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Chapter 1
Introduction

1.1 Background and Motivation

Today, in 2013, when this small book is being written, evolutionary algorithms
are established as a well-known and widely used class of heuristics, inspired by
the model of organic evolution, for solving optimization problems. And this really
means that these algorithms are regularly used in real-world applications, and
some algorithmic variants have been incorporated into standardized off-the-shelf
software toolboxes. Between 1990—when the first author of this book entered into
the field which was known under the term “genetic algorithms” only—and today,
the field has seen tremendous development and has earned enormous scientific
recognition. The generalization and unification of algorithms, interpreting and
formalizing genetic algorithms, evolution strategies, and evolutionary programming
as instantiations of a more generic concept of so-called evolutionary algorithms [8]
has been an important step towards understanding more general principles and
exchanging algorithmic concepts between specific algorithms. The concept of
strategy parameter self-adaptation is a specific component of evolution strategies,
which was originally introduced and is still in use within the original .�; �/-
evolution strategy introduced by Schwefel [62], also described in [8]. Since
about 1994, numerous extensions of this concept have addressed the topics of
derandomization and covariance matrix adaptation in particular, which has resulted
in the development of the contemporary evolution strategies, such as the covariance
matrix adaptation strategy or CMA-ES [31]. The aim of this book is to summarize
these developments and present them in a concise way, so that the reader can
get an overview of the diverse range of developments in this field. In addition
to pseudo-code representations of the corresponding algorithms, source code for
non-commercial use is also provided for the majority of the algorithms.

As far as this book is concerned, the core application field of interest for
evolution strategies is optimization tasks with a very limited budget of objective
function evaluations. Loosely speaking, we can think of an optimization problem
as a black box which, for a given input parameter vector, generates an associated
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2 1 Introduction

scalar output value, and we are interested in finding an assignment of values of input
parameters which maximizes or, equivalently, minimizes, the scalar output value.
Optimization is a ubiquitous task, relevant to industry, government, and society as a
whole, as we will see below in a few illustrative examples.

Evolution strategies, the focus topic of this book, form a subclass of evolutionary
algorithms (see, e.g., [9, 10] for a complete coverage of the field), mainly designed
for optimization problems defined over vectors of floating point numbers as input
parameters, i.e., for continuous parameter optimization tasks. Historically, all
variations of evolution strategies can be characterized by the fact that they use a
mutation operator based on a multivariate normal distribution and rely on a special
approach for online adaptation of the variances (and covariances) of the normal
distribution. This latter approach is typically called self-adaptation.

Based on hundreds of industrial optimization tasks we have worked on during
our professional lives, we have experienced the enormous capabilities of evolution
strategies in the real world. Problems range from engineering design applications
(e.g., how to optimize the geometric two- or three-dimensional design of an
airfoil for maximum lift or minimum drag) to logistics and scheduling applications
(e.g., how to choose shipper batch sizing and sequencing to achieve optimal
throughput at minimum energy costs within a pipeline network) and further on to
food production (e.g., how to tune production process parameters so as to maximize
shelf-life stability of chocolate), just to mention a few examples. Common to these
three examples, like many other instances of optimization tasks, is the fact that no
closed-form analytical description of the function mapping input parameter vectors
to objective function values exists—therefore, traditional analytical methods are not
applicable, and also gradient information and even the Hessian are not available.
Such tasks are also called black-box-optimization tasks, since the mapping of input
vectors into objective function values is essentially unknown, i.e., a black box.
Often, this black box is represented by a simulation model, executing a simulation
of a real-world system on a computer (e.g., simulating the noise, vibration and
harshness behavior of a car body), and sometimes it is even a real-world experiment,
when no simulation is available at all (e.g., producing a batch of chocolate and then
measuring its stability duration). Besides the black box aspect, many real-world
optimization problems are characterized by the fact that the objective function
evaluation by means of simulation or even by an experiment can be quite time
consuming and therefore expensive, so that real-world optimization is often looking
for the impossible: delivering a solution as good as possible and as fast as possible
(i.e., with as few objective function evaluations as possible).

The power of evolution strategies is really their ability to combine these
two conflicting goals—using few objective function evaluations and delivering
high-quality solutions. They achieve this through small population sizes (which
is typically seen to be uncommon in evolutionary computation) and the ability to
self-adapt the probability density function used for generating mutations. Since our
professional focus has always been on this key feature of evolution strategies, the
empirical investigation presented in Chap. 5 of this book focuses on comparing the



1.1 Background and Motivation 3

performance of algorithms by looking at a relatively small1 number of function
evaluations only.

Based on the model of the Darwinian theory of evolution [19], evolutionary
algorithms including evolution strategies use principles from evolutionary biology
for solving black-box-optimization problems. The individuals in an evolution
strategy consist of vectors of input parameters to the objective function and of
strategy parameters for the mutation operator, so-called endogenous parameters.
Multiple individuals together form a population, which undergoes an evolution cycle
during each iteration (also called generation) of the algorithm. Through randomized
processes of recombination and mutation, offspring individuals are generated from
the current parent population, and the objective function values (often also called
fitness values) of the offspring individuals are calculated by applying the black box
(i.e., by running the simulation program with the input parameter values specified in
the individuals). Finally, the selection operator chooses those individuals with best
fitness values to become parents of the next generation.

Since the introduction of the first evolution strategy, the so-called (1C1)-ES,
by Rechenberg and Schwefel [51, 52, 59] in the 1960s and 1970s, many variants
of the algorithm have been developed. In particular, variations were developed
in the 1990s which use a so-called derandomization approach for the strategy
parameter adaptation mechanism, characterizing a major shift of paradigm for
evolution strategies. The derandomization efforts ultimately led to the development
of the so-called CMA-ES (covariance matrix adaptation evolution strategy), which
adapts a full covariance matrix in a derandomized way [31]. The derandomized
variants, and in particular the CMA-ES and its successors, are the algorithms which
are called contemporary evolution strategies throughout this book, as they constitute
a new era in the field of evolution strategies.

A key goal of this book is to provide the reader with an overview of these modern
evolution strategy variants, as there is no book yet where all of them are described
in a unified context. Moreover, we also provide a taxonomy of these algorithms with
respect to a number of different characteristics, and we use this taxonomy to provide
recommendations for the practical usage of the CMA-ES and its successors.

Most publications about modern evolution strategies compare those algorithms
either with each other, or with some competitor from a different class of evolutionary
or other optimization algorithms, typically by using a set of standardized test
functions. These empirical comparisons are typically based on a large number
of objective function evaluations.2 As explained above, however, many typical
real-world application cases do not allow for such an enormous number of function
evaluations, simply because of the prohibitively large effort in terms of time

1As the reader will realize, the numbers used here are still much larger than what would often be
available in real-world applications (up to a few hundreds), but they are much smaller than what is
typically used for comparing algorithms.
2For Black-Box-Optimization Benchmarking (BBOB) [34], the recommended number of function
evaluations is 106n, for n-dimensional test problems.
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and/or money for even a single objective function evaluation. For these cases,
it is very important to understand the behavior of modern evolution strategies
(and optimization algorithms in general) when only a small number of function
evaluations are permitted, and to identify the best-performing algorithm with respect
to this constraint on the number of evaluations. In principle, it could even be possible
to identify completely different convergence behavior for evolution strategy variants
for a large number of function evaluations as opposed to a small number, yielding a
different winning strategy in the two cases. This is exactly the question we focus
on in the empirical results reported in this book, i.e., the convergence behavior
of modern evolution strategies for a relatively small number of permitted function
evaluations.

1.2 Structure of the Book

In the following, we give a brief outline of the structure of this book.
In Chap. 2, the main chapter of the book, variants of modern evolution strategies

are described by using pseudocode notation and explaining the algorithms in detail.
The chapter starts by defining the optimization problem, introducing evolution
strategies as a specialization of evolutionary algorithms (for the interested reader, [8]
provides an integrated view of evolutionary algorithms as a generic paradigm
for optimization), and describing the concept of mutation in the n-dimensional
continuous search space Rn (see Sect. 2.1). Then, the evolution strategy variants are
introduced, following the chronological order of their publication, split into modern
evolution strategies and a small selection of older evolution strategies (i.e., before
the inception of the CMA-ES).

Chapter 3 then provides a taxonomy of modern evolution strategies,
characterizing them by thematic areas as identified in Sect. 3.1 and by interesting
features introduced in Sect. 3.2. Based on their description and their taxonomy
classification, recommendations for the practical usage of modern evolution
strategies are provided in Sect. 3.3.

Chapter 4 then presents a systematic empirical investigation of modern evolution
strategies based on performance measures as introduced in Sect. 4.1, a careful
experimental setup and execution of experiments as described in Sect. 4.2, and a
final presentation and discussion of the results, given in Sect. 4.3.

Finally, Chap. 5 summarizes some of the key findings and takes a short look at
the future of evolution strategy research as we perceive it—through the eyes of the
practitioner interested in solving extremely complex optimization tasks.

1.3 Notation

The key notational elements as used throughout this book are summarized in
Table 1.1.
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Table 1.1 Notation

Symbol Description

x Vector x
A Matrix A
I Unity matrix, i.e., neutral element w.r.t. multiplication
diag.d/ Diagonal matrix D D diag.d/ with vector d of diagonal elements
vT , AT Transposition of vector v or matrix A
xi Indexed component of a vector x D .x1; : : : ; xn/T 2 R

n

Ai;j Indexed component of a matrix A 2 R
n�m

‰.age Component notation, as in object-oriented programming,
age is a component of ‰

 Assignment
xiWm Indexed access to a sorted set S D fx1; : : : ; xmg:

xiWm is x 2 S with rank i

tr.A/ Trace of matrix A 2 R
n�n: tr.A/ D Qn

iD1 Ai;i

u˝ v Element-wise multiplication of vectors u; v 2 R
n:

u˝ vD w where w 2 R
n and wi D ui � vi for i 2 f1; : : : ; ng

hxi We use hxi to denote a single parent; the brackets hi do not denote an operator

1.4 Source Code

The Octave source code (proprietary implementations) of most of the algorithms
compared in this book can be downloaded for non-commercial use only. The
following algorithms are available:

• .1C 1/-ES
• .�; �/-MSC-ES
• DR1
• DR2
• DR3
• LS-CMA-ES
• .1C 1/-Cholesky-CMA-ES
• .�; �/-CMSA-ES
• sep-CMA-ES
• .1C 1/-Active-CMA-ES

In order to download the code, contact information must be provided.
Download link: http://www.divis-gmbh.com/es-software.html

http://www.divis-gmbh.com/es-software.html


Chapter 2
Evolution Strategies

Prior to introducing the particular algorithms in Sect. 2.2, the more general founda-
tions of evolution strategies are introduced in Sect. 2.1. To start with, the definition
of an optimization task as used throughout this book is given in Sect. 2.1.1.
Following [58], Sect. 2.1.2 presents a discussion of evolution strategy metaheuristics
as a special case of evolutionary algorithms. In particular, the components of such
a metaheuristic—namely recombination, mutation, evaluation and selection—are
described in a general way. Due to the particular importance1 of the mutation
operator for evolution strategies (in R

n), it is discussed in quite some detail in
Sect. 2.1.3.

2.1 Introduction

2.1.1 Optimization

Evolution strategies are particularly well suited (and developed) for nonlinear
optimization tasks, which are defined as follows (see e.g. [17], Sect. 18.2.1.1):

f .x/ D minŠ for x 2 R
n where (2.1)

gi .x/ � 0; i 2 I D f1; : : : ; mg; hj .x/ D 0; j 2 J D f1; : : : ; rg; (2.2)

1This statement, however, is not meant to support the myth mentioned explicitly by Rudolph [58]:
“Since early theoretical publications mainly analyzed simple ES without recombination, somehow
the myth arose that ES put more emphasis on mutation than on recombination: This is a fatal
misconception! Recombination has been an important ingredient of ES from the early beginning
and this is still valid today.”

T. Bäck et al., Contemporary Evolution Strategies, Natural Computing Series,
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and the set

M D fx 2 R
n W gi .x/ � 0;8i 2 I; hj .x/ D 0;8j 2 J g (2.3)

is called the set of feasible points and it defines the search space of the optimization
problem. A point x� 2 R

n is called a global minimum, if

f � D f .x�/ � f .x/ for all x 2M (2.4)

Conversely, it is called a local minimum if the above inequality only holds for x
within an �-environment U�.x/ �M .

Formulating an optimization problem as a minimization task is equivalent to
searching for a maximum or for a given target value, since maximization of f can be
replaced by minimization of�f and a target value Nf can be attained by minimizing
�. Nf ; f / with an arbitrary distance measure2 �.

In this definition of an optimization task it is completely sufficient if the
codomain is completely ordered, so that the inequality in Eq. 2.4 can be applied.
Throughout this book, we will always deal with the codomain R only. Moreover,
we will not explicitly deal with the handling of constraints (e.g., as defined by
Eq. 2.2), and refer the interested reader to Sect. 2.3 where literature references point
to state-of-the-art techniques in constraint handling. A special case of constraints
are so-called box constraints, as defined below:

g1.x/ D l� x � 0 where l D .l1; : : : ; ln/T 2 R
n

g2.x/ D x � u � 0 where u D .u1; : : : ; un/T 2 R
n (2.5)

Vectors l and u are called lower and upper bounds, respectively. Box constraints
restrict the search space to the hyperrectangle Œl1; u1� � : : : � Œln; un� and are taken
into account for the implementation of algorithms described in this book.

In the field of evolutionary algorithms, the vector x is often called the decision
vector (and its parameters decision parameters), and its objective function value
f .x/ is also called the fitness value.

2.1.2 Evolution Strategies as a Specialization of Evolutionary
Algorithms

Following [8] and [58], evolution strategies are described here as a specialization
of evolutionary algorithms. The general framework of an evolutionary algorithm is
presented in Algorithm 2.1. During initialization, the first generation, consisting of

2See Sect. 12.2.1 in [17] for the definition of a distance measure.
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Algorithm 2.1 General outline of an evolutionary algorithm
Initialization
repeat

Recombination
Mutation
Evaluation
Selection

until Termination criterion fulfilled

one or more individuals, is created, and the fitness of its individuals is evaluated.
After initialization, the so-called evolution loop is entered, which consists of the
operators recombination, mutation, evaluation and selection. Recombination creates
new individuals, also called offspring, from the parent population. Two major
types of recombination, dominant and intermediate recombination, are typically
distinguished: In dominant recombination, a property of a parent individual is
inherited by the offspring, i.e., this property dominates the corresponding property
of the other individuals. For intermediate recombination, the properties of all
individuals are taken into account, such that, e.g., in the simplest case, their mean
value is used.

The mutation operator provides the main source of variation of offspring in an
evolution strategy. Based on sampling random variables, properties of individuals
are modified. The newly created individuals are then evaluated, i.e., their fitness
values are calculated. Based on these fitness values, selection identifies a subset of
individuals which form the new population which is used in the next iteration of the
evolution loop. The loop is terminated based on a termination criterion set by the
user, such as reaching a maximum number of evaluations, reaching a target fitness
value, or stagnation of the search process.

According to [58], evolution strategies as a specific instantiation of evolutionary
algorithms are characterized by the following four properties:

• Selection of individuals for recombination is unbiased.
• Selection is a deterministic process.
• Mutation operators are parameterized and therefore they can change their

properties during optimization.
• Individuals consist of decision parameters as well as strategy parameters.3

The generic framework of an evolutionary algorithm then specializes into a
.�=�; �; �/-ES,4 as described in detail in Algorithm 2.2. Recombination and muta-
tion are summarized here under the term variation. In addition to the description

3In the case of the (1C1)-ES the strategy parameters may be assigned to the algorithm itself instead
of the individual, because only one set of strategy parameters is needed. This also holds for any
strategy parameters which are not needed on the individual level (for example the covariance matrix
of the CMA-ES).
4Algorithm 3 in [58].
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Algorithm 2.2 .�=�; �; �/-ES
Initialization of P .0/ with � individuals
8p 2 P .0/ W p:‰:Age 1, p:f  f .p:x/

t  0

repeat
Q.t/  ;
for i D 1! � do

Sample � parents p1; : : : ; p� 2 P .t/ uniformly at random
q Variation.p1; : : : ; p�; ‰V /

q:‰:Age 0, q:f  f .q:x/

Q.t/  Q.t/ [ fqg
end for
P .tC1/  Selection of the � best individuals from Q.t/ [ fp 2 P .t/ W p:‰:Age < �g
Update ‰V

8p 2 P .tC1/ W p:‰:Age p:‰:AgeC 1

t  t C 1

until Termination criterion fulfilled

given in [58] (Algorithm 3), the variation operator of a .�=�; �; �/-ES is defined
here by means of a parameter set ‰V , and the evaluation operator is explicitly
mentioned. A population at generation t � 0 is denoted P .t/ and is a set of
individuals. An individual p 2 P .t/ is a tuple .x; ‰/ for x 2 M � R

n, with M

as in Eq. 2.3. The sets ‰ and ‰V are arbitrary finite sets representing the strategy
parameters. Since these parameters are modified internally during execution of the
algorithm, they are called endogenous strategy parameters. The number of parent
individuals is denoted as �, the number of offspring individuals as �, and � denotes
the number of parents taken into account for generating a single offspring by means
of recombination. For these parameters, �; �; � 2 N and � � � holds.

� 2 N[f1g represents the largest age which can be reached by any individual in
the population. In contrast to endogenous parameters, �; �; � und � are to be set by
the user of the algorithm, such that they are called exogenous strategy parameters.

The setting of � has a direct impact on the selection operator. Usually, either
� D 1 (one generation maximum lifetime) or � D 1 (infinite maximum lifetime)
is used. The former case is also called comma-selection, the latter plus-selection.
Using the standard notation of evolution strategies, this is expressed as .�=�; �/-ES
and .�=�C�/-ES, so that � is not explicitly stated any more. Using � <1 requires
the condition � � � to hold.

2.1.3 Mutation in R
n

2.1.3.1 The Multivariate Normal Distribution

In [58], three guiding principles for the design of mutation operators are introduced,
namely:
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• Any point of the search space needs to be attainable with probability strictly
larger than zero by means of a finite number of applications of mutation.

• Mutation should be unbiased, which can be achieved by using a maximum
entropy distribution.5

• The operator is parameterized, such that the extent of variation can be controlled.

In R
n, these requirements are fulfilled by a multivariate normal distribution.

