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Preface

Data warehousing and knowledge discovery has been widely accepted as a key
technology for enterprises and organizations to improve their abilities in data
analysis, decision support, and the automatic extraction of knowledge from data.
As a consequence of this spectacular development, new types of jobs related
to the data warehouses have been created: data architect, data analysts, etc.
With the big data and cloud dimensions, the management of relevant data to be
considered in the warehouse becomes more and more complex in both structure
and semantics. These dimensions also bring new issues such as scalability, a
new computing infrastructure, and new types of data. Consequently, the process
of retrieval and knowledge discovery from this huge amount of heterogeneous
complex data represents the litmus test for the research in the area.

During the past few years, the International Conference on Data Warehous-
ing and Knowledge Discovery (DaWaK) has become one of the most important
international scientific events bringing together researchers, developers and prac-
titioners to discuss the latest research issues and experiences in developing and
deploying data warehousing and knowledge discovery systems, applications, and
solutions. This year’s conference (DaWaK 2013), built on this tradition of facili-
tating the cross-disciplinary exchange of ideas, experience, and potential research
directions. DaWaK 2013 sought to introduce innovative principles, methods, al-
gorithms and solutions, industrial products, and experiences to challenging prob-
lems faced in the development of data warehousing, knowledge discovery, data
mining applications, and the emerging area of “cloud intelligence.”

This year we received 89 papers and the Program Committee finally se-
lected 24 full papers and eight short papers, making an acceptance rate of 36%
of submitted papers. The accepted papers cover a number of broad research
areas on both theoretical and practical aspects of data warehouse and knowl-
edge discovery. In the area of data warehousing, the topic covered included the
conceptual design, query optimization, map reduce paradigm, scalability, data
compression, materialized views, data partitioning, distributed and parallel pro-
cessing and data warehouses and data mining applications integration, recom-
mendation and personalization, multidimensional analysis of text documents,
and data warehousing for real-world applications such as health, spatial appli-
cations, energy, etc. In the areas of data mining and knowledge discovery, the
topics included stream data analysis and mining, dimensionality reduction, tra-
ditional data mining techniques topics such as frequent item sets, clustering,
association, classification ranking and application of data mining technologies to
real-world problems. It is especially notable to see that some papers covered
emerging real-world applications such as bioinformatics, social network, mo-
bile data, energy power, email management, environment surveillance as well as



VI Preface

integration of multiple technologies such as conceptual modeling, evaluation met-
rics, and OLAP mining.

We would like to thank all the authors for submitting their research paper in
DaWaK 2013. We express our gratitude to all the Program Committee members
and the external reviews, who reviewed the papers very profoundly and in a
timely manner. Finally, we would like to thank Mrs. Gabriela Wagner for her
endless help and support.

May 2013 Ladjel Bellatreche
Mukesh K. Mohania
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An Analytics-Aware Conceptual Model

for Evolving Graphs

Amine Ghrab1,2, Sabri Skhiri1, Salim Jouili1, and Esteban Zimányi2

1 Eura Nova R&D, Mont-Saint-Guibert, Belgium
firstname.lastname@euranova.eu

2 Université Libre de Bruxelles, Belgium
ezimanyi@ulb.ac.be

Abstract. Graphs are ubiquitous data structures commonly used to
represent highly connected data. Many real-world applications, such as
social and biological networks, are modeled as graphs. To answer the
surge for graph data management, many graph database solutions were
developed. These databases are commonly classified as NoSQL graph
databases, and they provide better support for graph data management
than their relational counterparts. However, each of these databases im-
plement their own operational graph data model, which differ among
the products. Further, there is no commonly agreed conceptual model
for graph databases.

In this paper, we introduce a novel conceptual model for graph
databases. The aim of our model is to provide analysts with a set of
simple, well-defined, and adaptable conceptual components to perform
rich analysis tasks. These components take into account the evolving
aspect of the graph. Our model is analytics-oriented, flexible and incre-
mental, enabling analysis over evolving graph data. The proposed model
provides a typing mechanism for the underlying graph, and formally de-
fines the minimal set of data structures and operators needed to analyze
the graph.

1 Introduction

The relational model was considered for several decades as the default choice
for data modeling and management applications. However, with the rise of Big
Data, relational databases fell short of complex applications expectations. Big
Data refers to data generated at unpredictable speed, scale, and size from hetero-
geneous sources, such as web logs and social networks. The distribution and va-
riety of data makes ensuring ACID properties, required by the relational model,
a very challenging task. This situation has lead to the development of new data
models and tools, known as the NoSQL movement. NoSQL models are based on
trading consistency for performance according to the CAP theorem, in contrast
to relational ACID properties.

NoSQL databases can be divided into four families, namely key/value stores,
column stores, document databases, and graph databases. Of particular rele-
vance to this paper is the analysis of graph databases. Graphs have the benefit

L. Bellatreche and M.K. Mohania (Eds.): DaWaK 2013, LNCS 8057, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 A. Ghrab et al.

of revealing valuable insights from both the network structure and the data
embedded within the structure [1]. Complex real-world problems, such as in-
telligent transportation as well as social and biological network analysis, could
be abstracted and solved using graphs structures and algorithms. In this paper
we introduce a new graph modeling approach for effective analysis of evolving
graphs. By evolving we mean the variation of the values of an attribute across a
discrete domain. Evolution could be over time, quantity, region, etc. In the cor-
responding non-evolving graph, the information would be discarded when the
attributes or the topology changes.

The model introduces a typing system that entails explicit labeling of the
graph elements. This might introduce a redundancy in the graph, since part
of the facts could be discovered while traversing the data. However, we tolerate
this redundancy in favor of richer and smoother analysis. Trading redundancy for
the sake of better performance is a frequent choice when it comes to designing
analytics-oriented data stores such as data warehouses. Within the proposed
model, we define a set of operators to manipulate analytics-oriented evolving
graphs. The goal is to help analysts navigate and extract relevant portions of
the graph. Here, we provide the minimal set of operators. Nevertheless, richer
analysis scenarios could be achieved by combining these operators.

We consider as a running example of this paper the Epinion product rating
network [2], shown on Figure 1. The network is composed of a set of users
grouped by group, and products grouped by category. Each user has a profile, a
list of products ratings, and a linked by trust relationships with other users.

Fig. 1. Product rating network Fig. 2. Evolving product rating network

This network is sufficient to answer queries about the average rating of a
product, or detection of communities of users. However, information about the
evolution of the price by region or the history of rating of a given product by a
user is impossible to obtain. This data is discarded and not versioned for further
reuse. Hence, we enrich the original model with a typing system supporting
network evolution. The evolving network keeps track of information such as the
evolution of the price by region and the history of a product’s rating by a user.
Figure 2 depicts a part of the evolving network example. The evolving network
could be used to answer rich queries like : (1) correlations between sales decrease
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and product rating evolution, (2) detection of popular and trendy products, and
(3) discovery of active and passive users. The previous queries could be then
reused in richer scenarios such as (4) recommendation of new products, and (5)
targeted advertising for influential people in the network.

The contributions of our work are summarized as follows:

– We define of a conceptual model for evolving graphs. The model is designed
to handle analytics over large graphs by means of a novel typing mechanism.

– We propose a comprehensive set of querying operators to perform interactive
graph querying through subgraph extraction functionalities.

– We describe a detailed use case of the model by reusing it as the ground for
multidimensional analysis of evolving graphs.

The remainder of the paper is organized as follows. In Section 2, we develop
a conceptual model to represent analytics-oriented evolving graphs. Section 3
defines the fundamental, general-purpose operators for querying the model. Sec-
tion 4 demonstrates the usefulness of the proposed model for complex analytics
by using it as the basis for multidimensional analysis. Section 5 discusses related
work and compares it to our proposed model. Finally, Section 6 sketches future
works and concludes the paper.

2 Evolving Graph Model

In this section, we present the evolving graph model serving as basis for the anal-
ysis framework. The input to our framework is a directed, attributed, hetero-
geneous multi-graph. Attributes are a map of key/value pairs attached to nodes
and edges of the graph. Nodes (resp., edges) may have different attributes, and
multiple edges may link the same pair of nodes.

We first define the typing mechanism that characterizes nodes and edges. We
propose three types of nodes, defined next.

Definition 1. An entity node is defined by a tuple 〈label,Ka, Oa〉 where (1)
label denotes the type of the entity node, such as user or product, (2) Ka is the
map of key attributes that univocally identify the entity node, and (3) Oa is the
map of optional attributes. The attributes of an entity node are immutable. The
set of entity nodes is denoted as Ven. ��
Definition 2. An evolving node keeps track of the discrete evolution of the
attributes of entity nodes. Attributes of entity nodes that are subject to change
are typed as evolving nodes. An evolving node contains only a label denoting its
name and reflecting the original attribute it represents. Changes are treated as
punctual events and reflect the discrete evolution of the attributes. The set of
evolving nodes is denoted as Vev . ��
Definition 3. A value node has a unique attribute representing the value of
its corresponding evolving node in a given context. The set of value nodes is
denoted as Vv. ��



4 A. Ghrab et al.

We adopt the UML notation for relationships to represent the edges of the graph.
With regards to the nodes they link, we classify the edges as follows.

Edges linking entity nodes are of two types:

Definition 4. An entity edge (denoted by ) describes the association
between two entity nodes. The set of entity edges is denoted as Een (Een ⊆
Ven × Ven). ��
Definition 5. A hierarchical edge (denoted by ) depicts an aggrega-
tion (i.e., part-of) relationship between two entity nodes. The set of hierarchical
edges is denoted as Eh (Eh ⊆ Ven × Ven). ��
Both of the above edge types have attributes and labels. If an edge between two
entity nodes evolves, it is replicated, and the new one is filled with the new value.
We denote an entity (resp. hierarchical) edge as a tuple 〈label, Atts〉, where label
is the type of the relationship and Atts is the set of its attributes.

Definition 6. An evolving edge (denoted by ) represents a compo-
sition relationship, i.e. a life-cycle dependency between nodes. It keeps track of
the changing attributes extracted as new nodes. The set of evolving edges is
denoted as Eev (Eev ⊆ Ven × Vev). ��
Definition 7. A versioning edge (denoted by ) denotes a directed
association between an evolving node and a value node. Evolving edges are
attributed, where each attribute is a key/value pair describing the context for
the value node. The set of versioning edges is denoted as Ev (Ev ⊆ Vev × Vv). ��
We introduce now two new data entities oriented for analytics queries.

Definition 8. An analytics hypernode is an induced subgraph1,2 grouping
an entity node, all its evolving and value nodes, and all edges between them.
An analytics hypernode whose entity node is v is denoted as Γv = (V,E), where
V ⊆ (Ven ∪ Vev ∪ Vv) and E ⊆ (Eev ∪ Ev). Each node (resp., edge) is part of
only one hypernode: ∀u ∈ V (resp., e ∈ E), ∃!Γv | u ∈ Γv (resp., e ∈ Γv). ��
Definition 9. A class is a label-based grouping. A class denotes a set of ana-
lytics hypernodes whose underlying entity nodes share the same label. ��
With the input graph clearly defined, we introduce the graph model as follows.

Definition 10. An analytics-oriented evolving graph is a single graph
G = (V , E , α, β, Λ, λ), where:
– V = {Ven, Vev, Vv} is the set of nodes.
– E = {Een, Eh, Eev, Ev} is the set of edges.
– α : (Ven ∪ Vev) −→ LV is the function that returns the label for each entity

or evolving node, where LV is the set of labels of entity and evolving nodes.

1 G2 = (V2, E2) is a subgraph of G1 = (V1, E1) if V2 ⊆ V1 and E2 ⊆ E1
2 G2 is an induced subgraph of G1 if all edges between V2 present in E1 are in E2
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– β : (Een ∪ Eh) −→ LE is the function that returns the label for each entity
or hierarchical edge. LE is the set of labels of entity and hierarchical edges.

– Λkey : (Ven ∪ Vv) −→ Dom(value) is the function that returns the value
of an attribute given its key. Λ is applied only to entity and value nodes.
Dom(value) denotes the domain of value.

– λkey : (Een ∪ Eh) −→ Dom(value) is the function that returns the value of
an attribute given its key. λ is applied only to entity and hierarchical edges.
Dom(value) denotes the domain of value. ��

With regard to the Epinion network shown in Figure 2, Product and User are
entity nodes, while Price is an evolving node attached to the products. Users
are linked to each other by entity edges labeled Trusts and by hierarchical edges
to their Group. The price keeps track of the evolution of the product price by
region. Multiple ratings of the same product by the same user are recorded. The
metamodel of an analytics-oriented evolving graph is shown on Figure 3.

Fig. 3. Analytics-oriented evolving graph metamodel

3 Querying the Graph Model

Selection and projection are two fundamental operators in relational algebra,
used to extract a subset of data according to predefined conditions on the data
tuples. As their names imply, selection selects the set of tuples of a relation
according to a condition on the values of their elements. Projection alters the
structure of the relation by removing a subset of the elements of the tuples,
and could be used to add elements by combining existing elements and constant
values. In this paper, we redefine these two operators for evolving graph analysis.
Then, we go a step further by introducing the traversal operation that is essential
for graph analysis and provides a finer control of data extraction. However, we do
not cover binary operations such as union and intersection of subgraphs, which
we consider out of the scope of the model definition.

All the proposed operators perform subgraph extraction operations. Given
an input graph G = (V , E , α1, β1, Λ1, λ1), we denote the produced subgraph as
G′ = (V ′, E ′, α2, β2, Λ2, λ2) where:
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– V ′ ⊆ V , and E ′ ⊆ E
– α2(u) = α1(u), ∀u ∈ V ′
– β2(e) = β1(e), ∀e ∈ E ′
– Λ2(u) = Λ1(u), ∀u ∈ V ′en ∪ V ′v
– λ2(u) = λ1(u), ∀e ∈ E′en ∪E′h
– Γv ⊆ G′, iff v ∈ V ′en.

These conditions are valid for the three following operators. For the remainder
of the paper, asterisk (∗) denotes an optional parameter that could be supplied
many times and |S| denotes the cardinality of a set S. We start by examining
the selection.

Definition 11. A selection σ([NLabel,AttVals]*; [ELabel,AttVals]*)(G) is a par-

tial3 subgraph extraction operation. It is applied on analytics hypernodes and
the edges linking their entity nodes. It takes as input a list of the labels (NLabel)
of the entity nodes Ven, underlying the targeted analytics hypernodes, (resp., a
list of labels (ELabel) of their edges Een and Eh) and the corresponding values
of their targeted attributes AttV als. A selection returns a partial subgraph G′
of G where :

– α2(u) ∈ NLabel, ∀u ∈ V ′en
– β2(e) ∈ ELabel, ∀e ∈ (E′en ∪ E′h)
– u ∈ V ′en iff α1(u) ∈ NLabel and ∃(ki, vi) ∈ AttV als|Λ1key

(u) = Vi, ∀key = ki
– e ∈ E′en ∪ E′h iff β1(e) ∈ ELabel and ∃(ki, vi) ∈ AttV als | λ1key

(e) = vi,
∀key = ki

– u ∈ V ′, iff ∃Γv ⊆ G′ | u ∈ Γv. ��

In the example of Figure 2, σ(User; Trusts)(Gepinion) detects the communities
of users trusting each other. This is accomplished by selecting all analytics
hypernodes whose entity nodes are labeled as User and linked by the entity
edges labeled Trusts. The operation presented above is useful for models pre-
senting intra-class relationships, i.e. relationships between analytics hypernodes
with the same label. A further step is to perform inter-class selections. In
this case, selection applies on an heterogeneous set of entity nodes and edges.
σ(Product; User; Rates)(Gepinion) is an inter-class selection. It selects the network
comprised of Rates relationships, Product and User analytics hypernodes.

Definition 12. A projection π(EvLabel, {ValSet}){G, NLabel} is an induced
subgraph extraction operation. It is applied on a single class of analytics hyper-
nodes, selected through NLabel. Other analytics hypernodes remain untouched
by this operation. Evolving nodes whose label is not in EvLabel are removed
from the targeted analytics hypernodes. It further narrows the range of values in
the resulting subgraph by specifying for each versioning edge a key/value map
of the requested values, {V alSet}. A projection returns an induced subgraph G′
where:

3 G2 is a partial subgraph of G1 if a subset of the edges between V2 from E1 is in E2
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– E ′ = E ∩ (V ′ × V ′)
– u ∈ V ′en iff α1(v) ∈ NLabel
– u ∈ V ′ev iff :α1(u) ∈ EvLabel and ∃Γv ⊆ G′ | u ∈ Γv

– u ∈ V ′v iff: ∃Γv ⊆ G′ | u ∈ Γv and ∃ e = (u, ue), e ∈ E′v | ue ∈ Γv and
∃(ki, vi) ∈ V alSet|λ1key

(e) = vi, ∀key = ki. ��
For the network of Figure 2, π(Price, (Store,{EU,ME}))(Gepinion, P roduct) acts
only on Product hypernodes. It extracts the subgraph containing as evolving
nodes only the Price. And for the Price Value nodes, only those representing EU
and ME stores are kept, i.e, the US store is dropped from the resulting graph in
all Product analytics hypernodes.

Definition 13. A traversal τ(Start,Pattern) is a subgraph extraction operation.
A traversal starts from an entity node and follows a guided navigation on the
graph according to given rules. Traversal only navigates between entity nodes.
However, the navigation rules could be applied at any node or edge to decide
whether to include the current entity node, i.e., rules are applied to entity nodes
attributes as well as any of their analytics hypernode internal edges and nodes.
We refer to these navigation rules as patterns, and hence the subgraph extrac-
tion becomes a pattern matching operation. A pattern is a finite sequence of
conditions dictating the navigation steps. At each node (u ∈ Ven) and edge
(e ∈ Een ∪ Eh), the next step is defined by an expression applied on the labels
or the attributes of the current element. For a step i, a pattern dictates the next
elements to visit, and could be a combination of the following statements:

– u ∈ Ven|α(u) = labeli, dictates the next nodes based on the supplied label
– e ∈ (Een ∪ Eh)|β(e) = labeli, dictates the next edges based on the label
– u ∈ Ven|Λkey(u) = vali, dictates the next nodes based on the supplied

attribute value
– e ∈ (Een ∪Eh)|λkey(e) = vali, dictates the next edges based on the supplied

attribute value

τ is applied as follows: τ(Start,Pattern)(G) and returns a partial subgraph of the
input graph. Steps are separated by dashes (−). ��
A typical traversal scenario is the following query, applied on the example shown
in Figure 2: for a user A, return all products she didn’t rate, and whose trusted
contacts have already rated above four. Such a query is useful in a recommenda-
tion engine. This operation is expressed as follows:
τ(UserA,Pattern)(Gepinion), where Pattern = [e ∈ Een | β(e) = Trust]− [∗]− [e ∈
Een | β(e) = Rates & λRating(e) ≥ 4]− [u ∈ Ven | (u, UserA) /∈ E ].

In relational databases, the join operation introduces a heavy workload espe-
cially for highly connected tables [3]. In graphs, data is embedded within nodes
connected through edges. The cost of running traversals within graphs is much
lower than the equivalent joins in relational tables [4]. This makes graphs more
suitable for highly connected data compared to relational tables. Moreover, as
explained in Section 5, many of current graph databases provide partial or full
support ACID properties.
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The data structure and operations defined above yield the ground for defining
an algebra for evolving graph data. However, this should be further investigated
and enriched for the sake of completeness.

4 Multidimensional Graph Analysis

Data warehousing provides a particularly interesting use case for the implemen-
tation of our model. The subject-oriented and integrated view of data, provided
by the data warehouse, makes it a suitable backbone for common analysis tech-
niques such as reporting, complex querying, and data mining algorithms. We
assume that the input graph is designed according to the metamodel defined
above. The identification, versioning and insertion of the incoming nodes and
edges in the studied graph is done through the ETL phase. The evolving aspect
of the graph brings new challenges to the design of the ETL process. Such issues
include, but are not limited to, the definition of new entity nodes and labels,
the detection of new evolving attributes and the attachment of new values to
evolving attributes. Due to space limitations, we have chosen to limit the ap-
plication of our model to OLAP analysis. In this section, we briefly describe
multidimensional concepts using the graph model proposed in the Section 2.

We limit the study to the structures and a subset of the operators defined
in the reference algebra described in [5]. However, further research is needed to
device new operators uniquely useful in evolving graphs. OLAP analysis enables
us to discover hidden facts and relationships between users and products, such
as user satisfaction, evolution of trendy categories, and influential groups.

Figure 4 illustrates the proposed multidimensional modeling stack. The phys-
ical level switches the focus from elementary nodes and edges to class and inter-
class relationships. The logical level encapsulates classes into dimensions and
aggregates their relationships. The logical level is similar to ROLAP star schema
in that it organizes the studied domain into dimensions and prepares the cube
construction. The conceptual level abstracts the graph data using cubes, and
proposes user-friendly operations. Physical level has been described in detail in
Section 2, and serves as the ground for various analysis techniques. We focus
now on the logical and conceptual level, relevant to multidimensional analysis.

4.1 Data Structures

Dimensions. Within our model, a dimension is a tree of classes. A dimension
D is defined by a tuple 〈name, T ree〉, where name denotes the name of the
dimension and Tree is the tree of classes. The root of the tree is the highest
class in the dimension hierarchy. A class could be involved in only one dimension.
Each level is identified by the class label.

In our product rating network example, the Item dimension DItem is denoted
as 〈Item, ILevels〉, where ILevels = [Product → Category] and → denotes the
hierarchical relationship between classes. The shift from class to dimension is
depicted on Figure 4, where the classes Product and Category are grouped in
the same dimension, Item.



Conceptual Graph Model 9

Fig. 4. Multidimensional analysis of an evolving network

Measures. We distinguish two types of measures, (1) informational measures,
calculated from the internal attributes of the edges and nodes such as the average
rating of a product, and (2) structural measures, result of algorithms performed
on the structural properties of the graph, such as centrality metrics. For struc-
tural measures, a measure could be a subgraph such as the shortest path, or a
numerical value such as the length of the path. Using the evolving nature of the
graph, we can retrieve further insights such as the evolution of a product rating,
or the evolution of shortest path between users and products. Measures are the
metrics used to study a subject. A set of measures showing the data at the same
granularity is called a fact. Informational measures are similar to the relational
measures. Here we focus on the structural measures, specific for graphs.

Cube. A cube is a set of cells containing measures, and placed in the multidi-
mensional space with regard to a base. A base is the minimal set of dimensions
levels that univocally identify a cell within a multidimensional space. A cube C is
defined by a tuple 〈D,M〉, whereD = {D1, D2, . . . , Dm} is the set of dimensions,
and M = {M1,M2, . . . ,Mn} is the set of measures.

Figure 4 shows at the left a cube of informational measures (average rating
of items by customers), and at the right a cube of structural measures (shortest
path between customers and items).

4.2 Operations

The following representative, but non exhaustive, set of operationsprovides a high-
level abstraction and are applied at the conceptual level to study OLAP cubes.
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Slice. Removes a dimension from a cube. Slice[D,V alue](C) operates on the cube
C, and returns the subset of cells for which the value of dimension D is set to
V alue. In the cube of shortest path evolution of Figure 4, Slice[Item,id=10](C) lim-
its the set of studied items to one item whose id=10. This cube is computed after
extracting the subgraph of the specific item from the graph of all items, through
the selection operator of Section 3, σ([Product, (id,10)]; User; Rates)(Gepinion)

Dice. Selects a subset of measures from the cube using a set of conditions
on multiple dimensions. This operation is similar to slice, but operates on a
range of values of a dimension, and on multiple dimensions at the same time.
Dice[User,id=10..30;Item,id=1..15](C), returns a subcube for which users and items
identifiers are limited to the specified ranges.

Roll-Up. Aggregates classes sharing a common hierarchy using the hierarchical
edges. This produces a summary graph with new nodes and edges that are not
necessarily present in the original graph. Aggregations could be asynchronous.
We could for example study relationships between Category and User rather
than Category and Group. The roll-up operators performs structural changes to
the graph. If the attributes of the elements involved in the aggregation are addi-
tive, an overlay is performed and the attributes values are simply incremented.
Otherwise, graph summarization techniques such as those discussed on [6–8]
could be used to implement the roll-up operation.

5 Related Work

Graph analytics are gaining a lot of momentum in the data management commu-
nity in recent years. A survey of graph database models according to their data
model, data manipulation operators, and integrity constraints is given in [1]. Cur-
rent graph databases implement different general purpose data models, without
a commonly agreed conceptual modeling approach. Neo4j4 is a centralized graph
database implementing the property graph5 model and guaranteeing ACID con-
straints. Titan6 is a distributed graph database implementing property graphs
and supporting ACID and partial consistency. Graph querying is made either
using traversal-oriented languages such as Gremlin7, SQL-like languages such as
Cypher, or through the database core API. Our model could be implemented
using any graph database that supports the input graph described on Section 2.
RDF is a widespread data model in the Web community, and could be an imple-
mentation candidate for our conceptual model. Pregel [9], and its open source im-
plementation Giraph8, are BSP graph processing frameworks designed to execute
efficiently graph algorithms. Ren et al. [10] proposed an approach to compute

4 http://neo4j.org/
5 https://github.com/tinkerpop/blueprints/wikiproperty-graph-model
6 http://thinkaurelius.github.com/titan/
7 https://github.com/tinkerpop/gremlin/wiki
8 http://giraph.apache.org/

http://neo4j.org/
https://github.com/tinkerpop/blueprints/wikiproperty-graph-model
http://thinkaurelius.github.com/titan/
https://github.com/tinkerpop/gremlin/wiki
http://giraph.apache.org/
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graph-specific measures such as shortest path and centrality within a graph with
gradually changing edge sets. In [11], the authors present a distributed graph
database system for storing and retrieving the state of the graph at specific time
points. Both of these two papers are based on the redundancy offered by his-
torical graphs trace. The analysis tasks are limited to graphs specific measures
and indices with no querying or multidimensional view of data. Moreover, we
consider the historical variation as a specific case of graph evolution scenarios.
Related research on versioning was done by the database community. In [12], the
authors suggested a conceptual model for evolving object-oriented databases by
studying the evolution of objects values, schema and relationships between the
objects. Although some concepts are similar, modeling the versioning depends
on the data structures specific for each data model. Multidimensional analysis of
graphs data has been first proposed in [8]. The authors introduce informational
and topological dimensions. Informational aggregations consist of edge-centric
snapshot overlaying and topological aggregations consist of merging nodes and
edges by navigating through the nodes hierarchy. However, the analysis is lim-
ited to homogeneous graphs. GraphCube [7] is applied in single large centralized
weighted graph and do not address different edges attributes. Yin et al. [13]
introduced a data warehousing model for heterogeneous graphs. They enriched
the informational and topological dimensions with the Entity dimension and the
Rotate and Stretch operations along with the notion of metapath to extract sub-
graphs based on edges traversals. However, HMGraph did not provide semantics
of OLAP operations on the proposed graph data model. Distributed processing
frameworks such as Hive [14] propose data warehousing on top of large volume
of data. However, they are considering only the relational model.

6 Conclusions and Future Work

In this paper, we designed a conceptual model for evolving graphs. A plethora of
graph database tools is currently developed with multiple management features.
However, they do not address the management of evolving networks. Moreover,
no common conceptual model for efficient analysis of large evolving networks
is agreed. We have proposed our contribution to evolving graph analysis by in-
troducing a well defined conceptual model. We illustrated the model with an
application on the multidimensional analysis. However, large networks analysis
requires more work to build a complete stack of analysis framework. As future
work we plan to proceed in warehousing the evolving graphs. Further funda-
mental operations such as graph aggregations should be investigated for the
evolving graphs. A framework for graph data warehousing should integrate an
ETL module, which takes care of matching and merging tasks and provides a
graph compliant to the proposed model. An exhaustive study of new OLAP op-
erators in evolving graphs is needed. Current graph querying languages such as
Cypher should be extended to support multidimensional queries in an MDX-like
fashion. Moreover, distributed processing frameworks should be integrated for
large graphs processing.
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Abstract. Data-intensive analytic flows, such as populating a dataware-
house or analyzing a click stream at runtime, are very common in modern
business intelligence scenarios. Current state-of-the-art data flow man-
agement techniques rely on the users to specify the flow structure without
performing automated optimization of that structure. In this work, we
introduce a declarative way to specify flows, which is based on anno-
tated descriptions of the output schema of each flow activity. We show
that our approach is adequate to capture both a wide-range of arbi-
trary data transformations, which cannot be supported by traditional
relational operators, and the precedence constraints between the vari-
ous stages in the flow. Moreover, we show that we can express the flows
as annotated queries and thus apply precedence-aware query optimiza-
tion algorithms. We propose an approach to optimizing linear conceptual
data flows by producing a parallel execution plan and our evaluation re-
sults show that we can speedup the flow execution by up to an order of
magnitude compared to existing techniques.

1 Introduction

Data-intensive analytic flows are typically encountered in business intelligence
scenarios and are nowadays attracting renewed interest, since they go beyond tra-
ditional Extract - Transform - Load (ETL) flows [19,16]. ETLs are a special form
of data flows used to populate a data warehouse with up-to-date, clean and appro-
priately transformed source records. They can be considered as a directed acyclic
graph (DAG), similar to scientific and business workflows, capturing the flow of
data from the sources to the data warehouse [18]. Next generation business in-
telligence (BI) involves more complex flows that encompass data/text analytics,
machine learning operations, and so on [16]; in this work we target such BI flows.

Our motivation is twofold. Firstly, modern data flows may be particularly
complex to be described manually in a procedural manner (e.g., [16]). Secondly,
the vast amount of data that such flows need to process under pressing time
constraints calls for effective, automated optimizers, which should be capable
of devising execution plans with minimum time cost. In this work, we target
two correlated goals, namely declarative statement and efficient optimization.
Declarative statement of data flows implies that, instead of specifying the ex-
act task ordering, flow designers may need to specify only higher-level aspects,
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such as the precedence constraints between flow stages, i.e., which task needs to
precede other tasks. An example of an existing declarative approach is the De-
clare language that is based on linear temporal logic [12]. We follow a different
approach that bears similarities with data integration mediation systems and
allows the flow to be expressed in the form of annotated SQL-like queries.

Regardless of the exact declarative form a flow can be expressed, such declara-
tive approaches are practical only under the condition that the system is capable
of taking the responsibility for automatically devising a concrete execution plan
in an efficient and dependable manner; this is exactly the role of query opti-
mization in database systems, which also rely on declarative task specifications,
and we envisage a similar role in data flow systems as well. Although traditional
query optimization techniques cannot be applied in a straightforward manner,
we propose an approach to optimizing linear conceptual data flows by producing
a parallel execution plan, inspired by advanced query optimization techniques.

The contribution of this work is as follows. We demonstrate how we can ex-
press data flows in a declarative manner that is then amenable to optimization
in a straight-forward manner. To this end, we use an annotated flavour of SQL,
where flow steps are described by input and output virtual relations and anno-
tations are inspired by the binding patterns in [5]. Our approach to declarative
statement does not rely on the arguably limited expressiveness of relational al-
gebra in order to describe arbitrary data manipulations, like those in ETLs, and
is adequate to describe the precedence constraints between data flow tasks. In
addition, we present optimization algorithms for logically linear flows that take
into account the precedence constraints so that correctness is guaranteed. As
shown in our evaluation, the approach that allows for parallel execution flows
may lead to performance improvements up to an order of magnitude in the best
case, and performance degradation up to 1.66 times in the worst case compared
to the best current technique.

Structure: Sec. 2 presents our approach to declarative statement of data flows
with a view to enabling automated optimization. The optimization algorithms
for linear flows along with thorough evaluation of performance improvements are
in Sec. 3. In Sec. 4 and 5 we discuss related work and conclusions, respectively.

2 Declarative Statement of Data Flows

We map each flow activity1 to a virtual relation described by a non-changing
schema. More specifically, each activity is mapped to a virtual annotated relation
R(A, a, p), where (i) R is the task’s unique name that also serves as its identifier;
(ii) A = (A1, A2, · · · , An) is the list of input and output attributes, which are
also identified by their names; (iii) a is a vector of size equal to the size of A,
such that the i-th element of a is “b” (resp. “f”) if the i-th element of A must
be bound (resp. free); and (iv) p is a list of sets, where the j-th set includes the
names of the bound variables of other virtual relations that must precede R.Aj .

1 The terms flow tasks and activities are used interchangeably.
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The notation of the a vector is aligned to the notation of binding patterns
in [5], and allows us to distinguish between the attributes that need to be-
long to the input (the bound ones) and the new attributes that are produced
in the output (free attributes). In other words, a binding pattern for a rela-
tion R means that the attributes of R annotated with b must be given as in-
puts when accessing the tuples of R, whereas the attributes annotated by f
denote the new attributes derived by the task invocation. For example, the
relation Task1(A : (X,Y, Z), a : (bbf), p : ({Task2.X}{NULL}{NULL}))
corresponds to an activity called Task1, which needs to be given the values of
the X and Y attributes as input and returns a new attribute Z. Attribute X
must first be processed by Task2. For brevity, this relation can also be writ-
ten as Task1(Xb,Task2, Y b, Zf ) Additionally, we treat data sources as specific
data-producing activities, where all attributes are annotated with f . Linear con-
ceptual flows comprise a single data source.

The following statements hold: (a) The output data items of each flow task are
regarded as tuples, the schema of which conforms to the virtual relations intro-
duced above. (b) Data sources are treated as specific data-producing activities,
where all attributes are annotated with f . (c) The flow tasks, even when they can
be described by standard relational operators (e.g., when they simply filter data),
they are always described as virtual relations. (d) The relations can be combined
with standard relation operators, such as joins and unions; concrete examples are
given in the sequel. (e) For each attribute X that is bound in relation R, there ex-
ists a relation R′, which contains attribute X with a free annotation. (f) A task
outputing a free attribute must precede the tasks that employ the same attributes
as bound attributes in their schema. (g) Simply relying on b/f annotations is inad-
equate for capturing all the precedence constraints in ETL workflows, where there
may exist a bound attribute that is manipulated by a filtering task and also appears
in the bound grouping values of an aggregate function: in that case, the semantics
of the flow may change if we swap the two activities, as also shown in [6]. For that
reason, it is always necessary to define the p list of each activity. (h) Althoughmost
ETL transformation can be described by static schemas, there may be data flow
activities, such as some forms of pivots/unpivots [3] that cannot be mapped to
the virtual relations as defined above, because the schema of their output cannot
be always defined a-priori. (i) Tasks need not correspond to ETL transformation
solely; they can also encompass intermediate result storage.

Precedence constraints of a flow form a directed acyclic graph (DAG) G in
which there is a node corresponding to each flow task and directed edges from
one task to another define the presence of precedence constraint between them.
A main goal of the annotations is to fully capture the precedence constraints
among tasks. This goal is attained because the edges in the precedence graph
can be derived from the p list of each activity and the (f) item above.

2.1 Flow Examples

Linear Flows. Our first example is taken from [18] and is illustrated in Fig. 1. It
is a linear flow that applies a set of filters, transformations, and aggregations to a
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Fig. 1. A linear ETL flow

single table from the TPC-H decision support benchmark. In particular, the flow
consists of 5 activities: (i) NotNull, which checks the fields PartKey, OrderKey
and SuppKey for NULL values. Any NULL values are replaced by appropriate
special values (or the tuple is dropped). (ii) DeriveFnc, which calculates a value
for the new field Profit that is derived from other fields and more specifically
by subtracting the values of fields Tax and Discount from the value in ExtPrice.
(iii) Currency, which alters the fields ExtPrice, Tax, Discount and Profit to a
different currency. (iv) CheckStat, which is a filter that keeps only records whose
return status is false. (v) Aggregation1, which calculates the sum of ExtPrice
and Profit fields grouped by values in PartKey and LineStatus.

All activities can be mapped to virtual relations, and the whole ETL can
be modelled as a Select-Project-Join (SPJ) query in order to provide online
updates to the view in Fig. 1. It is important to note that the relevant at-
tributes of the source relation, LineItem, are annotated as free attributes. Also,
the PartKeyb,CheckStat attribute in the aggregation activity contains a task an-
notation, which allows us to define that the aggregation must only be performed
after the CheckStat activity in order to ensure semantic equivalence with the
flow in Fig. 1. Finally, in Aggregation1, the attributes PartKey and LineStatus
have the same values with PartKeyGroup and LineStatusGroup, respectively,
but the latter are annotated as free attributes in order to facilitate manipulation
statements that build on the grouped values.

Se l e c t PartKeyGroup , LineStatusGroup , UpdatedSumProfit ,
UpdatedSumExtPrice

From LineItem (PartKeyf ,OrderKeyf ,SuppKeyf ,Discountf ,Taxf ,ExtPricef , · · ·) ��

NotNull (PartKeyb ,OrderKeyb ,SuppKeyb ) ��

DeriveFnc (PartKeyb ,Profitf ) ��

Currency (PartKeyb ,ExtPriceb ,Discountb ,Profitb ,Taxb ) ��

CheckStat (PartKeyb ,ReturnStatusb ��

Aggregation1 (PartKeyb,CheckStat , LineStatusb , Profitb , ExtPriceb ,

ReturnStatusb ,LineStatusGroupf ,PartKeyGroupf ,

UpdatedSumProfitf ,UpdatedSumExtPricef )
Where LineItem . PartKey = NotNull . PartKey and

LineItem . PartKey = DeriveFnc . PartKey and
LineItem . PartKey = Currency . PartKey and
LineItem . PartKey = CheckStat . PartKey and
CheckStat . PartKey = Aggregation1 . PartKey

In the above example there are several precedence constraints that can auto-
matically derived from the annotated query: LineItem must precede all other ac-
tivities, DeriveFnc must precede Currency and Aggregation1, whereas CheckStat
must precede Agregation1 as well. Although those constraints seem restrictive,
they do not preclude other flow structures, e.g., CheckStat to be applied earlier
and Currency to be applied at the very end to decrease the number of total
currency transformations.
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Fig. 2. A more complex ETL flow

MoreComplexFlows. Fig. 2 shows amore complex flow on top of two real data
sources, also taken from [18]. The tasks employed are: (i)NotNull, which checks the
fieldCost for NULL values, so that such values are replaced or the tuple is dropped.
(ii) dollar2euro, which changes the values in Cost from dollars to euros. (iii) A2E,
which alters the format of the field Date from american to european. (iv) Aggre-
gation, which calculates the sum of costs grouped by date, (v) Selection, which
filters the (aggregated) cost field according to a user-defined threshold. Although
we can describe this flow as a complex nested query, for clarity, we use two SPJ
sub-queries. Note that, if the flow contains branches, these can be modeled as sep-
arate sub-queries in a similar manner. Also, although the selection task can easily
be describedby a simple select relational operator,we treat it as a separate relation.

Query I:
WITH Q (PKEY , COST , DATE ) AS (
( S e l e c t ∗
From PARTS1(PKEY f , COST f , DATEf ) ��

NotNULL(PKEY b , COST b )
Where PARTS1.PKEY = NN.PKEY )

UNION
( Se l e c t PKEY , UpdatedAggCOST , DATEgroup

From PARTS2(PKEY f ,COST f ,DATEf ) ��

do l l a r 2 eu ro (PKEY b ,COST b ) ��

A2E(PKEY b ,DATEb ) ��

Aggregation (PKEY b ,DATEb ,COST b ,DATEgroupf ,UpdatedAggCOST f )
Where PARTS2.PKEY = do l l a r 2eu ro .PKEY and

PARTS2.PKEY = A2E .PKEY and
PARTS2.PKEY = Aggregation .PKEY )

)
Query II:
( S e l e c t ∗
From Q (PKEY f , COST f , DATEf ) ��

S e l e c t i o n (PKEY b , COST b )
Where Q.PKEY = Se l e c t i o n .PKEY )

Real-World Analytic Flow. The data flow, which is depicted in Fig. 3, shows
a real-world, analytic flow that combines streaming free-form text data with
structured, historical data to populate a dynamic report on a dashboard [16]. The
report combines sales data for a product marketing campaign with sentiments
about that product gleaned from tweets crawled from the Web and lists total
sales and average sentiment for each day of the campaign. There is a single
streaming source that outputs tweets on products and the flow accesses four
other static sources through lookup operations.
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Fig. 3. A real-world analytic flow

The exact flow is as follows. When a tweet arrives as a timestamped string
attribute (tag), the first task is to compute a single sentiment value in the range
[-5 +5] for the product mentioned in the tweet. Then, two lookup operations are
performed: the former maps product references in the tweet and the later maps
geographic information (latitude and longitude) in the tweet to a geographi-
cal region (region attribute in the figure). The Expr task converts the tweet
timestamp to a date. Then, the sentiment values are averaged over each region,
product, and date. On a parallel path, the sales data have been rolled up to
produce total sales of each product for each region and day. The rollups for sales
and sentiment are joined in a pipelined fashion and finally the specific campaign
of interest is selected and used to filter the result based on the information of
the campaign data store [16]. In this final stage, we consider that the Sales and
Campaign non-streaming sources are hidden behind the Aggregation2 and Selec-
tion look-up tasks, respectively. The annotated query that describes this flow is
shown below.

Se l e c t ∗
From Tweet (tagf ,timestampf ) ��

Sentiment Anal (tagb ,sentimentf ) ��

LookupID (tagb , productIDf ) ��

LookupRegion (tagb , regionf ) ��

Expr (tagb ,timestampb ,datef ) ��

Aggregat ion1 (tagb ,sentimentb ,productIDb ,regionb ,dateb ,

productIdGroupf , dateGroupf , regionGroupf , AvgAggSentimentf ) ��

Aggregat ion2 (productIDf ,regionf ,datef ,totalAggSalesf ) ��

S e l e c t i on (productIDf ,campaignIDf ,dayBegf ,dayEndf ,regionb )

Where Tweet . tag = Sentiment Anal . tag and

Tweet . tag = LookupID . tag and

Tweet . tag = LookupRegion . tag and

Tweet . tag = Expr . tag and

Tweet . tag = Aggregat ion1 . tag and

Aggregat ion1 . productID = Aggregat ion2 . productID and

Aggregat ion1 . r eg i on = Aggregat ion2 . r eg i on and

Aggregat ion1 . date = Aggregat ion2 . date and

Aggregat ion1 . productID = Se l e c t i on . productID and

Aggregat ion1 . r eg i on = Se l e c t i o n . r eg i on
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2.2 Are Data Flows Queries?

The consensus up to now is that ETL and more generic data flows cannot be
expressed as (multi-) queries, due to facts such as the presence of arbitrary
manipulation functions that cannot be described by relational operators, and
the presence of precedence constraints [4,13]. We agree that data flows cannot
be described as standard SQL queries just by regarding manipulation functions
as black box user-defined functions (UDFs). Nevertheless, as shown above, we
can express data flows in an SQL-like manner, where the distinctive features are
that (i) data manipulation steps are described through virtual relations instead
of relational operators or UDFs on top of real relations; and (ii) the attributes are
annotated so that precedence constraints can be derived. Our methodology thus
does not suffer from the limitations when mapping a flow to a complex query
with as many relations as the original data sources, which loses the information
about precedence constraints.

3 Optimization of Linear Flows

Having transformed the flow specification to an annotated query, we can treat
the flows as multi-source precedence-aware queries and benefit from any existing
optimization algorithms tailored to such settings. We treat flow tasks as black-
box operators. Note that we do not have to use multi-way joins regardless of the
numerous joins appearing in the SQL-like statements, as in [17]. In this section,
we firstly define the cost model, we then propose four optimization algorithms
for minimizing the total execution cost in time units, and finally, we investigate
the performance benefits.

Our optimization algorithms require that each flow activity is described by
the following metadata:

– Cost (ci): We use ci = 1/ri to compute response time effectively, where ri is
the maximum rate at which results of invocations can be obtained from the
i-th task.

– Selectivity (seli): it denotes the average number of returned tuples per input
tuple for the i-th service. For filtering operators selectivity is always below 1,
for data sources and operators that just manipulate the input, it is exactly
one, whereas, for operators that may produce more output records for each
input record, the selectivity is above 1.

– Input (Ii): The size of the input of the i-th task in number of tuples per input
data tuple. It depends on the product of the selectivities of the preceding
tasks in the execution plan.

Our aim is to minimize the sum of the execution time of each task. As such, the
optimal plan minimizes the following formula: (Iici + I2c2 + ...+ Incn).

In the following, we present our optimization approaches. Due to lack of space,
we present only the main rationale.

PGreedy: The rationale of the PGreedy optimization algorithm is to order the
flow tasks in such a way that the amount of data that is received by expensive



20 G. Kougka and A. Gounaris

Fig. 4. A single linear conceptual data flow (left), along with its precedence constraints
(middle) and two logically equivalent parallel execution plans (right)

tasks is reduced because of preceding filtering activities that prune the input
dataset. Its main distinctive feature is that it allows for parallel execution plans,
as shown in Fig. 4, where on the left part of the picture, a linear flow and its
precedence constraints are depicted, while on the right two equivalent parallel
execution plans of the same flow are presented (which both preserve all the
precedence constraints). More specifically, depending on the selectivity values,
the optimal execution plan may dispatch the output of an activity to multiple
other activities in parallel, or place them in a sequence. To this end we adapt
the algorithm in [17] with the difference that instead of considering the cost Iici
in each step, we consider the (1 − seli)(Iici). The latter takes into account the
selectivity of the next service to be appended in the execution plan and not only
the selectivity of the preceding services. We refer the reader to [17] for the rest
of the details. The complexity is O(n5) in the worst case.

Swap: The Swap algorithm compares the cost of the existing execution plan
against the cost of the transformed plan, if we swap two adjacent tasks provided
that the constraints are always satisfied. We perform this check for every pair of
adjacent tasks. Swap is proposed in [15], where, to the best of our knowledge, the
most advanced algorithm for optimizing the structure of data flows is proposed.
The complexity of the Swap algorithm is O(n2).

Greedy: Greedy algorithm is based on a typical greedy approach by adding
the activity with the maximum value of (1− seli)(Iici), which meets the prece-
dence constraints. The time complexity of Greedy algorithm is O(n2). It bears
similarities with the Chain algorithm in [21]; latter appends the activity that
minimizes Iici. Similarly to Swap and contrary to PGreedy, it builds only linear
execution plans.

Partition: The Partition optimization algorithm forms clusters with activities
by taking into consideration their availability. Specifically, each cluster consists
from activities that their prerequisites have been considered in previous clusters.
After building the clusters, each cluster is optimized separately by checking
each permutation of cluster tasks. Like Greedy, it was first proposed for data
integration systems, and the details are given in [21]. Partition runs in O(n!)
time in the worst case, and is inapplicable if a local cluster contains more than
a dozen of tasks.

3.1 Experiments

In our experiments, we compare the performance of the afore-mentioned algo-
rithms. The data flows considered consist of n = 5, 10, 25, 50, 100 activities and
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Fig. 8. Performance when sel ∈ [0, 2],
cost ∈ [1, 10] and 50% prec. constraints

we experiment with 6 combinations of 3 selectivity value ranges and 2 sets of
constraint probabilities. The cost value range is the same for all the sets of ex-
periments: ci ∈ [1, 10]. The results correspond to the average of the data flow
response time in 20 runs after removing the lowest and highest values to reduce
the standard deviation. In each run, the exact selectivity, cost values and the
constraints for each task are randomly generated.

In the first experiment, the selectivity values in each run are randomly gener-
ated so that sel ∈ [0, 2] (thus only half of the tasks are selective) and cost ∈ [1, 10]
with 25% probability of having precedence constraints between two activities.
The normalized results are shown in Fig. 5. A general observation in all our
experiments is that Swap consistently outperforms Greedy and Partition. From
Fig. 5, we can observe that Swap outperforms PGreedy as well. For n = 50, Swap
is 1.66 times faster. However, as less activities are selective, PGreedy yields sig-
nificantly lower cost than Swap. As shown in Figs. 6 and 7, those performance
improvement may be up to 22 times (one order of magnitude).

In the following experiment, we increase the probability of having a precedence
constraint between two activities. The more the constraints, the narrower the
space for optimizations. The results are presented in Figs. 8-10, which follow the
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cost ∈ [1, 10] and 50% prec. constraints

5 10 25 50 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

total number of flow activities(n)

flo
w

 e
xe

cu
tio

n 
co

st
(t

im
e 

un
its

)

 

 

PGreedy

Greedy

Partition

Swap

Fig. 10. Performance when sel ∈ [1, 3],
cost ∈ [1, 10] and 50% prec. constraints

same pattern as above. In the worst case, Swap is 1.23 times faster than PGreedy,
and, in the best case, PGreedy is 3.15 times faster. The general conclusions
drawn is that Greedy and Partition are never the optimal choices, and PGreedy
outperforms Swap if less than half of the tasks are selective.

Regarding the time needed for the optimizations, even when n = 100, the
time for running PGreedy and Partition is approximately a couple of seconds
using a machine with an Intel Core i5 660 CPU with 6GB of RAM. Thus it can
be safely considered as negligible.

4 Related Work

Modern ETL and flow analysis tools, such as Pentaho’s platform2, do not sup-
port declarative statement of flows and automated optimizations of their struc-
ture. Declare is an example of a declarative flow language [12]; contrary to our
proposal, it is based on linear temporal logic and can be used only through a
graphical interface in the context of Yawl3. Declare can capture precedence con-
straints, and, as such, may stand to benefit from the optimizations proposed in
this work, but does not perform any optimizations in its own right.

The potential of data management solutions to enhancing the state-of-the art
in workflow management has been identified since mid 2000s. An example of
strong advocates of the deeper integration and coupling of databases and work-
flow management systems has appeared in [14]. Earlier examples of developing
data-centric techniques of manipulating workflows include the prototypes de-
scribed in [7,11,9], which allow workflow tasks to be expressed on top of virtual
data tables in a declarative manner but do not deal with optimization, although
they can be deemed as enabling it. Other declarative approaches to specifying
workflows, such as [1,22], are not coupled with approaches to capturing prece-
dence constraints and optimizing the flow structure either.

2 http://www.pentaho.com/
3 http://www.yawlfoundation.org/

http://www.pentaho.com/
http://www.yawlfoundation.org/
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Data management techniques have been explored in the context of ETL work-
flows for data warehouses in several proposals, e.g., [4,13,15]. In [15], the authors
consider ETL workflows as states and use transitions to generate new states in
order to navigate through the state space. The main similarity with our work
is the mapping of workflow activities to schemata, which, however, are not an-
notated and thus inadequate to describe precedence constraints on their own.
Focusing on the physical implementation of ETL flows, the work in [18] exploits
the logical-level description combined with appropriate cost models, and intro-
duces sorters in the execution plans. In [16], a multi-objective optimizer that
allows data flows spanning execution engines is discussed.

Another proposal for flow structure optimization has appeared in [20], which
decreases the number of invocations to the underlying databases through task
merging. In [10], a data oriented method for workflow optimization is proposed
that is based on leveraging accesses to a shared database. In [6], the optimiza-
tions are based on the analysis of the properties of user-defined functions that
implement the data processing logic. Several optimizations in workflows are also
discussed in [2]. Our optimization approach shown in Section 3 is different from
those proposals in that it is capable of performing arbitrary correct task reorder-
ing. In our previous work, we employ query optimization techniques to perform
workflow structure reformations, such as reordering or introducing new services
in scientific workflows [8].

5 Conclusions

As data flows become more complex and come with requirements to deliver re-
sults under pressing time constraints, there is an increasing need for more efficient
management of such flows. In this work, we focused on data-intensive analytic
flows that are typically encountered in business intelligence scenarios. To allevi-
ate the burden to manually design complex flows, we introduced a declarative
way to specify such flows at a conceptual level using annotated queries. A main
benefit from this approach is that the flows become amenable to sophisticated
optimization algorithms that can take over the responsibility for optimizing the
structure of the data flow while taking into account any precedence constraints
between flow activities. We discuss optimization of linear conceptual data flows,
and our evaluation results show that we can speedup the flow execution by up
to an order of magnitude if we consider parallel execution plans. Our future
work includes the deeper investigation of optimization algorithms to non-linear
conceptual flows and the coupling of optimization techniques that reorder tasks
with resource scheduling and allocation in distributed settings.
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Abstract. Web data such as web tables, lists, and data records from a wide va-
riety of domains can be combined for different purposes such as querying for 
information and creating example data sets. Tabular web data location, extrac-
tion, and schema discovery and integration are important for effectively com-
bining, querying, and presenting it in a uniform format. We focus on schema 
generation and integration for both a static and a dynamic framework. We con-
tribute algorithms for generating individual schemas from extracted tabular web 
data and integrating the generated schemas. Our approach is novel because it 
contributes functionality not previously addressed; it accommodates both the 
static and dynamic frameworks, different kinds of web data types, schema dis-
covery and unification, and table integration. 

Keywords: Web tables, web lists, schema generation, schema discovery, sche-
ma integration, schema integration framework. 

1 Introduction 

With the continuing explosive growth of the web, a wealth of information has become 
available online. To access this information, individual users can either use search 
engines or navigate to a particular website following links. The former method returns 
links to vast amounts of data in seconds while the latter could be tedious and time 
consuming. The presentation of results using the former method is usually a web page 
with links to actual web data sources (or websites). The latter method takes the user to 
the actual web data source itself. Using the two most popular forms of web data pres-
entation, web data cannot be easily queried, manipulated, and analyzed even though it 
is publicly and readily available. On the other hand, the web has become a primary 
source of important information for many companies that build web-based analytical 
and decision support systems, often referred to as web data warehouses. Traditional 
data warehousing technologies and architectures are ill-adapted to warehouse web 
data which is extremely diverse (multiformat data) and not just numeric or symbolic.  

Web data is available in different formats such as structured, semi-structured,  
and unstructured. Heterogeneity of web data presents major challenges in the integra-
tion and representation of web data to end users.  In this paper we focus on structured 
web data such as web tables, lists, and data records that can be loaded into relational 
databases after schema discovery and integration. We refer to this web data as tabular 
web data from here on. Uniform presentation of tabular web data involves steps such 
as location of tables or lists, extraction of located data, and schema discovery and 
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integration followed by querying the extracted data. Efficiently extracted, analyzed, 
and queried tabular web data from a wide variety of domains could be used for ans-
wering factual queries, providing contextual search results (to provide search results 
that are contextually meaningful), and in other semantic services.  

Consider a user search for keywords “U.S. Presidents” where the results are in the 
form of links to two or more related tables. Fig. 1 shows U.S presidents’ information 
available on two different web sites1 while Fig. 2 shows the same information from 
different web sources consolidated together into tables instead of a list of links to 
different web sites that contain the same information. However, creating comprehen-
sive tables of information on U.S. presidents with attributes such as date of birth, 
term, name, and number of times elected is time-consuming and cumbersome with 
little support from existing database systems [CHK09]. 

 

Fig. 1. Snapshots of two websites showing information about U.S. Presidents 

 

Fig. 2. Tabular, Consolidated Presentation of Web Data for U.S Presidents 

We observe that there has been extensive research focusing on the location and ex-
traction of tables but not a lot of work has been done on schema discovery, schema 
unification, and integration of web tables. Most of the approaches stop at schema dis-
covery or discuss table integration without schema discovery and schema unification in 
a web data context. We contend that schema discovery and schema unification are not 
only important for the integration of web tables but also useful in other applications 
such as schema auto-complete (schema auto-complete applications are designed to as-
sist novice database users when designing a relational schema [CHW08]), context 
searching, example schema generation, schema mining, and synonym discovery. 

                                                           
1  http://en.wikipedia.org/wiki/List_of_Presidents_of_the_ 
United_States,_sortable_by_previous_experience; 
http://www.enchantedlearning.com/history/us/pres/list.shtml; 
date accessed 3/13/13 
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We concentrate on metadata recovery and on reverse engineering the schema from 
extracted web data. Section 2 describes the proposed framework for uniform presenta-
tion of consolidated web tables. In Section 3 we discuss our approach and the  
algorithm for schema discovery of tabular/list/template-based web data. Section 4 
describes the schema unification algorithm proposed for merging individual schemas 
to obtain a final schema. The result of the unification technique is a merged final 
schema that can be used in the frameworks shown in Fig. 3 to achieve uniform pres-
entation of tabular/list/template-based web data. We present an example illustrating 
the implementation of the algorithms in Section 5, and conclude with a discussion on 
the future work in Sections 6. 

 

Fig. 3. Static and Dynamic Frameworks for Uniform Presentation of Tabular Web Data 

2 Framework 

We categorize schema discovery research efforts into two different frameworks in 
Table 1.  In an on-demand (dynamic) framework, the query engine retrieves the in-
dexed web page links that satisfy given search criteria. The retrieved web links are 
then fed into a conditional crawler that retrieves these web pages of interest. Howev-
er, in a static framework, all the web pages are retrieved, indexed, and stored in web 
data stores ahead of time for future querying purposes.  Previous approaches use one 
of the two approaches but not both.  The modules common to both frameworks are 
discussed below. 



 Tabular Web Data: Schema Discovery and Integration 29 

 

2.1 Location of Tables/Lists 

Detecting tables in web documents is algorithmically non-trivial; even when the sys-
tem can tell that the web page is of interest for the given application, finding tables or 
lists of interest in that web page is often difficult [ENX01]. Other challenges include 
tables that span across multiple web pages, tables without table tags (also known as 
lists or data records), tables present in deep web databases, lists that are separated by 
visual decorators, excluding tables that are not relational in nature, and also identify-
ing repetitive patterns to detect lists. Because many of the challenges have been ad-
dressed [H01, ETL05, CHZ08, CMH09, MTH+09, GS09], we use existing techniques 
to create a prototype system that locates tabular web data.  

2.2 Extraction of Located Tables/Lists 

Table extraction algorithms must be intelligent enough to understand the internal cell 
structure of the located tables because a located table can have split cells, errors, 
omissions, constraints, and even ill-formatted HTML [H01]. Extraction of list data 
has its own challenges such as header detection, delimiter detection, and record 
alignment [ETL05]. We use existing techniques to create a prototype data extraction 
system [ETL05, CHZ08, EMH11, MTH+09] in which we also address two additional 
issues: 1) the identification and extraction of linked tables or lists within a web page, 
and 2) data type detection of columns in tables/lists.  

2.3 Schema Discovery and Integration Process 

Schema discovery and integration is one of the most important steps to achieve a 
conceptual model of the extracted data which in turn makes the querying process 
systematic and much more efficient. Some on-demand approaches combine schema 
discovery with the querying process while others do it in two different steps. The 
schema discovery process usually generates a small schema for the extracted tables 
present within each web page, followed by a schema unification process that attempts 
to combine all the schemas from different web pages into one.  There are several chal-
lenges in the process of schema discovery and unification as it involves identifying 
outliers, detecting related tables, recovering metadata, and possibly creating new 
tables. Other challenges include schema discovery of nested lists, gathering and un-
derstanding metadata information such as domain overlap, breadth of data, level of 
detail and context to better understand the tables. 

Current techniques (summarized in Table 1) discuss the integration of web data ei-
ther using techniques that do not include schema discovery and unification at all or 
using techniques that involve metadata recovery but are not complete. They do not 
address issues such as primary key detection, data type detection, context determina-
tion, table translation, and schema unification, as addressed in our work.  To the best 
of our knowledge, no other research effort includes all of the features identified in the 
first column as our approach does. 
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Table 1. Comparison of Related Work 

 
The symbol ● indicates “yes” while the symbol ○ indicates “no.” 

3 Schema Discovery Using Partial Schema Generation 

Partial schema generation (PSG) creates a schema from all the tables/lists that have 
been located and extracted from the same web page. The tables from each of the web 
pages are extracted into objects called Data Source Objects (DSOs). For all the tables 
in each DSO, the operations can be grouped into three phases: (1) the data type detec-
tion phase, (2) the primary key detection phase, and (3) the relationship identification 
phase. Detecting the data type of each of the columns present in a given table involves 
determining all the possible data types for a given column and the best fit using fre-
quency counts and making assignments based on the following precedence order: 
text, float & date/time, integer & time, and Boolean. 

In the relationship identification phase we identify relationships among different 
tables present in a web page if there is more than one extracted table present. Since 
we already have the data type information as well as the primary key information 
from the previous phases, we can use that information and other techniques to identify 
relationships between two tables. Tables can be identical (based on similarity); we 
employ a synonym finding technique [CHW08], an extraction ontology technique 
[ETL05], and the column data type information detected in the previous phase. It 
generates a Boolean result stating whether the two columns can be treated the same or 
not. Another relationship is that one table can be composed from several other tables, 
and another is when composite keys overlap.  Once this phase is complete we have all 
the metadata information and a partial schema for each DSO under consideration. The 
next section introduces our approach to schema unification. 

4 Schema Unification 

Our schema unification technique merges partial schemas generated from each of the 
web pages (or DSOs) into a global schema to achieve an integrated final schema. To 
merge two partial schemas, the relationships between the two schemas need to be 
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identified. Relationships between the partial schemas of any two DSOs are derived 
using an Inter-schema Relationships Detection algorithm. This algorithm uses an 
operator that uses a set of heuristics to determine relationships present between the 
two partial schemas.  

Once the inter-schema relationships have been defined, we proceed to schema un-
ification process. We first sort all the DSOs under consideration in ascending order of 
search result ranks so that most relevant results are given the highest priority. We then 
identify the outlier tables and drop them. Outliers are defined as the tables that do not 
have any derived relationships and are excluded from the unification process. After 
this step we use a schema unification operator to combine all the individual schemas 
into a merged final schema. This operator adds eligible tables to the final schema 
using the following heuristics: 

• Merge tables that have the same number of columns and similar column 
names for all columns, reducing the number of tables in a merged schema. 

• Identify and merge a table that is equivalent (similar columns) to a combina-
tion of multiple tables, helping to achieve a compact merged schema. 

• Eliminate a table from being added into merged schema if a table or set of 
tables with similar columns already exists in the merged schema, helping to 
remove redundancies from a merged schema. 

• Create a new table using columns missing from a merged schema table and 
add the table to the merged schema, making sure that important 
attributes/column data is not lost in schema unification. 

• Create a new table corresponding to part of a table that appears repeatedly in 
several schemas (according to a user-defined threshhold.) 

The last step is to clean the final schema. Since some new tables might have been 
added and some relationships might have changed, all the tables in the final schema 
are passed through the phases of primary key detection and relationship identification. 
Cleanup also includes finding and eliminating duplicate tables and subset tables, and 
ensuring that the schema is in the user’s preferred normal form. 

5 Implementation 

We implement the algorithms proposed to generate and unify schemas using Micro-
soft Visual Basic and .Net framework 4. To explain the schema unification process 
we chose two data source objects whose partial schemas are shown in Figs. 4 and 5. 
The unification algorithm iterates through each table of the data source objects to 
check if a similar table is already included in the final schema. For example, Web 
Table 1 in Fig. 4 is equivalent to Web Table B in Fig. 5 because they both have the 
same column count and also similar names and data types. Equivalent tables can  
replace each other. Hence, as Web Table 1 is added to the final schema, Web Table B 
is replaced by Web Table 1. Web Table C is a part of Web Table 2 as the column 
count of Web Table C is less than the column count in Web Table 2 and all the col-
umn names are similar, so it to be eliminated from further consideration. The algo-
rithm iterates through all the tables to generate a final unified schema shown in Fig. 6. 
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Web Table 1: S. No. President’s Name Birth Date Vice President 
 

Web Table 2: President’s Name From-To Terms Served Birth Place 
 

Fig. 4. Example Partial Schema 1 

Web Table A: State Capital Population 
 

Web Table B: # President Date of Birth Vice President 
 

Web Table C: President’s Name From-To 
 

Fig. 5. Example Partial Schema 2 

Final Table 1: S. No. President’s Name Birth Date Vice President 
 

Final Table 2: President’s Name From-To Terms Served Birth Place 
 

Final Table 3: State Capital Population 
 

Fig. 6. Example Merged Schema 

6 Conclusions and Future Work 

We present static and dynamic frameworks for relational web data discovery in dif-
ferent steps such as location, extraction, schema discovery, integration, and querying. 
We propose the Partial Schema Generation technique to discover a schema from tabu-
lar web data and a schema unification algorithm to integrate the discovered partial 
schemas. The main strengths of our approach are that (1) it is modular so that it sup-
ports either static or dynamic processing, and (2) it works well for heterogeneous 
tabular web data.  

We have several research efforts in progress that space limitations do not allow us 
to include here.  We have developed a heuristic algorithm for schema unification to 
improve performance compared to the exhaustive approach discussed here.  We are 
currently researching schema quality metrics and schema matching/merging tech-
niques.  We have conducted some preliminary experiments using datasets derived 
from Google’s web tables and other corporate web data sources.  We have collected 
more than 30 manual schema integration efforts over our sample data in order to 
compare the quality of our algorithm’s results to the efforts of human designers.  We 
expect to obtain additional experimental results as evidence of the validity and scala-
bility of our approach; we plan to release our datasets to support reproducibility of our 
results as well as further research when this is complete. 

Future work can be done on improving existing tabular web data location and ex-
traction techniques, conducting more experiments and also enhancing the schema 
unification algorithms using contextual information to extend schema knowledge 
from systems such as Probase [WLW+12] or those that use ontologies. 

References 

[CHK09] Cafarella, M.J., Halevy, A.Y., Khoussainova, N.: Data Integration for the Relational 
Web. In: Proceedings of the 35th International Conference on Very Large Data Bases 
(VLDB 2009), Lyon, France, August 24-28, pp. 1090–1101 (2009) 



 Tabular Web Data: Schema Discovery and Integration 33 

 

[CHM11] Cafarella, M.J., Halevy, A.Y., Madhavan, J.: Structured Data on the Web. Commu-
nications of the ACM (CACM) 54(2), 72–79 (2011) 

[CHW08] Cafarella, M.J., Halevy, A.Y., Wang, D.Z., Wu, E., Zhang, Y.: WebTables: Exploring 
the Power of Tables on the Web. In: Proceedings of the 34th International Conference on 
Very Large Data Bases (VLDB 2008), Auckland, New Zealand, August 23-28, pp. 538–549 
(2008) 

[CHZ08] Cafarella, M.J., Halevy, A.Y., Zhang, Y., Wang, D.Z., Wu, E.: Uncovering the Rela-
tional Web. In: Proceedings of the 11th International Workshop on Web and Databases 
(WebDB 2008), Vancouver, BC, Canada (June 13, 2008) 

[CMH09] Cafarella, M.J., Madhavan, J., Halevy, A.Y.: Web-scale Extraction of Structured 
Data. ACM SIGMOD Record 37(4), 55–61 (2009) 

[ELN06] Embley, D.W., Lopresti, D.P., Nagy, G.: Notes on Contemporary Table Recognition. 
In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 164–175. Springer,  
Heidelberg (2006) 

[EMH11] Elmeleegy, H., Madhavan, J., Halevy, A.Y.: Harvesting Relational Tables from Lists 
on the Web. In: Proceedings of the VLDB Endowment, vol. 20(1), pp. 209–226 (2009) 

[ENX01] Embley, D.W., Ng, Y.-K., Xu, L.: Recognizing Ontology-applicable Multiple-record 
Web Documents. In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, 
vol. 2224, pp. 555–570. Springer, Heidelberg (2001) 

[ETL05] Embley, D.W., Tao, C., Liddle, S.W.: Automating the Extraction of Data from HTML 
Tables with Unknown Structure. Data and Knowledge Engineering 54(1), 3–28 (2005) 

[GS09] Gupta, R., Sarawagi, S.: Answering Table Augmentation Queries from Unstructured 
Lists on the Web. In: Proceedings of the VLDB Endowment, vol. 2(1), pp. 289–330 (2009) 

[H01] Hurst, M.: Layout and Language: Challenges for Table Understanding on the Web. In: 
Proceedings of the International Workshop on Web Document Analysis (WDA 2001), Seat-
tle, Washington, USA, pp. 27–30 (September 8, 2001) 

[MFH08] Mergen, S., Freire, J., Heuser, C.: Mesa: A Search Engine for Querying Web Tables 
(2008), http://www.scholr.ly/paper/1328437/mesa-a-search-engine- 

 for-querying-web-tables 
[MTH+09] Miao, G., Tatemura, J., Hsiung, W.-P., Sawires, A., Moser, L.E.: Extracting Data 

Records from the Web Using Tag Path Clustering. In: Proceedings of the 18th International ACM 
Conference on World Wide Web (WWW 2009), Madrid, Spain, April 20-24, pp. 981–990 (2009) 

[SFG+12] Sarma, A.D., Fang, L., Gupta, N., Halevy, A.Y., Lee, H., Wu, F., Xin, R., Yu, C.: 
Finding Related Tables. In: Proceedings of the ACM SIGMOD International Conference on 
Management of Data (SIGMOD 2012), Scottsdale, Arizona, USA, May 20-24, pp. 817–828 
(2012) 

[WLW+12] Wu, W., Li, H., Wang, H., Zhu, K.Q.: Probase: A Probabilistic Taxonomy for Text 
Understanding. In: Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 2012), Scottsdale, Arizona, USA, May 20-24, pp. 481–492 
(2012) 

[WWW+12] Wang, J., Wang, H., Wang, Z., Zhu, K.Q.: Understanding tables on the web. In: 
Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 141–155. Springer, 
Heidelberg (2012) 



Uncoupled MapReduce: A Balanced

and Efficient Data Transfer Model

Jie Zhang1,2, Maosen Sun1,2, Jian Lin1,2, and Li Zha1

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2 University of the Chinese Academy of Sciences, Beijing, China

{zhangjie,sunmaosen}@software.ict.ac.cn, {linjian,char}@ict.ac.cn

Abstract. In the MapReduce model, reduce tasks need to fetch output
data of map tasks in the manner of “pull”. However, reduce tasks which
are occupying reduce slots cannot start to compute until all the corre-
sponding map tasks are completed. It forms the dependence between map
and reduce tasks, which is called the coupled relationship in this paper.
The coupled relationship leads to two problems, reduce slot hoarding
and underutilized network bandwidth. We propose an uncoupled inter-
mediate data transfer model in order to address these problems. Three
core techniques, including weighted mapping, data pushing, and partial
data backup are introduced and applied in Apache Hadoop, the main-
stream open-source implementation of MapReduce model. This work has
been practised in Baidu, the biggest search engine company in China. A
real-world application for web data processing shows that our model can
improve the system throughput by 29.5%, reduce the total wall time by
22.8%, and provide a weighted wall time acceleration of 26.3%. What’s
more, the implementation of this model is transparent to user jobs and
compatible with the original Hadoop.

Keywords: MapReduce, Data transfer, Uncoupled model.

1 Introduction

With the arrival of “big data” era, platforms which can process and store large
data are receiving more and more attention, such as Dryad [7], Sector/Sphere [6],
and MapReduce [5]. The MapReduce programming model proposed by Google
has become the mainstream data-centric platform for large data processing be-
cause of its scalability and simplicity. The open-source implementation, Apache
Hadoop [1], is used widely.

The MapReduce programming model is a software architecture for parallel
computing on large data sets. In this architecture, one node works as the mas-
ter where a JobTracker runs. The JobTracker is responsible for monitoring and
managing map and reduce tasks. The other nodes work as slaves where Task-
Trackers run. The TaskTrackers are responsible for executing map and reduce
tasks. When a job is submitted, the related input data are divided into several
splits. The JobTracker will pick up idle TaskTrackers to performmap tasks on the
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splits, and then perform reduce tasks on the intermediate output of map tasks.
The final result will usually be a set of key-value pairs stored in the Hadoop
Distributed File System (HDFS).

In the original MapReduce model, data are transferred in the way that can
be described as “pull”. When some of the map tasks are completed, the corre-
sponding reduce tasks can fetch data in the shuffle phase. The reduce phrase
will not start until all the map tasks finish. Thus, the reduce tasks will occupy
the assigned slots all the time to wait for the completion of all map tasks, which
is called the coupled relationship. Due to the coupled relationship between map
and reduce tasks, it results in two problems, reduce slot hoarding [10] and un-
derutilized network bandwidth.

1.1 Reduce Slot Hoarding Problem

In the MapReduce programming model, it usually begins to schedule reduce
tasks when a certain amount of map tasks are completed. If a big job is submit-
ted, reduce tasks of the job will occupy all the assigned slots until all the map
tasks finish. Consequently, when another job is submitted at this moment, it will
not get corresponding reduce slots even after all the map tasks finish. Therefore,
the later one will starve until the big job is completed. This is called the reduce
slot hoarding problem, which will seriously reduce the execution efficiency of
jobs, especially for small ones.

One solution to this problem is to delay the reduce tasks. In [10], the authors
put forward a solution that starts reduce tasks after the completion of map
tasks. However, their tests show that it will decrease the whole throughput. We
consider that if reduce tasks start early, partially overlapped with map tasks,
they will get a part of the data from map tasks, which can save the time of data
transfer and the total completion time.

1.2 Underutilized Network Bandwidth Problem

For a MapReduce job, the network load will mainly concentrate in reduce tasks.
A reduce task includes three phases: shuffle, sort and reduce. The shuffle phase
needs large network bandwidth, while map tasks do not. A map task can almost
read data from local disks, because of its high data locality.

There are some capabilities to balance network load and optimize network
bandwidth in the original version of MapReduce, such as scheduling the reduce
tasks in advance. When the completion of map tasks reaches a certain ratio
(default 5%), the reduce tasks will start so that they can run in parallel with
maps. However, it can only alleviate this problem rather than resolve it. When
some of the early-scheduled reduce tasks, whose desired intermediate data are
ready, are getting partitions through shuffle, they cannot use much bandwidth
in the map phrase. Conversely, they will occupy the reduce slots all the time.
Besides, limited by the total slots, not all the reduce tasks can be scheduled.
Therefore, these reduce tasks cannot work with map tasks simultaneously, and
the network bandwidth will still be underutilized.
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In this paper, we propose an uncoupled MapReduce model to address the
above two problems, which can also improve the system throughput and overall
resource utilization. The rest of this paper is organized as follows. In section 2, we
present the uncoupled MapReduce model. Section 3 describes the architecture
and implementation of this model. Section 4 offers the evaluation about our
model and its application effects. At last, section 5 concludes the paper.

2 The Uncoupled MapReduce Model

An uncoupled MapReduce model with intermediate data transfer is designed
to address the two problems, meanwhile improving the job execution efficiency
and system throughput. Figure 1 shows the data flow in this model. The data
transfer is completed in the map tasks in the uncoupled version of MapReduce,
instead of in the reduce tasks as the original version does. It needs to meet two
conditions as follows:
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Fig. 1. The data flow in uncoupled MapReduce

– To address the reduce slot hoarding problem thoroughly, the reduce tasks
should be scheduled after all the map tasks are completed. Reduce tasks
will not occupy the slots, and they can read the data to process locally once
launched, which improves job execution efficiency and system throughput.
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– To address the underutilized network bandwidth problem, the data transfer
process should be completed in map tasks. When reduce tasks start, they
will read data directly from local disks. Therefore, the network load will not
concentrate in the reduce tasks and the network bandwidth in the map tasks
can be used fully.

However, there is a conflict between the two conditions. Map tasks need to
transfer data to reduce tasks, but reduce tasks do not run until all the map
tasks are completed. Therefore, some trade-offs are necessary to find out when
and where the reduce tasks run. Three techniques are introduced to resolve the
problem.

– Weighted mapping. This technique creates a mapping relationship be-
tween reduce tasks and nodes. Through the mapping relationship, the map
tasks can find out the nodes where the corresponding reduce tasks will run,
and they can transfer data to these nodes. In a heterogeneous cluster, the
computing capability of each node is not identical. In consideration of this
fact, each node has its own weight. The node with higher weight will get
more tasks. This technique can guarantee balance and consistency of task
assignment.
• Balance. The balance means that the node with greater weight will
be assigned more reduce tasks. A linear relationship exists between the
number of assigned tasks and the node’s weight. We assume that there
are n nodes with weight wi(1 ≤ i ≤ n) in a cluster. Normalize the weight
and get the normalization value w′i from wi, as shown in Equation 1.

w′i =
wi∑n
i=1 wi

(1)

The variable M stands for the total number of reduce tasks, and Mi

stands for the number of reduce tasks assigned to node i. Equation 2
shows the result of task assignment.

Mi = w′iM =
wi∑n
i=1 wi

M (2)

The two equations above can ensure the balance of task assignment.
• Consistency. The consistency means that the fixed mapping relation-
ship between reduce tasks and nodes should be guaranteed and cannot
be changed once decided. We assign reduce task Rj(1 ≤ j ≤ M) with
weight wRj . The relationship is expressed in Equation 3.

wRj =
j

M
(3)

Reduce task Rj with weight wRj will be mapped to node k(1 ≤ k ≤ n)
if they follow the relationship in Equation 4.

k−1∑

i=1

w′i < wRj ≤
k∑

i=1

w′i (4)



38 J. Zhang et al.

The mapping relationship is shown in Figure 2. The two kinds of weights
will be normalized into the same range. Any module of a MapReduce
application can inquire the relationship through Equation 4.

Fig. 2. The mapping relationship between reduce tasks and nodes

– Data pushing. In the uncoupled version of MapReduce, map tasks imple-
ment data transfer using data pushing. As shown in Figure 1, map tasks will
put intermediate data into dynamic buffers and partition them. Then they
push data to the reduce tasks in corresponding mapped node from partition
1 to n in order, which is infeasible in the original version because where
reduce tasks are responsible for getting data from map tasks. This idea is
partially inspired by the pipelined MapReduce [4]. In the uncoupled version,
a server is setup in each node which is responsible for receiving data from
map tasks as shown in Figure 3. When map tasks are generating intermedi-
ate output data, they will work as clients and push data to the servers. So
there is no need to start reduce tasks before map tasks finish.

– Partial data backup. Each node has a server for receiving data from map
tasks. If some servers go wrong, the data pushed by map tasks will be lost.
It is costly to re-execute the completed map tasks. The partial data backup
technique can resolve this problem. When the map tasks are pushing data,
the data will also be backed up on local disks. When some servers go wrong,
there is no need to re-execute the completed map tasks, because the data
can be recovered by reduce tasks. A backup server is setup on each node
which is responsible for managing the backup data. The reduce tasks will
pull their own backup data by requesting each backup server. “Partial” here
means if a partition is pushed from a map task to its own node, it will not
be backed up. What’s more, it is compatible with the original fault tolerance
mechanism in MapReduce.

This model uncouples the dependency relationship of maps and reduces in
MapReduce, and replaces the shuffle phase in the original version. Through the
three techniques mentioned above, it can make sure that when the map tasks
are completed, all the reduce tasks can read data from their local disks. There-
fore, reduce tasks will not occupy the reduce slots to wait for the completion of
map tasks. It can also satisfy the needs of slots from other jobs. This model can
make full use of the network bandwidth in map and reduce tasks and balance
the network load.
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3 Architecture and Implementation

Considering the original architecture of MapReduce and the requirements of
three techniques mentioned above, the architecture of uncoupled MapReduce
is designed. It includes three kinds of modules: master control module, data
transfer module, and fault tolerance module. We have implemented the archi-
tecture in Hadoop, integrating different modules in the master and slave nodes.
The uncoupled MapReduce architecture and its implementation in Hadoop are
presented in Figure 4.
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Fig. 4. The uncoupled MapReduce archi-
tecture and its implementation in Hadoop

3.1 Master Control Module

The master control module lies in the master node, responsible for monitoring
and scheduling tasks, and coordinating other modules. Its functionalities are as
follows.

– Create the mapping relationship between reduce tasks and nodes.
– Convey the mapping relationship information to data transfer modules and

fault tolerance modules.
– Schedule tasks and make sure that reduce tasks will not start until all the

map tasks are completed.
– Ensure balance and consistency of the mapping relationship, and make each

node get proper tasks according to its computing capability.
– Coordinate the data transfer module and fault tolerance module. Normally,

this module controls the data transfer module to complete the task of data
pushing. If there is something wrong with data pushing, this module will
notify the fault tolerance module to recover the missing data.

3.2 Data Transfer Module

The data transfer modules lie in all the slave nodes, responsible for processing,
storing, and pushing data. Once a map task is completed, the module will push
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data to the servers in the mapped nodes where the corresponding reduce tasks
run. As mentioned above, the servers are responsible for receiving and managing
the data. The functionalities of this module are as follows.

– Create a server in each slave node.
– Get the output data from the map tasks.
– Do some preprocessing on the data, such as compressing.
– Get the mapping relationship.
– Work as a client to push the data of each partition to their corresponding

reduce tasks.
– The server in this module is responsible for receiving and managing data.

3.3 Fault Tolerance Module

The fault tolerance modules lie in all the nodes, responsible for processing ex-
ceptions. As our model changes the intermediate data transfer mode, we must
make some supplements to the original fault tolerance mechanism. In this mod-
ule, the partial data backup technique is introduced following specific rules. The
functionalities of this module are as follows.

– Backup each partition that a map task will push to other nodes in the local
disk.

– Assign the mapped reduce tasks to other nodes when a node is failed.
– Offer the backup data to reduce tasks through backup servers, if the backup

data has been made successfully. A reduce task checks whether the node
is the mapped one through weighted mapping mechanism. If it is not the
mapped one, the reduce task will pull its own backup data by requesting to
other backup servers.

4 Evaluations

We evaluate the model and its application effects using a micro-benchmark and
a real-world example. In the micro-benchmark, we use a cluster to compare the
job execution time in the uncoupled version of Hadoop with that in the original
version. Our work has also been applied in a production environment of Baidu,
which gives a comprehensive evaluation on the uncoupled MapReduce model.

– Definition 1: Wall time is the total time span from the moment a job is
submitted to the moment it is completed.

– Definition 2: Throughput T is the number of jobs finished in a unit time
interval. Suppose that N jobs are completed in a time interval t, we will get:

T =
N

t
(5)
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Our tests use the same workload in both the original version and the uncoupled
version, so:

Noriginal = Nuncoupled (6)

Suppose all the jobs are submitted simultaneously. t1i is the wall time of job i
in the original version, and t2i is that in the uncoupled version. Use toriginal =
max({t1i}) and tuncoupled = max({t2i}) (1 ≤ i ≤ N) to represent the total
wall time in the original version and the uncoupled version. Then we define the
throughput increment rate as I:

I =
Tuncoupled − Toriginal

Toriginal
=

Nuncoupled

tuncoupled
− Noriginal

toriginal

Noriginal

toriginal

=
toriginal
tuncoupled

− 1 (7)

Then we define the rate of total wall time reduction as r, and the rate of job i’s
wall time reduction as ri:

r =
toriginal − tuncoupled

toriginal
(8)

ri =
t1i − t2i

t1i
(9)

The impact factor of job i, λi, represents the proportion of job i’s wall time in
all the jobs. We can get λi from Equation 10:

λi =
t1i

∑N
i=1 t1i

(10)

The weighted wall time acceleration P represents the sum of wall time reduction
rate with impact factors. It can be deduced from Equation 11:

P =

N∑

i=1

λiri =

N∑

i=1

t1i
∑N

i=1 t1i

t1i − t2i
t1i

=

∑N
i=1 (t1i − t2i)
∑N

i=1 t1i
= 1−

∑N
i=1 t2i

∑N
i=1 t1i

(11)

The throughput increment rate and total wall time reduction rate are the metrics
reflecting the overall performance. The weighted wall time acceleration is the
metric reflecting the cumulative performance of each job.

4.1 Micro-benchmark

The micro-benchmark is performed in a cluster with 6 nodes. The operating
system is CentOS 6.1 x86 64, and the Hadoop version is 0.19. We use gridmix
[2] applications for our test. Gridmix is a set of benchmark programs for Hadoop
which contains several kinds of jobs. The micro-benchmark includes 3 jobs as
shown in Table 1.

Figure 5 shows the execution time of each job and the total completion time of
all the workloads. In our test, the total time of the original version is 3500s, and
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that of the uncoupled version is 2620s. There is no reduce slot hoarding in the
uncoupled version. The throughput increment is 34% (I) through Equation 7,
The total wall time is reduced by 25% (r) through Equation 8, and the weighted
wall time acceleration reaches 48% (P ) through Equation 11. The test shows
that our model can balance the network load properly and improve the system
throughput.

4.2 Real-World Example

The uncoupled MapReduce implementation based on Hadoop has been deployed
in a production environment of Baidu supporting some business applications.
The real-world example provides strong evidence on the effects of this work.

Baidu is the biggest search engine company in China. It has tens of clusters
performing Hadoop jobs for many web data processing applications, and gener-
ates more than 3 PB data volume per day [8]. Although the clusters can deal
with hundreds of jobs everyday, they still meet with some problems. For exam-
ple, the CPU and network bandwidth utilization rates are not high in spite of
full workload. The uncoupled version of Hadoop has been deployed in a server
cluster with 70 nodes, which is one of the shared Hadoop platforms for many
departments. The resource scale reaches about 560 cores, 1,120 GB memory, and
770 TB storage. The operating system is Red Hat Enterprise Linux AS release 4,
and the Hadoop version is 0.19. Many kinds of jobs run in this real environment,
such as log analysis, inverted index, web ranking, etc. Four kinds of jobs are
used in our test, including CPU-intensive ones and I/O-intensive ones. The job
information is shown in Table 2.

Table 1. The workload of the micro-
benchmark

Job name Input size Maps Reduces

job1 50 GB 400 200
job2 12.5 GB 100 50
job3 6.25 GB 50 25

Table 2. The workload of the real-world
example

Job name Input size Maps Reduces

job1 3.4 TB 14700 1600
job2 3.2 TB 14400 1600
job3 353 GB 1700 800
job4 343 GB 1600 800

Figure 6 shows the execution time of each job and the total completion time
of all the workload. In our test, the total time of the original version is 272
mins, and that of the uncoupled version is 210 mins. So we can get the rate of
throughput increment:

I =
toriginal
tuncoupled

− 1 = 29.5% (12)

The rate of total wall time reduction:

r =
toriginal − tuncoupled

toriginal
= 22.8% (13)
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And the weighted wall time acceleration:

P = 1−
∑4

i=1 t2i∑4
i=1 t1i

= 26.3% (14)

In addition, job3 and job4 in the original version cannot get reduce slots when
their map tasks are completed. They are delayed by 51 mins and 63 mins re-
spectively because of reduce slot hoarding problem.

Figure 7, 8, 9, and 10 show the comparison of the original version and the
uncoupled version in resources utilization. The workload is the above examples.
In the uncoupled version, it took 3.5 hours to complete all the jobs, and the last
map task finished in about 2.5 hours. While in the original version, it took 4.5
hours to complete all the jobs, and the last map task finished in about 3.3 hours.

Figure 7 illustrates the average CPU utilization rate of the cluster. The CPU
utilization rate in the uncoupled version is higher than that in the original ver-
sion. The reason can be explained from the map and reduce tasks respectively. In
the map tasks, intermediate data are pushed and received by the corresponding
servers, which results in more data preprocessing and transferring operations. In
the reduce tasks, data is processed faster due to data locality.

Figure 8 shows the network load (send throughput) of the cluster. The un-
coupled version uses more network bandwidth in the map tasks to transfer data.
Each map will push all of its output data to its corresponding reduce tasks, in-
stead of data being pulled partially by reduce tasks in the original version. There
is little network bandwidth in reduce phase of the uncoupled version, because
the reduce tasks will read data from their local disks. The peak in the end shows
that HDFS uses more bandwidth to backup the output data of reduce tasks
including the results and completion information of jobs.

Figure 9 and 10 show the disk I/O (write and read throughput) of the cluster.
In the uncoupled version, more disk I/O workload is involved in the map tasks
than that in the reduce tasks, because the map tasks will read data from disks
and push them to the mapped nodes where the servers receive and write data.
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While in the original version, the average throughput of disks is relatively low.
Shuffle is an ineffective and complicated phase, which has a significant impact
on the execution time and system throughput.

Fig. 7. Comparison of the average CPU
utilization rate of the cluster

Fig. 8. Comparison of the average net-
work load (send) of the cluster

Fig. 9. Comparison of the average disk
I/O (write) of the cluster

Fig. 10. Comparison of the average disk
I/O (read) of the cluster

Overall, the uncoupled version of Hadoop increases the resource utilization
rates, and avoids the waste of network and disk bandwidth.

5 Conclusion and Future Work

Although there are a variety of optimizations to improve the localization rate of
data in the MapReduce model, data transfer is inevitable. Reduce tasks need to
pull intermediate data from map tasks, which will decrease the execution effi-
ciency of jobs. In [3], it shows that shuffle can take about 33% of the operating
time in reduce tasks. Meanwhile, data transfer efficiency is very low, which is
a system bottleneck [9]. Impacted by these facts, the coupled relationship be-
tween map and reduce tasks results in two problems, reduce slot hoarding and
underutilized network bandwidth.

In this paper, we propose an uncoupled intermediate data transfer model to
resolve the reduce slot hoarding and underutilized network bandwidth problem
with the aim of improving the resource utilization and system throughput. Three
techniques, including weighted mapping, data pushing, and partial data backup,
are implemented. This work has been practised in Baidu, the biggest search
engine company in China. In a real-world application, the test shows that the
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throughput can be increased by 29.5%, the total wall time is reduced by 22.8%,
and the weighted wall time acceleration reaches 26.3%, compared with the orig-
inal version of Hadoop. The resource utilization rates of CPU, network and disk
are also increased.

Two improvements are planned: 1) Design a kind of scheduler for this model
which can use the cluster resources more reasonably. 2) Monitor workloads and
resources dynamically, instead of setting constant slots and weights. Hopefully,
our paper would assist in the study of heterogeneous resources utilization.
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Abstract. θ-MDA is a flexible and efficient operator for complex ad-hoc multi-
dimensional aggregation queries. It separates the specification of aggregation
groups for which aggregate values are computed (base table b) and the speci-
fication of aggregation tuples from which aggregate values are computed. Ag-
gregation tuples are subsets of the detail table r and are defined by a general
θ-condition. The θ-MDA requires one scan of r, during which the aggregates are
incrementally updated.

In this paper, we propose a two-step evaluation strategy for θ-MDA to op-
timize the computation of ad-hoc range aggregates by reducing them to point
aggregates. The first step scans r and computes point aggregates as a partial in-
termediate result x̃, which can be done efficiently. The second step combines the
point aggregates to the final aggregates. This transformation significantly reduces
the number of incremental updates to aggregates and reduces the runtime from
O(|r| · |b|) to O(|r|), provided that |b| < √|r| and |x̃| ≈ |b|, which is com-
mon for OLAP. An empirical evaluation confirms the analytical results and shows
the effectiveness of our optimization: range queries are evaluated with almost the
same efficiency as point queries.

1 Introduction

Multi-dimensional aggregation queries, such as range aggregates that aggregate sets
of tuples identified by a range condition, are an important class of queries in busi-
ness intelligence and data warehousing applications. To efficiently process such queries,
various techniques have been proposed, including extensions to SQL [7], generalized
projections [8], pre-aggregation of data cubes [9], and (relative) prefix sums [6,10].
θ-MDA [1] is a flexible and efficient operator for ad-hoc multi-dimensional aggrega-
tion queries, where pre-computed aggregates are not available and a scan of the detail
table is required.

Consider the relation stays in Fig. 1(a), which stores hospital stays of patients and
has the following attributes: admission date (D), patient identifier (P ), urgency cate-
gory (U ), and duration of the stay (S). To analyze the impact of urgent stays (U=3)
on the average duration of stays, aggregates for stays with U∈{1, 2} are compared to
aggregates for stays with U∈{1, 2, 3}. Consider the following query Q1: Compute the
cumulative average duration of stays per admission date (C1) and per admission date
and urgency (C2). The result of Q1 is shown in table x. The first two columns repre-
sent the aggregation groups. The other two columns represent the aggregate results. The
average is represented as a sum/count pair.

L. Bellatreche and M.K. Mohania (Eds.): DaWaK 2013, LNCS 8057, pp. 46–59, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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stays

D P U S

r1 31/01/13 P1 1 2

r2 31/01/13 P2 1 4

r3 31/01/13 P3 3 8

r4 31/01/13 P4 2 4

r5 31/01/13 P5 1 3

r6 31/01/13 P6 2 3

r7 01/02/13 P7 1 2

r8 01/02/13 P8 1 3

r9 01/02/13 P9 3 9

r10 01/02/13 P10 3 6

(a) Detail Table

x

D U C1 C2

x1 31/01/13 2 24/6 16/5

x2 31/01/13 3 24/6 24/6

x3 01/02/13 2 44/10 21/7

x4 01/02/13 3 44/10 44/10

(b) Result of Query Q1

Fig. 1. Running Example

C1 and C2 are range aggregates. Each aggregate is computed from the aggre-
gation tuples: all detail tuples that satisfy a given range predicate (exemplified by
hatched areas in Fig. 1). For instance, aggregate x3.C2 is the average duration of a
stay over all detail tuples in stays with D ≤ 01/02/13 and U ≤ 2, i.e., the tuples
{r1, r2, r4, r5, r6, r7, r8}. While one-dimensional range aggregates can be solved ef-
ficiently with SQL window functions, multi-dimensional range aggregates require ex-
pensive joins with range predicates [1].

The θ-MDA operator [1] offers a succinct formulation and efficient computation
of ad-hoc multi-dimensional aggregation queries. The operator separates the specifi-
cation of the aggregation groups in a base table b (first two columns in table x in
Fig. 1(b)) from the specification of the aggregation tuples. For each aggregation group
in b a θ-condition defines the aggregation tuples in the detail table r from which
aggregate values are computed, e.g., x3.C2 is computed from the aggregation tuples
{r1, r2, r4, r5, r6, r7, r8}. The evaluation strategy of θ-MDA works as follows: the re-
sult table x is initialized to b and one additional column for each aggregate, followed by
a scan of r during which the aggregate values are incrementally updated. A major part
of the evaluation cost for range aggregates is the incremental update of the aggregate
values in x since each tuple in r affects many entries in x. For instance, tuple r1 affects
both aggregates (C1 and C2) in all result tuples (x1 to x4). Moreover, for θ-conditions
that reference a subset of the attributes in b, redundant updates occur. Consider C1
with θ-condition D ≤ 31/01/13. Entries x1 and x2 are updated for all input tuples
with D ≤ 31/01/13.

In this paper, we tackle these problems and propose an efficient two-step evaluation
strategy for ad-hoc range aggregates by reducing them to point aggregates. The first step
scans r and computes corresponding point aggregates as a partial intermediate result,
x̃. Point aggregates require much less incremental updates and can be computed very
efficiently since only equality conditions are used to define aggregation tuples. The sec-
ond step combines the result of the point aggregates with the help of the corresponding
super aggregates [7] (e.g., SUM to add up COUNTs) and the θ-conditions to obtain
the final result relation. To further reduce the number of updates for aggregates with θ-
conditions that reference a subset of the attributes in b, we split the intermediate result
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table into a separate table for each aggregate function so that each detail tuple affects
exactly one entry in each intermediate table. This two-step strategy reduces the number
of incremental updates from O(|r| · |b|) to O(|r|) if |b| < √|r| and |x̃| ≈ |b|, which is
common for OLAP queries, such as for the TPC-H benchmark. We integrate these op-
timizations into a new evaluation algorithm, termed TCMDA+. An empirical evaluation
confirms the analytical results and shows that range aggregates can be computed with
almost the same efficiency as point aggregates.

The technical contributions can be summarized as follows:

– we show how the evaluation of range aggregates can be reduced to the evaluation
of point aggregates by computing an intermediate table of corresponding point ag-
gregates, which are then combined to the final aggregates;

– to further reduce the number of updates in the intermediate table, we maintain a
separate intermediate table for each aggregate;

– we integrate these optimizations in a new evaluation algorithm, termed TCMDA+,
which reduces the runtime complexity from O(|r| · |b|) to O(|r|) if |b| < √|r|
and |x̃| ≈ |b|;

– we report experimental results that confirm the analytical results and show that
range aggregates are evaluated with almost the same efficiency as point aggregates.

The paper is organized as follows: Sec. 2 reports related work, followed by a summary
of the θ-MDA operator in Sec. 3. In Sec. 4, we present the reduction of range to point
aggregates. These optimizations are integrated in a new algorithm in Sec. 5. In Sec. 6,
we report experimental results. Section 7 concludes the paper and points to future work.

2 Related Work

Various research work investigates multi-dimensional data aggregation techniques to
gain more flexibility and/or performance. The CUBE operator [7] is part of the SQL
standard and allows to express aggregation queries with equality constraints over sev-
eral attributes in a concise way. For aggregation queries over a part of the data cube,
grouping sets can be used. Additional support for aggregation queries over one dimen-
sion is provided by window functions in SQL:2003. The support is based on the ordering
of tuples. Currently, SQL does not support the efficient evaluation of range aggregates
over multiple dimensions [1].

