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Abstract. We present a parameterized enumeration algorithm for Ke-
meny Rank Aggregation, the problem of determining an optimal ag-
gregation, a total order that is at minimum total τ -distance (kt) from the
input multi-set of m total orders (votes) over a set of alternatives (can-
didates), where the τ -distance between two total orders is the number
of pairs of candidates ordered differently. Our O∗(4

kt
m )-time algorithm

constitutes a significant improvement over the previous O∗(36
kt
m ) upper

bound.
The analysis of our algorithm relies on the notion of locally-optimal

aggregations, total orders whose total τ -distances from the votes do not
decrease by any single swap of two candidates adjacent in the ordering.
As a consequence of our approach, we provide not only an upper bound
of 4

kt
m on the number of optimal aggregations, but also the first pa-

rameterized bound, 4
kt
m , on the number of locally-optimal aggregations,

and demonstrate that it is tight. Furthermore, since our results rely on
a known relation to Weighted Directed Feedback Arc Set, we
obtain new results for this problem along the way.

1 Introduction

In the general rank aggregation problem, the goal is to find a single preference list
that is as close as possible to a multi-set of preference lists, according to a chosen
distance measure. The problem dates back to the 18th century [9,11], when it
was raised in the context of fair voting protocols in France; since then it has
been applied to such areas as computational social choice, planning problems
in artificial intelligence [15], bioinformatics [18], and graph drawing [8]. Here
we study Kemeny Rank Aggregation [20], where the input preference lists
(votes) and the output preference list (optimal aggregation) are restricted to total
orders over the set of elements (candidates), the distance between two votes is
the number of pairs of candidates ordered differently in the two votes, and the
optimal aggregation is at minimum total distance from all votes.
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Kemeny Rank Aggregation is NP-hard for constant even numbers of
votes as small as four [3,8,14,17]; therefore, approximations have been stud-
ied [1,8,13,14,23]. Kemeny Rank Aggregation admits a polynomial-time ap-
proximation scheme, based on a reduction to the weighted-directed feedback arc
set problem (WDFAS) for special complete digraphs [21].

Since approximate solutions to Kemeny Rank Aggregation can violate
important properties [12], algorithms to find exact solutions have garnered signif-
icant interest. Betzler et al. developed fixed-parameter algorithms with running
times of O(2n ·n2m) [7], O(1.53kt+m2n) [7] and O((3km+1)! km log km ·mn) [6],
where n is the number of candidates, m is the number of votes, kt is the total
τ -distance of an optimal aggregation from the votes, and km is the maximum
pairwise τ -distance of the votes. The idea in the last-mentioned algorithm was
later extended to the average pairwise τ -distance of votes, denoted by ka, and
the maximum difference between the positions of a particular candidate in any
of the votes, denoted by rm, yielding bounds of O(16ka ·(k2a ·m+ka ·m2 logm ·n))
and O(32rm · (r2m ·m+ rm ·m2)) [7]. Simjour [22] considered kt

m as an average pa-
rameter tighter than ka, and obtained an O∗(5.823

kt
m )-time algorithm, based on

an algorithm for WDFAS in tournaments. Simjour [22] also obtained algorithms
of running times O∗(1.403kt) and O∗(4.829km). Later, a subexponential-time al-
gorithm developed by Alon et al. [2] for WDFAS for tournaments improved the

running times with respect to kt

m , ka, and km, to O(2O(
√

kt
m log

kt
m ) + nO(1)) [16].

At about the same time, Karpinski and Schudy [19] reduced Kemeny Rank
Aggregation to WDFAS for complete digraphs with arc-weights satisfying
the probability constraint (the weights of the arcs (a, b) and (b, a) add up to
one). Through an elegant analysis, they obtained an improved running time of

O(2O(
√

kt
m )+nO(1)). Though most of the parameterized algorithms for Kemeny

Rank Aggregation have benefited from its connection to WDFAS [16,19,22],
details of the reductions differ.

