
Efficient Evaluation of Ad-Hoc Range Aggregates

Christian Ammendola1, Michael H. Böhlen2, and Johann Gamper1

1 Free University of Bozen–Bolzano, 39100 Bozen–Bolzano, Italy
christian@ammendola.name, gamper@inf.unibz.it

2 University of Zurich, 8050 Zurich, Switzerland
boehlen@ifi.uzh.ch

Abstract. θ-MDA is a flexible and efficient operator for complex ad-hoc multi-
dimensional aggregation queries. It separates the specification of aggregation
groups for which aggregate values are computed (base table b) and the speci-
fication of aggregation tuples from which aggregate values are computed. Ag-
gregation tuples are subsets of the detail table r and are defined by a general
θ-condition. The θ-MDA requires one scan of r, during which the aggregates are
incrementally updated.

In this paper, we propose a two-step evaluation strategy for θ-MDA to op-
timize the computation of ad-hoc range aggregates by reducing them to point
aggregates. The first step scans r and computes point aggregates as a partial in-
termediate result x̃, which can be done efficiently. The second step combines the
point aggregates to the final aggregates. This transformation significantly reduces
the number of incremental updates to aggregates and reduces the runtime from
O(|r| · |b|) to O(|r|), provided that |b| < √|r| and |x̃| ≈ |b|, which is com-
mon for OLAP. An empirical evaluation confirms the analytical results and shows
the effectiveness of our optimization: range queries are evaluated with almost the
same efficiency as point queries.

1 Introduction

Multi-dimensional aggregation queries, such as range aggregates that aggregate sets
of tuples identified by a range condition, are an important class of queries in busi-
ness intelligence and data warehousing applications. To efficiently process such queries,
various techniques have been proposed, including extensions to SQL [7], generalized
projections [8], pre-aggregation of data cubes [9], and (relative) prefix sums [6,10].
θ-MDA [1] is a flexible and efficient operator for ad-hoc multi-dimensional aggrega-
tion queries, where pre-computed aggregates are not available and a scan of the detail
table is required.

Consider the relation stays in Fig. 1(a), which stores hospital stays of patients and
has the following attributes: admission date (D), patient identifier (P), urgency cate-
gory (U), and duration of the stay (S). To analyze the impact of urgent stays (U=3)
on the average duration of stays, aggregates for stays with U∈{1, 2} are compared to
aggregates for stays with U∈{1, 2, 3}. Consider the following query Q1: Compute the
cumulative average duration of stays per admission date (C1) and per admission date
and urgency (C2). The result of Q1 is shown in table x. The first two columns repre-
sent the aggregation groups. The other two columns represent the aggregate results. The
average is represented as a sum/count pair.

L. Bellatreche and M.K. Mohania (Eds.): DaWaK 2013, LNCS 8057, pp. 46–59, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Efficient Evaluation of Ad-Hoc Range Aggregates 47

stays

D P U S

r1 31/01/13 P1 1 2

r2 31/01/13 P2 1 4

r3 31/01/13 P3 3 8

r4 31/01/13 P4 2 4

r5 31/01/13 P5 1 3

r6 31/01/13 P6 2 3

r7 01/02/13 P7 1 2

r8 01/02/13 P8 1 3

r9 01/02/13 P9 3 9

r10 01/02/13 P10 3 6

(a) Detail Table

x

D U C1 C2

x1 31/01/13 2 24/6 16/5

x2 31/01/13 3 24/6 24/6

x3 01/02/13 2 44/10 21/7

x4 01/02/13 3 44/10 44/10

(b) Result of Query Q1

Fig. 1. Running Example

C1 and C2 are range aggregates. Each aggregate is computed from the aggre-
gation tuples: all detail tuples that satisfy a given range predicate (exemplified by
hatched areas in Fig. 1). For instance, aggregate x3.C2 is the average duration of a
stay over all detail tuples in stays with D ≤ 01/02/13 and U ≤ 2, i.e., the tuples
{r1, r2, r4, r5, r6, r7, r8}. While one-dimensional range aggregates can be solved ef-
ficiently with SQL window functions, multi-dimensional range aggregates require ex-
pensive joins with range predicates [1].

The θ-MDA operator [1] offers a succinct formulation and efficient computation
of ad-hoc multi-dimensional aggregation queries. The operator separates the specifi-
cation of the aggregation groups in a base table b (first two columns in table x in
Fig. 1(b)) from the specification of the aggregation tuples. For each aggregation group
in b a θ-condition defines the aggregation tuples in the detail table r from which
aggregate values are computed, e.g., x3.C2 is computed from the aggregation tuples
{r1, r2, r4, r5, r6, r7, r8}. The evaluation strategy of θ-MDA works as follows: the re-
sult table x is initialized to b and one additional column for each aggregate, followed by
a scan of r during which the aggregate values are incrementally updated. A major part
of the evaluation cost for range aggregates is the incremental update of the aggregate
values in x since each tuple in r affects many entries in x. For instance, tuple r1 affects
both aggregates (C1 and C2) in all result tuples (x1 to x4). Moreover, for θ-conditions
that reference a subset of the attributes in b, redundant updates occur. Consider C1
with θ-condition D ≤ 31/01/13. Entries x1 and x2 are updated for all input tuples
with D ≤ 31/01/13.

