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Abstract. The edge intersection graphs of paths on a grid (or EPG
graphs) are graphs whose vertices can be represented as simple paths on
a rectangular grid such that two vertices are adjacent if and only if the
corresponding paths share at least one edge of the grid. We consider the
case of single-bend paths, namely, the class known as B1-EPG graphs.
The motivation for studying these graphs comes from the context of
circuit layout problems. It is known that recognizing B1-EPG graphs is
NP-complete, nevertheless, optimization problems when given a set of
paths in the grid are of considerable practical interest.

In this paper, we show that the coloring problem and the maximum
independent set problem are both NP-complete for B1-EPG graphs,
even when the EPG representation is given. We then provide efficient
4-approximation algorithms for both of these problems, assuming the
EPG representation is given. We conclude by noting that the maximum
clique problem can be optimally solved in polynomial time for B1-EPG
graphs, even when the EPG representation is not given.

1 Introduction

Edge intersection graphs of paths on a grid (or for short EPG graphs) were first
introduced by Golumbic, Lipshteyn and Stern in [9]. This is the class of graphs
whose vertices can be represented as simple paths on a rectangular grid so that
two vertices are adjacent if and only if the corresponding paths share at least
one edge of the grid.

EPG graphs have a practical use, e.g., in the context of circuit layout setting,
which may be modeled as paths (wires) on a grid. In the knock-knee layout
model, two wires may either cross or bend (turn) at a common grid point, but
are not allowed to share a grid edge; that is, overlap of wires is not allowed. In
this context, some of the classical optimization graph problems are relevant, e.g.,
maximum independent set and coloring. More precisely, the layout of a circuit
may have multiple layers, each of which contains no overlapping paths. Referring
to a corresponding EPG graph, then each layer is an Independent Set and a valid
partitioning into layers corresponds to a proper coloring.

In [9], the authors show that every graph is an EPG graph. That is, for every
graph G = (V,E) there exists an EPG representation 〈P ,G〉 where P = {Pv :
v ∈ V } is a collection of paths on a grid G, corresponding to the vertices of V
and satisfying: paths Pv, Pu ∈ P share a grid edge of G if and only if (v, u) ∈ E.
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Moreover, they showed that if G has n vertices and m edges, then there exists
an EPG representation 〈P ,G〉 of G in which G is a grid of size n × (n + m)
and the paths in P are monotonic. As such, much of the current research today
focuses on subclasses of EPG graphs, and, in particular, limiting the type of
paths allowed.

A turn of a path at a grid point is called a bend and a graph is called a k-bend
EPG graph (denoted Bk-EPG) if it has an EPG representation in which each
path has at most k bends. It is both interesting mathematically, and justified by
the circuit layout application described above, to consider subclasses of graphs,
e.g., by bounding the number of bends allowed in each path.

A number of mathematical results on Bk-EPG graphs have been shown re-
cently. In [2], the authors show that for any k, only a small fraction of all labeled
graphs on n vertices are Bk-EPG. Improving a result of [3], it was shown in [12]
that every planar graph is a B4-EPG graph. It is still open whether k = 4 is
best possible. So far it is only known that there are planar graphs that are B3-
EPG graphs and not B2-EPG graphs. The authors in [12] also show that all
outerplanar graphs are B2-EPG graphs thus proving a conjecture of [3]. For the
case of B1-EPG graphs, Golumbic, Lipshteyn and Stern [9] showed that every
tree is a B1-EPG graph, and Asinowski and Ries [1] showed that every B1-EPG
graph on n vertices contains either a clique or a stable set of size at least n1/3.
In [1], the authors also give a characterization of the B1-EPG graphs among some
subclasses of chordal graphs, namely, chordal bull-free graphs, chordal claw-free
graphs, chordal diamond-free graphs, and special cases of split graphs. In [5], a
characterization of the subfamily of cographs that are B1-EPG graphs is given
by a complete family of minimal forbidden induced subgraphs.

The simplest case, B0-EPG graphs, where all paths a straight line segments,
are exactly the well studied class of interval graphs (the intersection graphs of
intervals on a line), and it is well-known that these can be colored optimally with
the exact minimum number of colors χ(G) in polynomial time (see [8]). This is
no longer the case when k > 0.