Not much improvement (with respect to kt

m ) is expected, since an O(2o(
√

kt
m )+

nO(1))-time algorithm for Kemeny Rank Aggregation would cause the failure
of the Exponential Time Hypothesis [2]. On the other hand, Fernau et al. [16]
studied an above-guarantee parameterization of Kemeny Rank Aggregation.
The reduction to WDFAS results in an O(2O(kg log kg) + nO(1))-time algorithm,
where kg is an above-guarantee version of kt [10]. For an odd number of votes, the
algorithm of Karpinski and Schudy [19] runs in time O(2O(

√
kg)+nO(1)). Again,

an O(2o(
√

kg)+nO(1))-time algorithm for Kemeny Rank Aggregation results
in the failure of the Exponential Time Hypothesis [16], thus is very unlikely to
exist. In addition, Kemeny Rank Aggregation can be reduced to a kernel
that includes 2kt votes over at most 2kt candidates [7], and to a partial kernel
over at most 16ka

3 candidates [4,5].
There are few results on counting and enumeration of optimal aggregations,

including those obtainable by adjusting the O∗(2n)-time dynamic programming
of Betzler et al. [7] or the subexponential-time algorithm of Karpinski and
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Schudy [19] to count the number of optimal aggregations. The only known pa-
rameterized bound on the number of optimal aggregations is due to Simjour [22],
who gave an O∗(36

kt
m )-time enumeration algorithm.

Our contributions. Using a refined approach, we improve the running time
for enumeration from O∗(36

kt
m ) [22] to O∗(4

kt
m ), and show an 4

kt
m bound on the

number of optimal aggregations. We use the reduction to WDFAS for com-
plete digraphs, exploiting the observation that the arc-weights in all the re-
duced digraphs satisfy the triangle inequality [23]. Our search tree algorithm,
AggSearch, consumes a complete digraph whose arc-weights satisfy the prob-
ability and triangle inequality constraints and finds all minimum feedback arc
sets of the input graph (sets of arcs whose removal renders the graph acyclic).

The algorithm AggSearch guesses adjacent pairs of minimum feedback arc
sets, relying on the fact that all consecutively-ordered vertices in such sets corre-
spond to (≤ 1

2 )-weight arcs. Our algorithm does not use other properties of min-
imum feedback arc sets; it actually enumerates all locally-minimum feedback arc
sets (total orders that are only constrained to have their consecutively-ordered
vertices correspond to (≤ 1

2 )-weight arcs). Therefore, our parameterized bound
on their number (though restricted to special graph classes) is quite unexpected.
Analogously, the bound is carried over to the number of locally-optimal aggrega-
tions, defined in Section 2. We are not aware of any parameterized upper bounds
on the number of locally-optimal aggregations prior to this bound.

There are instances with 4k minimum feedback arc sets. Furthermore, all these
instances correspond to Kemeny Rank Aggregation instances. Consequently,
the upper bounds on the numbers of (locally-) minimum feedback arc sets and
(locally-) optimal aggregations are asymptotically tight.

2 Definitions

Complete or partial preference lists over a set of candidates U can be represented
as binary relations, namely sets of ordered pairs in U×U , where each ordered pair
(x, y) in the relation represents the preference of a candidate x over a candidate y.
As a benefit, set operations can be used; for instance, the number of preferences
common to two lists π1 and π2 can be represented as π1 ∩ π2. Since we reduce
our problem to a graph problem, we also treat graph arcs as ordered pairs and
sets of arcs as binary relations that consist of the corresponding ordered pairs.

For a binary relation ρ ⊆ U × U , we use x <ρ y to denote that (x, y) ∈ ρ,
that is, that x is preferred over y. The reverse of an ordered pair (x, y), denoted
rev((x, y)), is the ordered pair (y, x) formed by reversing the first and second
elements (the tail and head, respectively). The preferences opposite to those in a
binary relation ρ, its reverse, is rev(ρ) = {(y, x) : (x, y) ∈ ρ}. A binary relation
ρ is transitive if w <ρ x and x <ρ y imply w <ρ y; ρ+ is the transitive binary
relation of minimum cardinality that is a superset of ρ. A binary relation ρ is
acyclic if ρ ∩ rev(ρ+) = ∅, and a total order over a set U if it is transitive, for
any x <ρ y, x is not equal to y and y �<ρ x, and for any x, y ∈ U , x �= y, either
x <ρ y or y <ρ x. We use Tot(U) to denote the set of total orders over U .
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The problem of Kemeny Rank Aggregation is defined in terms of a dis-
tance measure that describes the degree to which preference lists differ from
each other. The τ-distance between π1 ∈ Tot(U) and π2 ∈ Tot(U), denoted by
τ(π1, π2), is the number of pairs in π1 −π2, and by extension, the τ-distance be-
tween π1 and a multi-set I over Tot(U), denoted by τ(π1, I), is

