achieves mutual anonymity:
when two nodes exchange messages, both the sender and the receiver are anony-
mous. Nodes use their proxy chains to send and receive encrypted messages as
part of the prps and clustering protocols. Consider the example in Figure 2.
Node a is sending a message m to a node with proxy p (not knowing b’s id),
public message key Kb, and proxy routingId pb. Node a will have discovered
this node, which happens to be b, through prps or clustering exchanges. As
a result, the association between b’s identity and p, Kb or pb is unknown to a as
well as to every other node in the system. The process unfolds as follows.

Fig. 2. Message exchange between nodes a and b: a knows b’s profile, the identity of
p, but not the identity of b. Node b knows a’s profile, the identity of q, but not the
identity of a. Nodes in the chain cannot access a’s or b’s profile.

First, a encrypts m using the destination node’s public message key yield-
ing Kb(m). Then it prepares the first layer of its onion message. Specifically, a
includes Kb(m), and the destination’s proxy incoming routingId, pb in the fig-
ure. Then it encrypts the resulting message with the destination proxy’s public
chain key, yielding M4 in the figure. Node a continues the creation of the onion
message by adding one layer from each of the nodes in its own chain, starting
from the proxy. The first of these layers,M3 is encrypted with the proxy’s public
chain key, and contains both M4 and the address of M4’s target: the destination
node’s proxy. The subsequent one, M2 contains M3 and the address of M3’s

FreeRec: An Anonymous and Distributed Personalization Architecture 65

target, q in the figure. In general, consider a node n that is followed by a node
m in a proxy chain. The corresponding onion layer will be encrypted with n’s
public chain key and will contain the IP address and port of m together with
the immediate inner onion layer encrypted with m’s public chain key. In the case
of the figure, the outermost onion layer (M1) will be encrypted with node x’s
public chain key and will contain M2 and the IP address and port of node y.

After creating M1, node a sends it to x, which starts peeling off the first
layer. It first decrypts the message using its private chain key and then forwards
the contained encrypted message (M2) to the node indicated in M1 (y). Upon
receiving the corresponding onion layer, each node in the chain proceeds analo-
gously until the source node’s proxy (q) forwards the innermost layer (M4) to
the destination’s proxy (p). This completes the first part of the routing process.

The destination’s proxy (p) initiates the second part. It decrypts M4 and
retrieves its content: a routingId, pb, and an encrypted message for the des-
tination node (Kb(m)). p first looks up pb in its routing table and it retrieves
(i) the associated secret key (sbp), (ii) the address and port of the previous node
in the destination chain (v), and (iii) the routingId of the link leading to
this node (rvp). It then encrypts Kb(m) using the retrieved secret key, yield-
ing (sbp(Kb(m))). Finally it builds a message containing sbp(Kb(m)), and the
routingId of the link to the previous node in the destination chain (rvp). It
encrypts this message using v’s public chain key, yielding M5, and sends it to v.

When v receives M5, it decrypts it using its private chain key and retrieves
sbp(Kb(m)) and the routingId of its link to p (rvp). It looks up this routingId

in its routing table and retrieves its own secret key sbv, the IP address and port
of the previous node in the chain (z), z’s public chain key, and the routingId of
the link leading to it (rzv). Node v encrypts sbp(Kb(m)) using sbv and places it in
a message together with the retrieved routingId. It then further encrypts this
message with z’s public chain key and sends it to z. This process repeats at each
of the intermediate nodes in the chain. Each adds an onion layer by encrypting
the content of the message with its secret key and then wraps the result into a
message with the routing information for the previous node in the chain.

When the destination node (b) receives the final message, it first decrypts it
using its private chain key. Then it starts peeling off each of the onion layer
added by the nodes in its proxy chain. To do so, it uses the secret keys it stored
in its chainTable, starting with the one associated with the first intermediate
node. After decrypting the layer added by its proxy, it obtains Kb(m), which
it further decrypts using its own private message key, ultimately retrieving the
original message m.

Initialization. For this process to work, the source of a message must not only
have built its proxy chain, but it must also have the necessary information about
the destination node. This consists of the destination node’s public message key
(Kb), and of its proxy’s IP address, public chain key (Cp), and routingId (pb).

66 A. Boutet et al.

During normal operation, nodes obtain this information through prps exchanges.
However, this poses a problem during initialization when the prps view of a node
is still empty.

Consider a node n with an empty prps view. The first time n establishes a
proxy chain, it sends a prps view containing only its information to all the nodes
in its rps view. The corresponding messages go through the proxy chain of n
until its proxy and then go directly to their targets. Consider a target node t
receiving one such message. If t is a proxy for another node m, then it forwards
the message to m along m’s proxy chain. Otherwise t caches the message until it
becomes a proxy for some other node. When a node m receives the initialization
message forwarded by its proxy, it adds its content to its prps view.

In principle, the target node t could also add the information received from
n to its own prps view. However, this would weaken the protocol’s anonymity
guarantees. An attacker n could send its entry to only one target node t. If it
subsequently received a message from a proxy p, it could conclude that p is likely
to be the proxy of t.

Changing Proxy. Nodes change their proxy chains periodically. This provides
several benefits. It sustains anonymity over time by limiting the impact of at-
tackers that may corrupt a node’s proxy. It provides protection from attackers
that may guess a node’s keys. Moreover, it allows a node to react to path failures
in its chain as a result of churn.

To change proxy chain, a node repeats the chain creation process every t1
time units. Once it has established a new anonymous path, it informs all the
nodes in its prps and clustering view of its new proxy. To keep track of these
changes, all proxies and intermediate nodes associate a timer t2 with each of the
entries in their routing tables. When t2 expires, they delete the corresponding
entry. Nodes choose the timer value so that t2 > t1 + δ where δ is an upper
bound on the time required to create a chain.

After a node has set up a new chain, it initiates a prps exchange with all nodes
in its prps view and a clustering exchange with all those in its clustering
view. A node that receives a fresher prps entry with the same proxy routingId

as an existing entry (i.e. entry pointing to the same destination node) updates
this entry with the new proxy identifier, proxy chain key, message key, and
profile.

An important side effect of changing proxies is that the minimum length of
the chain chmin should be at least as large as 1. If chmin = 0, then a node n would
be its own proxy with probability 1/chmax. An attacker could easily exploit the
fact that this is significantly larger than the probability of choosing a random
proxy. For chmin ≥ 1, a node that serves in n’s proxy chain for several times could
still observe that n appears as a previous chain node more often than others.
Yet, inferring this information would require n to choose the attacker as the first
node in its chain for several times. This makes the attack for chmin ≥ 1 very
unlikely to succeed in practice.

FreeRec: An Anonymous and Distributed Personalization Architecture 67

4 Evaluation

4.1 Experimental Setup

We evaluated FreeRec by simulating its behavior and by deploying its
implementation on PlanetLab in the context of a news-personalization use case.
We combine FreeRec with a gossip-based dissemination protocol to recom-
mend news items to a population of users. A user interest profile contains the
news items she received and liked. When a user generates an item or expresses
a positive opinion on a received item, she forwards it to her neighborhood
in FreeRec’s anonymous interest-based topology. Gossip frequency in all
protocols is set to one per simulation cycle and of one every 2s in PlanetLab.

Dataset. We use a real dataset: we conducted a survey on around 250 news
items (selected randomly from a set of RSS feeds on various topics). We exposed
the item list to around 100 colleagues and relatives and gathered their reactions
(like/dislike) to each news item. This provided us with a small but real dataset of
users exposed to exactly the same news items. To scale our system, we generated
5 instances of each user and news item in the experiments. The resulting dataset
gathers 1235 news items for 530 users. We inject each item into the system at a
random time instant by selecting a random source node.

Metrics. We evaluate FreeRec along two metrics of performance and quality.
Firstly we measure the overhead of the system in terms of the network traffic
it generates. For simulations, we compute the total number of sent messages,
the number of messages which have not reached its destination due to message
loss and the number of hops for messages. For our PlanetLab deployment, we
instead measure the average consumed bandwidth and the latency to receive
a message. Secondly, to assess the impact of FreeRec on the quality of the
recommendation, we compute recall and precision. Both measures are in [0, 1].
For an item, a recall of 1 means that all interested users have received the
item. Yet, this measure does not account for spam since a trivial way to ensure
a maximum recall is to send all news items to all users. This is precisely what
precision accounts for. A precision of 1 means that the news item has reached only
the users that are interested in it. An important challenge in information retrieval
is to provide a good trade-off between these two metrics. This is expressed by
the F1-Score, defined as the harmonic mean of precision and recall [25].

Precision =
| {interested users} ∩ {reached users} |

| {reached users} |

Recall =
| {interested users} ∩ {reached users} |

| {interested users} |

F1− Score = 2 · precision · recall
precision + recall

68 A. Boutet et al.

4.2 Results

Overhead. We start by considering the overhead of the proxy chain in terms
of number of messages. Clearly the longer the chain, the more anonymous the
system. This cost is a function of the length of the proxy chain: the more the
intermediate nodes in the chain, the higher the cost. Figure 3 depicts the number
of messages according to the size of the proxy chain with a neighborhood fixed to
25. Results (Fig. 3a) show that a chain with only one proxy without intermediate
nodes (i.e. size=2) brings a three-fold increase in the number of messages with
respect to a chain-less system (size=0). This is because a message needs to
go through two proxies (i.e. 3 hops) to reach its destination. Further adding
intermediate nodes in the proxy chain proportionally increases the number of
hops and the number of messages. Fig. 3b shows the overhead in PlanetLab
of the two protocols RPS and PRPS in terms of bandwidth consumption. We
observe that the RPS overhead remains stable regardless of the size of the proxy
chains for RPS exchanges carry only information about chain keys while PRPS
carries the encrypted messages. For this reason, the cost of PRPS increases
linearly with the length of the chain.3

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 0 1 2 3 4 5

N
B

 M
es

sa
ge

s
(M

ill
io

n)

Proxy chain size

(a) Simulation

 0

 20

 40

 60

 80

 100

 120

 140

 3 4 5 6 7 8

B
an

dw
id

th
 b

y
 n

od
e

(K
bi

ts
/s

ec
)

Proxy chain size (number of hops)

PRPS
DPRS

(b) Deployment

Fig. 3. Overhead according to the size of the proxy chain, in function of number of
messages and bandwidth consumption for simulation and PlanetLab deployment

The Impact of Proxy Changes. To remain anonymous over time, nodes
periodically renew their proxy chains. After setting up a new chain, a node
advertises the information about its new proxy through prps and clustering

exchanges. However, propagating this information takes time and some nodes
only learn about the new proxy after several cycles. During this interval, a node
that is unaware of the proxy change will send its messages to the old proxy.
Consequently, messages will correctly go through the source node’s possibly-
new proxy chain, but they will reach the destination node’s old proxy chain. If
any of the nodes in this chain has already removed the corresponding entries
from its routing table, it will silently discard the message.

3
Clustering (not shown) has a similar behaviour as PRPS with a bandwidth con-
sumption exactly twice as much as that of the PRPS due to the larger gossip size.

FreeRec: An Anonymous and Distributed Personalization Architecture 69

As explained in Section 3.3, nodes remove entries from their routing tables δ
time units after the creation of the new chain. During this time, the nodes in the
old chain can still forward information backwards towards the chain owner. This
leaves some time for the propagation of the new chain’s information, but it does
not eliminate the possibility of losing messages. Figure 4 evaluates the impact
of this aspect in the context of our news-dissemination testbed as a function of
the size of the clustering view, with δ = 10 cycles.

Figure 4a shows that the impact of message loss on the F1-Score is very
limited. When nodes change proxy every 80 cycles (i.e. t1=80), performance is
almost indistinguishable from the stable case where nodes keep the same proxy
over the whole experiment. When the chain changes more frequently (smaller
values of t1) the percentage loss in F1-Score is slightly higher, but it remains
lower than 10%. Figure 4b completes these results by comparing the number
of sent messages with those that are actually received. Clearly message loss
increases with the frequency of proxy changes. When nodes change proxies every
40 cycles (i.e. three times in the experiment) the number of lost messages is one
fourth of the total number of messages.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40 45 50

F
1S

co
re

Size of the neighborhood

whitout change
change t1=80
change t1=60
change t1=40

(a) F1-Score

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40 45 50

M
es

sa
ge

s
re

ce
iv

ed
 (

M
ill

io
n)

Size of the neighborhood

wihtout change
change t1=80
change t1=60
change t1=40

(b) Message loss

Fig. 4. F1-Score and received messages for various t1 values (Simulations)

Latency. Figure 5 analyzes latency in our PlanetLab deployment (PL). The
plot shows the time required by the prps protocol to establish a proxy chain,
and by a message exchange that uses the chains both on the source and on
the destination side. In the case of chain creation (CC), latency results from
key generation, encryption/decryption operations, and message transmission.
In the case of message exchanges (ME), there are only encryption/decryption
operations and message transmission; yet messages have to travel for twice as
many hops as in the case of chain creation.

The time required to create the proxy chain increases significantly with its size,
while time required for exchanging messages increases only slightly. Moreover,
creating the chain takes approximately two to three times as long as forwarding
a message (40s vs 15s with 8-hop chains), even though forwarded messages have
to travel for twice as many hops. This clearly shows that latency results mainly
from computational cost. To understand the reasons for this seemingly poor

70 A. Boutet et al.

performance, we ran the same test by instantiating all the nodes on a local server
(LS). In this case, both operations complete in less than 3s, and exchanging
messages does take longer than creating chains. This confirms that the high
latency exhibited in a PlanetLab setting results mainly from long processing
times when performing cryptographic operations on overloaded machines.4

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 3 4 5 6 7 8

A
ve

ra
ge

 ti
m

e
co

ns
um

ed
 (

m
s)

Proxy chain size (number of hops)

CC-PL
CC-LS
ME-PL
ME-LS

Fig. 5. Latency of chain creation and message forwarding (deployment)

5 Related Work

While personalization greatly enhances user experience, it raises privacy risks
and concerns. Several collaborative-filtering approaches [20,21] have tried to
preserve the privacy of sensitive data address by applying randomized masking
and distortion techniques to user profiles. However, [12,16] show that privacy-
sensitive information can be separated from such random distortion. To
overcome this limitation, [7] uses noise that is not random but depends on the
interest of users. This limits the amount of information exchanged between
users to coarse-grained user profiles that only reveal the least sensitive infor-
mation. Other decentralized approaches such as [9,10,19] exploit homomorphic
encryption in a P2P environment. [13], in turn, addresses privacy by trust where
participants exchange information and profile only across trusted content pro-
ducer/consumer pairs. [2] proposes a differentially private protocol to measure
the similarity between profiles.While differential privacy provides a strong notion
of privacy, [18] highlights its important trade-off between privacy and accuracy.

A number of authors have proposed to address privacy by means of anonymity.
Some, like [4] achieve receiver anonymity using group communication primi-
tives like broadcasting, multicasting, and flooding. Others [11] focus on sender
anonymity and relay messages from a node along a single anonymous path
formed by nodes within the infrastructure.

4 PlanetLab machines are notoriously overloaded, and the proximity of the SIGCOMM
deadline might have resulted in even higher load.

FreeRec: An Anonymous and Distributed Personalization Architecture 71

Onion routing belongs to the latter group. It uses chains of router nodes that
pack messages into onions: recursively encrypted data structures that contain
the necessary routing information at each layer. When receiving an onion, a
router removes a layer by decrypting it with its private key. At this point, it
discovers either that it is the destination of the message, or the identity of the
next router in the onion’s forwarding path. . Tor [11] uses this model but cannot
be readily integrated with decentralized personalization services.

Some authors have already suggested the integration of gossip and anony-
mous services. The work in [23] uses gossip protocols to improve the robustness
of trust-based overlays to provide privacy-preserving data dissemination. More
precisely, it creates and maintains additional anonymous links on top of an ex-
isting social overlay. Similarly, [22] relies on gossip protocols to supports confi-
dential communications and private group membership. This solution leverages
existing multi-hops paths to circumvent network limitations such as NAT and
firewalls to form anonymous channel. Neither however combines anonymity with
personalization. Gossple [5] does this to some extent and builds a fully decen-
tralized anonymous collaborative network. Its gossip-on-behalf protocol hides
the association between a user and her profile. Yet, in Gossple, a proxy controls
some of the node’s data structures. This is a significant disadvantage if the proxy
wishes to censor specific information. In FreeRec, on the other hand, a proxy
can at most drop messages randomly as it has no way to access their content.

Other works on gossip-based protocols have focused on tolerating byzantine
faults such as BAR gossip [17], the secure peer sampling [15], Brahms [6] or
PuppetCast [3]. In this work, we do not consider that nodes can act as active
adversary by operating maliciously in the protocol. In case of malicious nodes
cheating in the protocol, FreeRec could leverage one of these solutions to
tolerate byzantine nodes. Finally, some authors [29,28] have suggested to address
churn by replacing each onion router with a group of nodes. Such a technique
could easily be integrated with our solution.

6 Conclusions

We presented FreeRec, a decentralized architecture for building anonymous
personalized services. FreeRec equips nodes with bidirectional onion-routing-
like proxy chains that allow nodes to exchange their interest profiles without
ever revealing their identities. FreeRec’s core consists of three layers of gossip
protocols. The bottom one is a standard random-peer-sampling protocol that
provides nodes with the necessary information to build their proxy chains. The
middle layer, the prps, constitutes the main contribution of this work and is an
augmented RPS protocol: it builds and maintains proxy chains and uses them
to provide each node with a continuously changing anonymous sample of the
network. The top layer completes the picture by providing each node with a
cluster of anonymous interest profiles that most closely resemble its own.

72 A. Boutet et al.

References

1. Anonymous surfing solution, http://anonymouse.org/

2. Alaggan, M., Gambs, S., Kermarrec, A.-M.: BLIP: Non-interactive Differentially-
Private Similarity Computation on Bloom filters. In: Richa, A.W., Scheideler, C.
(eds.) SSS 2012. LNCS, vol. 7596, pp. 202–216. Springer, Heidelberg (2012)

3. Bakkerand, A., van Steen, M.: Puppetcast: A secure peer sampling protocol. In:
EC2ND (2008)

4. Bansod, N., Malgi, A., Choi, B.K., Mayo, J.: Muon: Epidemic based mutual
anonymity in unstructured p2p networks. Comput. Netw. (2008)

5. Bertier, M., Frey, D., Guerraoui, R., Kermarrec, A.-M., Leroy, V.: The gossple
anonymous social network. In: Gupta, I., Mascolo, C. (eds.) Middleware 2010.
LNCS, vol. 6452, pp. 191–211. Springer, Heidelberg (2010)

6. Bortnikov, E., Gurevich, M., Keidar, I., Kliot, G., Shraer, A.: Brahms: byzantine
resilient random membership sampling. In: PODC (2008)

7. Boutet, A., Frey, D., Guerraoui, R., Jegou, A., Kermarrec, A.-M.: Privacy-
preserving distributed collaborative filtering. In: Activity Report (2013)

8. Boutet, A., Frey, D., Guerraoui, R., Jegou, A., Kermarrec, A.-M.: Whatsup
decentralized instant news recommender. In: IPDPS (2013)

9. Canny, J.: Collaborative filtering with privacy. In: SP (2002)

10. Canny, J.: Collaborative filtering with privacy via factor analysis. In: SIGIR (2002)

11. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: USENIX Security Symposium (2004)

12. Huang, Z., Du, W., Chen, B.: Deriving private information from randomized data.
In: SIGMOD (2005)

13. Isaacman, S., Ioannidis, S., Chaintreau, A., Martonosi, M.: Distributed rating
prediction in user generated content streams. In: RecSys (2011)

14. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.:
Gossip-based peer sampling. TOCS (2007)

15. Jesi, G.P., Montresor, A., van Steen, M.: Secure peer sampling. Comput. Netw.
(2010)

16. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving
properties of random data perturbation techniques. In: ICDM (2003)

17. Li, H.C., Clement, A., Wong, E.L., Napper, J., Roy, I., Alvisi, L., Dahlin, M.:
Bar gossip. In: OSDI (2006)

18. Machanavajjhala, A., Korolova, A., Sarma, A.D.: Personalized social recommenda-
tions: accurate or private. In: VLDB (2011)

19. Miller, B.N., Konstan, J.A., Riedl, J.: Pocketlens: toward a personal recommender
system. TOIS (2004)

20. Polat, H., Du., W.: Privacy-preserving collaborative filtering using randomized
perturbation techniques. In: ICDM (2003)

21. Polat, H., Du, W.: Svd-based collaborative filtering with privacy. In: SAC (2005)

22. Schiavoni, V., Riviere, E., Felber, P.: Whisper: Middleware for confidential
communication in large-scale networks. In: ICDCS (2011)

23. Singh, A., Urdaneta, G., van Steen, M., Vitenberg, R.: Robust overlays for privacy-
preserving data dissemination over a social graph. In: ICDCS (2012)

24. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques.
Advances in Artificial Intelligence (2009)

25. van Rijsbergen, C.J.: Information retrieval. Butterworth (1979)

http://anonymouse.org/

FreeRec: An Anonymous and Distributed Personalization Architecture 73

26. Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: inexpensive membership
management for unstructured p2p overlays. Journal of Network and Systems
Management (2005)

27. Voulgaris, S., van Steen, M.: Epidemic-style management of semantic overlays for
content-based searching. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005.
LNCS, vol. 3648, pp. 1143–1152. Springer, Heidelberg (2005)

28. Zhu, Y., Hu, Y.: Tap: A novel tunneling approach for anonymity in structured p2p
systems. In: ICPP (2004)

29. Zhuang, L., Zhou, F., Zhao, B.Y., Rowstron, A.: Cashmere: resilient anonymous
routing. In: NSDI (2005)

Establishing Efficient Routes between Personal Clouds

Ercan Ucan and Timothy Roscoe

Systems Group,
Department of Computer Science, ETH Zurich

Abstract. We address the problem of establishing efficient routes between nodes
in disjoint peer-to-peer overlay networks, motivated by the case of personal
overlays, each consisting of an ensemble of fixed, mobile, and virtual devices
belonging to an individual user. We argue that the problem of route optimization
between such systems is different from both routing between single hosts and
inter-domain internet routing – in particular, scale and heterogeneity play a sig-
nificant role, and the peer networks may wish to hide their topology for privacy
reasons. We show that there is a significant tradeoff between efficiency and the
degree of network information exposed to one peer network by the other, and
present an approach that allows users to flexibly advertise desired information
about their networks to one another. In this paper, we focus on optimizing the
routes for latency and infer the potential to do the same for various other metrics
such as bandwidth, monetary cost and energy consumption.

1 Introduction

In this paper, we address the problem of establishing efficient routes between a pair
of personal overlay networks, where each network has incomplete knowledge of the
other’s topology. We are motivated by the scenario of personal clouds [21], ensembles
of devices (phones, tablets, PCs, rented virtual machines, etc.) owned by single users,
and which interact in a peer-to-peer fashion as an alternative to centralized cloud ser-
vices such as Facebook, Dropbox and Apple’s iCloud.

The problem we address is as follows: how can we establish efficient routes between
pairs of nodes in two such personal clouds based on the current network state and user
preferences? We argue that this problem is new, and different from both routing between
single hosts, and inter-domain internet routing, for several reasons.

Firstly, a number of different routing metrics (latency, bandwidth, monetary cost per
byte, energy budget for an object transfer, etc.) are important, sometimes simultane-
ously. In addition, these properties are likely to change frequently.

Secondly, the overlay nodes themselves, and the available connectivity between
them, are highly diverse in these metrics: a 3G wireless link has very different cost,
power consumption, and latency from a wired Ethernet, for example. Moreover, some
nodes (such as phones) may have limited resources.

Thirdly, the small scale of the networks involved (around 10 devices per user) allows
more computationally sophisticated reasoning about the best route for a given operation,
exploiting detailed information about the diverse set of options available.

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 74–88, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Establishing Efficient Routes between Personal Clouds 75

Finally, information about the set of devices in a user’s personal cloud – their lo-
cation, address, type, connectivity, and even in some cases existence – is potentially
sensitive data the user may not wish to fully share with peers.

We consider this an important problem to tackle within the context of peer-to-peer
device ensembles, not least because resource usage matters a great deal. Money is a
scarce resource, and metered 3G/2G data connections or virtual machines rented from
cloud providers can incur significant monetary cost, depending on usage. Time is a
scarce resource, and a careless data transfer and routing approach in a personal data
replication system can overload a single node or a single link for transferring data, even
though the transfer could be carried out in a more time-efficient way using other links.
Energy is also a scarce resource: a Nokia N900 on a 3G connection sending a file at
150 kbit/s draws 375 mA, and when receiving at 200 kbit/s draws 275 mA [15]. This is
more power than consumed by continuously playing an MP3, activating the camera with
a preview image, or vibrating the phone battery continuously. Efficient use of resources
is critical.

Our contributions in this paper are threefold. First, we introduce and motivate the
problem of inter-overlay routing in personal clouds. Second, we show simulation and
early system implementation and deployment results which illustrate a significant trade-
off between route efficiency between overlays and the degree of information exposed to
one peer network by the other. Third, we present our work on an approach that allows
users to flexibly advertise information about their networks to one another and optimize
routes for metrics such as latency, bandwidth, monetary cost and energy.

In the next section, we present the background and related work. In Section 3 we
further motivate the problem using concrete scenarios. In Section 4, we present our
initial approach to tackle the problem. Section 5 describes the initial implementation
of our research prototype. We present a preliminary evaluation of our approach via
simulations in Section 6. In Section 7, we present our real system implementation and
experimental results. Finally, we conclude and discuss the ongoing and future work in
Section 8.

2 Background and Related Work

Our work on personal clouds is inspired by work on personal storage systems [19, 21–
23] which aim to support personal data and content-based partial replication, without
the need for centralized online services. In these systems, a user generates new data
items by taking photos and videos, downloading music and documents. These items are
replicated across the devices according to a system policy, and vary in size from a few
kilobytes up to a few gigabytes. Most of the devices in the personal cloud offer multiple
options for communication, such as Ethernet, WiFi, UMTS, Bluetooth, and USB.

Perspective [22] is a storage system designed for home devices. Cimbiosys [19] is
designed for users to be able to selectively distribute data across their devices by asso-
ciating content filters through opportunistic peer-to-peer synchronization. Eyo [23] is
a personal media collections storage system. Anzere [21] is a personal storage system
aimed for policy-based replication showing how to flexibly replicate data in response to
a complex, user-specified set of policies in a dynamically changing environment. All of

76 E. Ucan and T. Roscoe

these systems encounter the inter-overlay routing problem as soon as two instances need
to exchange data. Despite influential naming and architecture work in this area such as
UIA [8], as far as we know the problem of enabling efficient routes and optimizing data
object transfers among different personal clouds has received little attention to date.

Dexferizer [26] presents an approach to optimizing the transfer of data objects within
a user’s collection of computation devices, subject to a variety of user-defined quality
metrics such as cost, power consumption, and latency. Dexferizer employs techniques
from declarative networking together with application-defined transfer policies and
priorities to select appropriate transfer mechanisms and schedules.

We are also influenced by ideas from large-scale network architectures. SCAF-
FOLD [9] aims at better support for widely-distributed services, and argues that rather
than today’s host-based unicast, the main abstraction of future networks should be
service-based anycast. Content-Centric Networking (CCN) [11] proposes replacing the
host-to-host communication scheme of the Internet, arguing that named data is a better
abstraction for today’s network applications than named hosts. Similarly, DONA [13]
proposes a service-centric approach, arguing that most Internet usage is data retrieval
and service access, and this requires clean-slate design of Internet naming and name
resolution. The eXpressive Internet Architecture (XIA) [1] argues that elevating only
one principal type above others hinders communication between other types of princi-
pals and, thus, the evolution of the network. Instead, XIA provides native support for
multiple principal types.

Our work is related to the problem of cross-layer visibility [12]. Strong layer abstrac-
tions hinder network management tasks, failure diagnosis, and ultimately the reliability
of the network [3]. A similar observation has been made Plutarch [5] and Metanet [28].
Plutarch suggests making heterogeneity among different networks explicit through the
notion of contexts which are linked via interstitial functions. Metanet proposes a new
architectural object called a region as a first-class component of future networks. Our
approach is based on similar general observations.

Research on MANETs has greatly contributed to the problem of routing in personal
computing environments. MANET routing protocols [4,6,18] cannot rely on a central-
ized component or infrastructure, and must quickly react to device and link failures,
changes in topology, and network partitions. MANETs can also be seen as an extension
to the Internet: if a node in the MANET has Internet connectivity, it can function as a
gateway [7,24]. However, handling heterogeneity does not appear to be a primary focus
of MANETs.

Our research is also related to the work on Content Distribution Networks (CDNs)
[10, 16, 27], which aim to address similar problems, in a different context. CDNs aim
to choose the best replica to deliver data to end users. In this paper, we have a focus
on enabling selective advertisement of the network information, depending on the trust
level, between the peer overlay networks that are owned by different users. Moreover,
our work is in a smaller and more heterogeneous context as compared to CDNs.

The approach we have developed in tackling the problem is partly inspired by
BGP [20]. However, BGP addresses a significantly larger and different problem sce-
nario that involves large networks acting as traffic carriers.

Establishing Efficient Routes between Personal Clouds 77

3 Motivation and Challenges

In this section, we first motivate the problem further with three use-cases, and outline
the design space, trade-offs and the challenges involved.

3.1 Use Cases

As a first example, consider the scenario in which Alice meets Bob in a cafe and they
want to exchange a short movie file of 100MB. The file is initially replicated on Alice’s
phone, home computer and office PC. Bob wants to add this item to his collection so
that he can watch it later. The phone is running on a 3G connection whereas the home
computer and the office PC are on faster broadband connections. In such a scenario,
ideally, the phone should be simply an initiator of the data transfer: the file should be
moved between machines with better connectivity.

As a second example, consider the scenario illustrated in Figure 1, where Alice and
Bob want to make their devices (phone and laptop) talk to each other. One option is to
establish a communication through the cloud. Another option which may not always
be possible is that, whenever the two devices happen to be on the same WiFi or Blue-
tooth network (even though TCP/IP over Bluetooth is not very mainstream) and they
are aware of each other’s available network interfaces, they may be able to establish a
much more efficient route. Hence, exposing more network information can significantly
improve routing.

223.3 ms

Phone

User 1's
personal cloud

User 2's
personal cloud

dropbox.com

Laptop

161.2 ms

45.5 ms on the same WiFi

Fig. 1. Exposing more network information can significantly improve routing

As a third example, imagine that Alice wants to receive a large movie file from Bob
who keeps two replicas of the movie, one on his home computer and one on his cloud
storage. If Alice happens to own cloud storage from the same provider as Bob and if
Bob exposes this information about his network to Alice, then they may be able to per-
form a very fast copy of the large file in the cloud. Alternatively, Alice could simply flag
the file as shared with Bob on the cloud storage, without actually having the data to be
moved from one location to another. Of course, in practice, the realization of sharing on
the cloud can mean a variety of things such as sharing a URL (e.g., in Dropbox’s case).
Moreover, it may also require implementation of additional mechanisms/interfaces de-
pending on the cloud provider’s mode of operation.

78 E. Ucan and T. Roscoe

3.2 Design Space, Trade-offs and Challenges

As we show later in this paper, there is a trade-off between how much information the
users expose about their personal clouds to each other, and the efficiency of subsequent
routes and transfers. The more information is available across the peer networks about
topology, node locations and capacities, and current network conditions, the better the
resulting connectivity can be. In addition, here are some of the technical challenges
involved in solving this problem:

– Dynamic nature of connectivity: many of the devices used in a user’s personal cloud
are mobile. These devices do not have permanent connectivity to the rest of the
cloud.

– Routing challenges (NATs, firewalls, mobile devices, etc.): the current Internet ar-
chitecture (that is, based on end-hosts) poses challenges for routing and data trans-
fer among multiple personal clouds.

4 Design

We start this section by first describing the scenario we target, with disjoint peer over-
lays and their respective network information and routes. We then illustrate the problem
of establishing efficient routes, and present our initial approach to tackle this problem.

4.1 Setting

We can characterize the challenge we address in inter-overlay routing as follows:

– Initially the two disjoint networks do not know any information about each other
regarding the nodes they contain, the internal network topology, connectivity inter-
faces, item distribution, the current state of the network, etc.

– There may be multiple routes and multiple connectivity interfaces between the
nodes.

– Links and the topology of the network are dynamic. We might or might not have
the schedules of when certain links will appear or disappear.

– The network links have associated costs. This may be monetary cost, power, band-
width or latency. Moreover, this information may not be known to other peer over-
lays.

– For privacy reasons, users may want to expose only certain parts of their network
topology to each other.

4.2 General Approach: Selective Advertisement

The overall idea of our approach is inspired by BGP advertisements. We aim to provide
the users of personal clouds with the means to flexibly advertise their network informa-
tion to the users of other peer personal clouds, as they wish, depending on the network,
transfer circumstances and user preferences.

Establishing Efficient Routes between Personal Clouds 79

F(nd_B, id_B)

Network A Network B

nd: network data
id: item distribution data
F: privacy filter

Fig. 2. Overview of our approach at an abstract level

Figure 2 illustrates at an abstract level, the general approach of advertising network
information between personal clouds. The main idea is that the user (owner of network
B in this case) applies his own privacy filter to the data of his network and sends this
information to the peer overlay. Here we describe further the elements that are shown
in the illustration.

– nd_B: is the network data that belongs to the network B. It consists of the informa-
tion such as devices (their hostnames/IP address, port numbers to connect to), the
internal network topology, link status information (ping latency, bandwidth estima-
tion etc.). We focus on this type of information in the context of this paper.

– id_B: is the item data belonging to network B. Item data consists of the tuples
showing where an item is replicated within the personal cloud. This information
becomes relevant in the context of scheduling and optimizing object transfers.

– F: is the privacy filter applied by the owner of network B. This filter can be adjusted
differently by the users of the systems depending on the trust level to each other.

4.3 Calculating Efficient Routes between Two Networks

In this section, with the help of an example scenario shown in Figure 3, we describe
how we calculate efficient routes between two networks using network advertisements
and employing Dijkstra’s shortest path routing algorithm in a variant of link-state rout-
ing. The figure shows two disjoint networks, network A and B, with their representa-
tive weights to represent the network latency. At this point, we do not claim that these
topologies and the numbers we show are entirely realistic. Our aim here is to rather
have a means to illustrate our approach and to have an initial reference point for our
simulations.

Following are the steps we use for the detection and the calculation of efficient routes
between the members of two disjoint personal clouds via flexible advertisements of the
network information:

80 E. Ucan and T. Roscoe

Network A Network B

officePC cloudVM

laptophomePC

phone ipad

officePC cloudVM

laptophomePC

phone ipad

38

51

41

1290

47

7828 38

51

41

1290

47

78
28

Fig. 3. The example network scenario used in our simulations

1. Network B sends a network advertisement to network A. An advertisement mes-
sage consists of a list of reachable nodes and topology information between these
advertised nodes. In this example, the network B may choose to advertise informa-
tion about its 3 nodes (homePC, cloudVM and laptop) and part of the connectivity
information among them. The information about a node in this case consists of a
combination of its hostname/IP address (or a gateway) and the port number to use
in order to reach that node. The topology information consists of the edges between
the devices together with the weights.

2. Network A then adds the network information it received from network B into its
own network knowledge base.

3. Network A tries to establish connections (preferably as many as possible) between
each of its nodes and the nodes advertised by the network B. Successfully formed
connections are also added as edges to the topology graph of the Network A.

4. Network A then calculates all-pairs-shortest-paths using Dijkstra’s algorithm on
this extended set of nodes and edges.

If a node is not exposed from the network B, the shortest paths to that node are calcu-
lated with the assumption that the exposed nodes of the network B will act as network
gateways to the non-exposed node. At the end of the last step, each node in network A
knows the shortest paths to the advertised nodes of network B.

5 Implementation

The work we present in this paper is done in the context of a broader project:
Anzere [21], a data storage and replication system that we are developing, aimed for
personal clouds, integrating personal computers, mobile phones, tablets and virtual ma-
chines acquired on demand from cloud providers such as Amazon EC2 and Planetlab.

Establishing Efficient Routes between Personal Clouds 81

Anzere is a system in which the objects are replicated according to declarative replica-
tion policies specified by the users. The policies written in Anzere do not need to refer
to specific devices, but are based on device properties. Anzere obtains its replication
actions by solving a constrained cost-based optimization problem derived from the set
of replication policies. Anzere employs a replication subsystem to replicate user data
as well as information necessary for the system operation (e.g., overlay and sensors in-
formation). It builds on existing replication techniques, in large part on PRACTI [2]. In
order to achieve consistency, Anzere employs Paxos [14]: all nodes in the overlay reach
consensus on the total order of updates. The combination of these protocols provides
the basis for a broad range of consistency possibilities in Anzere, even though we have
not yet worked with update scenarios in the context of this paper.

Anzere currently runs a little over 32,000 lines of Python. The implementation makes
heavy use of the Python Twisted framework [25], which is an event-driven networking
engine. The software architecture of Anzere is modular, which was initially inspired by
the OSGi [17] module management system. The main motivation of this modular archi-
tecture is to make the system maintenance easier and also to enable us to customize the
functionality and the libraries running on each device based on its hardware architecture
and OS platform. The most relevant module of Anzere regarding this paper is the over-
lay network, which includes network sensors that run on every node in the ensemble and
continuously monitor link and device status. In the context of this paper, the network
sensors perform ping latency measurements (such as every 5 seconds) between the de-
vices and keep track of both the instantaneous and the exponentially smoothed RTT
values. Anzere also employs models to estimate the expected bandwidth, energy con-
sumption and the throughput of the network links using the measurements performed.

The storage module is our primary application driver for this work: it contains
storage sensors that monitor the status of the data items in the system and partially
replicated content according to user-supplied policies. The inter-personal cloud com-
munication architecture we are currently developing makes use of the continuous infor-
mation flow generated by these two modules in order to compute the optimal routes and
object transfer schedules. At the initial simulation stage, the route establishment algo-
rithm was driven using a prototype simulator implemented in Python, with the goal to
first establish the potential benefits of our approach. At the system implementation and
deployment stage, we employed two disjoint Anzere instances. We present the details
of these networks in the following sections.

6 Simulation

Our evaluation consists of two parts: Simulation and system implementation. In this
section we present initial simulation results that are aimed at evaluating our approach.
Since personal clouds are newly emerging and they may vary quite significantly from
one user to another, currently we do not have extensive data about how a typical per-
sonal cloud and its connectivity topology looks like. Therefore, at the simulation stage
of our research, we have been trying out our ideas using hypothetical model graphs
which in practice may resemble personal clouds. In general, during the set of simula-
tions to evaluate this approach, we identified 3 different parameters which we think are
important.

82 E. Ucan and T. Roscoe

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6

S
h
o
rt

e
s
t
p
a
th

 l
a
te

n
c
y
 (

m
s
)

Topology exposed (# nodes)

A.phone

B.officePC
B.homePC

B.phone

B.ipad
B.laptop

B.cloudVM

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6

S
h
o
rt

e
s
t
p
a
th

 l
a
te

n
c
y
 (

m
s
)

Topology exposed (# nodes)

A.officePC

B.officePC
B.homePC

B.phone

B.ipad
B.laptop

B.cloudVM

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6

S
h
o
rt

e
s
t
p
a
th

 l
a
te

n
c
y
 (

m
s
)

Topology exposed (# nodes)

A.homePC

B.officePC
B.homePC

B.phone

B.ipad
B.laptop

B.cloudVM

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6

S
h
o
rt

e
s
t
p
a
th

 l
a
te

n
c
y
 (

m
s
)

Topology exposed (# nodes)

A.laptop

B.officePC
B.homePC

B.phone

B.ipad
B.laptop

B.cloudVM

Fig. 4. Shortest path latencies to each node of network B from A.phone, A.officePC, A.homePC
and A.laptop

– Topology exposed: This parameter denotes how much of the network topology is
exposed to the peer network. In these simulations, the network topology is exposed
at the granularity of number of nodes, together with all the edges that belong to that
particular set of nodes.

– Connecting edges: This parameter denotes how many connecting edges are present
in between the two networks.

– Weights: This parameter denotes the weights of the connecting edges.

In the context of our simulations, we have been experimenting with the first item in the
list: The network topology that is exposed to the peer overlay.

6.1 Potential Benefits of the Approach

In this section we show initial simulation results aimed at illustrating how much our
approach can be beneficial to a user. At the moment, we experiment with metrics such
as end-to-end latency (msec) and shortest path to the peer overlay, but we conjecture
that other metrics such as bandwidth (bytes/sec), cost (price/byte), power consumption
(energy/byte) can also benefit from such an approach.

Establishing Efficient Routes between Personal Clouds 83

Pairwise End-to-End Routes. In this simulation we look at the potential benefits our
approach can provide in terms of improving pairwise routes between the nodes that
belong to two different personal clouds.

For our simulations, we used the two example peer overlays shown in Figure 3. As
we mentioned earlier in the paper, we realize that these topologies and the numbers
may not be entirely realistic, but they still give us an initial reference point. Our initial
experience with a real system follows in the next section of this paper. In this simulation,
the network B advertises its network topology to network A and then we look at how the
pairwise latencies between the nodes of the two networks are affected depending on the
amount of network information exposed. At each stage of the experiment, Network
B gradually increases its exposed network topology by one node using the following
order of the nodes: officePC, homePC, phone, ipad, laptop, cloudVM. In all the cases
(except for the case in which there is only one node advertised from network B), there
are 3 connecting edges between the two networks: A.officePC-B.officePC, A.laptop-
B.officePC, A.officePC-B.homePC. The weights of all the connecting edges are the
same (21) for this simulation.

Figure 4 shows the effect of varying the amount of exposed topology information
on the shortest paths to nodes in network B. It shows the shortest path latencies to the
nodes of network B from the phone, homePC, laptop and officePC of the network A.
The numbers shown here are obtained from a single run of the complete simulation.
For the sake of brevity we do not show the latencies originating from the remaining two
nodes (ipad and cloudVM) of network A.

These initial figures we present here suggest that maybe not for all, but for some of
the node pairs in these networks, changing the amount of exposed network information
can significantly improve the pairwise end-to-end route quality.

7 System Experiments

In this section, we present the initial results of our experience with the deployment of
our approach in the context of a real system implementation. As mentioned before in
Section 5, we implemented our ideas within the Anzere personal storage system [21].

So far, we have investigated two aspects of the approach in our system implemen-
tation. Firstly, we investigated the effect of increasing the number of advertised nodes
from one Anzere instance to another. Secondly, we looked at the the effect of exposing
the internal topology information of an Anzere instance on the shortest paths achievable
between the members of two disjoint Anzere instances.

Figure 5 illustrates the network elements and the internal network topologies of
Anzere instances we employed in our experiments. The current experimental setup
consists of two (initially disjoint) Anzere instances. The first network consists of five
devices while the second one contains four devices. Other than the locations noted in
parentheses in the figure, the rest of the devices reside in Switzerland.

Anzere’s current network and routing layer is designed to establish as many connec-
tions as possible between each member of the different instances when an advertisement
is received. Therefore, the current topologies in both of the systems can be visualized as
fully-connected graphs. The smart-phones run on a wireless connection and are residing

84 E. Ucan and T. Roscoe

Anzere Instance A Anzere Instance B

cloud VM(eu)

homePC

phone

officePC

cloudVM (us)homePC

phoneofficePC

cloud VM(us)

Fig. 5. The network and the topologies of the two Anzere instances used in our system
experiments

behind a NATs. The rest of the devices have publicly accessible IP addresses. Typically,
the homePCs are also behind NATs but the ones we used in this experiment had public
IP addresses. In Anzere, the devices that reside behind the NATs utilize hole punch-
ing techniques in order to establish connections to the other members of the Anzere
instances.

For the experiments performed in this section, the link measurements were taken
every 4 seconds and 0.125 (the same as the value used by TCP) was chosen for the
value of α, which is used for the exponential smoothing of the measured data. The
advertisement messages were sent from the officePC of the instance A to the officePC
of the instance B.

7.1 Effect of Increasing the Number of Advertised Nodes

In this experiment, we try to investigate whether increasing the number of advertised
nodes from one Anzere instance to another changes the shortest paths between the all
the members of each instances. The Anzere instance A increases the number of nodes
it exposes one by one, with every iteration of the experiment. The information exposed
about a node is a combination of the hostname/IP address and the port number to be
connected to.

The advertisement scheme in this experiment works as follows: The coordinator
node (officePC) of the instance A sends its advertisement to the coordinator node of
the instance B. The advertisement consists of the exposed nodes’ hostnames (or IP ad-
dresses) and the port numbers, in addition to the connectivity and topology information
(the links and their weights) that exists between the advertised nodes.

Establishing Efficient Routes between Personal Clouds 85

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4

S
h
o
rt

e
s
t
p
a
th

 l
a
te

n
c
y
 (

m
s
)

Topology exposed (# nodes)

B.officePC

A.homePC
A.cldVM(EU)
A.cldVM(US)

A.desktop
A.phone

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4

S
h
o
rt

e
s
t
p
a
th

 l
a
te

n
c
y
 (

m
s
)

Topology exposed (# nodes)

B.homePC

A.homePC
A.cldVM(EU)
A.cldVM(US)

A.desktop
A.phone

 0

 50

 100

 150

 200

 250

 1 2 3 4

S
h
o
rt

e
s
t
p
a
th

 l
a
te

n
c
y
 (

m
s
)

Topology exposed (# nodes)

B.cldVM(US)

A.homePC
A.cldVM(EU)
A.cldVM(US)

A.desktop
A.phone

 0

 50

 100

 150

 200

 1 2 3 4

S
h
o
rt

e
s
t
p
a
th

 l
a
te

n
c
y
 (

m
s
)

Topology exposed (# nodes)

B.phone

A.homePC
A.cldVM(EU)
A.cldVM(US)

A.desktop
A.phone

Fig. 6. Latencies to each node in network A originating from B.officePC, B.homePC, B.cloudVM
(US) and B.cloudVM (EU)

If a node is not exposed from the network A, the shortest paths to that node is cal-
culated by using the assumption that one of the exposed nodes will act as a gateway to
this non-exposed node.

The nodes from the instance A to instance B are advertised incrementally in the
following order: OfficePC, cloudVM (US), homePC, cloudVM (EU). In other words, at
each iteration of the experiment, one more node is added to the advertisement message.
As soon as an an advertisement is received, all the nodes belonging to the instance B
try and establish connections to the set of exposed nodes of instance A and then start
measuring their link properties, in case the connection establishment attempt has been
successful.

Figure 6 shows the change in the shortest paths between the pairs of nodes as the
number of exposed nodes from instance A to instance B increases. Similar to the case
of simulations, the numbers shown here are obtained from a single run of the complete
experiment. As illustrated by this figure, our initial experience with the implementation
in a real system supports the figures we have presented in the preliminary simulations.
The main message of these plots is that, while it may not affect some of the shortest
paths between some pairs of the nodes in disjoint personal clouds, depending on the
topology and the network configuration, the routes between some pairs devices can be
improved significantly by increasing the number of exposed nodes between the two
Anzere instances.

86 E. Ucan and T. Roscoe

 0

 50

 100

 150

 200

 250

 300

desktop cld(US) cld(DE) phone cld(CH)

S
h
o
rt

e
s
t
p
a
th

 l
a
te

n
c
ie

s
 (

m
s
)

Destination Devices

Shortest paths from B.phone

No edges exposed
With edges exposed

Fig. 7. The effect of exposing internal network topology information on the shortest paths achiev-
able by B.phone to the members of the Anzere instance A

7.2 Effect of Exposing the Topology between the Advertised Nodes

The advertisement messages in the previous experiment included the nodes exposed as
well as the internal network topology information in between the advertised nodes of
the instance A. In this experiment we try to investigate whether or not exposing the
internal network topology information in addition to the advertisement of the nodes
makes a significant difference in terms of the shortest paths achievable between the
pairs of devices.

Figure 7 shows the shortest paths from B.phone to the members of the instance A.
The shortest path values are shown for both the case in which the internal network
topology information (the set of edges and their weights) is shared to the peer Anzere
instance, and also the case in which this information is not shared. The four nodes
that are exposed from the instance A in this experiment are the following: officePC,
cloudVM (US), homePC and cloudVM (EU). The set of devices and the topologies of
both the personal clouds employed in this experiment are the same as in Figure 5 except
for the location of the cloud VM in Europe. A VM in Switzerland was employed instead
of a VM in Germany due to the failure of the instance in Germany. Again, the numbers
shown here are obtained from a single run of this experiment.

As shown by Figure 7, exposing the internal network topology of an Anzere in-
stance can actually reduce the shortest path latencies to some of the instance A nodes
significantly.

8 Conclusion

Establishing efficient routes between personal clouds and the higher-level problem of
optimally transferring data objects among personal clouds are new and important prob-
lems. In this paper we have presented a technique which provides users with a means to
selectively advertise their network information to each other and still arrive at efficient
routes. Current results show the benefits for one metric, latency.

Establishing Efficient Routes between Personal Clouds 87

In our ongoing work, we are integrating this technique into our personal cloud plat-
form, and incorporating other metrics such as bandwidth, power consumption and mon-
etary cost. Our initial observations show that one can really get more or less benefit from
exposing more or less information. Hence, the tradeoff is significant. As an immediate
future work, we are planning to extend our approach and apply the idea to the larger
problem of optimizing data object transfers between personal clouds. This involves im-
plementation of advertising item distribution data between the two personal clouds in
addition to advertising network information.

References

1. Anand, A., Dogar, F., Han, D., Li, B., Lim, H., Machado, M., Wu, W., Akella, A.,
Andersen, D.G., Byers, J.W., Seshan, S., Steenkiste, P.: XIA: an architecture for an evolv-
able and trustworthy internet. In: Proceedings of the 10th ACM Workshop on Hot Topics in
Networks (HotNets 2011), pp. 2:1–2:6. ACM, New York (2011)

2. Belaramani, N.M., Dahlin, M., Gao, L., Nayate, A., Venkataramani, A., Yalagandula, P.,
Zheng, J.: PRACTI Replication. In: Proceedings of the 3rd Symposium on Networked
Systems Design & Implementation (NSDI 2006). USENIX Association (2006)

3. Brewer, E.A., Katz, Y.H., Chawathe, Y., Gribble, S.D., Hodes, T., Nguyen, G., Stemm, M.,
Henderson, T.: A network architecture for heterogeneous mobile computing. IEEE Personal
Communications 5, 8–24 (1998)

4. Clausen, T., Jacquet, P.: Optimized Link State Routing Protocol (OLSR). Internet RFCs,
RFC 3626 (2003)

5. Crowcroft, J., Hand, S., Roscoe, T., Mortier, R., Warfield, A.: Plutarch: An argument for
network pluralism. In: Proceedings of the ACM SIGCOMM Workshop on Future Directions
in Network Architecture (FDNA 2003), pp. 258–266 (2003)

6. Das, S.R., Perkins, C.E., Belding-Royer, E.M.: Performance Comparison of Two On-
demand Routing Protocols for Ad Hoc Networks. In: Proceedings of the 19th Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM 2000),
pp. 3–12 (March 2000)

7. Elizabeth, Y.S., Sun, Y., Belding-Royer, E.M., Perkins, C.E.: Internet connectivity for ad-hoc
mobile networks. International Journal of Wireless Information Networks 9(2), 75–88 (2002)

8. Ford, B., Strauss, J., Lesniewski-Laas, C., Rhea, S., Kaashoek, F., Morris, R.: Persistent
personal names for globally connected mobile devices. In: Proceedings of the 7th
Symposium on Operating Systems Design and Implementation (OSDI 2006), pp. 233–248.
USENIX Association (2006)

9. Freedman, M.J., Arye, M., Gopalan, P., Ko, S.Y., Nordstrom, E., Rexford, J., Shue, D.:
Service-centric networking with SCAFFOLD. Technical Report TR-885-10, Department of
Computer Science. Princeton University (September 2010)

10. Freedman, M.J., Freudenthal, E., Mazières, D.: Democratizing content publication with
Coral. In: Proceedings of the 1st Conference on Symposium on Networked Systems Design
and Implementation (NSDI 2004). USENIX Association (2004)

11. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.:
Networking named content. In: Proceedings of the 5th International Conference on Emerging
Networking Experiments and Technologies (CoNEXT 2009), pp. 1–12. ACM (2009)

12. Kompella, R.R., Greenberg, A., Rexford, J., Snoeren, A.C., Yates, J.: Cross-layer Visibility
as a Service. In: Proceedings of 4th Workshop on Hot Topics in Networks, HotNets IV (2005)

88 E. Ucan and T. Roscoe

13. Koponen, T., Chawla, M., Chun, B.-G., Ermolinskiy, A., Kim, K.H., Shenker, S., Stoica, I.:
A data-oriented (and beyond) network architecture. In: Proceedings of the 2007 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM 2007), pp. 181–192. ACM (2007)

14. Lamport, L.: The part-time parliament. ACM TOCS 16(2), 133–169 (1998)
15. Nokia N900 Hardware Power Consumption,

http://wiki.maemo.org/N900_Hardware_Power_Consumption
16. Nygren, E., Sitaraman, R.K., Sun, J.: The Akamai network: a platform for high-performance

internet applications. SIGOPS Oper. Syst. Rev. 44(3), 2–19 (2010)
17. OSGi Alliance. OSGi Service Platform, Core Specification Release 4, Version 4.1, Draft

(2007)
18. Perkins, C.E., Royer, E.M.: Ad-Hoc On-Demand Distance Vector Routing (AODV). In:

Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA 1999), pp. 90–100 (February 1999)

19. Ramasubramanian, V., Rodeheffer, T.L., Terry, D.B., Walraed-Sullivan, M., Wobber, T.,
Marshall, C.C., Vahdat, A.: Cimbiosys: a platform for content-based partial replication. In:
Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 2009), pp. 261–276 (2009)

20. Rekhter, Y., Li, T., Hares, S.: A Border Gateway Protocol 4 (BGP-4). Internet RFCs,
RFC 4271 (2006)

21. Riva, O., Yin, Q., Juric, D., Ucan, E., Roscoe, T.: Policy expressivity in the Anzere personal
cloud. In: Proceedings of the 2nd ACM Symposium on Cloud Computing (SOCC 2011).
ACM (2011)

22. Salmon, B., Schlosser, S.W., Cranor, L.F., Ganger, G.R.: Perspective: semantic data
management for the home. In: Proceedings of the 7th Conference on File and Storage
Technologies (FAST 2009), pp. 167–182 (2009)

23. Strauss, J., Lesniewski-Laas, C., Paluska, J.M., Ford, B., Morris, R., Kaashoek, F.:
Device-Transparency: a New Model for Mobile Storage. In: Proceedings of the Workshop
on Hot Topics in Storage and File Systems (HotStorage 2009) (October 2009)

24. Stuedi, P., Bihr, M., Remund, A., Alonso, G.: SIPHoc: Efficient SIP Middleware for Ad
Hoc Networks. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware 2007. LNCS, vol. 4834,
pp. 60–79. Springer, Heidelberg (2007)

25. Python Twisted, http://twistedmatrix.com/trac/
26. Ucan, E., Roscoe, T.: Dexferizer: a service for data transfer optimization. In: Proceedings

of the 19th International Workshop on Quality of Service (IWQoS 2011), pp. 33:1–33:9.
IEEE Press (2011)

27. Wang, L., Park, K.S., Pang, R., Pai, V., Peterson, L.: Reliability and security in the CoDeeN
content distribution network. In: Proceedings of the Annual Conference on USENIX Annual
Technical Conference (ATEC 2004). USENIX Association (2004)

28. Wroclawski, J.T.: The Metanet. White Paper. In: Proceedings of Workshop on Research
Directions for the Next Generation Internet (1997)

http://wiki.maemo.org/N900_Hardware_Power_Consumption
http://twistedmatrix.com/trac/

Developing, Deploying and Evaluating
Protocols with ManetLab

François Vessaz1, Benôıt Garbinato1, Arielle Moro1, and Adrian Holzer2

1 Université de Lausanne, Lausanne, Switzerland
{francois.vessaz,benoit.garbinato,arielle.moro}@unil.ch

2 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
adrian.holzer@epfl.ch

Abstract. Evaluating the performance of MANET-specific communi-
cation protocols is essential to build robust mobile ad hoc applications.
Unfortunately, most existing evaluation results are either based on sim-
ulations – which makes it difficult to draw conclusions beyond confined
lab settings – or they are based on custom testbed results – which makes
it difficult to reproduce them. In order to overcome this challenge, we in-
troduce ManetLab, a modular and configurable software framework for
creating and running testbeds to evaluate MANET-specific protocols.
With ManetLab, one can easily configure and automate reproducible
protocol executions on standard computer hardware, and thus provides
both the accuracy of testbed-based evaluations and the reproducibility
of simulation-based evaluations. After presenting ManetLab’s extensible
architecture, based on the notion of modular protocol stack, we show
how it helps evaluate the performance of different broadcast protocols in
real MANETs and how its results compare with simulation-based results.

1 Introduction

With the tidal wave created by the arrival of smart devices and tablets, the
prospects of seeing MANET-based applications appear in the distributed sys-
tems landscape has become more promising than ever. To encourage the emer-
gence of such applications, system developers must provide solid communication
building blocks for application developers, such as multi-hop broadcast, multi-
cast, unicast, and other dissemination and routing protocols. Along that line,
a large amount of research effort have been spent investigating mobile ad hoc
routing protocols over the past decade. Central to this effort are the specialized
tools that allow researcher to develop and evaluate their protocols.

1.1 Protocol Development and Evaluation

The development of an effective and efficient protocol, be it wired, wireless
infrastructure-based or ad hoc, is an iterative process consisting of four steps, as
illustrated in Figure 1a. For a start, one has to devise the protocol in the form of
a distributed algorithm, ideally proving it formally and ultimately implementing

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 89–104, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

90 F. Vessaz et al.

it in some programming language (Step 1). Then, one has to configure some test
environment in which the protocol will be executed (Step 2) and run the actual
tests (Step 3). Finally, one has to analyze the collected data (Step 4), which
might then lead to fine-tune the protocol and trigger a new iteration.

configure

executeanalyze

develop

simulations

configure

executeanalyze

develop

testbeds

distributed
algorithm

connectivity
model

configure

executeanalyze

develop
① ②

③④

(a) general iterative process (b) combining simulations and testbeds

Fig. 1. Development of communication protocols

Existing tools for evaluating protocol performance can be categorised as ei-
ther simulators or testeds. When using testbeds, the iterative process sketched
in Figure 1a can be very time consuming, especially if one wants to evaluate
performances in various distributed environments, which is clearly a must. This
is particularly true for Steps 2 and 3, since they imply the deployment of the
protocol code and of the test configuration to various distributed nodes, the
launching of the testbed execution and the gathering of the results obtained at
each individual node. For this reason, dedicated tools aimed at facilitating the
creation and execution of testbeds have been proposed by the research commu-
nity for specific families of distributed environments. This is for example the
case of PlanetLab1 for large-scale distributed systems [9].

Performance Evaluation Tools for MANETs. When it comes to evaluate
the performance of MANET-specific protocols however, until now researchers
have had essentially the choice between the reproducibility offered by simulators
and the accuracy offered by testbeds. On the positive side, simulators are widely
used by the research community and their source code is generally accessible
online, which makes simulation-based evaluations fairly reproducible. Unfortu-
nately, as they rely on the modeling of complex physical and logical parameters,
it is difficult to draw general conclusions about the behavior of such protocols
in real settings [26]. Section 5 further discusses evaluation tools for MANETs.

Testbeds on the contrary rely on real mobile ad hoc networking and therefore
tend to offer a high-level of accuracy. For this very reason however, they also
tend to impose a high development and deployment barrier [1]. In addition,
most testbeds are not directly available to other researchers and often require

1 http://www.planet-lab.org

http://www.planet-lab.org

Developing, Deploying and Evaluating Protocols with ManetLab 91

specialized or incompletely specified hardware. For these reasons, the level of
reproducibility of the resulting performance evaluation is generally quite low.

1.2 Contribution and Roadmap

The ManetLab framework precisely aims at filling this gap, by supporting both
accurate and reproducible performance evaluations of MANET-specific proto-
cols, in a similar way PlanetLab does it for large-scale distributed systems.

In Section 2, we discuss the need for a tool such as ManetLab and its key
requirements to achieve high accuracy and reproducibility. In Section 3, we
present ManetLab in detail, by showing how it helps develop protocol layers
and assemble them into a full protocol stack, which can then be deployed on
remote nodes. We also introduce ManetLab’s graphical tool, which helps config-
ure performance evaluations, launch them and gather the corresponding results.
In Section 4, we then compare the results of various performance evaluations
obtained using ManetLab with those obtained with two simulations tools. While
simulation-based performance evaluations are fairly accurate for simple MANET
environments, they diverge significantly from the results obtained in reality
for more complex environments, typically involving physical obstacles between
nodes. Interestingly, when injecting the topological constraints observed with
ManetLab back into the two considered simulators, simulation-based evaluation
tend to augment their level of accuracy. Finally, we discuss existing testbeds for
MANETs in Section 5, and ongoing work on improving ManetLab in Section 6.

2 Achieving Accuracy and Reproducibility

To be useful, performance evaluations of MANET-specific protocols should
obviously achieve a high degree of both accuracy and reproducibility. As a
consequence, tools supporting such evaluations should mimic real-life environ-
ments as accurately as possible and should allow researchers to easily reproduce
experiments with the purpose of comparing evaluation results.

2.1 Combining Simulations and Testbeds

Although this paper focuses on the need for a robust testbed tool, we advocate
the combination of simulations and testbeds, as illustrated in Figure 1b. While
simulations can indeed be considered an acceptable first approximation, commu-
nication protocols tend to perform in a more unpredictable way when actually
deployed in a real MANET than in an infrastructure-based network, be it wired
or wireless. For this reason, we believe that ultimately accuracy can only be
achieved with testbed approaches, at least at that stage of the evaluation.

In the early phases of a protocol development, simulations can be very useful
to validate the protocol in simple environment settings, e.g., in the absence
of walls or obstacles, using a basic wireless propagation model. Once this first
validation is done, the protocol should then be evaluated in a real mobile ad hoc

92 F. Vessaz et al.

network, using testbeds. As shown in Figure 1b, the results of testbed-oriented
evaluations can then be injected back into simulations, typically in the form of
a more accurate model of the wireless connectivity among network nodes. This
is precisely the approach we follow in Section 4.

2.2 Creating Accurate and Reproducible Testbeds

While various simulation tools exists, some of which have become de facto
standards, the situation is very different when it comes to testbeds for mo-
bile ad hoc networks. Moreover, coming up with universal and rigid testbeds for
MANETs might not even be a desirable goal, given the great variability of actual
deployment settings. Rather, we believe that there exists a need for a framework
that facilitates the development, deployment and evaluation of MANET-specific
protocols, by making it easy to create accurate and reproducible testbeds. That
is, accuracy and reproducibility should be the two key requirements for such a
testbed framework.

Accuracy. Devising a tool that offers an accurate evaluation of the behavior of
a protocol running in a MANET can be very challenging. The central issue stems
from the fact that MANETs tend to exhibit very erratic behaviors in terms of
connectivity and of reliability, depending on their physical environment and on
how nodes are moving. In addition, the various layers that stack up, in particular
TCP/IP, tend to distort the actual performance evaluation of communication
protocols in MANETs. For this reason, an adequate testbed framework should
offer flexibility in protocol layering, all the way down to the lowest-level layers,
typically by making it easy to compose protocol stacks from elemental layers.

Reproducibility. To evaluate the accuracy of results provided by an evaluation
tool, other researchers must be able to reproduce the testbeds described in the
literature, and scrutinize the evaluation tool itself. Thus, it is important that any
evaluation tool, in particular a testbed framework, be easily accessible for the
research community. A testbed framework should in addition be configurable,
in order to easily switch from one deployment setting to another, and it should
offer support for automatically launching evaluations and gathering results.

3 Introducing ManetLab

ManetLab is a framework supporting the creation and execution of accurate and
reproducible testbeds for MANETs-specific protocols, using mainstream hard-
ware.2 On each computer where ManetLab is installed, the wireless network
interface is used to connect the MANET, while the wired network interface is
used as control network to provide feedback about the protocol performance.

2 ManetLab runs on Apple’s computers with Mac OS X 10.7 or higher. We justify our
choice of the Apple’s platform by the fact that the hardware and the OS are highly
standardized and by the fact that Apple has the highest market share for portable
selling to U.S. higher education since 2007.

Developing, Deploying and Evaluating Protocols with ManetLab 93

More specifically, as illustrated in Figure 2, each computer running ManetLab is
hosting an agent connected to the MANET. In addition, one of the computers
hosts the controller, which acts as a conductor orchestrating the protocol execu-
tion.3 That is, the controller uploads the protocol stack to each agent, triggers
the execution of the protocol and collects feedback from all agents about the
protocol execution, via the wired network interface. In the following, we discuss
how each step pictured in Figure 1 is performed with ManetLab.

Controller and
Agent 1

Agent 2 Agent 3

Wireless adhoc network

Wired control network
1

2 2

3

Fig. 2. ManetLab — Using an ad hoc network and a control network

3.1 Development

In order to test an ad hoc protocol, one has to first implement it. ManetLab
proposes an API4 to help MANET-specific protocol developers in this task. The
protocol must be implemented in Objective-C and designed as layers, inheriting
from the MLStackLayer class, in a stack (MLStack) provided by the API. The
layer above the stack represents the application, whereas the layer below the
stack is the antenna. At any given time, a ManetLab node is executing at most
one protocol stack. Communication between nodes and between layers inside a
stack is achieved via message passing (MLMessage). Figure 3 illustrates a stack
containing two layers, i.e., a fragmentation layer and a gossip layer.

As pointed out in [26], researchers rarely make the effort to provide the source
code of their MANET-specific protocols to the community, which makes it very
difficult to seriously compare different protocols pursuing the same goal. More-
over, even when the source code is provided, the absence of a standardized tool
to compose and deploy protocols leads to low reproducibility of most research
results. For this reason, ManetLab proposes a plugin architecture that makes it
easy to package all the layers (subclasses of MLStackLayer) and message types
(subclasses of MLMessage) composing a MANET-specific protocol stack. As a
result, stacks created using ManetLab can be shared and reused by other re-
searchers. In addition, ManetLab is an open source project, which further pro-
motes the scrutiny and reproducibility of testbeds relying on it.

3 The example depicted in Figure 2 is further discussed in Section 3.3.
4 The API is distributed with the ManetLab software and available at
http://doplab.unil.ch/manetlab

http://doplab.unil.ch/manetlab

94 F. Vessaz et al.

Fragmentation
(MLStackLayer)

Gossip
(MLStackLayer)

send

deliver

send

send

deliver

deliver

deliverFurther

deliverFurther

sendFurther

sendFurther

M
L
S
ta
ck

User

Antenna

Fig. 3. A stack with two layers (left) and its corresponding GUI (right)

3.2 Configuration

The configuration step greatly differs in a simulator-based approach and in a
testbed-based approach. However, in both cases, configuration entails instal-
lation of the tool (simulator or testbed) and its parameterization, and then
deployment of the protocol code in the tool.

Installation. Installing a simulator is usually non-trivial because it implies
to download the source code from the Internet and then to build the simulator
from that code. As for testbeds, they are rarely made publicly available and
when they are, they tend to be even more difficult to install and to use, since
they often require specialized hardware. In contrast, ManetLab requires just a
few clicks to be installed on a standard desktop or laptop computer.5 Yet, if one
wants to access its source code, it is also made available via GitHub.6

Parameterization. For both simulators and testbeds, parameterization
implies to load the protocol stack into the tool, usually in some binary form.
Apart from this obvious step, parameterization is where simulators and testbeds
differ the most. As testbeds rely on real MANET implementations, one has only a
few parameters to set, e.g., the wireless channel used to communicate; this is typ-
ically the case with ManetLab. In addition, as already suggested in Section 3.1,
ManetLab makes it easy to dynamically load plugins containing protocol layers
into the tool, to then graphically compose a protocol stack from these layers and
deploy it of each node of the MANET (Figure 3). When it comes to simulators
however, many more parameters have to be set, such as the mobility model, the
connectivity model, the node distribution model, the interference model, etc.

5 ManetLab executable is available from http://doplab.unil.ch/manetlab.
6 ManetLab source code is available from http://github.com/doplab/ManetLab.

http://doplab.unil.ch/manetlab
http://github.com/doplab/ManetLab

Developing, Deploying and Evaluating Protocols with ManetLab 95

In terms of accuracy, this step is critical because unrealistic values may result
in misleading or even erroneous performance evaluations.

Deployment. When using testbeds, one of the major obstacles to reproducibil-
ity often lies in the need to deploy and maintain specialized hardware, typically
in the form of prototype devices. In order to solve this problem, at least par-
tially, ManetLab is implemented on the OS X platform, which is widespread in
research institutions today. In addition, Apple’s hardware is known to be very
standardized and traceable, e.g., using a tool like Mactraker,7 which is clearly
an advantage in term of reproducibility. Moreover, building ManetLab on top
of OS X, which shares the same code basis as iOS when it comes to low-level
services, opens the opportunity to port ManetLab to iOS devices in the future.

3.3 Execution

With ManetLab, protocols communicate using the IEEE 802.11 wireless ad hoc
network (IBSS mode), so the accuracy of performance evaluations is naturally
ensured. On the controller, the graphical user interface shown in Figure 4 is used
to prepare and launch the testbed execution.

Execution Example. Arrows pictured in Figure 2 illustrate an execution
with ManetLab, where the controller simply requests one agent to broadcast a
message. First, the controller asks Agent 2 to broadcast a message (Arrow 1). As
a result, Agent 2 does indeed broadcast a message on the wireless ad hoc network
(Arrow 2). Finally, all agents have received the message and provide feedback to
the controller, using the wired and reliable control network (Arrow 3).

Offline Control Mode. Since the controller communicates with agents via a
wired control network, ManetLab does not allow to test protocol with mobility
in its first version. To overcome this limitation, we are currently implementing an
offline control mode, which uses the wireless network for both control messages
and protocol messages. The idea is to have each agent log its evaluation results
locally during the testbed execution, so that it can send them to the controller
after the execution.

3.4 Analysis

Most simulators and testbeds do not provide specific analysis tools. Rather, they
allow protocol developers to produce log files or populate databases, which can
then be fed into some analysis tool, such as a graphical network animator like
NetAnim for example. This is also the case of the ManetLab testbed framework:
its API offers a log methods that allows developers to produce whatever trace
they need for their performance evaluation.

7 http://mactracker.ca

http://mactracker.ca

96 F. Vessaz et al.

Fig. 4. ManetLab Controller — Graphical user interface

4 ManetLab Testbeds vs. Simulations

To compare performance evaluations obtained from ManetLab with those ob-
tained from simulations, we study the behavior of various broadcast protocols in
ManetLab and in two simulators. These two simulators are NS-3 [15], the latest
simulator from the NS family, and Sinalgo,8 a simple Java-based simulator we
used to evaluate several of our own MANET-specific protocols [11,12,13]. For our
comparison, we rely on two simple, but widely used in the research community,
measures: the delivery ratio, defined as the number of nodes who received a
message over the total number of nodes, and the forward ratio, defined as the
number of nodes who send or retransmit the message over the total number of
nodes. Each measure is the average of 1’000 distinct executions.

4.1 Network Settings

In order to avoid a potential distortion or overhead caused by TCP/IP (in partic-
ular its routing scheme), all protocols are directly using the MAC layer when it
comes to broadcast a message in the MANET. Along that line, we parameterize
the MAC layer of each tool in a similar way, as discussed hereafter.

ManetLab. Since ManetLab is a real MANET implementation, there are only
a very few settings we can change. All other settings are constraints deriving
from the operating system and the hardware on which ManetLab is running.
Basically, ManetLab creates an IEEE 802.11a ad hoc network with a theoretical
data rate of maximum 6 MBits/s for broadcast.

NS-3. We use the WifiNetDevice from NS-3 with the YansWifiChannel and
the YansWifiPhy models. We set all the settings we can to similar values of what
ManetLab uses on real computers. That is, we configure NS-3 to use an IEEE
802.11a physical layer model, with a data rate of maximum 5.5 Mbits/s and a
MTU of 1’500 bytes.

8 http://www.disco.ethz.ch/projects/sinalgo/

http://www.disco.ethz.ch/projects/sinalgo/

Developing, Deploying and Evaluating Protocols with ManetLab 97

Sinalgo. Being a higher-level simulator than NS-3, Sinalgo does not rely on an
implementation of the IEEE 802.11 standard. So we configure Sinalgo to send
messages smaller than 1’500 bytes, with a Unit Disk Graph connectivity model
and a Signal to Interference plus Noise Ratio interference model.

4.2 Protocols, Environments and Communication Patterns

Because we aim at providing a solid first comparison, we consider a number of
broadcast protocols, physical environments and communication patterns. They
are presented in details hereafter.

Broadcast Protocols. We consider three probabilistic broadcast protocols,
namely Simple Flooding, Gossip, and Counter-Based Scheme (CBS),
which are well-known to the research community. With Simple Flooding [14],
each node systematically retransmits a message the first time it receives it, so
the delivery ratio is always equal to the forward ratio. With Gossip [29], each
node retransmits a message with a probability p the first time it receives it.
For our comparisons, we set p to 0.7, 0.5, and 0.2. Finally, with CBS [29], a
node waits for some random delay between 0 and wmax before retransmitting a
message, only if it received it only once. That is, if a node receives a message
more than once, it does not retransmit it. For CBS, we set wmax to 0.1 and 0.5
seconds.

2 3 4 5 6 7 8 9 10

1

7m

12 m

Fig. 5. Sketch of the open space environment

5,
5

m

4 m 3 m 3 m 3 m 3 m 3 m

19 m

2
m

8 4 2 6 5 31

7

Observed wireless links

Fig. 6. Sketch of the private offices environment

Physical Environments. We consider two environments: an open space and
private offices. In the open space, ten computers are placed in one open space
as illustrated in Figure 5; this is typically the case in a classroom. With private

98 F. Vessaz et al.

offices, eight computers are placed in adjacent offices as depicted in Figure 6. In
each physical environment, Computer 1 acts as the initial broadcaster.

Communication Patterns. We consider two communication patterns: a one-
shot message, which corresponds to a low network load, and the streaming of
1’000 messages, which correspond to a high network load. With the one-shot
pattern, Computer 1 broadcasts a single 1’400-bytes message. Those 1’400 bytes
are encapsulated in just one network frame consisting of 1’485 bytes, including
headers. With the streaming pattern, Computer 1 sends 1.4 Mbytes, which are
fragmented into 1’000 network frames of 1’485 bytes each.