An n-dimensional random vector X is multivariate normally distributed with
expectation Nx 2 R

n and positive definite6 covariance matrix C 2 R
n�n if its

probability density function is defined according to:

fX.x/ D 1

.2�/
n
2 .det C/

1
2

exp

�

�1

2
.x � Nx/T C�1.x � Nx/

�

(2.6)

(see p. 86 in [28]). In short notation, this is typically written as X 	 N.Nx; C/,
where N.Nx; C/ denotes the multivariate normal distribution in its general form. In
mathematical equations, N.Nx; C/ is sometimes used like a vector, meaning a vector
which is actually sampled according to the distribution given. In other words, instead
of writing x0 D x C X where X 	 N.0; C/, it is also possible to simply write
x0 D xCN.0; C/.

Due to the positive definiteness of the covariance matrix C, the following
eigendecomposition exists (Theorem 1a in [58]):

C D BD2BT (2.7)

Here, B denotes an orthogonal matrix,7 the columns of which are the eigenvectors
of C. In [29], N.Nx; C/ is reduced to the distribution N.0; I/ by means of the
eigendecomposition given in Eq. 2.7, according to:

N.Nx; C/ 	 NxC BDN.0; I/ (2.8)

In the field of evolution strategies, the three special cases N.0; I/, N.0; diag.ı2//

and N.0; C/ are used for the definition of the most common algorithms. Figure 2.1
provides a sketch of the corresponding mutation ellipsoids, i.e., isolines of the
probability density functions, embedded in a hypothetical two-dimensional fitness
function.

The simplest case of generating the mutation x0 from x is based on using B D I
and D D 	I with a global step size ı 2 R

C for matrices B and D as used in Eq. 2.8.

5The normal distribution achieves maximum entropy among the distributions on the real domain.
(See [64] for more details.)
6A symmetric matrix A 2 R

n�n is positive definite iff xT Ax > 0 for all x 2 R
n n f0g [17].

7For an orthogonal matrix A, AAT D AT AD I holds.
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Fig. 2.1 Mutation ellipsoids representing N.0; I/, N.0; diag.ı2// and N.0; C/ (from left to right)

x0 D xC ı �N.0; I/ (2.9)

This corresponds with spheres with individual radii defined by ı, as indicated in the
left part of Fig. 2.1. This case of an offspring distribution is called isotropic.

To turn the spheres into anisotropic ellipsoids with main axes parallel to
the coordinate axes, as shown in the middle of Fig. 2.1, matrix D in Eq. 2.8 must
be turned into a diagonal matrix ı D .ı1; : : : ; ın/T 2 R

n with different entries on
the main diagonal. As in the previous case, B is a diagonal matrix:

x0 D xC Idiag.ı/N.0; I/

D xCN.0; diag.ı2// (2.10)

The length ratios of the main axes of the mutation ellipsoids depend on the
ratios between corresponding components of the vector ı. A rotation of mutation
hyperellipsoids with respect to the coordinate axes, as shown in the rightmost part
of Fig. 2.1, is achieved by using a covariance matrix C with off-diagonal entries
different from zero. This case is denoted by the term correlated mutation. In contrast
with the two previous cases, the matrix B is not just an identity matrix:

x0 D xC Bdiag.ı/N.0; I/

D xC BN.0; diag.ı2//

D xCN.0; C/ (2.11)

The choice of one of the three cases explained above has a direct impact on
the complexity of the endogenous parameters controlling the multivariate normal
distribution. In general, if n denotes the dimensionality of the search space, the
number of endogenous strategy parameters in case of Eq. 2.9 is O.1/, i.e., constant.
In case of 2.10 a vector of size O.n/ of endogenous parameters is required,
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and adaptation of an arbitrary covariance matrix, i.e., a symmetric n � n-matrix,
according to Eq. 2.11, requires O.n2/ endogenous parameters.

For defining algorithm DR3 in Sect. 2.2.1 and for all algorithms based on the
CMA-ES, the so-called line distribution [31] is of special interest: For u 2 R

n, the
distribution N.0; uuT / is a multivariate normal distribution with the variance kuk2
in the direction of the vector u. It is the normal distribution with highest probability
of generating u.

2.1.3.2 Relationship Between Covariance Matrix and Hessian

In the previous section, using a multivariate normal distribution was motivated by
certain requirements which should hold for the mutation operator. In this section,
we will clarify why it is useful to use an arbitrary covariance matrix, as in Eq. 2.11,
for adaptation.

Any differentiable function f W Rn ! R can be approximated by a Taylor series
expansion in the vicinity of a position8 Qx 2 R

n. Cutting off the Taylor series after
the quadratic term, the following approximation is obtained:

f .x/ 
 f .Qx/C .x � Qx/Trf .Qx/C 1

2
.x� Qx/Tr2f .Qx/.x � Qx/ (2.12)

Here,rf .Qx/ denotes the gradient, andr2f .Qx/ is the symmetric, positive definite
Hessian, denoted by H in the following. For a quadratic function f , the Taylor
series expansion is exact, and H contains information about the shape of the isolines
of f . In general, these are ellipsoids, as shown in the rightmost part of Fig. 2.1.
Hansen describes the relationship between the Hessian H and the covariance matrix
C of a distribution N.0; C/ informally [29]. It is argued that using C D H�1 for
optimizing a quadratic function is equivalent to using C D I for optimizing an
isotropic function, such as the sphere function f .x/ D 1

2
xxT .

In other words: Adapting an arbitrary covariance matrix simplifies the opti-
mization by transforming the objective function into an isotropic function. A more
formal description of this topic can be found in Rudolph’s work, e.g., in the section
Advanced Adaptation Techniques in R

n in [58], and also in [55].

2.2 Algorithms

This section contains descriptions of the key variants of evolution strategies in
chronological order of their publication. On a high level, we differentiate between
the two main Sects. 2.2.1 and 2.2.2, with the first one corresponding with the time
frame 1964 until 1996.

8See Sect. 6.2.2.3 in [17].
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This first Sect. 2.2.1 describes five main algorithms, namely, the (1C1)-ES as the
historically first version of an evolution strategy and the .�; �/-MSC-ES (in [58]
also called CORR-ES) as the first evolution strategy which adapts an arbitrary
covariance matrix (see Sect. 2.1.3 for an explanation). The first derandomized
algorithm variants, DR1, DR2, and DR3, complete this selection of older variants of
evolution strategies. Their choice is motivated by the fact that they are derandom-
ization steps towards the CMA-ES (see also [63]).

The second main Sect. 2.2.2 describes modern evolution strategies, a term which
is used in this book to denote the CMA-ES and algorithms based on it. This
distinction might seem somewhat arbitrary, but in fact the development of the
CMA-ES defined a turning point in the history of evolution strategies, for two main
reasons: First, the CMA-ES is the first algorithm which adapts a covariance matrix
in a completely derandomized way. Second, the CMA-ES is seen by many authors
as the state of the art in evolution strategies (e.g., [6,13,15,26,35,58,63], and [66]).

2.2.1 From the (1C1)-ES to the CMA-ES

2.2.1.1 (1C1)-ES

The foundation of the first evolution strategy was laid in the 1960s at the Technical
University of Berlin by three students, namely Hans-Paul Schwefel, Ingo Rechen-
berg, and Peter Bienert. As described in [8] or [58], standard methods for solving
black-box optimization problems, such as gradient-based methods (see [44]), were
not able to deliver satisfactory solution quality for certain optimization problems
in engineering applications. Inspired by lectures about biological evolution, they
aimed at developing a solution method based on principles of variation and
selection. In its first version, a very simple evolution loop without any endogenous
parameters was used [59]. This algorithm generates a single offspring x0 D x C
.N1.0; 	/; : : : ; Nn.0; 	//T D xC	 �N.0; I/ from a single parent individual x 2 R

n.
If the offspring performs better than its parent (in terms of fitness), it becomes the
new parent. Otherwise, the parent remains. The standard deviation 	 of the normal
distribution was a fixed scalar value.

According to [53], by pure luck the value of 	 was chosen in a way that made
this first approach towards a (1C1)-ES successful. Only later on, the necessary step
size adaptation was added to the algorithm [52]. Based on two fitness functions,
the so-called corridor model9 and the so-called sphere model,10 a theoretical result

9The rectangular corridor model according to [8]: f1.x/ D c0 C c1 � x1 if the constraints gj .x/ W
xj � b with b 2 R

C for j 2 f2; : : : ; ng are fulfilled, f1.x/ D1 otherwise.
10The sphere model according to [8]: f2.x/ D c0 C c1 �PiD1

n .xi � x�

i /2.
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Algorithm 2.3 (1C1)-ES
P0  fxg

  f .x/

pS  0

initialize archive A for storing successful mutations
t  0

repeat
t  t C 1

x0  xC 	 � N.0; I/

0 f .x0/

if 
0 < 
 then
x x0


  
0

store success in A

else
store failure in A

end if
Pt  fxg
if t mod n D 0 then

get #successes and #failures from at most 10n entries in A

pS D #successes
#successesC#failures

	 0 
8
<

:

	 � c if pS < 1=5

	=c if pS > 1=5

	 if pS D 1=5
end if
	  	 0

until termination criterion fulfilled

was derived for introducing step size adaptation: Maximum convergence velocity
(i.e., speed of progress of the optimization) is achieved when about 1/5 of all
mutations are successful, i.e., improvements over their parent.11 This insight led
to the development of the so-called 1/5-success rule for step size adaptation. If
about 1/5 of all mutations are successful, the step size is optimal and no adaptation
is required. If the success rate falls below 1/5, the step size needs to be reduced.
If it grows above 1/5, the step size needs to be increased. To obtain the new
step size 	 0 D 	 � cf�1;1g, the previous 	 is decreased or increased, respectively,
by multiplication or division by 0:817 � c � 1. The recommended value of
c D 0:817 was derived by Schwefel according to theoretical arguments about step
size adaptation speed [61]. The step size adaptation according to the above rule is
applied each n iterations of the algorithm, and the success rate pS is measured over
a sliding window of the last 10 � n mutations [8]. The pseudocode of the (1C1)-ES
according to [8] is shown in Algorithm 2.3.

11The exact values are 0:184 and 0:2025 for the corridor and sphere models, respectively [8].
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2.2.1.2 .�; �/-MSC-ES

The .�; �/-MSC-ES12 was the very first evolution strategy capable of adapting
an arbitrary covariance matrix. The algorithm was developed by Schwefel [62]
and is also called .�; �/-CORR-ES [58]. In this strategy, the covariance matrix is
obtained as a product of n.n�1/=2 rotation matrices, where a single rotation matrix
Rij for a rotation angle ˛ between axis i and axis j , with i; j 2 f1; : : : ; ng and
i ¤ j , is given by an identity matrix, extended by the entries R.i; i/ D R.j; j / D
cos ˛ij and R.i; j / D �R.j; i/ D � sin ˛ij.

Indeed, this method is able to generate arbitrary correlated mutations, as proven
by Rudolph [55]. In the framework of the .�; �/-MSC-ES, endogenous strategy
parameters are modified by means of the so-called self-adaptation principle. For
self-adaptation, an individual consists not only of the decision parameters x, but also
contains an additional vector 	 2 R

nC of step sizes and a vector ˛ 2 .��; ��n.n�1/=2

of rotation angles. The underlying idea of mutative step size adaptation is based
on the assumption of individuals with good settings of strategy parameters to
generate good offspring, such that the good strategy parameters survive selection.
Recombination of decision parameters and endogenous strategy parameters is
performed through global intermediary recombination, i.e., by averaging all of the
� parents. Concerning the exogenous strategy parameters, the local and global
learning rates � and � 0 need to be set. Following [8], after Schwefel [61], the settings
� D 1p

2
p

n
and � 0 D 1

2
p

n
are recommended, depending only on the problem

dimensionality n. Pseudocode of the .�; �/-MSC-ES is provided in Algorithm 2.4.
Concerning the population sizes, we are using � D 15 and � D 7 � � D 105

throughout this book, close to the recommendations in [63].

2.2.1.3 DR1

The .�; �/-MSC-ES as described in the previous section is based on mutative
self-adaptation for step sizes ı 2 R

nC. However, as Ostermeier et al. [47]
claim, self-adaptation of individual step sizes is not possible in the case of small
population sizes, and they identify two key reasons: First, a successful mutation of
the decision parameters is not necessarily caused by a good step size, but can also
be due to an advantageous instantiation of the normally distributed random vector
(i.e., a lucky sample). Second, there is a conflict between the goals of maintaining a
large variance of step sizes within one generation and avoiding too large fluctuations
of step sizes between successive generations. The first derandomized evolution
strategy, abbreviated DR1,13 solves the first problem by using the length of the most
successful mutation step within one generation (i.e., the one that yielded the best

12MSC is an abbreviation of mutative self-adaptation of covariances.
13In the original publication it is called .1; �/-ES with derandomized mutative step size.
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Algorithm 2.4 .�; �/-MSC-ES
initialize population
P .0/  f.x1; 	1; ˛1/; : : : ; .x�; 	�; ˛�/g
t  0

repeat
t  t C 1

// recombination
Nx 1

�

P�
iD1 xi

N	  1
�

P�
iD1 	i

N̨  1
�

P�
iD1 ˛i

for i D 1! � do
// mutation
� � 0 �N.0; 1/

	i  N	 � exp .�C � �N.0; I//
˛i  N̨ C ˇ �N.0; I/
C Qn�1

iD1

Qn
jDiC1 Rij

xi  NxC C � 	i �N.0; I/
// evaluation

i  f .xi /

end for
// selection
P .t/ are the � best .xi ; 	i ; ˛i / from 1 � i � �

until termination criterion fulfilled

offspring) for controlling step size adaptation [47]. The second problem is solved
by using a factor 
 2 f 5

7
; 7

5
g to provide sufficient variance of step sizes within one

generation, and to dampen14 this factor by applying an exponent ˇ with 0 < ˇ < 1

for step size adaptation, to reduce undesired fluctuations [47]. An offspring x0 of a
parent x is then generated as follows:

x0 D xC 
 � ı ˝ z where z D N.0; I/

Adaptation of step sizes ı is based on the most successful z (i.e., the normally
distributed vector sample which generated the best offspring during this generation),
which is first transformed as follows:


z D
�

exp
�
jz1j �

p
2=�

�
; : : : ; exp

�
jznj �

p
2=�

��T

Combined with the exponents ˇ and ˇscal 2 R for damping the adaptation, as
well as 
 and 
z of the best mutation, the new step sizes ı0 are obtained as follows:

ı0 D .
/ˇ � .
z/
ˇscal ˝ ı

14This way, adapting the step size by a factor 
 requires at least 1=ˇ > 1 generations.
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Algorithm 2.5 DR1
initialize x, ı .1; : : : ; 1/T

t  0

repeat
t  t C 1

for i D 1! � do
zi  N.0; I/
xi  xC 
i � ı˝ zi where P.
i D 5

7
/ D P.
i D 7

5
/ D 1

2


i  f .xi /

end for
sel i with best value of 
i

x xsel


zsel D
�
exp

�jzsel1 j �
p

2=�
�
; : : : ; exp

�jzseln j �
p

2=�
��T

ı .
sel/
ˇ
�

zsel

�ˇscal ˝ ı

until termination criterion fulfilled

Pseudocode of the DR1 evolution strategy is given in Algorithm 2.5. Concerning
the offspring population size �, a constant setting of � D 10, independently of
dimensionality n, was used in [47]. The DR1 algorithm is based on a single parent
individual (� D 1), and sometimes also denoted as .1; 10/-DR1-ES. Ostermeier
et al.[47] recommends for the exponents ˇ and ˇscal the following values:

ˇ D
p

1=n

ˇscal D 1=n

2.2.1.4 DR2

The DR2 evolution strategy15 represents the next step of derandomization for
evolution strategies [48]. The creation of an offspring by mutation is parameterized
by a global step size ı and local step sizes ıscal 2 R

n:

x0 D xC ı � ıscal ˝ z where z D N.0; I/

As in DR1, adaptation of step sizes is based on the most successful z. However, in
addition to information about the most successful mutation of the current generation,
the most successful mutation steps of previous generations are also taken into
account, thereby accumulating information over generations. The accumulation
takes place in a vector � 2 R

n, using a factor c 2 .0; 1� to control the weight of
previous generations in contrast to the current one:

�0 D .1 � c/ � � C c � zsel (2.13)

15In the original paper, the algorithm is called .1; �/-ES with derandomized mutative step size
control using accumulated information.
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Algorithm 2.6 DR2
initialize x, � 0, ı 1, ıscal .1; : : : ; 1/T

t  0

repeat
t  t C 1

for i D 1! � do
zi  N.0; I/
xi  xC ı � ıscal ˝ zi


i  f .xi /

end for
sel i with best value of 
i

�0 .1� c/ � �C c � zsel

ı0  ı �
�

exp

�
k�0

k

p

n�

p
c

2�c

� 1C 1
5n

��ˇ

ı0

scal  ıscal ˝
�

j�0

i jp
c

2�c

C 7
20

�ˇscal

x xsel

� �0

ı ı0

ıscal  ı0

scal
until termination criterion fulfilled

Adaptation of step sizes ı and ıscal is then based on the updated mutation path �0:

ı0 D ı �
 

exp

 
k�0kp
n
p

c
2�c

� 1C 1

5n

!!ˇ

ı0scali
D ıscali �

 
j�0i jp

c
2�c

C 7

20

!ˇscal

8i 2 f1; : : : ; ng

Standard settings for the exponents ˇ and ˇscal as well as the parameter c are as
follows:

ˇ D
p

1=n

ˇscal D 1=n

c D
p

1=n

The pseudocode of the DR2 evolution strategy is given in Algorithm 2.6.

