
Concurrent Execution of Data Mining Queries

for Spatial Collocation Pattern Discovery�

Pawel Boinski and Maciej Zakrzewicz

Poznan University of Technology, Institute of Computing Science
{pawel.boinski,maciej.zakrzewicz}@cs.put.poznan.pl

Abstract. In spatial databases, Collocation Pattern Discovery is a very
important data mining technique. It consists in searching for types of
spatial objects that are frequently located together. Due to high re-
quirements for CPU, memory or storage space, such data mining queries
are often executed at times of low user activity. Multiple users or even
the same user experimenting with different parameters can define many
queries during the working hours that are executed, e.g., at off-peak
night-time hours. Given a set of multiple spatial data mining queries, a
data mining system may take advantage of potential overlapping of the
queried datasets. In this paper we present a new method for concurrent
processing of multiple spatial collocation pattern discovery queries. The
aim of our new algorithm is to improve processing times by reducing the
number of searches for neighboring objects, which is a crucial step for
the identification of collocation patterns.

1 Introduction

Most of the spatial datasets consist of instances that are described by spatial
features which can be interpreted as a characteristic of space in a particular
location. Typical examples of spatial features include species, business types or
points of interest (e.g., hospitals, airports). Shekhar and Huang introduced an
important concept of spatial collocation patterns [11]. The definition of a spatial
collocation pattern (or in short a collocation) assumes that it is a subset of
spatial features whose instances (e.g., particular airport and custom office) are
frequently located together in a spatial neighborhood. Such patterns are the
product of the data mining which is one of the most important steps in the
Knowledge Discovery in Databases - a non-trivial process of discovering valid,
novel, potentially useful and ultimately understandable patterns in the data [7].

For end users a data mining system can be regarded as an advanced database
with sophisticated querying methods. Users define data mining queries, i.e., a
classes of interesting patterns, sets of criteria and input datasets. The task of the
data mining system is to choose and execute an appropriate algorithm and finally
return discovered patterns to the users. In regular databases the time required

� This paper was funded by the Polish National Science Center (NCN), grant No.
2011/01/B/ST6/05169.

L. Bellatreche and M.K. Mohania (Eds.): DaWaK 2013, LNCS 8057, pp. 184–195, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Concurrent Execution of Spatial Data Mining Queries 185

to execute user commands is usually very short (except some administrative
tasks), while in data mining systems, the time to answer a single query can
be expressed in minutes or even hours. Therefore, in a real-life scenario, data
mining queries are collected during the user’s working hours and executed at
nights, when the system activity is low. It is very likely that some of the data
mining queries are related in such a way, that they share some input data. This
relation can be utilized to process them all at once in such a way that the total
processing time will be reduced in comparison with the straightforward serial
execution (the low activity time slot is limited to 6-8 hours). Another possibility
is to execute multiple queries in such order that consecutive queries can take
advantage of already computed and stored results of previous queries. Finally,
the spatial data mining system could execute queries that occur at random times
by incorporating them into currently ongoing data mining process.

In this paper we propose a new algorithm for processing batches of spatial
data mining queries for collocation patterns discovery. We introduce a concurrent
collocation candidate generation method and an extended iCPI-tree structure
that stores materialized neighbor relationships for multiple queries. Conducted
experiments have confirmed the high efficiency of the proposed algorithm.

2 Motivation and Related Work

2.1 Motivation

Consider a database of spatial objects describing various facilities in a particular
city. One can be interested in collocation patterns involving cinemas, food stores,
tram stops and schools whereas another user may want to find collocations of
such features as theaters, cinemas, opera houses and tram stops. The first user
wants to analyze districts d1 and d2 of the city and is interested in patterns
with at least 40% prevalence, while the second user wants to analyze districts d2
and d3 with minimum prevalence of 25%. The neighbor relation in both cases
is Euclidean distance less than 100 m. In general, we assume that the neighbor
relation is consistent across the processed queries, however it can vary depending
on the location (e.g., different for cities and rural areas) in the analyzed space.