An orthogonal approach to improve the query performance is to pre-compute ag-
gregates. Harinarayan et al. [9] propose a strategy for the selection of a subset of
all possible data cubes to be materialized. To avoid the complete re-computation of
cubes when source relations change, incremental update strategies have been pro-
posed [11,12,13,15]. Although the pre-computation of data cubes works well for point
aggregates, the performance of range aggregates suffers since the cells in the data cube
must be accessed repeatedly. To tackle this problem, Ho et al. [10] propose to maintain
additionally a so-called prefix sum cube. Subsequent work has studied techniques to
lower the comparably high update costs of the prefix sum cube [5,6,14].

The goal in this paper is the efficient evaluation of complex ad-hoc OLAP queries
when pre-computed aggregates (cubes or prefix sum cubes) are not available. Such
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an approach provides more flexibility for the exploration of large data sets when the
requirements for the analysis and queries are not known a priori.

To efficiently answer ad-hoc OLAP queries with a single scan of the detail table,
Akinde et al. [2] propose the multi-dimensional join (MDJ) and later the generalized
multi-dimensional join (GMDJ) [3,4]. The operator has been used in complex OLAP
settings to transform general sub-query expressions into expressions that use the GMDJ
instead of joins, outer joins, or set difference. Sridhar et al. [16] use the GMDJ in com-
bination with MapReduce to compute aggregation queries over RDF data.

The θ-constrained multi-dimensional aggregation (θ-MDA) operator [1] extends the
MDJ and presents a detailed cost model together with algebraic transformation rules.
θ-MDA outperforms SQL for complex multi-dimensional aggregation queries, such as
range aggregates over multiple dimensions. In this paper, we propose an alternative
evaluation strategy for θ-MDA, which significantly reduces the cost of the computation
of range aggregates to almost the same cost as point aggregates.

3 Preliminaries

We assume two relations, b and r, with schema B = (B1, . . . , Bt) and R =
(A1, . . . , Ap), respectively. For a tuple x we write x.B as an abbreviation for
(x.B1, . . . , x.Bt). E/C denotes the renaming of E to C, attr(θ) denotes the set of
attributes used in θ, and fi denotes an aggregate function.

Definition 1. (θ-MDA [1]) Let b and r be relations with schemaB andR, respectively,
F = (f1/C1, . . . , fm/Cm) be aggregate functions over attributes in R, and Θ =
(θ1, . . . , θm) be conditions with attr(θi) ⊆ B ∪R. The θ-MDA operator is defined as

Gθ(b, r, F,Θ) = {b ◦ v | b ∈ b ∧ v = (f1(r[b,θ1]), . . . , fm(r[b,θm]))},
where r[b,θi] = {r ∈ r | θi(r, b)} are the aggregate tuples from which the aggregate
values for aggregation group b are computed.

The base table b specifies the aggregation groups for which a result tuple is reported.
The detail table r contains the data from which aggregate values are computed. F is
a list of aggregate functions. Each fi gets as argument a subset of r, r[b,θi] ⊆ r, that
is determined by a condition θi, and aggregates one of the attributes. Each entry in the
result table x consists of a b-tuple and the aggregation results stored in C1, . . . , Cm.
Query Q1 can be formulated as Gθ(b, r, F,Θ) with b = πD,U (σU∈{2,3}(stays)), r =
stays, F = ((SUM(S)/COUNT(S))/C1, (SUM(S)/COUNT(S))/C2), and Θ =
(θ1, θ2) with θ1 ≡ (r.D≤b.D) and θ2 ≡ (r.D≤b.D ∧ r.U≤b.U).

The evaluation of θ-MDA queries works as follows: (1) initialize the result table x
to b and the neutral value for each aggregate function; (2) scan r and incrementally
update the aggregates fi in x that are affected by an r ∈ r, i.e., satisfy condition θi.
After processing all r-tuples, x contains the result relation. The runtime complexity of
this evaluation strategy is O(|r| · |b|) with one scan of r. Figure 2 shows the result table
during the evaluation of the first three tuples. The first two detail tuples affect all eight
aggregate values in x, whereas r3 requires six updates.

Observe that the number of aggregates that are updated for an r-tuple depends on the
θi-conditions. Range aggregates require many more updates than point aggregates.
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x

D U C1 C2

x1 31/01/13 2 - -
x2 31/01/13 3 - -
x3 01/02/13 2 - -
x4 01/02/13 3 - -

Initial result table

x

D U C1 C2

x1 31/01/13 2 2/1 2/1
x2 31/01/13 3 2/1 2/1
x3 01/02/13 2 2/1 2/1
x4 01/02/13 3 2/1 2/1

r1=(31/01/13, P1, 1, 2)

x

D U C1 C2

x1 31/01/13 2 6/2 6/2
x2 31/01/13 3 6/2 6/2
x3 01/02/13 2 6/2 6/2
x4 01/02/13 3 6/2 6/2

r2=(31/01/13, P2, 1, 4)

x

D U C1 C2

x1 31/01/13 2 14/3 6/2
x2 31/01/13 3 14/3 14/3
x3 01/02/13 2 14/3 6/2
x4 01/02/13 3 14/3 14/3

r3=(31/01/13, P3, 3, 8)

Fig. 2. Processing Tuples in θ-MDA Queries

4 A New Evaluation Strategy for θ-MDA Queries

4.1 Reducing Range to Point Queries

To tackle the problem of a large number of incremental updates for range aggregates
and take advantage of the efficient computation of point aggregates, we propose an
evaluation strategy that reduces range to point aggregates.

Proposition 1 (Reduction to Point Aggregates). Let b, r, B, R, F , Θ be as in Def. 1,
G = (g1, . . . , gm) be the super aggregates of the fi ∈ F , and Ri = R∩attr(θi) be the
attributes in R that occur in θi. Then, x = Gθ(b, r, F,Θ) can be computed as follows:

1. construct Θ̃ = (θ̃1, . . . , θ̃m), where θ̃i(r, b) =
∧

A∈Ri
r.A = b.A;

2. compute an intermediate result table x̃ = Gθ(πR1∪···∪Rm(r), r, F, Θ̃);
3. compute the result table x = {b ◦ v | b ∈ b ∧ v = (g1(x̃[b,θ1]), . . . , gm(x̃[b,θm]))},

where x̃[b,θi] = πRi,Ci{x̃ ∈ x̃ | θi(x̃, b)}.

First, m point aggregates are constructed by creating conditions Θ̃ = {θ̃1, . . . , θ̃m}
such that each θ̃i contains an equality constraint, r.A = b.A, for each attribute A ∈
Ri that is used in the corresponding θi. Second, a Gθ-call computes an intermediate
result table, x̃, with m point queries, where the base table is a projection of r to all
R-attributes that are used in Θ. This requires significantly less updates in x̃ than the
range queries would do. The final result table, x, is derived from x̃ using the aggregates
gi in combination with the original conditions θi. Following Gray et al. [7], we call the
functions gi that are needed to aggregate the intermediate values the super aggregates.
For the standard aggregate functions we have the following pairs of aggregate/super
aggregate: MAX/MAX, MIN/MIN, SUM/SUM, COUNT/SUM; average is replaced
by sum divided by count. The super aggregates are computed over groups of entries,
x̃[b,θi] ⊆ x̃, that are assigned to tuples b ∈ b using the original conditions θi. Note the
projection to the aggregation group attributes Ri and the aggregate Ci. This is required
to eliminate duplicates in situations when a condition θ̃i references only a subset of the
aggregation group attributes in x̃, i.e., Ri ⊂ R1 ∪ · · · ∪Rm. Although in step 3 each
tuple of x̃ may affect multiple tuples in x, the overall runtime is significantly reduced,
provided that x̃ is much smaller than r, which is frequently the case in OLAP.

Figure 3 shows the evaluation of Query Q1. We have the attribute sets R1 = {D}
and R2 = {D,U} and the conditions Θ̃ = {θ̃1, θ̃2} with θ̃1 ≡ (r.D=b.D) and
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θ̃2 ≡ (r.D=b.D ∧ r.U=b.U). These conditions together with the aggregate func-
tions represent point aggregates, which are computed in the intermediate result table
as x̃ = Gθ(πD,U (stays), r, F, Θ̃). Note the significant reduction of incremental up-
dates in x̃. For instance, tuple r1 affects only four aggregates (both aggregates in x̃1

and aggregate C1 in x̃2 and x̃3) instead of eight as in Fig. 2. To derive the final result
table x, the original conditions, θi, are used to determine the subsets x̃[b,θi]. For result
tuple x1 with aggregation group b = (31/01/13, 2) we have the following subsets:

x̃[(31/01/13,2),θ1] = πD,C1{x̃ ∈ x̃ | x̃.D ≤ 31/01/13}
= πD,C1{x̃1, x̃2, x̃3} = {(31/01/13, 24/6)},

x̃[(31/01/13,2),θ2] = πD,U,C2{x̃ ∈ x̃ | x̃.D ≤ 31/01/13∧ x̃.U ≤ 2}
= πD,U,C2{x̃1, x̃2} = {(31/01/13, 1, 9/3), (31/01/13, 2, 7/2)}.

The projection in x̃[(31/01/13,2),θ1] removes duplicates that originate from C1 grouping
only by D. Since the super aggregate of SUM and COUNT is SUM, the final aggre-
gates are obtained by summing up the individual sums and counts, respectively. For
instance, for the result tuple x1 we get

x1.C1 = SUM/SUMC1(x̃[(31/01/13,2),θ1]) = SUM/SUMC1({(31/01/13, 24/6)})
= 24/6,

x1.C2 = SUM/SUMC2(x̃[(31/01/13,2),θ2])

= SUM/SUMC2({(31/01/13, 1, 9/3), (31/01/13, 2, 7/2)}
= (9+7)/(3+2) = 16/5.

stays

D P U S

r1 31/01/13 P1 1 2
r2 31/01/13 P2 1 4
r3 31/01/13 P3 3 8

.

.

.
r10 01/02/13 P10 3 6

x̃

D U C1 C2

x̃1 31/01/13 1 24/6 9/3
x̃2 31/01/13 2 24/6 7/2
x̃3 31/01/13 3 24/6 8/1
x̃4 01/02/13 1 20/4 5/2
x̃5 01/02/13 3 20/4 15/2

x

D U C1 C2

x1 31/01/13 2 24/6 16/5
x2 31/01/13 3 24/6 24/6
x3 01/02/13 2 44/10 21/7
x4 01/02/13 3 44/10 44/10

Θ̃, F Θ,G

Fig. 3. θ-MDA Evaluation by Reduction to Point Queries

Theorem 1. The evaluation strategy in Proposition 1 correctly computes the θ-MDA.

Proof. The theorem applies the following reduction rule for distributive aggregates: an
aggregate function, f , over a set of tuples, r, can be reduced to the computation of
partial aggregates over a partitioning r1, . . . , rk of r, followed by an application of the
corresponding super aggregate g, i.e., f(r) = g(f(r1), . . . , f(rk)). In step two, each θ̃i
induces a partitioning of r such that all tuples in the same partition have identical val-
ues for the attributes Ri = R∩ attr(θi). The call to Gθ with base table πR1∪···∪Rm(r)
computes for each fi the partial aggregation results over the individual partitions, i.e.,
x̃.Ci = fi({r ∈ r | θ̃(r, x̃)}). In step three, the original b and θis are used to determine
which entries x̃ ∈ x̃ to combine for each b ∈ b. Each x̃[b,θi] collects all intermediate
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tuples, x̃ ∈ x̃, that are assigned to b through θi. Since all r-tuples in a partition that
contributed to an intermediate aggregate, x̃.Ci, have identical values for the attributes
Ri, they would have been assigned by θi to the same b. The projection to Ri, Ci elimi-
nates duplicates when Ri ⊂ R1 ∪ · · · ∪Rm. In such cases, several entries in x̃ might
store the same aggregation group for Ci, but only one can be considered for the final
aggregation result. Thus, no spurious tuples are combined for the aggregates in the final
result table, and the use of the original θi in step three guarantees that all input tuples
are considered. �

The following lemma shows that the reduction of range aggregates to point aggregates
can be expressed by a nested θ-MDA if all θis use the same set of aggregation group
attributes B.

Lemma 1. Let b, r, F , G, Θ, and Θ̃ be as in Proposition 1. Furthermore, let Ri =
R ∩ attr(θi) denote the attributes in R that occur in θi and Ri = Rj for all i, j,
1 ≤ i, j ≤ m. Then, x = Gθ(b, r, F,Θ) can be computed as

x = Gθ(b,Gθ(πRi(r), r, F, Θ̃), G,Θ).

Proof. The inner Gθ-call computes the intermediate table x̃, which is passed as detail
table to the outer Gθ-call. In the outer call, the original θis assign to each b ∈ b the
associated intermediate tuples, x̃ ∈ x̃. Since all aggregates use the same aggregation
group attributes, Ri, there are no duplicate aggregation groups in x̃ for any aggregate,
hence a projection as in Proposition 1 is not necessary. The super aggregates in G in
combination with the original conditions Θ correctly combine the partial aggregates to
the final result. �

Note that using the aggregation groups in b instead of πR1∪···∪Rm(r) for the com-
putation of the intermediate result table x̃ would not be correct. This happens if b is
sparse, i.e., r contains more combinations of the grouping attribute values than b does,
i.e., b ⊂ πB(r). Since the θ̃is use only equality constraints, some tuples in r might
not be assigned to any entry in the intermediate table x̃ although they contribute to the
final aggregation result. Figure 4 shows table x̃ for Query Q1 when using the original
base table b. In table x̃, the pre-aggregates for the aggregation groups (31/01/13, 1)
and (01/02/13, 1) are missing, but they are needed for the correct computation of the
final result. A similar situation occurs if Θ uses a lower number of B-attributes than
R-attributes. In this case, the intermediate table x̃ misses attributes that are needed for
the evaluation of the θis when producing the final result table.

4.2 Separate Intermediate Result Tables

Even if the θ̃i-conditions contain only equality constraints, a single r-tuple might still
affect several entries in x̃. This is the case if a θ̃i constrains only a subset of all grouping
attributes, i.e., Ri ⊂ R1 ∪ · · · ∪Rm. For instance, condition θ̃1 ≡ (r.D=b.D) of the
first aggregate groups only by D. This produces duplicate aggregation groups in x̃,
such as D = 31/01/13which is present in x̃1, x̃2, and x̃3 (cf. Fig. 3). Each of the detail
tuples r1, . . . , r6 is assigned to each of these entries, yielding a total of 18 updates of
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stays

D P U S

r1 31/01/13 P1 1 2
r2 31/01/13 P2 1 4
r3 31/01/13 P3 3 8

.

.

.
r10 01/02/13 P10 3 6

x̃

D U C1 C2

31/01/13 2 24/6 7/2
31/01/13 3 24/6 8/1
01/02/13 2 20/4 -/-
01/02/13 3 20/4 15/2

Θ̃, F

Fig. 4. Using Base Table b in x̃

C1 instead of six. This type of redundant updates can be avoided by using a separate
intermediate result table, x̃i, for each θ̃i (fi).

Proposition 2 (Separate Intermediate Result Tables). Let b, r, F , G, Θ, Θ̃, and Ri

be as in Proposition 1. Then, x = Gθ(b, r, F,Θ) can be computed as follows:

1. compute m intermediate result tables x̃i = Gθ(πRi(r), r, fi, θ̃i) for i = 1, . . . ,m;
2. compute the result table x = {b ◦ f | b ∈ b ∧ f = (g1(x̃

1
[b,θ1]

), . . . , gm(x̃m
[b,θm]))},

where x̃i
[b,θi]

= {x̃ ∈ x̃i | θi(x̃, b)}.

Figure 5 shows the two intermediate result tables, x̃1 and x̃2, in our running example
that replace table x̃ from Fig. 3. Table x̃1 has one grouping attribute, whereas x̃2 has
two. The detail tuples r1, . . . , r6 require now a total of six updates of C1 in table x̃1

(one for each tuple), instead of 18 in Fig. 3.

stays

D P U S

r1 31/01/13 P1 1 2
r2 31/01/13 P2 1 4
r3 31/01/13 P3 3 8

.

.

.
r10 01/02/13 P10 3 6

x̃1

D C1

x̃2
1 31/01/13 24/6

x̃2
2 01/02/13 20/6

x̃2

D U C2

x̃3
1 31/01/13 1 9/3

x̃3
2 31/01/13 2 7/2

x̃3
3 31/01/13 3 8/1

x̃3
4 01/02/13 1 5/2

x̃3
5 01/02/13 3 15/2

θ̃1, f1

θ̃2, f2

Fig. 5. Separate Intermediate Result Tables

Theorem 2. The evaluation strategy in Proposition 2 correctly computes θ-MDA.

Proof. The proof is similar as for Theorem 1 with two differences. In the first step, m
intermediate result tables are constructed using the θ̃is. Since the aggregation groups
of each x̃i are produced by a projection of r to the attributes Ri that are used in the
corresponding θi-condition, duplicate aggregation groups are avoided. The second step
merges the intermediate tables to produce the final result table in the same way as in
Proposition 1, except the projection in x̃[b,θi], which is not needed since no duplicate
aggregation groups exist. �

Corollary 1. The evaluation of θ-MDA queries using separate intermediate result ta-
bles, x̃i, as in Proposition 2, requires for each r ∈ r exactly one update in each x̃i.
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Proof. None of the intermediate result tables, x̃i, contains duplicate aggregation groups
and all aggregates are point queries. Thus, each condition, θ̃i, associates each detail
tuple, r ∈ r, to exactly one entry in x̃i. �

5 Algorithm TCMDA+

Algorithm 1 shows a new algorithm, TCMDA+, for the evaluation of θ-MDA queries
that adopts the optimization techniques introduced before.

Algorithm 1. TCMDA+(b, r, F,Θ)
input : base table b, detail table r, aggregate functions F = (f1, . . . , fm), conditions Θ = (θ1, . . . , θm)
output : result relation x

// Initialize intermediate result tables
Let Ri ← R ∩ attr(θi) for i = 1, . . . ,m;
Let (Rj1 , Fj1 ), . . . , (Rjk

, Fjk
), k ≤ m, be a partitioning of F according to Ri;

foreach partition (Rj, Fj) do
x̃j ← empty table with schema (Rj, Cj1 , . . . , Cjkj

);

Create an index on x̃j over the attributes Rj ;

θ̃j(r, b) =
∧

A∈Rj
r.A = b.A;

// Scan detail table r and update intermediate result tables
foreach tuple r ∈ r do

foreach partition (Rj , Fj) do
if ∃x̃ ∈ x̃j such that θ̃j(r, x̃) then

x̃.Cji
← gji (x̃.Cji

, fji ({r})) for i = 1, . . . , kj ;
else

x̃j ← x̃j ∪ {r.Rj ◦ (fj1 ({r}), . . . , fjkj ({r}))};

// Build final result table x
x = b× {(υ1, . . . , υm)};
Create index on x over attributes B;
for i = 1 to m do

foreach x̃ ∈ x̃i do
foreach x ∈ x such that θi(x̃, x) do

x.Ci ← gi(x.Ci, x̃.Ci);

return x;

The algorithm starts with the initialization of empty intermediate result tables. Ac-
cording to Proposition 2, for each θ̃i a separate table is created. This leads to tables
with identical grouping attributes if different θis reference the same attributes in R,
i.e., Ri = Rj for i �= j. Therefore, in the algorithm we apply a further optimization
and merge tables with identical grouping attributes to a single table with one column
for each aggregate function. For each intermediate result table, x̃j , constructed in this
way we create an index over the grouping attributes. The conditions θ̃j are generated
as described in Proposition 1. Next, the detail table is scanned, and for each r ∈ r the
aggregates in the intermediate result tables, x̃j , are updated. If an entry in x̃j exists that
matches tuple r, the aggregates are incrementally updated. Otherwise, a new entry is
created and the aggregate values are initialized to the functions evaluated over r. Fi-
nally, the result table x is initialized to b with the aggregates initialized to the neutral
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values υi. The final result table is computed by combining the partial aggregates from
the intermediate result tables x̃j using the super aggregates as described in Proposi-
tion 2. For that the intermediate result tables are scanned and the aggregate values in
the final result table are incrementally updated.

Figure 6 illustrates a few steps of the computation of Query Q1. Empty intermediate
result tables x̃1 and x̃2 are created for the partitions ({D}, {f1}) and ({D,U}, {f2}).
The first tuple r1 creates a new entry in both tables. Tuple r2 creates no new entries in
any of the intermediate tables, it only updates aggregates. Tuple r3 updates C1 in x̃1

and creates a new entry in x̃2. After processing r10, the intermediate tables contain the
same partial aggregate values as in Fig. 5.

x̃1

D C1

x̃2

D U C2

Initialization

x̃1

D C1

31/01/13 2/1

x̃2

D U C2

31/01/13 1 2/1
r1 = (31/01/13, P1, 1, 2)

x̃1

D C1

31/01/13 6/2

x̃2

D U C2

31/01/13 1 6/2
r2 = (31/01/13, P2, 1, 4)

x̃1

D C1

31/01/13 14/3

x̃2

D U C2

31/01/13 1 6/2
31/01/13 3 8/1

r3 = (31/01/13, P3, 3, 8)

. . .

x̃1

D C1

31/01/13 24/6
01/02/13 20/4

x̃2

D U C2

31/01/13 1 9/3
31/01/13 2 7/2
31/01/13 3 8/1
01/02/13 1 5/2
01/02/13 3 15/2

r10 = (01/02/13, P10, 3, 6)

Fig. 6. Processing of Detail Tuples and Computation of Intermediate Result Tables in TCMDA+

Complexity Analysis. We analyze the complexity of the TCMDA+ algorithm in terms
of incremental updates to the aggregate values and compare it to the original TCMDA
algorithm [1]. As parameters we consider the two input relations, b and r, while the
number of aggregate functions and θ-conditions are considered to be constant.

The complexity of TCMDA is CTCMDA = |b|+ |r| · u, where u is the average number
of updates in the result table x. The number of updates depends on the constraints in
the θis and ranges between 0 and |b|. For range aggregates, u is much higher than for
point aggregates. The complexity of TCMDA+ is CTCMDA+ = |b| + |r| + |x̃| · u, where
|x̃| is the size of the largest intermediate result table and u is the average number of
updates in the result table x. The number of updates for each r ∈ r in the intermediate
tables x̃i is always one due to the reduction to point aggregates and the use of separate
intermediate tables. The computation of the final result table x requires on average u
updates for each x̃ ∈ x̃, where |x̃| ≤ |r| and u ranges between 1 and |b|.

The worst case complexity of TCMDA is O(|r| · |b|). For the TCMDA+ algorithm,
we distinguish three cases. First, for |b| < √|r| and |x̃| ≈ |b|, which is common for
OLAP, we get a worst case complexity ofO(r), and thus a significant improvement over
TCMDA. Second, for |b| > √|r| and |x̃| ≈ |b| we have O(|b|2). Third, if |x̃|  |b| (or
almost as large as |r|) the algorithm degrades to O(|r|·|b|) and has the same complexity
as TCMDA.
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To summarize, for typical applications of θ-MDA, where |b| <
√|r| and |x̃| ≈

|b|, the proposed optimization reduces the complexity of the θ-MDA evaluation from
O(|r| · |b|) to O(|r|) for both range and point aggregates.

6 Experiments

Setup and Data. We implemented the algorithms TCMDA from [1] and TCMDA+ de-
scribed in this paper in C using Oracle 11g for storing the data. The experiments run
on a machine with two AMD Opteron processors (1.8 GHz and 2.6 GHz), 16 GB of
main memory, and Ubuntu 10.04. For the experiments we used the Orders table of the
TPC-H benchmark1. We generated tables of different size and ran queries over them
using the aggregate function COUNT.

Varying the Size of the Detail Table. Figure 7 presents the runtime by varying the size
of the detail table between 2 and 10 million tuples. The θ-conditions use the operators
≤ and �= (range aggregates). In all experiments, TCMDA+ clearly outperforms TCMDA,
and the runtime of TCMDA grows faster than for TCMDA+. This improvement of up to
a factor of five can be attributed to the reduction to point aggregates, which reduces
the number of updates for each detail tuple to one. As expected, the less selective the
θ-constraints are, the bigger the performance improvement since for less selective con-
ditions TCMDA needs to update comparably more aggregates for each r ∈ r.
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Fig. 7. Varying |r| (|b| = 500, |Θ| = 1, |θ| = 1)

Varying the Size of the Base Table. The experimental results with a varying size of the
base table are shown in Fig. 8 and exhibit an even better performance improvement
than for varying |r|. The growing size of b affects the runtime of TCMDA drastically, as
shown in Fig. 8(a). For |b| = 5000 the runtime is about 13 times larger for ≤ and about
27 larger for �= with respect to |b| = 1000. In contrast, the runtime of TCMDA+ is not
affected by the growing base table. Figure 8(b) shows the runtime of TCMDA+ with a
larger base table varying between 2000 and 1000 tuples. The experiment confirms our
analytical results that the runtime of TCMDA+ is growing slowly for ≤ and �= queries
when |b| > √|r| ≈ 3000; for = (point queries) the runtime remains constant.

1 TPC-H benchmark framework: http://www.tpc.org/tpch/
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Fig. 8. Varying |b| (|r| = 10M , |Θ| = 1, |θ| = 1)

Varying the Conditions. In Fig. 9, the number of constraints in the conditions θi and
the number of θ-conditions in Θ are varied, respectively. Again, TCMDA+ clearly out-
performs TCMDA. The runtime for θ-conditions with a number of constraints that varies
between 1 and 5 is shown in Fig. 9(a). The increase in the runtime is due to the more ex-
pensive evaluation of the θ-conditions containing more constraints. Fig. 9(b) illustrates
the experimental results for a growing number of conditions in Θ. A higher number of
conditions results in more aggregates to be computed, hence more incremental updates
are required. For TCMDA, additional θ-conditions result in significantly more aggre-
gates to be updated for each r-tuple. TCMDA+ is less affected because each additional
θ-condition means only one more aggregate update for each r-tuple.
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Fig. 9. Varying Conditions (|r| = 10M , |b| = 500, |Θ| = 1)

Comparing Different Constraint Types. In Fig. 10, we analyze how the constraint op-
erators =, ≤, and �= affect the runtime (i.e., range vs. point aggregates). TCMDA is very
sensitive to the type of constraint operators that are used, yielding runtimes that for ≤
and �= are much longer than for = (see Fig. 10(a)). This is due to the higher number
of aggregate updates for each r-tuple in range aggregates (i.e., lower selectivity of the
operator). In contrast, TCMDA+ in Fig 10(b) is robust and independent of the type of
constraint operators. Range aggregates are computed with the same efficiency as point
aggregates.

Figure 11 analyzes TCMDA+ and different types of constraints for larger detail and
base tables. Both graphs confirm the analytical results, i.e., the runtime of TCMDA+ is
linear in |r| when |b| ≤ √|r| = 10000. In Fig. 11(a), the detail table varies between
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Fig. 10. Varying |r| (|b| = 500, |Θ| = 1, and |θ| = 1)

25 and 100 million tuples, with a base table size of 1000 and one θ-condition with one
constraint. The runtime shows a linear growth and is not affected by the type of the
query. In Fig. 11(b), the size of the base table varies between 2500 and 20000 tuples,
with a detail table of 100 million tuples and one θ-condition with one constraint. The
runtime is constant for |b| ≤ 10000. For larger base tables b, the runtime is slowly
increasing, though the increase is less evident than in Fig. 8(b), where the base table is
comparably larger.
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Fig. 11. TCMDA+ Scalability Experiments

7 Conclusions

In this paper, we studied the efficient evaluation of complex ad-hoc multidimensional
aggregation queries with the θ-MDA operator. We proposed a solution to reduce the
evaluation of θ-MDA range aggregates to θ-MDA point aggregates. Point aggregates
require significantly less incremental updates. This optimization has been integrated
into a new evaluation algorithm, termed TCMDA+, which reduces the runtime complex-
ity from O(|r| · |b|) to O(|r|) if |b| < |√r| and x̃ ≈ b, which is common in OLAP
queries, such as for the TPC-H benchmark. Extensive experiments have shown per-
formance improvements of more than an order of magnitude for TCMDA+, and range
aggregates can be computed with almost the same performance as point aggregates.

Future work points in several directions. First, we will investigate the integration of
θ-MDA as an algebraic operator into the kernel of PostgreSQL. Second, we plan to
adapt the evaluation strategy for θ-MDA queries and leverage MapReduce techniques
for distributed query processing. Finally, it could be interesting to identify applications
with very large base tables and develop optimization strategies for such settings.
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1. Akinde, M., Böhlen, M.H., Chatziantoniou, D., Gamper, J.: θ-constrained multi-dimensional
aggregation. Information Systems 36, 341–358 (2011)

2. Akinde, M., Chatziantoniou, D., Johnson, T., Kim, S.: The MD-join: An operator for complex
OLAP. In: Proceedings of ICDE, Washington, DC, USA, pp. 524–533 (2001)
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Abstract. Increasingly, data warehouse (DW) analyses are being used not only 
for strategic business decisions but also as valuable tools in operational daily 
decisions. As a consequence, a large number of queries are concurrently 
submitted, stressing the database engine ability to handle such query workloads 
without severely degrading query response times. The query-at-time model of 
common database engines, where each query is independently executed and 
competes for the same resources, is inefficient for handling large DWs and does 
not provide the expected performance and scalability when processing large 
numbers of concurrent queries. However, the query workload, which is mainly 
composed of aggregation star queries, frequently has to process similar data and 
perform similar computations. While materialized views can help in this matter, 
their usefulness is limited to queries and query patterns that are known in 
advance. The reviewed proposals on data and processing sharing suffer from 
memory limitations, reduced scalability and unpredictable execution times 
when applied to large DWs, particularly those with large dimensions. We 
present SPIN, a data and processing sharing model that delivers predictable 
execution times to aggregated star-queries even in the presence of large 
concurrent query loads, without the memory and scalability limitations of 
existing approaches. We used the TPC-H benchmark to experimentally evaluate 
SPIN. 

1 Introduction 

Current database engines execute queries following a query-at-a-time model, with 
every query being independently processed without any data and processing sharing 
considerations, with each competing for resources (IO, CPU, …). While this may not 
raise performance issues for most operational systems, it is a performance killer when 
dealing with large Data Warehouses (DW). In this context, large fact and dimension 
relations are concurrently scanned by each query of the concurrently running 
workload, and tuples are independently filtered, joined and aggregated. This lack of 
data and processing sharing result in lack of scalability and the system is unable to 
provide predictable execution times. Therefore, predictable execution times under 
scalable data volumes and query workloads can only be attained through the use of 
high level of data and processing sharing among concurrently running queries.  
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Recent proposals aimed to provide improved sharing. [1] focuses on sharing fact 
table reading and joining costs among running queries, by using a set of dimension 
filters to perform fact-to-dimension joins. However, the usefulness of the approach is 
limited to small dimensions that can fit entirely in memory and, as recognized in [2], 
large dimensions may severely impact performance.  

We argue that there’s a need for improved data and processing sharing among a 
large number of concurrently running star queries. Such approach should also deal 
with scalable data volumes and processing infrastructures.  

In this paper we present SPIN, a data and processing sharing model that can deliver 
predictable  execution times to a large set of concurrently running aggregation star 
queries. It has minimum memory requirements and can handle large data volumes and 
be deployed over scalable processing infrastructures with almost linear speedups. We 
discuss the SPIN characteristics and how they overcome the limitations of recent 
proposals on data and processing sharing, such as memory limitations, reduced 
scalability and unpredictable execution times when applied to large DWs, particularly 
those with large dimensions.  

The paper is organized as follow: section 2 reviews related work on data and 
processing sharing, and their limitations on delivering scalable and predictable 
performance. Section 3 presents and discusses SPIN and how it can overcome such 
limitations. We evaluate SPIN in section 4, and finally we present conclusions in 
section 5.  

2 Related Work 

The usage pattern of DWs is changing from the traditional, limited set of simultaneous 
users and queries, mainly well-known reporting queries, to a more dynamic and 
concurrent environment, with more simultaneous users and ad-hoc queries. DW query 
patterns are mainly composed by star aggregation queries, which contain a set of query 
predicates (filters) and aggregations. Fig. 1 illustrates the query template.  

SELECT dim attributes, aggregation functions 
FROM  fact, set of dimension tables 
WHERE  join conditions  
AND  dim attribute conditions 
GROUP BY dim attributes 

Fig. 1. Template of an Aggregated Star Query  

The query-at-a-time execution model of traditional RDBMS systems, where each 
query is executed following its own execution plan, does not provide a scalable 
environment to handle much larger, concurrent and unpredictable workloads. The use 
of large parallel deployments does not solve this problem because the additional 
computational and storage capabilities only lessen it, while introducing others 
problems such as load-balancing, optimal data distribution and network capacity. 
Queries submitted to a star schema model have common processing tasks, particularly 
those related to IO processing of the fact table (costly operations).  
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Analyzing the execution query plan, we observe that the low-level data access 
methods, such as sequential scan, represent a major weight in the total query 
execution time. One way to reduce such a burden is to store relations in memory. 
However, the amount of available memory is limited, insufficient to hold large DW, 
and is also required for performing join and sort operations. 

Cooperative scans [3] enhances performance by improving data sharing between 
concurrent queries, by performing dynamic scheduling of queries and their data 
requests taking into account with the current executing actions. While this minimizes 
the overall IO costs, by mainly using sequential scans instead of a large number of 
costly random IO operations, and the number of scan operations (since scans are 
shared between queries), it introduces undesirable delays to query execution and does 
not deliver predictable query execution times.   

QPipe [4] applies on-demand simultaneous pipelining of common intermediate 
results across queries, avoiding costly materializations and improving performance 
when compared to tuple-by-tuple evaluation.  

CJOIN[1] [2] applies a continuous scan model to the fact table, reading and placing 
fact tuples in a pipeline, and sharing dimension join tasks among queries, by attaching 
a bitmap tag to each fact tuple, one bit for each query, and attaching a similar bitmap 
tab to each dimension tuple referenced by at least one of the running queries. Each 
fact tuple in the pipeline goes through a set of filters (one for each dimension) to 
determine if it is referenced by at least one of the running queries. It not, the tuple is 
discarded. Tuples that reach the en d of the pipeline (tuples not discarded in filters) 
are then distributed to dedicated query aggregations operators, one for each query.   

CJoin overcomes the limitations of the query-at-a-time model, allowing high level 
of concurrency, with multiple concurrent queries being processed at a time, by 
scheduling processing tasks so that they can share IO, particularly scanning tasks. In 
this model, after creating the execution plan of multiple queries a pre-processor 
analysis the processing tasks and schedules them so that they can share processing 
tasks. This is applied not only to IO processing tasks but also to filtering and 
aggregation tasks, arranged in a pipelined fashion. The system is continuously 
scanning the fact table and tuples are put in a pipeline for processing. The pre-
processor add a bit vector to each tuple that it receives, one bit for each query in the 
workload, before forwarding the tuples to the pipeline. A similar bit vector is also 
added to each dimension tuple, where each bit indicates if the dimension tuple 
satisfies the restrictions (of filtering conditions) of the corresponding query. This bit 
vector information is used to decide (filter) which fact tuples satisfy the conditions 
and should be forward into the pipeline. 

While this approach reduces IO cost, it requires all dimension tables to reside in 
memory in order to be probed for performing hash joins, and to continuously update 
dimension bit vectors (with varying numbers of bits) when new queries are submitted 
or running queries have finished. However, in practice, dimension’ sizes can be large. 
As a consequence, it may require external hash-joins and therefore resulting in slower 
performance and unpredictable query execution times.  

We tackle the dimension size problem using a different approach, which has small 
memory requirements and can effectively be deployed into parallel shared nothing 
architectures composed of heterogeneous processing nodes. Our proposal, SPIN is 
conceptually related to CJoin, and QPipe in what concerns the continuous scanning of 
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fact data, but it uses a simpler approach with minimum memory requirements and 
does not have the limitations of such approaches. SPIN uses a de-normalized model, 
as proposed in [5] as a way to avoid join costs, at the expense of additional storage 
costs. Since it has fully data and processing scalability, ONE allows massive 
parallelization [6], which provides balanced data distribution, scalable performance 
and predictable  query execution times. The CJOIN logic for small in-memory 
relations and the dynamic scheduling of cooperative scans can be integrated in SPIN. 

3 The SPIN Processing Model 

SPIN uses the de-normalized data model (ONE) proposed in [5], [6], this means that 
the star schema is physically organized as a single de-normalized relation (Od). SPIN 
provides workload scale-out by combining (merging) data requests from all queries to 
be satisfied by a sequential continuous scan executed in a circular loop.  

It views the ONE relation (Od) logically as a circular relation, i.e. a relation that is 
constantly scanned in a circular fashion (when the end is reached, it continues 
scanning from the beginning). The relation is divided into a set of logical fragments 
(or chunks), with the chunk size adjusted to storage characteristics. The circular loop 
is continuously spinning, sequentially reading data chunks, while there are queries 
running. Data is read from storage and shared to all running concurrent queries, as 
illustrated in Fig. 2. 

 

Fig. 2. – SPIN Data processing model 

A Data Reader sequentially reads chunks of relation Od, and continuously fills a 
data pipeline. Tuples when entering the pipeline, have to go through a fast and simple 
selection operator to early discard large subsets of tuples not requested by currently 
registered queries (early selection). Only tuples that are relevant for at least one query 
flows to a Data Switch (DS), which diverts tuples to each running query, building a 
dedicated logical branch for each query. For performance reasons, some fast early 
selection predicates are incorporated within the Data Reader. 

Since Od is de-normalized, no costly join tasks need to be processed, only query 
operations. Any query q, when submitted, starts consuming and processing the tuples 
that are currently in the data pipeline. 
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3.1 Query Registering and Processing  

A Query Handler handles query (de)registering. Any query q registers as a consumer 
of the data in the pipeline, following a publish-subscribe model. Each query q, has to 
process every tuple from relation Od, at most once, although data query processing 
does not need to start at record 0.  

For each running query, a Query Handler maintains an indicator of the first logical 
tuple (position in the circular loop) consumed by the query. This logical first row 
position is fundamental to determine when the end of each query is reached. When 
that occurs, then the query q has considered all tuples for execution, therefore it 
terminates the query execution and sends the query results to the client. Fig. 3 
illustrates the data reading circular process, depicting the logical position for queries 
q1, q2 and q3.  

 

Fig. 3. SPIN sequential data reading loop 

As each query starts consuming tuples from the current position (logical 
beginning) in the circular loop, without the need to start from a specific record, the 
reading cost (IO cost) is shared among all running queries Qr without introducing 
additional IO overhead or random reads. Others costs related to query processing are 
at subsequent executing phases, such as selection, logical branching and pipeline 
processing.  

When submitted, a query is analyzed and decomposed into a sequentially-
organized set of predicates, computations and aggregations tasks. This decomposition 
into tasks allows SPIN to determine and update the set of early selection predicates 
that are placed at the base data pipeline. The remaining query tasks are mapped into 
SPIN operators for execution. To ensure a fast early selection phase, complex (costly) 
query predicates are placed at latter stages.  

3.2 SPIN Operators and Data Processing Pipelines 

SPIN follows a flow oriented processing model where each query is decomposed into 
tasks that are later mapped to operators placed along a query-specific processing 
pipeline. A processing pipeline is a collection of sequentially-organized operators that 
transform tuples as they flow along the pipeline (illustrated in Fig.4).  

q1 q2

q3



 SPIN: Concurrent Workload Scaling over Data Warehouses 65 

 

Fig. 4. SPIN Data pipeline processing model  

SPIN include the following base operators:  

- Selection Operators (σ) – apply predicate clauses to filter incoming tuples, 
trashing those that do not meet the predicate clauses. Each Selection Operation 
maps a query predicate (default) or a set of related query predicates. The 
selection operators are typically placed at the beginning of the processing 
pipeline, to filter tuples that pass-through the pipeline and go into subsequent 
processing operators. Selection Operators are placed in a sequential ordered 
fashion according to their selectivity and evaluation costs, with more restrictive 
and faster placed at early stages. 

- Projection Operators (π) – restrict to a subset of tuple attributes that flows 
throw the pipeline. A projection and a selection operator can be combined into a 
single step operator. 

- Computation Operators (φ) - perform tuple level data transformations, 
including arithmetic (e.g. a + b) and string manipulation (e.g. substring). A 
dedicated Computational Operator is built for each specific transformation. A 
Computation Operator maps a tuple-level arithmetic, function or operation 
expressed in any of the query clauses (e.g. the arithmetic expression QUANTITY 
* PRICE). The mapping into φ is particularly relevant for complex computations 
that appear in several query clauses. Query predicates that include computations 
(e.g.  QUANTITY * PRICE > 1000) may be mapped into a σ, preceded by a φ 
that performs the computation. The goal is to build fast selection operation with 
simple and fast evaluation predicates.  

- Data Switches (DS) –forward incoming data tuples into a set of data outputs, 
called logical data branches (B). Tuples are forwarded to all branches b, b ϵ B, 
or forwarded according to each branch conditions. For each branch, a tuple is 
only forwarded if it matches the branch’s conditions bp  (if exists). Tuples not 
matching any branch predicates are trashed.  

- Aggregation Operators (Σ) – perform group by computations, by grouping 
tuples according to GROUP By clauses, and applying aggregation functions (e.g. 
SUM). Aggregation operators output results when all tuples for a given query as 
been considered for processing.  
 

A Data Processing Pipeline (or simply referenced as pipeline) is a set of sequentially 
organized operators. A pipeline represents a set of common operations that need to be 
performed to incoming tuples. Each query is decomposed into tasks (e.g. filtering, 
aggregation) that are mapped into a set of sequential operators and placed a along a 
query-specific pipeline. Query processing only starts after the pipeline is built and a 
logical branch is registered as a consumer of the base data pipeline.  
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3.3 Workload Data Processing Tree and Logical Data Paths  

The number of operators (e.g. selection and aggregation operators) and query-specific 
pipelines (one for each query) increases with the query load, and can rapidly exhaust 
memory and processing resources. With large concurrent query loads, queries may 
have common query predicates, computations, and aggregations, resulting in multiple 
similar operators (each doing its own computation) being placed in query-specific 
pipelines. The circular Data Reader shares the IO reading cost among queries, but 
SPIN exploits further data processing opportunities. 

Groups of queries may share the same query predicates, computations or 
aggregations. For each query, SPIN splits the query-specific pipeline into an 
equivalent ordered set of sequentially connected partial pipelines. Each of these 
partial pipelines, composed with one or set of logically related operators, is connected 
as a data consumer of its predecessor. For the currently running query load, similar 
partial pipelines (with the same operators over the same tuples) from different queries 
are combined into a common pipeline and a data switch is appended to end to share 
its results. The subsequent connected data pipelines are then connected as logical 
branches of this common data pipeline, consuming its output. A set of parallel query-
specific pipelines with common operators are rearranged in order to push–forward 
and orchestrate similar operators into a common processing pipeline. At the end of 
this pipeline, a DS diverts tuples to further processing in subsequent logical branches. 
Fig. 5 illustrates a SPIN processing layout with two logical branches composed by 
two query-specific processing pipelines connected to a common processing pipeline.  

 

Fig. 5. SPIN Data pipeline processing model 

3.4 Building the Workload Processing Tree 

As a result, the initial query-specific processing pipelines of simultaneously running 
queries are split, merged and organized into a workload data processing tree. In the 
end, for each query there will be a logical data path traversing logical branches and 
pipelines that is equivalent to the initial query-specific data pipeline. 

The merging of common data processing pipelines is enforced through all the 
query execution steps, to maximize data and processing sharing and reduce memory 
and processing usage. For instance, selection operator common to currently running 
queries are pushed closer to the Data Reader to reduce the data volume within the 
pipelines and thus increasing the level of data processing sharing. The base pipeline 
trashes tuples not required by any of its logical branches.  
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For example, consider that three similar aggregation queries are currently running, 
with different query predicates: q1 (σp =a), q2 (σy =2000) and q3 (σp = a Λ y= 2000). An initial 
query-specific pipeline is built for each query which has to be connected to the base 
pipeline. Fig. 6 depicts the query-specific pipeline, one for each query. 

 
  q1 = SUM (σp =a ( sales )) 
  q2 = SUM (σy =2000 (sales)) 
  q3 = SUM (σy=2000 Λ p=a (sales))  

 
  

Fig. 6. SPIN deployment of query-specific pipelines 

SPIN, when a new query is submitted, before connecting the corresponding query-
specific pipeline to the base pipeline, tries to maximize data and processing sharing 
with the already running queries. It accomplishes this by maintaining and updating a 
workload processing tree, using the following steps: 

1. The query-specific pipeline built for a query, is split into a set of  sequentially 
connected partial-pipelines (the query logical data path - Qpath) 

2. If the current workload processing tree contains an equivalent logical data path 
(Tpath), then the matching partial-pipelines are removed from Qpath, and the 
remaining are connected to the end of Tpath as a new logical branch. Then the 
query starts processing tuples.  

3. Otherwise, for each partial-pipeline  
3.1. the selection predicates are used to build a selection region  
3.2. Starting from the root of the workload processing tree, and while there’s 

a logical branch with similar processing operators,  
3.2.1. If the pipeline selection region intercepts the selection region of 

partial-pipeline then the partial-pipeline is divided into two non-
overlapping data pipelines, originating two distinct Qpath 

3.2.2. Otherwise, if the selection region of the current pipeline does not 
overlaps, but uses common predicate attributes, then it is registered 
as a logical branch of its predecessor. If required the selection 
predicates and switching conditions of this predecessor is updated 
accordingly.  

3.3. For each of the resulting Qpath, the algorithm goes to step 1. 
4. if no matching point exists, the query Qpath is connected to the base pipeline 

The number and placement of DSs, and logical branches, are orchestrated in order to 
minimize the switching cost DScost, the number of evaluated predicates, the predicate 
evaluation costs and the memory requirements for branch management. New logical 
branches are created and connected to DS when query predicates of processing 
pipelines queries do not match the predicates of the existing branches. 
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3.5 Merging and Reusing Intermediate Results 

Afterwards, an optimization process transverses all logical branches to try to push-
forward operators into preceding pipelines. The deployment of σ and DS is planned in 
order to reduce the data volume that traverse the pipelines, and maximize data and 
processing sharing. SPIN applies a merging process that analyses selection predicates 
and how processing and intermediate results can be shared among processing 
pipelines. For each logical data path, it follows the path backward to the source, and 
at each pipeline P of the data path, it determines if exists other logical paths that is 
processing, or has already processed, a subset of the tuples that this pipeline has to 
process. When a logical path LP exists, then this pipeline is divided in two sequential 
pipelines (P1 and P2). The latter (P2) is connected to P1 and LP and starts 
consuming their outputs and merging the results. The selection predicates of P1 are 
updated to exclude the predicates of the logical path LP. This can result in multiple 
alternative branching deployments.  

To evaluate these alternative deployments, and merging configurations, the 
merging process uses several data volume metrics: ntuples as the number of relation 
tuples, neval as the total number of evaluated tuples by σs, and nag as the total number 
of aggregated tuples by Σs. For the initial deployment of the example, without 
considering considered merging, the number of evaluated and aggregated tuples are 
computed, respectively, as  

neval  = 3 × n and nag  = neval  (σp=a) + neval (σy=2000) + neval  (σ p=a , y=2000) 

After the merging process, the number of evaluated tuples neval  is reduced from nQ × n 

tuples to Σ n eval (pσ) with pσ as each pipeline predicates. Fig.7 depicts the final 
deployment after the merging process. 

 

Fig. 7. Aggregation Branch processing 

The number of aggregated tuples nag  is also reduced from Σ neval  (σq) to + neval  (σ 

y=2000)+  neval  (σ p=a , y=2000).The total number of evaluated and aggregated tuples are 
computed, respectively as  

neval = neval (σy=2000)+ neval (σy=2000)+ neval (σy≠2000) = ntuples+neval (σy=2000) 
nag    = neval  (σ p=a , y=2000) + neval  (σ p=a , y≠ 2000) + neval  (σ p≠ a , y=2000)  

   = neval  (σ y= 2000) + neval  (σ p= a , y≠ 2000) 
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3.6 Query Handling and Workload Processing Tree Reorganization 

The data branching deployment is continuously reorganized as new queries are 
submitted. New queries that cannot be directly plugged into the workload processing 
tree are kept as distinct branches connected to the base data pipeline.  

When a query finishes its execution, the Query Handler, removes from the 
workload processing tree the query-specific pipelines that are not used in other logical 
paths. Pipelines used by other logical paths are maintained, only the query-specific 
outputs are detached.  Query-specific logical branches are detached and removed. 
Then a reorganization process is triggered to update the workload processing tree. 

For instance, in the previous example (Fig. 7), when the query q3 finishes its 
execution, the query-specific pipeline 7 is detached from both pipeline 2 and 4 before 
being removed. As a consequence, pipeline 2 is also removed and the base pipeline 
switch is replaced with the switch and logical branches in pipeline 1. Then pipeline 1 
is also removed. Operators in use by other currently running queries are updated to 
reflect the removal of query-specific clauses. A data branching reorganization process 
is triggered to determine if a better logical branching deployment can deliver 
improved performance.  

For lack of space, several SPIN optimization mechanisms, such as: data columnar 
storage organization, compression, partial de-normalized relations with in-memory 
dimensions, of massive data sharding, data loading and snapshot isolation are left out 
of this paper and will be discussed in other works. 

4 Evaluation 

We developed in Java a SPIN implementation to evaluate its performance and 
scalability capabilities. The experimental results presented in this section were 
obtained using the release 1.5.1 (November 2012), which has about 30klocs and 140 
java classes, and physically store tuples in row-wise format. For benchmarking 
purposes we used TPC-H benchmark, and built several variants of the query Q5 with 
different selectivity and aggregation groups, to evaluate their impact in performance 
and scalability. In this paper, the SPIN setup manages a full de-normalized relation as 
proposed in [5], with disabled optimization features (e.g. compression, materialized 
views, automatic in-memory bit-selections). We evaluate SPIN performance using an 
Intel i5 processor, with 8GB of RAM and 3 SATAIII disks with 2Terabytes each, 
running a default Linux Server distribution. We also evaluated the TPCH setup on 
two distinct DBMS engines: PostgresSQL 9.0 [7] and DbmsX (a well known 
commercial RDBMS). The TPCH setup was populated with the TPC-H data 
generator tool (DBGEN) available at [8] and the ONE relation with a modified 
version that generates the de-normalized data as single flat file. We used an additional 
server, connected through a gigabit-Ethernet switch, for submitting a varying 
concurrent query load. The query load consisted in a total of 1000 aggregation star 
queries generated by a varying number of simultaneous concurrent clients. The 
depicted results were obtained as average of 30 runs. 
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4.1 Influence of Number of Queries in Query Performance  

Query performance and throughput of common RDBMS that follow a query-at-time 
execution model, which is highly influenced by the number of concurrently running 
queries that being executed. In this setup we used a scale factor 10 (SF=10) and 
varied the number of concurrent running queries. The average execution time (a) and 
throughput (b) are depicted in Fig. 8. 

 

 

Fig. 8. Average execution time a) and throughput b) for varying query loads 

We observe that with low concurrent query loads, the TPCH setup deliver better 
execution times and yields higher throughputs. However as we increase the number of 
running concurrent queries, the average execution time of TPCH decays significantly 
due to the increasing number of queries that are competing for resources. On the other 
hand, the average execution time with the SPIN setup shows a slightly increase with 
higher concurrent query loads. This is due to the pipeline management overheads and 
the cost of processing the query-specific pipelines that cannot be combined with other 
query pipelines. Regarding throughput, SPIN delivers an almost linear throughput.  

4.2 Influence of Data Scale in Throughput 

Throughput, besides the query load, is also influenced by the data volume. Fig. 9 
depicts the throughput for two distinct data volumes: SF1 (a) and SF10 (b).  

We were unable to timely obtain the results for TPCH for larger data volumes. In 
Fig. 9, we observe that throughput of SPIN increases almost linearly with the number 
of concurrent running queries, as more data and processing is shared among queries. 
With SF1, TPCH yields significantly higher throughput since all data and processing 
is done almost exclusively in memory. However as the number of concurrent queries 
increase we observe a significant drop in throughput as the running queries exhaust 
the available memory. SPIN, does not have this memory issues and can be massively 
partitioned among low-end commodity servers.  
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Fig. 9. Throughput for varying query loads with a) SF =1 and b) SF =10  

5 Conclusions 

We present SPIN, a data and processing sharing model that deliver predictable  execution 
times to star-join queries even in the presence of large concurrent workloads, without the 
memory and scalability limitations of existing approaches. We used the TPC-H 
benchmark to evaluate SPIN and to show its ability to provide scalable performance and 
predictable execution times even in presence of large concurrent query loads.  

Currently we are extending the SPIN processing model to deliver assured time 
guarantees with large parallel heterogeneous deployments, with massive data sharding.  
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Abstract. Location intelligence is a set of tools and techniques to in-
tegrate a geographical dimension into BI platforms, aimed at enhancing
their capability of better monitoring and interpreting business events.
Though most commercial data warehouse tools have implemented spa-
tial extensions to support GIS integration, the user experience with
spatial data is still mostly limited to the visualization of maps labeled
with numerical indicators. To overcome this limit we developed Lily, a
geo-enhanced library that adds true location intelligence capabilities to
existing BI platforms. Lily provides end-users with a highly-interactive
interface that seamlessly achieves a bidirectional integration between the
BI and the geospatial worlds, so as to enable advanced analytical fea-
tures that truly take into account the spatial dimension. In this paper
we describe Lily from a functional and architectural point of view, and
show an example where Lily is coupled with the Oracle Suite to be used
for location intelligence in the field of telecommunications.

Keywords: Spatial data warehouse, Business intelligence, GIS.

1 Introduction

Over 80% worldwide companies take their business decisions based on data char-
acterized by a spatial component [6]. This fact, together with the ongoing success
of online services based on geo-localization such as Google Maps and Facebook
Places, and with the widespread diffusion of smartphones and tablets (both capa-
ble of detecting the owner’s exact location) has contributed to raise the interest
of decision-makers in spatial analyses, that allow the relationship between events
and their territorial distribution to be precisely established and effectively ex-
amined. In response to this need, spatial data warehouses have been emerging as
an enabling technology for spatial analyses. A considerable research on spatial
data warehouses has been done over the last years; the specific topics investi-
gated range from conceptual modeling for spatial data [10,3] to spatial OLAP
operators [11,4] and efficient processing of spatial data [17,12].
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In much the same way as business intelligence (BI) tools build on traditional
data warehouses to overcome the limits of OLAP analyses and enable more
advanced techniques such as data mining and what-if analysis, there is a need
for building sophisticated applications on spatial data warehouses to benefit
from spatial data in a broader sense. In this direction, we use the term location
intelligence to denote a set of tools and techniques that integrate a geographical
dimension into BI platforms, aimed at enhancing their capability of discovering
patterns, opportunities, and risks, and at better monitoring and interpreting
business events with specific reference to their territorial distribution. While
geographical information systems (GISs) are used by expert users for operational
tasks to achieve tactical benefits, location intelligence is meant to be used by
business users for decision-making tasks to achieve strategical benefits.

The human mind processes visual patterns 60,000 times faster than tabular
lists. So, location intelligence is really useful when huge amounts of data can be
aggregated into numerical indicators whose graphical positioning on an interac-
tive map allows spatial patterns to emerge more clearly than a simple tabular
representation or a chart. On the other hand, using BI techniques to investigate
complex phenomena on a map fed with consistent and integrated data leads
to leave behind the purely spatial analyses made possible by GISs. In general,
location intelligence can be applied whenever there is a need for discovering
meaningful correlations between phenomena described by indicators that share
nothing but spatial proximity.

Spatial extensions have been implemented on most commercial data ware-
house tools in order to integrate them with GISs [8,9]. However, the user experi-
ence with spatial data is still mostly limited to the visualization of maps labeled
with numerical indicators of business, which hardly enables decision-makers to
take full advantage of the huge information power lying with geography. To
overcome this limit we developed Lily (Location Intelligence Library), a geo-
enhanced library that adds true location intelligence capabilities to existing BI
platforms. Lily is written in Javascript and and leverages the AJAX technologies
to provide end-users with a highly-interactive interface that seamlessly achieves
a bidirectional integration between the BI and the geospatial worlds, so as to
enable advanced analytical features (such as what-if analysis and data mining,
etc.) taking truly into account the spatial dimension.

In this paper we describe Lily from a functional point of view (Section 4),
show an architecture for coupling Lily with the Oracle Suite (Section 5), and
discuss an example where Lily is used for location intelligence in the field of
telecommunications (Section 6). The paper outline is completed by Section 2,
that discusses the related works, Section 3, where the main industrial solutions
for location intelligence are classified, and Section 7, that draws the conclusions.

2 Location Intelligence in the Literature

Although researches in spatial data warehouse have been pioneered since 1997,
when the term SOLAP —Spatial OLAP— has been coined [1], only in recent
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years the research community thoroughly investigated the integration of GIS
and OLAP technologies. The main topics that have been investigated are the
architectures, the data models, and the operators and algorithms necessary to
express and optimize SOLAP queries.

As to the architectures, in [2] the authors classify the solutions according to
the type of coupling between the GIS and data warehouse components. Loosely-
coupled architectures [7] rely either on import-export-reformatting or mapping of
data between GIS and OLAP, semi-tightly coupled ones are either GIS-dominant
or OLAP dominant solutions, while tightly-coupled architectures rely on fully in-
tegrated spatial OLAP technology. While the last type of architecture provides
for larger querying capabilities, the supporters of the first type assert that it fa-
vors autonomy, updating, and maintenance of the databases. According to [13]
a tight-coupling architecture should be organized on three-levels, characterized
by a multidimensional/spatial query engine that translates visual queries to a
relational-multidimensional DBMS supporting spatial measures and attributes.
In this direction the GeoMDQL architecture is based on a spatial data ware-
house, a multidimensional and spatial engine, and a GUI [16].

Research on data models is aimed at enriching the multidimensional model
to properly support SOLAP queries. Stefanovic et al. classify spatial dimension
hierarchies according to their spatial references in non-geometric, geometric to
non-geometric, and fully geometric [17]. Malinowski and Zimányi focus on the
conceptual representation of a spatial cube, that is obtained by extending their
MultiDimER model with pictograms that represents spatial dimensions, levels,
measures, and relationships [10]. In [16], a UML-based formalization for a spatial
data warehouse meta-model is proposed that includes a large set of stereotypes
modeling the spatial concepts (e.g., points, polygons, and lines).

As to the topics related to querying, many efforts have been done to increase
the expressiveness of traditional OLAP operators and languages. In [16] the au-
thors propose GeoMDQL, a query language based on MDX [18] and OGC (Open
Geospatial consortium) for querying spatial data cubes. Also GISOLAP-QL [7]
extends MDX, but while GeoMDQL relies on a tightly-coupled architecture,
GISOLAP-QL relies on a loosely-coupled one. The type of coupling is reflected
in the query structure, that is composed of two parts divided by a pipe: the GIS
part returns the objects that satisfy a given condition, while the OLAP part
performs an aggregation over the resulting objects. In [3,4] the authors propose
the GeoCube algebra that extends SOLAP with five new operators, i.e., classify,
specialize, permute, OLAP-buffer, and OLAP-overlay. In addition to classical
drill and slice OLAP operators, GeoCube provides two operators for navigat-
ing the measure hierarchy and two spatial analysis operators that dynamically
modify the structure of the spatial cube.

Though several Spatial OLAP Visualization and Analysis prototypes have
been developed, they have been mostly used for verifying the expressiveness of
the models and languages discussed so far and do not provide advanced GUIs.
The GeoMDQL GUI [18] extends JPivot and is capable of displaying results
in charts, tables, and maps but it is not described in detail, making it hard to
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understand how advanced the interaction with the system is. SOVAT [15] com-
bines OLAP and GIS capabilities; its interface supports spatial drill-down and
roll-up operations as well as drill-out, that allows users to submit queries based
on both numerical and spatial aggregation. Finally, in [14] a two-level prototype
(JMap) is proposed where the GUI and the query engine are collapsed in the
same module. JMap supports both tabular and diagrammatic views; different
types of maps can be shown, in particular, multimaps, complex thematic maps,
and maps with superimposed diagrams. JMap also allows synchronization of op-
erations and symbols from one display to another, so the same information can
be visualized from different perspectives.

3 Location Intelligence in the Industry

In most BI implementations, location information is present in the form of a
coarse-grained (and often static) dimension [5]. Of course, this is not sufficient
for location intelligence. So, during the last few years, the main vendors of BI
systems and GISs have been progressively moving towards location intelligence.
The basic solutions consists of a set of static maps (usually based on pre-defined
SVG images), graphically annotated with simple indicators and used together
with traditional reports for a more effective visualization of information. They
are specifically built for specific analyses, poorly reusable, and with limited or no
interaction. Examples of this kind of solutions can be found in many reporting
tools such as HyperionWeb Analysis, Microsoft Reporting Services, and Business
Objects Xcelsius.

Some more advanced solutions provide a communication interface between
legacy BI platforms and GISs by enabling them to share the same analysis
context. These solutions have started emerging recently, as a result of joint col-
laborations between BI and GIS vendors. This is the case of APOS LIS (APOS
Location Intelligence Solution), that integrates SAP Business Objects and ESRI
ArcGIS; of Business Geografic GeoQlik and GeoBI, that integrate a custom GIS
with QlikView and SAP Business Objects respectively; of the bridges by Gali-
geo, that make their GIS communicate with BI plaftorms such as SAP Business
Objects, IBM Cognos, and Microsoft; of ESRI Maps for IBM Cognos. Though
bridges offer advanced capabilities for interacting with maps (they use fully-
featured, state-of-the-art GIS tools), they do not achieve a true integration be-
tween spatial and business data, because users still operate on two separate
systems: the BI tool contains all the business data, while spatial information
resides on the GIS side.

The most advanced solutions rely on fully-integrated spatial OLAP technology
to provide larger querying capabilities and better scalability and efficiency. The
basic idea is that spatial data are stored together with business data in a spatial
data warehouse; the main solutions in this category are Oracle Database (with
its Spatial option), Microsoft SQL Server (the recent 2012 release introduces
many new spatial features), and PostgreSQL (with its PostGIS extension). A
unified front-end may then be available to produce fully-integrated OLAP-spatial
reporting, like done by Oracle Business Intelligence in the Oracle suite.



76 M. Golfarelli et al.

4 Lily: A Functional View

With reference to the design cycle of a location intelligence system, Lily comes
into play during the phase where user applications are developed. The function-
alities provided by Lily can be classified as follows:

1. Geo-enhanced query formulation.
– Spatial drill, that provides guided geography-based navigation of a do-

main of interest from a high-level perspective to the deepest detailed
information available. This enables an analysis of a given numerical in-
dicator either by means of a standard territorial hierarchy —beginning
with the country level to proceed with Nielsen areas, regions, provinces,
municipalities, and so on— or by implementing a custom-based hierarchy
(custom sales areas, districts, etc.).

– SOLAP queries. This function supports the formulation of queries by
actively involving the geographical dimension. In particular, proximity-
based slice&dice enables proximity analyses of business phenomena, such
as the selection of a set of points of sales, real estate properties, or
crime locations. End-users may use prefixed shapes or draw custom areas
directly onto a map and use this selection tool as a way to filter the
subjects of interest or as a benchmark for comparison purposes. In this
way the system can answer questions such as: Show the locations of the
crimes that were suffered from victims aged less than 18 within a 10-
mile radius from a school (or a river, a car park, a sports centre, a tube
station, etc.).

– Geo-coding. The geocoding process is necessary to handle points as spa-
tial objects, and consists in translating an unstructured alphanumerical
address into a couple of latitude-longitude coordinates to store them
into a spatial point format, and vice versa, i.e., inferring the address
of a place from its geographic coordinates. Lily can leverage different
geocoding mechanisms: the most commonly used is through the public
web-services exposed by vendors such as Nokia, Tomtom, and Google
(the web service accepts alphanumerical addresses as input and returns
latitude/longitude coordinates together with quality information, e.g.,
exact match, street-level match, city-level match); another option, more
efficient for large amounts of data, is to exploit the native geocoding
capabilities of spatial-enabled DBMSs (in this case, address-level infor-
mation must be loaded into the database).

2. Geo-enhanced processing.
– Spatial triggering. This feature enables end-users to actively interact with

maps by triggering custom scripts, which allows developers to associate
complex processing (such as data mining, forecasting, what-if analy-
sis, etc.) to any map area. Custom complex algorithms can be imple-
mented to leverage mathematical models or data mining features, so it is
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possible to simulate scenarios and gain forecast insights for questions
like: What are the distinguishing features of the areas with highest crime
rate? Which areas show these features to some extent? Are the schools
in a specific district ready for plan enrollment and student services for
next year? Where is the best location for a new store, based on the market
territory potential?. In general, it is possible to trigger any custom action
(an algorithm or just a specific visualization) in response to the selection
of any feature of interest on the map.

– Spatial clustering. This function enables the detection and graphical rep-
resentation of clusters of features of interest to provide an holistic view
of a phenomenon, such as the distribution of residents, pollution, politi-
cians, or any custom function that combines elementary data onto a wide
geographic area. The same concept can be applied to in-doors analysis:
How do customers move inside a shopping centre, an airport, a museum,
or a casino? How do customers visit my stores —i.e., where do they go,
how long do they remain in a specific section, which areas are rarely
visited, etc.?

3. Geo-enhanced data visualization.

– Integration with external maps. External maps are typically used as back-
ground imagery, or to visually identity correlations between different
data sets. They are integrated at run-time as raster images (tiles), in the
form of layers that can be stacked below (or on top of) the internal vector
(interactive) or raster (static) themes; to achieve good performances, all
vector themes must be based on spatial data residing on the spatial data
warehouse. Lily is compatible with several map providers such as Google
Maps, Bing Maps, OpenStreetMap, Ordinance Survey and, in general,
with all providers using the Web Map Service (WMS) and Tile Map
Service (TMS) standards. Using the same mechanism, it is also possible
to interact with custom base-maps hosted on in-house GIS systems.

– Real-time refresh. Lily supports real-time visualization of spatial data,
not only through periodical refresh of the whole map, but also by trigger-
ing updates of colors or by smoothly reproducing the movements of ob-
jects (e.g., for vehicle tracking purposes), using the asynchronous AJAX
technology. This is useful for instance to monitor territory sensors in
real-time, or when monitoring road traffic accidents and congestions.

– Multi-layer representation. Several layers can be overlapped onto the
same map to represent different but complementary phenomena such as
the distribution of residents, customers, roads, stores, and competitors.
These layers can be related to different dimensions or different hierar-
chical levels.

– Spatial KPI visualization. KPIs (key performance indicators) can be rep-
resented by means of complex visualizations, such as bar charts or pie
charts properly positioned in the areas of a map. Moreover, it is possible
to view the distribution of specific phenomena exploting the visual power
of choropleth maps or heat maps.
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– Temporal slider. It is possible to animate a map, by showing the evolution
of a phenomenon over time and seeing the trend based on the variation
of a layer. For example, a dashboard can monitor crimes over time in
a specific area (e.g., to check the effects of a preventive action), or the
amount of investments made for each branch can be analysed over time.

In Table 1 we show which of these functionalities can be supported by each
architecture for location intelligence. Of course, not all the commercial tools that
adopt a given architecture actually support all the indicated functionalities; for
instance, Oracle with Spatial option adopts a tightly-coupled architecture but
does not support real-time refresh and multi-layer representation.

Table 1. Functional support on different architectures for location intelligence
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5 Lily: An Architectural View

Though Lily is inserted into a tightly-coupled architecture to achieve great per-
formances and advanced functionalities (e.g., active spatial queries and spatial
drill), it follows a mash-up approach, whose main advantages are a fast deploy-
ment and the possibility of reusing existing services by transparently integrating
them within a single user interface. In particular, Figure 1 shows how, within the
current Oracle architecture for location intelligence, the Lily component can be
interposed between Oracle Business Intelligence (OBI, it includes a presentation
front-end and a multidimensional engine called Oracle BI Server) and MapViewer
(the Oracle component in charge of map rendering and of supporting the con-
nection between spatial and business data). Lily is currently implemented to be
specifically connected with MapViewer; however, any other presentation service
(e.g., Business Objects or Microstrategy) can be used instead of OBI provided
that it supports web-based reporting.

Figure 2 shows a functional view of the process though which queries are
answered in a Lily-based architecture. Assuming that in all the reports shown
to end-users we can separate non-spatial items (e.g., cross-tables and diagrams)
from spatial items (e.g., a heat map), two relevant scenarios can be distinguished:
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Fig. 1. Oracle-based architecture for location intelligence with —right— and without
—left— Lily (OCI: Oracle Call Interface; WMS: Web Map Service)

– OLAP queries. These are queries that end-users formulate by interacting
with a non-spatial item, so that spatial items are only involved in visualizing
the results. An OLAP query q is sent to Oracle BI Server, that translates it
into SQL. The resulting SQL query is sent to Oracle Database that returns
the corresponding data to Oracle BI Server, that in turn sends these data to
the front-end to feed non-spatial items and also routes them to MapViewer.
At the same time, the rendering statements associated with q are sent to Lily
that translates them into a SQL spatial query qspa. Oracle Spatial & Graph
answers qspa and returns the corresponding spatial data to MapViewer that,
based on the intensional mappings provided by Lily, integrates them with
the non-spatial data received by Oracle Database to build an integrated
rendering for spatial items.

– SOLAP queries. These queries are formulated by interacting with a spatial
item. Lily translates SOLAP queries into SQL and sends them to MapViewer,

Fig. 2. Functional view of how OLAP (left) and SOLAP (right) queries are answered
using Lily
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that in turn routes them to Oracle Spatial & Graph for answering. The
integrated (spatial and non-spatial) data returned are sent to MapViewer
that builds the integrated rendering for spatial items and, based on the
instructions provided by Lily, creates the extensional mappings necessary
for synchronizing the non-spatial with the spatial component of the results.
Oracle BI Server uses these mappings to send a non-spatial query to Oracle
Database, that returns the data for updating the non-spatial items in the
end-user report.

6 An Example

In this section we show an example in which Lily is coupled with the Oracle Busi-
ness Intelligence Foundation Suite to achieve location intelligence functionalities
for a major Italian telecommunication company.

The main functions provided can be summarized as follows:

1. Geo-dashboard: Area-based comparison of the main KPIs (number of ac-
tivations, profitability, etc.) with guided navigation of detailed area-based
reports.

2. Volumes: Area-based analysis of selling volumes by customer type, business
channel, manager, etc.

3. Sustainability: Area-based analysis of economical sustainability by business
format, business channel, manager, etc., with visualization of costs and rev-
enues, influence areas of points-of-sales, etc.

4. Points-of-sales Analysis: Proximity-based analysis of a point-of-sales with
reference to a benchmark set and analysis of correlations between points-
of-sales; geographical representation of competitive pressure in terms of dis-
tance from competitor points-of-sales and identification of uncovered areas.

5. Analysis of Territory Potential: Identification of areas with high selling-
potential (in terms of population, wealth KPIs, competitor presence, etc.)
aimed at identifying the best positions for new points-of-sales; what-if simu-
lation of the opening of a new point-of-sales with real-time computation and
representation of its catchment area.

As shown in Figure 3, the geo-dashboard provides a summarized view of the main
KPIs in table/chart format as well as on a map using the integration with exter-
nal maps, multi-layer representation, geo-coding, and spatial KPI visualization
functionalities of Lily. In particular, three themes are graphically overlapped: a
bucket theme showing the boundaries of areas, a point theme showing all se-
lected points-of-sales, and a pie chart theme indicating the customer base KPI
on each area. The reference functional scenario is the one shown in Figure 2,
left. To give a flavor of how query and data flow are processed by the different
components, in Figure 4 we report examples for the main flows involved in the
drawing of the pie charts; the rendering code and the intensional mappings are
not shown because they come in form of complex Javascript code generated by
Lily starting from rendering statements.
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Fig. 3. Geo-dashboard

Fig. 4. Main query and data flows involved in the drawing of pie charts
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Figure 5 shows an example of an analysis of territory potential. Besides all the
Lily functionalities used for the geo-dashboard, also SOLAP queries are involved
in this case for proximity analysis.

Fig. 5. Analysis of territory potential at national and local scale

7 Final Remarks

Integration of true location intelligence functionalities within BI platforms is still
an ongoing process. Lily, the library we proposed in this paper, represents a step
forward in this direction since it offers a set of geo-enhanced functionalities in
the context of a tightly-coupled architecture, so as to ensure top performances
coupled with transparent usage and programming. Although Lily has been de-
signed to work with a generic BI platform, in its current implementation it only
works with OBI. We are now working to remove this limitation by implementing
the interfaces with other platforms that match the tightly-coupled paradigm.
Achieving this goal is a bi-directional process that also requires the standardiza-
tion of the Lily interfaces and the extension of the native functionalities provided
by the BI platforms.
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Abstract. Co-location mining is one of the tasks of spatial data min-
ing, which focuses on the detection of the sets of spatial features fre-
quently located in close proximity of each other. Previous work is based
on transaction-free apriori-like algorithms. The approach we propose is
based on a grid transactionization of geographic space and designed to
mine datasets with extended spatial objects. A statistical test is used
instead of global thresholds to detect significant co-location patterns.

1 Introduction

Co-location mining aims to discover patterns of spatial features often located
close to each other in geographic proximity. An example is a co-location of sym-
biotic species of plants and animals depending on ecological conditions. The main
purpose of co-location mining is to come up with a set of hypotheses based on
data features and statistics that can be useful for domain experts to reduce the
range of possible patterns that are hidden and need to be checked. Even though
this task seems to be similar to association rule mining (ARM), the adaptation
of ARM techniques is not trivial due to the fact that features are embedded into
a geographic space and there is no clear notion of transactions.

Most of the existing approaches to the co-location mining problem [1–4] de-
ploy a framework which requires a user-defined minimum prevalence threshold.
Without prior knowledge, it could be difficult to choose a proper threshold. Fur-
thermore, spatial features often have various frequencies in datasets, and one
global threshold might lead to omission of some co-location patterns and rules
with rare events or detection of meaningless patterns. Another limitation of most
algorithms is that they work with point spatial features and one neighborhood
distance threshold, whereas in reality there are datasets which in addition to
point instances also have lines and polygons, e.g., a road network map.

We propose a new framework which combines co-location mining, frequent
pattern and association rule mining. A statistical test is used to determine the
significance of co-location patterns and rules. A co-location is considered as sig-
nificant if it has a surprisingly high level of prevalence in comparison with ran-
domized datasets which are built under the null hypothesis that the features are
independent from each other. We improve computation with filtering techniques.
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The motivating application of this paper is the detection of possible spatial
associations of chemicals and cases of childhood cancer. Although some people
are genetically predisposed to cancer, most of the cases of cancer are caused
by environmental factors, such as air pollutants, radiation, infections, tobacco,
and alcohol. However, the causes of childhood cancer are difficult to determine
partially because of the fact that children’s cancer cases are rare and the levels of
exposure to environmental factors are hard to evaluate. A collaborative research
effort with the Faculty of Medicine is trying to identify associations between
cancer cases and known emissions by industry. Some chemicals are proven to
be carcinogens while others are not known to cause cancer in isolation. It is
unknown if certain combinations of chemicals can be associated with higher rates
of cancer. Moreover, even if potentially problematic combinations are not emitted
by the same industry, atmospheric conditions can contribute to the mixture. We
deploy our model on the dataset containing information on chemical emission
points and amounts of release in Alberta, Canada, and childhood cancer cases
with their location when they were first diagnosed. Our data is obtained from
the National Pollutant Release Inventory (NPRI), Canada’s legislated, publicly
accessible inventory of pollutant releases, as well as the health authorities in
Alberta for 1254 cancer cases of children younger than 19 between 2002 and
2007. NPRI for the province of Alberta provided 1465 points releasing a variety
of chemicals among 47 of interest, some carcinogenic and some not classifiable
as to carcinogenicity. In this paper we explain a modeling framework which is
used to handle the data as accurately as possible. While we are not intending to
find causalities, the goal of the study is to identify potential interesting spatial
associations in order to state hypotheses and investigate further the relationship
between cancer and specific combinations of chemicals.

The remainder of the paper is organized as follows. The overview of the related
work is given in Section 2. The proposed framework and its outline are described
in Section 3. Section 4 describes the challenges and modeling framework used to
mine the pollutants and childhood cancer cases. The experiments are presented
in Section 5, followed by conclusions.

2 Related Work

2.1 Co-location Mining

Co-location mining algorithms can be divided into two classes of methods: spatial
statistics approaches and spatial data mining approaches.

Spatial Statistics Approaches. use statistical techniques such as cross K-
functions with Monte-Carlo simulations [5], mean nearest-neighbor distance, and
spatial regression models [6]. The disadvantages of these approaches are the
expensive computation time and the difficulty of application to patterns with
more than two spatial features.

Spatial Data Mining Approaches. could be categorized into several types.
Transaction-based approaches work by creating transactions over space and
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using association rules [7–9]. One of the ways, a reference-centric model, creates
transactions around a reference feature. However, this approach may consider
the same instance set several times. Another approach, a window-centric model,
divides the space into cells and considers instances in each cell as a transaction
which causes a problem of some instance sets being divided by cell boundaries.

Spatial join-based approaches work with spatial data directly. They include
cluster-and-overlaymethods and instance-joinmethods. In the cluster-and-overlay
approach a map layer is constructed for each spatial feature based on instance
clusters or boundaries of clusters [10]. The authors propose two algorithms for
cluster association rule mining, vertical-view and horizontal-view approaches. In
the former, clusters for layers are formed and layers are segmented into a finite
number of cells. Then, a relational table is constructed where the element is equal
to one if the corresponding cell satisfies the event in a layer, and zero otherwise.
The association rule mining is applied to the table. The second approach uses in-
tersections of clustered layers. A clustered spatial association rule is of the form
X → Y (CS%, CC%), whereX and Y are the sets of layers, CS% is the clustered
support and CC% is the clustered confidence. However, these approaches might
be sensitive to the choice of clustering methods, and assume that features are ex-
plicitly clustered.

Another type of spatial join-based methods - instance-join algorithms - is
similar to classical association rule mining. Shekhar and Huang [1] proposed a
co-location pattern mining framework which is based on neighborhood relations
and the participation index concept. The basic concepts of the co-location mining
framework are analogous to concepts of association rule mining. As an input,
the framework takes a set of spatial features and a set of instances, where each
instance is a vector that contains information on the instance id, the feature
type of the instance, and the location of the instance. As an output the method
returns a set of co-location rules of the form C1 → C2(PI, cp), where C1 and
C2 are co-location patterns, PI is the prevalence measure (the participation
index), and cp is the conditional probability. A co-location pattern is considered
prevalent, or interesting, if for each feature of the pattern at least PI% instances
of that feature form a clique with the instances of all other features of the pattern
according to the neighborhood relationship. Similarly to association rule mining,
only frequent (k − 1)-patterns are used for the k-candidate generation.

The approaches mentioned above use thresholds for measures of interesting-
ness, which causes meaningless patterns to be considered as significant with a
low threshold, and a high threshold may prune interesting rare patterns.

3 Algorithm

Various approaches to the co-location mining problem have been proposed during
the past decade. However, most of them focused on improving the performance of
existing frameworks which have several disadvantages. Several studies addressed
these issues but only separately, and these issues remain major hurdles for some
real-world applications such as our motivating problem of finding co-locations of
cancer cases and pollutant emission points.
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First, the usage of thresholds for the detection of interesting co-location
patterns and rules is the main limitation factor of many co-location mining
algorithms. In spatial datasets the features usually have a varying number of
instances; they could be extremely rare or be present in abundance. Therefore,
one threshold for participation index (or any other significance measure) can-
not capture all meaningful patterns, while other patterns could be reported as
significant even if their relation is caused by autocorrelation or other factors.
In addition most current algorithms use a candidate generation process which
forms (k + 1)-size candidates only from significant k-size patterns. However, a
set of features could be interesting even if some of its subsets are not significant
(for example, two chemicals may not be correlated with disease separately, but
cause it when they are combined). In this work we use the statistical test which
replaces one global threshold. It is proposed for co-location mining by Barua and
Sander [11]. The pattern is considered significant, if the probability of seeing the
same or greater value of the prevalence measure in N artificial datasets is less
than α (the significance level) under the null hypothesis that there is no spatial
dependency among features of the pattern. Each candidate pattern is evaluated
separately rather than applying one threshold for all of them.

Second, most co-location mining approaches are designed for spatial datasets
with point features. However, other types of objects may exist in spatial data
such as lines (roads) and polygons (polluted regions). Even though the frame-
work for extended objects [4] deals with lines and polygons, it also uses one
threshold for the prevalence measure. If the statistical test is applied to this
model, computationally expensive GIS overlay methods should be used for each
candidate pattern in order to calculate its prevalence measure in a real and
randomized datasets. When the number of patterns and simulation runs in the
statistical test are large, this method could become prohibitively expensive.

We propose a new framework that addresses the aforementioned limitations. It
uses grid-based “transactionization” (creating transactions from a dataset). The
statistical test is performed on the derived set of transactions to get significant
co-location rules or patterns.

3.1 Algorithm Design

The objective is to detect significant patterns in a given spatial dataset that have
the prevalence measure value higher than the expected one. The spatial dataset
may contain points, lines or polygons. A buffer is built around each spatial
object, and it defines the area affected by that object; for example, the buffer
zone around an emission point shows the area polluted by a released chemical.
The buffer size might be one for all objects or it might be different for each of
the spatial instances depending on various factors which may vary for different
applications. In addition, the likelihood of the presence of the corresponding
feature in the region covered by the object and its buffer is not uniform and may
depend on factors such as the distance from the object.

We propose a new transaction-based approach that is suitable for extended
spatial objects. Previous transaction-based methods have some limitations. A
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a b c

Fig. 1. Transactionization step: (a) an example spatial dataset with point feature in-
stances and their buffers; (b) a grid imposed over the space; (c) grid points which
intersect with buffers are used to create transactions

window-centric model cuts off neighborhood relations of instances located close
to each other but in different partitions. A reference-centric model may get du-
plicate counts of spatial instances. In addition, it is nontrivial to generalize this
approach to applications with no reference feature. Instead of these models we
propose a new transactionization method. In order to transform spatial data
into transactions, we use a grid which points are imposed over the given map.
Fig. 1 (a) displays an example dataset with buffers around spatial point in-
stances, and a grid is laid over it (Fig. 1 (b)). Similarly, buffers can also be
created around linear and polygonal spatial objects. In a two-dimensional space,
the grid points represent a square regular grid.

Each point of the grid can be seen as a representation of the respective part
of the space. A grid point may intersect with one or several spatial objects and
their buffers. A transaction is defined as a set of features corresponding to these
objects. A probability of a feature being in a transaction is also stored and it
may depend on the distance from the spatial object. For example, the grid point
gp2 in Fig. 1 (c) is located closer to the point A1 than the point gp1; therefore,
p(A, gp2) > p(A, gp1). The granularity of the grid should be carefully chosen for
each application and it could depend on the average size of the region covered
by a spatial object and its buffer. Choosing too great a distance between grid
points may negatively affect the accuracy of the results because small feature
regions and their overlaps might get a different number of intersecting grid points
depending on the grid imposition. The short distance between grid points leads
to a great number of derived transactions, and the following computation of
pattern significance levels might become prohibitively expensive.

Given a set of transactions T , derived after the transactionization of the spa-
tial dataset, and a set of spatial features F , the prevalence measure value is
calculated for all candidate co-location patterns or rules. In some applications
experts look for sets of features that are co-located with each other. The expected
support ExpSup(P ) might be used to define the level of the interestingness of
a pattern P . For other applications, researchers intend to analyze a predefined
set of rules. For example, for a dataset of disease outbreaks and possible cause
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factors a typical co-location rule is of the form C → D, where C is a subset of
cause features and D is a disease feature. For these projects, the expected confi-
dence ExpConf(X → Y ) can be used as a prevalence measure of a co-location
rule (X → Y ), where X ⊆ F , Y ⊆ F , and X ∩ Y = ∅. Algorithm 1 shows the
outline of our model in the case when co-location patterns are mined.

Definition 1. The probability p(P, t) of the pattern P occurring in a transaction
t is the product of the corresponding feature instance probabilities, p(P, t) =∏

f∈P
p(f, t).

Definition 2. The expected support ExpSup(P ) of a pattern P is defined as the
sum of expected probabilities of presence of P in each of the transactions t in the
database, ExpSup(P ) =

∑

t∈T
p(P, t).

Definition 3. The expected confidence ExpConf(X → Y ) of a rule X → Y is
defined as ExpConf(X → Y ) = ExpSup(X ∪ Y )/ExpSup(X).

The next step, the statistical test, helps to estimate the likelihood of seeing the
same level of the prevalence measure or greater under a null hypothesis that
features of a pattern or rule are spatially independent from each other.

Definition 4. A pattern P is said to be significant at level α, if the probability
p of seeing the observed expected support ExpSupobs or larger in a dataset, com-
plying with a null hypothesis, is not greater than α. (The same for ExpConfobs)

Let us suppose that the expected confidence ExpConf is used as a prevalence
measure. Let ExpConfobs(X → Y ) denote the expected confidence of a co-
location ruleX → Y in a real dataset, and ExpConfrand(X → Y ) - the expected
confidence of X → Y in a randomized dataset which is generated under the null
hypothesis. In order to estimate the probability p, the expected confidence of
the co-location rule in R randomized datasets is calculated. Having the number
of simulations R, the value of p is computed as:

p =
R≥ExpConfobs + 1

R+ 1
, (1)

where R≥ExpConfobs is the number of simulations in which ExpConfrand(X →
Y ) ≥ ExpConfobs(X → Y ). The observed dataset is added to both numerator
and denominator.

If the p-value is less or equal to the predefined level of significance α, the null
hypothesis is rejected. Therefore, the co-location rule X → Y is significant at
level α.

3.2 Candidate Filtering Techniques

The calculation of the p-value is repeated for all candidate co-location patterns or
rules. The number of candidates grows exponentially with the number of spatial
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features in the dataset. In addition, the accuracy of the p-value depends on the
number of simulation runs; therefore, the more randomized datasets are checked,
the more accurate are the results. These two factors may lead to an enormous
amount of computation. However, the support of a co-location decreases as the
size of a candidate pattern or rule increases, because less transactions contain all
its features. Therefore, one might put a threshold on the support or the maximal
size of a candidate in order to analyze only patterns and rules that are backed by
a meaningful number of transactions. In addition, we use the following filtering
techniques to exclude candidate patterns and rules that are de facto insignificant.

– First, after the calculation of the prevalence measure for candidate patterns
in a real dataset, a subset of patterns may have a prevalence measure value
equal to zero. Obviously, these patterns cannot be statistically significant
and they can be excluded from the set of candidate patterns (lines 6-7 in
Algorithm 1).

– Second, during the calculation of the p-value for the candidate patterns for
which the observed prevalence is higher than zero, some of the candidate
patterns might show a p-value that exceeds the level α. For example, let us
assume that the number of simulation runs is 99 and α = 0.05. If after ten
simulation runs the prevalence measure of a pattern P is greater than the
observed prevalence in 5 randomized datasets, pattern P already surpassed
the threshold ((5+ 1)/(99+ 1) > 0.05) and, therefore, can be excluded from
the following 89 checks (lines 15-17 in Algorithm 1). With this filter, after the
last simulation run the set of candidates contains only significant patterns.

4 Modeling Framework

The modeling framework that is used to handle and analyze the data is an
important part of practical research. In theoretical studies it could be simpli-
fied in order to generalize the task and define algorithms that could be applied
for a wide range of applications. However, the usage of general approaches and
algorithms may result in misleading or even wrong results. For example, the
neighborhood distance threshold is an important measure of interaction and re-
lationship between features. Obviously, one distance threshold cannot capture
accurately all links among features. In biology, various animal species have dif-
ferent home ranges, areas where they search for food; rodents may require little
space, while birds forage on wider regions. Another example is derived from ur-
ban studies. Two points of interest, e.g., a shopping mall and a grocery store,
could be situated on a distance exceeding a threshold, but if they are connected
by a high quality road, they are more likely to be co-located than other two
points positioned seemingly close to each other but separated by some obstacle.
Most domains of research, if not all, have their own nuances that must be taken
into account by researchers in order to get most accurate and significant results.

The motivating task of this paper, detecting co-locations of pollutants and
cancer cases, has unique difficulties and challenges. The distribution of a pollu-
tant is not uniform and it could depend on several factors: types of pollutants,
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Algorithm 1. Mining significant co-location patterns

Input: Spatial dataset S; Level of significance α; Number of simulation runs R.
Output: Set of significant co-location patterns P
1: Impose a grid over the real dataset
2: T ← set of derived transactions
3: CP ← set of candidate patterns
4: for each cp ∈ CP do
5: cp.ExpSupobs ← ComputeExpSup(T )
6: if cp.ExpSupobs = 0 then
7: CP ← CP/cp
8: end if
9: end for
10: for i = 1→ R do
11: Impose a grid over the i-th randomized dataset
12: T ← set of derived transactions
13: for each cp ∈ CP do
14: cp.ExpSupsim[i]← ComputeExpSup(T )
15: if cp.ExpSupsim[i] ≥ cp.ExpSupobs then
16: cp.R≥ExpSupobs ← cp.R≥ExpSupobs + 1

17: cp.α← cp.R≥ExpSupobs
+1

R+1

18: if cp.α > α then
19: CP ← CP/cp
20: end if
21: end if
22: end for
23: end for
24: P ← CP
25: return P

amounts of release, climatic conditions (wind, precipitation), topography, etc.
Various chemicals have different levels of harmfulness. In addition, the pollutant
concentration is directly proportional to the distance from an emitting point.
These are only several examples. We show how we tackled some of these prob-
lems such as pollutant amounts, wind speed and direction, and the concentration
of chemicals. Certainly, we do not aim to reproduce complicated air pollution
distribution models. Instead, our model gives a simple framework that increases
the accuracy of results while operating with available data.

4.1 Pollutant Amounts

The dataset on pollutants contains the data on yearly releases of chemicals. For
our research we take an average amount of release for a year on given facili-
ties and chemicals, which is further normalized by Toxic Equivalency Potentials
(TEPs) when they are available. TEP shows the relative risk associated with
one kilogram of a chemical in comparison with the risk caused by one kilogram
of benzene. Chemicals with high TEPs are extremely toxic. The range of the
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a b c

Fig. 2.Modeling framework usage examples: (a) an example spatial dataset (A - cancer,
B and C - pollutants); (b) buffer sizes vary depending on the pollutant release amount;
(c) buffer shapes change with the wind direction and speed (shown by arrows)

average amount values varies from several kilograms to tens of thousands tons;
the maximum average yearly release in the dataset is 80,000 tons. Certainly, one
distance threshold for all pollutant emissions is inaccurate, because the more a
chemical is released, the farther it distributes from a source point. Fig. 2 (a)
displays an example dataset containing cancer points (feature A) and chemical
points (features B and C). On Fig. 2 (b) buffer zones around pollutant points
are based on the amount released. For example, instance C1 has a larger zone
affected by this source point than instance C3 which has smaller amount of
emission. Buffer zones of cancer points denote average active living zones.

For simplicity, we decided to take the maximal distance as the natural loga-
rithm function of the release amount. This function gives a smooth curve which
does not grow as fast as linear or root functions that give large numbers for
heavier releases. Even though this technique oversimplifies the real world con-
ditions of pollutant dispersion, it helps to make the results more precise. Other
functions can be used to calculate the maximal distribution distance and they
can depend on a type of a pollutant (a heavier chemical settles faster and on a
shorter distance from a chimney) or a height of a chimney. An additional point
that could be considered in future work is that the area very close to a chimney
does not get polluted, and the higher is the chimney, the bigger is that area.

4.2 Wind Speed and Direction

The climatic conditions and topographical features may affect the distribution
of chemicals in the air. The examples of these factors are prevailing winds, pre-
cipitation, relative humidity, mountains, hills, etc. At the first step in this part
of the modeling framework we include the wind speed and the prevailing wind
direction on source points as variables of the model.
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Regarding the wind speed and direction, two situations are possible. First, the
region where a facility is located is windless throughout the year. In this case,
the pollutant is assumed to disperse in a circular region around the source point
with the radius of the circle derived from the released amount as discussed in
the previous subsection. However, the second situation is more frequent - there
is nonzero wind speed with a prevailing wind direction. In this case we presume
that the original distribution circle is morphed into a more ellipse-like region.
Our calculations of the characteristics of the ellipse are based on the works by
Getis and Jackson [12], and Reggente and Lilienthal [13]. The major axis of the
ellipse is in the direction of the prevailing wind. Furthermore, the coverage area
of the ellipse is supposed to remain constant. The source point can be placed on
the major axis of the ellipse between the center and upwind focus; in our model
we locate it in the middle of the segment between these two points. Fig. 2 (c)
illustrates elliptical buffer regions; their forms are dependent on the wind speed
and its frequent direction.

The lengths of the major semi-axis a and minor semi-axis b are derived from

the equations: a = r + γ|v|, b = r2

a , where r - the radius of the original circle, v
- the wind speed, and γ - the stretching coefficient.

The larger the value of the stretching coefficient, the longer is the length of
the ellipse’s major axis. We fixed γ at 0.3, but it could have a different value for
each of the pollutants. The calculation of b follows our assumption that the area
of the ellipse is equal to the area of the original circle.

In order to get the values of the wind speed and prevailing wind direction, the
interpolation of wind fields between weather stations is used. The data of monitor-
ing stations comes from two sources. First, the data on 18 stations is obtained from
Environment Canada, which provide climate normals that are based on climate
stations with at least 15 years of data between 1971 and 2000. The most frequent
wind direction is the direction (out of possible eight directions) with the highest
average occurrence count. Second, the data on 156 stations is derived from Agro-
Climatic Information Service (ACIS), a provincial government service. The data
is daily, between 2005 and 2011. In order to make the data consistent, the average
wind speed and the most frequent wind direction are calculated using the same
methods as for the federal government website data. The climate normals from
two sources are combined and used to make interpolations in ArcGIS tool [14].
However, ArcGIS is restricted to linear surface interpolations and the wind direc-
tion is a nonlinear attribute. In linear systems (e.g., the number of sunny days) the
number goes only in one direction. On the other hand, nonlinear systemsmay have
several paths. For example, there are clockwise and counter-clockwise directions
to move from 90◦ to 270◦: through 0◦ or 180◦.

Interpolation of wind fields requires a technique that considers nonlinear na-
ture of the wind direction attribute. The transformation is done according to the
work by Williams [15]. The wind speed and wind direction from each monitoring
station is represented as a vector with the magnitude S (wind speed) and direc-
tion θ (wind direction). The vector is divided into axial components X = S sin θ
(northern wind) and Y = S cos θ (eastern wind).
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Based on these two components, two ArcGIS surface interpolations are cre-
ated. The type of interpolation used is spline. As a result we get two grids: for
northern X ′ and eastern wind Y ′. The magnitude of the vector, the wind speed
S′, is computed as:

S′ =
√
X ′2 + Y ′2. (2)

The calculation of wind direction angle θ′ is more complicated. From geometry,
the wind direction is calculated as θ′ = tan−1 (Y ′/X ′). However, due to the
fact that the inverse tangent is defined only for values between -90◦ and 90◦,
each quadrant (the section of the graph which depends on the signs of wind
vector components; for example, Quadrant I is bounded by positive X ′ and Y ′,
Quadrant II - by positive X ′ and negative Y ′) requires its own formula [15]. As
a result we get interpolated values of wind speed and wind direction for each
point of the studied space.

5 Experimental Evaluation

We conducted experiments on a real dataset, containing data on pollutant emis-
sions and childhood cancer cases. The information on pollutants is for the 2002-
2007 period and contains the type of chemical, location of release, and average
amount of release per year. In order to get reliable results the chemicals that had
been emitted from less than three facilities are excluded from the dataset. There
are 47 different chemicals and 1,465 pollutant emission points; several chemi-
cals might be released from the same location. The number of cancer points
(addresses where a child lived when cancer was diagnosed) is 1,254. Claiming
discovering causality is wrong and controversial and thus we attempt only to find
”associations” rather than ”causalities”. The results are still subject to careful
evaluation by domain experts in our multidisciplinary team and the publication
of the found associations is not authorised at this point. It suffices to mention,
however, that some surprising rules were discovered indicating significant asso-
ciation between groups of chemicals, that were not categorized individually as
carcinogens, and childhood cancer, as well as rules with pairs of chemicals such
that one was known as carcinogenic but did not associate with cancer in our
data except in the presence of another that acted as a catalyzer.

We are interested in co-location rules of the form Pol → Cancer, where
Pol is a set of pollutant features and Cancer is a cancer feature. The expected
confidence is used as a prevalence measure. The distance between points in a grid
is 1 km; its effect is also evaluated. The number of simulations for the statistical
test is set to 99, so that with the observed data the denominator in Equation (1)
is 100. The level of significance α is set to 0.05. The size of an antecedent of
candidate rules is up to three. Larger candidates have low support values due to
the fact that the average number of features in a transaction in the experiment
is 1.95.