In this paper, we tackle these problems and propose an efficient two-step evaluation
strategy for ad-hoc range aggregates by reducing them to point aggregates. The first step
scans r and computes corresponding point aggregates as a partial intermediate result,
x̃. Point aggregates require much less incremental updates and can be computed very
efficiently since only equality conditions are used to define aggregation tuples. The sec-
ond step combines the result of the point aggregates with the help of the corresponding
super aggregates [7] (e.g., SUM to add up COUNTs) and the θ-conditions to obtain
the final result relation. To further reduce the number of updates for aggregates with θ-
conditions that reference a subset of the attributes in b, we split the intermediate result

48 C. Ammendola, M.H. Böhlen, and J. Gamper

table into a separate table for each aggregate function so that each detail tuple affects
exactly one entry in each intermediate table. This two-step strategy reduces the number
of incremental updates from O(|r| · |b|) to O(|r|) if |b| < √|r| and |x̃| ≈ |b|, which is
common for OLAP queries, such as for the TPC-H benchmark. We integrate these op-
timizations into a new evaluation algorithm, termed TCMDA+. An empirical evaluation
confirms the analytical results and shows that range aggregates can be computed with
almost the same efficiency as point aggregates.

The technical contributions can be summarized as follows:

– we show how the evaluation of range aggregates can be reduced to the evaluation
of point aggregates by computing an intermediate table of corresponding point ag-
gregates, which are then combined to the final aggregates;

– to further reduce the number of updates in the intermediate table, we maintain a
separate intermediate table for each aggregate;

– we integrate these optimizations in a new evaluation algorithm, termed TCMDA+,
which reduces the runtime complexity from O(|r| · |b|) to O(|r|) if |b| < √|r|
and |x̃| ≈ |b|;

– we report experimental results that confirm the analytical results and show that
range aggregates are evaluated with almost the same efficiency as point aggregates.

The paper is organized as follows: Sec. 2 reports related work, followed by a summary
of the θ-MDA operator in Sec. 3. In Sec. 4, we present the reduction of range to point
aggregates. These optimizations are integrated in a new algorithm in Sec. 5. In Sec. 6,
we report experimental results. Section 7 concludes the paper and points to future work.

2 Related Work

Various research work investigates multi-dimensional data aggregation techniques to
gain more flexibility and/or performance. The CUBE operator [7] is part of the SQL
standard and allows to express aggregation queries with equality constraints over sev-
eral attributes in a concise way. For aggregation queries over a part of the data cube,
grouping sets can be used. Additional support for aggregation queries over one dimen-
sion is provided by window functions in SQL:2003. The support is based on the ordering
of tuples. Currently, SQL does not support the efficient evaluation of range aggregates
over multiple dimensions [1].

An orthogonal approach to improve the query performance is to pre-compute ag-
gregates. Harinarayan et al. [9] propose a strategy for the selection of a subset of
all possible data cubes to be materialized. To avoid the complete re-computation of
cubes when source relations change, incremental update strategies have been pro-
posed [11,12,13,15]. Although the pre-computation of data cubes works well for point
aggregates, the performance of range aggregates suffers since the cells in the data cube
must be accessed repeatedly. To tackle this problem, Ho et al. [10] propose to maintain
additionally a so-called prefix sum cube. Subsequent work has studied techniques to
lower the comparably high update costs of the prefix sum cube [5,6,14].

The goal in this paper is the efficient evaluation of complex ad-hoc OLAP queries
when pre-computed aggregates (cubes or prefix sum cubes) are not available. Such

Efficient Evaluation of Ad-Hoc Range Aggregates 49

an approach provides more flexibility for the exploration of large data sets when the
requirements for the analysis and queries are not known a priori.

To efficiently answer ad-hoc OLAP queries with a single scan of the detail table,
Akinde et al. [2] propose the multi-dimensional join (MDJ) and later the generalized
multi-dimensional join (GMDJ) [3,4]. The operator has been used in complex OLAP
settings to transform general sub-query expressions into expressions that use the GMDJ
instead of joins, outer joins, or set difference. Sridhar et al. [16] use the GMDJ in com-
bination with MapReduce to compute aggregation queries over RDF data.

The θ-constrained multi-dimensional aggregation (θ-MDA) operator [1] extends the
MDJ and presents a detailed cost model together with algebraic transformation rules.
θ-MDA outperforms SQL for complex multi-dimensional aggregation queries, such as
range aggregates over multiple dimensions. In this paper, we propose an alternative
evaluation strategy for θ-MDA, which significantly reduces the cost of the computation
of range aggregates to almost the same cost as point aggregates.

3 Preliminaries

We assume two relations, b and r, with schema B = (B1, . . . , Bt) and R =
(A1, . . . , Ap), respectively. For a tuple x we write x.B as an abbreviation for
(x.B1, . . . , x.Bt). E/C denotes the renaming of E to C, attr(θ) denotes the set of
attributes used in θ, and fi denotes an aggregate function.

Definition 1. (θ-MDA [1]) Let b and r be relations with schemaB andR, respectively,
F = (f1/C1, . . . , fm/Cm) be aggregate functions over attributes in R, and Θ =
(θ1, . . . , θm) be conditions with attr(θi) ⊆ B ∪R. The θ-MDA operator is defined as

Gθ(b, r, F,Θ) = {b ◦ v | b ∈ b ∧ v = (f1(r[b,θ1]), . . . , fm(r[b,θm]))},
where r[b,θi] = {r ∈ r | θi(r, b)} are the aggregate tuples from which the aggregate
values for aggregation group b are computed.

