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Abstract. We reinterpret classic Gray codes for binary strings, permu-
tations, combinations, binary trees, and set partitions using a simple
greedy algorithm. The algorithm begins with an initial object and an
ordered list of operations, and then repeatedly creates a new object by
applying the first possible operation to the most recently created object.

1 Introduction

Let B(n) be the set of n-bit binary strings. The binary reflected Gray code
Gray(n) orders B(n) so that successive strings have Hamming distance one
(i.e., they differ in one bit). For example, the order for n = 3 appears below,
with overlines denoting the change that creates the next string

Gray(3) = 000, 001, 011, 010, 110, 111, 101, 100. (1)

The term reflected indicates how the order is created: Gray(n) prefixes 0 to
each string of Gray(n−1), and then prefixes 1 to the strings of Gray(n−1) in
reflected order. For example, the top and bottom rows below are 0 · Gray(3)
and 1 · reflect(Gray(3)), respectively, where · denotes concatenation

Gray(4) = 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100,

1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000.

We can express the construction recursively as Gray(1) = 0, 1 and for n > 1,

Gray(n) = 0 ·Gray(n−1), 1 · reflect(Gray(n−1)), (2)

where the comma appends the two lists. The above definition uses global recur-
sion since it refers to the entire Gray(n−1) list as one unit. We can instead
define the order using local recursion by referring to the individual strings in
Gray(n−1). If Gray(n−1) = b1,b2, . . . ,bk−1,bk for k = 2n−1, then

Gray(n) = b1 · 0,b1 · 1,b2 · 1,b2 · 0, ...,bk−1 · 0,bk−1 · 1,bk · 1,bk · 0 (3)

where Gray(1) = 0, 1. In other words, Gray(n) can be created by alternately
suffixing 0 then 1, and 1 then 0, to successive strings in Gray(n−1).

Since Frank Gray was granted U.S. Patent 2,632,058 in 1953 [4], his order has
been used in numerous applications, with rotary encoders providing a promi-
nent example [12]. The term Gray code now refers to minimal change orders of
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combinatorial objects. Gray codes are related to efficient algorithms for exhaus-
tively generating combinatorial objects. Knuth recently surveyed combinatorial
generation in The Art of Computer Programming [6], and included separate sub-
sections on generating tuples, permutations, combinations, partitions, and trees.
Although the research area is quite diverse, it is fair to say that it has been dom-
inated by the ideas of recursion and reflection. To demonstrate, we next recount
a classic Gray code for combinations and a classic Gray code for permutations.

In the 1980s, Eades and McKay [3] followed Gray’s approach to order the
k-combinations of an n element set, which can be represented by B(n, k) the
n-bit binary strings with fixed weight (i.e., number of 1s) equal to k. The Eades-
McKay Gray code is defined using recursion and reflection as follows

EM(n, k) = EM(n−1, k) ·0, reflect(EM(n−2, k−1)) ·01, EM(n−2, k−2) ·11
with EM(n, 0) = 0n, EM(n, n) = 1n, andEM(n, 1) = 10n−1, 010n−2, . . . , 0n−11,
where exponentiation denotes repetition. For example,

EM(5, 3) = 11100,11010,10110,01110
︸ ︷︷ ︸

EM(4,3)·0

, 01101,10101,11001
︸ ︷︷ ︸

reflect(EM(3,2))·01

, 10011,01011,00111
︸ ︷︷ ︸

EM(3,1)·11.
(4)

In this order, successive strings differ by a homogeneous transposition, meaning
that a 1 and 0 can only be interchanged if the intermediate symbols are all 0s. In
other words, substrings of the form 00 · · · 01 and 100 · · ·0 can be interchanged.
Thus, a single si changes when the elements of the combination are represented
as 1 ≤ s1 < s2 < · · · < sk ≤ n. For this reason, the order allows pianists to
practice all k-note chords while moving only a single finger between chords [3].