The randomized datasets that are used in the statistical test are generated
as follows. Pollutant emitting facilities are not random and usually located close
to regions with high population density, while they are not present in other
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places (e.g., in protected areas). Due to this observation, we do not randomize
pollutant points all over the region, but instead keep locations of facilities and
randomize pollutants within these positions. Out of 1,254 cancer points, 1,134
are located within dense ”urban” municipalities (cities, towns, villages, etc.) and
the rest are diagnosed in ”rural” areas. In order to have the randomized cancer
occurrence rate close to the real-world rate, we keep the number of cancer feature
instances positioned in ”urban” (”rural”) regions the same as in the real dataset.
The number of random cancer cases placed within each ”urban” municipality is
directly proportional to the number of children counted in the 2006 census.

Effect of Filtering Techniques. The number of candidate co-location rules in
the experiment is 17,343 (co-locations with the antecedent size up to three). With
a naive approach all candidates would be checked in each simulation run. With
our filter excluding rules with zero-level confidence, 10,125 candidates remain.
The usage of the second filtering method (the exclusion of candidates which p-
values passed α) considerably reduces the amount of computation. While in the
first simulation run the confidence value is computed for 10,125 rules, in the last
run only 482 candidates are evaluated.

Effect of the Grid Granularity. As already mentioned, the granularity of
the grid (the distance between grid points which affects the number of points
per unit of space) is crucial for the accuracy of the results. Having too long
distance between grid points may lead to omission of some regions of the space
especially when the average buffer distance is short. On the other hand, too short
distance between points leads to the greater number of transactions. Decreasing
the distance by two increases the transaction set size approximately by four.
Therefore, more computation needs to be done. The grid resolution might be set
up depending on the average buffer size.

In addition to the grid with 1 km granularity, we conducted two experiments
with 2 and 0.5 km grids. As mentioned above, the algorithm finds 482 co-location
rules with 1 km grid. With 2 km granularity 547 rules are detected from which
335 are present in both 1 and 2 km result sets, and 212 are unique for 2 km
grid. The difference means that 2 km distance between grid points is too long
for our dataset, where the average buffer size is 7.3 km, and its accuracy is
comparatively low due to the less number of transactions. The 0.5 granularity
grid reported 472 co-location rules as significant. From these, 426 are found with
both 1 and 0.5 km grids, and 46 rules are identified only by 0.5 grid. As we can
see, the difference between 0.5 and 1 km result sets is smaller than between 1 km
and 2 km grids. As the distance between points in a grid decreases, the accuracy
of the results improves.

6 Conclusion

In this paper, we proposed a new solution to the co-location mining problem.
The transactionization step allows the conversion of spatial data into a set of
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transactions. The usage of thresholds like in previous algorithms is replaced by
the statistical test. In addition, our approach takes into account uncertainty of
data. In order to decrease computation, the filtering techniques are presented.
The experiments on real and synthetic datasets showed that our approach finds
significant co-location patterns and rules.
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Abstract. During last decades, the Provinces of Naples and Caserta, in the 
Campania Region, experienced a dreadful increase in the level of pollution as 
effect of documented practices of illegal waste dumping and burning. In the 
same period, an abnormal increase in deaths due to cancer diseases was 
registered. Up to now, no impact of waste treatment on human health has been 
scientifically proven, but it has not even excluded yet. 

We believe that the availability of simple-to-use analytics tools may be of 
great help to epidemiologists in managing and querying the huge amount of 
heterogeneous data disposable for epidemiologic purposes.  

This paper presents an innovative decision support application 
SOLAP4epidemiologist, based on Spatial Data Warehousing technologies 
(Spatial ETL, GIS, Spatial OLAP) able to integrate structured and geo-
referenced data coming from different sources and to investigate them by means 
of user-friendly GUI, using statistical charts and maps representations. 

Keywords: Spatial OnLineAnalyticalProcessing, Spatial Extraction-
Transformation-Loading, Data Integration. 

1 Introduction 

Nowadays, Data Warehousing systems [1] represent a well-known and widely spread 
Decision Support System paradigm; they enable decision makers to easily navigate 
huge amount of heterogeneous data coming from different sources in various 
domains. During the last decade, Data Warehousing systems have represented the 
right answer to decision makers emerging analytics needs, following the explosive 
growth of available data, due to innovative technological solutions for data collection 
and storage. A more recent technological breakthrough is relative to the management 
of geographical data, which turns in the challenge of making the geographical 
component of information easily available for decision makers’ analysis. Recently, 
Spatial Data Warehousing has been proposed as the evolution of Data Warehousing 
system [2-3] and a new type of spatio-temporal multidimensional data exploration 
approach was born called SOLAP [4-6].  
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It was found that "about 80% of all data stored in corporate databases has a 
geographical component" [7] (which can be represented by addresses, cities, roads, 
rivers, states, regions, areas, etc.); this means that in order to allow a comprehensive 
analysis of data, enabling decision makers to make better and quicker decisions, 
therefore, it is necessary to include spatial information in the process of analysis. 
Nowadays, users have pressing needs of easy-to-use informative tools that allow them 
to intuitively analyze the spatial relationships that exist among data. 

It is worth noting that people are used to thinking in a visual and spatial manner, so 
some spatial relationships are often easier to understand if they are presented visually. 
Some phenomena, such as space-time evolution or spatial distribution, are not easily 
viewable by means of traditional statistical charts or tables, which are typically used 
in Business Intelligence (BI) applications. From all these considerations the Spatial BI 
[8] comes. Spatial BI is intended as a combination of software, database, analytical 
tools and methodologies that, combining geographic data with other business data, 
enable organizations to acquire critical insights, make better decisions and to optimize 
important processes and applications [9]. 

The Spatial Data Warehousing approach can be a successful analytics solution in 
any domain featured by huge amount of heterogeneous data (included geo-referenced 
data), coming from different and spatially distributed data sources. The Data Scientist 
is in charge of rightly designing and developing the Decision Support system, 
compliant to the specific needs of end users and exploiting the available data. For our 
experimentation, we chose the Epidemiology domain and in detail the on-the-edge 
issue of potential impact of waste treatment on human wealth in the Provinces of 
Naples and Caserta [10], in the Campania region in southern Italy. Up to now no such 
impact has been scientifically proven, but it has not even excluded yet [11]. During 
last decades, the Provinces of Naples and Caserta experienced a dreadful increase in 
the level of pollution as effect of documented practices of illegal waste dumping and 
burning. In the same period, an abnormal increase in deaths due to cancer diseases 
was registered. In the Province of Naples, significant exceeding mortality percentages 
of male deaths in the 43% of the municipalities and of female deaths in the 47% of the 
municipalities were calculated by the World Health Organization [12]. Many 
researchers in the epidemiology domain dedicated their efforts to deeply analyze and 
crossing data including medical records, industrial sites distribution, landfills 
dislocation, air quality data. We believe that traditional data analysis techniques and 
systems are not sufficient to adequately support epidemiologists in carrying on their 
studies. In our opinion, Spatial Data Warehousing can represent an innovative and 
valuable analytics tool at disposal of epidemiologists in managing and querying the 
huge amount of heterogeneous data, disposable for epidemiologic purposes. Indeed 
taking advantage of data redundancy, that avoids performing too many join 
operations, a Spatial Data Warehousing system allows the user to obtain useful 
information in a very quick manner; moreover the data stored within the Spatial DW 
cover a time span much wider than that typically covered by data stored in an 
operational system, providing a historical overview of the phenomenon. Finally the 
display of query results on maps allows the epidemiologist to locate the distribution 
and frequency of diseases on a particular geographic area of interest faster. 

This paper presents an innovative decision support application 
SOLAP4epidemiologist, based on Spatial Data Warehousing technologies (Spatial 
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ETL, GIS, Spatial OLAP) able to integrate structured and geo-referenced data coming 
from different sources and to make them analyzable by means of user-friendly GUI, 
using statistical graphs and maps representations. 

The developed software prototype is going to be integrated into the platform to be 
created as final product of the research project I.D.E.S. (Intelligent Data Extraction 
Systems). This project aims to build a technological facility for scientific survey and 
cooperation between C.I.R.A. (Italian Aerospace Research Center) and local 
government, as well as private operators and anybody else is interested in Campania 
in the fields of safety and prevention, environment, market intelligence etc.  

We gathered users’ needs and simulated data samples as described in Section 2, 
compliant to the statistical distributions presented in [12], in order to provide a 
realistic analytics environment to potential end-user. In Section 3 the architecture of 
the system and its main components are explained, while the technological overview 
of open-source tools for the Spatial DW is shown in Section 4. The development 
process of SOLAP4epidemiologist application, including the detail at component 
level, is discussed in Section 5. Finally, Section 6 presents our conclusions. 

2 Users’ Needs and Data Sources 

Basing on an interview to an expert in epidemiology domain, we elaborated some 
functional and user interface requirements at system level, which guided the design 
and development of SOLAP4epidemiologist. In detail, we were requested to provide 
an informative tool able to allow easily the visualization and navigation of data on 
synchronized geographical maps, charts and tables, the export of querying results in 
excel format, the integration of heterogeneous data such as environmental, 
epidemiologic, municipalities’ ones, the elaboration of many standard epidemiologic 
indicators. We turned those needs in systems requirements; but it wasn’t enough.  

A correct design of a Data Warehousing System [7] should be guided by a mixed 
user- and data-driven approach, taking into account synergistically available data 
sources and users’ needs, in order to avoid developing a system which can potentially 
satisfy users’ needs in end, but invalidated by the lack of adequate data. In order to 
avoid such danger and in lack of official data sources, we simulated likely datasets. 

We reproduced statistical samples of domain data according to statistical 
distributions elaborated in the World Health Organization report [12]. We simulated 
epidemiological data collected from 1994 to 2002 in 196 Municipalities in the 
Provinces of Naples and Caserta. In more detail, the statistical distributions 
documented in [12] showed aggregations of data with respect to the various analysis 
dimensions (date of death, geographical residence, gender, age, disease causing death, 
etc.). From such starting point, we reproduced randomly more than 300000 records 
concerning death occurrences caused by 17 different types of diseases.  

The simulated dataset was integrated with some other informative sources, such as: 
administrative and statistical data from the Italian Institute of Statistics (ISTAT), 
mortality data distribution over the 196 Municipalities coming from Local Health 
Organizations and Districts (ASL), and ICD-IX data (International Statistical 
Classification of Diseases and Related Health Problems) [13]. 
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Finally, the data sources included a PostgreSQL database instance containing death 
occurrences (residence, age, gender, etc.), a shape file describing geographical and 
administrative information related to all Italian municipalities and a structured text 
file reporting information about local health organizations called ASL. 

3 Spatial DW Architecture 

The software application presented in this article is aimed at supporting the 
epidemiologist user in the analysis of large amounts of data, through an easy-to-use 
tool. So the application is designed as a Spatial Data Warehousing system, which is 
an advanced system of analysis that allows user to simply query large amounts of 
data, using Spatial OLAP (SOLAP) technology and through a user friendly interface, 
to obtain summary information which includes geo-referenced data. Therefore a 
Spatial Data Warehousing system realizes the integration of spatial data within the 
Data Warehousing at the level of each individual component (ETL, Data Warehouse, 
OLAP queries) [14]. The Data Warehousing system was extended to the case of the 
processing of geo-referenced data; so the Spatial Data Warehousing system realized 
is made up of the following main components: 

1. Epidemiologic Spatial DW: it is the data base that stores both the structured and 
geo-referenced data, arranged to be queried in multidimensional manner; 
therefore it is conceived as a Spatial Data Warehouse (Spatial DW), that is a 
Data Warehouse with the ability of handling geometric data types, which derive 
from three basic geometrical types, used to represent the various spatial objects: 
points, lines and polygons. Moreover, in addition to the traditional thematic 
dimensions, a Spatial DW also supports three types of spatial dimensions [15]: 
• Non-geometric spatial dimensions, which use the names of places, such as, for 

example, "Naples", "Province of Caserta", etc. 
• Geometric spatial dimensions, which comprise geometric shapes (ex. 

polygons to represent country boundaries) that are spatially referenced, for all 
dimension members and at all levels of details. 

• Mixed spatial dimensions, which comprise geometric shapes for a subset of 
members or levels of details.  
Besides traditional measures, calculated using sum, count, average, or 

percentage operators, a Spatial DW allows the use of spatial measures, defined 
through the topological operators, such as intersection, union, difference, distance, 
equality, tangency, inclusion, etc. 

2. Spatial ETL Application: it is the software application, based on Spatial ETL 
technology (Extract, Transform, Load), that extracts, transforms and loads geo-
referenced data within the Epidemiologic Spatial DW repository. The application 
extracts information from external structured and heterogeneous sources, 
including also standard storage formats of geographic data (such as shape files); 
then the extracted data are integrated and geo-referenced, and finally they are 
loaded into the Spatial DW. 

3. Solap4epidemiologist: the client-server software application for multidimensional 
querying, which includes SOLAP interface and is based on metadata hypercube 
semantics. It provides the user with a user-friendly web interface, which allows the 
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epidemiologist to simply query the geo-referenced data, stored in the Epidemiologic 
Spatial DW, through a SOLAP server. The latter enables the interpretation and 
execution of the MDX query [16], built by the user through the selection of the 
measures and the dimensions of analysis. Finally the SOLAP interface allows the 
display of query results through maps, tables, and other types of graphs. 

The system layered architecture is shown in the following figure (Fig. 1) 

 

Fig. 1. Spatial Data Warehousing layered architecture 

4 Open-Source Tools for Spatial DW Systems 

One of the aims of the project was to make the entire Data Warehouse system using 
only open-source tools. To do this, a detailed technological recognition of available 
open-source applications was carried out. The following tools were identified: 

1. GeoKettle 2.0 [17] is a release with GIS capabilities of the general-purpose ETL 
tool PDI (Pentaho Data Integrator), formerly known as Kettle, GPL-licensed and 
published by Spatialytics. Thanks to its easy-to-use GIS data managing, 
GeoKettle has been chosen to implement the Spatial ETL layer of the system. 

2. PostGIS 1.5 [18] is the spatial extension of the open-source PostgreSQL 9.1 
database, and allows to store the GIS database objects; PostGIS also implements 
and extends the standard functions defined in the Open GIS Consortium (OGC) 
[20]. It has been chosen to implement the data storage layer of the system. 

3. GeoMondrian 1.0 [19] represents the spatial extension of the OLAP server 
Mondrian, and provides a consistent integration of spatial objects in the OLAP 
cubes. The tool implements also a native geometric data type and provides spatial 
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extensions to MDX language, so it has been chosen to be the Spatial OLAP 
server of the system. 

4. GeoBI is a web application developed and distributed by Camptocamp [21]; it 
shows the results of multidimensional queries on three synchronized displays that 
contain a map, a table and other statistical graphs. It is the Spatial OLAP client of 
the system. 

5. Tomcat 7 [22] is the well-known web container distributed by Apache Software 
Foundation, able to manage and support JSP pages, that is necessary to deploy 
both GeoBI and GeoMondrian, allowing users to connect to the system by the use 
of a web browser. 

5 SOLAP4epidemiologist Development Process 

This chapter describes the development process of the Spatial Data Warehousing 
application aiming at supporting the epidemiologist in analyzing the huge amount of 
heterogeneous data, related to the epidemiologic domain and located in the provinces 
of Naples and Caserta. 

5.1 Spatial DW Design 

According to the standard for the Data Warehouse, we extended the methodology 
proposed in [23] to manage geo-referenced sources, in order to design the 
Epidemiologic Spatial DW; so we used the graphical model of the Dimensional Fact 
Model to define the conceptual model of the Spatial DW. 

The choice of facts, measures, dimensions and hierarchies of the fact schema was 
driven by the input datasets on one hand and the basic concepts of epidemiology on 
the other hand. Epidemiology is defined as the study of frequency, distribution and 
determinants of health/disease at the population level. The five keywords in the 
definition enclose the questions addressed by epidemiology: 

-  Frequency: HOW and WHEN diseases appear; 
-  Distribution: WHERE diseases are present; 
-  Determinants: WHAT is the cause of diseases; 
-  Health/disease: in addition to sick individuals, epidemiology even studies 

healthy ones; 
-  Populations: analyses are performed at the level of population, which is 

generally stratified on the basis of various standard factors, such as age and sex. 

All these considerations have led to the identification of the main fact "mortality" 
and the creation of a fact schema which includes seven thematic dimensions, 
described below (Fig. 2): 

• The dimension Disease, which contains all cancers and non-tumor diseases, which 
caused the death of considered patients. For each disease, it is given the 
corresponding ICD9-CM code [13]; the latter was also used to define a taxonomy 
consisting of 34 diseases. The hierarchy of the dimension Disease is characterized 
by three levels: category, subcategory, disease. 
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• The dimension Sex, which refers to the sex of the patients. 
• The dimension Age, which contains all the ranges of the patients’ age, consisting of 

5-year intervals, from 0-5 to 66-70, plus the 71+ range. 
• The dimension Profession, related to the patients’ job. The dimension hierarchy is 

characterized by the first three levels of the ISTAT classification of professions [24]: 
the first level consists of 9 major occupational groups, the second level includes 37 
professional groups, and the third level contains 129 professional classes. 

• The dimension Education Level, which refers to the degree of education of 
considered patients. 

• The dimension Civil State, which allows to specify whether the dead patient, was 
married or not. 

• The temporal dimension Date of Death, which contains the date of death of 
considered patients. It is hierarchically structured as follows: date of death, month, 
year and quadriennium. 

 
Fig. 2. Conceptual model of the Epidemiologic Spatial DW 

In addition, we designed the spatial dimension Geography, which refers to the 
residence municipality of the patient. It is a spatial geometric dimension, since all 
members, at all levels of detail, are geometric shapes, in particular polygons or multi-
polygons. For the spatial dimension we used two converging hierarchies: 

• Municipality / ASL District  / ASL / Province 
• Municipality / Province 

The levels used in the two converging hierarchies are described in detail below: 

• Municipality: contains the 196 Municipalities in the Provinces of Naples and 
Caserta. Data relating to Municipalities were recovered from the ISTAT site [25] 
and the paper [12], and refer to the year 2001. For each city of the designed spatial 
dimension, it is specified a set of descriptive attributes such as ISTAT code, ZIP 
code, city population, population residing in areas of impact, index of 
environmental pressure from waste disposal, index of socioeconomic deprivation 
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(it represents, at the municipal level, the material and social hardship of the 
population). 

• ASL District: contains the ASL Districts to which Municipalities in the Provinces 
of Naples and Caserta belong. 

• ASL: contains the Local Health Authorities codes of Caserta and Naples. 
• Province: contains information on the Provinces of Naples and Caserta. 

The conceptual design of the Epidemiologic Spatial DW also included the definition 
of a set of standard indicators used in epidemiology; they can be calculated with 
respect to all dimensions’ combinations. Typically the results of epidemiological 
measurements are expressed as "proportion", "ratio" or "rate", so for the conceptual 
model of the Spatial DW we identified the following measures, peculiar in 
epidemiological studies: 

• Expected number of deaths 
• Number of deaths 
• Annual number of deaths 
• Annual number of deaths per disease 
• Total annual dead number per all diseases 
• Annual proportional mortality ratio as a percentage 
• Standardized Mortality Ratio (SMR) 
• Lower limit of the confidence interval for SMR at 95% 
• Upper limit of the confidence interval for SMR at 95% 
• Mortality rate as a percentage 
• Annual Mortality rate 
• Annual cause-specific mortality rate. 

Starting from the facts, the dimensions of analysis and the measures identified in the 
conceptual design phase, we built the logical model of the Epidemiologic Spatial 
DW, using the open-source database PostGIS 1.5. Therefore we designed a star 
schema, characterized by one fact table related to mortality (Fig. 3). For each 
dimension of analysis identified in the previous step we built a table, which includes 
the set of all the attributes that describe the dimension at different levels of 
aggregation. For the geography dimension we had to populate the PostGIS meta-table 
geometry_columns, specifying the spatial reference system, the geometric type and 
the number of spatial coordinates. For the fact table, then, we built a composite key, 
which consists of the set of foreign keys pointing to the dimension tables related to 
the fact table. Finally we defined the metadata hypercube, consisting of an XML file 
that defines the measures and the hierarchies of analysis dimensions, specifying all 
the different levels of aggregation, through the spatial extension of the 
Multidimensional Expressions (MDX) [16] language, which allows managing the 
Geometry data type for spatial dimensions. Since measures are defined and 
implemented in the hypercube of metadata, it is very easy to modify them or add new 
ones. The metadata hypercube was built using the open source tool GeoMondrian 
Workbench 1.0. 
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Fig. 3. Logical model of the Epidemiologic Spatial DW 

5.2 Spatial ETL 

The whole design process of Spatial ETL was guided by two different approaches: a 
model-driven approach and a data-driven approach. The model-driven operations 
were mainly focused on the logical model of the Epidemiologic Spatial DW (Fig. 3): 
a different loading-data transformation was designed for each of the 12 tables of the 
logical model, and the execution of each transformation should satisfy with the 
following architectural constraints: 

• The fact table "mortality" has to be the last to be populated, as it contains all the 
foreign keys to the various dimension tables. 

• The geographical dimension consists of two hierarchies, MUNICIPALITY -> 
PROVINCE and MUNICIPALITY -> ASL_DISTRICT -> ASL -> PROVINCE, 
so the loading order should be: Province, ASL, ASL District and finally 
Municipality. 

These constraints were satisfied by the design of 12 different loading transformations, 
among which the transformation related the fact table is the last to be executed and 
the 4 transformations concerning geographical dimension are organized in a single 
ETL job, thus ensuring the correct temporal order of execution. 

 

Fig. 4. ETL job to populate geographic dimension 

The data-driven approach is useful to determine how to fill each table that is which 
operations we need to get the desired result, starting from the available data. 
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Input information was organized into 4 distinct data structure: 

1. Municipalities (196 rows): this table stores administrative attributes of the 
Municipalities of the Provinces of Naples and Caserta, that are not necessary or 
useful to disaggregate for the purpose of the system, such as total number of 
residents, administrative area, ISTAT code, postal code and so on. 

2. Patients (333,346 rows): it is the biggest table, which contains information 
regarding the patients detected in the period 1994-2001 classified according to 
the type of disease found (tumor diseases, non-tumor diseases). 

3. Administrative limits: this is a shape file, retrieved from ISTAT website, 
containing the geographic information (i.e. administrative limits) about all the 
Italian municipalities, in the form of multi-polygons. 

4. ASL data: this is a structured text file, containing for each Municipalities of the 
Provinces of Naples and Caserta the competent ASL and ASL district.   

The aim of the Spatial ETL application is to extract and transform data from these 
sources, enriching the information by combining the data from the different sources, 
to finally load the transformed data in the appropriate table of the designed Spatial 
Data Warehouse. The transformations related to the geographical dimension enrich 
the data for the tables of this dimension, extracting and manipulating ISTAT multi-
polygons, related to administrative perimeters of each Municipality, and grouping 
them to create the administrative perimeters of ASL districts, ASL and Provinces. The 
following (Fig. 5) is, by way of example, the transformation for the loading of the 
table “Municipality”, which is essentially constituted by these steps: 

1. Extraction and Selection of data from the Municipalities source. 
2. Extraction and Selection of GIS data from the ISTAT data source. 
3. Sorted Join of these two fluxes. 
4. A sequence of Database Lookup Steps to retrieve the foreign key from the 

previously loaded tables. (ASL_DISTRICT, ASL and PROVINCE). 
5. Loading Database Step to write out the rows into the table “Municipality”. 

 

Fig. 5. ETL transformation to populate "Municipality" table 

All data transformations and jobs have been implemented through the use of the 
open-source Spatial ETL tool GeoKettle 2.0 [17]. The main problem faced during the 
ETL activities concerns the geo-referencing of data: indeed, it is essential that all 
records belonging to the tables of the geographical dimension of the DW are geo-
referenced; this means each geographical record must be associated in a unique way to a 
geometric multi-polygon describing its administrative limits. The only available source 
of geometric data (retrieved from ISTAT - Italian Institute of Statistics) provides only 
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administrative boundaries of the municipalities, while no geometric data is directly 
provided about other geographic entities. This means that the records belonging to the 
Municipality table can be directly geo-referenced, while it remains open the problem of 
geo-referenced records that belong to geographic entities of the upper level (ASL 
District, ASL and Province). This problem was solved by the use of “Group-by” blocks 
within the transformations, to group the municipalities on the basis of geographical 
entities of higher level and obtaining administrative boundaries of such entities by the 
use of the “Geometric UNION” function provided by GeoKettle. 

5.3 Spatial OLAP Web Application 

To perform multidimensional queries we designed the web application 
Solap4epidemiologist, based on Spatial OLAP query interface. The application uses 
the open-source tool GeoMondrian 1.0 as Spatial OLAP server. We used the open-
source application GeoBI by Camptocamp as SOLAP client, which shows the results 
of queries on three synchronized displays that contain a map, a table and other 
graphics, such as pie charts and histograms (Fig. 6). We used Tomcat 7 as web 
container. Through the GeoBI GUI, the user can choose from a combo-box the 
dimensions and the measures of interest; he can also get different levels of analysis 
detail, through drill-down and roll-up operators, by clicking on both the map and the 
table. Moreover the user can select the colors of the map and the type of statistical 
graph to be overlapped on the map itself. The following figure (Fig. 6) shows the 
number of deaths, occurred throughout the time period studied, in the provinces of 
Naples and Caserta, by sex and type of illness (cancerous or non-cancerous disease).  

 

Fig. 6. Web application SOLAP4epidemiologist for multidimensional queries 

To allow users to process query results in one of the most used format, we worked to 
integrate in the web application the function of exporting to Microsoft Excel® the table 
(datagrid) containing results from a spatial query. We integrated this functionality by 
simply adding a “Export as XLS” button on the grid panel. When the user presses the 
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button, a process is launched resulting in opening an Excel worksheet and filling it by 
taking data line by line from the effective grid in the web page. The only care we had to 
take for coding this function is that, dealing with a multidimensional query, we had to 
properly capture more lines for column headers, even by repeating group of headers, 
where there would be nested dimensions of analysis. 

6 Conclusions 

Recently, the extension to geographic data of the well-known multidimensional analysis 
paradigm of Data Warehousing uncovered new interesting opportunities of providing 
useful analytics tools able to take advantage of the geographic component of data, 
without sacrificing the successful multidimensional analysis approach. Scientists and 
industrial decision makers found in the OLAP technology the right answer to their 
needs emerged from the explosive growth of data to be analyzed: the extension to 
Spatial OLAP represents the technological key-enabler to perform integrated analysis of 
also geo-referenced data by making use of client tools, which don’t require any 
informatics skill to end users. We applied the SOLAP approach to Epidemiology 
domain, featured by the availability of huge amount of heterogeneous data sources 
(structured and geo-referenced), geographically distributed. So far we realized a Spatial 
Data Warehousing application, SOLAP4epidemiologist, able to integrate big bunches 
of data including medical records and administrative information and to make them 
available for advanced queries. We made use of open-source tools. 

SOLAP4epidemiologist will let the epidemiologists to benefit of a simple-to-use 
querying tool which allow them to perform sophisticated queries over big bunch of data 
by just selecting from combo-boxes the criteria of analysis and the quantitative aspects 
they intend to investigate. Moreover, we intended to offer a client tool by means of 
which end users can take whole benefit of the geometric component of data. 
Epidemiologists will be able to get insight different levels of analysis detail by clicking 
on maps. SOLAP4epidemiologist completely fulfills the challenging tasks of 
performing advanced and quick analysis and offering querying results visualizations 
intuitively intelligible, without requiring any informatics skill to end users. The 
developed software prototype is going to be integrated into the platform to be created as 
final product of the research project I.D.E.S. (Intelligent Data Extraction Systems).  
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Abstract. Text Classification systems are able to deal with large datasets, spend-
ing less time and human cost compared with manual classification. This is
achieved, however, in expense of loss in quality. Semi-Automatic Text Classifica-
tion (SATC) aims to achieve high quality with minimum human effort by ranking
the documents according to their estimated certainty of being correctly classified.
This paper introduces the Document Difficulty Framework (DDF), a unification
of different strategies to estimate the document certainty, and its application to
SATC. DDF exploits the scores and thresholds computed by any given classifier.
Different metrics are obtained by changing the parameters of the three levels the
framework is lied upon: how to measure the confidence for each document-class
(evidence), which classes to observe (class) and how to aggregate this knowledge
(aggregation). Experiments show that DDF metrics consistently achieve high er-
ror reduction with large portions of the collection being automatically classified.
Furthermore, DDF outperforms all the reported SATC methods in the literature.

1 Introduction and Motivation

Automatic Text Classification (TC) provide much faster and cheaper classification than
human experts. However, even though there have been large improvements in the last
decades, human experts achieve higher quality. Since the introduction of automatic clas-
sifiers, two alternative options can be applied. Firstly, a full-automatic classification
system is applied, where every document is classified according to the decisions made
by the classifier. Secondly, a completely manual classification is performed, where hu-
man experts classify each document. The main drawbacks of the latter option are its
huge cost and potential unfeasibility for large collections. On the other hand, the qual-
ity achieved by the manual approach will be higher. Full automatic TC is preferred if
large datasets are used (i.e. webpage classification) or when lower quality is not as im-
portant as the human effort required. On the other hand, manual classification is the
best option for systems that require high-quality and have medium size such as law or
medical data. In general, the time saved by using an automatic system is leveraged with
the possible quality loss with respect to the manual classification.

This research focuses on an intermediate solution using Semi-Automatic Text Clas-
sification (SATC) [8,1]. The main goal is to achieve high quality with minimum human
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effort or, more specifically, to use human experts only for the documents that the au-
tomatic system is more likely to misclassify. Therefore, maximising the quality, while
minimising the cost. Given a set of documents to be labelled and a specific classifier,
a SATC algorithm needs to rank the documents according to the likelihood of their
classification decisions to be correct. The ranking allows experts to inspect documents
iteratively, starting with the most uncertain ones, until a specific point, where the rest of
the documents are automatically assigned. In addition, this strategy can be applied with
variable resources over time (i.e. less human experts could be available).

This paper introduces the Document Difficulty Framework (DDF), a family of doc-
ument certainty algorithms, and its application to SATC. DDF exploits the document-
class confidence scores computed by a classifier and the class thresholds given by any
class-based thresholding strategy to calculate the certainty of each document. This im-
plies that the class scores for all documents have to be computed. The framework
defines an array of different metrics, depending on three different dimensions: how
the document-class evidence is computed (evidence), which classes will be considered
(class), and how to aggregate a document-based certainty (aggregation).

The remainder of this paper is organised as follows: Section 2presents the background
and related research. Section 3 introduces DDF, and analyses its different variations.
Experiments are explained and analysed in Sections 4. Finally, Section 5 concludes the
paper and presents the future work.

2 Background and Related Research

2.1 Multi-Label Text Classification

In multi-label TC (ML-TC), each document can belong to multiple classes. As a result,
a classification process assigns a boolean value to each pair (dj , ci) ∈ D × C, where
D is a set of documents and C is a set of predefined categories [9]. To achieve this
goal, most classifiers use a two-step procedure. Firstly, the classifier produces a score
for each pair (dj , ci), and then a thresholding strategy decides, for each of the scores,
if that value implies that the document belongs to the class (T) or not (F). Given a
classifier σ and a threshold function δ, both processes can be mathematically denoted
as: σ ∈ Σ : D × C → [0,∞], δ : Σ ×D × C → {T, F}.

There are different types of thresholding strategies, based on documents or topics.
For instance, using RCut [12], the R classes with higher score for a specific document
are selected. On the other hand, SCut computes the threshold per class which maximises
its quality (i.e. measured using F1) [12]. If the number of training examples for a cate-
gory is small, SCut can compute a very high or very low threshold from a global point
of view. To address these drawbacks, SCutFBR.1 and SCutFBR.0 were introduced [12].
These metrics modify the behaviour of SCut in the case that the quality obtained for a
class is lower than a value (fbr). The former strategy uses the highest ranked document
as threshold value, while SCutFBR.0 assigns an infinite value. As a result, SCutFBR.0
does not assign any document in any class with lower quality than fbr.
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2.2 Semi Automatic Text Classification (SATC)

SATC assumes that neither manual, nor full automatic classification is the optimum
solution. This situation appears when full automatic classification achieves lower than
required quality, and a full manual classification is either too expensive or unfeasible
due to lack of resources. The foundation of SATC is that if we are able to separate
the documents with high probability to be correctly classified, and the ones that are
probably wrong, the latter can be inspected by human experts while the former will be
automatically classified. As a result, the resources (the human experts) are optimised,
while the quality remains high. To solve this task, SATC methods rank the documents
to be classified according to their uncertainty. SATC assumes that the documents with
higher certainty are probably better classified, whereas the documents with higher un-
certainty are incorrectly classified. Therefore, the quality is maximised if the human
annotators inspect the documents starting from the ones with higher uncertainty. The
possibility of combining human and automatic classification has been suggested be-
fore [13,9,6]. However, only two approaches have been proposed: Document Difficulty
and Utility-Theoretic Ranking. Both of them have been proven to be well-suited for
SATC. Nonetheless, their performance have never been compared in the literature.

Document Difficulty [8] uses the classification scores and thresholds as evidence to
compute the document certainty, where the labels with greater certainty are those with
larger relative difference with respect to their threshold. The aggregation of label con-
fidences is performed by averaging the confidences for those classes the document will
be labelled in. The reason for the name similarity is that DDF extends and generalises
the principles we explained in [8], mainly exploiting the classification scores and the
threshold values within a classifier-independent framework. However, while only one
method was proposed in that work, DDF represents a family of certainty metrics, where
the previous metric appears naturally as an special case. In addition, the evaluation is
also different. Our previous work evaluated the quality of the subset of automatically
classified documents, instead of the whole collection. This research analyses the quality
of the full test set, including both manual and automatic classified documents subsets.

The Utility-Theoretic Ranking (UT) method [1] optimises the global quality of the
system, exploiting the potential benefit of manually inspecting each document, using the
confidence scores of a classifier, and the gain in terms of quality that could be achieved,
if that label is actually correct. The main conceptual difference with our approach is
that UT exploits the collection information, whereas DDF focuses on each document
independently. Furthermore, DDF exploits threshold information, and class filtering for
the aggregated document certainty.

Similar to SATC, Active Learning (AL) ranks documents according to their benefit in
the learning process, selecting which unlabelled documents should be manually labelled
and being included as training examples. However, SATC focuses on the classification
step, while AL operates in the training phase, selecting the documents from which the
classifier can learn the most. Extensive research has been done related to single-label
AL [7,10]. However, very limited research has tried to address the same problem in a
multi-label environment [4,11].
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2.3 Semi Automatic Text Classification Evaluation

SATC is evaluated using traditional classification quality measures such as micro-
averaged-F1, once the human and the automatic decisions have been combined. This
approach, introduced by Berardi et al. [1], provides quality values for different propor-
tions of the collection being automatically classified, where the most uncertain docu-
ments are manually classified. In addition, the goal of SATC is not only to compute the
quality but to analyse how it varies depending on the number or documents considered.
Therefore, quality variations with respect to the full automatic quality with the same
classifier are also computed. The main issue is that the relative quality increase is fully
dependent on the base quality, when all the documents are automatically classified. For
instance, in some cases, a 100% quality increase is impossible (i.e. full automatic clas-
sification achieving 95% quality), while more than 100% is possible for others, making
a comparison over different classifiers impossible. Berardi et al. [1] addressed these
challenges and introduced two alternatives based on the error reduction with respect to
the full automatic system, instead of its quality increase. Error Reduction at rank (ER)
measures the error reduction with a specific number of documents being automatically
classified, where Ep(n) models the error (defined as 1-quality) achieved by a classifier
p with n documents being manually classified,

ERp(n) =
Ep(0)− Ep(n)

Ep(0)
(1)

Normalised Error Reduction at rank (NER) subtracts the error reduction at rank n
achieved by a random ranker ( n

|Te| , where |Te| is the size of the documents to be clas-
sified) from ER in order to obtain more meaningful quality values,

NERp(n) = ERp(n)− n

|Te| (2)

A third metric was also proposed by the same authors to include the specific position
of each document into the evaluation: Expected Normalised Error Reduction (ENER)
exploits the probability of a human expert inspecting n documents (Ps(n)),

ENERp =

|Te|∑

n=1

Ps(n) ·NERp(n) (3)

Ps(n) can follow different probability distributions, Berardi et al. [1] suggested the
definition shown below, where p models the probability of the next document to be
inspected,

Ps(n) =

{
pn−1 · (1− p) if n ∈ {1, ..., |Te| − 1}
pn−1 if n = |Te| (4)

The value of p can be defined as a function of the expected ratio (ξ) of documents being
manually classified. p = 1

ξ·|Te| . Therefore, p is computed for different expected ratios
of manually classified documents. Extended information about this evaluation can be
found in Berardi et al. [1].
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Table 1. DDF Levels. ci represents a class, d a document, and s the classifier’s score for each
document-class pair. t(ci) is the threshold for ci, and q(ci) is the estimated quality for ci.

Evidence Class Aggregation
ε; given d, ci, t(ci) γ; given d, ci, t(ci), ε α; given γ(ε, d, ·)

S s(d, ci) A ε(d, ci) M maxci∈C γ(ε, d, ci)
A ln(1 + |s(d, ci)− t(ci)|) P

{
ε(d, ci) if s(d, ci) ≥ t(ci)
0 otherwise

A avgci∈Cγ(ε, d, ci)

R ln(1 + |s(d,ci)−t(ci)|
t(ci)

) W avgci∈Cq(ci) · γ(ε, d, ci)

3 Document Difficulty Framework for SATC

The Document Difficulty Framework (DDF) is a family of document certainty metrics
within the context of TC. DDF extends and generalises the principles we explained
in previous research [8], exploiting the classification scores and the threshold values
within a classifier-independent framework to compute the document certainty. This
computation is divided into three different levels, inspired by the comparison of multi-
label AL metrics by Esuli et al. [4]: evidence, class and aggregation. The evidence
level computes the confidence value for each document and category, using their clas-
sification score and the class threshold. The class level specifies which classes are to be
considered in the final aggregation. The aggregation level combines the filtered confi-
dence levels, producing a document-based certainty.

DDF is based on the composition of the three transformation functions, one for each
level, where ε represents the evidence, γ the class, and α the aggregation level,

certainty(d) = α ({γ(ε(d, ·))}) (5)

A method within the framework consists in a specific strategy for each level. Table 1
summarises the different candidates analysed herein for each DDF levels. Each method
is represented as the concatenation of three letters, representing the strategy followed
in each one of the levels. For instance, following Table 1, the difficulty measured by the
APA variation is defined as follows,

certainty(d) = avgci∈C:s(d,ci)≥t(ci) ln(1 + |s(d, ci)− t(ci)|) (6)

This method considers absolute distance for evidence function (A), only for positive
classes (P ), and computing the final aggregation as the average topic confidence (A).

3.1 Evidence Level

The evidence level is responsible for computing a confidence value for a document-
topic pair. It is modelled as a function ε ∈ E : D × C → [0,∞], where D denotes
the set of documents, and C the classes. Three candidates are considered for this level:
score (S), absolute difference (A) and relative difference (R).

The first strategy (S) follows the same principle as relevance sampling [7], exploiting
the score obtained by the classifier. It assumes that the higher the value the more relevant
the score. Therefore, classes with higher scores are the ones with more certainty.
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The second method (A) exploits the score and the threshold, assuming that larger
distances imply lower uncertainty and higher chance that the document is correctly
classified. This assumption is similar to uncertainty sampling [7]. A logarithmic func-
tion is applied to limit the effect of very large differences.

The last method (R) applies the same principles as the difference approach. How-
ever, it uses a relative difference instead of the absolute value. The rationale is that the
absolute distances can be misleading. For instance, a distance of 0.2 would be much
more important if the threshold is 0.05 than if it is 0.6.

3.2 Class Level

The class level behaves as a filter, selecting whether to exploit the certainty of a specific
label, and hence, if it will be available at the next aggregation step or not. It is defined
as a function γ ∈ Γ : E ×D×C → [0,∞], where a composition with an element ε ∈ E
would be applied. Two candidates are considered for this level: all (A) and positive (P ).

The first strategy (A) consists on not applying any filtering, hence considering all the
confidence scores for a specific document.

The second method (P ) selects the classes for which the classification score is higher
or equal than the threshold. These are the classes which will be assigned to the docu-
ment if automatic classification is applied. This strategy aims to focus the difficulty
computation on the positive labels. In TC, the positive labels are more representative
that the negative ones due to the fact that the number of positive classes for a specific
document is usually much smaller than the number of negative ones. For example, the
average number of classes per document in Reuters-21578 is 1.24, while the number
of classes is 90. This approach assumes that if all classes are observed, the document
certainties are somehow diluted because most of the documents will obtain a high con-
fidence that do not belong to a large subset of the classes.

3.3 Aggregation Level

When multi-label data is used, a certainty value per document has to be provided, since
the ranking of the labels can not be used to select nor to rank documents. For example,
even if 90% of the most certain labels are selected, it is impossible to decide which
documents should be automatically classified. For this reason, the filtered evidence per
class should be combined into a single certainty metric for each document. This level
is defined as a function α ∈ A : {Γ} × D → [0,∞]. Typically, it will be applied to
the set of possible functions γ ∈ Γ , one for each class ci ∈ C. This is equivalent,
taken a document d and an evidence level function ε as inputs, to the set Γ (γ, ε, d) =
{γ(ε, d, ci) : ci ∈ C}. It should be noted that a one-to-one relation exists between the
set of classes used in the definition of Γ and Γ itself, and thus, this notation could be
simplified as in Table 1. Three candidates are considered for this level: maximum (M ),
average (A) and weighted (W ).

The first method (M ) selects the most certain class for each document. The goal is
to rank higher documents with at least one class correctly classified. This is specially
important for collections with a low number of classes per document.
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The second method (A) averages the confidence values for the filtered classes, pro-
viding a general estimation of how certain the class labels are.

The third method (W ) uses an averaged weighted linear combination (WLC), based
on the quality estimation per class. Classes with low expected quality are weighted less,
because even if their assignation seems certain, it is likely to be a misclassification. The
estimated quality values are obtained in the cross-validation phase.

4 Results and Discussion

4.1 Experimental Set-Up

The quality of the certainty algorithms for SATC is evaluated using ER and ENER [1].
ER is plotted with different percentages of the collection being manually classified,
while the ENER metric provides values to directly compare the quality achieved by
DDF methods with other state of the art approaches. Two traditional TC collections
(Reuters-21578 and 20-newsgroups) are used:

20-newsgroups is a collection of approximately 20, 000 newsgroup documents and
20 classes, with almost uniform distribution of documents over classes (Obtained from
http://people.csail.mit.edu/jrennie/20Newsgroups/). The split for the collection is based
on time as it is suggested. Cross-posting emails have not been considered. This collec-
tion has been selected to observe the behaviour of DDF with a single label collection.

Reuters-21578 contains structured information about newswire articles that can
be assigned to several classes. Two variations of the “ModApte” split are used.
Reuters-21578 uses only documents that belong to classes with at least one train-
ing and one test document. As a result, there are 7770/3019 documents for training and
testing, observing 90 classes with a highly skewed distribution over classes (same as
Yang et al. [12]). On the other hand, Reuters-21578-115 uses documents belonging to
classes with at least one training or testing document. This configuration has 9603/3299
documents for train and test respectively, and 115 classes. Reuters-21578-115 allows
a direct comparison with the results presented by Berardi et al. [1].

Three different families of classifiers have been used, namely Naive Bayes (Weka [5]
implementation), SVM using LibSVM [3], and our own implementation of k-NN. Doc-
uments are represented using ltc [2] and χ2 is used for feature selection: 5,000 features
for NB and k-NN for 20-newsgroups, and 3,000 for the others. SVM uses 10,000 fea-
tures (based on full automatic classification experiments). Stemming and stop-words
removal have been applied. SCutFBR.1 [12] thresholding strategy is applied with an fbr
value of 0.3 and a 5-fold cross-validation process, optimising micro-average-F1. The
SVM scores are obtained by running LibSVM with the option (-b 1).

4.2 Results

Figure 1 shows the absolute quality (micro-averaged F1) depending on the percentage
of manually classified documents. Due to clarity, only the best DDF metric per collec-
tion is shown. It illustrates how the best DDF metrics achieve high quality levels, while
manually assigning a small subset of the collections. For instance, for Reuters-21578,
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(a) Reuters-21578 SPW (b) Reuters-21578-115 RAW (c) 20-newsgroups SPW

Fig. 1. Micro-averaged F1 evaluation for different ratios of manually classified documents

(a) Reuters-21578 SPW (b) Reuters-21578-115 RAW (c) 20-newsgroups SPW

Fig. 2. Error Reduction (based on micro-averaged F1) for different ratios of manually classified
documents

micro-average F1 of more than 95% can be achieved with as few as 20% of the docu-
ments manually classified. Furthermore, they also show that perfect quality is achieved
with approximately 50 and 60% of documents manually classified for Reuters-21578
and Reuters-21578-115 respectively. 20-newsgroups appears to be a more challeng-
ing collection for SATC. Perfect quality is only achieved only after 80% of documents
are inspected by experts. The main reason for this seems to be the uniformed distribu-
tion of documents over classes and the high similarity between some of the classes. The
best performing model in all cases is SVM, while k-NN is the second best algorithm,
despite the fact that it performs poorly when applied to 20-newsgroups.

ER evaluation is shown in Figure 2. Although the best model from this perspective
is SVM, it illustrates almost overlapped curves for all different classifiers, specially for
Reuters-21578-115. This result strongly supports the generalisation of DDF metrics.
Tables 2-4 allow to directly compare different SATC methods. They show the ENER
quality evaluation for all the DDF candidates, with different percentages of the docu-
ments expected to be manually classified (ξ). The best performing models presented in
the literature are chosen as baselines: The baselines for Reuters-21578-115 are the re-
sults reported by Berardi et al. [1] for their Utility-Theoretic method (UT ). The method
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Table 2. 20newsgroups ENER evaluation wrt. the ratio of manually classified docs. Best results
per model in bold, best overall result also underlined. Increment (%) wrt. RPA between brackets.

NB kNN SVM
0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

RPA .097 (0) .165 (0) .230 (0) .076 (0) .129 (0) .185 (0) .121 (0) .194 (0) .251 (0)
SAA -.014 (-114) -.020 (-112) -.029 (-113) .039 (-48) .059 (-55) .074 (-60) .044 (-64) .046 (-77) .037 (-85)
SAM .090 (-7) .149 (-9) .207 (-10) .072 (-5) .118 (-8) .161 (-13) .119 (-1) .195 (1) .265 (6)
SAW .016 (-84) .032 (-80) .061 (-74) .040 (-46) .062 (-52) .081 (-56) .012 (-90) .033 (-83) .069 (-72)
SPA .097 (-0) .164 (-1) .227 (-1) .075 (-1) .126 (-2) .176 (-5) .120 (-0) .197 (2) .267 (6)
SPM .096 (-1) .157 (-5) .214 (-7) .075 (-1) .123 (-5) .166 (-10) .120 (-1) .196 (1) .266 (6)
SPW .097 (0) .165 (0) .230 (-0) .075 (-0) .127 (-1) .180 (-3) .121 (1) .198 (2) .268 (7)
AAA .095 (-2) .157 (-5) .214 (-7) .062 (-18) .108 (-17) .159 (-14) .119 (-2) .194 (0) .260 (4)
AAM .059 (-39) .095 (-43) .137 (-41) .047 (-38) .076 (-41) .111 (-40) .079 (-35) .136 (-30) .200 (-20)
AAW .094 (-3) .155 (-6) .213 (-8) .057 (-24) .098 (-24) .145 (-21) .117 (-3) .193 (-1) .259 (3)
APA .098 (0) .166 (1) .233 (1) .076 (0) .129 (0) .185 (0) .121 (0) .197 (2) .262 (4)
APM .097 (-1) .161 (-2) .222 (-4) .075 (-0) .126 (-3) .173 (-6) .121 (-0) .196 (1) .261 (4)
APW .098 (1) .167 (1) .234 (2) .076 (0) .130 (1) .187 (1) .121 (0) .198 (2) .265 (6)
RAA .089 (-9) .151 (-9) .210 (-9) .061 (-20) .107 (-17) .161 (-13) .119 (-1) .195 (1) .260 (4)
RAM .061 (-37) .106 (-36) .162 (-30) .044 (-41) .081 (-37) .126 (-32) .092 (-24) .156 (-20) .216 (-14)
RAW .089 (-9) .150 (-9) .209 (-9) .056 (-25) .099 (-24) .149 (-19) .118 (-3) .193 (-0) .260 (3)
RPM .096 (-1) .159 (-4) .217 (-6) .075 (-0) .126 (-2) .174 (-6) .120 (-0) .193 (-0) .250 (-0)
RPW .098 (0) .166 (1) .233 (1) .076 (0) .129 (0) .186 (1) .121 (0) .195 (1) .256 (2)

we introduced in [8], modelled as RPA within the DDF framework, is used as baseline
for the other two collections. UT quality for 20-newsgroups and Reuters-21578 was
not reported by Berardi et al. [1]. In almost all cases, the performance of DDF is higher
when SVM is used, instead of NB or k-NN. For Reuters-21578-115, several DDF
metrics outperform both baselines (UT and RPA), being SAW (with NB), and RAW
(with SVM) the best performers. The improvements are as high as 14 and 50% with
respect to UT and RPA, respectively. In addition, RAW with NB also outperforms UT
in some cases. All collections confirm the quality of DDF, with several candidates out-
performing our previously proposed method (RPA) [8]. For 20-newsgroups, there is
almost not difference between the performance of candidates applying average aggre-
gation and those applying weighted aggregation (e.g., APA vs APW). The main reason
for this is that the classes quality are very similar. Furthermore, although no one of the
best candidates includes the aggregation based on the maximum confidence (surpris-
ingly being a single-label collection), this strategy achieves high quality (i.e. SPM is
virtually as good as the best candidate for SVM).

Reuters-21578 and Reuters-21578-115 are analysed together as their main dif-
ference is the existence of documents without any correct class for the latter. The first
observation, in terms of performance, is that models considering positive classes lose
their competitiveness against selecting all classes, for Reuters-21578-115. The rea-
son is that this strategy was conceived for collections where test documents have at
least one correct class, as documents with no classes are assigned a large uncertainty.
This also explains the poor performance of our previous method [8], with decreases of
more than 50% ENER, both with respect to the best DDF metric and UT. Furthermore,
the qualities achieved by the best model in Reuters-21578 are significantly higher than
those for Reuters-21578-115 (with the exception of those based on NB). This means
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Table 3. Reuters21578 ENER evaluation wrt. the ratio of manually classified docs. Best results
per model in bold, best overall result also underlined. Increment (%) wrt. RPA between brackets.

NB kNN SVM
0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

RPA .101 (0) .178 (0) .245 (0) .138 (0) .234 (0) .320 (0) .156 (0) .250 (0) .321 (0)
SAA .027 (-73) .032 (-82) .026 (-89) .093 (-33) .159 (-32) .232 (-27) .050 (-68) .052 (-79) .042 (-87)
SAM .089 (-12) .162 (-9) .244 (-0) .103 (-26) .176 (-25) .251 (-22) .171 (10) .269 (8) .349 (9)
SAW .140 (38) .210 (19) .283 (16) .099 (-28) .168 (-28) .242 (-24) .157 (0) .246 (-1) .321 (0)
SPA .103 (2) .184 (4) .267 (9) .132 (-5) .220 (-6) .304 (-5) .193 (24) .297 (19) .376 (17)
SPM .094 (-8) .166 (-6) .248 (1) .117 (-15) .187 (-20) .258 (-19) .171 (9) .270 (8) .351 (9)
SPW .104 (2) .185 (4) .269 (10) .135 (-2) .226 (-3) .311 (-3) .192 (23) .297 (19) .376 (17)
AAA .105 (4) .183 (3) .265 (8) .159 (15) .233 (-0) .302 (-6) .175 (12) .262 (5) .337 (5)
AAM .055 (-45) .093 (-48) .130 (-47) .072 (-48) .132 (-44) .207 (-35) .041 (-74) .074 (-71) .135 (-58)
AAW .081 (-20) .157 (-11) .242 (-1) .169 (22) .244 (4) .314 (-2) .157 (0) .248 (-1) .326 (2)
APA .105 (4) .192 (8) .277 (13) .139 (1) .235 (1) .323 (1) .187 (19) .293 (17) .372 (16)
APM .096 (-5) .174 (-2) .257 (5) .122 (-11) .195 (-16) .267 (-16) .164 (5) .262 (5) .342 (7)
APW .105 (4) .193 (8) .280 (14) .141 (2) .240 (3) .329 (3) .187 (20) .294 (18) .374 (16)
RAA .115 (14) .189 (6) .267 (9) .138 (-0) .229 (-2) .312 (-2) .171 (9) .260 (4) .334 (4)
RAM .082 (-20) .135 (-24) .178 (-27) .082 (-41) .156 (-33) .235 (-27) .119 (-24) .192 (-23) .250 (-22)
RAW .126 (24) .205 (16) .285 (17) .163 (18) .251 (8) .329 (3) .211 (35) .295 (18) .361 (13)
RPM .093 (-8) .150 (-16) .193 (-21) .124 (-10) .197 (-16) .265 (-17) .136 (-13) .203 (-19) .254 (-21)
RPW .106 (5) .190 (7) .267 (9) .142 (3) .241 (3) .329 (3) .170 (9) .270 (8) .344 (7)

Table 4. Reuters21578 115 ENER evaluation wrt. the ratio of manually classified docs. Best
results per model in bold, best overall result also underlined. Increment (%) wrt. Utility Theoretic
(UT) Ranking between brackets (Berardi et al [1]).

NB kNN SVM
0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

UT .145 .221 .285 .145 .221 .285 .145 .221 .285
SAA .014 (-90) .017 (-92) .012 (-96) .064 (-56) .116 (-48) .181 (-36) .049 (-66) .052 (-77) .046 (-84)
SAM .131 (-9) .181 (-18) .240 (-16) .062 (-57) .118 (-46) .190 (-33) .121 (-17) .201 (-9) .279 (-2)
SAW .184 (27) .241 (9) .295 (4) .071 (-51) .125 (-43) .191 (-33) .128 (-12) .203 (-8) .272 (-4)
SPA .055 (-62) .125 (-43) .209 (-27) .065 (-55) .138 (-37) .224 (-21) .096 (-34) .190 (-14) .280 (-2)
SPM .047 (-68) .107 (-52) .187 (-34) .055 (-62) .113 (-49) .187 (-34) .086 (-41) .173 (-22) .261 (-9)
SPW .055 (-62) .125 (-43) .209 (-27) .066 (-55) .141 (-36) .228 (-20) .094 (-35) .189 (-14) .279 (-2)
AAA .119 (-18) .168 (-24) .226 (-21) .135 (-7) .198 (-10) .261 (-8) .101 (-31) .177 (-20) .259 (-9)
AAM .009 (-94) .019 (-91) .030 (-90) .054 (-63) .105 (-53) .169 (-41) .040 (-72) .082 (-63) .151 (-47)
AAW .028 (-81) .083 (-63) .160 (-44) .144 (-1) .208 (-6) .271 (-5) .074 (-49) .156 (-30) .245 (-14)
APA .055 (-62) .127 (-43) .211 (-26) .067 (-54) .148 (-33) .239 (-16) .094 (-35) .191 (-14) .283 (-1)
APM .047 (-68) .107 (-52) .184 (-35) .058 (-60) .120 (-46) .195 (-32) .082 (-44) .168 (-24) .258 (-9)
APW .055 (-62) .127 (-42) .213 (-25) .068 (-53) .149 (-32) .241 (-15) .093 (-36) .190 (-14) .283 (-1)
RAA .160 (10) .209 (-5) .262 (-8) .110 (-24) .188 (-15) .266 (-7) .123 (-15) .197 (-11) .267 (-6)
RAM .086 (-41) .125 (-44) .158 (-45) .058 (-60) .120 (-46) .193 (-32) .092 (-37) .152 (-31) .211 (-26)
RAW .171 (18) .225 (2) .281 (-1) .138 (-5) .214 (-3) .285 (-0) .165 (14) .238 (8) .302 (6)
RPA .045 (-69) .101 (-54) .169 (-41) .064 (-56) .142 (-36) .233 (-18) .083 (-43) .170 (-23) .257 (-10)
RPM .037 (-75) .066 (-70) .097 (-66) .057 (-61) .117 (-47) .191 (-33) .072 (-51) .139 (-37) .205 (-28)
RPW .054 (-63) .121 (-45) .198 (-30) .066 (-54) .147 (-33) .240 (-16) .085 (-41) .178 (-19) .269 (-6)
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Table 5. Average ENER evaluation for DDF patterns and xi=0.1

Collection Model S** A** R** *A* *P* **A **M **W

20newsgroups
NB .108 .150 .149 .108 .163 .130 .138 .139
kNN .102 .111 .112 .090 .127 .110 .108 .108
SVM .144 .186 .188 .149 .196 .170 .179 .168

Reuters21578 115
NB .133 .105 .141 .141 .112 .125 .101 .154
kNN .125 .155 .155 .155 .135 .155 .116 .164
SVM .168 .161 .179 .162 .176 .163 .153 .192

Reuters21578
NB .157 .165 .174 .152 .179 .160 .147 .190
kNN .189 .213 .218 .194 .219 .218 .174 .228
SVM .238 .239 .245 .211 .271 .236 .211 .275

that the addition of documents without correct classes makes the SATC problem more
complex to solve, or at least that DDF metrics are less suited for this type of datasets.

Results also show that SAA (and SAW for 20-newsgroups because of the similar
qualities per class) is only suited for classifiers that do not normalise the scores per
document. SAA performs as a random ranker for this type of classifiers which include
the versions of NB and SVM presented on this paper. If the classification scores are
normalised per document (

∑
ci∈C s(d, ci) = 1), SAA produces the same difficulty,

independently of the document. Other very poor metric is AAM, because the highest
confidence based on difference is usually based on a very low (or even zero) score.
Therefore, the certainty computation will be uniquely based on this information.

Table 5 summarises the average quality for candidates sharing two strategies, with
ξ = 0.1 (arbitrarily chosen). For instance, S** averages the error reduction for every
variation using positive labels (this is, it encapsulates information about SAA, SAM,
SAW, SPA, SPM, and SPW). This analysis provides information about which strate-
gies are better for each level in different conditions, and it helps to understand some
of the previously reported results from a general perspective. For the evidence level,
the best strategy is the relative difference, independently of classifier and collection.
This result confirms our previous assumptions made for the RPA method [8]. The
class level illustrates that the selection of positive classes achieves good quality, as
long as the assumption that all the documents have at least one correct class is cor-
rect. Otherwise, all classes should be considered. The aggregation level shows that the
exploitation of quality estimation outperforms the other strategies for Reuters-21578
and Reuters-21578-115. All strategies perform similarly for 20-newsgroups.

5 Conclusions and Future Work

SATC represents a largely unexplored task within TC which is critical in environments
where high quality classification is needed, but resources are limited. Its main goal
is to achieve high quality with minimum human effort, minimising the potential cost.
This research introduces DDF, a document certainty framework based on classification
scores and class thresholds, and its application to SATC.

DDF generalises several methods by abstracting three different levels, specifying
how to manipulate the scores and thresholds to obtain a document certainty measure.
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Results show that DDF metrics achieve virtually perfect classification with as low as
50% of documents being classified. SVM is the best classifier for DDF and RAW is
its best overall variation, with the exception of Reuters-21578-115, where NB with
the SAW strategy is the best alternative. DDF outperforms all the previously proposed
methods in the literature for SATC. The strategy analysis shows that the best models
should include a relative difference of scores, and the exploitation of estimated class
quality. In addition, observing only the positive classes for a document achieves better
quality, but only if all documents belong to at least one class.

Future work will provide deeper analysis of the combination between difference
strategies, as well as their behaviour for different ratios of the collection. The com-
bination of DDF and the Utility-Theoretic Ranking method, and the combination of
DDF values as features for a meta-ranker are also interesting lines of research.
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Abstract. Considering relational tables as the object of analysis, meth-
ods to summarize them can help the analyst to have a starting point to
explore the data. Typically, table summarization aims at producing an
informative data summary through the use of metadata supplied by at-
tribute taxonomies. Nevertheless, such a hierarchical knowledge is not
always available or may even be inadequate when existing. To overcome
these limitations, we propose a new framework, named cTabSum, to
automatically generate attribute value taxonomies and directly perform
table summarization based on its own content. Our innovative approach
considers a relational table as input and proceeds in a two-step way.
First, a taxonomy for each attribute is extracted. Second, a new table
summarization algorithm exploits the automatic generated taxonomies.
An information theory measure is used to guide the summarization pro-
cess. Associated with the new algorithm we also develop a prototype. In-
terestingly, our prototype incorporates some additional features to help
the user familiarizing with the data: (i) the resulting summarized table
produced by cTabSum can be used as recommended starting point to
browse the data; (ii) some very easy-to-understand charts allow to vi-
sualize how taxonomies have been so built; (iii) finally, standard OLAP
operators, i.e. drill-down and roll-up, have been implemented to easily
navigate within the data set. In addition we also supply an objective
evaluation of our table summarization strategy over real data.

1 Introduction

Nowadays, modern technologies allow to collect huge amount of raw but poten-
tially very knowledgable data which are available at a very low level of gran-
ularity, e.g, sensor data, web logs. When facing this very detailed information
the domain expert might experience big trouble determining from where he/she
can start exploring these data. Actually, this data exploration is typically the
first step in any analysis process. Nevertheless, when the available quantity of
data is too abundant or the user is not so expert in the domain, this first step
is often problematic and automatic approaches can help to obtain some insights
about the way to effectively explore the data [4]. For instance, Explorative Data
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Mining (EDM) tools help the user in preliminary analysis giving him/her the
possibility to have a first meaningful view on the data. In this direction, it should
be noted that two orthogonal research problems might coexist. Assuming a re-
lational table setting, i.e., lines correspond to tuples whereas rows correspond
to attributes/dimensions, the former problem is related to deal with the curse
of dimensionality by the means of dimensionality reduction or aggregation [16],
whereas the latter problem deals with reducing the number of tuples while pro-
viding the user with still a very representative view of his/her data. In this paper,
we address the latter, i.e., the tuple reduction problem.

One way to manually deal with this tuple reduction problem is using data
warehouses coupled with OLAP engines [1]. These interactive tools allow the an-
alyst to aggregate and navigate through data by the mean of the drill-down and
roll-up operators that exploit, when available, the attribute hierarchies/taxono-
mies1. OLAP engines demand human supervision while an automatic way for
addressing this problem is supplied by the table summarization process (TSP)
[12].

The table summarization process (TSP) provides an aggregated representa-
tion of a relation table and thus helps the user familiarizing with the data.
Typically, TSP is particularly well adapted to the rapid development of mobile
devices, e.g., smart phones or tablets, since it enables visualizing data respecting
the screen size constraints imposed by the new devices generation [3]. To cope
with this issue, TSP can be exploited from smartphone devices to supply syn-
opsis (or summary) of relational data. In this work we focus our research on the
second issue and thus propose a new innovative table summarization algorithm.

Our work is essentially motivated by the following observation: data often
lacks of associated metadata information, e.g., attribute taxonomies. This lack
drastically limits the panel of possible approaches (OLAP, TSP) to use to reduce
the number of tuples. Indeed, both OLAP and existing TSP techniques assume
attribute hierarchies to be available. This assumption is clearly a strong con-
straint because most of the times such a hierarchical knowledge is not available
or may even be inadequate when existing. On the other hand, using inappro-
priate hierarchy can provide useless results since they can be too general and
bias the OLAP and TSP results. Thus, proposing techniques that are able to
meaningfully summarize huge quantities of data without leveraging any other
knowledge than the one provided by the data might be very useful for analysis
purpose.

Contrary to the previous techniques, our framework, called cTabSum, re-
laxes this constraint producing table summaries without needing any additional
information. The main advantage of cTabSum lies in its ability to automatically
generate contextual Attribute Values Taxonomies (cAVTs) and to use them to
automatically summarize the data. This original feature also allows our approach
to be used over relation tables where metadata information are too general or
do not fit the domain of investigation. An example of application can be rep-
resented by the visualization, over mobile device, of query results. cTabSum

1 In this paper we will use these two terms indistinguishly.
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can automatically aggregate query results exploiting data dependency. After
the performed aggregation, the summarized table can be easily visualized on a
smartphone screen. The final result of cTabSum is a summarized table that
can be considered as a recommended aggregation of the data. It can also be
considered as an entry point from which the user can start browsing the data
using drill-down and roll-up operators. The main contributions of our work are
the following:

– A general table summarization approach that can be applied over data ta-
ble where no metadata are available or metadata are too general for the
considered domain;

– The final result can be exploited as a starting point to browse and navigate
through the data;

– A prototype that integrates the cTabSum algorithm in an interactive and
easy-to-use environment. Drill-Down and Roll-up operators are implemented
to navigate data starting from the recommended summarization.

The rest of the paper is organized as follows. Section 2 presents the related
work and positions our contributions w.r.t. the state of the art. In Section 3 we
describe our proposal to produce TSP without any kind of metadata information.
An experimental evaluation over real data is carried out in Section 4. In Section
5 we present the prototype built over the cTabSum algorithm and how the user
can interact with the resulting summarized table. We also supply an illustrative
example with the purpose to realize a qualitative evaluation of our approach.
Section 6 concludes and describe some possible future works.

2 Related Work

A first approach proposed in the context of table summarization was presented
in [12]. This approach creates and maintains table summaries through row and
column reductions. To reduce the number of rows, the algorithm first partitions
the original table into groups based on one or more attribute values of the table,
and then collapses each group of rows into a single row relying on the available
metadata, such as the concept hierarchy. In [14] the SaintEtiQ is proposed.
This system computes and incrementally maintains a hierarchically arranged
set of summaries of the input table. SaintEtiQ uses background knowledge (i.e.,
metadata) to support these summaries. [2] proposed to work at the metadata
level to improve the final summarization and speed-up the whole process. The
strategy is based on a pre-processing of the original concept taxonomy in order
to obtain a more compact hierarchy. Once the reduced metadata is available it
is employed to perform the table summarization task. As we can observe, all the
previous algorithms exploit some metadata knowledge that compulsoliry need
to be supplied by the user. On the contrary, our approach is able to perform
and complete the process of table summarization without asking any additional
information to the expert. This characteristic allows cTabSum being much more
flexible and usable when no background knowledge is available.
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3 cTabSum

In this section we first introduce preliminary notations and then describe in
details the cTabSum framework. We define a table T as a set of tuples, i.e.,
T = {t1, t2, ..., tn}. Each ti is described over a set of attributes A1, . . . , Am, i.e.,
ti ∈ (dom(A1)×dom(A2)× ...×dom(Am)). Given 1 ≤ i ≤ n and 1 ≤ j ≤ m, Tij

denotes the value of the attribute Aj in the ith tuple of T . Given an attribute
Aj , V is a partition over the values of that attribute such that ∀v∈V v ⊂ Aj and
∀v,w∈V v ∩w = ∅. The partition V induces a generalization of the attribute Aj .
More precisely, given a value ajk ∈ dom(Aj) (ajk is the k-th value of the attribute
Aj), it exists a value v s.t. ajk ∈ v. For instance, given an attribute taxonomy over
Aj , the ancestor of an attribute values can be seen as a generalization of it. The
objective of the TSP is to find a summarized table s(T ) = {g(t1), g(t2), ..., g(tl)}
s.t. each g(tb) (generalized tuple) cover at least k tuples of the original table T
and there are no overlap among the tuple set covered by generalized tuples.

3.1 Proposed Approach

Essentially the proposed strategy proceeds in two main steps. The first step
consists in building the cAVTs (one for each attribute Aj over which T is de-
fined). Leveraging data mining techniques, we can extract this meta-information
starting from the data [9]. The second step performs the table summarization
strategy. The algorithm uses the previously calculated cAVTs to generalize the
data. To do so, a new approach that exploits a criterion coming from informa-
tion theory to evaluate the quality of the possible solutions in the search space is
proposed. Similarly to [2], cTabSum also requires a parameter k but it avoids
any metadata information (taxonomies) as input.

The TSP extracts a summarized table with the constraint that each gen-
eralized tuple must cover at least k tuples of the original table, where k is a
user-defined parameter. The table summarization task can be related to the
k-anonymity problem[15]. While the algorithmic approaches could be similar,
the final results are different in spirit. TSP supplies an informative compression
of data to allow exploratory analysis in contrast to the k-anonymity purpose
which aims at hiding some sensitive information. Another difference is that ta-
ble summarization is performed for all the attribute of the data table while
k-anonymization involves only the set of attribute composed by quasi-identifiers
(sensible attributes).

3.2 Table-Summarization Quality Criterion

The TSP task can be seen as a search problem in which we want to find, if
possible, the best compression of the original table taking into account the con-
straint k. This best compression also implies to have the minimum information
loss w.r.t the original data. Thus, when facing with a set of possible intermediate
solutions, it is needed to understand which one should be chosen. In the field of
data compression, information theory measures are normally used to evaluate,
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given a model, the gain in compression (and information loss) w.r.t. the uncom-
pressed data [13]. As our final goal is to obtain a summarization of the original
table, these kind of measures can be very suitable. Particularly, to evaluate how
much information is lost during the summarization process, we employ the non-
uniform entropy [7]. The non-entropy measure, that we call InfoLoss(T, s(T )),
is defined as follows:

InfoLoss(T, s(T )) =

n∑

i=1

m∑

j=1

− logPr(Tij = ajk|s(T )ij = v) (1)

where

Pr(Tij = ajk|s(T )ij = v) =
#{1 ≤ i ≤ n : Tij = ajk}
#{1 ≤ i ≤ n : Tij ∈ v}

The conditional probability Pr(Tij = ajk|s(T )ij = v) indicates how the subset
of original values of Aj are distributed w.r.t. their generalization induced by par-
tition v. The non uniform entropy measure (w.r.t. the classical entropy measure)
helps to better considering the distribution of the values belonging to the same
generalization.

3.3 Building CAVTs

An important step of our strategy is the automatic construction of the cAVTs.
To structure attribute values in taxonomies we exploit the approach proposed in
[8]. This technique allows to extract distances between each pair of values of the
same categorical attribute. Most in detail, given a categorical attribute Aj , over
which the database D is defined, it selects a set of other attribute strictly related
to it using correlation measure. This set of attribute is called context. After that,
it uses the distribution of the values of attribute Aj w.r.t. the attributes in the
context to infer a distance matrix that represents the distances between each
pair of values vjk, vjl ∈ Aj , where vjk is the k-th value of attribute Aj . Once the
point-wise distance matrix for Aj is available, it is used as input for standard
agglomerative hierarchical clustering[11] that produces the final cAVTs[9]. This
approach is very useful when the original hierarchies are not available or to
compare the induced taxonomies with the original ones understanding which one
fit the actual analysis. As the TSP process requires hierarchies to summarize the
original data, the cAVTs always supply this metadata knowledge. In particular,
given an attribute, any cuts of the corresponding cAVT results in a partition
of the domain of that attribute. Each of these partitions represents a possible
generalization that can be used in the summarization process.

3.4 Constructing the Summary

At this point we are able to extract attribute taxonomies directly from data
(cAVTs) and evaluate how far is a summary w.r.t. the original data (InfoLoss).
Now we need to design a strategy to navigate the search space defined over all
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the possible solutions. In this direction we design an algorithm for TSP following
the general idea presented in [5]. There are three big differences between the
proposed method and the one described in [5]:

1 cTabSum supplies a summary of the original data for exploratory purpose
while in [5] the final goal is the anonymization of the data following the
k-anonymity philosophy [15].

2 In [5] the goal is to preserve classification accuracy and for this reason the
class variable is used to guide the privacy preservation process. cTabSum
is designed for a totally unsupervised scenario where no class information is
available and the final goal is to compress the original data. To implement
this important difference, instead of the Information Gain used in the privacy
preserving strategy we minimize the Information Loss criteria based on Non
Uniform Entropy.

3 cTabSum does not require any metadata because it directly mines this
knowledge from the data relaxing the strong assumption on the availability
of such kind of information.

The general process is presented in Algorithm 1. It takes as input a value k
and returns a set of generalized tuples that describes the original table. The
parameter k indicates the minimum number of original tuples that need to be
covered by each generalized tuple in the final result. The search strategy is
performed by a top-down navigation over the space of possible solutions. The
top-down search starts from the top of all the attribute value taxonomies (the
coarsest granularity levels) and, at each step, tries to specialize and expand only
one attribute taxonomy with the function bestExpansion(T,H, x). This function
chooses to expand the cAVT that produces the minimum loss of information
evaluated by the Formula 1. Most in detail, for each attribute Aj the following
steps are performed: (i) generate all the possible expansions starting from the
actual frontier of the cAVT, (ii) choose the best expansion that minimize the
measure in Formula 1.

As the process is performed over all the attributes simultaneosuly, bestExpan-
sion(T,H, x) can expand any of the taxonomies at any node. This means that in
the final summarized table, for the same attribute, we can have a generalization
(partition) at different levels of granularity. Once that the actual expansion y
is chosen we evaluate both: the Information Loss w.r.t. the actual best solution
and the constraint supplied by k. If both conditions are satisfied, y is marked as
new best solution. At the end the algorithm returns the solution that minimize
the Information Loss and, at the same time, the constraint k.

cTabSum is implemented in a tool that has the same name and it is public
available at the url address: http://www.lirmm.fr/∼ienco/Dino Ienco Home

Page/cTabSum.html.

4 Experiments

In this section we draw some experiments to analyze the performance of our ap-
proach using real world data table. The approach has been implemented in Java

http://www.lirmm.fr/~ienco/Dino_Ienco_Home_Page/cTabSum.html
http://www.lirmm.fr/~ienco/Dino_Ienco_Home_Page/cTabSum.html
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Algorithm 1. cTabSum(T , k)

/* H is the set of cAVTs induced from T */
H = extractCAV Ts(T );
actualFrontiers = ∅;
Initialize x to the Summarization using the top value of each taxonomies in H;
actualFrontiers = actualFrontiers ∪ x;
InfLoss = Score(x);
result = x;
forall the x ∈ actualCuts do

y = bestExpansion(T, H, x);
actualFrontiers = actualFrontiers \ x;
actualInfLoss = Score(y);
if (actualInfLoss ≤ InfLoss AND y is valid w.r.t. k) then

InfLoss = actualInfLoss;
actualFrontiers = actualFrontiers ∪ y;
result = y;

end

end
return result;

and we carried out experiments on Mac OS X 10.6.8 with 4Gb of RAM and an i7
2.2GHz processor. Actually this task shares similarities to the k-anonymization
problem, in which each tuple of the anonymized table needs to represent at least
k tuples of the original table. For this reason we used the algorithm MinGen
presented in [15] as competitor to evaluate the performance of cTabSum. This
algorithmwas originally developed for the k-anonymity problem.We coupleMin-
Gen with the original available taxonomies. The algorithm needs two parame-
ters. The first parameter k is the minimum number of tuples indistinguishable
over the set of sensitive attributes (quasi-identifiers) [15]. The quasi-identifiers
are the attributes for which the generalization process is performed (and the
attribute taxonomies is demanded). The second parameter is the suppression
coefficient sc standing for the maximum number of tuples (in percentage w.r.t.
the size of the table) that the algorithm suppresses to obtain a k-anonymized
table. This parameter is not relevant for the table summarization task and it
has thus been set to 0. To evaluate the performance we use the Adult dataset2.
It is based on census data and has been widely used to evaluate classification
and k-anonymization algorithms. Here, the same settings as in [10] are used. We
obtain a dataset of 8 attributes. The attribute age is discretized in 8 equal-size
bins. Starting from this dataset we sample 10% of the original dataset obtain-
ing 4 522 tuples. As original hierarchies we use the taxonomies supplied in [10].
In our experiment we range the k parameter from 40 to 400 at step of 40. To
evaluate the quality of the compressed table we adopt the non-uniform entropy
measure (Formula 1). The idea is that a good k-anonymization (for this reason
also a good summary of an original table) is the one that minimizes the Infor-
mation Loss respecting the given constraints. As cTabSum generates attribute
taxonomies directly from the data, a satisfactory result could be to obtain com-
parable performances compared to the ones involving the original hierarchies.

2 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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Fig. 1. Information Loss of cTabSum and MinGen over the Adult dataset

In Figure 1 we observe the behaviors of the different approaches. Generally,
we can state that the two approaches have comparable performances. This is
a good point for cTabSum that automatically generates attribute taxonomies
from data. In particular for values of k lesser than 240 cTabSum obtains better
results in terms of Information Loss. This value of 240 influences seriously the
final summarization because for values above this threshold both algorithms
return summaries of only 4 generalized tuples to represent the original data
table. From an user point of view, this result can be useless due to the fact that
it compresses to much the original information. With values lesser than 240,
both approaches return more reasonable summarization composed at least of 8
tuples. These results can represent more reasonable starting points for an initial
explorative analysis of the data.

4.1 Assessing Summarization via Swap Randomization

In this subsection we evaluate how far the results of cTabSum are from random-
ness. A table summarization could be seen as a partition of the original tuples in
groups that share common characteristic w.r.t. the attribute taxonomies. In this
way TSP produces a clustering of the tuples constrained by metadata. Unfortu-
nately we do not have any background knowledge to evaluate the quality of this
partition. For this reason following the idea proposed in [6], we compare our re-
sults w.r.t randomized partition. Practically, given a table summarization result,
each generalized tuple represents a cluster of the original ones. Starting from this
clustering result, we swap at random, tuples between clusters obtaining random
partition. In the random partitions the marginal distribution given by the origi-
nal clustering are maintained. To evaluate the clustering solution we employ the
ZIP function always available over any OS. In particular we zipped each cluster
separately and we sum the size of all of them for a clustering solution in order to
obtain a value for each value of k. The value is expressed in Kb. Low values indi-
cate high compression rate that means a kind of structure inside the partitions.
We employ this kind of measure because because it naturally captures how good is
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the compression of the original table. The ZIP procedure also constitutes an easy
way to evaluate this quantity. Figure 2 shows the results. For each value of k we
generate 100 random clustering following the distribution induced by the result
of cTabSum and we report the average value. We avoid to visualize the standard
deviation because it is always smaller than 1kb. We can observe that the results
produced by cTabSum always give a lower size of the final ZIP files, this under-
line how the clustering induced by cTabSum contains a structure that can be
easily recognize by a compression algorithm as the one implemented by the ZIP
function.
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Fig. 2. Size in Kb of zip files comparing the group obtained by cTabSum and the
randomization result

5 The cTabSum System

As we have obtained interesting results from an experimental point of view,
our algorithm has been integrated in a prototype named cTabSum. cTabSum
is a standalone software written in Java. It is based on several open source
projects. First of all, it uses the Weka Data Mining Library to manage the data3.
More precisely, our system requires a file in ARFF format (Attribute Relational
File Format). In the GUI we integrate the JFreeChart Library4 to produce and
visualize 2D chart and the JUNG (Java Universal Network/Graph) library5 to
visualize attribute taxonomies.

Figures 3(a) and 3(b) show a screenshot of cTabSum. It illustrates an ex-
ample of result obtained by a TSP. It allows to choose a source file (in ARFF
format) and to set the value of the parameter k. In this example the Car dataset
was used with a parameter value, k, equals to 200. In this dataset each instance
is described over a set of discrete features (e.g., buying, safety, type, etc..). Once
the TSP is launched, the final table summarization result is shown in the bot-
tom part of the GUI. The result of the summarization process is displayed in

3 http://www.cs.waikato.ac.nz/ml/weka/
4 http://www.jfree.org/jfreechart/
5 http://jung.sourceforge.net/

http://www.cs.waikato.ac.nz/ml/weka/
http://www.jfree.org/jfreechart/
http://jung.sourceforge.net/
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(a)

(b)

Fig. 3. The cTabSum system

table that contains all the original attributes plus an extra attribute, Count,
to count how many original tuples are covered by each generalized tuple. The
∗ symbol indicates that the root level of the corresponding attribute taxonomy
is used, i.e., all the values are grouped together. In the proposed example, the
algorithm has found a solution that involves the specialization of only two at-
tributes: safety and type. Starting from this result the user can interact with the
data. The combo box in the top left part of the window allows to choose and
investigate a particular attribute of the dataset. In the middle of the window,
the cAVT can be visualized. In the tree visualization panel, two different types
of nodes coexist: triangle nodes represent group of two or more original values
while circle nodes represent group of only one attribute value.

In this example, we observe that the taxonomy associated to the attribute
Type is cut in a way to produce two groups of attributes: the left node with only
one value, unacc (unacceptable), and the right node that contains a group of
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three values, acc, good and vgood. The actual taxonomy cut can be also visualized
in the right bottom part of the interface in which each cluster is described with
its representative plus the enumeration of the attribute values that it contains
(clustering list). The user starts from this taxonomy cut to browse the hierarchy
using drill-own and roll-up operators. These operations modify the displayed
attribute taxonomy. The changes in the attribute taxonomy are propagated to
all the other components in the GUI, i.e., Generalized table and Cluster list.
In Figure3(b) the application displays the results after an user action over the
attribute taxonomy. We can observe that the user has expanded the taxonomy
Type thanks to a drill-down operation. It should be noted that this expansion
impacts on both the panels Generalized table and Cluster list that now displays
the current view of exploration. This means that the Generalized table panel
visualizes the generalized tuples correspondingly to the actual cut of the different
attribute taxonomies while the Cluster list shows the partition of leaves of the
selected attribute with respect to the considered level of granularity.

Another feature implemented in cTabSum is shown in the right upper side.
For each attribute, a 2D chart is plotted where the attribute values are positioned
in a way that preserves the relationships existing in the original point-wise dis-
tance matrix. When a user selects a new attribute from the combo box, both the
chart and the taxonomy are automatically updated to display information related
to the newly selected attribute. As an additional feature supplied by our proto-
type, when there some attribute in the dataset are numerical, cTabSum exploits
the pre-processing facility supplied by Weka and performs a discretization step
deriving 10 equal-width bins for each numerical attribute. In this way our sys-
tem is able to manage tables containing mixed attributes types. The cTabSum
implementation is available at the URL: http://www.lirmm.fr/∼ienco/Dino

Ienco Home Page/cTabSum.html .

6 Conclusion

The process of Table Summarization helps the analyst to have a first picture
of the data. In our work a new algorithm to perform table summarization
cTabSum is proposed. One of the main features of cTabSum consists in re-
laxing the strong assumption on the availability of attribute taxonomies. This is
realized mining directly the attribute taxonomies from the data. Associated with
the new algorithm we also developed a java prototype designed to fully exploit
the knowledge available in the data. It uses cTabSum to aggregate the original
data to supply (i) a more compact representation of them (ii) a starting point
from which the user can navigate the table. More precisely, starting from the re-
sult of our system, the user can browse, interact and modify the data summary
navigating through the attribute taxonomies performing both drill-down and
roll-up operations. In the future we plan to integrate cTabSum in open source
OLAP project (like Mondrian) in order to supply a sort of recommendation to
the final user to start his/her analysis. From an algorithmic point of view we
want eliminate the use of parameter k replacing it with a lower bound concerning

http://www.lirmm.fr/~ienco/Dino_Ienco_Home_Page/cTabSum.html
http://www.lirmm.fr/~ienco/Dino_Ienco_Home_Page/cTabSum.html


Knowledge-Free Table Summarization 133

the minimum number of generalized tuples the final result may contain. Finally,
the goal of our study is to summarize simple relational table, in which static
information appears. In a next step, summarizing more complex data, e.g., data
with temporal dimension, could be considered. In such a case, the generation of
cAVTs will be different and much complicated and require further investigations.
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6. Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining re-
sults via swap randomization. TKDD 1(3) (2007)

7. Gionis, A., Tassa, T.: k-anonymization with minimal loss of information. IEEE
Trans. Knowl. Data Eng. 21(2), 206–219 (2009)

8. Ienco, D., Pensa, R.G., Meo, R.: From context to distance: Learning dissimilarity
for categorical data clustering. TKDD 6(1), 1–27 (2012)

9. Ienco, D., Pitarch, Y., Poncelet, P., Teisseire, M.: Towards an automatic construc-
tion of contextual attribute-value taxonomies. In: SAC, pp. 432–437 (2012)

10. Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: KDD,
pp. 279–288 (2002)

11. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3), 264–323 (1999)

12. Lo, M.-L., Wu, K.-L., Yu, P.S.: Tabsum: A flexible and dynamic table summariza-
tion approach. In: ICDCS, pp. 628–635 (2000)

13. MacKay, D.J.C.: Information Theory, Inference & Learning Algorithms. Cambridge
University Press, New York (2002)

14. Saint-Paul, R., Raschia, G., Mouaddib, N.: General purpose database summariza-
tion. In: VLDB, pp. 733–744 (2005)

15. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans.
Knowl. Data Eng. 13(6), 1010–1027 (2001)

16. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Data Management Systems. Morgan Kaufmann (2005)



Predicting Your Next OLAP Query

Based on Recent Analytical Sessions

Marie-Aude Aufaure1, Nicolas Kuchmann-Beauger1, Patrick Marcel2,
Stefano Rizzi3, and Yves Vanrompay1
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Abstract. In Business Intelligence systems, users interact with data
warehouses by formulating OLAP queries aimed at exploring multidi-
mensional data cubes. Being able to predict the most likely next queries
would provide a way to recommend interesting queries to users on the one
hand, and could improve the efficiency of OLAP sessions on the other. In
particular, query recommendation would proactively guide users in data
exploration and improve the quality of their interactive experience. In
this paper, we propose a framework to predict the most likely next query
and recommend this to the user. Our framework relies on a probabilistic
user behavior model built by analyzing previous OLAP sessions and ex-
ploiting a query similarity metric. To gain insight in the recommendation
precision and on what parameters it depends, we evaluate our approach
using different quality assessments.

Keywords: OLAP, Query recommendation, User modeling.

1 Introduction

Online Analytical Processing (OLAP) systems allow users to explore and an-
alyze large volumes of data by formulating queries on multidimensional cubes.
Despite the flexibility, usability, and efficiency of modern OLAP systems, the
huge number of possible aggregations and selections that can be operated on
multidimensional data may make the user experience disorientating and frus-
trating, so that users may need a long time to achieve their analysis goals.

The approach we propose in this paper to tackle this problem is based on
a prediction of the most likely queries the user will submit next. We start by
observing that OLAP workloads tend to show different patterns depending on
the specific analytical tasks the user is performing. Our goal is to learn these
patterns and represent them in a probabilistic model of the user’s behavior; to
this end, we analyze the query logs of a user, we cluster queries using a similarity
metric, and we derive a Markov-based model of the user behavior. Using this
model, we are able to predict the most likely queries the user will formulate
next given the current query. Our approach takes a step towards improving the
quality of the user experience with OLAP systems in different ways. First, given
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c© Springer-Verlag Berlin Heidelberg 2013



Predicting Your Next OLAP Query Based on Recent Analytical Sessions 135

the current query in the OLAP session, a set of most probable next queries
can be proactively recommended to the user to guide her in analyzing the data
and prevent her from “getting lost” among multidimensional data. Secondly,
query recommendation could allow the average length of OLAP sessions to be
reduced because users are driven towards their analysis goal and can reach them
in less steps. Indeed, if a user is given a choice between different future queries,
she might be able to skip some steps and more quickly arrive at the expected
results. Thirdly, the OLAP cache manager can exploit the predicted queries for
estimating the benefits of a cached object for future queries. Using predictions,
the cache manager can also prefetch objects that are likely to be of interest for
future queries, which results in a reduction in latency time perceived by the user.

The rest of the paper is organized as follows. Section 2 gives an overview
of related work in OLAP query prediction and recommendation. Section 3 de-
scribes formally the query model we incorporate in our approach. Then, Section 4
presents the different steps for recommendation, i.e., query clustering and query
prediction based on a user behavior model, together with the query similarity
metric we adopt. In Section 5 we experimentally evaluate our approach, while
in Section 6 we conclude and give directions for future research.

2 Related Work

Recommending items of interest and queries has been intensively researched in
the domains of Information Retrieval [1] and search engines [2]. Recently, in the
database community, there has been an increasing interest in leveraging past
queries or query answers to assist interactive relational database exploration
[3–9]. The approaches proposed include past query browsing and/or searching
[7], query completion [6] and query recommendation [5, 8, 9]. Noticeably, auto-
matic query recommendation approaches either rely on the query answer and
database instance, which may lead to efficiency problem, or treat sessions as sets
of queries, overlooking the intrinsic sequential nature of the exploratory process.
A framework for recommending OLAP queries has been presented in [10], whose
authors group queries according to a finer similarity measure and then recom-
mend queries by matching logged sessions to the current session. To the best
of our knowledge, Promise is the first system applying predictive caching to
multidimensional queries aimed at reducing the execution time of OLAP queries
within a session [11]. Promise integrates a Markov model [12] where each state
corresponds to a discrete point of the timescale (i.e., only one state is active at
time t); a transition between two states corresponds to the probability to reach
the next state given the previously visited states. While [10] bases its recommen-
dations on a similarity metric and does not use a probabilistic model, Promise
probabilistically represents next queries, mainly for query prefetching and not
for recommendation. Besides, Promise use a coarse approach to group queries
(grouping by similar group by set, measure set and slicer). Our system tries to
combine both approaches by providing a probabilistic approach using Markov
models where the states are clusters of queries, grouped according to a finer
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similarity measure. Prediction models like the one used in Promise predict mul-
tidimensional queries based either on already visited queries (from query logs)
or on resources provided by experts during a conceptual modeling process [11].
Sarawagi’s work [13, 14] is a different, somewhat orthogonal approach, in the
sense that the goal is not to model the user’s querying behavior. Instead, users
are led to the “most surprising” unvisited parts of the cube, whatever their
past behavior was. Finally, Sarawagi leverages the query answers and the cube
instance, while the present work requires to know only the query expression.

3 Query Model

We consider in the following a multidimensional schema M =< L,H,M > as
defined in [15], where L is a finite set of levels, H a finite set of hierarchies
(each including a subset of levels), and M a finite set of measures. We work
with a basic form of OLAP query centered on a single multidimensional schema
and characterized by an aggregation and a selection expressed through a con-
junctive predicate. To be independent of the details related to logical design of
multidimensional schemata and to specific query plans, we express queries using
an abstract syntax. An OLAP query on schema M is thus defined as a triple
q =< g, P,Meas > where g is the query group-by set (including one level for
each hierarchy in H), P = {c1, . . . , cn} is a set of Boolean clauses, one for each
hierarchy, whose conjunction defines the selection predicate for the query, and
Meas ⊂ M is the measure set whose values are returned by the query. IPUMS
is a public database storing census microdata for social and economic research
(Minnesota Population Center, 2008). Its CENSUS multidimensional schema
has five hierarchies as shown in figure 1, namely RACE, TIME, SEX, OCCUPA-
TION, and RESIDENCE, and measures AvgIncome, AvgCostGas, AvgCostWtr,
and AvgCostElect.

Fig. 1. Roll-up orders for the hierarchies in the CENSUS schema

Then, a query expressed as “Income per occupations and state in 2013” would
have the following abstract representation:

q =

⎡

⎣
< State,AllRaces,Year,Occ,AllSexes >

{TRUERESIDENCE,TRUERACE, (Year = 2013),TRUEOCCUPATION,TRUESEX}
{AvgIncome}

⎤

⎦

We give the MDX formulation of the query for illustration purposes below. MDX
is a de-facto standard for querying multidimensional databases. Some of its dis-
tinguishing features compared to SQL are the possibility of returning query
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results that contain tuples with different aggregation levels and the possibility
of specifying how the results should be visually arranged into a multidimensional
representation.

SELECT

NON EMPTY {[Measures].[AvgIncome]} ON COLUMNS,

NON EMPTY Hierarchize(Crossjoin({ [Residence].[State],

[Race].[AllRaces],

[Occupation].[Occ],

[Sex].[AllSexes] }))
DIMENSION PROPERTIES

PARENT UNIQUE NAME ON ROWS

FROM ( SELECT {[Time].[Year].&[2013]}
ON COLUMNS FROM [CENSUS])

4 Query Prediction for Recommendation

This section presents our approach for query prediction for recommendation.
First we give an overview of the proposed architecture and we outline the query
similarity metric we adopt, then we explain the clustering and prediction steps
needed for recommendation. A sketch of the functional architecture we propose
is shown in Figure 2. After the user has formulated a query, the query processing
component is in charge of processing it and getting the results back from the
data warehouse. Each query issued by the user in a session will also be stored in
the query log. Based on the information available in the query log, the clustering
& learning module is responsible for dynamically determining the user behaviour
model (learning step) from the recognized clusters representing similar queries
(clustering). The user’s behaviour model, learned and updated by the clustering
and learning module, will then be used by the prediction module. It should be
noted that clustering and learning the user behavior model are done at regular
times offline, and then the model is consulted at runtime to predict the next user
query. Finally, the prediction module, guided by the user’s current query, is based
on the results from the discovery process previously stored in the past history
of user queries. From this data, the prediction module is able to recommend the

Query Processing

Prediction

Clustering

& Learning

Query Log

User Behavior
Model

Query Formulation

Data

Warehouse Recommendation

Fig. 2. Functional architecture for query recommendation
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next query. From the user’s behaviour model inferred by the learning module,
the prediction module will determine the user’s most likely future query. In order
to recommend queries to users, we build a behaviour model that predicts the
most likely next queries. The approach consists of 2 steps, the first being the
clustering of similar queries based on a query similarity metric. In the second
step we treat these clusters as states of a Markov chain model and compute the
probability of the most likely next state (i.e. cluster of queries). In the clustering
process, similar queries are grouped into clusters, as a way to reduce the size of
the history log and to be able to recommend similar queries. These clusters are
interpreted as states of a state machine, and the transition probabilities from
one state to another are calculated based on the history. The interpretation of
the current OLAP session as a trajectory of states allows to anticipate most
probable future states. In our approach, this process consists of estimating the
probabilities of moving from one state to other possible future states. The query
finally recommended is then the one that is most similar to the current query
and that is a member of the most likely next state, given the state the current
query belongs to. The state the current query belongs to is the cluster whose
members are on average most similar to the current query, again computed with
the query similarity metric. So the recommended query is the most similar query
in the most likely next state.

4.1 Query Similarity Metric

As shown in the previous section, our approach relies on a metric to compute
the similarity between OLAP queries both for clustering and predicting. To
be used in our context, a similarity metric must meet two requirements: First,
efficiency is required because, during the prediction step, the current query q
has to be matched to the closest state in the Markov model, so the similarity
between the current query and all the states in the model must be computed. On
the other hand, multidimensional databases store huge volumes of data, and as a
consequence OLAP queries can return large result sets. Extensional computation
of query similarity (i.e., made by comparing query results like in [16] and [17])
can thus pose serious efficiency problems. For this reason we use a metric that
computes query similarity at the intensional level, i.e., by only looking at the
query expressions. Second, the space of possible queries on a multidimensional
schema is large, there is little probability that two queries are really identical. So,
the metric we adopt should return a score and not a Boolean value like in [18].

We adopt as a metric for computing the similarity between two queries q and
q′ the one defined as σque in [15]:

σque(q, q
′) = α · σsel(q, q

′) + β · σmeas(q, q
′) + γ · σgbs(q, q

′) (1)

where σsel, σmeas, and σgbs represent respectively the selection, measure and
group-by set similarities as defined in [15], and α, β, γ ∈ [0, 1] are parameters to
be experimentally determined. A priori, the three terms in the equation are not
equally important. Based on a set of tests made with users, in [15] it is argued
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that the selection predicate is the most important in determining similarity be-
tween OLAP queries, followed by the group-by set; the least significant term is
the set of measures to be returned.

As an example we take two queries on the CENSUS schema specified as fol-
lows:

q1 =

⎡

⎣
< State,RaceGroup,Year,Occ,AllSexes >

{TRUERESIDENCE,TRUERACE, (Year = 2005),TRUEOCCUPATION,TRUESEX}
{AvgCostWtr, AvgCostElect}

⎤

⎦

q2 =

⎡

⎣
< State,RaceGroup,Year,Occ,AllSexes >

{TRUERESIDENCE,RaceGroup = Chinese, (Year = 2005),TRUEOCCUPATION,TRUESEX}
{AvgCostWtr, AvgCostElect}

⎤

⎦

For these queries, only differing in selection predicate, σque(q1, q2) = 0.95, taking
for simplicity equal weights for α, β and γ.