The most trivial approach is to execute each query separately. We will refer
to this strategy as a sequential processing. The sequential processing is easy to
implement although it cannot benefit from the input data shared by multiple
queries. In the considered example, instances of features ’cinema’ and ’tram
stop’ located in the district d2 are shared among two queries. By merging the
execution of these queries we can reduce the number of searches across space
required to identify instances of certain candidates.

2.2 Related Work

One can notice that collocation discovery problem is substantially similar to the
frequent itemset discovery problem presented in [1], however, direct application

186 P. Boinski and M. Zakrzewicz

of well-known association mining algorithms, e.g., Apriori [2], is very challeng-
ing. Difficulties arise from significant differences in the characteristics between
classical market-basket data and spatial data. For example, instances in the
market-basket analysis are precisely nested in transactions, while instances of
spatial features are embedded in a continuous space and share ’hidden’ neighbor
relationships. As a result, new methods for collocation mining have been devel-
oped. The most interesting ones are Co-Location Miner [11], Joinless [14] and
iCPI-tree [12] accompanied with our work on efficient processing of spatial data
mining queries in a limited memory environment [3,4,5].

The problem of efficient execution of multiple queries in classical databases has
been extensively studied (e.g., [8,10]) and basically consists in a single execution
of expressions shared by at least two queries. This general idea remains the same
in the context of spatial data mining queries, however due to the more complex
processing it cannot be directly transferred. The problem of batch processing
of queries for association discovery has been introduced in [13]. The authors
proposed two solutions, named Mine Merge and Apriori Common Counting, to
reduce the total I/O and CPU cost of executing a set of data mining queries.

To the best of our knowledge there are no current works on batch processing
of collocation pattern mining queries, although there are some works on indexing
collocation patterns for future reuse [6] and on incremental maintenance of col-
location patterns when a set of new spatial data arrives [9]. In the first approach,
there is a computationally demanding step of pre-calculating and materializing
all collocation instances. To compensate the time required to perform this task,
a significant number of queries (counted in dozens or even hundreds) must be
executed afterwards. In the second approach results of the query are material-
ized and updated in the response to changing input dataset. Contrary, we do
not pre-calculate or materialize collocations. In the proposed method collocation
queries are executed concurrently only for the required subset of the input data.

2.3 Basic Definitions

Definition 1. Let f be a spatial feature. An object x is an instance of the
feature f , if x is a type of f and is described by a location and unique identifier.
Let F be a set of spatial features and S be a set of their instances. Given a
neighbor relation R, we say that the collocation C is a subset of spatial features
C ⊆ F whose instances I ⊆ S form a clique w.r.t. the relation R.

Definition 2. The participation ratio Pr (C, fi) of a feature fi in the collo-
cation C = {f1, f2, . . . , fk} is a fraction of objects representing the feature fi in
the neighborhood of instances of collocation C − {fi}. Pr (C, fi) is equal to the
number of distinct objects of fiin instances of C divided by the number of all
objects of fi. The participation index (prevalence measure) Pi (C) of a
collocation C = {f1, f2, . . . , fk} is defined as Pi (C) = minfi∈C {Pr (C, fi)}.
Lemma 1. The participation ratio and participation index are monotonically
non-increasing with increases in the collocation size.

Concurrent Execution of Spatial Data Mining Queries 187

Definition 3. Given a subset of spatial instances I = {ol, . . . , ov}, where l, v ∈
{1, 2, . . . ,m}, if oi ≤ oj holds for any l ≤ i ≤ j ≤ v, the I is called as an
ordered instance set. If the feature of oi is not the same as the feature of
ol and R (ol, oi) holds for any l < i ≤ v, the I is called as ordered neighbor
relationship set of the instance ol. The set of ordered neighbor relationship
sets of all instances of a spatial feature x is denoted as δx. Given a set of spatial
features F = {f1, f2, . . . , fn} and a set of ordered instance neighbor relationship
of spatial these features δ = δf1 ∪ δf2 ∪ . . . ∪ δfn , a tree designed as follows is
called as an improved Collocation Pattern Instances tree (iCPI-tree).
The iCPI-tree consists of one root labeled as “null” and a set of the spatial
features sub-trees as the children root. The spatial feature fi sub-tree consists of
the root fi and each subset of δfi as a branch of the root. Each branch records an
ordered neighbor relationship set of corresponding instance and relevant feature.