Let P(n) be the permutations of [n] = {1, 2, . . . , n} in one-line notation. For
example, P(3) = {123, 213, 213, 231, 312, 321}. In the 1960s, researchers consid-
ered permutation Gray codes using adjacent transpositions (or swaps), meaning
that two symbols can only be interchanged if they are next to each other. John-
son, Trotter, and Steinhaus all approached the problem using local recursion,
and they all rediscovered an order known in the 17th century as plain changes
[2]. To explain the order, let zig(p) be the list obtained from p by applying the

following swaps: (n n−1), (n−1 n−2), ..., (1 2). For example, zig(1234) = 12
←−
34,

1
←−
243,

←−
1423, 4123 where the arrow shows the movement of 4. Similarly, let zag(p)

apply the following swaps: (1 2), (2 3), ..., (n n−1). Notice that zigs and zags
only change the relative order of the last and first symbols, respectively. Thus,
we can define a Gray code as follows: If Plain(n− 1) = p1,p2, ...,p(n−1)!, then

Plain(n) = zig(p1 · n), zag(n · p2), ..., zig(p(n−1)!−1 · n), zag(n · p(n−1)!) (5)

where Plain(2) = 12, 21. For example, the following order is zig(12)·3, zag(21)·3
Plain(3) = 123, 132, 312, 321, 231, 231. (6)

In this article we propose an alternate method for understanding the aforemen-
tioned Gray codes and many others. To illustrate the idea, consider the following
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method for building a list L of unique strings in B(n): Initialize L to contain
0n, then repeatedly extend L by complementing the rightmost possible bit in
its last string. For example, if the current list is L = 000, 001, 011, 010 then we
examine its last string 010. The rightmost bit cannot be complemented since
010 = 011 is already in L. Similarly, the middle bit cannot be complemented
since 010 = 000 ∈ L. However, the leftmost bit can be complemented since
010 = 110 /∈ L. Thus, 110 is added to the end of L. The complete list for n = 3
is in (1). More generally, we prove that the method always creates Gray(n).

As a second example, initialize L to contain 1k0n−k, then repeatedly extend
L by homogeneously transposing the leftmost possible 1 into the leftmost pos-
sible position. For example, if L = 11100, 11010, 10110, 01110 then we examine
01110. The leftmost 1 could be homogeneously transposed into the first position,
however 01110 = 10110 ∈ L. The middle 1 cannot be homogeneously transposed
since it is bordered by 1s. The rightmost 1 can be homogeneously transposed
into the last position and 01110 = 01101 /∈ L. Thus, 01101 is added to the end
of L. The complete list for n = 5 and k = 3 is in (4). More generally, we prove
that the method always creates B(n, k), and for odd k the order is EM(n, k).

As a third example, initialize L to contain 12···n, then extend L by swap-
ping the largest possible symbol once to the left or right. For example, if L =
123, 132, 312 then we examine 312. The 3 cannot swap left since it is in the left-

most position. Similarly, 3 cannot swap right since
←→
312 = 132 ∈ L. However, 2

can swap left since 3
←→
12 = 321 /∈ L. Thus, 321 is added to L. The complete list

for n = 3 is in (6). More generally, the method always creates Plain(n).
Our “greedy Gray code algorithm” is defined in Section 3 and reinterprets

many classic Gray codes. Section 4 discusses these results on binary strings:

1. The binary reflected Gray code complements the rightmost possible bit;

2. Lexicographic order complements the shortest possible suffix;

3. The de Bruijn sequence by Martin [8] shifts in the lowest possible bit.

Section 5 discusses these results for permutations:

4. The plain change order adjacently transposes the largest possible symbol;

5. The pancake flipping order by Zaks [13] reverses the shortest possible prefix;

6. Corbett’s rotator graph order [1] rotates the prefix with the first possible
length in n, 2, n−1, 3, ....

Section 6 discusses the following additional results:

7. The Eades-McKay order of combinations homogeneously transposes the left-
most possible 1 into the leftmost possible position when the weight is odd.

8. The Lucas, van Baronaigien and Ruskey order of binary trees [7] rotates the
edge with the largest inorder label.

9. Kaye’s set partition order [5] moves the largest possible symbol into the
leftmost possible subset.

In addition, Section 2 provides an application for our greedy reinterpretations.
We conclude the introduction with several clarifications.

