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Abstract The therapeutic basis of platelet-rich plasma use in medicine is derived
from the growth factor content and provisional matrix provided by the platelets
themselves. This chapter briefly reviews the platelet research which led to the
conceptual development of PRP as a treatment and also the early history of its use.
An overview of platelet structure and function is provided to enhance the clini-
cian’s understanding of the cell biology behind PRP therapy. The 2 major growth
factors in PRP (PDGF and TGFb) are also discussed. Finally, a review of the
experimental PRP literature (in vitro and animal studies) is presented, which
describes the evidence for use of PRP in tendon/ligament, bone, and joints.
Standardization of PRP use remains a challenging prospect due to the number of
variables involved in its preparation and administration. It may be that individu-
ally-tailored PRP protocols are actually more beneficial for our patients—only
time and further research will bear this out.

Origins and Overview of PRP Use in Medicine

As recently as forty years ago, platelets were considered to be exclusively
hemostatic cells. Today we know that platelets actually perform myriad diverse
functions. The conventional paradigm of limited platelet function began to shift in
1974, as the pathogenesis of atherosclerosis was beginning to be unraveled.
Researchers studying the proliferation of smooth muscle cells in the vascular
intima knew that 10 % serum was crucial to support cell growth in culture, but did
not know which component of serum was responsible for the observed anabolic
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effect. They also knew that ‘‘plasma serum’’, derived from the addition of calcium
to platelet-poor plasma, lacked the stimulatory effect observed in true serum
derived from whole blood. In 1974, Ross et al. (1974) determined that the addition
of either intact platelets and calcium, or the supernatant derived from thrombin-
activated platelets, resulted in significant improvements in the mitogenic capacity
of ‘‘plasma serum’’, such that it equalled that of the serum derived from whole
blood. They concluded that platelets must be the major source of the proliferative
effect provided by serum. In 1978, Witte et al. (1978) coined the term, ‘‘platelet-
derived growth factor’’, or PDGF, and in the following year Kaplan et al. (1979)
used subcellular fractionation to determine that PDGF resided within the platelet’s
alpha granules. Over the next 20 years, transforming growth factor beta (TGFb),
(Assoian et al. 1983) insulin-like growth factor (IGF)-1, (Karey and Sirbasku
1989) basic fibroblast growth factor (bFGF) (Brunner et al. 1993) and vascular
endothelial growth factor (VEGF) (Banks et al. 1998) were also identified in
platelet alpha granules. Platelet suspensions in plasma have been prepared for
therapeutic intravenous transfusion (Dimond 1914) and the experimental study of
platelet function in the laboratory since the early 1900s, (Eagle 1935) but the
notion to use platelet concentrates for non-hemostatic therapy only arose in the late
1990s, after the discovery of these growth factors.

Perhaps not coincidentally, it was also during the late 1990s that the term
‘‘Regenerative Medicine’’ was coined (Haseltine 2011) and a new field was born.
The burgeoning fields of stem cell, growth factor and extracellular matrix research
converged in a new treatment philosophy, which embraces a more reductionist
approach than the concepts of classical Tissue Engineering, but with the common
aspiration for restoration of fully functional tissue. Instead of producing com-
pletely formed tissues ex vivo and then transplanting them as functional biologic
structures, Regenerative Medicine refers to a strategy whereby the injured site is
provided with the raw materials necessary for a ‘‘scarless repair’’, or regeneration,
to occur in situ. These therapies provide (at least 1 of) the 3 components
considered essential for tissue regeneration—namely, cells, growth factors and
scaffold. In Regenerative Medicine the assembly of these resources into new tissue
takes place within the lesion site or in proximity to it, and is directed under local
influences. The concept is one of augmentation and optimization of the natural
healing response, rather than ‘‘insertion’’ of an engineered product. Currently,
Regenerative Medicine represents a shift toward more affordable, approachable,
and often bed-side strategies to tissue restoration, whereas the construction of
entire organs for transplantation remains the purview of true tissue engineering.
Nonetheless, the two fields are intimately related and are now often referred to as
‘‘Tissue Engineering and Regenerative Medicine’’, or ‘‘TERM’’. Platelet-rich
plasma (PRP) is included within the field of Regenerative Medicine, (Torricelli
et al. 2011; Okabe et al. 2009; Wu et al. 2011; Sanchez-Gonzalez et al. 2012;
Stellos and Gawaz 2007) since it can provide 2 of the 3 components (i.e., growth
factors and scaffold) deemed necessary to support true tissue regeneration. Its main
advantages include its availability, affordability, and minimally invasive harvest,
since it is produced from the patient’s own blood after collection by simple
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venipuncture. Because the preparation process is rapid and requires minimal
specialized equipment, PRP can be applied to a patient within hours of a treatment
decision. These features make PRP extremely attractive for clinical use in a variety
of settings, including not only hospitals and outpatient clinics, but also in field
applications or other areas with limited medical facilities and resources. Inventory,
ordering, and safe storage are not required and shelf-life is not a concern, since the
treatment is freshly prepared for each patient. Furthermore, because it is autolo-
gous, PRP does not provoke an immune response in the patient and is therefore
perceived to have a high margin of therapeutic safety. Interestingly, the disad-
vantages of PRP therapy also stem from the fact that it is a readily available,
autologous blood product. These features mean that, as long as the platelets are
‘‘minimally manipulated’’, PRP is not classified as a drug by the FDA. Since it is
therefore not subject to federal regulation, PRP preparation and administration
protocols are not specifically defined. As a result, and because of the numerous
variables involved in PRP use, clinical and experimental methodologies are
extremely inconsistent, making it difficult to draw conclusions about the true
efficacy of PRP and best practices for its use. The existing literature is fairly
divided on several aspects of PRP use, and authors of recent meta-analyses have
concluded that inconsistent clinical methods may be responsible for the incon-
sistent clinical results also reported (Taylor et al. 2011; Sanchez et al. 2010).

The first clinical report of PRP use to enhance tissue healing was published in
1998, by an oral surgeon who incorporated autologous PRP into cancellous bone
graft to reconstruct large mandibular defects in people (Marx et al. 1998). The
study was controlled, randomized, blinded, and prospective. The outcome of
interest was bone formation within the defect, and the PRP-treated group dem-
onstrated significant improvements in both radiographic and histologic scores of
bone density. PRP is now in common use during oral and maxillofacial surgery, as
it is believed to enhance the integration of periodontal implants and accelerate the
repair process (Del Fabbro et al. 2011; Arora et al. 2010). PRP has also been
reported to provide significant improvements in the healing of complex wounds
(Mazzucco et al. 2004; Villela and Santos 2010). Most recently, PRP has been
used to treat musculoskeletal injuries in both people and horses, where it is applied
via an open surgical approach or closed, percutaneous injection (Torricelli et al.
2011; Waselau et al. 2008; Sampson et al. 2008; Taylor et al. 2011; Sanchez et al.
2007; Sanchez et al. 2008; de Vos et al. 2010).

There are a number of variables involved in therapeutic PRP use, which con-
tribute to the reported inconsistency in clinical and experimental methodology and
make it difficult to standardize PRP as a product. These factors include preparation
method, (Everts et al. 2006; Marx 2004) activation status and methods, (Martineau
et al. 2004; Virchenko et al. 2006; Harrison et al. 2011; Kakudo et al. 2008)
platelet concentration, (Ogino et al. 2006; Jo et al. 2012; Han et al. 2007; Giusti
et al. 2009; Wang et al. 2012; Anitua et al. 2009) leukocyte concentration,
(McCarrel et al. 2012; Sundman et al. 2011) effect of the individual, (Mazzocca
et al. 2012; Boswell et al. 2012) and physical form of the PRP. Each of these
variables has the potential to impact the properties of the resultant PRP.
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Interestingly, the very characteristics that make PRP attractive as a therapeutic
agent (i.e. autologous in nature, freshly produced at time of need) mean that it will
never be a standardized product, by definition. The more realistic and perhaps
better goal is instead the development of protocols that can best optimize PRP as it
is derived from any individual. Furthermore, in this era of ‘‘Personalized Medi-
cine’’, (Mancinelli et al. 2000) each of these variables may instead be viewed as an
opportunity to tailor the PRP according to the specific requirements of a particular
individual or a certain tissue, anatomic site, or lesion type.