In this paper, we consider approximation algorithms for B1-EPG which are
the edge intersection graphs of (at most) single bend paths on a rectangular
grid. Heldt et al. [11] have proved that the recognition problem for B1-EPG is
NP-complete. Moreover, Cameron, Chaplick and Hoang [4] proved that even the
recognition of a subclass of B1-EPG know as ⌞-EPG is NP-complete; we define
this subclass in Section 2 below. Thus, for all of the algorithms that we will later
present, an EPG representation 〈P ,G〉 of G is assumed to be given as part of
the input.

Maximum Independent Set,Minimum Coloring, andMaximum Clique
are fundamental optimization problems in graph-theory. These problems arises
naturally in many scenarios involving resource allocation in the presence of inter-
ference. The graph coloring problem deals with assigning colors to the vertices of
a graph such that no two adjacent vertices share the same color, and the number
of colors used is minimized. A coloring using at most c colors is called a (proper)
c-coloring. The smallest number of colors needed to color a graph G is called its
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chromatic number, and is denoted χ(G). The graph coloring problem is known
to be NP-hard. The current best known approximation ratio for the graph col-

oring problem is O(n (log logn)2

(logn)3 ), where n is the number of vertices in the graph;

see [10]. In graph theory, an Independent Set (Stable Set) is a set of vertices in
a graph, where no two of which are adjacent. This corresponds to a Clique in
the graphs complement. The size of a maximum independent set of a graph G
is denoted by α(G), and the size of a maximum clique is denoted by ω(G). The
problem of finding a largest independent set for a given graph G is called the
Maximum Independent Set Problem (MIS) which is NP-hard. Even for graphs
whose maximum degree is bounded by b, the current best known approximation
ratio for the MIS problem are a fraction of b, see references in [13].

The paper is organized as follows. We begin with preliminary definitions in
Section 2. In Section 3, we first prove that coloring B1-EPG graphs is NP-
complete, and then we present a 4-approximation algorithm for coloring B1-
EPG graphs in polynomial time. Similarly, in Section 4, we prove that finding a
maximum independent set in B1-EPG graphs is NP-complete, and then present
a 4-approximation algorithm for the problem. Conclusions and open problems
are given in Section 5 where we note that the maximum clique problem can be
optimally solved in polynomial time for B1-EPG graphs.

2 Preliminaries

Let 〈P ,G〉 be a B1-EPG representation of a graph G = (V,E). We say that
paths Pv and Pu are adjacent paths if v and u are adjacent vertices in G, i.e.,
Pv and Pu share a common grid edge of G. We also say that G = EPG(〈P ,G〉).
In B1-EPG graphs, each vertex corresponds to a path of one of the following
shapes: ⌞, ⌜, ⌟ or ⌝, allowing horizontal or vertical segments as well. We refer to
a path of shape τ ∈ {⌞,⌜,⌝,⌟, |,−} as an τ -path. We denote by P⌞the collection
of ⌞-paths in P , and similarly we use the notations P⌟, P⌜and P⌝. For no-bend
paths we complete the definition by referring them as ⌞-paths. Sometimes, it is of
interest to consider even finer, more restrictive subclasses of B1-EPG by limiting
the type of bends that are allowed, namely, the subclasses formed by the subsets
of the four single bend shapes (i.e., {⌞}, {⌟,⌞}, {⌞,⌝}, {⌞,⌜,⌝}, where all other
subsets are isomorphic to these up to 90◦ rotation), allowing paths with no-bend
as well. We denote these classes by ⌞-EPG, ⌟⌞-EPG, ⌞⌝-EPG and ⌞ ⌜ ⌝-EPG
respectively.

Let G be a ⌟⌞-EPG with grid representation 〈P ,G〉. We define the lexico-
graphic (LEX) order ≺ on the paths in P as follows; see Figure 1. For path
Pv ∈ P we denote by ∂Pv the bottommost-leftmost grid point that is contained
in Pv, that is, ∂Pv = miny {minx {(x, y) ∈ Pv}}. We say that Pv≺Pu if ∂Pv lies
below ∂Pu or they both lie in the same row and ∂Pv is left of ∂Pu. We complete
≺ to a total order by arbitrarily breaking ties.
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Fig. 1. The LEX ordering of a ⌟⌞-EPG representation: a≺b≺c≺d≺e≺f≺g≺h

3 Coloring B1-EPG Graphs

3.1 Hardness Result for Coloring B1-EPG Graphs

In this section, we prove that coloring problem on B1-EPG graphs is NP-
complete by a reduction from the problem of coloring circle graphs which was
shown to be NP-complete in [7].