• This greedy method is not entirely new. For example, the de Bruijn sequence
we discuss here was first defined greedily by Martin in 1934 [8]. However, the
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term ‘greedy’ is not common in the literature, nor is it featured in Knuth’s
400 page treatise on combinatorial generation [6].

• The greedy method is not suitable for efficiently generating Gray codes since
it may have to ‘remember’ an exponential number of objects relative to their
size. However, it can provide a simpler description for previously created
Gray codes and a simpler method for discovering new Gray codes (see [9]).

• Recursive constructions are often general results. For example, any swap Gray
code of P(n−1) provides a swap Gray code of P(n) using (5). In contrast,
our greedy method gives only one order. However, this order may illuminate
a general recursive principle that leads to an efficient generation algorithm.

In general, the author views the greedy Gray code algorithm as a simple and
unified “first step” in understanding and discovering Gray codes.

2 Network Application

Gray codes give Hamilton paths and cycles in well-studied graphs, such as the
n-cube (binary reflected Gray code), the permutohedron (plain changes), the
rotator graph (Corbett’s order), and the pancake graph (Zaks’s order). These
graphs are used as network topologies, where vertices are computers and two
vertices can communicate if they are adjacent (see Siegel [10]). In this section, we
illustrate how our greedy algorithms can send messages through these networks.

The pancake graph has vertices P(n) and edges between pairs of vertices that
differ by a prefix-reversal. Figure 1 a) illustrates the graph for n = 4. In Section
5 we will see that a Hamilton path can be created in this graph from 1234 by
repeatedly reversing the shortest possible prefix that gives a new permutation.
The order of vertices visited on this Hamilton path is illustrated by Figure 1 b).

Suppose each vertex sets a flag if it has seen a particular message, and each
vertex can query the flags of its neighbors. Also assume that the neighbors of a
vertex are ‘prioritized’ by increasing prefix-reversal lengths. Given this scenario,
we claim that a message m will propagate from an initial vertex to all other
vertices in the pancake graph so long as each vertex runs the following algorithm:

When a vertex receives m, it sets its flag and passes m to its
highest-priority neighbor whose flag is not set.

For example, consider vertex 3214 in Figure 1 b), which is the sixth vertex
to receive the message. Once it receives the message, it cannot pass it to its

highest-priority neighbor
←→
2314 since this vertex has already seen the message,

and similarly it cannot pass it to
←→
1234. However, it can pass the message to its

lowest-priority neighbor
←−→
4123, and at this point its algorithm terminates.

To clarify an important point, we mention that the pancake graph is vertex-
transitive, and that our greedy prefix-reversal algorithm generates P(n) for any
initial permutation. Thus, our approach works regardless of where the message
originates. Furthermore, the same arguments apply for our greedy algorithms in
the n-cube, permutohedron, and rotator graph. In particular, this approach in
the rotator graph is much more efficient than the table approach in Corbett [1].
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Fig. 1. a) The pancake network for n = 4 in which thick, medium, and thin edges are
used for prefix-reversals of length two, three, and four, respectively. b) The Hamilton
path obtained by greedily reversing the shortest possible prefix starting from 1234,
where each partial edge shows a prefix-reversal leading to a previously visited vertex.

3 Greedy Gray Code Algorithm

The greedy Gray code algorithm takes as input an object x ∈ X and a prioritized
list of operations O = o1, o2, . . . , ok where oi : X → X for all 1 ≤ i ≤ k. The
algorithm outputs a greedy object list L of distinct objects in X. The list initially
contains x, and then is repeatedly extended by one object as follows: If x is the
last object in L, and i is the minimum value such that oi(x) is not already in L,
then oi(x) is added to the end of L. GreedyO(x) is successful if it generates X.
In other words, success occurs if every object of the same type as x is in L.

GreedyO(x)
1: Initialize list L to contain the single object x.
2: Let x be the last object in list L.
3: Let i be minimum such that oi(x) is not in L. If i does not exist, then return.
4: Add the new object oi(x) to the end of L.
5: Return to line 2.