Basic Concepts of Platelet Biology

Platelets are small, discoid, anucleate cells formed from the fragmentation of long
proplatelet extensions of the megakaryocyte. These extensions become interwoven
through endothelial pores of the bone marrow sinusoids and are fragmented by
shear forces, (Junt et al. 2007) releasing a heterogeneous population (Thon et al.
2012) of nascent platelets into the bloodstream. They have a circulating lifespan of
5–9 days and their predominant mechanism of clearance is via Kuppfer cells and
hepatocytes, based upon lectin receptor recognition of altered glycan structures on
their surface (Grozovsky et al. 2010). The functional responsiveness of platelets is
variable and known to be affected by size (Karpatkin 1978) and age (Hartley 2007)
of the cell, with younger and larger platelets demonstrating greater hemostatic
function than smaller or older cells.

Physical Properties and Contents

Though they lack a nucleus, platelets possess an extensive cytoskeleton, mito-
chondria, lysosomes, ribosomes, (Weyrich et al. 2009) and a modified version of
smooth endoplasmic reticulum, as well as a number of unique organelles and
membrane features (White 2007). There are 3 types of platelet granules: alpha,
dense and lysosomes. Alpha granules are the most numerous organelle in the
platelet and contain over 300 different proteins, (Coppinger et al. 2004) the
majority of which are synthesized or endocytosed by the parent megaryocyte
(Rendu and Brohard-Bohn 2001). Recent research has indicated that the distri-
bution of these proteins is not uniform, meaning that distinct subpopulations of
alpha granules appear to exist and that they may also have different release kinetics
(Sehgal and Storrie 2007; Italiano et al. 2008). Dense granules are relatively few in
number and contain only a few small molecules, such as serotonin, ADP, ATP,
GDP, GTP, histamine, calcium, magnesium, and polyphosphate (Rendu and
Brohard-Bohn 2001). Platelet lysosomes resemble those of other cells and it is
unclear whether they play a role specific to platelet function, (White 2007) though
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it has been suggested that they may contribute to eventual clot lysis (Rendu and
Brohard-Bohn 2001).

The platelet membrane is highly specialized, in that it includes a complex
network of invaginations that extend into the center of the cell and are available to
increase the surface area of available membrane during the profound shape change
that occurs during platelet activation. These invaginations are referred to as the
open canalicular system (OCS). Upon activation, the cytoskeleton reorganizes and
platelet granules are moved to the center of the cell, where they fuse with the OCS
via a vSNARE and tSNARE mechanism, (Blair and Flaumenhaft 2009; Rendu and
Brohard-Bohn 2001) releasing their contents into the extracellular environment.
A second membranous component within the cytoplasm is the dense tubular
system (DTS), which sequesters intracellular calcium in the resting cell and is
analogous to the sarcoplasmic reticulum of muscle cells (Rendu and Brohard-Bohn
2001; White 2007).

The platelet cytoskeleton is comprised of a spectrin membrane skeleton, a
circumferential microtubular coil, and an abundant network of actin filaments. The
platelet is capable of generating remarkable tensile force by virtue of the inter-
actions of the actin network with non-muscle myosin IIA (Ono et al. 2008; Bearer
et al. 2002). It was recently estimated that in terms of force generated per unit of
cell volume, platelets are capable of generating 100 times the contractile force of a
myoblast (Lam et al. 2011). This incredible degree of contractility within the cell
means that platelets can be more densely packed within a primary hemostatic plug,
conferring stability to the initial platelet thrombus (Ono et al. 2008). When
transmitted across a network of fibrin strands as well, the same property leads to
clot retraction during secondary hemostasis (Muthard and Diamond 2012).

Platelet Activation in Hemostasis

In the circulation, platelets exist in a resting, discoid state unless specifically
activated by stimuli. These stimuli can be physical, chemical, or a combination of
both. The main platelet agonists responsible for activation in vivo are subendo-
thelial collagen in combination with exposure to shear and von Willebrand’s factor
(vWF), thrombin, ADP, or a combination of these. Under experimental conditions,
collagen, thrombin, and ADP (as well as their synthetic substitutes and calcium
ionophores) are the main agonists used in platelet research. The collagen receptors
are the integrin a2b1, the GPIb-V-IX complex, and GPVI. These receptors engage
collagen in a cooperative way: after vWF binds to GPIb, collagen binds to GPV in
the same complex, slowing the platelet long enough to allow further collagen
binding by a2b1 and GPVI (Herr and Farndale 2009). These latter steps arrest the
platelet and activation ensues. The thrombin receptors are PAR (protease-activated
receptor)-1 and PAR-4. These ‘‘seven transmembrane’’ G-protein coupled recep-
tors are unique in that they contain a tethered ligand; namely, the extra-mem-
branous N-terminal portion of the receptor is cleaved by thrombin, revealing a
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ligand sequence that itself binds to the active site in the receptor (Brass 2003).
ADP is a less potent agonist and is more likely to induce platelet aggregation than
complete activation, though it is also important in the final stages of clot retraction;
(Muthard and Diamond 2012) it acts via the P2Y1 or P2Y12 receptors (Wang et al.
2003). Each of these receptors ultimately converge in the phospholipase C (PLC)
signaling cascade, (Brass 2010) which stimulates the release of the intracellular
calcium stores from the dense tubular system (Rink 1988). The resulting spike in
cytoplasmic Ca+2 (Feinstein and Fraser 1975) activates gelsolin to begin severing
existing actin filaments, which are subsequently reassembled into a new cortical
ring (Bearer et al. 2002). Granules are centralized in the process and the release
reaction subsequently ensues. As the cytoskeleton reorganizes, the intracellular
protein, talin, binds to the cytoplasmic tail of the main platelet integrin, aIIbb3
(Banno and Ginsberg 2008; Brass 2010). The integrin shifts from a closed
(inactive) to open (active) conformation and enables the platelet to bind fibrinogen,
in a phenomenon referred to as ‘‘inside-out signaling’’ (Brass 2003). Once it has
done so, these integrins cluster together on the platelet surface and transduce an
‘‘outside-in’’ signal back to the interior of the cell: (Zou et al. 2007) focal adhesion
plaques are formed around the intracytoplasmic tails of the b3, linking the external
fibrin strand to the internal actin cytoskeleton of the platelet (Bearer et al. 2002).
The prothrombinase complex is concurrently assembled on the platelet membrane,
thrombin is generated as a result, and the platelet is activated via the PAR
receptors. Since fibrinogen is the substrate for thrombin, that reaction also pro-
ceeds rapidly on the platelet surface, producing fibrin monomers that ultimately
assemble into fibers.

Also shortly after the rise in intracellular calcium, the platelet rapidly undergoes
reorganization of the actin cytoskeleton, which manifests as 4 phases of dramatic
shape change upon activation: rounding into a sphere, extension of pseudopodia,
adherence to a surface, and spreading (Bearer et al. 2002). These properties
facilitate the sealing of a hole in the vasculature, the formation of a primary
platelet thrombus, and subsequently the formation of a fibrin clot for definitive
hemostasis. Once flow is arrested, the clot is retracted (Muthard and Diamond
2012) as platelets contract against the fibrin network. In this manner the clot is
further stabilized and the absolute wound margin is diminished.