2.2.1.5 DR3

The DR3 evolution strategy [33], also called .1; �/-GSA-ES (generating set adap-
tation), is able to generate mutations according to an arbitrary multivariate normal
distribution, corresponding to the adaptation of an arbitrary covariance matrix



20 2 Evolution Strategies

according to Eq. 2.11. This process is not based on implicitly using a covariance
matrix, but on transforming an isotropic random vector z D N.0; I/ into a correlated
random vector y by multiplication with a matrix16 B D .b1; : : : ; bm/ 2 R

n�m.
As described in Sect. 2.1.3, this can be interpreted as superposition of multiple

line distributions. For the number m of column vectors, n2 � m � 2n2 holds, with
a smaller value of m providing a faster adaptation and a larger value of m a more
accurate adaptation. Like in DR1, for variation of the global step size ı 2 R a factor

 2 f 2

3
; 3

2
g with P.
i D 2=3/ D P.
i D 3=2/ D 1=2 is used. To guarantee an

approximately constant length of the column vectors in B, y is adapted by using a
factor cm. Based on its parents x, an offspring is then created as follows:

x0 D xC ı � 
 � y where y D cm � BN.0; I/

The adaptation of endogenous strategy parameters is based on the selected ysel

and 
sel. The column vectors of matrix B are updated according to:

b01 D .1 � c/ � b1 C c � .cu
selysel/

b0iC1 D bi 8i 2 f1; : : : ; m � 1g

Like with the previous versions of derandomized evolution strategies, the global
step size ı is adapted based on the selected 
sel, by using a damping exponent ˇ:

ı0 D ı � .
sel/
ˇ

For the exogenous parameters, the standard settings are given in [33] as follows:

c D
p

1=n

ˇ D p
1=n

m D 3

2
n2

cm D .1=
p

m/.1C 1=m/

cu D
p

.2 � c/=c

� D 10

The corresponding pseudocode of the DR3 evolution strategy is provided in
Algorithm 2.7.

16The column vectors of the matrix B form a so-called generating set, which motivates the
terminology generating set adaptation.
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Algorithm 2.7 DR3
initialize x, ı, B .0; N .0; .1=n/I// 2 R

n�m

t  0

repeat
t  t C 1

for i D 1! � do
zi  N.0; I/ where zi 2 R

m

yi  cm � Bzi

xi  xC ı � 
i � yi where P.
i D 2=3/ D P.
i D 3=2/ D 1=2


i  f .xi /

end for
sel i with best value of 
i

b .1� c/ � b1 C c � .cu
selysel/

ı0  ı � .
sel/
ˇ

B0  .b; b1; : : : ; bm�1/

x xsel, ı ı0 and B B0

until termination criterion fulfilled

2.2.2 Modern Evolution Strategies

2.2.2.1 .�W ; �/-CMA-ES

Algorithms DR1, DR2 and DR3, as described in Sect. 2.2.1, are derandomized
evolution strategies in the sense of adapting endogenous strategy parameters
depending on the selected mutation vector. This has also been called the first level
of derandomization [63]. In addition, the second level of derandomization aims at
the following goals [63]:

• Increase the probability of generating the same mutation step again.
• Provide a direct control mechanism for the rate of change of strategy parameters.
• Keep the strategy parameters unchanged in case of random selection.

The so-called CMA-ES, as introduced in [31], meets these goals by means of
two techniques, namely the covariance matrix adaptation, CMA and the cumulative
step size adaptation, CSA, for adapting a global step size. The description of
a CMA-ES as provided in [31] is focused on explaining these two techniques,
and recombination in case of � > 1 is not discussed at all. Therefore, we
will discuss the CMA-ES in this section as a .�W ; �/-CMA-ES with weighted
intermediary recombination, as described in [29] and [32].17 Using the notation for
evolution strategies as introduced in Sect. 2.1.2, the algorithm ought to be denoted
more precisely as .�=�W ; �/-CMA-ES, with index W denoting the weighted
recombination. However, the simplified notation is motivated by arguing that the
notation �=�W suggests two different numbers (� and �W ), although it is � in

17According to [32], the suggestion to use weighted recombination within the CMA-ES is due to
Ingo Rechenberg, based on personal communication in 1998.
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both cases. Here, we adopt the simplified notation, and denote the CMA-ES with
weighted recombination as .�W ; �/-CMA-ES.

Based on a parent x, an offspring x0 is then generated as follows:

x0 D xC 	BDz where z D N.0; I/

Matrices B and D result from an eigendecomposition of the covariance matrix C
according to Eq. 2.7, and 	 2 R denotes the global step size. After generating and
evaluating an offspring population of size � according to this mutation operator, the
� best individuals of the offspring population are selected and undergo weighted
intermediary recombination.

Weighted intermediary recombination is a generalization of classical global
intermediary recombination. Weighted intermediary recombination is based on
using � weights w1 � w2 � : : : � w� with

P�
iD1 wi D 1 for generating the

new parent hxi and the best mutation step hyi as weighted averages:

hxi D
�X

iD1

wi xi W�

hyi D
�X

iD1

wi BDzi W�

For adapting the strategy parameters, the so-called variance effective selection
mass �eff is required:

�eff D
 

�X

iD1

w2
i

!�1

According to [29], 1 � �eff � � holds, and for identical weights wi D 1
�

(8i 2 f1; : : : ; �g): �eff D �. In analogy with Eq. 2.13 for DR2, the strategy
parameter adaptation techniques, CMA and CSA, use so-called evolution paths
for accumulating strategy parameter information across several generations. The
.�W ; �/-CMA-ES uses two evolution paths, pc for the adaptation of the covariance
matrix and p	 for global step size adaptation. The evolution paths are updated as
follows:

p0c D .1 � cc/ � pc C h	

q
cc.2 � cc/�eff hyi

p0	 D .1 � c	 / � p	 C
q

c	 .2 � c	 /�eff BD�1BT hyi

For updating pc , the function h	 is used, which is defined according to:

h	 D
8
<

:

1 if kp	 kp
1�.1�c	 /2.tC1/

<
�

7
5
C 2

nC1

�
E.kN.0; I/k/

0 otherwise
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The purpose of h	 is to avoid an update of pc to take information of the
current generation t into account, when kpck becomes too large. The expectation
E.kN.0; I/k/ of the length of a multivariate, normally distributed vector of dimen-
sionality n, can be approximated (based on the gamma function18) as follows:

E.kN.0; I/k/ D p2�.
nC 1

2
/=�.

n

2
/ 
 pn

�

1 � 1

4n
C 1

21n2

�

The covariance matrix adaptation is performed according to the equation below:

C0 D .1 � cl � c�/CC cl .pcpT
c C ı.h	 /C/C c�

�X

iD1

wi yi W�yT
i W� (2.14)

The first term in the summation represents the contribution of the previous
covariance matrix. The second term is called the rank-one-update and takes the
information accumulated in the evolution path pc into account. The third term, the
so-called rank-�-update, was introduced with the extension of the CMA-ES for
population sizes with � > 1 [46]. The global step size 	 is updated according to:

	 0 D 	 � exp

�
c	

d	

� kp	k
E.kN.0; I/k/ � 1

��

For the exogenous strategy parameters of the .�W ; �/-CMA-ES, the following
standard settings are defined in [29]:

� D 4C b3 ln nc

� D b�
2
c

wi D
ln . �C1

2
/� ln i

P�
jD1 ln . �C1

2
/� ln j

for i 2 f1; : : : ; �g

c	 D �eff C 2

nC �eff C 5

d	 D 1C 2 max

 

0;

r
�eff � 1

nC 1

!

C c	

cc D 4C �eff =n

nC 4C 2�eff =n

18See [17]: �.n/D R
1

0 xn�1 exp.�x/ dx.
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Algorithm 2.8 .�W ; �/-CMA-ES
initialize hxi
pc  0
p	  0
C I
t  0

repeat
t  t C 1

B and D eigendecomposition of C
for i D 1! � do

zi  N.0; I/
yi  BDzi

xi  hxi C 	yk

fi  f .xi /

end for
hyi  P�

iD1 wi yiW�

hxi  hxi C 	hyi DP�
iD1 wi xiW�

p	  .1� c	 /p	 Cpc	 .2� c	 /�eff BD�1BT hyi
	  	 � exp

�
c	

d	

�
kp	 k

EkN.0;I/k � 1
��

pc  .1� cc/pc C h	

p
cc.2� cc/�eff hyi

C .1� c1 � c�/CC c1.pcpT
c C ı.h	 /C/C c�

P�
iD1 wi yiW�yT

iW�

until termination criterion fulfilled

c1 D 2
�
nC 13

10

�2 C �eff

c� D min

�

1 � c1; ˛�

�eff � 2C 1=�eff

.nC 2/2 C ˛��eff =2

�

with ˛� D 2

Putting it all together, the pseudocode of the .�W ; �/-CMA-ES is given in
Algorithm 2.8.

2.2.2.2 LS-CMA-ES

The LS-CMA-ES [6] is a .1; �/-ES implementing the idea to adapt the covariance
matrix C based on the inverse Hessian H�1. The Hessian itself is estimated by
solving the appropriate least squares estimation problem. Based on Theorem 5 in
[55], it is known that this requires at least m � 1

2

�
n2 C 3nC 4

�
tuples .x; f .x//. To

achieve this, the algorithm saves all tuples .x; f .x// in an archive A. Based on the
Taylor series expansion (Eq. 2.12), the least squares estimation problem is defined
through the following minimization task:

min
g2Rn;H2Rn�n

mX

kD1

�

f .xk/� f .x0/� .xk � x0/
T g � 1

2
.xk � x0/

T H.xk � x0/

�2

(2.15)
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The result of minimizing 2.15 provides estimators Og for the gradient and OH for
the Hessian.

Since the Taylor series expansion up to the quadratic term provides only an
approximation of the true fitness landscape at x0, we are also interested in obtaining
an error measure Q. Og; OH/ of the estimate for deciding whether OH�1 can be used for
covariance matrix adaptation. The following error measure is used for this purpose:

Q. Og; OH/ D 1

m

mX

kD1

 
f .xk/� f .x0/� .xk � x0/

T Og � 1
2
.xk � x0/

T OH.xk � x0/

f .xk/ � f .x0/ � .xk � x0/T Og

!2

(2.16)

Unfortunately, solving Eq. 2.15 and inverting OH by means of numerical methods
requires algorithms with time complexity O.n6/, so that, especially for large n, an
execution of these steps in each generation is not affordable. To solve this problem,
the LS-CMA-ES provides two different working modes, denoted LS and CMA, for
adapting the covariance matrix.

In mode LS, an approximation of H is performed only each nupd generations.19 If
the error Q falls below a required threshold Qt , the covariance matrix C D 1

2
OH�1 is

used by the algorithm and remains unchanged until a new update after another nupd

generations is performed.
If Q is bigger than the threshold value Qt , the LS-CMA-ES switches into mode

CMA. Before explaining this mode, the creation of an offspring x0 from the parent
hxi is defined below:

x0 D hxi C 	dN.0; C/ where d D exp.�N.0; 1//

In addition to the covariance matrix C, a global step size 	 is used, which is
updated by mutative step size adaptation. If b denotes the index of the best offspring,
the global step size is changed according to 	 0 D 	 � db . Adapting the covariance
matrix C is based on a rank-one update (i.e., the second term in Eq. 2.14) by using
an evolution path pc :

p0c D .1 � cc/ � pc C
p

.cc.2 � cc//

	
.xb � hxi/

C0 D .1 � ccov/ � CC ccovpc.pc/T

The evolution path pc is also updated when operating in mode LS, to make sure C
is updated based on up-to-date information when the algorithm switches into mode
CMA.

The pseudocode of the LS-CMA-ES is given in Algorithm 2.9, and the exoge-
nous strategy parameters are set as follows:

19With the additional condition for A to consist of at least m D n2 tuples.
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� D 10

� D 1p
n

nupd D 100

Qt D 10�3

cc D 4

nC 4

ccov D 2

.nCp2/2

2.2.2.3 LR-CMA-ES

The LR-CMA-ES (local restart) extends the .�W ; �/-CMA-ES by introducing
restarts [4]. The strategy introduces five criteria for identifying stagnation of the
optimization process and, in case of stagnation, starts a new run of the .�W ; �/-
CMA-ES. Each run of the .�W ; �/-CMA-ES initializes the starting point of the
search and the strategy parameters anew, so that the runs are independent of each
other. For defining the termination criteria, the tolerance values Tx D 	10�12 and
Tf D 10�12 are used. Any other exogenous parameters are the same as in the
.�W ; �/-CMA-ES.

The first termination criterion, called equalfunvalhist, is satisfied if either the
best fitness values f .x1W�/ of the last d10C 30n=�e generations are identical or the
difference between their maximum and minimum values is smaller than Tx .

The second criterion, TolX, is satisfied if the components of the vector v D 	pc

are all smaller than Tx, i.e., vi < Tx 8i 2 f1; : : : ; ng.
The third criterion, noeffectaxis, takes changes with respect to the main coor-

dinate axes induced by C into account. These are given by the eigenvectors ui and
eigenvalues �i , i 2 f1; : : : ; ng, of C, and they are found (normalized) in the columns
of matrix B and the main diagonal elements of D. The termination criterion does not
check all main axes at once, but in generation t it takes the axis i D t mod n into
account. It is satisfied when 	

10

p
�iui 
 0.

The fourth criterion, noeffectcoord, analyzes changes with respect to the coordi-
nate axes. It is satisfied if 	

5
Ci;i 
 0 8i 2 f1; : : : ; ng.

Finally, the criterion conditioncov checks whether the condition number of the
matrix C, cond.C/ D max.f�1;:::;�ng/

min.f�1;:::;�ng/ exceeds 1014.
The pseudocode of the LR-CMA-ES, as shown in Algorithm 2.10, consists

of a simple outer loop managing the restarts of the .�W ; �/-CMA-ES. The local
termination criteria are exactly the five criteria introduced above for discovering
stagnation. In contrast, the global termination criterion is the same as used in
previous sections, see Sect. 2.1.2.
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Algorithm 2.9 LS-CMA-ES
initialize hxi, 	

C I
Archive A ;
pc  0
mode LS
t  0

repeat
t  t C 1

B and D eigendecomposition of C
for i D 1! � do

di  exp .�N.0; 1//

xi  hxi C 	 � di BDN.0; I/
fi  f .xi /

A A[ f.xi ; fi /g
end for
b index of best offspring
	  	 � db

pc  .1� cc/pc C
p

cc .2�cc/

	
.hxi � xb/

if mode = LS then
C unchanged

else if mode = CMA then
C .1� ccov/CC ccovpcpT

c

end if
if t modulo nupd D 0 then

Obtain Og and OH based on the last n2 tuples of A by solving Equation 2.15 where x0 D hxi.
Obtain Q.Og; OH/ from Equation 2.16
if Q.Og; OH/ < Qt then

mode LS

C 
�

1
2
OH
�

�1

else
mode CMA

end if
end if
hxi  xb

until termination criterion fulfilled

Algorithm 2.10 LR-CMA-ES
repeat

execute .�W ; �/-CMA-ES (Algorithm 2.8) using the local termination criteria
until global termination criterion satisfied

2.2.2.4 IPOP-CMA-ES

The IPOP-CMA-ES [5] is an extension of the LR-CMA-ES as described in the
previous section. Whenever a run of the .�W ; �/-CMA-ES is terminated due to a
local termination criterion (as introduced for LR-CMA-ES), the population size is
increased by a factor � for the next run of the .�W ; �/-CMA-ES. This strategy is
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Algorithm 2.11 IPOP-CMA-ES
repeat

execute .�W ; �/-CMA-ES (Algorithm 2.8) using the local termination criteria
� � � �
� � � �

until global termination criterion satisfied

motivated by empirical investigations of the behavior of the .�W ; �/-CMA-ES with
different population sizes for multimodal test functions [30]. As these investigations
clarified, the global convergence properties of the algorithm improve with increasing
population size. The corresponding pseudocode is given in Algorithm 2.11. When
using non-integer values for �, the new number of parents � and offspring � are
obtained by rounding. For �, the interval

�
3
2
; 5
	

is identified as a reasonable range,
and the default value � D 2 is recommended.

2.2.2.5 (1C1)-Cholesky-CMA-ES

The (1C1)-Cholesky-CMA-ES [38] introduces a method for adapting the covari-
ance matrix C implicitly, without using an eigendecomposition of C. Consequently,
the approach reduces the computational complexity within each generation from
O.n3/ to O.n2/.

The algorithm is based on the so-called Cholesky decomposition20 of the
covariance matrix, C D AAT . As proven in [38], an update of the Cholesky
factors A is possible without explicit knowledge of the covariance matrix C. The
corresponding lemma and theorem are stated here without proof. The lemma states

that, for any vector v 2 R
n and & D 1

kvk2
�p

1C kvk2 � 1
�

, the following equation

holds:

IC vvT D �IC &vvT
� �

IC &vvT
�

This lemma is required for the proof of the following theorem:

Theorem 2.2.1. Let C 2 R
n be a symmetric, positive definite matrix with Cholesky

decomposition C D AAT . Let C0 D ˛CC ˇvvT be an update of C with v; z 2 R
n,

v D Az and ˛; ˇ 2 R
C. The updated Cholesky factor A0 of C0 is then given by

A0 D p˛AC
p

˛

kzk2
�q

1C ˇ

˛
kzk2 � 1

�

.Az/ zT .

Based on a parent individual x, an offspring x0 is then created according to:

x0 D xC 	Az with z D N.0; I/

20Compare Sect. 19.2.1.2 in [17].
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Using Theorem 2.2.1, the Cholesky factor A is adapted as follows:

A0 D caAC ca

kzk2
 s

1C .1 � c2
a/kzk2

c2
a

� 1

!

AzzT ;

with a constant exogenous strategy parameter ca. The adaptation above is applied if
the value of a measure Nps (explained in the following) is smaller than a threshold
value pt .

The adaptation of the global step size ı is in some ways similar to the 1/5-
success rule of the (1C1)-ES (see Sect. 2.2.1). If the offspring is better than the
parent, �s D 1 in the equation below, otherwise, �s D 0. These success indicators
are accumulated across generations by using a learning rate cp , resulting in an
accumulated success rate Nps:

Nps D .1� cp/ Nps C cp�s

Using this measure and its target value pt
s for the success rate, the global step

size 	 is updated as follows:

	 0 D 	 � exp

�
1

d

�

Nps � pt
s

1 � pt
s

.1� Nps/

��

The pseudocode is given in Algorithm 2.12, and the default settings of the
exogenous strategy parameters are:

pt
s D

2

11

pt D 11

25

ca D
r

1 � 2

n2 C 6

cp D 1

12

d D 1C 1

n

2.2.2.6 Active-CMA-ES

The .�W ; �/-CMA-ES uses weighted recombination of the � best offspring to
generate a new point in the search space. As shown by Rudolph [57], the con-
vergence velocity of an evolution strategy can be further increased by also taking
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Algorithm 2.12 (1C1)-Cholesky-CMA-ES
initialize x, 	

A I
Nps  pt

s

repeat
z N.0; I/
x0  xC 	Az
if f .x0/ � f .x/ then

�s  1

else
�s  0

end if
Nps  .1� cp/ Nps C cp�s

	  	 � exp
�

1
d

�
Nps � pt

s

1�pt
s
.1� Nps/

��

if f .x0/ � f .x/ then
x x0

if Nps � pt then

A caAC ca

kzk
2

 r

1C .1�c2
a/kzk

2

c2
a

� 1

!