2.4 The iCPI-Tree Based Method

The general approach to collocation mining has been proposed in [11]. It con-
sists of three major steps: (1) generating collocation candidates, (2) identify-
ing instances for candidates and (3) filtering candidates w.r.t. to the minimum
prevalence threshold. These steps are executed iteratively. In k−th iteration,
size-k candidates are processed. The first step can be accomplished by applying
well-known Apriori strategy [2] due to the anti-monotonicity property of the
prevalence measure. The last step is very straightforward and basically consists
in computing prevalence measure for each candidate. The most time consuming
part of the algorithm is the second step. The first idea presumed that spatial
join should be used to find co-located objects. In [14] a concept of materialized
neighborhoods has been introduced. Wang et. al [12] extended this concept by
defining a tree structure (called iCPI-tree) for fast identification of neighbors.

In the iCPI-tree each child of the root node is a subtree that contains neigh-
bors for instances of a specific spatial feature. Sub-trees are composed of nodes
representing spatial features of neighbors and leafs corresponding to neighbor
instances. For example, in Fig. 2 (section 3.2) the tree iCPI1 contains two sub-
trees for features A and B. Given the instance A7 we can easily find that it
has one neighbor with B feature (B6) and two neighbors with C feature (C5
and C8). During the execution of the algorithm, new instances of candidates
are constructed from instances of collocations from previous iteration. For ex-
ample, to find instances of candidate ABC, an instance A1, B2 can be used.
The procedure searches for neighbors with feature C of A1 and B2. If there are
common neighbors for both elements, a new instance is constructed. Using the
iCPI1 tree, one can find that there is an instance A1, B2, C3. For details of the
iCPI-tree based algorithm please consult the paper [12].

3 Batch Processing of Spatial Data Mining Queries

In this section we introduce preliminaries, motivations and our new algorithm
for batch processing of spatial data mining queries.

188 P. Boinski and M. Zakrzewicz

3.1 Preliminaries

Definition 4. A spatial data mining query SDMQ is a tuple (S, F, L,R,
mp), where S is a spatial framework, F is a set of spatial features, L is a subset of
spatial framework S, R is a neighbor relation and mp is a minimum prevalence.
The result of the SDMQ is a set of collocation patterns discovered from instances
of F w.r.t. to R located in L having the prevalence not less than mp.

Definition 5. A set of spatial data mining queries QS = {(SDMQ1, t1),
(SDMQ2, t2),. . ., (SDMQn, tn)} consists of pairs (SDMQi, ti), 1 ≤ i ≤ n
where SDMQi is a spatial data mining query and ti is the time of the arrival
of this query to the data mining system.

In this work we focus on the execution of batches of data mining queries, i.e.,
sets of n spatial data mining queries where for each 1 ≤ i, j ≤ n, ti = tj .

Definition 6. A set AS = {a1, a2, . . . , am} is a set of distinct areas of S,
i.e., set of uniquely numbered subsets of spatial framework S such that for each
1 ≤ i, j ≤ m, areas ai and aj do not overlap and all areas from As constitute a
framework S.

Definition 7. A shared collocation pattern is a subset of spatial features
with an additional list of SDMQs that it belongs to. A shared collocation in-
stance is a set of instances of collocation features located together in a spatial
neighborhood with assigned set of distinct areas SA = {ak, . . . , al} such that for
each ai ∈ SA at least one collocation feature instance is located in ai.

Definition 8. Given a set of n data mining queries QS and a set F = {F1∪F2∪
. . . ∪ Fn}, where Fi denotes a set of spatial features of SDMQi ∈ QS, a Com-
mon iCPI-tree is an enhanced iCPI-tree such that for each spatial feature
fi ∈ F , sub-tree consists of the root fi and each subset of a set of ordered in-
stance neighbor relationship sets of all instances of fi. Each instance node of fi
is extended with the identifier of the distinct area that it belongs to.

3.2 The Common iCPI-Tree Based Method

In this section we introduce our new algorithm called Common iCPI-tree for
the concurrent execution of multiple queries in a batch. The pseudocode for
this algorithm is shown in Alg. 1. Within the following paragraphs we will refer
to this pseudocode by putting the corresponding line numbers in brackets. The
general idea introduced in the iCPI-tree method remains the same although there
are additional algorithm steps and extensions of structures required to perform
effective execution of batched queries.