As a further result of platelet activation by thrombin or collagen, phosphati-
dylserine and specific receptors for the coagulation factors IX, VIII, X, V and II
(and their active forms) are exposed on the platelet surface (Ahmad et al. 2003).
These changes to the platelet membrane create a procoagulant surface, which
provides the platform for the sequence of clotting cascade reactions that ultimately
culminate in fibrin formation. The forming thrombus is considered to undergo
three main phases, beginning with platelet-collagen binding (‘‘initiation’’), fol-
lowed by the recruitment and activation of other platelets (‘‘extension’’), and
finally, the formation of a densely packed, platelet-rich fibrin clot (‘‘stabilization’’)
(Brass 2010). This clot is now recognized to be a heterogeneous structure in terms
of physical properties, such as porosity, as well as platelet activation state. The
central thrombus contains maximally activated platelets, and a gradient of
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activation diminishes toward the periphery of the clot (Brass et al. 2011). Platelets
on the periphery of the thrombus may even participate in a transient, reversible
way. In the center of the clot, however, direct platelet–platelet communication is
ongoing, via contact-dependent signaling (Brass et al. 2006). The recent studies
cited throughout this section reflect a more nuanced view of platelets as dynamic,
living cells within the clot, in striking contrast to previous ideas of platelet acti-
vation as a rapid, disintegrating, ‘‘kamikaze’’-like process (Rodman et al. 1963).
Platelets on the periphery of a thrombus may disaggregate and re-enter the cir-
culation, (Weyrich et al. 2003) and those within the center have been documented
to synthesize protein for at least 18 h. (Lindemann et al. 2001).

Beyond their physical effects on the vasculature, platelets also possess direct
vasoactive effects. Platelets bind directly to endothelial cells by P-selectin-PSGL-1
interactions, respectively. They then chemically influence the endothelial cells by
released and surface-expressed substances such as CD40L, leading to increased
endothelial surface expression of cell adhesion molecules. In addition, their sub-
stantial serotonin content induces vasoconstriction.

Non-Hemostatic Functions

One only need examine the long list of substances in the platelet ‘‘secretome’’ to
suspect that they participate in numerous non-hemostatic processes as well as their
primary role in hemostasis (Weyrich et al. 2003). This becomes even more
apparent when considering the variety of surface receptors they possess, with
ligands that include adhesion proteins, cytokines, and lipopolysaccharide
(Clemetson and Clemetson 2007). Importantly and perhaps unsurprisingly,
platelets are also known to release different substances depending upon the
stimulus that activates them and/or the other coincident influences in their envi-
ronment (Cognasse et al. 2008; Weyrich et al. 2003). This concept makes sense
because platelet alpha granules contain many substances with directly opposing
activities, (Nurden 2011) and so the existence of a mechanism to selectively
release only certain granule contents is logical, though not yet defined (Blair and
Flaumenhaft 2009). Most prominent among the non-hemostatic functions of
platelets are inflammation, immunity and tissue repair.

Platelets express and release a number of inflammatory chemokines and cyto-
kines, including CD40L, Platelet Factor 4 (PF-4), RANTES, and IL1b (Nurden
2011; Semple et al. 2011). They attract, bind, and activate leukocytes via platelet
P-selectin binding to leukocyte PSGL-1, (Weyrich et al. 2003) and circulating
platelet-monocyte or platelet-neutrophil aggregates serve as an index of inflam-
matory insult in several disease states (Brown et al. 1998). Once bound, platelet
ligands such as CD40L and CD154 induce direct effects on leukocyte receptors,
resulting in activation, migration, immunoglobulin class-switching of B cells, and
the generation of more pro-inflammatory cytokines (Semple et al. 2011). As pri-
mary immune cells, platelets contain microbicidal proteins that can kill bacteria
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within 5 min and possess anti-fungal activity as well (Krijgsveld et al. 2000).
Perhaps the most remarkable example of their immune function was recently
published in Science, when platelets were reported to kill malarial organisms
within infected erythrocytes (McMorran et al. 2009). However, the effects of
bacterial-induced platelet activation—or conversely, the cloaking of bacteria
which can prevent platelet activation—also play a significant detrimental role in
septic processes, (Cox et al. 2011; Leslie 2010; Semple et al. 2008, 2011; Clark
et al. 2007b) and platelets directly contribute to many aseptic, pro-inflammatory
diseases as well. Platelets are central to the pathogenesis of atherosclerosis, which
is now recognized as a primary inflammatory disease, (Ross 1999) and they also
contribute to the immune-mediated disorders rheumatoid arthritis, (Pohlers et al.
2006; Boilard et al. 2010) transfusion-related acute lung injury, and multiple
sclerosis (Nurden 2011; Semple et al. 2011). Platelets also participate in com-
plement activation, and a small subpopulation can support the formation of
membrane-attack complexes on their surface (Martel et al. 2011). Nonetheless,
though on the whole platelets must be considered as pro-inflammatory cells, they
have the potential to elicit anti-inflammatory effects by inhibiting NFjb signaling
in target cells (Bendinelli et al. 2010; Van Buul et al. 2011) and by virtue of their
tissue inhibitor of matrix metalloproteinase (TIMP) content (Celiker et al. 2002;
Villeneuve et al. 2009).

Platelets also directly contribute to the formation of new tissue, from ovulation
(Furukawa et al. 2007) to embyogenesis (Finney et al. 2012) to maturity,
(Olorundare et al. 2001) in both health and disease (Luttenberger et al. 2000; Dees
et al. 2011). Creation and remodeling of the extra-cellular matrix are induced by
the combined effects of platelet growth factors, (Montesano and Orci 1988)
serotonin, (Dees et al. 2011) matrix metalloproteinases and TIMPs (Nurden 2011).
Platelets contain the matrix proteins fibronectin, vitronectin, and laminin, (Nurden
2011) and also bind to these ligands via their integrin receptors (Bennett et al.
2009). In a healing wound, fibroblasts are drawn into the fibrin clot by the che-
motactic gradient provided by PDGF and TGFb. These cells migrate along the
necessary physical conduit of fibronectin, (Greiling and Clark 1997) which is also
provided and assembled by the platelets. (Olorundare et al. 2001) The fibroblasts
begin to synthesize more fibronectin and also collagen, under the influence of
platelet-derived serotonin and TGFb (Dees et al. 2011). In addition to matrix
synthesis, platelets induce cell proliferation (Luttenberger et al. 2000; Kakudo
et al. 2008; Mishra et al. 2009; Wang et al. 2012; Doucet et al. 2005; Frechette
et al. 2005; Jo et al. 2012; Kajikawa et al. 2008; Loppnow et al. 1998; Ogino et al.
2006; Slater et al. 1995) and differentiation (Zhang and Wang 2010; Mishra et al.
2009; Stellos and Gawaz 2007). Platelets directly stimulate the formation of new
blood vessels (Kurita et al. 2011; Bosch et al. 2011a) and aid vascular repair at
sites of damage, by recruiting and anchoring endothelial progenitor cells at the site
(Stellos and Gawaz 2007). In the field of wound healing, the platelet–fibrin clot has
been referred to as a ‘‘provisional matrix’’, (Greiling and Clark 1997) since it
provides the anlage for subsequent native tissue formation. Unfortunately, the
same properties that facilitate wound healing also implicate platelets as
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contributors to neoplastic and fibrotic syndromes. Primary tumor growth is per-
mitted by platelet-driven angiogenesis, and metastasis has been linked directly to
the interactions of platelet microparticles with tumor cells (Janowska-Wieczorek
et al. 2005; Erpenbeck and Schon 2010). Platelets are also believed to participate in
the pathogenesis of alveolar fibrosis, (Piguet and Vesin 1994) pancreatic fibrosis,
and systemic sclerosis (Dees et al. 2011; Luttenberger et al. 2000). It should be
noted that the anabolic effect of platelets is not only the result of polypeptide
growth factors. Bioactive lipids (Langlois et al. 2004; Berg et al. 2003; Nurden
2011; Svensson Holm et al. 2011; Jiang et al. 2008) and reactive oxygen species
(Seno et al. 2001; Svensson Holm et al. 2011) have also recently been identified as
key components in platelet-directed cell proliferation and tissue repair.