Given a prioritized list of operations O = o1, o2, . . . and an index list I =
i1, i2, . . ., we generate a list of objects as follows. Let ApplyO(x1, I) be the list
x1,x2, . . . where xi+1 = oik(xi) for k = 1, 2, . . .. That is, the ikth operation
creates the (k + 1)st object from the kth object.

4 Binary Strings

In this section, we give greedy interpretations to three orders of binary strings.
Throughout this section we index the bits of a binary string from right-to-left.
Thus, if b ∈ B(n), then b = bnbn−1 · · · b1 are its individual bits. The ith bit of b
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uses this right-to-left indexing, so the first bit is the rightmost. A draft of this
paper illustrates each order in Table 1 (see the author’s website).

4.1 Binary Reflected Gray Code

We first prove the greedy interpretation of the binary reflected Gray code us-
ing local recursion. Let biti be the operation that complements the ith bit of a
binary string. That is, biti(b) = bn · · · bi+1bibi−1 · · · b1. We prioritize the bit com-
plements from right-to-left in Bit↑n = bit1, bit2, . . . , bitn. (In general, we use low-
ercase for individual operations and uppercase for prioritized lists of operations,
with ↑ and ↓ for lists with increasing and decreasing subscripts, respectively.)

Theorem 1. The greedy Gray code algorithm that complements the rightmost
possible bit generates the reflected Gray code. That is, GreedyBit↑n(0

n) = Gray(n).

Proof. The proof is by induction on n with GreedyBit↑1
(01) = 0, 1 = Gray(1) for

the base case. Inductively assume that

GreedyBit↑m−1
(0m−1) = b1,b2, . . . ,b2m−1 = Gray(m−1).

In particular, b1 = 0m−1 and b2 = 0m−21. The first four strings generated by
GreedyBit↑m(0m) are 0m, 0m−11, 0m−211, 0m−210 = b1 ·0,b1 ·1,b2 ·1,b2 ·0. More

generally, suppose GreedyBit↑m(0m) begins

b1 · 0,b1 · 1,b2 · 1,b2 · 0, . . . ,b2i−1 · 0,b2i−1 · 1,b2i · 1,b2i · 0 (7)

for some fixed 1 ≤ i < 2m−1. The algorithm cannot apply bitm to the last
string in (7) since b2i · 0 = b2i · 1 is the second-last string in (7). Therefore, the
algorithm can only apply bitj for some j < m. Thus, the next string (if any)
generated by the algorithm will end with 0. Observe that the strings ending with
0 in (7) are precisely b1 ·0,b2 ·0, . . . ,b2i ·0. Since GreedyBit↑m−1

(0m−1) begins by

generating b1,b2, . . . ,b2i,b2i+1, we know GreedyBit↑m(0m) behaves accordingly.

Thus, GreedyBit↑m(0m) follows b2i · 0 by generating b2i+1 · 0. Furthermore, the
string generated after b2i+1 · 0 is b2i+1 · 1 since bitm is the highest priority
operation. Therefore, (7) is true when i+1 replaces i. Hence, by repeating this
argument (7) is true for i = 2m−1. Therefore, GreedyBit↑m(0m) andGray(m) share

the same recursive structure by (3) and (7), which completes the induction. ��

4.2 Lexicographic Order

We next give a greedy interpretation to Lex(n), the lexicographic order of B(n)
in which successive strings have decimal value 0, 1, 2, . . . , 2n−1. For example,

Lex(3) = 000, 001, 010, 011, 100, 101, 110, 111.

Notice that each successive string is obtained by a suffix complement suffi which
complements the rightmost i bits. That is, suffi(b) = bnbn−1 · · · bi+1bibi−1 · · · b1
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for b ∈ B(n). We prioritize by shortest suffix in Suff↑
n = suff1, suff2, . . . , suffn.