To explain how our method works, we will use an example dataset shown
in Fig. 1. There are 4 features A, B, C and D with the total of 21 instances.
The batch is composed of two queries: SDMQ1 = (Input, {A,B,C}, 1.5 < x ≤
13, d ≤ 2, 0) and SDMQ2 = (Input, {A,B,C,D}, 6.5 < x ≤ 19.5, d ≤ 2, 0). For

Concurrent Execution of Spatial Data Mining Queries 189

simplicity and better explanation of the algorithm both minimum prevalence
thresholds are set to 0 and we use only x axis to specify query area of interest.
A line connecting two objects represents a neighbor relationship (distance not
grater than 2 units).

Algorithm 1. Common iCPI-tree based collocation mining algorithm

Input: QS - a set of n spatial data mining queries with the same r neighbor relation
Output: a set of collocation patterns
Variables: Fi - a set of SDMQi spatial features, A - a set of distinct ar-
eas for QS, CiCPIk - a Common iCPI-tree, SCk - a set of size-k shared col-
location candidates, SPk − a set of size-k prevalent shared collocations, SPIk −
a set of size-k shared clique instances

1: procedure Common iCPI(QS)
2: A = genDistinctAreas(QS)
3: CiCPI = genCommonTree (F1 ∪ F2 . . . ∪ Fn, A, r); k = 1
4: SPk = genOneElementSharedCollocations(F1 ∪ F2 . . . ∪ Fn, A)
5: while (SPk �= ∅) do
6: SCk+1 = AprioriGenSharedCandidates (SPk)
7: for sc ∈ SCk+1 do /* for each shared candidate */
8: for spinst ∈ SPIk with features equal to sc prefix do
9: if spinst belongs only to areas in sc then
10: CN = searchCommonNeighboors (spinst, sc, CiCPI)
11: for ne ∈ CN do
12: scnewInst = spinst ∪ {ne}, add ne area to scnewInst areas
13: SPIk+1 = SPIk+1 ∪ {scnewInst}
14: end for
15: end if
16: end for
17: end for
18: SPk+1 = getPrevalent (SCk+1, SPIk+1, QS)
19: k = k + 1
20: end while
21: return

⋃
(SP2, . . . , SPk−1)

22: end procedure

In the original iCPI-tree method the most computationally demanding part
is the step of searching a tree structure to construct new collocation instances
having the clique property. The sequential processing strategy requires to con-
struct and process a separate iCPI-tree for each query from the batch set (two
iCPI-trees for sample data are shown in Fig. 2). We propose to build only one
tree that contains instances for all queries (line 3). We refer to this structure
as Common iCPI-tree (CiCPI-tree). To distinguish instances among different
queries an additional identifier has to be stored with each node representing an
object instance in the tree. In our opinion, the best solution is to use properly
constructed bitmaps for that purpose. A bitmap (also known as a bitset, bit
array or bit vector) is a compact structure that stores an array of bits. It is

190 P. Boinski and M. Zakrzewicz

extremely fast due to the hardware, low-level parallelism in processing whole
words or bytes. To determine appropriate bitmaps for tree elements, first of all,
space has to be divided into a set of distinct areas (line 2).