4.3 Results in the Open Space Environment

Figure 7 shows the delivery and forward ratios of the one-shot communication
pattern. Since all nodes are connected (fully connected graph) and there are
almost no interference, the delivery ratios are strictly equal to 1.0 for all protocols
in NS-3 and Sinalgo, and above 0.99 for ManetLab. For this reason, the forward
ratios tend to converge towards their theoretical values, i.e., 1 for flooding, p for
gossip and much smaller values for CBS. Overall, we can say that in this scenario
(one-shot in an open space), simulations are quite accurate since they faithfully
mimic the results obtained by ManetLab in a real MANET.

In the second scenario (streaming in an open space), interference starts to
disturb the behavior of the protocols and affect both the delivery ratio and the
forward ratio, as shown in Figure 8. The more messages are transmitted, e.g.,
for flooding or for gossip with p = 0.7, the more the delivery ratio decreases.
Interestingly, the delivery ratios of ManetLab are over 0.7, whereas the delivery
ratios of NS-3 and Sinalgo are under 0.6. That is, the interference models used
in the two simulators are discarding too many frames, which indicates that their
accuracy is diminishing. As for the forward ratios, they tend to be only slightly
lower with the simulators than with ManetLab.

4.4 Results in the Private Offices Environment

In the private offices environment, the real MANET experienced by ManetLab
is no longer a fully connected graph, due to various physical obstacles (mainly
walls but also furniture, possibly people, etc.). It is thus not surprising that
the delivery ratio of a one-shot communication pattern in ManetLab tends to
drop compared to the open space, as shown in Figure 9. NS-3 and Sinalgo, on
the contrary, continue to view the MANET as a fully connected graph, so their
delivery ratios remain strictly equal to 1. This clearly indicates that their level
of accuracy is dropping. As for the forward ratios, NS-3 and Sinalgo have similar
results to those of ManetLab except for CBS.

Streaming in private offices is by far the worst scenario when it comes to the
delivery ratio, as shown in Figure 10. Both physical obstacles and interference are
significantly decreasing the performances of all protocols. Again, the accuracy
of NS-3 and Sinalgo is compromised, as they only roughly approximate the
delivery ratio observed with ManetLab. Furthermore, since fewer nodes receive

Developing, Deploying and Evaluating Protocols with ManetLab 99

Fig. 7. One-shot in an open space – delivery ratio (left) and forward ratio (right)

Fig. 8. Streaming in an open space – delivery ratio (left) and forward ratio (right)

Fig. 9. One-shot in private offices – delivery ratio (left) and forward ratio (right)

100 F. Vessaz et al.

Fig. 10. Streaming in private offices – delivery ratio (left) and forward ratio(right)

the messages being broadcast, the forward ratios with NS-3 and Sinalgo are also
dropping and thus diverge from those observed with ManetLab.

4.5 Injecting the Observed Connectivity into Simulations

It seems reasonable to assume that the drop in accuracy we observe for both NS-3
and Sinalgo, when considering private offices, is largely due to their erroneous
modeling of the MANET connectivity. In order to confirm this assumption, we
inject the connectivity graph experienced by ManetLab (see Figure 6) into NS-3
and Sinalgo, and we re-run our performance evaluations.

As shown in Figure 9, after the injection the accuracy of both NS-3 and
Sinalgo is improved for the one-shot communication pattern. Interestingly, and
somewhat surprisingly, the results for the simple flooding protocol are more
accurate with Sinalgo than with NS-3. With the streaming communication pat-
terns however, injecting the connectivity graph is not sufficient to improve the
accuracy of NS-3 and Sinalgo, as shown in Figure 10. It seems that the effect
of interference, combined with a lower connectivity, leads both simulators to
produce results that are significantly lower than what happens in reality.

5 Related Work

To evaluate the behavior of their protocols, researchers should rely on simula-
tors and testbeds that aim at providing accurate and reproducible performance
evaluations. Hereafter, using these two dimensions, we review a wide range of
evaluation tools for MANETs found in the literature [26,28,24,16,25] and we
compare them with ManetLab. For accuracy, we focus on their communication
support, as this is a critical element when it comes to evaluate performance in
a MANET. For reproducibility, we assess the availability of the tools.

Developing, Deploying and Evaluating Protocols with ManetLab 101

5.1 Communication Support

Simulators on the one hand do not provide a real implementation of a wireless
communication layer. For this reason, assessing the accuracy of their communica-
tion support, i.e., of their modelling of wireless communications, is very difficult
and can only be achieved by comparing their results with those of a real MANET
(as we did in Section 4). Such tools include NS-2 [8], NS-3 [15], GloMoSim [33]
and its commercial version Qual Net9, OPNET [7], OMNet++ [32], and others
such as Sinalgo or JIST / SWANS [3,4].

Testbeds on the other hand tend to be more accurate because they rely on real
wireless communication links. Such tools include Castadiva [17], MASSIVE [27],
MobiEmu [34], mLab [21], Carnegie Mellon University Wireless Emulator [22],
ORBIT [30], Seawind [23] and WHYNET [35] or JEmu [18], PoEM [19], and
of course ManetLab. Some testbeds however tend to oversimplify topological
constraints, e.g., by simply piling up a stack of wireless devices. In addition, while
one-hop communication is provided by all testbeds, multi-hop communication
is only found in tools such as WHYNET, RoofNet [6], ManetLab and Airplug-
emu [5]. Other testbeds also provide multi-hop communication, but they shorten
their wifi range. Such tools include ORBIT, TrueMobile [20] and MiNT [10].
Other tools provide a logical multi hop communication, such as mLab, MobiEmu
and Castadiva.

5.2 Tool Availability

To assess the availability of each tool, we evaluate if it is available online, if its
source code is disclosed and available for download and installation, if detailed
documentation is provided, and if specialized hardware is required in order to
run testbeds relying on that tool.

Online Availability. While many of the surveyed tools are available online
for download, just as ManetLab, some other tools are only described in scientific
papers, with no further details provided online. This is for instance the case
of TrueMobile, PoEM, MASSIVE, JEmu, and the tool described by Barolli et
al. [2]. This makes it very hard for other researchers to get a hold of these tools
and reproduce experiments.

Source Code Availability and Documentation. In order to evaluate the
accuracy of a performance evaluation tool, providing the disclosed source code
is another important aspect. Most reviewed simulators, except GloMoSim and
OPNet, provide a downloadable version of their code. Among testbeds how-
ever, source code becomes much more scarce: only Castadiva, MobiEmu, mLab,
Airplug-emu and MIT Roofnet provide access to their code, some of them with-
out much documentation. ManetLab on the other hand provides both its source
code and an easy-to-install binary file, with documentation and examples online.

9 http://www.scalable-networks.com/content/products/qualnet

http://www.scalable-networks.com/content/products/qualnet

102 F. Vessaz et al.

Specialized Hardware. While most simulators can be easily deployed on
almost any computer, many testbeds require specialized hardware. This require-
ment makes it harder for other researchers to install the testbed and execute
existing protocols. Moreover, some testbeds are deployed in specific lab settings
and allow remote users to connect, such as CMUTrueMobile (based on the Em-
ulab testbed [31]), which offers access to its testbed built on custom robots, or
ORBIT which offers a testbed of 400 fixed WiFi devices placed in a grid for-
mation on the ceiling of a single room. Other tools are devised to use special
hardware, such as MiNT-m that uses Roomba vacuum cleaner robots as under-
lying hardware in order to support mobility and custom hardware on which to
run protocols. Airplug-emu is another such example and is designed to emu-
late vehicular network and runs on laptops connected to specific GPS and radio
receivers. Remote solutions have the advantage of side-stepping the tool deploy-
ment stage, and often allowing node mobility, but they impose restrictions on
the execution scenarios. Other tools along with ManetLab can be deployed on
standard equipment, which makes it easier for others to deploy and evaluate
them. These tools include: Castadiva, MobileEmu, mLab and Airplug-emu.

6 Conclusion

Even though performance evaluation is central when it comes to designing ro-
bust MANET-specific communication protocols, we believe this problem has not
been addressed in a satisfactory manner so far. Either protocols were evaluated
through simulations and the results might not be valid in a real MANET envi-
ronment, or they were evaluated in a customized testbed, which makes it hard
to reproduce experiments. In this paper we presented ManetLab as a solution
to this conundrum: ManetLab aims at offering the best of both worlds, i.e., ac-
curate and reproducible results. In future work, we plan to extend ManetLab to
iOS devices and to add an offline control mode.

Acknowledgement. This research is partially funded by the Swiss National
Science Foundation under project numbers 138092 and 140762.

References

1. Al-Bado, M., Sengul, C., Merz, R.: What details are needed for wireless
simulations? - a study of a site-specific indoor wireless model. In: INFOCOM 2012,
pp. 289–297 (2012)

2. Barolli, L., Ikeda, M., Xhafa, F., Durresi, A.: A testbed for manets: Implementation,
experiences and learned lessons. IEEE Sys. Journ. 4(2), 243–252 (2010)

3. Barr, R., Haas, Z., van Renesse, R.: Jist: An efficient approach to simulation using
virtual machines. Software Practice & Experience 35(6), 539–576 (2005)

4. Barr, R., Haas, Z., van Renesse, R.: Scalable wireless ad hoc network simulation.
In: Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad hoc Wireless,
and Peer-to-Peer Networks, ch. 19 (2005)

Developing, Deploying and Evaluating Protocols with ManetLab 103

5. Buisset, A., Ducourthial, B., El Ali, F., Khalfallah, S.: Vehicular networks emulation.
In: ICCCN 2010, pp. 1–7 (2010)

6. Chambers, B.A.: The grid roofnet: A rooftop adhoc wireless network. M.S. Thesis,
MIT, Cambridge, Massachusetts (June 2002)

7. Chang, X.: Network simulations with opnet. In: Wintersim 1999, pp. 307–314
(1999)

8. Chen, Q., Schmidt-Eisenlohr, F., Jiang, D., Torrent-Moreno, M., Delgrossi, L.,
Hartenstein, H.: Overhaul of ieee 802.11 modeling and simulation in ns-2. In:
MSWiM 2007, pp. 159–168 (2007)

9. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M.,
Bowman, M.: PlanetLab: An Overlay Testbed for Broad-Coverage Services.
ACM CCR 33(3) (2003)

10. De, P., Raniwala, A., Sharma, S., Chiueh, T.: Mint: A miniaturized network testbed
for mobile wireless research. In: INFOCOM 2005, pp. 2731–2742 (2005)

11. Garbinato, B., Holzer, A., Vessaz, F.: Six-Shot Broadcast: A Context-Aware
Algorithm for Efficient Message Diffusion in MANETs. In: Meersman, R., Tari, Z.
(eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 625–638. Springer, Heidelberg (2008)

12. Garbinato, B., Holzer, A., Vessaz, F.: Context-aware broadcasting approaches in
mobile ad hoc networks. In: Computer Networks, pp. 1210–1228 (2010)

13. Garbinato, B., Holzer, A., Vessaz, F.: Six-Shot Multicast: A Location-Aware
Strategy for Efficient Message Routing in MANETs. In: NCA 2010, pp. 1–9 (2010)

14. Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive protocols for information
dissemination in wireless sensor networks. In: MOBICOM 1999, pp. 174–185 (1999)

15. Henderson, T.R., Lacage, M., Riley, G.F.: Network simulations with the ns-3
simulator. In: SIGCOMM 2008 (2008)

16. Hortelano, J., Cano, J.-C., Calafate, C.T., Manzoni, P.: Testing applications in
manet environments through emulation. EURASIP J. Wirel. Commun. Netw.,
47:1–47:9 (2009)

17. Hortelano, J., Nacher, M., Cano, J.-C., Calafate, C.T., Manzoni, P.: Castadiva: A
Test-Bed Architecture for Mobile AD HOC Networks. In: PIMRC 2007, pp. 1–5
(2007)

18. Flynn, H.T.J., O’Mahony, D.: Jemu: A real time emulation system for mobile ad
hoc networks. In: Symp. on Tel. Sys. Res. (2001)

19. Jiang, W., Zhang, C.: A portable real-time emulator for testing multi-radio manets.
In: IPDPS 2006, pp. 169–169 (2006)

20. Johnson, D., Stack, T., Fish, R., Flickinger, D., Ricci, R., Lepreau, J.: Truemobile:
A mobile robotic wireless and sensor network testbed?, flux technical note
ftn-2005-02. In: INFOCOM 2006 (2006)

21. Karygiannis, A., Antonakakis, E.: mlab: A mobile ad hoc network test bed. In:
SecPerU 2005 (2005)

22. Borries, K., Xiaohui, W., Judd, G., Steenkiste, P., Stancil, D.: Experience with
a wireless network testbed based on signal propagation emulation. In: EW 2010
(2010)

23. Kojo, M., Gurtov, A., Manner, J., Sarolahti, P., Alanko, T., Raatikainen, K.:
Seawind: a wireless network emulator. In: MMB 2001 (2001)

24. Kropff, M., Krop, T., Hollick, M., Mogre, P., Steinmetz, R.: A survey on real world
and emulation testbeds for mobile ad hoc networks. In: RIDENTCOM 2006 (2006)

25. Kulla, E., Ikeda, M., Barolli, L., Xhafa, F., Iwashige, J.: A survey on manet testbeds
and mobility models. In (Jong Hyuk) Park, J.J., Chao, H.-C., Obaidat, M.S.,
Kim, J. (eds.) CSA 2012. LNEE, vol. 114, pp. 651–657. Springer, Heidelberg (2012)

104 F. Vessaz et al.

26. Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: the
incredibles. Mob. Comput. Commun. Rev. 9(4), 50–61 (2005)

27. Matthes, M., Biehl, H., Lauer, M., Drobnik, O.: Massive: An emulation environment
for mobile ad-hoc networks. In: WONS 2005, pp. 54–59 (2005)

28. Qabajeh, M.M., Hashim, A.A., Khalifa, O.O., Qabajeh, L.K., Daoud, J.I.:
Performance evaluation in manets environment. Australian J. of Basic and Appl.
Sciences 6(1), 143–148 (2012)

29. Ni, S.-Y., Tseng, Y.-C., Chen, Y.-S., Sheu, J.-P.: The broadcast storm problem in
a mobile ad hoc network. In: MobiCom 1999, pp. 151–162 (1999)

30. Raychaudhuri, D., Seskar, I., Ott, M., Ganu, S., Ramachandran, K., Kremo, H.,
Siracusa, R., Liu, H., Singh, M.: Overview of the orbit radio grid testbed for evalua-
tion of next-generation wireless network protocols. In: WCNC 2005, pp. 1664–1669
(2005)

31. Stack, T., Fish, R., Flickinger, D.M., Stoller, L., Ricci, R., Lepreau, J.:
Mobile emulab: A robotic wireless and sensor network testbed. In: INFOCOM
2006, pp. 1–12 (2006)

32. Varga, A.: The omnet++ discrete event simulation system. In: ESM 2001 (2001)
33. Zeng, X., Bagrodia, R., Gerla, M.: Glomosim: A library for parallel simulation of

large-scale wireless networks. In: PADS 1998, pp. 154–161 (1998)
34. Zhang, Y., Li, W.: An integrated environment for testing mobile ad-hoc networks.

In: MobiHoc 2002 (2002)
35. Zhou, J., Ji, Z., Varshney, M., Xu, Z., Yang, Y., Marina, M., Bagrodia, R.: Whynet:

a hybrid testbed for large-scale, heterogeneous and adaptive wireless networks. In:
WiNTECH 2006, pp. 111–112 (2006)

Airtime Ping-Pong Effect
in IEEE 802.11s Wireless Mesh Networks

Mohamed Riduan Abid1 and Saâd Biaz2

1 School of Science and Engineering
Alakhawayn University in Ifrane, 53000, Ifrane, Morocco

R.Abid@aui.ma
2 Computer Science and Software Engineering Department

Shelby Center for Engineering Technology, Suite 3101
Auburn University, AL, 36849-5347, USA

biazsaa@auburn.edu

Abstract. Airtime is set as the default routing metric for the ongoing IEEE
802.11s wireless mesh networking standard. The metric is designed to minimize
channel resource consumption by accounting for loss rate, bandwidth, and chan-
nel characteristics. However, the metric exhibits a noticeable ping-pong effect
whose nature is still vague, and the very few references to this in the literature
condemn it for being a perilous behavior.

In this paper, we present a thorough study of the Airtime ping-pong effect,
and highlight its correlation to the underlying rate control algorithms. Using dif-
ferent rate control algorithms (e.g., ARF, AARF, ONOE, AMRR and Constant
rate), we establish that transmission rate adaptation is the principal cause behind
the effect. We show that the effect is an inherent behavior, and that an accurate
characterization of it can help improve network performance.

We present a ping-pong-aware mechanism that, by detecting when a link un-
dergoes such an effect, adapts the routing protocol for better network perfor-
mance. The mechanism is O(1), decentralized, and can be easily integrated into
the IEEE 802.11s routing protocol.

Keywords: Wireless mesh networks, IEEE 802.11s, Airtime, Hybrid wireless
mesh protocol, Routing, Adaptive rate control algorithms.

1 Introduction

The IEEE 802.11s mesh networking standard [Ie1] is still undergoing process. How-
ever, HWMP (Hybrid Wireless Mesh Protocol) [Ba1] has been set as the default rout-
ing protocol, with Airtime as the default routing metric. Airtime accounts for loss rate,
transmission rate, and channel characteristics. These latter depend on the underlying
modulation technique, e.g., IEEE 802.11a/b/g. When an active link becomes loaded,
HWMP ”disfavors” the link by increasing its Airtime metric value. This increase would
occur as consequence of a ”detected” increase in the observed loss rate because the link
is becoming loaded. Thus the routing protocol would advise selecting another unloaded
link. However, the newly selected link becomes loaded after a while as well (especially
in a congested network) urging the routing protocol to start the same procedure over

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 105–119, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

106 M.R. Abid and S. Biaz

again. This may merely result in re-selecting the first discarded link, especially when
there is not enough link redundancy. In this manner, the procedure continues on, gen-
erating a ”ping-pong” effect which consists on the cyclic procedure of switching back
and forth between loaded and unloaded links.

By running extensive ns-3 simulations, we noticed that Airtime indeed exhibits a
strong ping-pong effect. This latter consisted on having the network throughput fre-
quently oscillating (during the life time of the experiments) between high and low
throughput values. Furthermore, we noticed that Airtime exhibits a relatively weak
ping-pong effect when used with a non-adaptive rate control algorithm, such as Con-
stant rate.

When the link quality is degrading due to the link becoming loaded, adaptive rate
control algorithms (e.g., ARF [KM1], AARF [LM1]) tend to decrease the transmission
rate to avoid further losses. Since Airtime is inversely proportional to the transmission
rate, this increases Airtime. On the other hand, when the link becomes unloaded, the
adaptive rate control algorithms increase the transmission rate in order to profit from
the good link quality (since the loss rate would have decreased), and Airtime decreases.
In this way, we observe that the Airtime metric is simultaneously impacted by the vari-
ances in both the loss rate and the transmission rate. This renders Airtime very prone to
frequent changes which are the main reason behind the effect.

In attempt to shed further light into the effect, we conducted a literature review, and
we, found, surprisingly, only a single reference to the effect [GG1]. This reference su-
perficially addresses the effect and condemns it as a perilous behavior without any solid
clarification. Furthermore, the authors even changed the IEEE 802.11s formulation of
Airtime [Ba2] to render it independent of the transmission rate and eliminate the ”so-
named” perilous behavior.

Given that the ping-pong effect is relevant to the overall network throughput by
means of the Airtime routing metric which is an integral part to the IEEE 802.11s
HWMP routing protocol, and given the very scarce literature on the effect, we think
that this effect should be allotted further research, and that a good characterization of it
can help improve the overall network performance by merely accounting for the effect’s
presence.

In this paper, we present a thorough study of the effect. Using extensive ns-3 simula-
tions, we depict and analyze the effect. We show that the effect is an inherent behavior,
and not necessarily a perilous one (by establishing that IEEE 802.11s can perform better
under ”intense” instances of the ping-pong effect). We also highlight the strong correla-
tion between the effect and the underlying rate control algorithms, and establish that the
latter are the main cause behind the effect. We allude also to the idea that an accurate
characterization of the effect can benefit the IEEE 802.11s overall network performance
by shaping ping-ping-aware mechanisms which account for the effect. In this context,
we present a simple mechanism that, by detecting when the system is under the effect,
reacts to it and adapts the routing protocol to improve network performance. The mech-
anism deems a multi-hop wireless path as a chain of one-hop links, whose strength is
equal to the strength of its weakest link. The mechanism is O(1), decentralized, and
easy-to-deploy. The proposed mechanism can reach up to 40% improvement in the
overall network performance. This result is very encouraging towards further research

Airtime Ping-Pong Effect in IEEE 802.11s Wireless Mesh Networks 107

on the effect, and towards shaping further ping-pong-aware mechanisms (specifically at
the level of routing and rate control).

The main contributions of this work are:

– Highlighting and characterizing the Airtime ping-pong effect.
– Proving that the effect is an inherent behavior and not forcibly a necessarily one.
– Proving the strong correlation of the effect to adaptive rate control algorithms.
– Suggesting a decentralized ping-pong-aware mechanism that improves the overall

network performance.
– Encouraging further research on the effect, especially in the direction of shaping

ping-pong-aware mechanisms that improve the overall network performance.

The rest of this paper is organized as follows. In Section 2, an overview of the IEEE
802.11s standard is presented. Section 3 presents and highlights the characterization
process of the ping-pong effect. The analysis of the ping-pong effect characterization
is covered in Section 4, and a ping-pong-aware mechanism is presented in Section 5.
Finally, in Section 6, we conclude and present future work.

2 IEEE 802.11s: An Overview

Due to their easy-to-deploy and self-healing features, WMNs (Wireless Mesh Net-
works) [AW1] are emerging as a promising technology. WMNs are easy-to-deploy as
setting a WMN involves minimal wiring and configuration overhead: Placing the WMN
nodes and powering them On is all that is required to operate a WMN. On the other
hand, WMNs are self-healing due to the redundancy of wireless links: A failure in a
wireless link causes the network to seek alternative operational links, thus continuously
maintaining the network.

WMNs may serve a rich set of applications, e.g., wireless community networks,
wireless enterprise networks, transportation systems, home networking, and last-mile
wireless Internet access. Providing last-mile wireless Internet access is one of the most
promising applications, as WMNs tremendously reduce the cost and configuration over-
head when compared with current solutions, e.g., Wi-Fi (IEEE 802.11) LANs.

In 2005, IETF (Internet Engineering Task Force) set a mesh networking TG (Task
Group) to standardize IEEE 802.11s. The work is still in progress, with the last IEEE
802.11s TG meeting held in May, 2010 [Ie1]. Even though the standard is not yet final,
its main traits are set, e.g., architecture and MAC routing. HWMP (Hybrid Wireless
Mesh Protocol) [Ba1] is set as the default routing protocol for IEEE 802.11s compli-
ant devices. HWMP uses MAC addresses for routing. IEEE 802.11s Airtime [Ba2] has
been set as the default routing metric. These two amendments aim to maintain a mini-
mum compatibility between the IEEE 802.11s devices to be manufactured by different
companies.

2.1 IEEE 802.11s Architecture

IEEE 802.11s defines three types of stations:

108 M.R. Abid and S. Biaz

1. MPs (Mesh Points): MPs are wireless stations that perform routing only.
2. MAPs (Mesh Access Points): MAPs are MPs with additional access point capa-

bilities. Besides performing routing, MAPs aggregate traffic from/towards legacy
802.11 stations. A MAP can be thought of as a legacy access point which performs
routing as well.

3. MPPs (Mesh Portal Points): MPPs are MPs that serve as gateways to other non-
mesh networks, e.g., Internet. MPPs aggregate traffic from/towards the non-mesh
networks.

2.2 IEEE 802.11s HWMP Routing Protocol

HWMP is an adaptation of the well-known AODV [PR1] protocol. It hybrids a reactive
on-demand routing component with proactive tree-based routing [OT1] components.
The two components can be used separately or simultaneously, depending on the type
of the application for which the WMN is deployed.

RM-AODV (Radio-Metric Ad hoc On Demand Distance Vector) [AS1] is the re-
active protocol in HWMP. RM-AODV is an adaptation of the AODV [PR1] protocol,
using Airtime [Ba2] as a link quality metric. Reactive routing protocols initiate route
discovery requests only when needed, such as in cases of route failure or route time-
expiration.

The HWMP proactive mode [Ba1] is a tree based routing protocol [RC1, OT1].
In the proactive mode, every root mesh point (i.e., MPP) periodically broadcasts

PREQ messages bearing unique sequence numbers. Airtime is a radio-aware metric
that is designed to measure the amount of consumed channel resources when a frames
is transmitted over a wireless link. Airtime is computed as follows:

Airtime =

(
Oca +Op +

Bt

r

)
1

1− efr
(1)

where Oca, Op, and Bt are constants quantifying the Channel Access Overhead, the
Protocol Overhead, and the number of Bits in a probe frame, respectively. Oca and Op

depend solely on the underlying modulation technique (see Table 1). r is the transmis-
sion rate (in Mbps) for a frame of size Bt, and efr is the frame error rate. IEEE 802.11s
did not delineate a specific way to measure efr; It is left as an implementation issue.

Unlike ETX (Expected Transmission Count) [CA1] which accounts solely for frame
error rate, Airtime accounts for both frame error rate and link bandwidth. This is also
the case with ETT (Expected Transmission Time) [DP1]. However, Airtime further ac-
counts for channel access and protocol overheads.

Table 1. IEEE 802.11s Airtime metric constants

802.11a 802.11b/g
Oca 75 μs 335 μs

Op 110 μs 364 μs

Airtime Ping-Pong Effect in IEEE 802.11s Wireless Mesh Networks 109

3 Characterizing The Airtime Ping-Pong Effect

To characterize the ping-pong effect, we ran extensive ns-3 [On1] simulations using dif-
ferent settings, e.g., bandwidth, rate control algorithms, and topologies. The simulations
establish the existence of such an effect. The next section highlights the experiments.

3.1 Experimental Settings

The WMN in this sample experiment is a 4x4 grid topology with a distance of 300
meters (see Figure 1). This simulates the case where WMNs are used for last-mile
Internet access. Node(0) is set as a sink representing the WMN gateway, and nodes
(3, 7, 15, 14, and 13) are set as sources representing WMN access points. The sources
transmit UDP traffic, at a constant rate (10 Mbps), towards the sink. All source nodes
start transmitting at the same time and continue transmission for periods of 60 seconds.

The WMN is configured to run the proactive HWMP routing protocol since the traffic
is always directed towards the sink node. This shapes a tree-like topology with the sink
as the tree root. The inter-time between the HWMP proactive PREQ (Path Request)
broadcast messages is 2 seconds. We used the following rate control algorithms: ARF
[KM1], AARF [LM1], AMRR [LM1], ONOE [Ma1], and Constant Rate.

Fig. 1. Topology

3.2 Results

We tracked the variance of the aggregated received packets at the sink (i.e., the number
of packets received from all five source nodes) by means of a packet counter (which was
initially set to zero and incremented every time the sink receives a packet). After every
time slot of 100 ms, the counter is saved and re-initialized back to zero. This process
continues for the life time of the experiment (60 seconds), thus tracking the number
of received packets in a total of 600 time slots. Figures 2, 3, and 4 plot the number of
aggregated received packets (at the sink) for every 100 ms time slot and for each of the
underlying rate control algorithms.

110 M.R. Abid and S. Biaz

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400 450 500 550 600

N
um

be
r o

f r
ec

ei
ve

d
pa

ck
et

s

Time slot

Number of received packets per time slot (100 ms)

ARF

Fig. 2. ARF

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400 450 500 550 600

N
um

be
r o

f r
ec

ei
ve

d
pa

ck
et

s

Time slot

Number of received packets per time slot (100 ms)

AARF

Fig. 3. AARF

In the last figures, we clearly notice that the different rate control algorithms are all
exhibiting ping-pong effects, but with different magnitudes. To quantify these magni-
tudes, we computed the standard deviations (of the number of received packets per time
slot) for the different rate control algorithms (see Figure 5).

Airtime Ping-Pong Effect in IEEE 802.11s Wireless Mesh Networks 111

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400 450 500 550 600

N
um

be
r o

f r
ec

ei
ve

d
pa

ck
et

s

Time slot

Number of received packets per time slot (100 ms)

Constant Rate

Fig. 4. Constant Rate

 10

 15

 20

 25

 30

 35

 40

 45

 50

ARF AARF Constant Rate AMRR ONOE

Number of received packets per time slot: Standard deviation

Fig. 5. Ping-pong effect magnitudes

In the last figure, we see that the different rate adaptation algorithms have, indeed,
different ping-pong effect magnitudes. Airtime exhibits the strongest effect under
AARF and ARF, and the weakest effect under Constant Rate.

This result was general to all experiments we ran except that ARF and AARF al-
ternated in terms of which exhibited the strongest effect. Airtime always exhibited the
weakest ping-pong effect when using Constant Rate. As a primary observation, we pos-
tulated the following:

1. There is a strong correlation between the ping-pong effect and the underlying rate
control algorithm.

2. The ping-pong effect is not perilous.

These observations are discussed and analyzed in the following section.

112 M.R. Abid and S. Biaz

4 Analysis

According to Equation (1), Airtime depends on both the loss rate (efr) and the trans-
mission rate (r). With adaptive rate control algorithms [BW1], the transmission rate
is continuously adjusted in order to cope with the varying link quality. This is mainly
represented by the observed loss rate. Under good link quality, adaptive rate control
algorithms increase the transmission rate in order to profit from the actual quality by
injecting the maximum possible number of frames. However, and after a certain period
of time the link quality ”forcibly” degrades because of the expected increase in the link
load:

– Since adaptive rate control algorithms increase the transmission rates as a reaction
to good link quality, stations send frames at higher rates, thus generating more
traffic/load.

– Since the transmission rate increased, Airtime decreases in order to reflect the ac-
tual good link quality (Airtime is inversely proportional to transmission rate). This
urges the routing protocols of other stations to favor the link and route their traffic
through it,thus generating more traffic/load.

Thus, every unloaded link is “condemned” to become loaded after a while (assuming
there is enough traffic). When this occurs, the loaded link witnesses more frame losses,
mainly because of congestion (due to high load). The link quality then starts deterio-
rating. In such a case, the adaptive rate control algorithms decreases the transmission
rate in order to cut down the load. This is captured by Airtime through both increase in
frame loss and decrease in transmission rate. The parallel change in both loss rate and
transmission rate “accelerates” the procedure of increasing Airtime, thus advising the
routing protocol of the local station (as well as of other stations) to disfavor the link and
redirect traffic towards other less-loaded links.

In this way, adaptive rate algorithms largely impact the Airtime metric values and
“accelerate” processes of both loading and unloading links. This acceleration intensi-
fies the process of switching back and forth between loaded and unloaded links, thus
intensifying the ping-pong effect. On the other hand, when no adaptive rate algorithm is
used (i.e., Constant rate), the process of loading and unloading links is “slower”. This
is because Airtime is impacted by the sole variation in the observed loss rate, and not
by variations in the transmission rate (as the latter remains constant).

Finally, we assert that the Airtime ping-pong effect is highly correlated to adaptive
rate control algorithms, and that such a correlation is due to the induced changes in the
transmission rates as a reaction to the observed link quality.

4.1 Is the Airtime Ping-Pong Effect a Perilous Behavior?

Being an exceptional behavior, the ping-pong effect tends to qualify itself as being per-
ilous merely because of the ”unusual” frequent oscillations in the network throughput.
However, what we try to establish in this section, is that the effect is not as perilous as
it seems [GG1].

Airtime Ping-Pong Effect in IEEE 802.11s Wireless Mesh Networks 113

By looking at the former numbers of received packets per time slot, see Figures 2,
3, and 4, we notice that the rate control algorithms that are exhibiting strong ping-pong
effects (e.g., AARF and ARF) are oscillating between ”very” high and low values of
received packets (The low values are not qualified of ”very” because they are quite in
the same range ([0, 30]) for all rate control algorithms). To quantify these facts, we
computed and plotted the corresponding network throughput values (see Figure 6). By

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

ARF AARF Constant Rate AMRR ONOE

Aggregate network throughput (Mbps)

Fig. 6. Network Throughput Comparison

comparing these values to the corresponding ping-pong effect standard deviations (see
Figure 5) we clearly see that the rate control algorithms that exhibit the strongest ping-
pong effects are the ones that have the highest network throughput.

These facts sustain that the ping-pong effect is not a perilous (if not to say a healthier)
behavior, since strong ping-pong effects (in the experiments) were exhibiting parallel
strong throughput values. We further sustain this assertion by drawing the following
analogy:

In the former section (Section 4), we outlined how the main cause behind the ping-
pong effect is the ”accelerated” process of switching back and forth between loaded
and unloaded paths. This ”acceleration” is due to the frequent changes in link trans-
mission rate from the adaptive nature of the underlying rate control algorithm. In fact,
when a link is loaded, it becomes very natural, and even a must, for it to be alleviated
by reducing its load. On the other hand, when a link is unloaded, it becomes very ben-
eficial for it to serve more traffic. Thus, we analogically compare the ping-pong effect
to a ”breathing” mechanism whereby systems, under harsh circumstances (analogous
to a congested network), are repeatedly, and strongly, switching back and forth (ping-
pong effect) between the inhalation (more load) and exhalation (less load) processes.
More thoroughly and precisely, a steady and ”harmonious” switching behavior (even
if strong) is a symptom of a ”healthier” system. Such was the case with AARF in the

114 M.R. Abid and S. Biaz

former experiment (see Figure 3), where the switching back and forth was indeed strong
(e.g., high received packets) and frequent (i.e., high standard deviation, see Figure 5).
Here, the corresponding network throughput was the highest as well. To further gener-
alize these assertions, we conducted further experiments, which are highlighted in the
next section.

4.2 Generalization

In these experiments, five sources nodes, whose locations and transmission starting
times are randomly picked, are deployed in the same 4x4 grid topology as in Figure 1.
Node(0) always represents the sink, and the sources traffic generation rates are made
variable in order to experiment with different network loads and congestion levels.

Using 10 different scenarios, 10 different traffic generation rates, and 3 different rate
control algorithms, we ran a total of 300 experiments. Table 2 depicts the settings of the
randomly generated scenarios. The experiments were run for a duration of 60 seconds.

Table 2. Scenarios Settings

Scenario Seq# (Node#, Node transmission start time (Sec))

1 (3,0) (4,9) (11, 8) (12, 38) (10, 21)
2 (8,0) (3,26) (4, 9) (9, 39) (1, 7)
3 (4,0) (13,24) (9, 5) (6, 31) (11, 7)
4 (8,0) (3,18) (7, 12) (5, 15) (15, 30)
5 (3,0) (14,23) (1, 20) (9, 15) (4, 9)
6 (5,0) (13,8) (6, 6) (8, 12) (14, 25)
7 (13,0) (7,21) (2, 39) (4, 32) (10, 5)
8 (12,0) (14,19) (11, 27) (7, 23) (5, 13)
9 (5,0) (6,1) (13, 22) (8, 5) (3, 6)

10 (9,0) (6,2) (11, 19) (4, 9) (2, 31)

Note that the transmission times were randomly generated in the [0, 40] seconds interval
in order to always keep the last 20 seconds witnessing simultaneous transmissions of
all existing nodes. Also, the first randomly picked node is always transmitting at second
zero.

Figure 7 depicts the average number of received packets (at the sink) for each of the
10 scenarios, using the three different rate control algorithms (ARF, AARF, and Con-
stant rate). The average is obtained by using 10 different source traffic generation rates
ranging from 1 to 10Mbps with a 1 Mbps step. We notice that Airtime is performing
considerably better with ARF and AARF than with Constant Rate. This holds for all
10 scenarios. This generalizes the result in Section 4.1 (see Figure 6) about having the
worst Airtime performance when using Constant rate.

Airtime Ping-Pong Effect in IEEE 802.11s Wireless Mesh Networks 115

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f r
ec

ei
ve

d
pa

ck
et

s

Scenario number

Average number of received packets per Scenario

ARF
AARF

Constant Rate

Fig. 7. Scenarios throughput comparison

5 Ping-Pong-Aware Mechanisms

Since the Airtime ping-pong effect is an inherent behavior in IEEE 802.11s wireless
mesh networks, it becomes necessary to (re)shape mechanisms to be aware of such an
effect. To our knowledge, there no such mechanism in literature so far.

Every ping-pong-aware mechanism, regardless of its functionality, should first be
able to detect when a link is witnessing, or about to witness, a ping-pong effect. Hence,
a crucial prerequisite step toward designing ping-pong-aware mechanisms is the ”accu-
rate” detection of the effect occurrence.

The proposed ping-pong-aware mechanism operates at the routing level. The mech-
anism is O(1) and decentralized. The rationale behind the mechanism is two-fold:

– Boost the network to decrease the high loss rate during the Ping phase due to the
link becoming loaded.

– Boost the network to further increase the throughput by profiting from the very
good link quality witnessed in the Pong phase.

The mechanism accomplishes its goals by the following:
If a link is detected to be in the Ping phase, we further increase its Airtime metric

value. This is done to prevent, as much as possible, the routing protocol from forwarding
further frames through the link, and thus the loss rate is decreased. The idea behind this
is to make the link look worse by giving it more weight, thus labeling it as a candidate
”weakest chain link”: The strength of a chain is equal to the strength of its weakest
link. By analogy, a multi-hop wireless path is a chain of one-hop links. However, the
way most routing protocols measure the ”strength” (i.e., quality) of a multi-hop path
is by summing up the ”strengths” links [CA1, DP1]. These strengths correspond to
the numeric values of the underlying routing metrics. This does not go along with the
”weakest link” fact. To depict this fact, let us formally denote a three-hops path P
which is made of the following one-hop links: (a, b), (b, c), and (c, d), where a, b,

116 M.R. Abid and S. Biaz

c, and d denote four wireless stations. Let QP , Q(a,b), Q(b,c), and Q(c,d) denote the
corresponding link quality metric values (e.g., Airtime). Let us assume the following
two cases:

– Case 1: Q(a,b) = 40, Q(b,c) = 50, Q(c,d) = 60;
QP =Q(a,b)+Q(b,c)+Q(c,d)=150;

– Case 2: Q(a,b) = 100, Q(b,c) = 10, Q(c,d) = 10;
QP =Q(a,b)+Q(b,c)+Q(c,d)=120;

The routing protocol definitely favors the path in Case 2 as it has a much better Airtime
value (smaller value) than in Case 1. However, the path in Case 2 ought to be less
favored as it has the worst ”weakest link” (Q(a,b) = 100). This would constitute a strong
bottleneck which greatly affects the path throughput .

In most routing protocols, individual links are given the same weight regardless of
being the weakest or not. In the proposed ping-pong-aware mechanism we try to give
more weight to the weakest links by presuming that a link which is in the Ping phase is
a de facto ”weakest link” (as it is witnessing a sharp decrease in the throughput).

On the other hand, when a link is in the Pong phase, we further decrease its metric in
order to ”attract” more frames. In this way, we profit from the exceptional link quality
and increase the throughput.

We set the step by which we should increase/decrease the Airtime metric to be equal
to the step by which the metric last decreased/increased. Alg. 1 depicts the procedure.

Alg. 1. Ping-pong aware mechanism Algorithm

compute Airtime
P ing ⇐ 0
Pong ⇐ 0
if losscurrent > lossprevious and ratecurrent < rateprevious then

Ping ⇐ 1
elseif errcurrent < errprevious and ratecurrent > rateprevious then

Pong ⇐ 1
if Ping = 1 or Pong = 1 then

get Airtimeprevious
Airtime+ = Airtime− Airtimeprevious
if Airtime < 0 then

Airtime⇐ 0
return Airtime

5.1 Experiments

Using ns-3, we implemented the ping-pong-aware algorithm as a module in the HWMP
routing protocol. We ran the same experiments, as in Section 4.2, and we compared
the network performance and behavior under ARF and AARF (as rate adaptation algo-
rithms), and with and without using the ping-pong-aware mechanism (PPAM). Figures
8 and 9 depict the average number of received packets at the sink.

Airtime Ping-Pong Effect in IEEE 802.11s Wireless Mesh Networks 117

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f r
ec

ei
ve

d
pa

ck
et

s

Scenario number

Average number of received packets per Scenario

ARF
ARF with PPAM

Constant Rate

Fig. 8. Throughput comparison: ARF vs. ARF with PPAM

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f r
ec

ei
ve

d
pa

ck
et

s

Scenario number

Average number of received packets per Scenario

AARF
AARF with PPAM

Constant Rate

Fig. 9. Throughput comparison: AARF vs. AARF with PPAM

From the latter figures, we notice that the network is performing better under the
ping-pong-aware mechanism (for both ARF and AARF). However, the improvement is
on average a slight one: 5% for ARF and 4% for AARF. Nevertheless, the algorithm
performance reaches up to 40% improvement in some scenarios with specific traffic
generation, e.g., for scenario 5 (see Table 2) with a 7 Mbps traffic rate.

However, this is still proof of concept for this new research direction in suggesting
and shaping ping-pong-aware mechanisms. We think that better ping-pong detection
algorithms and more efficient ping-pong-aware mechanisms can be shaped and at dif-
ferent level (especially at the level of rate control).

118 M.R. Abid and S. Biaz

6 Conclusion and Future Work

We presented a thorough characterization of the Airtime ping-pong effect, and provided
an analytical study for its causes as well as its behavior. We highlighted its high cor-
relation to the underlying rate control algorithms by using different algorithms (e.g.,
ARF and AARF), and we showed that it is an inherent behavior stemming from links
alternating between the loaded and unloaded status. Contrary to the available literature,
we proved that the Airtime ping-pong effect is not a perilous one. In fact, a good char-
acterization of it can help in shaping ping-pong-aware mechanisms. which can improve
network performance. The shaping of such mechanisms relies on the crucial prerequi-
site of detecting when a link undergoes such an effect.

We proposed a ping-pong-aware mechanism that is O(1), decentralized, and that can
easily be integrated into the IEEE 802.11s routing protocol. The mechanism proved to
have a slight increase in the average overall network throughput. This showed how the
ping-pong effect can be adapted for a better network performance. By doing so, we are
suggesting a novel research direction which is based on deeming the ping-pong effect as
an inherent behavior, thus introducing the shaping of ping-pong-aware mechanisms that
can cope with the effect for the improvement of network performance improvement.

In a future work, we intend to continue further research in this direction, espe-
cially improving the ping-pong effect detection mechanism, shaping more efficient
ping-pong-aware mechanisms, and integrating the latter into other levels (especially
Rate Control).

References

[Ba1] Bahr, M.: Update on the Hybrid Wireless Mesh Protocol of IEEE 802.11s. In:
IEEE Conference on Mobile Adhoc and Sensor Systems, pp. 1–6 (2007)

[Ba2] Bahr, M.: Proposed Routing for IEEE 802.11s WLAN Mesh Networks. In: The 2nd
Annual International Wireless Internet Conference, WICON, pp. 6–13 (2006)

[On1] Online: The ns-3 network simulator, http://www.nsnam.org/
[Ie1] IEEE TGs: Status of Project IEEE 802.11s (2011),

http://www.ieee802.org/11/Reports/tgs_update.htm
[AS1] Aoki, H., Shinji, T., Kengo, Y., Akira, Y.: IEEE 802.11s Wireless Mesh Network

Technology. IEEE NTT DoCoMo Technical Journal 8, 13–21 (2006)
[PR1] Perkins, C., Royer, E.: Ad-hoc On-demand Distance Vector Routing. In: The 2nd IEEE

Workshop on Mobile Computing Systems and Applications, WMCSA, pp. 90–100
(1999)

[RC1] Raniwala, A., Chiueh, T.: Architecture and Algorithms for an 802.11-Based Multi-
Channel Wireless Mesh Network. In: Proc. of IEEE INFOCOM, vol. 3, pp. 2223–2234
(2005)

[CA1] De Couto, D., Aguayo, D., Bicket, J., Morris, R.: High-throughput path metric for
multi-hop wireless routing. In: ACM Annual International Conference on Mobile
Computing and Networking, MOBICOM, pp. 134–146 (2003)

[GG1] Garroppo, R., Giordano, S., Iacono, D., Tavanti, L.: Notes on implementing a IEEE
802.11s mesh point. Elsevier Computer Communications 33, 336–349 (2010)

[AW1] Akyildiz, F., Wang, W.: Wireless mesh networks: a survey. Computer Networks and
ISDN Systems 47, 445–487 (2005)

http://www.nsnam.org/
http://www.ieee802.org/11/Reports/tgs_update.htm

Airtime Ping-Pong Effect in IEEE 802.11s Wireless Mesh Networks 119

[DP1] Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh
networks. MOBICOM. In: ACM Annual International Conference on Mobile
Computing and Networking, pp. 114–128 (2004)

[OT1] Orgier, R., Templin, F., Lewis, M.: Topology dissemination based on reverse-path
forwarding (TBRPF). RFC 3684. IETF (2004)

[BW1] Biaz, S., Wu, S.: Rate adaptation algorithms for IEEE 802.11 networks: A survey and
comparison. In: IEEE Symposium on Computers and Communications, pp. 130–136
(2008)

[KM1] Kamerman, A., Monteban, L.: WaveLAN II: A high-performance wireless LAN for the
unlicensed band. Bell Labs Technical Journal, 118–133 (1997)

[LM1] Lacage, M., Manshaei, M., Turletti, M.: IEEE 802.11 Rate Adaptation: A Practical
Approach. In: Proc. of the 7th ACM International Symposium on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, pp. 126–134 (2004)

[Ma1] Madwifi: The Madwifi Project,
http://sourceforge.net/projects/madwifi

http://sourceforge.net/projects/madwifi

Planning UMTS Base Station Location

Using Genetic Algorithm
with a Dynamic Trade-Off Parameter

Mohammed Gabli, El Miloud Jaara, and El Bekkaye Mermri

Department of Mathematics and Computer Science, Faculty of Science, University
Mohammed Premier, BV Mohammed VI, Oujda, Morocco

{medgabli,emjaara}@yahoo.fr,
b.mermri@fso.ump.ma

http://sciences1.univ-oujda.ac.ma/

Abstract. In this paper, we address the problem of planning the
universal mobile telecommunication system (UMTS) base stations lo-
cation for uplink direction. The objective is to maximize the total trafic
covered f and minimize the total installation cost g. This problem is
modelled in the form of multi-objective optimization problem that can
be transformed into a mono-objective problem of the form f +λg, where
λ > 0 is a trade-off parameter between the objective functions f and g.
Our aim here is to present a solution method to the problem based on
a genetic algorithm (GA), which automates the choice of the parame-
ter λ by varying it at each iteration of the algorithm. To apply the GA
to our problem, we have proposed a special coding that combines the
binary and integer coding. To validate the proposed method some nu-
merical examples are given. The obtained results show the efficiency of
our approach.

Keywords: UMTS, Multi-objective optimization, Genetic algorithm.

1 Introduction

Universal Mobile Telecommunications System (UMTS) is a third generation mo-
bile cellular technology for networks based on the Global System for Mobile
Communications standard (GSM). The deployment of UMTS networks involves
a colossal investment for the operators. In this context, the optimization of these
networks becomes, for an operator, a fundamental task.

The problem of planning second-generation cellular systems adopting a
time-division multiple access (TDMA)-based access scheme has usually been
simplified by subdividing it into a coverage planning problem and a frequency
planning problem which are driven by a coverage and a capacity criterion, re-
spectively [1,2,3]. With the wideband code-division multiple access (W-CDMA)
air interface of UMTS, this two-phase approach is not appropriate mainly be-
cause the bandwidth is shared by all active connections and no actual frequency
assignment is strictly required. The access scheme allows for a more flexible use

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 120–134, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://sciences1.univ-oujda.ac.ma/

Planning UMTS Base Station Location Using GA 121

of radio resources and the capacity of each cell (e.g., the number of connections)
is not limited a priori by a fixed channel assignment as in TDMA systems,
but it depends on the actual interference levels which determine the achievable
signal-to-interference ratio (SIR) values. As these values depend on both traffic
distribution and base stations (BSs) positions, BS location in UMTS networks
cannot only be based on coverage but it must also be capacity driven [1,2]. Fur-
thermore, since interference levels depend both on the connections within a given
cell and on those in neighboring cells, the SIR values and the capacity are highly
affected by the traffic distribution in the whole area [1].

1.1 Related Work

UMTS networks planning problems have been the interest of many researchers.
St-Hilaire et al. [4] proposed a global approach for planning UMTS networks
in the uplink direction. In [5] the objective is to determine the cost-optimal
number and location of the Radio Network Controller (RNC) nodes and their
connections to the Radio Base Stations (RBS) according to a number of planning
constraints, by using a tree topology. Hashemi et al. [6] examined the same
problem but this time by using the hybrid ant colony algorithm. Meunier [7]
introduced a multicriteria model for the design of mobile telecommunication
networks. In [8] the problem of optimization is defined by the adjustment of
parameter of UMTS networks. Amaldi et al. [1] studied the UMTS base station
(BS) location based on propagation models with power control. This problem
has two objective functions to optimize: maximize the total trafic covered and
minimize the total installation cost. To solve the problem authors proposed two
randomized greedy procedures and a tabu search algorithm.

In the literature, a special attention is given to the problems of two
criteria using exact and approximate (heuristic) algorithms. Exact methods such
as Branch and Bound, the A* algorithm and Dynamic Programming are effective
for problems of small sizes. When problems become harder, usually because of
their NP-hard complexity, approximate algorithms are mandatory. Several adap-
tations of metaheuristics have been proposed in the literature for solving multi-
objective problems (MOP): simulated annealing, tabu search, genetic algorithms
and evolutionary strategies (see for instance [9,7]). The telecommunication area
has been one of the most exciting domain in which multi-objective metaheuris-
tics have been applied [10]. Several methods using genetic algorithms (GAs)
have been developed for solving MOP, for example, VEGA [11], MOGA [12],
NPGA [13], SPEA [14] and others. The approaches used for solving MOP can
be classified into three categories: approaches based on the transformation of
the problem into a mono-objective problem, non-Pareto approaches and Pareto
approaches (see [15,16,17]).

In this paper, we are interested in the UMTS base station location problem
presented in [1,18]. The problem is modelled as a mono-objective optimization
problem with a trade-off parameter λ fixed. When we transform a multi-objective
optimization problem into a mono-objective one, the choice of the trade-off
parameter λ is not an easy task for both the decision maker and the system

122 M. Gabli, E.M. Jaara, and E.B. Mermri

analyser. To remedy this problem we introduce a solution method based on a
genetic algorithm approach which automates the choice of the trade-off param-
eter λ at each iteration of the algorithm. In Section 2, we describe the problem
and we present its formulation. In Section 3, we introduce a GA approach using
a dynamic trade-off parameter. In Section 4, we present an encoding method for
the GA based on a combination of binary and integer coding, then we describe
the crossover and mutation operators. In Section 5 we give an application of
our approach to some problems, then we present the obtained numerical results.
Finally, in Section 6 we give some concluding remarks.

2 Problem Statement and Model Presentation

Consider a territory to be covered by a UMTS service. Let S = {1, ...,m} be
a set of candidate sites (CS) where a base station (BS) can be installed and
I = {1, ..., n} be a set of test points (TPs). Each base station BSj , j ∈ S, has
a cost of installation denoted by cj. We denote by ui the required number of
simultaneously active connections for a TP of index i (TPi). In this section we
will need the following notations:

Preçue received power
Ptarget target power
Pmax maximum power
SIR The signal-to-Interference Ratio
Hb height of the base (in meters)
Hm height of the mobile station (in meter)
F signal frequency (in megahertz)
dB decibels
dBm power ratio in dB of the measured power referenced to 1 milliwatt
CS candidate site
TP test points
BS base station
gij propagation factor of the radio link between TPi and CSj

dij distance between TPi and candidate site CSj

SF the ratio between the spread signal rate and the user rate

2.1 Mechanism of Power Control (PC)

In UMTS networks, different users can transmit in the same frequency band.
Assume that a mobile terminal communicates with a base station, and emits
at a too high power. Then there is a risk to prevent the other mobile terminals
of the cell to communicate with this base station. To remedy this problem a
fast power control is essential. On the other hand, each user can be a source of
interference to the others. Thus it is important to implement a mechanism which
allows to a mobile terminal to adjust its power of emission while guaranteeing
a good reception of the base station. This power problem also arises for the

Planning UMTS Base Station Location Using GA 123

power emitted by the base station to limit the intercellular interferences. Two
PC mechanisms are commonly considered [1]:

1. PC mechanism based on the received power: The transmitted power is ad-
justed so that the power received on each channel is equal to a given target
value Ptarget.

2. PC mechanism based on the estimated SIR: The transmitted power is set
so that the SIR is equal to a target value SIRtarget

2.2 Radio Propagation

The propagation channel in a mobile radio environment is mainly related to the
type of environment to be considered, urban, rural, indoor, etc.; and to physical
phenomena that the wave undergoes during the propagation namely reflection,
diffraction and diffusion. In this paper we consider the Hata’s propagation model
presented in [19], which gives the attenuation due to the signal propagation. In
particular, the attenuation between a BSj and TPi for urban areas, measured
in decibels (dB) and denoted by Lu, is given by (see [19]):

Lu(dij) = 69.55 + 26.16 log(F)− 13.82 log(Hb)

−a(Hm) + [44.9− 6.55 log(Hb)] log(dij), (1)

where the parameter a(Hm) is a correction factor depending on the height of
the antenna of the mobile station and on the environment. The value of a(Hm)
is given by:

– For a medium sized city:

a(Hm) = (1.1 log(F)− 0.7)Hm − (1.56 log(F)− 0.8) (2)

– For a large city:

a(Hm) = 3.2(log(11.75Hm)]
2 − 4.97 (3)

2.3 Model Presentation

Let S = {1, ...,m} be a set of candidate sites (CS) where a base station can be
installed and I = {1, ..., n} a set of test points. Each base station BSj has a cost
of installation denoted by cj . Let ui be the required number of simultaneously
active connections for a TPi. Let us define the two following classes of decision
variables:

yj =

{
1 if a BS is installed in a site j,
0 otherwise,

for j ∈ S, (4)

and

xij =

{
1 if a TPi is assigned to a BSj ,
0 otherwise.

for i ∈ I and j ∈ S. (5)

124 M. Gabli, E.M. Jaara, and E.B. Mermri

 TP1
TP3

TP2

TP4

TP5

TP6

BS1
BS3

BS4

CS1 CS2
CS4

CS3

Fig. 1. Illustration: problem with 6 TPs and 4 CSs

We see that the variable x depends on y. An illustrative example is presented
in Figure 1. In this example we have four CSs and six TPs. We see that the
BS2 is not installed and the TP3 is not covered; TP1 and TP2 are assigned
to BS1; TP4 and TP5 are assigned to BS3 and TP6 is assigned to BS4. We
consider a power-based PC mechanism. Suppose we have directive BSs with
three identical 120 degree sectors and with an omnidirectional antenna diagram
along the horizontal axis. Let the index set Iσj ⊆ I denotes the set of all TPs
that fall within the sector σ of the BS installed in the candidate site CSj . Since
we wish to maximize the total trafic covered and minimize the total installation
cost subjected to some constraints, then the problem can be expressed as [1,18]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Maximize f(x) =

n∑
i=1

m∑
j=1

uixij ,

Minimize g(y) =

m∑
j=1

cjyj ,

(6)

subject to:

m∑
j=1

xij ≤ 1 , i ∈ I, (7)

xij ≤ min{1, gijPmax

Ptarget
}yj, i ∈ I , j ∈ S, (8)

yj
∑
i∈Iσ

j

m∑
t=1

(
uigij
git

xit − 1) ≤ SF

SIRmin
, j ∈ S, σ ∈ Σ, (9)

xij , yj ∈ {0, 1}, i ∈ I, j ∈ S. (10)

Planning UMTS Base Station Location Using GA 125

Where the propagation factor of the radio link between a TPi and a candidate
site CSj is given by:

gij = (10
Lu(dij)

10)−1,

where the attenuation Lu is calculated by relation (1).

In [1,18] authors have transformed the multi-objective problem (6) into a mono-

objective one as follows:

Maximize
n∑

i=1

m∑
j=1

uixij − λ
m∑
j=1

cjyj, (11)

Subject to the constraints (7), (8), (9) and (10), where λ > 0 is a trade-off
parameter between maximizing coverage and minimizing costs. Here the param-
eter λ is taken a constant. In Section 3, we show that, when using GA to solve
problem (11), is not always appropriate to take λ fixed. Instead, we introduce a
dynamic trade-off parameter.

3 GA and Dynamic Trade-Off Parameter

Consider the optimization model (11): h = f+λg. Assume that f is much greater
than g. When applying GA to maximize the objective function h, if we take the
trade-off parameter λ constant, then there is a great risk that the procedure
of selection of the GA chooses only solutions which improve f by neglecting g,
since the function f dominates g.

3.1 Limits of Choosing λ Fixed

Let [a, b] be a real interval and f and g be two real functions satisfying:

102 ≤ f(x) ≤ 104 and 0 ≤ g(x) ≤ 1, x ∈ [a, b].

The problem of maximizing f and maximizing g can be transformed into the
maximization of the function h defined by:

h(x) = f(x) + λg(x), x ∈ [a, b].

For example, let λ be chosen equal to 1000. Then we have

102 ≤ h(x) ≤ 104 + 103, x ∈ [a, b].

Suppose that in the iteration k of the GA, the solution xk satisfying: f(xk) = 103

and g(xk) = 0.1 is retained as a solution for h, i.e. the best among solutions of
the current population. Then we have:

h(xk) = f(xk) + λg(xk) = 103 + 102 = 1100.

126 M. Gabli, E.M. Jaara, and E.B. Mermri

Assume that in the next iteration of the GA, we find two solutions x
(1)
k+1 and

x
(2)
k+1 satisfying: ⎧⎨

⎩
f(x

(1)
k+1) = 5× f(xk)

g(x
(1)
k+1) ≈ g(xk)⎧⎨

⎩
f(x

(2)
k+1) ≈ f(xk)

g(x
(2)
k+1) = 5× g(xk)

Then we have:

h(x
(1)
k+1) = f(x

(1)
k+1) + λg(x

(1)
k+1) ≈ 5× 103 + 102 ≈ 5100

and
h(x

(2)
k+1) = f(x

(2)
k+1) + λg(x

(2)
k+1) ≈ 103 + 5× 102 ≈ 1500.

Therefore

h(x
(1)
k+1)

h(xk)
≈ 5100/1100≈ 5 and

h(x
(2)
k+1)

h(xk)
≈ 1500/1100 ≈ 1

It is clear that although x
(1)
k+1 and x

(2)
k+1 improve, respectively, the objective

functions f and g in the same way, the probability that GA selects x
(2)
k+1 is

weak compared to the probability of selecting x
(1)
k+1. When one takes λ fixed,

the fact that an objective function dominates another is extremely probable. In
this example, a solution which improves the value of g does not have the same
influence on maximizing h as one which improves the value of f .
To remedy this problem we should not take the value of λ fixed, but rather this
value must be dynamic and it changes in each iteration of the GA.

3.2 Algorithm

Now, we present a GA algorithm, applied to the optimization model (11), using
a dynamic trade-off parameter λ. Let h = f + λg be the fitness function of the
GA. In each iteration i of the GA we take:

λi = |f(xi−1)

g(xi−1)
|,

where xi−1 is the best individual among solutions of the current population
P (i − 1), with respect to the fitness function h. Then the algorithm is outlined
as follows:

Planning UMTS Base Station Location Using GA 127

begin
At the initialization step of the GA assign a positif integer to λ;
repeat

Run an iteration of the GA;
Let x∗ be the best solution among solutions of the current population;
Calculate f(x∗) and g(x∗);
if g(x∗) �= 0 then

Take λ = |f(x∗)/g(x∗)|.
endif

until a stopping criterion is satisfied
end.

Our algorithm has two immediate advantages:

1. It automates the choice of the trade-off parameter λ. The utility resides,
therefore in the fact that we do not need to define this factor in advance.
This task turns out to be a very delicate question.

2. It ensures an equitable treatment of each objective function, so we have an
equitable chance to maximize both functions f and g. Indeed, the function
h(x) = f(x) + λg(x) becomes:

h(x) = f(x) + |f(x
∗)

g(x∗)
|g(x).

Where x is a solution of h for the current iteration (i) and x∗ is the best
solution of h selected for the previous iteration (i− 1).
When using the method of scaling for example, the difference between f(x)
and f(x∗), also between g(x) and g(x∗) is reduced, therefore the two terms
of the function h will be close to each other.

3.3 Application of the Algorithm

Consider the example of the objective functions f and g presented in Section 3.1.
We apply the proposed algorithm to maximize h = f + λg.

– Let x∗ be the best solution among solutions of the population in the current
iteration of the GA. Assume that the solution x∗ satisfies f(x∗) = 103 and
g(x∗) = 0.1. Then the trade-off is defined as:

λ =
f(x∗)
g(x∗)

=
1000

0.1
= 10000.

h(x∗) = f(x∗) + λg(x∗) = 103 + 103 = 2× 103.

– Then, in the next iteration of the GA we have to maximize the function
h(x) = f(x) + 104g(x). Let x1 and x2 be two solutions such as:

{
f(x1) = 5× f(x∗)
g(x1) ≈ g(x∗)

128 M. Gabli, E.M. Jaara, and E.B. Mermri

{
f(x2) ≈ f(x∗)
g(x2) = 5× g(x∗)

Then we have:

h(x1) = f(x1) + λg(x1) = 5× 103 + 103 = 6× 103

h(x2) = f(x2) + λg(x2) = 103 + 5× 103 = 6× 103

It is clear that the probabilities to select x1 and x2 are nearly equal. The solution
x2 thus has almost the same chances, as x1, to be selected in the next generation
of the GA, which is not the case with the choice of λ fixed.

4 GA Approach

4.1 Chromosome Representation

To code the base stations we can successfully use the binary encoding. For m
base stations we introduce a sequence of m binary digits, where each digit in a
position i, di, from left to right, indicates that the BSi is installed if di = 1,
otherwise the BSi in not installed. For example, if m = 7, the code 0111001
means that we have to install BSs numbered 2, 3, 4 and 7. As for encoding the
TPs, the binary coding is not appropriate any more. To remedy this problem
we used integer coding. For n test points we introduce a sequence of n digits,
where each digits is an integer taking values between 0 and m. If the digit in a
position j, takes a value k, dj = k, that means the TPj is assigned to the BSk;
if k = 0 the TPj is not assigned to any base station. For example, if n = 13,
the code 4;3;1;0;1;7;4;7;2;3;2;5;6 means that the TP1 is assigned to the BS4, the

432067462 32470111011 Crossover 432067462 43311011010
633134614 43311011010 633134614 32470111011

Crossover position

 Correction

433064461 43311011010
633234674 32470111011

4320674623247011 1011 Crossover 43206746232470111010
6331346144331101 1010 63313461443311011011

Crossover position

43206646232430111010
63313461443311011011

Correction

Fig. 2. Illustration of crossover

Planning UMTS Base Station Location Using GA 129

TP2 assigned to the BS3, · · · , the TP13 assigned to the BS6. We see that the
TP4 is not assigned to any BS, this means that the TP4 is not covered.

To encode each chromosome we use a combination of the two above codes.
If we have m base stations and n test points, the chromosome will have m + n
genes, where the first m genes are formed by the code of the base stations and
the remanning digits are formed by the test points code. Hence each chromo-
some will indicate if a TP is covered or not, and to which BS is assigned. For
example, if we have m = 7 and n = 13 the chromosome can be encoded as:
4;3;1;0;1;7;4;7;2;3;2;5;6;0111001. Finally, we must always take care not to fall in
the case where a TP is assigned to a BS that is not installed. To do this we use
a small correction which reassigns the TP to another BS.

4.2 Initial Population, Crossover and Mutation

– Initial population. Suppose we have n TPs and m BSs. To define each chro-
mosome of the population we generate n+m random genes; the first n genes
are integers in the set {0, . . . ,m} and the remaining m genes are binary dig-
its. Then, we use the correction procedure defined above.

– Crossover. We use the usual crossover followed by the procedure of correc-
tion. Figure 2 illustrates this operation.

– Mutation. We used the usual mutation followed by the procedure of cor-
rection. If the gene to mutate is a TP, we replace it by an integer chosen
randomly from the set {1, 2, . . . ,m}, otherwise we transform the 0 to 1 and
the 1 to 0 in the selected gene. Figure 3 illustrates these two cases.

43206746232470111011 43206746212470111011

Mutation position

 Correction

43206746222470111011

63206766232470111011 63206766232470110011

Mutaion position

Mutation

Mutation

63206766232770110011

Correction

Fig. 3. Illustration of mutation

130 M. Gabli, E.M. Jaara, and E.B. Mermri

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400
TPs
BSs

Fig. 4. First instance: Location of 95 TPs and 22 BSs in a service area of 0.4×0.4(Km)

5 Application

5.1 Data Description

To evaluate the performance of the proposed algorithm, we consider uplink in-
stances generated by using Hata’s propagation model. For each instance, we
consider a rectangular service area, a number of candidate sites in which to lo-
cate omnidirectional antennas, and a number of TPs. Using a pseudorandom
number generator each candidate site and each TP is assigned a position with
uniform distribution in the service area. We considered two families instances of
a urban environment. The simulation parameters are:

– Size of the service area (in km): 0.4 × 0.4 in the first instance and 1 × 1 in
the second instance;

– Number of TPs: 95 in the first instance and 400 in the second instance;
– Number of BSs: 22 in the first instance and 120 in the second instance;
– ui = 1, the required number of simultaneously active connections for a TPi;
– F = 2000 MHz ;
– Hm = 1 meter ;
– Hb =10 meters ;
– Ptarget = −100 dBm(about 10−10 MilliWatt);
– Pmax = 30dBm;
– SF = 128;
– SIRmin = 0.03125dB ;
– SIRtarget = 6 dB ;
– Costs ci: are taken randomly between 1 and 20 units.

Planning UMTS Base Station Location Using GA 131

0 5 10 15 20 25
0

5

10

15

BSs

Costs

Fig. 5. First instance: Costs of each BS

Figures 4 and 6 illustrate the distribution of the TPs and BSs in the area service
of the two instances, respectively. Figures 5 and 7 show the cost of installation of
each BS in the two instances, respectively. We note that total cost of installing
all BSs is 189 in the first instance problem and 1282 in the second instance.

5.2 Computational Results

For each instance of problem, we consider two cases: (i) λ is taken constant λ = 1
and λ = 4 as in [20]; (ii) λ is a dynamic parameter introduced in Section 3.2.

In the GA approaches we have used three selection methods; roulette, scaling
and sharing. The parameters of GA are set as follows: crossover probability pc =
0.4, mutation probability pm = 0.01, population size ps = 30, and maximum
number of generations 5000. In the sharing selection method, the threshold of
dissimilarity between two parents is taken as σs = ps/2, and α = 1.

Each experiment were conducted on ten times. Tables 1 and 2 show number
of TPs covered, number of BSs installed and costs for the two instances problem,
respectively. Now, we comment results of each experiment.

First Instance Problem: 95 TPs and 22 BSs.
The good results are obtained by taking the trade-off parameter λ dynamic, see
line 6 in Table 1. The best solution consists of installing 20 BSs instead of 22,
which cover 93 TPs among 95, with a cost equal to 176. Then we have a gain
of 13 (approximately 7% of costs of BSs), since the cost of installing all BSs is 189.

Second Instance Problem: 400 TPs and 95 BSs.
This time also, the good results are obtained by taking the trade-off parameter
λ dynamic, see last line in Table 2. The best solution consists of installing 116

132 M. Gabli, E.M. Jaara, and E.B. Mermri

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000
TPs
BSs

Fig. 6. Second instance: Location of 400 TPs and 120 BSs in a service area of 1×1(Km)

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

20

BSs

Costs

Fig. 7. Second instance: Costs of each BS

Table 1. Number of TPs covered and BSs installed for n = 95 and m = 22

Choice of λ Selection method Served TPs BSs not installed Cost Time in S

λ = 1 (fixed)
Roulette 92 1 187 776
Scaling 90 1 183 778
Sharing 93 1 179 777

Roulette 91 1 174 779
Dynamic Scaling 93 2 176 780

Sharing 92 1 184 780

Planning UMTS Base Station Location Using GA 133

Table 2. Number of TPs covered and BSs installed for n = 400 and m = 120

Choice of λ Selection method Served TPs BSs not installed Cost Time in S

λ = 4 (fixed)
Roulette 398 3 1259 481
Scaling 397 2 1256 483
Sharing 398 5 1235 482

Roulette 398 3 1252 484
Dynamic Scaling 397 4 1226 486

Sharing 398 4 1231 485

BSs instead of 120, which cover 398 TPs among 400, with a cost equal to 1231.
Then we have a gain of 51, since the cost of installing all BSs is 1282. We realized
a gain of approximately 4% of cost of BSs.

6 Conclusion

In this paper we have considered an UMTS base station (BS) location planning
problem based on propagation models with power control. The problem, which
is formulated as optimizing two objectives functions f and g subjected to some
constraints, is transformed into mono-objective problem f + λg, where λ is a
trade-off parameter, see [1,18]. We note that the choice of λ is not an easy
task for both the decision maker and the system analyser. In order to solve the
formulated problem we have proposed a GA approach using a dynamic trade-
off parameter λ which varies at each iteration of the algorithm. The utility of
choosing λ dynamic lies mainly in the two following points:

– It automates the choice of the parameter λ. Therefore we do not need to
define this factor a priori.

– It ensures an equitable treatment of each objective function.

To code the solutions of the problem, we have proposed an encoding method
which combines binary and integer coding, then we have described the crossover
and mutation operators. We have applied our approach to two instances problem.
In future research, we will use fuzzy logic to deal with the imprecise and uncertain
information of the cost.

References

1. Amaldi, E., Capone, A., Malucelli, F.: Planning UMTS Base Station Location:
Optimization Models With Power Control and Algorithms. IEEE Transactions on
wireless communications 2, 939–952 (2003)

2. Berruto, E., Gudmundson, M., Menolascino, R., Mohr, W., Pizarroso, M.:
Research ctivities on UMTS radio interface, network architectures, and planning.
IEEE Communications Magazine 36, 82–95 (1998)

134 M. Gabli, E.M. Jaara, and E.B. Mermri

3. Naghshineh,M.,Katzela, I.:Channel assignment schemes for cellularmobile telecom-
munication systems: A comprehensive survey. IEEE Personal Communications 3,
10–31 (1996)

4. St-Hilaire, M., Chamberland, S., Pierre, S.: Uplink UMTS network design-an
integrated approach. Computer Networks 50, 2747–2761 (2006)

5. Juttner, A., Orban, A., Fiala, Z.: Two new algorithms for UMTS access network
topology design. European Journal of Operational Research 164, 456–474 (2005)

6. Hashemi, S.M., Moradi, A., Rezapour, M.: An ACO algorithm to design UMTS
access network using divided and conquer technique. Engineering Applications of
Artificial Intelligence 21, 931–940 (2008)

7. Meunier, H.: Algorithmes évolutionnaires parallèles pour l’optimisation multi ob-
jectif de réseaux de télécommunications mobiles. PhD thesis, University of Sciences
and Technologies, Lille (2002)

8. Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Métaheuristiques pour
l’optimisation difficile. Eyrolles, Paris (2003)

9. Talbi, E.G., Basseur, M., Nebro, A.G., Alba, E.: Multi-objective optimization
using metaheuristics: non-standard algorithms. International Transactions in
Operational Research 19, 283–306 (2012)

10. Talbi, E.G.: Metaheuristics: From Design to Implementation. John Wiley and Sons
(2009)

11. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic
algorithms. In: Proceedings of an International Conference on Genetic Algorithms
and their Applications, pp. 93–100 (1985)

12. Fonseca, C.M., Fleming, P.J.: Multiobjective genetic algorithms. IEE Colloquium
on Genetic Algorithms for Control Systems Engineering 6(1-5) (1993)

13. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for
multiobjective optimization. IEEE World Congress on Computational Intelligence,
pp. 82–87 (1994)

14. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto approach. IEEE Transactions on Evolutionary
Computation, 257–271 (1999)

15. Nakibe, A.: Conception de métaheuristiques d’optimisation pour la segmentation
d’images. Application des images biomédicales. PhD thesis, UFR of Sciences and
Technology, University PARIS 12-VAL DE MARNE (2007)

16. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization. IOP Publishing,
Bristol (2000)

17. Jin, Y., Okabe, T., Sendhoff, B.: AdaptingWeighted Aggregation for Multiobjective
Evolution Strategies. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne,
D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 96–110. Springer, Heidelberg (2001)

18. Amaldi, E., Capone, A., Malucelli, F., Signori, F.: Radio Planning and Optimization
of W-CDMA Systems. Personal Wireless Communications, 437–447 (2003)

19. Hata, M.: Empirical Formula for Propagation Loss in Land Mobile Radio Services.
IEEE Transactions on Vehicular Technology 29, 317–325 (1980)

20. Amaldi, E., Capone, A., Malucelli, F.: Radio planning and coverage optimization
of 3G cellular networks. Wireless Networks 14, 435–447 (2008)

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 135–143, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Video Encryption Based on the Permutation
of the (⁄) Fields

Younes Benlcouiri1, Mohammed Benabdellah2,
Moulay Chrif Ismaili1, and Abdelmalek Azizi1

1 Laboratory of Arithmetic, Scientific Computing and Applications, Faculty of Science,
Mohamed First University, Oujda, Morocco

{benlcouiriy,mcismaili,abdelmalekazizi}@yahoo.fr
2 Laboratory of Economic and Management of Organizations, Faculty of Law,
Economics and Social Sciences. Mohamed First University, Oujda, Morocco

med_benabdellah@yahoo.fr

Abstract. Advances in digital content transmission have increased in recent
years. Issues of security and confidentiality of transmitted data have become
an important concern in multimedia technology. In this paper, we propose an
efficient algorithm to encrypt video sequences in real time without additional
dedicated hardware. Our method is based on the principle of modified affine
encryption to achieve transposition and to perform some manipulations such as
puzzle to reduce the amount of bits to be processed on the image. Testing this
approach provides a stronger security and a good encryption time on MPEG
sequences.

Keywords: Affine Encryption, MPEG, p⁄ fields, Congruence, Puzzle,
Extended Euclidean algorithm.