∑
π2∈I τ(π1, π2).

Kemeny Rank Aggregation

Input: a multi-set I of m total orders (votes) in Tot(U) where U is a set of
n elements (candidates)

Output: an optimal aggregation of I (a total order λ ∈ Tot(U) that
minimizes τ(λ, I))

We use a well-known reduction to WDFAS on complete digraphs [21], where
a feedback arc set β for a graph G is a subset of the graph arcs whose removal
makes the graph acyclic, with weight wβ =

∑
e∈β we.

WDFAS

Input: an arc-weighted directed graph G
Output: a feedback arc set β for G of minimum weight

We use MF (V,w) to denote the set of all minimum feedback arc sets in a com-
plete digraph G on the vertex set V and with the arc-weight function w.

Feedback arc sets in a complete digraph must have many arcs; each must
include a total order. The total orders in Tot(V ), for a complete digraph over
vertex set V , are exactly the minimal feedback arc sets (sets for which the
removal of any arc will result in a cycle in the remaining graph); thus since
every minimum weight feedback arc set is minimal, MF (V,w) ⊆ Tot(V ).

An instance I of Kemeny Rank Aggregation is reduced to a complete
digraph with arc-weights between zero and one. We define I(a,b) as {π ∈ I :
a <π b}.
Observation 1. A total order λ ∈ Tot(U) is an optimal aggregation of I if and
only if rev(λ) ∈ MF (U,w), where w is the weight function w(a,b) =

|I(a,b)|
m .

Proof. This is a consequence of the fact that the τ -distance between any total
order π ∈ Tot(U) and I is precisely m times the weight of rev(π) in the complete
digraph with vertex set U and the arc-weight function w(a,b) =

|I(a,b)|
m . 	


The weight function satisfies two useful properties, which will be exploited in the
analysis of our algorithm (Section 4). a weight function w over U × U satisfies
the probability constraint if w(a,b)+w(b,a) = 1 for all pairs a, b ∈ U ; we are using
w(a,b) to denote the weight assigned to the pair (a, b) ∈ U × U .

Observation 2. [23] The weight function w(a,b) =
|I(a,b)|

m satisfies the probabil-
ity constraint and the triangle inequality.

We can use the arc-weight function to identify pairs of vertices that might be
adjacent in minimum feedback arc sets. An ordered pair (x, y) is π-adjacent (or
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adjacent when π is implicit) for a total order π ∈ Tot(U) if x <π y and there is
no w ∈ U such that x <π w <π y. We use adj(π) to denote the binary relation
consisting of all π-adjacent ordered pairs. For example, let U = {1, 2, 3, 4} and
λ ∈ Tot(U) satisfy 1 <λ 2 <λ 3 <λ 4. Then, the set of λ-adjacent pairs is
adj(λ) = {(1, 2), (2, 3), (3, 4)}.

For a weight function {w(a,b) : a, b ∈ V }, we define the binary relations w≤c

and w≥c as {(a, b) : w(a,b) ≤ c} and {(a, b) : w(a,b) ≥ c}, respectively. For any
λ ∈ MF (V,w), adj(λ) ⊆ w≤ 1

2
, since if adj(λ) includes an arc e /∈ w≤ 1

2
, then

(λ − e) ∪ rev(e) is a feedback arc set whose weight is smaller than λ’s weight,
contradicting λ ∈ MF (V,w).