Growth Factors in PRP

The polypeptide growth factors PDGF, (Kaplan et al. 1979) TGFb, (Assoian et al.
1983) IGF-1, (Karey and Sirbasku 1989) VEGF, (Banks et al. 1998) HGF,
(Nakamura et al. 1987) EGF, (Assoian et al. 1984) and bFGF (Brunner et al. 1993)
have each been identified within platelet alpha granules. Many of these factors
share some common structural features and signaling mechanisms, which will be
discussed here in general terms. This section will then focus on the 2 main growth
factors of platelets, PDGF and TGFb.

Growth factors are generally polypeptide dimers, comprised of 2 antiparallel
monomers that are arranged in a ‘‘cystine knot’’ configuration. This term refers to
the common feature of 8 cysteine residues within each monomer chain, at intervals
that are conserved between different growth factors. These cysteines confer the
ability for disulfide bonding both between and within the monomer chains, which
translates into similar three-dimensional structures among the various growth
factors. One intra-chain disulfide bonded loop is nested within another, in a sort of
‘‘C-in-a-C’’ arrangement, referred to as the ‘‘cystine knot’’ (Heldin and
Westermark 1999; Reigstad et al. 2005). Most of these growth factors (all but
EGF) have several isoforms, which produce overlapping but slightly different
outcomes on target cells and tissues. The receptors for most of these growth factors
(all but TGFb) are tyrosine kinase receptors (‘‘RTK’’s), and the PDGF, EGF, IGF,
and VEGF receptors dimerize themselves upon ligand binding, (Reigstad et al.
2005; Andrae et al. 2008) and then autophosphorylate by virtue of the tyrosine
kinase activity between the paired intracellular tails. Once phosphorylated, the
tyrosine kinase itself has enhanced catalytic efficiency to phosphorylate (and
thereby activate) other intracellular proteins. In addition, phosphorylation of the
non-kinase domains provides a binding site for proteins that contain Src-homology
2 (SH2) domains. These latter proteins induce signaling via several pathways
including the PI3-kinase and PLC cascades (Heldin and Westermark 1999). These
2 pathways induce myriad downstream effects including transcription, translation,
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cell division, and/or migration. Examples of these specific signaling effects include
the release of intracellular calcium, or activation of the Ras G-proteins Rac and/or
Rho, causing cytoskeletal reorganization and cell migration (Wozniak et al. 2005).
Alternatively, the SH2 domains may belong to adaptor proteins that ultimately
lead to the MAPK signaling cascade, which drives the cell cycle past its restriction
point and causes cell proliferation (Heldin and Westermark 1999; Alberts et al.
2004; Andrae et al. 2008).

PDGF

Platelet-derived growth factor was the original growth factor discovered in alpha
granules, (Kaplan et al. 1979) after observation of its potent mitogenic effect on
cultured cells (Ross et al. 1974; Kohler and Lipton 1974). PDGF has since been
identified as a product of many other cell types, but platelets remain its primary
source. There are 5 isoforms of PDGF (AA, AB, BB, CC, DD), each of which are
approximately 30 kDa in molecular weight and are derived from the combination
of 4 different monomers (Reigstad et al. 2005). There are 3 PDGF receptors, based
upon the combination of a and b chains into homo- or heterodimer configurations;
PDGF-BB has been called the ‘‘universal’’ isoform of PDGF (Caplan and Correa
2011) because it binds to all 3 receptor configurations. PDGF is crucial for the
development of the heart, lungs, kidneys, and central nervous system, and PDGF
knock-out generally results in an embryonic or perinatal lethal phenotype (Heldin
and Westermark 1999; Andrae et al. 2008; Reigstad et al. 2005). PDGF-AA, -AB,
and -BB are secreted as active molecules, whereas PDGF-CC and -DD are secreted
as inactive proteins and are cleaved by plasmin, tissue plasminogen activator, or
urokinase plasminogen activator (Reigstad et al. 2005). Active isoforms may
subsequently be sequestered by binding to matrix and plasma proteins (Heldin and
Westermark 1999; Clark et al. 2007a; Caplan and Correa 2011).

After tyrosine kinase-induced phosphorylation begins at the receptor, PDGF
signaling occurs by 4 different pathways: Src, PI3 K, PLC and Ras. Phosphatases
are active concurrently, and the balance between these competing forces ultimately
determines the degree and type of PDGF effect on the cell (Heldin and Westermark
1999; Andrae et al. 2008). When fibroblasts are exposed to platelets, signaling is
rapid and sustained: Akt phosphorylation was observed within 15 min and lasted
for 48 h in normal dermal fibroblasts (Giacco et al. 2006). These signaling cas-
cades collectively result in a triad of cellular effects: migration, proliferation, and
matrix synthesis. Specifically, PDGF is released by platelets in the wound bed and
creates a chemotactic concentration gradient for fibroblasts, neutrophils and
macrophages. It then activates macrophages to produce more growth factors and to
aid debridement of damaged tissue (Heldin and Westermark 1999; Uutela et al.
2004). PDGF induces mitosis in fibroblasts and smooth muscle cells, and it
stimulates these cells to produce proteoglycans, hyaluronic acid, fibronectin,
(Pierce et al. 1991) and, to a lesser extent, collagen (Heldin and Westermark
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1999). The diversity of PDGF effects (and that of other growth factors) is regulated
according to the integrin phenotype of the target cell, which varies over time
according to the extra-cellular matrix composition (Xu and Clark 1996).

Far more is known about the contribution of PDGF in pathologic states than in
normal physiologic (and therefore potentially therapeutic) states. However, PDGF-
BB has recently been proposed as a cornerstone growth factor, linking the pro-
cesses of angiogenesis and mesengenesis, (Caplan and Correa 2011) and it is also
recognized to help orchestrate the production of and response to other growth
factors, such as TGFb (Donnelly et al. 2006).