Lexicographic order has the same global recursive definition as the binary re-
flected Gray code, without the reflection. That is, Lex(1) = 0, 1 and for n > 1,

Lex(n) = 0 · Lex(n−1), 1 · Lex(n−1). (8)

For example, the order below is 0 · Lex(3) followed by 1 · Lex(3)
Lex(4) = 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

Theorem 2. The greedy Gray code algorithm that complements the shortest
possible suffix generates lexicographic order. That is, GreedySuff↑

n
(0n) = Lex(n).

Proof. Our proof is by induction, with GreedySuff↑
1
(01) = 0, 1 = Lex(1) as the

base case. Inductively assume GreedySuff↑
m−1

(0m−1) = Lex(m−1). Now consider

GreedySuff↑
m
(0m). Since suffm is the lowest-priority operation, the algorithm will

begin by creating as many strings as possible using Suff↑
m−1. By induction, this

produces 0 · Lex(m−1), whose last string is 0 · 1m−1. The greedy algorithm
must then apply suffm to this string to create 0 · 1m−1 = 1 · 0m−1 since every
string beginning with 0 has already been generated. Now the algorithm again
proceeds by creating as many strings as possible using Suff↑

m−1 starting from
1 · 0m−1. By induction, this produces 1 · Lex(m−1). Thus, GreedySuff↑

m
(0m) =

0 · Lex(m−1), 1 · Lex(m−1), and so our result is true by (8). ��

4.3 de Bruijn Sequences

A de Bruijn sequence is binary string of length 2n that contains every string in
B(n) exactly once as a circular substring of length n. Martin [8] showed that a
de Bruijn sequence dB(n) can be built one bit at a time by starting from 0n and
greedily suffixing the largest possible next bit 1 or 0, subject to the condition that
the resulting sequence does not contain any substring twice1. For example, if the
algorithm for n = 4 has currently built 00001111011, then Martin’s algorithm
will not append 1 since the resulting sequence of bits 000011110111 would contain
two copies of 0111. Thus, it would append 0. The result of Martin’s algorithm
for n = 4 is dB(4) = 0000111101100101. A de Bruijn sequence is decoded by
listing its successive substrings of length n. For example,

decode(dB(4)) = decode(0000111101100101)

= 0000, 0001, 0011, 0111, 1111, 1110, 1101, 1011,

0110, 1100, 1001, 0010, 0101, 1010, 0100, 1000

where the final three substrings “wrap around”. Successive decoded substrings
always differ by a 1-shift or a 0-shift, meaning that bnbn−1 · · · b1 is replaced by

1 Martin constructs a sequence of length 2n+n−1 starting from 0n−11 whose 2n non-
circular substrings are B(n). This sequence ends with 0n, so it is equivalent to dB(n).
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bn−1bn−2 · · · b11 or bn−1bn−2 · · · b10, respectively. We denote these two operations
by shift1 and shift0, respectively, and prioritize them as Shift↓2 = shift1, shift0. This
allows us to reinterpret Martin’s result using the greedy Gray code algorithm.

Theorem 3 ([8]). The greedy Gray code algorithm that shifts in the largest
possible bit generates decoded strings in Martin’s de Bruijn sequence. That is,
GreedyShift↓2

(0n) = decode(dB(n)).

We mention that Theorem 2 depends on the initial string. For example, 000 and
001 are the only suitable choices for generating B(3) in this way.

5 Permutations

In this section, we give greedy interpretations to three permutation orders.
Throughout this section we index the symbols of a permutation from left-to-
right. Thus, if p ∈ P(n), then p = p1p2 · · · pn. A draft of this paper illustrates
each order in Table 2 (see the author’s website).

5.1 Plain Change Order

The transposition (i j) interchanges the values in positions i and j of a string.
A swap is a transposition of the form (i i+1). Swaps are also known as adjacent
transpositions. When considering permutations, we can indicate a specific swap
by indicating a value and a direction, instead of a pair of positions. Let swap−v

and swap+v be the operations that swap value v one position to the left, or

right, respectively. For example, swap−2(7654321) = 7654
←−
321 = 7654231 is a left

swap of 2, and swap+2(7654321) = 76543
−→
21 = 7654312 is a right swap of 2. If

p = p1p2 · · · pn ∈ P(n), then swap+pn
(p) = swap−p1

(p) = p. In other words, left
swapping the first value does not change a permutation, nor does right swapping
the last value. We prioritize our swaps by decreasing values, and right before left,

Swap↓n = swap+n,swap−n, . . . ,swap+2,swap−2,swap+1,swap−1.