Our fixed-parameter algorithm in Section 4 is not merely an enumeration
algorithm for Kemeny Rank Aggregation; it enumerates all locally-optimal
total orders, defined as total orders whose total τ -distances do not decrease after
changing the order of an adjacent pair [14]. A closer look at total orders resulting
from such a change gives rise to the following equivalent definition [14], analogous
to which we define locally-minimum feedback arc sets in digraphs.

Definition 1. A total order λ ∈ Tot(U) is a locally-optimal aggregation for an
instance I of m total orders of Kemeny Rank Aggregation if adj(λ) ⊆ n≥m

2

for the weight function n(a,b) = |I(a,b)|.
Definition 2. A feedback arc set β is locally-minimum if it is minimal and
adj(β) ⊆ w≤ 1

2
.

A minimal feedback arc set is a locally-minimum feedback arc set if reversing a
single arc does not produce a feedback arc set of smaller weight. We use LF (V,w)
to denote the set of all locally-minimum feedback arc sets in the complete digraph
on the vertex set V and the arc-weight function w.

By the minimality condition, locally-minimum feedback arc sets are forced to
be total orders, making them comparable to locally-optimal aggregations.

Observation 3. A total order λ ∈ Tot(U) is a locally-optimal aggregation for
an instance I of m total orders of Kemeny Rank Aggregation if and only
if rev(λ) ∈ LF (U,w), for the weight function w(a,b) =

|I(a,b)|
m .

3 Ideas Used in the Algorithm

3.1 Branching Based on a Feedback Arc Set

A brute-force search for adjacent pairs of a γ ∈ LF (V,w) can be very inefficient.
We use a minimal feedback arc set β (equivalently, a β ∈ Tot(V )) to speed up the
search, and show in Theorem 1 that for any β, AggSearch(V,w, β, rev(β), ∅, ∅)
produces every γ ∈ LF (V,w) in the leaves of its search tree. The weight of β
affects only the running time: the search tree has at most 4wβ leaves and is
computed in times O(nμ · 4wβ), where μ denotes the exponent of matrix mul-
tiplication. As a result, |LF (V,w)| ≤ 4k, where k is the weight of a minimum
feedback arc set in G.
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v1 v2

v3v4

(v4, v1) ∈ adj(γ)?

. . . (v3, v1) ∈ adj(γ)?

v3 <γ v1 <γ v2 <γ v4 v1 <γ v2 <γ v3 <γ v4

Yes No

Yes No

Fig. 1. The first toy example and a decision tree based on adjacent pairs

v1 v2 v3 v4 v5 v6

Fig. 2. The second toy example

To give a sense of how branching on adjacent pairs prunes the search space, we
consider the graph shown in Fig. 1, along with the decision tree implicit in the
algorithm and resulting γ’s. For clarity, we have omitted arc weights and have
drawn only the arcs in w≤ 1

2
, which must include adj(γ) for any γ ∈ LF (V,w). If

(v4, v1) /∈ adj(γ), v4 must be ordered last in γ, as no other arc of the form (v4, ∗)
will remain to be placed in adj(γ). Then, either (v3, v1) ∈ adj(γ), or v1 must be
ordered first in γ, since no arc (∗, v1) will remain. Similar arguments are used to
determine the rest of the arcs in adj(γ).

The search for adjacent pairs not in β, α = adj(γ)−β, is easy if the weight of
β is small. The reverse arcs of w≤ 1

2
− β, each of which has a weight of at least

1
2 , are all in β. Since the weight of β is small, the number of such arcs must be
small, and hence the number of arcs in α, of which w≤ 1

2
− β is a superset.

Still, there are possibly many pairs in w≤ 1
2
∩ β from which to choose the

remaining arcs, i.e. adj(γ)∩β. In Section 3.2, we will show that all the arcs in γ
will be fixed once we figure out those located in a certain region which depends on
α. A brute-force search of the region is not very costly, as the triangle inequality
on the arc weights ensures that the size of the region is linear in the weight of
β. The combination of α and the set of arcs of γ in the region form a concise
representation of γ in terms of β, the β-representation of γ.