4.2 Clustering

The first step of our approach is the clustering of user’s queries. During different
analysis sessions, a user often expresses similar (but not identical) queries; for
instance, she may formulate queries with the same group-by set but on different
slices of data (which means, with different selection predicates). Indeed, as the
query log contains a trace of all queries formulated by each user, it is very
likely that some of them will be similar. The clustering algorithm is inspired by
standard density-based clustering methods (k-means with dynamic number of
clusters), but we define the clustering space as being build using the similarity
metric introduced in the previous section. The input to this step are the abstract
representations of the queries previously issued by the user, stored in the log.
The goal is to determine query clusters in such a way that the queries in the same
cluster are similar (in the sense of Section 4.2) to each other, and that queries in
different clusters are not similar to each other. We start with randomly selecting
a number of queries from the query logs, which will serve as the seeds for the
clusters (Listing 1.1 line 3). This random selection of queries ensures that the
clustering mechanism takes into account the density of queries over the query
space introduced by the query similarity metric. Then, we assign each query q in
the log (Listing 1.1 line 4) to the cluster whose queries on average have highest
similarity with q (Listing 1.1 lines 6-8). To avoid that clusters grow unlimited
in size, a cluster split rate is defined; when a cluster reaches a given number of
member queries, the cluster is split in two (Listing 1.1 line 9).

1 . i n t c l u s t e r s p l i t r a t e = t ;
2 . L ist<Query> qu e r i e s = r ead in ( ipums log . txt ) ;
3 . L ist<Cluster> c l u s t e r s = se l e c t random seeds ( nbOfSeeds ) ;
4 . f o r each Query q in qu e r i e s {
5 . f o r each Clu s t e r c in c l u s t e r s {
6 . c ompu t e av e r ag e s im i l a r i t y (q , c ) ; }
7 . Clu s t e r s e l e c t e d c =
8 . a s s i g n q u e r y t o c l o s e s t c l u s t e r ( c l u s t e r s , q ) ;
9 . i f ( s e l e c t e d c . s i z e ()> t ) s e l e c t e d c . s p l i t ( ) ; }

Listing 1.1. Clustering similar queries
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4.3 Learning the User Behavior Model

We model the querying behavior of each user in the form of a Markov chain,
where each query cluster (determined as explained in Section 4.3) is a state. The
series of states satisfies the Markov property, i.e., the probability of reaching a
state in the future, given the current and past states, is the same probability as
that given only the current state. This means that past states give no information
about future states. More precisely, if the system is in state x at time n, the
probability that it moves to state y at time n + 1 depends only on the current
state x and not on past states. The transition probability distribution can then
be represented as a matrix P , called a transition matrix, whose (i, j)-th element
is defined as follows:

Pij = Pr(Xn+1 = j|Xn = i)

The initial probability Pr(Xn+1 = j|Xn = i) is 1
m , where m is the number of

states that can follow the current state. In our case, each state corresponds to a
cluster of queries, giving as value for m the initial number of clusters that were
identified in the clustering step.

The probability Pr(Xn+1 = j|Xn = i) could be updated by counting how
often query qj is preceded by query qi and dividing this number by the total
number of queries that were observed as following query qi. This means however
that the past is as important as the present. In the OLAP context, the series
of queries a user performs will typically evolve over time. So, if the log includes
for instance the queries performed by the user during the last six months, it
is reasonable to have more recent queries having relatively more influence on
the user behavior model than older ones. To this end, the transition probability
function should be updated in such a way that recent transitions have more
relevance than older ones, which we do using an exponential smoothing method:

Pij = ρ× xj + (1− ρ)P ′ij

where P ′ij represents the old probability and xj ∈ {0, 1} is the value for the choice
taken at query qi with respect to query qj . If xj = 1 then qj was executed after
qi, if xj = 0 it was not. Using this method, the sum of all outgoing probabilities
remains 1, as required for a transition probability matrix. The learning rate
ρ ∈ [0, 1] is a real number that controls how important recent observations
are compared to history. If ρ is high, the present is far more important than
history; in this setting, the system will adapt quickly to the behavior of the user,
which can be necessary in a rapidly changing environment or when the system is
deployed and starts to learn. In a rather static environment, ρ can be set low. In
conclusion, by incorporating the learning rate, we make sure the user behavior
model is dynamic and evolves together with changing habits or preferences of
users.

The algorithm for learning the user behavior model is shown below. Based
on the clusters of queries that were obtained in the clustering step (Listing 1.2
line 1) and on the query log (Listing 1.2 line 2), a transition probability matrix
(Listing 1.2 line 3) is constructed expressing the probability of going from each
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cluster to each other cluster. For this, each query qi and qi+1 in the log is
considered (Listing 1.2 line 4). We check to which clusters qi and qi+1 belong to
(Listing 1.2 line 5-6) and update the probabilities in the transition probability
matrix accordingly (Listing 1.2 line 7).

1 . L i s t<Cluster> s t a t e s = g e t q u e r y c l u s t e r s ( ) ;
2 . L i s t<Query> que r i e s = r e ad i n ( ipums log . txt ) ;
3 . f l o a t [ ] [ ] t r a n s i t i o n ma t r i x = new f l o a t [ nb ] [ nb ] ;
4 . f o r each Query q ( i ) and q( i +1) in que r i e s
5 . C lu s t e r p = a s s i g n qu e r y t o c l u s t e r ( q ( i ) , s t a t e s ) ;
6 . C lu s t e r q = a s s i g n qu e r y t o c l u s t e r ( q ( i +1) , s t a t e s ) ;
7 . update probs ( t r an s i t i o n ma t r i x , p , q ) ;

Listing 1.2. Learning the user behavior model

Once the user behavior model has been constructed, it can be exploited to rec-
ommend a next query to the user. Given the current user query, we identify to
which state (i.e. cluster of queries) in the Markov model this query is closest to
by computing the average similarity between the current query and each state.
This similarity is equal to the average of the similarity between the current user
query and the queries contained in the state. Since the similarity metric we use
computes its value intensionally and not extensionally, this is computationally fea-
sible. Once we have identified the appropriate state, the Markov model gives us
the most probable next state by looking in the transition probability matrix for
the highest probability on the row corresponding to the matching state. In this
most probable next state, we retrieve the query that is most similar to the current
query, and propose this one as the query predicted for recommendation. For exam-
ple, given the current user query is query q2 introduced in section 4.2, we identify
the most probable next cluster from the transition probability matrix. This most
likely next cluster turns out to have probability 0.36, which value gives us good
confidence in the correctness of the prediction (as will be discussed in the next
section). In this cluster, we select the query q3 most similar to q2 for recommen-
dation, which is shown below. Query q3 differs from q2 by adding the SumCostWtr
predicate.

q3 =

⎡

⎣
< State,RaceGroup,Year,Occ,AllSexes >

{TRUERESIDENCE,RaceGroup = Chinese, (Year = 2005),TRUEOCCUPATION,TRUESEX}
{AvgCostWtr, AvgCostElect, SumCostWtr}

⎤

⎦

5 Experiments and Evaluation

We evaluated our approach using a synthetic dataset of log traces of MDX
queries, with the goal of answering the following questions: 1) How does the
error rate evolve and is influenced by the cluster split rate (i.e. the average size
of clusters). 2) How much does the error rate improve when using a threshold
for the prediction probability P in considering to recommend.
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To the best of our knowledge, available public dataset logs like the one used
by [19] do not correspond to an OLAP query log in the sense that they do not
have a multidimensional schema, and the SQL queries in these logs cannot be
seen as OLAP queries. In particular, the vast majority of them does not have
grouping and aggregation, and therefore do not fit our OLAP query model.
Therefore, we opted for generating synthetic datasets for experimentation. The
synthetic dataset consists of query session logs that were generated considering
a specific policy, using the IPUMS CENSUS multidimensional schema. In a first
step, random queries were generated and grouped together according to their
similarity. This allows for a broad coverage of the space of possibe queries since
there is a distance between the groups. Each group corresponds thus to one type
of session. In a second step, we generate a number of sessions for each group,
queries in the group acting as seeds. For this we select at random a query A and
a query B in a the group, A being the start query of the session and B being the
last query of the session. The shortest OLAP path (series of OLAP operations)
between A and B is calculated and each OLAP operation is translated into one
OLAP query, as such generating the session. While the specific queries contained
in the path from A to B are fixed, variance was introduced in the order of the
queries to obtain more realistic sessions. We used 75% of this dataset for training
purposes to build the user behavior model, and 25% as a testing set to perform
the evaluation.

In order to gain insight in the performance of the query prediction in terms of
correctness, we propose in this section a set of metrics. The evaluation procedure
for our approach consists in requesting a prediction (based on the current query)
and comparing its correctness with the actual next query. By doing this for
a series of queries, we get an overall view of prediction correctness. First, we
compare the predicted and actual query incorporating the similarity measure
σque(q, q

′) defined in section 4, taking for q1 the predicted query qpred, and for
q2 the actual next query qact. Then, we define the probability of correctness P ,
which is the probability of the most likely prediction, i.e. the query which has the
highest probability of being executed next according to the prediction model. In
statistics, this corresponds to the confidence one has in a classification.

The performance of the prediction approach can then be assessed by using
the following metric:

S =
1

n

n∑

t=1

πt

where πt equals σque(q, q
′) at time t. Since the main goal of predicting the next

query is to be able to proactively execute it, we consider that even if the predicted
and actual next query are not exactly the same, largely similar operations will
be performed and facts prefetched. Therefore, we do not choose the give πt a
value of 0 or 1 exclusively, but to allow for an inexact match between queries by
using the value σque(q, q

′). A variant of this metric is the thresholded S, being St,
where only predictions are taken into account that have a probability P above a
threshold (which we fixed at 0.3). Figure 3 shows how S and St evolve according
to the cluster split rate.
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Fig. 3. S and St in function of cluster split rate

In addition we evaluate the recommendation mechanism by using the following
metrics:

– Standard error rate Es: This corresponds to an unweighted error rate being
the proportion of incorrect predictions over all predictions performed.

– Error rate with threshold Et: The same as the standard error rate, taking
into account only the predictions which have a probability of correctness
above a threshold.

– Coverage C: This metric is defined as the proportion of items (i.e. queries)
for which it is possible to do a recommendation. In our case, we consider it
possible to perform a recommendation in case the probability of correctness
of the predicted query is above a threshold.

It should be noted that P , the probability of the prediction, can be used to take
a decision on whether to effectively execute the predicted query proactively or
not. By setting a threshold for P , only queries that are predicted with rather
high confidence can be executed, minimizing the risk of executing a wrong query
and thus wasting resources. The threshold for P is thus useful in deciding on
the quality of an individual concrete prediction. On the other hand, the metric
Et tells something on the general performance in terms of correctness of the
prediction approach.

Experiments (see figure 4) show that for a cluster split rate of 2.5 the error rate
Es is 0.44, which is too high for prefetching purposes but could be considered
for recommendation purposes. However, if we introduce a threshold T of 0.3
on the probability P of the predictions, the error rate drops to 0.12, which is
more acceptable. It should be noted that 26% of predictions were done with a
probability of 0.3 or higher. The value of the treshold T is of great importance
and influences the success of prediction. When setting it too low (e.g. T=0.2),
the error rate increases significantly by 10 to 20%, depending on the number of
clusters. When setting T too high (e.g. 0.4), the number of predictions satisfying
a P above the treshold decreases dramatically. Moreover, the figure shows that
at a cluster split rate of 2.5, Et stabilizes for lower values of the split rate. The
only difference is that when the split rate goes to 2, a more and more lower
proportion of predictions satisfies the threshold T, which means the coverage
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goes down, as can be seen in figure 4. For example, at split rate 2.5, 24% of
predictions satisfies T, while at split rate 2.0, this is only 15%. This leads to a
choice of balance between Et and C because the lower Et, the lower also the
ability to do recommendations. Since minimizing Et is most important to avoid
giving erroneous recommendations to the user, and since Et stabilizes at a split
rate of 2.5 while having a coverage of 24%, we identify this point as optimal.

Fig. 4. Es, Et and C in function of cluster split rate

6 Conclusion and Future Work

In this paper, we proposed an approach to query recommendation that combines
a probabilistic user behavior model with a query similarity metric. Instead of only
relying on the similarity of queries to do a recommendation, the incorporation of
the probability of a predicted query allows to define a threshold to decide on the
trust one can have in the prediction. Introducing the threshold allows to avoid
faulty predictions, improving the quality of experience for the user and avoiding
waste of computational resources, while keeping the coverage at an acceptable
level. Preliminary evaluation of the approach on a synthetic dataset makes us
confident that the recommendation mechanism can provide added value to users
in guiding them through their OLAP sessions. As for future work, our goal is to
perform an evaluation involving real OLAP users, introducing subjective metrics
to gain insight in how appropriate the recommendation is perceived by users.
Also, the Markov-based user behavior model will be extended to include in the
prediction process not only the current user query, but also characteristics of
the whole current OLAP session. Finally, taking into account the n previous
queries in doing prediction (higher-order Markov chains) will be investigated as
an extension to our approach.
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Abstract. The technological advances in smartphones and their
widespread use has resulted in the big volume and varied types of mo-
bile data which we have today. Location prediction through mobile data
mining leverages such big data in applications such as traffic planning,
location-based advertising, intelligent resource allocation; as well as in
recommender services including the popular Apple Siri or Google Now.
This paper, focuses on the challenging problem of predicting the next
location of a mobile user given data on his or her current location. In
this work, we propose NextLocation - a personalised mobile data mining
framework - that not only uses spatial and temporal data but also other
contextual data such as accelerometer, bluetooth and call/sms log. In
addition, the proposed framework represents a new paradigm for privacy-
preserving next place prediction as the mobile phone data is not shared
without user permission. Experiments have been performed using data
from the Nokia Mobile Data Challenge (MDC). The results on MDC
data show large variability in predictive accuracy of about 17% across
users. For example, irregular users are very difficult to predict while for
more regular users it is possible to achieve more than 80% accuracy. To
the best of our knowledge, our approach achieves the highest predictive
accuracy when compared with existing results.

1 Introduction

Next place prediction is a particular problem of location prediction where the
challenge consists of predicting the next location of a mobile user given his
current location [13,10]. Most existing work models next place prediction as a
classification problem, where spatial and temporal data is used for training.

However, issues such as the integration of other rich contextual data, available
on smartphones nowadays such as accelerometer, bluetooth and call/sms

logs have not been seriously investigated. In addition, most existing approaches
focus mainly on the classification problem assuming the data is in a centralised
server while other problem specific issues related to user behavioural changes,
privacy, data management and scalability have not been explored in-depth.

To address these issues in this paper, we propose NextLocation - a novel inte-
grated framework for the next place prediction problem - that predicts the next
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location using only current location and contextual data for each mobile phone
user. NextLocation learns an “anytime” classification model which incorporates
past data to predict the next place in an incremental manner. It enables greater
personalisation and privacy while bringing the whole learning process on-board
the mobile device. Moreover, in addition to spatial and temporal information, the
proposed approach combines other context information available on the mobile
device. The main advantages of the NextLocation for next place prediction are:

– Privacy-preserving, as it allows the user to be in control of their personal
data. Using NextLocation for mobile data mining, personal mobile phone
data is not shared with an external party without permission.

– Reduced communication overheads in terms of bandwidth as well as bat-
tery drain, since local processing is usually less expensive than wireless data
transfer [15].

– Dynamic instead of static model building facilitates the model adaptation
so that the current up-to-date user behaviour is reflected.

– Allows personalised online estimation of the next place predictive accuracy.
– Enables an alternative business model where advertisement providers can

push content that is relevant to a certain location and the user only receives
it when he is about to visit that location.

The rest of the paper is organised as follows. The following Section reviews the
related work. Section 3 presents next place prediction as a classification problem,
which is followed by a detailed description of the feature engineering from Nokia
Mobile Data Challenge (MDC) in Section 4. The proposed approach for next
place prediction (NextLocation) is presented in Section 5. The experimental setup
and results are discussed in Section 6. Finally, in Section 7, conclusions of this
work as well as ideas for future work are presented.

2 Related Work

Location prediction assumes that mobile sensor observations from wireless local
network (Wi-Fi), Global System for Mobile Communications (GSM), Global
Positioning System (GPS) are available. The prediction task consists of using
such data to know and understand the user’s current location. The research on
mobile user visiting behaviour, can bring additional value to different domains,
such as mobile advertising, resource allocation and disaster relief.

In this work, we are interested in a related but more challenging location
prediction problem, which aims to predict the next location without knowing in
advance the readings from future sensor data. In general, the mobile data used
for the next location problem consists of the historical information about the
visit sequences and associated context information (for example, timestamps,
accelerometer, bluetooth and call/sms log) from these visits.

There is extensive research on the problem of predicting future locations.
Most of such work creates a model based on frequent patterns and association
rules from a history of user/collective trajectories as an ordered sequence of
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locations that are timestamped [13]. Other sequential learning models such as
Hidden Markov Models [12], Conditional Random Fields [14] and Particle Filters
[2] have been also applied to this problem. However, the problem addressed in
this paper is different because, for any user, the prediction of the next location
assumes only knowledge about the current location (without data about previous
locations). This limited/reduced history makes our problem more general as it
is not unusual to have gaps in mobile sensor data. Gaps refer to significant time
periods where the mobile phone is not collecting data (for example, when the
mobile phone has run out of battery).

Recently the Nokia Mobile Data Challenge (MDC) released a large dataset
for research and one of the dedicated tasks consisted of next place prediction
[10]. From this MDC challenge, several approaches were able to predict the next
place with high accuracy [1,18,5,11,17]. The proposed approaches focused on
learning a model for each user which captures the spatio-temporal trajectory
of user visits. Significant effort was dedicated to feature engineering for each
approach.

Still, two main issues remain relatively unexplored in the literature of next
place prediction. First, privacy issues arise from using such data, although there
are efforts in the direction of anonymization [10]. Second, rich context informa-
tion can be exploited for personalisation. In this paper, we try to address these
issues by proposing a mobile data mining framework that does not require the
raw data to be disclosed and that the model built is highly personalised.

3 Next Place Prediction: Definition

First let us assume we are interested in finding the next destination of a single
user when (s)he is still at the current location. It is easy to generalise from this
problem to multiple users. Consider L = {l1, ..., ln} to be the set of values of
visited (for a minimum time threshold) spatial locations, the T = {t1, ..., tn} to
be the set of timestamps and C = {c1, ..., cn} to be the set of context information
where ci represents itself a set of attribute value pairs that are in available at ti.
This context information is usually the data available in the user’s mobile phone
and can be collected from the accelerometer, bluetooth, call/sms log, wlan
(Wi-Fi) or phone status (consider that for some users charging the phone is
only performed at certain locations).

Given a series of historical visits to different locations in the past, that consti-
tutes the data available for trainingH = {(L,C, T )} = {(l1, c1, t1), ..., (lk, cj , tj)}
and the context C = ctx(ti) at T = ti of the latest location L = loc(ti), the next
place prediction problem can be formulated as finding the most likely location
argmaxl∈L(p(Lnext = l|T = ti, C = ctx(ti), L = loc(ti)))

Please note that the prior only considers the current location and not the
past location or a sequence of previous locations as is usually modelled using
Hidden Markov Models (HMM) [12] or Conditional Random Fields (CRF) [14].
The reason for this is simple, it is not always possible to have a sequence of visits
without gaps, therefore, we prefer to define the more general problem where we
are able to make a prediction if we know at least the current location.
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In Section 6 we will describe in detail a particular instantiation of the problem,
the associated feature engineering process, and report and discuss the results of
our experiments with real data.

4 Mobile Data Challenges

In this section, we discuss the challenges that come from collecting mobile data
for the next place prediction problem. Understanding the whole data process
and its requirements allowed us to design and explore the alternative solution
proposed in this paper. The following subsections describe what we consider
some of the challenges that need to be addressed to transform the data available
in the mobile phone so that it can be used to induce a model useful for next
place prediction as previously defined.

Location Detection. The raw data of each user’s location is usually estimated
based on GPS andWi-Fi that is then transformed into a semantic place (for exam-
ple, workplace, home, or restaurant)which capturesmost of themobility/location-
based information without including the actual geographic coordinates/access
points. Moreover, information from social networking services that support loca-
tion, such as Four-Square, Facebook or Google Latitude already allows the user to
‘check in’. These services already include automatic location detection which can
be leveraged to create or enrich the temporal series of semantic locations, that we
require for next place prediction. Therefore, this paper will not focus on seman-
tic place (for example, place tagged as home, workplace, or transportation place)
prediction but on next place prediction as we formally define in Section 3.

User Specificity. Next place prediction is a user specific problem as the set of lo-
cations visited is personal and even if this set might overlap among different users
the trajectory of user visits to different locations is most likely unique. It is there-
fore, hard or impossible to accurately learn joint models over multiple users as can
be performed in other classification tasks such as activity/speech recognition. The
challenge of user specificity motivates the use of a personalised model.

Evolving Data. The user movement behaviour might change over time. For
instance, changing house/city/country/workplace can have a profound impact on
the most recent movement pattern. Therefore, we propose that modelling should
be adaptive and the usage of an incremental anytime model, that incorporates
new information and forgets old outdated information. Moreover, the model
should incorporate novel locations seamlessly.

Sparse and Missing Data. It is possible to have missing data or gaps in the
sequence of visits to particular locations. This is the main reason that led us to
formulate the next place prediction problem considering only the current loca-
tion and not a sequence of past locations that precede the current location in
time. This challenge is related with model evaluation as the number of obser-
vations (evidence that from location li the user moved to location lj) and how
representative they are of user mobility patterns will have a high impact on the
accuracy of the learnt model.
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5 Next Place Prediction: NextLocation

The framework proposed in this paper, that we call NextLocation, models next
place prediction as a classification problem. However, instead of executing the
traditional learning process (i.e., data collection, data transfer, model building,
model deployment), we create an integrated framework that is executed on the
mobile device itself.

One key innovation of NextLocation is that it preserves user privacy as it
allows the building of a model for next place prediction without disclosure of
private user data. Such framework gives the user control over who can use the
model’s results (i.e., the next location predictions) without disclosing the real
locations visited and associated context data.

Figure 1 illustrates the NextLocation learning process and its components. We
can see that the pre-processing component, anytime model, and accuracy esti-
mator play a central role in the proposed framework. Each of these components
performs the following:

– Pre-Processing - the raw data must be pre-processed/transformed for next
place prediction. Here, the location data from a visit is enriched with other
context information. The pre-processing component only requires to keep a
short term sliding window of data (i.e., current and previous visit). When up-
dating the model, the data represents the previous visit location and its con-
text information, and the target variable (to predict) is the current location.

– Anytime Model - must be able to integrate new information as it is available
(such as new visits) and must also be able to predict the next location. Any
classification algorithm that learns incrementally can in principle be used
in this component to create/update the anytime model. Moreover, these
algorithms are light-weight and can be executed using the computational
resources usually available on current smartphones. However, it is beneficial
if the algorithm can adapt the anytime model when there is evolution in the
observed data.

– AccuracyEstimator - comparing the anytimemodel predictionwith the actual
destination allows us to keep an estimate of next place prediction accuracy.

Past data can be discarded once it is incorporated into the anytime model,
consequently, the memory consumption of the NextLocation learning process is

Fig. 1. NextLocation: framework overview
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very low compared to approaches that require all data to be collected beforehand
and processed in batch mode.

Adapting the Model.Given the issue of data evolution it is important to adapt
the anytime model. For instance, adapting the model to a new living environment
that causes a change in the user mobility patterns. In such situations it is likely
that the most recent past represents the activities of interest and less importance
should be given to older records that represent past behaviour.

On-line Model Evaluation. As part of the proposed framework we keep an
estimate of the anytime model accuracy online. Here we briefly formalise the
evaluation procedure. The prequential-error [4] is computed based on an accu-

mulated sum of a loss function L between the anytime model prediction l̂i and
the location that is visited next li.

6 Experimental Evaluation

This section describes the experiments that were performed to evaluate Next-
Location approach feasibility and accuracy. The data used in the experiments
has been released for the Nokia Mobile Data Challenge (MDC) [10], and was
collected from the smartphones of almost 200 participants over the course of
over one year in a real world environment.

There was a significant effort for data transformation/feature engineering.
We used a total of 70 features including: 11 temporal features, 8 accelerometer

features, 2 bluetooth features, 23 calllog (call/sms) features, 20 visit related
features, 6 system features.

6.1 Nokia MDC Dataset

The MDC data was collected on a 24/7 basis over months. In the Dedicated
Track of this competition, which included the task of next place prediction, the
raw location data is transformed into the sequence of visits to symbolic places.

The users in MDC data are sampled into three separate sets. The training
data set (called setA) consists of mobile phone data collected from 80 persons
during a period of time varying from a few weeks to two years. The unseen
data for each participant in setA is used to build the test data set (called setC),
where the unseen data corresponds to the continuation of setA (in time). The
setC ground truth was never released after the challenge. However, the validation
set (called setB)was released and is used to evaluate the results. The validation
set contains visits that were randomly chosen from the last part of setA (in
time). The validation set was built by filtering data in setA with time intervals
corresponding to the randomly chosen visits.

For the MDC challenge, participants were free to estimate the context from all
the available data within a determined time interval (i.e., current location corre-
sponding to a visit in a place). The visits were timestamped with the start/end
point entering/leaving the location visited. Trusted visits (provided with raw
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features in the form of trusted start, trusted end in the visit sequence tables)
are more reliable than untrusted visits. For this task only visits where the mo-
bile user stays in that location for 20 or more minutes are considered. Moreover,
information about whether the transition for that visit location is to be trusted
or not is available (i.e., reliable sensor data).

The MDC database has 5 main types of data: environmental, personal, phone
usage, phone status, and visits data. This data is represented across 18 tables,
with more than 130 raw attributes, and is approximately 50 GB in size. A
detailed description of the data collection campaign is available in [10].

A significant challenge that we observed when working with this data, was the
fact that while some users had highly regular patterns of movement, for some
users there was significant variability. Clearly, the former mobile users have a
higher predictability of movement, than the latter. This is further compounded
by the fact that some mobile users have significantly more data than the others
(though it must be said that more data does not necessarily in this case imply
higher predictability).

6.2 Data Transformation

In the MDC dataset the transformation of raw location data into a sequence
visits (each visit is more than 20 minutes as provided in the challenge) to sym-
bolic places was already processed. The timestamped visit sequence is the key
data for next place prediction and is similar to what has been proposed in [16].
However, other context information that might be used to improve the predictive
performance needs to be derived from the raw data associated to those visits.
In our experiments we ended up with 70 features. In this section we describe
our feature extraction process. We would like to note that these features were
all calculated per user and using a sliding window approach, that is, the raw
data is processed locally and then discarded without the need to keep all the
information in main memory. A frequency table with statistics (e.g. number of
visits on particular temporal periods) about the different locations is also kept
to calculate more sophisticated features (such as from bluetooth).

Temporal Features. From the start and end timestamps of a particular visit
several temporal features were generated. The duration of the visit, the day of
the week, weekend or workday, period of the day in two different sets: (AM/PM)
; (morning, afternoon, evening, night); hour of the day (0h-24h). These features
can be calculated from both the start and end timestamps.

Phone Status Features. Several types of data about the phone status and
the phone operating system was recorded. From this data we derived features
to capture the phone status that was characteristic of the visit to a particular
location. The most frequent profile (general, silent), the most frequent ring tone
used (normal, silent), minimum and maximum battery level, phone charging
status, maximum inactive time.

Phone Usage Features. From the phone usage, we consider the information
available in the call log, in particular, the most frequent number. We expect that
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this might help us to capture situations where our next destination is highly cor-
related with receiving a certain call or text. Usually, before a mobile user leaves
the current location for the next destination, the last call or SMS can be quite
predictive of the next destination (for example, the mobile user calls the person
who (s)he will meet later in the next destination). The features generated were
the most frequent number: overall, in a call, in a text, in an incoming/outgoing
overall, in an incoming/outgoing call, in an incoming/outgoing text, missed call,
and the same features calculated but instead of the most frequent the last obser-
vation (e.g., last number called, last text sent ). From the last call we calculate
its duration and if it is an incoming or outgoing call. In addition, we calculate
the number of: missed calls, incoming/outgoing calls, incoming/outgoing texts.

Environmental Features. For the environmental features we explored data
from 4 different sensors, accelerometer, bluetooth, wlan and gsm. However,
since the data is anonymized per user it was impossible to capture information
across users. For instance, if two users are in contact with the same GSM tower
or Wi-Fi access point the hashed values or the corresponding cell tower ID and
access point mac address will appear different despite being the same physical
object. Therefore, we used information that is personalised and for which the
hash key matches to the same object that might capture some useful information
to the mobile user destination. As environmental features we used:

– bluetooth: Similarly to the motivation behind the features we have gener-
ated from the call log we tried to understand if there is a certain bluetooth
device nearby that influences the next place. We generated one feature that
requires some statistics about the current location and observed bluetooth
mac addresses for the location. The process tries to calculate the likelihood
that a certain mac address in the current location is associated with a par-
ticular destination.

– accelerometer: Accelerometer features that might help to characterise the
activity at a given location [6,7]. This captures a different type of activity
compared to the phone status inactivity feature. For instance, there might
be situations with no interaction with the phone but since the phone is being
carried by the mobile user the accelerometer registers movement. In other
situations, the accelerometer registers no movement at all. The features used
are: the minimum, maximum, average and standard deviation of the 3 axis
accelerometer vector norm captured during the whole visit period and during
the last 10 minutes.

Frequency Tables. Finally for situations where the amount of data of a given
user is scarce, we keep a simple frequency table of the most frequent destination
and the most frequent destination given the possible temporal features.

6.3 Techniques

In this work, we evaluated different classification techniques to compare across
the different models built. In our research, we have employed WEKA, a popular
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suite of data mining software, to benchmark different classification techniques.
We have also explored Massive Online Analysis (MOA) - an open-source frame-
work for data stream mining written in Java. Related to the WEKA project, it
includes a collection of machine learning algorithms and evaluation tools (e.g.,
prequential-error) particular to data stream learning problems.

Using Weka. We performed evaluation of the predictive accuracy using the
validation set on the training data. We decided to explore several classification
algorithms and our preliminary results indicated a slightly superior performance
of the J48 algorithm for decision tree induction. However, our understanding
while working on this problem is that the quality of the instances (i.e., observa-
tions) and features that describe them are the most important factors to achieve
high predictive accuracy. Consequently, we studied feature selection and instance
weighting.

– Feature Selection - As final step after feature engineering, we performed
feature selection. This involved using well-known techniques for identify-
ing/ranking which features have the best ability to predict the next location
based on the subject’s current location.
We select dynamically for each user the best features (out of the 70 that we
constructed/used) using two well-known feature selection techniques from
the WEKA. First, information gain and second, cross-validated best feature
subset evaluation (CfsSubsetEval). Therefore, the set of features that is se-
lected for each user is different according to their productiveness for that
given user/context.

– Instance Weighting - Another issue that we are faced in next place predic-
tion is the quality of the observations, this is, the uncertainty associated
with them (due to sensor reading uncertainty/unavailability) and also how
relevantly they represent the user mobility patterns. Since the data has in-
formation about the uncertainty (a flag associated with a trusted visit, start
and end time), we decided to explore this information and perform instance
weighting in function of the confidence for their trusted start and end time.

Using MOA. In MOA we preliminarily explored different algorithms and ob-
tained good results with Hoeffding Trees. Because of the data evolution issue de-
scribed in this paper, we decided to experiment with a drift detection technique
(SingleClassifierDrift). This algorithm implements a well known drift detection
method proposed in [3]. Because of the good preliminary results with Hoeffd-
ing Trees it was used as the base learner parameter, using other Hoeffding tree
classifier variations we obtained similar results.

6.4 Results and Discussion

The results presented in this section measure the accuracy on the validation set.
This allowed us to compare our approach to existing published results. In Figure
2, uid stands for user ID and it does not run in sequence. We can observe that the
accuracy for each user on task can have high variance. The results also showed
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that some more irregular users are very difficult to predict while for some regular
users is possible to achieve more than 80% accuracy. We should also note that the
some results are biased negatively as these users have a very short history of visits.

Fig. 2. Predictive accuracy across users

Feature Selection. In Table 1, we can see the results of our experiments with
feature selection. We can observe that in general most features seem relevant to
the next place prediction. Consequently, since the feature selection process was
performed per user we make sure that the selection process was personalised.
We can see that keeping almost all the 70 features (92%) seems to give the best
results. If the set is reduced further a minor decrease in predictive performance
is experienced. This finding is interesting as it shows that our effort to build
sophisticated features can bring additional predictive accuracy to next place
prediction. As feature selection is not so useful for our already predictive features,
the results from the subsequent experiments use all the features (without any
feature selection).

Table 1. Accuracy with Feature selection and Instance Weighting

NFeat% 35% 71% 85% 92% 100%

Accuracy 58.1% 58.8% 59.51% 59.54% 59.4%

WeightT 0.0 0.25 0.50 0.75 1.0

Accuracy 57.7% 59.2% 59.3% 59.1% 59.4%

WeightS 0.0 0.0 0.5 0.5 0.7
WeightE 0.0 0.5 0.5 0.7 0.5

Accuracy 58.5% 59.4% 59.57% 59.48% 59.6%

Instance Weighting. In Table 1, we can see the results of our experiments with
instance weighting based on trusted transition. The weight assigned to the in-
stances in case they belong to a trusted transition is determined byWeightT . We
can observe that the results are similar among the experiments that still consider
the trusted transitions. However, not including weights for trusted transition in-
stances (WeightT = 0.0) will have a significant impact on performance. This
can be a consequence of the high number of untrusted transitions (42% of the
data or 21356 visits) - in general, more data will be helpful.
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In Table 1, different weights are assigned to the transactions based on the
trusted start/end flag. Again not including untrusted transitions affects the
performance as less instances are available for training. The combination of
weights on trusted start time WeightS = 0.7 and weights on trusted end time
WeightE = 0.5 gives the best overall results on the validation dataset.

Table 2. Comparision with Nokia MDC results

Method Validation Competition

ANN [1] 60.83%* 56.22%
SVM [18] 55.69% 52.83%
HPHD [5] 50.53% 52.42%

Ensemble [11] 55.3% -
DecisionTree [17] 61.11%* -

OurBest 59.6% -

Comparing with Nokia MDC Best Results Here we compare our best
results (OurBest uses all 70 features, has WeightT = 1, WeightS = 0.7, and
WeightE = 0.5) with the best results published. Table 2 summarises the best
predictive accuracies of 5 other methods (the first three from winning teams). We
should note that the ones with asterisk (*) indicate that the reported predictive
accuracy was using a different evaluation strategy, and their results have likely
over-fitted the training data. This happens in results with a Artificial Neural
Network (ANN) proposed in [1] (60.83% in validation set with a significantly
lower 56.22% in competition’s test set) and in the J48 DecisionTree approach
proposed in [17], where the authors use their own test set as opposed to the
proposed validation set for the Nokia MDC.

From the results that are comparable (without the asterisk) we can see that
our best results achieve the highest accuracy. This may be due to the large effort
put in feature generation as not a big difference was observed among different
techniques.

Online Learning. Here we report experiments with MOA using the Single-
ClassifierDrift algorithm. Evaluating for the same validation set we obtained an
average accuracy of 42.22%. Again for some more predictable users it was possi-
ble to get close to 80% while for one user was not possible to predict anything.
When we compare the results with our best batch results in Figure 2, the batch
approach achieves better accuracy overall but for a small number of users the
results are better with the incremental approach. The batch approach is on av-
erage (per user) 17% better than the online approach. Still, when comparing the
accuracy with the published results for this dataset, the online approach is still
very competitive.

In future work, based on lessons learnt here and our existing work in recurring
concepts [9,8], we plan to develop our own online method for the next place
prediction problem.
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7 Conclusions and Future Work

In this paper we propose the NextLocation framework, a mobile data mining
approach to the next place prediction problem. The main advantage of NextLo-
cation is that it is a privacy-preserving solution that fully runs on the mobile
device itself. Sensitive data about the user locations and context are not dis-
closed. Moreover, NextLocation uses an adaptive anytime model which enables
adaptation to changes in the user mobility patterns. Finally, it keeps an estimate
of the anytime model accuracy in real-time.

This paper also reports on our experiments analysing data from the Nokia
Mobile Data Challenge (MDC). The results on MDC data show great variabil-
ity in predictive accuracy across users, where irregular users are very difficult to
predict while for more regular users it is possible to achieve more than 80% accu-
racy. To the best of our knowledge, our approach achieves the highest predictive
accuracy when compared with existing results.

In future work, in line with the last experiments on online learning conducted
in this work we plan to develop an online algorithm particularly designed for
next place prediction.
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Abstract. Gene function prediction and protein function prediction are
complex classification problems where the functional classes are struc-
tured according to a predefined hierarchy. To solve these problems, we
propose an extended local hierarchical Naive Bayes classifier, where a
binary classifier is built for each class in the hierarchy. The extension
to conventional local approaches is that each classifier considers both
the parent and child classes of the current class. We have evaluated the
proposed approach on eight protein function and ten gene function hier-
archical classification datasets. The proposed approach achieved some-
what better predictive accuracies than a global hierarchical Naive Bayes
classifier.

Keywords: Hierarchical Classification, naive Bayes, Bioiformatics, Pro-
tein Function Prediction.

1 Introduction

Classification is a well-known data mining task, where the algorithm builds, from
the training set, a classifier that is used to predict the class labels of instances
in the test set. A very active research area in bioinformatics consists of using
classification methods to predict protein and gene functions. Although several
sequencing genome projects have generated the full genome sequence of many
organisms in the last decades, the functions of many proteins and genes still
remain unknown. This is because, in general, determining the functions of genes
and proteins is much more difficult and time-consuming than finding out their
sequences.

A popular approach for biologists to infer new protein/gene functions is to use
techniques that perform a similarity search in a protein/gene database containing
proteins/genes with known functions. Basically, these techniques compute the
similarity between the sequence of a protein/gene with unknown function and
the sequences of the proteins/genes in a database. Thus, the new protein/gene
is assigned to the class of its most similar protein(s)/gene(s) in the database [1].

Nevertheless, similarity-based protein/gene function prediction methods have
some limitations. First, it is known that proteins/genes with similar sequences
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can have different functions [2]. Second, function prediction based only on se-
quence similarity does not consider many relevant biochemical properties of pro-
teins/genes [3].

Aiming at solving these limitations, several works have proposed approaches
that consist of inducing classification models from protein/gene data, where each
protein/gene is represented by a set of attributes, and the new proteins/genes
are classified by the induced model. This approach, which was adopted in this
work, give us the opportunity to use a variety of classification methods for the
protein/gene function prediction.

Most classification methods can deal only with flat classification problems,
where there are no hierarchical relationships among the classes. However, in
many problems the classes are naturally organized into hierarchies. Hierarchical
classification problems are particularly common in the prediction of protein and
gene functions, where the classes (functions) to be predicted are arranged in a
tree or DAG (Direct Acyclic Graph) structure.

The prediction of protein and gene functions is challenging, mainly because
there are usually hundreds or thousands of classes in the hierarchy and the class
distribution is usually highly skewed, i.e., different class labels occur with very
different frequencies. To simplify the problem, some works have just ignored the
hierarchical class structure and addressed this problem as a traditional flat clas-
sification problem [4,5,6]. However, such works lose valuable information about
parent-child class relationships, which is avoided by using a hierarchical classifi-
cation method. One such method is described in [7], where the authors evaluated
two hierarchical classification methods, based on a global and local version of
a hierarchical Naive Bayes classifier - with the global version obtaining better
predictive accuracy on eight protein function prediction datasets.

In this work, we propose an extended local hierarchical Naive Bayes classifier
that (unlike a conventional local approach) exploits parent-child relationships
between the classes in order to build a binary classifier for each class in the
hierarchy. Then, the results of these binary classifiers are combined to produce
the final classification for an instance. We evaluated our proposal on the same
eight protein datasets used in [7] and on other ten gene function datasets, and
compared it against the global-model approach proposed in [7].

The remaining of this paper is organized as follows. Section 2 presents an
overview on hierarchical classification. In Section 3, we describe the hierarchi-
cal classifier proposed in this work. Section 4 presents the experimental setup
and reports the results obtained in the comparative experiment. Finally, the
conclusion and directions for future work are described in Section 5.

2 Hierarchical Classification

Hierarchical classification methods can be analyzed according to different as-
pects. The first one regards the type of hierarchical structure (tree or DAG) the
method is able to deal with. This structure represents the relationships between
the classes of the problem to be solved. Basically, in a tree each class is associated
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with at most one parent class, while in a DAG a child class can have multiple
parent classes.

The second aspect is how deep in the hierarchy the classification is done. A
method can either perform mandatory leaf node predictions, where each instance
must be assigned classes at leaf nodes in the class hierarchy; or non-mandatory
(optional) leaf node predictions, where the most specific class assigned to an
instance can be any (internal of leaf) class node in the hierarchy.

The third aspect refers to the number of different path labels in the hierarchy
a method can assign an instance to. A method can be able to predict, to each
instance, multiple paths of labels in the class hierarchy, or be restricted to predict
just a single path of labels.

The fourth aspect concerns how the hierarchical structure is handled by the
method. Three different approaches are presented in the literature: flat classifi-
cation, which ignores the class hierarchy and performs predictions considering
only the leaf node classes; local model approaches, when a set of local models
are employed; and global model approaches, when a single classification model
is built considering the class hierarchy as a whole during a single run of the
classification algorithm. Since flat classification is out of the scope of this work,
only local model approaches and global model approach are discussed next.

2.1 Local Classification Approach

In this approach, multiple classifiers are built, each one with a local view of the
problem. Note that the class hierarchy is taken into account through a local
perspective. Based on the different ways of using the local information, the clas-
sifiers can be grouped into three different categories [8]: local per node approach,
local per parent node approach and local per level approach.

The local per node approach creates one binary classifier for each class node
in the hierarchy (except the root node). Each classifier predicts whether or not
an instance belongs to its corresponding class. The dashed rectangles in Fig-
ure 1(a) represent the classifiers. Note that this approach allows an instance to
be assigned to classes in distinct branches in the hierarchy, which can lead to
a class-membership inconsistency. To avoid that, several inconsistency removal
methods are available [9,10,11].

In the local per parent node approach, a multi-class classifier is trained for
each parent node in the hierarchy aiming at distinguishing between its child
nodes. This approach is often used with a top-down prediction strategy when
classifying new test instances. To illustrate this strategy, consider the hierarchy
in Figure 1(b), where each dashed rectangle represents a classifier used to predict
one of the child class nodes related to that classification node. Suppose a new
test instance is assigned the class 1 by the root node classifier. Then, at the first
hierarchy level, the classifier related to class node 1 will assign to this instance
one of the child classes (1.1 or 1.2) of that node, and so on, until the instance is
classified at the deepest appropriated level.

Finally, the local per level approach consists of training a multi-class classifier
for each level of the class hierarchy. This is the hierarchical approach least used



162 L.H.C. Merschmann and A.A. Freitas

Fig. 1. Types of hierarchical classification approaches

in the literature [12]. Its major disadvantage is to be prone to class-membership
inconsistency. For example, using the class hierarchy shown in Figure 1(c), three
classifiers would be trained, one for each hierarchy level (represented by dashed
rectangles). Then, given a instance to be classified, it is possible to have the
following predictions: class 1 at level 1, class 2.1 at level 2 and class 1.1.2 at level
3. Clearly, the predicted class 2.1 is not consistent with the classes 1 and 1.1.2.
Hence, this kind of approach requires a post-processing procedure to correct
inconsistent predictions.

2.2 Global Classification Approach

Instead of creating a set of classifiers, the global approach involves the training
of a single classifier taking into account the class hierarchy as a whole. Then,
given a new instance to be classified, the induced classifier is able to assign it a
class from any level of the hierarchy.

While the local approach with the top-down class prediction strategy has
the disadvantage of propagating a classification mistake at a given level of the
hierarchy through all its deeper levels, the global approach avoids that drawback
by performing the classification in a single step using a single classifier.

It is worth noting that the global approach lacks the modular nature of the
local approach, i.e., the characteristic of dividing the training phase in different
processes, each of them considering part of the class hierarchy. Therefore, the
single classifier built by the global approach tends to be more complex than
each individual classifier produced by local approaches. However, this modular
nature of the local approach does not imply that they will have better predictive
accuracy than global approaches.
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In this work we propose an extended local hierarchical Naive Bayes classifier
based on the local per node approach (as described in the next section) and
compare it against a global classification approach.

3 The Proposed Hierarchical Classifier

The proposed classifier deals with hierarchical classification problems where the
classes to be predicted are disposed in a tree-based structure, in the scenarios
of mandatory leaf node prediction and prediction of a single path in the class
hierarchy. The main goal is to exploit parent-child relationships between the
classes when building a binary classifier for each class in the hierarchy. Then,
the predictions made by the set of binary classifiers are combined in order to
produce a consistent prediction.

The proposed classifier, named Extended Local Hierarchical Naive Bayes (EL-
HNB), is based on the local per node approach, creating one binary classifier
for each node of the class hierarchy. The training of each classifier considers not
only the local information related to each classification node as usual, but also
information about the relationships between each class node and its parent and
child nodes – where the latter type of information is the proposed extension.
Note that, since our method is based on Naive Bayes, we make the assump-
tion of class conditional independence, that is, the attributes are conditionally
independent of one another given the class attribute.

Let D = {d1d1d1, . . . , dtdtdt} be a set of training instances. Each instance dj,
j = 1, . . . , t, is represented by its attribute vector XjXjXj = {xj

1, x
j
2, . . . , x

j
n} and

is associated with a binary class vector CjCjCj = {cj1, cj2, . . . , cjm}, where n is the
number of predictor attributes and m is the number of classes in the hierarchy.
Each cji is assigned the value 1 if the instance dj is associated with the class Ci,
and 0 otherwise.

We train a Naive Bayes classifier to predict the class label vector CCC =
{c1, c2, . . . , cm} for a new instance XXX = {x1, x2, . . . , xn}, i.e., to learn a pre-
dictor f : XXX �→ [c1, c2, . . . , cm]. The proposed approach has two phases. The
first one is a local classification phase, where we train a binary classifier for each
class. Each binary classifier performs a probabilistic classification for each class
Ci, i.e., it computes P (Ci = 1|XXX) and P (Ci = 0|XXX). In the second phase we use
the probabilities P (Ci|XXX) calculated in the first phase to generate a consistent
class vector prediction for the instance XXX .

Recall that the classes are structured into a tree. Given a class Ci, the set of
nodes formed by its parent and child nodes, termed neighbors of Ci, is repre-
sented byNiNiNi. The labels of the nodes (classes) contained inNiNiNi are coded through
a vector YiYiYi = {y1, y2, . . . , yk} ∈ {0, 1}ki, where ki is the number of neighbors
of Ci. In the local classification phase, for each Ci, we compute P (Ci = ci),
ci ∈ {0, 1}, taking into account the relationships between the class Ci and its
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parent and child nodes in the hierarchy. It can be determined by computing the
following marginal probability:

P (Ci = ci) =
∑

YiYiYi∈{0,1}ki
P (Ci = ci|YiYiYi)× P (YiYiYi) (1)

Thus, P (Ci = ci|XXX) is obtained conditioning Equation 1 on instance XXX as fol-
lows:

P (Ci = ci|XXX) =
∑

YiYiYi∈{0,1}ki
P (Ci = ci|XXX,YiYiYi)× P (YiYiYi|XXX) (2)

Applying Bayes’ theorem on each term of the product in Equation 2:

P (Ci = ci|XXX,YiYiYi) =
P (XXX|Ci = ci,YiYiYi)× P (Ci = ci|YiYiYi)∑

ci∈{0,1} P (XXX|Ci = ci,YiYiYi)× P (Ci = ci|YiYiYi)
(3)

and

P (YiYiYi|XXX) =
P (XXX|YiYiYi)× P (YiYiYi)∑

YiYiYi∈{0,1}ki P (XXX|YiYiYi)× P (YiYiYi)
(4)

Substituting Equations 3 and 4 into Equation 2, we have:

P(Ci = ci|XXX)=
∑

YiYiYi∈{0,1}ki

⎛

⎜
⎜
⎝

P (XXX|Ci = ci,YiYiYi) × P (Ci = ci|YiYiYi)
∑

ci∈{0,1} P(XXX|Ci = ci,YiYiYi) × P (Ci = ci|YiYiYi)
×

P (XXX|YiYiYi) × P(YiYiYi)
∑

YiYiYi∈{0,1}ki P (XXX|YiYiYi) × P(YiYiYi)

⎞

⎟
⎟
⎠

(5)

As
∑

YiYiYi∈{0,1}ki P (XXX |YiYiYi)× P (YiYiYi) = P (XXX), we can rewrite Equation 5 as:

P (Ci = ci|XXX) =
∑

YiYiYi∈{0,1}ki

(
P (XXX|Ci = ci,YiYiYi)× P (Ci = ci|YiYiYi)

∑
ci∈{0,1} P (XXX|Ci = ci,YiYiYi)× P (Ci = ci|YiYiYi)

× P (XXX|YiYiYi)× P (YiYiYi)

P (XXX)

)

(6)

Given that P (XXX) is constant for all YiYiYi vector configurations, rearranging Equa-
tion 6 we get:

P (Ci = ci|XXX) =

∑
YiYiYi∈{0,1}k

(
P (XXX|Ci=ci,YiYiYi)×P (Ci=ci|YiYiYi)×P (XXX|YiYiYi)×P (YiYiYi)∑

ci∈{0,1} P (XXX|Ci=ci,YiYiYi)×P (Ci=ci|YiYiYi)

)

P (XXX)
(7)

In Equation 7, aiming at reducing the number of parameters in evaluating
P (XXX|Ci = ci,YiYiYi) and P (XXX|YiYiYi), we use the Naive Bayes assumption that there
are no dependence relationships among the attributes given the class. Then,
these probabilities are computed as P (XXX |Ci = ci,YiYiYi) =

∏n
k=1 P (xk|Ci = ci,YiYiYi)

and P (XXX |YiYiYi) =
∏n

k=1 P (xk|YiYiYi).
In the second phase, named global classification phase, we enforce hierarchical

consistency of class labels using the probabilities P (Ci = ci|XXX) computed in the
first phase. In order to obtain a consistent classification, for each possible path
p in the hierarchy from Root node to node i, we compute the geometric average
of probabilities P (Ci = 1|XXX) along the path as follows:

GAp = |Lp|

√ ∏

Ci∈Lp

P (Ci = 1|XXX), (8)
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where Lp is the set of classes in the path p.
As final solution, the instance XXX is assigned to the class vector CCC where

the classes Ci contained in the path with the highest GA are set to 1 and the
remaining to 0.

4 Computational Experiments

4.1 Baseline Method

Since we are proposing an extended local hierarchical Naive Bayes classifier, we
use as a baseline method the global hierarchical Naive Bayes classifier proposed
in [7], which achieved promising predictive performance when evaluated on eight
protein datasets and outperformed a conventional local per parent node hierar-
chical classifier. In this conventional local hierarchical classifier, during the train-
ing phase, for each non-leaf node, a Naive Bayes multi-class classifier is trained to
discriminate among the child class nodes of the classifier’s corresponding node.
Next, to implement the test phase, the top-down class prediction strategy is
adopted.

The hierarchical classifier in [7] is an extension of the flat classification algo-
rithm Naive Bayes to deal with hierarchical classification problems.

Given a new instance X = {x1, x2, . . . , xn} to be classified, where each xk

refers to the value of attribute Ak, the flat Naive Bayes classifier simply assigns
to it the class Ci associated with the maximum value of the posterior probability
calculated as P (Ci|X) ∝ ∏n

k=1 P (xk|Ci)× P (Ci).
To explain how the hierarchical Naive Bayes [7] works, consider a tree-based

hierarchy containing these class nodes: C1, C2, C1.1, C1.2, C2.1 and C2.2. To
classify a new instance, the prior probabilities P (C1), P (C2), P (C1.1), P (C1.2),
P (C2.1) and P (C2.2), and the likelihoods P (xk|C1), P (xk|C2), P (xk|C1.1),
P (xk|C1.2), P (xk|C2.1) and P (xk|C2.2) are computed taking into account the
class hierarchy, as follows. More precisely, to compute the prior probabilities
and likelihoods during the training phase, the method takes into account that
any instance which belongs to class Ci also belongs to all its ancestor classes. For
example, if a training instance belongs to class C1.2, that instance will be taken
into account to compute the prior probabilities of both that class (C1.2) and its
ancestor classes (in this case, C1). In addition, the attribute values of a training
instance will be taken into account to compute the likelihoods associated with
that instance’s class and all its ancestor classes. These modification make the
global hierarchical Naive Bayes able to predict classes at any level of the class
hierarchy. For more details about this method, see [7].

4.2 Datasets

Experiments were conducted by running both the proposed and the baseline
methods on 18 bioinformatics datasets, where eight are protein function and
ten are gene function hierarchical classification datasets. As these datasets were
obtained from different sources, we organized them into two groups.
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Group A contains eight protein function datasets, referring to two different
protein families: Enzymes and G-Protein-Coupled Receptors (GPCRs). Enzymes
are proteins that catalyze chemical reactions [13] while GPCRs are transmem-
brane proteins that are the targets of many medical drugs [14]. We used four
enzyme datasets (whose names start with EC – Enzyme Commission) and four
GPCR datasets, where the predictor attributes correspond to protein properties
and the classes to be predicted are hierarchical protein functions. Most predictor
attributes are binary, indicating whether or not a protein signature (or motif) is
present in a protein, but there are also two numeric attributes: the amino acid
sequence length and molecular weight. The names of the datasets are also related
to the type of motifs used: Interpro Entries, FingerPrints, Prosite Patterns and
Pfam. These datasets1 have also been used in previous hierarchical classification
works [15], [16] and [7].

Group B contains ten gene function datasets, referring to the yeast genome.
The predictor attributes include five types of bioinformatics data: secondary
structure, phenotype, homology, sequence statistics, and expression. The classes
to be predicted are taken from FunCat2, a scheme for classifying the function
of gene products developed by MIPS [17]. These datasets3, initially presented
in [18] and after updated and used in [19] were multi-label data, i.e., each instance
was associated with one or more class paths in the hierarchy. Since in this work
we are dealing with a single path label scenario, these datasets were converted
into single label data by randomly choosing one class path for each instance.

Before running the classification algorithms, all datasets were preprocessed as
follows: (a) All numeric attributes were converted into discrete ones by using an
unsupervised discretization algorithm based on equal frequency binning (using
20 bins); (b) Every class with fewer than 10 instances was merged with its parent
class. This process was repeated until every class in the hierarchy had at least
10 instances. If during this process the most specific class of an instance became
the Root class, then that instance was removed; (c) Since in this work we are
dealing with a mandatory leaf node prediction problem, after the previous step
(b), we removed from the datasets all instances whose most specific class was
not a leaf class node. Table 1 presents the main characteristics of the datasets
after these pre-processing steps. This table shows, for each dataset, its num-
ber of attributes, number of instances and number of classes at each hierarchy
level (1st/2nd/3rd/. . .). The pre-processed datasets used in our experiments are
available at: http://www.decom.ufop.br/luiz/resources/.

4.3 Predictive Accuracy Evaluation Metrics

In order to evaluate the predictive accuracy of the hierarchical classifiers, we used
the hierarchical F-measure, which is an adaptation of the flat F-measure tailored
for hierarchical classification problems [20]. The hierarchical F-measure is com-
puted as hF = 2×hP×hR

hP+hR , where hP and hR stand for hierarchical Precision

1 https://sites.google.com/site/carlossillajr/resources
2 http://mips.helmholtz-muenchen.de/proj/funcatDB/
3 http://dtai.cs.kuleuven.be/clus/hmcdatasets/

https://sites.google.com/site/carlossillajr/resources
http://mips.helmholtz-muenchen.de/proj/funcatDB/
http://dtai.cs.kuleuven.be/clus/hmcdatasets/
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Table 1. Characteristics of the Datasets

Group Datasets # Attributes # Instances # Classes/Level

GPCR-Pfam 75 6,524 12/52/79/49
GPCR-Prosite 129 5,728 9/50/79/49
GPCR-Prints 283 4,880 8/46/76/49

A GPCR-Interpro 450 6,935 12/54/82/50
EC-Prints 382 11,048 6/45/92/208
EC-Prosite 585 11,328 6/42/89/187
EC-Pfam 708 11,057 6/41/96/190
EC-Interpro 1,216 11,101 6/41/96/187

CellCycle 78 2,486 16/47/69/32/8
Church 28 2,499 16/49/67/34/6
Derisi 64 2,497 16/48/70/31/7
Eisen 80 1,641 16/43/55/23/2

B Expr 552 2,554 16/49/68/28/5
Gasch1 174 2,595 16/48/71/32/7
Gash2 53 2,631 17/49/68/34/6
Phenotype 70 1,023 15/43/40/15/1
Sequence 479 2,689 17/48/65/29/5
SPO 81 2,463 16/48/68/31/8

and hierarchical Recall, respectively. Considering that Pi is the set composed by
the most specific class predicted for a test instance i and all its ancestor classes
and Ti is the set composed by the true most specific class for a test instance
i and all its ancestor classes, the hP and hR were defined in [20] as follows:

hP =
∑

i|Pi

⋂
Ti|∑

i|Pi| and hR =
∑

i|Pi

⋂
Ti|∑

i|Ti| .

Although these measures are recommended to evaluate hierarchical classifica-
tion scenarios [8], there is a situation where their application faces a problem.
Basically, hierarchical precision and hierarchical recall are measures related to
the concepts of specialization and generalization errors, respectively. To illus-
trate these concepts, let us consider the following examples. Let C1 be the most
specific predicted class for an instance whose true most specific known class is
C1.3. In this case we have a generalization error, since the most specific class
predicted is more generic than the true most specific known class for that in-
stance. This generalization error is captured by the hierarchical recall measure,
which for this example is hR = 1/2. Observe that in this case the hierarchical
precision assumes the maximum value, i.e, hP = 1. On the other hand, if C1.3

is the most specific predicted class for an instance whose true known class is
C1, we have a specialization error, as the predicted class is more specific than
the true known class for that instance. Now, the hierarchical precision measure
indicates this error (hP = 1/2), whilst the hierarchical recall measure assumes
the maximum value hR = 1.

At first glance, hierarchical precision and hierarchical recall measures seem to
penalize specialization and generalization errors appropriately. However, consid-
ering an over-specialization as an error (penalized by hP ) can be unfair in some
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kinds of applications, given that, if the true most specific known class for an
instance is a more generic class like C1, this does not mean that the prediction
of the more specific class C1.3 is an error. This may just mean that at present
the more specific class of that instance is unknown, only its more generic class is
currently known. Indeed, this kind of situation is relatively common in protein
and gene function prediction, where more specific functional classes are often
unknown and will be discovered later, with continuing advances in biological
experiments that determine gene and protein functions.

Hence, we modified the definition of hP in order not to penalize over-
specialized predictions. It is important to mention that even in mandatory leaf
node prediction problems (the scenario considered here) over-specialized predic-
tions can be made, since we can have leaf node classes at different levels in the
hierarchy. Then, the adapted hP measure used in this work (which was used to
measure the predictive accuracy of both hierarchical classification methods in

our experiments) is defined as hP =
∑

i|Pi

⋂
Ti|∑

i min(|Pi|,|Ti|) , where min(|Pi|, |Ti|) is the
minimum value between |Pi| and |Ti|.

4.4 Computational Results

As mentioned earlier, the Extended Local Hierarchical Naive Bayes classifier
(ELHNB) was compared with the global-model Naive Bayes approach (GMNB)
proposed in [7] on 18 bioinformatics datasets.

The performance of the hierarchical classifiers was measured by using the
10-fold cross validation [21] and the hierarchical F-measure (described in Sec-
tion 4.3). The same ten folds in each dataset were used to evaluate the classifiers.
In addition, for each dataset, in order to determine if there is a statistically sig-
nificant difference between the hierarchical F-measure of the two hierarchical
classifiers being compared, we used the Wilcoxon’s Signed-Rank Test (two-sided
test) as recommended by [22].

The results comparing the baseline GMNB with the proposed ELHNB are
shown in Table 2. For each dataset, the third and fourth columns present the
hierarchical F-measure values (hF) obtained by 10-fold cross validation (with the
standard error in parentheses). The largest hierarchical F-measure value (hF)
between those obtained by the two methods is in bold font. The last column
presents the name of the method that achieved the best hF value when there is
a statistically significant difference between the hF values of the two classifiers,
or the symbol (–) to indicate that the difference between the hF values was not
statistically significant.

In the eight datasets of Group A, the proposed ELHNB obtained significantly
better results than GMNB for four datasets. In the remaining four datasets
there was no statistically significant difference between the hF values of the two
classifiers. In Group B, ELHNB outperformed GMNB in one dataset and GMNB
outperformed ELHNB in another one. In the remaining datasets of this group,
the difference of hF values between the classifiers was not statistically significant.

Overall, the proposed ELHNB reached results statistically equivalent or better
than GMNB in 17 out of 18 datasets.
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Table 2. Results of Comparative Experiment

GMNB ELHNB Result of Statistical
Group Data Sets hF(std. error) hF(std. error) Test (α = 0.05α = 0.05α = 0.05)

GPCR-Pfam 62.48 (0.31) 62.99 (0.32) –
GPCR-Prosite 61.58 (0.54) 61.44 (0.44) –
GPCR-Prints 79.66 (0.56) 79.96 (0.51) –

A GPCR-Interpro 80.44 (0.31) 80.64 (0.36) –
EC-Prints 93.97 (0.24) 94.99 (0.15) ELHNB
EC-Prosite 94.46 (0.08) 96.84 (0.06) ELHNB
EC-Pfam 94.81 (0.14) 95.42 (0.14) ELHNB
EC-Interpro 95.71 (0.12) 96.33 (0.15) ELHNB

CellCycle 12.45 (0.54) 12.83 (0.57) –
Church 10.65 (0.46) 10.61 (0.44) –
Derisi 10.42 (0.31) 10.88 (0.58) –
Eisen 15.52 (0.87) 16.52 (0.81) ELHNB

B Expr 14.09 (0.73) 14.63 (0.5) –
Gasch1 15.31 (0.55) 14.20 (0.46) GMNB
Gash2 15.70 (0.51) 15.42 (0.38) –
Phenotype 8.08 (0.37) 7.22 (0.48) –
Sequence 16.20 (0.79) 15.80 (0.76) –
SPO 10.18 (0.52) 9.66 (0.59) –

5 Conclusion

In this work, we proposed an extended local hierarchical Naive Bayes classifier
based on a local per node approach, where a binary classifier is built for each
class node in the hierarchy by exploiting the relationships between that class
node and its parent and child nodes. The term “extended” is used to indicate
that the proposed classifier extends the conventional local hierarchical approach
by training each classifier with classes predicted for that classifier’s neighbor
(parent and child) nodes.

Different scenarios can be considered when dealing with hierarchical classi-
fication problems. In this paper we dealt with mandatory leaf node prediction
problems, where the algorithm has to predict one of the leaf class nodes for each
test instance. In addition, we focused on problems in which the classes to be
predicted are disposed in a tree-based hierarchy and each data instance has a
class label associated with a single path in this class hierarchy.

The evaluation of the proposed classifier was conducted on 18 bioinformatics
datasets, where eight are protein function and ten are gene function hierarchical
classification datasets.

Given the Bayesian nature of the proposed classifier, aiming at comparing
it against a method of the same broad type, we used as a baseline method
the global-model Naive Bayes approach proposed in [7]. In our experiments the
proposed ELHNB classifier achieved predictive performance (measured by hier-
archical F-measure) significantly better than the baseline GMNB method in 5
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datasets, was significantly worse in only 1 dataset, and statistically equivalent
in the remaining ones. Therefore, we conclude that the proposed extended local
hierarchical Naive Bayes classifier has shown good predictive performance in the
bioinformatics datasets used in this work, being somewhat more accurate than
a global hierarchical classifier.

As future work, we intend to evaluate the ELHNBmethod in other hierarchical
scenarios and compare it against other hierarchical classification approaches.
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Abstract. Dimensionality reduction is a crucial ingredient of machine
learning and data mining, boosting classification accuracy through the
isolation of patterns via omission of noise. Nevertheless, recent studies
have shown that dimensionality reduction can benefit from label infor-
mation, via a joint estimation of predictors and target variables from
a low-rank representation. In the light of such inspiration, we propose
a novel dimensionality reduction which simultaneously reconstructs the
predictors using matrix factorization and estimates the target variable
via a dual-form maximum margin classifier from the latent space. The
joint optimization function is learned through a coordinate descent al-
gorithm via stochastic updates. Finally empirical results demonstrate
the superiority of the proposed method compared to both classification
in the original space (no reduction), or classification after unsupervised
reduction.

Keywords: Machine Learning, Dimensionality Reduction, Feature Ex-
traction, Matrix Factorization, Supervised Dimensionality Reduction.

1 Introduction

Dimensionality reduction is an important ingredient of machine learning and
data mining. The benefits of projecting data to latent spaces constitute in (i)
converting large dimensionality datasets into feasible dimensions, but also (ii)
improving the classification accuracy of small and medium datasets [1]. Via
carefully tuned dimensionality reduction (aka feature extraction) we are able
to retrieve the necessary patterns from the datasets, by leaving out the noise.
Traditional dimensionality reduction, (as described in Section 2.1), has been fo-
cused on extracting features prior to classification. Such a mentality has been
recently found to perform non-optimal [2,3], since the features are not directly
extracted/optimized for boosting classification. As a result there have been at-
tempts to incorporate class supervision into feature extraction, (mentioned in
Section 2.3), such that the latent features are guided to enforce the discern-
ment/separation of instances belonging to opposite classes in the reduced space.
Throughout this work we propose a principle, (details in Section 3.1), according
to which dimensionality reduction should optimize the latent features through
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the same optimization function as the final classification method, thereby en-
suring that the classification accuracy in the latent space is optimized. Inspired
by the accuracy success of SVMs, that is significantly inherent to the kernel
trick approach, we propose a novel supervised dimensionality reduction that in-
corporates kernel-based classification in the reduced dimension (Section 3). The
novelty relies on defining a joint dimensionality reduction via matrix factoriza-
tion, in parallel to a dual-form kernel-based maximum margin classification in
the latent space. The reduced data is simultaneously updated in a coordinate
descent fashion in order to optimize both loss terms. Experimental results, (Sec-
tion 5), demonstrate the superiority of the proposed method compared to both
unsupervised dimensionality reduction and classification in the original space.
The main contribution of this work are:

1. Define a supervised dimensionality reduction with a kernel-based target vari-
able estimation, in addition to the matrix reconstruction loss term

2. Derive a coordinate descent algorithm which simultaneously learns the latent
factors for both loss terms

3. Provide empirical results to demonstrate the superiority of the method

2 Related Work

2.1 Dimensionality Reduction

Dimensionality reduction is a field of computer science that focuses on extract-
ing lower dimensionality features from datasets [1]. Numerous techniques exist
for extracting features. Principal Component Analysis (PCA) is a famous ap-
proach involving orthogonal transformations and selecting the topmost principal
components, which preserve necessary variance [4]. Alternatively, Singular Value
Decomposition decomposes a dataset into latent unitary, nonnegative diagonal
and conjugate transpose unitary matrices [1].

Further elaborations of dimensionality reductions involve nonlinear decom-
position of data [5]. For instance kernel PCA replaces the linear operations of
PCA through nonlinear mapping in a reproducing kernel Hilbert space [6]. The
whole subfield of manifold learning elaborates, as well, on nonlinear projections.
Specifically, Sammon’s mappings preserves the structure of instance distances in
the reduced space [7], while principal curves embed manifolds using standard ge-
ometric projections [8]. More nonlinear dimensionality algorithms are described
in [9]. In addition, temporal dimensionality reduction have been proposed in
scenarios where the time difference of observations is not evenly spaced [10].

2.2 Matrix Factorization

Matrix factorization refers to a family of decompositions which approximates a
dataset as a product of latent matrices of typically lower dimensions. A gen-
eralization and categorization of the various proposed factorization models as
applications of Bregman divergences was elaborated in [11]. The learning of the
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decomposition is typically conducted by defining a l2-norm and updating the
latent matrices via a stochastic gradient descent [12]. Matrix factorization has
been applied in a range of domains, ranging from recommender systems where
decomposition focuses on collaborative filtering of sparse user-item ratings [13],
up to time series dimensionality reduction [14].

2.3 Supervised Dimensionality Reduction

In addition to the standard dimensionality reduction and matrix factorization,
there has been attempts to utilize the labels information, therefore dictating a
supervised projection. Fisher’s linear discriminant analysis is a popular super-
vised projection method [15]. The classification accuracy loss objective functions
occurring in literature vary from label least square regression [16], to general-
ized linear models [17], linear logistic regression [2], up to hinge loss [3]. Another
study aimed at describing the target variable as being conditionally dependent
on the features [18]. Other families of supervisions aim at preserving the neigh-
borhood structure of intra-class instances [19], or links in a semi supervised
scenarios [20]. In comparison to the aforementioned, we propose a supervised
dimensionality reduction with a kernel-based classifier, by directly optimizing
the dual formulation in the projected space.

3 Proposed Method

3.1 Principle

The method proposed in this study relies on the principle that feature extraction,
analogously referred also as dimensionality reduction, should not be conducted
”ad-hoc” or via particular heuristics. Most of the classification tasks have a uni-
fying objective, which is to improve classification accuracy. In that context we
are referring as ”ad-hoc” to the family of feature extraction techniques that don’t
directly optimize their loss functions for classification accuracy. Stated else-wise,
we believe that instance labels should guide the feature extraction, such that
the utilization of the extracted features improves accuracy. In that perspective,
we propose a feature extraction method which operates by optimizing a joint
objective function composed of the feature extraction term and also the clas-
sification accuracy term. Further details will be covered in the coming Section
3. In comparison with similar feature extraction ideas reviewed in Section 2.3,
which use linear classifiers in the optimization, we propose a novel method which
learns a nonlinear SVMs over the projected space via jointly optimizing a dual
form together with dimensionality reduction.

3.2 Matrix Factorization as Dimensionality Reduction

Matrix factorization is a dimensionality reduction technique which decomposes a
dataset X ∈ R

(n+n′)×m matrix of n training instances and n′ testing instances,
per m features, into two smaller matrices of dimensions U ∈ R

(n+n′)×d and
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V ∈ R
d×m [12]. The latent/reduced projection of the original data X is the

latent matrix U , where d is the dimensionality of the projected space. Typically
d is much smaller than m, meaning that the dimensionality is reduced. Such
decomposition is expressed in form of a reconstruction loss, denoted FR(X,U, V )
and depicted in Equation 1. The optimization aims at computing latent matrices
U, V such that their dot product approximates the original matrix X via an
Euclidean distance (l2 norm) loss. In addition to the l2 reconstruction norm, we
also add l2 regularization terms weighted by factors λU , λV in order to avoid
over-fitting.

argmin
U,V

FR(X,U, V ) = ||X − UV ||2 + λU ||U ||2 + λV ||V ||2 (1)

Bias terms, BU ∈ R
(n+n′)×1, BV ∈ R

1×m are added to the reconstruction
loss [12], such that each element of BU incorporates the prior belief value of
the respective instance, while each element of BV the prior belief value of the
respective feature. More concretely the loss can be expanded as a reconstruction
of each cell Xi,j as depicted by Equation 2.

argmin
U,V,BU ,BV

FR(X,U, V ) =

n+n′
∑

i=1

m∑

j=1

(

Xi,j −
(

d∑

k=1

Ui,kVk,j +BUi +BVj

))2

+ λU

n+n′
∑

i=1

d∑

k=1

U2
i,k + λV

d∑

k=1

m∑

j=1

V 2
k,j (2)

3.3 Kernel-Based Supervision of Dimensionality Reduction

Matrix factorization, as described in Section 3.2, is guided only by the recon-
struction loss. Such approach doesn’t take into consideration the classification
accuracy impact of the extracted features, therefore the produced reduced di-
mensionality data is not optimized to improve accuracy. In order to overcome
such a drawback, the so called supervised dimensionality reduction has been
proposed by various authors [2]. The key commonalities of those supervised di-
mensionality methods rely on defining a joint optimization function, consisting
of the reconstruction loss terms and the classification accuracy terms.

The typical classification accuracy loss term focuses on defining a classifier
in the latent space, i.e. U , via a hyperplane defined by the weights vector W ,
such that the weights can correctly classify the training instances of U in order to
match observed label Y . Equation 3 defines a cumulative joint optimization func-
tion using an introduced classification accuracy term, denoted FCA(Y, U,W ).
The trick of such a joint optimization constitutes on updating U simultaneously,
in order to minimize both FR and FCA via gradient descent on both loss terms.
The hyper parameter β is a switch which balances the impact of reconstruction
vs classification accuracy.

F (X,Y, U, V,W ) = β FR(X,U, V ) + (1− β)FCA(Y, U,W ) (3)
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In comparison to previous approaches that propose linear models, in this study
we propose a kernel-based binary classifier approach in the latent space U . Let
us initially define the classification accuracy loss term, denoted FCA(Y, U,W ), in
Equation 4, in form of a maximum margin soft SVMs with hinge loss [21]. Such
form of the SVMs is called the primal form. The parameter C scales the penal-
ization of the instances violating the distances from the maximummargin. Please
note that W0 is the intercept bias term of the hyperplane weights vector W .

argmin
U,W

FCA(Y, U,W ) =
1

2
||W ||2 + C

n∑

i=1

ξi (4)

s.t: Yi(〈W,Ui〉+W0) ≥ 1− ξi, i = 1, ..., n

ξi ≥ 0, i = 1, ..., n

Unfortunately the primal form doesn’t support kernels, therefore we have to
convert the optimization functions into the dual form equation 5. In order to
get rid of of the inequality constraint we apply Lagrange multipliers to in-
clude the inequalities by introducing dual variables αi per instance and adding
αi (yi(〈W,Ui〉+W0)) to the optimization function for all instance i. Then we
solve the objective function for W and W0 by equating the first derivative to
zero. Putting the derived expressions of W and W0 to the objective function, we
obtain the so-called dual representation optimization:

argmin
U,α

FCA(Y, U, α) =
1

2

n∑

i=1

n∑

l=1

αiαlYiYl〈Ui,∗, Ul,∗〉 −
n∑

i=1

αi (5)

s.t: 0 ≤ αi ≤ C, i = 1, ..., n
n∑

i=1

αiYi = 0

Once the optimization model is build any new test instance Xt can be classified
in terms of learned α as shown in Equation 6.

Yt = sgn

(
n∑

i=1

αiYi〈Ui,∗, Ut,∗〉+W0

)

(6)

The dot product, found in the dual formulation, between the instance vectors ap-
pears both in the optimization function 5 and the classification function 6. Such a
dot product can be replaced by the so called kernel functions [21]. Various kernel
representations exists, however in this study, for the sake of clarity and generality,
we are going to prove the concept of the method using polynomial kernels, defined
in Equation 7, which are known to be successful off-the-shelf kernels [21].

K(Ui,∗, Ul,∗) =

(
d∑

k=1

Ui,kUl,k + 1

)p

(7)
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The ultimate objective function that defines nonlinear supervised dimensional-
ity reduction is presented in Equation 8. This model, in cooperation with the
forthcoming learning algorithm, are the main contributions of our paper.

argmin
U,V,α,BU ,BV

F (X,Y, U, V, α) = β

n+n′∑

i=1

m∑

j=1

(

Xi,j −
(

d∑

k=1

Ui,kVk,j +BUi +BVj

))2

(8)

+ (1− β)

(
1

2

n∑

i=1

n∑

l=1

αiαlYiYl K(Ui,∗, Ul,∗)−
n∑

i=1

αi

)

+ λU

n+n′∑

i=1

d∑

k=1

U2
i,k + λV

d∑

k=1

m∑

j=1

V 2
k,j

s.t: 0 ≤ αi ≤ C, i = 1, ..., n
n∑

i=1

αiYi = 0

Meanwhile the classification of a test instance Ut using kernels and the learned
U, α, resulting from the solution of the dual joint optimization is shown in
Equation 9.

Yt = sgn

(
n∑

i=1

αiYiK(Ui,∗, Ut,∗) +W0

)

(9)

4 Learning Algorithm via Coordinate Descent

The objective function of Equation 8 is a non-convex function in terms of U, V
andW , which makes it challenging for optimization. However stochastic gradient
descent is shown to perform efficiently in minimizing such non-convex functions
[12]. The benefits of stochastic gradient descent relies on better convergence,
because cells of X are randomly picked for optimization, thus updating different
rows of U , instead of iterating through the all the features of the same instance,
thus resulting in subsequent updates of the same latent row of U .

On the other side, the classification accuracy terms of Equation 5 can be
solved, in terms of α, by any standard SVMs dual solver method in case we
consider U to be fixed. Thus, in an alternating fashion we solve the α-s by
keeping U fixed. Then in the next step we update U using the learned α-s and
V matrix, by taking a step in the negative direction of the overall loss w.r.t U .
The update of V is performed as last step. Those three steps can be repeated
until convergence as shown in the Algorithm 2.

Before starting the description of the algorithm let us define the gradients
to be used for updating our latent matrices. We can represent the reconstruc-
tion loss FR as sum of smaller loss terms FRi,j , per each cell (i, j) of the original
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dataset X . Such decomposition will later enable stochastic gradient descent to
optimize for each small loss term stochastically/randomly.

FR(X,U, V ) =

n+n′
∑

i=1

m∑

j=1

FR(X,U, V )i,j (10)

FR(X,U, V )i,j = β

(

Xi,j −
(

d∑

k=1

Ui,kVk,j +BUi +BVj

))2

+

λU
1

m

d∑

k=1

U2
i,k + λV

1

n+ n′

d∑

k=1

V 2
k,j (11)

Gradients:

ei,j = Xi,j −
d∑

k=1

Ui,kVk,j −BUi −BVj

∂FR(X,U, V )i,j
∂Ui,k

= −2β ei,j Vk,j + 2λU
1

m
Ui,k (12)

∂FR(X,U, V )i,j
∂Vk,j

= −2β ei,j Ui,k + 2λV
1

n+ n′
Vk,j (13)

∂FR(X,U, V )i,j
∂BUi

= −2β ei,j (14)

∂FR(X,U, V )i,j
∂BVj

= −2β ei,j (15)

Similarly, we can split up the classification accuracy loss term, FCA, into smaller
loss terms FCAi,l, defined per each instance pair (i, l).

FCA(Y, U, α) =

n∑

i=1

n∑

l=1

FCA(Y, U, α)i,l (16)

FCA(Y, U, α)i,l = (1− β)

(
1

2
αiαlYiYl K(Ui,∗, Ul,∗)− 1

n2

n∑

i=1

αi

)

(17)

Gradients:

∂FCA(Y, U, α)i,l
∂Ui,k

= (1− β)
1

2
αiαlYiYl p

(
d∑

k=1

Ui,kUl,k + 1

)p−1

Ul,k (18)

∂FCA(Y, U, α)i,l
∂Ul,k

= (1− β)
1

2
αiαlYiYl p

(
d∑

k=1

Ui,kUl,k + 1

)p−1

Ui,k (19)

The updates of α-s is carried through an algorithm which is a reduced version
of the Sequential Minimal Optimization (SMO) [22]. Since the dual form opti-
mization function contains the constraint

∑n
i=1 αiYi = 0, then any update of an

αi will violate the constraint. Therefore SMO updates the α-s in pair, offering



Supervised Dimensionality Reduction via Nonlinear Target Estimation 179

Algorithm 1. UpdateAlphaPair

Input: First alpha index i, Second alpha index j
Output: Updated α and W0

(αold
i , αold

j )← (αi, αj)
Let s← YiYj

(L,H)← (
max(0, αold

j + sαold
i − s+1

2
C),min(C,αold

j + sαold
i − s−1

2
C)
)

Ek ←
(∑n

l=0 YlαlK(Ul,∗, Uk,∗) +W0

)− Yk,∀k ∈ {i, j}
αnew
j ← αold

j − Yj(Ei−Ej)

2K(Ui,∗,Uj,∗)−K(Ui,∗,Ui,∗)−K(Uj,∗,Uj,∗)
1

αnew,clipped
j =

⎧
⎪⎨

⎪⎩

L , if αnew
j < L

αnew
j , if L < αnew

j < H

H, if αnew
j > H

αnew
i ← αold

i + s(αnew,clipped
j − αold

j )

bi ← Ei + yi(α
new
i −αold

i )K(Ui,∗, Ui,∗)+Y2(α
new,clipped
j −αold

j )K(Ui,∗, Uj,∗)+W0

bj ← Ej + yi(α
new
i −αold

i )K(Ui,∗, Ui,∗)+Y2(α
new,clipped
j −αold

j )K(Ui,∗, Uj,∗)+W0

W0 ← bi+bj

2
, (αj, αi)←

(
αnew,clipped
j , αnew

i

)

return α,W0

three heuristics which defines which subset of the pairs should be updates first,
in order to speed up the algorithm.

In difference to the original algorithm, we have ignored the selection heuristic
for the alpha pairs to update. The reason for omitting the heuristics is due to
the fact that U instances are continuously updated/modified. For instance, let us
consider an imaginary instance Ui far away from the decision boundary, which
means αi = 0. However in the next iteration, the instance Ui might be updated
and move close to the boundary, meaning that αi becomes a candidate for being
updated (0 < αi ≤ C), opposite to the functioning of SMO heuristic that would
have avoided updating the instance, alluding that αi is still 0.

The alpha updates rely on solving the function analytically for a pair of α-s at
a step, until no αi, ∀i, violates the KKT [22] conditions described in Equation 20.

Let Ŷi = sgn

⎛

⎝
n∑

j=1

αjYj K(Uj,∗, Ui,∗) +W0

⎞

⎠

αi = 0 → YiŶi ≥ 1

0 < αi < C → YiŶi = 1

αi = C → YiŶi ≤ 1 (20)

Therefore the learning algorithm will update all the pairs of α-s in each iteration.
The SMO-like update of each pair of alphas is shown in the Algorithm 4, with
more details in [22]. Please note that the algorithm also updates the hyperplane
intercept W0, which is used for classification of latent instances.

Having defined the gradients for updating latent matrices U, V with respect
to the optimization loss and also the update rules for α-s, we can derive a final
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learning algorithm based on coordinate gradient descent. Algorithm 2 shows
the learning algorithm in full terms. The updates of each cell of U, V,BU , BV ,
as response to the reconstruction loss FR and the classification accuracy loss
FCA, are conducted in the negative direction of the gradients scaled by hyper-
parameter learning rates ηR, ηCA. The convergence is guaranteed by selecting
small values for the learning rates. The stopping criteria is when the final loss
from Equation 8 reaches an optimum, meaning it doesn’t get further minimized.

Algorithm 2. Learning Algorithm

Input: Dataset matrix X ∈ R
(n+n′)×m, Labels vector Y ∈ R

n, Parameters: { Box
constraint C, Optimization switch β, Latent dimensions d, Learning rates ηR, ηCA,
Regularizations λU , λV , Kernel degree p }

Output: U, V,BU , BV , α,W0

Initialize U ∈ R
(n+n′)×d, V ∈ R

d×m, BU ∈ R
(n+n′)×1, BV ∈ R

1×m randomly
Initialize α← {0}n, W0 ← 0
while F not reached an optimum do

for ∀(i, j, k) ∈ ({1...(n + n′)}, {1...m}, {1...d}) in random order do

Ui,k ← Ui,k − ηR
∂FR(X,U,V )i,j

∂Ui,k

Vk,j ← Vk,j − ηR
∂FR(X,U,V )i,j

∂Vk,j

BUi ← BUi − ηR
∂FR(X,U,V )i,j

∂BUi

BVj ← BVj − ηR
∂FR(X,U,V )i,j

∂BVj

end for
for ∀(i, l, k) ∈ ({1...n}, {1...n}, {1...d}) in random order do

Ui,k ← Ui,k − ηCA
∂FCA(Y,U,α)i,l

∂Ui,k

Ul,k ← Ul,k − ηCA
∂FCA(Y,U,α)i,l

∂Ul,k

end for
for ∀i ∈ {1 . . . n} do

if αi violates KKT of Equation 20 then
for ∀j ∈ {1 . . . n} in random order do

(α,W0)← UpdateAlphaPair(i, j), from Algorithm 4
end for

end if
end for

end while
return U, V,BU , BV , α,W0

5 Experimental Results

In order to compare the classification accuracy of our method Nonlinearly Su-
pervised Dimensionality Reduction (NSDR), we implemented and compared
against two baselines:
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– PCA-SVMs:Matching against the standard PCA dimensionality reduction
and then SVMs classification will demonstrate the advantage of supervised
decomposition against unsupervised decomposition (PCA).

– SVMs: Comparison against the default SVMs will provide insights on the
advantages of dimensionality reduction.

The experiments were conducted using five folds cross validation, where the data
was divided into five splits and each split was, in turn, the test and the other
four the training data.

The hyper parameters of our method and the baselines was selected using
a validation data split from the training data. The best grid-search combi-
nations of hyper parameters that yielded the best accuracy was selected for
being applied to the test split. The ranges of search for the NSDR method
were λU ∈ {10−6, 10−5, . . . , 100, 101}, λV ∈ {10−6, 10−5, . . . , 100, 101}, ηR ∈
{10−4, 10−3}, ηCA ∈ {10−4, 10−3}, d ∈ {25%, 50%, 75%, 100%} of m,β ∈
{0.1, 0.5, 0.9}, C ∈ {0.1, 1, 10}, p ∈ {1, 2, 3, 4}. For PCA-SVMs there is a vari-
ance parameter var ∈ {0.5, 0.7, 1.0} × 100%. The other SVMs parameters C, p
for both PCA-SVMs and SVMs were searched in the same ranges as the ones
reported for NSDR previously.

5.1 Results and Interpretation

For the sake of empirical verification we randomly selected five popular binary
datasets from the UCI repository. The results of the hyper parameter search over
the selected datasets are shown in Table 1.

Table 1. Hyper-parameter Search Results

DATASET NSDR PCA-SVMs SVMs

breast cancer λU = 10−5;λU = 10−1; ηR = 10−3; var = 1; C = 10
wisconsin ηCA = 10−4; d = 9;β = 0.9;C = 10; p = 2 C = 10; p = 2 p = 2

ionosphere
λU = 10−6;λU = 10−6; ηR = 10−3; var = 1; C = 0.1

ηCA = 10−3; d = 17;β = 0.5;C = 1; p = 2 C = 1; p = 3 p = 2

pi-diabetes
λU = 10−2;λU = 10−6; ηR = 10−3; var = 1 C = 10

ηCA = 10−4; d = 8; β = 0.5; C = 0.1; p = 3 C = 1; p = 3 p = 3

sonar
λU = 10−2;λU = 10−4; ηR = 10−3; var = 0.7 C = 0.1

ηCA = 10−4; d = 30; β = 0.1; C = 1; p = 3 C = 10; p = 2 p = 3

spect
λU = 10−2;λU = 100; ηR = 10−3; var = 1 C = 0.1

ηCA = 10−3; d = 11;β = 0.1;C = 1; p = 3 C = 1; p = 3 p = 2

There is a strong message we can derive from the hyper parameters results of
Table 1. In no case the winning kernel degree was found to be p = 1, pointing to
the conclusion that in all the listed datasets, non-linear dimensionality reduction
(i.e. kernel degree p > 1) is superior.

The accuracy results in terms of error ratios is presented in Table 2. The
winning method is shown in bold. As we can observe our proposed method out-
performs the baselines in the majority of the datasets as shown in the wins row.
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Table 2. Classification Accuracy - Error Ratios

DATASET NSDR PCA-SVMs SVMs

breast cancer wisconsin 0.070 ± 0.018 0.082 ± 0.019 0.073 ± 0.021

ionosphere *0.066 ± 0.008 0.091 ± 0.010 0.140 ± 0.018

pi-diabetes 0.287 ± 0.023 0.280 ± 0.006 0.274 ± 0.030

sonar 0.202 ± 0.053 0.226 ± 0.129 0.226 ± 0.056

spect 0.206 ± 0.002 0.243 ± 0.103 0.206 ± 0.002

Wins (sig/n.sig) 3.5 (1/2.5) 0 1.5 (1/0.5)

NSDR improves the classification on the ionosphere dataset with a significant
difference, denoted by ∗, while on the other datasets the gap to the second best is
smaller. It is interesting to observe that in the cases of breast cancer wisconsin,
pi-diabetes and spect the performance of SVMs is better than PCA-SVMs. This
observation leads to a reasoning that those datasets are hardly compressible,
therefore unsupervised dimensionality reduction PCA is outperformed. How-
ever, due to the added advantage of nonlinear supervision, NSDR recovers the
disadvantage of PCA-SVMs and wins on breast cancer wisconsin and co-wins on
spect, while loosing only in the pi-diabetes dataset.

6 Conclusions and Future Work

Throughout this study we presented a nonlinearly supervised dimensionality re-
duction technique, which jointly combined a joint optimization on reconstruction
and classification accuracy. The reconstruction terms were expressed as matrix
factorization decomposition of latent matrices, while the classification accuracy
as a dual form kernel maximum margin classifier. The reduced dataset is learned
via a coordinate descent algorithm which updates the reduced dimensionality
dataset w.r.t to both loss terms simultaneously. Empirical results over binary
datasets shows that the proposed method outperforms the selected baselines in
the majority of the datasets. Having proven the concept on binary classification,
we plan to extend the model for multi-class data as future work.
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Abstract. In spatial databases, Collocation Pattern Discovery is a very
important data mining technique. It consists in searching for types of
spatial objects that are frequently located together. Due to high re-
quirements for CPU, memory or storage space, such data mining queries
are often executed at times of low user activity. Multiple users or even
the same user experimenting with different parameters can define many
queries during the working hours that are executed, e.g., at off-peak
night-time hours. Given a set of multiple spatial data mining queries, a
data mining system may take advantage of potential overlapping of the
queried datasets. In this paper we present a new method for concurrent
processing of multiple spatial collocation pattern discovery queries. The
aim of our new algorithm is to improve processing times by reducing the
number of searches for neighboring objects, which is a crucial step for
the identification of collocation patterns.

1 Introduction

Most of the spatial datasets consist of instances that are described by spatial
features which can be interpreted as a characteristic of space in a particular
location. Typical examples of spatial features include species, business types or
points of interest (e.g., hospitals, airports). Shekhar and Huang introduced an
important concept of spatial collocation patterns [11]. The definition of a spatial
collocation pattern (or in short a collocation) assumes that it is a subset of
spatial features whose instances (e.g., particular airport and custom office) are
frequently located together in a spatial neighborhood. Such patterns are the
product of the data mining which is one of the most important steps in the
Knowledge Discovery in Databases - a non-trivial process of discovering valid,
novel, potentially useful and ultimately understandable patterns in the data [7].

For end users a data mining system can be regarded as an advanced database
with sophisticated querying methods. Users define data mining queries, i.e., a
classes of interesting patterns, sets of criteria and input datasets. The task of the
data mining system is to choose and execute an appropriate algorithm and finally
return discovered patterns to the users. In regular databases the time required
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to execute user commands is usually very short (except some administrative
tasks), while in data mining systems, the time to answer a single query can
be expressed in minutes or even hours. Therefore, in a real-life scenario, data
mining queries are collected during the user’s working hours and executed at
nights, when the system activity is low. It is very likely that some of the data
mining queries are related in such a way, that they share some input data. This
relation can be utilized to process them all at once in such a way that the total
processing time will be reduced in comparison with the straightforward serial
execution (the low activity time slot is limited to 6-8 hours). Another possibility
is to execute multiple queries in such order that consecutive queries can take
advantage of already computed and stored results of previous queries. Finally,
the spatial data mining system could execute queries that occur at random times
by incorporating them into currently ongoing data mining process.

In this paper we propose a new algorithm for processing batches of spatial
data mining queries for collocation patterns discovery. We introduce a concurrent
collocation candidate generation method and an extended iCPI-tree structure
that stores materialized neighbor relationships for multiple queries. Conducted
experiments have confirmed the high efficiency of the proposed algorithm.

2 Motivation and Related Work

2.1 Motivation

Consider a database of spatial objects describing various facilities in a particular
city. One can be interested in collocation patterns involving cinemas, food stores,
tram stops and schools whereas another user may want to find collocations of
such features as theaters, cinemas, opera houses and tram stops. The first user
wants to analyze districts d1 and d2 of the city and is interested in patterns
with at least 40% prevalence, while the second user wants to analyze districts d2
and d3 with minimum prevalence of 25%. The neighbor relation in both cases
is Euclidean distance less than 100 m. In general, we assume that the neighbor
relation is consistent across the processed queries, however it can vary depending
on the location (e.g., different for cities and rural areas) in the analyzed space.

The most trivial approach is to execute each query separately. We will refer
to this strategy as a sequential processing. The sequential processing is easy to
implement although it cannot benefit from the input data shared by multiple
queries. In the considered example, instances of features ’cinema’ and ’tram
stop’ located in the district d2 are shared among two queries. By merging the
execution of these queries we can reduce the number of searches across space
required to identify instances of certain candidates.

2.2 Related Work

One can notice that collocation discovery problem is substantially similar to the
frequent itemset discovery problem presented in [1], however, direct application
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of well-known association mining algorithms, e.g., Apriori [2], is very challeng-
ing. Difficulties arise from significant differences in the characteristics between
classical market-basket data and spatial data. For example, instances in the
market-basket analysis are precisely nested in transactions, while instances of
spatial features are embedded in a continuous space and share ’hidden’ neighbor
relationships. As a result, new methods for collocation mining have been devel-
oped. The most interesting ones are Co-Location Miner [11], Joinless [14] and
iCPI-tree [12] accompanied with our work on efficient processing of spatial data
mining queries in a limited memory environment [3,4,5].

The problem of efficient execution of multiple queries in classical databases has
been extensively studied (e.g., [8,10]) and basically consists in a single execution
of expressions shared by at least two queries. This general idea remains the same
in the context of spatial data mining queries, however due to the more complex
processing it cannot be directly transferred. The problem of batch processing
of queries for association discovery has been introduced in [13]. The authors
proposed two solutions, named Mine Merge and Apriori Common Counting, to
reduce the total I/O and CPU cost of executing a set of data mining queries.

To the best of our knowledge there are no current works on batch processing
of collocation pattern mining queries, although there are some works on indexing
collocation patterns for future reuse [6] and on incremental maintenance of col-
location patterns when a set of new spatial data arrives [9]. In the first approach,
there is a computationally demanding step of pre-calculating and materializing
all collocation instances. To compensate the time required to perform this task,
a significant number of queries (counted in dozens or even hundreds) must be
executed afterwards. In the second approach results of the query are material-
ized and updated in the response to changing input dataset. Contrary, we do
not pre-calculate or materialize collocations. In the proposed method collocation
queries are executed concurrently only for the required subset of the input data.

2.3 Basic Definitions

Definition 1. Let f be a spatial feature. An object x is an instance of the
feature f , if x is a type of f and is described by a location and unique identifier.
Let F be a set of spatial features and S be a set of their instances. Given a
neighbor relation R, we say that the collocation C is a subset of spatial features
C ⊆ F whose instances I ⊆ S form a clique w.r.t. the relation R.

Definition 2. The participation ratio Pr (C, fi) of a feature fi in the collo-
cation C = {f1, f2, . . . , fk} is a fraction of objects representing the feature fi in
the neighborhood of instances of collocation C − {fi}. Pr (C, fi) is equal to the
number of distinct objects of fiin instances of C divided by the number of all
objects of fi. The participation index (prevalence measure) Pi (C) of a
collocation C = {f1, f2, . . . , fk} is defined as Pi (C) = minfi∈C {Pr (C, fi)}.
Lemma 1. The participation ratio and participation index are monotonically
non-increasing with increases in the collocation size.



Concurrent Execution of Spatial Data Mining Queries 187

Definition 3. Given a subset of spatial instances I = {ol, . . . , ov}, where l, v ∈
{1, 2, . . . ,m}, if oi ≤ oj holds for any l ≤ i ≤ j ≤ v, the I is called as an
ordered instance set. If the feature of oi is not the same as the feature of
ol and R (ol, oi) holds for any l < i ≤ v, the I is called as ordered neighbor
relationship set of the instance ol. The set of ordered neighbor relationship
sets of all instances of a spatial feature x is denoted as δx. Given a set of spatial
features F = {f1, f2, . . . , fn} and a set of ordered instance neighbor relationship
of spatial these features δ = δf1 ∪ δf2 ∪ . . . ∪ δfn , a tree designed as follows is
called as an improved Collocation Pattern Instances tree (iCPI-tree).
The iCPI-tree consists of one root labeled as “null” and a set of the spatial
features sub-trees as the children root. The spatial feature fi sub-tree consists of
the root fi and each subset of δfi as a branch of the root. Each branch records an
ordered neighbor relationship set of corresponding instance and relevant feature.