AzzT

end if
end if

until termination criterion satisfied

the worst offspring into account for recombination, however, with negative weights.
The Active-CMA-ES [40] is based on this idea,21 however, it is not used during the
process of recombination,22 but exclusively for adapting the covariance matrix.
Therefore, the corresponding extension of the .�W ; �/-CMA-ES mainly consists
of changing the covariance matrix adaptation method, modifying Eq. 2.14 of the
.�W ; �/-CMA-ES within the Active-CMA-ES into:

C0 D C .1 � cc/CC ccpcpT
c C ˇZ where

Z D BD

0

@ 1

�

�X

kD1

zkW�zT
kW� �

1

�

�X

kD���C1

zkW�zT
kW�

1

A .BD/T

In addition, the exogenous parameter cc is now modified to cc D 2

.nCp2/2
.

The parameter ˇ has been tuned by means of an empirical investigation, which
is described in detail in [39]. Its setting of ˇ D 4��2

.nC12/2C4�
reflects a compromise

between the conflicting goals of achieving a large convergence velocity on the one

21The term active is motivated by the fact that specifically the bad offspring individuals play an
active role, although they would normally not be taken into account after selection has been applied.
22This is explicitly avoided due to the occurrence of numerical instabilities for certain objective
functions; see [40].
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Algorithm 2.13 Active-CMA-ES
initialize hxi
pc  0
p	  0
C I
t  0

repeat
t  t C 1

B and D from eigendecomposition of C
for i D 1! � do

zi  N.0; I/
yi  BDzi

xi  hxi C 	yk

fi  f .xi /

end for
hyi  P�

iD1 wi yiW�

hxi  hxi C 	hyi DP�
iD1 wi xiW�

p	  .1� c	 /p	 Cpc	 .2� c	 /�eff BD�1BT hyi
	  	 � exp

�
c	

d	

�
kp	 k

EkN.0;I/k � 1
��

pc  .1� cc/pc C h	

p
cc.2� cc/�eff hyi

Z BD
�

1
�

P�

kD1 zkW�zT
kW� � 1

�

P�
kD���C1 zkW�zT

kW�

�
.BD/T

C .1� cc/CC ccpcpT
c C ˇZ

until termination criterion satisfied

hand and ensuring that C remains positive definite, to drive the evolution strategy
into a robust working regime. The pseudocode is provided in Algorithm 2.13, and
the default settings of the exogenous strategy parameters are, except for cc and ˇ,
identical to those used in the .�W ; �/-CMA-ES.

2.2.2.7 .�,�/-CMSA-ES

The .�,�/-CMSA-ES [13], more precisely denoted the .�=�I ; �/-CMA-	-SA-ES,
reintroduces self-adaptation of the global step size 	 , just like in the .�; �/-MSC-
ES, into the algorithm. This approach is motivated by the fact that reintroducing
self-adaptation decreases the number of exegenous strategy parameters to two,23

consequently providing a simplification of the .�W ; �/-CMA-ES, which requires
five exogenous strategy parameters. Offspring individuals xi and their step sizes
	i , i 2 f1; : : : ; �g, are created based on the parent x, the global step size 	 , and
the matrices B and D (from an eigendecomposition of the covariance matrix C), as
follows:

23Population sizes � and � are not counted.
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	i D 	 � exp .�N.0; 1//

si D BDN.0; I/

zi D 	i � si

xi D xC zi

Recombination is based on identical weights 1=�, resulting in averaging the �

best offspring. It is applied to the vectors zi W�, si W�, and step sizes 	i W�, for i 2
f1; : : : ; �g, and results in the vectors hzi, hsi and the new global step size 	 . The
new parent x0 is then obtained as x0 D xC hzi. Vector hsi is required for adapting
the covariance matrix C, and its update uses the learning rate �C by proceeding as
follows:

C0 D
�

1 � 1

�C

�

CC 1

�C

hsihsiT (2.17)

The default settings of the exogenous strategy parameters are:

� D max
�j n

10

k
; 2
�

� D 4�

� D 1p
2n

�C D 1C n.nC 1/

2�

The pseudocode of the corresponding .�,�/-CMSA-ES is given in Algorithm 2.14.

2.2.2.8 sep-CMA-ES

The sep-CMA-ES [54] is a variation of the .�W ; �/-CMA-ES which reduces space
and time complexity to reach O.n/, i.e., linear in n. This is achieved by using,
instead of an arbitrary covariance matrix, just a diagonal matrix D as in Eq. 2.10.
Consequently, this kind of evolution strategy is not able anymore to generate
correlated mutations, in return for the advantage of saving the computationally
intensive eigendecomposition of the covariance matrix C. D can then be obtained
from C by taking the square roots of the main diagonal elements of C. The
covariance matrix is adapted according to the following update rule:

C0 D .1 � ccov/CC 1

�eff
ccovpc.pc/T C ccov

�

1 � 1

�eff

� �X

iD1

wi Dzi W�.Dzi W�/T



2.2 Algorithms 33

Algorithm 2.14 .�,�/-CMSA-ES
initialize x, 	

C I
h	i  	

repeat
B and D from eigendecomposition of C
for i D 1! � do

	i  h	i exp �N.0; 1/

si  BDN.0; I/
zi  	i � si

yi  xC zi

fi  f .yi /

end for
hzi  average of the best � zi ; i 2 f1; : : : ; �g
hsi  average of the best � si ; i 2 f1; : : : ; �g
h	i  average of the best � 	i ; i 2 f1; : : : ; �g
x xC hzi
C 

�
1� 1

�C

�
CC 1

�C
hssT i

until termination criterion satisfied

Due to the reduced complexity of the covariance matrix, the learning rate ccov

can be increased to accelerate the adaptation process. The learning rate ccov is then
set as follows:

ccov D nC 2

3

�
1

�eff

2

.nCp2/2
C .1 � 1

�eff
/ min

�

1;
2�eff � 1

.nC 2/2 C �eff

��

All other settings of the sep-CMA-ES are identical to those used within the
.�W ; �/-CMA-ES. The resulting pseudocode of the sep-CMA-ES is shown in
Algorithm 2.15.

2.2.2.9 .1 C
;
�s

m/-ES

The .1C
;
�s

m/-ES [16] introduces the two new concepts of mirrored sampling
and sequential selection. These two mutually independent concepts change the
algorithmic processes of offspring creation and their selection, and thus they do
not establish a complete evolution strategy. The concept of mirrored sampling can
be used within a .1 C �/-ES as well as a .1; �/-ES. The application of sequential
selection is only possible in the case of a plus-strategy, explaining also the use of
the notation C

;
. Furthermore, the indices s and m of � represent the algorithmic

concepts of sequential selection (s) and mirrored sampling (m), respectively.
The idea of mirrored sampling is to generate part of the offspring in a derandom-

ized way by generating for a mutation vector z not only the offspring xC z, but also
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Algorithm 2.15 sep-CMA-ES
initialize hxi
C I
D I
p	  0
pc  0
t  0

repeat
t  t C 1

for i D 1! � do
zi  N.0; I/
xi  hxi C 	Dzi

end for
hxi  P�

iD1 wi xiW�

hzi  P�
iD1 wi ziW�

p	  .1� c	 /p	 Cpc	 .2� c	 /
p

�eff hzi
if kp	 kp

1�.1�c	 /2t
<
�

7
5
C 2

nC1

�
E.kN.0; I/k/ then

H	  1

else
H	  0

end if
pc  .1� cc/pc CH	

p
cc.2� cc/

p
�eff Dhzi

C .1� ccov/CC ccov
�eff

pcpT
c C cc

�
1� 1

�eff

�P�
iD1 wi DziW� .DziW�/T

	  	 exp
�

c	

d	

�
kp	 k

E.kN.0;I/k � 1
��

D D diag
�p

C1;1; : : : ;
p

Cn;n

�

until termination criterion satisfied

the additional offspring x�z. These two offspring are obviously symmetrical24 with
respect to x. As a potential application, mentioned in [3], mirrored sampling can
increase the robustness of the Evolutionary Gradient Search algorithm and increase
convergence velocity in the sphere model. Theoretical convergence rates for variants
of the .1C

;
�s

m/-ES have been derived; see [16] for the corresponding results.
Sequential selection can be used to reduce the number of function evaluations.

It is applied within a .1C �/-ES by sequentially executing the steps mutation and
evaluation for single offspring individuals, rather than generating all � offspring first
and then evaluating their fitness. In sequential selection, as soon as an offspring has
a better fitness than the parent, the offspring can replace the parent, and no more
offspring need to be generated and evaluated. In this way, up to � � 1 function
evaluations can potentially be saved at each generation.

The two concepts can be used independently of each other, or in combination.
As explained before, the .1C

;
�s

m/-ES does not constitute a complete evolution
strategy, but rather a method for generating the parent hxi0 for the next generation
based on the previous parent hxi and a method mutationOffset, which generates a

24Instead of the term symmetrical, this is called mirrored in the context of this strategy.
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Algorithm 2.16 (1C
;
�s

m)-ES

Input: search point hxi and a method mutationOffset
Output: new search point hxi0

i  0

j  0

while i < � do
i  i C 1

j  j C 1

if (mirrored sampling) ^ (j modulo 2 D 0) then
xi  hxi � zi

else
zi  mutationOffset()
xi  hxi C zi

end if
if (sequential selection) ^ (f .xi / < f .hxi/) then

j  0

break
end if

end while
hxi0 argmin .ff .x1/; : : : ; f .xi /g/

mutation step and is determined by the underlying evolution strategy. The approach
is summarized in pseudocode in Algorithm 2.16.

2.2.2.10 xNES

The xNES algorithm (exponential natural evolution strategies) [26] is a .1; �/-ES
which adapts its endogenous strategy parameters by using the so-called natural
gradient (see [1]). The idea was implemented for the first time in the context of NES
(natural evolution strategies) [71] and was then developed further by introducing the
eNES (efficient natural evolution strategies)25 [66].

In the following, the underlying ideas of the xNES are briefly summarized,
without giving detailed descriptions of the underlying concepts, such as, e.g., the
Fisher information matrix. These fundamentals can be found in the original work of
Glasmachers et al. and the corresponding references, see [26].

This family of evolution strategy algorithms also relies on the multivariate normal
distribution N.hxi; C/ for generating correlated mutations of the current search
point hxi. Similar to the .1 C 1/-Cholesky-CMA-ES (see Sect. 2.2.2.5), rather
than working with the covariance matrix C explicitly, a Cholesky factor A with
C D AAT is used. The current search point and the covariance matrix are combined
to form the tuple � D .hxi; C/, representing the quantities subject to adaptation
within an xNES. Rewriting the probability density function of a normal distribution

25In [26] the eNES are called exact natural evolution strategies.
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as a function of the current search point hxi and the Cholesky factor A, its probability
density N.hxi; C/ turns into:

p .xj�/ D 1
�p

2�
�n

det A
� exp

�

�1

2




A�1 � .x � hxi/

2

�

Given the distribution described by � , the expectation J.�/ of the fitness
becomes:

J.�/ D E.f .x/j�/ D
Z

f .x/p.xj�/dx

The gradient of the expectation J.�/, r� J.�/, can be calculated by using the
so-called log-likelihood trick according to

r� J.�/ D
Z

.f .x/r log .p.xj�/// p.xj�/dx;

which can be approximated by Monte Carlo estimation based on the offspring
individuals xi , i 2 f1; : : : ; �g:

r� J.�/ 
 1

�

�X

iD1

f .xi /r log .p.xj�//:

For calculating the term r log .p.xj�//, we refer to [67]. Combining this with
the Fisher information matrix (FIM) F 2 R

N�N , where N D nC n.nC 1/=2, the
natural gradient G is obtained as:

G D F�1r� J.�/

Use of G is motivated by the fact that it is invariant with respect to linear
transformations, so that the gradient converges in a correlated search space pretty
much like in an isotropic one.

The NES suffer from the disadvantage of their impracticable computational
complexity of O.n6/, caused by the explicit calculation of the FIM and its inversion.
In contrast, the xNES do not require an explicit calculation of the FIM anymore.
Based on using a so-called exponential parameterization (see Sect. 4.1 in [26]) a
transformation of � into natural coordinates (see Sect. 4.2 in [26]) is applied. Using
step size ı and Cholesky factor B, an offspring x is then generated from the parent
hxi according to:

x D hxi C ıBz where z D N.0; I/ (2.18)
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Similar to weighted recombination, the xNES uses so-called utility values ui .
This approach is also called fitness shaping in the context of an xNES. Using the
rank i given by the fitness values, utility values are calculated as follows:

ui D max
�
0; log

�
�

2
C 1

�� log.i/
�

P�
jD1 max

�
0; log

��

2
C 1

� � log.i/
� � 1

�

Using the mutation vectors zi from Eq. 2.18, the gradients GM for the covariance
matrix and Gı for the current search point are defined by:

GM D 1

2

�X

iD1

ui

�
zizT

i � I
�

Gı D
�X

iD1

uizi

For calculating the gradients, all � offspring individuals are taken into account,
i.e., a selection in the classical sense is not applied. Using those gradients and the
learning rates �x , �	 and �B , the new search point hxi0, the new step sizes 	 0, and
the new Cholesky factor B0 are calculated:

hxi0 D hxi C �x �Gı

	 0 D 	 � exp

 
�	

2n
� tr
 

�X

iD1

ui �
�
zi zT

i � I
�
!!

B0 D B � exp
��B

2
�GM

�

Here, the exponential function of a matrix A is defined by exp.A/ D P1
nD0

An

nŠ
,

see [26].
The resulting pseudocode of the xNES is given in Algorithm 2.17. The default

parameters of the exogenous strategy parameters are as follows:

� D 4C b3 log.n/c
�x D 1

�	 D 3

5
� 3C log.n/

n
p

n

�B D �	



38 2 Evolution Strategies

Algorithm 2.17 xNES
initialize hxi
B I
	  d

pj det Bj
for i D 1! � do

ui  max .0;log. �
2 C1/�log.i//

P�
j D1 max .0;log. �

2 C1/�log.i//
� 1

�

end for
repeat

for i D 1! � do
zi  N.0; I/
xi  hxi C 	Bzi

end for
sort f.zi ; xi /g by f .xi /

Gı  P�
iD1 ui � zi

GM  P�
iD1 ui � �zi zT

i � I
�

G	  tr.GM /=n

GB  GM �G	 � I
hxi  hxi C �x � 	B �Gı

	  	 � exp
�
G	 � �	

2

�

B B � exp
�
GB � �B

2

�

until termination criterion satisfied

2.2.2.11 (1C1)-Active-CMA-ES

Extending the (1C1)-Cholesky-CMA-ES with the idea of the Active-CMA-ES
to take information of unsuccessful offspring into account for covariance matrix
adaptation consequently leads to the development of a hybrid, the (1C1)-Active-
CMA-ES [2]. Instead of using an explicit covariance matrix C D AAT , the
(1C1)-Active-CMA-ES works directly with the Cholesky factor A and its inverse
A�1. The update of A has been defined previously, based on Theorem 2.2.1. In order
to use A�1, an extended version of this theorem is required, which we state below
(without proof, see [2]):

Theorem 2.2.2. Let C 2 R
n�n be a symmetric, positive definite matrix with

Cholesky decomposition C D AAT , and let C0 D ˛C C ˇvvT be an update
transformation of C where v 2 R

n n f0g, ˛ 2 R
C and ˇ 2 R. Let w D A�1v

with ˛ C ˇkwk2 > 0 and let C0 D A0A0T be the Cholesky decomposition of
the updated matrix C0. Then, the Cholesky factor A0 and its inverse A0�1 are

obtained as follows: A0 D p˛A C
p

˛

kwk2
�q

1C ˇ

˛
kwk2 � 1

�

AwwT and A0�1 D
1p
˛

A�1 � 1p
˛kwk2

�

1 � 1p
1Cˇkwk2=˛

�

wwT A�1.

The offspring x0 is generated from its parent x according to:

x0 D xC 	Az where z D N.0; I/
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As for the (1C1)-Cholesky-CMA-ES, the success rate ps , i.e., the fraction of
successful mutations, is updated by taking the learning rate cp into account:

p0s D
(

.1 � cp/ps C cp if f .x0/ � f .x/

.1 � cp/ps if f .x0/ > f .x/

Based on the success rate ps , a damping parameter d 2 R
C and the target success

rate pt , the global step size 	 is updated as follows:

	 0 D 	 � exp

�
1

d

ps � pt

1 � pt

�

The algorithm uses pt D 2
11

which makes the update similar to the 1/5-success rule
update mechanism of the (1C1)-ES.

If the offspring performs better than its parent, a positive Cholesky update is
applied. In contrast to the (1C1)-Cholesky-CMA-ES, which uses the mutation step
z for this update, the (1C1)-Active-CMA-ES relies on a search path s, accumulating
successful mutation steps with a learning rate c and updating s as follows:

s0 D .1 � c/sCpc.2 � c/Az

With a constant cCc > 0 and the vector w D A�1s, the positive update of matrices
A and A�1 can now be defined according to Theorem 2.2.2:

A0 D aAC b.Aw/wT and (2.19)

A�10 D 1

a
A�10 � b

a2 C abkwk2 w.wT A�1/ where (2.20)

a D
q

1 � cCc and

b D
p

1 � cCc
kwk2

 s

1C cCc
1 � cCc

kwk2 � 1

!

In the case of an Active-CMA-ES, the � � � worst individuals are used for the
negative update of the covariance matrix, and these individuals can be called the
“especially bad” individuals. In the case of the corresponding (1C1)-strategy, as
introduced here, this definition is not applicable. Instead, the (1C1)-Active-CMA-
ES stores past function evaluations and defines an individual to be “especially bad”,
if its fitness value is worse than the fitness of its k-th predecessor. For an “especially
bad” offspring, a negative update according to Eqs. 2.19 and 2.20 is performed,
using modified values of the coefficients a and b. In contrast to the positive update,
rather than the transformed search path w D A�1s the vector z is used for the
negative update:
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a D p
1C c�c

b D
p

1C c�c
kzk2

 s

1 � c�c
1 � c�c

kzk2 � 1

!