The base table b specifies the aggregation groups for which a result tuple is reported.
The detail table r contains the data from which aggregate values are computed. F is
a list of aggregate functions. Each fi gets as argument a subset of r, r[b,θi] ⊆ r, that
is determined by a condition θi, and aggregates one of the attributes. Each entry in the
result table x consists of a b-tuple and the aggregation results stored in C1, . . . , Cm.
Query Q1 can be formulated as Gθ(b, r, F,Θ) with b = πD,U (σU∈{2,3}(stays)), r =
stays, F = ((SUM(S)/COUNT(S))/C1, (SUM(S)/COUNT(S))/C2), and Θ =
(θ1, θ2) with θ1 ≡ (r.D≤b.D) and θ2 ≡ (r.D≤b.D ∧ r.U≤b.U).

The evaluation of θ-MDA queries works as follows: (1) initialize the result table x
to b and the neutral value for each aggregate function; (2) scan r and incrementally
update the aggregates fi in x that are affected by an r ∈ r, i.e., satisfy condition θi.
After processing all r-tuples, x contains the result relation. The runtime complexity of
this evaluation strategy is O(|r| · |b|) with one scan of r. Figure 2 shows the result table
during the evaluation of the first three tuples. The first two detail tuples affect all eight
aggregate values in x, whereas r3 requires six updates.

Observe that the number of aggregates that are updated for an r-tuple depends on the
θi-conditions. Range aggregates require many more updates than point aggregates.

50 C. Ammendola, M.H. Böhlen, and J. Gamper

x

D U C1 C2

x1 31/01/13 2 - -
x2 31/01/13 3 - -
x3 01/02/13 2 - -
x4 01/02/13 3 - -

Initial result table

x

D U C1 C2

x1 31/01/13 2 2/1 2/1
x2 31/01/13 3 2/1 2/1
x3 01/02/13 2 2/1 2/1
x4 01/02/13 3 2/1 2/1

r1=(31/01/13, P1, 1, 2)

x

D U C1 C2

x1 31/01/13 2 6/2 6/2
x2 31/01/13 3 6/2 6/2
x3 01/02/13 2 6/2 6/2
x4 01/02/13 3 6/2 6/2

r2=(31/01/13, P2, 1, 4)

x

D U C1 C2

x1 31/01/13 2 14/3 6/2
x2 31/01/13 3 14/3 14/3
x3 01/02/13 2 14/3 6/2
x4 01/02/13 3 14/3 14/3

r3=(31/01/13, P3, 3, 8)

Fig. 2. Processing Tuples in θ-MDA Queries

4 A New Evaluation Strategy for θ-MDA Queries

4.1 Reducing Range to Point Queries

To tackle the problem of a large number of incremental updates for range aggregates
and take advantage of the efficient computation of point aggregates, we propose an
evaluation strategy that reduces range to point aggregates.

Proposition 1 (Reduction to Point Aggregates). Let b, r, B, R, F , Θ be as in Def. 1,
G = (g1, . . . , gm) be the super aggregates of the fi ∈ F , and Ri = R∩attr(θi) be the
attributes in R that occur in θi. Then, x = Gθ(b, r, F,Θ) can be computed as follows:

1. construct Θ̃ = (θ̃1, . . . , θ̃m), where θ̃i(r, b) =
∧

A∈Ri
r.A = b.A;

2. compute an intermediate result table x̃ = Gθ(πR1∪···∪Rm(r), r, F, Θ̃);
3. compute the result table x = {b ◦ v | b ∈ b ∧ v = (g1(x̃[b,θ1]), . . . , gm(x̃[b,θm]))},

where x̃[b,θi] = πRi,Ci{x̃ ∈ x̃ | θi(x̃, b)}.

First, m point aggregates are constructed by creating conditions Θ̃ = {θ̃1, . . . , θ̃m}
such that each θ̃i contains an equality constraint, r.A = b.A, for each attribute A ∈
Ri that is used in the corresponding θi. Second, a Gθ-call computes an intermediate
result table, x̃, with m point queries, where the base table is a projection of r to all
R-attributes that are used in Θ. This requires significantly less updates in x̃ than the
range queries would do. The final result table, x, is derived from x̃ using the aggregates
gi in combination with the original conditions θi. Following Gray et al. [7], we call the
functions gi that are needed to aggregate the intermediate values the super aggregates.
For the standard aggregate functions we have the following pairs of aggregate/super
aggregate: MAX/MAX, MIN/MIN, SUM/SUM, COUNT/SUM; average is replaced
by sum divided by count. The super aggregates are computed over groups of entries,
x̃[b,θi] ⊆ x̃, that are assigned to tuples b ∈ b using the original conditions θi. Note the
projection to the aggregation group attributes Ri and the aggregate Ci. This is required
to eliminate duplicates in situations when a condition θ̃i references only a subset of the
aggregation group attributes in x̃, i.e., Ri ⊂ R1 ∪ · · · ∪Rm. Although in step 3 each
tuple of x̃ may affect multiple tuples in x, the overall runtime is significantly reduced,
provided that x̃ is much smaller than r, which is frequently the case in OLAP.