We start by defining circle graphs. A circle graph is the intersection graph
of a set of chords of a circle. That is, it is an undirected graph whose vertices
can be associated with chords of a circle such that two vertices are adjacent if
and only if the corresponding chords cross each other. We may assume without
loss of generality that no two chords in the diagram of chords of the circle share
a common endpoint. Coloring circle graphs remains NP-complete even if the
graph is given by its chord model [7].

Theorem 1. Let G be a B1-EPG graph. Coloring G with the exact number of
colors χ(G) is NP-complete.

Proof. Let G be a circle graph. We construct a B1-EPG representation for
a graph G′ so that G is c-colorable if and only if G′ is. The construction is
as follows; see Figures 2 and 3 for an illustration. We slide all the endpoints of
the chords to the upper right quadrant of the circle, while preserving their order
on the circle (thus, intersections are not changed under these transformations).
Now, we replace each chord by an ⌞-shape bend path, where every vertex v in
G corresponds to a path Pv with the same endpoints on the circle. Note that
since we assumed that all endpoints are distinct, the horizontal segment of each
path lies on a unique horizontal line, and the vertical segment lies on a unique
vertical line. Moreover, the intersection points of pairs of paths are in one-to-one
correspondence with the edges of the graph.

Consider an intersection point between two paths Pv and Pu in the represen-
tation, where the horizontal section of Pv intersects with the vertical segment of
Pu. We split Pv at the intersection point into two disjoint parts; the left part is
a ⌞-path, and the right one is a −-path. We complete the latter to a ⌞-path by
joining it to a vertical segment that overlaps only Pu. We also add (c− 1) short
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Fig. 2. (a) A circle diagram. (b) Each chord is replaced by a single-bend path on the
grid.

−-paths overlapping only these two segments of the former path Pv. Perform this
transformation for every intersection point, and let G′ be the B1-EPG-graph of
this transformed representation. This, of course, may have split Pv into sev-
eral segments, Pv1 , Pv2 , . . . , Pvk , with consecutive segments Pvi and Pvi+1 being
joined by such a set of (c − 1) short horizontal paths: a (c − 1)-clique in G′

overlapping only Pvi and Pvi+1 . See Figure 3 for an illustration.

Pv Pu

(a)

Pvi+1
Pvi

(c-1) clique

Pu

(b)

Fig. 3. (a) Intersecting paths. (b) The horizontal is “split” and “glued” using a (c−1)-
clique.

It is clear from the transformation that the obtained graph G′ is indeed a B1-
EPG graph. Moreover, the transformation can be performed in polynomial time
and the size of G′ is polynomial in the size of G, since |V (G′)| = n+ce ≤ n+n3,
where G has n vertices and e edges.

We now claim that G is c-colorable if and only if G′ is c-colorable. Let ϕ :
V �→ {1, · · · , c} be a valid assignment of colors for G. Then to colorG′ it suffices
to (1) color each vertex from G′ that came from an original path Pv (including
its vertical segment and all of its horizontal split segments Pv1 , . . . , Pvk) with the
color used in G, and (2) for each newly added (c− 1)-clique (the short segments
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overlapping only Pvi and Pvi+1 which have the same color in the construction),
we can use the (c− 1) remaining colors. This clearly colors G′ in c colors.

We now show that if G′ is c-colorable then G is c-colorable. Assume we have
a c-coloring of the graph G′. Since the (c−1)-clique connecting any Pvi and Pvi+1

requires (c− 1) colors, consequently, Pvi and Pvi+1 have the same remaining cth

color. Moreover, let Pu be the path that intersects Pv in G and whose intersection
point with Pv is the split point between Pvi and Pvi+1 , then Pu and Pvi+1 are
adjacent in G′, thus get distinct colors. Since the coloring of G′ is proper, it also
gives a proper coloring of G: color the path representing v in G with the same
(common) color of its split segments Pv1 , . . . , Pvk in G′. This concludes the proof
of the theorem. 	