As an agent of disease, dysregulated PDGF signaling is specifically implicated
in atherosclerosis, neoplasia and fibrotic diseases (Heldin and Westermark 1999;
Reigstad et al. 2005; Barrientos et al. 2008). For this reason, most PDGF research
has centered on methods for its inhibition (Andrae et al. 2008; Heldin and
Westermark 1999) rather than its therapeutic provision. However, PDGF is con-
stitutively expressed in many tissues (Reigstad et al. 2005; Andrae et al. 2008;
Donnelly et al. 2006) and each PDGF isoform has been confirmed to play a role in
wound healing, inducing angiogenesis and matrix synthesis (Reigstad et al. 2005)
in addition to cell proliferation and migration. Since its discovery, it has therefore
been investigated for therapeutic use in a variety of tissues, either singly or in
concert with other growth factors (Barrientos et al. 2008; Haupt et al. 2006). The
results of studies on single growth factors for therapeutic use have been somewhat
disappointing, and on that basis many investigators have suggested a shift in
approach toward a more physiologic ‘‘cocktail’’ of multiple factors (Haupt et al.
2006; Lynch et al. 1987; Costa et al. 2006). PDGF, however, has proven successful
as a single agent in some clinical applications. Becaplermin is an FDA-approved
recombinant PDGF product, licensed for topical use on refractory wounds such as
diabetic ulcers. Its margin of improvement in wound healing is estimated to be
only about 25 %, and it is expensive and requires daily application and therefore
dressing changes (Clark et al. 2007a). Regardless, any improvement in the healing
of these complex wounds is clinically significant, and a positive result has been
documented in large clinical trials (Steed 2006). In the experimental setting, PDGF
has been applied to the cells of non-cutaneous tissues as well, such as tendon,
bone, cartilage, and meniscus (Haupt et al. 2006; Kaigler et al. 2011; Schmidt et al.
2006). Overall, studies of PDGF effects on these tissues indicate only mild to
moderate anabolic impact in tendon, (Haupt et al. 2006; Thomopoulos et al. 2009;
Costa et al. 2006) matrix synthesis and proliferation but not differentiation of
chondrocytes, (Kieswetter et al. 1997) improved matrix synthesis by chondrocytes
of meniscal fibrocartilage, (Bhargava et al. 1999; Imler et al. 2004) and osteo-
plastic, osteoclastic and regulatory effects on bone formation (Chang et al. 2010;
Choo et al. 2011; Kaipel et al. 2012; Marden et al. 1993; Vordemvenne et al. 2011;
Ranly et al. 2005). Recently, there is renewed interest in PDGF as an adjunct
therapy for fracture healing and periodontal alveolar reconstruction (Caplan and
Correa 2011; Kaigler et al. 2011). It has been suggested that by mobilizing peri-
cytes (which are believed to mesenchymal stem cells) from the vasculature
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(Ribatti et al. 2011) surrounding a fracture, PDGF not only aids the development
of new vessels within the site, but also directly recruits a progenitor cell with
osteogenic potential into the fracture bed (Caplan and Correa 2011).

TGFb

Whereas PDGF is considered to be the predominant mitogen among growth fac-
tors, the main activity of TGFb is synthesis and preservation of the extracellular
matrix (Luttenberger et al. 2000). There are 3 isoforms (TGFb1-3) of this 25kD
homodimer, all of which play an important role in wound healing. TGFb3 in
particular is recognized as the main determinant of scarless healing in fetal wounds
(Ferguson and O’Kane 2004; Larson et al. 2010) and the shift from TGFb1 to
TGFb3 expression is recognized as an important step in adult wound healing as
well (Theoret et al. 2002).

Most cells secrete TGFb as a Large Latent Complex, which then binds to the
ECM to provide a ‘‘controlled release’’ of the growth factor to its target cells. This
process requires release from the ECM and then cleavage for activation of the
growth factor, which normally occurs by proteolytic or mechanical means (Albro
et al. 2012; Doyle et al. 2012). The interaction of TGFb with its tetramer receptor
involves a series of steps and begins with TGFb binding the homodimer Type II
receptor on the target cell surface. This process recruits the homodimer Type I
receptor component into the complex and activates Smad proteins, which trans-
locate to the nucleus to serve as transcription factors to induce TGFb effects on the
cell (Doyle et al. 2012; Hinck 2012).

As was the case for PDGF, much of our knowledge about TGFb has been
elucidated by its role in pathologic states, particularly those that involve the ECM.
The hallmark example of this is Marfan syndrome, (Doyle et al. 2012) which is a
primary fibrillin defect that results in abnormalities in the great vessels, heart, chest
wall and skin. It was determined that the morphogenetic abnormalities could not be
based on abnormal fibrillin-1 structure, but were instead the manifestation of
increased TGFb availability from the abnormal ECM. This disease illustrates that
normal physiology as well as potential therapeutic uses of TGFb depend not only on
the presence of the growth factor, but also on the nature and degree of its delivery to
tissues. Interestingly and in contrast to other cellular sources of this growth factor,
the TGFb contained by platelets is secreted in active form upon release from the
alpha granules, (Blakytny et al. 2004) and this characteristic may have implications
for TGFb as delivered by PRP treatment. TGFb1 is strongly associated with path-
ologic fibrosis because of its strong induction of collagen synthesis in both health
and disease (Barrientos et al. 2008; Plaas et al. 2011). It is specifically anti-prolif-
erative for many immune cells and tumor cells, by inducing the synthesis of the 2
main cyclin-dependent kinase inhibitors (p15 and p21). In this way, TGFb is
considered to be a tumor suppressor early in neoplastic processes, though it can
facilitate metastasis and invasion in the advanced stages of malignancy. In normal
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physiologic states, TGFb is generally considered to exert anti-inflammatory and
immunosuppressive effects, and to promote mesenchymal tissue development while
inhibiting epithelial cells (Moustakas et al. 2002). It is commonly described as
‘‘pleiotropic’’, however, and it exerts almost opposite effects in wounds, where it is a
chemoattractant for neutrophils and macrophages, and stimulates the migration of
keratinocytes once epithelialization begins. It strongly induces granulation tissue
formation by attracting fibroblasts and stimulating collagen production and angio-
genesis, and then promotes wound contraction by inducing their phenotypic shift to
myofibroblasts (Barrientos et al. 2008; Montesano and Orci 1988; Pierce et al. 1991;
Theoret et al. 2002). In orthopedic tissues, TGFb is required for cartilage matrix
homeostasis and intrinsic repair (Blaney Davidson et al. 2005; Grimaud et al. 2002;
Scharstuhl et al. 2002; Plaas et al. 2011) and also for the chondrogenic induction of
MSCs, (Freyria and Mallein-Gerin 2012) but its fibrogenic effects pose concerns for
its use as an intra-articular therapeutic agent (Fortier et al. 2011). TGFb effects on
bone are contradictory as well. Acting in concert with bone morphogenetic proteins
(BMPs), which are themselves part of the TGFb superfamily, TGFb induces matrix
production and proliferation in osteoblasts, and serves as a negative regulator of
osteoclasia by inhibiting the release of receptor-activator of nuclear factor kappa
beta ligand (RANKL) from osteoblasts (Chen et al. 2012a). TGFb is a key regulator
of embryonic skeletal development, but recent studies in adult knock-out mice, as
well as follow-up studies using TGFb inhibitors, have demonstrated an inverse
relationship between TGFb signaling and the stiffness, hardness, and ultimately,
resistance to fracture in intact bones (Balooch et al. 2005; Mohammad et al. 2009).
This data may be more relevant for the constitutive influence of TGFb on fracture
prophylaxis in osteoporotic bones than in the process of fracture healing, where
TGFb supplementation of demineralized bone matrix has been shown to accelerate
the repair process (Servin-Trujillo et al. 2011). In tendon repair, the opposing effects
of TGFb are again illustrated by a study in Smad3 -/- mice: although these tendons
healed with less adhesion formation and scarring, they were weaker overall by virtue
of lower collagen expression (Katzel et al. 2011). TGFb signaling is reduced in
chronic, degenerative tendinosis lesions (Fenwick et al. 2001) and TGFb blockade
in tendon explants results in reduced tensile strength, (Azuma et al. 2007) sug-
gesting that TGFb is important for the maintenance of normal tendon integrity and
repair. Successful therapeutic use of TGFb, either as a lone agent or as a component
of PRP, will require the ability to select for desired TGFb effects on matrix
production and quality without incurring pathologic fibrosis.