1 Introduction

During the last few years, interest in multimedia and in particular diffusion of the
audio-visual content involved a great amount of research in the field of video signal
coding, which led to several standards such as H-263, H.26L and MPEG-4 [8]. These
standards consist essentially of toolboxes for video signal processing which can be
adapted to the context and desired result. In such applications, confidentiality of the
video data during transmission is extremely important. This necessitates secure video
encryption algorithms. [4]

In the naive approach for video encryption, the MPEG stream (bit sequence) is
treated as text data, and encrypted using standard encryption algorithms like DES
(Data Encryption Standard), RC5 (Rivest Cipher), AES (Advanced Encryption Stan-
dard), etc. Though this approach is supposedly the most secure for video encryption,
it is computationally infeasible for real-time applications. [1]

For real-time applications, light-weight encryption algorithms were also proposed.
These methods encrypt using simple XOR or encrypt selected bits of the video data
(for example, sign bits of I frames, motion vectors, etc.). These encryption algorithms

136 Y. Benlcouiri et al.

are much faster than selective algorithms. Also, they add less overhead on the codec.
(Note that if encryption modifies the syntax of the MPEG bit stream, it adds overhead
to the MPEG codecs.) Another category of algorithms is based on scramble (permuta-
tion) only methods, where the DCT coefficients are permuted to provide confusion.
However, in most of these methods, computational efficiency comes at the cost of
security. [2]

Choon [1] proposed a light-weight and cost effective encryption algorithm based
on the Shannon principle of diffusion and confusion. These principles can be achieved
by permutation of macro blocks followed by XOR operation on the permuted macro
block. Choo [2] proposed another light-weight encryption algorithm on the uncom-
pressed raw MPEG data named Secure Real-time Media Transmission (SRMT),
which uses two block transpositions and a XOR operation. Tang [3] proposed a
scramble based encryption algorithm using permutation of the DCT coefficients. The
basic idea is to use a random permutation list to replace the zig-zag order of the DCT
coefficients of a block to a 1× 64 vector. Zeng and Lie [10] extended Tang’s permuta-
tion range from a block to a segment, where each segment consists of several macro
blocks. Within each segment, the DCT coefficients of the same frequency band are
randomly shuffled within the same band. Apart from shuffling of the I frames, they
also permute the motion vectors of P and B frames. However, light-weight encryption
and scramble-only methods provide less security than the naive encryption.

In this sense, and in order to optimize and secure transposition and storage of mov-
ie, we propose a new transposition approach to implement the principles of using
affine encryption. The main advantages of this approach are flexibility and reduction
of processing time, which is proportional to the number of pixels during the operation
of encryption and decryption. Indeed, through this method we can vary the processing
time depending on the desired level of security.

In a first step, we will discuss the affine encryption procedure and some notions of
congruence. Then, we describe the subdivision process image in puzzle. After, we
will describe in detail the principles of our approach and results obtained after its
implementation. Finally, we conclude our article by introducing some perspectives.

2 Methods

2.1 Structure of Coding MPEG Format

The techniques used to compress a video signal use space redundancy. The objective
is to reduce the flow of the video sequence to be compressed, while minimizing the
visible errors (MSE and PSNR) [5]. To do this, there are two principal techniques,
lossless compression and lossy compression. The former makes it possible to find the
initial information after decompression, while the latter will restore only an approxi-
mation of it. In the case of natural images, the lossless compression is insufficient,
and the introduction of losses in the compression process makes it possible to obtain
better results without preventing the interpretation of the visual content. Current video
standards use a hybrid coding system with compensation for movement based on
blocks and a reduction of entropy by a transformer. The MPEG standard defines a set
of coding stages that transform a video signal (digitized in standardized format) into a

 Video En

binary stream (a bit stream
The binary stream is describ
can be restored easily by an
algorithm defines a hierar
following figure 1. [6]

Fig. 1

The group of pictures o
images. There are three typ
using JPEG for the fixed im
previous image of type I or
(or Interpolation) by using
or Predicted image as refer
continuation of the images
following figure 2. The stru
ber of images of GOP and t

2.2 Cryptography

The most methods of encry
tion. Substitution means th
tion means that permuting
the centuries, many system
(TMIS) have developed mo

ncryption Based on the Permutation of the (⁄) Fields

m) intended to be stored or transmitted through a netwo
bed according to a syntax coded in a standardized way t

ny decoder that recognizes the MPEG standard. The cod
rchical structure containing the levels described in

1. Hierarchical structure of MPEG coding

or GOP consists of a periodic continuation of compres
pes of the compressed images: Intra image (I) compres
mages, Predicted image (P) coded using a prediction o
P, and Bidirectional image (B) coded by double predict
a previous image of type I or P and a future Intra im

rences. A GOP starts with an image I, contains a perio
 P separated by a constant number of images B as in

ucture of GOP is thus defined by two parameters: the nu
the distance between Intra images and Predicted image [

Fig. 2. Structure of GOP

yption based on two principles: substitution and transpo
at replacing some letters by symbols or others. Transpo
the letters of the message to make it unintelligible. O

ms of cryptographic Telecare Medicine Information Syst
ore perfection more clever. [9]

137

ork.
that

ding
the

ssed
ssed
of a
tion

mage
odic

the
um-
[7].

osi-
osi-

Over
tem

138 Y. Benlcouiri et al.

2.3 Congruence

For , in and n an integer ≥ 2, the notation reads u congruent to v
modulo n and means that is divisible by n which is equivalent to say that
u and v have the same retained when divided by n, for example 17 = 5 (3) but also
-1 = 1 (2). [9]

u, v, r, s belong to and n an integer ≥ 2,
if u ≡ v (n) and r ≡ s (n) so:
u+r ≡ v+s (n); u-r ≡ v-s (n); u×r ≡ v×s (n);
and for all k Є we have u ≡ v+kn (n)
if u and v are two integers belonging to {0; 1; 2;… n-1}
so u ≡ v(n) implies u ≡ v

2.4 The Extended Euclidean Algorithm

The extended Euclidean algorithm permits to calculate the inverse of b modulo n if it
exists. Remembering that the inverse of modulo n of b is the whole number b-1 such
that b×b-1 = 1 (mod n) for example 7 is the inverse modulo 9 of 4 because 4 × 7 = 28
= 1 (mod 9)

Algorithm.

n0 := n
b0 := b
t0 := 0
t := 1
q := an integer less than or equal to n0/b0
r := n0 - q×b0
 while r > 0 do
 start
 temp := t0 - q×t
 if temp >= 0 then
 temp := temp mod n,
 else temp := n - ((-temp) mod n)
 t0 := t
 t := temp
 n0 := b0
 b0 := r
 q := an integer less or equal to n0/b0
 r := n0 - q×b0
 end while ;
if b0 ≠ 1 then b has no inverse modulo n,
else b-1 mod n =t

This algorithm can also calculate the Bezout coefficients of a and b (called extended
Euclidean algorithm). Recalling that if d is the Greatest Common Divisor (GCD) of a
and b, there exists the whole and such that . The Euclidean algorithm

 Video Encryption Based on the Permutation of the (⁄) Fields 139

allows calculating these and coefficients. Simply go up the calculations by ex-
pressing the GCD d as a function of other numbers. [9]

2.5 Affine Encryption

Noting that E = {0; 1; 2;…;25} and are integers selected from . Coding is affine,
after numbered from 0 to 25 letters of the alphabet, to encode a letter (called source)
number x by the letter number y, where y is the remainder of the division of
by 26. The encoding function associated affine associated with the coefficients and

 is the function from E to E in which matches to . is the only
element of the set E = {0, 1, 2... 25} which is congruent to modulo 26, 26 .[9]

3 Proposed Method

Our method is based on encrypting only Intra pictures in each GOP of MPEG
sequence while keeping the motion vectors responsible for reconstruction of the P
images and the B images.

It is to use the principles of an affine encryption on field type ⁄ married
to the results of modular arithmetic and the problem of the puzzle to complete the
transposition on these elements. : ⁄ ⁄ (1)

Note that: , ° , , when .

For our method, the keys generation is divided into five parts:

• Choose a prime number to work on the ⁄ field, in which all
elements are invertible.

• Subdivide the image processing into (1 puzzle pieces (square,
triangle…) with blocks size according to the required security
level.

• Let a pair of elements , in ⁄ , ⁄
such as :

 and for each element of 1,2 … 1 for 1 ≤ and

then , , , , … , .
• Calculate the number of cycles of on the function defined in (1).
• Choose a number less than the number of cycles .

The encryption key is: , , , ,
The decryption key is the same as the encryption key.

140 Y. Benlcouiri et al.

Encryption Step: We divide each image Intra of each GOP of the MPEG video se-

quence in (macro-blocks as shown in the following figure:

Fig. 3. Original Intra image divided into (p-1) macro-blocks

After subdividing the Intra image in (macro-blocks numbered from 1

(, we proceed as following:

We repeat the application of the function f for each pair , of M on the results

obtained after application of this function with the parameters , when 1, then, repeat the process times for multiplying the number of lost blocks.
The encryption function can be defined as follows: , , ° , … ° , (2)

To change the location of each macro-block of image processing, we apply the

function g to its indices. , ; , ; … . , ; ; … ; ; …

Reorganize the results after applying the function f on the indices of macro-blocks

conducted a transposition. The encrypted image is shown in the figure below:

Fig. 4. Encrypted image after transposition of (p-1) macro-blocks

Reconstruct the video sequence by replacing the original Intra image by the Intra
image after processing.

Decryption Step: The decryption key is the , , , , .We performs the
extraction of intra images of the video sequence encrypted then remake the same
calculation performed in the encryption phase to find the order of transposition:

 Video En

We rearrange Intra encrypt
the MPEG algorithm for the

4 Application and

We apply the proposed met

1) We choose a prime n
2) Then we divide the

where 8 n = 8 a
3) We selected

pair , , , ,
4) Calculate the number
5) We choose 24

We use the element pairs i
provide the greatest disorde

The decryption key is the257; 19
Table 1. Results after applyin
E.E.I: Entropy of Encrypted Im

The subdivision of the
to make a calculation of c
The entropy of the original
which provides a high degr
introduced by Shannon in in

ncryption Based on the Permutation of the (⁄) Fields

; ; … ; ; …

ted image according to the result obtained. Then we ap
e decoded video sequence.

d Results

thod to news sequence. We proceed as follows:

number 257 to work on the fields / /257
image into 1 256 elements each of size

and 8.
 from /257 composed with th, , 19,6 , 1,1 , 21,90 , when and .

r of cycles =105819 of on the function .
an integer

in successively by applying the function time
er possible.

e same as the encryption key and it is given as follows: ,6 , 1,1 , 21,90 ; 24; 8 8

ng our method on Intra image. E.O.I: Entropy of Original Im
mage, E.T: Encryption Time (ms).

image into 256 macro-blocks allows us, on encrypti
codes into 8 bits and obtain a minimum processing ti
l Intra image is equal to that of the encrypted Intra im
ree of security according to law of security measure tha
nformation theory.

141

pply

.

hree

s to

mage,

ion,
me.

mage
at is

142 Y. Benlcouiri et al.

Intra Imag

Predicted Image

Bidirectional Ima

Bidirectional Ima

Fig. 5. Encryption intra image

The attack of our metho
construction of the original , lost at le
for the transposition is outsi

So the problem is more
grope on the combination p p 1 check images
tackle the puzzle.

5 Conclusion

In this paper, we introduced
using the affine cipher meth

e

Encrypted Intra Image

e (P1)

Encrypted Predicted Image (P1)

age (B1)

Encrypted Bidirectional Image (B1

age (B2)

Encrypted Bidirectional Image (B2

e and its effect on P and B images of news sequence(GOP(1: 1

od with p p 1 possible keys does not lead to the
image since the , ° , which is different from

east one macro block. Knowing that the combination u
ide of p p 1 cases directly accessible by all the ke
e complicated for brute force cryptanalysis since it m
of M and the number of repetitions. We have a comp
s. Thus, an attacker who uses brute force will be forced

d a novel approach to encrypt video streams in real-time
hod and puzzle principle. This “hybrid” method is based

1)

2)

12))

e re-
m the
used
eys.

must
plex
d to

e by
d on

 Video Encryption Based on the Permutation of the (⁄) Fields 143

a modified Affine Cipher to realize permutations on /p fields and on puzzle
techniques to reduce the number of bits to be processed. The basic idea is to encrypt
only I-frames in each GOP of an MPEG sequence.

The advantage of our method is to increase a number of accessible cases. Indeed, the
Affine Cipher allowed reaching only p p 1 cases among p p 1 !. However,
by using the method presented in this work, one can access to a number of cases which
is bigger than p p 1 . By working in /p field we can choose randomly keys.

Based on its encryption speed and degree of security, we think make hybridizations
between this encryption method and other compression methods to produce
crypto-compression methods of still and moving images. We are currently working on
producing a random crypto-system based on affine encryption for future use on IPTV
diffusion protocol.

Acknowledgements. Supported by the Hassan II Academy of science and technology
of Morocco.

References

1. Choon, L.S.: Lightweight and cost-effective MPEG video encryption. In: International
Conference on Information and Communication Technologies: From Theory to Application,
pp. 525–526 (2004)

2. Choo, E., Lee, J., Lee, H., Nam, G.: SRMT: A Lightweight Encryption Scheme for Secure
Real-time Multimedia Transmission. In: International Conference on Multimedia and
Ubiquitous Engineering (MUE 2007) (2007)

3. Tang, L.: Methods for encrypting and decrypting MPEG video data efficiently. In:
ACM International Multimedia Conference, Boston, MA (1996)

4. Benabdellah, M., Gharbi, M., Regragui, F., Bouyakhf, E.H.: A method for choosing reference
images based on edge detection for video compression. In: Second IEEE-EURASIP Interna-
tional Symposium on Control, Communications, and Signal Processing (IEEE-ISCCSP),
Marrakech-Morocco (2006)

5. Benabdellah, M., Gharbi, M., Regragui, F., Bouyakhf, E.H.: A method for choosing
reference images in video compression. In: Fifth IEEE-EURASIP International Symposium
on Communication Systems, Networks and Digital Signal Processing (IEEE-CSNDSP 2006),
Patras-Greece (2006)

6. Benabdellah, M., Gharbi, M., Regragui, F., Bouyakhf, E.H.: An approach for choosing the ref-
erence images based on FMT in video compression process. In: 1st International Conference
on Digital Communications and Computer Applications (DCCA), Irbid, Jordan (2007)

7. Benabdellah, M., Gharbi, M., Regragui, F., Bouyakhf, E.H.: Choice of reference images
for video compression. International Journal of Applied Mathematical Sciences 1(44),
2187–2201 (2007)

8. Benabdellah, M., Benabdellah, Z., Essofi, S.: Compression des scènes vidéosurveillance
basée sur la détection des contours avec analyse juridique. In: Colloque TELECOM 2009
& 6èmes JFMMA, Agadir- Maroc (2009)

9. Benlcouiri, Y., Benabdellah, M., Ismaili, M.C., Azizi, A.: Encryption of ultrasound images
using the permutation on the (Z/pZ) fields 7(42), 2093–2102 (2013)

10. Zeng, W., Lei, S.: efficient frequency domain selective scrambling of digital video.
IEEE Transaction on Multimedia, 118–219 (2002)

Improving Resource Location with Locally

Precomputed Partial Random Walks�

Vı́ctor M. López Millán1, Vicent Cholvi2,
Luis López3, and Antonio Fernández Anta4

1 Universidad CEU San Pablo, Spain
vmlopez.eps@ceu.es

2 Universitat Jaume I, Spain
vcholvi@uji.es

3 Universidad Rey Juan Carlos, Spain
llopez@gsyc.es

4 Institute IMDEA Networks, Spain
antonio.fernandez@imdea.org

Abstract. Random walks can be used to search complex networks for
a desired resource. To reduce search lengths, we propose a mechanism
based on building random walks connecting together partial walks (PW)
previously computed at each network node. Resources found in each PW
are registered. Searches can then jump over PWs where the resource is
not located. However, we assume that perfect recording of resources may
be costly, and hence, probabilistic structures like Bloom filters are used.
Then, unnecessary hops may come from false positives at the Bloom fil-
ters. Two variations of this mechanism have been considered, depending
on whether we first choose a PW in the current node and then check
it for the resource, or we first check all PWs and then choose one. In
addition, PWs can be either simple random walks or self-avoiding ran-
dom walks. Analytical models are provided to predict expected search
lengths and other magnitudes of the resulting four mechanisms. Simu-
lation experiments validate these predictions and allow us to compare
these techniques with simple random walk searches, finding very large
reductions of expected search lengths.

Keywords: Random walks, self-avoiding random walks, network search,
resource location, search length.

1 Introduction

A random walk in a network is a routing mechanism that chooses the next node
to visit at random among the neighbors of the current node. Random walks have
been extensively studied in mathematics, and have been used in a wide range of

� This research was supported in part by Comunidad de Madrid grant S2009TIC-
1692, Spanish MICINN grant TEC2011-29688-C02-01, Spanish MEC grant TIN2011-
28347-C02-01 and Bancaixa grant P11B2010-28.

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 144–158, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Improving Resource Location with Locally Precomputed Partial RWs 145

applications such as statistic physics, population dynamics, bioinformatics, etc.
When applied to communication networks, random walks have had a profound
impact on algorithms and complexity theory. Some of the advantages of random
walks are their simplicity, their small processing power consumption at the nodes,
and the fact that they need only local information, avoiding the communication
overhead necessary in other routing mechanisms. An important application of
random walks has been the search for resources held in the nodes of a network,
also known as the resource location problem. Roughly speaking, the problem
consists of finding a node that holds the resource, starting at some source node.
Random walks can be used to perform such a search as follows. It is checked first
if the source node holds the resource. If it does not, the search hops to a random
neighbor, that repeats the process. The search proceeds through the network in
this way until a node that holds the resource is found. Due to the random nature
of the walk, some nodes may be visited more than once (unnecessarily from the
search standpoint), while other nodes may remain unvisited for a long time. The
number of hops taken to find the resource is called the search length of that
walk. The performance of this direct application of random walks to network
search has been studied in [1,2,3,4,5].

The use of random walks for resource location has several clear applications,
like unstructured peer-to-peer (P2P) file sharing systems or content-centric net-
works (CCN) [6]. The latter are networks in which the key elements are named
content chunks, which are requested by users using the content name. Content
chunks have to be efficiently located and transferred to be consumed by the user.
The techniques described in this paper could be used in the context of CCN to
locate content chunks.

Contributions. This paper proposes an application to resource location of the
technique of concatenating partial walks (PW) available at each node to build
random walks. A PW is a precomputed random walk of fixed length. Two varia-
tions are considered, depending on whether the search mechanism first randomly
chooses one of the PWs in the current node and then checks its associated infor-
mation for the desired resource, or it first checks all PWs in the node and then
randomly chooses among those with a positive result. Both of these variations
may use PWs that are simple random walks (RW) or self-avoiding random-
walks (SAW), resulting in four mechanisms referred to as choose-first PW-RW
or PW-SAW, and check-first PW-RW or PW-SAW, respectively. Our mecha-
nisms assume the use of Bloom filters [7] to efficiently store the set of resources
(not their owners) held by the nodes in each partial walk. The compactness of
Bloom filters comes at the price of possible false positives when checking if a
given resource is in the partial walk. False positives occur with a probability p,
which is taken into account in our analyses. These assumptions provide gener-
ality to our model, since a probability of p = 0 models the case in which the full
list of resources found are stored (instead of using a Bloom filter).

We provide an analytical model for the choose-first PW-RW technique, with
expressions for the expected search length, the optimal length of the partial walks,
and for the optimal expected search length. We found that, when the probability

146 V.M. López Millán et al.

of false positives in Bloom filters is small, the optimal expected search length
is proportional to the square root of the expected search length achieved by
simple random walks, in agreement with the results in [8]. Another interesting
finding is that the optimal length of the partial walks does not depend on the
probability of false positives of the Bloom filters. We also provide analytical
models for the choose-first PW-SAW mechanism as well as for the check-first
variations, which predict their expected search length. Then, the predictions of
the models are validated by simulation experiments in three types of randomly
built networks: regular, Erdős-Rényi, and scale-free. These experiments are also
used to compare the performance of the four mechanisms, and to investigate
the influence of parameters as the false positive probability and the number of
partial walks per node. Finally, we have compared the performance of the four
search mechanisms with respect to simple random walk searches. For choose-
first PW-RW we have found a reduction in the average search length ranging
from around 98% to 88%. For choose-first PW-SAW such a reduction is even
bigger, ranging from 12% to 5% with respect to PW-RW. Check-first PW-RW
and PW-SAW can achieve still larger reductions increasing the number of PWs
available at each node.

Related Work. Das Sarma et al. [8] proposed a distributed algorithm to obtain a
random walk of a specified length � in a number of rounds1 proportional to

√
�. In

the first phase, every node in the network prepares a number of short (random)
walks departing from itself. The second phase takes place when a random walk
of a given length starting from a given source node is requested. One of the short
walks of the source node is randomly chosen to be the first part of the requested
random walk. Then, the last node of that short walk is processed. One of its
short walks is randomly chosen, and it is connected to the previous short walk.
The process continues until the desired length is reached.

Hieungmany and Shioda [9] proposed a random-walk-based file search for P2P
networks. A search is conducted along the concatenation of hop-limited shortest
path trees. To find a file, a node first checks its file list (i.e., an index of files
owned by neighbor nodes). If the requested file is found in the list, the node
sends the file request message to the file owner. Otherwise, it randomly selects a
leaf node of the hop-limited shortest path tree, and the search follows that path,
checking the file list of each node in it.

The use of partial random walks in resource location has been proposed in [10]
for networks with dynamic resoures. Our work in this paper incorporates efficient
storage by means of Bloom filters, in the context of static resources. The use of
SAWs as PWs is also proposed and compared with simple RWs.

Structure. The next section presents a model for the four search mechanisms
proposed. Then, the choose-first PW-RW is evaluated in Section 3. For the

1 A round is a unit of discrete time in which every node is allowed to send a message
to one of its neighbors. According to this definition, a simple random walk of length
� would then take � rounds to be computed.

Improving Resource Location with Locally Precomputed Partial RWs 147

sake of clarity, the choose-first PW-SAW mechanism is covered separately in
Section 4, which includes the corresponding analysis together with performance
results. Similarly, the check-first PW-RW/PW-SAW mechanisms are presented
in Section 5.

2 Model

Let us consider a randomly built network of N nodes and arbitrary topology,
whose nodes hold resources randomly placed in them. Resources are unique, i.e.,
there is a single instance of each resource in the network. The resource location
problem is defined as visiting the node that holds the resource, starting from
a certain node (the source node). For each search, the source node is chosen
uniformly at random among all nodes in the network.

The search mechanisms proposed in this paper exploit the idea of efficiently
building total random walks from partial random walks available at each node
of the network. This process comprises two stages:

(1) Partial Walks Construction. Every node i in the network precomputes a set
Wi of w random walks in an initial stage before the searches take place. Each
of these partial walks has length s, starting at i and finishing at a node reached
after s hops. In the PW-RW mechanism, the partial walks computed in this
stage are simple random walks. During the computation of each partial walk in
Wi, node i registers the resources held by the s first nodes in the partial walk
(from i to the one before the last node). As mentioned, for generality, we assume
that the resources found are stored in a Bloom filter. This information will be
used in Stage 2. Bloom filters are space-efficient randomized data structures to
store sets, supporting membership queries. Thus, the Bloom filter of a partial
walk can be queried for a given resource. If the result is negative, the resource is
not in any of the nodes of the partial walk. If the result is positive, the resource
is in one of the nodes of the partial walk, unless the result was a false positive,
which occurs with a certain probability p.2 The size of the Bloom filters can be
designed for a target (small) p considered appropriate. A variation of the partial
walk construction mechanism consists of using PWs that are self-avoiding walks
(SAW). The resulting mechanism, called PW-SAW, is analyzed in Section 4.

(2) The Searches. After the PWs are constructed, searches are performed in
the following fashion when the choose-first PW-RW/PW-SAW mechanisms are
used. When a search starts at a node A, a PW in WA is chosen uniformly at
random. Its Bloom filter is then queried for the desired resource. If the result is
negative, the search jumps to node B, the last node of that partial walk. The
process is then repeated at B, so that the search keeps jumping in this way
while the results of the queries are negative. When at a node C, the query to
the Bloom filter (of the PW randomly chosen from WC) gives a positive result,

2 More concretely, p is the probability of obtaining a positive result conditioned on
the desired resource not being in the filter.

148 V.M. López Millán et al.

the search traverses that partial walk looking for the resource until the resource
is found or the partial walk is finished. If the resource is found, the search stops.
If the search reaches the last node D of the partial walk without having found
the resource in the previous nodes, it means that the result of the Bloom filter
query was a false positive. The search then randomly chooses a partial walk
in WD and decides whether to jump over it or to traverse it depending on the
result of the query to its Bloom filter, as described above. A variation of this
behavior consists of first checking all PWs of the node for the desired resource,
and then randomly choosing among the ones with a positive result. The resulting
mechanisms, called check-first PW-RW/PW-SAW are analyzed in Section 5.

In this work, we are interested in the number of hops to find a resource (when
PWs of length s are used), which is defined as the search length and denoted
Ls. Some of these hops are jumps (over PWs) and other are steps (traversing
PWs). In turn, we distinguish between trailing steps, if they are the ones taken
when the resource is found, and unnecessary steps, if they are taken when the
resource is not found. The search length is a random variable that takes different
values when independent searches are performed. The search length distribution
is defined as the probability distribution of the search length random variable.
We are interested in finding the expected search length, denoted Ls. Figure 1
summarizes the behavior of the search mechanisms.

Fig. 1. An example of search, using PWs of length s = 6

At this point, we emphasize the difference between the search just defined
and the total walk that supports it, consisting of the concatenation of partial
walks as defined above. Searches are shorter in length than their corresponding
total walks because of the number of steps saved in jumps over partial walks in
which we know that the resource is not located (although these saving may be
reduced by the unnecessary steps due to Bloom filter false positives).

3 Choose-First PW-RW

3.1 Analysis of Choose-First PW-RW

We make an additional assumption in order to simplify this analysis. Once a
PW has been used in the total walk of a search, it is never reused again in that

Improving Resource Location with Locally Precomputed Partial RWs 149

total walk or in any other searches. Thus we guarantee that the total walks are
true random walks. This implies that in practice each node needs to have a large
number of precomputed partial walks (w), assumption that would compromise
the benefits of the proposed mechanism in practice. Simulations in Section 3.3
show that real cases with small w behave very similarly to the base case provided
by this analysis.

Let Ls be the random variable representing the number of hops in the search
(i.e., its length) when PWs of length s are used. The expected search length is
denoted by Ls. Let L be the random variable representing the number of hops
of the corresponding total walk. Its expected search length is denoted L. Making
use of the assumption that partial walks are never reused, L can be viewed as
the length of a search based on a simple random walk in the considered network,
and L as the expected search length of random walks in that network. Then, we
can state the following theorem:

Theorem 1. If the expected number of trailing steps is assumed to be uniformly
distributed in [0, s− 1]3, then the expected search length is:

Ls =

(
s

2
+

2L+ 1

2s
− 1

)
· (1− p) + L · p. (1)

Proof. Let P , J , U and T be random variables representing the number of partial
walks, jumps, unnecessary steps and trailing steps in a search, respectively. Their
expectations are denoted as P , J , U and T . Since hops in a search can be jumps,
unnecessary steps or trailing steps, it follows that, Ls = J + U + T. Then, the
expected search length for partial walks of size s is4 Ls = J + U + T .

The expected number of jumps can be obtained from the expected number
of partial walks in the search (P) and from the probability of false positive (p)
as J = P · (1 − p), since J follows a binomial distribution B(P, 1 − p), where
the number of experiments is the random variable representing the number of
partial walks in a search (P) and the success probability is the probability of
obtaining a negative result in a Bloom filter query (1 − p).5

For the expected number of unnecessary steps, U = P · p · s, since P · p is the
expected number of false positives in the search and each of them contributes
with s unnecesary steps. The number of partial walks in a search can be obtained
dividing the length of the total walk by the size of a partial walk: P =

⌊
L
s

⌋
=

L−T
s . Then, the expected number of partial walks in a search is P = L−T

s .

3 This is, in fact, a pessimistic assumption. The distribution of trailing steps is ap-
proximately uniform, but shorter walks have a slightly higher probability than longer
ones. This can be shown analytically and has been confirmed in our experiments (see
Appendix A in [11]). Therefore, the expected value in our analysis, derived from a
perfectly uniform distribution, is slightly higher than the real average value.

4 In the following, we make implicit use of the linearity properties of expectations of
random variables.

5 If Y is a random variable with a binomial distribution with success probability p, in
which the number of experiments is in turn the random variable X, it can be easily
shown that Y = X · p (see Appendix B in [11]).

150 V.M. López Millán et al.

Since we assume that the expected number of trailing steps is uniformly dis-
tributed between 0 and (s− 1), its expectation is T = s−1

2 .
Using the previous equations we have:

Ls =

(
s

2
+

2L+ 1

2s
− 1

)
+ p ·

(
L−

(
s

2
+

2L+ 1

2s
− 1

))
, (2)

where the first term is the expectation of the search length for a “perfect” Bloom
filter (one that never returns a false positive) and the second term is the expec-
tation of the additional search length due to false positives.

Another interpretation of this expression is obtained if we reorganize it to
make explicit the contributions of a perfect filter and of a “broken” filter (one
that always returns a false positive result when the resource is not in the filter,
i.e., p = 1) as

Ls =

(
s

2
+

2L+ 1

2s
− 1

)
· (1− p) + L · p. (3)

From this theorem and using calculus, we have the following corollary.

Corollary 1. The optimal length of the partial walks, i.e., the length of the
partial walks that minimizes the expected search length, is:

sopt =
√
2L+ 1. (4)

The obtained value needs to be rounded to an integer, which is omitted in the
notation. Observe that the optimal length of the partial walks is independent
from the probability of false positives in the Bloom filters, while the expected
search length (Ls) does of course depend on it.

Corollary 2. The optimal expected search length, i.e., the expected search length
when partial walks of optimal length are used, is:

Lopt =
(√

2L+ 1− 1
)
(1 − p) + Lp = (sopt − 1) (1− p) + Lp. (5)

This result is an interesting relation between the optimal length of the search and
the optimal length of the PWs. If we consider perfect Bloom filters (p = 0), we
have Lopt = sopt − 1, which for large L (e.g. for large networks) becomes Lopt ≈
sopt. Therefore, we have found that, for large N and p = 0, the optimal expected
search length approximately equals the optimal length of the partial walks. For
arbitrary values of p, Equation 5 shows that Lopt is linear in p.

This completes the analysis of choose-first PW-RW. Appendix D in [11] pro-
vides an alternative analysis using a different approach. Instead of assuming
that the total walk is a random walk, it considers that it is built using the w
PWs available at each node, which avoids the need of L. On the other hand, the
alternative model does not provide expressions for Lopt or sopt.

Improving Resource Location with Locally Precomputed Partial RWs 151

3.2 Cost of Precomputing PWs

Since searches use the partial walks precomputed by each of the nodes of the
network, the cost of this computation must be taken into account. We measure
this cost as the number of messages Cp that need to be sent to compute all the
PWs in the network. This quantity has been chosen to be consistent with our
measure of the performance of the searches. Indeed, each hop taken by a search
can be alternatively considered as a message sent. In addition, Cp is independent
from other factors like the processing power of nodes, the bandwidth of links and
the load of the network. The cost of precomputing a set of PWs can be simply
obtained as Cp = Nw(s+1), since each of the N nodes in the network computes
w partial walks, sending s messages to build each of them plus one extra message
to get back to its source node.

Let’s suppose that each node starts on the average b searches that are pro-
cessed by the network with the set of PWs precomputed initially. We define Cs

to be the total number of messages needed to complete those searches. If the
expected number of messages of a search is Ls + 1 (counting the message to get
back to the source node), we have that Cs = Nb(Ls + 1). Now, defining Ct as
the average total cost per search, we can write:

Ct =
Cs + Cp

Nb
= (Ls + 1) +

w

b
(s+ 1). (6)

The second term in Equation 6 is the contribution to the cost of the precomputa-
tion of the PWs. This contribution will remain small provided that the number
of searches per node in the interval is large enough.

3.3 Performance Evaluation

The goal of this section is to apply the model for choose-first PW-RW presented
in the previous section to real networks, and to validate its predictions with
data obtained from simulations. Three types of networks have been chosen for
the experiments: regular networks (constant node degree), Erdős-Rényi (ER)
networks and scale-free networks (with power law on the node degree). A network
of each type and sizeN = 104 has been randomly built with the method proposed
by Newman et al. [12] for networks with arbitrary degree distribution, setting
their average node degree to k = 10. Each network is constructed in three steps:
(1) a preliminary network is constructed according to its type; (2) its degree
distribution is extracted, and (3) the final (random) network is obtained feeding
the Newman method with that degree distribution. For each experiment, 106

searches have been performed, with the source node chosen uniformly at random
among the N nodes. Likewise, the resource has been placed in a node chosen
uniformly at random for each experiment.

Optimal PW Size and Expected Search Length in Choose-First
PW-RW. We start by applying Theorem 1 to the networks described above

152 V.M. López Millán et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300 350 400

ex
pe

ct
ed

 s
ea

rc
h

le
ng

th
 (

ho
ps

)

partial walks size (hops)

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350 400

sopt

E(L)opt

scale-free, p=0 (simul)
 (model)

ER, p=0 (simul)
 (model)

regular, p=0 (simul)
 (model)

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 0.2 0.4 0.6 0.8 1

op
tim

al
 e

xp
ec

te
d

se
ar

ch
 le

ng
th

 (
ho

ps
)

probability of false positives

E(L)

regular
ER

scale-free

(b)

Fig. 2. (a) Expected search length (Ls) as a function of s when p = 0 in a regular
network, an ER network and a scale-free network. The optimal points (sopt, Lopt) for
each network are (150, 149), (157, 156), and (174, 173). (b) Optimal expected search
length (Lopt) as a function of p.

to obtain the expected search length as a function of the size of the PWs.6

Figure 2(a) provides plots of the expected search lengths (Ls) given by Equa-
tion 1 as a function of the size of the PWs (s), when the probability of a false
positive in the Bloom filter is set to p = 0, for the three types of networks con-
sidered. Results from the analytical model are shown as curves while simulation
data are shown as points. The curves for the three networks show a minimum
point (sopt, Lopt). This behavior is due to the fact that, when s is small, the
number of jumps needed to reach a PW containing the chosen resource grows,
therefore increasing the value of L. In turn, for larger values of s, the number of
trailing steps within the last PW grows, also increasing the value of L.

Figure 2(b) shows the linear relation between Lopt and p (Equation 5). The
regular network exhibits the smallest slope, followed by the ER network and
then by the scale-free network. For p = 0, Equation 5 degenerates to Lopt = L,
since the search performs all the hops of the total walk (i.e., it is a RW). In fact,
Equation 1 also degenerates to Ls = L in this case, meaning that the expected
search length is that of random walk searches regardless the size of the PWs (s).

Distributions of Search Lengths in Choose-First PW-RW. The aim of
this section is to experimentally explore how the use of PWs affects the statistical
distribution of search lengths.

6 For each network, the expected length of a random walk search (L) is needed. We es-
timate these simulating 106 simple random walk searches and averaging their lengths
for each network. Average search lengths are denoted in lowercase (l) to distinguish
them from the actual expected value (L) in the model. The values obtained are:
lreg = 11246, lER = 12338, and lsf = 15166). These results agree with the approx-
imate analytical method in [13] (a modification of the one provided in [5]), which
produces the following results: lreg = 11095, lER = 12191, and lsf = 14920.

Improving Resource Location with Locally Precomputed Partial RWs 153

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200 400 600 800 1000 1200

nu
m

be
r

of
 s

ea
rc

he
s

search length

s = 150
average: 148.8

s = 1000
average: 502.6

s = 50
average: 248.9

frequency for s=50
average

frequency for s=150
average

frequency for s=1000
average

(a) Search lengths for p = 0 and
for s = sopt = 150, s = 50 and s = 1000.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200 400 600 800 1000 1200 1400

nu
m

be
r

of
 s

ea
rc

he
s

search length

p = 0
average: 148.8

p = 0.01
average: 259.9

p = 0.1
average: 1259.7

frequency for p=0
average

frequency for p=0.01
average

frequency for p=0.1
average

(b) Search lengths for sopt and for
p = 0, 0.01, 0.1.

Fig. 3. Distributions of search lengths (histograms) with PWs that are not reused in
the regular network.

Length Distributions. We first obtain the lengths distributions of searches using
PWs that are never reused. Later in this section we will discuss the effect of hav-
ing a limited number of partial random walks that are reused. We consider each
random walk to be the total walk of a search based on PWs. For each original
random walk, we break it in pieces of size s, which are taken as the PWs that
make up the total walk. Then we consider a search that uses those PWs and
count the number of hops (jumps plus trailing steps plus unnecessary steps).
This gives the length of the search if it had been constructed using those (pre-
computed) PWs. Note that the PWs are not reused because they are obtained
from independent (real) random walks.

The search length distributions in the regular network for p = 0 and for
several values of s are shown in Figure 3(a). The average search lengths of each
distribution are also shown as vertical bars. These values are very close to the
expected values calculated with Equation 1 (L50 = 248.9, L150 = 149.0 and
L1000 = 510.2). Therefore, our model accurately predicts average lengths of
searches based on PWs of size s in the three types of networks considered.

The shape of the distributions is such that for low s (s = 50 in Figure 3(a))
search lengths are dominated by the number of jumps, which is proportional to
the length of the total walk. For high s (s = 1000 in Figure 3(a)) the distribution
adopts a rather uniform shape since search lengths are dominated by the number
of trailing steps, assumed to have an approximately uniform distribution between
0 and s − 1. The optimal length for the PWs, sopt (s = 150 in Figure 3(a)),
represents a transition point between these two effects. The shape is such that
the values around the average search length (which approximately equals sopt,
according to Equation 5) are also the most frequent.

Once it has been found the optimal length for the PWs sopt (known to be
independent of p), we investigate the effect of the probability of false positive of
Bloom filters in these distributions. Figure 3(b) shows the distributions of search

154 V.M. López Millán et al.

lengths (histograms) for the regular network when s = sopt and for several values
of p. It can be seen that the distributions get wider and lower as p grows, pushing
average search lengths to higher values, in accordance with Figure 2(b). However,
we observe that the most frequent lengths remain the same regardless of the
value of p. For p = 0, the most frequent value for each network approximately
equals the average search length which, in turn, approximately equals the optimal
length of the PWs (sopt = 150 for the regular network). For greater values of p,
the average search length grows while the most frequent value stays the same.
Distributions for the ER and the scale-free networks have similar shapes and are
omitted here. However, they have been used in Table 1(a) (explained below).

Effect of Reusing PWs. At this point, we note that we have been assuming that
PWs are never reused. However, in practical scenarios it seems quite reasonable
to consider a limited number of partial random walks that are reused. In Ap-
pendix F of [11] we have explored the distributions of search lengths when the
total walks are built reusing a limited number w of PWs precomputed in each
node. As it can be readily seen there, we conclude that, for the types of networks
in our experiment, just two precomputed PWs per node are enough to obtain
searches whose lengths are statistically similar to those that would be obtained
with PWs that are not reused. So, we can say that our results using not reused
PWs are also valid when using a limited number of PWs that are reused.

Comparison of Performance with Respect to Random Searches. Fi-
nally, in Table 1(a) we compare the performance of the proposed mechanism
and that of random walk searches. The reduction in the average search length
that PW-RW achieves with respect to simple random walks is lower for higher
p, ranging from around 98% in the case when p = 0 to 88% when p = 0.1.
Furthermore, we also see that the achieved reductions are independent of the
network type.

Table 1. Reductions of average search lengths

(a) PW-RW with respect to random
walk searches

Reduction of l (%)

Network type p = 0 p = 0.01 p = 0.1

Regular 98.67 97.68 88.73
ER 98.71 97.68 88.42
Scale-free 98.83 97.79 88.43

(b) PW-SAW with respect to PW-RW

Reduction of l (%)

Network type p = 0 p = 0.01 p = 0.1

Regular 5.67 8.22 11.24
ER 6.25 9.10 11.88
Scale-free 6.53 9.75 12.65

4 Choose-First PW-SAW

As it was pointed in Section 2 when describing the PW construction mechanism,
a possible variation consists of using self-avoiding walks (SAW) instead of RWs.

Improving Resource Location with Locally Precomputed Partial RWs 155

The resulting mechanism is called PW-SAW. The aim is to revisit less nodes,
increasing the chances of locating the resource. In short, a SAW chooses the
next node to visit uniformly at random among the neighbors that have not been
visited so far by the walk. If all neighbors have already been visited, it chooses
uniformly at random among all neighbors, like a simple random walk.

Analysis of Choose-First PW-SAW. When PWs are self-avoiding walks, their
concatenation is not a random walk, and hence Theorem 1 is no longer valid.
We state a new theorem here for the choose-first PW-SAWmechanism and prove
it in Appendix C of [11] using a different approach.

Theorem 2. If the expected number of trailing steps is assumed to be uniformly
distributed in [0, s− 1], then the expected search length of PW-SAW is

Ls =
1

N

∑
k

nk

(
1

ptp(k)
· (pn(k) + s · pfp(k)) + s− 1

2

)
. (7)

In the above theorem, pn, ptp, and pfp are the probabilities that the query of
the Bloom filter of the chosen PW in the current node returns a (true) negative,
a true positive, and a false positive result, respectively, as a funcion of k, the
degree of the node holding the resource. The proof in Appendix C of [11] gives
expressions for these probabilities.

Expected Search Length in PW-SAW. In this section, we compare the analytic
results from the model with experimental data from simulations. Figure 4(a)
shows the expected search length (Ls) as a function of the size of PWs (s) in a
regular network, an ER network and a scale-free network, for p = 0. The curves
in this graph are plotted using the equations in Appendix C of [11]).

According to the results computed using the PW-SAW model, the minimum
search lengths occur for values around s = 141, s = 149 and s = 167 for
the regular, ER and scale-free networks, respectively. These values are slightly
lower than the ones predicted by the PW-RW model (Figure 2(a)), which were
sopt = 150, 157 and 174, respectively.

Both the model curves and the simulation experiments have been computed
for w = 5, chosen as a reference value. However, it has been observed that very
similar results are obtained if we change the value of w. Furthermore, plots of
the model equations for different values of w are coincident. This behavior was
also observed for PW-RW (Section 3.3), where we found that the average search
length remained almost constant as we increased w. The reason for this is that
the probability of the resource being in the chosen PW does not depend on the
number of PWs in the node.

We now compare the results of the PW-RW and PW-SAW mechanisms. Fig-
ure 4(b) shows results for PW-RW (left part) and for PW-SAW (right part), in
the three networks considered in our study, and for values of p = 0, 0.01 and
0.1. Expected search lengths from the analytical models are shown as vertical
bars, while average search lengths from the simulations experiments are shown

156 V.M. López Millán et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300 350 400

ex
pe

ct
ed

 s
ea

rc
h

le
ng

th
 (

ho
ps

)

partial walks size (hops)

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350 400

scale-free, p=0 (simul)
(model)

ER, p=0 (simul)
model

regular, p=0 (simul)
(model)

(a) Vs. s for p = 0. Optimal points
(sopt, Lopt) are (141, 139.92), (149, 148.55),
and (167, 164.75).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

0 0.01 0.1 0 0.01 0.1

ex
pe

ct
ed

/a
ve

ra
ge

 s
ea

rc
h

le
ng

th
 (

ho
ps

)

prob. of false positive

regular (simul)
(model)

ER (simul)
(model)

scale-free (simul)
(model)

PW-RW PW-SAW

(b) Comparison with PW-RW for
p = 0, 0.01, 0.1.

Fig. 4. Expected search length of PW-SAW in a regular network, an ER network and
a scale-free network

as points. The size of the PWs has been set to s = 150, 157 and 174 for the
regular, ER and scale-free networks, respectively, which are the optimal values
predicted by the PW-RW model. For all the networks, we have found a very
good correspondence between model predictions and simulation results.

Comparison of Performance with Choose-First PW-RW. The reduction in the
average search length that PW-SAW achieves with respect to PW-RW for a
given p is largest for the scale-free network, followed by the ER network and
then by the regular network. For each network type, the reduction is larger for
higher p. Actual values can be found in Table 1(b).

5 Check-First PW-RW and PW-SAW

We now present the check-first versions of the PW-RW and PW-SAW mecha-
nisms, introduced in Section 2. Suppose the search is currently in a node and
it needs to pick one of the PWs in that node to decide whether to traverse it
or to jump over it. In the check-first mechanisms, it first checks the associated
resource information of all the PWs, and then randomly chooses among those
with a positive result, if any (otherwise, it chooses among all PWs, as the choose-
first version). Performance is improved since the probability of choosing a PW
with the resource increases. This comes at the expense of slightly incrementing
the processing power used since several PWs need to be checked, but without
incurring extra storage space costs.

A minor additional difference between the algorithms is that in the check-first
version, the resource information is registered from the first node (the node next
to the current node) to the last node in the PW. This change slightly improves
the performance of the new version, since the probability of choosing a PW with
the resource increases also in the cases where the resource is held by the last

Improving Resource Location with Locally Precomputed Partial RWs 157

node of the PW. We have adapted the analysis presented in Section 4 to reflect
the new behavior of the check-first mechanisms (see Appendix E of [11]).

Expected Search Length in Check-First PW-RW/PW-SAW. Figure 5 shows the
expected search length (Ls) vs. the size of PWs (s) in a regular network for the
four mechanisms presented, for p = 0.01 and w = 5. The check-first mechanisms
achieve a lower minimum expected search length than the original choose-first
mechanisms, as expected. In fact, the expected search length can be lowered
further by increasing w, the number of PWs per node, clearly at the expense
of increasing the cost of the PWs construction stage. In addition, the minimum
expected search length occurs for significantly lower s (sopt falls from 150 to
about 50), meaning shorter PWs in the nodes, which in turn decreases the cost
of the PWs construction stage. As for the PW-SAW mechanisms, we note that
both versions achieve a slight decrease in the expected search length with respect
to their PW-RW counterparts (which was already observed in Table 1). Results
for the ER and scale-free networks are similar and are omitted here.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

ex
pe

ct
ed

 s
ea

rc
h

le
ng

th
 (

ho
ps

)

partial walks size (hops)

regular network

w=5, p=0.01

choose-first PW-RW (simul)
(model)

choose-first PW-SAW (simul)
(model)

check-first PW-RW (simul)
(model)

check-first PW-SAW (simul)
(model)

Fig. 5. Expected search length of choose-first and check-first versions of PW-RW and
PW-SAW as a function of s in a regular network for p = 0.01 and w = 5

6 Future Work

The proposed mechanisms could be improved with new strategies to choose from
the PWs at the nodes. Smarter variants of RWs could be used as PWs. It would
be interesting to compare their application to unstructured P2P networks with
algorithms for structured overlays like DHT or quorum systems.

158 V.M. López Millán et al.

References

1. Lada, A., Adamic, R.M., Lukose, A.R.: Puniyani, and Bernardo A. Huberman.
Search in power-law networks. Physical Review E 64(046135) (2001)

2. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstruc-
tured peer-to-peer networks. In: Proceedings of the 16th International Conference
on Supercomputing, ICS 2002, pp. 84–95. ACM, New York (2002)

3. Yang, S.-J.: Exploring complex networks by walking on them. Physical Review
E 71(016107) (2005)

4. Gkantsidis, C., Mihail, M., Saberi, A.: Random-walks in peer-to-peer networks:
algorithms and evaluation. Performance Evaluation 63, 241–263 (2006)

5. Rodero-Merino, L., Fernández Anta, A., López, L., Cholvi, V.: Performance
of random walks in one-hop replication networks. Computer Networks 54(5),
781–796 (2010)

6. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N., Braynard,
R.: Networking named content. Commun. ACM 55(1), 117–124 (2012)

7. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey.
Internet Mathematics 1(4), 485–509 (2004)

8. Sarma, A.D., Nanongkai, D., Pandurangan, G., Tetali, P.: Distributed random
walks. J. ACM 2, 2:1–2:31 (2013)

9. Hieungmany, P., Shioda, S.: Characteristics of random walk search on embedded
tree structure for unstructured p2ps. In: International Conference on Parallel and
Distributed Systems, pp. 782–787 (2010)

10. Millán, V.M.L., Cholvi, V., López, L., Fernández Anta, A.: Resource location based
on partial random walks in networks with resource dynamics. In: Proceedings of
the 4th International Workshop on Theoretical Aspects of Dynamic Distributed
Systems, TADDS 2012, pp. 26–31. ACM, New York (2012)

11. Millán, V.M.L., Cholvi, V., López, L., Fernández Anta, A.: Improving resource
location with locally precomputed partial random walks. arXiv:1304.5100 (2013)

12. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary de-
gree distributions and their applications. Physical Review E 64(026118) (2001)

13. Millán, V.M.L., Cholvi, V., López, L., Fernández Anta, A.: A model of self-avoiding
random walks for searching complex networks. Networks 60(2), 71–85 (2012)

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 159–174, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Distributed B-Tree with Weak Consistency

Gregor V. Bochmann and Shah Asaduzzaman*

School of Electrical Engineering and Computer Science, University of Ottawa, Canada
bochmann@eecs.uottawa.ca
shah.asaduzzaman@gmail.com

Abstract. B-tree is a widely used data-structure indexing data for efficient
Retrieval. We consider a decentralized B-tree, were parts of the structure are
distributed among different processors and some parts are replicated, thus pro-
viding a decentralized indexing structure and parallel operations as desired by
modern-day cloud computing platforms. To accommodate the dynamic changes
due to data insertion/deletion and changes of the retrieval load, the state of the
B-tree is updated by splitting and merging tree-nodes. The traditional update al-
gorithms maintain strong consistency among the replicated states and possibly
involve very many tree-nodes. We show in this paper that data retrieval and up-
date can be performed correctly with much weaker consistency criteria. This
allows to decompose the necessary updates into smaller update operations that
involve only a limited number of tree-nodes, each. We show by analytical mod-
els and simulations that with weak consistency the average number of
tree-nodes that require updating is reduced compared to the traditional B-tree
update algorithms.

Keywords: B-tree, peer-to-peer systems, distributed data retrieval, weak
consistency, distributed update operations, distributed databases.

1 Introduction

Massive-scale computing platforms such as computing clouds frequently operate on
huge volumes of data. Highly parallel operations are desired by such platforms due to
the large number of processing units they have. Consequently, appropriate organiza-
tion of the data is required such that the high-volume and highly dynamic data set is
efficiently accessed and updated without any performance bottleneck.

B-tree is a widely used and well-understood data-structure to index data for effi-
cient retrieval. Highly parallel operations are desired by modern-day cloud computing
platforms on high-volume and highly dynamic sets of data. This motivates decentra-
lized indexing structures for data-organization.

In fact, the biggest concern for the cloud computing model, identified in the dis-
cussion on the cloud computing research agenda [5] and afterwards, is the enormous
overhead and the resulting infeasibility of the strong consistency model assumed in
many well-known operations in distributed systems. Thus, it is desired that distributed

* Now with Telenav, Inc., USA.

160 G.V. Bochmann and S. Asaduzzaman

and replicated-state data structures be designed in a way that they can tolerate some
degree of inconsistency and still function appropriately. This motivates us to design a
distributed implementation of the B-tree data structure that works with weak consis-
tency among its replicated components but provides strong consistency in terms of
search semantics.

 In this paper we identify the consistency conditions that are sufficient for correct
and efficient search operation on the distributed B-tree indexing data structure
(Section 3). We then define algorithms for updating the data structure keeping these
consistency conditions maintained (Section 4). The data structure is generalized for
key-spaces of arbitrary dimensions. The system model, assumptions and the particular
way of distributing the B-tree structure are introduced in Section 2.

2 System Model and Assumptions

2.1 B-Tree Structure

We consider the B+ -tree variant of the B-tree, which is possibly the most widely used
variant of the data structure. In a B+ -tree, all nodes have the same structure. Each of
the leaf nodes maintains data-keys pertaining to a certain range in the key-space. Each
internal node effectively maintains a list of entries, each containing a key-range and a
pointer to some other node corresponding to this range. B-trees were designed for
indexing one-dimensional data-spaces. So, the ranges were effectively expressed by
integer data-keys, or points in the linear key-space.

Among the design goals of B-trees were (a) efficient use of disk blocks, and (b)
keeping the search tree balanced while growing or shrinking. For keeping the tree
balanced, a global parameter d is introduced which defines the maximum number of
entries to be held by a node. The root node of the tree describes the whole key-space
or key-universe and each of the other nodes describes a portion or sub-range of the
data-universe. Describing a range means dividing the range into sub-ranges and main-
taining pointers to the child nodes that describe each of the sub-ranges. If n is the
number of child pointers or sub-ranges described by a node, one normally maintains
the relation ⌈d/2⌉ ≤\ ≤d in order to balance the amount of information stored in each
node. In the case of a one-dimensional key-space (as used in our examples), a
sub-range is characterized by two key values, the minimum and maximum key values
of the sub-range.

In the following general discussion and the presented algorithms, we assume a
generalization of B-trees for key-spaces of arbitrary dimensions, instead of a single
dimension. Thus, we avoid any particular way of expressing the division of ranges,
such as by points for one dimension as in a B-tree, or by lines or rectangles for two-
dimensions as in Rtree [8] or Quad-tree [7]. We assume that each tree-node maintains
the definitions of N sub-ranges of the whole range it describes, along with one pointer
to another tree-node for each of the sub-ranges. Figure 1(a) shows an example of such
B-tree. In all our examples in this paper, we use a one-dimensional key-space with
consecutive sub-ranges. In the rest of the paper, the term B-tree will be used to denote
a centralized implementation of such a generalized tree-based indexing structure.

 Distributed B-Tree with Weak Consistency 161

2.2 Distributed Implementations of B-Tree

When the number of data records is huge and/or the access load becomes too large for
a single computer, a distributed B-tree must be considered. Simply replicating the
whole data structure on several computers is not practical because of the difficulty of
the update operations. In this paper we consider what we call “decentralized distribu-
tion”. For disambiguation between tree-nodes and processing nodes, we denote the
latter as processor, while node refers to tree-nodes.

Centralized Distribution. The intuitive method for distributing the tree data structure
is to place each tree-node on one processor. The scalable distributed B-tree proposed
by Aguilera et al. [2] and the tablet hierarchy in the internal representation of
Google’s Bigtable [6] structure use such representations. Although this allows the
update algorithms on the structure for data insertion/deletion to be similar to the cen-
tralized version, the processors holding the root or the higher level tree-nodes get
overburdened with search traffic. A typical solution to this problem, used in both [2]
and [6], is caching or replicating the higher level nodes of the tree in the user or client
computers, such that traversing higher level nodes can be avoided. However, this
involves additional overhead for maintaining consistency among the replicas, and
may not be suitable for highly dynamic data sets.

Decentralized Distribution. An alternative distribution of the tree structure is possi-
ble, following the decentralized design philosophy, assigning equal workload and the
same role to each processor node. So, instead of assigning the responsibility of one
tree-node to one processor, one branch of the tree, i.e. the path from root to a
leaf node, is assigned to one processor. Thus, the higher level tree-nodes are, in a
sense, replicated in proportion to their usage, and hence, the workload due to traversal
operations is equally distributed among the processors.

To represent a branch of the tree, each processor i maintains a routing table data
structure RTi with multiple levels, each level representing one node of the branch.
Level l of RTi , denoted as RTl

i, corresponds to a level-l node of the B- tree. RTl
i is a

set of entries or tuples c together describing a range LRl
i in the key-space. Each r is a

sub-range of LRl
i and the corresponding j refers to some processor j (may be i itself)

that holds the level l-1 node of the B-tree describing r, that is, RTl-1
i represents the

child node and LRl-1
i = r. Representation of one branch to the leaf-node f for the

example B-tree in Figure 1(a) is shown in Figure 1(b).
Because non-leaf nodes are replicated in multiple processors, one for each branch,

there are multiple options for j if l -1 is a non-leaf level, and any one of them may
be chosen for the entry <r, j>. Also, the range r for different entries in an RTl

i are
non-overlapping and the union of these ranges constitutes LRl

i (this is the same as in a
normal B-tree). The lowest level, RT0

i corresponds to a leaf node of the B-tree, and
stores the set of keys in the range LR0

i delegated to processor i, and the pointers to
corresponding data items. Note that the size of the tree state maintained at each pro-
cessor is O(logN), where N is the total number of keys in the whole structure.

162 G.V. Bochmann and S. Asaduzzaman

A similar distributed implementation of a tree structure has been proposed in [10],
called DPTree. Although a DPTree builds the tree-structure on top of a distributed
hash table used to name and discover the tree nodes, such decentralized structure can
be maintained without such overlay, as shown in [3] (see also [14]). In this paper we
do not consider distributed hash tables because we want to support range queries.

The above references consider that a single (global) B-tree is distributed and par-
tially replicated over all the processors. We call this situation global consistency. It
implies that updates of nodes in the upper part of the B-tree, which are replicated in
many processors, require complex update operations. We consider in this paper a
situation with weak consistency where an update of any node in the B-tree involves
only a few processors.

(a) An example of a B-Tree

(b) Consistent decentralized implementation of the B-tree. The view of the tree from
processor F (left). The routing table maintained by processor F is shown (right)

Fig. 1. A B-tree and its consistent decentralized implementation. The leaf-level tree- nodes are
referred by small letters (a, b, c, ...) and the processors holding the corresponding leaf-nodes are
referred by capital letters (A, B, C, ...)

2.3 Assumptions

We assume in this paper a decentralized distributed implementation of a B-tree as
described above. We assume that the processors can use an asynchronous message-
passing system [4], where each processor contains its own local memory (or persistent

 Distributed B-Tree with Weak Consistency 163

storage), the processors communicate among them through messages, all processors
run the same program and there is no master clock to synchronize the events in the
processors.

We follow a peer-to-peer model, where the search operation can be initiated from
any processor. Thus, the client application may consider any of the processors in the
distributed B-tree as a portal to the search service.

For fault-tolerance, a processor in our model may be realized by a small cluster of
computers, replicating the state of one processor. Details of implementing a fault-
tolerant processor from faulty processing nodes may be found at [11]. We assume that
a message sent to another processor is eventually received by that processor in finite
amount of time, although messages may be delivered out of order. The message chan-
nels may be made reliable through use of an end-to-end transport protocol [1]. We
assume a complete network model, where any processor is able to send messages to
any other processor as long as the address of that processor is known.

3 Search and Updates in Decentralized B-Tree

3.1 Search Algorithm

To search a target key dt (or a range rt) in the decentralized B-tree, the primary goal
is to find the processor i (or a set of processors P) such that dt ϵ LR0

i (or unioniϵP
includes rt). The search can be initiated from any processor. Navigation of the request
from the initiator to the target processor is performed by Algorithm 1. The initiator
processor calls the Algorithm 1 with level l parameter equal to the topmost level of its
own routing table.

Algorithm 1: Search(i, dt , l)
1: Initiator: processor i
2: Condition: a query received to resolve dt at level l
3: Action:
4: if l = 0 then
5: Result is processor i
6: else
7: Find <r,j> ϵ RTl

i , such that dt ϵ r
8: Forward the query to j as Search(j, dt , l -1)
9: end if

For range search, instead of finding one <r,j> ϵ RTl

i , all {<r,j> | r ∩ rt ≠ ϕ} are
looked up and the navigation proceeds next level to all the j’s in parallel. The time
complexity of both point and range search algorithms are clearly O(logN), although
the message complexity is higher for the range search (O(N) in the worst case, if all
the processors are included in rt).

164 G.V. Bochmann and S. Asaduzzaman

3.2 Updates in a Globally Consistent Decentralize B-tree

The data structure needs to be updated as keys are inserted or deleted. The B- tree
data structure grows with key-insertion by splitting a node when the number of entries
overflows, and shrinks with key-deletion by merging two sibling nodes. In the decen-
tralized B-tree, leaf level split and merger are simple. However, because non-leaf
nodes are replicated in many processors, split/merge operations in non-leaf levels
require a large number of nodes to be updated atomically, which may require the up-
dates to be coordinated by a single master processor. In the worst case, when the state
of the root node is changed, the update needs to be atomically propagated to all the
processors.

Figure 2(a) illustrates the split of the tree node f after insertion of data element 63
by maintaining a single consistent view of the tree at each processors. Splitting at the
leaf level is relatively simple. Part of the data-keys at processor F is now moved to a
new processor F2. Because the level-1 tree node is modified, level-1 at processors E
and G need to be updated. Also, whichever processor held F responsible for its level-0
range [60, 65) need to be updated about the change.

When the level-1 tree-node, containing the range [50, 70) needs to be split
(Figure 2(b)), it involves splitting the level-1 of processors E, F , F2 and G. This
causes the level-2 tree-node to have one new entry, which requires all the processors
E through K to add an entry at their level-2. Finally, whichever processors held any of
E, F , F2 or G responsible for its level-1 range now need to update their pointers. Thus
even a level-1 split for consistent B-tree with fan-out of only 2 - 4 involves atomic
update of the states at 10 - 12 processors.

The huge overhead of large-scale atomic updates in the consistent decentralized
B-tree structure motivates us to look for weaker consistency conditions that are easy
to maintain through much smaller-scale updates, and yet sufficient for correct search
operations.

3.3 How Much Consistency Is Needed?

Here we define consistency conditions among the components of the decentralized
B-tree structure maintained by different processors that are sufficient for ensuring
the correctness of the search operation through Algorithm 1, but weaker than the
constraint that all component-states are consistent with a single global B-tree.

First, any processor should be able to initiate the search, so every processor should
maintain a description of the key-space universe (U) at the topmost level of its
routing table. We call this condition invariant of universal coverage:

AU: for all i : LRm

i = U , where m is the highest level in RTi

 Distributed B-Tree with Weak Consistency 165

(a) Splitting leve-0 range [60,65)

(b) Splitting level-1 range [50, 70)

Fig. 2. Updates in a consistent decentralized B-tree. The original tree is shown in Figure 1

For correct navigation, if an entry <r, j> is in RTl
i , then its target j must describe at

least the range r at level l - 1. Formally, this defines the invariant of navigability:

AN: for all i and l : <r, j> ϵ RTl
i implies r is included in LRl-1

j

Another condition is necessary depending on the semantics of the search operation.
If we allow different processors to have overlapping local ranges at the leaf level, then
for a search query for dt , where dt ϵ LR0

i and dt ϵ LR0
j with i ≠ j, Algorithm 1 ensures

delivery of the query to at least one of i and j. This result is correct, if all keys in the
intersection of LR0

i and LR0
j are available in both TR0

i and TR0
j . If overlapping cov-

erage of ranges by different processor does not imply such exact replication of all
keys in the common range, then the usual semantics of search requires the query to
reach all such processors. To keep things simple, we impose the following invariant
of disjoint local ranges:

166 G.V. Bochmann and S. Asaduzzaman

ALR: for all i and l : i ≠ j implies LR0
i and LR0

j are disjoint.

Theorem 3.1: AU, AN and ALR are sufficient conditions for the correctness of ex- act
and range search operations in the decentralized B-tree using Algorithm 1.

Proof. Line 8 of Algorithm 1 ensures that the algorithm proceeds at least one level
towards level 0 at each hop. Thus the algorithm terminates in a number of steps not
larger than the maximum number of levels in the routing table of any processor.

At each hop in the navigation, an entry <r, j> ϵ RTl
i , dt ϵ r must always be found at

Line 7. AU ensures that, if such an <r1, p> is found at level l of the current processor
i, an entry <r2, q>, dt ϵ r2 can be found at level l - 1 of the next hop processor p. So, by
induction, we observe that the query is finally forwarded to a processor p such that dt ϵ LR0

p . ALR ensures that only one such processor exists. The proof can be easily
extended to show the correctness of the range-search algorithm.

The decentralized B-tree structure that maintains the conditions AU , AN and AR,
in general, is a weakly-consistent structure, because several conditions valid in the
consistent decentralized B-tree structure have been relaxed. For example, in the
normal B-Tree structure, we have a stronger invariant of navigablity

AN(strong): for all i and l : <r, j> ϵ RTl
i implies r = LRl-1

i
where r is equal to LRl-1

i instead of included. Also, in the consistent structure, each
level of the routing table contains a self-pointer, i.e. the condition

Self-pointer: for all i and l : there exist <r, j> ϵ RTl
i

is valid, but this is not maintained in the weakly-consistent structure. In addition, the
number of levels of the routing table may be different for different processors. The
condition that each node in the tree must maintain a number of entries n such that ⌈d/2⌉ ≤ n ≤d, is also relaxed. The lower and upper limits are now rather soft-limits.
As a result, the cascaded split or merge operations are treated as separate update
operations.

Figure 3 shows how a weakly-consistent B-tree structure may grow through inser-
tion of data-keys. Initially, through the first three steps, the view of the tree remains
consistent for all three processors A, B and C . From step-4 onwards, different proces-
sors may have different views of the tree. It may be noted that with such weak-
consistent updates, the view of the data structure at some processors may no longer
remain a single connected tree. Rather, the view may be of several disconnected seg-
ments of the tree. Nevertheless, each processor maintains sufficient information to
route any search query originated at any processor.

The update operations are initiated independently and asynchronously by individ-
ual processors. Compared to the updates in a consistent B-tree shown in Figure 2,
which, even for a level-1 split, require updating the states of a large number of proc-
essors atomically, updates here are much less invasive. For example, starting from the
same states as in Figure 2, weak-consistent updates at level-1 could be initiated
independently by the processors E, F, F2 and G, and each of them would involve the
states of 3 - 4 processors known to them by routing table entries. The algorithms
presented in the next section will explain these asynchronous updates.

 Distributed B-Tree with Weak Consistency 167

Fig. 3. Evolution of a weak-consistent B-tree with asynchronous updates. To facilitate
asynchronous update, each processor i maintains a table BKi in addition to RTi . BKl

i holds the
names of all processors that hold RTl

i responsible for the whole or some part of LRl
i

168 G.V. Bochmann and S. Asaduzzaman

The update operations are initiated independently and asynchronously by individ-
ual processors. Compared to the updates in a consistent B-tree shown in Figure 2,
which, even for a level-1 split, require updating the states of a large number of proc-
essors atomically, updates here are much less invasive. For example, starting from the
same states as in Figure 2, weak-consistent updates at level-1 could be initiated inde-
pendently by the processors E, F, F2 and G, and each of them would involve the states
of 3 - 4 processors known to them by routing table entries. The algorithms presented
in the next section will explain these asynchronous updates.

Although the weak consistency leads different processors to maintain different
views of the tree, the search operation remains correct and can be initiated from any
processor. The search always progresses one level at each hop, and thus, terminates
after a number of hops equal to the maximum height of the tree (i.e. the maximum
level in the routing table) in any of the views.

4 Updates with Weak Consistency

In this section we describe the atomic update operations needed to adapt the
decentralized B-tree structure when data keys are inserted or deleted, or when some
processor is overloaded. The basic insertion and deletion operations works similarly
as in a traditional B-tree, i.e. first the target key (or its position) is searched, and then
the deletion or insertion is performed. Insertion of keys may cause overflow in a leaf
level node, which then splits, and the split may be cascaded to higher level nodes.
Similarly deletion of keys cause underflow and triggers merger of nodes. Because
lower and upper limits in the number of entries are now soft-limits, the cascading
splits (or mergers) are treated as separate atomic operations. Here we define the
atomic split and merge update operations for leaf level and non-leaf level separately.
The update algorithms assume that the three consistency conditions AU , AN and
ALR are satisfied when the update is started, and assure that the conditions will be
satisfied again when the update completes.

The update algorithms are triggered independently by any processor. One principle
followed in the design of the update algorithms is to modify the states of a minimal
number of processors. Specifically, the modification is limited to the neighbour
processors only, i.e. the processors known to the local routing table of the initiating
processor. To facilitate the updates, an additional table called backward pointer table
is maintained by each processor (the table of processor i is denoted as BKi). For any
processor i, BKi has the same number of levels as RTi . j ϵ BKi if and only if <r, i> ϵ
RTl+1

j .
Each update operation may need to modify the states (routing tables) of a few

neighbouring processors. To ensure correctness in the presence of concurrent updates,
some concurrency control mechanism must ensure atomicity of each update. To allow
a higher degree of parallelism, a version-number-based optimistic transaction proto-
cols may be used [9]. In this method, a counter or version number is maintained for

 Distributed B-Tree with Weak Consistency 169

the state of each processor. The version number is incremented whenever the state is
successfully modified. The initiating processor that executes the update algorithm
reads the necessary states along with their version numbers. After computing the
modified state locally, it then attempts to commit the new states to appropriate proc-
essors. The update transaction is aborted if any of the states in the write-set has a dif-
ferent version number than the one that was read initially. Aborted transactions are
retried at a later time. While describing the update algorithms, we clearly mention
which processor initiates it (initiator), and which state in which processors are read
(Readset) and updated (Writeset). Version control may be applied at different
granularities on the states. Each row of RT and BK tables at each processor may be
separately versioned for maximum parallelism.

4.1 Split Algorithms

Algorithm 2 describes the procedure to split the local range LR0
i of processor i into 2

disjoint ranges LR1 and LR2 , and offloading LR2 to a newly recruited processor j.
Because i loses part of LR0

i , for all p ϵ BK0
i , RT1

p need to add entries pointing to the
new processor j instead of i for the lost part of the range. BK0

i may include i if RT1
i

has a self-entry (Lines 6-13). In addition to the leaf level, the topmost level of the new
processor j’s routing table, RTm

j is initialized by a replica of RTm
i (Line 13). Mid-

levels of RTj remains empty. For the nodes newly pointed to by j at level m, their
backward pointers are updated (Line 14).

Algorithm 3 is executed when processor i wants to offload some entries from its
routing table RTl

i at level l > 0. Unlike the case of leaf-level split, no new processor is
recruited here. So, the major challenge here is to find an existing processor j, whose
routing table at the same level, RTl

j , either already contains some entries covering
some common range with LRl

i, or, have some space to take few entries from RTl
i. In a

consistent distributed B-tree, we have for all j : if <r, j> ϵ RTl
j then RTl

j = RTl
i . Thus,

neighbours in RTl
i are natural target for offloading part of RTl

i. In the weak-consistent
structure, it is not certain that such a j will be found in RTl

j , so, other neighbours are
searched including all backward pointers. Also, in the leaf-level split, the mid-levels
of the new processor’s routing table are kept empty. Non-leaf level splits are initiated
for the lowest overloaded level. So, there is high possibility of finding a j in RTl

i with
empty space in RTl

j .
Once a suitable j is found, the update procedure is straightforward. The entries are

transferred from RTl
i to RTl

j and BKl-1
p are updated for the processors corresponding

to the transferred entries (Lines 6-8). Then for the processors in BKl
i, i.e. those who

held i responsible for some part of LR l
i , now need to update for the range shifted to j,

by adding a new entry in the level l + 1 of their routing tables. Backward pointers of i
and j are also updated accordingly (Lines 9-13). Finally, if the topmost level of RTl

i is
split, one additional level is added to hold the pointer to the transferred range, such
that the whole universe is described.

170 G.V. Bochmann and S. Asaduzzaman

Algorithm 2: SplitLeafNode(i)
 1: Initiator: processor i
 2: Condition: RT0

i is overloaded, in terms of storage or access load
 3: Action:
 4: Partition RT0

i into two disjoint sets of keys D1, D2
 and LR0

i into two corresponding ranges LR1, LR2
 5: Find a new processor j
 6: RT0

i := D1 ; RT0
j := D2 ;

 7: LR0
i := LR1 ; LR0

j := LR2 ;

 8: for all p ϵ BK0
i do

 9: there must exist <x,i> ϵ RT1
p with x = LR0

i

10: RT1
p := RT1

p \ <x,i> union {< LR1, i> , < LR2, j> }
11: add {p} to BK0

j
12: end-for
13: RTm

j := RTm
i where m is the topmost level of RTi

14: for all p such that <r, p> ϵ RTm
i do add {j} to BKm-1

p

Algorithm 2: SplitNonLeafNode(i, l)
 1: Initiator: processor i
 2: Condition: RTl

i has too many entries or is causing too much routing load
 3: Action:
 4: find some existing processor j such that RTl

j is empty
 or has some overlap with LRl

i
 5: partition LRl

i into two subranges Rs and Rx
 where Rx is equal to the overlap (if there is one)
 and partition RTl

i into two corresponding sets Es and Ex
 6: RTl

i := RTl
i \ Ex

 7: if there is no overlap do RTl
j := Ex

 8: for all p such that <r, p> ϵ Ex do delete {i} from BKl-1
p and add {j}

 9: for all p ϵ BKl
i do

10: there must exist <x,i> ϵ RTl+1
p where x is included in LRl

i

11: remove <x, i> from RTl+1
p and add < Rs, i>

12: add < Rx, j> to RTl+1
p

13: add {p} to BKl
j ; if x ∩ Rs = ϕ do remove {p} from BKl

i
14: if l is the topmost level of the routing table RTi do
15: RTl+1

i := {< Rs, i> , < Rx, j> } ; add {i} to BKl
i

For finding an existing processor j that can be used for off-loading some of the en-

tries from RTl
i (see line 4 of the SplitNonLeafNode algorithm), we have explored two

algorithms by simulation [12] : (1) The Ping algorithm checks the descendants of RTl
i

in the distributed B-Tree to check whether their processor contains at level l en empty
routing table or a table that has an overlap with RTl

i . If no suitable processor j is
among them, then the algorithm checks the next-lower descendents of RTl

i in the tree,
possibly until level 0 is reached. (2) The Ping-Pong algorithm goes down one level
(like the Ping algorithm) but then follows the back-pointers that point to routing tables

 Distributed B-Tree with Weak Consistency 171

at level l. Because of the two steps, a larger number of processors is reached. Again, if
no suitable processor j is found, the Ping-Pong process is repeated by going down two
levels and going up two levels, and so on.

Our simulation studies confirmed that both of these algorithms always find a suit-
able processor j in reasonable time on average [12].

4.2 Merge Algorithms

When there are too few data items in a processor i, it decides to release itself by merg-
ing its items and routing table with those of another processor. Algorithm 4, described
in detail in an earlier version of this paper [13], describes the update procedure for
such a merger. First a suitable partner j for the merger is selected among the proces-
sors backpointed at level 0, such that RT1

j points to i for some range x included in
LR0

i. If RT1
i is pointing to j for some other range y, then after the merger, the two

entries <x, i> and <y, j> can be merged into <x union y, j>. Because processor i is
being released, all levels of its routing table are merged with the corresponding level
of j’s routing table. Accordingly, for all l and p ϵ BKl

j , RTl+1
p are updated.