Observe that by our construction, the paths in G′ are either ⌞-paths or −-paths,
we thus conclude:

Corollary 2. Let G be a ⌞-EPG graph. Coloring G with the exact number of
colors χ(G) is NP-complete.

3.2 A 4-Approximation Algorithm for Coloring B1-EPG Graphs

We start by presenting a “subroutine” in Algorithm 3.1 that computes an ap-
proximation solution for a ⌟⌞-EPG representation. We then apply it more gen-
erally to an arbitrary B1-EPG representation. It is a greedy First-Fit algorithm
using the LEX ordering ≺, defined in Section 2 so clearly, it produces a proper
coloring. Lemma 1 will show that when used for a ⌟⌞-EPG graph, Algorithm 3.1
achieves a 2-approximation. We will use the notation c(v) for the color assigned
to vertex v.

Algorithm 3.1 Greedy-⌟⌞-EPG-Coloring (Input: P = P⌟ ∪ P⌞)
1: for each Pv ∈ P (in increasing order ≺) do
2: c(v) ← least color not in use among v’s neighbors
3: return total number k of distinct colors used and the coloring

Applying Algorithm 3.1 to the representation in Figure 1 gives the coloring:
c(a) = c(c) = c(f) = 1; c(b) = c(e) = c(g) = 2; c(d) = c(h) = 3.

For every path Pv ∈ P we denote by ˜Γ (Pv) the collection of paths adjacent
to Pv that have been colored by Algorithm 3.1 prior to Pv. When convenient,
we refer to ˜Γ (Pv) as a set of vertices. The color assigned to Pv by Algorithm 3.1

is dependent only on the colors assigned to paths in ˜Γ (Pv), thus we have Obser-
vation 3.

Observation 3. Let 〈P ,G〉 be a ⌟⌞-EPG representation of a graph G = (V,E),
and let Pv and Pu be adjacent paths. If Pu≺Pv, then Pv and Pu share at least
one of two grid edges e1 and e2 as follows:
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– If Pv is a ⌞-path, then e1 and e2 are respectively the horizontal and vertical
grid edges contained in Pv and attached to its bend point.

– If Pv is a ⌟-path, then e1 is the left-most horizontal grid edge contained in
Pv and e2 is the vertical grid edge attached to its bend point.

– If Pv is a |-path, then e1 is the bottom-most vertical grid edge contained in
Pv (e2 in this case is undefined).

– If Pv is a −-path, then e1 is the left-most horizontal grid edge contained in
Pv (e2 in this case is undefined).

Lemma 1. Let G be a ⌟⌞-EPG graph, then Algorithm 3.1 uses at most 2χ(G)
colors.

Proof. Let k be the maximum color used by Algorithm 3.1, we show that k ≤
2χ(G). Indeed, put G = (V,E) and let v ∈ V be a vertex for which c(v) =
k. Notice that whenever Algorithm 3.1 colors a vertex, the assigned color is
determined by its previous-colored neighbors ˜Γ (Pv). Notice that if Algorithm 3.1
colored v with color k, then k is the least color that not in use for any vertex
u ∈ ˜Γ (Pv), thus k ≤ ˜Γ (Pv) + 1. Moreover, by Observation 3, we have that each

path in ˜Γ (Pv) shares at least one of two specified grid edges contained in Pv

(denoted e1 and e2). We conclude that at least half of the paths in ˜Γ (Pv) contain
one of those edges and without loss of generality, we assume it is e1. Now, observe
that any collection of paths containing a common edge corresponds to a clique
in G, in particular, those paths in ˜Γ (Pv) that contain e1 together with v itself,

form a clique. We get 1
2 Γ̃ (v)+1 ≤ ω(G) ≤ χ(G), thus k ≤ ˜Γ (Pv)+1 < 2ω(G) ≤

2χ(G), which completes the proof. 	

Remark 1. Clearly, by rotating a representation by 180◦, Algorithm 3.1 can be
“turned” from Greedy-⌟⌞-EPG-Coloring into Greedy-⌝⌜-EPG-Coloring.

We now use Algorithm 3.1 as a building block in Algorithm 3.2 in order to colors
B1-EPG graphs.