Review of the Literature on Platelet-Rich Plasma

There are many published reports that compare the various proprietary PRP prep-
aration systems, but the consideration of these numerous devices and methods
(Everts et al. 2006; Sutter et al. 2004; Weibrich et al. 2012; Zimmermann et al. 2001;
Arguelles et al. 2006) is beyond the scope of this review. This discussion will instead
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focus on studies that have applied PRP to cells or tissues of musculoskeletal origin,
and which have therefore provided insight into its potential therapeutic use. With
regard to tissue type, PRP has been most heavily investigated in tendon and bone,
with studies on articular tissues being performed more recently. It should be pointed
out that these studies employ a variety of platelet concentrations, activation meth-
ods, and PRP products (i.e. whole PRP which includes platelets versus platelet-rich
clot releasate which does not). Platelet concentrations less than 300 9 103 platelets/
lL are referred to as ‘‘low’’, 300–800 9 103 platelets/lL are considered ‘‘moder-
ate’’, and [ 800 9 103 platelets/lL are referred to as ‘‘high’’. These factors are
included in the description of each study so that they may be considered in addition
to the results. Lastly, it is important to note that randomized, controlled clinical trials
are still rare in the PRP literature.

Tendon and Ligament

With regard to tendon, Anitua et al. (2005) were among the first investigators of
the effects of PRP on normal tenocytes in culture. Their work utilizes a platelet-
rich clot releasate (PRCR), which is the acellular serum product extruded from
PRP of low-moderate platelet concentration (i.e. 200–500 9 103 platelets/lL)
after activation with 23 mM CaCl2. In a 6 day experiment, they observed signif-
icant increases in proliferation and synthesis of VEGF and HGF in human teno-
cytes after treatment with PRCR. Subsequent studies again demonstrated increased
proliferation and also hyaluronic acid synthesis—but not increased collagen syn-
thesis—in response to PRCR treatment, (Anitua et al. 2007) as well as improved
migration of tenocytes exposed to a combination of PRCR and HA in culture.
(Anitua et al. 2011) De Mos et al. (2008) replicated these results in a 14 day
experiment with varying concentrations of a similar PRCR, and also reported
increased proliferation and also collagen production in human tenocytes. They also
observed an increase in MMP1, MMP3, VEGFA, and TGFb1 gene expression
after PRCR treatment. Anabolic effects of PRCR on tenocytes have also been
reported by other groups, (Tohidnezhad et al. 2011; Wang et al. 2012) including
after exposure to insult: PRCR-conditioned media reversed the tenocyte senes-
cence and death caused by ciprofloxacin or dexamethasone (Zargar Baboldashti
et al. 2011). More recently, the effects of PRCR on tendon stem cells have also
been evaluated. Zhang et al. reported a significant influence of PRCR on the
differentiation of these cells toward a tenocyte lineage and also increased collagen
production; this effect was dose-dependent and was compared to controls in 10 %
FBS (Zhang and Wang 2010). PRP is also frequently evaluated in conjunction with
various scaffolds, with a view toward PRP-enhanced, engineered constructs. Over
a 14-day culture experiment, platelet lysate (prepared from repeated freeze–thaw
cycles of PRP) induced significantly more collagen production and cell prolifer-
ation than controls in a study of canine patellar tenocytes seeded onto a poly-L-
lactic scaffold (Visser et al. 2010). A recent study by Jo et al. (2012). was
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particularly informative, in that it investigated the effect of varying platelet con-
centrations and activation methods, and did so on abnormal tenocytes derived from
damaged human rotator cuffs. The study examined several outcomes and provides
a comprehensive view of PRP effects on this cell type. Cell proliferation over
7 days increased in a dose-dependent manner relative to the platelet concentration
of PRP, over a range of 0–16,000 9 103 platelets/lL. Gene expression of collagen
Types I and III and tenascin C was greatest in PRP activated by a combination of
calcium gluconate and thrombin (approximately 10 mg/mL and 17 U/mL,
respectively), in comparison to activation by calcium gluconate alone. However,
total collagen and GAG synthesis were not different between the 2 activated PRP
groups, which were both significantly greater than a 2 % FBS control. Interest-
ingly, collagen synthesis was greatest in a platelet-poor plasma (PPP) control. A
few studies have examined the effects of PRP on equine tendon and ligament
explants. McCarrel et al. (2009) examined the effects of resting PRP and also a
freeze-dried platelet product on gene expression in superficial digital flexor tendon
(SDFT) and suspensory ligament (SL): in both tissues, the ratio of Type I: Type III
collagen expression was significantly increased after exposure to both platelet
products in comparison to controls. Another study from the same laboratory also
found increased Type I collagen expression in SDFT after treatment with PRP
lysed by 1 freeze–thaw cycle, (Schnabel et al. 2007) but in SL there were no
significant differences observed between PRP and plasma or whole blood controls
(Schnabel et al. 2008). Unfortunately, studies that examine only gene expression
provide little insight into the ultimate cellular effect induced by PRP. A study on
canine deep digital flexor tendon explants (Morizaki et al. 2010) reported signif-
icantly increased breaking strength and stiffness in explants treated with a collagen
graft containing PRP ? MSCs as compared to no graft or graft with MSCs alone.
This study employed a PRCR generated from activation of high concentration PRP
with 143 U/mL of bovine thrombin and 14.3 mg/mL CaCl2, and the MSCs were
harvested from canine bone marrow. With regard to cruciate ligament repair, one
in vitro study on cells cultured from damaged human ACLs reported significant
increases in cell proliferation but no increase in collagen synthesis when corrected
for cell number (Fallouh et al. 2010). In summary, there is consistent in vitro
evidence for a mitogenic effect of PRP on both normal and diseased tenocytes, but
results are less conclusive with regard to collagen production.

Animal models of tendon injury have most often been performed on the rat and
rabbit, with one study on sheep and one study on horses. Several tendon studies have
reported the effect of PRP in concert with stem cells of tendon, bone marrow, or
peripheral blood origin. One relatively early example in 2007 (Kajikawa et al. 2008)
was conducted using chimeric rats that expressed GFP on their bone marrow derived
cells. High concentration, lysed PRP (1 freeze–thaw cycle) was injected at the time
of injury into patellar tendons that had been partially transected. In comparison to
controls, a higher number of GFP-positive cells were present in tendons treated with
PRP at 3 and 7 days, suggesting greater recruitment of bone-marrow derived cells to
the injured site. A recent study in sheep (Martinello et al. 2012) compared the effects
of resting (high concentration) PRP, PRP ? MSCs, or MSCs alone to a saline
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control in collagenase lesions in the DDFT. Treatment was applied once at 7 days
after injury, and histologic outcomes were assessed at 30 and 120 days. There were
no significant differences between treatment groups in terms of collagen or COMP
staining; surprisingly, cell number was greatest in the control group. Greater vas-
cularity was reported in the PRP-treated tendons. A similar study was conducted in
rats which underwent Achilles transaction (Chen et al. 2012b) and were treated with
resting, high concentration PRP alone, PRP ? tendon stem cells (TSC), TSC alone
or saline controls. Treatment was applied at the time of injury in a collagen sponge.
There were no significant differences in collagen content between treatments and
controls; the PRP ? TSC group trended toward the highest collagen content at
3 days, but differences were not statistically significant and all groups appeared
equivalent by 14 days. Studies which employ biomechanical testing of treated tis-
sues are especially useful: in a rat Achilles transection model, (Aspenberg and
Virchenko 2004) high concentration, thrombin-activated PRP was injected 6 h post-
injury. Tendon harvested 1-3 weeks later had significantly greater force to failure,
strength and stiffness, by a margin of approximately 30 % over control values.
A subsequent study from these investigators used similar methods but examined the
effects of thrombin, thrombin-activated PRP, resting PRP, and saline in comparison
to untreated controls. The activated PRP gel produced a 44 % increase in force-to-
failure at 14 days, as compared to 22 % for resting PRP, 24 % for thrombin alone,
and 10 % for saline. Because thrombin is itself a known a mitogen, these results
were important to clarify the results of the previous study, and also demonstrated a
significant difference between activated and resting PRP in terms of tendon strength.
The sole in vivo experimental study on equine tendon also employed mechanical
testing outcomes: Bosch et al. (2010) created surgical lesions in the SDFT of both
forelimbs and, at 7 days post-injury, treated 1 limb with resting, moderate
concentration PRP and the other limb with saline. At 6 months, significant increases
in cell number were observed in the PRP group, which translated into significant
differences in collagen and GAG content as well. Most importantly, PRP-treated
tendons were stronger by a margin of approximately 30 %, as indicated by both
force to failure and elastic modulus. Ultrasonographic examination revealed
significantly greater fiber alignment and neovascularization in the PRP-treated
tendons (Bosch et al. 2011a; Bosch et al. 2011b). A study of Achilles transection in
rabbits also found significantly increased vessel density after treatment with a
PRP gel. Other findings included significantly increased immunohistochemical
staining for IGF-1 expression within the tendon and also significantly increased
force-to-failure for 4 weeks after injury (Lyras et al. 2010; Lyras et al. 2009a; Lyras
et al. 2009b).