Similar to the level-0 merger, if any other level l of the routing table of a processor
i is found under-loaded, the entries of that level can be merged with the same-level
entries in another processor. The merging partner, j, is found in a similar way as
before, among the p ϵ RTl+1

p , so that after the merger one entry is eliminated there. If
RTl+1

p is the topmost level, and contains only one entry after the merger, then that
level may potentially be eliminated. This procedure, called Algorithm 5, is also
described in [13].

4.3 Proving the Invariants

Theorem 4.1: The update algorithms, Algorithms 2, 3, 4 and 5 maintain the invari-
ants AU , AN and ALR .

AU: Algorithm 2 maintains AU in the newly joined processor j by copying the top
level of the routing table of i (Line 14). In Algorithm 3, the range LRl+1

p in all p ϵ
BKl

i remains unchanged by the modification following Line 9. If RTl
i is the topmost

level in RTi then the additional update in Line 14 ensures AU for processor i. Con-
cerning Algorithms 4 and 5, see [13].

AN: AN can be violated only when LRl
i for some processor i and some level l is re-

duced. In Algorithm 2, LR1
i is reduced, and so, RT1

p is updated for all p ϵ BK0
i to

maintain AN (Line 10). A similar update is performed in Line 13 of Algorithm 3, for
the reduction in LRl

i.

ALR: Violation of ALR is possible only when RT0
i is created or extended for any

i. In Algorithm 2, LR0 is modified for processors i and j only, and no overlap is
formed (Line 7). In Algorithm 4, LR0

i and LR0
j are merged into LR0

j , and then
processor i is removed. So no overlap is created. Algorithms 3 does not modify LR0
of any processor.

172 G.V. Bochmann and S. Asaduzzaman

In an elementary state of the decentralized B-tree structure, when there is only one
processor having only one level in its routing table, all the invariants AU , AN
and ALR are valid. So, by induction over successive updates, it can be proved using
Theorem 4.1 that all three invariants are always maintained for the structure. Also,
 all four update algorithms work assuming the three invariants only. Validity of the
backward pointers is also maintained in these algorithms whenever a forward pointer
is updated.

5 Discussion

As mentioned in Section 2.2, we use a decentralized distributed implementation of the
B-Tree similar to the BPTree [10] or as in [3]. The main difference is that we relax in
this paper the requirement for global consistency of the B-Tree data structure.
Through the use of the weak consistency the tree update operations (split and merge)
can be performed much more effectively. In the decentralized B-tree architecture, the
average number of processors involved in a routing table split operation at level l
(the SplitNonLeafNode algorithm described above) is (2 + b) which is independent of
the level. Here the number 2 accounts for the processor i of the node being split and
the node j to which some of the entries are transferred. b represents the average num-
ber of back-pointers of the split node. This value is equal to the average fan-out of a
node, which is ¾ d (if we assume that the relation ⌈d/2⌉ ≤\≤d is maintained).

In the case of a B-Tree with global consistency, all copies of the routing table at
level l must be updated concurrently in a single transaction. Since the number of cop-
ies of a routing table at level l is bl, this becomes a very big number when the level is
close to the root, and if the root table must be updated, this involves all processors.

This shows the main advantage of weak consistency. The main disadvantage of
weak consistency is the fact that it is more difficult to find a suitable processor for
node splitting or merging due to the irregular structure of the B-tree after repeated
data insertions and deletions. We note, however, that the average number of tree
nodes to be updated due to a single data object insertion is the same for strong and
weak consistency. If we assume that the number of data objects per processor is also
limited by d, then the probability that a data insertion leads to the splitting of a leaf
node is equal to 2/d (assuming that the number m of data objects is in the range ⌈d/2⌉
≤ m ≤ d). And such a split will lead to the update of b routing tables at level 1, where
again, for each of these updates, there is the probability of 2/d that the routing table at
level 1 will be split (i.e. b * 2/d = 1.5 splits at level 1), and so on. Therefore, the aver-
age number of routing tables to be split after one data object insertion is given by 2/d
(1 + 1.5 + 1.52 + … + 1.5N) . In the case of the B-Tree with weak consistency, these
splits can be performed as separate transactions, each involving only (2+b) processors
(as mentioned above). In the case of strong consistency, the probability of having a
split at level l after a data object insertion is equal to (2/d)l+1 , however, the number of
processors involved for an split at level l would be (¾ d) l , which becomes prohibi-
tive for the root node.

 Distributed B-Tree with Weak Consistency 173

6 Conclusion

We have demonstrated that it is possible to distribute a B-tree for data retrieval over a
large number of processors with partial replication of the interior nodes of the tree
over the different processors without full consistency. Enforcing only weak consis-
tency conditions necessary for the correct operation of the retrieval function, it is
possible to define tree update operations that can be initiated by one of the processors
and would involve only the local state of the tree and the state in a few neighbour
nodes, without requiring simultaneous updates in all processors that have a replica of
the state being updated.

We have proved that the new update algorithms maintain our weak consistency
conditions and that these conditions guarantee correct operation of the data retrieval
algorithm that requires L steps where L is the depth of the B-tree. Through our simu-
lation studies, we have shown that the depth of the tree can be maintained over a long
period of tree update operations at the optimal level of L = log(N), where N is the
number of processors in the system.

References

1. Afek, Y., Gafni, E.: End-to-end communication in unreliable networks. In: Proc. 7th ACM
Symposium on Principles of Distributed Computing, PODC 1988, pp. 131–148 (1988)

2. Aguilera, M.K., Golab, W., Shah, M.S.: A practical scalable distributed B-tree. Proc.
VLDB Endow. 1(1), 598–609 (2008)

3. Asaduzzaman, S., Bochmann, G.V.: GeoP2P: An adaptive peer-to-peer overlay for
efficient search and update of spatial information. Unpublished document (2009),
http://arxiv.org/abs/0903.3759

4. Bar-Noy, A., Dolev, D.: A partial equivalence between shared-memory and message-
passing in an asyn. fail-stop distr. env. Mathematical Systems Theory 26, 21–39 (1993)

5. Birman, K., Chockler, G., Renesse, R.V.: Toward a cloud computing research agenda.
ACM SIGACT News 40(2), 68–80 (2009)

6. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data.
ACM Transactions on Computing Systems 26(2), 1–26 (2008)

7. Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval on composite keys.
Acta Informatica 4(1), 1–9 (1974)

8. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. SIGMOD 84,
47–57 (1984)

9. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM Trans.
Database Syst. 6(2), 213–226 (1981)

10. Li, M., Lee, W., Sivasubramaniam, A.: DPTree: A Balanced Tree Based IndexingFrame-
work for Peer-to-Peer Systems. In: 14th IEEE ICNP, pp. 12–21 (November 2006)

11. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach:
a tutorial. ACM Computing Surveys 22(4), 299–319 (1990)

174 G.V. Bochmann and S. Asaduzzaman

12. Hafaiedh, K.B.: Studying the properties of a distributed decentralized B+ tree with weak
consistency. Master Thesis, University of Ottawa (Oct. 2012)

13. Asaduzzaman, S., Bochmann, G.V.: Distributed B-tree with weak consistency,
unpublished report, see
http://www.site.uottawa.ca/~bochmann/Curriculum/Pub/2010%20-
%20Distributed%20B-tree%20with%20Weak%20Consistency.pdf

14. Asaduzzaman, S., Bochmann, G.V.: A locality preserving routing overlay using geographic
coordinates. In: IEEE Intern. Conf. on Internet Multimedia Systems Architecture and
Application, Bangalore, India (December 2009)

Consistency in Distributed Storage Systems

An Overview of Models, Metrics
and Measurement Approaches

David Bermbach and Jörn Kuhlenkamp

Karlsruhe Institute of Technology,
Karlsruhe, Germany

firstname.lastname@kit.edu

Abstract. Due to the advent of eventually consistent storage systems,
consistency has become a focus of research. Still, a clear overview of con-
sistency in distributed systems is missing. In this work, we define and
describe consistency, show how different consistency models and perspec-
tives are related and briefly discuss how concrete consistency guarantees
of a distributed storage system can be measured.

Keywords: Consistency, Distributed Systems.

1 Introduction

In distributed storage systems replication can be used to increase durability
and availability of data as well as to enable fault tolerance and low latencies
for distributed clients. This comes with a price, though, as multiple copies add
the burden of keeping replicas identical. With the advent of the Internet and
lately Cloud Computing, replication has become the number one mechanism to
deal with scalability issues, load variance and large numbers of parallel requests.
This in turn has brought consistency to the attention of both businesses and
researchers as there is now a multitude of storage systems each offering different
consistency guarantees which cannot be easily measured. As the CAP theo-
rem and the PACELC model[18,1] mandate, there are direct trade-offs between
consistency and availability as well as consistency and request latency of a repli-
cated storage system and each system chooses a different spot on the continuum
of consistency guarantees between strict consistency and no consistency.

There is much work on consistency models, their implementations and mea-
surements, but the relationships between models and measurement approaches
is not always clear. Furthermore, researchers from the database community have
an entirely different understanding of consistency than researchers from the dis-
tributed systems community.

In this work, we try to shed some light on these issues. We start with a
brief description of what consistency means in both research communities before
taking the distributed systems view and analyzing different perspectives on con-
sistency as well as the relationship between various consistency models. Next, we

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 175–189, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

176 D. Bermbach and J. Kuhlenkamp

combine this with our previous work on consistency benchmarking and describe
continuous metrics and setups for experimental consistency measurements.

The main contribution of this work is, hence:

– A comprehensive overview of consistency models and guarantees, including
discussions why particular guarantees are useful in different use cases.

– An analysis how consistency models can be ordered by their strictness and
how client-centric guarantees relate to data-centric models.

– A discussion of different metrics to describe consistency guarantees as well
as a brief analysis of existing benchmarking approaches.

2 Definitions

The term consistency is derived from the latin word consistere which means
“standing together” or also “stopping together”. Hence, consistency generally
describes relationships between items that are somehow connected. When con-
sidering consistency of data, a consistent state requires that all relationships
between data items and replicas are as they should be, i.e., that the data rep-
resentation is correct. This focus on the correctness can be seen in both the
database as well as the distributed systems community – but on different levels.

2.1 Database Systems

Researchers from the (relational) database community focus on consistency in
the context of ACID guarantees. A set of operations is abstracted into a trans-
action that will execute entirely or not at all (atomicity). If it executes, its
changes will be permanently visible (durability). Multiple transactions may ex-
ecute concurrently but use suitable mechanisms to show the same behavior as if
all transactions were executed according to some global serializable order. This
can be done in various degrees of isolation1 ranging from true serializability
(which is rarely offered in actual products [5]) to read uncommitted. Transactions
guarantee that the database always adheres to a global schema (independent of
whether the database is replicated or not) where all integrity constraints, a set of
conditions and requirements, are observed [15] (consistency).

Hence, the consistency focus of database systems is on the relationships be-
tween data items and the overall correctness of the entire database. They can
be guaranteed in a distributed setting but it is expensive to do so as consistency
and isolation are typically guaranteed via locking mechanisms which create an
extensive communication overhead in a distributed setting. This is also caused
by the fact, that transactions were intended as “a simple programming abstrac-
tion to cope with concurrent executions, rather than to address the challenges
of a distributed setting.” [33].

1 Isolation describes the degree to which concurrent transactions are aware of each
other, e.g., by accessing the same data items.

Consistency in Distributed Storage Systems 177

2.2 Distributed Systems

Researchers from the distributed systems community investigate state shared
by multiple replicas, i.e., several copies of a datum exist which may or may not
be identical. Executions of operations on these replicas may read or change the
state at one or more replicas. Essentially, “a consistency criterion [or consis-
tency model] defines which executions of a distributed system are considered
correct” [21], i.e. which order of operations leaves the data in a correct state.

In the following, we will focus on the distributed systems perspective on con-
sistency which can be defined as follows:

A system is in a consistent state, if all replicas are identical and the
ordering guarantees2 of the specific consistency model are not violated.

3 Perspectives and Consistency Models

3.1 Perspectives on Consistency

In a distributed storage system there are two perspectives on consistency [34]:
the provider (i.e., the entity responsible for the deployment and operation of
a storage system) views the internal state of the system. His focus is on the
synchronization processes among replicas and the ordering of operations. Hence,
this perspective is called data-centric. The other perspective is the one of a
client of the storage system. Here, a client refers to the process that interacts
with the storage system which can be any kind of application, middleware or
even software running on the end user’s machine or mobile device. This client-
centric perspective views the system from the outside as a black box. Hence,
its focus is on the guarantees of the distributed storage system that could also
be captured as part of a service level agreement (SLA). Based on these two
perspectives, there are various consistency models either taking a client-centric
or data-centric perspective. Still, there is a relation between those models so that
some models and combinations thereof mean exactly the same thing while still
bearing different names.

Both perspectives have advantages and disadvantages for the analysis of
consistency guarantees – depending on the issue of interest. While data-centric
consistency models do not address concrete implementations or algorithms, they
certainly describe ordering properties that allow to develop a corresponding syn-
chronization protocol. The downside is that data-centric consistency models are
not really helpful to application developers. Client-centric consistency models de-
scribe the effects of such a synchronization protocol. While this is very helpful to
an application developer, it ignores completely how this could be implemented,
i.e., what internal synchronization protocols might deliver such a guarantee.

2 Ordering guarantees in this context describe how requests may be reordered on
different replicas.

178 D. Bermbach and J. Kuhlenkamp

3.2 Consistency Models and Implementations

Both data-centric and client-centric consistency guarantees have two dimensions:
ordering and staleness3. Staleness describes how much a given replica is lagging
behind, either expressed in terms of time (t-visibility) or versions (k-staleness)[4].
Again, k-staleness is a function of t-visibility and the update patterns of the ap-
plication so that, for application-independent information, t-visibility suffices to
characterize the staleness guarantees of a storage system. Low, bounded stale-
ness values can often be tolerated by applications as long as the corresponding
real-world events would have the same or higher staleness values without an IT
system. For example, when person A wires money to person B, the account of A
will be charged right away. Person B in contrast might not be credited for some
time. In the EU this time window is limited to three days which is far longer than
any replica synchronization protocol might take. Hence, small staleness values
will often not be noticed.

Ordering on the other hand is more critical. In a setting with strict consistency,
all requests must be executed on all replicas in their chronological order which is
hard to implement in distributed databases due to clock synchronization issues
as the replica servers might disagree on the actual chronological order of events.
The standard database mechanism of locking offers poor performance levels in
a distributed setting. Based on this, data-centric consistency models exist that
relax certain ordering requirements while keeping those that are essential to
applications. These models can be ordered by the “strictness” of their guarantees.
Client-centric consistency models take a different approach: While there will
almost certainly be cross effects between the models, the guarantees itself are
disjunct in their promises and complement each other. We will start by describing
client-centric consistency models before continuing to data-centric models and
how those two are related.

Client-centric Consistency. The first model, Monotonic Read Consistency
(MRC), guarantees that a client that has read a version n will thereafter always
read versions ≥ n [34,37]. This is helpful as from an application perspective
data visibility might not be instantaneous but versions at least become visible in
chronological order, i.e., the system never “goes backward” in time. For example,
imagine person B from our bank scenario above. If this person first sees the
credited amount on his bank account statement and then tries to transfer the
money to a person C which fails due to “insufficient funds”, this will at least
cause severe customer irritation if not more.

Read Your Writes Consistency (RYWC) guarantees that a client that has
written a version n will thereafter always be able to read a version that is at
least as new as n, i.e., ≥ n [34,37]. This helps, for example, to avoid user ir-
ritation when person A checks his bank account statement, does not see the

3 Yu and Vahdat[39] propose an additional dimension numerical error to describe
replica differences based on the semantics of the respective data item. From our
point of view, this is first not always applicable and second a numerical error is
essentially a function of ordering, staleness and application access patterns.

Consistency in Distributed Storage Systems 179

transaction and consequently wires the same amount of money again. Generally,
RYWC avoids situations where a user or application issues the same request sev-
eral times because it gets the impression that the request failed the first time.
For idempotent operations reissuing requests causes only additional load on the
system, while reissuing other requests will create severe inconsistencies.

Monotonic Writes Consistency (MWC) guarantees that two updates by the
same client will be serialized in the order that they arrive at the storage sys-
tem [34,37]. This is useful to avoid seemingly lost updates when an application
first writes and then updates a datum but the update is executed before the ini-
tial write and is, thus, overwritten. In the bank scenario above, person A might
have corrected the account number of person B before finalizing the transfer. If
MWC is not guaranteed, the money might end up in the wrong account.

Write Follows Read Consistency (WFRC) guarantees that an update following
a read of version n will only execute on replicas that are at least of version n [34].
This, also, helps against seemingly lost updates where the update is overwritten by
a delayed update request for versions ≤ n. This model essentially extends MWC
guarantees to updates by other clients that have at least been seen.

In NoSQL and Cloud storage systems, these client-centric properties are
typically not guaranteed explicitly. Benchmarks can be used to determine the
probability of violations or to measure the second dimension staleness [8,38].

Data-centric Consistency. In this section, we will present data-centric con-
sistency models ordered by the strictness of their guarantees and discuss for
each model how it can be translated into a client-centric consistency model. As
already discussed, there are two consistency dimensions: staleness and ordering.
The following consistency models (apart from Linearizability) do not consider
staleness [34]. In fact, increasing strictness of ordering guarantees often leads to
higher staleness values as updates may not be applied directly but are required
to fulfill dependencies first (e.g.,[3]).

The lowest possible ordering guarantee is typically described as Weak Con-
sistency [34,37]. As the name states, guarantees are very weak in that they do
not really exist. Essentially, weak consistency translates to a colloquial “repli-
cas might by chance become consistent”. While an implementation may or may
not have a protocol to synchronize replicas, a typical usecase can be found in
the context of a browser cache: it is updated from time to time but replicas will
rarely (if ever) be consistent. As Weak Consistency does not provide any ordering
guarantees at all, there is no relation to client-centric consistency models.

Eventual Consistency (EC) is a little stricter. It requires convergence of repli-
cas, i.e., in the absence of updates and failures the system converges towards a
consistent state. Updates may be reordered in any way possible and a consistent
state is simply defined as all replicas being identical [34,37]. EC is very vague in
terms of concrete guarantees but is very popular for web-based services. Most
NoSQL systems implement EC [16,11,26,17].

In terms of client-centric consistency guarantees, EC often fulfills these guar-
antees for a majority of requests but does not guarantee to do so. As an example,

180 D. Bermbach and J. Kuhlenkamp

Amazon S34 currently delivers MRC for about 95% of all requests whereas it
still violated MRC in about 12% of all requests in 2011 [8].

While there are certainly some usecases where EC cannot be applied, it often
suffices as the real world itself is inherently eventually consistent. The difference
is, that more conflict resolution is necessary at the application layer [16] requiring
a higher skill set from application developers. Instead of pessimistically locking
data items “guesses and apologies” are used [22].

Causal Consistency (CC) is the strictest level of consistency that can be
achieved in an always available storage system [30] based on the tradeoffs of
the CAP theorem [18]. In a causally consistent storage system, all requests that
have a causal relationship to another request must be serialized (i.e., executed)
in the same order on all replicas while unrelated requests may be serialized in
arbitrary order. A request r2 causally depends on a request r1

– if both requests are issued by the same client and r1 was received at the
storage system before r2,

– if r2 is a read that returns the result of r1 which is an update or

– if there is a transitive relation between both requests [34,37,9].

Of course, CC captures potential causality so that systems like COPS [29] have
to evaluate large dependency trees before applying an update. This both adds an
overhead and increases staleness as updates cannot become visible right away.
Bailis et al. [3] propose to minimize this impact by having the application explic-
itly define dependencies that need to be considered. A typical implementation
uses vector clocks to identify (potential) causal dependencies.

CC can also be defined via the client-centric guarantees discussed above: If
all four are fulfilled, the system is causally consistent [9]. It is also possible to
create the client-side illusion of CC with the combination of version caching and
vector clocks [7].

As Guerraoui and Hari point out, CC does not require replica convergence [21].
Convergence is only asserted when the latest update is causally dependent on
all previous writes since the last idempotent replace-update5 and staleness is
bounded.

Sequential Consistency (SC) is a very strict consistency model and cannot be
achieved in always available systems6. It requires that all requests are serialized
in the same order on all replicas and that requests by the same client are executed
in the order that they are received by the storage system [34]. While this model
does not guarantee anything about the recentness of values read by clients, it
mandates that all updates become visible to clients in the same order. Often,

4 aws.amazon.com/s3
5 i.e., some request like x := 5 which does not depend on any previous value.
6 In CC only requests with causal dependencies must be executed in the same order
on all replicas. For SC, this extends to all requests so that replicas need to agree
on the ordering of requests for non-causally related requests. This is not possible in
the presence of failures so that the system either becomes unavailable or violates its
consistency model.

aws.amazon.com/s3

Consistency in Distributed Storage Systems 181

SC is described as strict consistency which is not entirely true as staleness is not
addressed. But since real-world staleness values are often very small SC usually
suffices even for applications seemingly requiring strict consistency.

SC could, for example, be implemented using the Paxos algorithm [27]. Gen-
erally, vector clocks that define causal relationships can be in conflict (e.g., for
unrelated concurrent updates). If vector clocks are used for request ordering and
an approach exists that defines a transitive, global order for all conflicting vector
clocks, then a causally consistent system becomes sequentially consistent.

When focusing on client-centric consistency guarantees, the main difference
between CC and SC is that WFRC becomes global in so far as reads by all
clients are considered. This means that as soon as a client has seen a particular
version n, all updates by other clients will only be executed on replicas that have
already processed the update to version n. This guarantee can be provided as
SC guarantees that all replicas execute all updates in the same order. So, once a
version n has been read, it is guaranteed to have been finally serialized as that
version so that any updates will be serialized with a higher version number.

Linearizability (LIN) describes what is typically meant with strict consistency.
It does not only consider ordering but also staleness, i.e., it requires that all
requests are ordered chronologically by their arrival time in the system and that
all requests always see the effects of the preceding request. This can be visualized
as all operations happening instantaneously at a single point in time and not
during an interval of time [23].

LIN is hard to implement in distributed systems as there is always the is-
sue of clock synchronization (which is necessary to determine a chronological
order of requests). In practice, however, sufficiently high precision is achieved to
guarantee that violations are highly improbable to occur. Furthermore, in case of
violations LIN becomes SC between which applications will rarely notice a differ-
ence. While Consensus protocols can guarantee that all replicas serialize requests
in the same order, they cannot guarantee that all replicas execute requests in
the actual chronological order of arrival in the system. An implementation using
distributed locking is likely to show poor performance.

Expressed in terms of client-centric consistency guarantees, the difference
between SC and LIN is that both RYWC and MWC become global guaran-
tees. This means that a client will always see all updates and that all writes will
be executed in the (global) chronological order. MRC then also becomes global
as a side effect.

Beyond the data-centric consistency models discussed here, there are a few
other models (e.g., PRAM consistency [10]) which we leave out as no implemen-
tations exist and space within this paper is limited. Table 1 gives an overview
of the relationship between different client-centric and data-centric consistency
models. Entries “N/A” mean that the guarantee may be reached for single
requests from time to time but only based on chance. In contrast, “Often” spec-
ifies that such a guarantee is fulfilled for a large number of requests. “Single
Client” describes that the guarantees from section 3.2 are fulfilled, whereas we

182 D. Bermbach and J. Kuhlenkamp

Table 1. Relationship Between Data-centric and Client-centric Consistency Models
Ordered by the Strictness of their Guarantees

Data-centric Model MRC RYWC MWC WFRC

Weak Consistency N/A N/A N/A N/A
Eventual Consistency Often Often Often Often
Causal Consistency Single Client Single Client Single Client Single Client
Sequential Consistency Single Client Single Client Single Client Global
Linearizability Global Global Global Global

use “Global” to describe when such a guarantee is extended to all clients at the
same time.

Other Consistency Models. Beyond the models already discussed, there are
also a few other consistency models that do not quite fit the categorization used
so far.

Multi-dimensional Consistency: Yu and Vahdat [39] introduce the concept of
a conit, a consistency unit, which is a three dimensional vector that describes
tolerable deviations from LIN along the dimensions staleness, order error and
numerical error. As already mentioned, numerical error is often not applica-
ble and semantically overlaps with staleness and order error. When ignoring
numerical error, their work becomes comparable to the work of Torres-Rojas
et al.(e.g., [36,35]) who coined the term timed consistency. Timed consistency
models are also sometimes known as delta consistency and essentially describe a
combination of ordering and staleness in that the inconsistency window (defined
by the time period between the commit of an update and reaching a consistent
state) is bound. This means that the guarantees of a particular consistency model
are not reached right away but rather after a fixed period of time Δt. If repli-
cas fail to synchronize during that period of time, the item becomes unavailable
until consistency has been reached. This is particular useful for guaranteeing Ser-
vice Level Agreements (SLAs) and increases the transparency of the consistency
availability trade-off.

Sadly, to our knowledge no implementations of timed consistency models exist
apart from TACT [39] and the work of Krishnamurthy et al. [25] who guarantee
bounds on k-staleness (based on version count). It is possible, though, to spec-
ify a timed version for each of the data-centric consistency models where the
guarantees become visible before the specified time window is over. In that case,
the models discussed above become a special case of their timed equivalent (i.e.,
with a time window of infinity) which also affects the timeliness of client-centric
guarantees.

Coherence: In their original definition, data-centric consistency models provide
ordering guarantees for all data items, i.e., in CC, for example, two updates
by the same client on two different data items must be serialized in correct

Consistency in Distributed Storage Systems 183

order. This also implies that an eventually consistent datastore can only be in a
consistent state if all replicas of all data items are identical. Depending on the
size of the datastore deployment this may never be the case and it is also more
difficult to coordinate updates on large numbers of servers than for just a few.
So, for reasons of scalability it often makes sense to provide the guarantees of
the consistency model only per key. In the case of our example above, those two
updates could then be executed in arbitrary order, thus, granting more flexibility
to the storage system. Guarantees per key often suffice as it is then up to the
application developer to persist all items, which need guarantees amongst each
other, under the same key.

Those models are named coherence, i.e., eventual coherence, causal coherence,
sequential coherence. It is common practice, though, to use consistency for both
coherence and consistency models alike. To add some clarity, we propose to
add a “per key” prefix if coherence is meant, i.e., per key CC instead of causal
coherence.

Ramakrishnan [33] argues that the “unit of consistency” should also be con-
sidered as a continuum where guarantees are not only provided either for the
entire data set or for just one key but also for groups of keys like, e.g., the entity
groups in Google’s Megastore [6].

Adaptable Consistency: Kraska et al. [24] propose Consistency Rationing where
data items are in a first step clustered based on importance (e.g., for a web shop
credit card numbers vs. comments on reviews) into types A, B and C. While
types A and C are always handled at LIN or EC respectively, B data continu-
ously changes its consistency requirements based on an external cost function.
This means that B data is handled at LIN whenever the costs of inconsisten-
cies exceed the cost of opportunity caused by unavailability or high latencies.
Consistency Rationing could, for example, be implemented via the much older
GARF library [20].

Chihoub et al. [12,13] present approaches that allow the user to specify max-
imum stale read rates or a consistency cost efficiency level as part of SLAs.
The system then dynamically uses different consistency levels in Apache Cas-
sandra [26] while guaranteeing the SLAs.

Li et al. [28] propose the concept of RedBlue Consistency where operations
are broken down into very small commutative suboperations that are then cat-
egorized as either red or blue meaning that they are either synchronously or
asynchronously replicated while guaranteeing dependencies between subopera-
tions. While Consistency Rationing uses different consistency levels based on the
data type, RedBlue Consistency adaptively tunes the consistency level based on
the kind of operation.

4 Measuring Consistency Guarantees

4.1 Continuous Consistency Metrics

According to thefreedictionary.com, a metric is “A standard of measurement”.
When measuring a certain aspect, a measurement always comprises a value and

184 D. Bermbach and J. Kuhlenkamp

a corresponding unit (e.g., for the height of a building this could be the value
“5” and the unit “meter”). If it is not possible to find two values which do not
have any value in between them, the metric is continuous. Otherwise the metric
is discrete. An example for a continuous metric would be the height of a person,
whereas clothing sizes are an example for a discrete metric.

When the ultimate goal is to compare consistency guarantees of two storage
systems, it is desirable to either use a continuous metric or at least use a discrete
metric with a large number of potential measurement values. Otherwise, it might
not be possible to rank systems according to their consistency guarantees. In the
following, we will discuss metrics for data-centric and client-centric consistency.
Depending on the perspective (storage system provider or application developer),
different metrics may be the best fit.

Data-centric Consistency Metrics. Zellag and Kemme [40] extend their
previous work on transactional datastores to non-transactional datastores. They
propose to build a global dependency graph based on operation logs and count
cycles in the graph as a metric for “consistency anomalies”. This is a discrete
metric and one of their main assumptions is that the storage system guarantees
at least CC which is very restrictive and does not allow to analyze consistency
guarantees of most NoSQL systems which only offer EC. Table 2 lists their
approach as “Anomalies”.

Rahman et al. [32], Golab et al. [19] and Anderson et al. [2] at Hewlett Packard
Labs also propose to build dependency graphs based on operation logs and to
count cycles in the graph as a metric for consistency guarantees. They distinguish
the three properties safeness, regularity and atomicity for which they each count
violations. A storage system that has no cycles in its atomicity graph fulfills LIN.
The other two properties also consider staleness as well as ordering. Regularity
is, thus, stricter than SC whereas Safety cannot be compared to existing consis-
tency models. Regularity mandates that “a read not concurrent with any writes
returns the value of the most recent write, and a read concurrent with some writes
returns either the value of the most recent write, or the value of one of the con-
current writes” [2]. Safeness in contrast relaxes the last requirement so that reads
concurrent with writes may return arbitrary values. We do not believe that the
latter guarantee is very helpful as it basically requires LIN for non-concurrent re-
quests andWeak Consistency for concurrent requests. Chockler et al. [14] seem to
share that opinion. Furthermore, real-world systems may or may not return the
value of the most recent write but, to our knowledge, no system exists that may
return values that have never been written. All three metrics can also be expressed
as k-property or Δ-property (e.g., k-atomicity and Δ-atomicity) which describes
the maximum number of time units or versions a particular system has been found
to lag behind during a violation. This is a rather coarse-grained discrete metric.
Table 2 lists their approach as “k-Atomicity”, “Δ’-Atomicity” etc.

We propose to again distinguish the two consistency dimensions ordering and
staleness and measure them separately. Staleness can be expressed either based
on time (t-Visibility) or operation count (k-Staleness) [4]. We believe that these
two (continuous) metrics are best suitable to describe data-centric staleness.

Consistency in Distributed Storage Systems 185

Table 2. Overview of Data-centric Consistency Metrics

Metric Staleness Ordering Continuous Discrete Unit & Description

Anomalies X X - X Number of cycles
k-Atomicity X X - X Max. version lag in violation
Δ-Atomicity X X - X Max. time lag in violation
k-Regularity X X - X Max. version lag in violation
Δ-Regularity X X - X Max. time lag in violation
k-Safeness X X - X Max. version lag in violation
Δ-Safeness X X - X Max. time lag in violation
t-Visibility X - X - Prob. distr. of time lag
k-Staleness X - X - Prob. distr. of version lag
Violations - X X - No. of violations per time unit

It probably makes sense to aggregate them into a distribution function, i.e., a
function describing the probability of a particular staleness “level”. Staleness
can be measured independent of concrete application workloads. For ordering
on the other hand, it makes sense to mine the replicas’ operation logs to de-
termine the number of violations for each of the consistency models; i.e., in a
SC system violations of LIN will be counted, in a CC system violations of SC
will be measured and in an EC system violations of CC could be counted. This,
obviously, highly depends on the distribution of requests regarding time, target
key, originator and kind (read, insert, update, delete). Hence, for a comparison
of two systems’ consistency guarantees it is a hard requirement to replay exactly
the same client workload which will often be problematic7. Ordering can then
be reported as number of violations of consistency model X per unit of time.
Table 2 gives an overview of data-centric consistency metrics.

Client-centric Consistency Metrics. Wada et al. [38] as well as Bermbach
and Tai [8] propose to take a client-centric perspective for measuring consistency.
This is of particular interest for application developers who can this way get con-
crete information to act upon. For client-centric consistency, there are again the
two consistency dimensions ordering and staleness which both papers consider.
Patil et al. [31] also propose to measure client-centric staleness in terms of time.

Staleness is best expressed either in terms of time (t-Visibility) or version
lag (k-Staleness) in both cases the corresponding data-centric value is an upper
bound for the client-centric one, as a system may employ additional mecha-
nisms to hide staleness from the application. For example, in a quorum system
with an (N,R,W) configuration of (5,2,2) data-centric t-Visibility will be deter-
mined by the time difference between the start of the update in replica 1 (or
the commit timestamp – this depends on when updates become visible: right
away or upon commit) and the end of the update in replica 5. The client-centric
t-Visibility, in contrast, is determined again by the same start timestamp but

7 This is a common problem for consistency metrics: Ordering cannot be considered
properly without analysis of the request workload.

186 D. Bermbach and J. Kuhlenkamp

Table 3. Overview of Client-centric Consistency Metrics

Metric Staleness Ordering Continuous Discrete Unit & Description

MRC Violations - X X - Prob. distr. of violation
MWC Violations - X X - Prob. distr. of violation
RYWC Violations - X X - Prob. distr. of violation
WFRC Violations - X X - Prob. distr. of violation
t-Visibility X - X - Prob. distr. of time lag
k-Staleness X - X - Prob. distr. of version lag

ends when replica 4 completes the write as afterwards no request will ever again
return the old value. Hence, data-centric staleness values are an upper bound
for client-centric staleness values. Staleness can either be expressed as a density
function (probability distribution of inconsistency window sizes) or as a cumu-
lative density function (probability of reading fresh data Δt time units after the
last update).

Ordering is best expressed in terms of the client-centric consistency models,
i.e., the likelihood of a request violating a particular guarantee. Table 3 gives an
overview of client-centric consistency metrics.

4.2 Consistency Benchmarking Approaches

After identifying the metrics most useful for measuring consistency in the last
section, we will now describe benchmarking approaches for these metrics.

Data-centric Consistency. All data-centric metrics require access to the actual
replicas of the storage system. A test application creates load on the system.
Results are then achieved by mining replica logs which should for each request
contain the following information: start and end timestamp at each replica, some
unique request id and the request type (read, write). Based on this, it is then
possible to calculate t-Visibility, k-Staleness as well as the number of ordering
violations and the corresponding consistency model8.

Client-centric Staleness and MRC Violations. Both t-Visibility as well as k-
Staleness can be benchmarked via the approach of [38] and its extension by [8]:
Several geographically distributed machines interact with a storage system. A
single writer periodically writes a timestamp and a version number to the storage
system. The remaining machines continuously read the same data item from the
storage system. Based on this the distribution of staleness (both based on time
and version lag) can be calculated. The probability of MRC violations can be
calculated by analyzing the results of each individual reader machine.

8 Some additional information like the (N,R,W) configuration for a quorum system
may be necessary.

Consistency in Distributed Storage Systems 187

MWC Violations. A single machine inserts a value into the storage system and
directly updates it afterwards. After waiting for a sufficiently long period (all
replicas need to synchronize) the key is read again and the result is compared to
the updated value. If this is repeated for a large number of keys, the probability
distribution for violations of MWC can be calculated.

RYWC Violations. A single machine writes a value into the storage system and
directly starts to continuously read it afterwards and logs the time difference to
the end of the update as well as whether it was possible to read the new value
or not. If this is repeated a statistically significant number of times, then it is
possible to calculate the probability distributions for violations of RYWC as a
function of the duration since the last update.

WFRC Violations. So far, no benchmarking approach exists for WFRC vio-
lations. This can be explained by the fact that a violation cannot be directly
observed by a client. One approach could be to use the replica logs of the stor-
age system to identify if and how often WFRC has been violated.

Another approach could rely on the fact that WFRC violations mainly cause
the effect that a delayed update message of an older version replaces the update
that was executed on an older replica. If, for example, a client reads version n+10
and then issues an update which executes on a replica still at version n, then
(depending on the storage system’s implementation) either a delayed update
message for version n+10 may replace the client’s update (which leads to a lost
update) or a conflicting version will be created which needs to be reconciled at a
later point in time. If neither effect becomes visible, it still does not imply that
WFRC is always guaranteed.

Finally, a third approach might work for storage systems which offer update
operations beyond a CRUD interface. For example, a record append operation
like in the Google File System [17] could be used followed by an analysis of the
update order within the file.

5 Conclusion

In this work, we have provided an comprehensive overview of consistency in
distributed systems. We started with a brief comparison of consistency in
databases and distributed systems before focusing on the two perspectives on
consistency in distributed systems. Next, we continued with a detailed discus-
sion of data-centric and client-centric consistency models, their usecases and the
relationships between those models before describing metrics and benchmarking
approaches that help to determine consistency guarantees of distributed storage
systems.

188 D. Bermbach and J. Kuhlenkamp

References

1. Abadi, D.: Consistency tradeoffs in modern distributed database system design:
Cap is only part of the story. Computer 45(2), 37–42 (2012)

2. Anderson, E., Li, X., Shah, M., Tucek, J., Wylie, J.: What consistency does your
key-value store actually provide. In: HotDep (2010)

3. Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J., Stoica, I.: The potential dangers
of causal consistency and an explicit solution. In: Proceedings of the Third ACM
Symposium on Cloud Computing, p. 22. ACM (2012)

4. Bailis, P., Venkataraman, S., Hellerstein, J., Stoica, I.: Probabilistically bounded
staleness for practical partial quorums. VLDB Endowment (2012)

5. Bailis, P.: When is “acid” acid? rarely, http://www.bailis.org/blog/when-is-
acid-acid-rarely (accessed January 28, 2013)

6. Baker, J., Bond, C., Corbett, J., Furman, J., Khorlin, A., Larson, J., Léon, J.,
Li, Y., Lloyd, A., Yushprakh, V.: Megastore: providing scalable, highly available
storage for interactive services. In: Proceedings of Conference on Innovative Data
Systems Research

7. Bermbach, D., Kuhlenkamp, J., Derre, B., Klems, M., Tai, S.: A middleware guar-
anteeing client-centric consistency on top of eventually consistent datastores. In:
IC2E. IEEE (2013)

8. Bermbach, D., Tai, S.: Eventual consistency: How soon is eventual? an evaluation
of amazon s3’s consistency behavior. In: Proceedings of the 6th Workshop on
Middleware for Service Oriented Computing, p. 1. ACM (2011)

9. Brzezinski, J., Sobaniec, C., Wawrzyniak, D.: From session causality to causal
consistency. In: PDP (2004)

10. Brzeziński, J., Sobaniec, C., Wawrzyniak, D.: Session guarantees to achieve PRAM
consistency of replicated shared objects. In: Wyrzykowski, R., Dongarra, J.,
Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 1–8.
Springer, Heidelberg (2004)

11. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra,
T., Fikes, A., Gruber, R.: Bigtable: A distributed storage system for structured
data. ACM Transactions on Computer Systems (TOCS) 26(2), 1–26 (2008)

12. Chihoub, H., Ibrahim, S., Antoniu, G., Pérez, M., et al.: Consistency in the cloud:
When money does matter! (2012)

13. Chihoub, H., Ibrahim, S., Antoniu, G., Pérez, M., et al.: Harmony: Towards
automated self-adaptive consistency in cloud storage. In: IEEE CLUSTER (2012)

14. Chockler, G., Guerraoui, R., Keidar, I., Vukolic, M.: Reliable distributed storage.
Computer 42(4), 60–67 (2009)

15. Codd, E.F.: The relational model for database management: Version 2.
Addison-Wesley, Reading (1990)

16. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,
Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s
highly available key-value store. In: Proc. SOSP (2007)

17. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. ACM SIGOPS
Operating Systems Review 37(5), 29–43 (2003)

18. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM SIGACT News 33(2), 59 (2002)

19. Golab, W., Li, X., Shah, M.: Analyzing consistency properties for fun and profit. In:
Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, pp. 197–206. ACM (2011)

http://www.bailis.org/blog/when-is-acid-acid-rarely
http://www.bailis.org/blog/when-is-acid-acid-rarely

Consistency in Distributed Storage Systems 189

20. Guerraoui, R., Garbinato, B., Mazouni, K.: The garf library of dsm consistency
models. In: Proceedings of the 6th Workshop on ACM SIGOPS European Work-
shop: Matching Operating Systems to Application Needs, pp. 51–56. ACM (1994)

21. Guerraoui, R., Hari, C.: On the consistency problem in mobile distributed
computing. In: Proceedings of the Second ACM International Workshop on
Principles of Mobile Computing, pp. 51–57. ACM (2002)

22. Helland, P., Campbell, D.: Building on quicksand. In: CIDR (2009)
23. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)
24. Kraska, T., Hentschel, M., Alonso, G., Kossmann, D.: Consistency rationing in the

cloud: Pay only when it matters. In: Proceedings of the VLDB Endowment (2009)
25. Krishnamurthy, S., Sanders, W., Cukier, M.: An adaptive framework for tunable

consistency and timeliness using replication. In: DSN. IEEE (2002)
26. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.

ACM SIGOPS Operating Systems Review 44(2), 35–40 (2010)
27. Lamport, L.: Paxos made simple. ACM SIGACT News 32(4), 18–25 (2001)
28. Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N., Rodrigues, R.: Making geo-

replicated systems fast as possible, consistent when necessary. Tech. rep., Technical
report, MPI-SWS (2012), http://www.mpi-sws.org/chengli/rbTR.pdf

29. Lloyd, W., Freedman, M., Kaminsky, M., Andersen, D.: Don’t settle for eventual:
scalable causal consistency for wide-area storage with cops. In: SOSP. ACM (2011)

30. Mahajan, P., Alvisi, L., Dahlin, M.: Consistency, availability, and convergence.
Technical Report TR-11-22, University of Texas at Austin (2011)

31. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G.,
Fuchs, A., Rinaldi, B.: Ycsb++: benchmarking and performance debugging
advanced features in scalable table stores. In: SOCC. ACM (2011)

32. Rahman, M., Golab, W., AuYoung, A., Keeton, K., Wylie, J.: Toward a principled
framework for benchmarking consistency. In: Proceedings of the 8th Workshop on
Hot Topics in System Dependability (2012)

33. Ramakrishnan, R.: Cap and cloud data management. Computer (2012)
34. Tanenbaum, A.S., Steen, M.V.: Distributed systems: principles and paradigms,

2nd edn. Pearson, Prentice Hall, Upper Saddle River, NJ (2007)
35. Torres-Rojas, F., Ahamad, M., Raynal, M.: Timed consistency for shared

distributed objects. In: Proceedings of the Eighteenth Annual ACM Symposium
on Principles of Distributed Computing, pp. 163–172. ACM (1999)

36. Torres-Rojas, F., Meneses, E.: Convergence through a weak consistency model:
Timed causal consistency. CLEI Electronic Journal 8(2) (2005)

37. Vogels, W.: Eventually consistent. Queue 6, 14–19 (2008)
38. Wada, H., Fekete, A., Zhao, L., Lee, K., Liu, A.: Data consistency properties and

the trade offs in commercial cloud storages: the consumers’ perspective. In: 5th
Biennial Conference on Innovative Data Systems Research, CIDR, vol. 11 (2011)

39. Yu, H., Vahdat, A.: Design and evaluation of a conit-based continuous consistency
model for replicated services. ACM TOCS (2002)

40. Zellag, K., Kemme, B.: How consistent is your cloud application? In: Proceedings
of the Third ACM Symposium on Cloud Computing, p. 6. ACM (2012)

http://www.mpi-sws.org/chengli/rbTR.pdf

Request Complexity of VNet Topology Extraction:
Dictionary-Based Attacks�

Yvonne-Anne Pignolet1, Stefan Schmid2, and Gilles Tredan3

1 ABB Corporate Research, Switzerland
2 Telekom Innovation Laboratories & TU Berlin, Germany

3 CNRS-LAAS, France

Abstract. The network virtualization paradigm envisions an Internet where ar-
bitrary virtual networks (VNets) can be specified and embedded over a shared
substrate (e.g., the physical infrastructure). As VNets can be requested at short
notice and for a desired time period only, the paradigm enables a flexible service
deployment and an efficient resource utilization.

This paper investigates the security implications of such an architecture. We
consider a simple model where an attacker seeks to extract secret information
about the substrate topology, by issuing repeated VNet embedding requests. We
present a general framework that exploits basic properties of the VNet embedding
relation to infer the entire topology. Our framework is based on a graph motif dic-
tionary applicable for various graph classes. Moreover, we provide upper bounds
on the request complexity, the number of requests needed by the attacker to
succeed.

1 Introduction

While network virtualization enables a flexible resource sharing, opening the infras-
tructure for automated virtual network (VNet) embeddings or service deployments may
introduce new kinds of security threats. For example, by virtualizing its network infras-
tructure (e.g., the links in the aggregation or backbone network, or the computational
or storage resources at the points-of-presence), an Internet Service Provider (ISP) may
lose control over how its network is used. Even if the ISP manages the allocation and
migration of VNet slices and services itself and only provides a very rudimentary in-
terface to interact with customers (e.g., service or content providers), an attacker may
infer information about the network topology (and state) by generating VNet requests.

This paper builds upon the model introduced in [12] and studies complexity of the
topology extraction problem: How many VNet requests are required to infer the full
topology of the infrastructure network? While algorithms for trees and cactus graphs
with request complexity O(n) and a lower bound for general graphs of Ω(n2) have
been shown in [12], graph classes between these extremes have not been studied.

Contribution. This paper presents a general framework to solve the topology extrac-
tion problem. We first describe necessary and sufficient conditions which facilitate the

� This project was partly funded by the Secured Virtual Cloud (SVC) project.

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 190–205, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Request Complexity of VNet Topology Extraction 191

“greedy” exploration of the substrate topology (the host graph H) by iteratively extend-
ing the requested VNet graph (the guest graph G). Our framework then exploits these
conditions to construct an ordered (request) dictionary defined over so-called graph
motifs. We show how to apply the framework to different graph families, discuss the
implications on the request complexity, and also report on a small simulation study
on realistic topologies. These empirical results show that many scenarios can indeed be
captured with a small dictionary, and small motifs are sufficient to infer if not the entire,
then at least a significant fraction of the topology.

2 Background

This section presents our model and discusses how it compares to related work.

Model. The VNet embedding based topology extraction problem has been introduced
in [12]. The formal setting consists of two entities: a customer (the “adversary”) that
issues virtual network (VNet) requests and a provider that performs the access control
and the embedding of VNets. We model the virtual network requests as simple, undi-
rected graphs G = (V,E) (the guest graph) where V denotes the virtual nodes and E
denotes the virtual edges connecting nodes in V . Similarly, the infrastructure network
is given as an undirected graph H = (V,E) (the so-called host graph or substrate) as
well, where V denotes the set of substrate nodes, E is the set of substrate links, and w is
a capacity function describing the available resources on a given node or edge. Without
loss of generality, we assume that H is connected and that there are no parallel edges
or self-loops neither in VNet requests nor in the substrate.

In this paper we assume that besides the resource demands, the VNet requests do
not impose any mapping restrictions, i.e., a virtual node can be mapped to any sub-
strate node, and we assume that a virtual link connecting two substrate nodes can be
mapped to an entire (but single) path on the substrate as long as the demanded capacity
is available. These assumptions are typical for virtual networks [5].

A virtual link which is mapped to more than one substrate link however can entail
certain costs at the relay nodes, the substrate nodes which do not constitute endpoints of
the virtual link and merely serve for forwarding. We model these costs with a parameter
ε > 0 (per link). Moreover, we also allow multiple virtual nodes to be mapped to the
same substrate node if the node capacity allows it; we assume that if two virtual nodes
are mapped to the same substrate node, the cost of a virtual link between them is zero.

Definition 1 (Embedding π, Relation �→). An embedding of a graph A =
(VA, EA, wA) to a graph B = (VB , EB, wB) is a mapping π : A → B where ev-
ery node of A is mapped to exactly one node of B, and every edge of A is mapped
to a path of B. That is, π consists of a node πV : VA → VB and an edge mapping
πE : EA → PB , where PB denotes the set of paths. We will refer to the set of virtual
nodes embedded on a node vB ∈ VB by π−1

V (vB); similarly, π−1
E (eB) describes the

set of virtual links passing through eB ∈ EB and π−1
E (vB) describes the virtual links

passing through vB ∈ VB with vB serving as a relay node.
To be valid, the embedding π has to fulfill the following properties: (i) Each node

vA ∈ VA is mapped to exactly one node vB ∈ VB (but given sufficient capacities,

192 Y.-A. Pignolet, S. Schmid, and G. Tredan

vB can host multiple nodes from VA). (ii) Links are mapped consistently, i.e., for two
nodes vA, v′A ∈ VA, if eA = {vA, v′A} ∈ EA then eA is mapped to a single (possibly
empty and undirected) path in B connecting nodes π(vA) and π(v′A). A link eA cannot
be split into multiple paths. (iii) The capacities of substrate nodes are not exceeded:
∀vB ∈ VB:

∑
u∈π−1

V (vB) w(u)+ ε · |π−1
E (vB)| ≤ w(vB). (iv) The capacities in EB are

respected as well, i.e., ∀eB ∈ EB:
∑

e∈π−1
E (eB) w(e) ≤ w(eB).

If there exists such a valid embedding mapping π, we say that graph A can be em-
bedded in B, denoted by A �→ B. Hence, �→ denotes the VNet embedding relation.

The provider has a flexible choice where to embed a VNet as long as a valid mapping
is chosen. In order to design topology discovery algorithms, we exploit the following
property of the embedding relation.

Lemma 1. The embedding relation �→ applied to any family G of undirected graphs
(short: (G, �→)), forms a partially ordered set (a poset). [Proof in full version [10]]

We are interested in algorithms that “guess” the target topology H (the host graph)
among the set H of possible substrate topologies. Concretely, we assume that given a
VNet request G (a guest graph), the substrate provider always responds with an honest
(binary) reply R informing the customer whether the requested VNet G is embedded-
able on the substrate H . Based on this reply, the attacker may then decide to ask the
provider to embed the corresponding VNet G on H , or it may not embed it and continue
asking for other VNets. Let ALG be an algorithm asking a series of requests G1, . . . , Gt

to reveal H . The request complexity to infer the topology is measured in the number
of requests t (in the worst case) until ALG issues a request Gt which is isomorphic
to H and terminates (i.e., ALG knows that H = Gt and does not issue further requests).

Related Work. Embedding VNets is an intensively studied problem and there exists a
large body of literature (e.g., [7,9,13,15]), also on distributed computing approaches [8]
and online algorithms [3,6]. Our work is orthogonal to this line of literature in the sense
that we assume that an (arbitrary and not necessarily resource-optimal) embedding algo-
rithm is given. Instead, we focus on the question of how the feedback obtained through
these algorithms can be exploited, and we study the implications on the information
which can be obtained about a provider’s infrastructure.

Our work studies a new kind of topology inference problem. Traditionally, much
graph discovery research has been conducted in the context of today’s complex net-
works such as the Internet which have fascinated scientists for many years, and there
exists a wealth of results on the topic. The classic instrument to discover Internet topolo-
gies is traceroute [4], but the tool has several problems which makes the problem chal-
lenging. One complication of traceroute stems from the fact that routers may appear as
stars (i.e., anonymous nodes), which renders the accurate characterization of Internet
topologies difficult [1,11,14]. Network tomography is another important field of topol-
ogy discovery. In network tomography, topologies are explored using pairwise end-to-
end measurements, without the cooperation of nodes along these paths. This approach
is quite flexible and applicable in various contexts, e.g., in social networks. For a good
discussion of this approach as well as results for a routing model along shortest and
second shortest paths see [2]. For example, [2] shows that for sparse random graphs, a

Request Complexity of VNet Topology Extraction 193

relatively small number of cooperating participants is sufficient to discover a network
fairly well. Both the traceroute and the network tomography problems differ from our
virtual network topology discovery problem in that the exploration there is inherently
path-based while we can ask for entire virtual graphs.

The paper closest to ours is [12]. It introduces the topology extraction model studied
in this paper, and presents an asymptotically optimal algorithm for the cactus graph
family (request complexity Θ(n)), as well as a general algorithm (based on spanning
trees) with request complexity Θ(n2).

3 Motif-Based Dictionary Framework

The algorithms for tree and cactus graphs presented in [12] can be extended to a frame-
work for the discovery of more general graph classes. It is based on the idea of growing
sequences of subgraphs from nodes discovered so far. Intuitively, in order to describe
the “knitting” of a given part of a graph, it is often sufficient to use a small set of graph
motifs, without specifying all the details of how many substrate nodes are required to
realize the motif. We start this section with the introduction of motifs and their compo-
sition and expansion. Then we present the dictionary concept, which structures motif
sequences in a way that enables the efficient host graph discovery with algorithm DICT.
Subsequently, we give some examples and finally provide the formal analysis of the
request complexity.

3.1 Motifs: Composition and Expansion

In order to define the motif set of a graph family H, we need the concept of chain
(graph) C: C is just a graph G = ({v1, v2}, {v1, v2}) consisting of two nodes and a
single link. As its edge represents a virtual link that may be embedded along entire path
in the substrate network, it is called a chain.

Definition 2 (Motif). Given a graph family H, the set of motifs of H is defined con-
structively: If any member of H ∈ H has an edge cut of size one, the chain C is a motif
for H. All remaining motifs are at least 2-connected (i.e., any pair of nodes in a motif
is connected by at least two vertex-disjoint paths). These motifs can be derived by the
at least 2-connected components of any H ∈ H by repeatedly removing all nodes with
degree smaller or equal than two from H (such nodes do not contribute to the knitting)
and merging the incident edges, as long as all remaining cycles do not contain parallel
edges. Only one instance of isomorphic motifs is kept.

Note that the set of motifs of H can also be computed by iteratively by removing all
low-degree nodes and subsequently determine the graphs connecting nodes constitut-
ing a vertex-cut of size one for each member H ∈ H. In other words, the motif set
M of a graph family H is a set of non-isomorphic minimal (in terms of number of
nodes) graphs that are required to construct each member H ∈ H by taking a motif and
either replacing edges with two edges connected by a node or gluing together compo-
nents several times. More formally, a graph family containing all elements of H can be
constructed by applying the following rules repeatedly.

194 Y.-A. Pignolet, S. Schmid, and G. Tredan

Definition 3 (Rules). (1) Create a new graph consisting of a motif M ∈ M (New
Motif Rule). (2) Given a graph created by these rules, replace an edge e of H by a
new node and two new edges connecting the incident nodes of e to the new node (Insert
Node Rule). (3) Given two graphs created by these rules, attach them to each other
such that they share exactly one node (Merge Rule).

Being the inverse operations of the ones to determine the motif set, these rules are
sufficient to compose all graphs in H: If M includes all motifs of H, it also includes
all 2-connected components of H , according to Definition 2. These motifs can be glued
together using the Merge Rule, and eventually the low-degree nodes can be added using
the Insert Node Rule. Therefore, we have the following lemma.

Lemma 2. Given the motifs M of a graph family H, the repeated application of the
rules in Definition 3 allows us to construct each member H ∈ H.

However, note that it may also be possible to use these rules to construct graphs that
are not part of the family. The following lemma shows that when degree-two nodes are
added to a motif M to form a graph G, all network elements (substrate nodes and links)
are used when embedding M in G (i.e., M �→ G).

Lemma 3. Let M ∈ (M\ {C}) be an arbitrary two-connected motif, and let G be a
graph obtained by applying the Insert Node Rule (Rule 2 of Definition 3) to motif M .
Then, an embedding M �→ G involves all nodes and edges in G: at least ε resources
are used on all nodes and edges.

Proof. Let v ∈ G. Clearly, if there exists u ∈M such that v = π(u), then v’s capacity
is used fully. Otherwise, v was added by Rule 2. Let a, b be the two nodes of G between
which Rule 2 was applied, and hence {π−1(a), π−1(b)} ∈ EM must be a motif edge.
Observe that for these nodes’ degrees it holds that deg(a) = deg(π−1(a)) and deg(b) =
deg(π−1(b)) since Rule 2 never modifies the degree of the old nodes in the host graph
G. Since links are of unit capacity, each substrate link can only be used once: at a
at most deg(a) edge-disjoint paths can originate, which yields a contradiction to the
degree bound, and the relaying node v has a load of ε. �

Lemma 3 implies that no additional nodes can be inserted to an existing embedding. In
other words, a motif constitutes a “minimal reservation pattern”. As we will see, our
algorithm will exploit this invariant that motifs cover the entire graph knitting, and adds
simple nodes (of degree 2) only in a later phase.

Corollary 1. Let M ∈ (M\{C}) and let G be a graph obtained by applying Rule 2
of Definition 3 to motif M . Then, no additional node can be embedded on G after
embedding M �→ G.

Next, we want to combine motifs explore larger “knittings” of graphs. Each motif pair
is glued together at a single node or edge (“attachment point”): We need to be able
to conceptually join to motifs at edges as well because the corresponding edge of the
motif can be expanded by the Insert Node Rule to create a node where the motifs can
be joined.

Request Complexity of VNet Topology Extraction 195

Definition 4 (Motif Sequences, Subsequences, Attachment Points, ≺). A motif se-
quence S is a list S = (M1a1a

′
1M2 . . .Mk) where ∀i : Mi ∈ M and where

Mi is glued together at exactly one node with Mi−1 (i.e., Mi is “attached” to a
node of motif Mi−1): the notation Mi−1ai−1a

′
i−1Mi specifies the selected attach-

ment points ai−1 and a′i−1. If the attachment points are irrelevant, we use the notation
S = (M1M2 . . .Mk) and Mk

i denotes an arbitrary sequence consisting of k instances
of Mi. If S can be decomposed into S = S1S2S3, where S1, S2 and S3 are (possi-
bly empty) motif sequences as well, then S1, S2 and S3 are called subsequences of S,
denoted by ≺.

In the following, we will sometimes use the Kleene star notation X� to denote a
sequence of (zero or more) elements of X attached to each other.

1

2

3

4

5

6

7
8 1

2

3

4

5

6

8

7

Fig. 1. Left: Motif A. Center: Motif B. Observe that A 	�→ B. Right: Motif A is embedded into
two consecutive Motifs B. Observe that the central node has a relaying load of 4ε.

One has to be careful when arguing about the embedding of motif sequences, as
illustrated in Figure 1 which shows a counter example for Mi ��→Mj ⇒ ∀k > 0,Mi ��→
Mk

j . This means that we typically cannot just incrementally add motif occurrences to
discover a certain substructure. This is the motivation for introducing the concept of a
dictionary which imposes an order on motif sequences and their attachment points.

3.2 Dictionary Structure and Existence

In a nutshell, a dictionary is a Directed Acyclic Graph (DAG) defined over all possible
motifsM. and imposes an order (poset relationship �→) on problematic motif sequences
which need to be embedded one before the other (e.g., the composition depicted in
Figure 1). To distinguish them from sequences, dictionary entries are called words.

Definition 5 (Dictionary, Words). A dictionary D(VD, ED) is a directed acyclic
graph (DAG) over a set of motif sequences VD together with their attachment points. In
the context of the dictionary, we will call a motif sequence word. The links ED represent
the poset embedding relationship �→.

Concretely, the DAG has a single root r, namely the chain graph C (with two at-
tachment points). In general, the attachment points of each vertex v ∈ VD describ-
ing a word w define how w can be connected to other words. The directed edges
ED = (v1, v2) represent the transitively reduced embedding poset relation with the

196 Y.-A. Pignolet, S. Schmid, and G. Tredan

chain C context: Cv1C is embeddable in Cv2C and there is no other word Cv3C such
that Cv1C �→ Cv3C, Cv3C �→ Cv2C and Cv3C ��→ Cv1C holds. (The chains before
and after the words are added to ensure that attachment points are “used”: there is no
edge between two isomorphic words with different attachment point pairs.)

We require that the dictionary be robust to composition: For any node v, let Rv =
{v′ ∈ VD, v �→ v′} denote the “reachable” set of words in the graph and Rv = VD \Ri

all other words. We require that v ��→ W, ∀W ∈ Qi := R
�

i \R�
i , where the transitive

closure operator X� denotes an arbitrary sequence (including the empty sequence) of
elements in X (according to their attachment points).

See Figure 2 for an example. Informally, the robustness requirement means that the
word represented by v cannot be embedded in any sequence of “smaller” words, unless
a subsequence of this sequence is in the dictionary as well. As an example, in a dictio-
nary containing motifs A and B from Figure 1 would contain vertices A, B and also
BB, and a path from A to BB. In the following, we use the notation maxv∈VD (v �→ S)

a) b)

Fig. 2. a) Example dictionary with motifs Chain C, Cycle Y , Diamond D, complete bipartite
graph B = K2,3 and complete graph K = K5. The attachment point pair of each word is black,
the other nodes and edges of the words are grey. The edges of the dictionary are locally labeled,
which is used in DICT later. b) A graph that can be constructed from the dictionary words.

to denote the set of “maximal” vertices with respect to their embeddability into S:
i ∈ maxv∈VD (v �→ S)⇔ (i �→ S) ∧ (∀j ∈ Γ+(i), j ��→ S), where Γ+(v) denotes the
set of outgoing neighbors of v. Furthermore, we say that a dictionary D covers a motif
sequence S iff S can be formed by concatenating dictionary words (henceforth denoted
by S ∈ D�) at the specified attachment points. More generally, a dictionary covers a
graph, if it can be formed by merging sequences of D�.

Let us now derive some properties of the dictionary which are crucial for a proper
substrate topology discovery. First we consider maximal dictionary words which can
serve as embedding “anchors” in our algorithm.

Lemma 4. Let D be a dictionary covering a sequence S of motifs, and let i ∈
maxv∈VD (v �→ S). Then i constitutes a subsequence of S, i.e., S can be decomposed
to S1iS2, and S contains no words of order at most i, i.e., S1, S2 ∈ (Ri ∪ {i})�.

Proof. By contradiction assume i ∈ maxv∈VD (v �→ S) and i is not a subsequence of S
(written i �≺ S). Since D covers S we have S ∈ V �

D by definition.

Request Complexity of VNet Topology Extraction 197

Since D is a dictionary and i �→ S we know that S �∈ Qi. Thus, S ∈ D�\Qi:
S has a subsequence of at least one word in Ri. Thus there exists k ∈ Ri such that
k ≺ S. If k = i this implies i ≺ S which contradicts our assumption. Otherwise it
means that ∃j ∈ Γ+(i) such that j �→ k ≺ S, which contradicts the definition of
i ∈ maxv∈VD (v �→ S) and thus it must hold that i ≺ S. �

The following corollary is a direct consequence of the definition of i ∈ maxv∈VD (v �→
S) and Lemma 4: since for a motif sequence S with S ∈ (Ri ∪ {i})�, all the sub-
sequences of S that contain no i are in R

�

i . As we will see, the corollary is useful to
identify the motif words composing a graph sequence, from the most complex words to
the least complex ones.

Corollary 2. Let D be a dictionary covering a motif sequence S, and let i ∈
maxv∈VD (v �→ S). Then S can be decomposed as a sequence S = T1iT2i, . . . , iTk

with Tj ∈ Qi, ∀j = 1, . . . , k.

This corollary can be applied recursively to describe a motif sequence as a sequence of
dictionary entries. Note that a dictionary always exists.

Lemma 5. There exists a dictionary D = (VD, ED) that covers all member graphs H
of a motif graph family H with n vertices. [Proof in full version [10]]

3.3 The Dictionary Algorithm

With these concepts in mind, we are ready to describe our generalized graph discovery
algorithm called DICT (cf Algorithm 1). Basically, DICT always grows a request graph
G = H ′ until it is isomorphic to H (the graph to be discovered). This graph growing
is performed according to the dictionary, i.e., we try to embed new motifs in the order
imposed by the dictionary DAG.

DICT is based on the observation that it is very costly to discover additional edges
between nodes in a 2-connected component: essentially, finding a single such edge re-
quires testing all possibilities, which is quadratic in the component size. Thus, it is
crucial to first explore the basic “knitting” of the topology, i.e., the minors which are at
least 2-connected (the motifs). In other words, we maintain the invariant that there are
never two nodes u, v which are not k-connected in the currently requested graph H ′

while they are k-connected in H ; no path relevant for the connectivity is overlooked
and needs to be found later.

Nodes and edges which are not contributing to the connectivity need not be explored
at this stage yet, as they can be efficiently added later. Concretely, these additional
nodes can then be discovered by (1) using an edge expansion (where additional degree
two nodes are added along a motif edge), and by (2) adding “chains” C to the nodes (a
virtual link C constitutes an edge cut of size one and can again be expanded to entire
chain of nodes using edge expansion).

Let us specify the topological order in which algorithm DICT discovers the dictio-
nary words. First, for each node v in VD , we define an order on its outgoing edges
{(v, w)|w ∈ Γ+(v)}. This order is sometimes referred to as a “port labeling”, and
each path from the dictionary root (the chain C) to a node in VD can be represented

198 Y.-A. Pignolet, S. Schmid, and G. Tredan

as the sequence of port labels at each traversed node (l1, l2, . . . , ll), where l1 corre-
sponds to a port number in C. We can simply use the lexicographic order on integers,
<d: (a1, a2, . . . , an1) <d (b1, b2, . . . , bn2) ⇐⇒ ((∃ m > 0) (∀ i < m)(ai =
bi) ∧ (am < bm)) ∨ (∀i ∈ {1, . . . n1}, (ai = bi) ∧ (n1 < n2)), to associate each
vertex with its minimal sequence, and sort vertices of VD according to their embedding
order. Let r be the rank function associating each vertex with its position in this sorting:
r : VD → {1, . . . |VD|} (i.e., r is the topological ordering of D).

The fact that subsequences can be defined recursively using a dictionary (Lemma 4
and Corollary 2) is exploited by algorithm DICT. Concretely, we apply Corollary 2
to gradually identify the words composing a graph sequence, from the most complex
words to the least complex ones. This is achieved by traversing the dictionary depth-
first, starting from the root C up to a maximal node: algorithm DICT tests the nodes
of Γ+(v) in increasing port order as defined above. As a shorthand, the word v ∈ VD

with r(v) = i is written as D[i]; similarly D[i] < D[j] holds if r(D[i]) < r(D[j]), a
notation that will get useful to translate the fact that D[j] will be detected beforeD[i] by
algorithm DICT. As a consequence, the word of a sequence S that gets matched first is
uniquely identified: it is i = argmaxx(D[x] �→ S) = max{r(v)|v ∈ maxv′∈VD (v

′ �→
S)}: i denotes the maximal word in S.

Algorithm DICT distinguishes whether the subsequences next to a word v ∈ VD are
empty (∅) or chains (C), and we will refer to the subsequence before v by BF and to the
subsequence after v by AF. Concretely, while recursively exploring a sequence between
two already discovered parts T< and T> we check whether the maximal word v is
directly next to T< (i.e., T< v, . . . , T>) or T> or both (∅), or whether v is somewhere
in the middle. In the latter case, we add a chain (C) to be able to find the greatest
possible word in a next step.

DICT uses tuples of the form (i, j, BF, AF) where i, j ∈ N
2 and (BF, AF) ∈ {∅, C}2,

i.e., D[i] denotes the maximal word in D, j is the number of consecutive occur-
rences of the corresponding word, and BF and AF represent the words before and af-
ter D[i]. These tuples are lexicographically ordered by the total order relation > on
the set of possible (i, j, BF, AF) tuples defined as follows: let t = (i, j, BF, AF) and
t′ = (i′, j′, BF′, AF′) two such tuples. Then t > t′ iff w > w′ or w = w′ ∧ j > j′ or
w = w′ ∧ j = j′ ∧ BF = C ∧ BF′ = ∅ or w = w′ ∧ j = j′ ∧ BF = BF′ ∧ AF =
C ∧ AF′ = ∅.

With these definition we can prove that algorithm DICT is correct.

Theorem 1. Given a dictionary forH, algorithm DICT correctly discovers anyH ∈ H.

Proof. We first prove that the claim is true if H forms a motif sequence (without edge
expansion). Subsequently, we study the case where the motif sequence is expanded by
Rule 2, and finally tackle the general composition case.

Discovery of Motif Sequences: Due to Lemma 4 it holds that for w chosen when
Line 1 of find motif sequence() is executed for the first time, S is partitioned into
three subsequences S1, w and S2. Subsequently find motif sequence() is executed
on each of the subsequences S′ ∈ {S1, S2} recursively if C �→ S′, i.e., if the subse-
quences are not empty. Thus find motif sequence() computes a decomposition as de-
scribed in Corollary 2 recursively. As each of the words used in the decomposition is a

Request Complexity of VNet Topology Extraction 199

subsequence of S and find motif sequence() does not stop until no more words can
be added to any subsequence, it holds that all nodes of S will be discovered eventually.
In other words, π−1(u) is defined for all u ∈ S.

As a next step we assume S′ �= S to be the sequence of words obtained by DICT to
derive a contradiction. Since S′ := H ′ is the output of algorithm DICT and is hence em-
beddable in H : S′ �→ S, there exists a valid embedding mapping π. Given u, v ∈ V (S),
we denote by Eπ−1

(S′) the set of pairs {u, v} for which {π−1(u), π−1(v)} ∈ E(S′).
Now assume that S and S′ do not lead to the same resource reservations “π(S) �=
π(S′)”. Hence there are some inconsistencies between the substrate and the output of
algorithm DICT: Φ = {{u, v} ∈ E(S)\Eπ−1

(S′) ∪ Eπ−1

(S′)\E(S)}. With each of
these “conflict” edges, one can associate the corresponding word Wu,v (resp. W ′

u,v)
in S (resp. S′). If a given conflict edge spans multiple words, we only consider the
words with the highest index as defined by DICT. We also define iu,v = r(Wu,v) (resp.
i′u,v = r(W ′

u,v)). Since S′ and S are by definition not isomorphic, i′u,v �= iu,v.
Let j = max(u,v)∈Φ(iu,v) be the index of the greatest word embeddable on the

substrate containing an inconsistency, and j′ be the index of the corresponding word
detected by DICT.

(i) Assume j > j′: a lower order motif was erroneously detected. Let J+ (and J−)
be the set of dictionary entries that are detected before (after) D[j] (if any) in S by
DICT. Observe that the words in J+ were perfectly detected by DICT, otherwise we
are in Case (ii). We can decompose S as an alternating sequence of words of J+ and
other words using Corollary 2 : S = T1J1(a1)T2 . . . Tk with Ji(ai) ∈ (J+)� and
attachment points ai and Ti ∈ (J−)�. As the words in J+ are the same in S′, we can
write S′ = T ′

1J1T
′
2 . . . T

′
k (using Corollary 2 as well).

Let T be the sequence among T1, . . . , Tk that contains our misdetected word D[j],
and T ′ the corresponding sequence in S′. Observe that T ′ �→ T since the words Ji cut
the sequences of S and S′ into subsequences Ti, T

′
i that are embeddable. Observe that

D[j] �→ T since T contains it. Note that in the execution of find motif sequence()
when D[j′] was detected the higher indexed words had been detected correctly by
DICT in previous executions of this subroutine. Hence, T< and T> cannot contain any
words leading to edges in Φ. Thus (j′, ., ., .) < (j, ., ., .) which contradicts Line 1 of
find motif sequence().

(ii) Now assume j′ > j: a higher order motif was erroneously detected. Using the
same decomposition as step (i), we define J ′+ as the set of words perfectly detected,
and therefore decompose S and S′ as sequences S = T1J

′
1T2 . . . J

′
k−1Tk and S′ =

T ′
1J

′
1T

′
2 . . . J

′
k−1T

′
k with J ′

i ∈ (J ′+)� and the property that each T ′
i �→ Ti.

Let T ′ be the sequence among T ′
1, . . . , T

′
k that contains our misdetected word D[j′],

and T the corresponding sequence in S. Since D[j′] ≺ T ′, D[j′] �→ T ′. Thus, since
T ′ �→ T , we deduce D[j′] �→ T which is a contradiction with j′ and Corollary 2.

The same arguments can be applied recursively to show that conflicts in φ of smaller
indices cannot exist either.

Expanded Motif Sequences. As a next step, we consider graphs that have been ex-
tended by applying node insertions (Rule 2) to motif sequences, so called expanded
motif sequences: we prove that if H is an expanded motif sequence S, then algo-
rithm DICT correctly discovers S. Given an expanded motif sequence S, replacing all

200 Y.-A. Pignolet, S. Schmid, and G. Tredan

two degree nodes with an edge connecting their neighbors unless a cycle of length three
would be destroyed, leads to a unique pure motif sequence T , T �→ S. For the cor-
responding embedding mapping π it holds that V (S) \ π(T) is exactly the set R of
removed nodes. Applying find motif sequence() to an expanded motif sequence dis-
covers this pure motif sequence T by using the nodes in R as relay nodes. All nodes in
R are then discovered in edge expansion() where the reverse operation node insertion
is carried out as often as possible. It follows that each node in S is either discovered in
find motif sequence() if it occurs in a motif or in edge expansion() otherwise.

Combining Expanded Sequences. Finally, it remains to combine the expanded se-
quences. Clearly, since motifs describe all parts of the graph which are at least 2-
connected, the graph remaining after collapsing motifs cannot contain any cycles: it
is a tree. However, on this graph DICT behaves like TREE, but instead of attaching
chains, entire sequences are attached to different nodes. Along the unique sequence
paths between two nodes, DICT fixes the largest words first, and the claim follows by
the same arguments as used in the proofs for tree and cactus graphs. �

Algorithm 1. Motif Graph Discovery DICT

1: H ′ := {{v}, ∅} /*current request graph*/, P := {v} /*set of unexplored nodes*/
2: while P 	= ∅ do
3: choose v ∈ P , T := find motif sequence(v, ∅, ∅)
4: if (T 	= ∅) then H ′ := H ′vT , add all nodes of T toP , for all e ∈ T do edgeExpansion(e)
5: else remove v from P

find motif sequence(v, T<, T>)

1: find maximal i, j, BF, AF s.t. H ′v (T<) BF (D[i])j AF (T>) �→ H where BF, AF ∈ {∅, C}2
/* issue requests */

2: if ((i, j, BF, AF) = (0, 0, C, ∅)) then return T<CT>

3: if (BF = C) then BF = find motif sequence(v, T<, (D[i])j AF T>)
4: if (AF = C) then AF = find motif sequence(v, T< BF (D[i])j , T>)
5: return BF (D[i])j AF

edge expansion(e)

1: let u, v be the endpoints of edge e, remove e from H ′

2: find maximal j s.t. H ′vCju �→ H /* issue requests */
3: H ′ := H ′vCju, add newly discovered nodes to P

3.4 Request Complexity

The focus of DICT is on generality rather than performance, and indeed, the resulting
request complexities can often be high. However, as we will see, there are interesting
graph classes which can be solved efficiently.