2.4 The iCPI-Tree Based Method

The general approach to collocation mining has been proposed in [11]. It con-
sists of three major steps: (1) generating collocation candidates, (2) identify-
ing instances for candidates and (3) filtering candidates w.r.t. to the minimum
prevalence threshold. These steps are executed iteratively. In k−th iteration,
size-k candidates are processed. The first step can be accomplished by applying
well-known Apriori strategy [2] due to the anti-monotonicity property of the
prevalence measure. The last step is very straightforward and basically consists
in computing prevalence measure for each candidate. The most time consuming
part of the algorithm is the second step. The first idea presumed that spatial
join should be used to find co-located objects. In [14] a concept of materialized
neighborhoods has been introduced. Wang et. al [12] extended this concept by
defining a tree structure (called iCPI-tree) for fast identification of neighbors.

In the iCPI-tree each child of the root node is a subtree that contains neigh-
bors for instances of a specific spatial feature. Sub-trees are composed of nodes
representing spatial features of neighbors and leafs corresponding to neighbor
instances. For example, in Fig. 2 (section 3.2) the tree iCPI1 contains two sub-
trees for features A and B. Given the instance A7 we can easily find that it
has one neighbor with B feature (B6) and two neighbors with C feature (C5
and C8). During the execution of the algorithm, new instances of candidates
are constructed from instances of collocations from previous iteration. For ex-
ample, to find instances of candidate ABC, an instance A1, B2 can be used.
The procedure searches for neighbors with feature C of A1 and B2. If there are
common neighbors for both elements, a new instance is constructed. Using the
iCPI1 tree, one can find that there is an instance A1, B2, C3. For details of the
iCPI-tree based algorithm please consult the paper [12].

3 Batch Processing of Spatial Data Mining Queries

In this section we introduce preliminaries, motivations and our new algorithm
for batch processing of spatial data mining queries.
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3.1 Preliminaries

Definition 4. A spatial data mining query SDMQ is a tuple (S, F, L,R,
mp), where S is a spatial framework, F is a set of spatial features, L is a subset of
spatial framework S, R is a neighbor relation and mp is a minimum prevalence.
The result of the SDMQ is a set of collocation patterns discovered from instances
of F w.r.t. to R located in L having the prevalence not less than mp.

Definition 5. A set of spatial data mining queries QS = {(SDMQ1, t1),
(SDMQ2, t2),. . ., (SDMQn, tn)} consists of pairs (SDMQi, ti), 1 ≤ i ≤ n
where SDMQi is a spatial data mining query and ti is the time of the arrival
of this query to the data mining system.

In this work we focus on the execution of batches of data mining queries, i.e.,
sets of n spatial data mining queries where for each 1 ≤ i, j ≤ n, ti = tj .

Definition 6. A set AS = {a1, a2, . . . , am} is a set of distinct areas of S,
i.e., set of uniquely numbered subsets of spatial framework S such that for each
1 ≤ i, j ≤ m, areas ai and aj do not overlap and all areas from As constitute a
framework S.

Definition 7. A shared collocation pattern is a subset of spatial features
with an additional list of SDMQs that it belongs to. A shared collocation in-
stance is a set of instances of collocation features located together in a spatial
neighborhood with assigned set of distinct areas SA = {ak, . . . , al} such that for
each ai ∈ SA at least one collocation feature instance is located in ai.

Definition 8. Given a set of n data mining queries QS and a set F = {F1∪F2∪
. . . ∪ Fn}, where Fi denotes a set of spatial features of SDMQi ∈ QS, a Com-
mon iCPI-tree is an enhanced iCPI-tree such that for each spatial feature
fi ∈ F , sub-tree consists of the root fi and each subset of a set of ordered in-
stance neighbor relationship sets of all instances of fi. Each instance node of fi
is extended with the identifier of the distinct area that it belongs to.

3.2 The Common iCPI-Tree Based Method

In this section we introduce our new algorithm called Common iCPI-tree for
the concurrent execution of multiple queries in a batch. The pseudocode for
this algorithm is shown in Alg. 1. Within the following paragraphs we will refer
to this pseudocode by putting the corresponding line numbers in brackets. The
general idea introduced in the iCPI-tree method remains the same although there
are additional algorithm steps and extensions of structures required to perform
effective execution of batched queries.

To explain how our method works, we will use an example dataset shown
in Fig. 1. There are 4 features A, B, C and D with the total of 21 instances.
The batch is composed of two queries: SDMQ1 = (Input, {A,B,C}, 1.5 < x ≤
13, d ≤ 2, 0) and SDMQ2 = (Input, {A,B,C,D}, 6.5 < x ≤ 19.5, d ≤ 2, 0). For
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simplicity and better explanation of the algorithm both minimum prevalence
thresholds are set to 0 and we use only x axis to specify query area of interest.
A line connecting two objects represents a neighbor relationship (distance not
grater than 2 units).

Algorithm 1. Common iCPI-tree based collocation mining algorithm

Input: QS - a set of n spatial data mining queries with the same r neighbor relation
Output: a set of collocation patterns
Variables: Fi - a set of SDMQi spatial features, A - a set of distinct ar-
eas for QS, CiCPIk - a Common iCPI-tree, SCk - a set of size-k shared col-
location candidates, SPk − a set of size-k prevalent shared collocations, SPIk −
a set of size-k shared clique instances

1: procedure Common iCPI(QS)
2: A = genDistinctAreas(QS)
3: CiCPI = genCommonTree (F1 ∪ F2 . . . ∪ Fn, A, r); k = 1
4: SPk = genOneElementSharedCollocations(F1 ∪ F2 . . . ∪ Fn, A)
5: while (SPk �= ∅) do
6: SCk+1 = AprioriGenSharedCandidates (SPk)
7: for sc ∈ SCk+1 do /* for each shared candidate */
8: for spinst ∈ SPIk with features equal to sc prefix do
9: if spinst belongs only to areas in sc then
10: CN = searchCommonNeighboors (spinst, sc, CiCPI)
11: for ne ∈ CN do
12: scnewInst = spinst ∪ {ne}, add ne area to scnewInst areas
13: SPIk+1 = SPIk+1 ∪ {scnewInst}
14: end for
15: end if
16: end for
17: end for
18: SPk+1 = getPrevalent (SCk+1, SPIk+1, QS)
19: k = k + 1
20: end while
21: return

⋃
(SP2, . . . , SPk−1)

22: end procedure

In the original iCPI-tree method the most computationally demanding part
is the step of searching a tree structure to construct new collocation instances
having the clique property. The sequential processing strategy requires to con-
struct and process a separate iCPI-tree for each query from the batch set (two
iCPI-trees for sample data are shown in Fig. 2). We propose to build only one
tree that contains instances for all queries (line 3). We refer to this structure
as Common iCPI-tree (CiCPI-tree). To distinguish instances among different
queries an additional identifier has to be stored with each node representing an
object instance in the tree. In our opinion, the best solution is to use properly
constructed bitmaps for that purpose. A bitmap (also known as a bitset, bit
array or bit vector) is a compact structure that stores an array of bits. It is
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extremely fast due to the hardware, low-level parallelism in processing whole
words or bytes. To determine appropriate bitmaps for tree elements, first of all,
space has to be divided into a set of distinct areas (line 2).
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Fig. 2. Two iCPI-trees generated in sequential processing approach

In the sample dataset, three distinct areas can be distinguished: a1(1.5 <
x ≤ 6.5), a2(6.5 < x ≤ 13) and a3(13 < x ≤ 19.5). For each area, a unique
bitmap is generated by setting the i-th element for the i-th area. Therefore we
have identifiers {001}, {010}, {100} for areas a1, a2 and a3 respectively (notice:
although three areas can be encoded on two bits, the mentioned solution is more
efficient in the further processing). Given the set of distinct areas, the next step
is to create the Common iCPI-tree. For each object oi analyzed by at least one
SDMQ all neighbors with features greater than oi feature have to be found.
To perform this task a plane sweep method or a spatial index can be utilized.
Neighbors are ordered by their feature (e.g., using the lexical order) and their
identifier. For each object a new bitmap is created. It must correspond to the
bitmap of the area in which this object is located in. For example, given the
object A14{010} the final list of neighbors contains B16{100}, C13{010} and
C17{100}. The discovered neighborhoods (and their bitmaps) are inserted into
the CiCPI-tree using the procedure described in [12]. Figure 3 presents final
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Fig. 3. Common iCPI-tree generated in concurrent processing approach

CiCPI-tree structure that will be used to scan for neighbor instances in the
consecutive iterations.

In the k-th iteration (lines 5-20), the algorithm discovers prevalent size-k+1
collocations for each SDMQ by generating (shared) collocation candidates (line
6), identifying their instances (lines 8-16) and counting their prevalences (line
18). Due to the participation index definition, all size-1 collocations are preva-
lent (with prevalence = 100%). In the sequential processing approach, Apri-
oriGen [2] method would be applied to each SDMQ separately. We propose
to generate candidates simultaneously for all queries using AprioriGenShared-
Candidates method (line 6). At the beginning, for each candidate collocation a
bitmap is assigned. Each bitmap has length equal to the size of the batch and
indicates queries which share this particular candidate. If such a candidate (or
a collocation) is shared by the i-th SDMQ, the i-th bit is set. In our example
there are 4 size-1 collocations: A, B, C and D. All except D are shared between
SDMQ1 and SDMQ2 hence the following set of bitmaps is assigned: {11}, {11},
{11}, {10}. The general idea of AprioriGenSharedCandidates is similar to the
original method. All pairs of size-k-1 collocations sharing at least one query are
joined to get size-k candidates. Each generated candidate has a bitmap resulting
from bitwise AND operation on all bitmaps from its size-k-1 subsets. Finally, a
pruning step is applied to remove candidates that cannot be prevalent. In the
introduced example, size-2 candidates are: AB{11}, AC{11}, AD{10}, BC{11},
BD{10} and CD{10}, size-3: ABC{11}, ABD{10}, ACD{10} and BCD{10},
size-4: ABCD{10}.

Starting with k = 2, instances for each size-k candidate are constructed by
expanding instances of size-k-1 collocation discovered in the previous iteration
(lines 8-16), however a sharing property of candidates and collocations must be
taken into consideration. For k = 2 the process traverses the CiCPI-tree and for
each instance of the first candidate feature, the neighbors with the second feature
are retrieved from the tree. For example, given the candidate AB{11}, for the
instance A14 there is one neighbor B16. Because the instance A14, B16 can be
shared between two queries (the candidate AB{11} is shared by SDMQ1 and
SDMQ2), there is a necessity to store such information in the form of bitmap. It
is a result of bitwise OR operation performed on bitmaps for individual objects.
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Instances
of AB

Instance
bitmap

Common Neighbors
with feature C

A1, B2 {001} C3{001} 

A7, B6 {010} C5{001}, C8{010}

A12, B11 {010} C10{010},  C13{010}

A14, B16 {110} C13{010}, C17{100}

A18, B15 {100} null

A18, B16 {100} null

A18, B20 {100} null

Shared candidate ABC, SDMQ1 area bitmap {011}, SDMQ2 area bitmap {110} 

A1, B2, C3 {001} for SDMQ1

A7, B6, C5 {011} for SDMQ1
A7, B6, C8 {010} for SDMQ1 and SDMQ2

A12, B11, C10 {010} for SDMQ1 and SDMQ2

A14, B16, C13 {110} for SDMQ2
A14, B16, C7 {110} for SDMQ2

check SDMQ1: {011} AND {110} = {010} invalid
check SDMQ2: {110} AND {110} = {110} valid

New instances of ABC:

Fig. 4. Search procedure for instances of shared candidates

For the considered instance it is {010} ∪ {100} = {110}. The same procedure is
applied to the remaining instances of A (A1, A7, A12 and A18).

Let us now assume that there is a candidate ABC{11}. To generate its
instances, we try to expand already known instances of AB{11} by search-
ing the tree for instances of C (line 10). For the aforementioned A14, B16 in-
stance, neighbors C13 and C17 are retrieved from the CiCPI-tree. Both of them
are common neighbors of A14 and B16, therefore instances A14, B16, C13 and
A14, B16, C17 are created (lines 12-13). Once again bitmaps for such instances
have to be computed using bitwise OR operation on the bitmap for A14, B16 and
bitmaps for neighbors. The final bitmap is {110} for both mentioned instances.
Full example illustrating the search procedure for candidate ABC{11} is shown
in Fig. 4.

The prevalence for each query is computed by browsing through discovered
instances. Because one instance can belong to multiple queries, it is necessary
to increment prevalence counters only for applicable queries. To identify queries
that a particular instance belongs to, bitmaps representing a sum of distinct
query areas identifiers and a bitmap for candidate instance can be used. If
for a given query the result of bitwise AND operation is equal to the instance
bitmap, it means that such an instance belongs to this query. For example, the
instance A12, B11, C10{010} belongs to SDMQ1 as well as to SDMQ2 because
its bitmap is contained in bitmaps representing areas for both queries (Fig. 4).

4 Experiments

In order to evaluate the performance of the Common iCPI-tree method we per-
formed several experiments. For better control over the experiments, we used
synthetic datasets that were generated using a method similar to the approach
described in [14]. We have prepared 20 datasets with the following parameters.
The number of spatial objects: 50.000-600.000, the number of spatial features:
20-60, the maximal collocation pattern length: 4-8, the number of noise instances:
20%-80%. To simulate dense and sparse datasets we used two spatial frameworks
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with sizes 10000x10000 and 1000x1000 units. In all tests the neighbor distance
threshold was set to 5 units. The experiments were conducted on a Linux PC
with AMD Athlon64 4200+ processor and 4 GB of main memory. All programs
were written in Java.
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Fig. 5. Performance gain for CiCPI-tree in comparison with sequential processing

We have also prepared a set of 200 sample batches for experiments. We var-
ied the number of queries in batch (2-5), the minimum prevalence threshold
(0.3-0.6) and the level of overlapping between queries (0%-100%). The level of
overlapping was equal to the average ratio of shared objects between each pair
of batched queries. The CiCPI-tree method has been compared with sequential
processing. For clarity, all presented results are relative to the results obtained
from sequential execution. A particular value on the chart should be interpreted
as the acceleration (or improvement) in comparison with sequential execution.
For example, for charts presenting the time performance, values below 1, e.g.
0.8, mean that sequential processing took 80% of time required by CiCPI-tree
solution, while value 4 means that CiCPI-tree method is 4 times faster than
sequential processing.

Figure 5(a) presents how the average processing times change with the in-
creasing overlap threshold. The series include batches of 2 and 5 queries with
minimum prevalence set to 30% and 60%. As we expected, the performance
gain increases with the increasing overlap of datasets. For bathes of 2 queries,
the performance gain can be observed after exceeding 20% overlap, while for 5
queries even for 10% overlap the new algorithm results in faster execution times.
When there is no overlap, the CiCPI method is about 10% slower than sequen-
tial processing. For 100% overlap batches of 2 and 5 queries are executed with
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CiCPI-tree up to 1.75 and 4.5 times faster respectively. For example, in one of
our tests the required processing time dropped from 26 minutes to less than 6
minutes.

Figure 5(b) presents the relative number of required tree searches for neigh-
bors. Similarly to the previous experiment, the reduction of searches is increasing
with the increasing overlap.With 100% overlap, our new algorithm performs only
one tree search for all queries in batch, therefore there are 2 and 5 times less
searches for batches of 2 and 5 queries.

Figure 5(c) presents the comparison of CiCPI-tree size and cumulative size of
iCPI-trees generated in sequential processing. While the overlap is low, CiCPI-
trees can reach bigger sizes than corresponding sets of iCPI-trees due to the
overhead resulting from necessity to store additional bitmaps. With increasing
overlap, such overhead is compensated by the elimination of redundant branches
that can be found in iCPI-trees. In this chart there is no distinction between
prevalence thresholds because the size of the CiCPI-tree (and corresponding
iCPI-trees) does not depend on the prevalence value.

Figure 5(d) presents how the sharing property of collocations affects the total
number of candidates. In comparison with sequential processing the number of
candidates is greatly reduced even for low values of overlap threshold, especially
for batches of 5 queries.

Finally, in the last series of experiments we analyzed how the number of
queries in batch and minimum prevalence affect total processing time. As we
expected the bigger the batch is, the bigger performance gain is achieved, notably
for higher overlap thresholds (Fig. 5(e)). On the contrary, the prevalence measure
does not have such essential impact on the performance gain (Fig. 5(f)). However,
when the minimum prevalence threshold is low more multi-feature candidates
are being generated. The possibility of sharing such candidates is limited and
therefore the acceleration is reduced.

5 Summary and Future Work

In this paper we have defined the problem of efficient execution of batched spatial
data mining queries for collocation patterns discovery. We have proposed a new
algorithm, called CiCPI-tree, that significantly outperforms the straightforward
serial execution of multiple queries. Processing times are reduced by eliminat-
ing redundant searches for neighbors and introducing shared representation of
collocation instances with combined candidates generation.

In the future work we will focus on memory constraints that can be cru-
cial when a batch of queries is being processed. In the ideal circumstances, the
CiCPI-tree structure should fit in memory, however in real life applications this
can be impossible. We believe that our previous researches on collocation pattern
mining in limited memory environments can be adopted to concurrent process-
ing of spatial data mining queries. Another interesting subject involve different
strategies for processing spatial data mining queries, e.g., sets of queries with
random times of arrival.
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Abstract. Discriminative pattern mining is known under the names of
subgroup discovery, contrast set mining, emerging pattern mining, etc.
and has been intensively studied for the last 15 years. Based on the so-
phisticated techniques developed so far (e.g. branch-and-bound search,
minimum support raising, and redundancy elimination including the use
of closed patterns), this paper proposes an efficient exact algorithm for
finding top-k discriminative patterns that are not redundant and would
be of value at a later step in prediction or knowledge discovery. The
proposed algorithm is unique in that it conducts depth-first search over
enumeration trees in a mirrored form of conventional ones, and by this de-
sign we can keep compact the list of candidate top-k patterns during the
search and consequently high the minimum support threshold. Experi-
mental results with the datasets from UCI Machine Learning Repository
clearly show the efficiency of the proposed algorithm.

Keywords: discriminative pattern mining, top-k mining, minimum sup-
port raising, closed itemsets, dual-monotonicity, suffix enumeration trees.

1 Introduction

Discriminative pattern mining is known under the names of subgroup discov-
ery [21], contrast set mining [1], emerging pattern mining [3], supervised de-
scriptive rule discovery [11], cluster grouping [23], and so on and has been
intensively studied for the last 15 years. The obtained discriminative patterns can
be used to characterize a particular class c of interest, or to build more precise
classifiers. One current issue in discriminative pattern mining is to deal with the
redundancy among the obtained patterns. For example, suppose that we are per-
forming top-k mining and a pattern {A} is significantly relevant to a class c of in-
terest. Then, the patterns including A, such as {A,B}, {A,C} and {A,B,C}, also
tend to be relevant to c, and would occupy the list of the final top-k patterns.
So we hope to find a more informative collection of top-k patterns by eliminating
such redundancy in a reasonable way. For instance, let us introduce a constraint
called productivity [20]. Then, if a pattern {A,C,D} is more relevant to the class c
of interest than another pattern {A,C}, we consider that there is something mean-
ingful in the combination of A, C and D, but if the former is less relevant than the
latter, the former can be considered redundant and removed.

L. Bellatreche and M.K. Mohania (Eds.): DaWaK 2013, LNCS 8057, pp. 196–208, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In the literature of frequent/discriminative pattern mining, we have conven-
tionally used prefix enumeration trees (e.g. [1,2,19]), illustrated in Fig. 1 (left)
which include items A, B, C and D ordered as A ≺ B ≺ C ≺ D. This paper,
on the other hand, proposes to use suffix enumeration trees [10], illustrated in
Fig. 1 (right), as a mirrored form of prefix enumeration trees. In a prefix (resp.
suffix) enumeration tree, the parent of each node (pattern)1 is its immediate
prefix (resp. suffix). It is less known that when branching ascendingly w.r.t. ≺,
FP-Growth [8] implicitly runs over suffix enumeration trees. The merit of using
suffix enumeration trees comes from a property that when a node x is visited in
a depth-first (and left-to-right) search, all of x’s sub-patterns have already been
visited. In the suffix enumeration tree in Fig. 1, when visiting {A,C,D}, we have
already visited {A}, {C}, {D}, {A,C}, {A,D} and {C,D}, but this is not the case
in prefix enumeration trees. This property on the visiting order makes efficient
the tests on the set-inclusion-based constraints among patterns.

Based on the observation above, we propose an efficient exact algorithm for
finding top-k non-redundant discriminative patterns under two set-inclusion-
based constraints among patterns. One is closedness, which has been studied in
frequent pattern mining [15,19], and the other is productivity illustrated before.
We can say that the proposed algorithm has two technical contributions. First, it
adopts a new, relaxed condition called dual-monotonicity, which is desired to be
satisfied by the scores on relevance. Indeed, dual-monotonicity is shown to play
a crucial role in various aspects of the proposed algorithm. Second, the proposed
algorithm introduces a mirrored version of prefix-preserving closure extension in
LCM [19] in order to traverse over a search space like a suffix enumeration tree.
We show formally and empirically that this mirrored operation successfully keeps
compact the list of candidate top-k patterns during the search and consequently
high the minimum support threshold.

The remainder of this paper is outlined as follows. Section 2 describes dual-
monotonicity together with the concepts and the techniques that have been
developed in the literature of discriminative pattern mining. Section 3 presents
our proposed method. Some experimental results are reported in Section 4, and
lastly Section 5 concludes the paper.

2 Dual-Monotonicity of Relevance Scores

2.1 Preliminaries

First, we introduce some notations. We consider a dataset D = {t1, t2, . . . , tN}
of size N , where ti is a transaction, a set of items. The set of all items appearing
in D is denoted by X . Also each transaction belongs to one of pre-defined classes
C, and let ci be the class of transaction ti. A pattern x is a subset of X , and
let P be the set of all possible patterns. We say that x matches a transaction ti
when x ⊆ ti. Depending on the context, we interchangeably denote a pattern as

1 We only consider enumeration trees which have a one-to-one map between the nodes
in a tree and the possible patterns. So we refer to a node by its corresponding pattern.
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{A}

{A, B} {A, C} {A, D}

{B} {C} {D}

{C, D}{B, C} {B, D}

{B, C, D}{A, B, C} {A, B, D} {A, C, D}

{A, B, C, D}

{D}

{C, D}{B, D}{A, D}

{C}{B}{A}

{A, B} {B, C}{A, C}

{A, B, C} {B, C, D}{A, C, D}{A, B, D}

{A, B, C, D}

Fig. 1. A prefix enumeration tree (left) and a suffix enumeration tree (right)

a vector x = (x1, x2, . . . , xn), as a set x = {x1, x2, . . . , xn}, or as a conjunction
x = (x1 ∧ x2 ∧ . . . ∧ xn). Besides, we introduce some total order ≺ among
items, and by default, we place the items in a transaction/pattern following ≺.
Transaction/patterns can be ordered in a lexicographical way w.r.t. ≺.

The probabilities treated in this paper are all empirical ones, i.e. they are
computed from the statistics on the dataset D. First, we define some subsets
of D: Dc = {i | ci = c, 1 ≤ i ≤ N}, D(x) = {i | x ⊆ ti, 1 ≤ i ≤ N} and
Dc(x) = {i | ci = c,x ⊆ ti, 1 ≤ i ≤ N}, where c ∈ C is the class of interest. A
joint probability p(c,x) is then obtained as |Dc(x)|/N . Also we use a symbol ¬
for negation, e.g. we have D¬c = D \ Dc, p(c,¬x) = |Dc \ Dc(x)|/N , p(¬c,x) =
|D(x)\Dc(x)|/N , and so on. Using joint probabilities, marginal probabilities and
conditional probabilities are computed, e.g. we obtain p(x) = p(c,x) + p(¬c,x),
p(c) = p(c,x) + p(c,¬x) or p(c | x) = p(c,x)/p(x).

2.2 Relevance Scores

As stated before, we seek for k patterns that are relevant to a class c of interest.
For that, we first adopt a relevance score Rc, a function from P to R (the set
of real numbers). The relevance measured by Rc(x) can also be regarded as
interestingness of a class association rule x ⇒ c, where x is a pattern. Among
dozens of relevance scores proposed so far [4,10,11], we adopt F-score Fc(x) =
2p(c | x)p(x | c)/(p(c | x)+p(x | c)) = 2p(c,x)/(p(c)+p(x)), which is a popular
measure in information retrieval or evaluation of classifiers.

Now consider a class association rule x ⇒ c applied to the original dataset
D. Then, true positive rate (TPR) is written as p(x | c) = p(c,x)/p(c) in our
notation, and called the positive support of x for class c. Similarly, false positive
rate (FPR) is written as p(x | ¬c) and called the negative support. The ROC
space [4,14] is then formed by TPR (as y-axis) and FPR (as x-axis) and each
pattern x is located as a point (v, u) in the ROC space, where u and v respectively
indicate TPR and FPR of x. For brevity, ‘support’ means positive support unless
explicitly noted. Since we seek for the patterns relevant to a particular class c,
we are only interested in the patterns x such that p(x | c) ≥ p(x | ¬c) or
equivalently p(c | x) ≥ p(c).

In the literature, the convexity of the relevance score has been exploited
in branch-and-bound pruning [7,13,14,23]. Recently Nijssen et al. introduced
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a property called zero diagonal convexity [14]: Rc(x) is zero diagonal convex
iff Rc(x) is convex and reaches its minimum in all the points on the diagonal
TPR = FPR in the ROC space. Several popular relevance scores such as the
Fisher score, information gain, Gini index, χ2, support difference are zero diag-
onal convex [14]. Furthermore, zero diagonal convexity can be relaxed as a new
condition called dual-monotonicity, which is defined as follows:

Definition 1. Let Rc be a relevance score for a class c of interest. Then, Rc is
dual-monotonic iff Rc(x) is monotonically increasing w.r.t. p(x | c) and mono-
tonically decreasing w.r.t. p(x | ¬c) wherever p(x | c) ≥ p(x | ¬c). 	

Recall here that Rc(x) is a function of TPR u = p(x | c) and FPR v = p(x |
¬c). Interestingly, dual-monotonicity includes two out of Piatetsky-Shapiro’s
three conditions desired for relevance scores [4,17].2 Besides, dual-monotonicity
obviously holds if Rc(x) satisfies zero diagonal convexity. In contrast, for F-
score, dual-monotonicity holds while convexity does not. As we will see, dual-
monotonicity plays a crucial role in various aspects of the proposed algorithm.

2.3 Redundancy Elimination with Set-Inclusion-Based Constraints

As stated in the introduction, elimination of redundant patterns is necessary for
having more informative results. In this paper, we focus on redundancy elim-
ination based on set-inclusion-based constraints among patterns. One popular
technique for this is to use the closedness constraint, and we additionally intro-
duce a generalized version of set-inclusion-based constraint called productivity.

To explain the closedness constraint, we first introduce a closure operator
Γ such that Γ (x,D) =

⋂
t∈D(x) t, where D is the transactions and x is some

pattern. Here Γ (x,D) is called a closure of x w.r.t. D. A closed pattern is then a
pattern x such that x = Γ (x,D). Each closed pattern x is the maximal pattern
in an equivalence class [x] = {x′ | D(x) = D(x′)} = {x′ | x = Γ (x′,D)} and
seen as a representative of [x]. Since the size of [x] can be exponential, focusing
only on closed patterns often leads to a significant reduction of the search space.

Next, let us consider a situation for discriminative pattern mining. Let c be a
class of interest, Dc the transactions that belong to c, and x some pattern. Also
let x∗ = Γ (x,Dc). We further note that Dc(x

∗) = Dc(x) since x∗ and x are in
the same equivalence class [x], and D′(x∗) ⊆ D′(x) for any transactions D′ since
x∗ is the maximal pattern in [x]. Then, under a dual-monotonic relevance score
Rc, we have Rc(x

∗) ≥ Rc(x) since p(x∗ | c) = p(x | c) (from Dc(x
∗) = Dc(x))

and p(x∗ | ¬c) ≤ p(x | ¬c) (from D¬c(x∗) ⊆ D¬c(x)) [5,18]. Now, interestingly,
it is also justified from the viewpoint of the relevance scoreRc to focus only on the
closed patterns obtained by the closure operator to Dc, and such closed patterns
are often called the closed-on-the-positives. Hereafter we abbreviate Γ (x,Dc) as
Γc(x) and called it the closure of x on the positives.

2 The remaining one is that Rc(x) = 0 when p(x | c) = p(x | ¬c), i.e. Rc(x) reaches
zero in all the points on the diagonal TPR = FPR [4,17].
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In addition, we introduce another set-inclusion-based constraints called pro-
ductivity, whose original version is defined with confidence (i.e. Rc(x) is fixed as
p(c | x)) [2,20]. Productivity is defined as follows:3

Definition 2. Let c be a class of interest. Then, for a pair of patterns x and
x′ in P, x is weaker than x′ iff x ⊃ x′ and Rc(x) ≤ Rc(x

′). A pattern x is
productive iff x is not weaker than any sub-pattern of x. 	

In the literature [5,6,12], a pattern x is said to be dominated by another pat-
tern x′ iff Dc(x) ⊆ Dc(x

′) and D¬c(x) ⊇ D¬c(x′), and a pattern x is relevant
iff x is not dominated by any other pattern. Garriga et al. [5] derived a con-
dition equivalent to this relevance: a pattern x is relevant iff x is closed on
the positives and there is no generalization x′ ⊂ x closed on the positives such
that D¬c(x′) = D¬c(x). Here it is straightforward to show that under a dual-
monotonic relevance score Rc, productivity implies relevance in the sense above
(i.e. productivity is a tighter constraint) among the patterns closed on the pos-
itives. From this observation, in this paper, we aim to find top-k productive
closed-on-the-positives.

2.4 Branch-and-Bound Pruning in Top-k Mining

Suppose that we conduct a branch-and-bound search for top-k patterns under
a dual-monotonic relevance score Rc. Also consider an anti-monotonic upper
bound Rc(x) of Rc(x) of a pattern x. Then, if it is found that Rc(x) < Rc(z),
where z is the pattern with the k-th greatest score, we can safely prune the
subtree rooted by x. This pruning exploits the anti-monotonicity of Rc, which
guarantees Rc(x

′) ≤ Rc(x
′) ≤ Rc(x) < Rc(z) for any super-pattern x′ of x.

Several previous methods obtain the upper bound by considering the most
optimistic scenario. Since Rc(x) is dual-monotonic, by definition Rc(x) is mono-
tonically increasing (resp. decreasing) w.r.t. p(x | c) (resp. p(x | ¬c)), and both
p(x | c) and p(x | ¬c) are anti-monotonic w.r.t. pattern-inclusion. Thus, the most
optimistic scenario when extending x into x′ is that p(x′ | c) remains p(x | c) and
p(x′ | ¬c) turns to be zero. So a general heuristic for obtaining an upper bound
Rc(x) is to substitute p(x | ¬c) := 0 into the definition of Rc(x).

4 After having
the upper bound Rc(x) where p(x | ¬c) is constant at zero, Rc(x) is always
anti-monotonic w.r.t. pattern-inclusion thanks to the dual-monotonicity of Rc.
For example, F-score is defined as Fc(x) = 2p(c | x)p(x | c)/(p(c | x)+p(x | c)),
so we obtain its upper bound as Fc(x) = 2p(x | c)/(1 + p(x | c)). The above
heuristic is applicable to any dual-monotonic relevance scores.5

Then, we translate branch-and-bound pruning into minimum support rais-
ing [9]. In top-k mining, we usually use an ordered list of candidate patterns,

3 Weakness in this definition is also called strong dominance in the context of relevant
explanation in Bayesian networks [22].

4 Equivalent substitutions are also possible: p(c | x) := 1, p(¬x | ¬c) := 1, and so on.
5 However, for some scores whose upper bounds are always high, there would be no
chance of pruning. For instance, a relevance score called growth rate [3] GRc(x) =
p(x | c)/p(x | ¬c) goes into infinity when substituting p(x | ¬c) := 0.
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called the candidate list in this paper, and insert the patterns found in the mid-
dle of the search into the list in the descending order of the relevance score. A
pattern x cannot stay in the final top-k patterns if Fc(x) = 2p(x | c)/(1 + p(x |
c)) < Fc(z), where z is the k-th pattern. Here we rewrite this condition as:
p(x | c) < Fc(z)/(2 − Fc(z)) = Uc(z). When the relevance score is dual-
monotonic, this rewriting is always valid.6 Here Uc(z) works as a threshold for
the support of x and leads to minimum support raising. That is, starting with a
small value (e.g. σmin := 1/|Dc|), the minimum support is repeatedly updated by
σmin := max{Uc(z), σmin} during the search. Thanks to the translation above,
we can inherit fast frequent pattern mining algorithms like FP-Growth [8].

2.5 Search Strategies under Productivity

In this subsection, we describe search strategies for handling the productivity
constraint in top-k branch-and-bound search. As stated before, top-k mining
often uses a candidate list L that stores the current top-k candidate patterns. By
the nature of minimum support raising, a new minimum support is set heavily
depending on the k-th greatest score in L, and thus the effect of minimum
support raising is rather limited if we relax the size limit of L and add the
patterns that are not truly productive patterns. For example, consider the prefix
enumeration tree in Fig. 1, where x = {A,C,D} is visited before x′ = {A,D} in
a depth-first search. When visiting x, it is inevitable to add x into L since it is
uncertain whether x is weaker than x′ at the moment. Contrastingly, we should
keep the candidate list L as compact as possible, i.e. wherever possible we should
filter out immediately the patterns that are not truly productive patterns.

Fortunately, if a pattern x is guaranteed to be visited after all sub-patterns
of x have been visited, we can filter out x immediately if x is weaker than some
existing pattern in the candidate list L. Typically breadth-first search, where
shorter patterns are visited earlier, enables this filtering. Also for the same pur-
pose, recent work by Grosskreutz et al. [6] proposes a memory-efficient method
based on iterative deepening where ‘depth’ is the maximum size of patterns
to be found. Furthermore, in this paper, following RP-Growth [10], we adopt
memory-efficient depth-first traversal over a search space like suffix enumeration
trees illustrated in the introduction. We take this strategy because the overhead
of iterative deepening seems not ignorable in finding long patterns.

Furthermore, we also inherit aggressive pruning from RP-Growth. This prun-
ing is based on an extended notion of weakness defined as follows:

Definition 3. Let c be a class of interest, and x, x′ be a pair of patterns in P.
Then, x is prunably weaker than x′ iff x ⊃ x′ and Rc(x) ≤ Rc(x

′). 	

If a pattern x is prunably weaker than some pattern x′ in the current candidate
list, any super-pattern of x is also weaker than x′, and thus we can safely prune
the subtree rooted by x in finding top-k productive patterns.

6 For many scores, it is possible to have Uc(z) in closed form. A typical exception is
the case with information gain, since it includes the entropy function in its definition.
In such a case, the threshold in the right hand side should be numerically solved.
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3 The Proposed Method

3.1 Suffix-Preserving Closure Extension

Based on the concepts and the techniques in Section 2, from now, we propose
an efficient exact algorithm for top-k productive closed-on-the-positives. We
have seen that, via minimum support raising, branch-and-bound pruning can
be plugged into frequent closed pattern mining algorithms like LCM [19]. LCM
is the first algorithm that introduces prefix-preserving closure extension (PPC
extension, for short) for avoiding duplicate visits to a pattern. So we aim to run
LCM over suffix enumeration trees, by introducing a mirrored version of PPC
extension, called suffix-preserving closure extension (SPC extension).

Definition 4. Let c be a class of interest, Dc the transactions in c, x a pattern
in P, x an item in X and Σx(x) = x∩{x′ | x ≺ x′}. Then, the suffix-preserving
closure extension of a pattern x by an item x is defined as x∗ = Γc({x} ∪ x)
such that (i) x �∈ x, (ii) x ≺ core(x) and (iii) Σx(x

∗) = Σx(x), where core(x)
is the maximum item x w.r.t. ≺ such that Dc(x ∩ {x′ | x � x′}) = Dc(x). 	

Here Σx(x) is the suffix of x starting from the successor of x, and Condition (iii)
says that such a suffix must be preserved between the original pattern and the
extended one. To handle core(·) procedurally, a useful property is known [19]:
in an SPC extension x∗ = Γc({x} ∪x), core(x∗) is exactly the added item x. In
this paper, for each pattern x, we consider to record all of such added items in
a chain of SPC extensions producing x and call them the core items in x.

To illustrate, let us consider nine example transactions shown in Fig. 2 (top-
left), each belongs to one of two classes {+,−}. Here we are interested in class +.
Then, we have a total order A ≺ B ≺ C ≺ E ≺ D as a descending order of F-score
in Fig. 2 (bottom-left). Fig. 2 (top-right) is an enumeration tree obtained by the
exhaustive applications of SPC extension, where, at each branch, the core items
to be added are chosen in the ascending order w.r.t. ≺. Such a tree is hereafter
called an SPC enumeration tree. In Fig. 2, the core items are underlined, and
among them, the doubly underlined ones are the core items which are added
last. For example, given an empty pattern x = ∅, we apply SPC extension by
item C to the example transactions and obtain x∗ = Γc({C} ∪ ∅) = {A,C}. In
this case, C is a (the last) core item in {A,C}, while A is not.

3.2 Properties Related to SPC Extension

In this subsection, we show some key properties related to SPC extension in
finding top-k productive closed-on-the-positives. Before that, we first obtain a
tree like Fig. 2 (bottom-right) by extracting core items from an SPC enumeration
tree, and call it a core enumeration tree. Let T and Tcore be an SPC enumeration
tree and its core enumeration tree, respectively. It is then easy to show that for
a node (pattern) x in Tcore, the corresponding node in T is its closure on the
positives, i.e. Γc(x). Also we see that T and Tcore are isomorphic from the way of
adding core items. For example, for the node {B,D} in the core enumeration tree
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Class Transactions
+ {A,B,D,E}
+ {A,B,C,D,E}
+ {A,C,D,E}
+ {A,B,C}
+ {B}
− {A,B,D,E}
− {B,C,D}
− {C,D,E}
− {B,D,E}

{ A, E, D }{ A, C }{ B }{ A }

{ A, B } { A, B, C } { A, C, E, D }{ A, B, E, D }

{ A, B, C, E, D }

Item x p(x | +) p(x | −) F+(x)
A 0.8 0.25 0.780
B 0.8 0.75 0.627
C 0.6 0.50 0.571
D 0.6 1.00 0.462
E 0.6 0.75 0.511

{D}{C}{B}{A}

{A, B} {B, C} {C, D}{B, D}

{B, C, D}

Fig. 2. Example transactions (top-left), F-scores of items (bottom-left), the enumera-
tion tree with SPC extension (top-right) and its core enumeration tree (bottom-right)

in Fig. 2, we have {A,B,E,D} in the SPC enumeration tree in Fig. 2. Besides,
a core enumeration tree is a suffix enumeration tree with some subtrees being
removed. Indeed, Fig. 2 (bottom-right) is the suffix enumeration tree in Fig. 1
with several leaves ({A,C}, {A,D}, etc.) being removed. This property comes
from Condition (ii) of SPC extension (we are only allowed to add, as a new core
item, a predecessor of the last core item) together with the fact that the core
items to be added at each branch are chosen ascendingly w.r.t. ≺.

From the observations above, we will prove a couple of propositions that jus-
tify depth-first search with SPC extension (i.e. depth-first search over an SPC
enumeration tree) in finding top-k productive closed-on-the-positives. We write
x � x′ iff x is visited before x′ is visited, and note that for two distinct patterns
in an SPC enumeration tree T , the corresponding patterns in T ’s core enumer-
ation tree Tcore are distinct, and vice versa (since T and Tcore are isomorphic).

Proposition 1. Let x∗1 and x∗2 be two distinct patterns in an SPC enumeration
tree T . Also let x1 and x2, respectively, be the corresponding patterns in T ’s core
enumeration tree Tcore. Then, if x1 ⊂ x2, we have x∗1 ⊂ x∗2 and x∗1 � x∗2. 	

Proof. First, from x∗1 = Γc(x1) and x∗2 = Γc(x2), it is easy to see that x1 ⊂ x2 ⇒
x∗1 ⊂ x∗2 since x1 ⊆ x2 ⇒ Γc(x1) ⊆ Γc(x2) from the monotonicity of the closure
operator [15]. We then have x1 ⊂ x2 ⇒ x1 � x2 since any core enumeration
tree is a part of a suffix enumeration tree. Also x∗1 � x∗2 ⇔ x1 � x2 holds since
T and Tcore are isomorphic. It immediately follows that x1 ⊂ x2 ⇒ x∗1 � x∗2. 	

Proposition 2. Let x∗1 and x∗2 be two distinct patterns in an SPC enumeration
tree T . Also let x1 and x2, respectively, be the corresponding patterns in T ’s
core enumeration tree Tcore. Also suppose that x1 and x2 are not subsets of each
other. Then, x∗1 ⊂ x∗2 ⇒ x∗1 � x∗2. 	
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Proof. We prove this by contraposition. First assume that x∗1 � x∗2 and equiva-
lently x1 � x2. Also consider the common suffix y of x1 and x2. Furthermore,
let x (resp. x′) be the maximum item w.r.t. ≺ in x1 \ y (resp. x2 \ y). Then,
we necessarily have x′ ≺ x since x1 and x2 are not subsets of each other, and
x2 � x1. From Condition (iii) of SPC extension, Γc({x′} ∪ y) never contains
x, and accordingly neither does x∗2 (= Γc(x2)). On the contrary, x∗1 (= Γc(x1))
always contains x since x is its core item. Therefore, x∗1 can never be a subset
of x∗2. Now we have x∗1 ⊂ x∗2 ⇒ x∗1 � x∗2. 	

Proposition 3. When a pattern x is visited in a depth-first search with SPC
extension, all of x’s sub-patterns have already been visited. 	


Proof. It is sufficient to show that x∗1 ⊂ x∗2 ⇒ x∗1 � x∗2, where x
∗
1 and x∗2 be two

distinct patterns in an SPC enumeration tree, say T . Here we first assume that
x∗1 ⊂ x∗2. Also let x1 and x2, respectively, be the corresponding patterns in T ’s
core enumeration tree Tcore. Then, we consider three exhaustive cases: (1) x1 ⊃
x2, (2) x1 ⊂ x2, and (3) x1 and x2 are not subsets of each other. The first case
is incompatible with the assumption x∗1 ⊂ x∗2 since x2 ⊂ x1 ⇒ x∗2 ⊂ x∗1 from
Proposition 1. In the second case, we have x∗1 � x∗2 again from Proposition 1.
In the last case, we also have x∗1 � x∗2 from Proposition 2. 	


Now, as described in Section 2.5, we can filter out a new pattern x immediately
if x is weaker than some existing pattern in the candidate list. So the size of the
list is kept being k except when there are ties at the bottom.7

3.3 Algorithm Description

In this subsection, we present the proposed algorithm for finding top-k produc-
tive closed-on-the-positives. First, we introduce four global variables c, k, σmin

and L, which stand for the class of interest, the number of patterns to be output,
the minimum support and the candidate list, respectively. The values of c and k
are given by the user. On the other hand, σmin and L are respectively initialized
as 1/|Dc| and ∅. The total order ≺ among items is considered as a descending
order of the relevance score Rc in use.8 The central procedure is Grow, shown
in Algorithm 1, and we call Grow(∅) to run the algorithm. After termination,
the final top-k patterns are stored in the candidate list L.

Given the current pattern x, Grow(x) works as follows. First, we compute
the set B of items that satisfy Conditions (i) and (ii) of SPC extension (Line 1).
Note that B contains all possible items if x = ∅. Then, we try to branch by each
item x in B ascendingly w.r.t. ≺ (Line 2). We create a new pattern x∗ (Line 4)
with pruning by the minimum support (Line 3) and by Condition (iii) of SPC
extension (Line 5). After computing the relevance score of x∗ (Line 6), we add

7 Of course, such ties do not affect the minimum support threshold to be raised.
8 This total ordering has a preferable side-effect that, as is seen in Fig. 1 (right) and
Fig. 2 (top-right), we try the combinations of promising items earlier in a suffix/SPC
enumeration tree and hence the minimum support tends to be raised quickly.
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Algorithm 1. Grow(x)

Require: x: the current pattern
1: B := {x | x �∈ x and x is a predecessor of the last core item added into x}
2: for each x ∈ B enumerated in the ascending order of ≺ do
3: if p({x} ∪ x | c) < σmin then continue
4: x∗ := Γc({x} ∪ x)
5: if Σx(x

∗) �= Σx(x) then continue
6: Compute Rc(x

∗)
7: if x∗ is not weaker than any patterns in L then
8: Insert x∗ into L following the descending order of Rc

9: if |L| ≥ k then
10: Remove the patterns with the score below the k-th pattern’s score from L
11: σmin := max{Uc(z), σmin}, where z is the k-th pattern in L
12: end if
13: end if
14: Call Grow(x∗) if x is not prunably weaker than any patterns in L
15: end for

x∗ into the candidate list L if x∗ is not weaker than any existing pattern in L
(Lines 7–13). If L is full, we replace with x∗ the patterns that are less relevant
than x∗ (Line 10) and update the minimum support (Line 11). Here Uc(z) is a
new threshold based on z’s score (Section 2.4). Finally, for x∗ having passed the
filter on prunable weakness, we call Grow recursively (line 14).

4 Experimental Results

We conducted an experiment to confirm the efficiency of the pro-
posed algorithm. The datasets are originally collected in UCI Machine
Learning Repository and we used a preprocessed version available from
http://dtai.cs.kuleuven.be/CP4IM/datasets/. The statistics are summa-
rized in Table 1.

In the experiment, we compare the search strategies described in Section 2.5,
i.e. breadth-first search (BFS), depth-first search over a prefix/suffix enumeration
tree (DFS(Prefix)/DFS(Suffix)) and iterative deepening (ID) recently proposed by
Grosskreutz et al. [6].9 We specified k = 10 as the number of productive closed-
on-the-positives to be found. F-score is used as the relevance score. The result
is shown in Fig. 3. The y-axis indicates the number of visited nodes, which
equals the number of times the closure operator was applied. The measurements
at the y-axis are presented in logarithmic scale. From Fig. 3, we first see that
DFS(Suffix) (the proposed method) outperforms DFS(Prefix) for most of datasets.

9 We also implemented an optimization described in Section 5.1 of [6], where we skip
the depths for which no patterns exist by keeping track the length of the short-
est pattern exceeding the current depth at each iteration. All implementations are
written in Java, and for comparison, we did not use elaborate data structures like
FP-trees but pseudo-projection-style databases [16].

http://dtai.cs.kuleuven.be/CP4IM/datasets/


206 Y. Kameya and H. Asaoka

Table 1. Statistics on the datasets. “#Trs.” indicates the number of transactions.

Dataset #Trs. #Items Dataset #Trs. #Items Dataset #Trs. #Items
anneal 812 93 hypothyroid 3,247 88 splice-1 3,190 287
audiology 216 148 kr-vs-kp 3,196 73 tic-tac-toe 958 27
australian-credit 653 125 lymph 148 68 vote 435 48
german-credit 1,000 112 mushroom 8,124 119 zoo-1 101 36
heart-cleveland 296 95 primary-tumor 336 31
hepatitis 137 68 soybean 630 50

101

102

103

104

105

106

107

anneal
audiology

australian-credit

german-credit

heart-cleveland

hepatitis

hypothyroid

kr-vs-kp

lymph
mushroom

primary-tumor

soybean

splice-1
tic-tac-toe

vote
zoo-1

BFS
DFS(Prefix)
DFS(Suffix)

ID

Fig. 3. The result of a comparison among search strategies

In particular, DFS(Prefix) works poorly for german-credit. In addition, as stated
before, the overhead of iterative deepening is not ignorable in this experiment.
On comparison between BFS and DFS(Suffix), we can say that for some small
datasets like tic-tac-toe, BFS works better than DFS(Suffix), but for the datasets
where the search is costly, DFS(Suffix) outperforms BFS (remind here that the
y-axis is in logarithmic scale). Totally, the proposed method DFS(Suffix) stably
runs fast in comparison with the other search strategies.

5 Conclusion

In this paper, we proposed an efficient exact algorithm for finding top-k dis-
criminative patterns that are not redundant and would be of value at a later
step in prediction or knowledge discovery. Redundancy among discriminative
patterns are eliminated by two set-inclusion-based constraints, closedness and
productivity. Such constraints are efficiently tested with suffix-preserving clo-
sure extension under dual-monotonic relevance scores. We showed formally and
empirically that the proposed algorithm successfully keeps compact the list of
candidate top-k patterns during the search and consequently high the minimum
support threshold. In future, we would like to extend the proposed algorithm for
more complex data such as sequences.
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Abstract. Streams of data can be continuously generated by sensors in
various real-life applications such as environment surveillance. Partially
due to the inherited limitation of the sensors, data in these streams can be
uncertain. To discover useful knowledge in the form of frequent patterns
from streams of uncertain data, a few algorithms have been developed.
They mostly use the sliding window model for processing and mining
data streams. However, for some applications, other stream processing
models such as the time-fading model are more appropriate. Moreover,
batches of data in the stream may be delayed and not arrived in the
intended order. In this paper, we propose mining algorithms that use
the time-fading model to mine frequent patterns when these batches in
the streams of uncertain data were delayed and arrived out of order.

1 Introduction and Related Works

Frequent pattern mining [2,6,14,21] helps to discover implicit, previously un-
known, and potentially useful knowledge in the form of frequently occurring sets
of items that are embedded in the data. Nowadays, the automation of measure-
ments and data collection is producing tremendously huge volumes of data. For
instance, the development and increasing use of a large number of sensors (e.g.,
acoustic, chemical, electromagnetic, mechanical, optical radiation and thermal
sensors) for various real-life applications (e.g., environment surveillance, security,
manufacturing systems) have led to data streams. To discover useful knowledge
from these streaming data, several mining algorithms [9,10] have been proposed.
In general, mining frequent patterns from dynamic data streams is more chal-
lenging than mining from traditional static transaction databases due to the
following characteristics of data streams:

1. Data streams are continuous and unbounded. As such, we no longer have the
luxury to scan the streams multiple times. Once the streams flow through,
we lose them. We need some techniques to capture important contents of
the streams. For instance, sliding windows capture the contents of a fixed
number (w) of batches (e.g., w most recent batches) in the streams. Alter-
natively, time-fading windows capture contents of all the batches but weight
recent data heavier than older data (i.e., monotonically decreasing weights
from recent to older data).
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2. Data in the streams are not necessarily uniformly distributed. As such, a cur-
rently infrequent pattern may become frequent in the future and vice versa.
We have to be careful not to prune infrequent patterns too early; otherwise,
we may not be able to get complete information such as frequencies of some
patterns (as it is impossible to recall those pruned patterns).

Many existing mining algorithms discover frequent patterns from precise data
(in either static databases [5,8,17,20] or dynamic data streams [7,22]), in which
users definitely know whether an item is present in, or absent from, a transaction
in the data. However, there are situations in which users are uncertain about the
presence or absence of items. For example, due to dynamic errors (e.g., inherited
measurement inaccuracies, sampling frequency of the sensors, deviation caused
by a rapid change of the measured property over time such as drift or noise, wire-
less transmission errors, network latencies), streaming data collected by sensors
may be uncertain. As such, users may highly suspect but cannot guarantee that
an item x is present in a transaction ti. The uncertainty of such suspicion can be
expressed in terms of existential probability P (x, ti) ∈ (0, 1], which indicates the
likelihood of x being present in ti in probabilistic data. With this notion, every
item in ti in (static databases or dynamic streams of) precise data can be viewed
as an item with a 100% likelihood of being present in ti. A challenge of han-
dling these uncertain data is the huge number of “possible worlds” (e.g., there
are two “possible worlds” for an item x in ti: (i) x ∈ ti and (ii) x �∈ ti). Given
m independent items in all transactions, there are O(2m) “possible worlds” [11].

In past few years, several mining algorithms have been proposed to discover
frequent patterns from uncertain data. However, most of them (e.g., UH-Mine [1],
UV-Eclat [3], U-Eclat [4], UF-growth [16], PUF-growth [18], U-VIPER [19]) mine
frequent patterns from static databases—but not dynamic streams—of uncertain
data. For the algorithms that mine from data streams (e.g., UF-streaming [13]),
they use the sliding window model. While the sliding window model is useful
for situations where users are interested in discovering frequent patterns from
a fixed-size time window (e.g., frequent patterns observed in the last 24 hours),
there are also other situations where users are interested in a variable-size time
window capturing all historical data with stronger preference on recent data
than older one (i.e., time-fading model). To handle these situations, we designed
in DaWaK 2011 an algorithm [12,15] that uses the time-fading model to mine
frequent patterns from streaming uncertain data. Such an algorithm works well
when batches of streaming data come according to an ordered sequence. However,
due to various factors (e.g., network congestion), batches of streaming data may
get delayed. Hence, a logical question is: How to mine frequent patterns from
these out-of-order (out-of-sequence) batches? Key contributions of this paper
are our two new algorithms for mining frequent patterns from these out-of-order
batches of streaming uncertain data.

This paper is organized as follows. The next section describes how to mine
frequent patterns from ordered batches of uncertain data streams. In Section 3,
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we introduce our new tree-based mining algorithms that also use the time-fading
model but to discover frequent patterns from out-of-order batches of streaming
uncertain data. Evaluation results are shown in Section 4. Finally, Section 5
presents the conclusions.

2 Mining Ordered Batches of Uncertain Data Streams

In DaWaK 2011, we designed an algorithm [12,15]—which we refer as TUF-
streaming(Ordered) in the remainder of the current paper—to mine ordered
batches (cf. out-of-order batches) of uncertain data streams using a time-fading
window.

TUF-streaming(Ordered) first calls UF-growth [16] to find “frequent” pat-
terns from the current batch of transactions in the streams using preMinsup
as the threshold. A pattern is “frequent” (more precisely, subfrequent) if its ex-
pected support ≥ preMinsup. Note that, although users are interested in truly
frequent patterns (i.e., patterns with expected support ≥ user-specified minsup
threshold, where minsup > preMinsup), preMinsup is used in attempt to avoid
pruning a pattern too early. This is important because data in the continuous
streams are not necessarily uniformly distributed. To elaborate, UF-growth con-
structs a UF-tree to capture contents of uncertain data. Each tree node keeps an
item x, its existential probability P (x, ti), and its occurrence count. The UF-tree
is constructed in a similar fashion to that of the FP-tree [8] except that nodes
in the UF-tree are merged and shared only if they represent the same x and
P (x, ti). Once the UF-tree is constructed, UF-growth extracts appropriate tree
paths to mine frequent patterns using the “possible world” interpretation [11].
When items within a pattern X are independent, the expected support of X in
a batch Bi can be computed by summing (over all transactions t1, ..., t|Bi|) the
product of existential probabilities of items within X [11]:

expSup(X,Bi) =

|Bi|∑

j=1

(
∏

x∈X
P (x, tj)

)

. (1)

TUF-streaming(Ordered) then stores the mined “frequent” patterns and their
expected support values in a tree structure (called UF-stream), in which each
tree node X keeps a single value. The expected support of X for all T batches
is computed as follows:

expSup
(
X,∪T

i=1Bi

)
=

[
expSup

(
X,∪T−1

i=1 Bi

)× α
]
+ expSup(X,BT ), (2)

where α is the time-fading factor with value falls into the range of (0,1]. A low α
factor expresses stronger preference on recent data than older one. When a new
batch flows in, TUF-streaming(Ordered) assigns lighter weights to old batches
than recent batches. This process is repeated for each batch in the stream.
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(a) After mining B1. (b) After mining B2. (c) After mining B3.

Fig. 1. The UF-stream structures for the TUF-streaming(Ordered) algorithm

Example 1. Consider the following stream of uncertain data:

Batches Transactions Contents

t1 {a:0.7, d:0.1, e:0.4}
B1 t2 {a:1.0, b:0.9, c:0.8, d:0.6}

t3 {b:0.9, c:0.8, d:0.6}
t4 {a:1.0, c:0.1, d:0.7}

B2 t5 {a:1.0, d:0.3, e:0.1}
t6 {b:1.0, c:0.8}
t7 {a:1.0, c:0.9, d:0.3}

B3 t8 {b:0.9, d:0.8}
t9 {b:0.9, d:0.8, e:0.7}

Here, each transaction contains items and their corresponding existential proba-
bilities, e.g., P (a, t1)=0.7. Let the user-specified minsup threshold be 1.0. When
using the time-fading model, TUF-streaming(Ordered) uses Equation (2) to com-
pute expected support values. For instance, Fig. 1(a) shows the expected support
values stored in the UF-stream structure after mining “frequent” patterns from
batch B1.

Afterwards (say, after mining Bi for i ≥ 2), instead of appending the expected
support values of “frequent” patterns mined from Bi, the algorithm modified
the stored value. For instance, after mining B2, TUF-streaming(Ordered) stores
their sum 1.44α+0.8 ≈ 2.10 as expSup({b, c}, B1 ∪ B2) in Fig. 1(b). Similarly,
after mining B3, TUF-streaming(Ordered) stores their sum (1.44α + 0.8)α + 0
≈ 1.89 as expSup({b, c}, B1 ∪B2 ∪B3) in Fig. 1(c). ��

3 Mining Out-of-Order Batches of Uncertain Data
Streams

The TUF-streaming(Ordered) algorithm works well when batches arrive in an
order that is generated. In other words, batches of streaming data come according
to an ordered sequence (say, Batch Bi arrives before Batch Bj for any i < j).
However, each batch of uncertain streaming data can be of a different size or
contain different number of transactions. As the contents of each batch may vary,
it is possible that a later batch may arrive before an earlier batch. Moreover,
various other factors (e.g., network congestion) may also contribute to the delay
of some batches so that a later batch may arrive before an earlier batch. If it
happens, how could we mine frequent patterns from these out-of-order batches?
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A natural approach to mine frequent patterns from the out-of-order batches
is to keep a long list of expected support values. Specifically, when a batch Bi

arrives and “frequent” patterns are found from Bi, the expected support of each
of these patterns is then put in an appropriate position of the list of expected
support values for the pattern (based on the available information about the
batch Bi such as the batch sequence i or the timestamp). Then, when all out-
of-order batches arrive (at a later time), the expected support of a pattern X
from B1 to BT can be computed using the following equation:

expSup
(
X,∪T

i=1Bi

)
=

T∑

i=1

(
expSup(X,Bi)× αT−i) , (3)

where α is the time-fading factor with value falls into the range of (0,1]. This
equation sums the weighted expected support values of each batch. If there is
any delay in the arrival of some batches (i.e., on the dual side, there are some
early arrivals), this natural approach stores the relevant information (e.g., each
“frequent” pattern X and its expected support value expSup(X,Be) found in
the early-arrival batch Be) in the UF-stream structure. However, the approach
delays the computation of expected support exupSup(X,∪T

i=1Bi) of X from B1

to BT until all these T batches arrive. See the following example.

Example 2. Let us revisit Example 1. If batch B3 arrives before B1 and B2, the
above approach (i) processes B3, (ii) computes the expected support values of all
“frequent” patterns in B3, and (iii) stores these values in the 3rd position of the
list of expected support values in the tree node of the UF-stream structure. Then,
when batch B1 arrives, the approach (i) processes B1, (ii) computes the expected
support values of all “frequent” patterns in B1, and stores (iii) these values in the
1st position of the list of expected support values in a similar fashion. The ap-
proach keeps track of which batches have been processed. When all of the batches
have arrived, the natural approach computes expected support solely based on the
expected supports stored in the list by using Equation (3). ��

3.1 Handling Batches with a Fixed-Size List

There are several potential problems associated with the above approach. First,
the list can be very long and potentially unbounded. Consider a situation in
which there is severe delay for an early batch (say, B2 arrives after B100). In this
case, we need to keep track of all incoming batches from B1 to B100, i.e., a long
list of 100 expected support values of each node in the UF-stream structure. The
situation can be worsened if B2 arrives even later as it would result in a much
longer list. Hence, it consumes a large memory space. Moreover, what if B2 was
lost and does not arrive? The size of the list can be unbounded. The second
problem is that the above approach cannot compute the expected support of
any pattern from B1 to BT until the late arrival of B2. The situation can be
worsened if B2 arrives even later as it would result in a much longer wait. Hence,
it requires a long runtime (including a long waiting time). Moreover, what if B2
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was lost and does not arrive? The computation of expected support may not be
able to perform.

Can we do better? We propose an algorithm to solve the above problems.
Specifically, instead of keeping a very long and potentially unbounded list, we
fix the size of the list. In our fixed-size list (buffer array), we store a certain
number (w) of expected support values (in a sorted order of time information).
The size w of this list can be specified by the user or by the program designer.
In this list, expected support values are sorted according to the batch (either
by batch number i for batch Bi or by the timestamp/”time tag”). The key idea
is that we keep a fixed-size list. Batches are sorted according to their original
intended order. Hence, we have the same effect of waiting (a bit) for any delayed
batch as we did in the above natural approach. However, we do not wait forever
as in the natural approach (due to the very long and potentially unbounded list).
As we keep a fixed-size list, we process the list as soon as it is full. Once the
batches on that list have been processed, we empty the list and await for the
next w batches which may be in order or out-of-order.

More specifically, for all delayed data batches, they have time to “catch up”.
In other words, users can determine how long they want to give to a delayed data
stream by assigning a value to w. When the array is full, the algorithm applies
TUF-streaming to the “oldest” value in the array, and stores it into the tree
node. Now, the process of storing data becomes: When a new pattern X with a
support value expSup(X,Bi) needs to be stored into the UF-stream structure,
our algorithm calledTUF-streaming(Delay) performs the following five steps:

1. (Special case) If expSup(X,Bi) and also the latest element in the buffer
array also equals to 0, we only need to insert one 0 into the end of the array.

2. Check the “time tag” of the latest element in the buffer array, compare it
with the “time tag” of X .

3. If the “time tag” of X is later than the latest element in the buffer array,
insert expSup(X,Bi) into the end of buffer array.

4. If the “time tag” of X is earlier than the latest element in the buffer array,
move on to the 2nd latest element, compare the “time tag” with X . Repeat
this process until reach the correct location in the buffer array for inserting
expSup(X,Bi).

5. After any of the above insertions, if the buffer array is full, shift the earliest
element in the buffer array out. We process the array element.

6. (Worst case) If the “time tag” of X is earlier than all elements in the buffer
array, we process pattern X immediately (this process could be already too
late, which means, users need a larger size w for buffer array).

Example 3. Consider a sequence of data batches that flows in to the central
server, shown in Table 1. For simplicity, let us assume that, in Table 1, every
data stream only contains two transactions. Every transaction only contains
one item. Let us set the size of the buffer array to 2. The process of how the
algorithm works is shown in Fig. 2. The following two time points are special
cases: (i) Batch B3 (in Fig. 2(c)), the time tag of the data {a:1.5} (4:00) is earlier
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Table 1. A running example for TUF-streaming(Delay)

Batches TID Itemsets Time Tag

B1 t1 {a:0.9} 5:00
t2 {a:0.8}

B2 t3 {b:0.75} 5:15
t4 {b:0.75}

B3 t5 {a:0.8} 4:00
t6 {a:0.7}

B4 t7 {c:0.5} 6:00
t8 {c:0.7}

B5 t9 {a:0.5} 5:30
t10 {a:0.9}

B6 t11 {b:0.6} 7:00
t12 {b:0.7}

B7 t13 {a:0.7} 3:00
t14 {a:0.5}

B8 t15 {a:0.35} 6:30
t16 {a:0.95}

B9 t17 {c:0.65} 6:30
t18 {c:0.7}

than the old data in the buffer array (5:00). Hence, the algorithm inserts the
data {a:1.5} (4:00) before {a:1.7} (5:00). (ii) Batch B7 (in Fig. 2(g)), the time
tag of data {a:1.2} (3:00) is earlier than all old data in the buffer array. Hence,
the algorithm processes {a:1.2} (3:00) immediately. ��

3.2 Handling Batches with Sequential Number

A potential problem associated with TUF-streaming(Delay) is that the expected
support of a pattern X may not be accurate. It happens when any batch (say,
B2) was very late and does not catch up with the current batch (i.e., does not
arrive before the list is full). As such, the computation has been performed on
an incomplete information (e.g., missing B2). Once the computation (which is a
sum of products), it cannot be undone.

Can we do better? Without loss of generality, let us assume that each batch
can be identified by a sequential number i (say, consecutive batch number).
Then, we propose an algorithm, called TUF-streaming(Seq). Such an algo-
rithm computes the expected support of X by Equation (2), which is a recursive
function. On the surface, it may appear to be impossible to handle out-of-order
batches. A careful analysis of the equation reveals that it is feasible to handle
out-of-order batches. If there is any delay in the arrival of some batches, the al-
gorithm updates the stored expected support value by multiplying appropriate
weights. See the following example.

Example 4. Revisit Example 1. If batch B3 arrives before B1 and B2, TUF-
streaming(Seq) (i) processes B3, (ii) computes the expected supports of all “fre-
quent” patterns in B3, and (iii) stores the expected support values. Then, when
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Fig. 2. TUF-streaming(Delay) Example

batch B1 arrives, the algorithm (i) processes B1, (ii) computes the expected sup-
ports of all “frequent” patterns in B1, and (iii) “updates” the expected support
values. The algorithm keeps track of which batches have been processed. This is
possible because of the following:

expSup
(
X,∪3

i=1Bi

)

= expSup
(
X,∪2

i=1Bi

)× α+ expSup(X,B3)

=
[
expSup

(
X,∪1

i=1Bi

)× α+ expSup(X,B2)
]× α+ expSup(X,B3)

= [expSup (X,B1)× α+ expSup(X,B2)]× α+ expSup(X,B3)

= expSup(X,B3) +
[
expSup(X,B1)× α3−1] +
[
expSup(X,B2)× α3−2] .
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When all batches have arrived (i.e., no gap), the expected support values stored
in the node are accurate; prior to that time, the stored expected support values
may be lower than the real/accurate one. ��
Note that TUF-streaming(Seq) solves the two problems associated with the orig-
inal natural approach. First, we no longer need to keep a very long and poten-
tially unbounded list. We do not even need to keep a fixed-size bounded list
(as in TUF-streaming(Delay)). All we need to keep is just a number/value in
TUF-streaming(Seq). Second, computation can be performed as soon as the ar-
rival of any (out-of-order) batch. We no longer need to wait for all out-of-order
batches (as in the natural approach) or for a fixed number (i.e., w) out-of-order
batches. We (partially) compute the expected support of all pattern in TUF-
streaming(Seq), and these expected support values will be updated (if needed)
when the next batch arrives.

4 Evaluation

In this section, we analytically and experimentally examine (i) accuracy, (ii) run-
time, and (iii) memory consumption of our algorithms. Experimentally, we con-
ducted several tests to evaluate the algorithms using different datasets, which
included IBM synthetic data and UCI real data. We used an IBM synthetic
dataset with 1M records with an average transaction length of 10 items and a
domain of 1,000 items. We assigned an existential probability from the numeri-
cal range (0,1] to every item in each transaction. We set each batch to contain
5,000 transactions (for a maximum of w=200 batches). The reported figures are
based on the average of multiple runs in a time-sharing environment using an
800 MHz machine. Runtime included CPU and I/Os for mining of “frequent”
patterns and maintenance of the UF-stream structure. We evaluated different
aspects of our proposed algorithms, which were implemented in C.

4.1 Accuracy

In terms of accuracy, when all batches arrive (even with some delays), the TUF-
streaming(Seq) algorithm is as accurate as TUF-streaming(Ordered). Even when
batches arrive out-of-order, as long as all batches arrive, the collection of frequent
patterns discovered by TUF-streaming(Seq) is identical to those discovered by
TUF-streaming(Ordered). Recall that TUF-streaming(Ordered) mines frequent
patterns from ordered batches of uncertain data.

Similarly, when all delayed batches arrive (even with some delays or out-
of-order) before TUF-streaming(Delay) starts processing any batches, TUF-
streaming(Delay) is as accurate as TUF-streaming(Ordered). The set of frequent
patterns discovered by TUF-streaming(Delay) is identical to those discovered
by TUF-streaming(Ordered). However, when TUF-streaming(Delay) starts pro-
cessing the batches before some very late-comers, the set of discovered frequent
patterns may be different. Fortunately, this potential problem can be fixed by
lengthening the list (i.e., increasing the number of batches w to be kept in the
list).
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Fig. 3. Experimental results on IBM synthetic data

4.2 Runtime

As for the runtime, both TUF-streaming(Seq) and TUF-streaming(Delay) are
analytically required to visit every node in the UF-stream structure regardless
of whether or not the corresponding pattern is “frequent”, i.e., visit | ∪i FPi|
nodes for each of T batches for a total of T × | ∪i FPi| visits, where T is the
number of batches mined so far at time T (e.g., visited 26 nodes for Fig. 1).

Fig. 3(a) shows that, when the number of batches (w) increased, the runtime
increased. See Fig. 3(a). Both TUF-streaming(Seq) and TUF-streaming(Delay)
took almost the same amount of time. The latter inserted appropriately the
expected support values of “frequent” patterns discovered from a new batch
whenever the batch was processed and mined, whereas the former took slightly
more time to update the expected support due to multiplication and addition.
Both algorithms visited all nodes in the UF-stream structure.

We also varied minsup values. Fig. 3(b) shows that, when minsup increased,
the number of expected support values stored in the UF-stream structure de-
creased for all algorithms because the number of “frequent” patterns mined from
the stream decreased.

4.3 Memory Consumption

With respect to memory consumption, let |FPi| denote the number of “frequent”
patterns mined from Batch Bi. The TUF-streaming(Delay) algorithm keeps a list
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of w expected support values, where the length w of such a list can be specified by
the user. In other words, TUF-streaming(Delay) requires w× |∪i FPi| expected
support values to be stored in the UF-stream structure.

In contrast, the TUF-streaming(Seq) algorithm requires a smaller amount of
space than TUF-streaming(Delay) because each node stores a single value (i.e.,
a total of | ∪i FPi| values to be stored in the UF-stream structure.

Fig. 3(c) shows that, when the number of batches increased, the number of
expected support values stored in the UF-stream structure also increased. For
TUF-streaming(Delay), the increase was almost linear as the list of expected
support values in each node increased proportional to the number of batches.
Moreover, as data are not necessarily uniformly distributed, different patterns
can be discovered from different batches. These add a few patterns to the col-
lection of patterns to be kept in the UF-stream structure. In contrast, as TUF-
streaming(Seq) only kept a single value for each node, its memory consumption
was independent of the number of batches.

In addition to conducting experiments with the IBM synthetic data, we also
evaluated our algorithms using real data (e.g., mushroom, retail, kosarak) from
the Frequent Itemset Mining Dataset Repository as well as the from the UC Irvine
Machine Learning Repository. The experimental results are consistent with those
experimented with the IBM synthetic data. For lack of space, we omit the graphs.

5 Conclusions

In this paper, we proposed two tree-based mining algorithms for mining frequent
patterns from dynamic streams of uncertain data with the time-fading model.
Both algorithms apply UF-growth with preMinsup to find “frequent” patterns.
The mined patterns are then stored in the UF-stream structure together with
their expected support values. Then, when the next batch of streaming trans-
actions flows in, the algorithms update the UF-stream structure accordingly. As
each batch of uncertain data can be of a different size or contain different num-
bers of transactions, batches of data streams may be delayed and not arrive in
sequential order. Our two algorithms—namely, TUF-streaming(Delay) and TUF-
streaming(Seq)—handle these out-of-order batches of uncertain streaming data,
fromwhich frequent patterns aremined. Evaluation results showed the correctness
and effectiveness of our proposed algorithmswhen using the time-fading model for
the stream mining of frequent patterns from delayed batches of uncertain data.
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Abstract. This paper addresses causal inference and modeling over
event streams where data have high throughput and are unbounded. The
availability of large amount of data along with the high data throughput
present several new challenges related to causal modeling, such as the
need for fast causal inference operations while ensuring consistent and
valid results. There is no existing work specifically for such a stream-
ing environment. We meet the challenges by introducing a time-centric
causal inference strategy that leverages temporal precedence informa-
tion to decrease the number of conditional independence tests required
to establish the dependencies between the variables in a causal network.
Dependency and temporal precedence of cause over effect are the two
properties of a causal relationship. We also present the Temporal Net-
work Inference algorithm to model the temporal precedence relations
into a temporal network. Then, we propose the Fast Causal Network In-
ference algorithm for faster learning of causal network using the temporal
network. Experiments using synthetic and real datasets demonstrate the
efficacy of the proposed algorithms.

Keywords: Causal inference; Event streams; Temporal data.

1 Introduction

In recent years, there has been a growing need for active systems that can per-
form causal inference in diverse applications such as health care, stock markets,
user activity monitoring, smart electric grids, and network intrusion detection.
These applications need to infer the cause of abnormal activities immediately
such that informed and timely preventive measures are taken. As a case in point,
consider a smart electric grid monitoring application. The failure of a component
can cause cascading failures, effectively causing a massive blackout. Therefore,
the identification of such cause and effect components in a timely manner en-
ables preventive measures in the case of failure of a cause component, thereby
preventing blackouts.

Causal network, a directed acyclic graph where the parent of each node is
its direct cause, has been popularly used to model causality [1–7]. There are
two distinct types of algorithms for learning a causal network: score-based [1–4]
and constraint-based [5–8]. Both types of algorithms are slow and, therefore,
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not suitable for event streams where prompt causal inference is required. Score-
based algorithms perform a greedy search (usually hill climbing) to select a causal
network with the highest score from a large number of possible networks. With
an increase in the number of variables in the dataset, the number of possible
networks grows exponentially, resulting in slow causal network inference. On the
other hand, constraint-based algorithms (e.g., PC algorithm [7]) discover the
causal structure via a large number of tests on conditional independence(CI).
There can be no edge between two conditionally independent variables in the
causal network [9]. In a causal network of n variables, two variables X and Y
are said to be conditionally independent given a condition set S if there is at
least one variable in S such that X and Y are independent. The condition set S
consists of all possible 2n−2 combinations of the remaining n− 2 variables, and
therefore the computational complexity grows exponentially as the number of
variables increases. So, the current techniques for causal inference are slow and
not suitable for event streams which have a high data throughput and where the
number of variables (i.e., event types) is large.

With this concern, this paper describes a new time-centric causal modeling
approach to speed up the causal network inference. Every causal relationship
implies temporal precedence relationship [10]. So, the idea is to incorporate tem-
poral precedence information as an important clue to reducing the number of
required CI tests and thus maintaining feasible computational complexity. This
idea achieves fewer computations of CI test due to two factors. First, since causal-
ity requires temporal precedence, we ignore the causality test for those nodes
with no temporal precedence relationship between them. Second, in the CI test
of an edge, we exclude those nodes from the condition set which do not have tem-
poral precedence relationship with the nodes of the edge. Therefore, it reduces
the size of the condition set which is a major cause of the exponential computa-
tional complexity. In addition, the temporal precedence relationship intuitively
orients the causal edge unlike the constraint-based algorithms where a separate
set of rules are needed to infer the causal direction (details in Section 3.3).

The contributions of this paper are summarized as follows. First, it presents a
temporal network structure to represent temporal precedence relationships be-
tween event types and proposes an algorithm, Temporal Network Inference(TNI),
to construct a temporal network applicable in streaming environment. Second,
it introduces a time-centric causal modeling strategy and proposes an algorithm,
Fast Causal Network Inference(FCNI), to speed up the learning of causal net-
work. Finally, it empirically demonstrates the advantages of the proposed algo-
rithm in terms of the running time and the total number of CI tests required for
the learning of causal network by comparing it against the state-of-art algorithm
for causal network inference, called the PC algorithm (details in Section 3.3).

The rest of this paper is organized as follows. Section 2 reviews the existing
work on causal network inference. Section 3 presents the basic concepts used in
the paper. Section 4 and Section 5 propose the learning of temporal network
and faster causal network, respectively. Section 6 evaluates the proposed FNCI
algorithm. Finally, Section 7 concludes the paper and mentions further research.
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2 Related Work

As explained earlier, there are two main approaches for causal network inference.
The first approach, score-based [1–4], performs greedy search (usually hill

climbing) over all possible network structures in order to find the network that
best represents the data based on the highest score. This approach, however, has
two problems. First, it is slow due to the exhaustive search for the best network
structure. An increase in the number of variables in the dataset increases the
computational complexity exponentially. Second, two or more network struc-
tures, called the equivalence classes [11], may represent the same probability
distribution, and consequently the causal directions between nodes are quite
random. There is no technique for alleviating these problems in a streaming
environment. Thus, score-based algorithms are not viable for streams.

The second approach, constraint-based [5–8], does not have the problem of
equivalence classes. However, it is slow as it starts with a completely connected
undirected graph and thus performs a large number of CI tests to remove the
edges between conditionally independent nodes. The number of CI tests increases
exponentially with the increase in the number of variables in the dataset. To al-
leviate this problem, some constraint-based algorithms start with a minimum
spanning tree to reduce the initial size of condition sets. However, this idea
trades the speed with the accuracy of the causal inference. The constraint-based
algorithms include IC* [5], SGS [6], PC [7], and FCI algorithm [7]. The FCI
algorithm focuses on the causal network discovery from the dataset with latent
variables and selection bias, which is quite different from the scope of this pa-
per. The PC algorithm is computationally more efficient than IC* and SGS. This
is why we evaluate the proposed FCNI algorithm by comparing it against the
PC algorithm. Like the others, the PC algorithm starts with a completely con-
nected undirected graph. To reduce the computational complexity, it performs
CI tests in several steps. Each step produces a sparser graph than the earlier
step, and consequently, the condition set decreases in the next step. However,
the computational complexity is still O(n2 · 2n−2). (The details are explained in
Section 3.3.) Therefore, the current constraint-based algorithms are not suitable
for fast causal inference over streams.

To the best of our knowledge, there exists no specific work in the causal
network inference in a streaming environment. A new approach is needed for
faster causal network inference.

3 Basic Concepts

This section presents some key concepts needed to understand the paper.

3.1 Event Streams, Type, and Instance

An event stream in our work is a sequence of continuous and unbounded times-
tamped events. An event refers to any action that has an effect and is created by
one event owner. One event can trigger another event in chain reactions. Each
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event instance belongs to one and only one event type which is a prototype for
creating the instances. Two event instances are related to each other if they
share common attributes such as event owner, location, and time. We call these
attributes common relational attributes(CRAs).

In this paper we denote an event type as Ej and an event instance as eij ,
where i indicates the CRA and j indicates the event type.

Example 1. Consider a diabetic patient monitoring system in a hospital. Each
patient is uniquely identifiable, and each clinical test or measurement of each
patient makes one event instance. For example, a patient is admitted to the
hospital, has their blood pressure and glucose level measured, and takes medi-
cation over a period of time. This creates the instances of the above event types
as a result. Typical event types from these actions include regular-insulin-dose-
given, hypoglycemic-symptoms-exists, blood-glucose-measurement-decreased, in-
creased, etc. Note that the patient ID is the CRA, as the events of the same
patient are causally related.

3.2 Conditional Mutual Information

A popular approach for testing the conditional independence, with respect to the
joint probability P , of two random variables X and Y given a subset of random
variables S is conditional mutual information(CMI) (e.g., [8, 12]). CMI gives the
strength of dependency between variables in a measurable quantity, which helps
to identify strong and weak causal relationships in the final causal network.

To test whether X and Y are conditionally independent given S, we compute
the conditional mutual information IMI (X,Y |S) as

IMI(X,Y |S) =
∑

x∈X

∑

y∈Y

∑

s∈S
pX,Y,S(x, y, s)log2

pX,Y |S(x, y|s)
pX|S(x|s)pY |S(y|s)

where p is the probability mass function calculated from the frequencies of
variables.

We only keep the record of these frequencies, not the whole events, by updat-
ing them as a new batch of events arrives. Consequently, the independence test
procedure is incremental in our case.

It is said that two variables X and Y are independent when IMI(X,Y |S) = 0;
otherwise, they are dependent. However, this presents us with the risk of spurious
relationships due to weak dependencies (we cannot assume IMI(X,Y |S) = 10−5

and IMI(X,Y |S) = 10 provide the same degree of confidence in the dependency).
With an increase in the value of IMI(X,Y |S), the dependency between the vari-
ables X and Y grows stronger. Therefore, to prune out the weak dependencies,
we need to set a threshold value of mutual information below which we ignore
the evidence as weak. To do so, we relate CMI with G2 test statistics [7, 13] as
below where Ns is the number of samples.

G2(X,Y |S) = 2 ·Ns · loge2 · IMI(X,Y |S)
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Under the independence assumption,G2 follows the χ2 distribution [14], with the
degree of freedom df equal to (rx − 1)(ry − 1)

∏
s∈S rs, where rx, ry, and rs are

the number of possible distinct values of X, Y, and S, respectively. So, we use χ2

test, which provides a threshold based on df and significance level α, to validate
the dependency result. We set α as the universally accepted value of 95%.

3.3 The PC Algorithm

The PC algorithm [7] (Algorithm 1) starts with a completely connected undi-
rected graph on which the CI tests are performed to remove edges between inde-
pendent nodes. The key idea is that a causal network has an edge between X and
Y in the topology if and only if X and Y are not independent given all condition
subsets of the remaining neighbor nodes [15]. In Algorithm 1, the topology of
the causal network is learned in the steps 1 to 10. The network topology is then
assigned causal direction in the steps 11 to 17.

Algorithm 1. PC algorithm

1: Construct the completely connected undirected graph G on the n nodes;
2: Initialize Neighbors(G,X) as the set of nodes adjacent to the node X in G, and

SepSet(X,Y), a set of nodes that causes independence between X and Y nodes, as
empty;

3: k ← 0;
4: repeat
5: repeat
6: Select any edge X − Y such that |Neighbors(G,X)\Y | ≥ k;
7: repeat
8: Select any subset S of Neighbors(G,X)\Y such that |Neighbors(G,X)\Y |

= k;
9: If X and Y are independent given S, remove X−Y from G, remove Y from

Neighbors(G,X), remove X from Neighbors(G,Y), and add S to SepSet(X,Y)
and SepSet(Y,X);

10: until every subset S of Neighbors(G,X)\Y such that |Neighbors(G,X)\Y |
= k has been selected.

11: until every edge X −Y such that |Neighbors(G,X)\Y | ≥ k has been selected.
12: k = k + 1;
13: until every edge X ′ − Y ′ satisfies |Neighbors(G,X ′)\Y ′| < k.
14: for each triplet of nodes X, Y, Z such that the edges X − Y and Y −X exist in

G but not X − Z do
15: Orient X − Y − Z as X→Y←Z if and only if SepSet(X,Z) does not contain Y;
16: end for
17: repeat
18: If there exists X → Y and Y −Z, but not X−Z, then orient Y −Z as Y → Z;

19: If there exists X − Y and a directed path from X to Y, then orient X − Y as
X → Y ;

20: until no edge can be oriented.
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4 Learning Temporal Precedence Relationships

In this section, we describe an incremental approach to model temporal prece-
dence relationships from time-stamped events into a temporal network.

4.1 Temporal Network Model

A temporal network is a directed acyclic graph of nodes representing event types
where an edge between two nodes represents the temporal precedence relation-
ship between them. To facilitate the handling of events in a streaming environ-
ment, we use a time-based window over the stream. Typically, the application
offers a natural observation period (e.g., hour) that makes a window.

As mentioned earlier in Section 3.1, two events are related to each other if they
share the same common relational attribute(CRA)). So, the events in a window
are arranged by CRA and ordered by the timestamp as they arrive, producing
a partitioned window as a result. Figure 1 illustrates it.

(a) Events collected during an observation period (window).

(b) Events in the window partitioned by CRA.

Fig. 1. Partitioned window of events

With the arrival of a new batch of event instances, we augment each parti-
tion in the new window by prefixing it with the last instance of the partition
with the same CRA value in the previous window. This is necessary in order to
identify the temporal precedence between instances that are separated into the
two consecutive batches.

To determine when an edge, say Ei → Ej , should be added in a temporal
network, a measure providing an evidence of temporal precedence between the
event types should be defined. The evidence we use is the frequency of the ob-
servation of an instance of Ej following an instance of Ei. The temporal strength
of an edge identified is defined below.

Definition 1 (Temporal strength). Consider an edge Ei → Ej (i �= j) in a
temporal network of n event types. Let fij be the total number of observations
in which an event of type Ei precedes an event of type Ej over all partitions
in the partitioned window. Then, we define temporal strength, sij , of the edge
Ei → Ej as

sij �
fij

∑(n−1)
k=0 fik
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4.2 Temporal Network Inference Algorithm

The idea behind the TNI algorithm is to collect events from an event stream
in a window and then use temporal precedence information from the sequence
of event pairs in the window to construct a temporal network at the event type
level. The overall algorithm is centered on a frequency matrix, which is initially
empty (i.e., all zero elements) and updated with each new batch of events. The
algorithm has two steps for each window, outlined in Algorithm 2.

1. Update the frequency matrix FM by observing the precedence relationships
of event pairs in the partitioned window (steps 3–13 in Algorithm 2). An
element fij in FM reflects the total number of times events of type Ei

precede events of type Ej (i �= j). Each time an event pair (eoi, eoj) is
observed in the event stream such that eoi precedes eoj, increase the value
of fij by 1.

2. Determine the edges of the temporal network using the frequency matrix
(steps 14–24 in Algorithm 2). For each pair of an edge and its reversed edge,
select the edge with the greater frequency. Calculate the temporal strength
of the selected edge, e.g., Ei → Ej , and store it in the element sij of the
strength matrix SM. Set the strength of the ignored edge with the lower
frequency to zero. If a cycle is introduced, remove the edge with the lowest
temporal strength in the cycle.

5 Learning Causal Network in Reduced Time

In this section, we describe a new approach to reduce the number of CI tests
needed to infer the causal structure, thereby speeding up the learning process.
The idea is to incorporate temporal precedence relationships to learn the causal
network. The correctness of our approach is shown as follows. First, a tempo-
ral precedence relationship is a mandatory condition for inferring causality [10].
Therefore, causal relationship subsumes temporal precedence relationship, that
is, the causal network is a subgraph of the temporal network. Second, a causal
network should satisfy the Causal Markov Condition (CMC) [6, 9, 16] where for
every node X in the set of nodes N , X is independent of its non-descendants
excluding its parents (i.e., N\(Descendants(X) ∪ Parents(X))) conditional on
its parents. In a temporal network of vertex (or node) set N, a node is temporally
independent, and therefore causally independent, of all its non-descendants (ex-
cept its parents) given its parents. In other words, the temporal network obeys
CMC which is a necessary condition for the causal network. Therefore, our idea
of considering a temporal network as an initial causal network is correct.

5.1 Fast Causal Network Inference Algorithm

The idea behind FCNI algorithm is to reduce the number of CI tests by in-
corporating temporal precedence information. The algorithm has two steps, as
outlined in Algorithm 3.
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Algorithm 2. Temporal Network Inference (TNI)

Require: an edgeless network structure TN, event stream(s) S
1: Initialize an empty frequency matrix (FM), an empty strength matrix SM, two

empty buffers Bp and Bc (used to store “parent” events and “child” events, re-
spectively);

2: for each window W in S do
3: for each partition P (corresponding to CRA a) in W do
4: for i = 1 to tn − 1 where tn is the number of unique timestamp in P do
5: Clear Bp and Bc;
6: Insert all events with timestamp ti and ti+1 into Bp and Bc, respectively;
7: for all event instances eap and eac in Bp and Bc, respectively, do
8: if type(eac) �= type(eap) {//There cannot be causal relationships between

events of the same type.} then
9: Increase the frequency of element ftype(eap),type(eac) in FM by 1;
10: end if
11: end for
12: end for
13: end for
14: for each pair of elements fij and fji in FM do
15: sij ← 0, sji ← 0;
16: if fij > fji then

17: Add an edge Ei → Ej in TN and set its strength to sij =
fij

∑n−1
k=0

fik
;

18: else if fji > fij then

19: Add an edge Ej → Ei in TN and set its strength to sji =
fji

∑n−1
k=0

fjk
;

20: end if
21: end for
22: if an edge is added and it introduces cycle in TN then
23: Remove the edge with the lowest temporal strength (in SM ) in the cycle;
24: end if
25: end for

1. The first step is to construct a temporal network by running the TNI al-
gorithm. The temporal network is set as the initial causal network. Note
that since temporal precedence is a requirement for a causal relationship, all
causal relationships are theoretically guaranteed be in the temporal network.

2. The second step is to adapt the ideas of constraint-based algorithms to
learn the final causal network by pruning out the edges between indepen-
dent nodes. We perform CI tests on every edge between nodes in the initial
causal network to verify dependency between them. Conditionally indepen-
dent nodes are considered to be spurious and hence the edge between them
is removed. Steps 2 to 22 perform this step. The main difference from the
PC algorithm is the manner in which CI tests are performed. In the PC
algorithm, the condition set S for an edge Ei − Ej considers the neighbors
of both Ei and Ej whereas in the FCNI algorithm, as the edges are already
directed, the condition set S for an edge Ei → Ej needs to consider only the
parents of Ej (Ej is independent of the parents of Ei that do not have edge
to Ej). Consequently, we need fewer CI tests.
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Algorithm 3. Fast Causal Network Inference (FCNI)

Require: Window W, Edgeless Causal Network G = (N , ξ).{N and ξ are the set of
nodes and the set of edges, respectively.}

1: Run the TNI algorithm and initialize G with the learned temporal network;
2: for each directed edge (Ei, Ej) ∈ ξ do
3: independent = IsIndependent(Ei, Ej , φ), where φ is the empty set;

{IsIndependent(Ei, Ej , S) calculates IMI(Ei, Ej |S) for CI test.}
4: if independent is true then
5: Remove (Ei, Ej) from ξ;
6: end if
7: end for
8: k ← 0;
9: repeat
10: for each directed edge (Ei, Ej) ∈ ξ do
11: Construct a set of condition sets, Z, each of cardinality k from the parents of

Ej excluding Ei;
12: repeat
13: Select any subset S from Z;
14: independent = IsIndependent(Ei, Ej , S);
15: Remove S from Z;
16: until Z is empty or independent is true
17: if independent is true then
18: Remove (Ei, Ej) from ξ;
19: end if
20: end for
21: k = k + 1;
22: until number of parents of E′

j in every directed edge (E′
i, E

′
j) ∈ ξ is less than k.

5.2 Complexity Analysis

The complexity of the FNCI algorithm for a causal network G is bounded by
the largest degree of each node. Let n be the number of nodes (i.e., event types).
Then in the worst case, since the causal network inference starts with a temporal
network, the number of CI tests required by the algorithm is given as

CImax =
∑n

i=1 di2
|Zi|

where di ≡ (i−1) is the maximum degree of incoming edges to the node i (there

are
∑n

i=1 di =
n·(n−1)

2 directed edges in the network G) and Zi is the maximum
condition set to each edge involving node i such that |Zi| = di − 1 = i − 2. So
the computational complexity of FCNI algorithm is O(n · 2n−2) in the worst
case. In contrast, the PC algorithm (described in Section 3.3), whose condition
set of each node is of cardinality n− 2 nodes, has the worst case computational
complexity of O(n2 · 2n−2). Therefore, in the worst case, the FCNI algorithm is
n times faster than the PC algorithm.

In the best case, the causal network G takes the form of a minimum spanning
tree with n − 1 edges. In this case, the FCNI algorithm and the PC algorithm
require n− 1 and 4n− 6 CI tests, respectively.
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Note that the FCNI algorithm starts with a sparse network as it has only
those edges that satisfy the temporal precedence relationships. So, in practice,
it starts closer to the best case. In contrast, the PC algorithm starts with a
completely connected dense network. So, it starts from the worst case.

6 Performance Evaluation

We conducted experiments to compare the proposed FCNI algorithm against the
PC algorithm in terms of the accuracy, the running time, and the number of CI
tests required on both the algorithms. Section 6.1 describes the experiment setup,
including the evaluation metrics and the platform used. Section 6.2 explains the
datasets used and Section 6.3 presents the experiment results.

6.1 Experiment Setup

Evaluation Metrics. Intuitively, the quality of causal network learning al-
gorithms are best evaluated by examining how closely the constructed causal
network structures resemble the target causal network. In this regard, we adopt
the structural Hamming distance proposed by [17] as the quality metric of the
output causal network. The nodes (i.e., event types) are fixed as given to the
algorithms, and therefore the network structures are compared with respect to
the edges between nodes. There are three kinds of possible errors in the causal
network construction: reversed edges, missing edges, and spurious edges. We use
the number of the erroneous edges of each kind as the evaluation metric.

Platform. The experiments are conducted on RedHat Enterprise Linux 5 op-
erating system using Java(TM) 2 Runtime Environment–SE 1.5.0 07 in Vermont
Advanced Computing Core (VACC) cluster computers.

6.2 Datasets

Experiments are conducted using both synthetic and real datasets.

Synthetic Datasets. A synthetic dataset is reverse-engineered from a target
causal network. Given the control parameters – the number of event owners no

and the number of event types n, the idea is to generate a random causal net-
work, and then convert the causal network to an event stream which reflects
the underlying probability distribution of the causal network. In the interest of
space, the details of the event stream generation are not described here. We as-
sume that the event owner is the CRA. The dataset is represented by a collection
of files in which the events are shuffled according to the owner ID while preserv-
ing the temporal order. We create five datasets (see their profiles in Table 1),
representing target causal networks of 4, 8, 12, 16 and 20 nodes each.
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Table 1. Profiles of the five synthetic datasets

Dataset n nedges no ninstances

DS1 4 4 5000 13108

DS2 8 16 30000 108334

DS3 12 32 500000 3163237

DS4 16 46 6553600 49008538

DS5 20 62 52428800 511972810

(nedges is the number of actual edges in the network. ninstances is the number of event
instances in the dataset.)

Real Dataset. The real dataset DR contains diabetes lab test results [18] of
70 different patients over a period ranging from a few weeks to a few months.
The dataset has a total 28143 records, about 402 records for each patient. Each
record has four fields – date, time, test code, test value. The clinical data of a
patient is independent of other patients. Therefore, the patient ID is the CRA
for this dataset. There are 20 different test codes appearing in the file from which
we define 13 different event types of interest. The details of the event types are
omitted due to the space limit.

6.3 Experiment Results

We ran the FCNI and PC algorithms over each of the five synthetic datasets
and the real dataset. We present our evaluation results in three parts. First, we
compare the quality of the generated networks against the target causal network
and determine how closely they resemble the true causal network. (The details
of the true causal networks are omitted due to the space limit.) Specifically,
we count the number of spurious edges, the number of missing edges, and the
number of reversed edges. Second, we compare the running time (CPU time) of
the two algorithms, and finally, we evaluate the number of CI tests performed
on both algorithms. We show that reducing the number of CI tests is the key
to reducing the running time of causal network inference. The experiment is
repeated ten times for each dataset (DS1 through DS5 and DR) to calculate the
average number of erroneous edges, the average running time, and the average
number of CI tests. We assume the events are in temporal order.

Comparison of the Accuracy of the PC and FCNI Algorithms. Table 2
presents the number of erroneous edges in the causal network produced by the PC
and FCNI algorithms. The results show that the quality of the causal network
from the FCNI algorithm is similar to that of the PC algorithm. First, the
number of missing and spurious edges are comparable. This is due to the reliance
of both algorithms on the same test statistics (CMI in our case) to infer the
independence of two event types. Second, the number of reversed edges is zero
for the FCNI algorithm. Clearly the FCNI algorithm, through the temporal
network, is much better at determining the correct causal edge direction. It
is because the fact that the cause always precedes its effect is embodied in its
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Table 2. Number of erroneous edges

Algorithms DS1 DS2 DS3 DS4 DS5 DR

Missing Edges PC 0 0 0 0 1 1

FCNI 0 1 0 0 1 1

Reversed Edges PC 0 2 0 2 3 2

FCNI 0 0 0 0 0 0

Spurious Edges PC 0 3 0 4 3 1

FCNI 0 3 0 4 3 1

temporal precedence relationship. Overall, we conclude that the FCNI algorithm
produces almost the same topology as the PC algorithm, while the accuracy of
the causal direction is improved.
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Fig. 2. Comparison of the PC and FCNI algorithms

Comparison of the Running Time of the PC and FCNI Algorithms.
Figure 2(a) plots the average running time of FCNI and PC algorithms against
the number of event types (n) in the synthetic dataset. In all cases, the FCNI al-
gorithm is much faster than the PC algorithm. Clearly, the temporal precedence
information helps to reduce the size of condition set and the edges to test. As
n increases, the running times of both PC and FCNI algorithms increase. How-
ever, the rate of increase of the running time of the PC algorithm is much higher
than that of the FCNI algorithm. Therefore, with an increase in n, the ratio
of running time between the two algorithms increases. The same observation is
made in the real dataset where the running time of the PC and FCNI algorithms
are 817 and 118 msecs, respectively. These results verify the important role of
temporal precedence relationships to reduce the running time.