Bone

There are numerous, somewhat conflicting in vitro studies on the effects of PRP on
osteogenic cells in culture. As for other cell types, a proliferative response to PRP
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is commonly reported in osteoblast-like cells, (Mooren et al. 2010; Graziani et al.
2006; Celotti et al. 2006; Ferreira et al. 2005; Kanno et al. 2005) but in other
studies PRP (resting or activated) has significantly inhibited proliferation relative
to a 10 % FBS control (Slapnicka et al. 2008). Thrombin-activated PRP releasates
have been shown to stimulate osteoclastic development by increasing RANKL
expression, (Gruber et al. 2002; Weicht et al. 2007) but other authors have reported
PRP inhibition of osteoclasia (Cenni et al. 2010). Recently, muscle satellite cells
have been investigated as an alternative for bone formation. One study examined
the osteoinductive effect of PRP (lysed by 1 freeze–thaw cycle) on these cells, in
comparison to treatment with autologous serum or 10 % FBS. The authors
observed significantly more cell proliferation, ALP production, and Alizarin red
staining after in vivo implantation in the cells treated with PRP. Gene expression
for Type I collagen, osteocalcin, and osteopontin was also enhanced by PRP
treatment (Huang and Wang 2010).

The results of in vivo studies of PRP in bone formation are also contentious.
The original clinical PRP study by Marx et al. (1998) preceded most of the
experimental reports in the literature. This study demonstrated significantly
improved bone formation in clinically-occurring, critical-sized mandibular defects
in human patients, and therefore largely supersedes many of the studies with
negative results of PRP in experimental models. Platelet concentration appears to
be particularly important for bone formation, with no bone produced at low-
intermediate concentrations or at very high platelet concentrations (Weibrich et al.
2004; Graziani et al. 2006). These findings may explain some of the inconsistency
in experimental results, and there may also be significant species differences that
account for the bone formation that occurs in people but is sometimes lacking in
experimental animals (Plachokova et al. 2009). Activation method also seems to
play an important role in whether bone formation occurs or not: one study dem-
onstrated a negative impact of thrombin-activated human PRP on ectopic bone
formation in athymic rats, whereas resting PRP performed significantly better than
controls (Han et al. 2009). Another study (Kim et al. 2010) demonstrated a better
osteogenic effect with low-dose thrombin and calcium activation of human PRP in
calvarial defects of athymic rats, in comparison to high-dose thrombin activation as
originally described by Marx (143U/mL ? 14.3 mg/mL of CaCl2) (Marx et al. 1998).

It is important to note that most of the in vivo studies on PRP effects on bone
formation utilize xenogeneic (human) PRP to treat a critical-sized calvarial defect
model in athymic rats. This model is probably useful to predict bone formation in
the mandible and maxilla, but may or may not be relevant to osteogenesis in
weight-bearing long bones. Many of these studies do not report specifics on the
platelet concentration or activation status of the PRP, and most bone formation
studies use PRP in combination with a variety of osteoconductive scaffold mate-
rials. (Please note: although activated PRP is considered to provide a scaffold for
the formation of soft extracellular matrix, the term ‘‘scaffold’’ here refers to
materials that contain the rigid, mineral components necessary for bone forma-
tion.) For these reasons, it is somewhat difficult to determine the true effect of PRP
alone on bone healing. Because the focus of this discussion is on the potential
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orthopedic applications of PRP, preference will be given here for any studies that
are more pertinent to the load-bearing skeleton.

With regard to long bones, PRP has been tested in a few experimental long-
bone fracture models. One study created similar defects in goats and treated them
with scaffold ? PRP (autologous, high concentration, activated) or scaffold alone:
the inclusion of PRP resulted in a significant increase in new bone formation at 4, 8
and 16 weeks (Bi et al. 2010). Another study used high concentration, activated
PRP in combination with cancellous bone graft to treat critical sized, unicortical
defects in the tibiae of mini-pigs. The treatment group was compared to bone graft
alone, with outcomes at 6 weeks. The area of new bone formation in the defect
was significantly greater for PRP treated animals (i.e. new bone filled approxi-
mately 54 % of the original defect vs. 38 % in the control group) (Hakimi et al.
2010). These results are impressive and uncommon because autologous cancellous
bone graft is considered the ‘‘gold standard’’ in terms of bone repair, as it provides
all 3 properties necessary for new bone formation (osteoconduction, osteoinduc-
tion, and osteogenesis). In rabbits with a distal radial ostectomy, (Kasten et al.
2008) allogeneic PRP (pooled from 6 donors, high concentration, lysed by 1
freeze–thaw cycle) ? scaffold increased new bone formation as compared to the
scaffold alone. However, these PRP results were significantly inferior to those
obtained with cancellous bone graft alone (i.e., the positive control) and
mechanical stiffness was not improved by the addition of PRP into the repair.
Nonetheless, the authors concluded that allogeneic PRP would be of benefit as an
‘‘off the shelf’’ adjunct to improve bone formation in conjunction with osteo-
conductive scaffold, thereby preventing the need for cancellous bone harvest from
the patient. A study in rats (Gumieiro et al. 2010) used PRP (high concentration,
CaCl2-activated, allogeneic) alone to treat unicortical tibial defects created after
irradiation of the bone. Fourteen to 84 days later, new bone formation was sig-
nificantly greater in PRP-treated defects than in empty control defects. In another
study in rabbits with unicortical defects in the femoral condyle, (Dallari et al.
2006) PRP (autologous, thrombin/CaCl2-activated, high concentration) was used
alone or in combination with BMSCs and freeze-dried allogeneic bone. The
combination induced significantly greater filling of the defect: at 2 weeks, the
PRP-alone group had 35–40 % healing, whereas the combination group was 95 %
healed. At 12 weeks, the PRP-alone group had not progressed further, whereas
BMSCs alone or freeze-dried bone alone had progressed significantly from
2 weeks but were also inferior to the combination treatment. With regard to
osseointegration of implants used in either fracture repair or as periodontal pros-
theses, PRP has not shown a demonstrable advantage in terms of bone-implant
contact (Garcia et al. 2010; Weibrich et al. 2004; Jensen et al. 2005, 2004).

In summary, the answer to the question, ‘‘How useful is PRP in osseous res-
toration?’’ depends on the control group to which it is being compared. By virtue
of the osteoinductive properties of its growth factors, the addition of PRP improves
new bone formation in comparison to either no treatment or a synthetic scaffold
alone. If osteogenic cells are also added to a combination of PRP+scaffold, the
triad of osteoconduction (scaffold), osteoinduction (PRP) and osteogenesis (cells)
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is theoretically provided. This is reflected in some studies that show superior
effects of combination therapy, but even these results are not uniformly obtained.
In short, there may be a role for PRP as an adjunct to bone repair, but it does not
appear to confer any advantage as a single agent. It may be of particular use in
cases where cancellous bone harvest is not possible or is of insufficient volume for
treatment of a large defect.