Note: The relative priorities of swap+i and swap−i do not affect the proof of
Theorem 4, so we say that the swaps are prioritized by decreasing value.

Theorem 4. The greedy Gray code algorithm that swaps the largest possible
value generates the plain change order. That is, GreedySwap↓n(12 · · ·n) = Plain(n).

Proof. The proof is by induction on n with GreedySwap↓2
(12) =

←−
12, 21 = Plain(2)

as the base case. Inductively assume

GreedySwap↓m−1
(12 · · ·m−1) = p1, . . . ,p(m−1)! = Plain(m−1).

In particular, p1 = 12 · · ·m−1 and p2 = 12 · · ·m−3m−1m−2. The first m
strings generated by GreedySwap↓m(12 · · ·m) are

1 2···m−2←−−−−m−1m, 1 2···←−−−−m−2mm−1, ..., m 1 2···m−2m−1 = zig(p1 ·m)
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by repeatedly applying swap−m. At this point, the algorithm cannot swap m so

it swaps m−1 to create m 1 2 · · ·←−−−−−−−m−2m−1 = m 1 2 · · ·m−3m−1m−2. This is
followed by repeatedly applying swap+m as below

−→
m 1 2···m–3m–1m–2, 1

−→
m 2···m–3m–1m–2, ..., 1 2···m–3m–1m–2m = zag(m·p2).

More generally, suppose GreedySwap↓m(12 · · ·m) begins

zig(p1 ·m), zag(m ·p2), zig(p3 ·m), zag(m ·p4), ..., zig(p2i−1 ·m), zag(m ·p2i) (9)

for some fixed 1 ≤ i < (m − 1)!. Notice that the last string in (9) is p2i · m.
The algorithm cannot apply swap+m to p2i · m since m is in the rightmost
position. Similarly, the algorithm cannot apply swap+m since that would result
in the second-last string in (9). Thus, the next string (if any) generated by
the algorithm will begin with m. Observe that the strings beginning with m
in (9) are precisely m · p1,m · p2, . . . ,m · p2i. Since GreedySwap↓m−1

(12 · · ·m −
1) begins by generating p1,p2, . . . ,p2i,p2i+1, we know GreedySwap↓m(12 · · ·m)

behaves accordingly. Thus, GreedySwap↓m(12 · · ·m) follows m ·p2i with m ·p2i+1.
At this point, m · p2i+1 is the first generated string in which the symbols of
[m−1] are in the relative order given by p2i+1. Thus, the algorithm continues
by generating zig(m · p2i+1) since swap+m is the highest priority operation.
This ends with p2i+1 ·m, and for similar reasons, the algorithm follows this by
zag(p2i+1 ·m). Therefore, (9) is true when i+1 replaces i. Hence, (9) is true for
i = (m − 1)!. Therefore, GreedySwap↓m(12 · · ·m) and Plain(m) share the same

recursive structure by (5) and (9), which completes the induction. ��

5.2 Zaks’s Pancake Order

Let revi be the operation that reverses the first i symbols of a string. Thus,
if p = p1p2 · · · pn, then revi(p) = pipi−1 · · · p1pi+1pi+2 · · · pn. This operation is
known as a prefix-reversal or a flip. The term ‘flip’ comes from the pancake
problem: Given a stack of n pancakes of distinct sizes, what is the minimum
number of times a waiter must flip over some number of pancakes at the top of
the stack in order to sort the pancakes from smallest to largest?