To ensure a positive definite covariance matrix, 1 � c�

c

1Cc�

c
kzk2 > 0 needs to

hold for the constant c�c . Moreover, the convergence behavior of the algorithm
can become unstable if the value of 1 � c�

c

1Cc�

c
kzk2 is very close to zero. As a

countermeasure, in case of 1 � c�

c

1Cc�

c
kzk2 < 1=2, the value of c�c is provided with

an upper bound of 1=.2kzk2/.
The default settings of the exogenous parameters are:

d D 1C n=2

c D 2=.nC 2/

cp D 1=12

pt D 2=11

cCc D
2

n2 C 6

c�c D
2

5.n8=5 C 1/

The pseudocode of the (1C1)-Active-CMA-ES is given in Algorithm 2.18.

2.2.2.12 (�=�W ; �iid C �m)-ES

The (�=�W ; �iidC�m)-ES [7] is based on extending the idea of mirrored sampling,
as described in Sect. 2.2.2.9 for a .1C

;
�s

m/-ES, for the case � > 1. The offspring
population size is given by the number of samples �iid (independent, identically
distributed samples from the mutation distribution) and the number of offspring,
�m (�m � �iid), which are also subject to mirroring. Using mirrored sampling in
combination with weighted recombination and cumulative step size adaptation (see
Sect. 2.2.2.1) introduces a bias with respect to the step size, i.e., the step size is more
than desirably reduced, thus potentially causing a premature stagnation effect for
the algorithm. To avoid this issue, the concept of pairwise selection is introduced,
i.e., it is made sure that recombination will not involve an offspring individual and
its mirrored version at the same time, but either one or the other.

The (�=�W ; �iid C �m)-ES introduces two different versions of mirroring,
namely random mirroring and selective mirroring. In the case of random mirroring,
denoted by (�=�W ; �iid C �rand

m )-ES, the �m offspring subject to mirroring are
randomly selected out of the total number of offspring, �iid. In the case of selective
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Algorithm 2.18 (1C1)-Active-CMA-ES
initialize x, 	 , A I, A�1  I, h 0 2 R

k

t  0

repeat
t  t C 1

z N.0; I/
y xC 	Az
if t > k then

hi  hiC1 8i 2 f1; : : : ; k � 1g
hk  f .y/

else
ht  f .y/

end if
if f .y/ � f .x/ then

x y
ps  .1� cp/ps C cp

s .1� c/sCpc.2� c/Az
w A�1s

a 
q

1� c
C

c

b 
p

1�c
C

c

kwk
2

�r

1C c
C

c

1�c
C

c
kwk2 � 1

�

A aAC b .Aw/ wT

A�1  1
a

A�1 � b
a2

CabCkwk
2 w
�
wT A�1

�

else
ps  .1� cp/ps

if h0 < f .y/ then
a p1C c�

c

b a
kzk

2

�q
1� c�

c

1Cc�

c
kzk2 � 1

�

A aAC b .Aw/ wT

A�1  1
a

A�1 � b
a2

CabCkwk
2 w
�
wT A�1

�

end if
end if
	  	 exp

�
1
d

ps�pt

1�pt

�

until termination criterion satisfied

mirroring, denoted by (�=�W ; �iid C �sel
m )-ES, the �iid offspring are first sorted by

fitness and the �m worst individuals undergo mirroring. This approach is motivated
by considering that, in a convex objective function topology, mirroring the best
offspring cannot yield any further improvement, such that it will be advantageous to
mirror the worst individuals. Moreover, since bad offspring in the case of a .�W ; �/-
ES are often generated by applying too-large mutation steps, selective mirroring
itself will also favor large mutation steps [7]. To counteract this undesired bias,
the resample length approach changes the length of the mirrored mutation step by
additionally using a second, newly sampled mutation vector z0. The mirrored version
xm of the offspring x D hxi C 	z is then created according to xm D hxi � 	 kz

0k
kzk z.

Like for the .1C
;
�s

m/-ES, theoretical results for the convergence velocity on the
sphere model have been derived, see [7]. In particular, it has been shown that, for
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Algorithm 2.19 (�=�W ; �iid C �m)-ES
initialize hxi, 	

r  0

repeat
i  0

while i < �iid do
r  r C 1

i  i C 1

xi  hxi C 	N.0; I/
end while
if selective mirroring then

x1; : : : ; x�iid D argsort
�
f .x1/; : : : ; f .x�iid /

�

end if
while i < �iid C �m do

i  i C 1

if resample length then
r  r C 1

xi  hxi � 	kN.0;I/k
kxi��m �hxij

�
xi��m � hxi

�

else
xi  hxi �

�
xi��m � hxi

�

end if
end while
x1; : : : ; x�iid D argsort.f .x1/; : : : ; f .x�iid��m /;

min ff .x�iid��mC1/; f .x�iidC1/g; : : : ;

min ff .x�iid /; f .x�iidC�m /g/
	  updateStepSize.	; x1; : : : ; x�iid ; hxi/
hxi  hxi CP�

iD1 wi .xi � hxi/
until termination criterion satisfied

the sphere model, maximum convergence velocity is achieved for a setting of r D
�m=�iid 
 0:1886, which can serve as a guideline for the fraction of offspring
individuals which should be mirrored.

The pseudocode as given in Algorithm 2.19 is based on using a method
updateStepSize26 to update the step size 	 , and weights wi 8i 2 f1; : : : ; �g, such
that

P�
iD1 wi D 1.

2.2.2.13 SPO-CMA-ES

The SPO-CMA-ES [70] is essentially a restart-version of the .�W ; �/-CMA-ES. It
is based on using sequential parameter optimization (SPO) [11] to optimize the
exogenous parameters of an evolution strategy. SPO uses methods of design of
experiments (DoE) and design and analysis of computer experiments (DACE).27

26The aforementioned techniques self-adaptation (see Sect. 2.2.1.2) or cumulative step size
adaptation (see Sect. 2.2.2.1) are suitable.
27See [70] for literature references on these topics as well as the Kriging modeling method.
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Concerning the exogenous parameters subject to sequential parameter optimiza-
tion, the number of offspring individuals28 � 2 f�def ; : : : ; 1;000g, the initial step
size 	init 2 Œ1; 5� and the so-called selection pressure �=� 2 Œ1:5; 2:5� are identified.

The pseudocode of the SPO-CMA-ES is provided in Algorithm 2.20, and the
approach is explained in the following by discussing the various methods used
in the algorithm. To begin with, using latin hypercube sampling (LHS) [68] an
initial design of experiments for the exogenous parameters is created. In the next
step (runDesign), independent runs of the .�W ; �/-CMA-ES are executed, using
the parameter sets of the DoE plan. The results, i.e., the best evaluated individual
with its fitness value, of each run is collected in the set Y . This initial phase of the
algorithm is called the exploration phase.

The next phase, called the exploitation phase, is repeated until the predefined
budget of function evaluations is reached. Using a function aggregateRuns, a
performance measure y is calculated for every run configuration in Y . Based on
these performance measure values as outputs and the corresponding parameter sets
according to the experimental plan, a Kriging model29 M is trained in the method
fitModel. This Kriging model M is then used by the method modelOptimization
to identify a new design point, e.g., by running an optimization on the Kriging
model and using the resulting point. The new design point d is then added to the
experimental plan D, and the loop is executed again. Default settings are not given
for the size of the initial experimental plan, Ninit, nor for the split of the number of
function evaluations between the two phases of the algorithm [70]. Rather, the user
of the algorithm can fix them, depending on the optimization task at hand. In the
case of noisy objective functions, the method runDesign can execute more than the
one run, in order to use, e.g., the averages as an estimation of the true fitness value.

2.3 Further Aspects of ES

So far, we have described the ES algorithms as single-criterion optimizers with
R

n as search domain and without handling of constraints. The next three sections
give summarized overviews and literature references for further aspects of ES,
namely constraint handling, binary and integer search spaces, and multiobjective
optimization.

28For �def the standard setting of a .�W ; �/-CMA-ES with �def D 4C b3 log nc is used.
29In principal, any modeling technique can be used to establish the relationship between the
exogenous parameters and the performance measure.
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Algorithm 2.20 SPO-CMA-ES
Input: box constraints l; u 2 R

n and size Ninit of the initial design
Output: final model M and best design point d�

i  0, D ;
di  LHS.l; u; Ninit/

Y  runDesign.di /

D D [ di

while function evaluation budget not exhausted do
i  i C 1

y  aggregateRuns.Y /

M fitModel.D; y/

di  modelOptimization.M/

Y  Y [ runDesign.di /

D D [ di

end while
d�  dk with the best yk 2 fy0; : : : ; yi g

2.3.1 Constraint Handling

In Sect. 2.1.1 we defined the optimization problem used throughout this book with
equality and inequality constraints as in Eq. 2.2. There are many techniques for
handling constraints ranging from simple penalty methods to more complex ones
like hybrid methods involving Lagrangian multipliers. Coello gives an overview
[18] of constraint-handling techniques to be used with Evolutionary Algorithms
but some of these methods may be applied to ES as well. A review by Kramer
[42] specializes in constraint-handling methods dedicated to ES and presents the
four techniques penalty methods, a multiobjective bioinspired approach, coordinate
alignment techniques, and metamodeling of constraints.

2.3.2 Beyond Real-Valued Search Spaces

There are many optimization problems where the search domain is not constrained
to the real domain. Especially decision problems30 use categorical search spaces,
in most cases binary search spaces, i.e., x 2 f0; 1gn, as the simplest categorical
search space. Another search space of practical use is the integer search space
representable as a subset of Z. Originally, Genetic Algorithms (see [27] or [25] for
a comprehensive introduction) were designed to handle binary search spaces, but
there are approaches to incorporate those search spaces into ES. In Sect. 2.1.3 we
named three guidelines to choose a distribution to be used for mutation. Rudolph
[56] introduces a mutation operator for integer search spaces using the difference

30For example the NP-hard Traveling Salesman Problem.
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of two geometrical distributions. Each discrete variable of a categorical search
space is assigned a probability whether to mutate or not. The new value of the
discrete variable is drawn uniformly from all possible values. The MI-ES (mixed-
integer evolution strategies) [43] solve optimization problems which are mixed
in their search domain, i.e. the search domain is a composition of real, integer
and categorical search spaces. They use the aformentioned mutation approaches
together with self-adaptation for the endogenous parameters. An overview of other
approaches for handling mixed search spaces is given by Li [43].

2.3.3 Multiobjective Optimization

In single-objective optimization fitness values can be ordered to decide whether one
solution is better than another. In multiobjective optimization, where fitness values
are represented as vectors, such a strict ordering does not exist anymore. Solutions
are partially ordered and based on the partial order solutions can be either dominated
or non-dominated by other solutions. Hence there is not a single optimum to be
found but a set of solutions which is called the Pareto set or Pareto front. For
a detailed description of these concepts see [20]. Algorithms for multiobjective
optimization have to measure how well a Pareto front is approximated. The most
common measures for this task are the crowding distance and the hypervolume
contribution. The former is used for example by NSGA-II [21] the latter by SMS-
EMOA [12].



Chapter 3
Taxonomy of Evolution Strategies

In order to provide an integrated overview of the various developments in modern
evolution strategies, this chapter provides a possible taxonomy and classification of
the algorithms. Section 3.1 starts by providing the different development strands
of evolution strategies. In Sect. 3.2, characteristics of modern evolution strategies
are identified which can be used for defining the corresponding taxonomy. Finally,
based on the properties of modern evolution strategies, practical recommendations
for their usage, depending on the particular application area, are provided in
Sect. 3.3.

3.1 Development Strands of Modern Evolution Strategies

3.1.1 Overview

Before discussing the development strands of modern evolution strategies in detail,
this section briefly identifies these development strands, starting with a general
historical overview as shown in Table 3.1. Even though this list is still not complete,
it contains a few more algorithms than we described in Chap. 2. In particular, three
evolution strategies using so-called meta-modeling approaches (i.e., approaches
to approximating the fitness function topology by means of data-driven modeling
algorithms), namely the lmm-CMA-ES, nlmm-CMA-ES, and p-sep-lmm-CMA-
ES are mentioned in the list due to the fact that these algorithms are directly
derived from the CMA-ES variants. However, the area of meta-modelling itself is
quite extensive, and therefore we have decided to omit this topic here, i.e., these
algorithms are neither described in Chap. 2, nor are they taken into account in the
empirical comparison presented in Chap. 4. However, their fundamental principles
are briefly described in Sect. 3.1.4.

Towards our goal of providing a taxonomy, Fig. 3.1 provides a summary of
the development strands of modern evolution strategies 1996–2011. The arrows in

T. Bäck et al., Contemporary Evolution Strategies, Natural Computing Series,
DOI 10.1007/978-3-642-40137-4__3, © Springer-Verlag Berlin Heidelberg 2013
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Table 3.1 Historical development of key evolution strategies

Year of publication Name Key reference(s)

1964 (1C1)-ES [59]
1973 (1C1)-ES 1/5-success rule [52]
1977 (1,�)-ES [61]
1975–1981 (�=� C

;
�)-ES [60–62]

1981 (�,�)-MSC-ES [62]
1993 DR1 [47]
1994 DR2 [48]
1995 DR3 [33]
1996 .�; �/-CMA-ES [31]
2004 LS-CMA-ES [6]
2005 LR-CMA-ES [4]
2005 IPOP-CMA-ES [5]
2006 (1C1)-Cholesky-CMA-ES [38]
2006 Active-CMA-ES [40]
2006 lmm-CMA-ES [41]
2008 .�; �/-CMSA-ES [13]
2008 NES [71]
2008 sep-CMA-ES [54]
2009 eNES [66]
2010 .1 C

;
�s

m/-ES [16]

2010 xNES [26]
2010 (1C1)-Active-CMA-ES [2]
2010 nlmm-CMA-ES [14]
2011 .�W ; �iid C �m/-ES [7]
2011 SPO-CMA-ES [70]
2011 p-sep-lmm-CMA-ES [15]

the diagram indicate advancements of algorithms. As the figure reveals, almost all
algorithms are based on the .�W ; �/-CMA-ES, with the exceptions of the family of
natural evolution strategies, i.e., NES, eNES and xNES, and the two algorithms
.�W ; �iid C �m/-ES and .1C

;
�s

m/-ES. The former, natural evolution strategies,
provide an independent approach to covariance matrix adaptation, while the latter,
.�W ; �iid C �m/-ES and .1C

;
�s

m/-ES, are more general methods for offspring
creation and selection, which can also be applied to other variants of evolution
strategies than the .�W ; �/-CMA-ES.

Concerning a potential classification, the modern evolution strategies discussed
in this book can be separated into three main groups described in the following
sections, namely:

1. Restart heuristics (see Sect. 3.1.2).
2. Methods for adaptation of mutation parameters (see Sect. 3.1.3).
3. Methods for avoiding function evaluations (see Sect. 3.1.4).
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Fig. 3.1 Development strands of modern evolution strategies

3.1.2 Restart Heuristics

In the case of multimodal objective functions, evolution strategies like any other
optimization algorithm run the risk of getting trapped in a local optimum. In such a
situation, restart heuristics can provide a decent approach for identifying a number
of different local optima through restarts and then choosing the best of the local
optima found. In general, restart heuristics are applied to an evolution strategy as
an outer loop, executing a run of the evolution strategy until stagnation is observed,
and then starting a new run, typically based on modified initial parameters for
the evolution strategy run. The execution of runs is repeated until a termination
criterion, e.g., reaching the maximum number of runs, is satisfied.

Among the modern evolution strategies described here, the LR-CMA-ES, IPOP-
CMA-ES, and SPO-CMA-ES are instances of restart heuristics.

The LR-CMA-ES (see Sect. 2.2.2.3) uses criteria for discovering stagnation, and
applies them to the .�W ; �/-CMA-ES. Except for the initial search point, none of
the parameters of the algorithm are modified between the different runs.

The IPOP-CMA-ES (see Sect. 2.2.2.4) increases the population size for each new
run, and, for the first time, changes exogenous strategy parameters between the runs.

The SPO-CMA-ES as described in Sect. 2.2.2.13 represents a broad general-
ization of the IPOP-CMA-ES, using information from stagnated runs by applying
changes to exogenous strategy parameters which are predicted by a meta-model
to yield improved success of the evolution strategy runs. The underlying idea
of sequential parameter optimization can be applied in principle to any kind
of evolution strategy, provided that ranges of the exogenous strategy parameters
subject to optimization are defined.
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3.1.3 Methods for Adapting Mutation Parameters

All of the modern evolution strategies discussed are based on using the multivariate
normal distribution for mutation, and the mutation parameters are defined by step
sizes and covariances.

In the case of the .�W ; �/-CMA-ES, the corresponding covariance matrix is
adapted by using the evolution path (rank-one-update) and a matrix Z which is
generated from the � best mutation vectors (rank-�-update). The LS-CMA-ES uses
two different modes for covariance matrix adaptation, namely, on the one hand the
adaptation algorithm of the .�W ; �/-CMA-ES, and on the other hand learning the
Hessian H from past samples1 by least squares estimation. Provided the estimation
OH of the Hessian reaches a certain quality level, C D 1

2
OH�1 is used as the covariance

matrix. This approach suffers from the fact that solving the least squares problem
takes computational effort O.n6/.

Another alternative for covariance matrix adaptation is based on incorporating
negative updates when generating matrix Z, as introduced by the Active-CMA-ES.
This approach increases convergence velocity by taking not only the � best mutation
vectors into account for calculating Z, but also in addition the ��� worst ones, with
negative sign.

Cholesky updates are an extension of the general covariance matrix adaptation
with the aim of reducing computational complexity from O.n3/ to O.n2/. This was
first implemented within the .1 C 1/-Cholesky-CMA-ES, by dropping the explicit
usage of the covariance matrix C and instead adapting the Cholesky factor A,
defined by C D AAT .

The .1 C 1/-Active-CMA-ES combines these two approaches, i.e., taking also
the � � � worst mutation vectors into account and using the Cholesky update,
thus benefiting from both the convergence velocity speedup as well as the quadratic
rather than cubic computational effort for mutation.