Articular Cartilage and Synovial Tissues

Research examining the effects of PRP on articular tissues has commenced only
recently. In vitro studies thus far have reported only positive effects of PRP on
chondrocytes or chondrocyte precursors, in terms of proliferation and increased
matrix synthesis. In a study by Kruger et al. (2012) human cortico-spongious
progenitor cells were cultured under the influence of very high concentration PRP
that had been lysed by 1 freeze–thaw cycle. PRP induced a dramatic chemotactic
effect on these cells (approximately 14x that of 10 % serum controls), as well as
significant increases in immunohistochemical staining for Type II collagen and
GAG. In another study on human chondrocytes, PRP lysate (high concentration, 2
freeze–thaw cycles) led to increased SOX9 and aggrecan gene expression as well
as increases in Toluidine blue staining for GAG content (Spreafico et al. 2009)
Van Buul et al. (2011) reported that diminished aggrecan and Type II collagen
gene expression by IL-1b-conditioned human chondrocytes could be restored to
normal levels by PRCR (high concentration, CaCl2-activated). The mechanism for
this effect was determined to be PRP-mediated inhibition of NFjb signaling.
Another study also confirmed this mechanism of action in high concentration,
thrombin/CaCl2-activated PRP on human chondrocytes, and determined that NFjb
inhibition was specifically mediated by hepatocyte growth factor (HGF)-induction
of the protein, IjBa. Notably, this group evaluated resting PRP as well as activated
and did not observe the anti-NFjb effect after exposure to resting PRP (Bendinelli
et al. 2010). A third group also reported that PRP restored collagen and proteo-
glycan synthesis by chondrocytes after IL-1b/TNFa insult (Wu et al. 2011). In
porcine chondrocytes, PRP (high concentration, thrombin/Ca CaCl2-activated)
stimulated significant increases in DNA content, proteoglycan synthesis and total
collagen synthesis (Akeda et al. 2006).

The effects of PRP on synovial fibroblasts and meniscal chondrocytes have also
been examined. Anitua et al. determined that normal synovial fibroblasts produced
significantly more HA after exposure to PRCR (moderate concentration, CaCl2-
activated), even in the face of IL-1b insult. In a subsequent study using synovial
fibroblasts from osteoarthritic patients, HA and HGF production increased after
PRCR treatment, but only HA synthesis was restored after IL-1b exposure and
PRCR did not diminish the accompanying increases in MMPs (Anitua et al. 2007).
HA production and cell proliferation were dose-dependent in terms of increasing
platelet concentration (Anitua et al. 2009). Synovial fibroblasts migrated best when
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exposed to a combination of PRCR and HA (Anitua et al. 2011). Regarding PRP
effects on the meniscus, meniscal cells of rabbits were cultured and exposed to
PRP (high concentration, 1 freeze–thaw) in combination with a hydrogel Ishida
et al. (2007). After 8 days of culture, the cells treated with PRP had significant
increases in proliferation, GAG production and small proteoglycan expression
(which is characteristic of meniscal chondrocytes) in comparison to hydrogel+PPP
or hydrogel alone. When these constructs were implanted in vivo, proteoglycan
staining and chondrocyte number were greatest in the PRP group.

A few experimental animal studies have been reported on the impact of PRP in
osteoarthritis or repair of osteochondral lesions. In a cruciate-transection osteo-
arthritis model in rabbits, very high concentration, activated PRP was mixed with
gelatin microspheres and injected intra-articularly 4 and 7 weeks after injury. At
10 weeks post-injury, gross and histologic scores were significantly improved in
the PRP-microsphere group in comparison to untreated controls or PRP alone. The
authors concluded that PRP dramatically attenuated the progression of early OA
when used with a vehicle such as gelatin microspheres (Saito et al. 2009). Another
rabbit study used PRP in combination with a polyglycolic acid scaffold to treat
large (5 mm diameter), full-thickness osteochondral defects in the stifle. The PRP
was activated and of high platelet concentration. At 4 and 12 weeks, the results
indicated significantly better gross and histologic scores and significantly more
subchondral bone formation in the PRP treated group, as compared to untreated
controls or those treated with scaffold alone (Sun et al. 2010). In another study in
sheep, Kon et al. (2010) created 7 mm defects in the femoral condyles and treated
them with a collagen-hydroxyapatite scaffold with or without PRP (high con-
centration, CaCl2-activated). Significant improvements were reported in the
scaffold-only group, whereas the inclusion of PRP had a detrimental effect on
gross and histologic scores at 6 months. However, another study which created
very similar lesions in sheep reported significant improvements in gross appear-
ance, histologic scores, and also cartilage stiffness after microfracture followed by
activated PRP ? additional fibrin gel in the defect. The other treatment groups
underwent microfracture alone or microfracture plus liquid PRP injection; lesions
treated with microfracture ? liquid PRP had a better histologic appearance than
those that underwent microfracture alone (Milano et al. 2010). In a follow-up
study, the same authors evaluated whether intra-articular injections of PRP could
augment the healing of the same lesions treated with microfracture alone. After
surgery, they performed 5 weekly injections of PRP (high concentration) into the
stifle. Gross and histologic scores and cartilage stiffness were significantly better in
the PRP treatment group at 3, 6, and 12 months (Milano et al. 2012).

Literature Review: Conclusions

With regard to PRP use for tendons, there is good experimental and clinical
evidence to support the use of PRP in the healing of acute lesions. In vitro studies
suggest a definite increase in tenocyte number and vascularity after PRP treatment,
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but evidence for improved matrix synthesis or correct collagen alignment is
lacking. Despite this, the few studies that have performed mechanical testing have
demonstrated increased tendon strength after PRP treatment. There are no
experimental studies examining the effects of PRP on chronic or degenerative
models in tendon. This gap in the literature is important because degenerative
tendinopathy is encountered at least as often as acute tendon injury.

The evidence for PRP use as an adjunct to bone formation is not as clear. With
regard to long-bone healing in particular, PRP improves the performance of os-
teoconductive scaffolds and may therefore be useful for large bone defects or when
cancellous graft is not available. PRP in the absence of a scaffold is probably of
minimal use in acute bone defects, including fracture repair or fusion procedures.
However, percutaneously applied PRP may be useful in cases where fibrous callus
(i.e. native scaffold) is already present, such as in cases undergoing distraction
osteogenesis or possibly in the treatment of delayed or non-union fractures.
Platelet concentration and activation methods appear to be of greater significance
in bone than in other tissues, since very high concentrations of platelets and/or
thrombin are reported to inhibit osteogenesis.

PRP use in joints is in its infancy, but the literature thus far is quite favorable.
Chondrocytes appear to respond well to PRP exposure in terms of proliferation and
most importantly, matrix production. In vivo, PRP is likely to be of benefit in early
osteoarthritis but may require a vehicle for sustained release, or could be
administered as repeated injections. PRP appears to augment osteochondral repair
but results may be influenced by unfavorable interactions with certain types of
implanted scaffolds. PRP also shows promise for meniscal repair.

In summary, there is good experimental evidence to support PRP use in
orthopedic applications, particularly in tendon/ligament injuries and in arthropa-
thies. The current trend toward prospective, randomized, controlled clinical studies
will likely continue to substantiate the use of PRP as a therapeutic agent in
orthopedic and sports medicine. However, because of the autologous nature of the
product, standardized results may not be obtained in all patients. Experimental
studies are still necessary to optimize each of the variables involved in PRP
preparation and use, so that the best PRP product possible can be produced from
and delivered to each individual patient.
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