1 2 3 74

5

6 1918171615141312111098

A1

C3

B2

B20

A12

D9
B11

B16C13

A14

A18

1

2

3

4

5

6

7

y

x
Euclidean distance treshold d = 2

B4 C5

B6

A7

C10

B15

C17

D19

SDMQ1 SDMQ2

C8

area a1(x from 1.5 to 6.5)
bimap={001}

area a2(x from 6.5 to 13)
bitmap={010}

area a3(x from 13 to 19.5)
bitmap={100}

Fig. 1. Input datasets

13112 3 11 10 16 13 1615 2013 5 13 17 19 10 9 13 17 19 910 13 3 5 8

B C B C C C C C

1 12 14 2 4 6

A B

R
iCPI1

B C B

12

C

14

B D

18

C D

11

C

15

C

16

D

20

D

10

A B

R

C

iCPI2

11

10

C

6 5

B C

7

8 6

B C

7

8 8 9

C

6

D

Fig. 2. Two iCPI-trees generated in sequential processing approach

In the sample dataset, three distinct areas can be distinguished: a1(1.5 <
x ≤ 6.5), a2(6.5 < x ≤ 13) and a3(13 < x ≤ 19.5). For each area, a unique
bitmap is generated by setting the i-th element for the i-th area. Therefore we
have identifiers {001}, {010}, {100} for areas a1, a2 and a3 respectively (notice:
although three areas can be encoded on two bits, the mentioned solution is more
efficient in the further processing). Given the set of distinct areas, the next step
is to create the Common iCPI-tree. For each object oi analyzed by at least one
SDMQ all neighbors with features greater than oi feature have to be found.
To perform this task a plane sweep method or a spatial index can be utilized.
Neighbors are ordered by their feature (e.g., using the lexical order) and their
identifier. For each object a new bitmap is created. It must correspond to the
bitmap of the area in which this object is located in. For example, given the
object A14{010} the final list of neighbors contains B16{100}, C13{010} and
C17{100}. The discovered neighborhoods (and their bitmaps) are inserted into
the CiCPI-tree using the procedure described in [12]. Figure 3 presents final

Concurrent Execution of Spatial Data Mining Queries 191

13112 3 16 13 1615 2017 19 10 9 13 17 19 910 13 3 5

B C B C C C

1 12 2 4

B C

14

B D

18

C D

11

C

15

C

16

D

20

D

10

A B

R

C

CiCPI

6 5

B C

7

8 8 9

C

6

D

5

001 001 001100 001 001 010 100010 010010 001 010 010010 010 010010 010100010 100 100 100 010 100

001 010 010 010 100

100

001 001 010 010 100 100 100 010

Fig. 3. Common iCPI-tree generated in concurrent processing approach

CiCPI-tree structure that will be used to scan for neighbor instances in the
consecutive iterations.

In the k-th iteration (lines 5-20), the algorithm discovers prevalent size-k+1
collocations for each SDMQ by generating (shared) collocation candidates (line
6), identifying their instances (lines 8-16) and counting their prevalences (line
18). Due to the participation index definition, all size-1 collocations are preva-
lent (with prevalence = 100%). In the sequential processing approach, Apri-
oriGen [2] method would be applied to each SDMQ separately. We propose
to generate candidates simultaneously for all queries using AprioriGenShared-
Candidates method (line 6). At the beginning, for each candidate collocation a
bitmap is assigned. Each bitmap has length equal to the size of the batch and
indicates queries which share this particular candidate. If such a candidate (or
a collocation) is shared by the i-th SDMQ, the i-th bit is set. In our example
there are 4 size-1 collocations: A, B, C and D. All except D are shared between
SDMQ1 and SDMQ2 hence the following set of bitmaps is assigned: {11}, {11},
{11}, {10}. The general idea of AprioriGenSharedCandidates is similar to the
original method. All pairs of size-k-1 collocations sharing at least one query are
joined to get size-k candidates. Each generated candidate has a bitmap resulting
from bitwise AND operation on all bitmaps from its size-k-1 subsets. Finally, a
pruning step is applied to remove candidates that cannot be prevalent. In the
introduced example, size-2 candidates are: AB{11}, AC{11}, AD{10}, BC{11},
BD{10} and CD{10}, size-3: ABC{11}, ABD{10}, ACD{10} and BCD{10},
size-4: ABCD{10}.

Starting with k = 2, instances for each size-k candidate are constructed by
expanding instances of size-k-1 collocation discovered in the previous iteration
(lines 8-16), however a sharing property of candidates and collocations must be
taken into consideration. For k = 2 the process traverses the CiCPI-tree and for
each instance of the first candidate feature, the neighbors with the second feature
are retrieved from the tree. For example, given the candidate AB{11}, for the
instance A14 there is one neighbor B16. Because the instance A14, B16 can be
shared between two queries (the candidate AB{11} is shared by SDMQ1 and
SDMQ2), there is a necessity to store such information in the form of bitmap. It
is a result of bitwise OR operation performed on bitmaps for individual objects.