Algorithm 3.2 B1-EPG Coloring 4-Approximation (Input: G =
EPG(〈P ,G〉))
1: Let P = P⌞ ∪ P⌟ ∪ P⌝ ∪ P⌜
2: k1 ←Greedy-⌟⌞-EPG-Coloring(P⌞ ∪ P⌟)
3: k2 ←Greedy-⌝⌜-EPG-Coloring(P⌜ ∪ P⌝) // using different color

names //
4: return total number of distinct colors used and the coloring

Algorithm 3.2 partitions the paths in P into two subsets P⌞∪P⌟and P⌜∪P⌝,
each induces a subgraph of G, which is a ⌟⌞-EPG graph (denoted G1 and G2

respectively). Then, it colors each of these two graphs G1 and G2 using Algo-
rithm 3.1, with distinct “palettes” of colors. Clearly, the coloring produced by
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Algorithm 3.2 is proper. Notice that in order to color a graph G, one needs at
least the maximum of χ(G1), χ(G2) colors. By Lemma 1, Algorithm 3.2 uses at
most 2χ(G1) + 2χ(G2) ≤ 4χ(G) colors, we thus have Theorem 4 below.

Theorem 4. Let G be a B1-EPG graph, then Algorithm 3.2 uses at most 4χ(G)
colors.

4 Maximum Independent Set on B1-EPG Graphs

4.1 Hardness Result for Finding Maximum Independent Set on
B1-EPG Graphs

In this section, we show that the Maximum Independent Set on B1-EPG
graphs is NP-complete. We use a reduction from Maximum Independent
Set on planar graphs with maximum degree four, which is known to be NP-
complete [6]; our proof is inspired by [14].

Theorem 5. Maximum Independent Set on B1-EPG graphs is NP-complete.

Proof. Let G = (V,E) be a planar graph with maximum degree four; Maxi-
mum Independent Set on planar graph with maximum degree four is NP-
complete [6]. We construct a B1-EPG representation of a graph G′ = (V ′, E′) so
that a maximum independent set in G′ corresponds to a maximum independent
set in G and vice versa.

Fix an embedding of G in a grid G such that edges of G are piecewise linear
curves following the grid lines (such an embedding in a linear sized grid always
exists and is constructible in polynomial time [16]). Each edge e ∈ E is thus
corresponds to a path πe in the grid G, and denote by ke the number of seg-
ments (links) πe consists of. Note further, that these paths intersect only at their
endpoints, namely, in the vertices of G since the embedding is planar.

Let G′ be a graph obtained from G by subdividing every edge e with 2
⌈

ke+1
2

⌉

new vertices; we denote the set of new vertices corresponding to an edge e by Ue

and by U the set of all such new vertices, we thus have V ′ = V ∪U . Notice that
since |Ue| is even for each edge e of G, a maximum independent set in G′ contains
exactly half of the vertices in Ue, and at most one of the vertices corresponding
to the “original” endpoints of e. We thus have

α(G′) = α(G) +
∑

e∈E

⌈

ke + 1

2

⌉

and thus to complete the proof it suffices to show that G′ is B1-EPG graph.
Having the grid embedding of G, we construct a B1-EPG representation 〈P ,G〉

of G′ as follows; see Figure 4 for an illustration. We start by placing the vertices
in U into G. Let e be an edge of G, by definition πe has ke − 1 bend points. At
each such grid point we place one vertex from Ue, we also place one vertex from
Ue in the interiors of the first and last links of πe. Finally, we place the remaining



336 D. Epstein, M.C. Golumbic, and G. Morgenstern

vertices of Ue arbitrarily along πe (the order in which the vertices are located
along πe preserves adjacencies). When convenient we may refer to vertices of G′

as the grid points they are embedded to. We now associate each vertex v of G′

with a path Pv (which is either a single-bend path or a segment) so that Pv and
Pu share an edge of G if and only if v and u are adjacent in G′.

(a) (b)

Fig. 4. (a) A rectilinear grid embedding of some graph G′; vertices of V are grayed.
(b) A B1-EPG representation of G′.