Let us start with a general complexity analysis. The requests issued by DICT are con-
structed in Line 1 of finding motif sequence() and in Line 2 of edge expansion().
We will show that the request complexity of the latter is linear in the number of edges
of the host graph while the request complexity of finding motif sequence() depends
on the structure of the dictionary. Essentially, an efficient implementation of Line 1 of
finding motif sequence in DICT can be seen as the depth-first exploration of the

Request Complexity of VNet Topology Extraction 201

dictionary D starting from the chain C. More precisely, at a dictionary word v requests
are issued to see if one of the outgoing neighbors of v could be embedded at the position
of v. As soon as one of the replies is positive, we follow the corresponding edge and
continue recursively from there, until no outgoing neighbors can be embedded. Thus,
the number of requests issued before we reach a vertex v can be determined easily.

Recall that DICT tests vertices of a dictionary D according to a fixed port la-
beling scheme. For any v ∈ VD, let p(C, v) be the set of paths from C to v
(each path including C and v). In the worst case, discovering v costs cost(v) =
maxp∈p(C,v)(

∑
u∈p |Γ+(u)|).

Lemma 6. The request complexity of Line 1 of find motif sequence(v′, T<, T>) to
find the maximal i, j, BF, AF such that H ′v′ (T<) BF (D[i])j AF (T>) �→ H where
BF, AF ∈ {∅, C}2 and H ′ is the current request graph is O(maxv∈VD cost(v) + j).

Proof. To reach a word v = D[i] in VD with depth-first traversal there is exactly
one path between the chain C and v. DICT issues a request for at most all the out-
going neighbors of the nodes this path. After v has been found, the highest j where
H ′v (T<) BF (vj) AF (T>) �→ H has to be determined. To this end, another j + 1
requests are necessary. Thus the maximum of cost(v) + j over all word v ∈ VD deter-
mines the request complexity. �

When additional nodes are discovered by a positive reply to an embedding request,
then the request complexity between this and the last previous positive reply can be
amortized among the newly discovered nodes. Let num nodes(v) denote the number
of nodes in the motif sequence of the node v in the dictionary.

Theorem 2. The request complexity of algorithm DICT is at most O(n ·Δ+m), where
m denotes the number of edges of the inferred graph H ∈ H, and Δ is the maximal
ratio between the cost of discovering a word v in D and num nodes(v), i.e., Δ =
maxv∈VD{cost(v)/num nodes(v)}.

Proof. Each time Line 1 of find motif sequence() is called, either at least one new
node is found or no other node can be embedded between the current sequences (one
request is necessary for the latter result). If one or more new nodes are discovered, the
request complexity can be amortized by the number of nodes found: If v is the maximal
word found in Line 1 of find motif sequence() then it is responsible for at most
cost(v) requests due to Lemma 6. If it occurs more than once at this position, only
one additional request is necessary to discover even more nodes (plus one superfluous
request if no more occurrences of v can be embedded there). Amortizing the request
number over the number of discovered nodes results in Δ requests. All other requests
are due to edge expansion(e) where additional nodes are placed along edges. Clearly,
these costs can be amortized by the number of edges in H : for each edge e ∈ E(H), at
most two embedding requests are performed (including a “superfluous” request which
is needed for termination when no additional nodes can be added). �

202 Y.-A. Pignolet, S. Schmid, and G. Tredan

3.5 Examples

Let us consider concrete examples to provide some intuition for Theorem 1 and Theo-
rem 2. The execution of DICT for the graph in Figure 2.b), is illustrated in Figure 3.

Fig. 3. Motif sequence tree of the graph in Figure 2 b). The squares and the edges between them
depict the motif composition, the shaded squares belong to the motif sequence Y C2BDY D2

discovered in the first execution of find motif sequence() (chains, cycles, diamonds, and the
complete bipartite graph over two times three nodes are denoted by C, Y , D and B respectively).
Subsequently, the found edges are expanded before calling find motif sequence() another
four times to find Y and three times C.

A fundamental graph class are trees. Since, the tree does not contain any 2-connected
structures, it can be described by a single motif: the chain C. Indeed, if DICT is executed
with a dictionary consisting in the singleton motif set {C}, it is equivalent to a recursive
version of TREE from [12] and seeks to compute maximal paths. For the cactus graph,
we have two motifs, the request complexity is the same as for the algorithm described
in [12].

Corollary 3. Trees can be described by one motif (the chain C), and cactus graphs by
two motifs (the chain C and the cycle Y). The request complexity of DICT on trees and
cactus graphs is O(n).

Proof. We present the arguments for cactus graphs only, as trees constitute a subset of
the cactus family. The absence of diamond graph minors implies that a cactus graph
does not contain two closed faces which share a link. Thus, there can exist at most two
different (not even disjoint) paths between any node pair, and the corresponding motif
subgraph forms a cycle Y (or a triangle). Since the cycle has only one attachment point
pair, Δ of D is constant. Consequently, a linear request complexity follows directly
from Theorem 2 due to the planarity of cactus graphs (i.e., m ∈ O(n)). �
An example where the dictionary is efficient although the connectivity of the topology
can be high are block graphs. A block graph is an undirected graph in which every
bi-connected component (a block) is a clique. A generalized block graph is a block
graph where the edges of the cliques can contain additional nodes. In other words, in
the terminology of our framework, the motifs of generalized block graphs are cliques.
For instance, cactus graphs are generalized block graphs where the maximal clique size
is three.

Request Complexity of VNet Topology Extraction 203

Corollary 4. Generalized block graphs can be described by the motif set of cliques. The
request complexity of DICT on generalized block graphs is O(m), where m denotes the
number of edges in the host graph.

Proof. The framework dictionary for generalized block graphs consists of the set of
cliques, as a clique with k nodes cannot be embedded on sequences of cliques with
less than k nodes. As there are three attachment point pairs for each complete graph
with four or more nodes, DICT can be applied using a dictionary that contains three
entries for each motif with more than three nodes (num nodes() > 3). Thus, the ith

dictionary entry has �i/3�+ 3 nodes for i > 1 and cost(D[i]) < 3(i + 2) and Δ of D
is hence in O(1). Consequently the complexity for generalized block graphs is O(m)
due to Theorem 2. �

a)

0

2500

5000

7500

1221
1239
1755
2914
3257
3356
3967
4755
7018
grid

Topology

N
u

m
b

er
 o

f
n

o
d

es or
ig

in
al

tr
ee

lin
es

bi
gg

es
t

b)

0.00

0.25

0.50

0.75

1.00

3967

1755

3356

4755

2914

3257

grid

1239

7018

1221

Topology

R
at

io
 o

f
n

o
d

es
 d

is
co

ve
re

d

c)

● ●

●
●

●

● ●

● ●

●

●
●

●
●

●

●

●

● ●

●
●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

● ●

●

●

●

●

●

d)

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●
●

● ●

●●●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●●

●
●

●

●

Fig. 4. Results of DICT when run on different Internet and power grid topologies. a) Number of
nodes in different autonomous systems (AS). We computed the set of motifs of these graphs as
described in Definition 2 and counted the number of nodes that: (i) belong to a tree structure at the
fringe of the network, (ii) have degree 2 and belong to two-connected motifs, and finally (iii) are
part of the largest motif. b) The fraction of nodes that can be discovered with 12-motif dictionary
represented in Figure c). d) An example network where tree nodes are colored yellow, line-nodes
are green, attachment point nodes are red and the remaining nodes blue.

204 Y.-A. Pignolet, S. Schmid, and G. Tredan

On the other hand, Theorem 2 also states that highly connected graphs may require
Ω(n2) requests, even if the dictionary is small. In the next section, we will study
whether this happens in “real world graphs”.

4 Experiments

To complement our theoretical results and to validate our framework on realistic graphs,
we dissected the ISP topologies provided by the Rocketfuel mapping engine1. In addi-
tion, we also dissected the topology of a European electricity distribution grid (grid on
the legends). Figure 4 a) provides some statistics about the aforementioned topologies.
Since DICT discovers both tree and degree 2 nodes in linear time, this figure shows
that most of each topology can be discovered quickly. The inspected topologies are
composed of a large bi-connected component (the largest motif), and some other small
and simple motifs. Figure 4 b) represents the fraction of each topology that can be
discovered by DICT using only a 12-motifs dictionary (see Figure 4 c)). Interestingly,
this small dictionary is efficient on 10 different topologies, and contains motifs that are
mostly symmetrical. This might stem from the man-engineered origin of the targeted
topologies. Finally, Figure 4 d) provides an example of such a topology.

References

1. Acharya, H.B., Gouda, M.G.: On the hardness of topology inference. In: Aguilera, M.K.,
Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS, vol. 6522,
pp. 251–262. Springer, Heidelberg (2011)

2. Anandkumar, A., Hassidim, A., Kelner, J.: Topology discovery of sparse random graphs with
few participants. In: Proc. SIGMETRICS (2011)

3. Bansal, N., Lee, K.-W., Nagarajan, V., Zafer, M.: Minimum congestion mapping in a cloud.
In: Proc. 30th PODC, pp. 267–276 (2011)

4. Cheswick, B., Burch, H., Branigan, S.: Mapping and visualizing the internet. In:
Proc. USENIX Annual Technical Conference, ATEC (2000)

5. Chowdhury, M.K., Boutaba, R.: A survey of network virtualization. Elsevier Computer
Networks 54(5) (2010)

6. Even, G., Medina, M., Schaffrath, G., Schmid, S.: Competitive and deterministic embeddings
of virtual networks. In: Bononi, L., Datta, A.K., Devismes, S., Misra, A. (eds.) ICDCN 2012.
LNCS, vol. 7129, pp. 106–121. Springer, Heidelberg (2012)

7. Fan, J., Ammar, M.H.: Dynamic topology configuration in service overlay networks: A study
of reconfiguration policies. In: Proc. IEEE INFOCOM (2006)

8. Houidi, I., Louati, W., Zeghlache, D.: A distributed virtual network mapping algorithm. In:
Proc. IEEE ICC (2008)

9. Lischka, J., Karl, H.: A virtual network mapping algorithm based on subgraph isomorphism
detection. In: Proc. ACM SIGCOMM VISA (2009)

10. Pignolet, Y.-A., Schmid, S., Tredan, G.: Request Complexity of VNet Topology Extraction:
Dictionary-Based Attacks. arXiv preprint of full version (2013)

11. Pignolet, Y.A., Schmid, S., Tredan, G.: Misleading Stars: What Cannot Be Measured in the
Internet? In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 311–325. Springer, Heidelberg
(2011)

1 Seehttp://www.cs.washington.edu/research/networking/rocketfuel/

http://www.cs.washington.edu/research/networking/rocketfuel/

Request Complexity of VNet Topology Extraction 205

12. Pignolet, Y.-A., Tredan, G., Schmid, S.: Adversarial VNet Embeddings: A Threat for ISPs?
In: IEEE INFOCOM (2013)

13. Schaffrath, G., Schmid, S., Feldmann, A.: Optimizing long-lived cloudnets with migrations.
In: Proc. IEEE/ACM UCC (2012)

14. Yao, B., Viswanathan, R., Chang, F., Waddington, D.: Topology inference in the presence of
anonymous routers. In: Proc. IEEE INFOCOM, pp. 353–363 (2003)

15. Zhang, S., Qian, Z., Wu, J., Lu, S.: An opportunistic resource sharing and topology-aware
mapping framework for virtual networks. In: Proc. IEEE INFOCOM (2012)

Stability of Adversarial Routing with Feedback

Bogdan S. Chlebus1,�, Vicent Cholvi2,��, and Dariusz R. Kowalski3

1 University of Colorado Denver, Denver, Colorado, USA
2 Universitat Jaume I, Castellón de la Plana, Spain

3 University of Liverpool, Liverpool, United Kingdom

Abstract. We consider the impact of scheduling disciplines on the
performance of routing in the framework of adversarial queuing. We
propose an adversarial model which reflects stalling of packets due to
transient failures and explicitly incorporates the feedback produced by
the network when packets are stalled. This adversarial model provides
a methodology to study stability of routing protocols when flow-control
and congestion-control mechanisms affect the volume of traffic. We show
that any scheduling policy that is universally stable, in the regular model
of routing that additionally allows packets to have two priorities, remains
stable in the proposed adversarial model.

1 Introduction

We consider routing in communication networks when transient transmission
failures and congestion control mechanisms affect the number of packets han-
dled by the nodes. Routing protocols do not act on their own but operate in an
environment affected by flow control and congestion control. The overall goal is
managing the rates of transmissions between pairs of nodes to provide fluency
of traffic and avoiding congestive collapse, as means to optimize the use of the
network. Routing protocols may drop packets, for instance when the processing
time assigned to a packet has been exhausted, which has a stabilizing effect on
the performance of routing. Because of the complexities of such systems, the
traditional stochastic approach to investigate performance metrics encounters
technical issues of mathematical nature which hinder obtaining better insights
into what hinders network’s performance and how to improve, see [26]. The
stochastic approach usually makes strong assumptions about how traffic is gen-
erated, which may be considered unrealistic.

In this paper we consider network traffic in the framework of models that
concentrate on only a few aspects of traffic generation and routing function-
ality. This allows to gain better understanding of traffic efficiency phenomena
while avoiding making stochastic assumptions and abstracting from the low level
mechanisms implemented in the network and transport layers.

� The work of this author is supported by the NSF Grant 1016847.
�� The work of this author was supported by the Spanish MEC Grant TIN2011- 28347-

C02-01 and the Bancaixa Grant P11B2010-28.

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 206–220, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Stability of Adversarial Routing with Feedback 207

The underlying components of the network functionality we assume are as
follows. First, we want to have unbounded buffers in each node to accommodate
any number of packets in transit. Second, we prune routing from any mechanisms
of dropping packets in intermediate nodes, while the packets are still on their
way to the assigned destinations.

These assumptions have been traditionally adopted in the models of adversar-
ial traffic. Adversarial queuing was proposed as a methodology to analyze worst-
case bounds on traffic within a traffic environment determined by parameters
like injection rates and burstiness, see [5,12]. The basic aspect of a satisfactory
behavior of a system in adversarial queuing is the stability of traffic, which is
defined as the property that the number of packets handled simultaneously is
bounded at all times.

Our goal is to extend the model of adversarial queuing by incorporating
features representing congestion control. This includes the feedback provided
by the network to the nodes to notify them that some packets have been stalled.

The routing protocols that we consider do not drop packets intentionally,
but still some packets may be delayed due to malfunctioning of the network
infrastructure. This includes transient wire-link failures or interferences on wire-
less links, so that packets may occasionally fail to be successfully transmitted
between nodes.

Another related situation occurs when scheduled packets are delayed due to
nodes being switched off for energy savings. The recently adopted IEEE 802.3az
Energy Efficient Ethernet (EEE) standard, as described in [20], is expected to be
conducive to energy savings in local area networks by implementing mechanisms
to have nodes temporarily unavailable to cooperate in routing, see [17] for more
on this issue.

Our Contribution. We propose an adversarial model to study routing in faulty
systems. The adversary may learn of the failures after some time interval. De-
layed feedback is more realistic than assuming that failures are known in advance
when an execution of a routing protocol starts. Concerning stability, we demon-
strate that any scheduling policy universally stable in the 2-priority model, as
introduced by Àlvarez et al. [2], remains stable in the adversarial model that we
propose.

Related Work. The adversarial methodology to study store-and-froward routing
in wired networks was proposed by Andrews et al. [5] and Borodin et al [12].
Adversarial communication in wireless networks was considered by Andrews and
Zhang [6]. Stability of broadcast protocols in adversarial multiple-access chan-
nels was studied by Anantharamu et al. [3,4], Bender et al. [8], and Chlebus et
al. [14,15].

Adversarial models capturing failures have been proposed in the literature in
various network settings. Borodin et al. [13] considered slowdowns associated
with links. The papers [11,16,21,22], considered dynamic changes in the link
capacities, with the intension to interpret such transient decreasing of capacity
of a link as a transient failure of the link.

208 B.S. Chlebus, V. Cholvi, and D.R. Kowalski

Álvarez et al. [2] proposed a model that allows transient disruptions of the

connectivity of the system. That model was extended by Álvarez et al. [1] to
incorporate node failures. The models mentioned above assume that the adver-
sary can make a link fail at any round. The papers [1,2] and [23] assume that, at
each round, the adversary knows when links fail. It is then natural to have the
adversary be equipped with the power to adjust the injection of packets to such
events, possibly even before link failures occur. We propose an approach in which
the constraints on the adversary, in terms of the injection rate and burstiness,
are modified after some time delay triggered by malfunctioning of links.

Adversarial approach has been applied to modeling malfunctioning of wireless
networks, including single-hop multi channels. Bhandari and Vaidya [9,10] con-
sidered broadcast protocols in multi-hop wireless networks with nodes prone to
failures. Gilbert et al. [18] considered a multi-channel where the adversary con-
trols how information flows on subsets of channels. Meier et al. [25] considered
adversarial multi-channel single-hop networks when some t channels out of m
could be disrupted in a round, with m known and t not known.

Adversarial queuing was applied when studying interference and jamming in
wireless networks, including single-hop multi channels and multiple access chan-
nels. Lim et al. [23] proposed an adversarial model to capture interferences among
the links in wireless networks. In this case, at each round the adversary assigns
specific edge rate vectors that are assumed to keep the network stable. These
vectors can be interpreted as reflecting the degree in which edges fail by not
providing their full capacity. Anantharamu et al. [3,4] considered multiple access
channels with adversarial jamming, when the attached stations perceive jamming
as colliding attempts by different stations to access the channel. Awerbuch et
al. [7] studied saturation throughput of randomized protocols in adversarial mul-
tiple access channels subject to jamming. Gilbert et al. [19] studied single-hop
multi-channel networks with communication subject to adversarial jamming.

For a general discussion of topics related to the mechanisms of flow and
congestion control, see [24,26].

2 The Adversarial Model

We propose an adversarial approach to study stability of routing which captures
packet delays due to failures of network elements. This methodology is an ex-
tension of the regular leaky-bucket adversarial model determined by injection
rate and burstiness. The new component is the feedback from the network after
a transmission that does not go through. This feedback restricts the adversary’s
capability to inject packets.

We will model networks as directed graphsG = (V,E), where the vertices in V
represent the nodes of the network and the edges in E are the links connecting
nodes. The orientation of an edge represents the direction in which the link can
transmit data. The networks we consider are synchronous, in that an execution
of a communication protocol is partitioned into rounds.

Each packet is injected by the adversary into some node and assigned a path
through the network to traverse. Such paths cannot contain the same link more

Stability of Adversarial Routing with Feedback 209

than once. If more than one packet wishes to cross an edge e in a round, then a
routing protocol chooses one of these packets to send across e, while the remain-
ing packets are kept in a queue at the tail of the edge e. When a packet reaches
the destination node then it is absorbed, which means that it disappears.

A packet travels through the network with additional information associated
with it, like the destination address or the round when it was injected into the
network. A packet encapsulated in this information makes an atomic unit of data
to be transmitted through links, which we call simply a message. Messages and
rounds are scaled to each other, in that it takes one round to transmit a message
through a link.

In this work, we consider routing environments in which a packet scheduled to
be transmitted over a link in a round may fail to traverse the link, this possibly
happening for a consecutive number of rounds at a time. When we use the
terms faulty round an faulty link, then these refer to situations where failures
in messages to traverse links occur. We assume that messages are never lost in
transmissions, in that they are successfully handed over from a node to the next
neighbor on the traversed path, until the packets reach their destination.

2.1 A Leaky-Bucket Regulation

We define the adversarial model by how traffic is regulated. We use a traffic
descriptor using the notion of a leaky token bucket, as proposed by Turner [27].
Traffic demand is determined by packets injected into the network, each packet
assigned a path to traverse. The notion of packets becoming stalled in their
journeys is to represent a general malfunctioning of the system that results in a
packet getting delayed, when an attempted transmission on a link that does not
go through, regardless of what is the reason. A packet is stalled in round t if it is
attempted to be transmitted but the transmission does not go through the link.

An adversary is defined by three parameters: injection rate r, such that 0 <
r ≤ 1, burstiness b, which is a positive integer, and feedback delay δ, which is also
a positive integer. These three parameters together determine the adversarial
type (r, b, δ).

We will consider two kinds of virtual objects called tokens and antitokens. A
token is in a bucket and represents the ability to inject a packet. An antitoken
represents a stalled packet, and so the need to decrease the traffic by one packet
to avoid congestion.

A single bucket is a variable K storing a number; K is initialized to 0. When
K ≥ 0, then �K� is interpreted as the number of tokens in the bucket. The
bucket’s capacity is b. In general, K may assume negative values; in such a case
the bucket does not contain any tokens. The operations performed on K are as
follows.

1) In each round, r is added to K by K ← K + r. If at this point K > b then
K is modified by K ← b, which is interpreted as the bucket’s overflow.

210 B.S. Chlebus, V. Cholvi, and D.R. Kowalski

2) The adversary injects some i packets and simultaneously removes i tokens
from the bucket by performingK ← K−i. For this to be possible to perform,
the inequalities 0 < i ≤ K need to hold.

3) Each stalled packet creates an antitoken carrying a value. The value of a
newly created antitoken is initiated to δ. The value of an antitoken gets
decremented by 1 in each round. An antitoken disappears in two possible
ways, as decided by the adversary. One results in removing the antitoken and
simultaneously modifying K ← K−1 while the token’s value is still positive.
Another is when the value becomes 0, then the antitoken disappears, and
simultaneously K ← K− 1; this represents the maximally delayed feedback.

Intuitively, when the adversary decides to annihilate a token, then this represents
the moment when the adversary obtains a feedback from the network of a stalled
packet. One token and one antitoken disappear simultaneously, as by annihilation
resulting from their getting mixed together, which explains the terminology.

This completes the specification how a single bucket operates, when it is con-
sidered in isolation independently from other buckets. The complete picture is
such that we associate a bucket Ke with each directed edge e of the network.

The operations on these buckets are coordinated as follows:

1) Every bucket gets incremented by δ in each round, subject to possible
overflow which makes a bucket store precisely b tokens.

2) A packet has a path assigned to traverse; when a packet gets stalled then an
antitoken is created for each bucket Ke associated with an edge e that the
packet is still to traverse; all these anti tokens are said to be related.

3) When the adversary injects a packet to traverse a path, then it removes a
token from each bucket Ke associated with any edge e of the path. For this
to be possible to be performed, each bucket on the path needs to include at
least one token.

4) When the adversary destroys an antitoken g created by a stalled packet p on
some link, then such a destruction, and the matching operation K ← K− 1,
is performed on each related token g′ created on a link which p was still to
traverse when g was created, and the bucket associated with a link that p
was still to traverse when g was created.

This completes the specification of how the adversary can inject packets into the
network.

To specify the adversarial model fully, we need to state precisely what the
adversary controls. For instance, we interpret annihilation of a token from a
bucket, and the matching removal of an antitoken by the adversary, as repre-
senting the event when the adversary obtains feedback from the network about
a stalled packet. There are two possible cases here: one is to consider all the
possible worst-case times when the adversary obtains the feedback, and another
to assign the power to determine these times to the adversary. We may observe
at this point that both these approaches are equivalent, as the adversarial model

Stability of Adversarial Routing with Feedback 211

is to capture a worst-case behavior of the system. Therefore we choose the log-
ically simplest approach to interpret the adversary as controlling both packet
injections and any malfunctioning of the network. In particular, the adversary
controls which packets get stalled and when, and also when the feedback about
a stalled packet is obtained, independently for each packet.

2.2 Comparison with the Regular Adversary

The regular leaky-bucket adversary is defined by two parameters: injection rate r,
such that 0 < r ≤ 1, and a positive-integer burstiness b. These two parameters
together determine the adversarial type (r, b).

Proposition 1. A delayed-feedback leaky-bucket adversary of type (r, b, δ) is at
least as powerful as the regular leaky-bucket adversary of the type (r, b).

Proof. We compare the two adversarial models as regulated by a leaky bucket of
tokens. When the delayed-feedback adversary of the type (r, b, δ) does not induce
any stalling among the packets, then the regulatory properties of a bucket of
tokens determine the regular adversary of the type (r, b). !
Corollary 1. If a scheduling policy is unstable in a network G under a schedul-
ing policy S against the regular adversary of type (r, b) then this same scheduling
policy S is unstable in the network G against a delayed-feedback adversary of the
type (r, b, δ), for any positive integer δ.

Proof. Consider an unstable execution of routing against the adversary of the
type (r, b) when the scheduling policy S is applied. A similar unstable execution
can be produced by the adversary of the type (r, b, δ), by Proposition 1. !
We consider the following specific scheduling policies: first-in-first-out (FIFO),
nearest-to-go (NTG), farthest-from-source (FFS), and slowest-previous-link with
ties broken using the nearest-from-source (SPL-NFS).

Theorem 1. Each of the scheduling policies FIFO, NTG, FFS and SPL-NFS is
unstable in some network against a delayed-feedback adversary of injection rate
less than 1.

Proof. We rely on Corollary 1 and the instability results obtained for the regular
adversary. The instability of the scheduling policies FIFO, NTG, and FFS follows
from the respective instabilities obtained by Andrews et al. [5], and the instability
of SPL-NFS follows from the related result given by Blesa et al. [11]. !

3 Properties of the Adversarial Model with Feedback

In this section, we investigate properties of the adversarial model with feedback
presented in the previous section. A key point of the model is the concept of
antitoken, which represents a stalled packet and thus the need to decrease the

212 B.S. Chlebus, V. Cholvi, and D.R. Kowalski

bound on the future traffic by one packet to avoid congestion. We re-define the
adversary by expressing its power in a more analytical way to facilitate the
future technical analysis. More precisely, we describe our adversary in terms of
an admissibility condition, which involves a delay function accounting for the
impact of each antitoken’s annihilation on decreasing the amount of traffic that
could be injected.

3.1 Reformulation of the Adversarial Model

In each round, the adversary may inject packets into some of the nodes in the
network. In order for stability to be achievable in principle, the adversary needs
to be subject to restrictions. These restrictions imposed on the regular leaky-
bucket adversary are represented by its adversarial type (b, r), where b ≥ 1 is a
natural number and r satisfies 0 ≤ r < 1. The injection rate r models the rate at
which a packet can be injected into the network that need to traverse the same
link, for each link in the network. The burstiness b represents the maximum
number of packets, that need to traverse the same edge, that the adversary can
inject into the network in one round. The precise interpretation of such a type
(b, r) is that in any time interval τ of length |τ | the adversary may inject at
most r|τ |+ b packets that need to traverse the same edge. The adversary is free
to choose both the source and the destination node for any injected packet. It
also determines the individual path from the source to the destination that any
specific packet needs to traverse.

An extension to the adversarial model with delays is as follows. Let Iδq (t)
represent the total number of packets which the adversary injects at round t that
have queue q on their path. We say that the packet injections are admissible for
rate r and burstiness b if the following holds for all q:

∑
t∈T

Iδq (t) ≤ r
∑
t∈T

(1− sδq(t)) + b, (1)

where T represents a contiguous time interval and sδq is a delay function. The
restriction (1) is referred to as the admissibility condition.

Figure 1 gives an illustrative example of the admissibility condition in a
queue q. This model is referred to as feedback delayed by up to δ, or DFδ in
concise notation.

The function sδq provides the rounds when the adversary becomes constrained
by stalling that have occurred at queue q. We interpret such rounds as the
adversary obtaining “notifications” from the network about the delay. Such no-
tifications represent annihilations of antitokens. A formal specification of sδq is
provided in Definition 4 in Subsection 3.2.

At any round t, the adversary takes into account the values of sδq(t
′), for

t′ ≤ t, based only on the notifications received up to that round, as reflected
in Definition 4. This means that the admissibility condition in Equation 1 is
refers only to the received notifications, that is, annihilations of anti tokens, and
the packets injected into the system. The way it is defined in Definition 4 is

Stability of Adversarial Routing with Feedback 213

sδq(t)

b

1

classical admissibility
condition

DFδ admissibility

condition
Iδq(t)

1 2 3 4 5 6 7 8

Fig. 1. An illustration for the admissibility condition (1). The number sδq(t) represents
the rounds when the adversary reacts to stalled packets in q. The injected data Iδq (t)
represents the admissible amount of data that the adversary can inject due to the extra
rounds incurred by stalling.

equivalent to the previously defined method of creating and annihilating antito-
kens, corresponding to each instance of a stalled packet.

The admissibility condition captures the following intuitions:

– When there are no annihilations of antitokens, then the adversary is allowed
to inject as many packets as in the regular adversarial model.

– If some tokens get annihilated, then the adversary is allowed to inject a num-
ber of packets as determined by the traditional adversarial model, decreased
by the number of annihilations as specified in the leaky-bucket regulation
mechanism by way of tokens and antitokens.

The definition of stability in DFδ is similar to the definition stated under other
adversarial models.

Definition 1. Let G be a network, P a scheduling policy and A an adversary of
type (r, b). Let D be and execution of protocol P against A in G. For a positive
integer t, let QD(t) be the number of packets simultaneously queued in the system
at time t. Protocol P is stable on G against A if in each such an execution D,
all the numbers QD(t) are bounded. Protocol P is universally stable if it is stable
against any adversary of injection rate r < 1 and in any network.

214 B.S. Chlebus, V. Cholvi, and D.R. Kowalski

3.2 Delay Functions and Reactive Functions

We say that a queue q is stalled in round t if some packet in the queue is stalled
in this round. Next we introduce the function wq which represents the rounds
where delays occur at queue q.

Definition 2. Consider an execution of a system up to round t. Given a queue q,
we define the function wq(t) such that wq(t) = 1 if the queue q is stalled at round t
and wq(t) = 0 otherwise.

The rounds that are added to a stalled packet’s itinerary occur as a side effect
of the adversary’s actions. The adversary receives information about the extra
rounds of stalled-packets occurring at the different queues. We consider the case
where the adversary becomes constrained by the stalled packets after some time
delay; the parameter δ is used to bound such a maximum delay.

Next we introduce the notations Tq, D
δ
q , and wδ

q . We want wδ
q to model the

rounds where the adversary becomes constrained by the queue q getting stalled
and it also provides the number of the notifications.

Definition 3. We will use the following terminology and notations:

1. Let Tq be the set of these rounds t for which wq(t) = 1 holds.

2. For a given function wq, let the function Dδ
q : Tq → N be such that Dδ

q(t) = t′,
for t ∈ Tq and t ≤ t′ ≤ t + δ, where t′ is the time when the feedback about
the queue q being staled at time t arrives.

3. Let T δ
q (t) be the subset of Tq such that t′ ∈ T δ

q (t) if Dδ
q(t

′) = t.

4. For a given wq and a given Dδ
q , let the delay function wδ

q by determined the

equality wδ
q(t) = |T δ

q (t)|.
Figure 2 provides a graphical representation of the notions introduced in
Definition 3 in a specific example.

Reactive functions. When the adversary receives a notification of a queue q
getting delayed, then this indicates that some packet in this queue will need an
extra round. In order to maintain stability, the adversary must react to take
into account such eventuality. Such a reaction is performed as if temporarily the
injection rate were reduced, which is implemented by the mechanism of tokens
and antitokens. Several notifications could be received at the same time, so the
adversary needs to take that fact into account. For instance, if at some time t
the adversary receives three notifications of stalling for some given link, it will
reduce the long term injection rate of a packet that will cross such a link for
three rounds after time t, provided such rounds have not been already reduced
because of previous notifications, in which case the next “available” rounds will
be chosen.

To formalize this, we define the function sδq, which is intended to model the
rounds when the adversary will react to a delayed notification of stalling which
has occurred at a queue q.

Stability of Adversarial Routing with Feedback 215

time

wq
δ(t)

wq(t)

1

1

1 2 3 4 5 6 7 8

Dq
δ(3)=4

Dq
δ(4)=7

Dq
δ(6)=7

2

Fig. 2. An examples of how the function Dδ
q is determined

Definition 4. For a given delayed function wδ
q , we construct the reactive

function sδq as follows:

init:
sδq(t)← 0 for all t;
t← 1; % time in wδ

q

t′ ← 1; % time in sδq

Repeat forever
if wδ

q(t) �= 0 then % when one or more notifications are

received at time t
t′ ← max(t, t′); % set up the next "available" round

in sδq after t
for taux = t′ to (t′ + wδ

q(t)− 1) do
sδq(taux)← 1; % mark taux as "reactive"

t′ ← t′ + wδ
q(t)− 1; % set up the next "available" round in sδq

t← t+ 1; % increase time

This function sδq is determined by wδ
q , which gives the rounds when the ad-

versary receives notifications of delays occurring at queue q, as represented by
annihilations of antitokens.

216 B.S. Chlebus, V. Cholvi, and D.R. Kowalski

4 The Stability of Scheduling Policies

In this section, we show that some scheduling policies are stable in the adversarial-
queuing modelDFδ. We will use an auxiliary model, known as the priority model,
which was introduced in [2]. We refer to the model as c-priority model when there
are c priorities. It is obtained by modifying the regular adversarial model [5,12]
so that packets have priorities in the following sense. If, at a certain time, more
than one packet located at the same queue is ready to be transmitted, then the
scheduling policy chooses the packet of the highest priority.

The following fact provides a relationship between the number of extra rounds
due to delays and the number of reactive rounds at a given time interval.

Lemma 1.
∑

t∈T wq(t) ≤
∑

t∈T sδq(t) + δ.

Proof. By the definition of function wδ
q , for each round t where wq(t) = 1, there

is a round t′, which is not necessarily different for each t, such that wδ
q(t

′) �= 0
and t ≤ t′ ≤ t+ δ.

From the mechanism used to construct sδq, see Definition 4, the function sδq
takes the value 1 as many times as the values taken by the function wδ

q . It follows
that the number of times where wq takes the value 1 is the same as the number
of times where sδq takes the value 1, although not necessarily at the same rounds.

This means that there exists a bijective increasing function rDδ
q such that, for

all t, when wq(t) = 1 then rDδ
q(t) = t′, where sδq(t

′) = 1.
We proceed with considering the following two cases.

The case of t > t′:

This cannot happen by the construction of sδq, because taux in Definition 4 is
always at least t.

The case of t′ > t+ δ:

We prove this case by contradiction. Let t1 be the first round such that rDδ
q(t1) =

t∗1 and t∗1 > t1+δ. From the construction of rDδ
q described above, see Definition 4,

we have that, for all t′′ ∈ [Dδ
q(t1), rD

δ
q(t1) − 1] the equality sδq(t

′′) = 1 holds.

Since rDδ
q is a bijective increasing function, there must exist some round tm such

that tm < t1 and rDδ(tm) = t∗1 − 1. Let t∗m = t∗1 − 1.
The following two facts hold. On one hand, we have that tm < t1 and t∗m =

t∗1 − 1, which means that t∗m > tm + δ. On the other hand, we also have that
rDδ(tm) = t∗m. All this contradicts our assumption that t1 is the first round such
that rDδ

q(t1) = t∗1 and t∗1 > t1 + δ. The fact that the inequality t ≤ t′ ≤ t + δ

holds means that for each t such that wq(t) = 1, the corresponding image in sδq
will be for a round t′ that is delayed by at most δ rounds. We conclude that the
inequality

∑
t∈T wq(t) ≤

∑
t∈T sδq(t) + δ holds true. !

The following Lemma 2 shows that if a given scheduling policy is unstable in DFδ

then it is also unstable in the 2-priority model.

Stability of Adversarial Routing with Feedback 217

Lemma 2. If a given scheduling policy is unstable against an adversary with
injection rate r and burstiness b in DFδ, then such a scheduling policy is unstable
against some adversary of injection rate r′ and burstiness b′ in the 2-priority
model, where 0 < r′ < 1.

Proof. Let us take an adversary A in DFδ with parameters (r, b). Then, accord-
ing to the admissibility condition in Equation 1 and by Lemma 1, the following
estimates hold.

∑
t∈T

Iδq (t) ≤ r
∑
t∈T

(1 − sδq(t)) + b

≤ r
∑
t∈T

1− (
∑
t∈T

wq(t)− δ)) + b

≤ r
∑
t∈T

(1 − wq(t)) + rδ + b .

The right-hand side of this bound equals r
∑

t∈T (1−wq(t)) + b′ for b′ = rδ + b.
We obtain by algebraic manipulations that

∑
t∈T

Iδq (t) +
∑
t∈T

wq(t) ≤ r
∑
t∈T

(1− wq(t)) + b′ +
∑
t∈T

wq(t)

= r
∑
t∈T

1 + (1− r)
∑
t∈T

wq(t) + b′

≤ r
∑
t∈T

1 + ((1− r)
∑
t∈T

τ

τ + 1
) + b′

= (
r + τ

τ + 1
)
∑
t∈T

1 + b′

= (
r + τ

τ + 1
) | T | + b′

= r′ | T | + b′ ,

where we used wq(t) ≤ τ
τ+1 and r′ = r+τ

τ+1 . Observe that 0 < r′ < 1.
Consider an adversarial pattern for injection rate r and burstiness b that

results in an unstable execution of the given scheduling policy. Based on the
obtained estimate on ∑

t∈T

Iδq (t) +
∑
t∈T

wq(t) ,

we define the corresponding adversarial pattern in the 2-priority model, as spec-
ified in the claim of the lemma. The constructed specific adversarial behavior
follows the same injection pattern as defined by the adversary A in DFδ, with a
low priority given to all these packets, and additionally it injects a high priority
packet at the starting queue q in each round t such that wq(t) = 1.

218 B.S. Chlebus, V. Cholvi, and D.R. Kowalski

Consider the execution of the original scheduling policy under the defined
adversarial pattern in the 2-priority adversarial model. By the inequality

∑
t∈T

Iδq (t) +
∑
t∈T

wq(t) ≤ r′|T |+ b′ ,

which holds in the execution in DFδ, we obtain that queue-congestion of the
injected packets, whether of high or of low priority, is constrained by the injection
rate r′, with r′ < 1, and burstiness b′v. This is because

∑
t∈T Iδq (t) from the

original execution in DFδ corresponds to the node congestion of the low-priority
packets, and

∑
t∈T wq(t) corresponds to the queue-congestion of the high-priority

packets, both in the 2-priority execution.
It remains to argue that the newly defined execution is also unstable in the

2-priority model. The following invariant holds.

There is at most one high-priority packet at a queue in any round in the
latter execution, and the transmissions of low-priority packets are the
same in both considered executions.

This follows by induction on the round numbers, because any such a packet is
injected in the beginning of each round when a extra round due to stalling occurs
in the execution in DFδ through some queue. Since the execution in DFδ results
in unbounded queues, the other one also does. !
Theorem 2. Any scheduling policy that is universally stable in the 2-priority
model is universally stable in DFδ.

Proof. We suppose it is otherwise in order to arrive at a contradiction. This
means that there is a scheduling policy S that is universal in the 2-priority
model but for any burstiness b there is some rate r such that the inequalities
0 < r < 1 hold and such that S is unstable against the adversary with rate r and
burstiness b in DFδ. Let us consider such an unstable execution. By Lemma 2,
there is an unstable execution of the scheduling policy S in the 2-priority model,
for some injection rate r′ such that 0 < r′ < 1 and for burstiness b′.

This contradicts the universal stability of S in the 2-priority model. !
Àlvarez et al. [2] showed that FTG (farthest-to-go), NFS (nearest-from-source)
and SIS (shortest-in-system) are universally stable for the 2-priority model. By
this and Theorem 2 we obtain the following corollary.

Corollary 2. Scheduling policies FTG, NFS and SIS are all universally stable
in the adversarial model DFδ.

5 Conclusion

We study routing in the suitable adversarial frameworks. We investigate how un-
expected packet delays may affect routing’s performance. Packet delays repre-
sent either malfunctioning of the network’s infrastructure, implemented below the
network layer, or transient unavailability of nodes due to energy saving policies.

Stability of Adversarial Routing with Feedback 219

We assume that routing protocols are embedded into flow control and connec-
tion control mechanisms. These mechanisms react to packet delays by spreading
the suitable information through the network with the goal to decrease packet
injection rates.

We propose how to study stability of various classes of scheduling policies in
such network settings. To this end, we propose a new adversarial model that has
delays built into its machinery. The model we consider is an extension of the
regular leaky-bucket model, which is determined only by the injection rate and
burstiness.

Each transmission that fails to go through results in a feedback, which ab-
stracts the flow control and connection control mechanisms. We treat this feed-
back as if given to the adversary, because it decreases the adversary’s capability
to inject packets.

We demonstrated that all scheduling policies stable in the 2-priority wireline
adversarial model are also stable in the new proposed model. That includes such
popular scheduling policies as FTG, NFS and SIS.

References

1. Àlvarez, C., Blesa, M., Serna, M.: The robustness of stability under link and node
failures. Theoretical Computer Science 412(50), 6855–6878 (2011)

2. Àlvarez, C., Blesa, M.J., Dı́az, J., Serna, M.J., Fernández, A.: Adversarial models
for priority-based networks. Networks 45(1), 23–35 (2005)

3. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Deterministic
broadcast onmultiple access channels. In:Proceedings of the 29th IEEE International
Conference on Computer Communications (INFOCOM), pp. 1–5 (2010)

4. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Medium access
control for adversarial channels with jamming. In: Kosowski, A., Yamashita, M.
(eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 89–100. Springer, Heidelberg (2011)

5. Andrews, M., Awerbuch, B., Fernández, A., Leighton, T., Liu, Z., Kleinberg, J.:
Universal-stability results and performance bounds for greedy contention-resolution
protocols. Journal of the ACM 48(1), 39–69 (2001)

6. Andrews, M., Zhang, L.: Routing and scheduling in multihop wireless networks
with time-varying channels. ACM Transactions on Algorithms 3(3), 33 (2007)

7. Awerbuch, B., Richa, A.W., Scheideler, C.: A jamming-resistant MAC protocol
for single-hop wireless networks. In: Proceedings of the 27th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 45–54 (2008)

8. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.:
Adversarial contention resolution for simple channels. In: Proceedings of the 17th
Annual ACM Symposium on Parallel Algorithms (SPAA), pp. 325–332 (2005)

9. Bhandari, V., Vaidya, N.H.: Reliable broadcast in wireless networks with
probabilistic failures. In: Proceedings of the 26th IEEE International Conference
on Computer Communications (INFOCOM), pp. 715–723 (2007)

10. Bhandari, V., Vaidya, N.H.: Reliable broadcast in radio networks with locally
bounded failures. IEEE Transactions on Parallel and Distributed Systems 21(6),
801–811 (2010)

11. Blesa, M.J., Calzada, D., Fernández, A., López, L., Mart́ınez, A.L., Santos, A.,
Serna, M.J., Thraves, C.: Adversarial queueing model for continuous network
dynamics. Theory of Computing Systems 44(3), 304–331 (2009)

220 B.S. Chlebus, V. Cholvi, and D.R. Kowalski

12. Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.: Adversarial
queueing theory. Journal of the ACM 48(1), 13–38 (2001)

13. Borodin, A., Ostrovsky, R., Rabani, Y.: Stability preserving transformations: Packet
routing networks with edge capacities and speeds. Journal of Interconnection
Networks 5(1), 1–12 (2004)

14. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Maximum throughput of multiple
access channels in adversarial environments. Distributed Computing 22(2), 93–116
(2009)

15. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple
access channel. ACM Transactions on Algorithms 5, 5:1–5:31 (2012)

16. Cholvi, V.: Stability bounds in networks with dynamic link capacities. Information
Processing Letters 109(2), 151–154 (2008)

17. Christensen, K., Reviriego, P., Nordman, B., Bennett, M., Mostowfi, M.,
Maestro, J.A.: IEEE 802.3az: The road to energy efficient Ethernet. IEEE
Communications Magazine 48(11), 50–56 (2010)

18. Gilbert, S., Guerraoui, R., Kowalski, D.R., Newport, C.: Interference-resilient
information exchange. In: Proceedings of the 28th IEEE International Conference
on Computer Communications (INFOCOM), pp. 2249–2257 (2009)

19. Gilbert, S., Guerraoui, R., Newport, C.C.: Of malicious motes and suspicious
sensors: On the efficiency of malicious interference in wireless networks. Theoretical
Computer Science 410(6-7), 546–569 (2009)

20. IEEE P802.3az Energy Efficient Ethernet. Task force public area (2008),
http://grouper.ieee.org/groups/802/3/az/public/index.html

21. Koukopoulos, D., Mavronicolas, M., Spirakis, P.G.: The increase of the instability of
networks due to quasi-static link capacities. Theoretical Computer Sciience 381(1-3),
44–56 (2007)

22. Koukopoulos, D., Mavronicolas, M., Spirakis, P.G.: Performance and stability
bounds for dynamic networks. Journal of Parallel and Distributed Computing 67(4),
386–399 (2007)

23. Lim, S., Jung, K., Andrews, M.: Stability of the max-weight protocol in adversarial
wireless networks. In: Proceedings of the 31st IEEE International Conference on
Computer Communications (INFOCOM), pp. 1251–1259 (2012)

24. Mamatas, L., Harks, T., Tsaoussidis, V.: Approaches to congestion control in packet
networks. Journal of Internet Engineering 1(1), 22–33 (2007)

25. Meier, D., Pignolet, Y.A., Schmid, S., Wattenhofer, R.: Speed dating despite jam-
mers. In:Krishnamachari,B., Suri, S.,Heinzelman,W.,Mitra,U. (eds.)DCOSS2009.
LNCS, vol. 5516, pp. 1–14. Springer, Heidelberg (2009)

26. Srikant, R.: The Mathematics of Internet Congestion Control. Birkhäuser (2004)
27. Turner, J.S.: New directions in communications (or which way to the information

age?). IEEE Communications Magazine 40(5), 50–57 (2002)

http://grouper.ieee.org/groups/802/3/az/public/index.html

A Distributed Protocol

for Privacy Preserving Aggregation

Yahya Benkaouz and Mohammed Erradi

Networking and Distributed Systems Research Group, TIES, SIME Lab, ENSIAS,
Mohammed V-Souissi University, Rabat, Morocco
y.benkaouz@um5s.net.ma, erradi@ensias.ma

Abstract. Techniques that combine and analyze data collected from
multiple partners are very useful for distributed collaborative applica-
tions. Such collaborative computations could occur between trusted
partners, between partially trusted partners, or between competitors.
Therefore preserving privacy is an important issue in this context. This
paper presents a distributed protocol for privacy-preserving aggregation
to enable computing a class of aggregation functions that can be ex-
pressed as Abelian group. The aim is to ensure participants privacy such
that their inputs are not disclosed to any other entity be it trusted or
not. The proposed protocol is based on an overlay structure that enables
secret sharing without the need of any central authority or heavyweight
cryptography.

Keywords: Privacy, Aggregation Protocol, Security, Distributed
polling application.

1 Introduction

With the continuous increase of collaborative computation, the subject of data
aggregation becomes increasingly important. Techniques that combine and an-
alyze data collected from multiple partners are very useful for collaborative ap-
plications. Collaborative tasks and computations are often conducted based on
data supplied by the collaborative users. Such computations could occur between
trusted partners, between partially trusted partners, or between competitors.
Hence, privacy has become one of the top priorities and requirements of many
distributed collaborative applications.

Conducting a computation based on private inputs supplied by two or more
parties, without disclosing the private inputs, is referred to Secure Multiparty
Computation (SMC) in the literature. The problem is how to conduct such com-
putation while preserving the privacy of the inputs. Secure Multiparty Com-
putation techniques have been long studied within the field of cryptography.
Generally speaking, a secure multiparty computation problem deals with com-
puting any probabilistic function on any input in a distributed network where
each participant holds one of the inputs [17]. In theory, the general secure mul-
tiparty computation problem is solvable. SMC techniques are generally secure,

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 221–232, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

222 Y. Benkaouz and M. Erradi

even if several parties (i.e. up to a fraction of the parties involved in the compu-
tation) collude to break the privacy of the other parties [5, 7, 8]. But as pointed
out in [8], using the solutions derived by these general results for special cases
of multiparty computation can be impractical; special solutions should be devel-
oped for special cases for efficiency reasons [6]. This is due to the fact that, the
traditional setting of multiparty computation assume a number of parties which
is relatively small and the network is assumed to be full mesh and the proposed
techniques can be prohibitively expensive to execute [18].

In this paper, we focus on a particularly useful tool in collaborative appli-
cations which is aggregation functions. Aggregation functions aim to compute
a global aggregate that depends on values held by participants in a distributed
environment. Since each participant holds a small part of the global result, inter-
action between participants is required to compute such functions. Aggregation
functions could be simple functions such as addition, multiplication, disjunction,
min/max or more sophisticated functions such as functions that manipulate dis-
tributed databases, elections...and so on. In SMC, the involved parties want to
compute a function f(x1, x2, ..., xn) = {y1, y2, ..., yn}, where xi is the input of
the participant i, and the result yi is returned to the participant i only. Thus,
each participant i knows nothing but his own result yi [19]. Whereas in aggrega-
tion function, the computed function output a single value f(x1, x2, ..., xn) = y.
And it is known by each participant.

Current privacy-preserving data aggregation solutions come with crypto-
graphic primitives to ensure privacy. Thus, these solutions involve a significant
complexity cost. In this paper, we present a distributed protocol to compute
aggregation function without the need of any central authority or heavyweight
cryptography. In the proposed protocol, we consider a set of M participants
P = {p1, p2, ..., pm}, involved in an aggregation function. The output of the
protocol consists in the aggregation of values supplied by the set of users. We
consider a fully decentralized scheme where there is neither central trusted server
nor an entity with a specific role. Hence, all participants are involved in the com-
putation of the aggregation result. We aim to ensure the privacy of the inputs
supplied by participants in such a way that no participant should learn anything
about a given honest participant input.

Our contribution consists in DiPA, a Distributed protocol for Privacy preserv-
ing Aggregation that allows a set of partners to compute a class of aggregation
functions that derive from Abelian Group without revealing the partners inputs.
The suggested protocol is based on an overlay construction. The communication
cost of our protocol is O(r.k+Ni) where r is the number of group in the overlay
and Ni is the number of participant per group. As we will show in the rest of this
paper, our protocol has the following advantages: (1) It preserves data privacy
such that participant data is only known to their owner with a given probability;
(2) The aggregation result is computed by participants themselves without in-
teracting with a specific aggregator; (3) The aggregation result is accurate when
there is no data loss. Moreover, among the advantages of our approach: It does

A Distributed Protocol for Privacy Preserving Aggregation 223

neither rely on heavyweight cryptographic techniques nor on trustworthiness of
a third party.

The remainder of this paper is organized as follows. Section 2 presents related
works. We define the problem of distributed aggregation in Section 3. The sys-
tem model is described in Section 4. Section 5 describes the suggested protocol
and discusses its correctness. A distributed polling application and its privacy
analysis are given in Section 6, and we conclude in Section 7.

2 Related Work

Different data aggregation protocols have been proposed for distributed sys-
tems and different applications. In order to ensure the privacy requirement,
different techniques have been used. [11], [16] consider the data aggregation
concern, and propose schemes based on applied cryptographic techniques and
perturbation algorithms to add noise to the input data. Authors of [13] present
an implementation of a secure system for double auction based on encryption
and Shamir secret sharing scheme. In [15], the authors proposed a framework
for enabling secure multiparty numerical computations in a Peer-to-Peer net-
work. The proposed solution combines different cryptographic techniques such
as Random Perturbation, Homomorphic Encryption and Shamir secret sharing.
The cryptographic based protocols help to ensure data privacy. However they
require a big amount of computational cost. [14] adds an overlay based on a
cluster setting in order to decrease the computational cost of the cryptographic
solution. Therefore most of the above solutions require an interaction with a
central authority, trusted or not, which is responsible for the computation, or at
least for managing public/private keys pairs.

One of the most important applications of distributed data aggregation is
distributed voting. Several works have been done to ensure the privacy and the
anonymity of voting participants. Authors of [7] describe techniques to ensure
unconditional privacy. However, their approaches rely on a number of trusted
parties. They assume that these third parties do not collude. Authors of [8]
present a multi-authority secret ballot scheme that guarantees privacy, and ro-
bustness. [9] presents an electronic voting scheme based on a distributed version
of Paillier cryptosystem. Hence, the majority of existing works related to decen-
tralized voting protocols are based on cryptographic primitives, trusted parties,
or assign specific role to some entities [10], [12].

3 Problem Definition

We consider a set of M participants P = {p1, p2, ..., pm}, involved in an aggrega-
tion computation (e.g. a set of organizations wish to launch an analysis process
on their own raw private inputs). Each participant stores locally its own initial
value. We consider a fully decentralized scheme where there is neither central
trusted server nor an entity with a specific role. Hence, all participants are ag-
gregators who wish to compute aggregate functions over the set of inputs. The
participants combine all the inputs to produce the final result.

224 Y. Benkaouz and M. Erradi

An aggregation function is defined as any function whose input is a set or
multi-set of values and outputs a single value (e.g. the sum or maximum/mini-
mum of the set of inputs). In the case where the inputs are gathered from dif-
ferent parties, the aggregation function is called a distributed aggregation. The
problem of distributed aggregation is defined as follows: Given a set of inputs
which is arbitrarily distributed among the participants of a distributed system,
the aim is to apply a specific function over the set of inputs and outputs a single
value.

Definition: An aggregation function is a triplet (f, S,G), where S and G are
two arbitrary sets, f is a composition law f : S∗ → G.

In this paper, we are only concerned with a subset of aggregate functions where
S is a subset of G (i.e. S ⊆ G) and (G, f) is an Abelian group. For example, in
distributed storage systems, in peer to peer settings; it may be useful to query
for availability of a file and to compute the number of copies of a given file. This
aggregation function may be modeled as (sum,N,Z). A more concrete example
consists in binary poll which can be represented as the distributed aggregation
function (f, S,G) where f is the function sum, S is the set {−1,+1} and G = Z.

Our approach may also be useful for aggregating data collected by different
sensor networks for different use cases. Sensor networks are being widely deployed
to monitor the safety of buildings, measure traffic flows, or track environmental
pollutants [11-13]. Data aggregation represents an essential paradigm for wireless
sensor networks. In the case where sensors are deployed across multiple organi-
zations, our construction may provide a promising approach to address privacy
issues arising in sensor network aggregation.

4 System Model

The suggested system model consists in M participants. Each participant is
represented as a uniquely identified node. Each participant pi has its private
numerical input qi. The global outcome is the output of the aggregation function.
Each participant is assigned to a private input. The system model we provide
for our approach assumes that an input could be sent as a single message or
split out into a set of different messages. Participants could either be honest
or dishonest. An honest participant strictly follows the protocol. A dishonest
node may misbehave to reveal the input of honest nodes. An important issue
is when a group of dishonest participants, named coalition, conspire in order to
reveal the input of a given participant. We aim to enable participants to have
the precise aggregate of their inputs. At the same time, no user should learn
anything about the values of other honest users, even if he colludes with the
other malicious users.

The M nodes are clustered into r ordered groups, from g0 to gr−1. Each
group contains Ni nodes (

∑r−1
i=0 Ni = M). A node pi in group gj maintains

two sets of nodes: A set Po of officemates containing all nodes belonging to the
same group (Po = {p} ∈ gj\pi) (i.e. the set p of participants in gj except pi)

A Distributed Protocol for Privacy Preserving Aggregation 225

Fig. 1. The System Model

and a fixed-size set Pp of proxies, containing a subset of nodes in the next
group (Pp ⊆ gj+1 mod r). Therefore, all groups virtually form a ring, g0 being the
successor of gr−1. Each group gj is a clique (Fig. 1). We define a client of p as
a node for which p acts as a proxy. Which means that if p is a proxy of q, then
q is one of its clients. Every node maintains a list of its clients in the previous
group (Pc ⊆ gj−1 mod r). A node discards every message originating from a node
that is not in Pc∪Po. We assume a random uniform distribution of nodes across
the r groups. Nodes in the successor groups are distributed uniformly at random
as proxies in the predecessor groups. Communication is assumed to be reliable,
which means that no message is lost after it has been sent, and that every
message sent from p to q arrives unaltered at node q. Furthermore, the nodes
are always operational.

5 The Distributed Protocol

In the following we give a description of the suggested “Distributed protocol for
Privacy preserving Aggregation” DiPA. In the proposed protocol, participants
may use a simple sharing scheme to encode their private inputs. Then they send
the shares of their inputs to proxies, belonging to another group. Each group
computes a partial aggregate that is further broadcasted to all other groups.
Each participant eventually outputs the same global aggregate.

5.1 Description of DiPA

The suggested protocol consists in three steps: Sharing, counting and broadcast-
ing. During the first step, each participant generates a single message or a set of
shares reflecting the private input and sends each generated share to one of its

226 Y. Benkaouz and M. Erradi

Fig. 2. The protocol steps

proxies. In the counting step, each node computes the sum of the clients’ shares.
Such sum is called individual aggregate. Then each proxy broadcasts the result
to its officemates. Each participant computes the local aggregate which is the
sum of the individual aggregate received from its officemates. Finally, the local
aggregates are forwarded along the ring so that all nodes eventually compute
the final outcome.

Step 1: Sharing. (Fig. 2(a)) Each participant node could cast its input as: a
single share, 3 shares, ... , 2k + 1 shares, ... or as a set of 2kmax + 1 shares. If
a given participant wants to send a value x, in the case where this participant
should split its data out into 2k + 1 shares such that k ∈ {1, 2, ..., kmax}, the
set of 2k + 1 shares is generated as follows: k values are randomly chosen from
the set S (i.e. set of possible entries). The other k values represent the inverses
of the first k chosen value, and a single share represents the real participant’s
input. Thus, aggregating the generated shares outputs the actual value x. Let us
recall that some participants could send the value of x in a single share. Hence,
when a proxy receives a message from a given client node, the proxy could
not distinguish if such share was generated as a single one or it is one among
the previously generated 2k + 1 shares with k ∈ {1, 2, ..., kmax}. To compute
functions of type min/max, the set of shares may be chosen randomly such that
the min/max of those shares is the real input (e.g. if the true input is 3, the set
of shares may be {6, 3, 5}).

Once a node has generated its 2k+1 shares, it sends each of them to a distinct
proxy. The number of proxies is to be chosen accordingly, | Pp |= 2k + 1/k ∈
{0, 1, ..., kmax} . Once every node in the system has received one share from each
of its clients, the sharing round is over.

A Distributed Protocol for Privacy Preserving Aggregation 227

Algorithm 1. Sharing phase

Procedure share (v, k)
1 . f o r i← 1 to k do
2 . si ← rand(S) # choose random value from S
3 . si+k ← inv(si) # the i nv e r s e o f the chosen value
4 . end f o r
5 . s2k+1 ← v # the r e a l input
6 . f o r i← 1 to 2k + 1 do
7 . send([share, si], proxy)

Step 2: Counting. (Fig. 2(b)) Recall that in the sharing step each partici-
pant node, within a group gi−1, sends 2k + 1 shares with k ∈ {0, 1, ..., kmax},
to its proxies in the group gi. Now, in the counting step, each proxy within the
receiving group gi aggregates the received shares from its clients in the group
gi−1. The resulted value is designated as the Individual Aggregate (IA). Note
that each proxy will have its own individual aggregate. Once a participant node
has received the expected number of shares from its clients, it broadcasts the
computed individual aggregate to its officemates. Each officemate will compute
the aggregation of the received individual aggregates resulting in a Local Aggre-
gate (LA) of its group. Then, each officemate will forward the computed local
aggregate to its proxies in the next group.

Algorithm 2. Counting phase

Upon event <receive|[share, si]> do
1 . ia← f(ia, si)
Procedure count (ia)
2 . f o r ea ch officemate ∈ Po do
3 . send([IndividualAggregate, ia], officemate)
Upon event <receive|[IndividualAggregate, ia]> do
4 . la← f(la, ia)

Step 3: Broadcasting. (Fig. 2(c)) During the previous step, each officemate
send the local aggregate of its group to its proxies. If all the officemates are
honest, then all local tallies computed in a group are identical. However, if a
computation error (i.e. a message lost) or dishonest acts occur, the same group
may have different values of the local aggregate. In fact when a proxy in the
group gi receives local aggregates from its clients in the group gi−1, the local
aggregate of the group gi−1 could be the value corresponding to the most received
ones. Then this value will be sent to the proxies in the next group gi+1. Local
aggregates are then forwarded along the ring.

Since, a message that represents a local tally contains the index of the group;
participants can notice which group has the received local tally. Once a par-
ticipant node in the group gi receives the local aggregate of its group from the

228 Y. Benkaouz and M. Erradi

client in the previous group gi−1, the local aggregate is no longer forwarded. This
means that such value has crossed the ring and received back to its initial sender.
When a participant node receives local aggregates of all groups, the global ag-
gregate (GA) is computed from these local aggregates. This global aggregate is
the global outcome of the protocol. Note that all participants should compute
the global aggregate after reception of local aggregates.

Algorithm 3. Broadcasting phase

Procedure broadcast (la, igroup, Pp)
1 . f o r ea ch proxy ∈ Pp do
2 . send([LocalAggregate, igroup, la], proxy)
Upon event <receive|[LocalAggregate, igroup, la]> do
3 . i f (igroup �= pgroup) then
4 . broadcast(la, igroup, Pp)
5 . end i f

5.2 Correctness

The aim of this subsection is to prove the correctness of the suggested protocol.
Here we assume that all participants are honest respecting the protocol specifica-
tion. An honest participant votes using 2k+1 messages with k ∈ {0, 1, ..., kmax},
and remains conform to the rules of the other steps of the protocol.

Theorem: Consider a distributed application for computing an aggregation
function over an Abelian group. The DiPA protocol terminates and each partic-
ipant eventually outputs the global aggregate of the participants’ inputs.

Proof: In the proposed protocol each participant maintains a list of clients, a list
of officemates and a list of proxies. Thus, each participant knows the number of
messages it is supposed to receive in each step. Since every participant respects the
protocol rules and every message eventually arrives, each step completes. As the
algorithm is a finite sequence of steps, it is guaranteed to eventually terminate.

Each participant in a group gi sends 2k+ 1 shares where k ∈ {0, 1, ..., kmax},
such that the input of a given participant is v = f(s1, s2, ..., s2k+1). Each
share si is sent to a distinct proxy within the group gi+1. Thus, the aggre-
gation of inputs sent by all participants in gi is defined by the following for-

mula: S = f [f(s1, ..., s2k+1), f(s
”
1, ..., s

”
2k”+1), ..., f(s

(n)
1 , ..., s

(n)

2k(n)+1
)] , where n is

the number of participants in the group gi. Since all the generated shares are
received by proxies in the group gi+1 and f is associative and commutative
function, the aggregation of the computed individual aggregates reflects the ag-
gregation of inputs of participants in the group gi. Therefore the local aggregate
computed in each group reflects the aggregation of the inputs of all participants
in the previous group over the ring.

During the broadcasting step, each participant forward the received local ag-
gregates along the ring. The global aggregate is computed by each participant,

A Distributed Protocol for Privacy Preserving Aggregation 229

once all local aggregates are received. So, since participants do honestly forward
the local aggregates along the ring and the messages are eventually received, each
node ends up with the correct values for the local aggregates of every group, thus
the correct global aggregate.

Complexity: During the first step of the protocol, each node sends 2k + 1/k ∈
{0, 1, ..., kmax} shares reflecting its actual input. Each node sends Ni−1 individ-
ual aggregates to its officemates during the counting phase, and r.(2k+ 1) local
aggregates to compute the global aggregate. Thus, the message complexity of
the suggested protocol is O(r.k +Ni). The spatial complexity of DiPA is similar
to the message complexity, since each node maintains a list of 2k + 1 proxies,
Ni − 1 officemates and at most Ni−1 clients and they store r.(2k + 1) possible
values of local tallies.

6 Privacy in a Distributed Polling Application

6.1 Distributed Polling

In order to evaluate the suggested protocol, we have considered a real application
of the algorithm, which consists in making a binary poll within a social network.
During a polling session, the inputs represent the votes of different participants
(e.g. a value (yes or no), (agree or not agree), (support or against) etc...). After
the execution of the polling protocol, the output represents the tendencies of the
majority of participants.

We use DiPA to study the privacy ensured in a concrete case study (i.e.
polling). Polling may be represented as the distributed aggregation function
(sum, {−1,+1},Z). Each participant p votes for a binary value vp ∈ {−1,+1} .
The global outcome of a voting session is the aggregate-sum of the votes made
by the existing participants (

∑
p vp).

In a polling session, the data to hide consists in the participants votes. As
specified in DiPA, during the first step each participant generates a set of 2k+1
shares such that k ∈ {0, 1, ..., kmax}, those shares are also called ballots in this
case study. Regarding the protocol specification, the 2k+1 shares are generated
in such a way that k shares are randomly chosen from the set S = {−1,+1}, k
shares are the inverses of the first shares, and a single share represents the actual
participant vote. Therefore, in the polling protocol, k+1 shares will contain the
value of the participant vote and k shares represent the inverse of the vote. The
remaining steps of the protocol stay unchanged.

6.2 Privacy Analysis

The aim of this subsection is to discuss the privacy ensured by DiPA for a
polling application. During the polling session, nodes send k + 1 messages with
a given tendency and k messages with the inverses where k ∈ {0, 1, ..., kmax}.
We assume that B dishonest nodes in a group of size N collude to disclose votes
of their clients. The coalition of B dishonest nodes wishes to take a decision on an

230 Y. Benkaouz and M. Erradi

honest client vote based on the received shares. Thus, they proceed as follows: As
they receive the set of shares from a given honest node, they compute the sum of
the received messages. If the computed sum is strictly-negative, they will assume
that the participant voted −1. And if it is strictly-positive, the vote is considered
to be +1. Otherwise, they cannot decide on the value of the participant vote.
Based on this rule, the set of dishonest node may success to disclose the client
vote, and they may fail.

In the following, we aim to compute the probability of success of their deci-
sion. Let us note k1 and k2 the number of messages received by the set B of
dishonest nodes, representing respectively the participant vote and the inverse
of the vote. Thus, 0 ≤ k1 ≤ (k + 1) and 0 ≤ k2 ≤ k. So, it can be seen
that the honest nodes will receive k + 1 − k1 messages reflecting the vote and
k − k2 messages representing the inverse of the vote. Therefore, there is Pd pos-
sible distributions of shares over the list of nodes in the successor group, such
that Pd =

∑
k1,k2

(
B
k1

)(
B−k1

k2

)(
N−B

k+1−k1

)(
N−B−k−1+k1

k−k2

)
. As dishonest nodes re-

spect the specified decision rule, they success to disclose the participant vote when
k1 > k2 (i.e. Most of the received shares reflect the vote). Therefore, there is
Ps =

∑
k1>k2

(
B
k1

)(
B−k1

k2

)(
N−B

k+1−k1

)(
N−B−k−1+k1

k−k2

)
possibilities to satisfy this con-

dition (i.e. k1 > k2). Thus, the probability to disclose the vote of an honest par-
ticipant, using 2k+1 shares, by a coalition ofB dishonest nodes is p(k) = Ps/Pd.

Since participant nodes vote with 2k+1 shares such that k ∈ {0, 1, ..., kmax},
the probability to reveal votes of honest participants by a coalition ofB dishonest
nodes is p =

∑kmax

k=0 πk.p(k), where πk is the proportion of nodes voting with

2k + 1 shares (i.e.
∑kmax

k=0 πk = 1).
In Fig. 3, we plot the average of the probability of vote detection as a func-

tion of the number of dishonest nodes. In this study, we consider a group of 100
participants with kmax = 3 (i.e. participants use 1, 3, 5 or 7 shares to express

Fig. 3. The probability of vote detection

A Distributed Protocol for Privacy Preserving Aggregation 231

their votes). The proportions πk of nodes using 2k + 1 shares are chosen uni-
formly at random. The probability has been computed several times varying the
proportions πk for each computation.

As expected, the probability of detecting an honest participant’s vote is an in-
creasing function. This is due to the fact that: more dishonest participants collude,
more opportunities arise to disclose the vote. However, the result shown in Fig. 3
might be considered as the upper bound of the probability to detect an input in a
DiPA based system. In this privacy analysis, we have considered the binary-poll
application. So, there are just two possible initial inputs {−1,+1}. This make dis-
closing vote by dishonest nodes easier. Hence, enlarging the set of possible inputs
S, for other use case, imply an improvement of input’s privacy. Furthermore, we
assumed a decision rule where the set of dishonest nodes always take a decision
about the participants vote whatever they receive. Thus, dishonest nodes do not
have any proof that the revealed value represents the actual input. Also, this rule
is not applicable for other DiPA system. Therefore, using the protocol for appli-
cations, with large set of possible inputs, and high value of kmax leads to an en-
hancement of the privacy ensured by DiPA for other scenarios.

7 Conclusion

In this paper, we have presented DiPA, a distributed protocol that allows a set of
users to compute aggregate functions, which can be expressed as Abelian group,
over their private inputs. The ability to privately compute this kind of function
has applications in several widely varying contexts. The suggested protocol is
based on an overlay construction. The communication cost of our protocol is
O(r.k + Ni) where r is the number of group in the overlay and Ni represents
the number of participant per group. In order to evaluate the privacy ensured
by our protocol, we have considered the distributed polling application, where
participants care about the privacy of their votes. Currently, we plan to study
the behavior of this protocol in a dynamic environment where participants may
disconnect during the protocol execution. Moreover, we are working on more real-
istic scenarios in different environment, such as e-health application and Wireless
sensor networks, where the suggested technique can be implemented.

References

1. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ frame-
work. In: Proceedings of the Twenty-Fourth Symposium on Principles of Database
Systems (PODS 2005), pp. 128–138. ACM, New York (2005)

2. Castelluccia, C., Mykletun, E., Tsudik, G.: Efficient aggregation of encrypted
data in wireless sensor networks. In: Proceedings of The Second Annual Inter-
national Conference on Mobile and Ubiquitous Systems: Networking and Services
(MobiQuitous 2005), July 17-21, pp. 109–117 (2005)

3. Guerraoui, R., Huguenin, K., Kermarrec, A.M., Monod, M.: Decentralized
Polling With Respectable Participants. In: Proceedings of the 13th International
Conference on Principles of Distributed Systems (OPODIS 2009), Nmes, France,
December 15-18, pp. 144–158 (2009)

232 Y. Benkaouz and M. Erradi

4. Du, W., Atallah, M.J.: Secure multi-party computation problems and their
applications: a review and open problems. In: Proceedings of the 2001 Workshop
on New Security Paradigms (NSPW 2001), Cloudcroft, New Mexico, September
11-13, pp. 13–22 (2001)

5. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science (FOCS 1982), Chicago, Illinois,
USA, November 03-05, pp. 160–164 (1982)

6. Su, B., Wang, T.: Design and analysis for private determination protocol of
segment-circle position relation. In: Proceedings of the Industrial Control and
Electronics Engineering (ICICEE 2012), August 23-25, pp. 1430–1433 (2012)

7. Pfitsmann, B., Waidner, M.: Unconditionally Untraceable and Fault-tolerant
Broadcast and Secret Ballot Election. Communications of the ACM 21(21) (1992)

8. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

9. Damg̊ard, I., Jurik, M., Nielsen, J.B.: A generalization of Pailliers public-key system
with applications to electronic voting. The International Journal of Information
Security - Special Issue on Special Purpose Protocols 9, 371–385 (2010)

10. Malkhi, D., Margo, O., Pavlov, E.: E-voting without Cryptography. In: Blaze, M.
(ed.) FC 2002. LNCS, vol. 2357, pp. 1–15. Springer, Heidelberg (2003)

11. Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series
with transformation and encryption. In: Proceedings of the 2010 International
Conference on Management of data (SIGMOD 2010), pp. 735–746. ACM,
New York (2010)

12. Bocek, T., Peric, D., Hecht, F.V., Hausheer, D., Stiller, B.: Towards a Decen-
tralized Voting Mechanism for P2P Collaboration Systems. Technical Report, No.
ifi-2009.02

13. Bogetoft, P., et al.: Secure Multiparty Computation Goes Live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

14. Gambs, S., Guerraoui, R., Harkous, H., Huc, F., Kermarrec, A.M.: Scalable and
Secure Aggregation in Distributed Networks. CoRR (2011)

15. Bickson, D., Dolev, D., Bezman, G., Pinkas, B.: “Peer-to-Peer Secure Multi-party
Numerical Computation. In: Proceedings of the 2008 Eighth International
Conference on Peer-to-Peer Computing (P2P 2008), pp. 257–266. IEEE Computer
Society, Washington, DC (2008)

16. Shi, E., Hubert Chan, T.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-Preserving
Aggregation of Time-Series Data. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS 2011), San Diego, California, USA, February
6-February 9 (2011)

17. Goldwasser, S.: Multi party computations: past and present. In: Proceedings of
the Sixteenth Annual ACM Symposium on Principles of Distributed Computing
(PODC 1997), pp. 1–6. ACM, New York (1997)

18. Kreitz, G., Dam, M., Wikström, D.: Practical private information aggregation in
large networks. In: Aura, T., Järvinen, K., Nyberg, K. (eds.) NordSec 2010. LNCS,
vol. 7127, pp. 89–103. Springer, Heidelberg (2012)

19. Jung, T., Li, X.Y., Tang, S.J.: Privacy-Preserving Data Aggregation without
Secure Channel: Multivariate Polynomial Evaluation. arXiv:1206.2660 [cs.CR]
(August 01, 2012)

Identifying the Optimal Level of Parallelism

in Transactional Memory Applications�

Diego Didona1, Pascal Felber2, Derin Harmanci2, Paolo Romano1,
and Jörg Schenker2

1 Instituto Superior Técnico/INESC-ID, Portugal
2 University of Neuchâtel, Switzerland

Abstract. In this paper we investigate the issue of automatically identi-
fying the “natural” degree of parallelism of an application using software
transactional memory (STM), i.e., the workload-specific multiprogram-
ming level that maximizes application’s performance. We discuss the
importance of adapting the concurrency level to the workload in two
different scenarios, a shared-memory and a distributed STM infrastruc-
ture. We propose and evaluate two alternative self-tuning methodologies,
explicitly tailored for the considered scenarios. In shared-memory STM,
we show that lightweight, black-box approaches relying solely on on-line
exploration can be extremely effective. For distributed STMs, we intro-
duce a novel hybrid approach that combines model-driven performance
forecasting techniques and on-line exploration in order to take the best of
the two techniques, namely enhancing robustness despite model’s inac-
curacies, and maximizing convergence speed towards optimum solutions.