3.2 β-Representations

We use a small example to showcase the basic idea of our representation for a
γ ∈ LF (V,w) in Fig. 2: we choose a β ∈ Tot(V ), and draw the vertices from
left to right in the order of β (only the arcs in w≤ 1

2
are shown). When α = ∅,

adj(γ) contains no arcs outside β and hence must adhere to the order in β, that
is, γ = β.
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For α = {(v5, v2)}, we can be sure that v1 is ordered first and v6 is ordered
last in γ, but we do not know whether either v3 or v4 is ordered before v2 and
v5. The order will be fixed once we know whether v3 <γ v2 or v2 <γ v3, and
whether v4 <γ v2 or v2 <γ v4. For example, if both v3 <γ v2 and v4 <γ v2, then
v3 <γ v4 since otherwise (v4, v3) had to be in α = adj(γ)− β as well.

Fortunately, not many vertices can be in the same situation as v3 and v4. By
the triangle inequality, the weight of (v2, v3) plus the weight of (v3, v5), and in
general w(v2,x)+w(x,v5) for any vertex x satisfying v2 <β x <β v5, is at least the
weight of (v2, v5). On the other hand, (v2, v5) ∈ β and w(v2,v5) ≥ 1

2 since (v5, v2)
was initially assumed to be in α ⊆ w≤ 1

2
− β. Consequently, the weight of β is at

least
∑

v2<βx<βv5
(w(v2,x) + w(x,v5)) ≥

∑
v2<βx<βv5

w(v2,v5) ≥ |{x : v2 <β x <β

v5}| · 1
2 . Thus, the number of vertices whose relative orders in γ with respect to

v2 must be determined (like v3 and v4) is at most twice the weight of β. We will
see how the bounded number of decisions is generalized to arbitrary α’s.

The β-representation of γ ∈ LF (V,w) consists of two parts. The first part, α,
is the set adj(γ)− β. For a precise definition of the second part, we define a few
terms. An unordered pair {x, y} is a β-internal pair of (a, b) ∈ rev(β) if x = a or
x = b, and b <β y <β a. We use IPβ(e) to denote the set of β-internal pairs of
e ∈ rev(β), and by extension, we use IPβ(ρ) for a binary relation ρ ⊆ rev(β) to
denote

⋃
e∈ρ IPβ(e). A binary relation ρ ∈ Tot(U) restricted to a set of unordered

pairs P , denoted as ρ|P , is the new binary relation {(x, y) ∈ ρ : {x, y} ∈ P}.
Thus, for β ∈ Tot({v1, . . . , v5}) and v1 <β v2 <β v3 <β v4 <β v5,

IPβ((v5, v3)) = {{v3, v4}, {v5, v4}} and IPβ({(v5, v3), (v4, v1)}) = {{v3, v4},
{v5, v4}, {v1, v2}, {v4, v2}, {v1, v3}, {v4, v3}}. For v1 <γ v2 <γ v4 <γ v5 <γ v3,
the restriction of γ ∈ Tot({v1, . . . , v5}) to IPβ((v5, v3)) is γ|IPβ((v5, v3)) =
{(v4, v3), (v4, v5)}.
Definition 3. The β-representation of γ ∈ LF (V,w), for some β ∈ Tot(V ), is
(α, δ) where α = adj(γ)− β and δ = γ|IPβ(α).

A locally-minimum feedback arc set can be efficiently reconstructed from its
β-representation for an arbitrary β ∈ Tot(V ):

Lemma 1. If (α, δ) is the β-representation of γ ∈ LF (V,w) for a β ∈ Tot(V ),
then γ = β − rev((α ∪ δ)+) ∪ (α ∪ δ)+.

Proof. Since β − rev((α ∪ δ)+) ∪ (α ∪ δ)+ is a total order, it suffices to show
that its two subsets β − rev((α ∪ δ)+) and (α ∪ δ)+ are in γ. The latter is true
since α and δ are defined to be subsets of γ and γ is transitive. We prove the
former by showing that every (x, y) ∈ γ − β is in (α ∪ δ)+. Since γ and β are
total orders, β − γ is a subset of rev((α ∪ δ)+), and thus, β − rev((α ∪ δ)+) is
a subset of γ. The proof is by strong induction: assuming the claim is true for
every (x′, y′) ∈ γ − β with y <β y′, we prove the claim for (x, y).