Zaks [13] considered the problem of creating all possible stacks (or permuta-
tions) using flips. As he writes, “The poor waiter will be able to generate, in
n! such steps, all possible n! stacks”. Zaks used global recursion to create his

order. For example, Pan(3) =
←→
123,

←→
213,
←→
312,

←→
132,
←→
231, 321 and Pan(4) repeats

this four times below, with prefix-reversals of length three in between

←→
1234,

←→
2134,

←→
3124,

←→
1324,

←→
2314,

←−→
3214,

←→
4123,

←→
1423,

←→
2413,

←→
4213,

←→
1243,

←−→
2143,

←→
3412,

←→
4312,

←→
1342,

←→
3142,

←→
4132,

←−→
1432,

←→
2341,

←→
3241,

←→
4231,

←→
2431,

←→
3421, 4321.

Theorem 5. The greedy Gray code algorithm that reverses the shortest possible
prefix generates Zaks’s order. That is, GreedyRev↑n(12 · · ·n) = Pan(n).
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A new pancake order Pan′(n) is generated by greedily reversing the longest
possible prefix, as prioritized by Rev↓n. The reader can refer to the recent article
by the author and Sawada [9] for these results.

Theorem 6 ([9]). The greedy Gray code algorithm that reverses the longest pos-
sible prefix generates all permutations. That is, GreedyRev↑n(12 · · ·n) = Pan′(n).

5.3 Corbett’s Rotator Order

It is easy to show that P(n) is not generated by greedily rotating the shortest
possible prefix, or the longest possible prefix, for n ≥ 4. However, we will see
that P(n) can be generated by prioritizing the rotations in a different way. In
fact, the Gray code will equal an order given by Corbett in the context of the
interconnection network known as the rotator graph (see Corbett [1]).

Corbett’s order Rotator(n) is generated with the help of an index sequence
Rotator′′(n). The index sequence is defined as follows: Rotator′′(2) = 2 and if
Rotator′′(n−1) = r1, r2, . . . , r(n−1)!−1 then Rotator′′(n) appears below

n, ..., n, n+ 1− r1, n, ..., n, n+ 1− r2, . . . , n, ..., n, n+ 1− r(n−1)!−1, n, ..., n.

where each n, ..., n denotes n repeated n−1 times. For example, Rotator′′(3) =
3, 3, 2, 3, 3 and soRotator′′(4) = 4,4,4,2,4,4,4,2,4,4,4,3,4,4,4,2,4,4,4,2,4,4,4. Cor-
bett’s order is obtained by applying the sequence as rotations starting from
nn−1 · · · 1 ∈ P(n). That is, Rotator(n) = ApplyRotator′′(n)(nn−1 · · · 1,Rot↑n),
where Rot↑n = rot1, rot2, . . . , rotn and rot1 is included for convenience. For exam-
ple, the orders for n = 3 and n = 4 appear below.

Rotator(3) Rotator(4)
−→
321,

−→
213,

−→
132,

−−→
4321,

−−→
3214,

−−→
2143,

−→
1432,

−−→
4132,

−−→
1324,

−−→
3241,

−→
2413,

−−→
4213,

−−→
2134,

−−→
1342,

−→
3421,

−→
312,

−→
123, 231

−−→
4231,

−−→
2314,

−−→
3142,

−→
1423,

−−→
4123,

−−→
1234,

−−→
2341,

−→
3412,

−−→
4312,

−−→
3124,

−−→
1243, 2431.

Understanding the correctness of Corbett’s construction is somewhat tricky,
and we refer the reader to [1] and Stevens and Williams [11]. On the other hand,
it has a relatively simple greedy interpretation. We prioritize the prefix rotations
by interleaving the longest and shortest as follows

Rot�n = rotn, rot2, rotn−1, rot3, . . . , rot	n+1
2 
.

Due to space restrictions, we omit the proof of Theorem 7.

Theorem 7. The greedy Gray code algorithm that rotates prefixes with inter-
leaved longest and shortest lengths generates Corbett’s order of permutations.
That is, Rotator(n) = Greedy

Rot
�
n
(12 · · ·n).
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6 Additional Results

In this section, we describe greedy interpretations of additional Gray codes.
Formal proofs will appear in the full article. A draft of this paper illustrates
each order in Table 3 (see the author’s website).