For every v ∈ V , set Pv to be a short vertical segment around v. Let u ∈ U ,
then u has exactly two neighbors, and consider first the case where both are
from U . We set Pu to be a path consisting of the two segments connecting u
with each of its neighbors. If u is embedded to a bend point of some πe, then
Pu is a single-bend path, otherwise it is just a segment. Finally, let u ∈ U be
a vertex with neighbors u′ ∈ U and v ∈ V (notice that by construction no vertex
in G′ has more than one neighbor from V ) in this case, u, u′, and v are embedded
to the same grid row/column and we set Pu as follows, distinguishing between
two subcases, according to whether all three vertices are embedded to the same
column or row of G. (i) u, u′, and v are on the same column: We set Pu to be
a vertical segment that begins at u′ and almost reaches v (in such a way that
it ends close enough to share a grid edge with Pv). (ii) u, u′, and v are on the
same row: We set Pu to be a ⌟-path or a ⌜-path that starts at u′ and bends at
v, sharing its vertical edge with Pv, avoiding other possible neighbors of v.

It is easy to see that indeed for every u, v ∈ V ′ the paths Pu and Pv share
a grid edge if and only if u and v are adjacent in G′, thus the desired result
follows. 	

Remark 2. The proof of Theorem 5 can be modified so that it uses only two bend
shapes; thus Maximum Independent Set is NP-complete already on ⌟⌞-EPG
and on ⌞⌝-EPG graphs.

4.2 A 4-Approximation Algorithm for Maximum Independent Set
on B1-EPG Graphs

In this section we present a constant-factor approximation algorithm for Maxi-
mum Independent Set (Algorithm 4.2 below). In a similar way to Section 3.2,
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we start by presenting a “subroutine” that computes an approximated solution
for a subgraph, and then use the subroutine in order to compute an approxi-
mated solution for the whole graph. This subroutine is described in Algorithm 4.1
below, which uses a standard greedy Independent Set algorithm (thus clearly,
produces an Independent Set). Note that the order in which it examines the
vertices is the reversed order of that used in Algorithm 3.1, namely, according
to the decreasing order of ≺. Lemma 2 claims that when used for a ⌟⌞-EPG
graph, Algorithm 4.1 computes a 2-approximation.

Algorithm 4.1 Greedy-⌟⌞-EPG-Independent-Set (Input: P = P⌟ ∪ P⌞)
1: S ← ∅
2: for each Pu ∈ P (in decreasing order by ≺) do
3: add u to S and remove Pu from P
4: remove all paths corresponding to u’s neighbors from P
5: return S

Applying Algorithm 4.1 to the representation in Figure 1 gives the indepen-
dent set: {h, g, d}.
Lemma 2. Let G be a ⌟⌞-EPG graph, then Algorithm 4.1 finds a maximal
independent set of size at least 1

2α(G).

Proof. Let 〈P ,G〉 be a ⌟⌞-EPG representation of a graph G = (V,E). Let OPT
be a maximum independent set in G and let S be the maximal Independent Set
returned by Algorithm 4.1. We claim that |OPT | ≤ 2|S|.

Notice that for every v ∈ V the path Pv is removed from P at some point
(in lines 3 or 4). Moreover, if a path Pv is removed from P in line 4, then its
deletion must occur when the algorithm added to S some vertex u with v≺u.
Equivalently, whenever the algorithm adds a vertex u to S, it removes from P
paths Pv adjacent to Pu where v≺u (in this case, any other vertex v′ adjacent
to u with u≺v′ has been already removed from S in an earlier stage, necessarily
in line 4).

By eliminating vertices in OPT ∩ S we may assume that OPT ∩ S = ∅.
We therefore assume that the paths corresponding to vertices in OPT were all
eliminated from P in line 4. We define a correspondence ϕ : OPT → S as follows:

ϕ(v) = u where Pv was removed from P in line 4 as a consequence of adding u to S

In particular, if ϕ(v) = u then u and v are adjacent and v≺u. We claim that
for every u ∈ S there exist at most two distinct vertices v1, v2 ∈ OPT with
ϕ(v1) = ϕ(v2) = u and conclude that |OPT | ≤ 2|S|. Indeed, assume to the
contrary that for some u ∈ S, there exist three vertices v1, v2, v3 ∈ OPT with
ϕ(vi) = u (i = 1, 2, 3). At least two of the three paths share with Pu a grid
edge on the same direction; w.l.o.g., assume that Pv1 and Pv2 share a horizontal
edge with Pu. We thus have that Pvi is adjacent to Pu and vi≺u (i = 1, 2), and
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in particular Pu, Pv1 and Pv2 share a common edge (the leftmost-bottommost
grid-edge contained in Pu). However, as v1 and v2 are both in OPT , they are
nonadjacent. – A contradiction. 	