Drawing the vertices in V on a horizontal line and ordered from left to right
consistent with their order of β, suppose that x = w1 <γ w2 <γ . . . <γ w� = y,
with 
 ≥ 2, and (wi, wi+1) ∈ adj(γ) for all 1 ≤ i < 
. Fig. 3 demonstrates an
example where w7 <β w8 <β . . . <β w4 <β w2. In traversing the vertices in



Parameterized Enumeration of (Locally-) Optimal Aggregations 519

w7 w8 y w5 w6 x w3 w4 w2

Fig. 3. An example of the case x <γ y and y <β x, where the vertices are shown in
the order of β from left to right and the ordered pairs in adj(γ) are presented as arcs.

order from w1 to w� through the arcs in adj(γ), we use arcs in α = adj(γ) − β
when we go from right to left; w� must be to the left of w1, since y <β x. To
reach y = w� from x = w1, we must traverse at least one right-to-left arc ending
up at y or a vertex to the left of y ((w6, w7) in Fig. 3). Since (x, y) ∈ γ − β,
there must exist some 1 ≤ t < 
 such that (wt, wt+1) ∈ α with wt+1 ≤β y <β wt.
When wt+1 �= y, {y, wt+1} ∈ IPβ(α).

We now prove the induction step. If (wt, wt+1) = (x, y), then (x, y) ∈ α, and
hence (x, y) ∈ (α∪δ)+. Otherwise, we show that (wt+1, y) ∈ (α∪δ)+ if wt+1 �= y
and (x,wt) ∈ (α ∪ δ)+ if x �= wt. Together with (wt, wt+1) ∈ α, these result in
(x, y) ∈ (α ∪ δ)+, as needed to complete the proof.

We first prove that (wt+1, y) ∈ (α ∪ δ)+ if wt+1 �= y. As mentioned above,
when wt+1 �= y, {y, wt+1} is in IPβ(α). Since γ orders wt+1 before y, (wt+1, y) ∈
γ|IPβ(α) = δ ⊆ (α ∪ δ)+.

Next, considering the relative orders of wt and x, we prove that (x,wt) ∈
(α ∪ δ)+ if x �= wt. For the case in which wt <β x, since γ orders x before wt,
(x,wt) ∈ γ − β; therefore, (x,wt) ∈ (α ∪ δ)+ by the induction hypothesis. If
instead x <β wt, then, wt+1 < x < wt, and hence {x,wt} ∈ IPβ(α). Since γ
orders x before wt, (x,wt) ∈ γ|IPβ(α) = δ ⊆ (α ∪ δ)+. 	


4 Our Results

Our search tree algorithm AggSearch, shown in Algorithm 1, uses an input
total order β to compute every γ ∈ LF (V,w) through recursive construction of
its β-representation (α, δ). The β-length of an arc (a, b) ∈ rev(β), used in the
algorithm, is the number of vertices in {y : b <β y <β a}. A binary relation ρ is
an ordering of a set of unordered pairs P if both ρ = ρ|P and |ρ| = |P |; thus, δ
is an ordering of IPβ(α).

Algorithm AggSearch uses an auxiliary parameter σ, initialized to rev(β),
which contains the subset of rev(β) for which inclusion in α has not yet been
decided. For α to be part of the β-representation of some γ ∈ LF (V,w), the arcs
in α must be in w≤ 1

2
, since α = adj(γ)− β is a subset of adj(γ) and adj(γ) must

be in w≤ 1
2
. Thus, no further arcs are added to α once σ ∩ w≤ 1

2
becomes empty

(lines 1-5). By that time, δ is an ordering of IPβ(α), since for each arc e inserted
in α, all possible orderings of IPβ(e) are added to δ. Hence, the algorithm stops
adding arcs to δ as well. Due to Lemma 1, if α and δ now form an β-representation
for a γ ∈ LF (V,w), γ must be equal to (β − rev((α ∪ δ)+)) ∪ (α ∪ δ)+. Thus,
the algorithm checks if this formula produces a locally-minimum feedback arc
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Algorithm 1: AggSearch