1 Introduction

The pervasive adoption of multi-core architectures (from HPC clusters to embed-
ded systems) has raised the urge to identify paradigms capable of simplifying
the development of parallel applications. Transactional memory (TM) [1] has
garnered a lot of interest of late precisely because, thanks to its simplicity and
scalability, it appears to be a promising alternative to classic lock-based syn-
chronization. Over the last years, a wide body of literature has been published
on TM, and several variants have been developed, including hardware-based
(HTM), software-based (STM), and distributed (DTM) [2]. One of the key re-
sults highlighted by existing research is that, independently of the nature of the
synchronization scheme adopted by a TM platform, its actual performance is
strongly workload dependent and affected by a number of complex, often inter-
twined factors (e.g., duration of transactions, level of data contention, ratio of
update vs read-only transactions).

� This work has been partially supported by the projects “Cloud-TM” and
“ParaDIME” (co-financed by the European Commission through the contract no.
257784 and 318693), project specSTM (PTDC/EIA-EIA/122785/2010), the COST
Action Euro-TM (IC1001) and by FCT (INESC-ID multiannual funding) through
the PEst-OE/EEI/LA0021/2011 Program Funds.

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 233–247, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

234 D. Didona et al.

Among these numerous factors, an often neglected one is the concurrency
level used by the application. However, as we will also quantitatively show in
this paper, the identification of the “right” level of concurrency represents a crit-
ical factor that can have a strong impact on performance of TM applications.
Unfortunately, this decision is far from being trivial, as the off-line tuning of this
parameter is a costly and error-prone process. Further, any static configuration
can lead to suboptimal performance in presence of dynamic workloads. Hence,
we argue that work done by the TM programmers to develop parallel applica-
tions risks to be wasted, unless effective mechanisms are available to tune the
concurrency level of TM applications, and let them take full advantage of the
underlying parallel architecture.

In this paper, we address the problem of self-tuning the concurrency level ac-
cording to the application workload (which we call “elastic scaling”) in various
application settings. Related problems have been addressed previously but lim-
ited attention has been devoted to dynamically identifying the optimal degree of
parallelism for a (D)TM platform, namely the degree of local (i.e., number of ac-
tive threads) and possibly global (i.e., number of nodes in a DTM) concurrency
that maximizes the throughput of complex (D)TM applications.

We present experimental results obtained considering two extreme scenarios:
on shared-memory systems with a low-level STM library written in C, and in
distributed systems with a high-level DSTM infrastructure written in Java. We
first show that realistic benchmarks exhibit widely different performance de-
pending on the degree of parallelism, and that adapting the number of threads
at runtime can improve performance of some applications over any execution
with a fixed number of threads. By applying small modifications to the bench-
marks and the underlying STM runtime in a shared-memory system, one can
straightforwardly optimize the concurrency level using exploration-based on-line
optimization techniques, e.g., using hill climbing or gradient descent algorithms.

In distributed settings, however, the cost of testing configurations with a differ-
ent number of threads (i.e., nodes) is prohibitive, as it requires transferring state,
generates additional traffic, and takes orders of magnitude more time than in
centralized settings. Therefore, in such settings, one should instead rely on mod-
eling techniques to predict the expected gains from adding or removing nodes for
adapting the concurrency level. However, performance modeling techniques are
unavoidably subject to approximation errors, which can lead to the identification
of suboptimal configurations. We show how this problem can be tackled by in-
troducing a novel self-tuning methodology that combines exploration-based and
model-driven approaches: models help predicting the evolution of performance at
a large scale, while local, inexpensive exploration can be used to gather feedback
on the model’s accuracy and allow its progressive enhancement. To this end,
we show how machine learning techniques can be exploited to learn corrective
factors aimed at “patching” the output of performance models and correcting
biases/approximation errors that may otherwise impair their accuracy.

Identifying the Optimal Level of Parallelism in TM Applications 235

The rest of this paper is organized as follows. We first give a brief overview
of related work in Section 2. We present, in Section 3, our on-line exploration-
based approach for shared-memory STM systems. In Section 4, we focus on
distributed STM systems, and present a hybrid self-tuning approach combin-
ing on-line exploration and model-driven optimization techniques. We finally
conclude in Section 5.

2 Related Work

Adapting the concurrency level to system workload (elastic scaling) in order to
improve performance and/or resource usage is an issue that has already been
addressed in previous research. Different approaches to the problems exist, es-
pecially depending on the area where the adaptation is performed.

Part of the research targets concurrent execution on a single machine. Reimer
et al. [3] propose to adapt the concurrency level of parallelizable portions of a
scientific application. This approach does not allow changing the concurrency
level during the execution of the code portion, whereas with our exploration-
based approach workload changes within such portions can be tracked and con-
currency levels can be adapted. Heiss and Wagner [4] study the tuning of the
concurrency level (number of concurrently running transactions) within a trans-
actional processing system (e.g., database server) running on a single machine.
They propose two algorithms, one of which is a hill climbing approach similar
to ours. Schroeder et al. [5] use a feedback control loop that is initialized with a
close-to-optimal value thanks to the use of queueing theoretic models. This ini-
tialization allows the approach to converge fast under abrupt workload changes.
Abouzour et al. [6] propose a hybrid approach merging these two studies. Our
work differs since we adapt the concurrency level of threads within an arbitrary
application, while other approaches tune the concurrency level of transactions
only in the restricted context of a transactional processing system.

Few studies exist for the adaptation of the concurrency level for TM-based
applications (using non-replicated TM). Yoo and Lee [7] propose rescheduling
threads in order to reduce contention due to data conflicts. Such a technique has
the effect of adapting the concurrency level of the application, because resched-
uled threads are removed from the execution for a while. Ansari et al. [8] aim
to improve application efficiency by reducing resource usage without sacrificing
performance. To achieve this objective, they maintain the transaction abort rate
under a predefined threshold. Our approach differs from this work as (i) we do
not use any fixed thresholds, and (ii) we focus on optimizing transaction through-
put, allowing us to improve application performance (especially under changing
workloads) compared to an execution with any fixed concurrency level.

Elastic scaling in distributed settings corresponds to automatically adapting,
in face of varying workloads, the number of nodes the platform is deployed onto.
In the area of replicated relational databases, several mechanisms have been pro-
posed [9,10] to tackle this problem. Our work proposes a solution specialized for
(D)TM platforms. A distinguishing aspect of our work is that it identifies the

236 D. Didona et al.

level of concurrency that maximizes the throughput of complex (D)TM applica-
tions by considering scaling at two levels: (i) number of nodes of the platform,
and (ii) number of active threads running on a node.

In the area of performance modelling of STM, existing literature can be subdi-
vided in solutions based either on analytical techniques [11,12], or on statistical
methods [13,14]. Solutions based on analytical models have a good extrapolation
power, namely they typically exhibit good accuracy even in workload/scale sce-
narios not previously explored. However, their accuracy can degrade significantly
with scenarios that challenge the set of assumptions they rely on to ensure math-
ematical treatability. Statistical methods, due to their black box nature, suffer
of limited extrapolation, but can achieve typically very accurate predictions in
regions of the state space close to those already observed during the learning
phase. The solution proposed in Section 4 aims at combining the advantages of
both approaches. On the one hand, it relies on analytical performance models
to achieve high extrapolation. On the other hand, it exploits feedback collected
from deployed DTM system to learn, using machine learning techniques, a cor-
rective function aimed at fixing possible inaccuracies of the analytical model.

3 Shared-Memory STM

Ideally, it is desired to run applications at their natural degree of parallelism,
i.e., a point where each thread does “sufficient” useful work without inducing
“too much” contention. The exact definition of both quantities varies depend-
ing on the context and it is generally not obvious to find this natural degree of
parallelism for a given application. For workloads where contention due to data
synchronization does not change throughout the application execution, the best
level of parallelism can be found offline by repeatedly restarting the application
with different sets of parameters. However, the contention a workload generates
may vary during the lifetime of the application, i.e., the natural degree of paral-
lelism represented by the workload varies as the application executes. Hence, a
general solution to this problem would need to track the workload generated by
the application on-line. In this section, we first motivate why adaptivity is im-
portant. We then describe our exploration-based mechanisms for adjusting the
degree of parallelism. Finally, we show how these mechanisms can help optimize
throughput according to the dynamic properties of the workload.

3.1 The Need for Adaptivity

Before dwelling on the actual exploration algorithm, let us briefly consider the
benefits of such adaptive techniques on the application intruder, part of the
widely used STAMP benchmark suite [15]. This application emulates a signature-
based network intrusion detection system and exhibits a workload that evolves
over time.

Figure 1 indicates the performance of the benchmark when executed with
varying number of threads (dashed line), or when dynamically changing the

Identifying the Optimal Level of Parallelism in TM Applications 237

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 4 8 12 16 20 24 28 32 36 40 44 48

S
pe

ed
up

Number of threads

Dynamic
Static

Fig. 1. Speedup of the intruder benchmark as compared to sequential (non-STM)
version, using static and dynamically evolving numbers of threads

number of threads (plain straight line corresponding to a constant value). One
can observe that performance is significantly better when dynamically adapting
concurrency than with any fixed number of threads. Note that the experiment
was run on a 48-core machine, i.e., the number of physical cores was not the
limiting factor.

3.2 An Exploration-Based Approach

Our exploration-based approach performs on-line monitoring of key performance
metrics. It allows us to find the natural degree of parallelism of an application by
running it with an iterative algorithm controlling its concurrency level. The algo-
rithm terminates when all the work to be performed by the application is accom-
plished. Each iteration of the algorithmhas three phases, as illustrated in Figure 2:

– Measurement phase: In this phase, the application runs with a fixed num-
ber of threads. Key performance metrics (numbers of commits and aborts)
are measured during a certain time period. The commit rate gives an indica-
tion of raw transaction throughput, while the abort rate is a good measure
of contention.

– Decision phase: In this phase the algorithm decides between two actions:
increasing or decreasing the number of threads. If the last measurement phase
shows improvements in terms of commit rate, the action performed in the
previous iteration is repeated (addition or removal of threads); otherwise, it
is reversed. The decision taken in this phase corresponds to a hill climbing
technique maximizing transaction throughput, i.e., commit rate. The tech-
nique explores configurations in the vicinity of the current one by dynamically
adding or removing threads, until a (local) maximum is reached. Even when
reaching such a point, the configuration is tested for adapting to possible vari-
ations in the workload that would shift the optimal configuration(s).1

1 One should note at this point that none of the benchmarks we experimented with
(STAMP applications and various micro-benchmarks) exhibits multiple maxima
when observing throughput as a function of the number of threads, up to the hardware
limit of our 48-core test machine.

238 D. Didona et al.

Controller thread Application

Application
threads

Measurement

TransitionDecision

Fig. 2. The principle of the exploration-based algorithm is akin a feedback control
loop. The three phases are shown in rectangles with solid lines.

– Transition phase: An external controller thread adds or removes threads
to/from the application according to outcome of the decision phase.

For faster adaptation to the workload, we tune the duration of the measurement
phase such that we have sufficiently many samples (i.e., commits) to take sound
decisions but without wasting too much time. In this way, the algorithm reacts
fast by quickly collecting measurements with applications composed by short
transactions while it will take more time to adapt, but will still take correct
decisions, for applications with long transactions.

Inserting the application inside the iterative algorithm required us to intro-
duce (i) code observing performance, for the measurement phase, and (ii) a
controller thread that performs decision and transition phases to modify the
parameters of the application based on the measured performance. This extra
thread controls the main execution loop of the application and can add or remove
as many transactional threads as required during run time.

3.3 Performance in Centralized Systems

We give a brief overview of the performance of our exploration-based approach
on a 48 core machine with four AMD Opteron 6172 processors with one STAMP
application. A large collection of other experimental results can be found in a
companion research report [16].

Figure 3 (left) shows the behavior of the exploration-based algorithm with
the intruder application. As one can observe, the number of threads (values
averaged over 2-second periods for clarity) increases in the first half of the exe-
cution to reach 13, then drops sharply to account for changes in the workload.
The last part of the execution uses only few threads, which reduces the commit
throughput but limits contention and avoids most aborts.

To better understand what triggers such changes in the workload, we show
in Figure 3 (right) the variations in transaction lengths, as reported by the
size of the read and write sets, during the execution of intruder. Values are
averaged over groups of 10,000 transactions and sizes are shown on a logarithmic
scale. The application repeatedly executes a sequence of 3 transactions. Two of
them, denoted as T2 and T3 in the graph, do not vary much over time. The
third one, T1, exhibits an interesting trend that explains why our approach is so

Identifying the Optimal Level of Parallelism in TM Applications 239

0.5k

1k

1.5k

2k

2.5k

 0 20 40 60 80 100

 2

 4

 6

 8

 10

 12

 14
C

om
m

its
 a

nd
 a

bo
rt

s
(p

er
 m

s)

N
um

be
r

of
 th

re
ad

s

Time (s)

Commits
Aborts

Nb. threads

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 n
um

be
r

of
 r

ea
ds

/w
rit

es

Application execution time (normalized)

T1 (reads)
T1 (writes)

T2 (reads)
T2 (writes)

T3 (reads)
T3 (writes)

Fig. 3. Evolution of the number of threads (left) and transaction read- and write-set
size (right) with the intruder benchmark using exploration-based scaling

effective: transactions read more and more data, with a sharp spike in the end,
while their number of writes first decreases before stabilizing and increasing
steeply in the end. Therefore, the last transactions to execute are very long
and, hence, are expected to encounter much contention. Limiting concurrency
increases the likelihood of commit and, in turn, improves overall performance.
This example clearly shows the benefits of using a adaptive strategy for best
tuning the concurrency degree to the varying workload properties encountered
in real applications.

Note that we modified and experimented with other applications of the
STAMP benchmark suite. We found out that, while intruder benefits most
from dynamic adaptation of the concurrency level because of the wide varia-
tions in its workload, our exploration-based algorithm is also effective with other
applications and can quickly find the optimal number of threads [16].

4 Distributed STM

When considering DTM systems [17], the degree of concurrency of the platform,
which we call also global multiprogramming level, is determined not only by
the number of threads deployed on each node, but also by the number of nodes
composing the platform. We note that in distributed settings, purely exploration-
based techniques, like the one described in Section 3, are much less effective for
two main reasons. First, due to the quadratic growth of the solution’s space,
the number of exploration steps required to identify the optimal solution is
expected to grow significantly. Second, unlike in shared memory TM systems,
in DTM scenarios exploratory steps requiring altering the number of nodes in
the platform require triggering state-transfer phases that can induce significant
additional load [18,19] and lead to severe performance degradation [9].

We argue, therefore, that in DTM settings approaches relying on performance
models to forecast the optimal degree of concurrency of the platform are prefer-
able to strategies based on pure exploration. Model-driven elastic scaling tech-
niques are also attractive as they represent a fundamental building block for

240 D. Didona et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

tx
/s

ec
)

Number of nodes

2 th real
2 th TAS

4 th real
4 th TAS

8 th real
8 th TAS

(a) Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

A
bo

rt
 P

ro
ba

bi
lit

y

Number of nodes

2 th real
2 th TAS

4 th real
4 th TAS

8 th real
8 th TAS

(b) Abort probability

Fig. 4. Accuracy of TAS’ predictions

QoS-oriented provisioning schemes, in which the amount of computational re-
sources (and their type, e.g., medium vs large instances in a IaaS platform) needs
to be elastically adjusted to ensure given SLAs in face of variable loads [20,21,22].
On the other hand, model-based performance forecasting techniques, due to their
approximate nature, rely on simplifying assumptions which can degrade signifi-
cantly their accuracy in presence of challenging workloads. Further, most of these
modelling techniques rely on analytical methods (e.g., queuing theory), which
are rigid, in the sense that they cannot be “bent” to learn from the feedback
gathered by the actual system and accordingly correct to enhance their accuracy.
In the following we report the result of an experimental study that highlights the
above mentioned issues of model-driven approaches by assessing the accuracy of
a state-of-the-art performance forecasting model for DTM, namely Transactional
Auto Scaler (TAS) [21].

The plot in Figure 4a shows the accuracy of TAS in predicting the throughput
of a DTM application when deployed over different scales. The DTM platform
used in this study is Infinispan [23], a popular in-memory distributed transac-
tional key-value store [24]. The application running over it is a porting of the
TPC-C benchmark [25], and we used, as experimental testbed, a cluster of 10
servers, each equipped with 8 cores and interconnected via a private Gigabit Eth-
ernet. The plot highlights the ability of TAS to correctly forecast the throughput
of the application when deployed over different scales, as long as the global multi-
programming level (and correspondingly the abort rate) does not grow too high.
This loss of accuracy of TAS is imputable to the very high contention probability
that the application exhibits in those scenarios, as reported in Figure 4b. In fact,
TAS, like other analytical models of transactional systems [26,20], relies on a set
of simplifying assumptions on the modelling of transactions’ conflict patterns,
which can lead to significant errors in very high contention scenarios.

In the remainder of this Section we introduce a novel, hybrid approach that
combines model-driven and exploration-based techniques in order to achieve
the benefits of both approaches, namely high robustness and high speed of

Identifying the Optimal Level of Parallelism in TM Applications 241

Application

App. threads

Measurement

Controller

Deployment
�S∗

(�W, �S, Tcur)

Decision

Collection

Application

App. threads

Measurement

...

(a) General architecture

Scale Optimizer

TAS

Query/
Update

SCTAS x

Exploration
 Manager

�S

�S∗

(�W, �S)

Φ′
TTAS

TSCTAS

Tcur
(�W, �S, Tcur)

(�S, Tcur)Φ

Patcher

÷

(b) Internals of the decision module

Fig. 5. Overview of the Controller for the DTM platform

convergence to the optimal solution. Finally, we evaluate its effectiveness via
a trace-driven simulation study.

4.1 Combining Model-Driven and Exploration-Based Techniques

The key idea at the basis of the proposed solution consists in progressively en-
hancing the accuracy of an analytical-based performance model (such as TAS),
by exploiting the feedback on the actual performance achieved by the platform
when using alternative multiprogramming levels. In order to minimize explo-
ration costs, the additional multiprogramming configurations explored by the
self-tuning mechanism are obtained by fixing the current number of nodes in the
platform (hence avoiding state transfers) and altering exclusively the number
of active threads per node. Figure 5a illustrates the architecture of the system,
which is composed of a set of DTM nodes and a controller process. The controller
process is a logical component, which can be physically deployed either on one
of the computing nodes or on a dedicated one. The controller is responsible for
adjusting the scale of the DTM platform, i.e., the number of nodes and threads

per node, which we note as
−→
S . Its logic is implemented via a closed control loop

that is analogous to the one show in Figure 2, with two noteworthy exceptions:
(i) in this case the controller is fed with data from multiple nodes, which need
to be aggregated and averaged by the collection module, and (ii) in addition to
the current throughput of the DTM, noted Tcur, the controller gathers also a

set of statistics characterizing the workload, referred to as
−→
W , which are used

as input parameters of its performance prediction methodology. The workload is
characterized by means of the following set of key features (which represent also
the main input parameters of the analytical performance model integrated in
the decision module): duration, and relative frequency, of read-only and update
transactions, abort rate, average number of write operations per transaction.

The key component of the controller is the decision module, whose internal
structure is illustrated in Figure 5b. The decision module is composed of three
main sub-components: the Self Correcting Transactional Auto Scaler (SCTAS),

242 D. Didona et al.

the Exploration Manager and the Scale Optimizer. Below, we describe these
components in detail.

SCTAS. Like classic performance forecasting models, SCTAS allows predicting

the throughput achievable by the DTM platform when faced with a workload
−→
W

and configured to use a global multiprogramming level
−→
S . To this end, we assume

that SCTAS exposes the primitive query, which takes as input parameters
−→
W

and
−→
S , and returns the forecast throughput, denoted as TSCTAS . Additionally,

SCTAS allows incorporating feedback on the actual throughput (Tcur) achieved
by the DTM platform in a given operational condition via the primitive update,

which takes as input parameters
−→
W ,

−→
S and Tcur.

As shown in Figure 5b, SCTAS is actually composed of two main modules: the
TAS model, and a, so called, Patcher. The role of the Patcher is to learn a cor-

recting function, denoted as Φ and defined over
−→
W × −→

S , which, when “applied”
to the output of TAS, denoted as TTAS , allows minimizing its prediction error.

In principle, several approaches may be used to derive the value of Φ(
−→
W,

−→
S),

given Tcur and the corresponding TTAS for a given (
−→
W ,

−→
S) pair. In this paper,

however, we take a pragmatical approach and use a relatively simple solution
which, as we will show in the following, was experimentally proved to work quite
effectively. Namely, we define:

Φ(
−→
W,

−→
S) =

TTAS(
−→
W,

−→
S)

Tcur(
−→
W,

−→
S)

(1)

In order to learn how the corrective factor Φ varies with
−→
W and

−→
S , SCTAS uses a

decision-tree based machine learning regressor, namely Cubist [27]. Analogously
to classic decision tree based classifiers, such as C4.5 and ID3 [28], Cubist builds
decision trees choosing the branching attribute such that the resulting split max-
imizes the normalized information gain. However, unlike C4.5 and ID3, which
contain elements in a finite discrete domain (i.e., the predicted class) as leaves
of the decision tree, Cubist places a multivariate linear model at each leaf.

As we will see shortly, the knowledge base of the machine learner embedded in
the Patcher is progressively built by exploring alternative multiprogramming lev-

els (
−→
S) in presence of a workload

−→
W . For each couple (

−→
W ,

−→
S) corresponding to an

explored scenario, the machine learner is fed with the triple <
−→
S ,
−→
W ,Φ(

−→
W ,

−→
S)>.

Based on its knowledge base, the machine learner builds a function Φ′, which is
used by the Patcher to estimate the corrective factor for a future (unexplored)

configuration (
−→
W ′,

−→
S′). The throughput forecast by SCTAS, TSCTAS , can then

be obtained (inverting Eq. 1) as:

TSCTAS(
−→
W,

−→
S) = Φ′(

−→
W,

−→
S) · TTAS(

−→
W,

−→
S) (2)

Exploration Manager. This module is in charge of determining which con-
figurations of the multiprogramming level should be tested in order to gather
feedback on the accuracy of the SCTAS performance model, and, ultimately,

Identifying the Optimal Level of Parallelism in TM Applications 243

Algorithm 1. Pseudocode of the controller for the DTM platform.
seenWorkloads ← ∅

function Optimize()

while TRUE do

(
−→
W , Tcur) ← Collect()

if
−→
W /∈ seenWorkloads then

CorrectViaLocalExploration(

−→
W ,

−→
S , Tcur)

seenWorkloads ← seenWorkloads ∪ −→
W

−→
S∗ ← argmax

−→s
(SCTAS.Query(

−→
W,−→s))

if
−→
S∗ �=−→

S then

Deploy (
−→
S∗)

function CorrectViaLocalExploration(

−→
W ,

−→
S , Tcur)

numExploration ← 0
while numExploration ≤ M do

SCTAS.Update(

−→
W ,

−→
S , Tcur)

numExplorations ← numExplorations + 1
if numExplorations ≥ μ ∧ SCTAS.GetCurErr() ≤ ε then

break

−→
S ← ExporationManager.Explore(Tcur,

−→
S)

Deploy (
−→
S)

(
−→
W , Tcur) ← Collect()

allow its correction. We abstract over the implementation of the exploration al-
gorithm via the Explore () primitive that takes as input parameters the pair

(
−→
S ,
−→
T). This abstraction allows to encapsulate arbitrary exploration logics, but,

in this paper, we propose and evaluate a specific heuristic, described as follows.
At each invocation of the Explore () primitive, the heuristic alters the multi-

programming level (i.e., the number of active threads per node) leaving however
unchanged the total number of nodes in the platform, in order to avoid trig-
gering expensive state transfers. The heuristic operates in two phases. In the
first phase, it executes according to a hill climbing technique analogous to the
one described in the Sec. 3, and aims to identify the optimal multiprogramming
level t∗, using the current number of nodes. In case the Explore () primitive
is invoked after having identified such value, the heuristic enters a second phase
during which it suggests to test configurations according to a zig-zag policy that
explores (untested) values around t∗, by picking alternatively between values
larger and smaller than t∗ at increasing distance from t∗. The rationale under-
lying the design of this heuristic is to prioritize the exploration of configurations
that maximize the throughput of the system, and, if necessary, to allow the
testing of additional, suboptimal configurations which may be beneficial to the
enhancement of the knowledge base of the Patcher module of SCTAS.

Scale Optimizer. This module is responsible for choosing the scale of the DTM,
by exploiting in synergy the performance forecasting capabilities of SCTAS and
the local exploration-based policy of the Exploration Manager. Its purpose is
to drive SCTAS through its learning phase, by inducing local explorative steps,

244 D. Didona et al.

aimed at assessing and improving SCTAS’ accuracy. The pseudocode describing
its logic is in reported Algorithm 1. The method Optimize() illustrates the in-
teractions between the Scale Optimizer and the other modules composing the
architecture of the Controller. It implements a simple control loop, which starts
by gathering, via the Collect() method, information concerning the current

throughput Tcur and workload
−→
W . Once collected this information, the correction

process of SCTAS is triggered by invoking the method CorrectViaLocalEx-

ploration(). This method, whose detailed description will be provided shortly,
explores a number of alternative configurations of the multiprogramming level,
in order to gather feedback from the DTM system and extending the knowledge
base of the Patcher module of SCTAS. As this method terminates, SCTAS is
queried to determine the optimal global multiprogramming level. Finally, if the
optimal scale predicted by SCTAS differs from the current one, the DTM is
accordingly reconfigured via the Deploy() primitive. The loop cycles back, in
order to continue monitoring for possible changes of the workload. Note that the

correction process for a workload
−→
W is triggered only if SCTAS has not been

already corrected against
−→
W , which ensures the system stability in presence of

stable inputs (i.e., workloads).
Let us now analyze the logic of the CorrectViaLocalExploration()

method, which consists of a loop that performs two main operations. First,
SCTAS is provided with a feedback about the throughput of the application
in the current configuration. Next, the Exploration Manager is queried to de-
termine the multiprogramming level to be tested in the next iteration, and the
DTM is accordingly reconfigured via the Deploy() primitive. The loop termi-
nates when either one of the following two conditions is met: (i) a minimum
number of explorations, μ, has already been performed, and the accuracy of the
SCTAS predictions on the set of configurations tested so far has achieved a con-
figurable threshold, denoted as ε in the pseudocode; (ii) a maximum number of
explorations, M , has already been performed.

The latter condition ensures the eventual termination of the local exploration
phase after a bounded number of attempts. The former allows to control the
duration of the local exploration phase via two parameters: ε allows to bound the
error of SCTAS on the configurations explored so far, for which it has therefore
already collected measurements from the DTM platform; μ, on the other hand,
allows to control directly the minimum duration of each local exploration phase,
and, indirectly, to determine the amplitude of the knowledge phase of the Patcher
module and its ultimate effectiveness.

4.2 Evaluation

In this section we assess the validity of the proposed hybrid approach. We com-
pare it with a purely model-driven one and evaluate it in terms of final accuracy
of the corrected model, capability of identifying the optimal scale for a DTM
application and convergence speed towards it. To this end, we built a simulator
which implements the logic of the Controller. Data consumed by the simulator

Identifying the Optimal Level of Parallelism in TM Applications 245

Table 1. Comparison between TAS and SCTAS with different values of μ

Model Normalized Throughput wrt Max #Local Expl #Global Expl Global Avg Rel Err

TAS 0.70 0 0 1.03
SCTAS(μ = 3) 1 9 1 0.7
SCTAS(μ = 5) 1 15 1 0.6
SCTAS(μ = 7) 1 28 2 0.05

are relevant to real traces, collected deploying the TPC-C application over a
DTM of different scales, varying the number of nodes from 2 to 10, and the
number of threads per node from 1 to 12. The testbed is the same as the one
described at the beginning of Section 4.

We ran four simulations. Each run starts with the application deployed over
a DTM composed by two nodes and one thread per node, and simulates the
elastic scaling policy described in Section 4.1 by feeding it with measurements
gathered (off-line) from the DTM system, till a stable state is reached. In the
first simulation, the controller’s decision module only relies on TAS’ performance
forecasting model to determine the optimal scale for the DTM; in the others,
it implements the Decision() method of the pseudocode in Algorithm 1. For
these three runs we fix M = 10 and ε = 10% and vary only the value of μ, which,
we recall, determines the minimum duration of SCTAS learning phase through
local exploration.

The results in Table 1 clearly demonstrate the advantages (in terms of in-
creased accuracy) of the proposed hybrid approach when compared a purely
model-driven one. Using only TAS’ performance forecasting model, the controller
selects a scale for which the DTM delivers a throughput that is 30% lower than
the maximum achievable. On the other hand, the SCTAS-based controller is able
to converge to the optimal scale, regardless of the value of μ. The sensibility of
the hybrid approach to this parameter is clear when analyzing the last columns
in Table 1. Results demonstrate that the value of μ represents a trade-off be-
tween convergence speed towards the optimal solution and the accuracy of the
SCTAS’ performance forecasting model. In Figure 6 we show how the accuracy
of SCTAS increases with the numbers of explored configurations, by plotting the
average prediction error of SCTAS’ model. The prediction error is computed over
the set of all possible scales for the DTM (in the considered range), including
the unexplored ones, for which the actual throughput value has been collected
offline. The discontinuity points of the curves are in correspondence of the de-
ployment of the DTM on a different number of nodes, which yields to a major
update of the corrective function learnt by the Patcher component. The plot
shows that the highest accuracy is reached for μ=7; for this configuration we
also show, in Figure 7, the predictions produced by SCTAS after the controller
has reached its final state (contrasting them with the ones produced by the
pure model-driven approach of TAS). The plot demonstrates the self-correcting
capabilities of SCTAS, which, when fed with a sufficient number of feedbacks
concerning the prediction’s errors of TAS, can significantly improve its accu-
racy both in explored and unexplored scenarios, lowering the average relative

246 D. Didona et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

A
bs

ol
ut

e
R

el
at

iv
e

E
rr

or

Number of iterations

μ=3 μ=5 μ=7

Fig. 6. Average of the relative absolute
error across all scenarios

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

tx
/s

ec
)

Number of nodes

2 th real
2 th TAS

2 th SCTAS

4 th real
4 th TAS

4 th SCTAS

8 th real
8 th TAS

8 th SCTAS

Fig. 7. Forecasts of SCTAS after a full
optimization cycle (μ = 7)

absolute error across all scenarios from 103% to 5%. These results highlight that
the self-correcting capabilities of SCTAS can be beneficial not only to optimize
the multiprogramming level of DTM applications, but also in applications (such
as QoS/cost driven elastic scaling policies and what-if analysis of the scalability
of DTM applications) requiring to speculate on the performance of the platform
in different scale settings.

5 Conclusion

In this paper, we proposed and evaluated algorithms aimed to self-tune the
multi-programming level in two radically different types of TM systems: a shared
memory STM and a distributed STM. We showed that for shared memory a sim-
ple exploration-based hill-climbing algorithm can be extremely effective, even
when faced with challenging workloads. However, in the distributed case, pure
exploration-based approaches are no longer a viable option, as testing configu-
rations with a different number of nodes requires triggering costly state transfer
phases. We tackled this problem by introducing a novel, hybrid approach that
combines performance models and local exploration, in order to achieve the best
of the two methodologies: quick convergence towards the global optimum and
robustness to possible inaccuracies of the performance models.

References

1. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for
lock-free data structures. In: Proc. of ISCA (1993)

2. Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory, 2nd edn. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Publisher (2010)

3. Reimer, N., Haenssgen, S., Tichy, W.F.: Dynamically adapting the degree of paral-
lelism with reflexive programs. In: Saad, Y., Yang, T., Ferreira, A., Rolim, J.D.P.
(eds.) IRREGULAR 1996. LNCS, vol. 1117, Springer, Heidelberg (1996)

4. Heiss, H.U., Wagner, R.: Adaptive load control in transaction processing systems.
In: Proc. of VLDB (1991)

Identifying the Optimal Level of Parallelism in TM Applications 247

5. Schroeder, B., Harchol-Balter, M., Iyengar, A., Nahum, E., Wierman, A.: How to
determine a good multi-programming level for external scheduling. In: Proc. of
ICDE (2006)

6. Abouzour, M., Salem, K., Bumbulis, P.: Automatic tuning of the multiprogramming
level in Sybase SQL Anywhere. In: Proc. of ICDE Workshops (2010)

7. Yoo, R.M., Lee, H.H.S.: Adaptive transaction scheduling for transactional memory
systems. In: Proc. of SPAA (2008)

8. Mohammad, A., Mikel, L., Christos, K., Kim, J., Chris, K., Ian, W.: Robust
adaptation to available parallelism in transactional memory applications. HIPEAC
Journal (2008)

9. Ghanbari, S., Soundararajan, G., Chen, J., Amza, C.: Adaptive learning of metric
correlations for temperature-aware database provisioning. In: Proc. of ICAC (2007)

10. Zhang, Q., Cherkasova, L., Smirni, E.: A regression-based analytic model for dy-
namic resource provisioning of multi-tier applications. In: Proc. of ICAC (2007)

11. di Sanzo, P., Ciciani, B., Quaglia, F., Romano, P.: A performance model of
multi-version concurrency control. In: Proc. of MASCOTS (2008)

12. Heindl, A., Pokam, G., Adl-Tabatabai, A.R.: An analytic model of optimistic
software transactional memory. In: Proc. of ISPASS (2009)

13. Dragojevic, A., Guerraoui, R.: Predicting the scalability of an stm: A pragmatic
approach (2010)

14. Rughetti, D., Di Sanzo, P., Ciciani, B., Quaglia, F.: Machine learning-based
self-adjusting concurrency in software transactional memory systems. In: Proc. of
MASCOTS (2012)

15. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford
transactional applications for multi-processing. In: Proc. of IISWC (2008)

16. Schenker, J.: Optimistic Synchronization and the Natural Degree of Parallelism of
Concurrent Applications — MSc Thesis (June 2012)

17. Couceiro, M., Romano, P., Carvalho, N., Rodrigues, L.: D2stm: Dependable
distributed software transactional memory. In: Proc. of PRDC (2009)

18. Narasimha Raghavan, R.V.: Balancing the communication load of state transfer in
replicated systems. In: Proc. of SRDS (2011)

19. Jiménez-Peris, R., Patiño-Mart́ınez, M., Alonso, G.: Non-intrusive, parallel
recovery of replicated data. In: Proc. of SRDS (2002)

20. Elnikety, S., Dropsho, S., Cecchet, E., Zwaenepoel, W.: Predicting replicated
database scalability from standalone database profiling. In: Proc. of EuroSys (2009)

21. Didona, D., Romano, P., Peluso, S., Quaglia, F.: Transactional auto scaler: elastic
scaling of in-memory transactional data grids. In: Proc. of ICAC (2012)

22. Singh, R., Sharma, U., Cecchet, E., Shenoy, P.: Autonomic mix-aware provisioning
for non-stationary data center workloads. In: Proc. of ICAC (2010)

23. Francesco, M., Manik, S.: Infinispan Data Grid Platform. Packt Publishing (2012)
24. Red Hat/JBoss: JBoss Infinispan (2011), http://www.jboss.org/infinispan
25. TPC Council: TPC-C Benchmark (2011), http://www.tpc.org/tpcc
26. Yu, P.S., Dias, D.M., Lavenberg, S.S.: On the analytical modeling of database

concurrency control. ACM Journal (1993)
27. Quinlan, J.R.: Rulequest Cubist, http://www.rulequest.com/cubist-info.html
28. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers Inc. (1993)

http://www.jboss.org/infinispan
http://www.tpc.org/tpcc
http://www.rulequest.com/cubist-info.html

Biologically Sound Neural Networks
for Embedded Systems Using OpenCL

István Fehérvári1, Anita Sobe2, and Wilfried Elmenreich1,3

1 Mobile Systems Group, Lakeside Labs, Institute for Networked and Embedded Systems,
Alpen-Adria-Universität Klagenfurt, Austria

{istvan.fehervari,wilfried.elmenreich}@aau.at
2 Computer Science Department, University of Neuchâtel, Switzerland

anita.sobe@unine.ch
3 Complex Systems Engineering, University of Passau, Germany

Abstract. In this paper, we present an OpenCL implementation of a biologically
sound spiking neural network with two goals in mind: First, applied neural dy-
namics should be accurate enough for bio-inspired training methods, thus resulting
network data is reproducible in "in vitro" experiments. The second is that the imple-
mentation produces code that runs adequately on up-to-date embedded graphical
chips for fast on-board classification applications, e.g., video image processing. We
describe the necessary steps required to implement an efficient algorithm using the
OpenCL framework and present evaluation results of the execution time compared
to traditional serial CPU code. We show that an optimized GPU kernel code can
perform sufficiently fast to be used for future embedded neural processing.

1 Introduction

Spiking neural networks (SNNs) are a type of artificial neural networks (ANN) where
communication between neurons occurs by means of time-stamped events (spikes). Re-
searchers in the field of computational intelligence have shown that biologically sound
spiking neural networks (SNNs) are comparable, but more powerful than traditional ar-
tificial neural networks [1]. Such neural networks are usually computationally complex
and often require high performance computers (or even supercomputers) to run. They
are, however, inherently parallel processes and therefore implementations on cheap
and easy available GPUs are advantageous. In [2], the authors showed the feasibil-
ity of running different simple spiking neural network models on GPUs, but concen-
trated on the architecture comparison. The authors of [3] implemented a SNN using
CUDA and showed its real-time capabilities. However, this implementation and others
(e.g., [4], [5], [6]) rely on simplified models that are easy to implement, but neither
accurate nor biologically-sound.

In this paper, we present an OpenCL implementation of a large, biologically plau-
sible, SNN, based on the spike response model (SRM)[7], which is accurate and train-
able. We have chosen OpenCL because of its support for different operating systems
and graphics card vendors, including hardware without GPU support. In comparison
with CUDA, which is more directly connected to the execution platform, OpenCL
shows comparable performance given that the same optimizations are implemented as
in the CUDA implementation [8]. CUDA is limited to Nvidia GPUs, but it is notable

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 248–252, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Biologically Sound Neural Networks for Embedded Systems Using OpenCL 249

that a CUDA kernel can be converted to an OpenCL kernel with minimal modifica-
tions [8]. One challenge is that the biologically sound SNN models are memory-intense
and GPUs provide a limited memory bandwidth. We are facing this challenge by in-
troducing a local connection scheme with a constant number of synapses per neuron.
This fact can also be exploited to optimize the memory management of the OpenCL
application, which resulted in a further reduction of execution time.

2 Spiking Neural Network Model

In a spiking neural network (SNN), neurons emit pulses or spikes through their synapses
whenever their membrane potential ϑi reaches its threshold value. This is caused by in-
coming spikes from other presynaptic neurons. Since all the spikes in the network have
the exact same form, information is encoded in the chronological order of the spikes, or
the so-called spike train. Related work indicates that there are numerous ways to model
a SNN, but most of them are overly simple integrate-and-fire models, neglecting several
aspects of neural dynamics (bursting, inhibitory rebound and shunting inhibition [9]).
The model presented in this paper is based on the Spike Response Model (SRM) model
described in [7]. Resulting networks are mathematically tractable, trainable and ap-
proximate the Hogkin-Huxley model with a high degree of accuracy [10]. The major
difference between earlier models and the SRM is that neurons keep track of past spikes
instead of being binary. Although the SRM is also considered a generalization of the
leaky integrate-and-fire model [10] it expresses the neuron’s membrane potential in a
form of a sum of integrals instead of a set of differential equations, which makes the
computation simpler while providing high accuracy.

Figure 1 shows an example of the evolution of a neuron’s membrane potential. The
top graph comprises a sample of input pulses and the bottom graph depicts the corre-
sponding membrane potential along with the neuron’s dynamic threshold. Individual
pulses coming from excitatory synapses increase the membrane potential for a short
time period (seen at 30 and 70 ms). Once the threshold indicated by a dashed line has
been reached at around 80 ms, the neuron fires by emitting a near instantaneous pulse
and enters a refractory period. This also increases the threshold to avoid multiple firings
within a short time.

60

10

40

90

0 20 40 60 80 100 120

M
em

br
an

e
po

te
nt

ia
l(

m
V)

Time (ms)

Membrane potential

Membrane potential Effective Threshold

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

In
pu

tc
ur

re
nt

(m
V)

Incoming spikes

Fig. 1. Changes to the membrane potential and threshold due to incoming spikes

250 I. Fehérvári, A. Sobe, and W. Elmenreich

3 SNN Implementation with OpenCL

Related implementations of spiking neural networks meant for parallel executions are
mostly event-based simulations [5], however, the integrating nature of the spike re-
sponse model requires a simulation of discrete time steps, thus we choose a step length
of 1 ms. To calculate the membrane potential of a neuron at any time step, we need to
keep track of the time steps elapsed since its last firing, its threshold and the weights of
all connecting synapses. Moreover, the membrane potential of every neuron also has to
be stored for analytical purposes.

We created two different kernel programs: An update kernel and a threshold kernel.
The first is used to update the neuron’s membrane potential , while the second handles the
firing if the membrane potential is higher than the neuron’s threshold. Thus, one time step
of the simulation consists of the execution of the first kernel on each neuron, followed by
the second kernel executed on every neuron. The reason for this divided architecture is to
provide a general execution model that is not influenced by the connection topology of
the neural network. A fully-connected neural network requires to store one floating point
value for every n(n− 1)/2 connections, which is impracticable for larger network sizes
in terms of memory usage, training and execution times. To make the neural network
scalable for a high number of nodes, we will use a partially-connected neural network
where each neuron has a fixed number of connections to its immediate neighbors. We
model the neural network as an N×N×N grid network structure (a cube) where each
neuron is only connected to the local Moore neighborhood of range 2, thus having max-
imum 53 − 1 = 124 synapses based on how far the neuron is situated from the edges.
We further split the functionality of the cube, where neurons on the frontal face of the
grid are used as inputs and neurons on the backface are used as outputs (see Figure 2).

Since we focus on embedded systems, we evaluate our approach by a contrived ex-
ample from the image processing domain. We obtain 8-bit greyscale images from a
camera as input to our neural network, where each pixel’s intensity is used as constant
input current of an input neuron, i.e., the darker the color, the higher the input current.
At some point the neurons start to fire and the signal propagates through the network,
changing the neuron’s membrane potential. The output represents the frequency of the
spikes, since we are only interested in the network development. Hence, we concentrate
on the execution time of one time step of the SNN simulation for different neural net-
work sizes being between N = 10...100. The evaluation comprises 100 runs. We ran
our experiments on an AMD ATI Mobility Radeon HD 5750 state-of-the-art graphics
card. We create a naive implementation and compare it to the baseline, a native C++

Fig. 2. Example network structure with N×N×N neurons

Biologically Sound Neural Networks for Embedded Systems Using OpenCL 251

version of the same code executed on a single thread. In practice, a state-of-the-art mi-
croprocessor might also provide parallel processing via multiple cores. However, for an
embedded system, the parallelization would be still limited to a relatively low number
of cores. In the best case, such a multi-core system would be faster by a factor equal to
the number of cores.

As shown in Figure 3, the execution time for the CPU code increased rapidly with the
size of the network. It shows further a significant speed performance improvement of a
factor of at least 50 over a single-core CPU for all input sets larger than 40×40×40 neu-
rons. Realistic input sets are expected to have at least this size or be even larger. Thus,
in comparison to CPU code, our OpenCL implementation performed exceptionally fast,
with one million neurons one step took 126 ms on average.

The OpenCL memory model adopts the device’s model, where the global memory
refers to the main memory of the device but it can also be shared with the host. The
global memory is the largest but slowest memory, especially if shared with the host sys-
tem. Work-items belonging to the same work-group can access a shared local memory
that provides much faster read/write operations. This memory is mainly used to syn-
chronize work-items in a group and has a maximum size of 16kB. Finally, each of the
work-items has a private memory space, which is a register-type memory. If we analyze
the data flow of the naive implementation, we observe that in each time step both ker-
nels read and write data directly from the global memory. A more effective approach
would be to use the local memory block of a work-group that provides significantly
faster read/write access. OpenCL instructs the target device to execute the parallel work
items in groups, which in our case form a K×K×K grid layout. By exploiting the
fact that neurons are only connected in a local neighborhood, the program of each neu-
ron could share its own data, which is already loaded from the global memory, via the
shared local memory. By making this transition from exclusive read/write on global
data to a locally shared architecture we could theoretically improve the performance of
the algorithm. Furthermore, since the membrane potential of each neuron only depends
on locally connected neurons there is no need to wait a whole execution cycle of the up-
date kernel before running the threshold kernel. Instead the two kernels can be merged
saving additional time on memory access.

By running the same simulation as described above, we obtained lower execution
times (depicted in Figure 3 (b)). We achieved an increase of speed of approximately
25 %. Our results also match the results of similar implementations of spiking neural
networks with different neural dynamics [5].

(a) (b)

0

0.5

1

1.5

2

2.5

3

3.5

4

10 18 26 34 42 50 58 66 74 82 90 98

ex
ec

ut
io

n
tim

e
/

s

number of neurons per side

Single-core CPU

OpenCL GPU

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

10 18 26 34 42 50 58 66 74 82 90 98

ex
ec

ut
io

n
tim

e
/

s

number of neurons per side

OpenCL optimized

OpenCL unoptimized

Fig. 3. Execution time for different network sizes for (a) serial CPU vs OpenCL implementation
(b) for naive vs. optimized implementation

252 I. Fehérvári, A. Sobe, and W. Elmenreich

4 Conclusions

In this paper, we presented an OpenCL implementation of a biologically plausible spik-
ing neural network. We based our neural dynamics on the spike response model that is
evaluated in a discrete-time simulation. We compared our naive OpenCL implementa-
tion to a single-thread CPU code, as well as to an optimized version of the same code.
Our results show that OpenCL provides much faster execution time, thus being a valid
platform for future embedded on-board neural processing.

In our test scenario, a network with 1,000,000 neurons and approximately
124,000,000 synapses could be calculated within 93 ms with GPU support. This is
sufficient for typical low-framerate image processing scenarios.

Acknowledgments. We thank Lizzie Dawes and John NA Brown for proofreading and
constructive comments. This work was supported by the Austrian Science Fund grant
FFG 2305537, Lakeside Labs via funding from the EU Regional Development Fund
and the KWF under grant KWF 20214|21532|32604, and funding from the ParaDIME
Project (FP7/2007-2013 grant 318693).

References

1. Maass, W.: Noisy spiking neurons with temporal coding have more computational power
than sigmoidal neurons. Advances in Neural Information Processing Systems 9 (1997)

2. Pallipuram, V., Bhuiyan, M., Smith, M.: Evaluation of GPU architectures using spiking
neural networks. In: 2011 Symposium on Application Accelerators in High-Performance
Computing (SAAHPC), pp. 93–102 (July 2011)

3. Yudanov, D., Shaaban, M., Melton, R., Reznik, L.: GPU-based simulation of spiking neural
networks with real-time performance amp; high accuracy. In: International Joint Conference
on Neural Networks (IJCNN), pp. 1–8 (July 2010)

4. Nageswaran, J., Dutt, N., Wang, Y., Delbrueck, T.: Computing spike-based convolutions
on GPUs. In: IEEE International Symposium on Circuits and Systems (ISCAS 2009),
pp. 1917–1920 (2009)

5. Yudanov, D., Reznik, L.: Scalable multi-precision simulation of spiking neural networks. In:
2012 IEEE World Congress on Computational Intelligence (WCCI 2012) (June 2012)

6. Bernhard, F., Keriven, R.: Spiking neurons on GPUs. In: Alexandrov, V.N., van Albada, G.D.,
Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3994, pp. 236–243. Springer,
Heidelberg (2006)

7. Ferrari, S., Mehta, B., Di Muro, G., VanDongen, A., Henriquez, C.: Biologically realizable
reward-modulated hebbian training for spiking neural networks. In: IEEE International Joint
Conference on Neural Networks, IJCNN 2008 (IEEE World Congress on Computational
Intelligence), pp. 1780–1786 (June 2008)

8. Karimi, K., Dickson, N.G., Hamze, F.: A performance comparison of CUDA and OpenCL.
In: CoRR abs/1005.2581 (2010), http://arxiv.org/abs/1005.2581

9. Maass, W.: Networks of spiking neurons: The third generation of neural network models.
Neural Networks 10(9), 1659–1671 (1997)

10. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations,
Plasticity, 1st edn. Cambridge University Press (2002)

http://arxiv.org/abs/1005.2581

FStream: A Decentralized

and Social Music Streamer

Antoine Boutet1, Konstantinos Kloudas1, and Anne-Marie Kermarrec1,2

1 INRIA Rennes, France
{antoine.boutet,konstantinos.kloudas,anne-marie.kermarrec}@inria.fr

2 EPFL, Switzerland
anne-marie.kermarrec@epfl.ch

Abstract. Internet streaming services and social networks have drasti-
cally changed how people discover and consume music. Existing
streaming services allow users to listen to music available on a centrally
controlled web infrastructure. However, recent trends, e.g. large, inex-
pensive home storage devices and always on, high-speed broadband con-
nectivity, provide the opportunity for users to collaboratively share their
music collections directly, without the intervention of a service provider.
In this paper we present FStream, a distributed, social music streaming
service. Users contribute to the system by hosting at home a FStream-

Box which enables them to have access to their music collection ev-
erywhere and at any time. In addition, they can share their collection
with friends, discover new tracks thanks to a recommendation system
and search for specific tracks in the whole network without using a cen-
tral entity. FStream provides a fine grained sharing policy allowing the
user to have full control over the way she shares her music and manage
resource allocation to address traffic spikes and content availability.

Keywords: Social Networks, Recommendation System, Streaming.

1 Introduction

In recent years the way we are consuming music has drastically changed. Aided
by technological advances in network access and storage, personal music collec-
tions have grown considerably while, at the same time, fit in devices as small as
a usb stick. The above, in combination with the integration of music players in
mobile devices like smartphones that we carry everywhere, has led to music ac-
companying many of our everyday activities. The above phenomenon has led to
the emergence of numerous Internet services like Spotify1 or Jango2 that provide
large collections of tracks directly available for streaming (without downloading).

An aspect of music that does not go unnoticed by these services is the social
one. Music sharing sites, in their effort to improve their offered services and to
engage users, add more and more functionalities based on user interactions. This

1 http://www.spotify.com
2 http://www.jango.com

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 253–257, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.spotify.com
http://www.jango.com

254 A. Boutet, K. Kloudas, and A.-M. Kermarrec

includes music recommendation based on collaborative filtering, track rating and
playlist sharing. On the other hand, and for the same reasons, social networking
sites tend to integrate music sharing functionalities. The recent deal between
Facebook and Spotify illustrates the above.

Existing services, allow users to listen to music available on a centrally con-
trolled web infrastructure. Even services like Spotify that are peer-assisted [4],
assume the existence of a central index, which serves as the gateway to locate
music tracks. However, recent trends such as large, inexpensive home storage de-
vices and always on, high-speed broadband connectivity at low (and decreasing)
cost provide the opportunity for users to collaboratively share their music col-
lections directly from home [6,5], without the intervention of a service provider.
Hosting a streaming server at home, removes the need for users to install specific
software on each one of their devices or download each track before listening to
it, as in existing filesharing applications. In addition, an alternative architec-
ture that permits the direct interaction between users, avoids drawbacks of the
centralized alternatives: (i) no site-specific constraints on the upload data (e.g.
format, size, etc) and no need to upload content to remote data centers; (ii)
avoid complex terms of ownership rights (e.g. facebook, instagram) and let users
regain control over their data (i.e., what to share, whom to share with); (iii) no
advertisement and service restriction (e.g. restricted free access) or restriction on
the available music collection (e.g. only albums from one label); (iv) scalability
issue (e.g. track unavailable due to social sprike).

In this paper we present FStream, the first distributed, social music stream-
ing network. FStream enables users to have access to their own music collection
everywhere and at any time. In addition, they can share their collection with
friends, discover new tracks thanks to a recommendation system that brings
closer people with similar music tastes, and search specific tracks in the whole
network without relying on a central entity. FStream provides a fine grained
sharing policy that permits the user to have full control over the way she shares
her music. Instead of installing a p2p client, users in FStream use a browser to
connect their box called FStreamBox. FStream is hosted at home and takes
care of managing all operations for them. In particular, FStream helps users
to maintain their social network, compute recommendation based on their mu-
sic tastes and manage resource allocation to address traffic spikes and content
availability.

2 Overview of FStream

FStream resides on user provided resources leveraging their capabilities in stor-
age and bandwidth. In FStream, each user contributes to the system by hosting
at home a FStreamBox, which grants access to not only its own music collec-
tion but the ones of other members of the service. The only thing required to
benefit from the streaming service is a web browser to connect to her machine. All
the operations of referencing friends’ collections, discovering new nodes and mu-
sic collections, computing recommendations and content caching are managed

FStream: A Decentralized and Social Music Streamer 255

Fig. 1. FStream architecture

by the FStreamBox. We based our solution on Subsonic3, an open-source,
web-based media streamer and added several components implementing the
additional functionality provided by FStream. This additional functionality
includes: (i) social network construction and maintenance, (ii) ownership and
sharing restrictions control, (iii) recommendation system, (iv) search mechanism,
(v) storage space and social caching.

Figure 1 depicts the architecture of a FStream system. Our system can be
seen as composed of four different layers. At the bottom layer are the FStream-
Boxes that provide the storage service and are the link between a user and the
rest of the system. The second layer relies on a random-peer-sampling (rps) pro-
tocol [7] which ensures connectivity between FStreamBoxes by building and
maintaining a continuously changing random topology. This random overlay is
also leveraged to search items through the system. The upper-layer clustering
protocol [8] uses this overlay to provide users with the most similar candidates
based on their profiles (i.e. short descriptors of their tastes) to form an interest-
based topology. This gossip-based clustering protocol, is based on a periodic
exchanges of user profiles, on which it applies a similarity metric to cluster users
with similar music tastes. To guarantee that this overlay represents the user’s
most recent ”mood”, a user’s profile contains information on her latest activity
on the system (songs that she has been listening lately) and the clustering al-
gorithm updates a user’s ”neighborhood” dynamically. Finally, the last layer in

3 http://www.subsonic.org

http://www.subsonic.org

256 A. Boutet, K. Kloudas, and A.-M. Kermarrec

the architecture maintains connectivity with friends through the explicit social
network of users. Each user initially connects to her FStreamBox which man-
ages all operations on her behalf. For instance, user d of Figure 1 is connected
to her FStreamBox and benefits from social caching from the FStreamBox

of both an explicit friend (i.e. User b) and an implicit friend on the interest-
based topology (i.e. User g). Functionalities provided by FStream are explained
below.

Social network. As depicted in the architecture mentioned above, users can
explicitly declare other users as friends in FStream. Declaring a user as a friend,
is equivalent to granting her access to your music collection. The granted access
is subject to the sharing preferences on the owner of the collection has defined
(described below) and the data remain stored on the owner’s FStreamBox

while the two users are presented with the merged indexes of their collections.
Listening a track generates a stream from the box where it is stored to the user
who consumes it (User d on Figure 1).

Ownership and sharing restriction. FStream enables users to define their shar-
ing preferences at the granularity of tracks. The full collection or part of it can
be public, shared only with its social network or private. Public means that any-
body can view, listen or copy the content while private restricts access to only
the owner of the collection. Finally, a user is able to restrict access to her col-
lection only to her social network, in this case only users declared as friends can
view and listen the content.

Recommendation system. As mentioned earlier, one of the objectives of
FStream is to discover and connect users that share similar tastes, even in the
case that they are not among each other’s explicit social network. This is guar-
anteed by the gossip-based clustering protocol described above that manages to
cluster users by exchanging their profiles. Recommendations presented to users
are based on the activity of both explicit and implicit friends. This functionality
permits FStream to work as a recommendation system that ”proposes” new
content to a given user based on what other users with similar tastes listen. Fur-
thermore, this interest-based topology could be further leveraged in FStream

to recommend items to users [1,2] and to perform the social caching.

Search. Users can also launch requests for specific tracks. To answer this need
and to locate specific content in the network, FStream benefits from search
mechanisms. This mechanism first leverages profile exchanged for the building
of overlays. As the profile contains information on the collection, the requested
track can be locally present in profile information. Otherwise FStream uses a
gossip protocol [3] to localize the content on the system.

Storage Space and Social Caching. FStream relies on a self-sufficient storage
infrastructure (no need for central infrastructure) where users contribute storage
resources to the service. This contributed storage space is divided in two parts,

FStream: A Decentralized and Social Music Streamer 257

the first one is used to store the user’s local collection and is controlled by the
user, while the second is used by FStream to guarantee content availability and
good Quality-Of-Service (QoS). In this respect, it can be seen as a distributed
social cache. Its social aspect relies on the fact that FStream decides what to
store and which item to replace in this part according to the music preferences
of the owner of the machine, but also the ones of her social network. This dif-
ferentiates FStream’s cache replacement policy from classic ones that apply
policies like Least-Recently-Used or Least-Frequently-Used. The purpose of this
social cache is twofold. On one hand, it helps with content availability in the face
of node disconnection while on the other, it helps the system to serve popular
content and face traffic spikes.

3 Summary

Following the evolution on how users consume music, we present the design of
FStream, a distributed social music sharing and streaming service based on
FStreamBox hosted at each user. FStream enables users to access to their
music collection everywhere and at any time and to share it with friends, search
for specific tracks and discover new ones thanks to a recommendation system
in a fully decentralized manner. At the same time, FStream provides a fine
grained sharing policy that permits the user to have full control over the way
she shares her music and manage resource allocation.

References

1. Boutet, A., Frey, D., Guerraoui, R., Jégou, A., Kermarrec, A.-M.: WhatsUp
Decentralized Instant News Recommender. In: IPDPS 2013, Boston, États-Unis
(May 2013)

2. Carretero, J., Isaila, F., Kermarrec, A.-M., Täıani, F., Tirado, J.: Geology: Modular
Georecommendation in Gossip-Based Social Networks. In: ICDCS (2012)

3. Kempe, D., Kleinberg, J., Demers, A.: Spatial gossip and resource location
protocols. J. ACM (2004)

4. Kreitz, G., Niemela, F.: Spotify – large scale, low latency, p2p music-on-demand
streaming. In: P2P (2010)

5. Marcon, M., Viswanath, B., Cha, M., Gummadi, P.: Sharing social content from
home: a measurement-driven feasibility study. In: NOSSDAV (2011)

6. Valancius, V., Laoutaris, N., Massoulie, L., Rodriguez, P., Diot, C.: Greening the
Internet with Nano Data Centers. In: CoNEXT (2009)

7. Voulgaris, S., Gavidia, D., Steen, M.V.: Cyclon: Inexpensive membership
management for unstructured p2p overlays. J. Network Syst. Manage. (2005)

8. Voulgaris, S., van Steen, M.: Epidemic-style management of semantic overlays for
content-based searching. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005.
LNCS, vol. 3648, pp. 1143–1152. Springer, Heidelberg (2005)

BFT Selection

Ali Shoker and Jean-Paul Bahsoun

University of Toulouse III, IRIT, Toulouse, France
{ali.shoker,jean-paul.bahsoun}@irit.fr

Abstract. This paper presents the first BFT selection model and algo-
rithm that can be used to choose the most convenient protocol according
to the BFT user (i.e., an enterprise) preferences. The selection algorithm
applies some mathematical formulas to make the selection process easy
and automatic. The algorithm operates in three modes: Static, Dynamic,
and Heuristic. The Static mode addresses the cases where a single proto-
col is needed; the Dynamic mode assumes that the system conditions are
quite fluctuating and thus requires runtime decisions, and the Heuristic
mode uses additional heuristics to improve user choices. To the best of
our knowledge, this is the first work that addresses selection in BFT.

Keywords: Byzantine fault tolerance, BFT selection, dynamic
switching.

1 Introduction

Byzantine fault tolerance [1] (BFT) is a replication-based approach used to main-
tain the resiliency of services, often state-machines, against Byzantine (i.e., ar-
bitrary) faults in a partially synchronous [1] environments. Many BFT protocols
have been introduced so far to maintain safety and liveness in such systems;
however, no one-size-fits-all protocol was proposed. A vast discrepancy can be
noticed among these protocols which governs their characteristics and perfor-
mance. This can bring some confusion to BFT users 1 to choose the protocol
that is most convenient to their services according to their own demands. Choos-
ing a convenient protocol can be hard when the candidate protocols and their
characteristics are numerous. Guerraoui et al. [2] proposed an abortable frame-
work to launch alternating BFT protocols on the same service based on the
changes in the underlying system conditions; however, this approach did not
introduce any switching policy to run the candidate protocols efficiently and
dynamically.

In this paper, we introduce the first BFT selection model and algorithm that
automates the selection process of the ‘preferred’ BFT protocol among a set of
candidate ones. The ‘preferred protocol’ is the one that matches user preferences
the most. An evaluation process is in charge of matching the user preferences
against the profiles of the nominated BFT protocols considering both: reliability

1 A BFT user in our context is any enterprise that is choosing a BFT protocol to
deploy on its services.

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 258–262, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

BFT Selection 259

and performance. The selected protocol is the one that achieves the highest
evaluation score. The mechanism is automated via mathematical matrices, and
produces selections that are reasonable and close to reality. We explore in this
paper the selection model and algorithm. The selection algorithm operates in
three modes: Static, Dynamic, and Heuristic. We focus on discussing the Static
mode, and we describe the Dynamic and Heuristic modes in [3,4].

Though our model is generic (it may cover any functional and non-functional
protocol), we introduce it in the context of BFT for two main reasons. First, to
make a first steps towards dynamic switching between existing BFT protocols
at runtime, and second, to make it easier for enterprises to select their preferred
BFT protocol when BFT is provided as a service, e.g., in clouds.

The rest of the paper is organized as follows. We introduce the selection
model and the selection algorithm in Sections 2 and 3, respectively. We address
the evaluation in Section 4, and we conclude our paper in Section 5.

2 BFT Selection Model

2.1 Notations and Terms

We define two types of indicators: Key Characteristic Indicators (KCI) and Key
Performance Indicators (KPI). KCIs are those properties (with boolean values)
of a protocol that indicate its properties, and requirements, e.g., ‘the minimum
number of replicas needed‘. The KCI can strictly decide whether an evaluated
protocol could be selected or not. The KPIs are the properties that evaluate
the performance of the protocol like throughput, and latency. These values are
usually real numbers. KPIs are used to recommend a protocol over the others
but, in general, it could not rule out a protocol. In addition, we define the
system state by S = {si = (f1, f2, ..., fj, ..., fm)} where fj represents the jth

impact factor of the system state and m is the number of considered impact
factors. ‘Number of clients‘ and ‘message size‘ are examples of impact factors.

2.2 Selection Model

Consider a service provider (e.g., a cloud vendor) that offers n different BFT
protocols along with its provided services (e.g., signed in SLA contract). We
define the set of BFT protocols ψ = {pi; where 1 ≤ i ≤ n}. On the other hand,
consider a selection model represented by:Σ = {Protocol,User,Mode}. Protocol
represents the profile of a BFT protocol, User represents the preferences of the
user (i.e., the enterprise), and Mode represents the selection mode of the system.
Selection occurs through matching the Protocol profile with the User preferences
according to the mapping: f : Σ �−→ ψ; this yields the ‘preferred’ protocol among
all competing protocols. Here we define the ‘preferred’ protocol:

Definition 1. A protocol pi with profile Protocoli is called the ‘preferred’ pro-
tocol among a set of candidate protocols ψ with respect to a specific user with
preferences Userj if and only if according to an evaluation function e : Σ �−→ ",
e(Protocoli, Userj,φ) is maximal.

260 A. Shoker and J.-P. Bahsoun

The interpretation of Protocol, User, and Mode is as follows:

Protocol. Each protocol has a profile: Protocol={AP , AU , BP , BV }. AP =
(α1, α2, ..., αa) is a vector of a KCIs. AU represents the vector of the default
weights of these KCIs: AU = (u1, u2, ..., ua). BP = (β1, β2, ..., βb) is a vector of b
KPIs and, finally, BV represents the vector of the default weights of these KPIs:
BV = (v1, v2, ..., vb).

User. Each user, e.g., an enterprise, defines his preferences in User={U, V,M},
where U (resp., V) is a vector of user defined weights corresponding to the KCIs
(resp., KPIs) of the Protocol’s preference AP (resp., BP). M defines the mode
required by the user, i.e, either Dynamic, Static, or Heuristic.

Mode. The selection can occur in three different modes: Static, Dynamic, or
Heuristic. In the former, the selection occurs only once, i.e., at the time the
BFT user requires a service; afterwards, the user does not change his selection
(i.e., the used protocol) until the system is halted/rebooted and, thus a new
selection is provoked. On the other hand, the Dynamic mode makes the system
react dynamically to the changes of the system state. This mode allows the
system to adapt to the upcoming conditions at runtime and hence the user will
be using multiple alternating protocols. The Heuristic mode uses some heuristics
to adjust the preferences of the user, especially V , to improve his choices in some
cases.

3 Selection Mechanism

The selection mechanism of the preferred protocol according to the user prefer-
ences is achieved through computing the evaluation scores E of the competing
protocols, and then electing the protocol that corresponds to the maximum score.
For any state s, and protocol pi ∈ ψ that has an evaluation score Ei,s; a protocol
ppref is chosen according to Equation 1:

ppref = pi, s.t. Ei,s = max
1≤j≤n

Ej,s. (1)

If the mode of the system is Dynamic or Heuristic, the KPIs are computed at
runtime, and the system chooses the protocol that has the highest evaluation
scoreE among all protocols to launch it in the next phase. To make computations
easier, we define a new operator, i.e., the OR product ∨̇.
Definition 2. Consider two boolean matrices A ∈ {0, 1}n×l, B ∈ {0, 1}l×m with
entries aij, and bij, respectively. The OR product A∨̇B is a matrix C = A∨̇B ∈
N

n×m, where its elements are defined by: cij =
∑m

k=1 aik ∨ bkj. The operator ∨
is the logical OR operator.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E = C ◦ P

where C =

⌊
1

a
. (A ∨̇ (en − U))

⌋

and P = B±.(V ◦W).

(2)

BFT Selection 261

The evaluation score E is calculated according to the formulas introduced in
Equation 2. The evaluation matrix E is the Schur product of the KCI matrix C
and the KPI matrix P. C represents the part of the evaluation that deals with
the KCIs of the profiles of the protocols; whereas, P represents the evaluation
part that deals with the KPIs. E is calculated after computing the values of C
and P. If the mode of the system is Dynamic or Heuristic, then E may change
at runtime as P changes.

The KCI matrix C =
⌊
1
a . (A ∨̇ (en − U))

⌋
matches the user preferences

against the profiles of different protocols. a represents the number of KCIs con-
sidered. The operator � � is the integer value operator (it is sometimes indicated
by [] too). The operator ∨̇ was defined in Definition 2. Matrix A represents the
profiles of the protocols. The dimension of A is n× a; where n is the number of
candidate protocols and a is the number of KCIs considered in the evaluation.
Each row of the matrix represents a KCI vector profile of a protocol. Matrix U
represents the preferences of the user. According to this matrix, the protocols
that satisfy all user requirements will be considered for selection (i.e., will con-
tinue the competition). On the contrary, the protocol that lacks a single property
among those demanded by the user will be out of selection. The column matrix
en is a unit matrix is to invert the values of the matrix U to −U . After defining
the matrices A and U, the computation of C becomes straightforward.

Matrix P is used to complete the selection process by considering the KPIs
of the protocols, seeking better performance. The KPI matrix P is defined in
the formula: P = B±.(V ◦W). B± is a normalized version of another matrix
B that represents the KPI profiles of each protocol. Each profile is presented in
one row. B and B± have the same dimension n × b where n is the number of
protocols and b is the number of KPIs considered. The entries of the matrix B±

are denoted by β± and are calculated from the entries of B that are denoted by
β. We say that a KPI has the property Tendency=‘high’, if a higher value means
better evaluation score E, e.g., throughput; this KPI is denoted by β+. On the
contrary, a KPI of type β− has the property Tendency=‘low’, e.g., latency, and
a higher KPI value means worst evaluation score E. Suppose the number of β-
KPIs is b, then the matrix B can be divided into b column matrices (i.e., vectors):
B1, B2, Bi, ..., and Bb. Let the maximum (resp., minimum) value of the entries
of each vector Bi be maxi (resp., mini). Then, the entries of the matrix B± can
be calculated according to Equation 3:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β+
ji = 1− maxi − βji

maxi −mini
;

β−
ji = 1− βji −mini

maxi −mini
;

where i ≤ b and j ≤ n.

(3)

Matrix V represents the KPI user preferences used to recommend a protocol. V
is a column matrix of dimension b×1, where b is the number of KPIs considered
in the evaluation. The entries of this matrix follow two constraints: (1) all entries

∈ [0,10], and (2) their sum
∑b

i=1 vi1 = 10. Matrix W is a column matrix used in

262 A. Shoker and J.-P. Bahsoun

the Heuristic mode only. W is important to adjust the user preferences given in
V by considering the system state to improve his choice according to predefined
heuristic rules. If the mode is Static, then the entries of W are equal to 1,
i.e., W=eb.

4 Evaluation

To evaluate our approach we have considered seven existing BFT protocols by
listing their different KCIs like the number of replicas needed, speculative or
not, tolerate malicious clients or not, etc. Also we have considered three KPIs:
throughput, latency, and capacity. The KPI values are estimated based on the
message exchange patterns of the different protocols. Our mechanism gave se-
lection results as expected according to many user preferences we have chosen.
The mechanism minimizes the complexity of selection significantly. Due to lack of
space, we do not reveal our examples and results in this paper, but we encourage
the reader to read our extended papers in [3,4].

5 Conclusion

We presented a BFT selection model and algorithm to automate the selection
of the ‘preferred’ BFT protocol according the preferences defined by the BFT
user, i.e., an enterprise. This is useful in large services that provide BFT as a
service, and in fluctuating systems that require dynamic runtime switching of
BFT protocols as the underlying system conditions change. We consider three
modes: (1) Static mode: where the user chooses a protocol only once; he can
only change it when the service is rebooted. (2) Dynamic mode: which allows
the user to multiple protocols, where a running protocol can be stopped and
another protocol is launched after performing selection process. The intuition is
that the performance of protocols differ as the underlying system state changes,
and thus adapting to the new state is required. (3) Heuristic mode: this mode
is similar to the Dynamic mode; however, it allows to modify the weights (i.e.,
preferences) chosen by the user as the system state changes using some predefined
heuristics. This paper focused on the Static mode, while future work addresses
the other interesting modes: Dynamic and Heuristic.

References

1. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

2. Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M.: The next 700 bft protocols. In:
EuroSys 2010: Proceedings of the 5th European Conference on Computer Systems,
pp. 363–376. ACM, New York (2010)

3. Shoker, A., Bahsoun, J.P.: Bft selection. Technical report, IRIT (2013)
4. Shoker, A.: Byzantine fault tolerance: From static selection to dynamic switching.

PhD thesis, IRIT (2012)

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 263–267, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Modeling of Human Head Interaction
with Planar Antenna for Multi Standard Cellular Phones

Ahmed Zakaria Manouare1, Abdelilah Ghammaz1, Abdelaziz El idrissi1,
and Saida Ibnyaich2

1 Faculty of Science and Technology, Cadi Ayyad University,
LSET Laboratory, Marrakech, Morocco

ahmedzakaria.manouare@gmail.com, {a.ghammaz,a.elidrissi}@uca.ma
2 Faculty of Sciences Semlalia, Cadi Ayyad University, LEI Laboratory, Marrakech, Morocco

s.ibnyaich@ucam.ac.ma

Abstract. Many wireless communication devices are used with their antennas
in close proximity of the human head. This fact changes the antenna characte-
ristics and affects the communications performance on one hand, and causes the
deposition of microwave energy in the user's head, on the other hand. The
amount of power absorbed by the human body is limited to a given maximum
value, according to the two standards IEEEC95.1 and EN 50360. In this paper
the design of a multiband compact antenna for integration into the multifunction
mobile phones is presented. The specific absorption rate (SAR) of the planar
antenna is calculated.

Keywords: Dosimetry, patch antenna, multi standard(GSM900/1800), specific
anthropomorphic mannequin (SAM), specific absorption rate (SAR).

1 Introduction

Growing consumer demand for multifunctional mobile handsets has seen an increase
in the development of small multi-band antennas. It seems to be highly desirable to
develop lightweight and single feed mobile antenna, which can be used simultaneous-
ly in different frequency ranges and for different mobile services. The ability to cover
a number of communications bands with one small antenna benefits both the end user
and the manufacturer as it reduces the cost and complexity of the antenna system [1].

Starting with a simple microstrip antenna, several techniques must be simulta-
neously applied to achieve multiband performances: use of slot (in our study we
use slot).

Interaction of handset antennas with human head is a great consideration in cellular
communications. The user’s head influence on the antenna radiation pattern. Further-
more, thermal effect, when tissues exposed to unlimited electromagnetic energy, can
be a serious health hazard. So standard organizations have set exposure limits in terms
of the specific absorption rate (SAR) [1-3].

In this paper, a new miniaturized multiband antenna which supports GSM 900 and
GSM 1800 communication standard is proposed. In order to achieve the objective of

264 A.Z. Manouare et al.

designing a multiband patch antenna, we have begun with a simple model of patch on
the GSM 1800 band frequency and for second band frequency GSM 900; we add a
rectangular slot. The final geometry of the presented antenna is evaluated in the
presence of the head model. In the addition, the SAR quantity is computed for this
antenna.

2 Antenna Design and Results Discussion

The parametric study is carried to optimize the antenna structure and provide more
information about the effects of the essential design parameters. The antenna perfor-
mance is mainly affected by geometrical parameters such as adding slots.

2.1 Model of the Proposed Antenna

As starting model, Figure 1 shows the three dimensional view of the proposed anten-
na. The antenna is fed by a 50Ω microstrip line and use the Rogers RT/duroid
5880(tm) as substrate with a thickness of h=1.6 mm and a relative permittivity εr=2.2.
The substrate size of the proposed antenna is 70x74 mm².

Fig. 1. Geometry of the proposed antenna

Table 1. Antenna size details

Parameter Value
L
W

L1(feed line)
W1(feed line)

L2
W2

L3(slot)
W3(slot)

55 mm
70 mm

 9.547 mm
0.50 mm
70 mm
74 mm
48 mm
1 mm

 Modeling of Human Head Interaction with Planar Antenna 265

2.2 Results and Discussion

The slots force the surface currents to meander, thus artificially increase the antenna's
electrical length without modifying its global dimensions, which results a decrease in
resonant frequency.

Fig. 2. Return loss coefficient as a function of frequency

Figure 2 shows the simulated return loss coefficient, as we can see; the antenna
model presents a good resonance in GSM 900 and GSM 1800.