The xNES and its predecessors NES and eNES use a different approach for
adapting endogenous mutation parameters. They are based on using a so-called
natural gradient, which defines a direction towards better fitness in the space of
mutation parameters. The relationship between the adaptation mechanisms of a
.�W ; �/-CMA-ES and an xNES are described in Sect. 4.4 of [26].

The CMSA-ES reintroduces self-adaptation for the global step size again, and it
adapts the covariance matrix similarly to a rank-one update by using a vector which
is adapted by (equally weighted) intermediary recombination of the best mutation
steps. An evolution path is not used by this strategy.

Finally, the sep-CMA-ES introduces a radical simplification of covariance matrix
adaptation by restricting the covariance matrix to be a diagonal matrix. This reduces
computational effort to O.n/ at the expense of losing the ability to generate
correlated mutations; only anisotropic mutations can be generated.

1Samples are tuples of the form .x; f .x//.
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3.1.4 Methods for Avoiding Function Evaluations

A method developed specifically for avoiding function evaluations is the sequential
selection approach as used in the .1C

;
�s

m/-ES. For a plus-strategy, offspring
individuals are sequentially evaluated upon their creation, and as soon as an
improvement over the parent individual has been found, offspring creation and
evaluation is stopped.

Another approach relies on meta-modeling techniques, using algorithms from
data-driven modeling (see, e.g., [45] or [37]) to compute a predictive approximation
model of the objective function, based on already evaluated individuals. The model
prediction can then be used rather than a real function evaluation, provided that the
predictive quality of the model is sufficient. Estimating the accuracy of a prediction
is the key issue in meta-modeling, and typically cross-validation approaches are
used to estimate the prediction accuracy of such models. A common example is
leave-one-out cross-validation as used in [43], where of k available data points
k�1 are used for model training and the remaining one for evaluating the prediction.
Repeating this process systematically for all k points provides a fairly good measure
of model quality. However, cross-validation is computationally quite expensive,
so the meta-modeling evolution strategy algorithms2 lmm-CMA-ES [41], nlmm-
CMA-ES [14], and p-sep-lmm-CMA-ES [15] use a different approach. They are
all based on the .�W ; �/-CMA-ES and, due to the weighted recombination, do
not require exact function values, but just a prediction of the ranking of offspring.
To achieve such a ranking, the lmm-CMA-ES introduces a so-called approximate
ranking procedure, which however does not prove to achieve the desired reduction
in the number of function evaluations. The nlmm-CMA-ES develops this concept
further by using a less constrained assessment of model quality.

3.2 Characteristics of Modern Evolution Strategies

3.2.1 Computational Effort

We use the term computational effort to denote the computational complexity,
depending on the dimensionality n, of the evolution strategy within a single gen-
eration. Typically, its dominating component is given by the numerical adaptation
of the endogenous strategy parameters. For most of the modern evolution strategies,
an eigendecomposition of the covariance matrix C needs to be computed, which
causes computational complexity of O.n3/.

2lmm, nlmm, and p-sep-lmm are abbreviations for local meta model, new local meta model, and
partially separable local meta model.
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Table 3.2 Computational
complexity of modern
evolution strategies,
for a single generation

Algorithm Computational complexity

.�W ; �/-CMA-ES O.n3/

LS-CMA-ES O.n6/

.1C 1/-Cholesky-CMA-ES O.n2/

Active-CMA-ES O.n3/

.�; �/-CMSA-ES O.n3/

sep-CMA-ES O.n/

xNES O.n3/

.1C 1/-Active-CMA-ES O.n2/

Exceptions with a smaller complexity include the .1 C 1/-Cholesky-CMA-ES,
the .1C 1/-Active-CMA-ES and the sep-CMA-ES. Concerning the LS-CMA-ES, a
clearly higher and typically prohibitive complexity of O.n6/ is required; see Chap. 2
for an explanation of the reasons causing this. A brief summary of the corresponding
adaptation algorithms for endogenous strategy parameters is provided in Sect. 3.1.3,
and Table 3.2 gives an overview of the computational complexity of the key variants
of modern evolution strategies—excluding the restart heuristics, since they depend
on the underlying evolution strategy used for restarts.

3.2.2 Convergence Behavior

In this section, we provide a short summary of relevant results of empirical
investigations of modern evolution strategies concerning their convergence behav-
ior, following the results discussed in the original literature. In most cases, the
corresponding algorithm was compared to the reference algorithm, the .�W ; �/-
CMA-ES. In contrast to the empirical analysis discussed in Chap. 4, the results in
the original literature are based on a very large number of function evaluations.

According to the experiments discussed in [6], the LS-CMA-ES requires about a
factor of three to four times fewer function evaluations than the .�W ; �/-CMA-ES
in the case of elliptic functions, to reach the same level of convergence. Empirical
investigations reported in [40] show that for all objective functions tested, except
for f1 (see Table 4.1), the Active-CMA-ES performs better than the .�W ; �/-CMA-
ES. This is an indication of the general advantage of using negative updates for
covariance matrix adaptation for convergence behavior of an evolution strategy.
Moreover, negative updates seem to be of particular advantage in cases where the
eigenvalue spectrum of the Hessian of the objective function is dominated by a
single large eigenvalue [40].

Another experimental investigation of the .�; �/-CMSA-ES, published in [13],
demonstrates that the .�; �/-CMSA-ES outperforms the .�W ; �/-CMA-ES for
growing population sizes on a number of test functions. These tests, however,
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have been executed using � D 4n2, which is far larger than the default setting
� D 4C b3 ln nc of the .�W ; �/-CMA-ES.

For the sep-CMA-ES, experiments clarified an improved convergence behavior
on separable functions [54], although the number of runs executed (11 for n < 100

and 2 for n� 100) seems to be too small general conclusions about its convergence
behavior to be drawn.

An empirical investigation of the xNES illustrates clear improvements compared
to its predecessor, the eNES, but compared to the .�W ; �/-CMA-ES it can only
improve convergence behavior in the case of a few functions for n D 2 (a setting of
n which we would consider irrelevant for any practical applications) [26].

In the case of restart heuristics, the comparison between LR-CMA-ES and IPOP-
CMA-ES illustrates a general advantage of increasing the population size, with a
few exceptions (namely, test functions 13, 21, and 23 in [65]).

For the SPO-CMA-ES, results indicate this algorithm performs better than the
IPOP-CMA-ES as the number of restarts increases over time [70].

3.3 Recommendations for Practical Use

3.3.1 Global Optimization

In the case of global optimization tasks, i.e., trying to find the best one of a large set
of local optima, a restart heuristic should be used. Among those restart heuristics
discussed in this book, the SPO-CMA-ES provides the most general approach.
It uses information from previous runs which stagnated in local optima in order
to adapt the exogenous strategy parameters. This approach is more flexible than
the steady increase of population size used in the IPOP-CMA-ES. Concerning
the evolution strategy used within the SPO-CMA-ES, according to the results
presented in Sect. 3.2.2, the Active-CMA-ES should be used. Alternatively, for
larger population sizes, the .�; �/-CMSA-ES seems to be the best choice.

3.3.2 High-Dimensional Search Spaces

In the case of high-dimensional search spaces, i.e., n >> 100, an evolution
strategy requiring a small computational effort should be used. The computational
complexity of the adaptation of endogenous strategy parameters is discussed in
detail in Sect. 3.2.1.

Based on those results, the sep-CMA-ES with linear effort clearly provides
the lowest effort approach, however, at the expense of losing the ability to
generate correlated mutations, clearly causing a severe loss of convergence
velocity. Since correlated mutations are often or even typically required, the
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(1C1)-Active-CMA-ES is a natural choice, due to its quadratic computational
effort, which is still much better than the typical cubic complexity.

In general, however, the balance between computational effort and convergence
properties depends on the computational effort of the function evaluations. If a
function evaluation requires much more time than the adaptation of endogenous
strategy parameters, evolution strategies with cubic complexity can be used again.3

3For example, on a state-of-the-art computer (Intel Core i7-2600 3.4 GHz), Octave requires a few
seconds for the eigendecomposition of a 1;000� 1;000 matrix, and more than 3 min in the case of
a 5;000� 5;000 matrix.



Chapter 4
Empirical Analysis

One goal of this book is to empirically answer the question of how efficient ES
are in a setting of few function evaluations with a focus on modern ES from
Sect. 2.2.2. This chapter addresses the experiments conducted and is organized as
follows. Section 4.1 introduces two measures to evaluate the efficiency of ES, the
fixed cost error (FCE) and the expected run time (ERT). Section 4.2 describes how
the experiments were conducted technically and how they are examined. The results
are presented and discussed in Sect. 4.3.

4.1 Measuring Efficiency

An ES is considered efficient in this book if it approaches the optimum f � (see
Eq. 2.4) quickly, i.e., by using as few function evaluations as possible. In order to
compare different ES, a measure of efficiency for the convergence properties of
an ES is needed. Figure 4.1 shows a sample convergence plot for five optimization
runs1 of an ES. The x-axis of the convergence plot represents the number of function
evaluations. The y-axis shows the base ten logarithm of the difference between the
currently best function value and the optimum f �. This difference will be called
�f � in the following. For a plus-strategy the graph is monotonically decreasing.
To achieve monotonicity for a comma-strategy as well, one uses the best evaluated
individual found so far for the calculation of �f � instead of the best individual of
the current generation.

Appendix D.3 in [34] describes two opposing approaches for deriving an
efficiency measure from these convergence plots. On the one hand there is the
fixed-cost view, on the other hand there is the fixed-target view. The fixed-cost view

1Actually, these runs were five independent runs of the .�; �/-MSC-ES on the 10-dimensional
sphere function (f1 in BBOB).

T. Bäck et al., Contemporary Evolution Strategies, Natural Computing Series,
DOI 10.1007/978-3-642-40137-4__4, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 4.1 Example of a convergence plot

operates with a fixed number of function evaluations and yields the fixed-cost error
(FCE) covered in detail in Sect. 4.1.1. The other approach leads to the expected
runtime measure (ERT) which is used in the BBOB benchmarking framework and
described in Sect. 4.1.2.

4.1.1 The FCE Measure

FCE measures �f � given a fixed number of function evaluations. Considering
the convergence plot in Fig. 4.1 this approach is implemented graphically by
drawing a vertical line. The FCE values are represented by the intersections
between the convergence graphs and the vertical line. FCE is of relevance for
industrial applications demanding a maximal run-time hence a fixed number of
function evaluations. In [34] the relevance of FCE is acknowledged but the use
of FCE is rejected because it does not allow for a quantitative interpretation.
The lack of interpretation stems from the fact that the ratio between two �f �
from two algorithms cannot quantify how much better one algorithm is than another.
Nevertheless, a qualitative interpretation is possible. On the basis of FCE one can
answer the question of which algorithm yields a smaller FCE and as a result is better.
Since optimization runs with ES are influenced by random effects, both during
initialization and running period, the FCE of an algorithm has to be measured based
on many independent optimization runs. Then, the FCE of different algorithms can



4.2 Experiments 57

be analyzed with statistical techniques to find significant differences in quality. This
analysis is described in Sect. 4.2.3.

4.1.2 The ERT Measure

BBOB uses ERT as the measure for benchmarking algorithms. It was introduced in
[49] as expected number of function evaluations per success and further analyzed
under the name success probability (SP) [4]. ERT is the expected number of
function evaluations needed to reach a given �f �. Graphically, ERT consists of
an intersection between a convergence graph as shown in Fig. 4.1 and a horizontal
line representing a fixed �f �. With this approach there might be optimization
runs which do not reach the given �f � within a finite amount of function
evaluations. These runs are considered unsuccessful and are rated with the run-
time rus . A successful run is rated with the number of function evaluations to reach
�f �, i.e., the run-time rs . The ratio of successful runs to all runs yields the value ps .
Let Rs and Rus be the mean value of the rs and rus from different runs, then for
ps > 0 ERT is defined as:

ERT D Rs C 1 � ps

ps

Rus

If there are unsuccessful runs, i.e., ps < 1, then ERT strongly depends on the
termination criteria of the algorithm and the value of rus . Considering optimization
runs with very few function evaluation easily leads to ps D 0 when using common
values for �f �. So, to use ERT in this scenario, appropriate values for �f � have
to be found first.

4.2 Experiments

4.2.1 Selection of Algorithms

Not all modern ES algorithms covered in Sect. 2.2.2 were subject to an empirical
analysis. Since the focus of this book is on optimization runs with very few function
evaluations, the restart heuristics were omitted. They can be better analyzed by
long-running optimizations. Interesting results from such runs conducted by the
authors of the algorithms are summarized in Sect. 3.2.2. In addition, five algorithms
developed before 1996, described in Sect. 2.2.1, are included in the experiments.
The complete list of algorithms which were used in the experiments is shown in
Table 4.3 in Sect. 4.2.2.2.
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4.2.2 Technical Aspects

4.2.2.1 Framework

The experiments are performed using the framework BBOB 10.2 [34]. It provides
standardized test functions and interfaces to the programming languages C, C++,
Java and Matlab/Octave. Having an implementation of an algorithm in one of these
languages allows us to conduct experiments with minimal organizational effort on
a set of test functions F , a set of function instances FI and a set of dimensions D

for the input space. The set FI controls the number of independent runs for a test
function. Let R D F � D � FI , then jRj runs are conducted in total. A run,
i.e., an element of R, yields a table indexed by the number of function evaluations
used, containing information regarding the optimization run. This information is
the difference between the current noise free fitness and the optimum and the
difference between the best measured2 noise free fitness and the optimum. For small
dimensionality the input values x yielding the current fitness are displayed as well.
BBOB provides Python scripts for post-processing these tables.

Runs are conducted on all 24 noise free test functions. A detailed description
of the test functions can be found on the BBOB web page.3 The global optima
of all test functions are located inside the hyperbox Œ�5; 5�n. The test functions
can be classified by different features. A test function can be uni- or multimodal,
i.e., having only one or multiple (local) optima. Multimodal functions allow the
global optimization capabilities of an algorithm to be benchmarked. Furthermore, a
test function can be symmetric, i.e., invariant under rotations of the coordinate
system. The condition of a function can be interpreted as a reciprocal measure of
its symmetry und depends on the condition of an optimal covariance matrix (see
Sect. 2.2.2.2). A more vivid description is that a function with a high condition has
a fitness landscape with very steep valleys. Table 4.1 provides a summary of all 24
test functions with their commonly used names and some of their features.

Considering their features, test functions can be classified. The discrimination
into separable and non-separable and unimodal and multimodal functions are of
special interest. Table 4.2 shows this distribution of test functions across these four
classes. Unimodal test functions have a unique optimum which make them suitable
for testing convergence properties of an algorithm without interferences stemming
from stagnation in local optima. Multimodal test functions are especially useful for
testing restart heuristics or algorithms designed to escape a local optimum. Since
real fitness functions are usually multimodal, multimodal functions comply better
with real-world optimization scenarios than unimodal functions.

Separable functions allow the optimization run to be split into n independent one-
dimensional optimizations. In contrast to this, non-separable functions cannot be

2For a plus-strategy these two values are the same.
3http://coco.gforge.inria.fr/doku.php?id=bbob-2010-downloads

http://coco.gforge.inria.fr/doku.php?id=bbob-2010-downloads
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Table 4.1 BBOB test functions

Symbol Name Features

f1 Sphere Unimodal, highly symmetric
f2 Ellipsoidal Unimodal, separable,

condition >106

f3 Rastrigin Multimodal (about 10n local optima)
f4 Büche-Rastrigin Multimodal (about 10n local optima),

less symmetric than f3

f5 Linear slope Unimodal, the optimum is located
on the edge of the search space

f6 Attractive sector Unimodal, highly asymmetric
f7 Step ellipsoidal Unimodal with many plateaus
f8 Rosenbrock Multimodal
f9 Rotated Rosenbrock Multimodal
f10 Ellipsoidal Unimodal,

non-separable version of f2

f11 Discus Unimodal, condition >106

f12 Bent cigar Unimodal, condition >106

f13 Sharp ridge Unimodal, non-differentiable near the optimum
f14 Different powers Unimodal, highly sensitive area

in the vicinity of the optimum
f15 Rastrigin Multimodal, non-separable

version of f3

f16 Weierstrass Multimodal without unique
global optimum

f17 Schaffer’s F7 Highly multimodal
f18 Ill-conditioned Schaffer’s F7 Highly multimodal with

greater condition than f17

f19 Composite Griewank-Rosenbrock Highly multimodal
f20 Schwefel function Multimodal
f21 Gallagher’s Gaussian 101-me peaks Multimodal with randomly

distributed local optima
f22 Gallagher’s Gasussian 21-hi peaks Multimodal with randomly

distributed local optima
f23 Katsuura Highly multimodal with very steep valleys
f24 Lunacek bi-Rastrigin Highly multimodal

Table 4.2 Classification of test functions

Separable Non-separable

Unimodal f1; 2; 5g f6; 7; 10; 11; 12; 13; 14g
Multimodal f3; 4g f8; 9; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24g
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Table 4.3 Summary of ES implementations

ES Implementation

(1C 1)-ES Own implementation
(�; �)-MSC-ES Own implementation
DR1 Own implementation
DR2 Own implementation
DR3 Own implementation
.�W ; �/-CMA-ES cmaes.m version 3.55beta by N. Hansen
LS-CMA-ES Own implementation
(1C 1)-Cholesky-CMA-ES Own implementation
Active-CMA-ES cmaes.m version 3.55beta by N. Hansen
(�,�)-CMSA-ES Own implementation
sep-CMA-ES Own implementation
(1C 1)-Active-CMA-ES Own implementation
.1; 4s

m/-CMA-ES cmaes.m version 3.41beta modified by A. Auger
xNES xnes.m by Y. Sun

optimized this way and for them it is advantageous to apply an ES using correlated
mutations. In general, non-separable multimodal functions are far more difficult to
solve and hence serve better as an idealization of real-world problems.

According to [34], 15 runs are sufficient to observe significant differences when
comparing 2 algorithms. For the analysis based on the FCE measure a best-of-n
approach (described in Sect. 4.2.3) is used. In order to observe significant differ-
ences with this approach as well, the number of runs per test function, defined by the
function instances in BBOB, is increased to 100. BBOB recommends a maximum
number of function evaluations of 106 � n. Since the focus is on optimization tasks
allowing only very few function evaluations, a drastically decreased maximum
number of function evaluations of 500 � n is chosen. The experiments are conducted
with dimensions n 2 f2; 5; 10; 20; 40; 100g. For the dimensions n D 40 and
n D 100 the maximum number of function evaluations is reduced to 104. The initial
search point is drawn uniformly from the hyperbox Œ�5; 5�n.