Require : vertex set V , weight function w, β ∈ Tot(V ), and σ, α, δ ⊆ V × V
1 if σ ∩ w≤ 1

2
= ∅ then

2 γ ← (β − rev((α ∪ δ)+)) ∪ (α ∪ δ)+;
3 if γ ∈ LF (V,w) then return {γ};
4 else return ∅;
5 end
6 else
7 Select (u, v) ∈ σ ∩ w≤ 1

2
of maximum β-length;

8 σ ← σ − {(u, v)};
9 LF ← AggSearch(V,w, β, σ, α, δ);

10 α← α ∪ {(u, v)};
11 P ← {x : u <β x <β v};
12 σ ← σ −⋃

x∈P{(u, x), (x, v)};
13 L← {x ∈ P : x <δ u or x <δ v};
14 R← {x ∈ P : u <δ x or v <δ x};
15 foreach L ⊆ A ⊆ P −R do
16 δ′ ← δ ∪⋃

x∈A{(x, u), (x, v)} ∪
⋃

x∈P−A{(u, x), (v, x)};
17 LF ← LF ∪AggSearch(V,w, β, σ, α, δ′);
18 end
19 return LF ;
20 end

set (line 3). If not, (α, δ) is neither a β-representation for any γ ∈ LF (V,w), nor
can it be made into one by adding arcs to α and δ.

For each arc (u, v) in σ ∩w≤ 1
2
, the algorithm branches on whether (u, v) ∈ α,

removing the arc from σ once the decision is made. In the branch in which
(u, v) ∈ α (lines 10-18), we can also remove all arcs in

⋃
x∈P {(u, x), (x, v)}, P =

{x : u <β x <β v} from σ: as (u, v) is in adj(γ) and in γ only one vertex is ordered
immediately after u and only one vertex is ordered immediately before v, none of
the arcs sharing a head or tail with (u, v) can be in adj(γ) ⊇ α. Further branching
occurs on the subset A = {x ∈ P : (x, u) ∈ γ} of vertices in P (lines 15-18).
The orderings of the vertices in P with respect to u and v, determined by A, are
essential in determining δ = γ|IPβ(α) in the β-representation of γ.

We do not want to branch over a pair more than once; one strategy is to
consider arcs in order of β-length. Without this selection criterion, if in Fig. 4
(with σ∩w≤ 1

2
including (u1, v1) and (u2, v1) such that v1 <β u1 <β u2) at line 7

the algorithm selected (u1, v1) ∈ σ ∩ w≤ 1
2

to be excluded from α, then further
down the search tree, the algorithm could select (u2, v1) ∈ σ∩w≤ 1

2
to be included

in α. This would result in branching twice on (u1, v1), once for membership in
α and once, at line 15, to decide whether u1 <δ v1 or v1 <δ u1.

Constraining A to include L and exclude R at line 15 avoids another dupli-
cate branching, as otherwise the algorithm could decide on relative orderings of
vertices in L and R with respect to u and v after the orderings were already
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v1 v2 u1 u2 v1 u1 u2

Fig. 4. Situations in which duplicate decisions could be made over a pair

fixed in δ. In Fig. 4 (where σ ∩ w≤ 1
2

includes (u1, v1) and (u2, v2) such that
v1 <β v2 <β u1 <β u2), if (u1, v1) ∈ σ is inserted in α at line 10, the algorithm
needs to decide whether to include v2 in A (a decision on the ordering of {u1, v2})
at line 15. Without the constraint on A, (u2, v2) ∈ σ could then be inserted in α,
necessitating a second decision on the ordering of {u1, v2} (whether to include
u1 in A).

Removal of the same-head and same-tail arcs from σ (line 12), ordering the
arcs in σ in their β-lengths (line 7), and constraining A to include L and exclude
R (line 15) all result in less branching.