3 The Antenna Dosimetry

For the cellular phone compliance, the SAR value must not exceed the exposure
guidelines [4-6]. Some numerical results have implied that the peak 1g averaged SAR
value (SAR1g) may exceed the exposure guidelines when a portable telephone is
placed extremely close to the head [4], [7,8].

The SAR is defined as the absorbed RF energy by unity of volume, and its dimen-
sions are W/Kg or mW/g. The formulation of SAR is defined as:

ρ

σ
2

)(

2
E

dm

dW

dt

d
SAR == [4] (1)

Where E (V/m), σ (S/m) and ρ (Kg/m3) are the electric field, conductivity, and mass
density in the head, respectively.

3.1 SAR Calculation in the Head

In this section, a model is built of the proposed antenna next to the left ear on SAM
model; the shape of the head model is similar with real human head shape. The head
model consists of homogenous dielectric representing the human tissue with relative
permittivity εr=41.5 and electric conductivity σ=0.97S/m [9, 10] shows the human
head. The antenna was arranged parallel to the z axis.

266 A.Z. Manouare et al.

The SAR limit for mobile terminal equipment is 2W/Kg and measured as an aver-
age over a 10 gram cube of tissue. In the USA and Canada, mobile terminal equip-
ment must comply with the 1.6 W/Kg SAR limit measured as an average in a 1 gram
cube of tissue.

The simulations approach consists on calculating the level of SAR absorbed by the
phantom (SAM) in the case of a phone composed by the multiband patch antenna
when a mobile phone emits at the maximum power.

3.2 SAR Determination for GSM 900 and GSM 1800 Frequencies Bands

In this section, we simulated the antenna in the presence of human head model for
906 MHz and 1.714 GHz. The SAR distributions over the head in 1 gram cube of
tissue are illustrated respectively in figures 3 and 4.

Fig. 3. SAR distribution over the head in a 1 gram cube of tissue for 906MHz

Fig. 4. SAR distribution over the head in a 1 gram cube of tissue for 1.714 GHz

Figures 3 and 4 presents the SAR distribution in the human head for GSM 900 and
GSM 1800. The test of specific absorption rate for 906 MHz and 1.714GHz is given
in Table 2. We conclude that the SAR value (SAR level) depends on excitation
frequency.

 Modeling of Human Head Interaction with Planar Antenna 267

Table 2. SAR calculation for 906 MHz and 1.714GHz

4 Conclusion

In this paper we firstly present a new multiband patch antenna with slot and secondly
we calculate the specific absorption rate (SAR) for two frequencies bands (GSM 900
and GSM 1800): know the influence of the electric field inside the biological tissues
of the human head (SAM model). It is possible to conclude that a large part of the
absorbed power is concentrated in the tissues in the vicinity of the antenna.

References

1. Ben Ahmed, M., Bouhorma, M., Elouaai, F., Mamouni, A.: Low SAR planar antenna for
multi standard cellular phones. Eur. Phys. J. Appl. Phys. 53, 33604 (2011)

2. ICNIP, Health Phys. 74, 494 (1988)
3. IEEE standard for safety levels with respect to human exposure to radio frequency

electromagnetic fields. 3kHz to 300GHz, IEEE Std C95.1TM -2005. IEEE, New York
(2005)

4. Hwang, J.N., Chen, F.C.: Reduction of the Peak SAR in the Human Head With Matemateriels.
IEEE Transactions on Antennas and Propagation 54(12) (December 2006)

5. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency
Electromagnetic Fields, 3 kHz to 300 GHz, IEEE C95.1-1991. Institue of Electrical and
Electronics Engineers, Inc. New York (1992)

6. Guidelines on limits of exposure to radiofrequency electromagnetic fields in the frequency
range from 100 KHz to 300 GHz. Health Phys. 54(1), 115–123 (1988)

7. Wang, J., Fujiwara, O.: FDTD computation of temperature rise in the human head for
portable telephones. IEEE Trans. Microwave Theory Tech. 47(8), 1528–1534 (1999)

8. Kuo, C.M., Kuo, C.W.: SAR distribution and temperature increase in the human head for
mobile communication. In: IEEE–APS Int. Symp. Dig., Columbus, OH, pp. 1025–1028
(2003)

9. Beard, B.B., Kainz, W., Onishi, T., et al.: Comparisons of computed mobile phone induced
SAR in the SAM phantom to that in anatomically correct models of the human head.
IEEE Transaction on Electromagnetic Compatibility 48(2), 397–407 (2006)

10. Ae-Kyoung, L., Hyung-Do, C., Jae-Ick, C.: Study on SARs in Head Models With
Different Shapes by Age Using SAM Model for Mobile Phone Exposure at 835 MHz.
IEEE Transactions on Electromagnetic Compatibility 49(2), 302–312 (2007) ISSN:
0018-9375

Frequency SAR value Parameter Value
906 MHz 1gram cube of tissue SAR1g (W/Kg) 0.426
906 MHz
1.714GHz
1.714 GHz

10 gram cube of tissue
1gram cube of tissue
10 gram cube of tissue

SAR10g (W/Kg)
SAR1g (W/Kg)
SAR10g (W/Kg)

0.226
2.384
1.552

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 268–273, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Modeling the Cut-off Frequency of Acoustic Signal
with a Fuzzy Logic System

Youssef Nahraoui1, Elhoucein H. Aassif1, Rachid Latif2, and Gérard Maze3

1 LMTI, Faculty of sciences, IbnZohr University, Agadir, Morocco
nahraoui21y@yahoo.com, elhoucein_aassif@hotmail.com

2 ESSI, National School of Applied Sciences, IbnZohr University, Agadir, Morocco
latif_rachid@yahoo.fr

3 LOMC, Université du Havre, Institut Universitaire de Technologie,
Place Robert Schuman, 76610 Le Havre, France

Gerard.maze@univ-lehavre.fr

Abstract. In this paper, an AdaptativeNeuro-Fuzzy Inference System (ANFIS)
is developed to predict the cut-off frequencies of the symmetric and the anti-
symmetric circumferential waves (Ai, i=1) propagating around an elastic alu-
minum cylindrical shell of various radius ratio b/a (a: outer radius and b: inner
radius) for an infinite length cylindrical shell excited perpendicularly to its axis.
The Wigner-Ville distribution (WVD) is used like a comparison tool between
the cut-off frequencies calculated by the analytical method and that predicted by
the neuro-fuzzy techniques for aluminium or a stainless steel, or cooper tube. A
good agreement is obtained between the output values predicted using ANFIS
and those computed by the proper modes theory.

Keywords: Fuzzy logic, ANFIS, time-frequency, Acoustic scattering, acoustic
circumferential waves, cut-off frequency, cylindrical shell.

1 Introduction

The present paper is especially concerned with the soft computing technique such as
Adaptative Neuro-Fuzzy Inference System (ANFIS). The ANFIS model is able to
predict the cut-off frequencies of the symmetric and the anti-symmetric circumferen-
tial waves (Si and Ai, i=1,…) for aluminum cylindrical shell of various radius ratio
b/a. The radius ratios used, in this paper, are between 0.4 and 0.99. The cut-off fre-
quencies values determined using the ANFIS model are compared with those deter-
mined from the time-frequency images of Wigner-Ville to validate the robustness of
the model proposed[1].

2 Backscattering Response from a Cylindrical Shell

Fig. 1 shows the cylindrical coordinate orientation and the direction of a plane wave
incident on an infinitely long cylindrical shell in a fluid medium. The fluid (1) inside

 Modeling the Cut-off Frequency of Acoustic Signal with a Fuzzy Logic System 269

the shell has a density of ρ1 and propagation velocity c1. In general, the outer fluid
(2) will be different and is described by the parameters ρ and c see table 1.

The backscattered complex pressure Pdiff by a cylindrical shell in a faraway field
(r>>a) is the summation of the incident wave, the reflective wave, surface waves
tell shell waves (whispering Gallery, Rayleigh, ...) and Scholte waves (A) con-
nected to the geometry of the object (figure 1). The waves and are the circum-
ferential waves. For these waves one distinguishes the waves A, the symmetric wave
S1, and the anti-symmetric wave A1.

Fig. 1. (a) Geometry used for formulating the sound backscattering from a cylindrical shell.
(b) Mechanisms of the formation of echoes showing the specular reflection and shell waves
 and Scholte wave (A).

The module of the backscattered complex pressure in a faraway field is called form
function. This function is obtained by the relation [2]

=

−=
max

0

)1(

)(

)(
)1(

2
)(

N

n n

nn
ndiff D

D

rk
P

ω
ωε

π
ω (1)

where fπω 2= is the angular frequency, k the wave number with respect to the wave

velocity in the external fluid and. and are determinants computed

from the boundary conditions of the problem . The function is the Hankel
function of the first kind.

The Neumann factor (εn =1, if n=0; εn =2, if n>0), k=ω/c is the incident wave
number and c is the phase velocity in water.

The physical parameters used in the calculation of the backscattered complex pres-
sure are illustrated in table 1.

Table 1. Physical parameters

Aluminum
Water

Air

Density
ρ (kg/m3)

Longitudinal
Velocity cL (m/s)

Transverse Velocity
cT (m/s)

2790
1000
1.29

6380
1470
334

3100
-
-

(a) (b)

Dn
1 ()ω Dn ()ω

Hn
()1

270 Y. Nahraoui et al.

The figure 2 shows the module of the backscattered complex pressure in function
of the reduced frequency ka (without unit) given by:

df

a

b
cc

a
ka

)1(

2

−
== πω

(2)

whered=a-b is the thickness of a cylindrical shell and f is the frequency of resonance
of a wave in Hz.

The temporal signal response P(t) of a cylindrical shell is computed by taking the
Inverse of Fourier Transform of the module of the backscattered complex pressure:

P t h P e ddiff
i t() () ()= −

−∞

+∞

1

2π
ω ω ωω

(3)

Where h(ω) is a smoothing window.

Fig. 2. Module of the backscattered pressure for an infinite aluminum cylindrical shell with air-
filled cavity of radii radio b/a=0.95

3 Dispersion and Cut-off Frequency Determined Using the
Proper Modes Theory

The cut-off frequencies values are given by equation (4) [1]:

For A1 mode: T
A
c c

a

b
c

ak .
)1(

)(1

−
= π

(4)

The calculated values, of the cut-off frequencies are given in table 2.

4 Dispersion Analysis Using Time-Frequency Image

The Wigner-Ville distribution (WVD) of the real signal x(t) is defined by [3,4] :

+∞

∞−

−−+= τττν τνπ detxtxtWV i
x

2*)
2

()
2

(),(

(5)

The Smoothed Pseudo Wigner-Ville (SPWV) of the real signal x(t)is defined by[1]:
2

*(,) () () () () exp(2)
2 2 2xSPWV t f h g t u x u x u j
τ τ τ π

+∞ +∞

−∞ −∞
= − + − − (6)

 Modeling the Cut-off Frequency of Acoustic Signal with a Fuzzy Logic System 271

The smoothing windows g(t) and h(t) are introduced into the SPWV definition in order
to allow a separate control of interferences either in time (g) or in frequency (h).

Figure 3 represent the time-frequency image for example of the anti-symmetric
circumferential wave A1 for aluminum cylindrical shell of radius ratio b/a=0.95. The
time-frequency image show the cut-off frequency as the intersection point of the
asymptotic trajectory of the anti-symmetric wave A1 and the axis of frequencies
figures 3. The values of the cut-off frequency (ka)c obtained by SPWV are presented
in table 2 for various radius ratios.

Fig. 3. SPWV of backscattered signal for the aluminium cylindrical shell of radii radio
b/a=0.95 (Anti-symmetric circumferential wave A1, 130<ka<200)

5 Materials and Method

5.1 Adaptive Neuro-Fuzzy Inference System Architecture

The Adaptive Network-based Fuzzy Inference System (ANFIS) is developed by Jang
in 1993 [5]. This model use neuro-adaptive learning technique that is a combination
of Last squar error and the back-propagation gradient descent algorithm. Given an
input/output data set, this allows Fuzzy system to learn from the data they are mod-
elled.

The corresponding equivalent ANFIS architecture is as shown in figure 4. The
system architecture consists of five layers, namely; fuzzy layer, product layer,
normalized layer, fuzzy layer and total output layer. the theoretical studies show a
relationship between input and output of each layer in ANFIS.

Fig. 4. (a) First-order Sugeno fuzzy model, (b) ANFIS architecture

 μ

μ

1A

2A

1B

2B

x

y
y

y

X Y

X
Y

1 11 () ()A Bx yω μ μ=

2 22 () ()A Bx yω μ μ=

μ

μ

1A

2A

1B

2B

x

y
y

y

X Y

X
Y

1 11 () ()A Bx yω μ μ=

2 22 () ()A Bx yω μ μ=

 (a) (b)

272 Y. Nahraoui et al.

The constructed adaptive network in figure 4 is functionally equivalent to a fuzzy
inference system. The basic learning rule of ANFIS is a combination of last squar
error and the back-propagation gradient descent.

6 Results and Discussion

The performance of ANFIS models for training and testing data sets were evaluated
according to statistical criteria such as, coefficient of correlation R, MAE, MRE, SE.

In this work we tried to play on the number of rules and the number of epochs we
have observed that the error values of our models decrease more than the number of
rules, and the number of epochs is increases. The results of the measured errors are
presented in figures 5 for the circumferential wave A1 Table 2 show that the results
obtained by the fuzzy system method are in good agreement with those determined
from the results calculated using the proper modes theory of resonances, and they are
better to those determined manually from the time-frequency of Wigner-Ville images.

Table 2. Results of the cut-off frequencies of mode A1obtained by the ANFIS model, the
proper modes theory and by the time-frequency of Wigner-Ville images

 Cut-off frequencies (ka)c
Cylindrical

shell
Computed
using

Determined
using

Determined
using

 PMT ANFIS SPWV
b/a=0.9 66.21 66.16 66.0±0.3
b/a=0.95 132.43 132.59 132.0±0.3
b/a=0.97 220.72 221.32 221.0±0.2

Fig. 5. (a) Correlation of desired versus ANFIS values of cut-off frequency of anti-symmetric
wave A1 and with training data set, (b) Cut-off frequency as a function of radius ratio of alumi-
num cylindrical shell on training data set and (c) Cut-off frequency as a function of radius ratio
of an aliminum cylindrical shell on validation data set.

7 Conclusion

The main aim of this work was to train an ANFIS model to predict cut-off frequency
with the minimum of input data. Results show that the trained model can be used as

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

P
re

di
c

te
d

cu
t-

o
ff

 f
re

qu
e

nc
y

(k
a

)

Desired cut-off frequency (ka)

A1:ANFIS

 with 13 rules
MAE=0.03ka
MRE=0.8.10

-3
ka

SE=9.10-3ka

R=R
2
=1

(a)

700

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

100

200

300

400

500

600

700

C
u

t-
o

ff
 f

re
qu

en
cy

 (
k

a)

Radius ratio b/a

Training data set
Desired cut-off frequency (ka) of wave A1
 Predicted cut-off frequency (ka) of wave A1

(b)
0.40 0.450.500.55 0.60 0.650.70 0.75 0.800.85 0.90 0.95 1.00
0

100

200

300

400

500

600

700

C
u

t-
o

ff
 f

re
q

u
en

cy
 (

k
a)

Radius rat io b/a

Validation data set
 desired cut-off frequency (ka) of wave A1
 Predicted cut-off frequency (ka) of wave A1

(c)

 Modeling the Cut-off Frequency of Acoustic Signal with a Fuzzy Logic System 273

an alternative way in the modelling behaviour system. This fuzzy logic model taking
into account some characteristics of the tube is developed in order to predict the cut-
off frequency for various types of circumferential waves A1. In this article, this model
is applied to aluminum tubes, can be used also to predict the evolution of the group
and phase velocities according to the frequency. It also can constitute a help for the
estimate of various parameters of a tube starting from the characteristics of which it is
disposed. This article can be used as a new tool for characterization of an elastic tube.
The use of the fuzzy logic allows one to determine automatically and with good preci-
sion the reduced cut-off frequency of an antisymmetric wave propagating around the
tube. The R2 value in fig is about 1, which can be considered as very satisfactory.

References

1. Latif, R., Aassif, E., Moudden, A., Decultot, D., Faiz, B., Maze, G.: Determination of the
cut-off frequency of an acoustic circumferential wave using a time-frequency analysis. J.
NDT&E Int. 33, 373–376 (2000)

2. Maze, G., Ripoche, J., Derem, A., Rousselot, J.L.: Diffusion d’une onde ultrasonore par des
tubes remplis d’air immergés dans l’eau. Acustica 55, 69–85 (1984)

3. Haumesser, L., Décultot, D., Léon, F., Maze, G.: Experimental identification of finite
cy-lindrical shell vibration modes. Journal of the Acoustical Society of America 111(5),
2034–2039 (2002)

4. Aassif, E., Latif, R., Decultot, D., Maze, G., Faiz, B., Moudden, A.: Time-frequency analy-
sis of the complex pressure scattered by immersed tubes. In: 3rd Int. Conf., Acoust.
Vibratory Surveillance Methods Diagnostic Techniques, Centre Technique des Industries
Mécaniques

5. Jang, J.-S.R.: ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans. Syst.
Man Cybern. 23(3), 665–685 (1993)

Bitbox: Eventually Consistent File Sharing

Erwan Le Merrer, Nicolas Le Scouarnec, and Gilles Straub

Technicolor, France

Abstract. Bitbox is an application that synchronizes distributed repos-
itories of data. It can be used as a backup or sharing application similarly
to popular cloud-based storage systems. Bitbox supports arbitrary and
changing topologies, thus allowing residential gateways to be used as
caches for synchronizing nomadic devices that connect only periodically.
In this article, we describe the data-structure and algorithms powering
Bitbox. We prove its correctness by showing that its synchronization
scheme achieves strong eventual consistency.

1 Introduction

To share, backup and access their content from all their devices (e.g., smart-
phones, tablets, laptops), people often rely on manual management of files (e.g.,
sending photos by email or backing them up manually). However, such process
is error-prone (e.g., overwriting the newest files with older ones or forgetting
files during backups). Sharing, backing up and providing pervasive access can
all be boiled down to the problem of synchronizing multiple copies. Indeed, if a
user updates some content, she wants her backups to be updated, her friends to
receive updates of the shared content, and all her other devices to be updated
with the new content in a transparent manner [1].

Current systems (e.g., Dropbox [2]) require to synchronize against a central
set of tightly synchronized servers. All synchronizations rely on these servers,
thus requiring the clients to be frequently connected to them. A decentralized
synchronization scheme furthermore allows to take into account the specificities
of the network topology. For example, in home networks, the Internet gateway
could be used as a cache since it stands between the slow Internet connection
and the fast LAN; two devices can then synchronize their updates way faster
than by leveraging remote servers.

In this paper we propose Bitbox, a distributed synchronization application.
Bitbox relies on the concept of convergent replicated data types [3] for correctness.
We describe the application and its core algorithms in Section 3 and give a proof
that it correctly achieves strong eventual consistency in Section 4.

2 Background on Related Data-Synchronization Tools

Dropbox [2] partially leverages local connections by a feature called LanSync that
allows downloading (i.e. reading) content from local devices instead of down-
loading from the cloud. However, this functionality does not support uploading

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 274–278, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Bitbox: Eventually Consistent File Sharing 275

Cloud

Fig. 1. Bitbox allows arbitrary synchronization topologies

(i.e. writing) since the central server is mandatory for it is in charge of main-
taining the reference state.

To allow for complex replication policies facing device heterogeneity,
Anzere [4] leverages a centralized and well-provisioned node among the user’s
devices. That special node is in charge of hosting the system’s state and runs a
conflict solver. We design symetric roles in our system, for less advanced policies.

Bitbox is related to distributed version control tools (e.g., Git [5] or Mercu-
rial), which are replacing traditional central version control (e.g., SVN or CVS).
These new tools are designed to allow arbitrary workflow departing from the
single centrally managed version. They keep track of the history including all
the successive versions of the content of each file, and assist the developer in
performing semi-automatic merges between divergent versions. Bitbox differs in
that it stores only the latest content of files (which are assumed to be large
binary files such as videos or photos), and is designed so as to allow frequent
automatic and seamless merges of divergent repositories.

3 The Bitbox Core

Bitbox is an application that keeps various repositories in sync. To this end,
whenever a repository synchronizes against another, it lists the changes that
occurred remotely since the repository was last synchronized, and applies them
locally to reach an equivalent state.

To be able to list these changes, Bitbox keeps track of past states of the
repository. A particular state is identified by a version number and consists in a
set of file descriptors 〈file name, file hashes, unique file id〉, which is later referred
as content. This is a compact representation since file hashes are much smaller
than the actual file content. The unique file id is generated by the device which
detects that a file has been added (e.g., device identifier concatenated with a
local timestamp). The state’s version number allows distinguishing two states
having the same content but having observed modifications (e.g., a file is removed
and then added back). The version number is also a compact representation of
a state, allowing Bitbox to trivially detect whether a remote repository does not
contain new changes.

Whenever a repository synchronizes against another, Bitbox needs to detect
their last common state. To this end, the states are organized in a directed

276 E. Le Merrer, N. Le Scouarnec, and G. Straub

O0 A1 A2

B1 B2

C1 C2

M0

M2

O0 A1 A2

B1 B2

C1 C2

M2

M1

Fig. 2. The Merge operation builds a version number not directly from previous ver-
sions but from the previous update (PU) of versions being merged. Here, PU (M0) =
{C2, B2} and PU (A2) = {A2}. As a consequence, the order of Merges has no impact
on the version number (i.e., A2⊕ (B2 ⊕ C2) = (A2 ⊕B2)⊕ C2).

acyclic graph (DAG) as depicted on Figure 2. An edge from state A1 to state
A2 exists if and only if A2 results directly from a user’s action on A1, or A2

results directly from the merge of A1 with some other state. The last common
state of two repositories is their common ancestor in the DAG. Bitbox only
considers deletion and addition of files since renaming and updating files can be
expressed as a combination of deleting and adding. If O0 is the last common
state between the local state B2 and the remote state C2, then Bitbox applies
locally all deletions that occurred between O0 and B2, and all additions that
occured between O0 and B2. There cannot be conflicts on a local addition and
a remote deletion; indeed, a file is either in O0 in which case it can be deleted,
or not in O0 in which case it can be added. Furthermore, two deletions applied
to the same file in O0 are necessarily identical.

In some rare cases, conflicts may be observed between additions. They are
resolved seamlessly as explained hereafter. In the first scenario, it can happen
that users concurrently add two different files under the same file name, at
two different devices. The filename f is then associated with the hash h1 on
one device, and h2 on the other device. In the second scenario, two users may
concurrently add the same file under two different versions; this results in the
filename f being associated with two different unique file id u1 and u2. Since a
filesystem cannot store multiple files under a single filename, Bitbox performs a
deterministic renaming: the file fn.ext of hash h1 and unique id u1 is renamed
to fn-h1-u1.ext. The renames performed during a merge are saved in the DAG
so that Bitbox is able to detect hidden conflicts and perform renames appropri-
ately. An hidden conflict happens when three conflicting version {(f1.ext, h1)},
{(f1.ext, h2)} and {(f1.ext, h3)} are merged. After the first merge, we obtain
{(f1−h1−u1.ext, h1), (f1−h2−u2.ext, h2)} and {(f1.ext, h3)}. The second merge
could be performed without renaming but to ensure that the merge operation is
associative, the hidden conflict must be detected and the rename performed.

As the Bitbox synchronization operation is not atomic, changes on the local
file system may occur in the middle of a synchronization. To deal with such a
case, Bitbox takes a snapshot of the filesystem (i.e., the list of file names, and
file hashes) just before running the synchronization process. All changes to the
local filesystem occuring during a merge or an update are subsequently treated
as if they occurred afterwards (i.e., they are considered at the next update).

Bitbox: Eventually Consistent File Sharing 277

Algorithm 1. Updating and Synchronizing

GL local history graph.
vL current local version.
cL local content description.
GR, vR, cR the remote ones.
c′L new local content descr.
H SHA applied on the sorted set
· concatenation operator
PU (x) returns x or the last

ancestors of x resulting from
an Update (cf. Fig. 2).

1: def Merge((vL, cL,GL), (vR, cR,GR))
2: G′L ← GL + GR
3: if vL ≥GL vR then
4: return(vL, cL,G′L)
5: else if vR >GR vL then

6: return(vR, cR,G′L)
7: else
8: cA ← CommonAnc(G′L, vL, vR)
9: c′L←MergeChanges(cA, cL, cR)
10: v′L ← H(PU (vL)∪PU (vR))·H(c′L)
11: G′L ← GL+{v′L}+{vL→v′L,vL→vR}
12: return(v′L, c

′
L,G′L)

13: end if
14: end def

15: def Update((vL, cL,GL), c′L)
16: v′L ← H(PU (vL))·H(c′L)
17: G′L ← GL + {v′L}+ {vL → v′L}
18: return(v′L, c

′
L,G′L)

19: end def

4 Proof of Correctness

In this Section, we show that our algorithm ensures that repositories are strongly
eventually consistent, thus achieving our protocol goals.

Definition 1 (strong eventual consistency [3]). The following properties
must hold. (i) eventual delivery: an update delivered at some correct replica is
eventually delivered to all correct replicas. (ii) convergence: correct replicas that
have delivered the same updates eventually reach equivalent state. (iii) termina-
tion: all method executions terminate. (iv) strong convergence: correct replicas
that have delivered the same updates have equivalent state.

Theorem 1 (convergent replicated data type [3]). Assuming eventual de-
livery and termination, any state-based object (SBO) that satisfies the mono-
tonic semilattice property is strongly eventually consistent.

Theorem 2. A Bitbox object is a convergent replicated data type.

Proof (sketch). The SBO in Bitbox is the tuple 〈version, content, graph〉. Repli-
cas are equipped with query (trivial and omitted due to space constraints), up-
date and merge operations (Alg.1) that work on the SBO state. SBO payload
is its current tuple state, while its initial state is defined to be a share with no
content (e.g., an empty repository).

We need to show that this SBO is a monotonic semilattice (definition follows).
(i) payloads of the SBO form a join-semilattice ordered by ≤: the order ≤

operates on version identifiers. As they are not directly meaningful (as consti-
tuted by a hash value returned by operation at Alg.1 l.10 & l.16), an explicit

278 E. Le Merrer, N. Le Scouarnec, and G. Straub

order is available by maintaining a DAG of version numbers (as on Fig.2), start-
ing from the SBO’s initial state. A DAG forms a partial order on its vertices.
Next, we need to show that the SBO’s structure exhibits:

– idempotency: Merge(x, x) returns x, same graph and version (Alg.1 l.4).
– commutativity: Merge(x, y) or conversely results in the same tuple (due

to the sort operations at the hash functions Alg.1 l.11, and as additions of
graph edges and states are commutative).

– associativity. First, operations on G are associative, involving only edge ad-
ditions. Second, we define operations on content (e.g.MergeChanges Alg.1
l.9) to be solely additions and deletions of files; a file modification is then a
deletion of the original file and the addition of the modified version. In this
light, by assuming unique additions (i.e. unique file ids) and deletion oper-
ations occurring causally after corresponding additions, those operations on
files actually characterize a U-Set, which is itself a convergent replicated data
type [6]. We then directly obtain associativity. Finally, we look at the merge
operation minus the H(c′L) operation (discussed at last step) for simplicity:
Merge(x,m = Merge(y, z)) = H(PU (x)∪PU (m)) = H(PU (x)∪(PU (y)∪
PU (z)) = H(PU (x)∪PU (y)∪PU (z)) = Merge(Merge(x, y), z)

With these three identities, the SBO object forms a join-semilattice structure.

(ii) State of the SBO is monotonically non-decreasing across updates : each
update creates a new version (Alg.1 l.16) that depends on previous version. A
new version is appended to the DAG after the sink state, then becoming the
new sink state. Consequently, since the partial order on state is defined by the
DAG, the SBO’s state is monotonically-non decreasing. !

References

1. Strauss, J., Lesniewski-Laas, C., Paluska, J.M., Ford, B., Morris, R., Kaashoek,
F.: Device transparency: a new model for mobile storage. SIGOPS Oper. Syst.
Rev. 44(1), 5–9 (2010)

2. Dropbox, http://www.dropbox.com
3. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free Replicated Data

Types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976,
pp. 386–400. Springer, Heidelberg (2011)

4. Riva, O., Yin, Q., Juric, D., Ucan, E., Roscoe, T.: Policy expressivity in the anzere
personal cloud. In: SOCC (2011)

5. Git: distributed source control management, http://git-scm.com
6. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of

Convergent and Commutative Replicated Data Types. INRIA, Tech. Rep. 7506
(2011)

http://www.dropbox.com
http://git-scm.com

Improving Miller’s Algorithm

Using the NAF and the Window NAF

Siham Ezzouak, Mohammed El Amrani, and Abdelmalek Azizi

The Department of Mathematics and Computer Science, Faculty of Science,
University Mohammed First, Oujda, BP 60000 Morocco

{szouak,elamranimohammed001,abdelmalekazizi}@yahoo.fr

Abstract. The Miller’s algorithm is the most commonly used algorithm
for computing pairing. To efficiently implement the pairings, it is neces-
sary to optimise the computation time for the Miller’s algorithm and the
numbers of iterations. In this paper, we attempt to improve the original
Miller’s algorithm by using Non Adjacent Form (NAF) and The window
NAF (NAFw). These representations allow one to reduce the number of
iterations in the original Miller’s algorithm from l

2
to l

3
(NAF) or l

w+1

(NAFw) where w is the size of the window in the NAF. Our approach is
to replace the binary representation for the key by theNAF presentation
or the NAFw presentation in the Miller’s algorithm.

Keywords: Elliptic curves, Pairing, Miller’s algorithm, NAF, NAFw.

1 Introduction

The use of pairings in cryptography was developed at an extraordinary pace.
On the one hand, It’s allow us to simplify existing protocols for example: the
tripartite Diffie-Hellman protocol of Joux ([2]) and the decision problem of Diffie-
Hellman [1]. On the other hand, we can construct the new protocols such as an
Encryption based on the identity ([3]). Moreover In cryptanalysis, we can reduce
the elliptic curve discrete logarithm problem to a discrete logarithm problem over
the finite field where some attacks known to be Sub-exponential.

In the majority of applications, one of the following pairings (The Weil Pairing,
the Tate pairing, the reduced Tate pairing, the Ate pairing and the Twist-Ate
pairing) is used to construct cryptosystems. For computing these pairings, we
make use of the famous Miller algorithm. In this paper, we attempt to improve
this algorithm firstly by using the NAF and secondly with the NAF window.
The remainder of this paper is organized as follows: In section 2, we describe
the original Miller algorithm. In section 3, we recall the definition of the NAF
and the NAFw representations, we replace the binary representation in Miller’s
algorithm by one of the two and we compare the number of iterations and the
running time of both the methods. Finally, in section 4, we concludes the paper.

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 279–283, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

280 S. Ezzouak, M. El Amrani, and A. Azizi

2 Miller’s Algorithm

After defining the pairing, we need to compute the function fs,P . In our case we
use the Miller’s algorithm.

Theorem 1. ([7]) Let P ∈ E(Fq) and Q ∈ E(Fqk) then the Miller’s function
fs,P is a rational function on E with s zeroes at P , one pole at [s]P and s − 1
poles at O.
We denote (fs,P) the divisor of fs,P : (fs,P) = s [P]− [sP]− (s− 1) [O] ∀s ∈ Z.
We construct fs,P using the following iterative formula :

fi+j,P (Q) = fi,P (Q) ∗ fj,P (Q) ∗ l[iP,jP](Q)

v[i+j]P (Q) ∀i, j ∈ Z.

v[i+j]P is the equation of the vertical line through point [i+j]P.
l[iP,jP] is the equation of the line through points [i]P and [j]P.

Implementation. Let DlT,P ,NlT,P Dv2T ,Nv2T be the denominator and the
numerator of the line through T and P and the vertical line through point 2T
respectively. The Miller ’s algorithm is described by the pseudo-code bellow:

Algorithm 1. Miller’s algorithm

Require: r=
∑l−1

i=0 ri ∗ 2i where ri ∈ {0, 1} P ∈ E(Fq) et
Q ∈ E(Fqk)

Ensure: fs,P (Q)
1: T ← P
2: f1 ← 1
3: f2 ← 1
4: tmp← O
5: for i = l − 1 to 0 do
6: tmp← [2]T
7: f1 ← f2

1 ∗NlT,T (Q) ∗Dvtmp(Q);
8: f2 ← f2

2 ∗DlT,T (Q) ∗Nvtmp(Q));
9: T ← tmp
10: if ri = 1 then
11: tmp← T + P
12: f1 ← f1 ∗NlT,P (Q) ∗Dvtmp(Q);
13: f2 ← f2 ∗DlT,P (Q) ∗Nvtmp(Q);
14: T ← tmp
15: end if
16: end for
17: Return f1

f2
.

Improving Miller’s Algorithm Using the NAF and the Window NAF 281

3 A Modified Miller’s Algorithm

3.1 Miller’s Algorithm with the NAF

Instead of representing the key k with the binary representation in the original
Miller’s algorithm, we use the NAF representation known as the a canonical
representation with the fewest number of non-zero digits. In fact, the number
of addition points in the Miller’s algorithm is linked to number of non-zero
digits i.e the hamming weight of the key. if one decrease this last, the number of
operations is reduced and the running time will be improved. Furthermore, In
the NAF representation, one must compute −P which not require any operation
∀P = (x, y) ∈ E(Fq) ,−P = (x,−y). Consequently, the cost of the additive
operations in the NAF is ignored.

Definition 1. ([9]) A non-adjacent form (NAF) of a positive integer k is an

expression k=
∑l−1

i=0 ki2
i where ki ∈ {0,±1}, kl−1 �= 0 and no two consecutive

digits ki are non-zero i.e ∀i kiki+1 = 0. The length of the NAF is l.

If we use this presentation for computing kP , the expected running time will
be l

3A+ lD such that A and D the cost of the addition and the doubling point

respectively instead of l
2A + lD in the binary representation. So including this

representation in the Miller’s algorithm will decrease the numbers of addition
by approximately l

6 .

3.2 Miller’s Algorithm with the NAFw

The windows NAF is an improved version of the NAF which processes w digits of
k at a time instead of one digit with the NAF which reduce the hamming weight.
On the one hand the running time can be decreased, on the other hand more
memory are used to store the kiP . If extra memory is available this presentation
is advised.

Definition 2. [3]
Let w ≥ 2 be a positive integer. A width-w NAF of a positive integer k is an
expression NAFw(k) =

∑l−1
i=0 ki2

i where ki ∈ {−2w−1, 2w−1 − 1} where each
non-zero coefficient ki is odd, | ki |< 2w − 1, kl−1 �= 0 and at most one of any w
consecutive digits is non-zero. The length of the width-w NAF is l.

Since the NAFw representation reduce the hamming weight from 1
2 to 1

w+1 than
it’s possible to optimize the Miller’s algorithm with this latter. However some
precomputations (computing kiP) and extra memory (storing kiP) are needed
in the NAFw.

3.3 Comparison between Algorithms

To build security elliptic curves we use prime numbers with digit size between
6 and 16 and the w-value equals to 6. We implemented our algorithm on Intel

282 S. Ezzouak, M. El Amrani, and A. Azizi

Table 1. Running time comparison of three methods in seconds

Size of p Miller Original Miller with NAF Miller with NAFw

6 0.0062 0.00473 0.0054
7 0.0056 0.0048 0.0060
8 0.0052 0.0064 0.0060
9 0.0064 0.0048 0.0072
10 0.0088 0.0056 0.0064
11 0.0104 0.0076 0.0056
12 0.0104 0.0068 0.0088
13 0.0092 0.0052 0.0096
14 0.0080 0.0064 0.0088
15 0.0072 0.0060 0.0096
16 0.0088 0.0080 0.0097

pentium dual core processor 1.86 GHz and 782 MHz and 512 MB of memory
using SAGE (Software Algebra Geometry Experimentation)[12]. The following
table show the comparison of running time with both the three methods :

From the table 1, we find that the Miller algorithm with the NAF method
take the least time to compute the pairing comparing to binary method and the
NAFw method. The NAFw method known to take less iterations than NAF
and binary method but the consuming time to compute ki ∗ P at the first of
algorithm increase when the digit size of prime p increase that explain why the
running time is the slower in NAFw method.

The following table 2 show the comparison of number iterations about the
three methods. The number of iterations are divided to the numbers of additions
and the number of doubling.

Table 2. Number Iterations comparison of three methods in seconds

Size of p
Miller Original Miller with NAF Miller with NAFw

Add Double Add Double Add Double

6 5 11 5 11 2 8
7 6 12 5 13 2 12
8 6 12 5 12 2 10
9 6 12 4 13 2 10
10 6 12 5 13 2 10
11 6 12 5 13 2 11
12 7 13 4 14 2 10
13 7 13 5 13 2 12
14 6 13 5 13 2 11
15 7 12 5 13 2 10
16 7 14 6 15 2 13

Improving Miller’s Algorithm Using the NAF and the Window NAF 283

4 Conclusion

Since the Miller’s algorithm is the heart of the pairings, several optimizations are
applied in this algorithm. In this paper, we present one of them. We have decrease
the number of iterations for both representations with extra memory requirement
in the NAFw and the running time is the least with the NAF method. Our
approach can be adapted with the recent versions of the Miller for leading other
optimizations such as the mixed coordinate and the denominator elimination.
Our future work will analysed these two possibilities of optimizations.

References

1. Joux, A., Nguyen, K.: Separating Decision Diffie-Hellman from Diffie-Hellman in
cryptographic groups. Cryptology ePrint Archive,
http://eprint.iacr.org/2001/003

2. Joux, A.: A one round protocol for tripartite DiffieHellman. Journal of
Cryptology 17(4), 263–276 (2004)

3. Hess, F.: Exponent Group Signature Schemes and Efficient Identity Based
Signature Schemes Based on Pairings. Cryptology ePrint Archive,
http://eprint.iacr.org/2002/012

4. Vercauteren, F.: Optimal Pairings. IEEE Transactions on Information Theory
Cryptology 56(1), 455–461 (2010)

5. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate Pairing. In:
Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer,
Heidelberg (2002)

6. Hess, F., Smart, N., Vercauteren, F.: The Eta Pairing Revisited. IEEE Transactions
on Information Theory 52, 4595–4602 (2006)

7. Miller, V.-S.: The Weil pairing, and its efficient calculation. Journal Cryptology
17(4), 235–261 (2004)

8. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with
high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 224–242. Springer, Heidelberg (2010)

9. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography,
pages 92. Springer (2004)

10. Boxall, J., El Mrabet, N., Laguillaumie, F., Le, D.-P.: A Variant of Miller’s Formula
and Algorithm. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS,
vol. 6487, pp. 417–434. Springer, Heidelberg (2010)

11. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 354.
Springer, Heidelberg (2002)

12. Stein, W.: SAGE mathematical software, Version 4.6 (2010),
http://www.sagemath.org

http://eprint.iacr.org/2001/003
http://eprint.iacr.org/2002/012
http://www.sagemath.org

Runtime Adaptation

of Component Based Systems

Sihem Loukil, Slim Kallel, and Mohamed Jmaiel

ReDCAD Laboratory, University of Sfax, Tunisia
sihem.loukil@redcad.org,

slim.kallel@fsegs.rnu.tn, mohamed.jmaiel@enis.rnu.tn

Abstract. The need for continuously available software systems and
their ability to support runtime adaptation is increasingly considered as
one key issue in the software development. In particular, the software
architecture of dynamically adaptive component based systems must
continuously adapt to varying environmental conditions and user require-
ments. Therefore, they propose a wide range of possible adaptations that
can not all be foreseen at design time. In this context, we propose to com-
bine the Architecture Description Languages and the Aspect-Oriented
Software Development which allow to make the adaptation process eas-
ier to design, understand and possible to validate.

1 Introduction

Software architecture modeling using Architecture Description Languages
(ADLs) is becoming increasingly popular in the early phases of system develop-
ment. Such languages facilitate the construction of high-level models in which
systems are described as compositions of components. They play an important
role in developing software systems deployed in large number of domains (com-
panies, banks, air-ports, etc). Such systems must be always available and con-
tinuously adapt to varying environmental conditions and user requirements even
at runtime. Hence, they should be modified/maintained during their execution,
for example to include new functionalities, without being obliged to stop the
system. This dynamic reconfiguration to maintain the system available presents
a tedious task. In fact, not all possible reconfigurations that will be applied to
the system can be foreseen at the time it is initially built and deployed. There-
fore, the system must be flexible to support new needs that may appear during
execution.

Very recently, several approaches like [1] are proposed to synchronize high
level models with the running system. Such approaches focus on managing the
variability of the dynamically adaptive systems by building a causal connection
between abstract design models and the running system. In such approaches, an
application is modeled using a base model and a set of variant models (aspects
that encapsulate the variation points) in order to manage the variability of the
adaptive application. Hence, an adaptation model is established to specify which
variants should be selected according to the adaptation rules and the current

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 284–288, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Runtime Adaptation of Component Based Systems 285

context of the executing system. The main problem of such approaches is the use
of more than one formalism to represent the design model (model representing
at a high level of abstraction the architecture of the initial system before its
deployment) and the execution model (model representing the abstraction of
the architecture of a system at runtime). This forces the use of transformation
languages and/or comparison models which increases the risk errors as it can
give place to problems related to the synchronization of the different models, or
to the propagation of changes among the different views. Moreover, to support
unforeseen adaptations at design time in such approaches, the designer should
manually create the modified model from scratch.

To tackle these issues, we propose an approach to manage the runtime adap-
tation of component based systems that uses one formalism to represent the
design model as well as the execution model. This approach supports the un-
foreseen adaptations at design time by manually editing the parts in question
using a graphical editor without being obliged to design the modified model from
scratch.

In this context, we aim at combining the Architecture Description Languages
(ADLs) and the Aspect-Oriented Software Development (AOSD) [2] paradigm
which allow to make the adaptation process easier to design, understand and
possible to validate.

For this purpose, we selected the Architecture Analysis & Design Language
(AADL) [3], as an ADL, for specifying the architecture of dynamically adaptive
component-based systems. This language uses the same formalism to represent
the runtime model and the design model. Moreover, a previous publication [4]
has provided a general overview of AO4AADL language, an Aspect-oriented
extension for AADL. This aspect-oriented modeling language extended AADL
with aspect-oriented concepts to design the crosscutting concerns related to the
non-functional and technical properties. It is used in this work to allow designer
monitoring the running system and performing the corresponding adaptation.

Our approach supports two types of runtime adaptations. First, the runtime
adaptations resulting from a change in the execution context of the running sys-
tem. Second, the ones resulting from the apparition of new user requirements
that requires the manual intervention of the designer on the architectural speci-
fication of the system. In both cases, the adaptation actions are performed first
on the model representing the architecture of the system. Applying the adap-
tation actions at the model level before applying them to the running system
has the advantage that we can test their effect when applied as a whole without
actually changing the system. Thereby, it is always possible to jump back to the
state before starting to apply the adaptation actions in case an error is detected
saving costly executions of roll-back operations on the system.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the proposed approach. In Section 3, we briefly present the monitor-
ing module of the adaptation process. Section 4 details the related work. Finally,
Section 5 concludes this paper and presents future work.

286 S. Loukil, S. Kallel, and M. Jmaiel

2 Architectural Reconfiguration of Component-Based
Systems

Figure 1 shows the architecture of the proposed approach for managing
component-based systems at runtime. This architecture comprises four levels:
declarative level, instance level, runtime level and adaptation level.

At the declarative level, the designer defines the types of the components that
can be used in the specification of the system. At the instance level, he specifies
the base model that contains instances of the declared types as well as the con-
nections between them. At this level, architectural aspects can be integrated to
specify crosscutting concerns. The runtime level contains the runtime machin-
ery that supports the execution of the system. The executed code is generated
from the instance model and eventually from the defined architectural aspects.
Finally, the adaptation level, which represents our main contribution, is respon-
sible for the management of runtime adaptations that may result from a change
in the execution context or the apparition of new user requirements at runtime.
Then, these adaptations can affect either the running system (change in the
execution context) or the instance model (apparition of new user requirements).

For the adaptations resulting from changes in the execution context, we use
the aspect-oriented technique to define a set of architectural aspects that are
intended to intercept the execution context variables and perform the corre-
sponding reconfigurations. For the other type of adaptations, we employ the
Hook methods technique which is intended to capture any manual intervention
of the designer on the architectural model of the system.

In both cases, the effect of the adaptation actions to perform should be checked
before committing them to the running system. For this purpose, they are applied
first on the model representing the architecture of the system and the obtained
configuration is validated through a set of architectural constraints defined at
the declarative level. If the new configuration is valid, the adaptation actions are
applied on the running system. Otherwise, it is simply discarded which allows
to save costly executions of roll-back operations on the system.

Fig. 1. The proposed architecture

Runtime Adaptation of Component Based Systems 287

As shown in figure 1, the runtime adaptation is composed of a main module
called the monitoring module. This module checks if any change is occurred at
the runtime level resulting from a change in the execution context or at the in-
stance level. For this purpose, we employ an extended version of the declarative
level that supports the specification of the context information. The context in-
formation and the adaptation rules are specified in a set of architectural aspects.
To perform the adaptation actions, this module uses a library of reconfiguration
functions that are included into the Ocarina tool [5].

At the declarative and instance level we use an extended version of AADL
with aspect concepts described in AO4AADL language [4]. The choice of AADL
was driven by many reasons. First, AADL is a standard and the resulting ar-
chitecture enables simulation and analysis of architectural characteristics using
precise execution and communication semantics. Second, AADL introduces two
extension mechanisms (properties and annexes) which make the language much
easier to extend. Moreover, it allows specifying architectural aspects using the
AO4AADL extension. To achieve the step of designing the system, we developed
our own graphical editor that integrates both AADL and AO4AADL concepts
in order to make the job of the designer easier. The declarative model and the
instance model are located at the server machine in the distributed application.

At the runtime level we use the RTSJ (Real Time Specification for Java) plat-
form which allows executing RTSJ code generated from the AADL specification
using Ocarina tool suite and easily weaving the AspectJ aspects generated from
the AO4AADL ones using our AspectJ generator presented in [4].

3 Monitoring Module

The monitoring module is composed of two types of monitors: the running system
monitor which looks at the changes that may be occurred at the runtime level
and the instance model monitor which checks for changes at model level.

The running system monitor checks the changes in the context information
through a set of AspectJ aspects woven into the code of the application. These
aspects are generated from the AO4AADL aspects defined at the declarative
level using our Aspect generator developed in the Ocarina tool suite [5]. The
pointcut of such architectural aspect intercepts the execution of a port of a
component or a parameter of a subprogram through which the information on
the intercepted context variable is transferred. The advice code is fulfilled by the
designer to specify the corresponding adaptation rules.

The instance model monitor is intended to check for changes on the instance
model performed manually by the designer while the system is running. It is
composed of a library of functions called Hook methods. These Hooks allow the
designer to modify the functionalities of his software by realizing customized
actions at well-defined times by inserting entry points to a list of actions. These
methods include listeners to capture the evolution of the instance model.

288 S. Loukil, S. Kallel, and M. Jmaiel

4 Related Work

There are various points of view on how to reconfigure a system at runtime.
Although this technique is recently introduced, several researchers have deepened
their work in this area.

Similarly to our work, some approaches like [1] are based on aspect-oriented
programming and model-oriented techniques to monitor and adapt application
by building a causal connection between design models and the running sys-
tem. Unlike our approach, the designer should manually create the modified
model from scratch to support unforeseen adaptations. The authors present in [6]
model-based traces as runtime models and traces analysis methods. However, the
syntax and semantics of various types of the model-based traces in this work are
not formally defined. Some other existing approaches show how runtime mod-
els can be derived efficiently from the specification, and how they support the
designer in considering the execution of the application in the same formalism
as the specification [7]. Unlike our approach, designers are required to consider
the execution model when specifying any runtime adaptation, forcing them to
understand the different formalisms of both the execution and the specification
models.

5 Conclusion and Future Work

We have proposed an approach to manage the runtime adaption of component-
based systems. Architectural aspects described in AO4AADL are used to catch
the adaptations resulting from context information changes. These adaptations
are foreseen at design time. For the unforeseen adaptations, we propose to man-
ually act on the model to perform the adaptation.

In future work, we plan to extend our approach to support the detection of
potential conflicts between runtime adaptation in a distributed system.

References

1. Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., Solberg, A.: Models@ run.time
to support dynamic adaptation. Computer 42, 44–51 (2009)

2. Filman, R.E., Elrad, T., Clarke, S., Akşit, M. (eds.): Aspect-Oriented Software
Development. Addison-Wesley, Boston (2005)

3. SAE: Architecture Analysis & Design Language (2004), http://www.sae.org
4. Loukil, S., Kallel, S., Zalila, B., Jmaiel, M.: Toward an Aspect Oriented ADL for

Embedded Systems. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285,
pp. 489–492. Springer, Heidelberg (2010)

5. Vergnaud, T., Zalila, B., Hugues, J.: Ocarina: a Compiler for the AADL. Technical
report, Telecom Paristech - France (2006)

6. Maoz, S.: Using model-based traces as runtime models. Computer 42, 28–36 (2009)
7. Saudrais, S., Staikopoulos, A., Clarke, S.: Using specification models for runtime

adaptations. In: International Workshop on Models@RunTime (2009)

http://www.sae.org

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 289–294, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Comparative Performance Analysis of AODV
and AOMDV to Transmit H.264 Traffic

Adel Echchaachoui*, Ali Choukri, Ahmed Habbani, and Mohammed Elkoutbi

SIME laboratory, E.N.S.I.A.S, Med V – Souissi University, Rabat, Morocco
adel.echchaachoui@um5s.net.ma

Abstract. In this paper, we study and analyse the performances of two types of
reactive routing protocols AODV that uses a single path and AOMDV using
multipath to transmit a special video traffic based on the H.264.

This study will allow us to measure the impact of multipath routing on video
packets transmission.

Keywords: AODV, AOMDV, H.264.

1 Introduction

A wireless ad-hoc is a dynamic network of mobiles nodes that communicate
continuously with each other to hear and determine the evolution of the decentralized
infrastructure of network [1].

In a Mobile Ad-hoc Network (MANET), the routing protocols allow to discover
and route packets of data from the source to the destination. The choice of routing
protocol depends mainly on its routing system and the type of transmission [2].

In this work, we investigate the transmission of H.264 video packet, and we
determine which between the routing multipath and the routing single path offers the
best performance for the delivery of these packets.

To make this comparison, we chose two reactive protocols: AODV and AOMDV.

2 Video and Routing Protocol

2.1 AODV

AODV (Ad-hoc On-Demand Distance Vector) is a reactive routing protocol used in
mobile ad hoc networks: the paths are determined only if requested [3].

AODV establishes a single path from a source to a destination and deploys four
messages in the routing system: Route Request (RREQ), Route Reply (RREP), Route
Error (RERR) and Route Reply Acknowledgment (RREP-ACK).

It performs better than other protocols (like OLSR and DSR) when network has a
small density [4, 5].

* Corresponding author.

290 A. Echchaachoui et al.

2.2 AOMDV

AOMDV is a reactive routing protocol and an extension of AODV. It can discover
multiple paths between the source node and the destination node. It is a multipath
routing protocol.

Compared to AODV, AOMDV reduces packet loss and delay, and improves the
process of route discovery [6].

In our study, we will measure the impact of this improvement on the performances
of a traffic that requires a high quality infrastructure as H.264 traffic.

2.3 H.264

The H.264 standard was developed by ITU-T and ISO/IEC primarily to provide a
very high compression of moving pictures for various applications such as video con-
ferencing, communication and Internet streaming [7]. H.264 is the latest video codec
standardized by ISO and ITU-T.

3 Related Work

Several comparisons of the performance of AODV and AOMDV has already been
made and had the main aim of studying the behavior of these two reactive routing
protocols in a normal Ad-hoc environment.

In [8] the authors studied the three protocols AODV, DSR and AOMDV to analyze
the impact of multipath routing on a static network. They have deduced through this
comparison that AOMDV react better than others in improving throughput and reduc-
ing the rate of packet loss.

W. Deepinder Singh and P. Tripatjot Singh showed in their comparison work that
AOMDV provides more performance than AODV in terms of speed and Gigue, espe-
cially when the mobility of nodes is high [9].

To evaluate the performances of Ad-hoc routing protocols to route traffic MPEG-4,
K. Kunavut and T. Sanguankotchakorn studied compared three protocols: OLSR,
AODV and DSR. They showed that AODV is more appropriate than the others to
deliver MPEG-4 traffic in a network with high mobility [10].

In another study and comparison, it has been shown that AODV is better for the
transfer of MPEG-4 video packets than OLSR and DSDV. It generates a low traffic
routing and a low packet jitter and provides good bandwidth [11].

4 Contribution

4.1 Simulation Environment

We used the network simulator NS-2 to achieve our simulations and evaluate the
effect of multi-path routing on the performance of H.264 traffic [12]. To measure the
maximum impact, we tried to create a highly mobile environment and changing each
time the density of the network. We set the speed of the nodes to 30m/s without pause
time and changed the number of nodes from 10 to 100.

4.2 Simulation Parameters

The parameters used in our simulation are presented in the following table (Tab.1):

Comparative Performance Analysis of AODV and AOMDV to Transmit H.264 Traffic 291

Table 1. Simulation parameters

Simulator NS 2
Physical layer radio type 802.11b
MAC protocol 802.11, CSMA/CA
Channel frequency (Ghz) 2.4
Antenna model Omni-directional
Packet size (bytes) 512
Data rate (Mbps) 2
Simulation area (m2) 1000 x 1000
Routing protocols AODV, AOMDV
Traffic type H.264
Mobility model Random Waypoint
Speed (m/s) 30
Pause time (sec) 0
Number of nodes Changing from 10 to 100

4.3 Metrics

To compare and study the behavior of AODV and AOMDV in the transmission of
H.264 packets, we used the following metrics: End to end delay, PDR (Packet Deli-
very Ratio) and Throughput.

4.4 Results and Analysis

About End to End Delay
In Fig.4, average end to end delay of AODV and AOMDV delivering H.264 are
showed relatively to the network density. Values are substantially identical throughout
the simulation. They increased when the network density increased, except between 50
and 80 nodes where they changed very slightly. This can be explained by the fact that
using one or more paths does not affect the average End to-End delay of packets.

Fig. 1. Delay vs Network density

0
0.5

1
1.5

2
2.5

3

10 20 30 40 50 60 70 80 90 100

En
d

to
 e

nd
 d

el
ay

 (
s)

Numbre of nodes

AODV AOMDV

292 A. Echchaachoui et al.

About PDR
Packet delivery ratio of AODV and AOMDV are illustrated in Fig.5. The number of
packets delivered by AOMDV is greater than the number of packets delivered by
AODV during all phases of the simulation. This is due because AODV is a single-
path routing protocol, if a link is broken, the packet will not be delivered. However,
because AOMDV is a multipath routing protocol, even if the link is broken, the net-
work will find another route giving another chance for the delivery of the packet.

On the other hand, we note that the difference between the values of the two
routing protocols decrease as the network density increases. Indeed, in a highly mo-
bile (nodes speed = 30m/s and pause time = 0) and dense environment, finding an
alternate path is more difficult. Hence, less number of alternate paths will be found by
AOMDV when network become denser.

Fig. 2. PDR vs Network density

About Throughput
In Fig.6, throughput of AODV and AOMDV delivering H.264 are illustrated. During
simulation, the throughput of AOMDV is better than AODV independently of net-
work density when H.364 packets are generated to the network. When number of
nodes increase, throughputs of AODV decrease linearly. By cons, values of AOMDV
are irregulars but much higher than AODV. AODV is a single path routing protocol,
once a link breaks the packet delivery along that route stops. Due to AOMDV being a

Fig. 3. Throughput vs Network density

0
10
20
30
40
50

10 20 30 40 50 60 70 80 90 100

PD
R

 (%
)

Number of nodes

AODV AOMDV

0
100000
200000
300000
400000
500000
600000
700000

10 20 30 40 50 60 70 80 90 10
0

Th
ro

ug
hp

ut
 (

Bp
s)

Number of nodes

AODV AOMDV

Comparative Performance Analysis of AODV and AOMDV to Transmit H.264 Traffic 293

multipath routing protocol, it searches for alternate paths if the current route breaks.
This mechanism allows AOMDV to offer more throughput than AODV to transmit
H.264 packets independently of network density.

5 Conclusions and Perspectives

This paper assesses and analyzes the performance of AODV and AOMDV to route
video packets H.264, using NS-2 as simulation tool. The comparison study was based
on three metrics: average End to end delay, Packet delivery Ratio and throughput. We
found that AOMDV provides better results than AODV especially when the network
density is not high. AOMDV outperforms AODV due to its mechanism that tries to
find an available route when the primary link is broken.

We conclude that AOMDV is better than AODV to ensure a quality traffic of
H.264 video packets, except when the density and mobility of the network becomes
very important, the difference between the performances of two routing protocols are
slight. Our next work will involve the optimization of AOMDV routing protocol to
offer a good alternation of routes even when the network is very dense.

References

1. Royer, E.M., Chai-Keong, T.: A review of current routing protocols for ad hoc mobile
wireless networks. IEEE Personal Communications 6, 46–55 (1999)

2. Chenna Reddy, P., ChandraSekhar Reddy, P.: Performance Analysis of Adhoc Network
Routing Protocols. In: International Symposium on Ad Hoc and Ubiquitous Computing,
ISAUHC 2006, pp. 186–187 (2006)

3. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc On-Demand Distance Vector (AODV)
Routing. RFC (2003)

4. Kanthe, A.M., Simunic, D., Prasad, R.: Comparison of AODV and DSR on-demand
routing protocols in mobile ad hoc networks. In: 2012 1st International Conference on
Emerging Technology Trends in Electronics, Communication and Networking (ET2ECN),
pp. 1–5 (2012)

5. Rahman, M.A., Anwar, F., Naeem, J., Abedin, M.S.M.: A simulation based performance
comparison of routing protocol on Mobile Ad-hoc Network (proactive, reactive and hybrid).
In: 2010 International Conference on Computer and Communication Engineering (ICCCE),
pp. 1–5 (2010)

6. Marina, M.K., Das, S.R.: Ad hoc on-demand multipath distance vector routing: Research
Articles. Wirel. Commun. Mob. Comput. 6, 969–988 (2006)

7. Tamhankar, A., Rao, K.R.: An overview of H.264/MPEG-4 Part 10. In: 4th EURASIP
Conference Focused on Video/Image Processing and Multimedia Communications, vol. 1,
pp. 1–51 (2003)

8. Manveen Singh, C., Rambir, J., Sandeep: Simulation and Comparison of AODV, DSR and
AOMDV Routing Protocols in MANETs. International Journal of Soft Computing &
Engineering 2, 375–381 (2012)

9. Deepinder Singh, W., Tripatjot Singh, P.: Performance Comparison of Single and
Multipath Routing Protocols in Adhoc Networks. International Journal of Computer
Technology and Applications 02, 1486–1496 (2011)

294 A. Echchaachoui et al.

10. Kunavut, K., Sanguankotchakorn, T.: Performance evaluation of ad hoc routing protocols to
deliver MPEG-4 traffic. In: 2010 12th IEEE International Conference on Communication
Technology (ICCT), pp. 207–210 (2010)

11. Chowdhury, M.U., Perera, D., Pham, T.: A performance comparison of three wireless multi
hop ad-hoc network routing protocols when streaming MPEG4 traffic. In: Proceedings of
the 8th International Multitopic Conference, INMIC 2004, pp. 516–521 (2004)

12. Peter, W.: The VINT Project, The Network Simulator - ns-2,
http://www.isi.edu/nsnam/ns/ (accessed 2008)

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 295–299, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Large Scale 3D Shape Retrieval
Based on Multi-core Architectures

El Wardani Dadi and El Mostafa Daoudi

University of Mohammed First, Faculty of Sciences, LaRi Laboratory,
Oujda, MOROCCO

wrd.dadi@gmail.com, m.daoudi@fso.ump.ma

Abstract. Despite of the variety of approaches proposed in the literature in or-
der to improve the execution time of the 3D shape retrieval [14,15], the chal-
lenge that still remains is to design a 3D shape retrieval method that allows the
large scale retrieval and, in the same time, respects the relevance of the obtained
results. In this work, we deal with the problem of the large scale of 3D shape re-
trieval by proposing new implementations on multi-core environment. At our
knowledge, a few partial works based on HPC (High Performance Computing),
have been proposed in the literature [1,2]. The proposed solutions are designed
for the GPU (Graphical Processing Unit) and concern only the step of the
extraction of the SIFT salient local features. In order to optimally exploit the
potential of the multi-core architectures, we have studied different data distribu-
tions. Experimental results, under OpenMP environment, show that the large
scale retrieval can be achieved using the multi-core environment.

Keywords: 3D Content-based Shape Retrieval, Large Scale Retrieval,
multi-core architecture, OpenMP, accelerate 3D shape retrieval.

1 Introduction

Currently, there are an increasing number of 3D objects on the web, leading to large
databases, thanks to recent digitizing and modeling technologies. The need of effi-
cient methods for 3D shape-content based retrieval, in order to ease navigation into
related large databases, and also to structure, organize and manage this new multime-
dia type of data, has become an active topic in various research communities such as
computer vision, computer graphics, mechanical CAD, and pattern recognition. The
3D shape retrieval is the processing of retrieving visual similar objects to given 3D
object query.

Various 3D shape retrieval methods have been proposed in the literature
[3,4,5,6,7]. A good 3D shape retrieval method must satisfy at least two conditions
simultaneously [3]:

─ the relevance (the first 3D objects returned by the method must be the most similar
to the query)

─ The retrieval results should be fast

296 E.W. Dadi and E.M. Daoudi

In most of existing methods, it is unlikely to satisfy the two conditions simultaneous-
ly. Moreover, for the large database, the retrieval process becomes increasingly
difficult and needs more computational times; which does not allow the large scale
retrieval.

In this paper we propose new implementations on multi-core environment in order
to improve the execution time of the retrieval process in the large databases of three-
dimensional models (large scale). At our knowledge, a few partial works based on
HPC (High Performance Computing), have been proposed in the literature [1, 2]. The
proposed solutions are designed for the GPU (Graphical Processing Unit) and concern
only the step of the extraction of the SIFT salient local features. To exploit the poten-
tial of the multi-core architecture at their maximum performance and improve the
load balancing between different cores, we have used dynamic scheduling for data
distribution.

For the experimental tests, we have chosen to parallelize the CMBOF method
proposed by Zhouhui et al. [8], since it gives the best result comparing to many other
methods in particular the view based methods [9,10,11,12]. Two objectives are
explored: the first one consists in designing highly optimized algorithms that fully
exploit all the available resources; the second one is the scalability of the algorithms
on a large number of cores.

The rest of the paper is organized as follows. The parallelization on multi-core is
presented in section 2. Section 3 is devoted to experimental results. We provide some
perspectives and we conclude the paper in section 4.

2 Parallelization on Multi-core

Current machines offer microprocessors composed of multiple cores (processors) and
Graphical processing Units (GPU). The major challenge is how to exploit the poten-
tial of these architectures at their maximum performance.

The aim of our work is to propose parallel solutions to accelerate the retrieval
process and therefore allow the large scale retrieval (the retrieval in large databases)
by exploiting the potential of the multi-core architectures.

We recall that the retrieval process, using the CMBOF method, is performed into
essentials phases. These two phases are done online:

─ Indexing of the 3D query-object: computing the descriptor of the shape of query
─ Shape matching: comparing the descriptor of the query-object with the descriptor

of each 3D objects of the database.

Our goal in this paper consists to parallelize each phase.

2.1 Parallel Shape Indexing

To compute the descriptor of a given 3D object, the CMBOF method [8] proposes to
characterize the object by several word histograms (descriptors) where each descrip-
tor corresponds to a 2D view (2D image) captured around the shape of this object.

 Large Scale 3D Shape Retrieval Based on Multi-core Architectures 297

Since the computation of the descriptors of the views is independent, we can compute
simultaneously several 2D view descriptors on different processors (cores). For the
data distribution, we propose two strategies: a static and then a dynamic schedule. We
assume that we have p cores denoted by «Pi» for 0≤i<p and n views denoted by «Vi»
for 0≤i<n.

In order to optimally balance the load between different cores, a dynamic schedule
approach is adopted; as follows:

─ Assign to each core « Pi » an initial workload (a number k of views with k≤). The
remaining block of views will be shared between all cores.

─ Each core computes in parallel the descriptors of the 2D views that are assigned to
it.

─ As soon as a core completes its work, it takes one 2D view from the shared block
(the remaining views). This process is repeated as long as it remains untreated
views.

2.2 Parallel Shape Matching

After calculating the descriptor of the 3D query object, the second phase of the re-
trieval process is the shape matching. In this phase, the descriptor of the query is
compared with descriptors of each 3D object belonging to the database. Note that the
descriptors of objects in the database are computed offline.

Sequentially shape matching in a large database is time consuming. The advantage
of using multi-core is to compare simultaneously the query-objects with p objects;
where p is the number of cores. For the data distribution, we use the same strategies
studied in the previous section.

We assume that the database is composed of m 3D objects denoted by «Oi» for
0≤i<m. For the dynamic distribution we proceed as follows:

─ Assign to each core « Pi » an initial workload (a number k of objects with k≤). The
remaining block of objects will be shared between all cores.

─ Each core executes in parallel the comparison of the query object with the objects
it assigned.

─ As soon as a processor (core) completes its work, it takes one objects from the
shared block (the remaining objects). This process is repeated as long as it remains
untreated objects.

3 Experimental Results

Experimental results are performed on a Dell PowerEdge 2900 Server Quadra-Core
Intel® CPU E5310 160 GHz, 2GB RAM. All programs are implemented in
C/OpenMP in Visual Studio 2010 environment (VC2010).

─ To extract SIFT salient feature, we are used the C version of SIFT [16].
─ To capture 66 views around a 3D object, we are used the executable provided by

Zhouhui [8]

298 E.W. Dadi and E.M. Daoudi

─ We are used Princeton 3D Shape Benchmark database [17] composed of 1810 - 3D
Objects.

Figure 1 and figure 2 show if we increase the number of cores, the parallel time re-
mains close to the sequential time divided by the number of cores.

Fig. 1. Execution time for computing the
descriptor of a 3D object on a multi-core

Fig. 2. Execution time for the shape matching
process

In Figure 3, we measure the speed up (sequential_time / parallel_time) of the shape
matching process based on dynamic scheduling and executed on 4 cores. The
obtained speed up is close to the ideal one (94%). This shows that the proposed
algorithms are scalable,

In Figure 4, we compare the execution time of the retrieval process for different
sizes of databases. In this test we report the evolution of the parallel time on 4 cores
versus sequential time. The results show that the size of the database does not affect
the speed up. This shows that if we use large databases using p cores, the parallel time
remains close to the sequential time divided by p. We conclude that the large scale
can be achieved by using a great number of cores.

Fig. 3. Comparison of the experimental
with the ideal acceleration

Fig. 4. Execution time of the retrieval process on
databases with different sizes

 Large Scale 3D Shape Retrieval Based on Multi-core Architectures 299

4 Conclusion

In this paper we have proposed a new implementation on multi-core architecture, to
accelerate the 3D shape retrieval in large databases. The experimental results show
that the large scale can be achieved for a large number of cores. In future work, we
propose to combine multi-core architectures with GPU accelerators in order to im-
prove our results.

References

1. Ohbuchi, R., Furuya, T.: Accelerating Bag-of-Features SIFT Algorithm for 3D Model
Retrieval. In: SAMT 2009 (2009)

2. Kuang, Q., Zhao, L.: A Practical GPU Based KNN Algorithm. In: Proceedings
of the Second Symposium International Computer Science and Computational
Technology(ISCSCT 2009), Huangshan, P. R. China, December 26-28, pp. 151–155
(2009)

3. Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3D shape retrieval
methods. Multimedia Tools and Applications 39(3), 441–471 (2008)

4. Shilane, P., Kazhdan, M., Min, P., Funkhouser, T.: The princeton shape benchmark. In:
Proc. Shape Modeling International 2004, pp. 157–166 (2004)

5. Zaharia, T., Preteux, F.: 3D versus 2D/3D shape descriptors: A comparative study. In:
SPIE Conf. on Image Processing: Algorithms and Systems III - IS & T/ SPIE Symposium
on Electronic Imaging, Science and Technology 2003, San Jose, CA, vol. 5298
(January 2004)

6. Bustos, B., Keim, D.A., Schreck, T., Vranic, D.: An experimental comparison of
feature-based 3D retrieval methods. In: 2nd Int. Symp. on 3D Data Processing, Visualization,
and Transmission (3DPVT 2004), Thessaloniki, Greece (September 2004)

7. Del Bimbo, A., Pala, P.: Content-based retrieval of 3D models. ACM Trans. Multimedia
Com

8. Lian, Z., Godil, A., Sun, X.: Visual Similarity based 3D Shape Retrieval. In: IEEE
International Conference on Shape Modeling and Applications, SMI (2010)

9. Chen, D.-Y., Tian, X.-P., Shen, Y.-T., Ouhyoung, M.: On visual similarity based 3d model
retrieval. In: Eurographics, Granada, Spain (September 2003)

10. Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Salient Local Visual Features for Shape
Based 3D Model Retrieval. In: Proc. IEEE International Conference on Shape Modeling
and Applications (SMI 2008), Stony Brook University, June 4 - 6 (2008)

11. Daras, P., Axenopoulos, A.: A 3D shape retrieval framework supporting multimodal
queries. Int’l. Journal of Computer Vision (IJCV)

12. Chaouch, M., Verroust-Blondet, A.: A new descriptor for 2D depth image indexing and
3D model retrieval. In: Proc. ICIP 2007, vol. 6, pp. 373–376 (2007)

13. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int’l. Journal of
Computer Vision 60(2) (November 2004)

14. Dadi, E.W., Daoudi, E.M., Tadonki, C.: Fast 3D shape retrieval method for classified
databases. In: IEEE International Conference on Complex Systems, ICCS (2012)

15. Veltkamp, R.C., Giezeman, G.-J., Bast, H., Baumbach, T., Furuya, T., Giesen, J., Godil, A.,
Lian, Z., Ohbuchi, R., Saleem, W.: SHREC 2010 Track: Large Scale Retrieval. In:
Eurographics Workshop on 3D Object Retrieval (2010)

New Forwarding Strategy for PROPHET

Routing in Delay Tolerant Networks

Ahmed El Ouadrhiri1, Mohamed El Kamili1,
Mohammed Raiss El Fenni2, and Lahcen Omari1

1 LIM, Faculty of Science Dhar El Mahrez, USMBA,
30000 Fez, Morocco

2 LIA, University of Avignon, France

Abstract. Delay tolerant networks (DTNs) are based on the concept
of store-carry and forward protocols: a node may store a message in its
buffer and carry it for a long period of time, until an appropriate forward-
ing opportunity arises. DTNs are able to provide communication services
in areas where there is no guarantee that a fully connected path between
source and destination exists at any time, and seek to address the tech-
nical routing issues in wireless networks. Traditional routing protocols
are unable to deliver messages between hosts in such conditions. In this
paper, we address the problem of routing in DTNs and propose a new
forwarding strategy based on the predictability control of a probabilistic
routing model. This strategy increase the number of received messages
without increasing the rate of relayed messages, which is more suitable
regarding the battery power limitation of mobile nodes. Simulation re-
sults show that our new forwarding strategy performs better than the
PROPHET routing solution well known by the research community.

Keywords: DTNs, PROPHET, Predictability, ONE Simulator.

1 Introduction

In order to provide communication services in the absence of end-to-end paths,
researchers have proposed a new networking paradigm, often referred to as De-
lay Tolerant Networking (DTN [4]), based on the store-carry-and-forward routing
principle [2]. Several solutions have been proposed to handle routing in such net-
works. To increase the probability of delivery, messages replicate many times in
the network and nodes must send a message to the appropriate node. For exam-
ple, in PROPHET (Probabilistic ROuting Protocol using History of Encounters
and Transitivity)[5], messages are sent to the nodes that have a big chance to
encounter the destination.

Many improvements have been made for PROPHET. In [3], Boudguig et al.
propose a new predictability equations by introducing a new optimization factor
α ∈ [0, 1] in the original equations used for calculating the predictability in
the PROPHET. In [1], Burns et al. propose a new predictability concept based
on the recorded movement of the node during the last t rounds and suppose

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 300–305, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

New Forwarding Strategy for PROPHET Routing in DTNs 301

that movements of humans and vehicles are periodic. In [7], Quan Yuan et al.
propose predict and relay (PER), an efficient routing algorithm for DTNs, where
nodes determine the probability distribution of future contact times and choose
a proper next-hop in order to improve the end-to-end delivery probability.

The paper is organized as follows: In section II, we introduce the routing
protocols concept in DTNs. We describe our new proposed approach in section
III. Simulation results and their interpretations are presented in section IV.
Finally, we conclude the paper and give some perspectives.

2 Routing in DTNs

Routing is one of the very important challenges in DTNs, and the efficiency
remains the first objective to reach. In literature, the researchers on this field
have dealt with the problem by different methods [5–7]. Epidemic routing is
based on flooding. It relies on neighbours to transmit messages through flooding.
It is considered as the dominant choice due to its simplicity, and its optimal
performance in terms of delay and delivery rate when resources are unbounded,
even if it consumes the maximum of resources. Probabilistic routing transmits
messages only to the most relevant nodes in the next hop, based on parameters
such as the history of encounters, queues, remaining energy, etc...

PROPHET [5], is among the most widely used probabilistic protocols; it uses
the history of previous encounters between nodes to calculate predictability. It
uses three original equations to calculate the predictability:

1. Direct Contact:

P (a, b) = P (a, b)old + (1− P (a, b)old)× Pinit

P (a, b) is the predictability of the node b stored in the node a.
2. Transitivity:

P (a, c) = P (a, c)old + (1− P (a, c)old)× P (a, b)× P (b, c)× β

β ∈]0, 1[is a constant that expresses the influence of transitivity.
3. Aging:

P (a, b) = P (a, b)old × γk

with γ ∈]0, 1[is the aging constant, it is the number of time units that have
elapsed since their last meeting.

Forwarding strategy: when two nodes meet, a message is sent from node 1 to
node 2 if the delivery predictability of the destination of the message is higher
for node 2. Node 1 does not delete the message after sending it as long as there is
sufficient buffer space available. Systems management queue used when buffers
are full. In our evaluations, we have used FIFO queues.