Comparison of the Number of CI Tests of the PC and FCNI Algo-
rithms. Figure 2(b) shows that the FCNI algorithm performs fewer CI tests
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than the PC algorithm in all synthetic datasets. The CI tests required are min-
imized, due to the temporal precedence information, by reducing the size of the
condition set and the number of edges to test. With an increase in the number
of event types (n), the rate of increase of the number of CI tests in the PC algo-
rithm is much higher than that in the FCNI algorithm. A similar observation is
made in the real dataset where the number of CI tests of the PC and FCNI algo-
rithms are 1239 and 192, respectively. These results confirm the important role
of temporal precedence relationships in reducing the number of CI tests. Note
the result of CI tests (Figure 2(b)) looks almost the same as that of the running
time (Figure 2(a)). This demonstrates that CI tests are the major performance
bottleneck and validates the key idea of our work that reducing the number of
CI tests reduces the run time.

7 Conclusion and Future Work

In this paper, we presented a novel strategy to incorporate temporal precedence
relationships to learn the causal network over event streams. First, we intro-
duced the Temporal Network Inference algorithm to model temporal precedence
information. Then, we presented the Fast Causal Network Inference algorithm
to reduce the running time complexity of learning causal network by eliminating
unnecessary CI tests. We showed the experiment results to validate our approach
by comparing against the state-of-the-art PC algorithm. For the future work, we
plan to explore the temporal semantics further for causal network inference over
out-of-order event streams.
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Abstract. Semi-stream processing has become an emerging area of re-
search in the field of data stream management. One common operation in
semi-stream processing is joining a stream with disk-based master data
using a join operator. This join operator typically works under limited
main memory and this memory is generally not large enough to hold
the whole disk-based master data. Recently, a number of semi-stream
join algorithms have been proposed in the literature to achieve an op-
timal performance but still there is room to improve the performance.
In this paper we propose a novel Semi-Stream Cache Join (SSCJ) using
a front-stage cache module. The algorithm takes advantage of skewed
distributions, and we present results for Zipfian distributions of the type
that appear in many applications. We analyze the performance of SSCJ
with a well known related join algorithm, HYBRIDJOIN (Hybrid Join).
We also provide the cost model for our approach and validate it with
experiments.

Keywords: Semi-stream processing, Stream-based join, Data warehous-
ing; Performance measurement.

1 Introduction

Stream-based joins are important operations in modern system architectures,
where just-in-time delivery of data is expected. We consider a particular class
of stream-based join, a semi-stream join that joins a single stream with a slowly
changing table. Such a join can be applied in real-time data warehousing [6,4].
In this application, the slowly changing table is typically a master data table.
Incoming real-time sales data may comprise the stream. The stream-based join
can be used for example to enrich the stream data with master data. In this
work we only consider one-to-many equijoins, as they appear between foreign
keys and the referenced primary key in another table.

For executing stream-based operations, the large capacity of current main
memories as well as the availability of powerful cloud computing platforms
means, that considerable computing resources can be utilized. For master data
of the right size for example, main-memory algorithms can be used.
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However, there are several scenarios, where stream joins that use a minimum
of resources are needed. One particular scenario is an organization trying to
reduce the carbon footprint of the IT infrastructure. A main memory approach
as well as cloud-computing approaches can be power-hungry. Also in the area of
mobile computing and embedded devices a low-resource consumption approach
can be advantageous. Therefore, approaches that can work with limited main
memory are of interest.

In the past, the algorithm HYBRIDJOIN (Hybrid Join) [7] was proposed
for joining a stream with a slowly changing table with limited main memory
requirements. This algorithm is an interesting candidate for a resource aware
system setup. The key objective of this algorithm is to amortize the fast input
stream with the slow disk access within limited memory budget and to deal with
the bursty nature of the input data stream. Further details about HYBRIDJOIN
are presented in Section 3.

Although the HYBRIDJOIN algorithm amortizes the fast input stream using
an index-based approach to access the disk-based relation and can deal with
bursty streams, the performance can still be improved if some characteristics
of stream data are taken into consideration. We are looking for characteristics
of data that are considered ubiquitous in real world scenarios. A Zipfian dis-
tribution of the foreign keys in the stream data matches distributions that are
observed in a wide range of applications [1]. We therefore created a data gen-
erator that can produce such a Zipfian distribution. A Zipfian distribution is
parameterized by the exponent of the underlying power law. In different scenar-
ios, different exponents are observed, and determine whether the distribution
is considered to have a short tail or a long tail. Distributions with a short tail
would be more favourable for SSCJ from the outset, therefore we decided not to
use a distribution with a short tail in order to not bias our experiment towards
SSCJ. Instead we settled on a natural exponent that is observed in a variety
of areas, including the original Zipf’s Law in linguistics [5] that gave rise to
the popular name of these distributions. The main result of our analysis is that
SSCJ performs better on a skewed dataset that is synthetic, but following a Zip-
fian distribution as is found frequently in practice. For our analysis we do not
consider joins on categorical attributes in master data, e.g. we do not consider
equijoins solely on attributes such as gender.

The rest of the paper is structured as follows. Section 2 presents related work.
In Section 3 we describe our observations about HYBRIDJOIN. Section 4 de-
scribes the proposed SSCJ with its execution architecture and cost model. Sec-
tion 5 describes an experimental analysis of SSCJ. Finally, Section 6 concludes
the paper.

2 Related Work

In this section, we present an overview of the previous work that has been done
in this area, focusing on those which are closely related to our problem domain.

A seminal algorithm Mesh Join (MESHJOIN) [9,10] has been designed espe-
cially for joining a continuous stream with a disk-based relation, like the scenario



238 M. Asif Naeem et al.

in active data warehouses. The MESHJOIN algorithm is a hash join, where the
stream serves as the build input and the disk-based relation serves as the probe
input. A characteristic of MESHJOIN is that it performs a staggered execution
of the hash table build in order to load in stream tuples more steadily. The al-
gorithm makes no assumptions about data distribution and the organization of
the master data. The MESHJOIN authors report that the algorithm performs
worse with skewed data.

R-MESHJOIN (reduced Mesh Join) [8] clarifies the dependencies among the
components of MESHJOIN. As a result the performance has been improved
slightly. However, R-MESHJOIN implements the same strategy as in the
MESHJOIN algorithm for accessing the disk-based relation.

One approach to improve MESHJOIN has been a partition-based join algo-
rithm [3], which can also deal with stream intermittence. It uses a two-level hash
table in order to attempt to join stream tuples as soon as they arrive, and uses
a partition-based waiting area for other stream tuples. For the algorithm in [3],
however, the time that a tuple is waiting for execution is not bounded. We are
interested in a join approach where there is a time guarantee for when a stream
tuple will be joined.

Another recent approach, Semi-Streaming Index Join (SSIJ) [?] joins stream
data with disk-based data. SSIJ uses page level cache i.e. stores the entire disk
pages in cache. It is possible that not all the tuples in these pages are frequent
in the stream and as a result the algorithm can perform suboptimally. Also the
authors do not include the mathematical cost model for the algorithm.

3 Problem Definition

To clarify our observations, we present the HYBRIDJOIN algorithm in detail
and at the end of this section we formulate an argument that we focus on in this
paper.

A semi-stream join algorithm, HYBRIDJOIN, was based on two objectives.
The first objective was to amortize the disk I/O cost over the fast input data
stream more effectively by introducing an index-based approach to access the
disk-based relation R. The second objective was to deal with the bursty nature of
a data stream effectively. An abstract level working overview of HYBRIDJOIN
is presented in Figure 1 where we consider m partitions in the queue to store
stream tuples and n pages in disk-based relation R. In order to keep it simple,
currently, we assume that the stream tuples are stored in a queue rather than in
a hash table and the join is directly performed with the queue. The disk buffer
is used to load one disk page into memory.

The key to HYBRIDJOIN is that, for each iteration the algorithm reads
the oldest tuple from the queue and using that tuple as an index it loads the
relevant disk page into the disk buffer. After loading the disk page into memory,
the algorithm matches each tuple on the disk page with the stream tuples in the
queue. When a match is found, the algorithm generates a tuple as an output
after deleting it from the queue. In the next iteration, the algorithm again reads
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Fig. 1. HYBRIDJOIN working overview Fig. 2. Current market sales (on log-
log scale)

stream input, extracts the oldest element from the queue, loads the relevant disk
page into the disk buffer and repeats the entire procedure.

Although HYBRIDJOIN accesses R using an index reducing the I/O cost
as compared to the other approaches, described in Section 2, if we analyse the
current market sales then we observe that I/O cost can also be minimized further,
ultimately improving the performance. To elaborate, we consider a benchmark
which is based on current market sales based on the 80/20 rule [1]. According
to this rule, 20 percent of products account for 80 percent of revenues and even
in that 20 percent only a small number of products are sold very frequently.
This rule can be implemented using Zipf’s law with an exponent value equal to
1. The graphical representation of the benchmark is shown in Figure 2. From
the figure it can be observed that the frequency of selling a small number of
products is significantly higher compared to the rest of the products. Therefore,
in the stream that propagates toward the warehouse, most of the tuples need
to join with a small number of records on disk again and again. Currently the
HYBRIDJOIN algorithm does not consider this feature and loads the pages from
the disk frequently. Consider the reduction in I/O costs, if these pages can be
held permanently in memory.

4 Semi-Stream Cache Join (SSCJ)

In this paper, we propose a new algorithm, SSCJ, which overcomes the issues
stated above. This section presents a detailed description of SSCJ and its cost
model.

4.1 Execution Architecture

The SSCJ algorithm possesses two complementary hash join phases, somewhat
similar to Symmetric Hash Join. One phase uses R as the probe input; the
largest part of R will be stored in tertiary memory. We call it the disk-probing
phase. The other join phase uses the stream as the probe input, but will deal
only with a small part of relation R. We call it the stream-probing phase. For
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each incoming stream tuple, SSCJ first uses the stream-probing phase to find a
match for frequent requests quickly, and if no match is found, the stream tuple
is forwarded to the disk-probing phase.

The execution architecture for SSCJ is shown in Figure 3. The largest com-
ponents of SSCJ with respect to memory size are two hash tables, one storing
stream tuples denoted by HS and the other storing tuples from the disk-based
relation denoted by HR. The other main components of SSCJ are a disk buffer,
a queue, a frequency recorder, and a stream buffer. Relation R and stream S are
the external input sources. Hash table HR contains the most frequently accessed
tuples of R and is stored permanently in memory. SSCJ alternates between
stream-probing and disk-probing phases. According to the procedure described
above, the hash table HS is used to store only that part of the stream which does
not match tuples in HR. A stream-probing phase ends if HS is completely filled
or if the stream buffer is empty. Then the disk-probing phase becomes active.
The length of the disk-probing phase is determined by the fact that a few disk
partitions (or disk blocks) of R have to be loaded at a time in order to amortize
the costly disk access. In the disk-probing phase of SSCJ, the oldest tuple in the
queue is used to determine the partition of R that is loaded for a single probe
step. In this way, in SSCJ it is guaranteed that every stream tuple loaded in
memory will be processed in a certain time period. This is the step where SSCJ
needs an index on table R in order to find the partition in R that matches the
oldest stream tuple. However, a non-clustered index is sufficient, if we consider
equijoins on a foreign key element that is stored in the stream. After one disk-
probing phase, a number of stream tuples are deleted from HS , so the algorithm
switches back to the stream-probing phase. One phase of stream-probing with a
subsequent phase of disk-probing constitutes one outer iteration of SSCJ.

Output . . . . . . . . . . . . 
. . . . . . . . . . . . 

. . . 

Disk-based 
master data 
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Fig. 3. Execution architecture of SSCJ

The stream-probing phase is
used to boost the performance of
the algorithm by quickly match-
ing the most frequent master
data. For determining very fre-
quent tuples in R and loading
them into HR, the frequency de-
tection process is required. This
process tests whether the match-
ing frequency of the current tuple
is larger than a pre-set threshold.
If it is, then this tuple is entered
into HR. If there are no empty
slots in HR the algorithm over-
writes an existing least frequent tuple in HR. This least frequent tuple is de-
termined by the component frequency recorder. The question of where to set
the threshold arises, i.e. how frequently must a stream tuple be used in order
to get into this phase, so that the memory sacrificed for this phase really de-
livers a performance advantage. The threshold is a flexible barrier. Initially, an
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Table 1. Notations used in cost estimation of SSCJ

Parameter name Symbol

Number of stream tuples processed in each iteration through HR wN

Number of stream tuples processed in each iteration through HS wS

Disk tuple size (bytes) vR
Disk buffer size (tuples) d
Size of HR (tuples) hR

Size of HS (tuples) hS
Memory weight for the hash table α
Memory weight for the queue 1− α
Cost to look-up one tuple in the hash table (nano secs) cH
Cost to generate the output for one tuple (nano secs) cO
Cost to remove one tuple from the hash table and the queue (nano secs) cE
Cost to read one stream tuple into the stream buffer (nano secs) cS
Cost to append one tuple in the hash table and the queue (nano secs) cA
Cost to compare the frequency of one disk tuple with the specified thresh-
old value (nano secs)

cF

Total cost for one loop iteration (secs) cloop

appropriate value is assigned to it while later on this value can be varied up and
down depending on available size of HR and the rate of matching the disk tuples
in the disk buffer. The disk buffer stores the swappable part of R and for each
iteration it loads a particular partition of R into memory. The other component
queue is used to store the values for the join attribute. The main purpose of the
queue is to keep the record of each stream tuple in memory with respect to time.
The stream buffer is included in the diagram for completeness, but is in reality
always a tiny component and it will not be considered in the cost model.

4.2 Cost Model

In this section we develop the cost model for our proposed SSCJ. The cost
model presented here follows the style used for HYBRIDJOIN and MESHJOIN.
Equation 1 represents the total memory used by the algorithm (except the stream
buffer), and Equation 2 describes the processing cost for each iteration of the
algorithm. The notations we used in our cost model are given in Table 1.

Memory Cost: The major portion of the total memory is assigned to the hash
table HS together with the queue while a comparatively much smaller portion
is assigned to HR, the frequency detector, and the disk buffer. The memory for
each component can be calculated as follows:
Memory for the disk buffer (bytes)= d · vR
Memory for HR (bytes)=hR · vR
Memory for frequency recorder (bytes)=8hR

Memory for HS (bytes)=α(M − d · vR − hR · vR − 8hR)
Memory for the queue (bytes) = (1− α)(M − d · vR − hR · vR − 8hR)
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By aggregating the above, the total memory M for SSCJ can be calculated as
shown in Equation 1.

M = d·vR+hR ·vR+8hR+α(M−d·vR−hR ·vR−8hR)+(1−α)(M−d·vR−hR ·vR−8hR)
(1)

Currently, the memory for the stream buffer in not included because it is small
(0.05 MB is sufficient in our experiments).

Processing Cost: In this section we calculate the processing cost for the al-
gorithm. To make it simple we first calculate the processing cost for individual
components and then sum these costs to calculate the total processing cost for
one iteration.
Cost to load d tuples from disk to the disk buffer (nanosecs)=cI/O(d)
Cost to look-up wN tuples in HR (nanosecs)=wN · cH
Cost to look-up disk buffer tuples in HS (nanosecs)=d · cH
Cost to compare the frequency of all the tuples in disk buffer with the threshold
value (nanosecs)=d · cF
Cost to generate the output for wN tuples (nanosecs)=wN · cO
Cost to generate the output for wS tuples (nanosecs)=wS · cO
Cost to read the wN tuples from the stream buffer (nanosecs)=wN · cS
Cost to read the wS tuples from the stream buffer (nanosecs)=wS · cS
Cost to append wS tuples into HS and the queue (nanosecs)=wS · cA
Cost to delete wS tuples from HS and the queue (nanosecs)=wS · cE
By aggregating the above costs the total cost of the algorithm for one iteration
can be calculated using Equation 2.

cloop(secs) = 10−9[cI/O(d)+d(cH+cF )+wS(cO+cE+cS+cA)+wN (cH+cO+cS)]
(2)

Since in cloop seconds the algorithm processes wN and wS tuples of the stream
S, the service rate μ can be calculated using Equation 3.

μ =
wN + wS

cloop
(3)

In fact, based on the cost model we tuned SSCJ to a provably optimal dis-
tribution of memory between the two phases, and the components within the
phases1.

5 Performance Experiments

5.1 Experimental Setup

Hardware Specification: We performed our experiments on a Pentium-core-
i5 with 8GB main memory and 500GB hard drive as secondary storage. We
implemented our experiments in Java using the Eclipse IDE. The relation R is
stored on disk using a MySQL database.

1 Due to the page limit we are unable to include the tuning of SSCJ in the paper.
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Table 2. Data specification

Parameter value

Size of disk-based relation R 100 million tuples (≈11.18GB)

Total allocated memory M 1% of R (≈0.11GB) to 10% of R (≈1.12GB)

Size of each disk tuple 120 bytes (similar to HYBRIDJOIN)

Size of each stream tuple 20 bytes (similar to HYBRIDJOIN)

Size of each node in the queue 12 bytes (similar to HYBRIDJOIN)

Measurement Strategy: The performance or service rate of the join is mea-
sured by calculating the number of tuples processed in a unit second. In each
experiment both algorithms first complete their warm-up phase before starting
the actual measurements. These kinds of algorithms normally need a warm-up
phase to tune their components with respect to the available memory resources
so that each component can deliver maximum performance. In our experiments,
for each measurement we calculate the confidence interval by considering 95%
accuracy, but sometimes the variation is very small.

Synthetic Data: The stream dataset we used is based on the Zipfian distribu-
tion. We test the performance of all the algorithms by varying the skew value
from 0 (fully uniform) to 1 (highly skewed). The detailed specifications of our
synthetic dataset are shown in Table 2.

TPC-H: We also analyze the performance of all the algorithms using the TPC-
H dataset which is a well-known decision support benchmark. We create the
datasets using a scale factor of 100. More precisely, we use table Customer as
our master data table and table Order as our stream data table. In table Order
there is one foreign key attribute custkey which is a primary key in Customer

table. So the two tables are joined using attribute custkey. Our Customer table
contains 20 million tuples while the size of each tuple is 223 bytes. On the other
hand Order table also contains the same number of tuples with each tuple of
138 bytes.

Real-Life Data: Finally, we also compare the performance of all the algo-
rithms using a real-life dataset2. This dataset basically contains cloud informa-
tion stored in summarized weather reports format. The same dataset was also
used with the original MESHJOIN. The master data table contains 20 million
tuples, while the streaming data table contains 6 million tuples. The size of each
tuple in both the master data table and the streaming data table is 128 bytes.
Both the tables are joined using a common attribute, longitude (LON), and
the domain for the join attribute is the interval [0,36000].

5.2 Performance Evaluation

In this section we present a series of experimental comparisons between SSCJ
and HYBRIDJOIN using synthetic, TPC-H, and real-life data. In order to un-

2 This dataset is available at: http://cdiac.ornl.gov/ftp/ndp026b/

http://cdiac.ornl.gov/ftp/ndp026b/
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derstand the difference between the algorithms better, we include two other
algorithms. First we include MESHJOIN, which is a seminal algorithm in the
field that serves as a benchmark for semi-stream joins. Then we include R-
MESHJOIN, which is a slight modification of MESHJOIN. It introduces an
additional degree of freedom for the optimization of MESHJOIN.

In our experiments we perform three different analyses. In the first analysis, we
compare service rate, produced by each algorithm, with respect to the externally
given parameters. In the second analysis, we present time comparisons, both
processing and waiting time, for all four approaches. Finally, in our last analysis
we validate our cost models for each of the algorithm.

External Parameters: We identify three parameters, for which we want to
understand the behavior of the algorithms. The three parameters are: the total
memory available M , the size of the master data table R, and the skew in the
stream data. For the sake of brevity, we restrict the discussion for each parameter
to a one dimensional variation, i.e. we vary one parameter at a time.

Analysis by varying size of memory M: In our first experiment we compare
the service rate produced by all four algorithms by varying the memory size
M from 1% to 10% of R while the size of R is 100 million tuples (≈11.18GB).
We also fix the skew value equal to 1 for all settings of M . The results of our
experiment are presented in Figure 4(a). From the figure it can be noted that
SSCJ performs up to 4.5 times faster than HYBRIDJOIN in the case of a 10%
memory setting. While in the case of a limited memory environment (1% of
R) SSCJ still performs up to 3 times better than HYBRIDJOIN making it
an adaptive solution for memory constraint applications. SSCJ also performs
significantly better than both R-MESHJOIN and MESHJOIN.

Analysis by varying size of R: In this experiment we compare the service
rate of SSCJ with the other three algorithms at different sizes of R under fixed
memory size, ≈1.12GB. We also fix the skew value equal to 1 for all settings of
R. The results of our experiment are shown in Figure 4(b). From the figure it
can be seen that SSCJ performs up to 3 times better than HYBRIDJOIN under
all settings of R. On the other hand if we compare the performance of SSCJ
with MESHJOIN and R-MESHJOIN, it also performs significantly better than
both of the algorithms under all settings of R.

Analysis by varying skew value: In this experiment we compare the service
rate of all the algorithms by varying the skew value in the streaming data. To
vary the skew, we vary the value of the Zipfian exponent. In our experiments we
allow it to range from 0 to 1. At 0 the input stream S is completely uniform while
at 1 the stream has a larger skew. We consider the sizes of two other parame-
ters, memory and R, to be fixed. The size of R is 100 million tuples (≈11.18GB)
while the available memory is set to 10% of R (≈1.12GB). The results presented
in Figure 4(c) show that SSCJ again performs significantly better among all
approaches even for only moderately skewed data. Also this improvement be-
comes more pronounced for increasing skew values in the streaming data. At
skew value equal to 1, SSCJ performs about 3 times better than HYBRIDJOIN.
Contrarily, as MESHJOIN and R-MESHJOIN do not exploit the data skew in
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(a) Size of allocated memory varies
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(b) Size of relation on disk varies
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(c) Skew in data stream varies
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(d) TPC-H dataset
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(e) Real-life dataset

Fig. 4. Performance analysis

their algorithms, their service rates actually decrease slightly for more skewed
data, which is consistent to the original algorithms findings. We do not present
data for skew value larger than 1, which would imply short tails. However, we
predict that for such short tails the trend continues. SSCJ performs slightly
worse than MESHJOIN and R-MESHJOIN only in a case when the stream data
is completely uniform. In this particular case the stream-probing phase does not
contribute considerably while on the other hand random access of R influences
the seek time.

TPC-H and real-life datasets: We also compare the service rate of all the
algorithms using TPC-H and real-life datasets. The details of both datasets
have already been described in Section 5.1. In both experiments we measure
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(a) Processing time
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(b) Waiting time

Fig. 5. Time analysis

the service rate produced by all four algorithms at different memory settings.
The results of our experiments using TPC-H and real-life datasets are shown in
Figures 4(d) and 4(e) respectively. From both figures it can be noted that the
service rate in case of SSCJ is remarkably better among all three approaches.

Time Analysis: A second kind of performance parameter besides service rate
refers to the time an algorithm takes to process a tuple. In this section, we analyze
both waiting time and processing time. Processing time is an average time that
every stream tuple spends in the join window from loading to matching without
including any delay due to a low arrival rate of the stream. Waiting time is the
time that every stream tuple spends in the stream buffer before entering into the
join module. The waiting times were measured at different stream arrival rates.
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Fig. 6. Cost validation

The experiment, shown in Figure 5(a), presents
the comparisons with respect to the processing
time. From the figure it is clear that the process-
ing time in case of SSCJ is significantly smaller
than the other three algorithms. This difference
becomes even more pronounced as we increase the
size of R. The plausible reason for this is that in
SSCJ a big part of stream data is directly pro-
cessed through the stream-probing phase without
joining it with the whole relation R in memory.

In the experiment shown in Figure 5(b) we compare the waiting time for each
of the algorithms. It is obvious from the figure that the waiting time in the
case of SSCJ is significantly smaller than the other three algorithms. The reason
behind this is that in SSCJ since there is no constraint to match each stream
tuple with the whole of R, each disk invocation is not synchronized with the
stream input.

Cost Analysis: The cost models for all the algorithms have been validated by
comparing the calculated cost with the measured cost. Figure 6 presents the
comparisons of both costs for each algorithm. The results presented in the figure
show that for each algorithm the calculated cost closely resembles the measured
cost, which proves the correctness of our cost models.
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6 Conclusions

In this paper we propose a new semi-stream-based join called SSCJ and we com-
pare it with HYBRIDJOIN and other earlier well-known semi-stream join algo-
rithms. SSCJ is designed to make use of skewed, non-uniformly distributed data as
found in real-world applications. In particular we consider a Zipfian distribution
of foreign keys in the stream data. Contrary to HYBRIDJOIN, SSCJ stores these
most frequently accessed tuples of R permanently in memory saving a significant
disk I/O cost and accelerating the performance of the algorithm.We have derived
a cost model for the new algorithm and validated it with experiments. We have
provided an extensive experimental study showing an improvement of SSCJ over
the earlier HYBRIDJOIN and other related algorithms.
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Abstract. Many topics related to association mining have received at-
tention in the research community, especially the ones focused on the
discovery of interesting knowledge. A promising approach, related to this
topic, is the application of clustering in the pre-processing step to aid
the user to find the relevant associative patterns of the domain. In this
paper, we propose nine metrics to support the evaluation of this kind
of approach. The metrics are important since they provide criteria to:
(a) analyze the methodologies, (b) identify their positive and negative
aspects, (c) carry out comparisons among them and, therefore, (d) help
the users to select the most suitable solution for their problems. Some
experiments were done in order to present how the metrics can be used
and their usefulness.

Keywords: Association Rules, Clustering, Pre-processing.

1 Introduction

In the last years, researches have adopted some strategies to aid the user to
find the relevant associative patterns of the domain. One of these strategies is
to pre-process the data before obtaining the rules. For that, many approaches
have been proposed, being clustering a promising one. In this case, the data
are initially grouped into n groups. Association rules are extracted within each
group and, in the end, n groups of rules are obtained. All these rules compose
the rule set. According to [1], each group expresses its own associations without
the interference of the other groups that contain different association patterns.
The aim is to obtain potentially interesting rules that would not be extracted
from unpartitioned data sets. The user must set the minimum support to a low
value to discover these same patterns from unpartitioned data sets, causing a
rapidly increase in the number of rules.

Distinct methodologies have been proposed to enable the described process.
Each methodology uses a different combination of similarity measures with clus-
tering algorithms to obtain the groups of rules. However, little has been done to
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analyze the performance of the methodologies or even to compare the results.
So, there are some issues that have to be investigated:

Issue 1. Is there overlap between a rule set obtained through partitioned
data, i.e., extracted from clustered data, in relation to a rule set obtained through
unpartitioned data, i.e., extracted from traditional process? A rule set obtained
through a partitioned data is named here as RsP and a rule set obtained through
a traditional process is named here as RsT.

Issue 2. Is there overlap between the rules in RsT and RsP regarding the
interesting knowledge? In other words, has RsP, in fact, more interesting patterns
than RsT?

Issue 3. What is the process behavior regarding the number of rules that are
obtained in RsP?

Based on the exposed arguments and on the three presented issues, nine met-
rics are proposed in this paper to support the evaluation of the methodologies
that use clustering in the pre-processing step. Thereby, this paper will contribute
with future researches since the metrics will provide criteria to: (a) analyze the
methodologies, (b) identify their positive and negative aspects, (c) carry out
comparisons among them and, therefore, (d) help the users to select the most
suitable solution for their problems. It is important to say that the aim here
is not to discover interesting rules, but to provide a standardized assessment
procedure to support the evaluation of the methodologies that use clustering in
the pre-processing step in order to discover the interesting rules.

This paper is organized as follows. Section 2 presents the proposed metrics.
Section 3 describes some experiments that were carried out to show how the
metrics can be used. Section 4 discusses the results obtained in the experiments.
Section 5 surveys the related researches. Finally, conclusion is given in Section 6.

2 Proposed Evaluation Metrics

Nine metrics are proposed to support the evaluation of the methodologies that
use clustering in the pre-processing step, as the methodologies described in Sec-
tion 5. Each metric is related to an issue mentioned in Section 1. For each issue
there are one or more metrics. To propose the metrics, we assume that RsP is
better than RsT when it generates new knowledge in a few groups.

All metrics, with exception to MNR−RsP , range from 0 to 1. Since RsP con-
tains all the rules extracted within each group, repeated rules may exist in the
set. In RsT the same doesn’t occur since the rules are unique. Thus, it is impor-
tant to notice, in the equations presented below, that although RsP is a set, it
may have repeated elements, different from the traditional set theory. Thereby,
in the following operations the resulting sets may contain some repeated rules.

Issue 1. Regarding the existing overlap among the rules in RsP and RsT,
four metrics are proposed, which are described as follows:

MO−RsP Measures the ratio of “old” rules in RsP, i.e., the ratio of rules in RsT
found in RsP (Equation 1). A rule is considered “old” if it is in RsT, i.e., in
the rule set obtained through the traditional process. Therefore, the higher
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the value the better the metric, since the value indicates that there was no
loss of knowledge during the process.

MO−RsP =
|RsT ∩ RsP |
|RsT | . (1)

MN−RsP Measures the ratio of “new” rules in RsP, i.e., the ratio of rules in RsP
not found in RsT (Equation 2). A rule is “new” if it isn’t in RsT, i.e., in the
rule set obtained through the traditional process. Although it is important
that any knowledge be lost (metric MO−RsP ), it is expected that the ratio
of “new” rules in RsP be greater than the ratio of “old” rules. Therefore, the
higher the value the better the metric, since the value indicates the amount
of knowledge, previously unknown, obtained during the process.

MN−RsP =
|RsP − RsT |
|RsP | . (2)

MR−O−RsP Measures the ratio of “old” rules that repeat in RsP (Equation 3).
It is considered that a rule should exist in only one of the clustering groups,
since it has to be in a subdomain that expresses its own associations. There-
fore, the lower the value the better the metric, since the value indicates that
the knowledge, already known, is in subsets that express its own associations.

MR−O−RsP =
FindRepetitionRsP (RsT ∩ RsP )

|RsT ∩ RsP | ,

FindRepetitionRsP: function that receives by parameter a set of non repeated rules
and returns the number of rules in the set that repeat in RsP.

(3)

MR−N−RsP Measures the ratio of “new” rules that repeat in RsP (Equation 4).
Idem to MR−O−RsP . Therefore, as in MR−O−RsP , the lower the value the
better the metric, since the value indicates that the knowledge, previously
unknown, is in subsets that express its own associations.

MR−N−RsP =
FindRepetition(RsP − RsT )

|RsP − RsT | ,

FindRepetition: function that receives by parameter a set that may contain repeated
rules and returns the number of rules in the set that repeat.

(4)

Issue 2. Regarding the existing overlap among the rules in RsP and RsT
considering the interesting aspect of the knowledge, four metrics are proposed,
which are described as follows:

MN−I−RsP Measures the ratio of “new” rules among the h-top interesting rules
in RsP (Equation 5). Given a subset of h-top interesting rules, selected from
RsP, it is expected that the ratio of “new” rules in this subset be as large
as possible. The h-top rules are the h rules that contain the highest values
regarding an objective measure, where h is a number to be chosen. Therefore,
the higher the value the better the metric, since the value indicates that the
cost of the process is minimized by the discovery of interesting knowledge,
previously unknown, in RsP.



Metrics to Support the Evaluation of ARC 251

MN−I−RsP =
CountTopRules(htop of RsP,RsP − RsT )

|htop of RsP | ,

CountTopRules: function that receives by parameter a set of h-top interesting rules
and a set of rules and returns the number of rules that appears among the h-top.

(5)

MO−I−N−RsP Measures the ratio of “old” rules not in RsP among the h-top
interesting rules in RsT (Equation 6). Given a subset of h-top interesting
rules, selected from RsT, it is expected that all these rules are present in
RsP. It is not desirable that the interesting patterns in RsT disappear in
RsP, which would imply in the loss of relevant knowledge. Thus, this metric
measures the ratio of “old” interesting rules not in RsP. The h-top rules are
as described in MN−I−RsP . Therefore, the lower the value the better the
metric, since the value indicates that the interesting knowledge in RsT was
not lost during the process.

MO−I−N−RsP =
CountTopRules(htop of RsT, RsT − RsP )

|htop of RsT | ,

CountTopRules: idem Equation 5.

(6)

MC−I Measures the ratio of common rules among the h-top interesting rules
in RsP and the h-top interesting rules in RsT (Equation 7). Consider two
subsets, S1 and S2, containing, respectively, the h-top interesting rules in
RsP and the h-top interesting rules in RsT. This metric measures the existing
intersection between these two subsets, which is expected to be as small as
possible. Therefore, the lower the value the better the metric. The higher
the intersection, the less relevant will be the process, since all the knowledge
already known as interesting in RsT is also identified as interesting in RsP,
not providing to the process any additional relevant information.

MC−I =
|htop of RsP ∩ htop of RsT |

h
,

h is the number to be chosen to realize the selection of the rules in both sets, i.e.,
RsP and RsT.

(7)

MNC−I−RsP Measures the ratio of groups in the clustering related to RsP that
contains the h-top interesting rules in RsP (Equation 8). Therefore, the
lower the value the better the metric. This means that just some of the
groups would have to be explored by the user, which will contain the “new”
relevant knowledge extracted during the process.

MNC−I−RsP =
FindGroups(htop of RsP )

N
,

N : number of groups in the clustering; FindGroups: function that receives by pa-
rameter a set of h-top interesting rules, finds their groups and returns the number
of distinct selected groups.

(8)

Issue 3. Regarding the process behavior related to the number of rules that
are obtained in RsP, a unique metric is proposed, which is described as follows:
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MNR−RsP Measures the ratio of rules in RsP in relation to RsT (Equation 9). It
is important to analyze the process in relation to the number of rules in RsP.
It is not desirable to have a large increase in the volume of rules, because
even if new patterns are discovered, it will be harder for the user to identify
them. Therefore, the lower the value the better the metric, since the value
indicates that although new patterns have been extracted, the number of
extracted rules is not big enough to overload the user.

MNR−RsP =
|RsP |
|RsT | . (9)

Relating the proposed metrics with the researchers found in the literature (Sec-
tion 5), it can be observed that: (a) [1] is the only work that provides a similar
analysis related to the metrics MO−RsP and MN−RsP in Issue 1 ; (b) none of
them provide an analysis related to the aspects covered by Issue 2 ; [2,3,1] pro-
vide a similar analysis related to the metric MNR−RsP in Issue 3. Thus, the
necessity of a standardized assessment procedure becomes evident (more details
in Section 5). Finally, it is important to say that we believe that these nine met-
rics cover, adequately, the three presented issues. However, as other issues arise,
new metrics can be added to this assessment procedure.

3 Experiments

Some experiments were carried out in order to present how the metrics can be
used. For that, two contexts were defined. Suppose a user decides to apply clus-
tering in the pre-processing step. First of all, he has to find out the most suitable
methodology to be used in his problem. After that, he has to check if the se-
lected methodology was good enough for the problem, considering that different
interests may be important for his decision. Thus, two different situations were
regarded: (i) identify among some organizations the most suitable; (ii) analyze
the process itself. An organization is obtained by the application of a clustering
algorithm combined with a similarity measure. Therefore, the metrics provide
the support to evaluate each situation under the discussed issues: while in (i)
the data is initially clustered through some organizations in order to identify
the organization that obtains a good association set, in (ii) the usefulness of the
process itself is analyzed. Four data sets and four organizations were selected to
be used in the experiments.

The four data sets were Adult (48842;115), Income (6876;50), Groceries
(9835;169) and Sup (1716;1939). The numbers in parenthesis indicate, respec-
tively, the number of transactions and the number of distinct items in each
data set. The first three are available in the R Project for Statistical Comput-
ing through the package “arules”1. The last one was donated by a supermarket
located in São Carlos city, Brazil. All the transactions in Adult and Income con-
tain the same number of items (named here as standardized data sets (S-DS)),
different from Groceries and Sup (named here as non-standardized data sets

1 http://cran.r-project.org/web/packages/arules/index.html.

http://cran.r-project.org/web/packages/arules/index.html
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(NS-DS)), where each transaction contains a distinct number of items. Thus,
the experiments considered different data types.

The four organizations were obtained by the combination of the algorithms
and similarity measures presented in Table 1. Each combination gives an orga-
nization, i.e., a different way to analyze the process. Although it is necessary to
set k, the number of groups to be generated, in order to obtain an organization,
this value was used to analyze the organizations on different views. Despite the
existence of algorithms designed for transactions, such as ROCK, the choices
of the algorithms were made based on works that cluster the rules in the post-
processing phase aiming a posteriori comparison. The similarity measures were
chosen considering the works described in Section 5 – only the similarities among
transactions were selected.

As described before, the rules are extracted within each group after clustering
the data. The values of the minimum support (min-sup) and minimum confi-
dence (min-conf) have to be set in order to extract a set of association rules. To
automate the specification of the min-sup in each group, the following procedure
was adopted: (i) find the 1-itemsets of the group with their supports, (ii) com-
pute the average of these supports, (iii) use this average support as the min-sup
of the group. Regarding min-conf, the following values were used for each data
set: Adult 50%; Income 50%; Groceries 10%; Sup 100%. Thus, the same min-conf
value was applied in all the groups of a given data set. These values were chosen
experimentally. Although it is known that min-sup and min-conf impacts on the
set of rules that are obtained, it was assumed that the focus was on the use
of the metrics and, so, that the values were adequate to the proposed problem.
Finally, the rules were extracted with an Apriori implementation developed by
Christian Borgelt2 with a minimum of two items and a maximum of five items
per rule.

Considering the four organizations, the RsP sets were obtained. However, once
almost all the metrics are based on the rules obtained through the traditional
process, the four data sets were also processed to obtain the RsT sets. For that,
the min-sup was set automatically, as described before. Regarding min-conf, the
same values used in RsP were considered, i.e., Adult 50%, Income 50%, Groceries
10% and Sup 100%. Furthermore, as some of the metrics are based on the h-top
interesting rules of a given rule set, an objective measure should be selected.
Instead of choosing a specific measure, the average rating obtained through 18
objective measures (see Table 1) was considered as follows: (i) the value of 18
measures was computed for each rule; (ii) each rule received 18 ID’s, each ID
corresponding to the rule position in one of the ranks related to a measure; (iii)
the average was then calculated based on the rank positions (ID’s). Thus, the
h-top rules were selected considering the best average ratings. h, also a number
to be set, was defined, in all the sets (RsT and RsP), to assume 0.5% of the
total of rules in RsT – as seen in Section 4, always the smallest set. Therefore,
each rule set contains its own values that are proportional in all of them. Table 1
summarizes the configurations used to apply the proposed metrics.

2 http://www.borgelt.net/apriori.html.

http://www.borgelt.net/apriori.html
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Table 1. Configurations used to apply the proposed metrics

Data sets Adult; Income; Groceries; Sup
Algorithms PAM; Ward [algorithms details in [5]]
Similarity measures Agg; Denza
k 5 to 25, steps of 5
h 0.5% of the total of rules in RsT
Objective measures
[measures details in
[6]]

Added Value, Certainty Factor, Collective Strength, Confidence, Convic-
tion, IS, φ-coefficient, Gini Index, J-Measure, Kappa, Klosgen, λ, Laplace,
Lift, Mutual Information (asymmetric), Novelty, Support, Odds Ratio

4 Results and Discussion

Considering the configurations presented in Table 1 and the RsT sets above de-
scribed, the experiments were carried out and the values of each metric obtained.
Regarding the first proposed situation, i.e., identify among some organizations
the most suitable (Section 3), an analysis based on the average of each metric,
considering the different data types, apart from the data set, was carried out.
Table 2 presents the results. Thus, in this case, the metrics will help the users to
find out a suitable methodology for their problems. In order to aid the compar-
ison of the results, all the metrics that present better results when their values
are the smallest (MR−O−RsP , for example) were processed to store the comple-
ment of the information. Therefore, all the metric, with exception to MNR−RsP ,
have the same interpretation: the higher the value the better the performance.
Furthermore, all the metrics can be seen in terms of percentage if multiplied by
100 (ex.: 0.858*100 = 85.8%).

Table 2. Average of the proposed metrics in the considered organizations

Data Algorithm Measure MO−RsP MN−RsP MR−O−RsP MR−N−RsP MN−I−RsP MO−I−N−RsP MC−I MNC−I−RsP MNR−RsP

type

S-DS
PAM

Agg 0.858� 0.906 0.239� 0.881� 0.716 0.891� 0.838 0.596� 125.370�
Denza 0.730 0.936� 0.235 0.878 0.874� 0.583 0.912� 0.563 160.534

Ward
Agg 0.718 0.923 0.213� 0.871 0.920� 0.466 0.967� 0.503 129.681�
Denza 0.722� 0.928� 0.209 0.877� 0.870 0.509� 0.919 0.533� 133.994

NS-DS
PAM

Agg 0.880 0.901� 0.709� 0.974� 0.750� 1.000� 1.000� 0.909� 269.830�
Denza 0.924� 0.885 0.510 0.940 0.745 0.986 0.946 0.785 431.619

Ward
Agg 0.976� 0.245 0.947� 0.999� 0.211 0.997� 0.297 0.828 1.652�
Denza 0.973 0.693� 0.755 0.974 0.604� 0.997� 0.684� 0.867� 221.917

Each average in Table 2 was obtained from the results of the experiments
related to the presented configuration. The value 0.858 in MO−RsP at S-DS:-
PAM:Agg, for example, was obtained by the average of the values in MO−RsP at
Adult:PAM:Agg and Income:PAM:Agg over the values of k. The highest averages
are marked with � in each algorithm regarding each metric. The only exception
is MNR−RsP , where the lowest averages are highlighted. For the S-DS:PAM
configuration, for example, the best average for MO−RsP is the one related to
Agg (0.858). However, since the averages are, in general, near, a marking based
on the difference among the averages was also considered. The values marked
with � indicate that the difference between the averages of a given metric are
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above 0.1 (dif. ≥ 0.1). For the S-DS:PAM configuration, for example, the best
average for MO−RsP is the one related to Agg (0.858), presenting a difference
of 0.128 in relation to Denza (0.858-0.730). Thereby, it is possible to visualize,
for each configuration, the most suitable similarity measure. It is important to
mention that the results are deterministic and, therefore, no statistical test was
done to check if there is a significant difference among the averages. It can be
noticed that:

S-DS:PAM. The most suitable measure for this configuration is Agg, since
it presents better results in 6 of the 9 metrics in relation to Denza. Furthermore,
in 3 of the 6 metrics Agg exhibits a difference above 0.1 in relation to Denza.
In these cases, it can be noticed that the values in Agg are more representative
than the values in Denza – observe, for example, that while Agg inMO−I−N−RsP

presents a performance above 89%, Denza presents a performance below 59%.
S-DS:Ward. Although Denza presents a better performance in relation to

Agg in 5 of the 9 metrics, Agg seems to be the most suitable measure for this
configuration even presenting a better performance in 4 of the 9 metrics. This
occurs because while Agg exhibits a difference above 0.1 in relation to Denza in
1 of the 4 metrics, Denza doesn’t present any difference in any of the metrics.
Although the difference occurs in only one of the metrics, the metric is important,
since it measures how much the exploration space increases in relation to RsT.

NS-DS:PAM. The most suitable measure for this configuration is Agg, since
it presents better results in 8 of the 9 metrics in relation to Denza. Furthermore,
in 3 of the 8 metrics Agg exhibits a difference above 0.1 in relation to Denza.
In these cases, it can be noticed that the values in Agg are more representative
than the values in Denza – observe, for example, that while Agg in MR−O−RsP

presents a performance above 70%, Denza presents a performance below 52%.
NS-DS:Ward. Both measures present a good performance in 4 of the 9

metrics, excluding the tie occurred in MO−I−N−RsP . However, in 3 of the 4
metrics Denza exhibits a difference above 0.1 in relation to Agg. In these cases,
it can be noticed that the values in Denza are more representative than the
values in Agg – observe, for example, that while Denza in MN−RsP presents a
performance above 69%, Agg presents a performance below 25%. Therefore, the
most suitable measure for this configuration is Denza.

Considering the exposed arguments, it can be noticed that:
S-DS. Comparing the results of PAM:Agg and Ward:Agg, PAM presents

better results in 6 of the 9 metrics in relation to Ward (MO−RsP , MR−O−RsP ,
MR−N−RsP , MO−I−N−RsP , MNC−I−RsP , MNR−RsP ) and a difference above
0.1 in 3 of the 6 metrics (MO−RsP , MO−I−N−RsP , MNR−RsP ). Therefore, the
most suitable organization, to this type of data, according to the metrics, is
PAM:Agg.

NS-DS. Comparing the results of PAM:Agg and Ward:Denza, PAM presents
better results in 5 of the 9 metrics in relation to Ward (MN−RsP , MN−I−RsP ,
MO−I−N−RsP , MC−I , MNC−I−RsP ), excluding the tie occurred in MR−N−RsP ,
and a difference above 0.1 in 3 of the 5 metrics (MN−RsP , MN−I−RsP , MC−I).
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Therefore, the most suitable organization, to this type of data, according to the
metrics, is also PAM:Agg.

As observed, the most suitable organization according to the metrics, regard-
ing the presented configurations (Table 1), apart from the data type used, is
PAM:Agg. In other words, the user will obtain better results, i.e., reasonable
rule set, if he initially clusters the data through PAM:Agg. However, in other
domains, different aspects can be of interesting, providing the user a flexible way
to solve his issues. Thus, in this first situation, the metrics provide criteria to
carry out comparisons, helping the user to select the most suitable methodology
for his problem.

From that point, supposing that PAM:Agg is a suitable solution for the user’s
problem, it is possible to analyze the process itself, i.e., to check if good results
are really obtained. Observe that different interests may be important for his
decision. Thus, the metrics provide criteria not only to analyze the process, but
also to identify its positive and negative aspects, helping the user to reach a
conclusion. To discuss this second situation, Table 3 presents the values of the
metrics, in the selected organization, in each one of the data types. These values
are the ones presented at S-DS:PAM:Agg and NS-DS:PAM:Agg in Table 2, but
in their original scales, since the smaller scales (↓) were previously converted –
the larger scales (↑) remain the same. The scale, in each metric, is found between
“[]”. It can be noticed that:

MO−RsP Little knowledge is lost during the process, around 15%, since more
than 85% of the rules in RsT are found in RsP. Thus, a positive aspect of the
process is identified.

MN−RsP Almost all the rules in RsP are “new”, around 90%, indicating the
discovery of a great amount of knowledge previously unknown. Thus, a positive
aspect of the process is identified.

MR−O−RsP The repetition of “old” rules in RsP is high in both data types,
around 30% at NS-DS and 77% at S-DS. Thus, a negative aspect of the process
is identified.

MR−N−RsP The repetition of “new” rules in RsP is low, around 12%, indi-
cating that the knowledge, previously unknown, is in subdomains that express
their own associations. Thus, a positive aspect of the process is identified.

MN−I−RsP A great amount of the h-top interesting rules in RsP are “new”,
around 71%, indicating that the cost of the process is minimized by the discovery
of interesting knowledge, previously unknown, in RsP. Thus, a positive aspect
of the process is identified.

MO−I−N−RsP The loss of “old” and interesting knowledge is low, around
11%, since a great amount of the h-top interesting rules in RsT are found in RsP,
around 89% (100%-11%). Thus, a positive aspect of the process is identified.

MC−I The intersection between the h-top interesting rules in RsP and the
h-top interesting rules in RsT is low, around 17%, indicating that few of the
knowledge already known as interesting in RsT is found in RsP. Thus, a positive
aspect of the process is identified.
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MNC−I−RsP The number of groups that contain the h-top interesting rules in
RsP at NS-DS is low, around 10%, which doesn’t occur at S-DS, that is around
41%. Thus, a negative aspect of the process is identified.

MNR−RsP The number of rules in RsP is far greater in relation to RsT,
overloading the user with an excessive number of rules. Thus, a negative aspect
of the process is identified.

Table 3. Average of the proposed metrics in the PAM:Agg organization

Data type MO−RsP [↑] MN−RsP [↑] MR−O−RsP [↓] MR−N−RsP [↓] MN−I−RsP [↑] MO−I−N−RsP [↓] MC−I [↓] MNC−I−RsP [↓] MNR−RsP [↓]
S-DS 0.858 0.906 0.761 0.119 0.716 0.109 0.162 0.404 125.370

NS-DS 0.880 0.901 0.291 0.026 0.750 0.000 0.000 0.091 269.830

Summarizing, it can be observed that: (a) a great amount of interesting knowl-
edge, previously unknown, is discovered, which are in subdomains that express
their own associations; (b) little interesting knowledge is lost, which are not in
subdomains that express their own associations; (c) since the number of rules
is high and the interesting knowledge, previously unknown, is spread over the
clustering groups, the user exploration can be hampered. Therefore, consider-
ing the positive and negative aspects of the process, the user can analyze the
results, according to his interests, and conclude if good results were reached. It
is relevant to say that the importance of each percentage depends on the user’s
needs, on the data sets, etc., and, therefore, has to be, in fact, validate by them.
Regarding the presented context, it can be said that the process obtains reason-
able results, since 6 of the 9 aspects were considered positives. However, if the
weight of the 3 negative metrics is more important to the user, he can discard
the results. Moreover, he can try to improve the process to obtain better re-
sults in these metrics. Thus, in this second situation, the metrics provide criteria
to analyze the process based on different interests, identifying its positive and
negative aspects, helping the user to reach a conclusion.

5 Related Works

There are many researches that initially cluster data aiming to discover and
facilitate the search for the interesting pattern of the domain. Some of these
works are described below.

[2] propose to split the data set items into groups in order to extract the rules.
The authors evaluate many hierarchical algorithms combined with many similar-
ity measures. Nevertheless, it is not understandable how the rules are obtained
within the groups, since it is necessary to have a set of transactions and not a set
of items. This means that it is not clear how the transactions are distributed over
the groups. Among the similarity measures used by them, we emphasize Jaccard
due to its use by the measure described below (Agg). The Jaccard between two

items i1 and i2, expressed by P-J(i1,i2)=
|{t covered by i1}∩{t covered by i2}|
|{t covered by i1}∪{t covered by i2}| , is the
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ratio between the transactions t the items cover simultaneously and the total of
transactions the items cover. An item covers a transaction t if the item is in t.

[3] propose an algorithm, named CLASD, to split the data set transactions
aiming to discover associations on small segments (subsets) of the data. To clus-
ter the transactions, a similarity measure proposed by them, named Agg, ex-

pressed by Agg(t1,t2)=
∑m

p=1

∑n
q=1 Af(ip,jq)

m∗n , is used. Thus, the similarity between
two transactions t1 and t2 is computed by the affinity (Af) average among the
transaction items, being Af equivalent to the measure P-J. Therefore, after com-
puting P-J among the m items in t1 and the n items in t2, the average among
them is obtained.

[1] propose an algorithm, named Apriori Inverse, to cluster the transactions
and then extract a rare association rule set. To cluster the transactions, their
algorithm initially finds k seeds (centroids), where k indicates the number of
frequent itemsets that match some conditions. Each seed forms a group. After
the seed generation, each transaction t is allocated to one of the groups based
on the number of common items that occur between the transaction (t) and the
group centroid.

There are other researches concerned with the clustering of transactions that,
although not related to the extraction of association rules, could be used. In [4],
for example, the authors propose an approach to identify, a priori, the potentially
interesting items to appear in the antecedents and in the consequents of the
association rules without extracting them. The approach is divided in two steps:
the clustering of the transactions and the selection of the interesting items. To
do the clustering the authors propose the use of incremental K-means with a
similarity measure obtained through a Jaccard between transactions, expressed

by Denza(t1,t2)=
|{items in t1}∩{items in t2}|
|{items in t1}∪{items in t2}| . Therefore, the similarity between

two transactions t1 and t2 is computed considering the items the transactions
share.

Among the papers above described, little has been done to analyze the per-
formance of the methodologies, allowing to identify their positive and negative
aspects, or even to compare the results among them. In general, the researchers
compare the number of rules and/or itemsets that are obtained from unparti-
tioned data and clustered data to expose the usefulness of the methodologies.
This strategy can be found in [2,3,1] and is related to “Issue 3” of Section 1.
However, [2] also analyze the process considering the complexity of the rules that
are obtained – the greater the number of items that compose a rule the higher its
complexity. [3,1] discuss over some rules found through clustering to show that
the process provides the discovery of interesting patterns, but the analysis of the
process is subjective. [3] also consider the execution time. Finally, [1] is the only
work that allows a better analysis considering the existing overlap between the
rules obtained from unpartitioned data and clustered data. This strategy is re-
lated to “Issue 1” of Section 1. Based on the presented arguments, as mentioned
before, the necessity of a standardized assessment procedure becomes evident.
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6 Conclusion

In this paper, nine metrics were proposed to support the evaluation of method-
ologies that use clustering in the pre-processing step to aid the discovery of
associative interesting patterns. The metrics were developed to answer three
main issues related to the presented context. Some experiments were carried out
in order to present how the metrics can be used. For that, two different situ-
ations were regarded: (i) identify among some organizations the most suitable;
(ii) analyze the process itself. Through the experiments, it could be noticed that
the metrics provide criteria to: (a) analyze the methodologies, (b) identify their
positive and negative aspects, (c) carry out comparisons among them and, there-
fore, (d) help the users to select the most suitable solution for their problems.
Thus, based on the discussions, the usefulness and the importance of the metrics
were demonstrated.

As a future work, to complement the results, an empirical study with human
subjects will be done to verify if configurations with high metric values indeed
produces rules that are more useful to end users. With this new analysis, we
believe that a better understanding of the presented context will be reached and
its importance highlighted. A new methodology that tries to optimize all these
criteria, through an optimization technique, can be an interesting proposal.

Acknowledgments. We wish to thank Fundação de Amparo à Pesquisa do Es-
tado de São Paulo (FAPESP) (processes numbers: 2010/07879-0 and 2011/19850-
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Abstract. Email mining provides solution to email overload problem by auto-
matically placing emails into some meaningful and similar groups based on 
email subject and contents. Existing email mining systems such as BuzzTrack, 
do not consider the semantic similarity between email contents, and when large 
number of email messages are clustered to a single folder it retains the problem 
of email overload. The goal of this paper is to solve the problem of email over-
load through semantically structuring the user's email by automatically organiz-
ing email in folders and sub-folders using data mining clustering technique and 
extracting important terms from created folders using Apriori-based method for 
folder identification. This paper proposes a system named AEMS for automatic 
folder and sub-folder creation and later indexing the created folders. For AEMS 
module, a novel approach named Semantic non-parametric K-Means++ cluster-
ing is proposed for folder creation. Experiments show the effectiveness and  
efficiency of the proposed techniques using large volumes of email datasets. 

Keywords: Email Mining, Email Overload, Email Management, Data Mining, 
Clustering, Feature Selection.  

1 Introduction 

Email is a widely used way of written communication over the internet. According to 
an estimate [1], the number of email messages sent daily has reached around 3.4 bil-
lion in 2012, resulting in the evolution of the problem of email overload. Email over-
load [2] is a state of being completely overwhelmed of email inboxes by the amount 
of email one has received. 

Email overload can be handled by managing email messages by summarization 
and automatically categorizing emails into folders. Automatic folder creation is, given 
a set of email messages and we need to semantically assign each message to similar 
groups according to the email content. Some automatic email folder creating tech-
niques are given in [2], [3], [4] and [5]. Another solution to email overload is given by 
the email summarization ([6], [7]). The goal of email summarization is to provide 
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concise, informative summary of email which in turn is helps to decide if the message 
demands immediate attention.  

Both folder categorization and email summarization do not reduce email overload 
when email sender, subject and topic are not known. Therefore, our proposed ap-
proach overcomes this problem by folder creation based on email subject and content, 
sub-folder based on sender of the email and then index or view will be created in a 
separate web page, which contains link to the respective folder and sub-folder, and 
contains the summary of each folder. 

1.1 Contributions 

This paper proposes an algorithm AEMS (Automatic Email Management System) 
which manages emails by organizing similar emails in the folders (module 1 named 
AEG), then again organizes emails of each folder into subfolders (module 2 named 
APEG) where subfolder will contain emails sent by only a particular person and lastly 
creating the index, which contains name and link to the folders and sub-folders and 
also contains a summary annotation about the content of the respective folders. 

For model AEG (Automatic Email Grouping), we have introduced document fre-
quency based feature selection method named Associative term frequency. We also 
proposed novel Semantic Non-parametric K-Means++ Clustering method for folder 
creation, which avoids, (1) random seed selection by selecting the seed according to 
email weights, and (2) pre-defined number of clusters using the similarity between the 
email contents. Lastly, we have applied an Apriori-based folder summarization which 
extracts frequent patterns from the emails of respective folders useful for identifica-
tion of content of folders. 

2 Related Work 

Similar to our AEG model, the work is shown in BuzzTrack [4], which used vector 
space model for email representation and cluster emails based on three measures: text 
similarity, subject similarity and people-based similarity. Next, kernel-selected email 
clustering [5] was introduced for email clustering. They consider the global weighting 
of each email subject and body for the creation of email VSM (vector space model) 
and then create email matrix and used an improved K-means clustering algorithm 
based on the lowest similarity. However, the work in [2], [3], [4] and [5] techniques 
are limited because if a created folder contains 2000 emails, it is hard to find an email 
of a specific individual whose name is not specifically known by the user. 

On the other hand email summarization techniques such as: NLP and Machine 
Learning techniques based email summarization [6] extract the important candidate 
noun phrases (NPs) from the email messages and manually classify the selected NPs 
into those that should be or not included in the summary. These NPs are used to build 
training set which is then used to summarize incoming messages. Next, CWS [7] is 
email conversation summarizer which uses clue words to measure the importance of 
sentences in conversation summarization based on the clue words and sentence score 
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of a summary is produced. The work in [6] and [7] do not provide help to find a par-
ticular email when millions of emails are present.  

3 The Proposed AEMS Model 

In this section, AEMS module is presented which automatically and semantically 
arranges email in similar groups by summarizing the content of each group and creat-
ing a view called index. The AEMS module is divided into three sub-modules which 
include: Automatic Email Grouping (AEG), Automatic People based Email grouping 
(APEG) and Indexing.  

3.1 AEG Model – Automatic Folder Creation and Topic Detection 

The input as a set of email messages directly goes to AEG where, AEG is a process of 
creating main folder based on similar email messages and semantic similarity meas-
ures and includes the 4 stages of (1) pre-processing, (2) feature selection, (3) cluster-
ing algorithm and (4) topic detection with details presented next. 

Step 1 and 2: Pre-processing and Feature Selection 
For pre-processing, subject line and content of the email messages are extracted from 
each email and stop words are removed which can reduce the size of the email to be 
processed. Next, we review the features by taking each term from the processed data 
to calculate the associative term frequency (Rtf) of a particular term x, which is the 
number of emails that contain the term, x. Features will be selected according to the 
Rtf, where Rtf should be greater or equal to the user specified threshold, Ts and Tb 
depending on whether the term appears in subject or content of the email respectively. R x df 100 /N                           (1) 

In equation 1, N is the total number of email messages in the dataset;  is the total 
number of emails in which the term x appeared. Once the feature terms are selected 
from the email, the email vector is created by combining the feature terms and remov-
ing the duplicate terms from the vector.  

Step 3: Semantic Non-parametric K-Means++ Clustering Algorithm 
Thirdly, step of the AEG process is to apply semantic_nonparametric_Kmeans++ 
algorithm of Fig. 2, where the emails are clustered together according to proposed  
the Semantic Non-parametric K-Means++ clustering algorithm. First, select the  
initial cluster center by calculating the email weight as shown in seman-
tic_nonparametric_kmeans++ algorithm of Fig. 1, step 1. The initial cluster center is 
the email with the maximum weight, where email weight is the total number of fea-
ture terms in the email. After this, chose all other clusters center by calculating the 
similarity between all emails with the initial cluster center as shown in seman-
tic_nonparametric_Kmeans++ algorithm of Fig. 1, step 2. Chose other clusters center 



 An Automatic Email Management Approach Using Data Mining Techniques 263 

 

using a weighted probability distribution where an email x is chosen with probability 

proportional to D ,  and D ,  should be less or equal to   (the optimized 
value of  can overcome the problem of pre-defined cardinality of other clustering 
algorithms because once the  is set it will work for all type of data and user need 
not to give any input such as K in K-Means++), as shown in seman-
tic_nonparametric_Kmeans++ algorithm of Fig. 1, step 3. The similarity D , (cal-
culated using the semantic text similarity (STS) algorithm [8], which semantically 
finds similarity between two emails). Once all centers are created, then form the clus-
ters by assigning email ( ) to the cluster center  where, similarity D , ) is 
minimum in comparison to other center, as in semantic_nonparametric_Kmeans++ 
algorithm (Fig. 1, step 4). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Algorithm for Semantic Non-parametric K-Means++ Clustering 

Step 4: Topic Detection and Folder Creation  
Next, the folders are created by topic detection. The subject term with the highest  
in the whole cluster, ; is considered as a folder name. 

Algorithm: semantic_nonparametric_Kmeans++(X) – {Clustering algorithm} 
Input: Email vector set (X) 
Other Variables: D C , : Decimal value indicating similarity between initial cluster center and the 

email   
: Email vector of text represented as cluster centers : Minimum threshold value, where 0.0   1.0 

|T|: Total number of features terms 
: Integer value as email weight (Total number of features) 

Xn: Particular email in email vector of text  
: Email vector of text represented as initial cluster center 

Output: Set of clustered email represented as grouped text  
Begin 

1. FOR each email ( ) in email vector set (X) DO    
1.1. Email weight of email , E |T| // Calculate each email weight. 
1.2 Initial cluster center,  = max E  // Email having maximum weight 

is assigned as initial cluster center ( ). 
2. FOR each email ( ) in email vector set (X) DO 

2.1 Calculate similarity D , // Calculate the similarity between initial 
cluster center and the each email using STS [8].  

3. Choose all cluster centers , select with probability D ,∑ D ,  and D ,    

4. FOR each email ( ) in email vector set (X) DO 
4.1 Assign email ( ) to the cluster   where, similarity D , ) is  

minimum.// Cluster formation  
End 
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3.2 APEG Model – An Automatic Sub-folder Creation 

APEG is a process for creating the sub-folders. Sub-folder creation is based on email 
sender ID and contains the emails from that specific person in the respective folder. 
The whole process of APEG model is divided into two steps:  

Step 1: Once the folders are created from the AEG model they serve as input for 
APEG model. So, firstly email ID of the sender is extracted from email message. 

Step 2: Then some comparisons are made as follows: 

a. If a sub-folder exists with the sender information, then that respective 
email message is moved to that sub-folder. 

b. Else a new sub-folder is created with the name of the sender and email is 
then moved into that folder. 

3.3 Indexing  

Lastly, create index, which is a view of the hierarchical folder with links to emails and 
contains summary annotation of each folder. The output of APEG serves as input for 
indexing. Here, Apriori algorithm [10] is applied to the folder data to extract impor-
tant terms which helps identify the content of folders. The whole process of indexing 
is divided in two steps (repeat following steps for all folders created): 

Step 1: Feature terms of subject and content of each email from the folder are ex-
tracted using associated term frequency explained in section 3.1.  

Step 2: Apply Apriori algorithm to the feature terms to extract the terms that are 
important for summary.   

Step 3: Index/View is created as HTML web page which is a hierarchical represen-
tation of folders from AEG model, sub-folders from APEG model and containing link 
to each individual email. Additionally, summary of folder is contained.  

4 Application Example for AEMS Module on Sample Data 

Example 1: Given a user, u email inbox with say 5 emails from 2 senders, sender-1 
and sender-2. Create topic folders F, sub-folders of sender (SF) and index i containing 
links to those F and SF (small size of file chosen only for illustration purposes). Con-
sider thresholds Ts = 30%, Tb = 50% and 0.2. 

Solution 1: Five emails are input to the AEG model of AEMS system.  
Step1: The subject and content of the email are extracted and all special characters, 

punctuation and stop words are removed, according to the section 3.1(Pre-processing) 
and these simple emails with 2-term subjects and up to 3-term contents are as follows:  

Email X1 (sender1) – Subject: {T1, T2} and Content: {T1, T3, T5} 
Email X2 (sender2) – Subject: {T1, T3} and Content: {T1, T4, T3} 
Email X3 (sender1) – Subject: {T5, T2} and Content: {T5, T4} 
Email X4 (sender2) – Subject: {T6, T1} and Content: {T6, T7, T2}  
Email X5 (sender1) – Subject: {T4, T3} and Content: {T7, T3, T4} 

Step 2: we need to find Rtf  (document frequency of term) for each term and select 
only those terms with Rtf greater or equal to threshold of Ts = 30%, Tb = 50%, accord-
ing to the section 3.1. The Rtf for subject and content are given below respectively. 
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Rtf (s) = {(T1, 3) (T2, 2) (T3, 2) (T4, 1) (T5, 1) (T6, 1) (T7, 0)}. 
Rtf (b) = {(T1, 2) (T2, 1) (T3, 4) (T4, 3) (T5, 2) (T6, 1) (T7, 1)}. 

Term {T1, T2, T3, and T4} is taken as feature term because there Rtf are greater or 
equal to the pre-defined threshold. Therefore the email vector by the selected feature 
terms will be: Email X1 with {T1, T2, T3}; Email X2 with {T1, T3, T4}; Email X3 
with {T2, T4}; Email X4 with {T1, T2} and Email X5 with {T3, T4} 

Step 3: Now we will cluster the email with Semantic Non-parametric K-Means++ 
clustering algorithm according to section 3.1. For this we need to follow steps below:  

1. Find email containing the maximum weight ( max ). Here, max  = 3 
which is the email weight for X1, X2 and X3, obtained by calculating the total 
number of feature terms in email vector. Thus, first initial cluster center will be X1. 

2. Calculate the similarity ,  between pairs of emails X1 and Xj to choose the 
next cluster centers (we chose STS [8] to find the similarity between emails). To 
compute the similarity between two emails X1 and Xj, we need to find the common 
terms in the two emails and place in the set C and delete theses common terms 
from both emails as in X1 = X1 – set C and Xj = Xj – set C. Then, calculate the string 
similarity between pairs of terms in X1 and Xj using the average of 3 common si-
milarity measures. Next, compute semantic similarity of pairs of terms of X1 and 
Xj using SOC-PMI [12] (uses point-wise mutual information to sort lists of impor-
tant neighbor words of the two target words. Then, consider the words which are 
common in both lists and aggregate their PMI values (from the opposite list) to 
calculate the relative semantic similarity) before computing the joint similarity ma-
trix (M) of the two matrices for string and semantic similarities of the emails. Now, 
extract the maximum value from M and delete corresponding row and column (re-
peat till M become empty) and store the summation of extracted values in variable 
(say, S). Lastly, similarity score ,  is calculated using equation 8   
 ,  /2                     (8) 

 

Here, m and n are the total number of terms in email X1 and Xj respectively and  
is the total number of terms in set C.  

The next center is chosen if its ,   and similarity proportional 
to , . Here,  is the pre-defined threshold value.  

3. Again calculate the similarity of each email with each cluster center and assign that 
to the cluster where, the similarity is maximum. Suppose, the clusters formed are: 
C1 – {X1, X2, X4} and C2 – {X3, X5}. 

4. Using these clusters, two folders are created and choose subject term as folder 
name, which have maximum Rtf. Therefore two folders created are: Folder T3 con-
taining email X1, X2 and X4, and Folder T4 containing email X3 and X5.  

Step 4: These two folders will be the input of the APEG model and APEG will create 
sub-folders according to the senders’ email ID. Here, folder T3 will contain two sub-
folders from sender-1 and sender-2, where sub-folder from sender-1 will contain 
email X1 and sub-folder from sender-2 will contain email X2 and X4. Similarity, for 
folder T4 will contain one sub-folder from sender-1 containing email X3 and X5. 

Step 5: Finally, one index file will be created with links to the folders and sub-
folders according to section 3.3 and also, contain email summary is created by apply-
ing Apriori algorithm. 



266 G. Soni and C.I. Ezeife 

 

5 Experimental Results 

The AEMS module is implemented in Java and Eclipse is used as a development IDE. 
The hardware configuration to run the experiments is 3GB RAM, intel core i3 CPU, 
2.34 GHz and 32-bit windows-7 operating system. To test our approach, we used 
publically available 20-Newsgroup collections [10]. It is a collection of 20,000 email 
messages, divided into 20 different newsgroups. The 20-Newsgroup data comes in, 
one file per email message containing email logs.  

5.1 Evaluation Criteria 

We used the F-value measure to evaluate the clustering quality and its formula is 
defined in equation 8: , , 2 , , , ,⁄            (9) 

where, , , ⁄  , and  , , ⁄    
 is the number of clusters which human has labeled,  is the number of emails 

with clustering algorithms, and  is the number of emails clustered correctly. 

5.2 Study on Cluster Performance 

We compared our clustering approach with standard K-means [9], K-Means++ [11] 
and Kernel-selected clustering [5], to show its efficiency of cluster correctness. 

 
Fig. 2. F-value comparison of clustering Algorithm 

We choose four folders from the 20-NewsGroup data set. These four folders con-
sist of 1000 email messages each and results are evaluated terms of F-Value. Now, 
when experimenting data with Kernel-selected email clustering method and our pro-
posed clustering algorithm, we have taken  = 0.5. We can observe from Fig. 2  
that our approach performs better than the standard K-Means, K-Means++ and Ker-
nel-selected clustering approach. Since the average of the F-Value when threshold is 
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taken as zero comes out to be 0.8552 for our clustering approaches whereas for Ker-
nel-selected clustering method comes to be 0.8187. 

6 Conclusions and Future Work 

This paper proposed an Automatic Email Management System (AEMS) which clus-
ters emails into meaningful groups and extract important feature words for identifica-
tion of each folder. For AEMS, we proposed a novel feature selection based clustering 
approach. Future work could be that AEMS module, do not handle the processing of 
incoming messages; therefore, a method can be developed to immediately process 
incoming messages using classification methods. Additionally, some recommendation 
system can be built based on the emails logs for deletion of unused email.  
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Abstract. With the huge technological and industrial developments in
recent years, the electricity demand of all countries has been increasing
day by day. In order to supply the electricity needs, countries have been
looking for ways of benefitting from their renewable energy sources effi-
ciently and wind energy is an important and ubiquitous renewable energy
source. However, due to wind’s discontinuity and unstable characteris-
tics, a reliable wind forecasting system is crucial not only for transmission
system operators but also wind power plant (WPP) owners. This paper
presents a reliable forecasting method based on data mining approaches.
The method uses numerical weather predictions and past power mea-
surements of the WPPs as input and it produces hourly short-term wind
power forecasts for the WPPs for a time period of 48 hours. The method
has been tested in the Wind Power Monitoring and Forecast Center
(RİTM) project of Turkey for a duration of six months for 14 WPPs.
The proposed model achieves better accuracy performance rates than
those of the other well-known forecasting models for seven of WPPs se-
lected for the testing procedure by the General Directorate of Renewable
Energy in Turkey.

Keywords: wind power, clustering, numerical weather predictions, wind
power forecasting, wind power monitoring.

1 Introduction

Excessive usage of non-renewable energy sources has become one of the main
reasons of global warming problem in recent years. In addition to their harmful
effects to the environment, these sources are envisioned to fall short for meeting
the increasing energy demand all over the world as they are not sustainable. Due
to these reasons, renewable energy sources have gained considerable attention in
recent years. Wind is the one of most significant and ubiquitous energy sources
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among all renewable energy types [1]. Since it is a highly reliable, ubiquitous, and
clean energy source, effective utilization of wind energy can help meet the energy
demand in the world and can reduce the negative environmental effects of fossil-
fueled power plants. However, unlike other renewable energy sources, wind has a
volatile and variable characteristics and in order to control this unstable energy,
a reliable forecast system is highly required for transmission system operators
(TSOs) to be used for power grid administration and operation. Additionally,
wind power plant (WPP) owners have to declare their day ahead production
forecasts to electricity market operator and they profit according to the accuracy
of their day ahead forecasts [3]. Hence, a reliable forecasting model is also crucial
for WPP owners.

Due to importance of an accurate wind power forecast system, several forecast
methods have been developed in the last years. All of these methods have differ-
ent advantages and disadvantages according to wind characteristic of the WPP
region. These methods can be classified in three groups as physical, statistical,
and hybrid (combination of physical and statistical) approaches [4]. All of these
methods use numerical weather predictions (NWPs) as initial input in order to
generate short term forecasts (hourly forecasts for up to 48 hours) [3,4].

Physical models are based on the physical conditions in the WPP area. They
use topological information of the WPP area, physical characteristics such as
roughness and existing obstacles, and the turbine characteristics, especially the
hub height of the turbines as inputs in addition to NWPs [5,6,7]. The WPP area
with turbines are modelled in 3D space by using some modelling software such
as WindSim and WAsP [7]. Basically, the aim of the model is to estimate the
wind speed at turbine’s hub height by using initial input data, more accurately.
Mainly, methodologies like Computational Fluid Dynamics (CFD) are used to
estimate local wind speed in turbine area. As final step, model output statistics
(MOS) methods are applied to local wind speed to reduce the error rate [6].

The statistical models mainly aim to construct a mathematical model us-
ing historical power generation and NWPs. Linear regression, artificial neural
networks (ANN), and support vector machines (SVM) are the three main meth-
ods in this category [8]. All of these methods have a training stage in order to
learn the relationship between NWPs and WPPs past power generation values.
[8,9]. These models update themselves dynamically with new incoming data. In
forecast systems, statistical methods are employed more frequently, but, hybrid
approaches are optimal since they also take local physical characteristics into
account.

In this paper, a new statistical method for wind power forecasting is presented,
which is based on data mining techniques. The proposed method is based on
clustering the NWPs and then applying linear regression to the resulting clusters
independently. It is being used on 14 WPPs that have been monitored within the
scope of the Wind Power Monitoring and Forecast Center (RİTM) project [2] of
Turkey and it is tested on 7 WPPs that are selected by the General Directorate
of Renewable Energy, being the client of the (RİTM) project. The accuracy of
the proposed method is compared to a well-known physical model and two other
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Fig. 1. The Overall Forecast Process

data mining techniques. The total installed capacities of these WPPs is 704.9
MW while the total installed capacity of all WPPs in operation in the country
is 2202.4 MW, hence these 14 WPPs correspond to about 32% of all WPPs in
the country in terms of installed capacity [12].

The rest of the paper is organized as follows: In Section 2, the details of the
proposed wind power forecasting model are provided, Section 3 presents the
evaluation and comparison results of the proposed model and finally Section 4
concludes the paper with further research directions.

2 The Proposed Wind Power Forecasting Model

The proposed method is based on combining dynamic clustering with linear re-
gression. As the first step, clustering is applied on NWPs in a dynamic way.
Within the scope of the RİTM project, NWPs are taken from three sources,
namely, the outputs of executing the Weather Research and Forecasting (WRF)
[13] meteorological model with two distinct input types: forecasts from Global
Forecast System (GFS) [14] and European Centre for Medium-Range Weather
Forecasts (ECMWF) [15], and the remaining NWP source is the output of the
ALADIN [16,17] meteorological model obtained from Turkish State Meteorolog-
ical Service . Dynamic clustering operation is applied to these sources [18,19].
In the next step, determined clusters are used in test phase in order to produce
short term forecasts of WPPs. This forecast process executed on each of the
aforementioned data sources is shown in Figure 1 where a final forecast for each
distinct data source is obtained. As the final step, these forecasts are combined
into a final forecast in combination phase. In the rest of this section, each of
these steps are explained in detail.

2.1 Training Phase

The main aim of the training phase is to determine clusters that will be used
during the testing phase. The inputs of the training phase are hourly historical
NWPs corresponding to the WPP, hourly historical power production data of the
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WPP, and the power curve of the WPP. The power curve of a WPP is a 360x251
matrix that associates wind direction and wind speed to an estimated wind
power. Within the scope of the (RİTM) project, these curves are constructed
using the physical modelling tools for each WPP. During the training phase,
firstly, the 10x10 grid area of eachWPP area is scanned where the WPP reference
coordinate constitutes the center of the area.

The NWPs provide u and v components of wind to wind speed (s) and wind
direction (d) according to Formula (1) and (2). For each WPP, for all of the
100 grid points considered, the best correlation coefficient for wind speed values
are determined. These coefficient values are obtained by using linear regression
method on the power estimations obtained by passing the wind speed and direc-
tion values through the power curve according to the average normalized mean
absolute error (NMAE) rates calculated according to the Formula (3). In this
formula, xi is the real power, yi is the estimation at ith hour, C is the installed
capacity of the WPP and N is the total number of hours processed in the train-
ing phase. Next, the grid point that has the minimum NMAE rate is determined
as the best grid point among these 100 grid points.

s =
√
u2 + v2 (1)

d = (arctan(u/v)× 180)/Π + 180 (2)

NMAE =

∑N
i=1

|xi−yi|
C × 100

N
(3)

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

u1 v1 p1
u2 v2 p2
u3 v3 p3
. . .
. . .

uN vN pN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)

C = M ×M� (5)

X = M × E (6)

After determining the best grid point, an Nx3 matrix is constructed including the
u, v components of the wind and pressure (p) parameter available in the NWPs
corresponding to this grid point. The structure of this matrix, M, is given in
Formula (4), where N is the total number of hours processed in the training
phase as specified before and u, vand p values are standardized and normalized
versions of the corresponding values in the NWPs. Next, a covariance matrix,
C, is calculated from M using Formula (5) and the most significant eigenvector
of this matrix is extracted to calculate another Nx1 dimensional matrix, X,
is calculated through Formula (6) where E is the most significant eigenvector
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matrix with a dimension of 3x1. Hence, at the end of this process, the effects of
the principal components u, v and p for each hour are obtained independently.

K-means clustering algorithm is applied on the X matrix to determine the
clusters [11]. While deciding the number of the clusters, we consider the validity
ratio described in [11].Firstly, for a determined historical test data, NMAE rates
of the interim forecast for each cluster number between 2 to 15 were calculated
separately for each WPP. In this test data, for each NWP source, the NMAE
rates were observed to close to each other on average for the cluster numbers 3
to 7 and these error rates were lower in comparison to other number of clusters.
However, average NMAE rates were too high when the number of clusters was
2 or when it is above 7 in the same test period. Then, for every training day, for
each number of clusters from 3 to 7, their validity ratios 1 described in [11] are
calculated and among all that has the highest validity ratio is selected as the
number of clusters that the data will be partitioned in the test period. Therefore,
the number of clusters for each WPP is dynamically determined with the con-
straint of being between 3 and 7, and their centroids are saved. After determining
the clusters, each value in the X matrix is associated with a cluster according to
the proximity of the values in the matrix to the clusters centroid points in terms
of Euclidean distance. Next, for each cluster, the best representative grid point
among the initial 100 grid points together with their correlation coefficients are
determined using linear regression and considering only the hours correspond-
ing to each cluster. The coordinates and coefficients of these representative grid
points for each cluster are saved for later use during the test phase.

2.2 Test Phase

During the test phase, the upcoming 48-hour NWP data corresponding to the
best grid point determined in the training phase are used to form an 48x3 M
matrix. The same procedures utilized during the training phase are applied (with
the previously calculated eigenvector) on this matrix to construct an X matrix
with dimension 48x1. Using the previously saved centroids of the clusters, each
hour in this matrix is assigned to an appropriate cluster label using the Eu-
clidean distance. As the final stage of this phase, upcoming 48-hour NWPs for
the representative grid points of each cluster are retrieved and the wind speed
and direction estimates for each hour are obtained by using these NWPs and
correlation coefficients of the corresponding cluster’s representative grid points.
Finally, these values are passed through WPP power curve and estimated power
values for 48 hours are obtained.

2.3 Combination Phase

The process described in Figure 1 is conducted for each of NWP sources (WRF
execution outputs on GFS and ECMWF global predictions and ALADIN out-
puts as obtained from Turkish State Meteorological Service) and in the end,

1 validity=intra/inter where intra is the total distances of the each point to its cluster
centroid point and inter is the minimum distance between cluster centers
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Fig. 2. Forecast Combination Process

three 48-hour forecast sets are obtained. These forecasts are combined into one
ultimate forecast with a combination process as described in Figure 2. Corre-
sponding hourly forecasts are combined by assigning different weights on the
basis of NMAE rates. Using these recent error rates, for each hour, the best
performing forecast is multiplied with the error rate of the worst forecast, the
worst performing one is multiplied with the error rate of the best performing
forecast, and the remaining forecast is multiplied by its own error rate. Hence,
the individual forecasts are scaled according to their accuracies and the ultimate
combined forecast is obtained as the weighted average of individual forecasts.
This combination approach reduces the overall error rate of the WPPs in final
prediction. For example, assume that for a WPP, each NWP’s interim forecast
NMAE error rates are 13.2 %, 12.8 % and 11.4 %, respectively on the average
of six months test period. However, the NMAE rate of the combined forecast is
9.14 % for the same WPP in the same test period and the most of the improve-
ments on the model come from this stage. Although, combining the forecasts
with these determined weight reduces the error rate on the overall of this test
period, it forms a more smoothed graphics if the interim forecasts are too dif-
ferent from each other and this situation causes to fail in determination of the
sudden ups and downs in the power forecast.
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Table 1. Evaluation Results (In terms of NMAE %)

WPP ANN SVM Physical Model New Model

WPP A 12.63 % 12.85 % 13.80 % 11.18 %

WPP B 11.13 % 11.71 % 12.37 % 9.14 %

WPP C 13.10 % 13.29 % 15.30 % 11.75 %

WPP D 13.78 % 14.83 % 16.15 % 12.81 %

WPP E 10.59 % 11.24 % 14.49 % 8.9 %

WPP F 18.53 % 20.23 % 14.26 % 12.04 %

WPP G 10.25 % 10.44 % 13.65 % 8.73 %

3 Experimental Results

This section presents the performance comparison between well-known statisti-
cal methods (ANN and SVM), a physical model [3], and the proposed statistical
model. The ANN model is used as regression type model for power generation
prediction of each WPP. The past wind speed and wind direction data of NWPs
are used as inputs to train the network while the past wind power generation
data is used as output of the ANN model. Then this trained model is used for
online wind power generation forecasts by using NWP wind speed and wind
direction values in the test data. A well known and fast library for ANN, which
is Fast Artificial Neural Network Library (FANN), is used for this part of fore-
casts [20]. Similarly, the second statistical model SVM is used as regression type
model which can be called Support Vector Regression (SVR) for power genera-
tion forecasts. As in ANN, SVM model uses past wind speed and wind direction
data of NWPs as inputs and generates past wind power model for the training
part. Next, trained SVM model produces the wind power forecast of the WPP
by using the wind speed and wind direction test data. In order to implement
the SVM model, Library for Support Vector Machines (LIBSVM) is used [21].
Each model has different characteristics, therefore, in some of the WPPs, the
differences between the error rates increase due to WPPs physical characteris-
tics. Evaluation results are calculated in terms of NMAE rates for seven WPPs.
The average NMAE rates are calculated for a six month period for each model
independently.

The evaluation results presented in Table 1 demonstrate that the proposed
model achieves the best performance rates in all of the seven WPPs during this
six month test period. The physical model has the poorest performance in all of
the WPPs except WPP F. In this WPP, ANN and SVM achieve considerably
lower performance rates in comparison to other WPPs. This WPP has a different
production characteristic than the other WPPs, which leads to the poor perfor-
mance of learning for ANN and SVM during this period. However, clustering
the NWPs seems to alleviate this problem and hence the proposed model dra-
matically improves the estimations for this WPP. The proposed model has the
lowest error rates for WPP E and WPP G and these WPPs are the two largest
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WPPs among all 14 WPPs in terms of their installed capacities. The proposed
model results in its highest error rate for WPP D, which has the lowest installed
capacity among all other WPPs.

The total NMAE of the proposed model for all 14 WPPs monitored (with a
total installed capacity of 704.9 MW) is %5.09. The actual production-estimation
values for Turkey are publicly available at RİTM project Web site in a time-series
graphic format (http://www.ritm.gov.tr/) .

The evaluation results demonstrate that the performance of the proposed hy-
brid statistical model is promising and performs better than the other approaches
used for comparison. The results also show that in the other models, there are
serious differences between error rates of the WPPs due to local weather char-
acteristics while the performance rates of the proposed model are consistent for
all WPPs and hence there is strong evidence that the model is applicable to all
WPPs in different regions of Turkey.

4 Conclusion

Wind energy is an important type of renewable energy and producing accurate
forecasts for WPPs is crucial to several involved parties including TSOs and
WPP owners. In this paper, a new data-mining based statistical wind power
forecast model is proposed and its evaluation results against other well-known
models are presented. The proposed model has been applied on 14 WPPs moni-
tored within the scope of RİTM project for six months. The performance results
obtained from the proposed model and the other forecasting models on seven
WPPs validate that it has several advantages over the other models for WPPs
in Turkey in terms of accuracy and consistency.

For the future work, the effects of other clustering methodologies other than
k-means may be investigated. Although at the end of six months, the proposed
model produces lower error rates on average, in some days of the test period,
the other models achieve better performance rates compared to new model.
Therefore, a good combination process for all physical, ANN, SVM and the
proposed statistical forecast model may also improve the overall performance
of the forecasts for WPPs in Turkey. In addition, if the three interim forecasts
are too different from each other for a specific day, then the combined forecast
become a more smoothed series and it does not determine the ramps in the
forecast properly. Therfore, in order to specify the ramps in the WPP another
approach also must be included to current combination algorithm.
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Abstract. Many statistical modeling and simulation-based methods have been 
proposed to detect, simulate and predict disease in space and time. However, 
these models either make use of unprecedented amount of domain-related pa-
rameters, or suffer from issues of global-generality and local over fitting. In this 
work, a methodology is proposed for detection, simulation and prediction of 
disease in a region based on an aggregated idea of spatio-temporal zoning. Spe-
cifically, a novel method is developed to model meso-scale processes by captur-
ing spatio-temporal correlation leveraging both potential dependencies among 
local coefficients, and the potential incongruities within global models for pre-
diction of trends in the context of disease management. The method is able to 
infer causality, and simulate the spread given the initial sources derived pri-
marily from the spatio-temporal history of the disease. Illustrative case study of 
Salmonellosis disease in USA is presented to demonstrate utility of the method. 
The prediction trends mimic the observed event data better than the standard 
methodology even though magnitudinal predictions need to be improved. It is 
evident that such a methodology will help prioritize decision-making process 
for better risk assessment and management including disease outbreak.  

Keywords: Spatio-Temporal Prediction, Spatio-Temporal Characteristics,  
Zonal Aggregation, Disease Occurrence, Decision Support. 

1 Introduction 

Advancements in modern data acquisition techniques have facilitated the collection of 
large datasets of geo-tagged information. Therefore, the need for effective and effi-
cient methods focusing on the development of theory, methodology, and practice to 
extract interesting and previously unknown, but potentially useful patterns from spa-
tial and temporal data sets has recently emerged as a research priority [1].  

A primary inferential objective in the analysis of disease incidence data is summa-
rization and explanation of spatial and spatio-temporal patterns of disease (disease 
mapping); and also spatial smoothing and temporal prediction (forecasting) of disease 
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risk. The field of spatial epidemiology has grown rapidly in the past two decades with 
the introduction of spatial and spatio-temporal hierarchical models [2]. Various statis-
tical techniques for disease risk mapping [3] have become very popular in public 
health analysis. As discussed in [4], these methods enable the smoothing of ecological 
health indicators accounting for the geographical structure of the units under study. 
However, the implementation of these methods is not always easy or adequate for a 
quick response and in many instances need to adapted suitably to the problem at hand. 
This is due to both the subjective nature of the model/method choice as well as the 
parametric values which lead to locally fine-tuned models, limiting the widespread 
adoption of these techniques. Health experts are interested in understanding the con-
sequent risks and build forecast models, either in the short or midterm as part of the 
disease management strategies. Currently, the latter are based on spatial, temporal and 
spatio-temporal co-occurrence of disease incidences, but in most of these cases the 
approaches consist of either a characteristic decoupling of spatial and temporal inter-
dependencies [5,6], or an inherent dependency on various etiological and geographi-
cal factors.  

Spatial autocorrelation statistics (Moran's I, Geary's C etc.) are global in the sense 
that they estimate the overall degree of spatial autocorrelation for a dataset, while 
ignoring spatial heterogeneity exhibited across geographic space including occurrence 
of natural break lines within these regions. On the other hand, Local spatial autocorre-
lation statistics provide estimates disaggregated to the level of the spatial analysis 
units, allowing assessment of the dependency relationships across space like Getis’s 
G statistics, and localized versions of Moran’s I and Geary’s C statistics. Geographic 
analyses of natural phenomena may be separated into those that attempt generaliza-
tions to achieve ‘global’ insights, and those that attempt to explore and document 
local variations. In addition, the appropriateness of the scale of analysis [7,8] can 
further limit the understanding of the phenomena and limit the model design and ap-
plicability. Hence, in order to overcome the inherent assumptions of uniformity and to 
discern the intrinsic diversity in patterns, regional or meso-scale boundaries need to 
be identified in phenomena, which are not bounded by local restrictions like topogra-
phy, but such natural breaks in their areas of prevalence are evident from the data 
itself.  Attention in this paper is drawn towards capturing spatio-temporal correlation 
centered on the potential dependencies among the local coefficients and the potential 
incongruities within the global models. Hence, a new approach of meso-scale correla-
tion analysis is proposed which leverages on natural artifacts which validate meaning-
ful interpretation and search for spatial heterogeneities. 

Recently, geographical, hydrological and climatic barriers have been recognized as 
being just as effective in delineating and controlling the spread of disease from an 
affected area - effectively isolating it within a zone within a given country [9]. More-
over, detection of the originating areas for variations in disease occurrence is a first 
step in the concept of zoning for health management. An approach that can tessellate 
the space and provide for a way to handle its temporal variations is needed, which the 
concept of ‘zone’ yields to. 
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1.1 Disease Prediction  

Health experts are interested in early identification of an outbreak, understanding the 
risks and build forecast models, either in the short or mid-term as part of the disease 
management strategies. However, outbreaks are often well under way before public 
health authorities become aware of them, which is why spatio-temporal prediction 
becomes an essential application in health management. Numerous approaches to 
predict diseases in space and time have been proposed in literature. While temporal 
algorithms range from Scan Statistics [10,11], Regression, Generalized Linear Mix-
ture Models, ARMA, Change detection and Wavelet based methods; spatial algo-
rithms focus on Spatial Clustering, Geographic Analysis Machine and Spatial Scan 
Statistics [12] based methods. Many methods incorporating Spatio-Temporal interde-
pendencies have also been developed focused on cluster and event detection in multi-
variate health data [13-16]. These have used the spatio-temporal characteristics of the 
data either singularly or combined with the prior domain knowledge to discover the 
underlying disease prevalence process to varying degrees. 

2 Objectives 

As part of this work, the spatio-temporal goals in disease analysis, prediction and 
management that will be addressed are – (i) Given spatially-explicit historical (time-
series) data, can unique patterns representative of the underlying phenomena be ex-
tracted? (ii) Given that a disease has a reoccurrence or relapse at the same location, as 
a health emergency problem can one find the pattern of projected outcomes given the 
disease’s early stage onset? 

3 Methodology 

The first part of the method utilizes the MiSTIC algorithm [17] to capture the inherent 
spatio-temporal interdependencies in the data and delineates the complete region into 
zones based on the temporal prevalence of observed values in their respective spatial 
locations; in its neighborhood; and spatial interactions.  These derived zones are sub-
regions of the study area, and are significant as they represent homogeneous entity in 
a collectively aggregated form, and also are representative of inherent correlations at a 
local scale. In this work, disease modeling and prediction has been explored for com-
municable (infectious) diseases from a broad perspective - due to external exposure, 
quantified by spatial proximity; or due to the inherent risk at a location, quantified by 
susceptibility. Non-communicable diseases – occupational or lifestyle diseases are not 
of interest for the proposed model. 

3.1 MiSTIC: Focal Area Detection and Zone Delineation 

Detection of Focal Areas. Focal Areas (polygons) are detected based on [17], for 
every time step over the entire region for the complete time period of study. 
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Spatio-temporal Analysis of Focal-Polygons and Respective Cores. A Core location 
(or Core) is defined as a set of areal units (polygons) which occur frequently (> mini-
mum support) as the foci of a defined region [17]. This aggregation repeated over the 
entire study time period gives the final Cores. Raheja and Rajan [18] demonstrated that 
in case of disease spread, Cores in Contiguous Neighborhood (CC) behave better than 
Core locations in a defined Radius (CR) due to the localized nature of disease. 

Delineation of Zones. In this step, the entire region is delineated into different zones 
corresponding to its unique representative focal areas. Zones with no areal units other 
than focal area itself are marked as outliers and not considered for analysis. 

Data Post-processing – Spatio-Temporal Characterized Zone Delineation. Post-
processing is done on the detected core locations for better understanding about the 
spatial distribution obtained. This largely depends upon the phenomenon being ana-
lyzed for the study – Physical or Non-Physical. The areas constituting a zone show a 
high degree of cohesion as compared to the inter-zone counterparts. On the other 
hand, the boundaries between zones are the visible representatives of natural break 
lines, derived from the data itself.  

3.2 Spatio-temporal Prediction at Zonal Aggregation 

From an epidemiological point of view, in order to quantify the spread and model the 
same for predictions, we classify the different risk factors involved in the spread of an 
epidemic into two broad types – (i) Factors dealing with local transmission within the 
zone largely characterized by its variability within the zone – physical and non-
physical contact; (ii) Factors dealing with long-distance transmission within the zone 
–decay factor. These are reasonable assumptions because during a disease outbreak 
the real sources of infection are rarely identified when investigating them [13].  

Time is introduced in the algorithm for two reasons – one, every areal unit is  
affected by the disease in different magnitudes at different time samples; and two, 
spatial spread of every outbreak is different at different points in time. Hence the pa-
rameters have to be time-dependent in order for the system to learn from the past 
patterns to mimic the evolution of spread and also to predict the future patterns based 
on local as well as aggregated patterns of disease rates.  

(A)  Spatial Influences on Disease Spread.  
(a) Contact Factors.  

(i) Common Boundary Shared (Physical contact).  
This transmission factor  provides for vector movements between neigh-
boring areal units i and j, both of which lie within the same zone. It is depen-
dent on the spatial proximity between the two areal units in question,  

 

Here, unit i is source of simulated outbreak,  is its perimeter, and  is the 
shared boundary between itself and neighboring unit j.  



 Disease Occurrence Prediction Based on Spatio-temporal Characterization 281 

 

(ii) Connectivity (Non-Physical contact).  
The connectivity factor  accounts for mobility flows that couple different 
subpopulations as a network of connections. 

 

Here,  represents the road network connections, and R represents total 
road network connections within the zone in consideration. 

(b) Decay Factor.  
The distance decay  has been formulated to weigh the strength of correla-
tion based on geographical proximity. 

1  

Here,  is the projected magnitude of disease rate in an area i (source areal 
unit/polygon or county), calculated using the ARIMA Model based on the tem-
poral history of the county. Whereas   is the Euclidean distance between the 
source and target areas i and j. The inverse squared relation 1  
represents the spatial decay of disease effect from one county to another and is 
dependent on the distance between the two areal units.  

 
(B)  Disease Reoccurrence Patterns – Temporal Factors.  

High disease occurrence implies that the areal unit in consideration is a disease focal 
area and has been quantified by its frequency at a particular location. 

 

Here,  is the number of years when the county i is a disease foci and N is the total 
number of years of study.  

(C)  Spatio-temporal Prediction of Disease Occurrence  

Once the disease is made to spread from seed locations into the neighborhood, it is 
propagated further into the zone based on the spatio-temporal parameters in its new 
local environment. This propagation keeps occurring till any significant change ceases 
to occur within the zone. The resulting magnitudes are the predicted outcomes. 

4 Case Study: Salmonellosis in USA 

4.1 Data Used 

The Salmonellosis disease surveillance data with number of cases and rates per 
100,000 of population, reported annually at county level is used in this study. The 
data exhibits heterogeneity in terms of economic, social and demographic settings. 
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The data for Florida State in USA was collected from FloridaCHARTS.com (Florida 
Department of Health) spanning 50 years (1961-2010). 

4.2 Zoning: Boundaries Leading to Disease Area Delineation 

The data was separated into training set and testing set, as stated in Figs 2 & 3. The 
set of valid focal areal units (polygons) were detected and corresponding zones were 
created and delineated for the training set. Fig. 1 depicts the corresponding zones, 
colored uniquely, mapped for Salmonellosis in Florida. 