Figure 3 shows the evaluation of Query Q1. We have the attribute sets R1 = {D}
and R2 = {D,U} and the conditions Θ̃ = {θ̃1, θ̃2} with θ̃1 ≡ (r.D=b.D) and

Efficient Evaluation of Ad-Hoc Range Aggregates 51

θ̃2 ≡ (r.D=b.D ∧ r.U=b.U). These conditions together with the aggregate func-
tions represent point aggregates, which are computed in the intermediate result table
as x̃ = Gθ(πD,U (stays), r, F, Θ̃). Note the significant reduction of incremental up-
dates in x̃. For instance, tuple r1 affects only four aggregates (both aggregates in x̃1

and aggregate C1 in x̃2 and x̃3) instead of eight as in Fig. 2. To derive the final result
table x, the original conditions, θi, are used to determine the subsets x̃[b,θi]. For result
tuple x1 with aggregation group b = (31/01/13, 2) we have the following subsets:

x̃[(31/01/13,2),θ1] = πD,C1{x̃ ∈ x̃ | x̃.D ≤ 31/01/13}
= πD,C1{x̃1, x̃2, x̃3} = {(31/01/13, 24/6)},

x̃[(31/01/13,2),θ2] = πD,U,C2{x̃ ∈ x̃ | x̃.D ≤ 31/01/13∧ x̃.U ≤ 2}
= πD,U,C2{x̃1, x̃2} = {(31/01/13, 1, 9/3), (31/01/13, 2, 7/2)}.

The projection in x̃[(31/01/13,2),θ1] removes duplicates that originate from C1 grouping
only by D. Since the super aggregate of SUM and COUNT is SUM, the final aggre-
gates are obtained by summing up the individual sums and counts, respectively. For
instance, for the result tuple x1 we get

x1.C1 = SUM/SUMC1(x̃[(31/01/13,2),θ1]) = SUM/SUMC1({(31/01/13, 24/6)})
= 24/6,

x1.C2 = SUM/SUMC2(x̃[(31/01/13,2),θ2])

= SUM/SUMC2({(31/01/13, 1, 9/3), (31/01/13, 2, 7/2)}
= (9+7)/(3+2) = 16/5.

stays

D P U S

r1 31/01/13 P1 1 2
r2 31/01/13 P2 1 4
r3 31/01/13 P3 3 8

.

.

.
r10 01/02/13 P10 3 6

x̃

D U C1 C2

x̃1 31/01/13 1 24/6 9/3
x̃2 31/01/13 2 24/6 7/2
x̃3 31/01/13 3 24/6 8/1
x̃4 01/02/13 1 20/4 5/2
x̃5 01/02/13 3 20/4 15/2

x

D U C1 C2

x1 31/01/13 2 24/6 16/5
x2 31/01/13 3 24/6 24/6
x3 01/02/13 2 44/10 21/7
x4 01/02/13 3 44/10 44/10

Θ̃, F Θ,G

Fig. 3. θ-MDA Evaluation by Reduction to Point Queries

Theorem 1. The evaluation strategy in Proposition 1 correctly computes the θ-MDA.

Proof. The theorem applies the following reduction rule for distributive aggregates: an
aggregate function, f , over a set of tuples, r, can be reduced to the computation of
partial aggregates over a partitioning r1, . . . , rk of r, followed by an application of the
corresponding super aggregate g, i.e., f(r) = g(f(r1), . . . , f(rk)). In step two, each θ̃i
induces a partitioning of r such that all tuples in the same partition have identical val-
ues for the attributes Ri = R∩ attr(θi). The call to Gθ with base table πR1∪···∪Rm(r)
computes for each fi the partial aggregation results over the individual partitions, i.e.,
x̃.Ci = fi({r ∈ r | θ̃(r, x̃)}). In step three, the original b and θis are used to determine
which entries x̃ ∈ x̃ to combine for each b ∈ b. Each x̃[b,θi] collects all intermediate

52 C. Ammendola, M.H. Böhlen, and J. Gamper

tuples, x̃ ∈ x̃, that are assigned to b through θi. Since all r-tuples in a partition that
contributed to an intermediate aggregate, x̃.Ci, have identical values for the attributes
Ri, they would have been assigned by θi to the same b. The projection to Ri, Ci elimi-
nates duplicates when Ri ⊂ R1 ∪ · · · ∪Rm. In such cases, several entries in x̃ might
store the same aggregation group for Ci, but only one can be considered for the final
aggregation result. Thus, no spurious tuples are combined for the aggregates in the final
result table, and the use of the original θi in step three guarantees that all input tuples
are considered. �

The following lemma shows that the reduction of range aggregates to point aggregates
can be expressed by a nested θ-MDA if all θis use the same set of aggregation group
attributes B.

Lemma 1. Let b, r, F , G, Θ, and Θ̃ be as in Proposition 1. Furthermore, let Ri =
R ∩ attr(θi) denote the attributes in R that occur in θi and Ri = Rj for all i, j,
1 ≤ i, j ≤ m. Then, x = Gθ(b, r, F,Θ) can be computed as

x = Gθ(b,Gθ(πRi(r), r, F, Θ̃), G,Θ).

Proof. The inner Gθ-call computes the intermediate table x̃, which is passed as detail
table to the outer Gθ-call. In the outer call, the original θis assign to each b ∈ b the
associated intermediate tuples, x̃ ∈ x̃. Since all aggregates use the same aggregation
group attributes, Ri, there are no duplicate aggregation groups in x̃ for any aggregate,
hence a projection as in Proposition 1 is not necessary. The super aggregates in G in
combination with the original conditions Θ correctly combine the partial aggregates to
the final result. �

Note that using the aggregation groups in b instead of πR1∪···∪Rm(r) for the com-
putation of the intermediate result table x̃ would not be correct. This happens if b is
sparse, i.e., r contains more combinations of the grouping attribute values than b does,
i.e., b ⊂ πB(r). Since the θ̃is use only equality constraints, some tuples in r might
not be assigned to any entry in the intermediate table x̃ although they contribute to the
final aggregation result. Figure 4 shows table x̃ for Query Q1 when using the original
base table b. In table x̃, the pre-aggregates for the aggregation groups (31/01/13, 1)
and (01/02/13, 1) are missing, but they are needed for the correct computation of the
final result. A similar situation occurs if Θ uses a lower number of B-attributes than
R-attributes. In this case, the intermediate table x̃ misses attributes that are needed for
the evaluation of the θis when producing the final result table.