302 A. El Ouadrhiri et al.

3 Proposed Approach

In forwarding strategy of PROPHET protocol [5], a message is sent to the en-
countered node only if it has a higher delivery predictability for the destination.
The inconvenience of this approach is that if the creator node of the message has
a higher predictability than the other encountered nodes, the message remains
in the queue until being sent to its destination or deleted by the queue. There-
fore, this message does not have a good opportunity to reach its destination.
On the other hand, when a node encounters another one with a low delivery
predictability, there is a case where the last node is more likely to meet the des-
tination than the other nodes with high predictability. Moreover, if the message
destination has a high predictability in all network nodes, this message remains
exchanged many times between nodes (even if this message has already arrived
at its destination) to the detriment of the other messages that their destinations
have low predictability.

The new Forwarding Strategy: Our new approach avoids these problems
and ensures fairness (between messages that have high predictability and others
that have low predictability) in transmission of messages. The new approach is
based on the sum of predictabilities of nodes that carry the message. In fact,
we have proposed that each node manage its own messages. A message is sent
to the encountered node if the predictability of this node for the destination
strictly positive and the sum of predictabilities of all nodes carrying the message
is lower than a Threshold Tsh. With this new strategy, we can send many copies
of messages that have low predictability and few copies of messages that have
high predictability. The other messages (messages created by other nodes) that
carried by this node are sent only to their destinations if encountered.

The algorithm 1 summarizes iterations of the new forwarding strategy, when
two nodes A and B meet (for example, node A execute the algorithm), we have:

Algorithm 1. New Forwarding Strategy

1: Send all messages destined to node B.
2: For all messages generated by node A: (node that execute the algorithm)
3: if P (B,M.dest) > 0 and M.SumPredctInNetwork ≤ Tsh then
4: M.SumPredctInNetwork ←M.SumPredctInNetwork + P (B,M.dest)
5: Select the message M for being sent to B.
6: end if

→ M: is a message of the node A.
→ M.dest : is the destination of the message M.
→ P (B,M.dest): is the predictability of the node B for the destination of

the message M.
→ M.SumPredctInNetwork: is the sum of the predictabilities of all nodes

in the network that carrying the message M.

New Forwarding Strategy for PROPHET Routing in DTNs 303

4 Simulation Results

We have used the ONE simulator (Opportunistic Network Environment) [9] to
validate the performance of our new approach. We have used a similar configu-
ration to the one used in [5]. This scenario consists of a 1500m∗300m area where
50 nodes are randomly placed. These nodes move according to the random way-
point mobility model [10] with speeds of 0− 20m/s. From a subset of 45 nodes,
one message is sent every second for 1980 seconds of the simulation (each of the
45 nodes sending one message to the other 44 nodes), and the simulation is then
run for another 2020 seconds to allow messages to be received.

We ran simulations varying the queue size. Table 1 shows the relayed and
received messages for PROPHET and our new forwarding strategy with Tsh=2
and Tsh=4.While sending the same number of messages, it is easy to see that our
new approach deliver more messages (34,8% for Tsh=4 and 36,’% for Tsh=2) by
exchanging a small number of them. Compared with PROPHET, we improve the
efficiency by delivering more messages with low energy consumption. Forwarding
strategy of PROPHET protocol is based only on high predictability of messages,
which is insufficient since we have to control the exchanged messages also.

Table 1. Received and relayed messages in buffer size = 10 messages

protocol created relayed received dropped delivery rate buffertime avg

PROPHET 2020 74286 453 75351 22,4% 11,975
Tsh = 2 2020 3752 736 4540 36,4% 192,771
Tsh = 4 2020 5992 704 6812 34,8% 132,149

Lets increase the queue size to 60 and see how it affects the network perfor-
mances. Based on Table 2, PROPHET protocol exchange more messages than
the new forwarding strategy for both thresholds, but still delivering less mes-
sages. The delivery rate has improved for all protocols, but our strategy performs
very well compared to PROPHET. This behavior is resulting from the fact that
messages reside for a long time in queues using our strategy. In fact, the main
idea in our new forwarding strategy is to keep the message in the queue until
meeting the destination, instead of forwarding the message to all nodes as in the
PROPHET protocol.

Table 2. Received and relayed messages in buffer size = 60 messages

protocol created relayed received dropped delivery rate buffertime avg

PROPHET 2020 127559 793 125958 39,2% 38,13
Tsh = 2 2020 4584 1495 2164 74% 1140,54
Tsh = 4 2020 7018 1566 4487 77,5% 783,89

304 A. El Ouadrhiri et al.

Fig. 1. Received messages

We have shown through simulations that our new forwarding strategy per-
forms better than the one used in PROPHET protocol. Now, we will investigate
the impact of the threshold Tsh. In Figure 1, we plot the delivery rate for differ-
ent Thresholds varying the queue size. For example, Tsh=2 performs better than
the other values if buffer size is between 10 and 20, whereas for buffer size 30
and 40, Tsh=4 is the optimal. It is interesting to see that the optimal threshold
depends on the buffer size. Furthermore, we can not intuitively determine the
optimal value of the threshold.

5 Conclusion

In this paper, we address the problem of routing in Delay Tolerant Networks.
We have proposed a new forwarding strategy based on the predictability control
of the PROPHET routing protocol, and a threshold on the number of retrans-
missions. We have shown through simulations that our new forwarding strategy
performs better than PROPHET. This new strategy increase the number of re-
ceived messages and decreases the number of relayed ones, which increases the
overall throughput of the system and conserves the battery life by minimizing
the energy consumption of mobile nodes. Learning the optimal threshold value
will be an extension of this model in a future work. Using estimator algorithms
we can determine the threshold that achieves the optimal performance with a
low cost [11]. Since routing involves strategic decisions between DTN nodes, our
future direction is to introduce game theory [8].

References

1. Burns, B., Brock, O., Levine, B.N.: MV routing and capacity building in disruption
tolerant networks. In: Proc. IEEE INFOCOM (2005)

2. Jain, S., Fall, K., Patra, R.: Routing in a delay tolerant network. In: Proc. of
ACM SIGCOMM (August 2004)

3. Boudguig, M., Abdali, A.: New predictability concept for routing in DTN. In:
IEEE International Conference on Multimedia Computing and Systems (ICMCS),
Tangiers Morocco, May 10-12 (2012), http://ieeexplore.ieee.org

4. Delay tolerant networking research group, http://www.dtnrg.org

http://ieeexplore.ieee.org
http://www.dtnrg.org

New Forwarding Strategy for PROPHET Routing in DTNs 305

5. Lindgren, A., Doria, A., Schelén, O.: Probabilistic routing in intermittently
connected networks. Springer, Heidelberg (2004)

6. Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks.
Technical Report CS-200006, Duke University (2000)

7. Yuan, Q., Cardei, I., Wu, J.: An efficient prediction-based routing in disruption-
tolerant networks. IEEE Transactions on Parallel and Distributed Systems 23(1),
19–31 (2012)

8. Laveen Sundararaj, L., Vellaiyan, P.: Delay tolerant networking routing as a game
theory problem - An Overview. International Journal of Computer Networks 2(3),
159–172 (2010)

9. ONE Simulator, http://www.netlab.tkk.fi/tutkimus/dtn/theone/
10. Pelov, A.: Mobility models for wireless networks. Thesis, University of Strasbourg,

Department of Mathematics and Computer Science (2009)
11. Thathachar, M.A.L., Sastry, P.S.: Estimator algorithms for learning automata. In:

Proc. Platinum Jubilee Conf. on Systems and Signal Processing, Bangalore, India
(1986)

http://www.netlab.tkk.fi/tutkimus/dtn/theone/

New Validation Approach

Based on Group MADM for Network Selection

Mohamed Lahby, Leghris Cherkaoui, and Abdellah Adib

Department of Computer Science, LIM Lab.
Faculty of Sciences and Technology of Mohammedia

{mlahby,cleghris,adib_adbe}@yahoo.fr

Abstract. In this paper, we propose a new validation approach for net-
work selection access. The proposed approach is able to deal with the
inconsistent ranking outcomes problem of the multi attribute decision
making (MADM) methods by using the group MADM. Thus, we aim
to select the appropriate weighting algorithm which can be combined
with the ranking algorithm based on Mahalanobis distance. Simulation
results are presented to illustrate the effectiveness of our new validation
approach for background traffic and streaming traffic.

Keywords: Heterogeneous Multi-Access, Network Selection, Multi
Attribute Decision Making, Group Decision Making.

1 Introduction

Nowadays, all users need to connect on the Internet anywhere and anytime, with
the best quality of service (QoS) and the minimum of services’ cost. The fourth
generation (4G) of wireless communications are integrating a multitude of radio
access technologies (Rats) such as WIFI (IEEE 802.11a, IEEE 802.11b, etc),
WIMAX (IEEE 802.16), and LTE. Moreover, the mobile devices are equipped
with multiple interfaces which offer multiple possibilities for the user to connect
on the Internet.

The most important issue in radio access technologies is to maintain a seamless
service continuity under the principle “Always Best Connected” (ABC) [1]. The
network selection is intended to determine the most suitable network in terms of
quality of service (QoS) for mobile users. However, this process is considered as
a complex problem and mapped in NP-Hard problem [2]. To address this issue,
multi attribute decision making (MADM) methods have been widely used in the
context of network selection.

Indeed, due to nature of network selection problem, MADM methods repre-
sent a promising solution which can be applied to network selection problem.
Several network selection algorithms based on MADM methods are utilized to
choose the best access network among other available networks. In [3] the net-
work selection decision is modeled using two MADM methods AHP and SAW.
The AHP method is used to provide a weight for each criterion involved in the
network selection. While the SAW algorithm is applied to provide a ranking

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 306–310, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

New Validation Approach Based on Group MADM for Network Selection 307

of all alternatives. In [4] the network selection algorithm is based on AHP and
TOPSIS. The AHP method is used to weigh each criterion and TOPSIS method
is applied to determine the ranking of access network.

The authors [5] have proposed a new ranking algorithm based on Mahalanobis
distance. This algorithm allows to select the best available access network and
to provide the better performance than the classical MADM methods. However,
there is no single MADM weighting algorithm which is considered favorable
than other methods to be combined with Mahalanobis distance algorithm. In
addition, there is no study examining the validity of MADM methods that can
be used to choose the best access network.

The validity of MADM methods includes two main issues which are the se-
lection of the most valid ranking algorithm and the determination of the most
suitable weights for different criteria. To cope with these issues, the authors
[6] have proposed a new validation approach based on group MADM methods.
The proposed validation approach can select the group ranking outcome of an
MADM method which has the highest consistency degree with it’s correspond-
ing individual ranking outcomes. The weakness of the proposed validation lies
in fact that is do not takes into account the weighting algorithms, the approach
assumes that all attributes are weighted equally by different decision makers.

In this work, we propose a validation scheme to select the suitable network ser-
vice for mobile device. The proposed approach takes into account four weighting
methods AHP[7], FAHP[8], ANP[9], and FANP[10] by using the group MADM.

The goal of this paper, is to determine a suitable weighting algorithm which
can be combined with the Mahalanobis distance. The remainder of this paper is
organized as follows. Section 2 presents our new validation approach based on
groupMADM. Section 3 includes the simulations and results. Section 4 concludes
this paper.

2 New Validation Approach Based on Group MADM

The validation of the appropriate MADM algorithm which can be applied in
the network selection decision remains an open issue. To deal with this issue,
we propose a new validation approach which can take into account different
weighting methods. Our approach is based on group MADM and it allows to
select the group ranking outcome of the MADM method which has the highest
consistency degree with it’s corresponding individual ranking outcome.

According to [6], the group MADM problem involves a finite number of al-
ternatives A = {Ai, for i = 1, 2...n}, which are to be evaluated by a group of
p decision makers DM = {DMk, for k = 1, 2...p} with respect to a set of m
attributes C = {Cj , for j = 1, 2...m}.

In order to deal with weakness of the proposed approach in [6], we assume
that each decision makerDMk decides the relative importance for each attribute
Cj by using for weighting algorithms: AHP, FAHP, ANP and FANP. Our new
validation approach can be categorized in eight steps.

308 M. Lahby, L. Cherkaoui, and A. Adib

1. Construct of the individual decision matrix: each decision maker DMk eval-
uates the performance rating xk

ij of alternative Ai with respect to attribute

Cj in order to construct the decision matrix Xk. The individual decision
matrix is expressed as

Xk = (xk
ij) i = 1, ..n, j = 1, ..,m (1)

2. Construct of the individual weight vector: for that we construct four weight
vectors T k

1 , T
k
2 , T

k
3 , T

k
4 by using four weighting algorithms namely AHP,

FAHP, ANP, and FANP respectively. The weight vector W k combines the
four vectors T k

1 , T
k
2 , T

k
3 and T k

4 by using the the arithmetic mean. The weight
vector W k, given by each decision maker can be calculated by:

W k = [wk
1, w

k
2, ...w

k
m], where wk

i =

∑4
j=1 T

k
j

4
(2)

3. Construct of the group decision matrix: the decision matrices Xk are aver-
aged to represent the group decision matrix X. The matrix X is given by:

X = (xij) where xij =

∑p
k=1 x

k
ij

p
, i = 1, ..n, j = 1, ..,m (3)

4. Construct of the group weight vector: the weight vector W k are averaged to
represent the group weight vector W. The group vector W is given by

W = [w1, w2, ..., wm] where xij =

∑p
k=1 x

k
ij

p
, i = 1, ..n, j = 1, ..,m (4)

5. Apply the network selection algorithm based on group MADM: the Maha-
lanobis distance algorithm is applied to the group decision matrix X, by
taking into account the weigh vector W. The ranking score V i obtained is
expressed by:

V i = [ai1, ai2, ..., ain] (5)

6. Apply the individual Mahalanobis distance algorithm: each decision maker
DMk combines the Mahalanobis ranking algorithm with one of the weighting
algorithms, in order to generate the vector V k

i . This one, represents the score
of the alternatives Ai. The vector V k

i is defined by:

V k
i = [bki1, b

k
i2, ..., b

k
in] where i = 1, 2..., n et k = 1, 2...., p. (6)

7. Calculate the consistency degree: in order to select the most valid ranking
outcome which is the most acceptable by the all decision markers we intro-
duce the consistency degree. This one, allows to measure the relationship
between Vi and V k

i . The consistency degree CDi of the method between the
group and individual ranking outcomes is given as follows:

CDi =

∑p
k=1 C

k
i

p
(7)

New Validation Approach Based on Group MADM for Network Selection 309

The Pearson’s correlation Ck
i between V i and V k

i can be calculated by:

Ck
i =

n(
∑n

j=1 aijb
k
ij)− (

∑n
j=1 aij)(

∑n
j=1 b

k
ij)√

[n(
∑

aij2)− (
∑

aij)
2][n(

∑
bkij

2
)− (

∑
bkij)

2
]

(8)

where n is the number of the available networks.
8. Ranking: the best group ranking has the highest value of CDi.

3 Simulations and Results

3.1 The Simulation Scenario

In this simulation, the set A represents three candidates networks: UMTS, WIFI
and WIMAX. The set C represents six attributes: cost per byte (CB), available
bandwidth (AB), security (S), packet delay (D), packet jitter (J) and packet loss
(L), and the set DM contains three decision makers: DM1, DM2, and DM3. The
measures of every criterion are given in table 2 and 3.

3.2 The Results of Simulation

We perform two simulations for two traffic classes namely background and
streaming. We apply the four MADM methods Mahalanobis-W1, Mahalanobis-
W2, Mahalanobis-W3 and Mahalanobis-W4 to the group decision matrix X and
the group weight vector W, four group ranking outcomes are obtained which are
G1, G2, G3 and G4 respectively.

By applying our new validation, the consistency degrees of G1, G2, G3 and
G4 for background and streaming are given in table 1. We notice that G3 has
the highest score, which means that the ANP is most suitable algorithm which
should be used to weigh different criteria for background and streaming traffic.

Table 1. Pearson’s correlation for group MADM for background and streaming

Group MADM G1 G2 G3 G4

Consistency degree for background 0.99970 0.89990 0.99973 0.98360

Consistency degree for streaming 0.99590 0.78453 0.99763 0.94637

Table 2. The QoS metrics for the candidate networks

Network AB (mbps) D (ms) J (ms) L(per106)

UMTS 1.2 35 12 50

WIFI 6 110 15 60

WIMAX 8 100 20 80

310 M. Lahby, L. Cherkaoui, and A. Adib

Table 3. The values of cost and security for the candidate networks

DM1 DM2 DM3

Network CB(%) S(%) CB(%) S(%) CB(%) S(%)

UMTS 60 70 65 60 70 80

WIFI 12 25 15 30 10 20

WIMAX 70 75 55 50 65 70

4 Conclusion

In this work, we have proposed new validation approach which can take into
account different weighting methods and allows to select the group ranking out-
come of Mahalanobis distance algorithm. The results of two simulations show
that the ANP algorithm allows to assign the suitable relative importance value
of each criterion, for background and streaming traffic.

References

1. Gustafsson, E., Jonsson, A.: Always best connected. IEEE Wireless Communica-
tions Magazine 10(1), 49–55 (2003)

2. Gazis, V., Houssos, N., Alonistioti, N., Merakos, L.: On the complexity of Always
Best Connected in 4G mobile networks. In: 58th IEEE Vehicular Technology Con-
ference, VTC, vol. 4, pp. 2312–2316 (2003)

3. Sheng-mei, L., Su, P., Zheng-kun, M., Qing-min, M., Ming-hai, X.: A simple ad-
ditive weighting vertical handoff algorithm based on SINR and AHP for heteroge-
neous wireless networks. In: International Conference on Intelligent Computation
Technology and Automation, ICICTA, pp. 347–350 (2010)

4. Lahby, M., Leghris, C., Adib, A.: A Hybrid Approach for Network Selection in
Heterogeneous Multi-Access Environments. In: The Proceedings of the 4th IFIP
International Conference on New Technologies, Mobility and Security (NTMS),
Paris, France, pp. 1–5 (2011)

5. Lahby, M., Leghris, C., Adib, A.: A Novel Ranking Algorithm Based Network
Selection For Heterogeneous Wireless Access. Journal of Networks 8(2), 263–272
(2013)

6. Yeh, C.-H., Chang, Y.-H.: Validating multiattribute decision making methods for
supporting group decisions. In: IEEE Conference on Cybernetics and Intelligent
Systems, pp. 878–883 (2008)

7. Saaty, T.L.: Decision Making for Leaders: The Analytic hierarchy Process for De-
cisions in a Complex World. RWS Publications (1998)

8. Mahmoodzadeh, S., et al.: Project Selection by Using Fuzzy AHP and TOPSIS
Technique. In: Proceeding of World Academy of Science, Engineering and Tech-
nology, vol. 24 (October 2007)

9. Lee, J., Kim, S.: Using Analytic Network Process and Goal Programming for Inter-
dependent Information System Project Selection. Computers and Operation Re-
search 27(4), 367–382 (2000)

10. Mikhailov, L., Singh, M.G.: Fuzzy analytic network process and its application to
the development of decision support systems. IEEE Transactions on Systems, Man
and Cybernetics, 33–41 (2003)

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 311–315, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Secured Geographic Routing Protocol
for Vehicular Ad Hoc Networks (VANETs)

Mohammed Erritali1, Bouabid El Ouahidi1, and Daniel Bourget2

1 Department of Computer Science
Mohamed V Agdal, University – L.R.I, Faculty of Sciences Rabat, Morocco

mederritali@yahoo.fr, ouahidi@fsr.ac.ma
2 Telecom Bretagne, France

daniel.bourget@telecom-bretagne.eu

Abstract. A Vehicular ad hoc network called VANETs is a mobile network
allowing to vehicles to communicate with each other in the absence of fixed
infrastructure, with the aim of improving road safety through the exchange
of alerts between neighborhood vehicles or to offer new comfort services to
road users. The characteristics of these networks such as: shared wireless me-
dium and the highly dynamic network topology pose a number of nontrivial
challenges to security design.

In these networks each vehicle coordinates with every other vehicle in
forwarding their packets to reach the destination. Since these vehicles operate in
a physically insecure environment; they are vulnerable to different types of
attacks such as the blackhole attack, Sybil attack, selective forwarding and
altering routing information.

This paper proposes a security solution for VANETs using a pre-existing
routing protocol Greedy Perimeter Stateless routing. In this solution, each node
in a network has a list of its neighbor nodes including a shared secret key which
is obtained by executing a key agreement Diffie Hellman, this key will be used
by the AES symmetric encryption algorithm to generate a digital signature,
after applying the MD5 hashing algorithm on the non-modifiable data of
GPSR packets. Our idea consists that each vehicle verifies the integrity and
authenticates the sender in the process of route discovery, Comparing with oth-
er recently proposed security routing protocols, our security solution needs less
computation times in routing transactions because it use AES and does not need
any centralized element in vehicular ad-hoc networks.

Keywords: Attack, Secure routing protocols, VANETs.

1 Introduction

Vehicular networks are a projection of intelligent transportation systems (ITS)[1,2]
designating new technologies applied to transportation networks to improve the
conduct and bring new services to road users by offering solutions that allow to:

312 M. Erritali, B.E. Ouahidi, and D. Bourget

-Reduce road congestion
- Establish a system of traffic management that allows rapid intervention in case of
incidents.
- Locate parking
- Report of a pedestrian passageway
-Notify violations of the Stop signal.

From examples of interesting solutions described above we can deduce that the vehi-
cular communication ensures large improvement in terms of road safety, better utili-
zation of resources such as time and fuel and new opportunities for entertainment
applications to road users. The services offered in vehicular networks can distinguish
several types of communication [2]: Vehicle to Vehicle communication (V2V), ve-
hicle to infrastructure communications (V2I) and hybrid communications derived
from the combination of these two types of communications.

Generally networks without infrastructure are called ad hoc networks, which is
why V2V communications are called vehicular ad hoc networks (VANETs).

In these networks a successful attack against the road safety alerts could have
catastrophic consequences such as loss of human lives. Therefore, making a
vehicular communication network secure is not an extension but a primary concern.
So far, only a few research efforts have addressed in VANETs security issues,
focusing either on identification of their challenges, or proposing secure VANETs
architectures.

In VANETs, routing is an important element designed to transmit road safety alerts
to all vehicles in neighborhood, so it constitutes an ideal target for attacks which aims
to prevent alert messages to reach their destinations.

The routing raises a significant number of problems which are not yet resolved
such as packet modification, data injection and the generation of false messages, the
rupture of packet forwarding, or deleting packets.

To remedy these vulnerabilities, several secure routing protocols for mobile
networks [3, 4] have been proposed in which cryptographic primitives are involved,
such as digital signatures, MACs (Message Authentication Code) or asymmetric
encryption.

The other sections of the paper are structured as follows:
Section 2 briefly presents possible attack against routing protocols; section 3

describes secure routing protocols. Finally we present our extension to secure greedy
perimeter Stateless routing.

2 Attack against Routing Protocols

Vehicular Ad hoc networks are dynamic and self-organized so any node can partici-
pate in routing and also uses a shared wireless medium to send packets .therefore
there are no barriers to ensure that a malicious node cause disturbances in the circulat-
ing traffic. In the following section we will present some type of attack [9, 10, 11,
12] against routing protocols:

 Secured Geographic Routing Protocol for Vehicular Ad Hoc Networks (VANETs) 313

1- Blackhole attack: The black hole attack consists to insert a malicious node in
the network. This node, by various means, will modify the routing tables to force the
maximum of neighboring nodes to pass information through it. Then like a black hole
in space, all the information that will go in it will never be retransmitted.

2- The type of attack Denial of Service DOS: The attacker sends an excessive
amount of data to overload the network for the purpose to overflow the routing table
of relay nodes.

3- Insertions of infinite loops: An attacker will modify the network routing me-
chanism with one or more nodes malicious, so that packets will be routed in infinite
loops and will therefore consume network bandwidth.

4- Sybil attack: The “Sybil attack” consists that a malicious vehicle is masque-
rading as several vehicles. Thus it modifies the routing table that will become
invalid. For example a malicious node witch pretend to be multiple nodes can gain
a significant advantage for an election of master node.

5- Identity spoofing: A malicious node usurps address of a legitimate node as
the source address in order to disseminate its messages on the VANETs network.

6- Wormhole attack: The attack of the wormhole requires the insertion of at
least two malicious nodes A and B .These two nodes are connected by a link A-B.
The goal of this attack is to trick the neighboring nodes about distances. Because in
general a routing protocol seeks the shortest path in number of hops.

7- The alteration/modification of routing packets: A malicious node will re-
trieve a package and alter it, by adding false information (about the recipient, the
sender or the data).

3 Secure Routing Protocols

SRP [6] is based on DSR protocol and requires a pre-existing secured association
between source node and the destination node (secret key exchange) and it uses a
MAC to ensure the confidentiality of the route learned from the source to the destina-
tion. These authors propose a mechanism to detect malicious behavior neighborhoods
(Neighbor Lookup Protocol) and a mechanism for secure data transmission (Secure
Message Transmission Protocol).

ARIADNE [7] is also based on DSR (Dynamic Source Routing) and it is used to
authenticate messages routing with three mechanisms. The first is the use of a shared
secret key between each pair of nodes, the second combines a secret shared between
the nodes and the broadcast authentication (TESLA), and the third is the use of a
digital signature.

SAODV [5] secures the modifiable routing data as the number of hops, which can
for example be decremented by an attacker, and authenticates the fields that should
not be changed using an RSA digital signature.

Figure 1 illustrates these secure routing protocols with used cryptographic
techniques.

314 M. Erritali, B.E. Ouahidi, and D. Bourget

Fig. 1. Secure routing protocols with used cryptographic techniques

4 Adding Security Aspect in Greedy Perimeter Stateless Routing

Geographical routing protocols of vehicular networks have been developed without
considering the security aspects against routing attacks. In this section we present our
contribution to secure GPSR or generally geographical routing like it.

4.1 1st Extension: Establish Secret Keys

Our first contribution in this work is to propose an approach that allows to establish
secret keys Diffie-Hellman between two neighboring vehicles (in a hop) when
exchanging beacons packets to build direct neighbors tables of Greedy Perimeter
Stateless Routing protocol [8]. The idea is to have neighbor’s tables that contain
secret keys that will be used as a symmetric encryption key.

4.2 2nd Extension: Adding a Symmetrical Digital Signature

In VANETs the digital signature will be the mechanism to ensure the integrity and the
authentification of packets exchanged between two direct GPSR neighbors. Indeed,
the mobility of nodes requires a minimal time of routing packet from the source to the
destination, which is why we propose to use the AES encryption algorithm.

Figure 2 illustrates the process of creation of the digital signature.

Fig. 2. GPSR digital signature

 Secured Geographic Routing Protocol for Vehicular Ad Hoc Networks (VANETs) 315

5 Conclusion and Perspectives

The problematic of communication and security in vehicular ad hoc networks attract
more and more attention from research groups. Indeed, the ease of deployment of
vehicular ad hoc networks and their spontaneous nature make them a compelling
solution for the safety of drivers and their passengers. However, these networks
require that all users work together to route information of other users on the
same VANET network .This hypothesis and several other characteristics (mobility,
bandwidth) make the problems of routing and security of communications in these
networks a capital axis of research. In this paper we have presented GPSR protocol
extensions. As perspectives of this work we will use to study how to define a level
of trust between nodes and how to implement an intrusion detection system in a
vehicular ad hoc network.

References

1. Khalfallah, S., Jerbi, M., Cherif, M.O., Senouci, S.-M., Ducourthial, B.: Expérimentations
des communications inter-véhicules, Colloque Francophone sur l’Ingénierie des Protocoles
(CFIP). Les Arcs, France (2008)

2. Jerbi, M.: Protocoles pour les communications dans les réseaux de véhicules en
environnement urbain: Routage et GeoCast basés sur les intersections. Thèse, France
(2008)

3. Idjiwa, A., Radhouane, B., Rebecca, B., Laurent, G.: Protocole de routage ad hoc sécurisé
dans une architecture clusterisée, http://idjiwa.free.fr/wordpress/?cat=3

4. Hu, C., Perrig, A., Johnson, D.B.: Rushing Attacks and Defense in Wireless Ad Hoc Net-
work Routing Protocols (2003)

5. Zapata, M.G.: Internet draft. In: Secure Ad hoc On-Demand Distance Vector (SAODV)
Routing (September 15, 2005)

6. Papadimitratos, P., Haas, Z.J., Samar, P.: The Secure Routing Protocol (SRP) for Ad Hoc
Networks (December 2002)

7. Hu, Y.-C., Perrig, A., Johnson, D.B.: Ariadne: A Secure On Demand Routing Protocol for
Ad Hoc Networks

8. Karp, B., Kung, H.T.: Greedy Perimeter Stateless Routing for Wireless Networks. In:
Proceedings of the Sixth Annual ACM/IEEE International Conference on Mobile Compu-
ting and Networking, MobiCom 2000, Boston, MA (August 2000)

9. Douceur, J.R.: The Sybil Attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

10. Hu, Y.C., Perrig, A., Johnson, D.B.: Wormhole Detection in Wireless Ad Hoc Networks.
Technical Report TR 01- 384, Department of Computer Science, Rice University (June
2002)

11. Karlof, C., Wagner, D.: Securing Routing in Wireless Sensor Networks: Attacks and
Countermeasures. In: Proceedings of First IEEE International Workshop on Sensor Net-
work Protocols and Applications, Anchorage, AK, USA, pp. 113–127 (May 2003)

12. Zhou, Z., Yow, K.C.: Geographic Ad Hoc Routing Security: Attacks and Countermea-
sures. Ad Hoc & Sensor Wireless Networks, 235–253 (March 2005)

Enhanced AntNet Protocol

for Wireless Multimedia Sensor Networks

Ismail Bennis1, Ouadoudi Zytoune2, and Driss Aboutajdine1

1 LRIT, unité associée au CNRST (URAC29), Faculté des Sciences,
Université Mohammed V - Agdal, Rabat, Maroc

2 Université Ibn Tofail, Kénitra, Maroc
i.bennis@fsr.um5a.ma, zytoune@gmail.com, aboutaj@fsr.ac.ma

Abstract. The field of wireless multimedia sensor networks (WMSN)
attracts more and more the research community as being an interdisci-
plinary field of interest. This type of network becomes a low cost, mul-
tifunctional due to advances in micro-electromechanical systems, as well
as proliferation and progression of wireless communications. However,
transmitting collected multimedia information must meet the QoS crite-
ria such as delay, bandwidth, packet loss rate, etc. Many routing proto-
cols have been developed for WMSN. Recently, the most known ones are
based on meta-heuristic, that show desirable properties of being adap-
tive, scalable, and robust. This paper presents a new routing protocol for
WMSNs based on AntNet protocol which is inspired by the stigmergy-
driven shortest path following behavior of biological ants. Our aims in
this work is to provide as well as possible the best QoS in terms of delay
and Packet Delivery Ratio(PDR). The results of simulations compared
to the AODV show that our work has better delay and PDR.

Keywords: WMSN, AntNet, Delay, Routing protocol, QoS.

1 Introduction

WSNs consist of an amount of independent nodes equipped with sensing capabil-
ities, wireless communication interfaces, limited processing and energy resources.
Regarding applications of this type of network, they are characterized in general,
with low bandwidth demands, and are usually delay tolerant. Recently the avail-
ability of CMOS cameras and microphones to capture multimedia content from
the environment has allowed the arrival of new network type called WMSNs [1].
This novel network will not only enhance existing sensor network applications
such as tracking or home automation, but they will also enable several new ap-
plications such as multimedia surveillance sensor networks, traffic avoidance[1].

When network size scales up, routing becomes more challenging and critical.
Lately, biologically-inspired intelligent algorithms have been deployed to tackle
this problem [2]. Using ants and other social swarms as models, software agents
can be created to solve complex problems. One of the most successful swarm
intelligence techniques is called Ant Colony Optimization (ACO) [3]. We can say

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 316–320, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Enhanced AntNet Protocol for Wireless Multimedia Sensor Networks 317

that during these last two decades, this technique have served as an important
source of inspiration for the design of novel algorithms and systems [4].

The remainder of the paper is organized as follows; in section II we discuss
the implementation of AntNet for WMSN and propose our optimization for this
protocol, the results of extensive simulations are shown in section III. Finally
section IV, concludes the paper.

2 Implementation and Enhanced AntNet for WMSN

In this work we have made several optimizations of the initial version of the
protocol (Antnet). These optimizations can be classified into two categories, the
first categorie’s is related to the adaptation of the protocol in the wireless and
mobile environment in view that the AntNet protocole has been designed for
fixed networks. Some of this modification was inspired from others works like [5]
and [6]. Also we were led to make some change in the packet classes that can be
divided into three different types:

Data packets represent the information which must be transmitted by the
sonsor node, Control packets which contains two types : Forward ants used
to search the path and Backward ants used to update the routing tables, and
Hello Control packets that are used to have a list of available neighbor nodes.

Also each node has two data structures the first one is a routing table Tk con-
taining triples of a destination address d, a nexthop n used to reach that desti-
nation d and a probability Pnd. This probability value Pnd stored in the routing
table express the goodness of choosing the associated nexthop n to reach the des-
tination d. The probabilities have to verify:

∑
n∈Nk

Pnd = 1 where d ∈ [1, N] and
Nk = neighbors(k). The routing table Tk is changed by incrementing (Eq 1) or
decrementing (Eq 2) the probability Pnd according to the following way :

Pnd ← Pnd + r ∗ (1− Pnd) (1)

Pmd ← Pmd ∗ (1− r), ∀m ∈ Nk,m �= n (2)

Where r is a reinforcement parameter in the interval [0,1].
The second categorie’s comprises all functions and methods achieved and

added in order to make the protocol more robust and more desirable for WMSNs.
In what follows we will describe all these functions and methods incorporated
into the protocol.

1. Optimization of the path.
The goal here is to minimize the number of hops of the path that will be
built by the forward ant , optimization is performed by removing redundant
nodes and also nodes contained in the same neighborhood and are part of
the path at its creation.

2. Initialisation of pheromone.
The second change we made is to modify the manner that the next hop is
chosen by the forward ant. As described in [7], a stochastic decision policy
is applied to select the next node to move to, but if the destination is a
neighbor, there is no need to calculate this probability. So we forward the
ant directly to the neighbor.

318 I. Bennis, O. Zytoune, and D. Aboutajdine

3. Reactive mechanism.
The basic version of the protocol is proactive, it tries to create a multitude
of paths from fictitious sources to destinations, but this anticipation is not
always useful because we can have paths that are not needed for the node
source, and if we go to a large topology then it would be useless to create
paths that will probably never be used. Therefore we planned to make the
reactive protocol to avoid these problems. Also using the reactive manner
will reduce congestion phenomena because the control packet are reduced.

4. List of ancestor.
When a node needs to find a path to a destination, it generates the FANT
which is responsible for finding the path. So, in order to increase the chance
to find the path and accelerate research, we applied a mechanism such that
each node receiving a FANT seeking a path to a particular destination,
generates itself a FANT to this destination. But every node that participates
in research must, in the case of success, reported its findings to the source
node. To do this, it needs a list of history nodes which we called ”list of
ancestors”, this list is optimized and assigned to each node receiving FANT
before activating the process FANT at him.

5. List of destinations.
In each node, we added a table that contains the state of this node towards
each others node in the topology. we assume that the node can have three
states: Transmitter :the node are the source of the trafic; Intermediate :
the node is part of a path from source to destination; None :the node has
no interaction with topology.
We added also two lists in node : the first list will contain the destinations
that the node should look the way by the FANT and this node participates
as the transmitter, we call this list list dest src. The second list will contain
the destinations that the node should look the way by the FANT and this
node can participate as intermediate, we call this list list dest inter.

6. Update pheromone.
The update of the pheromone value is governed by the equations 1 and 2, or
this way of doing requires some time before converging to optimal solutions,
and this becomes clearer in a large-scale topology. In order to accelerate the
convergence we have changed the manner of the update, this is accomplished
by penalizing the neighbors of a node that lead to the same destination but
in greatest number of hops.

3 Simulation and Experimental Results

Our aims in this section is to compare our proposition withe AODV. The com-
parison regards the end-to-end delay,the packet delivery ratio (PDR) and the
overhead. The simulation software used is NS2. For simplicity raisons we assum
that a constant reinforcements model is used: r = C,C ∈ [0, 1]; and there is
no mobility in this scenario. We have created many different problems and for
each one we test the both protocols, the shown results are the average of this

Enhanced AntNet Protocol for Wireless Multimedia Sensor Networks 319

problems. In the following subsection we describe the environment and scenario
of the simulation.

Each simulation scenario is presented as follows : X nodes are randomly placed
in an area of 1500*300 m2, where:

X=〚20;40;60;80;100;120;140;160;180;200;220;240;260;280;300〛.

The data traffic is generated by 10% of nodes of topology as constant bit rate
(CBR) sources sending four 512-byte packet per second. Each source starts send-
ing at a random time between 20 and 180 seconds after the start of the simu-
lation, and keeps sending till the end, the lenght of the simulation is 300s. At
each number of nodes we repeat the simulation several times, and we calculate
the average of the delays, overhead and the values of PDR found.

Fig. 1. Average delay VS Number of nodes Fig. 2. Normalized overhead VS Number
of nodes

Figure 1 shows the average delay experienced when using the both routing
protocols under different number of nodes. We can see that we have the nearest
delay when the number of nodes is less than 180. But, after that the dealy for
AODV in scenario 1 and 2 grows up clearly to reach 2 seconds, and in case of
our optimisation the delay does not exceed 0.4 seconds, this can be explained
by the fact that the AODV broadcast a RRequest packet, or if the nodes have
a significant number of neighbors, it will generate more packet control that will
increase the congestion and thereby delaying the packet data.

In Figure 2 we can see also, in case of AODV, that the overhead becomes
greater after 180 nodes, but for the Enhanced Antnet the overhead remains
nearly constant for all situations; as explained above once the number of nodes
in the neighborhood becomes greater, the traffic generated becomes greater too,
which may explain the increase in the case of AODV.

Figure 3 shows clearly the gap between the value of the packet delivery ratio of
the both protocols, we can perceive that the PDR for the Enhanced Antnet has
some fluctuation but never drops below the 80%, in contrast to the AODV where
PDR reaches very low values (up to 40%) when the number of node is 300.

So, all results show that we have almost the best delay, overhead and PDR,
especially when the number of node increases, which is suitable for the WMSN.

320 I. Bennis, O. Zytoune, and D. Aboutajdine

Fig. 3. PDR VS Number of nodes

4 Conclusion and Future Work

In this paper we have described an optimized AntNet routing algorithm for
WMSN, our work enhances the basic AntNet protocol which is based on the
most known swarm intelligence techniques ACO. Simulation results show that
Enhanced AntNet has a performance advantage over AODV. The advantage
exists in terms of packet delivery ratio, average end-to-end delay, and also the
overhead. For future work, there is a point that we want to improve, is to intro-
duce mobility in simulation scenario in order to have more realistic models and
to compare our work with other protocol designed for WMSN.

References

1. Akyildiz, I.F., Melodia, T., Chowdhury, K.R.: A Survey on Wireless Multimedia
Sensor Networks. Computer Networks 51, 921–960 (2007)

2. GhasemAghaei, R., Rahman, A., Gueaieb, W., Saddik, A.E.: Ant colony based re-
inforcement learning algorithm for routing in wireless sensor networks. In: IEEE
Instrumentation and Measurement Technology Conference Proceedings (2007)

3. Dorigo, M., Blum, C.: Antcolonyoptimization theory: A survey. Theoretical Com-
puter Science 344, 243–278 (2005)

4. Saleem, M., Di Caro, G.A., Farooq, M.: Swarm intelligence based routing protocol
for wireless sensor networks: Survey and future directions. Information Sciences 181,
4597–4624 (2011)

5. Di Gianni, C., Ducatelle, F., Gambardella, L.M.: AntHocNet: an adaptive nature-
inspired algorithm for routing in mobile ad hoc networks. European Transactions
on Telecommunications 16, 443–455 (2005)

6. Camilo, T., Carreto, C., Silva, J.S., Boavida, F.: An energy-efficient ant-based rout-
ing algorithm for wireless sensor networks. In: Dorigo, M., Gambardella, L.M., Bi-
rattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150,
pp. 49–59. Springer, Heidelberg (2006)

7. Di Caro, G.A., Dorigo, M.: AntNet: Distributed Stigmergetic Control for Commu-
nications Networks. Journal of Artificial Intelligence Research, JAIR (1998)

Forest Fire Detection and Localization
with Wireless Sensor Networks

Yassine Sabri1 and Najib El Kamoun2

STIC Laboratory,
Chouaib Doukkali University, B.P: 20 , El Jadida MOROCCO

{sabriyassino,elkamoun}@gmail.com

Abstract. Location determination is an important problem for almost
all WSN applications. However, obviously becomes an important target
in the case of surveillance systems for forest fires do not have to sup-
port real-time monitoring of each point of an area at any time location
early threat of fire.Solutions applying wireless sensor networks, on the
other hand, can gather sensorial data values, like temperature and hu-
midity, from all points of a area incessantly, day and night, and allow
for fresh and precise data to the fire-fighting center rapidly.In this paper,
we present the pattern and implementation of a model for the detection
and localization of forest fires and the control environment. In order to
know precisely and almost in real time the risk of forest fires, we design
and are implementing a protocol type "Range-based" for a large-scale
deployment based on convex hull. The effciency of the method is demon-
strated by simulations, we show that our framework can supply quick
response to forest fires while consuming energy effciently.

Keywords: Wireless sensor network (WSN), Localization, Monitoring
System.

1 Introduction

The rapid progress of wireless communication and the availability of many
lightweight, small-size, and portable computing devices have made a great im-
pact on community. These technologies have made the dream of communication
anytime and anywhere possible. People using a mobile device can surf the web
as well as talk with their friends while they are moving all over the world.
To provide more value-added applications, such as geographical navigation for
tourists, advertising messages for local potential customers, 911 emergency ser-
vice for subscribers, etc., we need to acquire the location information of a mobile
user (MU) with a mobile device.

Among the WSNs applications, forest fire detection can be very helpful in
avoiding human and material losses. For instance [4],the average annual number
of forest fires throughout the Mediterranean basin is now close to 50 000,twice
that during the 70.In Morocco only, almost 500 forest fires were registered in
2010.In the last five years the average of fire occurrences was 540 with an area
4500 ha, with an estimated annual loss of 2,902,667 US [3].

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 321–325, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

322 Y. Sabri and N. El Kamoun

Other, some proposals have been published that consider the use of WSNs to
monitor and detect forest fires [1]. The use of multiple sensor sources, and the
deployment of the sensor nodes in areas not visible to the satellite, increase the
probability of a more accurate and early fire detection. WSNs event detection
applications are in essence fusion information processes [3]. The rest of this
document is organized as follows. The related work is presented in Section 2. In
Section 3, we introduce the proposed algorithm based on a threshold method,
and its evaluation. In Section 4, we discuss the proposed algorithmbased on the
Dempster-Shafer theory, along with the results of the evaluation of the proposed
algorithm. Finally, in Section 5 the conclusions and future work are presented.

2 Localization Technique

Initially, each anchor broadcasts its position. A node can therefore be deduced
the distance between each of the anchors We use the technique SumDist (Sav-
vides et al., 2002) for estimating distances adding the distances between sepa-
rated sensor nodes of an anchor.Upon receiving the position of a anchor, a node
considers the following cases:

– If it receives directly the position of the anchor, he deduces they are neighbors
and therefore it located on the circle centered at the anchor or radius of a
circle is r.

– If it receives the position by an intermediate node, it concluded that it is
not neighbor of the anchor and therefore it is not inside the circle of radius
r centered in anchor .

So,when a node u receives a position of an anchor A, it estimates the distance to
this anchor with Sum-Dist and draws one or two circles. In fact, if (A ∈ NΛ(u)),
u knows dAu and deduces that it is on the circle CAu of radius equals to dAu and
centered in A. If (A /∈ NΛ(u)) then u knows that it is not inside the circle of
center A and radius r otherwise A and u would be neighbors. Moreover, u knows
the estimated distance to A, d̂Au deduced by Sum-Dist. By triangular inequality,
d̂Au ≤ dAu . u applies this technique to each received anchor position. So, u is
inside the circle CAu of center A and radius d̂Au. Thus, the intersection of circles
defines a cloud of points Su. the center of gravity of the convex hull of this cloud
conv(Su) represents the estimated position of u. The main design of the Slsng,
which is a simple finite state machine. As shown in figure 1, a node running Slsng
is in one of four states at any time: (i) Sensor not estimated, (ii) Sensor estimated,
(iii) estimated Anchor,and (iv) improve the accuracy. Transitions between the
states are triggered by events.

3 Method for Forest Fire Detection

Our algorithm uses a fusion information method known as the threshold method
[3]. The algorithm is based on the state machine shown in Figure 2, which defines

Forest Fire Detection and Localization with WSN 323

Fig. 1. State machine diagram for Sensor node not estimated

Sastart

Sb Sc

Sd Se

Sf

Sj

the alarm

Fig. 2. Our algorithm state machine

five states. The transition from one state to another is generated when a rele-
vant change in the values of temperature, light or relative humidity is detected,
indicating the probable existence of a fire.

The initial state is the Sa and represents the normal (i.e. no fire) environ-
mental conditions. The states State1 and Sc are transitional states, since they
indicate the probable occurrence of a night fire or a day fire, respectively. The
Sd may represent the sunrise, whereas the Se may indicate that the mote was
exposed to direct sunshine. Finally, the Se represents the presence of a fire. In
normal conditions, the state machine is in Sa. Even though the values of the
temperature, light and relative humidity are collected, in the Sa only the tem-
perature value is evaluated. Every time the temperature is registered, the ratio
between the average of the values of a sliding window of size WT and the new
temperature value, is calculated. The sliding window contains the most recent
WT temperature values recorded. If this ratio is greater than tr_threshold,

324 Y. Sabri and N. El Kamoun

it means a large change in the temperature value and a that possibly a fire has
been detected. To determine if it is night fire, the rate of change of the light is
evaluated, in a similar way as we did with the temperature. Therefore, if the
ratio between the average of the values of the sliding window of size WL and
the most recent light value is greater than tl_threshold, the machine changes
to the Sb. Otherwise, it changes to the Sc. It is important to note that while
in Sa, in temp_s0 we store the last stable temperature value; that is, the value
before the machine moved from Sa. If the machine is in Sb, we calculate the
ratio of the average of the values of the sliding window of size WH and the most
recent value of the relative humidity. If this ratio is less than th_threshold,
the machine moves to Sd; otherwise, it goes back to Sa. While the machine is
in Sd, the ratios are still computed, and if they are greater (or smaller, in the
case of humidity) than their respective thresholds (i.e., the temperature is still
increasing while the relative humidity is decreasing), the machine moves to Sf

to determine the localization of fire,and systematically moves to Sjand an alarm
is triggered, indicating the probable occurrence of a fire.

4 Experiment and Results

4.1 Simulation Environment

Experiments were built upon the J-Sim simulator [9] dedicated to WSN sim-
ulations. It is a compositional, component-based simulation environment. It is
built upon the concept of autonomous component programming model. J-Sim
is developed entirely in Java. The signal attenuation due to obstacles or other
factors (e.g. use of unidirectional antennas) is simulated in J-Sim.The positions
to estimate are generated randomly on a surface A = L× L with dimensions of
experimentation varying between 100× 100 to 800× 800 and a density of sensor
d = 20, each configuration obtained is repeated for each of the two methods.the
range of the sensors was set at 14.

The simplest way to describe localization performance is to determine the
residual error between the estimated and actual node positions for every node in
the network, sum them and average the result. Broxton et al in [2] do this using
the mean absolute error metric (MAE), which, for each of n nodes in the network,
calculates the residual between the estimated nodes and actual coordinates.

MAE =

∑n
i=1(xi − x̂i)

2 − (yi − ŷi)
2

n
(1)

with (xi, yi) the real position and (x̂i, ŷi) the estimated postilions . Figure 3
shows the evolution the location accuracy convergence. depending on the size
of networks. in first graph, the convergence time increases linearly with the
dimension, and in the second graph represents the evolution of convergence time
that is the time when the Metric MAE is stabilized over time. convergence time
with our method in a dimension 400 × 400 corresponds to 65s in δ = 0% and
190s with δ = 10% . In fact, the main particularity of our protocol is that the
complexity does not depend on the dimension of networks,but the number of
nodes constructing the convex hull.

Forest Fire Detection and Localization with WSN 325

0 200 400 600 800
0

50

100

150

Dimension of Network

C
on

ve
rg

en
ce

ti
m

e(
s)

δ = 10%

δ = 0%

Fig. 3. Convergence time with density of anchors α = 20%

5 Conclusion

In this paper, we present a simple framework for a wireless sensor network to
be used for forest fire localization and detection. As future work, we plan to
develop a new algorithm to detect forest fi res based on the use of evolutionary
programming.

References

1. Bahrepour, M., Meratnia, N., Havinga, P.J.M.: Automatic fire detection: A survey
from wireless sensor network perspective (December 2008)

2. Broxton, M., Lifton, J., Paradiso, J.A.: Localization on the pushpin computing
sensor network using spectral graph drawing and mesh relaxation. SIGMOBILE
Mob. Comput. Commun. Rev. 10, 1–12 (2006)

3. Nakamura, E.F., Loureiro, A.A.F., Frery, A.C.: Information fusion for wireless sensor
networks: Methods, models, and classifications. ACM Comput. Surv. 39(3) (Septem-
ber 2007)

4. FAO Forestry Paper. Réunion de la FAO sur les politiques nationales ayant une
incidence sur les incendies de forêt. FO (1998)

On Ensuring End-to-End Quality

of Service in Inter-Domain Environment

Sara Bakkali, Hafssa Benaboud, and Mouad Ben Mamoun

LRI, Faculty of Sciences at Rabat, Mohammed V-Agdal University,
Rabat, Morocco

bakkalisara@gmail.com,

{benaboud,ben_mamoun}@fsr.ac.ma

Abstract. Internet use is in permanent evolution, Internet traffic has
become more and more diversified, and each type of traffic has its own
Quality of Service (QoS) requirements. Different problems appear with
this diversity. One of the main problems is the difficulty in ensuring QoS
for traffics that cross multiple domains or Autonomous Systems (ASs).
We propose in this paper a new method which ensures the end to end
QoS requirements over multiple ASs. This method keeps the same values
of QoS parameters required by the traffic, even during its passage across
several ASs. This paper explains the problem of end-to-end QoS and
gives a detailed description of our new approach.

Keywords: Inter-domain routing, QoS.

1 Introduction

Early, before the appearance of different types of traffic, which requires more
bandwidth, less delay, and other necessary parametres, Internet traffic didn’t
have any quality of service constraints. However, today network traffics are very
diverse, and each type of traffic has its own QoS requirements. Ensuring QoS
has become an additional task for the network. Various models have been imple-
mented to ensure QoS in intra-domain case. Nevertheless, in the inter-domain
case the problem is not resolved yet.

Objective of this paper is to propose a new method that ensures the end-to-end
QoS constraints for traffic services across multiple domains. Services involved in
our approach include real time services such as voice and video telephony and
conference, as well as services that require high capacity interconnections like
links between scientific sites or cloud services, which are provided by different
domains.

This paper is organized as follows. Section 2 gives related works and discusses
the inter-domain problem. Next in section 3, we describe our approach that
ensures end-to-end QoS over multiple domains, and finally, in section 4, we
conclude this paper and give future works.

V. Gramoli and R. Guerraoui (Eds.): NETYS 2013, LNCS 7853, pp. 326–330, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Ensuring End-to-End Quality of Service in Inter-Domain Environment 327

2 Inter-Domain Problem and Related Works

Several solutions and technologies have been proposed and implemented to pro-
vide QoS within the same domain (AS), such as IntServ (Integrated Services)
[1] model, DiffServ (Differentiated Services) [2] model or even MPLS [3].

However, a serious problem is posed when the traffic crosses another do-
main (AS). This problem is due to the fact that QoS constraints, required by
the client and which the operator undertakes to provide (usually specified in the
Service Level Agreement, SLA), are defined in the classes of service. While the
definition of the classes of service is assured by the domain administrator, they
are consequently specific to each domain, and are valid only within this domain.
In this case, in the transition to another domain the QoS constraints offered
to the traffic will not be the same as in the source domain, therefore the QoS
required by the client at the beginning will not be provided from the end-to-end
until its destination.

A various studies and several solutions have been proposed to ensure the qual-
ity of service (QoS) in inter-domain; each solution suggests a specific approach
to treat the subject. All solutions proposed in the different works [4][5][6][7][8]
treat the end-to-end inter-domain QoS problem by focusing on one of the two
following aspects:

1. Paths computation: by proposing new algorithms,
2. Management functions: by proposing a new model based on new procedures

and methods or on existing technologies (e.g. MPLS).

However, these inter-domain solutions do not provide to clients traffic the same
required QoS as in its source domain. In this context, we introduce this paper
which presents a solution that offer to clients traffic the same QoS constraints
even in passing to another domain.

3 Proposed Solution Description

3.1 Approach Definition

To ensure continuity of QoS constraints offered to the client even after the
transition to other domains, we introduce a new method that provides a new
mechanism for inter-domain traffic treatment.

The basic idea in our approach is to designate in each domain a server re-
sponsible for the management of the different classes of service, named the Class
Manager (CM). On this server we define a table, namedClass Table (CT) that
contains all information concerning the different classes defined in this domain
(such as bandwidth, loss rate, delay, etc.).

Once the CM of each domain filled its CT, it sends it to a neighbouring
domain. In this way, each CM has all the information about its neighbours
classes of services, and then, upon receiving a packet from the neighbouring
domain, the router in the current domain can classify it in a class that has the

328 S. Bakkali, H. Benaboud, and M. Ben Mamoun

Fig. 1. Mechanism of the proposed Solution

same characteristics as the source class. In this manner, the client flow retains
the same QoS constraints throughout its path to the destination, and receives
the same treatment from end-to-end. The diagram in the figure [1] resumes this
mechanism.

3.2 CT Table Structure

The class table is structured according the following fields:

1. AS number: to identify domain associated with the class.
2. Class number: to identify the class of service.
3. Bandwidth: to indicate the percentage of bandwidth allocated to the class.
4. Priority: to specify the priority level of the class.
5. Queue-limit: to specify the maximum number of packets that the queue can

hold for this class.
6. Random-detect: to indicate whether the algorithmWRED is enabled on that

class.

We note that, to ensure a certain correspondence between the CT tables of
the different domains, we define in the CT table only class parameters common
between various router’s constructors, which are basic parameters used by the
different constructors to characterize a class of service. However, the CT table
fields can be adapted later to parameters used by the router’s constructor imple-
mented in the network. The parameters used in the CT table must be specified
in the agreement established between the domains as we will explain later in this
paper.

On Ensuring End-to-End Quality of Service in Inter-Domain Environment 329

3.3 Sending Information from Routers to CM Sever

As we have already mentioned, routers receive the customer traffic and class
it by applying mechanisms of adopted QoS intra-domain model. Information
concerning parameters relatives to every class defined on a router is in the router
configuration file. The border router sends this file to the CM server. Once
received, the CM server executes a script to retrieve information concerning
classes of service, and to place them in a file named CT, this file represents
the class table which is responsible of storing information concerning all classes
of service defined in the domain. However, sending the entire border routers
configuration file to the CM server presents a serious security risk, this point
will be discussed in future work.

3.4 Exchanging Tables between CM Servers

The communication between the CM servers of all domains uses the TCP proto-
col. Information exchanged between CM servers is included in TCP streams. So,
before sending its CT table, each CM server establish a TCP session with the
one holding in the neighbouring domain. Once the session TCP is established,
the first message exchanged between both CM servers is the identification mes-
sage, which allows each CM server to become identified by its neighbour, by
sending its IP address and AS number. After the identification, CM servers ex-
change their CT tables by sending a set of messages to announce their classes
of services, called Announcement Messages. Every message contains various pa-
rameters values relatives to every class defined in the domain.

When the CM server receives the message transporting the informations from
its neighbour, it stores them in its CT table. In this way, when the CM server
receives the totality of messages, it will have all information concerning all classes
defined in the neighbouring domain.

The last type of message is the Update Message, which is sent by a CM
server when there is an addition or modification of a class of service defined in
its domain. The update message has the same structure as the announcement
message.

3.5 Broadcasting CT Tables

Once a CM server receives its neighbour CT table, it diffuses it to the routers
of its domain. Hence, all domain routers will possess all information about class
of service defined in the neighbouring domain, and can use this information
to create and configure classes of service which will have same values of QoS
parameters.

According to these classes of service, the receiving router will classify packets
comming from the neighbouring domain to be forwarded in the current domain
with the same QoS constraints.

330 S. Bakkali, H. Benaboud, and M. Ben Mamoun

3.6 Agreements between Domains

The proposed solution is mainly based on agreements established between do-
mains. Indeed, the information exchanged between domains in CT tables is very
important and very sensitive, and the domain administrators have to negotiate
and establish an agreement that will manage relations between domains. The
agreement also defines how the tables exchange will be charged.

4 Conclusion and Future Work

Different problems appear with the evolution of Internet. One of the main prob-
lems aims the inter-domain routing with a guaranteed quality of service (QoS).
Today, the Internet traffic is diversified, and each type of traffic has its own
requirements. In this paper, we proposed a new mechanism which could ensure
end-to-end QoS over multiple AS. We described it and we gave details of its
operations and its components.

Our mechanism keeps the same QoS required and our objective is achieved.
However, we can’t confirm its performances before a study is done. So, our future
work will focus on the performance evaluation of the new solution in order to
show its advantages and limitations.

References

1. Wroclawski, J.: The Use of RSVP with IETF Integrated Services. IETF Standard
Track, RFC 2210 (1997)

2. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture
for Differentiated Services. IETF Informational, RFC 2475 (1998)

3. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Label Switching Architecture.
IETF Informational, RFC 3031 (2001)

4. Farrel, A., Vasseur, J.-P., Ayyangar, A.: A Framework for Inter-Domain Multipro-
tocol Label Switching Traffic Engineering. IETF Informational, RFC 4726 (2006)

5. Howartha, P., Boucadairb, M., Flegkasa, P., Wanga, N., Pavloua, G., Morandb,
P., Coadicb, T., Griffinc, D., Asgarid, A., Georgatsosen, P.: End-to-end quality of
service provisioning through inter-provider traffic engineering. Computer Commu-
nications 29, 683–702 (2006)

6. Yampolskiy, M., Hommel, W., Danciu, A., Metzker, G., Hamm, K.: Management-
aware Inter-Domain Routing for End-to-End Quality of Service. International Jour-
nal on Advances in Internet Technology 4, 60–77 (2011)

7. Frikha, A., Lahoud, S., Cousin, B.: Hybrid Inter-Domain QoS Routing with
Crankback Mechanisms. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds.) NEW2AN
2011 and ruSMART 2011. LNCS, vol. 6869, pp. 450–462. Springer, Heidelberg (2011)

8. Frikha, A., Lahoud, S.: Hybrid Inter-Domain QoS Routing based on Look-Ahead
Information. IRISA’s Interne Publications de, PI 1946 (2010)

Author Index

Aassif, Elhoucein H. 268
Abid, Mohamed Riduan 105
Aboutajdine, Driss 316
Adib, Abdellah 306
Arévalo, Sergio 13
Asaduzzaman, Shah 159
Azizi, Abdelmalek 135, 279

Bahsoun, Jean-Paul 258
Bakkali, Sara 326
Benabdellah, Mohammed 135
Benaboud, Hafssa 326
Benkaouz, Yahya 221
Benlcouiri, Younes 135
Ben Mamoun, Mouad 326
Bennis, Ismail 316
Bermbach, David 175
Biaz, Saâd 105
Bochmann, Gregor V. 159
Bourget, Daniel 311
Boutet, Antoine 58, 253

Castañeda, Armando 1
Cherkaoui, Leghris 306
Chlebus, Bogdan S. 206
Cholvi, Vicent 144, 206
Choukri, Ali 289

Dadi, El Wardani 295
Daoudi, El Mostafa 295
Delporte-Gallet, Carole 28
Didona, Diego 233
Dolev, Shlomi 42

Echchaachoui, Adel 289
El Amrani, Mohammed 279
El Fenni, Mohammed Raiss 300
El idrissi, Abdelaziz 263
El Kamili, Mohamed 300
El Kamoun, Najib 321
Elkoutbi, Mohammed 289
Elmenreich, Wilfried 248
El Ouadrhiri, Ahmed 300
El Ouahidi, Bouabid 311
Erradi, Mohammed 221

Erritali, Mohammed 311
Ezzouak, Siham 279

Fauconnier, Hugues 28
Fehérvári, István 248
Felber, Pascal 233
Fernández Anta, Antonio 144
Frey, Davide 58

Gabli, Mohammed 120
Gafni, Eli 28
Garbinato, Benôıt 89
Ghammaz, Abdelilah 263

Habbani, Ahmed 289
Harmanci, Derin 233
Holzer, Adrian 89

Ibnyaich, Saida 263
Ismaili, Moulay Chrif 135

Jaara, El Miloud 120
Jégou, Arnaud 58
Jiménez, Ernesto 13
Jmaiel, Mohamed 284

Kallel, Slim 284
Kermarrec, Anne-Marie 58, 253
Kloudas, Konstantinos 253
Kowalski, Dariusz R. 206
Kuhlenkamp, Jörn 175

Lahby, Mohamed 306
Latif, Rachid 268
Le Merrer, Erwan 274
Le Scouarnec, Nicolas 274
Liba, Omri 42
López, Luis 144
López Millán, Vı́ctor M. 144
Loukil, Sihem 284

Manouare, Ahmed Zakaria 263
Maze, Gérard 268
Mermri, El Bekkaye 120
Moro, Arielle 89

Nahraoui, Youssef 268

332 Author Index

Omari, Lahcen 300

Pignolet, Yvonne-Anne 190

Rajsbaum, Sergio 28
Raynal, Michel 1
Ribeiro, Heverson B. 58
Romano, Paolo 233
Roscoe, Timothy 74

Sabri, Yassine 321
Schenker, Jörg 233
Schiller, Elad M. 42

Schmid, Stefan 190
Shoker, Ali 258
Sobe, Anita 248
Straub, Gilles 274

Tang, Jian 13
Tredan, Gilles 190

Ucan, Ercan 74

Vessaz, François 89

Zytoune, Ouadoudi 316

	Preface
	Table of Contents
	On the Consensus Number of Non-adaptive Perfect Renaming
	1 Introduction
	2 Computation Model
	3 Solving 2-Process Consensus from Non-adaptive Perfect Renaming
	4 The Consensus Number of Non-adaptive Perfect Renaming
	4.1 Refining the Consensus Number Definition: Definition
	4.2 Refining the Consensus Number Definition: Definition

	5 (2, 2)-NA Renaming Belongs to
	6 Conclusion
	References

	Set Agreement and the Loneliness Failure Detector in Crash-Reovery Systems
	1 Introduction
	2 SystemModel
	3 Definitions
	4 Implementing Set Agreement in the Crash-Recovery Model
	4.1 Explanation of
	4.2 Proofs of

	5 On the Implementability of L in the Crash-Recovery Model
	6 Implementing L in the Crash-Recovery Model
	6.1 Model
	6.2 Algorithm

	7 Conclusions
	References

	Black Art: Obstruction-Free k-set Agreementwith |MWMR registers| < |proccesses
	1 Introduction
	2 Model
	2.1 Progress Condition
	2.2 Shared Memory
	2.3 k-set Agreement

	3 Algorithm
	4 Remarks
	4.1 Processes with a Known Small Set of Identities
	4.2 Lower Bound on the Number of Registers

	5 Conclusion
	References

	Self-stabilizing Byzantine Resilient Topology Discovery and Message Delivery
	1 Introduction
	2 Preliminaries
	3 Topology Discovery
	4 End-to-End Delivery
	5 Extensions and Conclusions
	References

	FreeRec: An Anonymous and Distributed Personalization Architecture
	1 Introduction
	2 SystemModel
	3 FreeRec
	3.1 Chain-Based Routing
	3.2 FreeRec Three-Layer Architecture
	3.3 Protocol Details

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Related Work
	6 Conclusions
	References

	Establishing Efficient Routes between Personal Clouds
	1 Introduction
	2 Background and RelatedWork
	3 Motivation and Challenges
	3.1 Use Cases
	3.2 Design Space, Trade-offs and Challenges

	4 Design
	4.1 Setting
	4.2 General Approach: Selective Advertisement
	4.3 Calculating Efficient Routes between Two Networks

	5 Implementation
	6 Simulation
	6.1 Potential Benefits of the Approach

	7 System Experiments
	7.1 Effect of Increasing the Number of Advertised Nodes
	7.2 Effect of Exposing the Topology between the Advertised Nodes

	8 Conclusion
	References

	Developing, Deploying and Evaluating Protocols with ManetLab
	1 Introduction
	1.1 Protocol Development and Evaluation
	1.2 Contribution and Roadmap

	2 Achieving Accuracy and Reproducibility
	2.1 Combining Simulations and Testbeds
	2.2 Creating Accurate and Reproducible Testbeds

	3 Introducing ManetLab
	3.1 Development
	3.2 Configuration
	3.3 Execution
	3.4 Analysis

	4 ManetLab Testbeds
	Simulations
	4.1 Network Settings
	4.2 Protocols, Environments and Communication Patterns
	4.3 Results in the Open Space Environment
	4.4 Results in the Private Offices Environment
	4.5 Injecting the Observed Connectivity into Simulations

	5 Related Work
	5.1 Communication Support
	5.2 Tool Availability

	6 Conclusion
	References

	Airtime Ping-Pong Effect in IEEE 802.11sWireless Mesh Networks
	1 Introduction
	2 IEEE 802.11s: An Overview
	2.1 IEEE 802.11s Architecture
	2.2 IEEE 802.11sHWMP Routing Protocol

	3 Characterizing The Airtime Ping-Pong Effect
	3.1 Experimental Settings
	3.2 Results

	4 Analysis
	4.1 Is the Airtime Ping-Pong Effect a Perilous Behavior?
	4.2 Generalization

	5 Ping-Pong-Aware Mechanisms
	5.1 Experiments

	6 Conclusion and Future Work
	References

	Planning UMTS Base Station Location Using Genetic Algorithm with a Dynamic Trade-Off Parameter
	1 Introduction
	1.1 Related Work

	2 Problem Statement and Model Presentation
	2.1 Mechanism of Power Control (PC)
	2.2 Radio Propagation
	2.3 Model Presentation

	3 GA and Dynamic Trade-Off Parameter
	3.1 Limits of Choosing
	3.2 Algorithm
	3.3 Application of the Algorithm

	4 GA Approach
	4.1 Chromosome Representation
	4.2 Initial Population, Crossover and Mutation

	5 Application
	5.1 Data Description
	5.2 Computational Results

	6 Conclusion
	References

	Video Encryption Based on the Permutationof the (Z⁄pZ) Fields
	1 Introduction
	2 Methods
	2.1 Structure of Coding MPEG Format
	2.2 Cryptography
	2.3 Congruence
	2.4 The Extended Euclidean Algorithm
	2.5 Affine Encryption

	3 Proposed Method
	4 Application and Results
	5 Conclusion
	References

	Improving Resource Location with Locally Precomputed Partial Random Walks
	1 Introduction
	2 Model
	3 Choose-FirstPW-RW
	3.1 Analysis of Choose-First PW-RW
	3.2 Cost of Precomputing PWs
	3.3 Performance Evaluation

	4 Choose-First PW-SAW
	5 Check-First PW-RW and PW-SAW
	6 Future Work
	References

	Distributed B-Tree with Weak Consistency
	1 Introduction
	2 System Model and Assumptions
	2.1 B-Tree Structure
	2.2 Distributed Implementations of B-Tree
	2.3 Assumptions

	3 Search and Updates in Decentralized B-Tree
	3.1 Search Algorithm
	3.2 Updates in a Globally Consistent Decentralize B-tree
	3.3 How Much Consistency Is Needed?

	4 Updates with Weak Consistency
	4.1 Split Algorithms
	4.2 Merge Algorithms
	4.3 Proving the Invariants

	5 Discussion
	6 Conclusion
	References

	Consistency in Distributed Storage Systems
	1 Introduction
	2 Definitions
	2.1 Database Systems
	2.2 Distributed Systems

	3 Perspectives and Consistency Models
	3.1 Perspectives on Consistency
	3.2 Consistency Models and Implementations

	4 Measuring Consistency Guarantees
	4.1 Continuous Consistency Metrics
	4.2 Consistency Benchmarking Approaches

	5 Conclusion
	References

	Request Complexity of VNet Topology Extraction: Dictionary-Based Attacks
	1 Introduction
	2 Background
	3 Motif-Based Dictionary Framework
	3.1 Motifs: Composition and Expansion
	3.2 Dictionary Structure and Existence
	3.3 The Dictionary Algorithm
	3.4 Request Complexity
	3.5 Examples

	4 Experiments
	References

	Stability of Adversarial Routing with Feedback
	1 Introduction
	2 TheAdversarialModel
	2.1 A Leaky-Bucket Regulation
	2.2 Comparison with the Regular Adversary

	3 Properties of the Adversarial Model with Feedback
	3.1 Reformulation of the Adversarial Model
	3.2 Delay Functions and Reactive Functions

	4 The Stability of Scheduling Policies
	5 Conclusion
	References

	A Distributed Protocol for Privacy Preserving A for Privacy Preserving Aggregation
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 SystemModel
	5 The Distributed Protocol
	5.1 Description of DiPA
	5.2 Correctness

	6 Privacy in a Distributed Polling Application
	6.1 Distributed Polling
	6.2 Privacy Analysis

	7 Conclusion
	References

	Identifying the Optimal Level of Parallelism in Transactional Memory Applications
	1 Introduction
	2 Related Work
	3 Shared-Memory STM
	3.1 The Need for Adaptivity
	3.2 An Exploration-Based Approach
	3.3 Performance in Centralized Systems

	4 Distributed STM
	4.1 Combining Model-Driven and Exploration-Based Techniques
	4.2 Evaluation

	5 Conclusion
	References

	Biologically Sound Neural Networks for Embedded Systems Using OpenCL
	1 Introduction
	2 Spiking Neural Network Model
	3 SNN Implementation with OpenCL
	4 Conclusions
	References

	FStream: A Decentralized and Social Music Streamer
	1 Introduction
	2 Overview of FStream
	3 Summary
	References

	BFT Selection
	1 Introduction
	2 BFT Selection Model
	2.1 Notations and Terms
	2.2 Selection Model

	3 Selection Mechanism
	4 Evaluation
	5 Conclusion
	References

	Modeling of Human Head Interactionwith Planar Antenna for Multi Standard Cellular Phones
	1 Introduction
	2 Antenna Design and Results Discussion
	2.1 Model of the Proposed Antenna
	2.2 Results and Discussion

	3 The Antenna Dosimetry
	3.1 SAR Calculation in the Head
	3.2 SAR Determination for GSM 900 and GSM 1800 Frequencies Bands

	4 Conclusion
	References

	Modeling the Cut-off Frequency of Acoustic Signalwith a Fuzzy Logic System
	1 Introduction
	2 Backscattering Response from a Cylindrical Shell
	3 Dispersion and Cut-off Frequency Determined Using theProper Modes Theory
	4 Dispersion Analysis Using Time-Frequency Image
	5 Materials and Method
	5.1 Adaptive Neuro-Fuzzy Inference System Architecture

	6 Results and Discussion
	7 Conclusion
	References

	Bitbox: Eventually Consistent File Sharing
	1 Introduction
	2 Background on Related Data-Synchronization Tools
	3 TheBitboxCore
	4 Proof of Correctness
	References

	Improving Miller’s Algorithm Using the NAF and the Window NAF
	1 Introduction
	2 Miller’s Algorithm
	3 A Modified Miller’s Algorithm
	3.1 Miller’s Algorithm with the NAF
	3.2 Miller’s Algorithm with the
	3.3 Comparison between Algorithms

	4 Conclusion
	References

	Runtime Adaptation of Component Based Systems
	1 Introduction
	2 Architectural Reconfiguration of Component-Based Systems
	3 Monitoring Module
	4 Related Work
	5 Conclusion and Future Work
	References

	Comparative Performance Analysis of AODVand AOMDV to Transmit H.264 Traffic
	1 Introduction
	2 Video and Routing Protocol
	2.1 AODV
	2.2 AOMDV
	2.3 H.264

	3 Related Work
	4 Contribution
	4.1 Simulation Environment
	4.2 Simulation Parameters
	4.3 Metrics
	4.4 Results and Analysis

	5 Conclusions and Perspectives
	References

	Large Scale 3D Shape Retrieval Based on Multi-core Architectures
	1 Introduction
	2 Parallelization on Multi-core
	2.1 Parallel Shape Indexing
	2.2 Parallel Shape Matching

	3 Experimental Results
	4 Conclusion
	References

	New Forwarding Strategy for PROPHET Routing in Delay Tolerant Networks
	1 Introduction
	2 RoutinginDTNs
	3 Proposed Approach
	4 Simulation Results
	5 Conclusion
	References

	New Validation Approach Based on Group MADM for Network Selection
	1 Introduction
	2 New Validation Approach Based on Group MADM
	3 Simulations and Results
	3.1 The Simulation Scenario
	3.2 The Results of Simulation

	4 Conclusion
	References

	Secured Geographic Routing Protocolfor Vehicular Ad Hoc Networks (VANETs)
	1 Introduction
	2 Attack against Routing Protocols
	3 Secure Routing Protocols
	4 Adding Security Aspect in Greedy Perimeter Stateless Routing
	4.1 1st Extension: Establish Secret Keys
	4.2 2nd Extension: Adding a Symmetrical Digital Signature

	5 Conclusion and Perspectives
	References

	Enhanced AntNet Protocol for Wireless Multimedia Sensor Networks
	1 Introduction
	2 Implementation and Enhanced AntNet for WMSN
	3 Simulation and Experimental Results
	4 Conclusion and Future Work
	References

	Forest Fire Detection and Localization with Wireless Sensor Networks
	1 Introduction
	2 Localization Technique
	3 Method for Forest Fire Detection
	4 Experiment and Results
	4.1 Simulation Environment

	5 Conclusion
	References

	On Ensuring End-to-End Quality of Service in Inter-Domain Environment
	1 Introduction
	2 Inter-Domain Problem and Related Works
	3 Proposed Solution Description
	3.1 Approach Definition
	3.2 CT Table Structure
	3.3 Sending Information from Routers to CM Sever
	3.4 Exchanging Tables between CM Servers
	3.5 Broadcasting CT Tables
	3.6 Agreements between Domains

	4 Conclusion and Future Work
	References

	Author Index