We now use Algorithm 4.1 as a building block in Algorithm 4.2 in order to find
a maximal Independent Set in B1-EPG graphs. Here too, as in Remark 1, by ro-
tating a representation by 180◦, Algorithm 4.1 can be “turned” from Greedy-⌟⌞-
EPG-Independent-Set into Greedy-⌝⌜-EPG-Independent-Set. Theorem 6 claims
that when used on a B1-EPG graph, Algorithm 4.2 achieves a 4-approximation.

Algorithm 4.2 B1-EPG Independent Set 4-Approximation(G = 〈P ,G〉)
1: let P = P⌞ ∪ P⌟ ∪ P⌝ ∪ P⌜
2: S1 ←Greedy-⌟⌞-EPG-Independent-Set(P⌞ ∪ P⌟)
3: S2 ←Greedy-⌝⌜-EPG-Independent-Set(P⌜ ∪ P⌝)
4: return the largest amongst S1, S2

Theorem 6. Let G be a B1-EPG graph, then Algorithm 4.2 finds a maximal
Independent Set of size at least 1

4α(G).

Proof. Let 〈P ,G〉 be a B1-EPG representation of G. Put P = P⌞ ∪P⌟ ∪P⌝ ∪P⌜
and let G1 and G2 be the ⌟⌞-EPG graphs with representations 〈P⌞ ∪ P⌟,G〉 and
〈P⌜ ∪ P⌝,G〉, respectively. Clearly, α(G) ≤ α(G1) + α(G2).

Let S1 and S2 be the sets computed in lines 2 and 3 of the algorithm. By
Lemma 2, we get

α(G) ≤ α(G1) + α(G2) ≤ 2|S1|+ 2|S2| ≤ 4max{|S1|, |S2|}
which completes the proof. 	


5 Concluding Remarks

We observe that Maximum Clique in B1-EPG graphs can be optimally solved
in polynomial time using a brute-force algorithm. In [9] the authors show that
each clique in the graph has one of two forms in the B1-EPG representation,
referred to as “edge clique” and “claw clique”. An edge clique consists of all
paths containing a given grid edge; a claw clique consists of all paths sharing
two-out-of-three edges of a given claw centered at a given grid point (there are 4
different claws at each grid point.) Consequently, given a grid representation of
aB1-EPG graphG, one can simply examine each grid edge and count the number
of paths containing that edge, and for each grid point and four corresponding
claws, count the number of path containing two out of three edges of that claw.
This can be done in time polynomial in the size of G, which may be assumed to
be of size at most 2n× 2n for a B1-EPG representation. This implies an O(n3)
time algorithm for Maximum Clique given a B1-EPG representation.
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A somewhat different approach can solve Maximum Clique for a B1-EPG
graph without being given representation based on the fact that the neighbor-
hood of a vertex in B1-EPG graph is weakly-chordal [1]. It is well known that
Maximum Clique in weakly-chordal graphs can be found in O(n4) time [15].
Since a maximum clique is contained in a closed neighborhood of each of its
vertices, then this yields a O(n5) time algorithm for Maximum Clique given
just the B1-EPG graph and not the representation.

In Algorithms 3.2 and 4.2 we used, respectively, Algorithms 3.1 and 4.1 with
subgraphs induced by P⌞ ∪ P⌟ and P⌜ ∪ P⌝. Taking into consideration also the
two other options (i.e., P⌟ ∪ P⌝ and P⌜ ∪ P⌞) has no effect on the asymptotic
quality of the solutions. However, as a heuristic, one might wish to apply the
algorithm to both and take the better of the two.

Algorithm 3.2 and Algorithm 4.2 are greedy. Both have ”bad” instances for
which the factors mentioned here are tight. It is possible, of course, that a dif-
ferent approach may lead to better approximation factors.

As open problems, we suggest that it would be interesting to find approxi-
mation algorithms to find a minimum dominating set or a maximum weighted
independent set for B1-EPG graphs.
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