4.2 Separate Intermediate Result Tables

Even if the θ̃i-conditions contain only equality constraints, a single r-tuple might still
affect several entries in x̃. This is the case if a θ̃i constrains only a subset of all grouping
attributes, i.e., Ri ⊂ R1 ∪ · · · ∪Rm. For instance, condition θ̃1 ≡ (r.D=b.D) of the
first aggregate groups only by D. This produces duplicate aggregation groups in x̃,
such as D = 31/01/13which is present in x̃1, x̃2, and x̃3 (cf. Fig. 3). Each of the detail
tuples r1, . . . , r6 is assigned to each of these entries, yielding a total of 18 updates of

Efficient Evaluation of Ad-Hoc Range Aggregates 53

stays

D P U S

r1 31/01/13 P1 1 2
r2 31/01/13 P2 1 4
r3 31/01/13 P3 3 8

.

.

.
r10 01/02/13 P10 3 6

x̃

D U C1 C2

31/01/13 2 24/6 7/2
31/01/13 3 24/6 8/1
01/02/13 2 20/4 -/-
01/02/13 3 20/4 15/2

Θ̃, F

Fig. 4. Using Base Table b in x̃

C1 instead of six. This type of redundant updates can be avoided by using a separate
intermediate result table, x̃i, for each θ̃i (fi).

Proposition 2 (Separate Intermediate Result Tables). Let b, r, F , G, Θ, Θ̃, and Ri

be as in Proposition 1. Then, x = Gθ(b, r, F,Θ) can be computed as follows:

1. compute m intermediate result tables x̃i = Gθ(πRi(r), r, fi, θ̃i) for i = 1, . . . ,m;
2. compute the result table x = {b ◦ f | b ∈ b ∧ f = (g1(x̃

1
[b,θ1]

), . . . , gm(x̃m
[b,θm]))},

where x̃i
[b,θi]

= {x̃ ∈ x̃i | θi(x̃, b)}.

Figure 5 shows the two intermediate result tables, x̃1 and x̃2, in our running example
that replace table x̃ from Fig. 3. Table x̃1 has one grouping attribute, whereas x̃2 has
two. The detail tuples r1, . . . , r6 require now a total of six updates of C1 in table x̃1

(one for each tuple), instead of 18 in Fig. 3.

stays

D P U S

r1 31/01/13 P1 1 2
r2 31/01/13 P2 1 4
r3 31/01/13 P3 3 8

.

.

.
r10 01/02/13 P10 3 6

x̃1

D C1

x̃2
1 31/01/13 24/6

x̃2
2 01/02/13 20/6

x̃2

D U C2

x̃3
1 31/01/13 1 9/3

x̃3
2 31/01/13 2 7/2

x̃3
3 31/01/13 3 8/1

x̃3
4 01/02/13 1 5/2

x̃3
5 01/02/13 3 15/2

θ̃1, f1

θ̃2, f2

Fig. 5. Separate Intermediate Result Tables

Theorem 2. The evaluation strategy in Proposition 2 correctly computes θ-MDA.

Proof. The proof is similar as for Theorem 1 with two differences. In the first step, m
intermediate result tables are constructed using the θ̃is. Since the aggregation groups
of each x̃i are produced by a projection of r to the attributes Ri that are used in the
corresponding θi-condition, duplicate aggregation groups are avoided. The second step
merges the intermediate tables to produce the final result table in the same way as in
Proposition 1, except the projection in x̃[b,θi], which is not needed since no duplicate
aggregation groups exist. �

Corollary 1. The evaluation of θ-MDA queries using separate intermediate result ta-
bles, x̃i, as in Proposition 2, requires for each r ∈ r exactly one update in each x̃i.

54 C. Ammendola, M.H. Böhlen, and J. Gamper

Proof. None of the intermediate result tables, x̃i, contains duplicate aggregation groups
and all aggregates are point queries. Thus, each condition, θ̃i, associates each detail
tuple, r ∈ r, to exactly one entry in x̃i. �

5 Algorithm TCMDA+

Algorithm 1 shows a new algorithm, TCMDA+, for the evaluation of θ-MDA queries
that adopts the optimization techniques introduced before.

Algorithm 1. TCMDA+(b, r, F,Θ)
input : base table b, detail table r, aggregate functions F = (f1, . . . , fm), conditions Θ = (θ1, . . . , θm)
output : result relation x

// Initialize intermediate result tables
Let Ri ← R ∩ attr(θi) for i = 1, . . . ,m;
Let (Rj1 , Fj1), . . . , (Rjk

, Fjk
), k ≤ m, be a partitioning of F according to Ri;

foreach partition (Rj, Fj) do
x̃j ← empty table with schema (Rj, Cj1 , . . . , Cjkj

);

Create an index on x̃j over the attributes Rj ;

θ̃j(r, b) =
∧

A∈Rj
r.A = b.A;

// Scan detail table r and update intermediate result tables
foreach tuple r ∈ r do

foreach partition (Rj , Fj) do
if ∃x̃ ∈ x̃j such that θ̃j(r, x̃) then

x̃.Cji
← gji (x̃.Cji

, fji ({r})) for i = 1, . . . , kj ;
else

x̃j ← x̃j ∪ {r.Rj ◦ (fj1 ({r}), . . . , fjkj ({r}))};