192 P. Boinski and M. Zakrzewicz

Instances
of AB

Instance
bitmap

Common Neighbors
with feature C

A1, B2 {001} C3{001}

A7, B6 {010} C5{001}, C8{010}

A12, B11 {010} C10{010}, C13{010}

A14, B16 {110} C13{010}, C17{100}

A18, B15 {100} null

A18, B16 {100} null

A18, B20 {100} null

Shared candidate ABC, SDMQ1 area bitmap {011}, SDMQ2 area bitmap {110}

A1, B2, C3 {001} for SDMQ1

A7, B6, C5 {011} for SDMQ1
A7, B6, C8 {010} for SDMQ1 and SDMQ2

A12, B11, C10 {010} for SDMQ1 and SDMQ2

A14, B16, C13 {110} for SDMQ2
A14, B16, C7 {110} for SDMQ2

check SDMQ1: {011} AND {110} = {010} invalid
check SDMQ2: {110} AND {110} = {110} valid

New instances of ABC:

Fig. 4. Search procedure for instances of shared candidates

For the considered instance it is {010} ∪ {100} = {110}. The same procedure is
applied to the remaining instances of A (A1, A7, A12 and A18).

Let us now assume that there is a candidate ABC{11}. To generate its
instances, we try to expand already known instances of AB{11} by search-
ing the tree for instances of C (line 10). For the aforementioned A14, B16 in-
stance, neighbors C13 and C17 are retrieved from the CiCPI-tree. Both of them
are common neighbors of A14 and B16, therefore instances A14, B16, C13 and
A14, B16, C17 are created (lines 12-13). Once again bitmaps for such instances
have to be computed using bitwise OR operation on the bitmap for A14, B16 and
bitmaps for neighbors. The final bitmap is {110} for both mentioned instances.
Full example illustrating the search procedure for candidate ABC{11} is shown
in Fig. 4.

The prevalence for each query is computed by browsing through discovered
instances. Because one instance can belong to multiple queries, it is necessary
to increment prevalence counters only for applicable queries. To identify queries
that a particular instance belongs to, bitmaps representing a sum of distinct
query areas identifiers and a bitmap for candidate instance can be used. If
for a given query the result of bitwise AND operation is equal to the instance
bitmap, it means that such an instance belongs to this query. For example, the
instance A12, B11, C10{010} belongs to SDMQ1 as well as to SDMQ2 because
its bitmap is contained in bitmaps representing areas for both queries (Fig. 4).

4 Experiments

In order to evaluate the performance of the Common iCPI-tree method we per-
formed several experiments. For better control over the experiments, we used
synthetic datasets that were generated using a method similar to the approach
described in [14]. We have prepared 20 datasets with the following parameters.
The number of spatial objects: 50.000-600.000, the number of spatial features:
20-60, the maximal collocation pattern length: 4-8, the number of noise instances:
20%-80%. To simulate dense and sparse datasets we used two spatial frameworks

Concurrent Execution of Spatial Data Mining Queries 193

with sizes 10000x10000 and 1000x1000 units. In all tests the neighbor distance
threshold was set to 5 units. The experiments were conducted on a Linux PC
with AMD Athlon64 4200+ processor and 4 GB of main memory. All programs
were written in Java.

T
ot

al
 p

ro
ce

ss
in

g
tim

e
(r

el
at

iv
e)

Overlap [%]

2 SDMQs, minprev = 30%
5 SDMQs, minprev = 30%
2 SDMQs, minprev = 60%
5 SDMQs, minprev = 60%

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70 80 90 100

(a)

N
um

be
r

of
 tr

ee
 s

ea
rc

he
s

(r
el

at
iv

e)

Overlap [%]

2 SDMQs, minprev = 30%
5 SDMQs, minprev = 30%
2 SDMQs, minprev = 60%
5 SDMQs, minprev = 60%

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

(b)

T
re

e
si

ze
 (

re
la

tiv
e)

Overlap [%]

2 SDMQs
5 SDMQs

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60 70 80 90 100

(c)

N
um

be
r

of
 c

an
di

da
te

s
(r

el
at

iv
e)

Overlap [%]

2 SDMQs, minprev = 30%
5 SDMQs, minprev = 30%
2 SDMQs, minprev = 60%
5 SDMQs, minprev = 60%

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

(d)