The inter-zone heterogeneities are confirmed by the presence of rivers along zonal 
boundaries, acting as natural barriers (Fig.1). Also, as can be seen from the figure, at 
inter-zone level, both road connectivity and road density is observed to be significant-
ly less than the intra-zone counterparts. These observations reinforce the expectancy 
stated earlier in Section 3.1 about the intra-zone cohesion and inter-zone incongru-
ence due to heterogeneous global variations and homogeneous local consistency in 
the underlying spatio-temporal process, expressed from the data itself, and further 
verified by domain-related input.  

 

Fig. 1. Map showing [L-R] overlay of delineated Disease Zones in Florida, with Road Net-
work; Major Inland Waterways; and Combined Overlays. Variations are highlighted by boxes. 

4.3 Prediction 

The proposed method aims to predict the locations most likely to trigger off an out-
break, as well as the consequences of that potential outbreak on rest of the areal units 
within the neighborhood zone. Disease spread in each county in the desired zone to be 
modeled was forecasted by first finding the best combination of outbreak sources, and 
then using them as seed points, simulating the transfer over space and time in the 
zone. The initial seed value based on ARIMA Time Series model was assigned to the 
source areas. This was done in multiple steps involving stationary characteristic 
checking, differentiation and correlogram/partial correlogram analysis. Most time 
series were modeled by the ARIMA (0,1,1) model, which represents the MA (Moving 
Average) version of the model.  Once the best combination of source locations was 
found, disease was made to spread into its neighborhood based on its local spatio-
temporal parameters as detailed in Section 3.2 until any significant change ceased to 
occur in the zone.  
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Fig. 2. Change in Disease Rates in Bay County Zone, FL: Observed, Predicted and ARIMA 
Trends 45/5 years Training/Testing and (b) 40/10 years Training/Testing 

 

Fig. 3. Prediction Error comparison between ARIMA and Proposed Method, computed for Bay 
County Zone, FL  (a) 45/5 years Training/Testing and (b) 40/10 years Training/Testing 

5 Discussions and Conclusions 

In this paper, we present a method that extracts the spatio-temporal characteristics 
intrinsically present in the data to describe a spatio-temporal dynamic process, in 
order to quantify and capture the otherwise indiscernible patterns in it. This allows for 
discovery of spatio-temporal process underlying such huge amounts of data. The me-
so-scale approach of using the zone has been demonstrated through the domain-
related observations, which reinforces the understanding of this essential division. In 
this way, local correlations and global heterogeneities are both taken care of in  
an efficient manner. The trends predicted by the model, though Fig. 2 shows only one 
representative county, for all counties in Florida State are in concurrence with the 
observed event data in comparison to ARIMA’s results. Though the magnitudinal 
errors (Fig. 3) are highly coupled to the duration of training and testing period, the 
proposed method results in better predictions than ARIMA when the testing period is 
short, implying that the seed values can bias the output due to a bias towards variabili-
ty smoothening. Though the quality of the seed is an issue, overall the approach de-
monstrates that the method is not dependent on the data, and is robust in nature. It is 
independent and not reliant on domain related or process-related parameters in order 
to illustrate disease patterns in space and time. While, predicting highly accurate dis-
ease spread, especially magnitudes, still remains largely a complex problem in the 
public health research, integration of trend prediction into routine monitoring of 
health events can clearly emerge as an effective public health decision making tool, 
and the spatial heterogeneity captured here helps prioritize the response in case of 
outbreak situations. 

Future work can range from improving prediction magnitudes to better choice of 
seeds by adopting other spatially, temporally or spatio-temporally elaborate methods. 
Also, by considering additional factors of disease spread dynamics, typically obtained 
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from physical, environmental forces and social networks etc., the modeling of popula-
tion dynamics would be challenging in the spatially more finely-scaled settings and 
the emphasis on risk analysis alone would be less significant.  
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Abstract. Many countries around the world regularly collect census data. This
census data provides statistical information regarding populations to in turn sup-
port decision making processes. However, traditional approaches to the collation
of censes data are both expensive and time consuming. The analysis of high res-
olution satellite imagery provides a useful alternative to collecting census data
which is significantly cheaper than traditional methods, although less accurate.
This paper describes a technique for mining satellite imagery, to extract census
information, founded on the use of classification techniques coupled with a graph
based representation of the relevant imagery. The fundamental idea is to build a
classifier that can label households according to “family size” which can then be
used to collect census data. To act as a focus for the work training data obtained
from villages lying some 300km to the northwest of Addis Ababa in Ethiopia
was used. The nature of each household in the segmented training data was cap-
tured using a tree-based representation. Each tree represented household had a
“family size” class label associated with it. This data was then used to build a
classifier that can be used to predict household sizes according to the nature of
the tree-based structure.

Keywords: Satellite Image Analysis and Mining, Data Mining Applications,
Population Estimation Mining.

1 Introduction

The work described in this paper is directed at the automated estimation of census in-
formation using data mining techniques applied to satellite imagery. The motivation
for the work is that the collection of census data, when conducted in the traditional
manner (using postal, email or interview approaches) is very resource intensive. This
is especially the case in rural areas that lack sophisticated communication and trans-
port infrastructure. The solution proposed in this paper is founded on the concept of
using satellite imagery for population estimation. The idea is to use a small sample of
satellite images of households, where the “family size” is known, to build a classifier
that can then be used to predict household family sizes over a much wider area. The
main issue to be addressed is how best to represent the household image data so that
classification techniques can be applied. The solution presented in this paper is to first
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segment relevant satellite imagery so as to isolate individual households and represent
individual household data using a quadtree based technique. The advantages offered by
the proposed approach, in the context of census collection, are: (i) low cost, (ii) speed
of collection and (iii) automated processing. The disadvantage is that it will not be as
accurate as more traditional “on ground” census collection, however it is suggested that
the advantages outweigh the disadvantages.

The proposed approach is more applicable with respect to rural areas than suburban
and inner city areas. In this paper, the study area used as an exemplar application area
is in the Ethiopia hinterland. More specifically training data obtained from two villages
lying some 300 km to the northwest of Addis Ababa in Ethiopia was used, as shown in
Figure 1 (the letters ‘A’ and ‘B’ indicate the village locations)1.

The rest of this paper is organised as follows. In Section 2 some related work is
briefly presented. Section 3 then provides a description of the proposed census mining
framework. A brief overview of the proposed image segmentation process is presented
in Section 4. In Section 5 details of the graph-based representation are presented, includ-
ing a review of the proposed: quadtree decomposition, frequent subgraph mining and
feature vector representation. The performance of the proposed census mining frame-
work, using the Ethiopian test data, is then considered in Section 6. Finally, Section 7
provides a summary and some conclusions.

Fig. 1. Test site location

2 Previous Work

From the literature there have been a number of reports concerning automatic census
collection founded on a variety of technologies. For example, in [3] voice recognition
was used to automatically collect census data using telephone links. Another example
can be found in [10] where census data was automatically recorded using PDAs. These
two reported methods both demonstrated that time savings can be gained by at least
partially automating the census gathering process.

1 http://maps.google.com
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Many methods for population estimation have been reported in the literature. These
can be categorised as being founded on either: (i) areal interpolation or (ii) statisti-
cal modelling. The areal interpolation approach is typically used to identify areas of
differing population densities, in other words to produce corse population density stud-
ies. The statistical modelling approach is typically used for identifying relationships
between populations and other information sources such as Geographic Information
System sources [12].

The approach advocated in this paper is founded on the use of satellite imagery.
Satellite imagery has been used with respect to population estimation. For example,
Google Earth satellite images have been used to estimate corse population densities
at the city and village levels [7]. By identifying features such as dwelling units and
residential areas satellite images have also been applied for the purpose of population
estimation [1]. Further examples can be found in [2,8], where “night satellite” imagery
was used to estimate population sizes according to the local densities of light sources.

In the context of the proposed population estimation mining the mechanism whereby
satellite images are represented is important. There are many representation techniques
available founded on image features such as: (i) colour, (ii) texture and (iii) structure.
Colour histograms are wildly used to represent image content in terms of colour distri-
bution. There are two major methods for histogram generation: the “binning” histogram
and the clustering methods. The binning histogram method is used to generate a his-
togram by dividing the entire colour space into a number of bins and then, for each bin,
recording the number of pixels that “fall into” that bin. Using the clustering method the
colour space is first divided into a large number of bins and then a clustering algorithm
is used to group them together [11]. The colour histogram representation has the advan-
tages that it is easy to process and is invariant to translation and rotation of the image
content [6].

Texture features can be used to describe a variety of surface characteristics of images
[14]. There are three principle mechanisms that may be adopted to describe texture: sta-
tistical, structural and spectral. Statistical methods are related to the capture of image
texture content using quantitative measures such as “smooth”, “coarse” and “grainy”.
Structural methods are concerned with image texture, in terms of a set of structural
primitives or elements (texels) and layout, that occur as repeating patterns. Finally spec-
tral methods involved use the Fourier spectrum domain so that “high-energy narrow
peaks” in the spectrum can be identified [5].

Structure features are used to describe the “geometry” of an image according to the
relative position of elements that may be contained in an image, for example morpho-
logical and graph techniques. A well know structural image feature representation is the
quadtree representation. This is then the fundamental representation used with respect
to the work described in this paper.

3 Census Mining Framework

An overview of the proposed process for census mining is presented in this section. A
schematic of the framework is shown in Figure 2. The framework comprised two phases
(as represented by the rectangular boxes): (i) Preprocessing and (ii) Classification.
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Fig. 2. Proposed census mining from satellite imagery framework

The first phase of the census mining framework is the preprocessing phase (the left
rectangle in Figure 2) where the input data is prepared. The required preprocessing
consists of two steps: image segmentation and image representation. The input is a
satellite image of a given area covering (say) a number of villages. This image is then
segmented in order to identify a set of individual households. This segmentation process
was described in detail in [4]; however, for completeness, a brief overview of the process
is presented in Section 4. Next the identified household pixel data is translated into a
representation that allows for the application of a classifier. In this paper a novel graph-
based representation technique is proposed, detail of which is presented in Section 5.

After the households have been segmented and appropriately represented the classifi-
cation phase may be commenced. This is relatively straight forward once an appropriate
classifier has been generated. There are many classifier generation techniques that may
be adopted and some of these are considered with respect to the evaluation presented in
Section 6.

4 Segmentation

This section presents a brief overview of the image segmentation process as applied
to the input data. The image segmentation comprises three individual stages: (i) coarse
segmentation, (ii) image enhancement and (iii) fine segmentation. The first stage is thus
coarse segmentation whereby the input satellite imagery is roughly separated into a
set of sub-images covering (typically) between one and four households each. Once
the coarse segmentation process is completed, the next stage is image enhancement
where a range of image enhancement processes are applied to the coarse segmented
sub-images so as to facilitate the following fine segmentation of individual households.
During the fine segmentation stage, the enhanced coarse segmented sub-images are seg-
ment further so as to isolate individual households so that we end up with one image per
household. The image segmentation process was implement using the MATLAB (ma-
trix laboratory) workbench.2 Figure 3(a) and (b) show two fine segmented household
images taken from test Site A and B respectively (see Figure 1).

The segmentation process is completed by translating the resulting RGB image data
into a grayscale format ready for further processing followed by the application of a
histogram equalisation process. Histogram equalisation is concerned with contrast ad-
justment using image histograms. Figure 4(a) shows the result when histogram equal-
isation is applied to the household image presented in Figure 3(a). For the purpose of

2 http://www.mathworks.com
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Fig. 3. Example of segmented household from Site A and Site B

Fig. 4. Histogram equalisation and binary image transformation

the hierarchical quadtree decomposition (see below) a binary image transformation is
then applied as shown in Figure 4(b).

5 Graph-Based Representation

Once a set of households has been fine segmented the next stage of the data preparation
phase is to translate the segmented pixel data into a form suitable for the application
of a classifier. The translation needs to be conducted in such a way that all salient
information is retained while at the same time ensuring that the representation is concise
enough to allow for effective further processing. The fundamental idea here is to adopt
a graph based representation, more specifically a quadtree based representation (one per
household). Quadtrees have been used extensively in the context of image processing
(see for example [9]). However, the quadtree representation does not lend itself to ready
incorporation with respect to classification algorithms. To do this we propose applying
sub-graph mining to the quadtree data to identify frequently occurring patterns across
the data that can be used as features in the context of a feature vector representation.
The patterns of interest are thus frequently occurring sub graphs. An overview of the
process is presented in Figure 5. The graph-based representation consists of four steps:
(i) quadtree decomposition, (ii) tree construction, (iii) frequent subgraph mining and
(iv) feature vector transformation.

The first step, the quadtree decomposition, commences by “cropping” each house-
hold image so that it is turned into a 128× 128 pixel square image surrounding the
main building comprising the household (this is automatically identifiable because it is
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Fig. 5. Schematic illustration of the graph-based image representation processes

Fig. 6. The example of quadtree decomposition

the largest contiguous “white” region). The image was then recursively quartered into
“tiles”, as shown in Figure 6, until either: (i) uniform tiles (quadrants) were arrived at
or (ii) a maximum level of decomposition was reached. Figure 6(a) shows an exam-
ple preprocessed household image and the associated quadtree decomposition in Figure
6(b). The generated decomposition was then stored in a quadtree format. The nodes
in this tree were labelled with a grayscale encoding generated using a mean histogram
of grayscale colours for each block, in this manner eight labels were derived, each de-
scribing a range of 32 consecutive intensity values. Figure 7 presents an example of a
quadtree where the top level node (the root) represents the entire (cropped) image, the
next level (Level 1) its immediate child nodes, and so on. In the figure the nodes are
labelled numerically from 1 to 8 to indicate the grayscale ranges.The edges are labelled
using a set of identifiers {1,2,3,4} representing the NW, NE, SW and SE child tiles
associated with the decomposition of a particular parent tile. In Figure 7 the number in
square brackets alongside each node is a unique node identifier derived according to the
decomposition.

The quadtree (graph) based representation served to capture the content of individual
fine segmented household images, although a disadvantage of the representation is the
“boundary problem” where objects of interested may be located at the intersection of
a decomposition. A second disadvantage is that the quadtree representation is not well
suited to the purpose of classifier generation and subsequent usage of the generated
classifier. The idea was therefore to identify frequently occurring patterns (subgraphs
or subtrees) and treat these patterns as features within a feature vector representation.
The motivation was the conjecture that such patterns would be indicative of commonly
occurring features that might exist across the image set which in turn might be indicative



Population Estimation Mining Using Satellite Imagery 291

Fig. 7. The example of tree construction

of individual class labels. A number of different frequent subgraph miners could have
been used; however, for the experiments described later in this paper, the well known
gSpan frequent subgraph mining algorithm [13] was adopted. This uses the idea of a
support threshold σ to define the concept of a frequent subgraph, the lower the value
of σ the greater the number of frequent subgraphs that will be discovered. The selected
value for σ will therefore influence the effectiveness of the final classifier.

Once a set of frequently occurring subgraphs has been identified these can be ar-
ranged into a feature vector representation such that each vector element indicates the
presence or absence of a particular subgraph with respect to each household (record).
Table 1 shows the format of the result. The rows in the table represent individual house-
hold (records) numbered from 1 to m, and the columns individual frequent subgraphs
represented by the set {S1,S2, . . . ,Sn}. The values 0 or 1 indicate the absence or pres-
ence of the associated subgraph for the record in that row. This feature vector represen-
tation is ideally suited to both the application of classifier generation algorithms and the
future usage of the generated classifiers.

Table 1. The example of Feature Vector

Vector S1 S2 S3 S4 S5 ... Sn

1 1 0 1 1 1 ... 1
2 1 1 0 1 1 ... 0
3 1 0 1 0 1 ... 1
... ... ... ... ... ... ... ...
m 0 1 1 0 1 ... 1

6 Evaluation

The evaluation of the proposed population estimation mining process is presented in
this section. Extensive evaluation has been conducted with respect to the proposed
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techniques. This section reports on only the most significant results obtained (there
is insufficient space to allow for the presentation of all the results obtained). The eval-
uation was conducted by considering a specific case study directed at a rural area of
Ethiopia. Sub-section 6.1 provides further detail of this study area. The overall aim of
the evaluation was to provide evidence that census data can be effectively collected us-
ing the proposed approach. To this end three sets of experiments were conducted as
follows:

1. A set of experiments to identify the most appropriate support threshold for use with
respect to the frequent subgraph mining (Sub-section 6.2).

2. A set of experiments to analyse the most appropriate number (k) of features to retain
during feature selection (Sub-section 6.3).

3. A set of experiments to determine the most appropriate classifier generation
paradigm. To this end a selection of different classifier generators, taken from the
Waikato Environment for Knowledge Analysis (WEKA) machine learning work-
bench3, were considered (Sub-section 6.4).

Each is discussed in further detail in Sub-sections 6.2 to 6.4 below. Ten fold Cross-
Validation (TCV) was applied throughout and performance recorded in terms of: (i)
accuracy (AC), (ii) area under the ROC curve (AUC), (iii) sensitivity (SN), (iv) speci-
ficity (SP) and (v) precision (PR).

Fig. 8. Examples of satellite images from test Sites A and B

6.1 Data Set

For the evaluation reported in this section a training dataset comprising 120 records was
used: 70 records from Site A and 50 from Site B (see Figure 1). High resolution satellite
images were used, obtained from GeoEye at a 50cm ground resolution, made publicly
available by Google Earth4. The images for site A were dated 22 August 2009, while
those for Site B were dated 11 February 2012. The significance is that the Site A images
were captured during June to August which is the “rainy season” in Ethiopia, and thus

3 http://www.cs.waikato.ac.nz/ml/weka/
4 http://www.google.com/earth/index.html
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the households tend to have a green background; while the Site B images were captured
during September to February which is the “dry season”, hence the images tended to
have a light-brown background. The contrast with respect to images obtained during
the rainy season was much greater than those obtained during the dry season, hence it
was conjectured that the dry season images (Site B) would provide more of a challenge.

The corresponding ground household information, required for the training data, in-
cluded family size and household coordinates (latitude and longitude). This was col-
lected by University of Liverpool ground staff in May 2011 and July 2012. With respect
to all 120 records the following was noted with respect to family size: (i) the minimum
was 2, (ii) the maximum was 12, (iii) the average was 6.31, (iv) the medium was 6
and (v) the standard deviation was 2.56. Therefore, for evaluation proposes, the labeled
households were separated into three classes: (i) small f amily (less than 6 people), (ii)
medium f amily (between 6 and 8 people), and (iii) large f amily (more than 8 people).
Some statistics concerning the class distributions for the Sites A and B data sets are
presented in Table 2.

Table 2. Class label distribution for Site A and B data sets

Location Small family Medium family Large family Total
Site A 28 32 10 70
Site B 19 21 10 50
Total 47 53 20 120

Table 3. Number of identified features produced using a range of σ values with respect to the
Site A and B data

minSup Site A Site B
10 757 420
20 149 119
30 49 60
40 24 39
50 12 19

6.2 Subgraph Mining

In order to investigate the effect the value of the subgraph mining support threshold
σ had on classification performance a sequence of different σ values were considered
ranging from 10 to 50 incrementing in steps of 10. The number of features (subgraphs)
generated in each case are presented in Table 3. From the table it can be seen that, as
would be expected, the number of identified subgraphs decreases as the value for σ
increases (and vice-versa). Note that attempts to conduct the sub-graph mining using σ
values of less than 10 proved unsuccessful due to the computational resource required
(subgraph mining is computationally expensive).

To reduce the overall size of the feature space Information Gain feature selection was
applied to select the top k features (k = 25 was used because the experiments reported
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in Sub-section 6.3, had revealed that this was the most appropriate value for k). Naive
Bayes classification was applied with respect to each of the resulting datasets (because
the experiments reported in Sub-section 6.4 had indicated that this produced the best
overall result). The results are presented in Table 4 (best values are highlighted in bold).
From the table it can be observed that best results were obtained using σ = 10 for both
Site A (rainy season) and Site B (dry season); giving sensitivity values of 0.671 and
0.780, and AUC values of 0.769 and 0.829 respectively.

Table 4. Classification outcomes using a range of σ values with respect to Site A and B data
(k = 25)

minSup
Site A Site B

AC AUC PR SN SP AC AUC PR SN SP
10 0.671 0.769 0.686 0.671 0.765 0.780 0.829 757 0.780 0.813
20 0.571 0.660 0.582 0.571 0.741 0.580 0.771 0.579 0.580 0.768
30 0.443 0.565 0.459 0.443 0.670 0.540 0.698 0.544 0.540 0.749
40 0.343 0.389 0.340 0.343 0.555 0.440 0.615 0.440 0.440 0.688
50 0.357 0.426 0.320 0.357 0.538 0.340 0.459 0.385 0.340 0.615

6.3 Feature Selection

To identify the effect on classification performance of the value of k with respect to
the adopted Information Gain feature selection method, a sequence of experiments was
conducted using a range of values fore k from 10 to 35 incrementing in steps of 5 and
without feature selection. For the experiments σ = 10 was used because previous exper-
iments, reported in Sub-section 6.2, had indicated that a value of σ = 10 produced the
best performance. The Naive Bayes classifier was again adopted. The results produced
are presented in Table 5. From the table it can be seen that: (i) for Site A the best result
tended to be obtained using k = 25 (sensitivity = 0.671 and AUC = 0.769), and (ii) for
Site B the best result tended to be obtained using either k = 20 (sensitivity = 0.780 and
AUC = 0.838) or k = 25 (sensitivity = 0.780 and AUC= 0.829). Hence we conclude
k = 25 to be the most appropriate value for k (this is why k = 25 was used with respect
to the experiments reported in Sub-section 6.2).

6.4 Classification Learning Methods

To determine the most appropriate classification method eight different algorithms were
considered: (i) Decision Tree generators (C4.5), (ii) Naive Bayes, (iii) Averaged One
Dependence Estimators (AODE), (iv) Bayesian Network, (v) Radial Basis Function
Networks (RBF Networks), (vi) Sequential Minimal Optimisation (SMO), (vii) Logistic
Regression and (viii) Neural Networks. For the experiments σ = 10 was used because
this produced the best result with respect to the experiments reported in Sub-section
6.2, together with k = 25 for feature selection because this produced the best result
with respect to the experiments reported in Sub-section 6.3. The obtained results are
presented in Table 6. From the Table it can be observed that:
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Table 5. Comparison of different values of k with respect to Information Gain feature selection
in terms of classification performance

Number of k
Site A Site B

AC AUC PR SN SP AC AUC PR SN SP
10 0.557 0.710 0.559 0.557 0.708 0.760 0.821 0.775 0.760 0.850
15 0.571 0.753 0.576 0.710 0.740 0.740 0.838 0.751 0.740 0.837
20 0.657 0.769 0.678 0.657 0.743 0.780 0.838 0.786 0.780 0.859
25 0.671 0.769 0.686 0.671 0.765 0.780 0.829 0.805 0.780 0.852
30 0.629 0.761 0.631 0.629 0.746 0.720 0.836 0.757 0.720 0.813
35 0.614 0.759 0.615 0.614 0.746 0.720 0.843 0.764 0.720 0.815
- 0.257 0.452 0.318 0.286 0.596 0.300 0.451 0.317 0.300 0.631

– With respect to the Site A data, the best results (Sensitivity = 0.700 and AUC=
0.718) were obtained using the AODE classifier, and with respect to the Site B
data, the best results (Sensitivity = 0.780 and AUC= 0.829) were obtained using
the Naive Bayes classifier .

– The C4.5 and Logistic regression classifiers did not perform well for Site A.
– The Logistic Regression and Neural Network classifiers did not perform well with

respect to Site B.

Thus, in conclusion a number of different classifiers produced a good performance, but
overall the Naive Bayes classifier proved to be the most effective.

Table 6. Comparison of different classifier generators in terms of classification performance

Learning method
Site A Site B

AC AUC PR SN SP AC AUC PR SN SP
C4.5 0.529 0.620 0.526 0.529 0.691 0.600 0.711 0.605 0.600 0.769

Naive Bayes 0.671 0.769 0.686 0.671 0.765 0.780 0.829 0.805 0.780 0.852
AODE 0.700 0.809 0.713 0.700 0.779 0.740 0.820 0.738 0.740 0.842

Bayes Network 0.657 0.775 0.672 0.657 0.762 0.760 0.823 0.767 0.760 0.847
RBF Network 0.571 0.709 0.579 0.571 0.707 0.680 0.750 0.668 0.680 0.820

SMO 0.557 0.663 0.557 0.557 0.703 0.620 0.737 0.618 0.620 0.778
Logistic Regression 0.500 0.659 0.502 0.500 0.674 0.540 0.635 0.543 0.540 0.739

Neural Network 0.686 0.774 0.693 0.686 0.979 0.580 0.691 0.584 0.580 0.771

7 Conclusion

In this paper a framework for population estimation mining (census mining) was pro-
posed founded on the concept of applying classification techniques to satellite imagery.
Of particular note is the subgraph feature vector representation that was used to encode
household imagery. The proposed framework was evaluated using test data collected
from two villages in the Ethiopian hinterland. The conducted evaluation indicated that
when using a minimum support threshold of σ = 10 for the subgraph mining, a value
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of k = 25 for feature selection and a Naive Bayes, good results could be obtained. For
future work the research team intend to conduct a large scale census collection exercise
using the proposed framework.
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Abstract. Local community detection aims at finding a community
structure starting from a seed (i.e., a given vertex) in a network without
global information, such as online social networks that are too large and
dynamic to ever be known fully. Nonetheless, the existing approaches to
local community detection are usually sensitive to seeds, i.e., some seeds
may lead to missing of some true communities. In this paper, we present
a seed-insensitive method called GMAC for local community detection.
It estimates the similarity between vertices via the investigation on ver-
tices’ neighborhoods, and reveals a local community by maximizing its
internal similarity and minimizing its external similarity simultaneously.
Extensive experimental results on both synthetic and real-world data
sets verify the effectiveness of our GMAC algorithm.

Keywords: Local community detection, similarity, seed-insensitive.

1 Introduction

Community detection in networks has received considerable attention in the
fields of data mining and knowledge discovery. The majority of community de-
tection algorithms assume that the global structure of a given network is known
before the detection process [8]. Nevertheless, in reality, it is more often that
the global structure is unavailable. For example, WWW and the online social
networks such as Facebook and Twitter are always too large and dynamic to
ever be known fully. Therefore, there are some other methods proposed to find
local communities in a network without global information but starting from
several specified vertices known as the seeds [5,12,14,16]. In literature, this issue
is referred to as local community detection (in short as LCD henceforth).

In general, local community detection starts from one seed, and expands out-
ward by absorbing external vertices into it until the local community quality
stops improving. Therefore, how to evaluate the quality of a local community
plays the key role in LCD. So far, there are two types of approaches proposed for
this purpose, i.e., the degree-based and the similarity-based methods. Nonethe-
less, a stability problem [21] arises from these methods when they use different
seeds for LCD. For example, Fig. 1 shows the LCD results of a state-of-the-art
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Fig. 1. LCD results of LTE on Karate network

algorithm LTE [12] using different seeds, in which the shape of each vertex indi-
cates its true community and the colored vertices are the member of the detected
local community. From the figure, we can observe that different seeds signifi-
cantly affect the performance of LTE. Similar to this observation, the stability
problem caused by different seeds commonly exists in other LCD algorithms.

Aiming at a seed-insensitive approach to LCD, we propose GMAC (Greedy
MAximization of Compactness-Isolation) algorithm by introducing a novel sim-
ilarity measure known as d-neighbors similarity (d-NS for short). Different from
existing similarity measures that only focus on the adjacent vertices and their
common neighbors, d-NS also takes into account non-adjacent vertices within a
distance away so as to better reflect the real similarity between vertices espe-
cially the smilarity between non-adjacent vertices. Moreover, to quantitatively
evaluate the quality of a local community, the d-NS across its internal vertices
and the d-NS between its internal and external vertices are combined as a new
metric for local community quality called Compactness-Isolation (CI for short).
Our GMAC algorithm keeps absorbing selected external vertices to a local com-
munity until there is no improvement on this community’s CI value.

Our key contribution is two-fold, i.e., (1) the d-NS measurment, a novel and
more effective way to evaluate vertices’ similarity, and (2) the GMAC algorithm,
a seed-insensitive approach to LCD. Besides, another contribution of this paper
is that we first propose two seed-insensitivity criteria for LCD algorithms.

The remaining sections are organized as follows. After literature review in
Section 2, we give the problem statement and definitions of d-NS and CI in
Section 3, followed by proposing our GMAC algorithm in Section 4 together
with two seed-insensitivity criteria for LCD algorithms in Section 5. We present
our experimental results in Section 6 before concluding the paper in Section 7.

2 Related Work

According to the ways of how to evaluate the quality of a local community, the
existing approaches to LCD can be classified into two main categories, namely
(1) the degree-based methods, and (2) the similarity-based methods.
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Fig. 2. Example of known and unknown regions during LCD

Degree-based methods evaluate the local community quality via the investi-
gation on the vertices’ degrees. Some naive solutions, such as the �-shell search
algorithm [2], discovery-then-examination approach [4], and outwardness-based
method [1], only consider the number of edges inside and outside a local com-
munity. Some other work [5, 16] pay more attention on the boundary vertices,
and can achieve high recall with a price of low precision. In addition, by ran-
domizing the seed vertex and varying a resolution parameter which controls the
size of the community, overlapping and hierarchical local communities can also
be discovered via the investigation of vertex degree [14].

Similarity-based methods utilize similarities between vertices to help evalu-
ate the local community quality. The LTE algorithm [12] is a representative
of similarity-based methods, using a well-designed metric for local community
quality known as Tightness. There are a few alternative similarity-based metrics
such as VSP [15] and RSS [3] that can also help to evaluate the local community
quality, although they are not originally designed for LCD.

Besides the above two types of LCD algorithms, another related work to LCD
is identifying global communities by first detecting local communities and then
merging them [7, 9, 11, 18].

3 Problem Statement and Preliminaries

3.1 Problem Statement

In this paper, we focus on detecting a local community in a undirected graph
G = (V,E) starting from a seed s ∈ V , where V is the set of vertices and E is
the set of edges in graph G.

Note that in LCD, the entire network structure is unknown at the begin-
ning. Besides the detected local community, only partial information, i.e., the
local community’s neighbors and their linkage information, is available after each
detection process. There is an example in Fig. 2, in which the community C,
its neighbors in set N , and any other vertices (i.e., vertex 6 here) linked to its
neighbors are known, while the rest part of the network is temporarily unknown.

Given the above settings, our LCD problem can be defined as follows.
Input: A seed vertex s.
Output: The local community C ⊆ V (s ∈ C) with an optimized local

community quality.
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Table 1. d-neighbors similarity between vertices 17 and 3 in Karate network (see
Fig. 1)

d N17(d) N3(d) φ(17, 3, d)
1 6, 7 1, 2, 4, 8–10, 14, 28, 29, 33 0

2 1, 5, 11, and N17(1)
5–7, 11–13, 15, 16, 18, 19, 5

3020–25, 30–32, 34, and N3(1)

3
2–4, 8, 9, 12–14, 18,

17, 26, 27, and N3(2) 12
3420, 22, 32, and N17(2)

In what follows, we introduce a d-neighbors similarity based metric for local
community quality known as Compactness-Isolation.

3.2 d-Neighbors Similarity

The linkage information between vertices plays a critical role to evaluate vertices’
similarities. Nonetheless, most of the existing similarity measures only focus on
adjacent vertices and their common neighbors, which may miss the information
between the non-adjacent vertices. To avoid this limitation, we investigate the
linkage information on a relatively larger level via the following concept known
as d-level neighbors.

Definition 1 (d-level Neighbors). The d-level neighbors of a vertex s, de-
noted by Ns(d), is a set of vertices whose shortest path length to s is within d, i.e.,

Ns(d) = {v|v ∈ V, dist(v, s) � d}
where dist(v, s) is the length of shortest path between vertices v and s.

When d = 1, the d-level neighbors of a vertex is still its adjacent vertices. Thus,
we usually set d > 1 to include the non-adjacent neighbors into the investiga-
tion. Furthermore, as pointed out by Huang et al. [12], two vertices bear higher
similarity if they share more common neighbors. Hence, for each two vertices, we
utilize their ratio of the common neighbors in their d-level neighbors to evaluate
the similarity between them, and present the following similarity metric called
d-neighbors similarity (d-NS for short).

Definition 2 (d-Neighbors Similarity). The d-neighbors similarity between
two vertices u and v, denoted by φ(u, v, d), is defined as

φ(u, v, d) =
|Nu(d)

⋂
Nv(d)|

|Nu(d)
⋃

Nv(d)| .

Table 1 gives an example of d-NS, from which we can observe that d-NS can help
quantitatively evaluate two vertices’ similarity even if they are non-adjacent.
Moreover, we can also observe that the d-NS between two vertices grows with d
value. In fact, if d is extremely large, in the current known region of a network, all
vertices will become the d-level neighbors of each vertex, and also the common
neighbors of any two vertices, resulting in indistinguishable d-NS values (all
equal or close to 1) for the vertex pairs. Therefore, it is more practicable to set
d = 2 or d = 3.
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3.3 Compactness-Isolation Metric

In community detection, two important characteristics of a community are widely
used in the existing work [5, 8, 12, 14, 16], namely (1) the compactness charac-
teristic, i.e., a community is a sub-graph within which the vertices are very
similar to each other, and (2) the isolation characteristic, i.e., the internal ver-
tices of a community differ from those from the outside. Motivated by these two
characteristics, we propose the following local community quality metric called
Compactness-Isolation (CI for short) based on our d-NS measure.

Definition 3 (Compactness-Isolation Metric). For a local community C
with a neighbor set N , the Compactness-Isolation value of C, denoted by CI(C, d),
is defined as

CI(C, d) =

∑
u,v∈C,(u,v)∈E φ(u, v, d)

1 +
∑

u∈C,v∈N,(u,v)∈E φ(u, v, d)
.

In CI, its numerator refers to the sum of d-NS values between any two internal
vertices of the local community C, while its denominator is one plus the sum of
d-NS values between C’s internal vertices and their adjacent external vertices.
Such a denominator is to avoid dividing by zero. According to the compactness
and isolation characteristics, the vertices of a good local community should have
high internal similarities and low external similarities, leading to a high CI value.
Consequently, we can quantitatively evaluate the quality of local community via
the computation of its CI value.

Since our d-NS measure evaluates vertices’ similarity on a relatively larger
level rather than only focusing on one-step linkages, it helps better reflect the
true vertices’ similarities in a local area. Hence, when a local community is going
to absorb an external vertex, the d-NS based CI metric will better reflect the
real change on the ratio of the internal similarities to the external similarities
for the local community, and thus help it make a more correct decision.

In addition, based on the definition of CI, we have the following theorem.

Theorem 1. Given a local community C in a network G = (V,E) and the
neighbor set N = {u ∈ V |u �∈ C, v ∈ C, (u, v) ∈ E} of C, when adding a
node a ∈ N into C, the CI value of the new local community C ∪ {a} will

increase, i.e., CI(C ∪ {a}, d) > CI(C, d), iff IS(a)
ES(a)−IS(a) > CI(C, d), where

IS(a) =
∑

(v,a)∈E,v∈C φ(v, a, d), ES(a) =
∑

(u,a)∈E,u�∈C φ(u, a, d).

Proof. By adding a ∈ N into C, the gain �CI of CI value can be calculated as

�CI = CI (C ∪ {a}, d)− CI(C, d)

=

∑

u,v∈C,(u,v)∈E
φ(u, v, d) + IS(a)

∑

u∈C,v∈N,(u,v)∈E
φ(u, v, d)− IS(a) + ES(a) + 1

−

∑

u,v∈C,(u,v)∈E
φ(u, v, d)

∑

u∈C,v∈N,(u,v)∈E
φ(u, v, d) + 1

As a ∈ N ,
∑

u∈C,v∈N,(u,v)∈E φ(u, v, d) − IS(a) � 0. Thus, the denominators in
the above equation are all positive for certain. By combining the two fractions
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above to one item and ignoring its positive denominator, inequality �CI > 0
can be transformed as

1 +
∑

u∈C,v∈N,(u,v)∈E φ(u, v, d) +
∑

u,v∈C,(u,v)∈E φ(u, v, d)
∑

u,v∈C,(u,v)∈E φ(u, v, d)
>

ES(a)

IS(a)

which is equivalent to IS(a)
ES(a)−IS(a) > CI(C, d), and the proof completes. �

4 GMAC Algorithm

With the d-NS based local community quality metric, namely CI, we propose
our GMAC algorithm for LCD by adopting a greedy strategy to optimize the
quality of the detected local community in terms of its CI value.

4.1 Algorithm

The pseudo-code of GMAC is presented in Table 2. GMAC starts its LCD process
from a seed s together with its neighbor set N (line 2). To absorb the vertices
with the highest potential of being members of the local community, in the while-
loop (lines 3–10), GMAC keeps searching vertex a ∈ N which has the current
maximum sum of d-NS values with vertices within C (line 4). If the inequality
in line 5 holds, then a will be added to C (line 6) because the CI value of the
new local community (i.e., CI(C∪{a}, d)) will increase according to Theorem 1,
and at the same time, the neighbor set N will be updated (line 6). Otherwise,
a will be removed from current N (line 8). This while-loop will be discontinued
when N becomes empty, and then the current C will be returned as the final
local community (line 11).

Table 2. GMAC algorithm for local community detection

Input: A seed s, parameter d.
Output: The local community C that s belongs to.

1: Initialize C = ∅, N = ∅;
2: Add s to C, and add neighbors of s to N ;
3: while N �= ∅ do
4: a = argmaxa∈N

∑
u∈C φ(u, a, d);

5: if IS(a)
ES(a)−IS(a)

> CI(C, d) then

6: Add a to C and update N ;
7: else
8: Remove a from N ;
9: end if
10: end while
11: Return C.
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4.2 Complexity Analysis

In our GMAC algorithm, the most computationally expensive step is to find a
vertex a ∈ N having the maximal sum of d-NS values with vertices within C
(line 4). By using a dynamic priority queue implemented by Fibonacci heap [12],
the time complexity of this step can be reduced to O(td · (m + n logn)), where
m is the number of edges in current known region of the given network, n is the
number of known vertices, and t is the mean degree of known vertices. Since d is
a small positive integer, for spare networks (i.e., t is small), time complexity of
our GMAC algorithm is O(m+n logn), which is lower than most of the existing
algorithms and comparable to the fastest algorithms like LMR [5] and LTE [12].

5 Seed-Insensitivity Criteria for LCD Algorithms

To quantitatively analyze the seed insensitivity of GMAC as well as other LCD
algorithms, we present two seed-insensitivity criteria, i.e., Consistency of Detec-
tion Results, and Ratio of Consistency.

5.1 Consistency of Detection Results

The local community detected by an LCD algorithm A starting from a seed s
can be denoted as a set A(s) = {s}⋃{vi|vi ∈ V, 1 � i � p}. We define that
algorithm A is strictly seed-insensitive on set A(s), iff

A(s) = A(vi), ∀i ∈ {1, 2, . . . , p}.

By extending the above strict definition to a more loose and quantitative mea-
sure, we propose the following criterion to evaluate an LCD algorithm’s seed-
insensitivity around a specific seed.

Definition 4 (Consistency of Detection Results). For an LCD algorithm
A using a seed s and with a detection result A(s) = {s}⋃{vi|vi ∈ V, 1 � i � p},
let f(vi) denote the F-score of the detection result A(vi) with A(s) as the ground
truth. Then, the consistency of detection results of algorithm A on set A(s),
denoted by CDR(A, s), is defined as

CDR(A, s) = 1−
√
√
√
√

1

p+ 1

∑

v∈A(s)

(
f(v)− μ

)2

where μ is the mean value of f(v) (v ∈ A(s)).

In CDR(A, s),
√

1
p+1

∑
v∈A(s)

(
f(v)− μ

)2
refers to the standard deviation of the

F-scores of algorithm A’s detection results using different seeds v ∈ A(s). Thus,
if detection results are more consistent, then the standard deviation is lower,
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leading to a greater CDR(A, s) value. In other words, a greater CDR(A, s) value
indicates that algorithm A has a higher seed-insensitivity on set A(s).

5.2 Ratio of Consistency

CDR(A, s) provides a measure for algorithms’ seed-insensitivity on a sub-
network, in what follows, we present another criterion, namely Ratio of Con-
sistency, to evaluate LCD algorithms’ seed-insensitivity on a entire network.

Definition 5 (Ratio of Consistency). For an LCD algorithm A running on
a given network G = (V,E), the ratio of consistency of A, denoted by RC(A, τ),
is defined as

RC(A, τ) =
1

|V |
∣
∣
∣
{
v|v ∈ V,CDR(A, v) � τ

}∣∣
∣.

RC(A, τ) refers to the ratio of vertices {v} with which as the seeds algorithm
A’s CDR(A, v) is not less than a threshold τ ∈ [0, 1]. If this ratio is high, then
the algorithm is assumed to have a good seed-insensitivity on the given network.

6 Experiments

In this section, we evaluate our algorithm on (1) the LCD accuracy and (2) the
seed insensitivity, and conduct some case studies to confirm its effectiveness. All
algorithms involved in these experiments are implemented by Java, running on
a desktop PC with Intel Core 2 CPU at 2.2GHz and 2GB of RAM.

6.1 Accuracy Comparison

Accuracy Comparison on Real-World Networks. We evaluate the accu-
racy performance of our GMAC algorithm on the following real-world networks,
i.e., (1) Zachary’s karate club network (Karate for short) [22], in which |V | = 34
and |E| = 78, (2) NCAA football network (NCAA for short) [10], in which
|V | = 115 and |E| = 616, (3) a co-authorship network of scientists working on
network theory and experiment (NetSci for short) [17], in which |V | = 378 and
|E| = 914, and (4) Western States Power Grid of the United States (Power for
short) [20], in which |V | = 4941 and |E| = 6594. Since the last two networks have
no ground truth, we apply a state-of-the-art graph partition algorithm known
as Normalized Cut [19] to identify communities with the global structure in-
formation of these two networks, and utilize its detection results as the ground
truth for the LCD algorithms. In addition, since the global community quality
metrics such as the well-known Modularity metric [6] is not suitable to evaluate
the quality of a detected local community, we use each vertex in a community
(based on the community ground truth) as a seed and report algorithms’ average
precision and recall on this community.

We compare our GMAC algorithm with a classical degree-based LCD algo-
rithm LMR [5] and a high-performance similarity-based algorithm LTE [12]. The
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Table 3. Average precision and recall of each algorithm on real-world networks

Karate LMR LTE GMAC
Comm. size precision recall F-score precision recall F-score precision recall F-score
Karate-A 16 0.89 0.60 0.71 0.94 0.52 0.67 1.00 0.55 0.71
Karate-B 18 0.89 0.53 0.66 0.95 0.34 0.50 1.00 0.62 0.77

NCAA LMR LTE GMAC
Comm. size precision recall F-score precision recall F-score precision recall F-score

AC 9 0.74 0.80 0.77 1.00 1.00 1.00 1.00 1.00 1.00
BE 8 0.59 0.67 0.63 1.00 1.00 1.00 1.00 1.00 1.00
Ten 11 0.27 0.33 0.30 1.00 1.00 1.00 1.00 1.00 1.00
MW 8 0.79 0.89 0.84 1.00 1.00 1.00 1.00 1.00 1.00
PT 10 0.64 0.82 0.72 1.00 1.00 1.00 1.00 1.00 1.00
USA 10 0.72 0.82 0.77 0.91 0.82 0.86 0.92 0.82 0.87
SE 12 0.85 1.00 0.92 1.00 0.58 0.74 1.00 1.00 1.00
WA 10 0.40 0.40 0.40 0.75 0.66 0.70 0.75 0.66 0.70
MA 13 0.86 1.00 0.92 1.00 0.50 0.67 0.94 0.51 0.66

Twelve 12 0.82 0.92 0.87 1.00 0.50 0.67 1.00 1.00 1.00
SB 7 0.48 0.53 0.50 0.63 0.51 0.56 0.64 0.52 0.58

NetSci LMR LTE GMAC
Comm. size precision recall F-score precision recall F-score precision recall F-score
NS-1 7 1.00 0.75 0.84 1.00 1.00 1.00 1.00 1.00 1.00
NS-2 9 0.90 0.80 0.85 0.90 1.00 0.94 0.91 1.00 0.94
NS-3 9 1.00 0.66 0.75 1.00 0.66 0.75 1.00 0.69 0.81
NS-4 9 1.00 0.59 0.71 1.00 0.64 0.75 1.00 0.66 0.77
NS-5 8 1.00 0.50 0.66 1.00 0.55 0.70 1.00 0.57 0.73
NS-6 9 1.00 0.49 0.65 0.90 0.55 0.68 1.00 0.56 0.72
NS-7 11 0.85 0.37 0.51 0.90 0.42 0.57 0.92 0.44 0.60
NS-8 18 0.91 0.38 0.52 0.90 0.42 0.57 0.98 0.48 0.64
NS-9 16 0.90 0.46 0.56 0.87 0.47 0.53 0.95 0.33 0.46
NS-10 17 1.00 0.32 0.46 1.00 0.39 0.52 1.00 0.41 0.58
NS-11 15 0.86 0.38 0.51 0.94 0.36 0.51 0.96 0.38 0.54
NS-12 27 0.93 0.28 0.42 0.98 0.33 0.49 0.97 0.29 0.44
NS-13 24 1.00 0.33 0.48 1.00 0.33 0.48 1.00 0.36 0.53
NS-14 22 0.97 0.24 0.38 1.00 0.33 0.48 1.00 0.36 0.53
NS-15 15 0.97 0.34 0.49 1.00 0.31 0.47 1.00 0.35 0.51

Power LMR LTE GMAC
Comm. size precision recall F-score precision recall F-score precision recall F-score
PG-1 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PG-2 6 1.00 0.83 0.89 1.00 1.00 1.00 1.00 1.00 1.00
PG-3 7 0.97 0.85 0.91 1.00 0.87 0.93 1.00 0.87 0.93
PG-4 13 0.97 0.79 0.87 0.99 0.79 0.88 0.97 0.80 0.87
PG-5 6 1.00 0.55 0.70 1.00 0.75 0.83 1.00 1.00 1.00
PG-6 8 0.89 0.43 0.55 1.00 0.76 0.82 1.00 1.00 1.00
PG-7 11 1.00 0.33 0.47 1.00 0.71 0.78 1.00 0.70 0.81
PG-8 15 0.91 0.48 0.61 0.85 0.67 0.75 0.85 0.67 0.75
PG-9 10 0.48 0.55 0.51 0.97 0.63 0.73 0.93 0.65 0.76
PG-10 7 0.93 0.48 0.62 1.00 0.55 0.69 0.83 0.80 0.79
PG-11 13 1.00 0.66 0.79 0.92 0.54 0.68 0.93 0.55 0.69
PG-12 16 1.00 0.31 0.46 1.00 0.57 0.67 1.00 0.59 0.70
PG-13 8 1.00 0.39 0.55 1.00 0.53 0.67 1.00 0.82 0.90
PG-14 8 1.00 0.37 0.54 1.00 0.51 0.66 1.00 0.77 0.83
PG-15 10 0.91 0.33 0.49 1.00 0.48 0.64 0.86 0.45 0.57
PG-16 8 0.96 0.54 0.68 0.83 0.51 0.63 0.69 0.55 0.57
PG-17 16 0.95 0.33 0.48 0.94 0.50 0.63 0.94 0.54 0.67
PG-18 7 0.82 0.44 0.57 0.82 0.51 0.62 0.82 0.51 0.62
PG-19 13 0.94 0.45 0.58 0.88 0.49 0.62 0.89 0.54 0.67
PG-20 7 1.00 0.67 0.77 1.00 0.44 0.61 1.00 0.58 0.73
PG-21 6 0.85 0.44 0.53 1.00 0.44 0.60 1.00 0.56 0.71
PG-22 10 0.92 0.33 0.48 0.97 0.45 0.59 0.98 0.80 0.87
PG-23 11 1.00 0.32 0.48 1.00 0.42 0.57 0.94 0.61 0.74
PG-24 10 0.88 0.38 0.52 0.96 0.41 0.57 0.88 0.5 0.61
PG-25 12 0.90 0.44 0.56 0.89 0.50 0.57 0.84 0.69 0.70
PG-26 14 1.00 0.38 0.53 0.89 0.42 0.56 1.00 0.72 0.81
PG-27 12 0.88 0.27 0.40 0.86 0.43 0.56 0.77 0.46 0.57
PG-28 18 0.94 0.27 0.38 0.92 0.42 0.55 0.94 0.60 0.71
PG-29 9 0.55 0.30 0.37 0.48 0.66 0.53 0.57 0.66 0.59
PG-30 17 0.90 0.32 0.46 0.88 0.39 0.53 0.91 0.46 0.58
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Table 4. Parameters of the LFR benchmark graphs

Network n k maxk minc on mu
5000S 5000 10 20 40 0 0.1, 0.2, . . . , 0.6
5000D 5000 20 40 40 0 0.1, 0.2, . . . , 0.6
10000S 10000 10 20 40 0 0.1, 0.2, . . . , 0.6
10000D 10000 20 40 40 0 0.1, 0.2, . . . , 0.6
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Fig. 3. Accuracy comparison on LFR benchmark graphs

comparison results are reported in Table 3 (arranged in decreasing order of LTE’s
F-score), from which we can observe that in terms of LCD accuracy, our GMAC
algorithm usually outperforms LMR algorithm, and has a slight advantage over
LTE algorithm, even though extensive experiments have proved that LTE is one
of the most accurate algorithms among the state-of-the-art LCD approaches [12].

Accuracy Comparison on LFR Benchmark Graphs. The accuracy com-
parison is also conducted on a set of LFR benchmark graphs [13] with the pa-
rameters summarized in Table 4, where n is the number of vertices, k the average
degree, maxk the maximum degree, minc the minimal community size, on the
percent of overlapping vertices, and mu the mixing parameter. A greater mu
means that communities are more indistinct in the corresponding graph.

Fig. 3 shows the accuracy comparison results, from which we can observe
that our GMAC algorithm usually has a higher accuracy, and is more competent
in handling networks with indistinct communities, compared against the other
tested algorithms.

6.2 Seed-Insensitivity Comparison

In order to verify the advantage of our GMAC algorithm on seed-insensitivity,
we evaluate each algorithm’s performance on the two proposed seed-insensitivity
criteria, namely Consistency of Detection Results (see Section 5.1) and Ratio
of Consistency (see Section 5.2), and report the results in Table 5, where A
represents each tested algorithm, RC(A, 0.9) the Ratio of Consistency of A with
a threshold 0.9, and Aver. CDR(A, v) the average value of A’s Consistency of
Detection Results on all vertices of a given network.

As shown in the table, our GMAC algorithm outperforms the other tested
methods on both seed-insensitivity criteria.
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Table 5. Seed-insensitivity performance of each algorithm on real-world networks

Network Size A RC(A, 0.85) RC(A, 0.9) RC(A, 0.95) RC(A, 1) Aver. CDR(A, v)

Karate 34
LMR 0.26 0.26 0.26 0.26 0.78
LTE 0.73 0.73 0.73 0.73 0.91

GMAC 0.89 0.89 0.89 0.89 0.98

NCAA 115
LMR 0.13 0.08 0.00 0.00 0.73
LTE 0.90 0.83 0.83 0.83 0.96

GMAC 0.91 0.91 0.91 0.89 0.98

NetSci 378
LMR 0.65 0.61 0.58 0.51 0.88
LTE 0.69 0.67 0.67 0.67 0.90

GMAC 0.77 0.76 0.75 0.69 0.93

Power 4941
LMR 0.48 0.45 0.43 0.43 0.84
LTE 0.44 0.42 0.41 0.39 0.82

GMAC 0.54 0.49 0.46 0.44 0.86

Table 6. Local communities discovered by GMAC on Amazon co-purchase network

Seed Used Type Degree
Size of

Member of Community
Community

Cirque Reinvente
DVD 15 18

100% DVDs composed
by Cirque du Soleil by Cirque du Soleil.

Book 45 24

Other Harry Potter Series’ books and DVDs
Harry Potter and (7 books and DVDs);

the Sorcerer’s Stone the Lord of the Rings’ DVDs (5 DVDs);
(Book 1) the Matrix’ DVDs (4 DVDs);

other related DVDs (8 DVDs).

6.3 Case Study on Amazon Co-purchase Network

To confirm the effectiveness of our GMAC algorithm in practical application
contexts, we perform it on an Amazon co-purchase network (|V |= 585285,
|E|= 4566749) collected in Jan 2006. Table 6 shows some detection results, from
which we see that (1) when DVD “Cirque Reinvente” composed by Cirque du
Soleil is used as a seed, GMAC returns all Cirque du Soleil’s DVDs bought by
customers; and (2) if book “Harry Potter and the Sorcerer’s Stone (Book 1)” is
the seed, GMAC also has a reasonable detection results, i.e., other Harry Potter
Series’ books and DVDs, the DVD series of “The Lord of the Rings” , “The
Matrix”, and so on, indicating that the corresponding customers are very likely
fiction fans. Other seeds are also used, and the results are similar to the above
observation.

7 Conclusions

In this paper, we have proposed a seed-insensitive approach known as GMAC
for local community detection by adopting a novel similarity measure called
d-neighbors similarity, and introduced two seed-insensitivity criteria for local
community detection algorithms. Extensive experimental results have verified
the effectiveness of GMAC and its advantage in terms of seed-insensitivity.
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Abstract. Social networks play an important role in everyday life.
Nowadays there is various research that concentrates on detecting com-
munities within these networks. Traditionally most of the community de-
tection algorithms focus on detecting disjoint networks. However there is
a need for overlapping community detection. In recent years there have
been some attempts at detecting overlapping communities. Most of these
techniques concentrate on just detecting these communities, none of this
research tries to detect the maximal set of these communities which gives
more stability. In this paper we propose a new method called Maximal-
DSHRINK that allows us to detect the maximal set of overlapping com-
munities within a social network. We show that the maximal set provides
us with better quality in terms of modularity gain.

Keywords: Maximal Cluster, Modularity Gain, Social Network
Analysis.

1 Introduction

As social networks have become an everyday norm, there is a growth in research
related to this area. One particular strand of research concentrates on finding
communities within these networks. The number of community detection algo-
rithms has increased in recent years [1,2]. People in a social network can be
naturally characterized into multiple community memberships. A person usu-
ally has disjoint connections to different social groups such as family or friends,
however, they may also be associated with more than one group, for example
a researcher may be active in several research areas. As such in an online so-
cial network, the number of communities a person can belong to is essentially
unlimited because an individual can be associated with various groups simul-
taneously. This scenario is also common in other networks such as biological
networks, where a node might have multiple functions. Thus increasingly there
is a growing interest in overlapping community detection algorithms that allows
us to identify a set of clusters, where nodes can belong to more than one cluster.

In this paper, we propose an algorithm to find the maximal set of overlapping
communities. Most of the work around finding overlapping communities concen-
trates on finding overlapping communities that match a particular benchmark
dataset, however none of this research concentrates on finding the maximal set
of the communities. In a maximal set, a community is considered to be at a
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maximal size when all possible nodes that can be spanned into a particular com-
munity has been spanned without decreasing the quality of the community. This
means we may find fewer overlaps in communities but on average the quality
of the community based on the modularity gain may increase as compared to a
non-maximal set.

In Section 2 we outline several existing algorithms that have been proposed
related to overlapping community detection. Section 3 describes the preliminaries
and definitions of the concepts related to our algorithm. In Section 4 we provide
our algorithm, Maximal-DSHRINK, for community detection. In Section 5 we
present thorough experimental evaluations of our results and conclude the paper
in the last Section 6.

2 Related Work

Community detection in complex networks has attracted huge attention since its
introduction. Overall, one can classify detection methods in two main categories,
namely non-overlapping and overlapping communities. Overlapping community
detection research itself can be categorized into five classes [3]. The clique per-
colation method [4] is based on the assumption that a community consists of
overlapping sets of fully connected sub-graphs and communities are detected by
searching for adjacent cliques. Algorithms using local expansion and optimiza-
tion are based on growing a natural community or a partial community. Most
of them depend on a local benefit function that characterizes the quality of a
densely connected group of nodes [5,6]. Partitioning links [7] can be used for
overlapping community detection. A node in the original graph is called overlap-
ping if links connected to it are put in more than one cluster. Fuzzy community
detection algorithms [8,9] calculate the strength of association between all pairs
of nodes and communities using a soft membership vector or belonging factor.
An agent based community detection [10] algorithm models each node in a so-
cial network as an autonomous agent. None of this research considers detecting
a maximal overlapping community set. In our research we extend the DSHRINK
algorithm which falls into the local expansion category to generate maximal sets.

3 Preliminaries

In this section, we briefly define several key concepts, terms and notation that
are related to our algorithm.

Definition 1 (Structure). A network is defined as a graph G = (V,E) which
consists of a set of nodes denoted as a vertices set V , and a set of edges be-
tween any pair of nodes denoted as E. A set of communities in the network
is denoted as C, whereby C = {C1, . . . Ck} here Ck refers to a single commu-
nity. A vertices’s set consists of a number of nodes whereby V = {v1, . . . , vj}
here vj refers to a single node. We will be using E(vi, vj) for the edge between
vi and vj .
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Clustering is a process of grouping objects that have similar characteristics. We
therefore adopted a similarity distance-based approach to measure the distance
between nodes.

Definition 2 (Similarity). The similarity between any pair of nodes vi, vj ∈
V is defined as in [2]:

S(vi, vj) =
| Γ (vi) ∩ Γ (vj) |

√| Γ (vi) || Γ (vj) |
(1)

where Γ (v) is the set of v’s neighbour nodes and itself.

We then calculate the distances between nodes [2].

Definition 3 (Distance). The distance between vi, vj is defined in [2] where:

dM (vi, vj) =|| vi − vj || M =
√
(vi − vj)TM(vi − vj) (2)

The matrixM ∈ R(m×m) represents the distance matrix. The distance dM (vi, vj)
is calculated by the square root of multiplication of the difference in similarity
vectors of vi and vj .

Definition 4 (Local Community). Given a network G = (V,E), a subset G′

of G is defined as a local community iff: (1) ∀v of G′ ∈ V ; (2) Distance
of any pair of nodes in G′ < r where r, r ∈ R+, is the radius of the local
community G′.

Based on this definition, any node that is spanned into a local community has
distance from any other node in that local community of less than the radius.
In other words, nodes that have been clustered in the same cluster should have
distance of at most r.

Definition 5 (Distance-based Modularity Gain). The quality or stability
of a cluster can be evaluated using the distance-based modularity. The
distance-based modularity of combining j communities C1, C2, ..., Cj into
a new cluster [2] is:

ΔQd =

∑
s,t∈{1,...,j},s�=t 2D

U
st

DT
−

∑
s,t∈{1,...,j},s�=t 2D

C
s D

C
t

(DT )2
(3)

where DU
st =

∑
u∈Cs,v∈Ct

dM (u, v) and is the sum of distance between any

two nodes in communities Cs and Ct. D
C
i is the sum of distance between

any node in cluster Ci and any node in the network G. DT is the sum of
distance between any two nodes in the network G.

A smaller value of ΔQd means a better quality of clustering, typically ΔQd < 0
to form a community. A reduced negative valued ΔQd means that there is an
improvement in the quality of the community. We shrink the set of nodes when
its combination can decrease the total distance-based modularity ΔQd, in other
words, if the combination of nodes result in negative distance-based modularity,
we consider that particular combination of nodes as a valid community.
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Definition 6 (Maximal Cluster Set). Amaximal cluster set, CM , is denoted
as a cluster set with the maximum number of nodes that can be spanned
into the community without increasing the total distance-based modularity
ΔQd of the community.

We aim to reduce the number of clusters and find the maximal cluster set;
therefore we decompose the communities that do not form super nodes and try
to span the nodes into super nodes to form a maximal cluster set. In the next
section, we present our proposed technique.

4 Maximal Set for Overlapping Communities

In this section we describe our algorithm, Maximal-DSHRINK for community
detection which is extended from the DSHRINK [2] approach. Our aim is to find
the maximal cluster set which has a larger community size and better quality. By
doing this, we span the nodes into possible local communities and shrink the ones
which have negative ΔQd as super nodes while individual super nodes represent
an individual cluster. We then extend the cluster sets to form maximal cluster
sets. For example, assume there is a set of nodes in the network V={v1, v2, v3}.
Initially all of the nodes are tagged as “unvisited”. Here we view each node as a
local community; therefore we have a community set C={C1, C2, C3}, whereby,
C1 = {v1}, C2 = {v2} and C3 = {v3}. In the next step we attempt to span every
“unvisited” node to form stable clusters and therefore we begin with the first
“unvisited” node v1 and span it into a community according to Definition 4. We
start from the first cluster C1, and since v1 is already in C1, we then tag all the
nodes in C1, as visited. We then continue with the second “unvisited” node v2.
We start from the first cluster C1 = {v1} again and examine the distance of all
the nodes from C1 with v2. If one of the nodes from C1 has a distance from v2
of less than the radius r, we span v2 into C1 and tag all the nodes including
v2 in C1 as visited. If there is no such node in C1 that satisfies the condition,
we then try to span v2 into other possible communities C2,3. We repeat the
above step until there are no more “unvisited” nodes and then try to shrink
the communities. After the above steps, we obtain C={C1, C2, C3}, whereby,
C1 = {v1, v2}with ΔQd > 0, C2 = {v2} with ΔQd < 0, and C3 = {v1, v3} with
ΔQd > 0. At this stage, we aim to shrink the communities which have negative
ΔQd values as super nodes. As a result, only C2 has ΔQd < 0 and therefore
we label it as a super node. And since both C1 and C3 have ΔQd > 0, we will
not shrink the communities. Now we have a super node C2 and two non-super
nodes C1 and C3. The next step is to tag all the nodes in the non-super nodes
communities, C1 and C3, as “unvisited” and repeat the above spanning and
shrinking procedures until untagging any nodes no longer decreases the number
of super nodes. Finally, each super node represents an individual community.

Our algorithm consists of three different parts. The first two parts are adopted
from the original DSHRINK algorithm and the last part, which is new, maximizes
the cluster result. Firstly, we initialize each node in the network as an individual



Finding Maximal Overlapping Communities 313

community and build up a distance matrix by computing d(vi, vj) where vi, vj ∈
V and vi �= vj . During this process, we also compute the sum of distances between
each node vi to every other node in the network vj where v ∈ V and vi �= vj which
is stored in a similarity matrix ST

i and the total distance of any pair of nodes in
the network which is saved as DT . Secondly, we begin to span every “unvisited”
node to a possible local community. After spanning a node, we tag all the nodes
in that particular local community as “visited” and repeat the above process
repeatedly until there are no more unvisited nodes. The next step is to treat
the nodes in each local community as an individual module and compute the
modularity gainΔQd of the combination of these modules according to Equation
3. Negative modularity gain indicates that this combination can decrease the
total distance-based modularity ΔQd and for a stable community, it is tagged
as a super node. Then, we tag all the nodes in the community as “unvisited”
and repeat the first and second parts until there are no more communities that
can be shrunk, that is, shrinking any community will not decrease the total
distance-based modularity ΔQd.

Algorithm 1. Maximal-DSHRINK(G=(V, E))

Input: G = (V,E): Information Network.
Output: Cm = {Cm

1 , Cm
2 , ..., Cm

k }: Maximal community set.
Initialize each node in V as an individual community and store it in C
for each node vi ∈ V do

for each node vj ∈ V and vi �= vj do
Compute S(vi, vj) using Eq 1;
Compute d(vi, vj) using Eq 2 and store the distance into the distance matrix, D;

ST
i + = S(vi, vj);

DT+ = d(vi, vj);
end for

end for
Cd = DSHRINK(D, C)
num1 = number of super nodes at this stage;
numberOfSuperNode.decrease = true;
while (numberOfSuperNode.decrease) do

for each Cj ∈ C do
if !(Cj.isSuperNode) then

for each node vk in Cj do
vk.visited = false;

end for
end if

end for
Cm = DSHRINK(D, Cd);
num2 = number of supernodes at this stage;
if (num2<num1) then

numberOfSuperNode.decrease = true;
else numberOfSuperNode.decrease = false;
end if

end while
return Cm;

Finally, we tag all the nodes in the communities that are not super nodes
as “unvisited” and perform the first and second processes repeatedly until the
number of super nodes cannot be decreased anymore. As a result, each super
node is considered as an individual cluster. Any node that has not been assigned
to a cluster is viewed as an outlier. Algorithm 1 shows our further implementation
of Maximal-DSHRINK.
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5 Experimental Evaluation

In this section we look at the datasets, evaluation measures and the results
produced by our Maximal-DSHRINK method and compare that to the origi-
nal DSHRINK method. We have used 40 data sets to examine our algorithm.
The datasets are benchmarks1, which have been used in previous overlapping
community detection research. The datasets contain undirected and unweighted
communities. Each dataset contains 1000 nodes and a varying number of edges
in the range of 18954 to 20004.

To evaluate the quality of our cluster results we apply three different eval-
uation approaches to measure the effectiveness and the quality of our clusters:
Silhouette value, Dunn’s index and the difference in modularity gain. Both Sil-
houette value and Dunn’s index are well known clustering evaluation metrics. We
compute the difference in modularity gain of the clusters between the original
DSHRINK algorithm and our maximal approach. Negative gain in the difference
ΔQd indicates that there is a gain in stability level.

DiffΔQd =

∑
C∈iΔQd(Cd

i )

| Cd | −
∑

C∈j ΔQd(Cm
j )

| Cm | (4)

where Cd
i is the cluster set resulting from the original DSHRINK algorithm and

Cm
j is the maximal cluster set resulting from our approach. DiffΔQd is the

difference between the average of the modularity gain of cluster sets generated
by DSHRINK and our approach. A negative value in DiffΔQd means that our
approach is obtaining a better modularity gain as compared to DSHRINK.

Table 1 summarises the result of the experiments for the two algorithms for
each of the datasets. We notice that there is no significant difference between
the Silhouette value and Dunn’s index produced by our maximal set algorithm
compared to the original DSHRINK when tested on all the datasets. This means
that both methods produce similar cluster quality based on the cluster bound-
aries. However our technique has a reduced modularity gain, which means that
more stable clusters are formed. We also present ΔQd(C⊕) to indicate the mod-
ularity gain of the exclusive cluster set C⊕, which is the resulting clusters that
are not in Cd (the cluster set generated by DSHRINK) but in Cm (the cluster
set generated by Maximal-DSHRINK) in Table 1. We notice that, those exclu-
sive cluster sets have contributed negative gain to the total modularity gain and
they are the crucial clusters that differentiate between the maximal cluster set
and the original cluster set. The community size is shown in Figure 1 and the
overlapping rate is shown in Figure 2. The x-axis on both these figures represent
the number of communities that exist in the datasets. The community size is
calculated by the average number of nodes contained in the community while the
community per node is calculated by the average number of communities that
each node is spanned into. Overall our algorithm produces communities with a
larger community size, however the average number of communities that each

1 http://www.netcom-analyzer.org/benchmarks
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Table 1. Evaluation Result

DSHIRNK Maximal Set Difference

Dataset ΔQd(Cd) Silhouette DI ΔQd(Cm) Silhouette DI DiffΔQd ΔQd(C⊕)

Network1 -0.00025274 0.9952544 0.3428223 -0.0005361 0.9895931 0.3499128 -0.0002834 -0.0001004
Network 2 -0.00088512 0.9823991 0.6459606 -0.0023591 0.9289951 0.6565592 -0.0014740 -8.9685E-05
Network 3 -9.61068E-05 0.9942691 0.3814203 -0.0001463 0.9916779 0.6313003 -5.023E-05 -7.8144E-05
Network 4 -0.000195427 0.9935839 0.3920497 -0.0007063 0.9720570 0.7135083 -0.0005109 -9.7318E-05
Network 5 -0.001017231 0.9848924 0.6333257 -0.0015937 0.9741634 0.7440231 -0.0005765 -9.3054E-05
Network 6 -0.00024663 0.9957481 0.5085037 -0.0002748 0.9950922 0.5085037 -2.8195E-05 -8.8572E-05
Network 7 -0.00069357 0.9922492 0.5206500 -0.0007582 0.9913158 0.5206500 -6.4657E-05 -0.0010912
Network 8 -0.00079240 0.9877459 0.5873393 -0.0028774 0.9345465 0.8279644 -0.0020850 -6.3598E-05
Network 9 -0.00185169 0.9788562 0.4403046 -0.0023025 0.9704539 0.4403046 -0.0004509 -4.3790E-05
Network 10 -0.00032196 0.9932012 0.5747560 -0.0015877 0.9470303 0.7934666 -0.0012657 -8.9015E-05
Network 11 -0.00034168 0.9900284 0.4780579 -0.0017244 0.9176829 0.8640281 -0.0013827 -0.0001080
Network 12 -1.03636E-07 0.9986603 0.5001223 -1.036E-07 0.9986603 0.5001223 4.37E-12 -9.5971E-05
Network 13 -0.00012889 0.9956307 0.4962049 -0.0003384 0.9885505 0.7355317 -0.0002095 -9.9339E-05
Network 14 -0.00022570 0.9953271 0.2192628 -0.0005626 0.9881697 0.6420907 -0.0003369 -0.0001115
Network 15 -0.00021742 0.9957051 0.6995695 -0.0002202 0.9957051 0.6995695 -2.7428E-06 -7.6453E-05
Network 16 -0.00031631 0.9944882 0.3048106 -0.0003068 0.9944882 0.3048106 9.4835E-06 -9.1092E-05
Network 17 -0.00018604 0.9964284 0.5832914 -0.0004269 0.9918057 0.6347603 -0.0002408 -0.0001379
Network 18 -0.00024374 0.9939674 0.4720211 -0.0002466 0.9939674 0.4720211 -2.8231E-06 -7.2634E-05
Network 19 -0.00016325 0.9964978 0.6383548 -0.0004131 0.9909608 0.6439687 -0.0002498 -0.0001230
Network 20 -0.00012037 0.9962761 0.6631964 -0.0001577 0.9950058 0.6785410 -3.7313E-05 -5.6020E-05
Network 21 -0.00019617 0.9951347 0.6204610 -0.0006747 0.9765417 0.6670616 -0.0004786 -9.5912E-05
Network 22 -0.00025507 0.9947728 0.6690906 -0.0002625 0.9947728 0.6690906 -7.4133E-06 -0.0001986
Network 23 -0.00017524 0.9959594 0.6704829 -0.0004455 0.9891571 0.7232956 -0.0002703 -8.287E-05
Network 24 -0.00017753 0.9954218 0.7013491 -0.0001825 0.9954218 0.7014391 -4.9296E-06 -8.8264E-05
Network 25 -9.0243E-05 0.9962080 0.6597236 -9.8350E-05 0.9962080 0.6597236 -8.1138E-06 -9.2735E-05
Network 26 -0.00010565 0.9963419 0.5567477 -0.0001057 0.9963419 0.5567477 -8.6620E-08 -0.0001988
Network 27 -0.00013752 0.9963304 0.5739437 -0.0006362 0.9812211 0.5515613 -0.0004987 -9.2304E-05
Network 28 -0.00014031 0.9965859 0.4848469 -0.0001425 0.9965859 0.4848469 -2.2192E-06 -8.2974E-05
Network 29 -1.4728E-05 0.9954775 0.6281135 -3.8916E-05 0.9914814 0.6913431 -2.4187E-05 -6.0662E-05
Network 30 -1.6862E-05 0.9959182 0.7100300 -1.5761E-05 0.9959182 0.7100300 1.1014E-06 -5.2846E-05
Network 31 -7.7637E-05 0.9958404 0.7261447 -8.2723E-05 0.9958404 0.7261447 -5.0856E-06 -0.0008364
Network 32 -0.00012625 0.9970751 0.7077546 -0.0003368 0.9914971 0.5301142 -0.0002106 -8.2491E-05
Network 33 -0.00020005 0.9952908 0.7011493 -0.0002067 0.9952908 0.7011493 -6.6560E-06 -4.8477E-05
Network 34 -8.6289E-05 0.9948652 0.6650557 -8.9856E-05 0.9948652 0.6650557 -3.5674E-06 -0.0001297
Network 35 -6.7601E-05 0.9958138 0.6994768 -7.8575E-05 0.9958138 0.6994768 -1.0975E-05 -9.1828E-05
Network 36 -0.00015799 0.9957643 0.6369897 -0.0005155 0.9853156 0.6439727 -0.0003575 -8.8020E-05
Network 37 -0.00017561 0.9971423 0.6682034 -0.0009563 0.9821507 0.6971489 -0.0007807 -9.1885E-05
Network 38 -2.3151E-05 0.9959931 0.6664640 -0.0001179 0.9721217 0.8268187 -9.4789E-05 -7.0347E-05
Network 39 -0.00022063 0.9945447 0.3771074 -0.0002220 0.9945447 0.3771074 -1.3660E-06 -4.2762E-05
Network 40 -8.7308E-05 0.9961813 0.6691524 -9.192E-05 0.9961813 0.6691524 -4.6139E-06 -5.1682E-05

Fig. 1. Community Size Fig. 2. Overlapping Rate

node is spanned into is lower. This means that each node participates in fewer
overlapping communities using our algorithm as compared to DSHRINK.

6 Conclusions

In this paper, we presented a community detection algorithm originating from
DSHRINK which detects overlapping communities in networks and expanded
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it further to find maximal cliques. Our maximal approach has successfully im-
proved the results generated from DSHRINK. Our algorithm gives results with
consistently better modularity gain, which shows that the community set pro-
duced by Maximal-DSHRINK has better stability as compared to DSHRINK.
Moreover, the community evaluation methods we applied have illustrated the
effectiveness of our approach. One area of our future work is to optimize the
cliques by decomposing the less stable cliques and ranking the communities in
a particular order. Although the execution time needs not be maximized, fur-
ther improvement in our algorithm’s speed would be beneficial for community
detection in massive networks.
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Abstract. This paper introduces the concept of Vertex Unique Labelled
Subgraph Mining (VULSM), a specialised form of subgraph mining. A
VULS is a subgraph defined by a set of edge labels that has a unique ver-
tex labelling associated with it. A minimal VULS is then a VULS which
is not a supergraph of any other VULS. The application considered in
this paper, for evaluation purposes, is error prediction with respect to
sheet metal forming. The minimum BFS Right-most Extension Unique
Subgraph Mining (Min-BFS-REUSM) algorithm is introduced for iden-
tifying minimal VULS using a Breadth First Search(BFS) strategy.

Keywords: Data mining, Graph mining.

1 Introduction

This paper introduces the concept of Vertex Unique Labelled Subgraph Mining
(VULSM), a form of graph mining. Given a subgraph g in some input graph
G, if we consider only the structure and edge labelling there may be a number
of different compatible vertex labelings with respect to G. A Vertex Unique
Labelled Subgraph (VULS) is then a subgraph with a specific structure and edge
labelling that has a unique vertex labelling associated with it. A minimal VULS
is a VULS that does not contain any subgraphs that are also VULSs. This paper
is directed at finding all minimal VULS in a single input graph. To this end the
Minimal Breadth First Search Right-most Extension Unique Subgraph Mining
(Min-BFS-REUSM) Algorithm is proposed. The distinction between VULSM
and more traditional forms of subgraph mining [4,10,5,12] is that we are not
interested in frequently occurring subgraphs but VULS. Broadly the proposed
algorithm operates using a level-by-level approach. On each iteration a set of
k-edge subgraphs that exist in G are identified (where k is also the iteration
number). Any VULS identified in this set of subgraphs are stored and “removed”
from G (thus G gets smaller and smaller). The process continues until G is
empty or some user defined maximum size of VULS has been reached. subgraph
generation is conducted using Right Most Extension [1] as popularised in the
context of the gSpan transaction graph mining algorithm [11]. VULSM may be
applied to various types of graph; in this paper we focus on undirected graphs.
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The application domain used to illustrate the work is error prediction in sheet
metal forming. More specifically error prediction in Asymmetric Incremental
Sheet Forming (AISF) [2,3,6,7,8]. An issue with sheet metal forming processes,
such as AISF, is that distortions are introduced as a result of the application of
the process. These distortions are non-uniform across the “shape” but tend to
be related to local geometries. The idea is that the geometry of the piece to be
manufactured can be represented as a grid, each grid centre point being defined
using a X , Y , Z coordinate scheme. The entire grid can then be conceptualised
as a graph such that each vertex represents a grid point and each vertex (except
at the edges and corners) is connected to its four neighbours by a sequence of
edges, which in turn can be labelled with “slope” values. Given an appropriate
training set, each vertex can then be labelled with an error (distortion) value.

An example grid and corresponding graph are given in Figure 1. The grid
comprises six grid squares. Each grid centre is defined by a X , Y , Z coordinate
tuple (the number in each grid is Z value). Each grid centre point is associated
with a vertex within the graph. The difference in Z value between each two
neighbours in the grid is the “slope”. The edges are labelled with these “slope”
values. Each vertex will be labelled with an error values (e1 to e3 in the figure)
describing the distortion experienced at that vertex as obtained from a “training
set” (derived from “before and after” grid data). Identified VULS will describe
local geometries each with a particular associated error pattern. This knowl-
edge can then be used to predict errors in “unseen” grids so that some form of
mitigating error correction can be applied.

4 2 1

4 4 3

e1 e2 e1

e3 e3 e2

2 1

0 1

0 2 2

Fig. 1. Grid representation (left) and corresponding graph/lattice (right)

2 Formalism

This section presents a formal definition of the concept of a minimal VULS. A
labelled graph G comprises a set of n vertices V , such that V = {v1, v2, . . . , vn};
and a set of m edges E, such that E = {e1, e2, . . . , em}. The vertices are labelled
according to a set of p vertex labels LV = {lv1 , lv2 , . . . , lvp}. The edges are
labelled according to a set of q edge labels LE = {le1 , le2 , . . . , leq}.

Alternatively we can think of a graph G as consisting of a set of k one-edge
subgraphs: G = {P1, P2, . . . , Pk}, where Pi is pair of vertices linked by an edge,
thus Pi = 〈va, vb〉 where va, vb ∈ V ). The size of a graph G (|G|) can thus be
defined in terms of its one edge subgraphs, we refer to 1-edge, 2-edge and k-edge
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subgraphs. For undirected graphs, the edge 〈va, vb〉 is equivalent to 〈vb, va〉. We
use the notation Pi.va and Pi.vb to indicate the vertices va and vb associated
with a particular vertex pair Pi. We indicate the sets of labels which might be
associated with Pi.va and Pi.vb using the notation Pi.va.label and Pi.vb.label
(Pi.va.label, Pi.vb.label ∈ LV ). We indicate the edge label associated with Pi

using the notaion Pi.label (Pi.label ∈ LE). We also assume that G is connected
and labelled.

We use the same notation with respect to any subgraph Gsub of G (Gsub ⊆ G).
Given some edge only labelled subgraph (Gsubedgelab) of some fully labelled graph
G (Gsubedgelab ⊆ G) comprised of k edges, there may be many different vertex
labelings that can be associated with this subgraph. We thus define a function,
getV ertexLabels, that returns the potential list of labels S that can be assigned
to the vertices in Gsubedgelab according to G:

getV ertexLabels(Gsubedgelab) → S

where S = [[Lva1 , Lvb1 ], [Lva2 , Lvb2 ], . . . , [Lvak
, Lvbk ]] (where Lvi is the set of la-

bels associate with vertex vi and Lvi ⊆ Lv). Note that each element in S com-
prises two sub-sets of labels associated respectively with the start and end vertex
for each edge in Gsubedgelab, and that there is a one to one correspondence be-
tween each element (pair of label sets) in S with each element in Gsubedgelab ,
hence they are both of the same size k (recall that k is the number of edges).

According to the above, the formal definition of the concept of a VULS is as
follows. Given: (i) a k-edge edge labelled subgraphGsubedgelab = {P1, P2, . . . , Pk}
(Gsubedgelab ⊆ G), (ii) a list of labels that may be associated with the vertices in
Gsubedgelab , S = [[Lva1 , Lvb1 ], [Lva2 , Lvb2 ], . . . , [Lvak

, Lvbk ]]. If ∀[Li, Lj] ∈ S, |Li| =
1, |Lj| = 1 then Gsubedgelab is a k-edge VULS with respect to G. A VULS φi is
minimal if there is no subgraph of φi that is also a VULS.

3 The Min-BFS-REUSM Algorithm

Min-BFS-REUSM algorithum is presented in this section. Recall that REUSM
stands for Right-most Extension Unique Subgraph Mining. Right-most extension
is the adopted iterative subgraph generation strategy. We use the prefix “Min”
to indicate that this variation is for identifying all minimal VULS and “BFS” to
indicate that it features a Breadth-First Search strategy.

The pseudo code for the Min-BFS-REUSM algorithum is presented in Al-
gorithms 1 and 2. Algorithm 1 presents the high level control structure while
Algorithm 2 the detail of determining whether a specific subgraph is a VULS or
not. Considering Algorithm 1 first, the algorithm comprises one main procedure
(main) and a sub-procedure (genMinV ULS). The algorithm commences with
an input graph Ginput and a parameter max that defines the maximum size for
a desired minimal VULS. If we do not limit the size of the searched-for VULSs
the entire input graph may ultimately be identified as a minimal VULS which
in the context of the target application will not be very useful. The output is a
set of minimal VULS R. Note that all graphs are encoded using Minimal Depth
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Algorithm 1. Min-BFS-REUSM

1: Input:
2: Ginput = Input graph
3: max = Max subgraph size
4: Output:
5: R = Set of minimal VULS
6: Global variables:
7: G = Ginput (Part of input graph not covered by minimal VULS)
8: coverage = 0
9: Tk = the set of k-edge subgraphs which are not VULS

10: procedure main(Ginput, max)
11: k = 1
12: Gk = the set of k-edge subgraphs in G
13: R = ∅
14: while (k < max) do
15: R = R ∪ genMinV ULS(k, Gk)
16: Gk+1 = Set of (k + 1)-edge subgraphs in G (found by applying right most

extension to each subgraph in Tk)
17: k = k + 1
18: end while
19: end procedure

20: procedure genMinV ULS(k, Gk)
21: Tk = ∅
22: for all g ∈ Gk do
23: if isaV ULS(g,Gk) == true (Algorithm 2) then
24: R = R ∪ g
25: coverage = compute coverage using Equ. 1
26: if coverage == 100% then
27: exit
28: end if
29: G = G − g
30: else
31: Tk = Tk ∪ g
32: end if
33: end for
34: if Tk == ∅ then
35: exit
36: end if
37: return R
38: end procedure

First Search (DFS) lexicographical ordering (as used in gSpan [11]). The global
variable G (line 7 in Algorithm 1) is the part of Ginput not covered by any of the
identified minimal VULS so far, meanwhile, the global variable coverage (line 8)
is employed to determine whether Ginput is covered completely by the minimal
VULS identified so far (if so the algorithm stops). The coverage is the percentage
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of the number of vertices covered by the detected minimal VULS so far com-
pared to the total number of vertices in the input graph Ginput (Equation 1)
(with respect to the sheet steel forming example application used as a focus for
the work described in this paper, see Section 4, high coverage is desirable). The
global variable Tk (line 9) is the set of k-edge non-VULS which will be extended
further during the procedure to form (k + 1)-edge candidate VULS.

coverage =
num. vertices covered by V ULS

num. vertices in Ginput
× 100 (1)

At the start of the procedure, G will be equal to Ginput and coverage will be 0.
We proceed in a breadth first manner starting with one-edge subgraphs (k = 1),
then two edge subgraphs (k = 2), and so on. We continue in this manner until
either: (i) k = max or (ii) the coverage is equal to 100%. On each iteration the
genMinV ULS procedure is called (line 15).

The genMinV ULS procedure takes as input the current graph size k (where
k is the number of edges) and the set of k-edge subgraphs contained in the set G
as pruned so far. The procedure returns the set of k-edge VULS. On each call the
procedure genMinV ULS loops through the input set of k-edge subgraphs and
(line 23) for each subgraph g determines whether it is a VULS or not by calling
Algorithm 2 which is described in detail below. If g is a VULS it is added to the
set R (line 24). We then (line 25) calculate the coverage so far, if this has reached
100% we have found the complete set of minimal VULS and we exit (line 27).
Note that if coverage is equal to 100% the input set G, as pruned so far, will be
empty. Otherwise, if the coverage is not 100%, we continue processing and (line
29) remove g from the global set G. If g is not a VULS we add it to Tk (line 31),
Tk is the set of k-edge subgraphs which we will eventually be extended to form
Gk+1, the set of (k + 1)-edge subgraphs, ready for the next level of processing.
Eventually all g in Gk will have been processed. If, at this stage Tk is empty
there will be no more subgraphs that can be generated and the process will exit
(line 35). Otherwise control will return to the main procedure and the set of
(k + 1)-edge subgraphs will be generated from Tk (the set of k-edge subgraphs
that have not been found to be VULS) using a right most extension technique
coupled with isomorphism checking to establish which (k + 1)-edge subgraphs
are contained in G as processed so far (line 16). This part of the algorithm is
not presented here because it is similar to that found in traditional subgraph
mining algorithms, for example gSpan [11]. The generated minimal VULS set R
is then returned (line 37) back to the main process ready for the next iteration
(unless the maximum value for k has been reached).

Algorithm 2 presents the pseudo code for identifying whether a given subgraph
g is a VULS or not with respect to the current set of k-edge subgraphs Gk from
which g has been removed. The algorithm returns true if g is a VULS and false
otherwise. The process commences (line 8) by generating the potential list of
vertex labels S that can be matched to g according to the content of Gk (see
previous section for detail). The list S is then processed and tested. If there exists
a vertex pair whose possible labelling is not unique (has more than one possible
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labelling that can be associated with it) g is not a VULS and the procedure
returns false, otherwise g is a VULS and the procedure returns true.

Algorithm 2. Identify VULS

1: Input:
2: g = a single k-edge subgraph (potential VULS)
3: Gk = a set of k-edge subgraphs to be compared with g
4: Output:
5: true if g is a VULS, false otherwise

6: procedure isaV ULS(g,Gk)
7: isV ULS = true
8: S = the list of potential vertex labels that may be assigned to g
9: for all [Li, Lj ] ∈ S do
10: if either |Li| �= 1 or |Lj | �= 1 then
11: isV ULS = false
12: break
13: end if
14: end for
15: return isV ULS
16: end procedure

Thus, as the process proceeds, the input graph G will be continuously pruned
with respect to identified VULS. As a result G can become disconnected, any
disconnected sub graph of size less than the current value of k cannot therefore
contain any k-edge VULS. Although not shown in Algorithm 1 any disconnected
subgraphs of size less than k can be discounted therefore speeding up the overall
process.

4 Experiments and Performance Study

This section describes the evaluation of the proposed Min-BFS-REUSM algo-
rithm. For experimental purposes the algorithm was implemented using the
JAVA programming language; experiments were using a 2.7 GHz Intel Core i5
with 4 GB 1333MHz DDR3 memory, running OS X 10.8.1 (12B19). The reported
experiments were all conducted using real data taken from an AISF sheet metal
forming application described in the introduction to this paper, more specifi-
cally the fabrication of flat topped pyramid shapes made out of sheet steel. This
shape was chosen as it is frequently used as a benchmark shape for conducting
experiments in the context of AISF [9].

4.1 Experimental Performance Measurement

Three performance measures were used to analyse the effectiveness of the pro-
posed Min-BFS-REUSM algorithm : (i) run time (seconds), (ii) total number
of VULS identified, (iii) coverage (%). With respect to the sheet steel forming
example application high coverage values were desirable.
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4.2 Data Sets

The data sets used for the evaluation consisted of before and after “coordinate
clouds”; the first generated by a CAD system and the second obtained using
optical measuring techniques after application of an AISF process.As noted in
the introduction, each vertex was labelled with an error value while the edges
were labelled according to the absolute difference in z of the two end vertices
(the “slope”). Furthermore, the vertex and edge labels were discretised so that
they were represented by nominal values (otherwise every edge pair was likely
to be unique). In total ten data sets (graphs) were generated, numbered AISF1
to AISF10, using three different grid sizes (6 × 6, 10 × 10 and 21 × 21 which
correspond to 36, 100, 441 as number of vertices translated to resulting graph
respectively), and different numbers of edge and vertex labels (from 2 to 4 and
2 to 3 respectively). Some statistics concerning the data sets are presented in
Table 1. Thus the graph edge labels describe the geometry of the shape to be
manufactured while each vertex label describes the error occurring at that loca-
tion between the desired shape and the actual shape produced. Any discovered
VULS will then describe a particular geometry with a particular error pattern
associated with it.

Table 1. Summary of AISF graph sets

graph # # edge # vertex graph # # edge # vertex
set vertices labels labels set vertices labels labels

AISF1 36 3 2 AISF6 100 2 3
AISF2 36 2 2 AISF7 441 3 2
AISF3 36 2 3 AISF8 441 2 2
AISF4 100 3 2 AISF9 441 2 3
AISF5 100 2 2 AISF10 441 4 2

4.3 Run Time Analysis

The results obtained for the run-time experiments are presented in Table 2 with
respect to a range of max values. From the table the following can be noted.
Firstly, as might be expected, the run time increases as the value of max in-
creases, although the run time does not increase dramatically. Similarly, again
as might be expected, it takes longer to process the larger graph sets than the
smaller graph sets. As can be confirmed by inspection of Table 4, with respect to
AISF1, AISF2, AISF3 and AISF5, Min-BFS-REUSM stops at k = 4, 6, 5 and 6
respectively. This is because at these values of k the coverage reaches 100% and
the process is complete. Thus, in these cases the timings are almost the same for
values of max greater than the k value when maximum coverage was reached.
The reason for OME (Out of Memory Error) in the case of AISF8 and AISF9 is
discussed in sub-section 4.5 below.
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Table 2. Run time (seconds) comparison for a range of max values

graph max Value graph max Value
set 3 4 5 6 7 8 set 3 4 5 6 7 8

AISF1 0.07 0.12 0.13 0.13 0.13 0.13 AISF6 0.17 0.29 0.51 0.68 0.77 0.97
AISF2 0.08 0.10 0.16 0.17 0.16 0.21 AISF7 0.33 0.42 0.61 0.65 0.73 0.87
AISF3 0.09 0.26 0.34 0.37 0.39 0.41 AISF8 0.31 0.41 0.70 0.81 1.69 OME
AISF4 0.16 0.19 0.27 0.29 0.32 0.47 AISF9 0.33 0.56 0.92 1.34 2.16 OME
AISF5 0.14 0.23 0.23 0.28 0.35 0.35 AISF10 0.32 0.45 0.60 0.74 0.88 1.43

4.4 Total Number of Discovered Minimal VULS

Table 3 presents the total number of discovered minimal VULS using Min-BFS-
RESUM. From Table 3 it can be observed, as might be anticipated, that as the
max value increases the total number of discovered minimal VULS increases. As
already noted above, for AISF1, AISF2, AISF3 and AISF5, the coverage reaches
100% when k = 4, 6, 5 and 6 respectively at which point the algorithm stops.
This is why in these cases the total number of identified VULS remains static
at 24, 37, 69 and 79 for max values in excess of k.

Table 3. Total number of minimal VULS discovered for a range of max values

graph max Value graph max Value
set 3 4 5 6 7 8 set 3 4 5 6 7 8

AISF1 9 24 24 24 24 24 AISF6 6 22 94 334 356 395
AISF2 7 13 29 37 37 37 AISF7 11 27 100 226 318 369
AISF3 1 11 69 69 69 69 AISF8 4 22 103 267 717 OME
AISF4 5 16 48 75 93 104 AISF9 4 26 125 272 401 OME
AISF5 13 32 51 79 79 79 AISF10 26 70 96 136 193 279

4.5 Coverage

A comparison of coverage is presented in Table 4. As was to be expected, as max
increases the coverage rate increases. It should be noted that in some cases the
coverage will not reach 100% because no more minimal VULS can be discovered.
It is interesting to note, with respect to Table 4 that for AISF1 to AISF7 100%
coverage is reached (more or less). It is anticipated that if some efficiency gains
can be realised 100% coverage would also be achieved for AISF8 to AISF10. This
is an excellent result with respect to AISF sheet metal forming application used
as a focus with respect to the evaluation presented in this section.

In the context of AISF8 and AISF9 the OME occurs because: (i) these graphs
are much larger than the graphs for AISF1 to AISF6, and (ii) fewer VULS
were discovered during early stages of the Min-BFS-REUSM process. AISF7,
AISF8, AISF9 and AISF10 were generated from the same 21× 21 grid data set
as described in subsection 4.2 above, however discretised in different manners
using different numbers of edge and vertex labels (as shown in table 1). As k
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Table 4. Coverage (%) for a range of max values

graph max Value graph max Value
set 3 4 5 6 7 8 set 3 4 5 6 7 8

AISF1 52.8 100.0 100.0 100.0 100.0 100.0 AISF6 19.0 40.0 67.0 85.0 99.0 99.0
AISF2 86.1 91.7 97.2 100.0 100.0 100.0 AISF7 64.2 92.1 93.0 99.6 99.8 99.8
AISF3 13.9 47.2 100.0 100.0 100.0 100.0 AISF8 24.9 70.5 71.7 71.7 71.7 OME
AISF4 59.0 87.0 98.0 99.0 99.0 99.0 AISF9 7.0 27.7 58.7 69.8 76.0 OME
AISF5 80.0 81.0 81.0 100.0 100.0 100.0 AISF10 76.4 86.9 87.3 87.3 87.3 88.2

increases the rate at which the copy of the input graph G is pruned is slower for
AISF8 and AISF9 than for AISF7 and AISF10 (as can be observed from Table
4 ). For example for max = 3 many fewer k = 1, 2 and 3-edge minimal VULS
are discovered with respect to AISF8 and AISF9 than for AISF7 and AISF10.
Thus for these two data sets the size of G is not significantly reduced during
the early stages of Min-BFS-REUSM and hence the memory error occurs. This
observation can be validated with reference to Table 5 which shows the number
of vertices and edges contained in the AISF7, AISF8, AISF9 and AISF10 data
sets before, during and after the application of the process of Min-BFS-REUSM
when max = 8. From the table it can clearly be seen that many more edges
and vertices are removed from G with respect to AISF7 and AISF10 than with
respect to AISF8 and AISF9.

Table 5. Summary of AISF7 to AISF10 graph sets before, during and after application
of the Min-BFS-REUSM process when max = 8

Prior to On Removed Prior to On Removed
graph start completion graph start completion

set # # # # # # set # # # # # #
verts. edges verts. edges verts. edges verts. edges verts. edges verts. edges

AISF7 441 840 291 214 150 626 AISF9 441 840 355 392 86 448
AISF8 441 840 372 460 69 380 AISF10 441 840 335 341 106 499

5 Conclusions and Further Study

In this paper we have introduced the concept of VULSM which, as illustrated,
has application with respect to error prediction in sheet metal forming. We have
also introduced the Min-BFS-RESUM algorithm an algorithm for identifying
all minimal VULS in a given input graph. The significance of finding minimal
VULS is that they can be used to build larger VULS, it is thus computationally
efficient to find only minimal VULS than finding all VULS. The reported ex-
perimental results also indicate that our algorithm can successfully identify all
minimal VULS in reasonable time and with (in some cases) excellent coverage
(an important requirement in the context of the AISF sheet metal forming ap-
plication used as a focus for the work). Having established a “proof of concept”
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there are many interesting research problems related to VULSM that can now
be pursued. For instance Min-BFS-REUSM can be modified to identify VULS
in directed graphs or trees. The concept of Frequent VULSM (FVULSM) may
be realised by combining the techniques of FSM (Frequent Subgraph Mining)
and VULSM.

Acknowledgements. The research leading to the results presented in this pa-
per has received funding from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement number 266208.
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Abstract. In this paper we present a hybrid graph-based concept dis-
covery method. Concept rule discovery aims at finding the definition of
a specific concept in terms of relations involving background knowledge.
The proposed method is a hybrid approach that combines path finding-
based and substructure-based approaches. It distinguishes from other
state of the art graph-based approaches in such a way that the data is
initially stored in a relational database, and the concept descriptors are
induced while the graph is constructed. In this approach, in addition to
being the representation framework, the graph structure is also utilized
to guide the concept induction process. A set of experiments is conducted
on data sets that belong to different learning problems. The results show
that the proposed approach has promising results in comparison to state
of the art methods in terms of running time and accuracy.

Keywords: Concept Discovery, Graph, Hybrid, Path, Substructure.

1 Introduction

Concept is defined as a set of frequent patterns that are embedded in the features
of the concept instances in the form of relations among objects [1]. Concept
discovery is the problem of learning definitions of a specific relation, called target
relation, in terms of other relations provided as background knowledge [2].