// Build final result table x
x = b× {(υ1, . . . , υm)};
Create index on x over attributes B;
for i = 1 to m do

foreach x̃ ∈ x̃i do
foreach x ∈ x such that θi(x̃, x) do

x.Ci ← gi(x.Ci, x̃.Ci);

return x;

The algorithm starts with the initialization of empty intermediate result tables. Ac-
cording to Proposition 2, for each θ̃i a separate table is created. This leads to tables
with identical grouping attributes if different θis reference the same attributes in R,
i.e., Ri = Rj for i �= j. Therefore, in the algorithm we apply a further optimization
and merge tables with identical grouping attributes to a single table with one column
for each aggregate function. For each intermediate result table, x̃j , constructed in this
way we create an index over the grouping attributes. The conditions θ̃j are generated
as described in Proposition 1. Next, the detail table is scanned, and for each r ∈ r the
aggregates in the intermediate result tables, x̃j , are updated. If an entry in x̃j exists that
matches tuple r, the aggregates are incrementally updated. Otherwise, a new entry is
created and the aggregate values are initialized to the functions evaluated over r. Fi-
nally, the result table x is initialized to b with the aggregates initialized to the neutral

Efficient Evaluation of Ad-Hoc Range Aggregates 55

values υi. The final result table is computed by combining the partial aggregates from
the intermediate result tables x̃j using the super aggregates as described in Proposi-
tion 2. For that the intermediate result tables are scanned and the aggregate values in
the final result table are incrementally updated.

Figure 6 illustrates a few steps of the computation of Query Q1. Empty intermediate
result tables x̃1 and x̃2 are created for the partitions ({D}, {f1}) and ({D,U}, {f2}).
The first tuple r1 creates a new entry in both tables. Tuple r2 creates no new entries in
any of the intermediate tables, it only updates aggregates. Tuple r3 updates C1 in x̃1

and creates a new entry in x̃2. After processing r10, the intermediate tables contain the
same partial aggregate values as in Fig. 5.

x̃1

D C1

x̃2

D U C2

Initialization

x̃1

D C1

31/01/13 2/1

x̃2

D U C2

31/01/13 1 2/1
r1 = (31/01/13, P1, 1, 2)

x̃1

D C1

31/01/13 6/2

x̃2

D U C2

31/01/13 1 6/2
r2 = (31/01/13, P2, 1, 4)

x̃1

D C1

31/01/13 14/3

x̃2

D U C2

31/01/13 1 6/2
31/01/13 3 8/1

r3 = (31/01/13, P3, 3, 8)

. . .

x̃1

D C1

31/01/13 24/6
01/02/13 20/4

x̃2

D U C2

31/01/13 1 9/3
31/01/13 2 7/2
31/01/13 3 8/1
01/02/13 1 5/2
01/02/13 3 15/2

r10 = (01/02/13, P10, 3, 6)

Fig. 6. Processing of Detail Tuples and Computation of Intermediate Result Tables in TCMDA+

Complexity Analysis. We analyze the complexity of the TCMDA+ algorithm in terms
of incremental updates to the aggregate values and compare it to the original TCMDA
algorithm [1]. As parameters we consider the two input relations, b and r, while the
number of aggregate functions and θ-conditions are considered to be constant.

The complexity of TCMDA is CTCMDA = |b|+ |r| · u, where u is the average number
of updates in the result table x. The number of updates depends on the constraints in
the θis and ranges between 0 and |b|. For range aggregates, u is much higher than for
point aggregates. The complexity of TCMDA+ is CTCMDA+ = |b| + |r| + |x̃| · u, where
|x̃| is the size of the largest intermediate result table and u is the average number of
updates in the result table x. The number of updates for each r ∈ r in the intermediate
tables x̃i is always one due to the reduction to point aggregates and the use of separate
intermediate tables. The computation of the final result table x requires on average u
updates for each x̃ ∈ x̃, where |x̃| ≤ |r| and u ranges between 1 and |b|.

The worst case complexity of TCMDA is O(|r| · |b|). For the TCMDA+ algorithm,
we distinguish three cases. First, for |b| < √|r| and |x̃| ≈ |b|, which is common for
OLAP, we get a worst case complexity ofO(r), and thus a significant improvement over
TCMDA. Second, for |b| > √|r| and |x̃| ≈ |b| we have O(|b|2). Third, if |x̃|
 |b| (or
almost as large as |r|) the algorithm degrades to O(|r|·|b|) and has the same complexity
as TCMDA.

56 C. Ammendola, M.H. Böhlen, and J. Gamper

To summarize, for typical applications of θ-MDA, where |b| <
√|r| and |x̃| ≈

|b|, the proposed optimization reduces the complexity of the θ-MDA evaluation from
O(|r| · |b|) to O(|r|) for both range and point aggregates.

6 Experiments

Setup and Data. We implemented the algorithms TCMDA from [1] and TCMDA+ de-
scribed in this paper in C using Oracle 11g for storing the data. The experiments run
on a machine with two AMD Opteron processors (1.8 GHz and 2.6 GHz), 16 GB of
main memory, and Ubuntu 10.04. For the experiments we used the Orders table of the
TPC-H benchmark1. We generated tables of different size and ran queries over them
using the aggregate function COUNT.