4.2.2.2 Software for ES Algorithms

The BBOB framework is used with its interface to the Matlab/Octave programming
language. If there are publicly available implementations4 by the authors of the
ES algorithms, they are used. For most of the ES an original implementation was
created. Table 4.3 provides an overview of the implementation used.

4N. Hansen and A. Auger’s CMA-ES is available at https://www.lri.fr/~hansen/cmaes_inmatlab.
html; Y. Sun’s xNES is available at http://www.idsia.ch/~tom/code/xnes.m.

https://www.lri.fr/~hansen/cmaes_inmatlab.html
https://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www.idsia.ch/~tom/code/xnes.m
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All original implementations5 represent the pseudocode of the algorithms, as
listed in Chap. 2, for Octave [23]. Furthermore, these implementations are capable
of constraining the search space to a hyperbox (see Eq. 2.5). For this purpose a
transformation as described in [43] is applied individually to the coordinates of a
search point. The transformed value x0 of x 2 R subject to the lower bound l and
the upper bound u is calculated as follows:

x0 D l C .u � l/
2

�
sin�1.j sin

�
�.x � l/

2.u� l/

�

j/

Simply speaking, the transformation performs a reflection at the bounds. An opti-
mization run is terminated if either the maximum number of function evaluations
is reached or the fitness falls below a given target value. These two values can
be configured by parameters in all the original implementations. The exogenous
parameters of the different ES algorithms are configured with their default settings
as described in Sect. 2.2.

4.2.3 Analysis

In the following, the procedure for evaluating the empirical test results is outlined.

4.2.3.1 Calculating FCE from Empirical Results

The basis for the calculation of FCE is the tables described in Sect. 4.2.2.1, which
are called BBOB data in the following. The BBOB data contains tuples .#fe; �f �/,
which consist of #fe, the number of function evaluations performed, and �f �, the
so-far best6 difference from the optimum f �. There is not necessarily a tuple for
every #fe 2 f1; : : : ; #femaxg in the BBOB data. Let I � f1; : : : ; #femaxg be the
subset of existing #fe values in the BBOB data with Ct as target costs, then FCE is
calculated as follows:

FCE.Ct/ D �f � from the tuple .#fe; �f �/ with #fe D sup feje 2 I ^ e � Ctg

Simply speaking, the FCE for a specific Ct is based on the closest Ct available in
the BBOB data, which is smaller than or equal to the desired Ct . In this way, the
performance of an algorithm might be underestimated but is not overestimated.

5The Octave source code is available for non-commercial use at the web site of divis intelligent
solutions GmbH (http://www.divis-gmbh.com/es-software.html), see Sect. 1.4.
6This allows for comparing comma and plus strategies.

http://www.divis-gmbh.com/es-software.html
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4.2.3.2 Calculating Rankings

Conducting m D 100 runs for each test function f and each dimension n yields
a set E.f; n; Ct / containing m FCE(Ct ) values. For each algorithm a the sets
E.f; n; Ct /a can be analyzed pairwise with non-parametric statistical tests [36] to
find significant differences in their FCE. We use unpaired Welch Student’s t-tests
[69] to decide whether one algorithm is better than another.7 The difference between
the mean of E.f; n; Ct /1 and the mean of E.f; n; Ct /2 is considered significant for a
p-value < 0:05 and the algorithm with the better mean FCE is declared the winner
and gets a point. Doing so pairwise for all algorithms, the algorithms are ranked
according to the number of points obtained.

In [24] two relevant optimization scenarios are described. In the first one the user
has the opportunity to choose the best run out of several runs. For this purpose an
algorithm with a good peak performance, i.e., an algorithm which performs very
well sometimes but its general performance is highly variant, is appropriate. In
the second scenario only one optimization run is done. This requires an algorithm
to have a good performance without much variation. This kind of performance is
called the average performance of an algorithm. To reflect these two scenarios
in our analysis, we will use a best-of-k approach. Instead of using all m runs to
create the set E.f; n; Ct / only the best out of k runs can be used. This reduces the
cardinality of E.f; n; Ct / to bm

k
c. The analysis regarding the average performance

of an algorithm is done with k D 1. For the peak performance we have to choose an
appropriate k. The resulting set E.f; n; Ct / must not be too small in order to apply
statistical testing for significant differences. We choose a best-of-k approach with
k D 5 to rank the algorithms regarding their peak performance.

4.2.3.3 Selection of Test Functions

Until now the sets E were dependent on one test function. In order to calculate
a rank aggregation for a set of test functions, the points won by an algorithm for
each test function within the set are accumulated before determining the aggregated
ranking. Aggregated rankings are calculated for the classes of test functions as
assigned in Table 4.2.

4.2.3.4 Choice of Target Costs Ct

Following the motivation of this work small values for target costs Ct are chosen.
Ct should be dependent on the dimension n to facilitate the interpretation of
results for different dimensions. BBOB recommends 106 � n for long runs thus

7We used the free statistics software R [50] for this purpose.
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establishing a linear dependency. We choose to analyze results for Ct D ˛ � n with
˛ 2 f25; 50; 100g instead, i.e., our focus is on much smaller values for Ct .

4.3 Results

4.3.1 Ranks by FCE

The following figures show rankings aggregated for the four function classes as
described in Sect. 4.2.2.1. Each ranking is displayed for all dimensions. Instead of
using the rank, the number of significant wins over other algorithms divided by the
number of test functions per class is shown on the y-axis. This kind of normalization
allows the plots for different function classes to be compared. With 14 algorithms
tested an algorithm can achieve at most 13 significant wins. This representation also
has the advantage of showing how clearly an algorithm wins or loses against others.
The aggregated ranking over all 24 test functions is given in Table 4.4.

4.3.2 Discussion of Results

Based on the results we are able to answer two questions regarding optimization
scenarios with very few function evaluations. The first one is: Are there significant
differences in the convergence properties of Evolutions Strategies with few function
evaluations? In general this question can be answered positively. Even 25�n function
evaluations are sufficient to observe significant differences. As can be seen in
Figs. 4.2–4.7 there are hardly any significant differences in algorithm performance
for non-separable, multimodal test functions with dimension n D 2. An explanation
for this behaviour is given by the fact that the variance of the Euclidian distance
between the initial search point and the global optimum in the search space
decreases with the dimensionality.8 That means for n D 2 the variance of the
differences is relatively high and the initialization of the search point impacts the
results too much for us be able to see more significant differences
in the convergence behaviour of the algorithms tested. According to the ranking
aggregated over all 24 test functions as shown in Table 4.4, the Active-CMA-ES
is clearly the best evolution strategy for optimization scenarios with few function
evaluations, followed by the .�W ; �/-CMA-ES in second place. This result holds

8The Euclidian distance of two points uniformly drawn from a hyper box in R
n is distributed

according to the normal distribution N.
p

n; 1=
p

2/ (see e.g. [53]). Hence, with increasing n the
variance decreases w.r.t. the mean.
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Table 4.4 Aggregated rankings over all 24 test functions for Ct D 100 �n. Columns p show ranks
for the peak performance (best-of-5) and columns a represent ranks for the average performance
(best-of-1)

n D 2 n D 5 n D 10 n D 20 n D 40 n D 100

ES p a p a p a p a p a p a

(1C 1)-ES 8 9 9 9 7 8 6 7 8 9 9 7

(�; �)-MSC-ES 10 7 13 11 13 13 13 13 11 13 11 11

DR1 5 6 6 4 6 5 9 6 7 5 10 9

DR2 6 10 5 6 4 4 4 4 3 3 3 3

DR3 12 14 12 13 12 12 11 12 12 12 12 12

.�W ; �/-CMA-ES 3 4 2 2 2 3 2 2 2 2 2 2

LS-CMA-ES 11 12 11 11 10 11 10 10 10 10 5 5

(1C 1)-Cholesky-CMA-ES 7 10 7 10 9 9 7 7 9 8 7 6

Active-CMA-ES 1 2 1 1 1 1 1 1 1 1 1 1

(�,�)-CMSA-ES 13 13 7 8 8 6 5 5 4 3 4 4

sep-CMA-ES 14 5 14 14 14 14 14 14 14 14 14 14

(1C 1)-Active-CMA-ES 2 8 4 7 5 7 7 9 5 7 8 7

.1; 4s
m/-CMA-ES 4 3 2 3 3 2 3 3 6 6 6 10

xNES 9 1 10 5 11 9 12 11 13 11 13 13
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regardless of whether we analyze the peak or average performance. The sep-CMA-
ES clearly ranked last in these experiments.

The second question, whether there are Evolution Strategies which are better
given many function evaluations but are beaten given few function evaluations, can
also be answered positively in some cases. For target costs Ct D 100 � n the Active-
CMA-ES or the .�W ; �/-CMA-ES usually rank best. Decreasing the target costs to
25 � n or 50 � n results in several (1C 1)-strategies9 being found with good rankings,
especially for unimodal functions. With the peak performance approach the (1C1)-
Cholesky-CMA-ES and the (1 C 1)-ES rank first, sometimes even for multimodal
functions. The CMA-ES variants catch up with more function evaluations, which
can be explained by the time needed to adapt the covariance matrix successfully.

Despite using only anisotropic mutations with local step sizes the DR2 algorithm
performs quite well. It often ranks directly behind the successful CMA-ES variants.
Thus, it offers a better alternative to the sep-CMA-ES when the runtime of the
algorithm cannot be neglected w.r.t. the time for a function evaluation, which might
be the case for very high dimensional search spaces.

9In detail these are the (1C1)-ES, the (1C1)-Cholesky-CMA-ES and the (1C1)-Active-CMA-ES.
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4.4 Further Analysis for n D 100

As the last section illustrates, several (1 C 1)-ES algorithms outperform CMA-ES
variants considered state of the art when it comes to very few function evaluations.
In industrial optimization scenarios, where function evaluations are extremely time
consuming, we are interested in quick progress rather than finding the exact global
optimum, or even converging to a local optimum.

A more thorough analysis for search space dimension n D 100 reflecting these
scenarios was also conducted. The experiments described in the last section used
the performance measure FCE based on the distance to the global optimum �f � to
quantify progress of an algorithm. In order to reflect the scenario of quick progress
we chose to measure the progress made w.r.t. the initial search point instead of using
�f � directly. So, the �f �init of the function evaluation of the inital search point is
used to normalize the �f � of later iterations yielding monotonically decreasing
progress values.10 Based on these values we can state by which order of magnitude
an algorithm decreases the initial fitness value for a given test function after a given
number of function evaluations. In order to decrease the influence of the initial
search point the number of runs is increased from 100 used in the previous section to
1,000 for each of the 14 algorithms and each of the 24 test functions. As an example,
Fig. 4.8 shows the resulting convergence plot for test function f1.

As in the analysis in Sect. 4.3.1 we used the non-parametric Student’s t-test
to find significant differences between the algorithms tested. According to these
significant differences we are able to rank the algorithms for the four test function
classes shown in Table 4.2.

The results of this additional test are summarized in Tables 4.5–4.8 for the four
different classes of objective functions. In addition, the corresponding convergence
plots for all objective functions are provided in Figs. 4.8–4.31. The following
observations can be made when analyzing the results:

• As clarified by the rankings, the (1C 1)-Active-CMA-ES most often ranks first,
regardless of the function class (with the exception of separable multimodal
functions and large values of Ct , for which DR2 is the best algorithm). In general,
the (1 C 1)-algorithms, even including the simple (1 C 1)-ES, perform quite
well. It seems that adapting endogenous search parameters in the beginning
more frequently with less information is better than less frequently with more
information as is the case in population-based strategies.

• On non-separable, multimodal test functions, the (1C 1)-Active-CMA-ES is the
clear winner, followed by the (1C 1)-ES. Similar performance can be observed
for the other function classes.

10Monotonicity for comma-strategies can be guaranteed by using the so-far best �f � instead of
the �f � of the current iteration.
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Table 4.5 Aggregated rankings over the separable unimodal test functions for target costs
Ct D f100; 200; : : : ; 1;000g
ES 100 200 300 400 500 600 700 800 900 1,000

(1C 1)-ES 1 2 2 2 2 2 2 2 2 2

.�; �/-MSC-ES 9 11 11 11 11 12 12 12 12 12

.�W ; �/-CMA-ES 10 7 7 4 4 5 5 6 6 6

Active-CMA-ES 10 9 9 6 6 6 7 8 8 8

.1; 4s
m/-CMA-ES 8 7 7 9 9 9 9 9 9 6

XNES 12 10 10 7 6 4 4 4 4 9

DR1 4 5 4 8 8 8 7 5 4 4

DR2 6 4 5 5 6 6 6 6 6 6

DR3 14 14 14 14 14 14 14 14 14 14

CMSA-ES 13 13 13 12 11 11 11 11 11 11

(1C 1)-Cholesky-CMA-ES 2 2 3 2 2 2 2 2 2 2

LS-CMA-ES 5 6 6 10 10 10 10 10 10 10

(1C 1)-Active-CMA-ES 2 1 1 1 1 1 1 1 1 1

sep-CMA-ES 7 11 12 13 13 13 13 13 13 13

Table 4.6 Aggregated rankings over the non-separable unimodal test functions for target costs
Ct D f100; 200; : : : ; 1;000g
ES 100 200 300 400 500 600 700 800 900 1,000

(1C 1)-ES 1 2 2 2 2 2 2 2 2 2

.�; �/-MSC-ES 8 10 10 10 11 12 12 12 12 12

.�W ; �/-CMA-ES 10 9 8 9 8 8 8 8 8 10

Active-CMA-ES 10 8 8 8 8 9 8 9 9 9

.1; 4s
m/-CMA-ES 12 12 13 12 12 11 10 10 10 8

XNES 10 7 7 6 6 6 6 6 6 7

DR1 4 5 5 5 5 5 5 5 5 5

DR2 6 4 4 4 4 4 4 4 4 4

DR3 14 14 14 14 14 14 14 14 14 14

CMSA-ES 13 13 12 11 10 10 11 11 11 11

(1C 1)-Cholesky-CMA-ES 3 2 2 2 2 2 2 2 2 2

LS-CMA-ES 5 6 6 7 7 7 7 7 7 6

(1C 1)-Active-CMA-ES 2 1 1 1 1 1 1 1 1 1

sep-CMA-ES 7 11 11 13 13 13 13 13 13 13

• The convergence plots for the different functions indicate that, for the more
complicated functions (e.g., f21, f22), progress in the beginning is very slow and
accelerates later on. In contrast to this, on easier unimodal functions such as f1

the algorithms generally converge much faster (up to three orders of magnitude
improvement) after 1,000 function evaluations, and the progress rate is already
high during the first 100 evaluations.
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Table 4.7 Aggregated rankings over the separable multimodal test functions for target costs
Ct D f100; 200; : : : ; 1;000g
ES 100 200 300 400 500 600 700 800 900 1,000

(1C 1)-ES 2 3 3 3 3 3 3 5 5 6

.�; �/-MSC-ES 8 7 8 8 8 9 9 9 10 10

.�W ; �/-CMA-ES 12 12 12 12 12 12 12 12 13 13

Active-CMA-ES 12 12 12 12 12 12 12 12 13 13

.1; 4s
m/-CMA-ES 11 12 11 11 12 10 10 9 9 9

XNES 9 7 7 7 7 5 5 2 2 2

DR1 6 5 5 5 5 5 5 5 4 3

DR2 4 4 4 4 3 3 2 1 1 1

DR3 14 14 14 14 14 14 14 14 13 13

CMSA-ES 10 10 10 9 9 8 8 8 8 8

(1C 1)-Cholesky-CMA-ES 1 1 2 2 2 3 3 4 5 5

LS-CMA-ES 4 5 5 5 6 7 7 7 7 7

(1C 1)-Active-CMA-ES 2 1 1 1 1 1 1 2 3 4

sep-CMA-ES 7 9 9 10 10 11 11 11 11 11

Table 4.8 Aggregated rankings over the non-separable multimodal test functions for target costs
Ct D f100; 200; : : : ; 1;000g
ES 100 200 300 400 500 600 700 800 900 1,000

(1C 1)-ES 2 2 3 3 4 3 3 4 4 3

.�; �/-MSC-ES 7 7 7 9 11 11 11 11 11 11

.�W ; �/-CMA-ES 10 8 8 9 9 9 9 10 10 9

Active-CMA-ES 9 8 8 9 9 10 10 9 9 10

.1; 4s
m/-CMA-ES 14 14 14 14 14 14 13 13 13 12

XNES 12 11 10 7 7 7 8 8 8 8

DR1 5 5 5 5 5 5 5 3 3 3

DR2 4 3 3 2 2 2 2 2 2 2

DR3 13 13 13 13 13 13 14 14 14 14

CMSA-ES 11 12 12 11 8 8 7 7 7 7

(1C 1)-Cholesky-CMA-ES 2 2 3 4 3 4 3 5 5 5

LS-CMA-ES 6 6 6 6 6 6 6 6 6 6

(1C 1)-Active-CMA-ES 1 1 1 1 1 1 1 1 1 1

sep-CMA-ES 8 10 11 12 12 12 12 12 12 13

In conclusion, the (1 C 1)-Active-CMA-ES is a good recommendation for a
small function evaluation budget (i.e., up to 10 � n) and high-dimensional problems
in general. Especially for non-separable, multimodal test functions, it consistently
shows the best performance, and for the unimodal functions it fails to win in
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Fig. 4.9 Convergence plot for test function f2 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.10 Convergence plot for test function f3 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.11 Convergence plot for test function f4 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.12 Convergence plot for test function f5 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean

function evaluations

lo
g1

0(
in

iti
al

Δf
*/

cu
rr

en
tΔ

f*
)

1 100 200 300 400 500 600 700 800 900 1000

−8

−7

−6

−5

−4

−3

−2

−1

0

test function f6

OnePlusOneES
CMAES
DR1
DR2
DR3
LSCMAES
selfAdaptES
ActiveOnePlusOneCMAES
XNES
CMAES_mirrored
CMAES_active
CMSAES
sepCMAES
OnePlusOneCholeskyCMAES

Fig. 4.13 Convergence plot for test function f6 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.14 Convergence plot for test function f7 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.15 Convergence plot for test function f8 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.16 Convergence plot for test function f9 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.17 Convergence plot for test function f10 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.18 Convergence plot for test function f11 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.19 Convergence plot for test function f12 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.20 Convergence plot for test function f13 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.21 Convergence plot for test function f14 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.22 Convergence plot for test function f15 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.23 Convergence plot for test function f16 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.24 Convergence plot for test function f17 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.25 Convergence plot for test function f18 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.26 Convergence plot for test function f19 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.27 Convergence plot for test function f20 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.28 Convergence plot for test function f21 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.29 Convergence plot for test function f22 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.30 Convergence plot for test function f23 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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Fig. 4.31 Convergence plot for test function f24 showing the order of magnitude of fitness value
normalized w.r.t. the fitness of the inital search point for the number of function evaluations
f100; 200; : : : ; 1;000g. Error bars reflect the 20 % respectively 80 % quantiles of the 1,000
conducted runs and the solid line represents their mean
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only two cases, for Ct D 100. The very simple (1 C 1)-ES performs surprisingly
well, especially on unimodal functions. On multimodal test functions, the simple
DR2 strategy also performs reasonably well, but not for unimodal test functions.
Overall, the (1C1)-Active-CMA-ES is clearly recommendable due to its consistent
performance across all functions tested.