Theorem 1. Given a complete digraph on a vertex set V and arc weights
{w(a,b) : a, b ∈ V } and β ∈ Tot(V ), AggSearch(V,w, β, rev(β), ∅, ∅) returns
LF (V,w) in time O(|V |μ ·4wβ ), where μ < 2.376 denotes the exponent of matrix
multiplication. Furthermore, |LF (V,w)| ≤ 4wβ .

Proof. Due to space limitations, we provide only a high-level idea of the proof.
We prove by strong induction on the cardinality of σ ∩ w≤ 1

2
that:

(1) For any ordering δ of IPβ(α), AggSearch(V,w, β, σ, α, δ) returns every γ
in LF(β,σ,α,δ) = {γ ∈ LF (V,w) : α ⊆ adj(γ)− β ⊆ α ∪ σ, and δ ⊆ γ}

(2) If σ ∪ δ includes an ordering of IPβ(σ ∩w≤ 1
2
), AggSearch(V,w, β, σ, α, δ)

produces a search tree with at most 4wrev(σ) leaves.

Making use of the fact that arcs in σ ∩ w≤ 1
2

are selected in order of their
β-lengths (line 7), we show that δ is an ordering of IPβ(α) and σ ∪ δ in-
cludes an ordering of IPβ(σ ∩ w≤ 1

2
) in all recursive calls originating from Ag-

gSearch(V,w, β, rev(β), ∅, ∅); from this we can show LF (V,w) = LF(β,rev(β),∅,∅)
is returned upon the production of at most 4wβ nodes.

We associate each node v in the search tree with the cost of steps 7-9 or 10-17
performed just before the creation of v plus the cost of steps 1-5 performed at the
execution of v. The dominant part is the computation of the transitive closure
(α ∪ δ)+ using matrix multiplication at line 2. The time for a node is thus in
O(|V |μ), yielding O(|V |μ · 4wβ ) time overall. 	


By Observation 3, Kemeny Rank Aggregation instances have at most 4
kt
m

locally-optimal aggregations.

Corollary 1. Given a multi-set I of m total orders in Tot(U) and a total order
λ at τ-distance kλ of I, the set of all locally-optimal aggregations for I can be
found in time O(m · |U | + 4

kλ
m · |U |μ). Furthermore, I has at most 4

kt
m locally-

optimal aggregations, where kt denotes the minimum τ-distance from I.
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Although MF (V,w) is generally a (small) subset of LF (V,w), the two sets are
equal for certain instances, for which Theorem 1’s upper bound is tight:

Theorem 2. For any set V = {v1, v2, . . . , vn} of even cardinality, there exists
a weight function w over V × V that satisfies the triangle inequality and the
probability constraint such that |MF (V,w)| = 4k, where k denotes the weight of
a minimum feedback arc set in MF (V,w).

Proof. We consider the following weight function:

w(vi,vj) =

⎧
⎨

⎩

0 i+ 1 < j or (i+ 1 = j and i is even)
1
2 i+ 1 = j and i is odd
1− w(vj ,vi) otherwise

It is not hard to see that any minimum feedback arc set must contain all weight-0
arcs. Therefore, elements of MF (V,w) differ only in the ordering of the remaining
pairs. All total orders of {{v1, v2}, {v3, v4}, . . . {vn−1, vn}} are of equal weight.
Since there are 2

n
2 such total orders, each of weight k = n

4 , the cardinality of
MF (V,w) is 22k = 4k for this instance. 	

As there are Kemeny Rank Aggregation instances that reduce to the in-
stances in the proof of Theorem 2, the lower bound also applies to optimal
aggregations; the proof is omitted due to space limitations.

Theorem 3. For any even number m, there exists a multi-set I of m total
orders that has 4

kt
m optimal aggregations, where kt denotes the τ-distance of an

optimal aggregation from I.

5 Concluding Remarks

We gave a tight upper bound on the number of (locally-) optimal aggregations.
We emphasize that a f(kt

m )nO(1) upper bound on the number of locally-optimal
aggregations is surprising. One future direction for research is the search for a
new parameter that is more tuned to the complexity of enumerating all optimal
aggregations, rather than locally-optimal aggregations.
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