T
ot

al
 p

ro
ce

ss
in

g
tim

e
(r

el
at

iv
e)

Batch size

overlap 20%
overlap 80%

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6

(e)

T
ot

al
 p

ro
ce

ss
in

g
tim

e
(r

el
at

iv
e)

Prevalence

2 SDMQs
5 SDMQs

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.2 0.3 0.4 0.5 0.6 0.7

(f)

Fig. 5. Performance gain for CiCPI-tree in comparison with sequential processing

We have also prepared a set of 200 sample batches for experiments. We var-
ied the number of queries in batch (2-5), the minimum prevalence threshold
(0.3-0.6) and the level of overlapping between queries (0%-100%). The level of
overlapping was equal to the average ratio of shared objects between each pair
of batched queries. The CiCPI-tree method has been compared with sequential
processing. For clarity, all presented results are relative to the results obtained
from sequential execution. A particular value on the chart should be interpreted
as the acceleration (or improvement) in comparison with sequential execution.
For example, for charts presenting the time performance, values below 1, e.g.
0.8, mean that sequential processing took 80% of time required by CiCPI-tree
solution, while value 4 means that CiCPI-tree method is 4 times faster than
sequential processing.

Figure 5(a) presents how the average processing times change with the in-
creasing overlap threshold. The series include batches of 2 and 5 queries with
minimum prevalence set to 30% and 60%. As we expected, the performance
gain increases with the increasing overlap of datasets. For bathes of 2 queries,
the performance gain can be observed after exceeding 20% overlap, while for 5
queries even for 10% overlap the new algorithm results in faster execution times.
When there is no overlap, the CiCPI method is about 10% slower than sequen-
tial processing. For 100% overlap batches of 2 and 5 queries are executed with

194 P. Boinski and M. Zakrzewicz

CiCPI-tree up to 1.75 and 4.5 times faster respectively. For example, in one of
our tests the required processing time dropped from 26 minutes to less than 6
minutes.

Figure 5(b) presents the relative number of required tree searches for neigh-
bors. Similarly to the previous experiment, the reduction of searches is increasing
with the increasing overlap.With 100% overlap, our new algorithm performs only
one tree search for all queries in batch, therefore there are 2 and 5 times less
searches for batches of 2 and 5 queries.

Figure 5(c) presents the comparison of CiCPI-tree size and cumulative size of
iCPI-trees generated in sequential processing. While the overlap is low, CiCPI-
trees can reach bigger sizes than corresponding sets of iCPI-trees due to the
overhead resulting from necessity to store additional bitmaps. With increasing
overlap, such overhead is compensated by the elimination of redundant branches
that can be found in iCPI-trees. In this chart there is no distinction between
prevalence thresholds because the size of the CiCPI-tree (and corresponding
iCPI-trees) does not depend on the prevalence value.

Figure 5(d) presents how the sharing property of collocations affects the total
number of candidates. In comparison with sequential processing the number of
candidates is greatly reduced even for low values of overlap threshold, especially
for batches of 5 queries.

Finally, in the last series of experiments we analyzed how the number of
queries in batch and minimum prevalence affect total processing time. As we
expected the bigger the batch is, the bigger performance gain is achieved, notably
for higher overlap thresholds (Fig. 5(e)). On the contrary, the prevalence measure
does not have such essential impact on the performance gain (Fig. 5(f)). However,
when the minimum prevalence threshold is low more multi-feature candidates
are being generated. The possibility of sharing such candidates is limited and
therefore the acceleration is reduced.

5 Summary and Future Work

In this paper we have defined the problem of efficient execution of batched spatial
data mining queries for collocation patterns discovery. We have proposed a new
algorithm, called CiCPI-tree, that significantly outperforms the straightforward
serial execution of multiple queries. Processing times are reduced by eliminat-
ing redundant searches for neighbors and introducing shared representation of
collocation instances with combined candidates generation.

In the future work we will focus on memory constraints that can be cru-
cial when a batch of queries is being processed. In the ideal circumstances, the
CiCPI-tree structure should fit in memory, however in real life applications this
can be impossible. We believe that our previous researches on collocation pattern
mining in limited memory environments can be adopted to concurrent process-
ing of spatial data mining queries. Another interesting subject involve different
strategies for processing spatial data mining queries, e.g., sets of queries with
random times of arrival.