Chapter 5
Summary

Contemporary Evolution Strategies (ES) are the subject of this book. Motivated
by optimization scenarios with very few function evaluations, experiments to
empirically analyze the efficiency of contemporary ES were conducted. Usually
such experiments are performed on standardized test functions with many function
evaluations using an analysis approach which is not suited to the optimization
scenarios considered in this book. We chose another approach that allows ranking
of ES algorithms by significant qualitative differences. Our experiments show that
there are significant differences regarding the efficiency of ES algorithms even
with very few function evaluations. In general the Active-CMA-ES is the best of
the algorithms tested with a function evaluation budget of 100n for search space
dimensionality n. For even smaller budgets like 50n and 25n several variants of
(1C1)-strategies turn out to be best, especially on unimodal test functions. To
get even closer to a realistic scenario of very small function evaluation budgets,
an empirical investigation was conducted for fixed dimensionality of n D 100

and a budget of as few as 100, 200, up to 1,000 function evaluations. Based
on many real-world optimization projects with objective functions represented by
time-consuming simulation programs, often requiring 24 h of computing effort
for a single simulation run, this setting represents realistic applications such as
occur, e.g., in multidisciplinary design optimization in the automotive industry
(see e.g. [22]). As shown in Sect. 4.4, for such a scenario the results are different
and the previously winning algorithms, the Active-CMA-ES followed by the
.�W ; �/-CMA-ES, now have quite mediocre performance. Instead, certain (1C1)-
strategies clearly outperform population-based approaches, and in particular the
(1C1)-Active-CMA-ES ranks best in many cases, followed by the (1C1)-Cholesky-
CMA-ES; see Table 5.1. Interestingly, the DR2 algorithm also performs quite
reasonably for the multimodal objective functions; even sometimes outperforming
the (1C1)-Active-CMA-ES. This result is noticeable from a practical perspective
due to the fact that DR2 uses an offspring population size of ten individuals, such
that a parallel execution of simulation runs is possible. Moreover, from this point of
view the DR2 strategy is the overall best option provided that parallel execution of
function evaluations is desired.

T. Bäck et al., Contemporary Evolution Strategies, Natural Computing Series,
DOI 10.1007/978-3-642-40137-4__5, © Springer-Verlag Berlin Heidelberg 2013
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Table 5.1 Overview of the two best-ranked algorithms by function class for n D 100 and very
small function evaluation budgets (i.e., up to 1,000 evaluations)

Unimodal Multimodal

Separable 1: (1C1)-Active-CMA-ES 1: (1C1)-Active-CMA-ES (for Ct � 700);
DR2 (for Ct > 700)

2: (1C1)-Cholesky-CMA-ES 2: (1C1)-Cholesky-CMA-ES (for Ct < 700)
and (1C1)-ES

Non-separable 1: (1C1)-Active-CMA-ES 1: (1C1)-Active-CMA-ES
2: (1C1)-Cholesky-CMA-ES 2: DR2 (for Ct > 300)

and (1C1)-ES

As clarified by the discussion above, there is no single straightforward answer to
the search for the best evolution strategy for challenging practical applications with
small function evaluation budget. However, some interesting conclusions can be
drawn, and they also indicate quite interesting additional areas for future research,
such as the following:

• Constraint handling: Except for simple box constraints defining the feasible
region for the parameters of the objective function, no constraints were consid-
ered. It is quite important, however, in practical applications, to be able to handle
linear and nonlinear constraints on parameters as well as some of the outputs of
simulation runs—which would correspond to “black box” constraints deciding
on the feasibility of a solution.

• Multiple-criteria optimization: The BBOB test function set deals only with
single-objective problems, but many real-world problems are multiple-criteria
optimization tasks. It will be very interesting to evaluate the quality of Pareto-
front approximations achieved by appropriate algorithmic extensions for multiple
criteria optimization, also under limited budgets for the number of objective
function evaluations.

The goal of such further investigations would be, again, to enhance our under-
standing of the real-world problem-solving capabilities of contemporary evolution
strategies.

To give an overview of contemporary ES, they are described by their key
ideas and by providing the pseudocode of algorithms in Chap. 2. In Chap. 3 the
contemporary ES are taxonomically assigned to classes. The main classes are
identified according to restart heuristics, methods of covariance adaptation and
techniques for avoiding function evaluations.



Bibliography

1. S. Amari, Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276
(1998)

2. D.V. Arnold, N. Hansen, Active covariance matrix adaptation for the (1C1)-CMA-ES, in
Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation
(GECCO’10), Portland, ed. by M. Pelikan, J. Branke (ACM, New York, 2010), pp. 385–392

3. D.V. Arnold, R. Salomon, Evolutionary gradient search revisited. IEEE Trans. Evol. Comput.
11(4), 480–495 (2007)

4. A. Auger, N. Hansen, Performance evaluation of an advanced local search evolutionary
algorithm, in Proceedings of the IEEE Congress on Evolutionary Computation (CEC’05),
Edinburgh, vol. 2, ed. by B. McKay et al. (IEEE, Piscataway, 2005), pp. 1777–1784

5. A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in
Proceedings of the IEEE Congress on Evolutionary Computation (CEC’05), Edinburgh, vol. 2,
ed. by B. McKay et al. (IEEE, Piscataway, 2005), pp. 1769–1776

6. A. Auger, M. Schoenauer, N. Vanhaecke, LS-CMA-ES: a second-order algorithm for covari-
ance matrix adaptation, in Proceedings of the 8th International Conference on Parallel Problem
Solving from Nature (PPSN VIII), Birmingham, ed. by X. Yao et al. Volume 3242 of Lecture
Notes in Computer Science (Springer, Berlin, 2004), pp. 182–191

7. A. Auger, D. Brockhoff, N. Hansen, Mirrored sampling in evolution strategies with weighted
recombination, in Proceedings of the 13th Annual Genetic and Evolutionary Computation
Conference (GECCO’11), Dublin, ed. by N. Krasnogor, P.L. Lanzi (ACM, New York, 2011),
pp. 861–868

8. T. Bäck, Evolutionary Algorithms in Theory and Practice (Oxford University Press, New York,
1996)

9. T. Bäck, D.B. Fogel, Z. Michalewicz, Evolutionary Computation 1: Basic Algorithms and
Operators (Taylor & Francis, New York, 2000)

10. T. Bäck, D.B. Fogel, Z. Michalewicz, Evolutionary Computation 2: Advanced Algorithms and
Operators. Evolutionary Computation (Taylor & Francis, New York, 2000)

11. T. Bartz-Beielstein, C. Lasarczyk, M. Preuss, Sequential parameter optimization, in Pro-
ceedings of the IEEE Congress on Evolutionary Computation (CEC’05), Edinburgh, ed. by
B. McKay et al. (IEEE, Piscataway, 2005), pp. 773–780

12. N. Beume, B. Naujoks, M. Emmerich, SMS-EMOA: multiobjective selection based on
dominated hypervolume. Eur. J. Oper. Res. 181, 1653–1669 (2007)

13. H.-G. Beyer, B. Sendhoff, Covariance matrix adaptation revisited – the CMSA evolution
strategy, in Proceedings of the 10th International Conference on Parallel Problem Solving
from Nature (PPSN X), Dortmund, ed. by G. Rudolph et al. Volume 5199 in Lecture Notes in
Computer Science (Springer, Berlin, 2008), pp. 123–132

T. Bäck et al., Contemporary Evolution Strategies, Natural Computing Series,
DOI 10.1007/978-3-642-40137-4, © Springer-Verlag Berlin Heidelberg 2013

87



88 Bibliography

14. Z. Bouzarkouna, A. Auger, D.-Y. Ding, Investigating the local-meta-model CMA-ES for large
population sizes, in Proceedings of the 3rd European Event on Bioinspired Algorithms for
Continuous Parameter Optimisation (EvoNUM’10), Istanbul, Turkey, ed. by C. Di Chio et al.
Volume 6024 in Lecture Notes in Computer Science (Springer, Berlin, 2010), pp. 402–411

15. Z. Bouzarkouna, A. Auger, D.-Y. Ding, Local-meta-model CMA-ES for partially separable
functions, in Proceedings of the 13th Annual Genetic and Evolutionary Computation Confer-
ence (GECCO’11), Dublin, ed. by N. Krasnogor et al. (ACM, New York, 2011), pp. 869–876

16. D. Brockhoff, A. Auger, N. Hansen, D.V. Arnold, T. Hohm, Mirrored sampling and sequential
selection for evolution strategies, in Proceedings of the 11th International Conference on
Parallel Problem Solving from Nature (PPSN XI), Kraków, ed. by R. Schaefer et al. Volume
6238 in Lecture Notes in Computer Science. (Springer, Berlin, 2010), pp. 11–21

17. I.N. Bronstein, K.A. Semendjajew, G. Musiol, H. Muehlig, Taschenbuch der Mathematik, 7th
edn. (Harri Deutsch, Frankfurt am Main, 2008)

18. C.A. Coello Coello, Constraint-handling techniques used with evolutionary algorithms,
in Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference
(GECCO’11), Companion Material, Dublin, ed. by N. Krasnogor et al. (ACM, New York,
2011), pp. 1137–1160

19. C. Darwin, On the Origin of Species by Means of Natural Selection: Or, The Preservation of
Favoured Races in the Struggle for Life (J. Murray, London, 1860)

20. K. Deb, Multiobjective Optimization Using Evolutionary Algorithms. Wiley-Interscience
Series in Systems and Optimization (Wiley, Chichester, 2001)

21. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

22. F. Duddeck, Multidisciplinary optimization of car bodies. Struct. Multidiscip. Optim. 35(4),
375–389 (2008)

23. J.W. Eaton, GNU Octave Manual (Network Theory Limited, Godalming, 2002)
24. A.E. Eiben, M. Jelasity, A critical note on experimental research methodology in EC, in

Proceedings of the 2002 Congress on Evolutionary Computation (CEC’02), Honolulu, ed. by
R. Eberhart et al. (IEEE, Piscataway, 2002), pp. 582–587

25. A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing. Natural Computing Series
(Springer, Berlin, 2003)

26. T. Glasmachers, T. Schaul, Y. Sun, D. Wierstra, J. Schmidhuber, Exponential natural evolution
strategies, in Proceedings of the 12th Annual Conference on Genetic and Evolutionary
Computation (GECCO’10), Portland, ed. by M. Pelikan, J. Branke (ACM, New York, 2010)

27. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-
Wesley, Boston, 1989)

28. W.H. Greene, Econometric Analysis, 4th edn. (Prentice Hall, Upper Saddle River, 1997)
29. N. Hansen, The CMA evolution strategy: a tutorial. Continuously updated technical report,

available via http://www.lri.fr/~hansen/cmatutorial.pdf. Accessed 12 Mar 2011
30. N. Hansen, S. Kern, Evaluating the CMA evolution strategy on multimodal test functions,

in Proceedings of the 9th International Conference on Parallel Problem Solving from Nature
(PPSN VIII), Birmingham. Volume 3242 of Lecture Notes in Computer Science, ed. by X. Yao
et al. (Springer, 2004), pp. 282–291

31. N. Hansen, A. Ostermeier, Adapting arbitrary normal mutation distributions in evolution
strategies: the covariance matrix adaptation, in Proceedings of the 1996 IEEE International
Conference on Evolutionary Computation (ICEC’96), Nagoya, ed. by Y. Davidor et al. (IEEE,
Piscataway, 1996), pp. 312–317

32. N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies.
Evol. Comput. 9(2), 159–195 (2001)

33. N. Hansen, A. Ostermeier, A. Gawelczyk, On the adaptation of arbitrary normal mutation
distributions in evolution strategies: the generating set adaptation, in Proceedings of the 6th
International Conference on Genetic Algorithms (ICGA 6), Pittsburgh, ed. by L.J. Eshelman
(Morgan Kaufmann, San Francisco, 1995), pp. 57–64

http://www.lri.fr/~hansen/cmatutorial.pdf


Bibliography 89

34. N. Hansen, A. Auger, S. Finck, R. Ros, Real-parameter black-box optimization benchmarking
2010: experimental setup. Research report RR-7215, INRIA, 2010

35. N. Hansen, A. Auger, R. Ros, S. Finck, P. Posik, Comparing results of 31 algorithms from the
black-box optimization benchmarking BBOB-2009, in Proceedings of the 12th International
Conference on Genetic and Evolutionary Computation Conference (GECCO’10), Companion
Material, Portland, ed. by M. Pelikan, J. Branke (ACM, New York, 2010), pp. 1689–1696

36. J. Hartung, B. Elpelt, K.H. Klösener, Statistik, 14th edn. (Oldenbourg, München, 2005)
37. T. Hastie, R. Tibshirani, J.H. Friedman, The Elements of Statistical Learning: Data Mining,

Inference, and Prediction,2nd edn. Springer Series in Statistics (Springer, Berlin, 2009)
38. C. Igel, T. Suttorp, N. Hansen, A computational efficient covariance matrix update and

a (1C1)-CMA for evolution strategies, in Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation (GECCO’06), Seattle, ed. by M. Keijzer et al. (ACM,
New York, 2006), pp. 453–460

39. G.A. Jastrebski, Improving evolution strategies through active covariance matrix adaptation.
Master’s thesis, Faculty of Computer Science, Dalhousie University, 2005

40. G.A. Jastrebski, D.V. Arnold, Improving evolution strategies through active covariance
matrix adaptation, in Proceedings of the 2006 IEEE Congress on Evolutionary Computation
(CEC’06), Vancouver, BC, Canada, ed. by G.G. Yen et al. (IEEE, Piscataway, 2006), pp. 2814–
2821

41. S. Kern, N. Hansen, P. Koumoutsakos, Local meta-models for optimization using evolution
strategies, in Proceedings of the 9th International Conference on Parallel Problem Solving
from Nature (PPSN IX), Reykjavik, ed. by T.P. Runarsson et al. (Springer, Berlin, 2006),
pp. 939–948

42. O. Kramer, A review of constraint-handling techniques for evolution strategies. Appl Comput.
Int. Soft Comput. 2010, 1–11 (2010)

43. R. Li, Mixed-integer evolution strategies for parameter optimization and their applications to
medical image analysis. PhD thesis, Leiden Institute of Advanced Computer Science (LIACS),
Faculty of Science, Leiden University, 2009

44. D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, 2nd edn. (Springer, Berlin, 2003)
45. T.M. Mitchell, Machine Learning (McGraw-Hill, New York, 1997)
46. S.D. Müller, N. Hansen, P. Koumoutsakos, Increasing the serial and the parallel performance

of the CMA-evolution strategy with large populations, in Proceedings of the 7th Interna-
tional Conference on Parallel Problem Solving from Nature (PPSN VII), Granada, ed. by
J.J. Merelo et al. Volume 2439 of Lecture Notes in Computer Science (Springer, Berlin, 2002),
pp. 422–431

47. A. Ostermeier, A. Gawelczyk, N. Hansen, A derandomized approach to self adaptation of
evolution strategies. Evol. Comput. 2(4), 369–380 (1994)

48. A. Ostermeier, A. Gawelczyk, N. Hansen, Step-size adaptation based on non-local use of
selection information, in Proceedings of the 3rd International Conference on Parallel Problem
Solving from Nature (PPSN III), Jerusalem, ed. by Y. Davidor et al. Volume 866 of Lecture
Notes in Computer Science (Springer, Berlin, 1994), pp. 189–198

49. K.V. Price, Differential evolution vs. the functions of the second ICEO, in Proceedings of the
IEEE International Congress on Evolutionary Computation, Indianapolis, ed. by B. Porto et al.
(IEEE, Piscataway, 1997), pp. 153–157

50. R Development Core Team, R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, 2011. ISBN:3-900051-07-0

51. I. Rechenberg, Cybernetic solution path of an experimental problem. Royal Aircraft Establish-
ment, Library Translation 1122, Farnborough, 1965

52. I. Rechenberg, Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der
biologischen Evolution (Frommann-Holzboog, Stuttgart, 1973)

53. I. Rechenberg, Evolutionsstrategie’94 (Frommann-Holzboog, Stuttgart, 1994)
54. R. Ros, N. Hansen, A simple modification in CMA-ES achieving linear time and space

complexity, in Proceedings of the 10th International Conference on Parallel Problem Solving
from Nature (PPSN X), Dortmund, ed. by G. Rudolph et al. Volume 5199 of Lecture Notes in
Computer Science (Springer, Berlin, 2008), pp. 296–305



90 Bibliography

55. G. Rudolph, On correlated mutations in evolution strategies, in Proceedings of the 2nd
International Conference on Parallel Problem Solving from Nature (PPSN II), Brussels, ed.
by R. Männer, B. Manderick (Elsevier, Amsterdam, 1992), pp. 105–114

56. G. Rudolph, An evolutionary algorithm for integer programming, in Proceedings of the 3rd
Conference on Parallel Problem Solving from Nature (PPSN III), Jerusalem, ed. by Y. Davidor
et al. Volume 866 of Lecture Notes in Computer Science (Springer, Berlin, 1994), pp. 63–66

57. G. Rudolph, Convergence Properties of Evolutionary Algorithms (Kovač, Hamburg, 1997)
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