Varying the Size of the Detail Table. Figure 7 presents the runtime by varying the size
of the detail table between 2 and 10 million tuples. The θ-conditions use the operators
≤ and �= (range aggregates). In all experiments, TCMDA+ clearly outperforms TCMDA,
and the runtime of TCMDA grows faster than for TCMDA+. This improvement of up to
a factor of five can be attributed to the reduction to point aggregates, which reduces
the number of updates for each detail tuple to one. As expected, the less selective the
θ-constraints are, the bigger the performance improvement since for less selective con-
ditions TCMDA needs to update comparably more aggregates for each r ∈ r.

 0

 100

 200

 300

 400

 500

2M 4M 6M 8M 10M

R
un

tim
e

[s
ec

]

|r|

TCMDA ≠
TCMDA ≤

TCMDA+ ≠
TCMDA+ ≤

Fig. 7. Varying |r| (|b| = 500, |Θ| = 1, |θ| = 1)

Varying the Size of the Base Table. The experimental results with a varying size of the
base table are shown in Fig. 8 and exhibit an even better performance improvement
than for varying |r|. The growing size of b affects the runtime of TCMDA drastically, as
shown in Fig. 8(a). For |b| = 5000 the runtime is about 13 times larger for ≤ and about
27 larger for �= with respect to |b| = 1000. In contrast, the runtime of TCMDA+ is not
affected by the growing base table. Figure 8(b) shows the runtime of TCMDA+ with a
larger base table varying between 2000 and 1000 tuples. The experiment confirms our
analytical results that the runtime of TCMDA+ is growing slowly for ≤ and �= queries
when |b| > √|r| ≈ 3000; for = (point queries) the runtime remains constant.

1 TPC-H benchmark framework: http://www.tpc.org/tpch/

Efficient Evaluation of Ad-Hoc Range Aggregates 57

 0

 5000

 10000

 15000

 20000

1K 2K 3K 4K 5K

R
un

tim
e

[s
ec

]

|b|

TCMDA ≠
TCMDA ≤

TCMDA+ ≠
TCMDA+ ≤

(a) Both algorithms

 0

 20

 40

 60

 80

 100

2K 4K 6K 8K 10K

R
un

tim
e

[s
ec

]

|b|

TCMDA+ ≠
TCMDA+ ≤
TCMDA+ =

(b) Only TCMDA+

Fig. 8. Varying |b| (|r| = 10M , |Θ| = 1, |θ| = 1)

Varying the Conditions. In Fig. 9, the number of constraints in the conditions θi and
the number of θ-conditions in Θ are varied, respectively. Again, TCMDA+ clearly out-
performs TCMDA. The runtime for θ-conditions with a number of constraints that varies
between 1 and 5 is shown in Fig. 9(a). The increase in the runtime is due to the more ex-
pensive evaluation of the θ-conditions containing more constraints. Fig. 9(b) illustrates
the experimental results for a growing number of conditions in Θ. A higher number of
conditions results in more aggregates to be computed, hence more incremental updates
are required. For TCMDA, additional θ-conditions result in significantly more aggre-
gates to be updated for each r-tuple. TCMDA+ is less affected because each additional
θ-condition means only one more aggregate update for each r-tuple.

 0

 500

 1000

 1500

 2000

 1 2 3 4 5

R
un

tim
e

[s
ec

]

|θ|

TCMDA ≠
TCMDA ≤

TCMDA+ ≠
TCMDA+ ≤

(a) Varying Size of θs

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5

R
un

tim
e

[s
ec

]

|Θ|

TCMDA ≠
TCMDA ≤

TCMDA+ ≠
TCMDA+ ≤

(b) Varying Number of θs

Fig. 9. Varying Conditions (|r| = 10M , |b| = 500, |Θ| = 1)

Comparing Different Constraint Types. In Fig. 10, we analyze how the constraint op-
erators =, ≤, and �= affect the runtime (i.e., range vs. point aggregates). TCMDA is very
sensitive to the type of constraint operators that are used, yielding runtimes that for ≤
and �= are much longer than for = (see Fig. 10(a)). This is due to the higher number
of aggregate updates for each r-tuple in range aggregates (i.e., lower selectivity of the
operator). In contrast, TCMDA+ in Fig 10(b) is robust and independent of the type of
constraint operators. Range aggregates are computed with the same efficiency as point
aggregates.

Figure 11 analyzes TCMDA+ and different types of constraints for larger detail and
base tables. Both graphs confirm the analytical results, i.e., the runtime of TCMDA+ is
linear in |r| when |b| ≤ √|r| = 10000. In Fig. 11(a), the detail table varies between

58 C. Ammendola, M.H. Böhlen, and J. Gamper

 0

 100

 200

 300

 400

 500

2M 4M 6M 8M 10M

R
un

tim
e

[s
ec

]

|r|

TCMDA ≠
TCMDA ≤
TCMDA =

(a) TCMDA

 0

 20

 40

 60

 80

 100

2M 4M 6M 8M 10M

R
un

tim
e

[s
ec

]

|r|

TCMDA+ ≠
TCMDA+ ≤
TCMDA+ =

(b) TCMDA+

Fig. 10. Varying |r| (|b| = 500, |Θ| = 1, and |θ| = 1)

25 and 100 million tuples, with a base table size of 1000 and one θ-condition with one
constraint. The runtime shows a linear growth and is not affected by the type of the
query. In Fig. 11(b), the size of the base table varies between 2500 and 20000 tuples,
with a detail table of 100 million tuples and one θ-condition with one constraint. The
runtime is constant for |b| ≤ 10000. For larger base tables b, the runtime is slowly
increasing, though the increase is less evident than in Fig. 8(b), where the base table is
comparably larger.