A k-combination of [n] is a subset of size k, which we represent by its selected
elements 1 ≤ s1 < s2 < · · · < sn ≤ n, or by its incidence vector in B(n, k)
with bitwise indexing from left-to-right. A homogeneous transposition homoi,j
transposes the bits in positions i and j only if the bits have opposite values and
the intermediate symbols are all 0s. Thus, for a given b = b1b2 · · · bn ∈ B(n, k)

homoi,j(b) =

{

b1 · · · bi−1bibi+1 · · · bj−1bjbj+1 · · · bn if i < j

b1 · · · bj−1bjbj+1 · · · bi−1bibi+1 · · · bn if j < i

so long as {bi, bj} = {0, 1} and bi+1 · · · bj−1 = 0j−i−1; otherwise, homoi,j(b) = b.
In particular, homoi,i(b) = b. We prioritize the homogeneous transpositions for
a given combination with 1 ≤ s1 < s2 < · · · < sn ≤ n as follows

Homon = homos1,1, homos1,2, ..., homos1,s2−1, (10)

homos2,s1+1, homos1,s1+2, ..., homos1,s3−1, . . . ,

homosn,sn−1+1, homos1,sn−1+2, ..., homos1,n.

Theorem 8. The greedy Gray code algorithm that homogeneously transposes
the leftmost possible 1 into the leftmost possible position generates all combina-
tions. That is, GreedyHomon(1

k0n−k) generates B(n, k). Furthermore, the order
is EM(n, k) when k is odd.

Let T(n) be the set of binary trees with n vertices, which is enumerated by
the nth Catalan number. When modifying a binary search tree, we can use
edge rotations to keep the tree in balance (see [6]). In the 1990s, Ruskey, van
Baronaigien and Lucas [7] showed how to recursively construct a Gray code of
T(n), in which successive trees differ by a single edge rotation. In their Gray
code Tree(n), they let the label of each vertex be its order during an inorder
traversal. To describe our greedy interpretation of their Gray code, we label an
edge between vertices with label u and label v as max(uv, vu). Given these labels,
let edgei,j denote the operation of rotating the edge with label ij, where edgei,j
has no effect if there is no such edge in the tree. We prioritize the edge rotations
by lexicographically largest label as follows

Edge↓n = edgen,n−1, edgen,n−2, ..., edgen,1,

edgen−1,n−2, edgen−1,n−3, ..., edgen−1,1, . . . ,

edge3,2, edge3,1
edge2,1.

Theorem 9. The greedy Gray code algorithm that rotates the edge with the
largest possible label generates the Ruskey, van Baronaigien, and Lucas Gray
code for binary trees. That is, GreedyEdge↓n(1

n0n) = Tree(n), where 1n0n de-
notes the binary tree that is a left path from the root.
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A set partition of [n] is a collection of disjoint non-empty subsets S1, S2, ...,
Sk ⊆ [n] with S1 ∪ S2 ∪ ··· ∪ Sk = [n]. The disjoint sets are numbered by
their minimum elements, so S1 is the set containing value 1, and S2 is the set
containing the minimum value that is not in S1, and so on. Let S(n) denote the
set partitions of [n], which is enumerated by the nth Bell number. For example,
the following is a set partition of [6] with three subsets S1 = {1, 2, 5}, S2 = {3, 6},
and S3 = {4}: ({1, 2, 5}, {3, 6}, {4}) ∈ S(6).

The operation movei,j moves the value i into the jth subset. If j is the only
value in its subset, then the operation removes the subset {i}, and if j is greater
than the number of subsets then the operation creates a new subset {i}. Kaye
[5] provided a Gray code for S(n) in which successive partitions differ by a single
move. We denote this Gray code by Kaye(n), and then show that it has a simple
greedy interpretation which prioritizes the operations as follows

Moven = moven,1, moven,2, ...,moven,n,

moven−1,1, moven−1,2, ...,moven−1,n, . . . ,

move1,1, move1,2, ...,move1,n.

Theorem 10. The greedy Gray code algorithm that moves the largest possible
value into the leftmost possible subset generates Kaye’s set partition Gray code.
That is, Kaye(n) = GreedyMoven({1, 2, . . . , n}).
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