The concept discovery problem has extensively been studied by the ILP [3]
community with successful applications in several domains such as bioinformat-
ics [4], engineering [5], and environmental sciences [6]. Among several problems
in concept discovery [7], a common problem faced by ILP-based concept dis-
covery systems is the so called local plateau problem [8]. In such cases classical
operators of ILP that refine concept descriptors by one literal at a time are insuf-
ficient to improve the quality of the concept descriptors and the systems perform
a blind search. To the best of our knowledge, graph-based approaches were first
introduced to the concept discovery problem to solve this issue by Richards and
Mooney [9]. In their approach the refinement operators of ILP are upgraded to
refine the concept descriptors by a set of literals such that arguments of the
literals form a path.
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Graph-based concept discovery methods can be classified into two main cate-
gories: substructure-based approaches and path finding-based approaches.
Substructure-based approaches [10] rely on the idea that if there exists a concept
in a graph then it should appear as frequent substructures. Such systems employ
expensive algorithms such as graph isomorphism to find similar substructures.
The motivation behind the path finding-based approaches [11] is the assump-
tion that a concept should appear as frequent, finite length paths that connect
some arguments of positive target instances. Such approaches need to employ
advanced indexing mechanisms [12] to keep track of the paths.

In this work we propose a hybrid framework for graph-based concept dis-
covery. We employ directed, labeled graph where nodes represent arguments of
the relations, and edges connect those nodes that form some background facts.
The proposed approach inputs the data in relational format, generates a graph,
extracts concept definitions, and outputs concept descriptors in the form of con-
junctions of relations. Similar to substructure-based approaches, it groups similar
arguments and represents them as a single node. Similar to path finding-based
approaches, it infers the concept descriptors by finding paths that connect ar-
guments of the target instances. Different than substructure-based approaches,
the proposed approach does not employ graph isomorphism algorithms, which
are known to be NP, to group similar nodes but rather constructs the graph in
a compressed form by executing SQL queries on the input data. Different than
path finding-based approaches, the proposed method does not search for paths
within the graph, but infers such paths while constructing the graph. The pro-
posed method does not need to employ advanced indexing mechanism to store
paths either, but keeps such information within the nodes. The current imple-
mentation of the proposed method is limited to binary Head Output Connected
(HOC) class of learning problems [13]. HOC is the class of predicates that have
at least one output variable in the target concept.

The rest of the paper is organized as follows: In Section 2 we provide a brief
background on graph-based concept discovery and HOC class of problems. In
Section 3 we present the proposed method and list its distinguishing properties.
In Section 4, we present the experimental results. Section 5 concludes the paper.

2 Background

Graph-based concept discovery systems can be classified as substructure-based
approaches and path finding-based approaches. Systems that fall into the first
group repeatedly look for similar substructures that appear within the graph,
and replace these substructures with a single node. Such systems assume that
the merged structures represent the concepts. Path fining-based approaches seek
for paths that connect arguments of positive target instances and output such
paths as concept descriptors.
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SubdueCL [14] is a substructure-based concept discovery system. In Sub-
dueCL data is represented as a directed, labeled graph where nodes store ar-
guments of the facts, and labeled edges are the relation names connecting the
arguments of the facts. In SubdueCL, substructures are evaluated according to
the number of positive target instances and negative target instances they ex-
plain.

Graph Based Induction (GBI) [15] is another concept learning system based on
substructure discovery. It employs colored digraph as the representation frame-
work where colors attached to the nodes represent the attributes of the facts.
GBI examines each connected pair of nodes, and merges the frequent typical
ones. The final merged substructures are labeled as concepts. GBI is further
extended by Matsuda et al. [16] to handle self loops.

Relational Pathfinding [9] is one of the earliest path finding-based approaches
which is proposed to overcome the local plateau problem of ILP-based concept
discovery systems. In Relational Pathfinding, similar to SubdueCL, nodes are
fact arguments. Edges are labeled after the relation names and connect such
pairs of nodes that they form a fact. It employs bidirectional breadth first search
to discover the concept descriptors.

Mode Directed Path Finding [17] extends Relational Pathfinding algorithm for
saturated bottom clauses. In Mode Directed Path Finding, the bottom clauses
are transformed into hypergraphs and concept descriptors are induced by travers-
ing the hypergraph. The approach also employs mode declarations to guide the
search and to avoid generation of illegal concept descriptors.

Relational Paths Based Learning (RPBL) [11] is yet an other concept dis-
covery system based on path finding. In RPBL, nodes represent binary facts,
and edges connect nodes that share some arguments in common. Extensions
to RPBL are proposed to deal with recursive concept definition learning, and
to incorporate domain theories in [18]. To learn recursive concept descriptors,
extended version of RPBL treats the target instances also as background knowl-
edge. To apply domain theories into the learning process, they extend the graph
in accordance with domain theories, i.e. by connecting nodes that hold with the
domain theories.

Head Output Connected (HOC) is a class of predicates that have at least
one output variable in the target concept. Such learning problems include list
manipulation and software verification problems. Although HOC is, seemingly,
a special class of learning problem, it has intensively been studied within the
path finding-based concept learning community [9,13,17].

The proposed approach is similar to substructure-based approaches as it works
on a compressed graph. Different than such studies, the graph is not compressed
to find concept descriptors but to provide a compact representation of the data.
Similar to path finding-based approaches it represents the concept descriptors
as a path that connects arguments of some target instances. Different than such
studies it does not look for paths on a already built graph, but discovers such
paths while constructing the graph.
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3 The Proposed Approach

In this section we firstly introduce our data representation model. Next, we
present the hybrid graph-based concept discovery process, and lastly we list the
distinguishing properties of the proposed method from state of the art methods.

We employ the elti data set given in Table 1 as a running example in this
section. In the data set, predicate e stands for the elti relation, h stands for the
husband relation, w stands for the wife relation, and b stands for the brother
relation. All arguments are of type person. The elti relation is the concept to be
learned, and husband, brother, and wife are the background relations. elti is a
kinship relation in Turkish. Two people are called elti if they are wifes of two
brothers.

Table 1. The elti data set

Target Instances Backgorund data

t1 :e(cemile, ayse) b1 : b(mehmet, ismail) b2 : b(mehmet, ali) b3 : b(sadullah, yildirim)
t2 :e(cemile, ayten) b4 : h(sadullah, nalan) b5 : h(ali, ayse) b6 : h(yildirim, bedriye)
t3 :e(nalan, bedriye) b7 : h(mehmet, cemile) b8 : h(ismail, ayten) b9 : w(bedriye, yildirim)

b10 : w(ayten, ismail) b11 : w(ayse, ali) b12 : w(nalan, sadullah)
b13 : w(cemile, mehmet)

3.1 Data Representation

We employ directed, labeled, acyclic graph as the representation framework.
Different from conventional graph structures, in our data representation, a node
holds a set of constants from the background knowledge and an edge connects a
pair of such nodes. Edges are labeled with the background relation names.

In our model we define three types of nodes: the source node, s, the target
node, t, and intermediate nodes, v. Note that in our study target instances are
in binary form, node s stores the the first argument of the target instances and
node t stores the second argument of the target instances.

3.2 The Proposed Method

The proposed approach inputs a set of target instances, a set of background data;
minimum support, minimum confidence, and maximum rule length parameters.
The target instances and the background data are initially stored in a database.

In the proposed approach concept descriptors are evaluated and pruned based
on their support and confidence values. Support of a concept descriptor is the
ratio of the number of target instances captured by the concept descriptor over
total number of the target instances. Confidence refers to the number of target
instances that correctly hold for the rule divided by the number of instances
that hold for the body of the rule. Maximum rule length parameter limits the
length of the concept descriptors. Concept descriptors that do not qualify the
minimum support value are pruned. On the other hand, concept descriptors that
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qualify the minimum support but fail with the minimum confidence threshold
are further refined in the next iteration. If they qualify the both thresholds, then
they are added to the solution set.

The method considers all of the uncovered target instances together so that it
avoids the target instance ordering problem [19]. The grouping of the facts also
allows embodying the generalization step of concept learning process into the
graph-based concept induction process - on the contrary to many path-finding
based systems where the generalization step is performed as a post-processing
step. The proposed approach utilizes absorption operator of inverse resolution
for generalization of concept instances.

Figure 1 illustrates the execution of the proposed method for the elti data
set. The proposed method is composed of seven main components:
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Fig. 1. Execution of the Algorithm

1. Initialization: In this step the source and the target nodes namely s and
t, respectively, are created. This very initial graph is a disconnected graph
with two nodes where vertex s stores the values of the first argument of the
target instances, and the vertex t stores the values of the second argument
of the target relations, Figure 1-a.

2. Expansion: In this step graph is expanded by adding nodes that contain
facts related to the constants stored in tail nodes. To find such facts, con-
stants in the tail nodes are sought in relations that do not appear as labels
on their incoming edges as such expansions will create loops. As an example
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in Figure 1-c we do not extend vertex s11 with the husband and wife rela-
tions but only with the brother relation. Each newly node stores the path
from the root node to itself. To find the content of s21 the following query
is executed:
SELECT h.arg2 from husband h WHERE h.arg1 = ”Mehmet” or h.arg1 = ”Sadullah”

3. Merge: In this step nodes that store the same content are represented as
a single node and edges are rearranged accordingly. To realize this, content
of nodes are stored in hash tables, and a hash based search is employed to
find nodes that have the same content. The graph in Figure 1-b is changed
into 1-c once this step is executed.

4. Evaluation and pruning: In this step support and confidence values
of the current concept descriptors are calculated. To calculate these values,
current concept descriptors are translated into SQL queries and these queries
are run against the database. Please note that these concept descriptors are
indeed the paths that connect the tail nodes to the source node, and this
information is stored within each tail node. In Table 2 we provide support
and confidence queries for elti(A, B):- husband(B, A).

Table 2. Example Support and Confidence Queries

Support = C1
C2

C1:SELECT COUNT DISTINCT (e.arg1, e.arg2) FROM elti e, husband h
WHERE e.arg1 = h.arg2 AND e.arg2 = h.arg1
C2:SELECT COUNT DISTINCT(e.arg1, e.arg2) FROM elti e;

Confidence = C3
C4

C3:SELECT COUNT DISTINCT(h.arg1, h.arg2) FROM elti e, husband h
WHERE e.arg1 = h.arg2 AND e.arg2 = h.arg1
C4:SELECT COUNT DISTINCT(h.arg1, h.arg2) FROM husband h

5. Check for intersection: To find intersections, tail nodes and their heads
of the subgraph with the root node s are compared to the tail nodes and
their heads of the subgraph with the root node t. An intersection in a com-
parison means that such pairs connect the two subgraphs, hence form a path
from one argument of the target relation to the other. To find the paths that
connect nodes s and t, the path values of the intersecting nodes store are
merged. In Figure 1-d such an intersection exists and the formed paths are:

p1: e(A,B), w(A,C), b(C,D), b(C,D), h(C,B), e(A,B)
p2: e(A,B), h(C,A), b(C,D), b(C,D), h(C, B), e(A,B)
p3: e(A,B), w(A,C), b(C,D), b(C,D), w(C,B), e(A,B)
p4: e(A,B), h(C,A), b(C,D), b(C,D), w(C,B), e(A,B)

In the intersection step we allow partial matches, i. e. two tail nodes need
not necessarily contain the same constants. By this way we can discover
concept descriptors in noisy data. Similar mechanisms are also employed
in substructure-based approaches, i. e. matches with partial distortions are
allowed [20]. In this step the concept discovery process terminates if the
length of the current paths is larger than �maximum rule length/2� and no
intersection is found.

6. Update path variables: In this step the variables of concept descrip-
tors are updated to be consistent with the constant values they hold for.
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For this purpose we build a new substitution map based on the constants.
As an example in partial path e(A,B), w(A,C), b(C,D) D = {Ismail, Ali,
Yildirim}, while in the same constant set is represented with C in the partial
path b(C,D), h(C,B), e(A,B). To build the final concept descriptors repeat-
ing literals are removed from the paths, and variable names are updated to
be consistent with each other. The candidate solution set will be:

c1: e(A,B):-h(C,A), b(C,D), h(D,B)
c2: e(A,B):-h(C,A), b(C,D), w(B,D)
c3: e(A,B):-w(A,C), b(C,D), h(D,B)
c4: e(A,B):-w(A,C), b(C,D), w(B,D)

In Figure 1-e we show the traversals of the solution clauses. Once final can-
didate solution set is constructed, the candidate solution clauses are pruned
based on their support and confidence values. The proposed method can
discover multiple concept descriptors at a time, to choose the best concept
descriptor f-metric [21] is employed. In this step the concept discovery pro-
cess terminates if the newly discovered concept descriptors have already been
discovered in the previous iterations.

7. Covering: In this step target instances explained by the solution clauses are
marked as covered. If the number of the remaining uncovered target instances
is below minimum support×#target instances the concept induction pro-
cess terminates, else restarts with the initialization step.

3.3 Distinguishing Features of the Proposed Approach

The proposed method distinguishes from such studies in the following ways:

(a) While inducing the concept descriptors RPBL and Relational Pathfinding
approaches select a target instance from the uncovered target instance set
and build concept descriptors accordingly. The selection order of the target
instances may change the resulting hypothesis set. The proposed method
considers all of the target instances, hence avoids such problems and improves
rule quality.

(b) Path finding-based methods proposed in [13,17] require mode declarations.
Although mode declarations provide strong pruning mechanisms, they are
generally hard to define. The proposed method does not require any mode
declarations, but instead utilizes the graph structure to avoid creation of
candidate concept descriptors with unbounded variables.

(c) The proposed method also differs from the state of the art path finding-
based methods in terms of graph structure. It groups similar arguments and
represents them as a single node instead of representing each argument or
fact as a single node. Such a representation allows easier user interpretability.

(d) The proposed method differs from the path finding-based approaches as it
does not need a post generalization step to form the final concept descriptors
as it induces the concept descriptors in their most generalized form.
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4 Experiments

In this section, we firstly describe the data sets employed in the experiments,
and then discuss the performance of the proposed approach. The experimental
results include discussion on the learning capability, running time of the pro-
posed approach, and the quality of the induced concept descriptors. The results
are presented in comparison with state of the art ILP-based concept discovery
system CRIS [19] and path finding-based concept discovery system RPBL. CRIS
uses a non-graph based approach. However, its mechanism is similar to the pro-
posed approach in the sense that they both systems use support and confidence
based pruning, coverage based iteration mechanism and similar way of rule gen-
eralization. CRIS and the proposed approach are run on the same environment,
while results of RPBL are retrieved from the literature [11,18].

4.1 Data Sets

We conducted experiments on four different data sets. Although these data sets
are similar in nature, they are attractive in the concept learning problem as each
belongs to a different learning problem. Elti is a real world kinship data set which
contains transitive relations in the target concept. Dunur is a real world kinship
data set where facts indirectly related to the target instances exist. The Same-
Gen data set is a real world kinship data set that contains recursive relations.
Family [22] data set is highly relational data set that contains different kinship
relations.

In Table 3 we list properties of the data sets and the experimental settings.
We set the maximum rule length, minimum confidence, and minimum support
parameters according to the reference papers [18,19] that we compare our method
against.

Table 3. Data set properties and the experimental settings

Data Set # Relations # Facts Min. Sup. Min. Conf. Max. Length

Elti 9 224 0.3 0.7 3

Dunur 9 224 0.3 0.7 3

Same-Gen 2 408 0.3 0.6 3

Family 12 744 0.1 0.7 9

4.2 The Experimental Results

To analyze the behavior of the proposed method on data sets that belong to dif-
ferent types of learning problems we conducted experiments on the Elti, Dunur,
and Same-Gen data sets. The proposed method was successful at learning the
target relations for those data sets. The proposed method found exactly the same
set of the solution clauses for the Dunur and Same-Gen as CRIS did. For the
Elti data set, the proposed method induced a subset of the concept descriptors
found by CRIS. When we analyzed the missing concept descriptors, we realized
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that the missing concept descriptors are, indeed, semantically identical to some
of those induced but have different literal ordering. This result shows that the
proposed approach is successful at avoiding induction of semantically similar
concept descriptors that are different in presentation.

In order to analyze the quality of the induced concept descriptors, and the
running time of the proposed approach we conducted further experiments. Below
we discuss these results and compare them to CRIS and RPBL.

As the proposed approach discovered concept descriptors that cover the same
set of target instances with CRIS for the Dunur, Elti, and Same-Gen, their
accuracy and coverage values are identical. In Table 4 we list the coverage and
accuracy values for those data sets. In order to find the number of false positive
and false negative instances, data sets are extended with their duals under the
Close World Assumption. These results are listed in Table 4.

Table 4. Coverage and Accuracy Results

Data Set Coverage Accuracy

Elti 1.0 1.0

Dunur 1.0 1.0

Same-Gen 0.84 1.0

In Table 5 we compare the proposed approach to RPBL. In this experiment
we set the minimum support to 0.1, minimum confidence to 0.7 and maximum
rule length according to the length of the longest path found by RPBL. The third
column of Table 5 lists the number of the solution clauses induced, the fourth
column lists the average length of concept descriptors. The last two columns list
the precision and recall values.

Table 5. Family data set results

T. R. Alg. #Cl. Len. Pre. Recall T. R. Alg. #Cl. Len. Pre. Recall

Brother
Proposed 2 2.5 100 100

Uncle
Proposed 9 2 100 100

RPBL 2 6 95 96 RPBL 2 6 100 100

Niece
Proposed 7 2 100 98

Aunt
Proposed 10 2 100 100

RPBL 2 6 95 96 RPBL 2 6 100 100

Nephew
Proposed 7 2 100 98

Son
Proposed 10 2 100 100

RPBL 2 6 95 96 RPBL 2 6 100 100

Mother
Proposed 7 2 100 98

Father
Proposed 10 2 100 100

RPBL 2 6 95 96 RPBL 2 6 100 100

Daughter
Proposed 7 2 100 98

Sister
Proposed 10 2 100 100

RPBL 2 6 95 96 RPBL 2 6 100 100

Wife
Proposed 7 2 100 98

Husband
Proposed 10 2 100 100

RPBL 2 6 95 96 RPBL 2 6 100 100

As the experimental results show the proposed approach finds larger number
of concept descriptors with less number of literals. Concept descriptors with
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many literals may be hard to interpret and such concept descriptors are subject
to the overfitting problem. The proposed approach is capable of inducing much
simpler concept descriptors with almost the same precision and recall values. The
proposed approach missed to define 1 target instance for the husband, nephew,
and wife relations; 2 target instances for the niece and daughter relations; and 4
target instances for the son relation. Indeed these misses are due to the minimum
support and confidence values. For example, for the wife relation, there is 1
uncovered target instance and as 1 / 25 is less than the minimum support value,
the proposed approach did not attempt to find a concept descriptor to explain
the uncovered target instance.

Another performance dimension for concept discovery systems is their running
time. Such systems usually build large search spaces and suffer from scalability
and efficiency issues. In Table 6 we report the number of the evaluation queries
executed by the proposed approach and CRIS during the concept induction pro-
cess. In the same table we also list their running times. The experimental results
show that the proposed approach executes less number of queries. Although
CRIS has powerful pruning strategies, it generalizes the concept descriptors in
all possible ways which results in a large search space. On the other hand, the
proposed approach limits its search space by possible graph expansions only and
builds a relatively small search space compared to CRIS.

Table 6. Comparison on running times and the number of queries executed

Data Set
Running Time(in seconds) Number of Queries

The Proposed Approach CRIS The Proposed Approach CRIS

Elti 0.51 (Speedup = 68) 35 2118 (Drop = 43%) 3571

Dunur 0.11 (Speedup = 236) 26 3192 (Drop = 15%) 3777

Same Generation 0.76 (Speedup = 15) 12 222 (Drop = 77%) 996

In Table 6 we also report the speedup and the drop in the number of executed
queries. Although the proposed method achieves speedup in magnitudes and
a significant drop in the number of evaluation queries, we could not find any
correlation between these values. Both systems involve execution of SQL queries
and execution time of each query may be affected by several factors such as the
number of concurrently executing queries at that time.

Average concept descriptor learning time for RPBL is given around 0.02 sec-
onds [18], and it is around 1 second for the proposed approach. Although we
believe that comparison of the running times is not correct as the programs are
run on different platforms, we provide this information to give a clue on the
execution time of the systems.

To sum up all those comparisons we can say that the proposed method is com-
patible with ILP-based systems in terms of accuracy and coverage, and can gen-
erate concept descriptor considerably faster. The experimental results also show
that the proposed method induces more number of but shorter concept descrip-
tors compared to state of the art path finding-based approaches in comparable
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running time. The induced concept descriptors retain the recall and precision
values of the concept descriptors induced by state of the art path finding-based
concept discovery systems.

5 Conclusion

In this paper we propose a hybrid graph-based concept discovery system. It is a
hybrid approach in a way that similar to path finding-based approaches it looks
for paths in a compressed graph, similar to substructure-based approaches. It
differs from the path finding-based methods as it does not traverse the graph
to find the paths, but instead builds the paths while constructing the graph. It
differs from substructure-based approaches as it does not employ graph isomor-
phism algorithms to compress the graph but does so by executing SQL queries
on the data set. Experimental results show that the proposed method is compat-
ible with ILP-based systems in terms of accuracy and coverage, and can generate
concept descriptor considerably faster. The experimental results also show that
the proposed method induces more number of and shorter, i.e., more human
interpretable, concept descriptors concept descriptors compared to state of the
art path finding-based approaches.
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8. Alphonse, É., Osmani, A.: On the connection between the phase transition of the
covering test and the learning success rate in ilp. Machine Learning 70(2-3), 135–150
(2008)

9. Richards, B.L., Mooney, R.J.: Learning relations by pathfinding. In: Swartout,
W.R. (ed.) AAAI, pp. 50–55. AAAI Press, The MIT Press (1992)

10. Gonzalez, J.A., Holder, L.B., Cook, D.J.: Graph-based relational concept learning.
In: Sammut, C., Hoffmann, A.G. (eds.) ICML, pp. 219–226. Morgan Kaufmann
(2002)



338 A. Mutlu and P. Karagoz

11. Gao, Z., Zhang, Z., Huang, Z.: Learning relations by path finding and simultaneous
covering. In: Burgin, M., Chowdhury, M.H., Ham, C.H., Ludwig, S.A., Su, W.,
Yenduri, S. (eds.) CSIE (5), pp. 539–543. IEEE Computer Society (2009)

12. Washio, T., Motoda, H.: State of the art of graph-based data mining. SIGKDD
Explorations 5(1), 59–68 (2003)

13. Santos, J.C.A., Tamaddoni-Nezhad, A., Muggleton, S.: An ILP System for Learning
Head Output Connected Predicates. In: Lopes, L.S., Lau, N., Mariano, P., Rocha,
L.M. (eds.) EPIA 2009. LNCS, vol. 5816, pp. 150–159. Springer, Heidelberg (2009)

14. Gonzalez, J.A., Holder, L.B., Cook, D.J.: Graph-based concept learning. In: Rus-
sell, I., Kolen, J.F. (eds.) FLAIRS Conference, pp. 377–381. AAAI Press (2001)

15. Yoshida, K., Motoda, H.: Clip: Concept learning from inference patterns. Artif.
Intell. 75(1), 63–92 (1995)

16. Matsuda, T., Motoda, H., Yoshida, T., Washio, T.: Knowledge Discovery from
Structured Data by Beam-Wise Graph-Based Induction. In: Ishizuka, M., Sattar,
A. (eds.) PRICAI 2002. LNCS (LNAI), vol. 2417, pp. 255–264. Springer, Heidelberg
(2002)

17. Ong, I.M., de Castro Dutra, I., Page, D.L., Santos Costa, V.: Mode Directed Path
Finding. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.)
ECML 2005. LNCS (LNAI), vol. 3720, pp. 673–681. Springer, Heidelberg (2005)

18. Gao, Z., Zhang, Z., Huang, Z.: Extensions to the relational paths based learning
approach rpbl. In: Nguyen, N.T., Nguyen, H.P., Grzech, A. (eds.) ACIIDS, pp.
214–219. IEEE Computer Society (2009)

19. Kavurucu, Y., Senkul, P., Toroslu, I.H.: Concept discovery on relational databases:
New techniques for search space pruning and rule quality improvement. Knowl.-
Based Syst. 23(8), 743–756 (2010)

20. Cook, D.J., Holder, L.B.: Graph-based data mining. IEEE Intelligent Sys-
tems 15(2), 32–41 (2000)
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Abstract. This paper builds on the original data mining and modelling research 
which has proposed the discovery of novel structural relation patterns, applying 
the approach in web usage mining. The focus of attention here is on concurrent 
access patterns (CAP), where an overarching framework illuminates the meth-
odology for web access patterns post-processing. Data pre-processing, pattern 
discovery and patterns analysis all proceed in association with access patterns 
mining, CAP mining and CAP modelling. Pruning and selection of access pat-
terns takes place as necessary, allowing further CAP mining and modelling to 
be pursued in the search for the most interesting concurrent access patterns. It is 
shown that higher level CAPs can be modelled in a way which brings greater 
structure to bear on the process of knowledge discovery. Experiments with real-
world datasets highlight the applicability of the approach in web navigation. 

Keywords: web access patterns (WAP) post-processing, concurrent access pat-
terns (CAP), CAP mining and modelling, WAP pruning, knowledge discovery. 

1 Introduction 

Web usage mining is the process of applying data mining techniques to the discovery 
of usage patterns from web data to understand and better serve the needs of user navi-
gation on the Internet [1]. The method and algorithms for web usage mining are nor-
mally divided into three stages: data collection and pre-processing, pattern discovery 
and patterns analysis. Depending on the ultimate goals and the desired outcomes, 
there are different types of pattern discovery and analysis techniques such as associa-
tion rules generation, sequential patterns mining, cluster analysis and visitor segmen-
tation, and classification and prediction based on web/user transactions [2]. 

Association rules generation aims to discover unordered correlation among the fre-
quent items in a transaction database. In the context of web usage mining, a transac-
tion is a group of web page accesses and an item is a single web page. Therefore, 
association rules refer to the sets of pages that are accessed together under a minimum 
support threshold, even though they may not be directly linked with each other. 
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Sequential patterns mining attempts to identify frequently observed sequential oc-
currence of items across ordered transactions (or sequence databases) over time [3]. 
This technique has been applied in the web usage context to discover web access 
patterns (WAP) and to capture frequent navigation paths among user trials. WAP-tree 
was introduced to facilitate development of algorithms for mining access patterns 
from pieces of web logs [4]. Analysis of these access patterns allows Internet-based 
organisations to understand user preferences and predict future visit patterns. 

Sometimes the scale and level of detail of access patterns found makes it difficult 
to identify specific navigation trails in web logs. Structural relation patterns have been 
introduced to extend the search for more complex patterns hidden behind large se-
quences of data [5]. Discovering these patterns is based on post-processing of sequen-
tial patterns mining results – those sequential patterns supported by the same data 
sequence have been called concurrent patterns and could be useful for analysing 
clickstreams. While much of the research in web mining has its focus on efficiency, 
this paper will pursue concurrent access patterns (CAP) mining and modelling me-
thods which both discover and represent new structures not found elsewhere. 

Some related work is highlighted in the next section to provide the relevant back-
ground on web access patterns mining and structural relations, culminating in the 
formal definition of concurrent access patterns. Following the novel framework for 
WAP post-processing in section 3, a CAP mining and graph construction methodology 
is presented with a worked example to illustrate the approach taken. An experimental 
evaluation using real datasets is given in section 4 which showcases the effectiveness of 
CAP mining and modelling at generating new and stimulating results. The paper draws 
to a close by summarising and making brief conclusions. 

2 Related Work 

This section will describe two types of related work to provide background and fur-
ther motivation – the latter is from the authors’ previous research on sequential pat-
terns post-processing. 

2.1 Web Access Patterns 

Web access patterns have been defined by Pei et al. based on the problem statement 
of sequential patterns mining [4]. In general, a web log can be regarded as a sequence 
of user identifier and event pairs. Each piece of web log is a sequence of events from 
one user or session in chronological order. 

Let P = {p1, p2, …, pt} be a set of t items (e.g. web pages). An access sequence AS 
= <as1, as2, …, asm> is an ordered list of itemsets (web pages), where asi∈P, 1≤i≤m. 
The number of items in a sequence is known as the length of the access sequence. A 
sequence AS1 = <X1, X2, …, Xu> is contained in AS2 = <Y1, Y2, …, Yv> if u≤v and 
Xi⊆Yj for all i, 1≤i≤u and corresponding j, 1≤j≤v, and it is denoted by AS1∠AS2. 

A Web Access Sequence Database (WASD) is a set {AS1, AS2, …, ASn}, where each 
ASi (1≤i≤n) is an access sequence. The support in WASD of any given AS is defined as 
SupWASD(AS) = |{ASi: AS⊆ASi}|/n, where |…| denotes the number of sequences. AS is 



 Applications of Concurrent Access Patterns in Web Usage Mining 341 

 

called an Access Pattern in WASD with respect to a minimum support threshold minsup 
(0<minsup≤1) if SupWASD(AS)≥minsup. Web access patterns mining thus discovers a set 
of patterns from a given WASD under a user-specified minsup. 

Example 1. Given a small web log that recorded user access to seven web pages la-
belled {a, b, c, d, e, f, g} respectively and let WASD={<abcfge>, <adcbef>, <abfe>, 
<bfg>}. Table 1 shows the set of all access patterns mined with a minsup of 50% and 
this will be used as a running worked example throughout the paper. 

Table 1. Access patterns from a sample WASD 

Sequence Access Patterns Supported by each Sequence (SuppAP), minsup=50% 
AS1=abcfge a,b,c,e,f,g,ab,ac,ae,af,be,bf,bg,ce,cf,fe,fg,abe,abf,ace,acf,afe,bfe,bfg,abfe 
AS2=adcbef a,b,c,e,f,ab,ac,ae,af,be,bf,ce,cf,abe,abf,ace,acf 
AS3=abfe a,b,e,f,ab,ae,af,be,bf,fe,abe,abf,afe,bfe,abfe 
AS4=bfg b,f,g,bf,bg,fg,bfg 

2.2 Structural Relations and Concurrent Access Patterns 

Structural relation patterns have been defined as a general designation of patterns that 
consists of sequential patterns, concurrent patterns, exclusive patterns, iterative pat-
terns and their composition [5]. This sub-section provides the necessary background 
for concurrent patterns in the web access context. 

Following the notation used in the previous sub-section, new ordering relationships 
based on access patterns can be predicated as follows: given a Web Access Sequence 
Database WASD = {AS1, AS2, …, ASn}, let α, β be two of the access patterns mined 
from WASD with minimum support threshold minsup and assume that α, β are not 
contained in each other. With regard to a particular sequence AS∈WASD, access 
patterns α and β have a concurrent relationship if and only if both of them have oc-
curred in AS, i.e. (α∠AS)∧(β∠AS) is true. This is represented by [α+β]AS, where the 
notation ‘+’ represents the concurrent relationship [5]. 

Definition 1 (Concurrence). The concurrence of access patterns α and β is defined 
as the fraction of sequences that contains both of the access patterns. This is denoted 
by concurrence(α,β) = |{ASk:(α∠ASk)∧(β∠ASk)}|/n, where ASk∈WASD, 1≤k≤n and n 
is the total number of access sequences. 

The user-specified minsup provides the threshold for frequency measurement when 
mining frequent itemsets, sequential patterns and web access patterns. Another frac-
tional value, the minimum concurrence threshold, mincon (0<mincon≤1) is used to 
check the concurrent relationships of access patterns. 

Definition 2 (Concurrent Access Patterns). Let mincon be the user-specified minimum 
concurrence. The concurrence of access patterns ap1, ap2, …, apr is defined as concur-
rence(ap1, ap2, …, apr) = |{ASk:[ap1+ap2+…+apr]}|/n, where ASk∈WASD and 1≤k≤n. If 
concurrence(ap1, ap2, …,apr)≥mincon is satisfied, then ap1, ap2, … and apr are called 
concurrent access patterns. This is represented by CAPr = [ap1+ap2+…+apr], where 
there is no particular order for the access patterns. 
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Example 2. Consider WASD={<abcfge>, <adcbef>, <abfe>, <bfg>} from Example 1 
and assume a mincon of 50%. For the access patterns abe, abf, ace and acf shown in 
bold in Table 1, according to Definition 1, concurrence(abe,abf,ace,acf) = 2/4 = 50%.  
Therefore, together they constitute the concurrent access pattern given by CAP4 = 
[abe+abf+ace+acf]. 

Definition 3 (Maximal CAPs). The concurrent access patterns represented by CAPk 
= [a1+a2+…+ak] are contained in CAPk+m = [b1+b2+…+bk+m] if ai∠bj for all i, 1≤i≤k 
and corresponding j, 1≤j≤(k+m). This is denoted by CAPk∠CAPk+m. Concurrent 
access patterns are called maximal CAPs if they are not contained in any other con-
current patterns. 

Note that the CAP4 from Example 2 is also maximal, where this type of pattern 
represents a navigation trail associated with the most frequently accessed patterns, 
displaying concurrency beyond the user-specified threshold. 

3 Web Access Patterns Post-processing 

With the successful implementation of efficient and scalable algorithms for mining 
web access patterns, it is natural to consider extending the scope of previous study to 
more structured data mining for enhanced knowledge discovery in web usage. 

3.1 Framework 

Fig. 1 introduces a novel framework for web access patterns post-processing which 
can be described through its four rows. First, depending on the nature of the log files, 
data pre-processing involves different types of tasks such as data fusion and cleaning, 
user/web page identification and data transformation [2]. The 1st row completes with 
access patterns mining using traditional sequential patterns mining techniques. 

 

Fig. 1. WAP post-processing framework 
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The initial cycle of concurrent pattern discovery proceeds through CAP mining and 
modelling (2nd row of Fig. 1), which yields CAP-Graphs for analysis (3rd row, see 
sub-section 3.3). If the CAPs are deemed uninteresting, then access patterns pruning 
is undertaken before another cycle of pattern discovery is instigated. If at this stage 
the patterns analysis is successful, through selection of more interesting CAP-Graphs, 
then concurrent rules can be generated (4th row) and the process completes. 

3.2 From WAP to CAP Mining 

The method used to mine concurrent access patterns is derived from that for concur-
rent sequential patterns [5] and has been highlighted previously in the web mining 
context [6]. It is illustrated step-by-step below with the running worked example. 

Step 1. Calculation of Access Patterns Supported by each Sequence.  
Access patterns which are supported by a sequence ASi (i.e. ASi∈WASD, 1≤i≤n) 

are computed and denoted by: SuppAP(ASi) = {ap: ap∈AP∧ap∠ASi}. 
The results of this for Example 1 are shown in the second column of Table 1. 
Step 2. Determination of Concurrent Access Patterns. 
Each SuppAP(ASi) can be viewed as a transaction, i.e. the unordered set of access 

patterns supported by data sequence ASi. Thus, the problem of finding the concurrent 
access patterns which satisfy the specified minimum concurrence (mincon) becomes 
one of mining frequent itemsets under minsup=mincon. 

To calculate CAPs with mincon=50% means finding the groups of access patterns 
which occur together in at least 50% of the data sequences. In Example 1, both data 
sequences AS1 and AS2 support the common set of access patterns which constitutes 
CAP = [a+b+c+e+f+ab+ac+ae+af+be+bf+ce+cf+abe+abf+ace+acf]. 

Step 3.  Finding Maximal Concurrent Access Patterns. 
According to the containing relationship among sequences, the CAPs need to be 

simplified in order to deduce the maximal concurrent patterns. Using Definition 3, these 
can be obtained by deleting the concurrent access patterns which are contained by 
other CAPs, then deleting the access patterns in particular CAPs (in turn) which are 
contained by other access patterns within the same CAP. 

For example, for the CAP from the previous step, the following contained relation-
ships exist: a∠af∠acf, b∠ab∠abe, c∠ce∠ace, ... ; therefore this concurrent access 
pattern can be reduced to the maximal CAP4 = [abe+abf+ace+acf]. 

3.3 CAP Modelling and Knowledge Representation 

The use of graphical models in data mining has motivated the development of a se-
quential patterns graph, SPG that explores the inherent relationships among these 
patterns. The idea was adapted in [7] for modelling concurrent sequential patterns. 

Each page view can be represented as a node in a graph and the directed edge be-
tween two nodes indicates a sequential relation, i.e. user navigation. The first node for 
each path is called a start node and the last is called a final node. A node with two or 
more incoming sequential relations applied to the paths is called a synchronizer node, 
while fork nodes allow independent execution between concurrent paths. 



344 J. Lu, M. Keech, and C. Wang 

 

Without dwelling on the detail, in this context concurrent access patterns graph 
(CAP-Graph) is thus a graphical representation of CAPs which maps a function from 
a set of directed edges to a set of pairs of nodes (see [7]). The definition of CAP-
Graph is an extension of that for sequential patterns graph and therefore the method to 
construct SPG can be adapted for CAP modelling. 

For the running worked example, and following initialisation, the intermediate 
construction and iteration phases proceed as illustrated in Fig. 2. By taking sequential 
patterns in turn, nodes and directed edges are added step-by-step, culminating in the 
final CAP-Graph for CAP4=[abe+abf+ace+acf]. 

 

Fig. 2. Modelling CAP4=[abe+abf+ace+acf] using adapted SPG method 

We conclude WAP post-processing by indicating another way to simulate know-
ledge representation here through concurrent rules. For example, the following rules 
can be generated based on the above CAP-Graph: a[b+c][e+f]. This may be used 
to predict visit patterns: after accessing page a, visitors are likely to access pages b 
and c (in no particular order), followed by further visiting pages e and f. 

4 Experiments and Evaluation 

The empirical analysis of the proposed CAP mining and modelling methods was per-
formed on real-world datasets to test their effectiveness as well as to further illustrate 
the framework and process for web access patterns post-processing. 

4.1 Pre-processing Real Datasets 

The initial focus is on pre-processing real datasets available from published sources, 
namely BMS-WebView-1 and msnbc.com. 

BMS-WebView-1 was the first of the three KDD CUP 2000 datasets, which is 
sometimes called "Gazelle" [8]. This dataset contains clickstream data from a former 
web retailer, Gazelle.com, and has been used widely to assess the performance of 
frequent patterns mining. The particular file here contains 59,602 sequences and has 
been pre-processed already, which is convenient, although the inherent meaning of 
the 497 items no longer features in the competition web site. 

The msnbc.com anonymous web dataset was drawn from [9]. The original data 
comes from Internet Information Server (IIS) logs for msnbc.com and contains 
989,818 data sequences in total for one day. Each sequence in the dataset corresponds 
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to page views of a user during that 24-hour period and each event (item) in the se-
quence corresponds to a user's request for a page. 

For web access patterns mining, the original ordering of the pages is important. If a 
page appears twice in succession in the same sequence, then only the first request will 
remain following pre-processing. There are many such sequences for the msnbc dataset 
which contain repetitive/adjacent items or single items only. Therefore, pre-processing 
has been extended for the experiments which reduces data sequences by 60%. The final 
file has been divided fairly equally into four datasets called msnbc1.dat to msnbc4.dat, 
with each processed separately, to make computation more manageable. 

4.2 BMS-WebView-1 

All experiments have been conducted on a 2.5GHz Intel Core i5 processor with 4GB 
main memory running Windows 7. Appropriate use has been made of PrefixSpan for 
access patterns mining, an open-source data mining package available from [10]. 
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Fig. 3. CAPs mined from BMS-WebView-1 under various minsup and mincon 

Several tests have been performed on BMS-WebView-1 across a range of minsup 
values – no CAPs were found beyond a 2% threshold. A summary of the nature of 
these results is shown in Fig. 3 when minsup=1%, 0.5%, 0.3% and 0.2%. It is noted 
that the number of patterns increases as mincon thresholds decrease within the same 
minsup, while no CAPs have been found for this dataset when mincon=minsup. 

It is significant that higher level CAPs can be mined for BMS-WebView-1 under de-
creasing minsup and mincon, although there are limits for these experiments. For ex-
ample, when minsup=0.1%, the number of access patterns mined reaches nearly 4,000 
and run time grows exponentially for CAP mining under the smaller mincon. Likewise, 



346 J. Lu, M. Keech, and C. Wang 

 

when minsup=0.3%, the number of CAPs exceeds 2,000 once mincon≤0.08, which 
suggests a natural cut-off point for presentational purposes here. 

Two novel and interesting CAP-Graphs are selected from BMS-WebView-1 results 
and highlighted in Fig. 4, where CAP9 and CAP11 patterns demonstrate that complex 
structural relations can be discovered and modelled from web usage data. 

 

Fig. 4. Sample (i) CAP9 when minsup=0.3% and (ii) CAP11 when minsup=0.2%; mincon=0.1% 

4.3 msnbc.com 

The second set of tests was performed on the msnbc dataset, where no CAPs were 
found for minsup≥7%. Following preliminary access patterns mining with minsup=5%, 
several CAPs were discovered with repetitive formats and modelling results confirmed 
these CAPs were not interesting. msnbc is a dense dataset containing only 17 different 
items and this causes significant repetition in the access patterns. Therefore, to im-
prove the mining results, WAPs have been pruned by removing repetitive and adjacent 
items while deleting single length patterns not useful in the context of concurrency. 

CAP mining thus resumes based on the pruned WAPs before CAP modelling once 
more helps to determine whether there are any interesting patterns. This sub-section 
presents selected results from the msnbc1 dataset only, although experiments were also 
performed on msnbc2-4 which were essentially equivalent. Initial tests with minsup=5% 
show a progression of the highest level patterns from a single CAP2 to a pair of CAP3 
to a single CAP4 then a single CAP5 as mincon decreases from 4% to 1%. 

Varying the minsup threshold below 5% increases the number of access patterns as 
well as the potential for CAP discovery. This is best illustrated for minsup=1%, where a 
representative sample of the highest level CAP-Graphs can be selected, as in Fig. 5. 

The results are shown with meaning this time, where original codes are transposed 
into the corresponding page category. For mincon=1% there was a choice of 21 CAP3 
and the two highlighted in (i) and (ii) give a flavour for the concurrent patterns mined. 
For mincon=0.75% and 0.5% there were only single CAP5 and CAP6 respectively, as 
in (iii) and (iv), each displaying a more interesting structure. And for mincon=0.25% 
there was a choice of four CAP8, where the two patterns in (v) and (vi) demonstrate 
that complex structural relations can again be found from real web data. 
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Fig. 5. Examples of CAP-Graphs for msnbc1.dat when minsup=1% under various mincon 

5 Conclusion 

The focus of this work has been on the application of original data mining and model-
ling research to the web mining context. In particular, concurrent access patterns are 
defined and explored through an approach to web access patterns post-processing 
which employs a novel framework for knowledge discovery and analysis in Fig. 1. 
Constituent data mining and modelling techniques yield concurrent access patterns 
and graphs allowing the question to be raised: are these CAPs interesting? This calls 
to some extent for a subjective judgement, but careful inspection of CAP-Graphs 
provides enough evidence to inform a suitable answer. 

Experiments have been performed on a number of real-world datasets and two are 
reported here: BMS-WebView-1 and msnbc.com. Our clear motivation is to evaluate 
the effectiveness of the techniques while illustrating the stages of the WAP post-
processing approach. Pre-processing is required for one of the datasets and initial 
access patterns mining undertaken for both. The results of CAP mining and modelling 
are always interesting up to a point, but there can still be many CAP-Graphs to con-
sider and they sometimes exhibit unhelpful repetition. This is where access patterns 
pruning can come in, which was especially useful for the second dataset. 
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The extent to which higher level CAPs can be discovered is first examined for 
BMS-WebView-1, where results are reported in Fig. 3 for 0.2%≤minsup≤1%. The 
connectivity and structure of the sample CAP-Graphs shown in Fig. 4 highlights the 
potential for knowledge representation through concurrent patterns, albeit with no 
attached meaning here for this web retail dataset. Pre-processing is required for 
msnbc.com before it is divided into four for individual investigations across 
1%≤minsup≤5%. When the lower minsup value is explored in tandem with decreasing 
mincon then, following access patterns pruning, the progressive nature of structural 
relations modelled unfolds in Fig. 5. The higher level CAPs convey the increasingly 
rich navigation of real pages viewed in this media context. 

Future work is being considered in three directions: first, while concurrent rules are 
suggested in this paper, a specific study of their role and generation would be useful. 
Second, while CAP modelling presents a stimulating visualisation of mining results, 
there can be many CAP-Graphs to view for large-scale datasets – a more automated 
approach to CAP selection would be worthwhile. And finally, while the WAP post-
processing framework does not limit the number of iterations in pursuit of the most 
interesting CAPs, a single additional cycle is illustrated in experiments here. Criteria 
could be developed for further access patterns pruning informed by other types of 
constraint relevant to concurrency and applied more widely. 
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Abstract. We present a lazy evaluation technique for computing sum-
marized information from dimensional databases. Our technique works
well with a very large number of dimensions. While the traditional ap-
proach has been to preprocess analysis models from which the user selects
the data of interest, in our approach only the cells required by the user
are calculated using a cell-by-cell computation strategy.

1 Introduction

In dimensional databases, dimension members classify numeric measure data
for summarization. The number of potential summarizations is exponential in
the number of dimensions. As the number of dimensions increases, increased
processing time means that building a cube and pre-computing aggregations
becomes an increasingly inefficient option [2]. In many business intelligence (BI)
applications, for aggregation queries, i.e. queries in which the user specifies slicers
and aggregation levels, a good approximation, rather than the exact answer,
suffices [9]. Hence approximation techniques based on statistical compression of
the raw data [4] can provide better performance. Good approximations might
suffice when looking at the “big picture”, but once users identify the particularly
interesting results (which may be just a few cells in a pivot table) they will want
the exact answers, rather than approximations.

We propose a technique, based on lazy evaluation, for efficiently computing
the exact answer to an aggregation query for any given cell and set of aggrega-
tion levels. Hence our technique can be used in conjunction with approximation
techniques to allow the user to obtain some exact answers where the approximate
answer calls for further examination.

The content of the rest of the paper is as follows. Section 2 discusses related
research. Section 3 describes our method. Section 4 covers implementation and
performance. Section 5 discusses the case where several related aggregations mst
be computed. Section 6 contains concluding remarks.
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2 Related Research

Li et al. have noted that a large number of dimensions, alone, does not create
performance problems for dimensional databases. Rather, it is the nature of the
navigation around the cube space which can cause such problems. For example,
regardless of the number of dimensions in the cube, in practice a given query
processing operation tends only to involve a small number of dimensions [6]. Li
et al. also state that a “typical” dimensional database query is likely to ignore
many dimensions (i.e. treating them as irrelevant), fix some dimensions (e.g.,
using query constants as instantiations), and leave only a few to be manipulated
(for drilling, pivoting, etc.) [6].

Fu and Hammer [3] give a special data structure and an efficient algorithm
for processing ad-hoc OLAP queries on top of a relational database. Their im-
plementation requires only one scan over a data set. Morfonios et al. [7] review
different ROLAP (Relational OLAP) implementations and algorithms for data
cubes, focusing on methods in which at least a part of the data cube is pre-
computed.

Microsoft’s Tabular data model [8] presents results in a pivot table from which
the user can copy the cube formula for a cell and paste it into a report. just as a
formula is copied in a spreadsheet. This is similar to our approach, though the
purpose of cube formulas is quite different, since they are used to identify the
result, not to compute it.

In the performance tests we report, we used a fully denormalised table. Al-
though this is not essential, Jacobs [5] has pointed out that for ‘big data’, a fully
denormalized table provides the best solution for analytical purposes.

3 Notation and Structures Required for the Technique

We provide notation to describe the roles played by a relation’s attributes in
pivoting and summarization operations. For notational convenience, we regard
the set of dimension schemata as an ordered collection, < D1, D2, . . . , Dn >.
Where S is a set, we let |S| denote the cardinality of the set.

Definition 1 (Summarization Schema). A summarization schema is a pair
(D,M) where

1. A dimension schema Di (1 ≤ i ≤ n) is a sequence < Ai
1, A

i
2, . . . , A

i
x >

(x = |Di|) of attributes, called levels.
2. D =< D1, D2, . . . , Dn > is an ordered set of dimension schemata.
3. M = {M1,M2, . . . ,Mq} is a set of measure attributes.
4. The members of the collection {D1, D2, . . . , Dn,M} are pairwise disjoint.

The order of the attributes in sequence Di, < Ai
1, A

i
2, . . . , A

i
x > determines the

level in the aggregation hierarchy to which the attribute corresponds. Thus the
following set of functional dependencies, Fi, is associated with Di: Fi = {Ai

g →
Ai

g−1|g = 2, 3, . . . , |Di|}. The attribute set D1 ∪D2 . . .∪Dn ∪M can be used as
a relation schema. We say that a relation over D1∪D2 . . .∪Dn∪M is a relation
over the summarization schema (D,M).
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Example 1. Let (D,M) be a summarization schema in which D =< D1, D2 >
and M = {M1}. We let D1 = {A1

1, A
1
2} and D2 = {A2

1, A
2
2, A

2
3}. Let r =

{t1, t2, . . . , t5} be the following relation over the summarization schema (D,M).

A1
1 A1

2 A2
1 A2

2 A2
3 M1

t1 b1 c1 d1 e1 f1 10001

t2 b1 c2 d1 e1 f1 10020

t3 b2 c3 d1 e1 f2 10300

t4 b2 c3 d2 e2 f3 14000

Definition 2 (Set of domain values). Let r be a relation over a summariza-
tion schema, (D,M). For 1 ≤ i ≤ |Di|, 1 ≤ j ≤ n, DOM i

j(r) denotes the set of

domain values in the Ai
j column of r.

Example 2. Thus, in our running example, we have the following values:

Dimension D1 Dimension D2

DOM1
1 (r) = {b1, b2} DOM2

1 (r) = {d1, d2}, DOM2
3 (r) = {f1, f2, f3}

DOM1
2 (r) = {c1, c2, c3}DOM2

2 (r) = {e1, e2}
Given a relation, r, for the summarization schema, (D,M), we need to pivot the
data along a set of axes that correspond to an arbitrary subset of D’s dimension
schemata. An implementation must be capable of summarising the raw data in
r to any of the levels in the aggregation hierarchies associated with those axes.
Our approach requires the following items of information as its input.

1. The set of axes required for the analysis. Each axis corresponds to one of
the dimension schemata.

2. For each of the required axes, the level in the axis aggregation hierarchy
required for the user’s analysis.

3. The measure attribute to be used.
4. A summary function (e.g. AVG, SUM or COUNT) for use with the measure

attribute. As with any pivot table, the user must select a summary function
in order that a single numerical quantity can be associated with that cell.

5. Our approach provide one item of summarised information at a time. Thus,
for each axis, a slicer must be specified. Each slicer must be a member of the
domain of the attribute associated with aggregation hierarchy level for the
axis, as specified in Item 2 above.

In our approach, we define three structures which are used to hold this informa-
tion: a rollup vector (for items one and two), a summarization state and a slicer
vector (for the last item in the list). We now define those three structures.

Definition 3 (Rollup Vector). Let D =< D1, D2, . . . , Dn > be an ordered
collection of n dimension schemata. A rollup vector for D is an ordered n-tuple
of integers, L =< L1, L2, . . . , Ln >, where for i = 1, 2, . . . , n, 0 ≤ Li ≤ |Di|.

The interpretation of the values of the elements of L is as follows.
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– Li = 0 denotes that the user’s analysis does not require an axis corresponding
to dimension schema Di.

– 1 ≤ Li ≤ |Di| denotes that the user’s analysis requires an axis corresponding
to dimension schema Di.

Furthermore, assume that Li = l, and r is the relation of interest. Then the
axis corresponding to dimension schema Di shall be labelled by the elements of
DOM i

l (r), i.e. members of the attribute column Ai
l in r.

Definition 4 (Summarization Structure). Let (D,M) be a summarization
schema and let L be a rollup vector for D. A summarization structure is a pair
(D,L), with an axis for each non-zero element of L. For any dimension, say
Di, for which the element Li = l, of L is non-zero, the summarization structure
contains an axis corresponding to Di. If r is a relation over the summarization
schema (D,M), that axis is labelled by the elements of the set DOM(Ai

l(r)).

Definition 5 (Summary State). Let (D,M) be summarization schema. A
summary state is a 5-tuple (r,D, L, f,Mj), where (D,L) is a summarization
structure, f is a summary function, Mj ∈ M is a measure attribute, and r is a
relation over the cube schema (D,M).

Informally, the summary state contains all of the information needed to pivot
relation r, whilst aggregating the measure data in r with summary function f .

Example 3. Let (r,D, L, f,M1) be a summary state, where r and (D, {M1}) are
the relation and summarization schema in our running example, L is the rollup
vector < 1, 2 > and f is the summary function SUM. The rollup vector < 1, 2 >
denotes that the axis corresponding to dimension D1 must be rolled up to level
1 in its aggregation hierarchy and the axis corresponding to D2 must be rolled
up to level 2 in its aggregation hierarchy. The data in the cells of the summa-
rization structure is to be aggregated using the summary function SUM. The
summarised data associated with the summary state is:

b1 b2

d1 e1 20021 10300

d2 e2 0 14000

Example 4. Let (r,D, L, f,M1) be the summary state in Example 3, with the
only difference that the rollup vector is < 1, 0 >. This new summary state does
not contain an axis corresponding to dimension D1, and it only contains an
axis for dimension D2. That axis is labelled with the elements of DOM2

2 (r). As
before, the summary function is SUM, so summarised data is as follows:

b1 b2

20021 24300

For a given rollup vector, the slicer vector identifies a specific cell in a summary
state by specifying the relevant member in each of the summary states axes,
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given the levels in the rollup vector. Permissible values in the slicer vector are
constrained by the values in the rollup vector. The slicer for a given dimension
must be a single member of the level for that dimension which is specified in the
rollup vector.

Before we can define the slicer vector formally, we must introduce some more
notation. We use the following notation to denote the set of tuples in a relation
r, which have the value x in this attribute column.

Definition 6 (Tuples). Given a relation, r, a dimension, Di, 1 ≤ i ≤ n, and
a level number, l, 1 ≤ l ≤ |Di|, let Ai

l denote the attribute associated with level l
of dimension Di and let x ∈ DOM i

l (r). The set of tuples in a relation r, which
have the value x in the attribute column denoted by i and l is:

tuples(i, l, x) =

{
r, if l = 0{

t ∈ r|t[Ai
l ] = x

}
, if l �= 0

We do not pre-compute the tuples() sets. They are used in a formula to indicate
which values in the original table must be summarised in order to obtain the
correct aggregated value for a particular cell in the summarization structure.

Example 5. The tuples() sets for our running example is as follows:

tuples(1,1,b1) = {t1,t2} tuples(1,1,c3) = {t3,t4} tuples(2,2,e2) = {t4}
tuples(1,1,b2) = {t3,t4} tuples(2,1,d1) = {t1,t2,t3} tuples(2,2,e1) = {t1,t2,t3}
tuples(1,1,c1) = {t1} tuples(2,1,d2) = {t4} tuples(2,3,f2) = {t3}
tuples(1,1,c2) = {t2} tuples(2,3,f1) = {t1,t2} tuples(2,3,f3) = {t4}
Definition 7 (Slicer Vector). Given the summary state s = (r, L), L =< L1,
L2, . . . , Ln >, a slicer vector for s is an ordered set < x1, x2, . . . , xn > where for
i = 1, 2, . . . , n, if in the rollup vector, Li = 0, then xi = NULL; otherwise let
Li = l > 0, then xi ∈ DOM i

l (r).

Example 6. Given the rollup vector, < 1, 2 >, a valid slicer vector is < b1, e1 >.

Given a summary state, s = (r, L), and a slicer vector, we can find the collec-
tion of tuples() sets which contain the measure values needed by the summary
function in order to compute the value for the cell identified by the slicer vector.

Example 7. In our running example, the rollup vector, < 1, 2 >, and the slicer
vector,< b1, e1 >, give tuples(1, 1, b1) = {t1, t2} and tuples(2, 2, e1)={t1, t2, t3}.
The rollup and slicer vectors identify the cell in the summarization structure for
which a summarization operation is to be performed. In our implementation, the
actual data for this summarization operation is in the original relation.

Definition 8 (Summary Rowset). Let s = (r,D, L, f,M1) be a summary
state and let x =< x1, x2, . . . , xn > be a slicer vector for s. The set

T =

n⋂

i=1

tuples(i, Li, xi) is the summary rowset for s and x .
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In Theorem 1, below, we prove that the summary rowset is precisely the set
of rows which contain the measure values needed by the summary function in
order to produce its result for the summary cell identified by the slicer vector.

Theorem 1. Let s = (r,D,< L1, L2, . . . , Ln >, f,M1) be a summary state, and
x =< x1, x2, . . . , xn > a slicer vector for s. Then a row t ∈ r must be included
in an aggregation operation for the cell identified by x if and only if

t ∈ T =

n⋂

i=0

tuples(i, Li, xi)

Proof (ONLY IF). Let the measure to be aggregated be Mj ∈ M . First, consider
a tuple, say t ∈ r, such that t ∈ T . From the definition of tuples(), for i=1, 2,
. . . , n, if Li = l �= 0 then t[Ai

l ] = xi. Thus the value in t[Mj ] must be included
in the aggregation for the cell defined by the slicer vector x.

[IF] Next, consider a tuple, say t ∈ r, such that t �∈ T . Thus,there exists
h, 1 ≤ h ≤ n, such that t �∈ tuples(h, Lh, xh). Suppose that Lh = 0. Thus
tuples(h, Lh, xh) = randt ∈ r, a contradiction. Thus Lh �= 0. But in that case,
from the definition of tuples(), t[Ah

Lh] �= xh. Thus t has correctly been excluded
from the set of rows to be aggregated for this cell.

Theorem 1 is directly applicable wherever the aggregation expression involves
summary functions which only require values from the measure column. This
leads to an efficient method for identifying the summary rowset.

Example 8. Using the data in our running example, with the summary state and
the slicer vector from Example 6, suppose we want to apply the SUM aggrega-
tion operator. Using Theorem 1, the summary rowset is T = tuples(1, 1, b1) ∩
tuples(2, 2, e1) = {t1, t2}. The sum for this cell is given by the expression∑

t∈T
ti[M ]. From the data, t1[M ] = 10001 and t2[M ] = 10020. The sum is 20021.

Thus, given a denormalised [10] table (which contains both the fact data and
the dimension data), a rollup vector and a slicer vector, we can use the above
formula to compute a summarised value anywhere in the summarization struc-
ture directly, without having to create the entire cube. The only data structures
used were a conventional relational table and two vectors.

4 Implementation and Performance Results

To demonstrate our technique, we used was a modestly-specified notebook com-
puter with 4GB of memory, a 2.3GHz dual core processor and a 64-bit architec-
ture. The database system was Microsoft SQL Server 2012 [8].

Our synthetic data follows a naming convention for our attribute columns,
taking the form <DnLm>, where n is the number of the dimension and m is the
level number within the aggregation hierarchy associated with the dimension.
All of the attributes have the same data type, namely string. In practice, the
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attributes would have a variety of data types, e.g. date and integer. We have
implemented the rollup and slicer vectors as ordinary tables in the database.
In practice, this information would be captured from the user’s application and
stored in a data structure. There is a single aggregation function and a single
measure attribute in our example. This could be generalised to allow an expres-
sion involving several measure attributes and aggregation operations.

It is common in dimensional databases to have one very large dimension table,
some medium-sized dimension tables and a large number of small dimension
tables [6]. Our synthetic data comprises a hundred and one dimensions:

– dim 001, ..., dim 099: each has 64 members and three aggregation levels.
– dim 100: 2000 members; two aggregation levels.
– dim 101: 500 members; two aggregation levels.

The dimension attributes in a dimension table are intended to correspond to
levels in an aggregation hierarchy. When the data is generated, there is a many-
to-one relationship between the attribute corresponding to the lower level of the
hierarchy to the attribute corresponding to the next-higher level in the hierarchy.

There are 303 columns in the table: 301 dimension attributes, a measure at-
tribute and a primary key column. Our fact table has one million rows. It com-
prises a single measure and 101 columns, each containing foreign key references
to one of the dimension tables.

Given a rollup vector and a slicer vector, Theorem 1 is the basis for a mechan-
ical process to find a set-theoretic expression for the set of tuples which must
be aggregated. Our technique uses the pair of vectors as input and generates
the code for the SQL query which retrieves the set of records corresponding to
the tuples and perform the aggregation on the chosen measure attribute. We
have implemented the technique using dynamic SQL. The query generated by
the dynamic SQL is give in Figure 1.

SELECT SUM(M1) FROM D1L2 = ’D01L2M01’ AND D2L1 = ’D02L1M1’ AND

D3L2 = ’D03L2M01’ . . . AND D100L1 = ’D100L1M1’ AND D101L2 = ’D101L2M0’;

Fig. 1. The implementation of Theorem 1

Once the text of the query has been generated, the query can be executed,
using the EXEC command, to perform the required aggregation.

Figure 2 shows the dynamic SQL code for generating a summation query
from the rollup vector and slicer vector. The text of the SQL query is built up,
step by step, in the variable @sql. It uses the function in Figure 3 to generate
a string which contains the name of the unique attribute corresponding to the
level number and the dimension number. In general, a lookup table is needed to
associate an attribute name with the dimension and level numbers.

We added a column-store index [1] to our database. The average elapsed time
to execute the software which generates the dynamic SQL query text, compiles
that query and executes it against the database was less than six seconds.
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CREATE PROCEDURE [dbo].[sp_Build_and_Exec_Query]

@numberOfDimensions INT, @measureAttributeName NVARCHAR(100),

@aggregationFunctionName NVARCHAR(100) AS

BEGIN

DECLARE @sql NVARCHAR(MAX), @paramDefs NVARCHAR(MAX),

@attributeName NVARCHAR(MAX;

SET @sql = N’SELECT ’ + @aggregationFunctionName

+ N’ ( ’ + @measureAttributeName + N’ ) FROM tblFlat WHERE ’;

DECLARE @dim INT, @level INT, @value NVARCHAR(8),

@leadingZero NVARCHAR(1), @firstTerm CHAR(3);

SET @firstTerm = ’YES’; SET @dim = 1;

WHILE @dim <= @numberOfDimensions BEGIN

SELECT @level = [lvl] FROM dbo.RollupVector WHERE dimNumber = @dim;

IF @level > 0 BEGIN

SELECT @value = [val] FROM dbo.SlicerVector

WHERE dimNumber = @dim;

SET @attributeName = dbo.getAttributeName(@level, @dim);

IF @firstTerm = ’NO’ SET @sql = @sql + N’ AND ’;

SET @sql = @sql + + @attributeName + N’ = ’’’ + @value + ’’’’;

SET @firstTerm = ’NO’;

END

SET @dim = @dim + 1;

END

EXECUTE sp_executesql @sql;

END

Fig. 2. The code to generate the summation query

Restricting our attention to the response time of the SELECT query, in suc-
cessive performance tests, we increased the number of dimensions from 51 to 101
in units of five. Between each performance measurement, all buffer content was
removed from the buffer pool. In Figure 4, the response time graph in the test
range, i.e. up to 101 dimensions, is linear.

We tested how changing the number of rows affect average response times:

Rows in table 500,000 600,000 700,000 800,000 900,000 1,000,000

Avg. Response time (ms) 1674 1841 2032 1994 2137 2086

To test whether retrieving a group of ”nearby” cells affects performance, we
retrieved ten cells all with the same rollup vector and with the associated 10
slicer vectors only differing from each other in one dimension. After the first
cell is retrieved on cold buffer and cache, the subsequent cells are retrieved with
warm buffers and cache. Retrieving the first cell took 3.6 seconds, whereas the
average retrieval time for other cells was 115 milliseconds.

5 Processing Several Cells

Typically, a multidimensional query identifies a set of cells, rather than an indi-
vidual cell, over which the aggregation is to be performed. However, the approach
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CREATE FUNCTION getAttributeName( @dim INT ) RETURNS NVARCHAR AS

BEGIN

DECLARE @attributeName NVARCHAR(200), @lvl INT;

SELECT @lvl = [lvl] FROM dbo.RollupVector WHERE dimNumber = @dim;

IF @dim <= 9 SET @attributeName = N’D0’ + CAST(@dim AS NVARCHAR)

+ N’L’ + CAST(@lvl AS NVARCHAR)

ELSE SET @attributeName = N’D’ + CAST(@dim AS NVARCHAR)

+ N’L’ + CAST(@lvl AS NVARCHAR);

RETURN @attributeName

END

Fig. 3. The function getAttributeName
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Fig. 4. SELECT query response time by number of dimensions (horizontal axis)

outlined above can only be used to compute the aggregated value one cell at a
time. Hence, its performance will become less competitive as the set of cells
becomes larger.

Lemma 1. Disjointness of summary rowsets. Let s = (r,D, L, f,M1) be a sum-
mary state, L =< L1, L2, . . . , Ln >, let x and x′ be different slicer vectors for
s and let T and T ′ be the corresponding summary rowsets for x and x′. Now,
T
⋂
T ′ = ∅.

Proof. Suppose, for contradiction, that T
⋂
T ′ �= ∅. Let t ∈ T

⋂
T ′. It is given

that x �= x′. Thus there exists some i, 1 ≤ i ≤ n, such that xi �= x′i. Let l = Li

and consider the value in t[Ai
l ]. Either t[Ai

l ] �= xi or t[Ai
l ] �= x′i or both. In the

first case t �∈ T , a contradiction. In the second case, t �∈ T ′, a contradiction. In
the third case, t �∈ T and t �∈ T ′, a contradiction.

Thus T
⋂
T ′ = ∅.

A particular consequence of Lemma 1 is that the calculation of a summary value
for different cells does not involve redundant computation.

Theorem 2. Non redundant computation. The complexity of query processing
based on Theorem 1 is O(n), where n is the number of tuples in r.
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Proof. By Lemma 1, a particular input cell is needed only for one aggregation
result. Thus a query containing several cells on the same dimension level can
be processed without accessing the same input cell twice. Further, in the worst
case, it is enough to read each input cell, that is each tuple, once.

In a summarization instance, a summarization cell is null if its associated tuple
set is empty. The number of null cells may be extremely large, but the number of
non-null cells is limited by the number of rows in the decentralized relation of the
dimension data. Each tuple t is in the tuple set of exactly one slicer vector, and
that slicer vector can be formed from the values of t. It is possible to compute
efficiently the partition of tuples into sets along with all related slicer vectors
(i.e. the ones for which a non-null cell exists).

6 Conclusions

We propose a lazy evaluation method for dimensional analysis. Our method
avoids unnecessary data access and it can be used e.g. for further analysis when
approximate values are initially used. Our method gives satisfactory performance
even in the case where there is an extremely large number of dimensions.
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Abstract. In this paper, we propose a two-phase method, called Mul-
tivariate Association Finder (MAF), to mine temporal associations in
multiple event sequences. It is assumed that a set of event sequences,
where each event has an id and an occurrence time, is collected from an
application. Our work is motivated by the observation that many associ-
ated events in multiple temporal sequences do not occur concurrently but
sequentially. In an empirical study, we apply our method to two different
application domains. Firstly, we use MAF to detect multivariate motifs
from multiple time series data. Existing approaches all assume that the
univariate elements of a multivariate motif occur synchronously. The ex-
perimental results on both synthetic and read data sets show that our
method finds both synchronous and non-synchronous multivariate mo-
tifs. Secondly, we apply our method to mine frequent episodes from event
streams. Current methods often ask users to provide possible lengths of
frequent episodes. The results on neuronal spike simulation data show
that MAF automatically detects episodes with variable time delays.

1 Introduction

Nowadays, more and more temporal data in the form of event sequences is being
generated. Each distinct event sequence consists of events of the same type, where
each event has an id and an occurrence time. In practice associated events in
different event sequences do often not occur concurrently but with a temporal
lag. For example, in human-computer interaction modeling, an event sequence
represents actions taken by users during a period of time and the goal is to
capture aspects such as user intent and interaction strategy by understanding
causative chains of connections between actions.

We propose a two-phase method, called Multivariate Association Finder
(MAF), to find temporal associations in multiple event sequences. First, we
detect bivariate associations from pairs of event sequences by comparing the
observed distribution of temporal distances of event occurrences with a null
distribution. Second, using the graph of bivariate associations, we search for
multivariate associations whose frequencies are statistically significant.

In an empirical study, we applied our method to two application domains.
Firstly, we used MAF to detect multivariate time series motifs. In a univari-
ate time series, a motif is a set of time series subsequences that exhibit high
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Fig. 1. Illustration of three multivariate motifs. An ellipse represents a multivariate
motif occurrence, and a rectangle denotes a univariate element.

similarity and occur frequently in the whole time series [1]. In a d-dimensional
multivariate time series containing d univariate time series, a n-dimensionalmul-
tivariate motif is a set of n-dimensional tuples of univariate elements, where the
univariate elements from different dimensions have a temporal association, i.e.,
they occur concurrently as a synchronous multivariate motif (e.g., motif 1 in
Figure 1) or sequentially as a non-synchronous multivariate motif (e.g., motif
2 and motif 3 in Figure 1). Existing methods are all limited by assuming that
the univariate elements of a multivariate motif occur synchronously. The exper-
imental results confirm that MAF successfully discovers both synchronous and
non-synchronous multivariate motifs. Secondly, we use our method to discover
frequent episodes from event streams. Frequent episode discovery is a framework
for detecting temporal patterns in symbolic temporal data [3]. The input data
of this framework is a sequence of event occurrences with each characterized by
an event type and an occurrence time. The detected temporal patterns, referred
to as episodes, are essentially small, temporally ordered sets of event types. De-
pending on different types of temporal orders over their event types, episodes
are classified into two categories: serial episodes and parallel episodes. A serial
episode requires its event types to occur sequentially. A parallel episode does
not require any specific ordering of the event types. Current methods all require
users to provide possible lengths of frequent episodes. Our experimental results
show that MAF is very effective in detecting episodes with variable lengths.

The reminder of the paper is organized as follows. Section 2 reviews the related
work of multivariate motif detection and frequent episode discovery. Section 3
gives basic definitions. Sections 4 describes our method. Sections 5 and 6 present
experimental settings and results. Section 7 concludes the paper.

2 Related Work

Multivariate Motif Discovery. Current methods of multivariate motif dis-
covery can be classified into three categories.

(1) Representing a multivariate time series as a set of multi-dimensional
points. Methods in this group treat each univariate time series as a dimension
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and retrieve a set of d-dimensional points from d equal-length univariate time
series. Minnen et al. proposed a method that represents data points symbolically
based on a vector quantization and uses a suffix tree to locate motif seeds [7].
Their later work located multivariate motifs as regions of high density in the
d-dimensional space [6]. Multivariate motifs discovered by these methods must
span all dimensions and their univariate elements must be equally sized.

(2) Transforming a multivariate time series into a univariate time series.
Tanaka et al. used Principal Component Analysis (PCA) to transform a multi-
variate time series into a univariate time series and applied a Minimum Descrip-
tion Length (MDL) principle on the projected time series to extract univariate
motifs [12]. To handle multivariate time series data, other work in this cate-
gory extend Symbolic Aggregate Approximation (SAX), a technique to reduce
the dimensionality of univariate time series subsequences [1]. Minnen et al. de-
veloped a method that applies SAX on each of the univariate time series and
concatenates SAX words from each dimension occurring together in a sliding
window [8]. These methods all implicitly assume that the univariate elements in
a multivariate motif must be completely synchronous.

(3) Combining a set of univariate motifs into a multivariate motif. Vahdat-
pour et al. constructs a coincidence graph based on the temporal relations of
univariate motifs [13]. A graph is initially built, where a vertex represents a
univariate motif and the weight of an edge between two vertexes indicates the
frequency with which the occurrences of the two corresponding univariate mo-
tifs temporally overlap. Starting from the motif with the highest occurrences, a
graph clustering algorithm iteratively detects multivariate motifs by comparing
the weights of edges connected to this motif to a user-defined threshold. This
method allows the univariate motifs to have different lengths and permits that
multivariate motifs can span only a subset of dimensions.

Frequent Episode Discovery. The methods applying the framework of fre-
quent episode discovery to neuronal spike data are classified into two categories.

(1) Mining serial and parallel episodes using an Apriori-style procedure. The
methods utilize an Apriori-style procedure to detect serial episodes. Mannila et
al. first presented the framework of frequent episode discovery [3]. The frequency
of an episode is defined as the number of sliding windows in which the episode
occurs. Laxman et al. proposed their work based on a new frequency measure-
ment, which counts the number of non-overlapped occurrences for an episode
[2]. These methods all limit their searching scope by requiring users to provide
the size of sliding windows or specify an inter-event time constraint for every
pair of successive event types in an episode.

(2) Mining statistically significant episodes. The algorithms detect statistically
significant serial episodes. Sastry et al. designed a statistical test to determine
the significance level of discovered frequent episodes, based on the intuition that
the interaction between two event sequences can be captured by the conditional
probability of observing an event from one sequence after a time delay given that
an event has occurred on the other sequence [11]. Patnaik et al. presented another
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approach by proposing what they so called “excitatory dynamic networks”
(EDNs), where nodes denote event types and edges represent temporal asso-
ciations among nodes [9]. The authors also defined their so-called “fixed-delay
episode”, where the time-delay between every pair of event types in an episode
is fixed. To obtain the marginal probabilities for an EDN, the occurrence-based
frequencies of fixed-delay episodes are used to compute the probabilities for each
node. These methods need users to specify an inter-event time-delay for every
pair of successive event types in an episode.

3 Background and Definitions

An event sequence ξ =< e1, e2, . . . , em > is an ordered set of m events ei. Each
ei in ξ denotes a tuple (e id, ti), where e id represents the event id and ti is the
occurrence time of the event. All event occurrences in ξ are of the same type.

We introduce a bivariate association Ad
ab (a �= b), between two event sequences

ξa and ξb, as a subset of the Cartesian product of ξa and ξb, as following:

Definition 1. Let ξa and ξb be two event sequences. A set Ad
ab ⊆ ξa × ξb is

called a bivariate association in (ξa, ξb) with mean temporal distance d if for
all (e, e′) ∈ Ad

ab : t ≤ t′ ∧ t′ − t ∼ Φ(·) ∧ E(t′ − t) = d, and there is a one-to-
one correspondence between the sets {e|∃e′ : (e, e′) ∈ (Ad

ab)} and {e′|∃e : (e, e′) ∈
(Ad

ab)}, where t (resp. t′) is the occurrence time of event e (resp. e′), Φ(·) denotes
a a known distribution (e.g., uniform or Gaussian) that the temporal distance
between two associated events follows, and E(t′− t) = d is the expected temporal
difference between associated events in Ad

ab.

In this paper, we assume that the temporal distance of two associated events
follows a Gaussian distribution. This assumption holds in many applications.
For example, in neuronal spike train analysis, one type of interesting patterns is
called Ordered chains, which are ordered firing sequences of neurons where times
between firing of successive neurons are often assumed to follow a Gaussian.

A multivariate association MA
d1...dk−1

1...k between k event sequences ξ1, . . . , ξk
is defined as:

Definition 2. Let ξ1, . . . , ξk be k different event sequences. A set MA
d1...dk−1

1...k ⊆
ξ1×. . .×ξk is called a multivariate association in (ξ1, . . . , ξk) if for all (e

1, . . . , ek)

∈ MA
d1...dk−1

1...k : (ei, ei+1) is an instance of a bivariate association in (ξi, ξi+1)
with mean temporal distance di for all 1 ≤ i ≤ k − 1.

For our approach, we assume that the event sequences collected from an ap-
plication can be modeled as Poisson processes. Two important properties of a
Poisson process are (i) the inter-arrival times Ti between consecutive event
occurrences are independent and follow an exponential distribution with rate
μ = 1/λ, where λ denotes the intensity of the Poisson process, and (ii) the ith
arrival times Si, i.e., the times until the ith event occurrence from the starting
point of the process, follow a Gamma distribution with shape parameter α = i
and scale parameter β = λ.
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4 Proposed Method

Bivariate Association Discovery. To determine whether two event sequences
ξa and ξb are temporally associated, we analyze what we define as forward dis-
tances, which are the difference in time between the events e ∈ ξa and the events
e′ ∈ ξb occurring after e.

Definition 3. The set of forward distances between event sequences ξa and ξb
is given as FDij = {dist|∃e ∈ ξa∃e′ ∈ ξb, t ≤ t′ ∧ dist = t′ − t}, where t (resp.
t′) is the occurrence time of e (resp. e′).

To compute the forward distances for an event on a sequence ξa, to events in a
sequence ξb, we can think of projecting the event onto sequence ξb and denoting
the projected position as h. The forward distance from h to its right nearest
event on sequence ξb can be denoted as Z1. Since we compute Z1 for each event
of sequence ξa, Z1 can be treated as a random variable whose distribution can
be derived from the so-called Waiting Time Paradox for Poisson processes [5].
The theorem says that Z1 follows the same exponential distribution as the inter-
arrival times on sequence ξb, with mean μ = 1/λb, and the forward distances
Zj from time h to the jth event after h, can be modeled as the arrival times
of the jth event of a Poisson process starting at time h, following a Gamma
distribution with shape parameter α = j and scale parameter β = λb.

Knowing the distribution of the individual forward distances, we can express
the distribution of all forward distances x from all events on a finite sequence ξa
to all events on a finite sequence ξb as a mixture of these individual distributions:

fn(x) =

N∑

j=1

Wj × g(x, j, λb), (1)

where fn(x) is our expected null distribution of forward distances (i.e., when
there is no temporal association), N is the number of individual distribution
components (equal to the number of forward distances the first event on sequence
ξa has), g(x, j, λb) is the Gamma distribution that Zj follows, and Wj represents
the weight of the jth component. Figure 2 illustrates how we estimate the weights
for each component density from the properties of the involved Poisson processes.
In the figure, Sn is the arrival time of the last event on sequence ξb and there are
k events on sequence ξa that occur before Sn. Sn−j+1 denotes the arrival time of
the jth last event on sequence ξb. Every event on ξa that occurs before Sn−j+1

will have all forward distances to events on ξb up to and including their jth right
neighbor. However, every event on ξa after Sn−j+1 will not have a distance to
their jth right neighbor and will not contribute a distance to Zj. If Tj denotes
the time interval between Sn−j+1 and Sn, its expected length E(Tj) is (j−1)/λb.
The expected number of events on sequence ξb that are in time interval E(Tj)
can be estimated by (j − 1)λa/λb. Let Nj represent the number of distances in
Zj ; its expected number E(Nj) can be estimated as k − [(j − 1)λa/λb]. Hence,

we can estimate each weight Wj by E(Nj)/
∑N

i=1 E(Ni).
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Fig. 2. Determining the Weights of Individual Gamma Distribution Components

Fig. 3. Three Categories of Forward Distances

Given that the temporal distance of two associated events follows a Gaus-
sian distribution, we can derive a theoretical distribution function of forward
distances if two event sequences are temporally associated. Figure 3 illustrates
a general scenario of two event sequences where embedded pairs of associated
events occur. In this figure, the red points linked by the directed dashed line
represent a pair of truly associated events and the green points stand for event
occurrences that are independently distributed. If there exist associated pairs of
events between two event sequences, three categories of forward distances can
be generated by events from different sequences.

The first category of forward distances consists of the distances from an event
occurrence that is independently distributed on sequence ξa, e.g., the distance d1
between events eik+1 and ejl+2 in Figure 3. Since eik+1 is not temporally associated
with any event on sequence ξb, its projected position h will be independently
distributed regarding all of the events on sequence ξb. From the Waiting Time
Paradox for Poisson processes we learn that the forward distance from position
h to its jth right nearest event occurrence on sequence ξb follows a Gamma
distribution with shape parameter α = j and scale parameter β = λb. Therefore,
the distribution of the forward distances computed at eik+1 can be described by a
mixture of these Gamma distribution components, which is exactly the expected
null distribution fn(x). Hence, we can use fn(x) to characterize the distribution
of the forward distances in the first category.

The forward distances in the second category are the temporal distances of
associated event occurrences, e.g., the distance d2 between events eik and ejl in
Figure 3. Since the temporal distance of two associated events follows a Gaussian
distribution, if there exists more than one temporal association between two
event sequences, we can describe the distribution of distances generated from
associated pairs of events as a mixture of Gaussian distributions:

fg(x) =
N∑

p=1

Wp ×Gaussian(x, μp, δp), (2)
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where N represents the number of Gaussian components (equal to the number of
temporal associations existing in the data), Gaussian(x, μp, δp) denotes the pth
Gaussian component with mean μp and standard deviation δp. Wp denotes the

weight of the pth Gaussian component and it can be estimated by kp/
∑N

p=1 kp,
where kp represents the number of forward distances following this Gaussian.

The forward distances in the last category are from associated events on ξa
to events independently distributed on ξb, e.g., the distance d3 from eik to ejl+1

in Figure 3. Since eik is only temporally associated with ejl on ξb, the projected

position of eik is independently distributed regarding all of the events but ejl . We
can use fn(x) to describe the distribution of these distances approximately.

Based on the previous analysis, we can derive a theoretical distribution of
forward distances generated from two event sequences as:

ft(x) = (
T −∑N

p=1 kp

T
)fn(x) + (

∑N
p=1 kp

T
)fg(x), (3)

where T denotes the total number of forward distances computed between the
two sequences, N represents the number of temporal associations and c denotes
the number of distances computed at each event occurrence. If kp denotes the
number of temporal distances in the pth temporal association, we can calculate
c × ∑N

p=1 kp distances from the associated events on sequence ξa, so approxi-

mately T − ∑N
p=1 kp distances follow the expected null distribution fn(x) and

around
∑N

p=1 kp distances follow fg(x). Finally, we determine the normalized
weight for each of the distribution components in ft(x) by dividing the number
of distances following this component by the total of observed distances.

The proposed approach for bivariate association detection is based on the ob-
servation that the mean and the standard deviation of a Gaussian distribution
can be estimated by using the zero-crossing points of its second derivative curve.
We treat bivariate association discovery as a least squares curve-fitting prob-
lem, where we adjust the means and the standard deviations of the Gaussian
components in the theoretical function to optimally fit the curve of the actual,
observed distribution of forward distances. We estimate the observed distribution
by using a kernel density estimation method. A statistically significant region is
identified if there exists in the observed distribution a bell-shaped portion with
a statistically significant higher count of forward distances than expected.

We design a statistical test to determine the probability that a region R con-
tains the observed number ON(R) of forward distances under the null hypothesis
(forward distances are distributed according to fn(x)). The probability, PR, that
a randomly chosen forward distance falls into R, under the null hypothesis, can
be derived as following:

PR =

∫ u

l

fn(x)dx (4)

where l and u denote the lower and upper bound of R, respectively. Given n
observed forward distances, the distribution of the test statistic ON(R) under
the null hypothesis can be modeled by a Bernoulli experiment, repeated inde-
pendently n times with a success probability of PR. Consequently, PR follows a
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binomial distribution with parameters n and PR. Let α0 be a significance level.
Let α be the probability that we observe ON(R) under the null hypothesis. R
is statistically significant at significance level α0 if α ≤ α0.

1

Algorithm 1 is used to detect statistically significant regions from the observed
distribution. We first generate the second derivative curve of the observed distri-
bution and obtain the pairs of zero-crossing points from the resulting curve. For
each pair (xl, xr), we use our statistical test to check if the region [xl, xr ] in the
observed distribution is “statistically significant”, assuming that all the forward
distances are distributed according to fn(x). Suppose m pairs are statistically
significant. We will then approximate ft(x) by using m Gaussian distributions.
For each statistically significant pair (x′l, x

′
r), we estimate the mean of the Gaus-

sian distribution by averaging the values of these two points:

μ =
x′l + x′r

2
. (5)

Accordingly, we determine the standard deviation of this Gaussian by taking
half of the absolute value of the difference between the two points:

σ =
|x′l − x′r|

2
. (6)

Once these parameters have been initially estimated, we determine the number
of forward distances following each Gaussian distribution in ft(x) by using the
system of linear equations:

∑

xj∈U
ft(xj) ≡

∑

xj∈U
fo(xj), (7)

where xj stands for a forward distance and U denotes the set of the distances cal-
culated from two event sequences. After assigning initial values to the Gaussian
distributions’ parameters in ft(x), we apply the Levenberg-Marquardt algorithm
[4] to adjust these parameters. Finally, we check each of the regions defined by
the Gaussian parameters in ft(x) and output it if statistically significant.

Given a statistically significant region R, we assume that there is a true bi-
variate association Ad

ab contained in the two corresponding sequences ξa and ξa;
we estimate the mean temporal distance d of Ad

ab as the mean μ of the Gaus-
sian distribution that the distances inside R follow, and we use the standard
deviation σ of this Gaussian to define the range where we extract the actual
associated event occurrences. For an event occurrence on ξa, we only consider
the event occurrences on ξb that are in the time interval [μ− 3× σ, μ+ 3× σ].

Multivariate Association Discovery. If two event sequences ξa and ξb are

temporally associated their relationship can be expressed as: ξa
50→ ξb, where the

directed line represents the temporal order of these two event sequences and the
number (i.e. 50) above the directed line denotes the expected mean temporal
distance of their associated pairs of events. We construct a directed graph based
on discovered bivariate associations. In the graph, a vertex denotes an event

1 To avoid false positives, we perform a Bonferroni adjustment by setting the signifi-
cance level to α0/m, where m denotes the number of tests.
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Algorithm 1. Approximation Algorithm (AA)

Input: fo(x) - the observed distribution of forward distances; fn(x) - the
expected null distribution of forward distances
Output: S - a set of statistically significant regions

1: Generate the second derivative curve of fo(x) and obtain the pairs of zero-
crossing points on the curve;

2: for each pair of zero-crossing points (xl, xr) do
3: Check if the region [xl, xr] in fo(x) is “statistically significant”, assuming

that all the forward distances are distributed according to fn(x);
4: Suppose m regions are statistically significant. Estimate the parameters of

the m Gaussian distributions by using Equations 5, 6 and 7;
5: Approximate ft(x) using these Gaussian distributions and their parameters

are adjusted by the Levenberg-Marquardt algorithm;
6: for each Gaussian distribution Φ(μ, σ) in ft(x) do
7: if the region [μ− σ, μ+ σ] in fo(x) is statistically significant then
8: Store pair (μ, σ) into S;
9: return S

sequence and an edge represents the association between two event sequences.
We search for all of the pathes existing between any of two vertexes Va and Vb

and store them in a result set. We rank these pathes in terms of the number of
vertexes (or the path length) each path has. Starting from the longest path, for
two consecutive pairs of neighbor vertexes (e.g., given a path V1 → V2 → V3,
the pair V1 → V2 and the pair V2 → V3 are consecutive) we check how many
occurrences on the shared sequence (e.g., the sequence denoted by V2) are used
by both pairs. We stop checking when the count is smaller than a threshold. A
path is outputted as a multivariate motif if it can pass the verification on each
of its internal vertexes. We prune all of the short-cuts (e.g., the path V1 → V3 is
a short-cut of the path V1 → V2 → V3) of a path from the result set. We start a
new search for the longest path never processed in the result set and repeat the
previous steps until all of the pathes in the result set have been processed.

5 Empirical Study on Multivariate Motif Discovery

We apply our method to detect multivariate motifs from multiple time series
sequences and compare it with Vahdatpour’s method (VAH) [13], which is one
of the most effective methods of multivariate motif discovery.

To evaluate the performances of compared methods, we conducted three
groups of experiments on synthetic data sets. In each group, we generated a
set of univariate time series with a length of 2 × 107 time units, where varying
numbers of occurrences of a multivariate motif and “noise” univariate motif oc-
currences were implanted. Both the length of noise univariate motif occurrences
and the length of univariate elements in the multivariate motif equaled 20 time
units. We used F-measure to evaluate the performances of compared methods.
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In the first group of experiments, we created synthetic data sets containing
five randomly generated univariate time series, where a 5-variate motif and some
noise univariate motif occurrences were implanted. The 5-variate motif consisted
of 4 bivariate motif components, each of which had a fixed standard deviation
of temporal distances equal to 2.5 time units. We varied both the percentage of
5-variate motif occurrences from 10% to 100%, and the mean temporal distance
between 10 and 5000 time units. Table 1(a) shows that MAF not only detected
this multivariate motif when its univariate elements temporally overlap, but also
found it as its univariate elements had varying temporal lags. Table 1(b) shows
that Vahdatpour’s method detected nothing when the univariate elements of
this implanted multivariate motif were non-synchronous.

Table 1. % of Multivariate Motif Occurrences vs. Mean Temporal Distance

(a) Experimental Results of MAF

�����Per.
Mean

10 20 200 1000 5000

10% 0.947 0.945 0.941 0.944 0.942
30% 0.952 0.956 0.949 0.953 0.957
50% 0.965 0.960 0.965 0.963 0.967
70% 0.974 0.973 0.977 0.974 0.972
90% 0.987 0.991 0.988 0.985 0.986

(b) Experimental Results of VAH

�����Per.
Mean

10 20 200 1000 5000

10% 0.889 0.496 0.0 0.0 0.0
30% 0.959 0.519 0.0 0.0 0.0
50% 0.974 0.531 0.0 0.0 0.0
70% 0.985 0.553 0.0 0.0 0.0
90% 0.990 0.564 0.0 0.0 0.0

In the second group, we varied both the percentage of 5-variate motif oc-
currences from 10% to 100%, and the standard deviation of the bivariate motif
components between 10 and 100 time units. Each bivariate motif component
had now a fixed mean of temporal distances equal to 500 time units. Table 2
shows that our method successfully detected the multivariate motif in most of
the cases. Vahdatpour’s method detected nothing from all of the cases.

Table 2. % of Motif Occurrences vs. Standard Deviation of Temporal Distances

�����Per.
Vari.

2.5 5 10 20 30

10% 0.946 0.923 0.911 0.751 0.592
30% 0.950 0.947 0.938 0.889 0.747
50% 0.966 0.953 0.941 0.926 0.880
70% 0.972 0.964 0.955 0.943 0.904
90% 0.982 0.973 0.965 0.952 0.922

Finally, we generated a complex synthetic data set of ten randomly generated
univariate time series, where we implanted five multivariate motifs. Each multi-
variate motif had 1000 occurrences. We also added 5000 noise univariate motif
occurrences to each dimension in the data set. Table 3 lists the properties of the
implanted multivariate motifs. MAF obtained scores of 1.0 for the bivariate and
the 3-variate motifs, 0.995 for the 5-variate motif, 0.989 for the 8-variate motif
and 0.988 for the 10-variate motif. Compared with our method, Vahdatpour’s
method detected none of the non-synchronous multivariate motifs.
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Table 3. The Properties of Implanted Multivariate Motifs

����������Properties
Motifs

bi-variate 3-variate 5-variate 8-variate 10-variate

Mean 2 20 800 3000 5000
Standard Deviation 0.5 2.5 10 10 5
Dimensions 1-2 3-5 1-5 1-8 1-10

We further evaluated MAF and Vahdatpour’s method using a real-world data
set where non-synchronous multivariate motifs exist. The data set consists of
recordings of shovel operations provided by an industrial company.We attempted
to detect a variety of patterns, such as dig-cycles. The power consumed by three
motors (i.e., Crowd power, Hoist power, and Swing power) was recorded as a time
series and the power profiles of the motors could provide information about the
shovel’s activities. MAF detected several non-synchronous multivariate motifs.
Compared with our method, Vahdatpour’s method detected only a multivariate
motif that was a synchronous subset of a larger motif detected by MAF. We are
currently in the process of characterizing and interpreting the usefulness of the
temporal associations found in this data set.

6 Empirical Study on Frequent Episode Discovery

We also applied our method to discover frequent episodes from neural spike train
data and compared it with Patnaik’s method (PAT) [9], which is currently the
most effective method for detecting temporal patterns from spike train data.
We evaluated MAF and Patnaik’s method on simulation data collected from
a mathematical model of spiking neurons [10]. This model allows for temporal
associations with variable time delays of associated spikes, which mimic the
situation in conduction pathways of real neurons. Each generated spike train
(a sequence of spikes made by a neuron) follows an inhomogeneous Poisson
process. We use this model to assess the performances of compared methods in
discovering three episodes implanted into several simulation data sets. Figure
4 illustrates these episodes, where nodes denote spike trains and directed arcs
represent temporal orders of firing spikes among trains. For each episode the
values above a directed arc indicate the range of time delays between associated
spikes. Table 4 lists the properties of these data sets. The third column shows
the base firing rate of neurons and the fourth column presents the activation
probability of a neuron. We arrange these data sets into three groups and use
F-measure to evaluate the performances of compared methods.

First, we summarize the experimental results on the data sets of A-group.
We created these data sets by changing the base firing rate λ̂0 of neurons in
the mathematical model. The larger value we assign to λ̂0, the more spikes
are generated on a train. Table 5(a) shows that MAF successfully detected all
the implanted episodes by achieving high scores in all of the cases. Table 5(b)
presents that: although Patnaik’s method was effective in finding the fixed-delay
episode, it detected nothing when the time delay of two associated spikes varies.
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Fig. 4. Three Episodes Implanted into Synthetic Data Sets

Table 4. Spike Train Simulation Data Sets

(a)

Name Length (ms) Base Fir. Rate λ̂0 Act. Prob. ρ
A1 60000 0.01 0.9
A2 60000 0.015 0.9
A3 60000 0.02 0.9
A4 60000 0.025 0.9
B5 60000 0.02 0.8
B6 60000 0.02 0.85

(b)

Name Length (ms) Base Fir. Rate λ̂0 Act. Prob. ρ
B7 60000 0.02 0.9
B8 60000 0.02 0.95
C9 60000 0.02 0.9
C10 90000 0.02 0.9
C11 120000 0.02 0.9

Table 5. Implanted Episodes vs. Base Firing Rate λ̂0

(a) Experimental Results of MAF
�����������Episode Types

λ̂0 0.01 0.015 0.02 0.025

Serial Episode 0.999 0.998 0.997 0.996
Parallel Episode 0.999 0.999 0.998 0.996
Fixed-delay Episode 1.0 1.0 0.999 0.998

(b) Experimental Results of PAT
�����������Episode Types

λ̂0 0.01 0.015 0.02 0.025

Serial Episode 0.0 0.0 0.0 0.0
Parallel Episode 0.0 0.0 0.0 0.0
Fixed-delay Episode 1.0 1.0 1.0 1.0

Table 6. Implanted Episodes vs. Activation Probability ρ

(a) Experimental Results of MAF
����������Episode Types

ρ
0.8 0.85 0.9 0.95

Serial Episode 0.997 0.996 0.997 0.997
Parallel Episode 0.998 0.998 0.998 0.997
Fixed-delay Episode 1.0 1.0 0.999 0.999

(b) Experimental Results of PAT
����������Episode Types

ρ
0.8 0.85 0.9 0.95

Serial Episode 0.0 0.0 0.0 0.0
Parallel Episode 0.0 0.0 0.0 0.0
Fixed-delay Episode 1.0 1.0 1.0 1.0

Second, we evaluate the two methods using the data sets of B-group. This
time we created the data sets by varying the activation probability ρ of a neuron.
The larger value we set to ρ, the more occurrences of an episode are implanted
into the data. Table 6(a) shows that our method successfully discovered these
implanted episodes from the data. Table 6(b) presents that Patnaik’s method
found neither serial nor parallel episodes.

Finally, we evaluate the performances of these methods as the data set length
was varied. Table 7(a) shows that our method worked constantly well by achiev-
ing high scores in all of cases. Table 7(b) shows that Patnaik’s method still failed
to detect either serial or parallel episodes.
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Table 7. Implanted Episodes vs. Data Set Length L

(a) Experimental Results of MAF
���������������Episode Types

Length(ms)
60000 90000 120000

Serial Episode 0.998 0.998 0.997
Parallel Episode 0.999 0.998 0.999
Fixed-delay Episode 0.999 0.999 0.999

(b) Experimental Results of PAT
���������������Episode Types

Length(ms)
60000 90000 120000

Serial Episode 0.0 0.0 0.0
Parallel Episode 0.0 0.0 0.0
Fixed-delay Episode 1.0 1.0 1.0

7 Conclusion and Future Work

We presented a general, statistical method for finding temporal associations
in multiple event sequences. In an empirical study, we first used it to detect
multivariate motifs. The results on both synthetic and real data showed that our
method found both synchronous and non-synchronous multivariate motifs. We
then applied our method to discover frequent episodes from event streams. The
results on neuronal spike simulation data presented that our method effectively
discovered episodes with variable lengths. In future work, we will investigate
other application domains, such as network monitoring.
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Gounaris, Anastasios 13
Grabocka, Josif 172

He, Qinming 297
Huang, Hao 297

Ienco, Dino 122

Janga, Prudhvi 26
Jiang, Fan 209
Jouili, Salim 1

Kameya, Yoshitaka 196
Karagoz, Pinar 268, 327
Keech, Malcolm 339
Koh, Yun Sing 309
Kougka, Georgia 13
Krishnaswamy, Shonali 146
Kuchmann-Beauger, Nicolas 134
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