 0

 200

 400

 600

 800

 1000

 1200

25M 50M 75M 100M

R
un

tim
e

[s
ec

]

|r|

TCMDA+ ≠
TCMDA+ ≤
TCMDA+ =

(a) Varying |r| (|b|=1000)

 0

 200

 400

 600

 800

 1000

 1200

5K 10K 15K 20K

R
un

tim
e

[s
ec

]

|b|

TCMDA+ ≠
TCMDA+ ≤
TCMDA+ =

(b) Varying |b| (|r|=100M)

Fig. 11. TCMDA+ Scalability Experiments

7 Conclusions

In this paper, we studied the efficient evaluation of complex ad-hoc multidimensional
aggregation queries with the θ-MDA operator. We proposed a solution to reduce the
evaluation of θ-MDA range aggregates to θ-MDA point aggregates. Point aggregates
require significantly less incremental updates. This optimization has been integrated
into a new evaluation algorithm, termed TCMDA+, which reduces the runtime complex-
ity from O(|r| · |b|) to O(|r|) if |b| < |√r| and x̃ ≈ b, which is common in OLAP
queries, such as for the TPC-H benchmark. Extensive experiments have shown per-
formance improvements of more than an order of magnitude for TCMDA+, and range
aggregates can be computed with almost the same performance as point aggregates.

Future work points in several directions. First, we will investigate the integration of
θ-MDA as an algebraic operator into the kernel of PostgreSQL. Second, we plan to
adapt the evaluation strategy for θ-MDA queries and leverage MapReduce techniques
for distributed query processing. Finally, it could be interesting to identify applications
with very large base tables and develop optimization strategies for such settings.

Efficient Evaluation of Ad-Hoc Range Aggregates 59

Acknowledgments. We are indebted to Andreas Heinisch for providing us the C im-
plementation of the algorithms and his support to run the experiments.

This work was funded in part by the Swiss National Science Foundation (SNSF)
through the Tameus project (proposal no 200021 135361) and the Autonomous
Province of Bozen-Bolzano through the AQUIST project.

References

1. Akinde, M., Böhlen, M.H., Chatziantoniou, D., Gamper, J.: θ-constrained multi-dimensional
aggregation. Information Systems 36, 341–358 (2011)

2. Akinde, M., Chatziantoniou, D., Johnson, T., Kim, S.: The MD-join: An operator for complex
OLAP. In: Proceedings of ICDE, Washington, DC, USA, pp. 524–533 (2001)

3. Akinde, M.O., Böhlen, M.H.: Generalized MD-joins: Evaluation and reduction to SQL. In:
Jonker, W. (ed.) Databases in Telecommunications II. LNCS, vol. 2209, pp. 52–67. Springer,
Heidelberg (2001)

4. Akinde, M.O., Böhlen, M.H., Johnson, T., Lakshmanan, L.V.S., Srivastava, D.: Efficient
OLAP query processing in distributed data warehouses. Information Systems 28, 111–135
(2003)

5. Chun, S.-J., Chung, C.-W., Lee, J.-H., Lee, S.-L.: Dynamic update cube for range-sum
queries. In: VLDB, pp. 521–530 (2001)

6. Geffner, S., Agrawal, D., Abbadi, A.E., Smith, T.R.: Relative prefix sums: An efficient ap-
proach for querying dynamic olap data cubes. In: ICDE, pp. 328–335 (1999)

7. Gray, J., Bosworth, A., Layman, A., Reichart, D., Pirahesh, H.: Data cube: A relational ag-
gregation operator generalizing group-by, cross-tab, and sub-totals. In: Proceedings of ICDE,
Washington, DC, USA, pp. 152–159 (1996)

8. Gupta, A., Harinarayan, V., Quass, D.: Aggregate-query processing in data warehousing en-
vironments. In: VLDB, pp. 358–369 (1995)

9. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. In: Pro-
ceedings of SIGMOD, New York, NY, USA, pp. 205–216 (1996)

10. Ho, C.-T., Agrawal, R., Megiddo, N., Srikant, R.: Range queries in OLAP data cubes. In:
Proceedings of SIGMOD, Tucson, Arizona, USA, May 13-15, pp. 73–88 (1997)

11. Hurtado, C.A., Mendelzon, A.O., Vaisman, A.A.: Maintaining data cubes under dimension
updates. In: ICDE, pp. 346–355. IEEE Computer Society (1999)

12. Lee, K.Y., Kim, M.H.: Efficient incremental maintenance of data cubes. In: Proceedings of
the VLDB Conference, pp. 823–833 (2006)

13. Lehner, W., Sidle, R., Pirahesh, H., Cochrane, R.: Maintenance of automatic summary tables.
In: Proceedings of SIGMOD, pp. 512–513 (2000)

14. Liang, W., Wang, H., Orlowska, M.E.: Range queries in dynamic OLAP data cubes. Data
Knowl. Eng. 34(1), 21–38 (2000)

15. Mumick, B.S., Quass, D., Mumick, B.S.: Maintenance of data cubes and summary tables in
a warehouse. In: Proceedings of SIGMOD, New York, NY, USA, pp. 100–111 (1997)

16. Sridhar, R., Ravindra, P., Anyanwu, K.: RAPID: Enabling scalable ad-hoc analytics on the
semantic web. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D.,
Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 715–730. Springer,
Heidelberg (2009)

	Efficient Evaluation of Ad-Hoc Range Aggregates
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 A New Evaluation Strategy for θ-MDA Queries
	4.1 Reducing Range to Point Queries
	4.2 Separate Intermediate Result Tables

	5 Algorithm TCMDA+
	6 Experiments
	7 Conclusions
	References