Concurrent Execution of Spatial Data Mining Queries 195

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining Association Rules Between Sets of
Items in Large Databases. SIGMOD Rec. 22(2), 207–216 (1993)

2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994)

3. Boinski, P., Zakrzewicz, M.: Hash Join Based Spatial Collocation Pattern Mining.
Foundations of Computing and Decision Sciences 36(1), 3–15 (2011)

4. Boinski, P., Zakrzewicz, M.: Collocation Pattern Mining in a Limited Memory
Environment Using Materialized iCPI-Tree. In: Cuzzocrea, A., Dayal, U. (eds.)
DaWaK 2012. LNCS, vol. 7448, pp. 279–290. Springer, Heidelberg (2012)

5. Boinski, P., Zakrzewicz, M.: Partitioning Approach to Collocation Pattern Mining
in Limited Memory Environment Using Materialized iCPI-Trees. In: Morzy, T.,
Härder, T., Wrembel, R. (eds.) Advances in Databases and Information Systems.
AISC, vol. 186, pp. 19–30. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-32741-4_3

6. Celik, M., Kang, J.M., Shekhar, S.: Zonal Co-location Pattern Discovery with
Dynamic Parameters. In: ICDM, pp. 433–438. IEEE Computer Society (2007)

7. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge
Discovery in Databases. AI Magazine 17, 37–54 (1996)

8. Giannikis, G., Alonso, G., Kossmann, D.: SharedDB: Killing One Thousand
Queries With One Stone. Proc. VLDB Endow. 5(6), 526–537 (2012),
http://dl.acm.org/citation.cfm?id=2168651.2168654

9. He, J., He, Q., Qian, F., Chen, Q.: Incremental Maintenance of Discovered Spatial
Colocation Patterns. In: Proceedings of the 2008 IEEE International Conference
on Data Mining Workshops, ICDMW 2008, pp. 399–407. IEEE Computer Society,
Washington, DC (2008), http://dx.doi.org/10.1109/ICDMW.2008.60

10. Sellis, T.K.: Multiple-query optimization. ACM Trans. Database Syst. 13(1), 23–52
(1988), http://doi.acm.org/10.1145/42201.42203

11. Shekhar, S., Huang, Y.: Discovering Spatial Co-location Patterns: A Summary of
Results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD
2001. LNCS, vol. 2121, pp. 236–256. Springer, Heidelberg (2001)

12. Wang, L., Bao, Y., Lu, J.: Efficient Discovery of Spatial Co-Location Patterns
Using the iCPI-tree. The Open Information Systems Journal 3(2), 69–80 (2009)

13. Wojciechowski, M., Zakrzewicz, M.: Methods for Batch Processing of Data Min-
ing Queries. In: Haav, H.M., Kalja, A. (eds.) Proceedings of the Fifth Interna-
tional Baltic Conference on Databases and Information Systems (DB&IS 2002),
pp. 225–236. Institute of Cybernetics at Tallin Technical University (June 2002)

14. Yoo, J.S., Shekhar, S., Celik, M.: A Join-Less Approach for Co-Location Pattern
Mining: A Summary of Results. In: Proceedings of the IEEE International Confer-
ence on Data Mining, pp. 813–816. IEEE Computer Society, Washington (2005)

http://dx.doi.org/10.1007/978-3-642-32741-4_3
http://dl.acm.org/citation.cfm?id=2168651.2168654
http://dx.doi.org/10.1109/ICDMW.2008.60
http://doi.acm.org/10.1145/42201.42203

	Concurrent Execution of Data Mining Queries for Spatial Collocation Pattern Discovery
	1 Introduction
	2 Motivation and Related Work
	2.1 Motivation
	2.2 Related Work
	2.3 Basic Definitions
	2.4 The iCPI-Tree Based Method

	3 Batch Processing of Spatial Data Mining Queries
	3.1 Preliminaries
	3.2 The Common iCPI-Tree Based Method

	4 Experiments
	5 Summary and Future Work
	References

