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Abstract. Given a polygonal domain (or polygon with holes) in the
plane, we study the problem of computing the visibility polygon of any
query point. As a special case of visibility problems, we also study the
ray-shooting problem of finding the first point on the polygon bound-
aries that is hit by any query ray. These are fundamental problems in
computational geometry and have been studied extensively. We present
new algorithms and data structures that improve the previous results.

1 Introduction

Given a set P = {P1, P2, . . . , Ph} of h pairwise-disjoint polygonal obstacles of
totally n vertices in the plane, the space minus the interior of all obstacles is
called the free space. Two points are visible to each other if the open line segment
connecting them lies entirely in the free space. For any point q in the free space,
the visibility polygon of q, denoted by Vis(q), is the set of points in the plane visi-
ble to q. The visibility query problem seeks an efficient data structure that allows
fast computation of Vis(q) for any query point q. Let |Vis(q)| denote the number
of vertices of Vis(q). We present two new visibility query data structures. The
first one uses O(n2) space and is constructed in O(n2 logn) time; for any query
point q, Vis(q) can be computed in O(log2 n + min{h, |Vis(q)|} logn + |Vis(q)|)
time. Our second data structure is of size O(n+ h2), and its preprocessing time
and query time are O(n+ h2 log h) and O(|Vis(q)| logn), respectively. Note that
in some cases the value h can be substantially smaller than n.

We also study the ray-shooting query, a special case of visibility problems:
Given any query ray σ(q) with its origin point q in the free space, find the first
point on the obstacle boundaries or in infinity that is hit by σ(q). We construct
a data structure of size O(n + h2) in O(n + h2 · poly(log h)) time that answers
any query in O(log n) time, where poly(log h) is a polynomial function of logh.
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Table 1. Summary of ray-shooting data structures in polygonal domains

Data Structure Preprocessing Time Size Query Time

[5,10] O(n
√
h+ n log n+ h3/2 log h) O(n) O(

√
h log n)

[17] O(n2) O(n2) O(log n)
[1] O((n log n+ h2) log h) O((n+ h2) log h) O(log2 n log2 h)
Our Result O(n+ h2 · poly(log h)) O(n+ h2) O(log n)

Throughout this paper, we always let k denote |Vis(q)| for any query point q.
We say the complexity of a data structure is O(f1(·), f2(·), f3(·)) if its preprocess-
ing time, size, and query time are O(f1(·)), O(f2(·)), and O(f3(·)), respectively.

Previous Work. For the ray-shooting query problem, Table 1 gives a summary.
Our new data structure improves the previous work for small h. For simple
polygons, ray-shooting data structures of O(n, n, logn) complexity have been
proposed [5,6,9,10].

For the visibility query problem, previous work has been done on both
the single simple polygon case and the polygonal domain case. For a sin-
gle simple polygon, Bose et al. [4] proposed a data structure of com-
plexity O(n3 logn, n3, k + logn). Aronov et al. [2] gave a smaller-size data
structure with a little larger query time, with complexity O(n2 logn, n2, k +
log2 n). As indicated in [2], by using a ray-shooting data structure [5,10], a vis-
ibility query data structure of complexity O(n, n, k logn) is possible. For the
polygonal domain case, Zarei and Ghodsi [21] gave a data structure of complex-
ity O(n3 logn, n3, k + min{h, k} logn), and Inkulu and Kapoor [12] obtained a
data structure of complexity O(n2 logn, n2, k + h + min{h, k} log2 n). Another
data structure in [12] has complexity related to the size of the visibility graph
of the polygonal domain, which is O(n2); in the worst case, its complexity is
O(n2h3, n2h2, k logn). Nouri and Ghodsi [16] gave a data structure of complex-
ity O(n4 logn, n4, k + logn), and Lu et al. [15] presented a data structure of
complexity O(n2 logn, n2, k + log2 n + h log(n/h)). Table 2 summarizes these
results for the polygonal domain case.

Comparing with the result in [21], our first data structure is O(n) smaller in
space and preprocessing time, but with an additive O(log2 n) query time, which
seems difficult to improve unless the query time of the data structure for the
simple polygon case [2] can be reduced (because it has the same preprocessing
time and space as our data structure). Comparing with the results in [12,15],
our first data structure has the same processing time and space but with smaller
query time. Our second data structure, comparing with the second one in [12],
has the same query time but uses much less preprocessing time and space.

In addition, our results for visibility queries can be extended to cone visibility
queries where, in addition to a query point q, a query also includes a cone with
q as the apex that delimits the visibility of q. Our first visibility query data
structure can be extended to this case with the same performances; for our
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Table 2. Summary of visibility query data structures in polygonal domains. The value
k is the output size of the visibility polygon of the query point.

Data Structure Preprocessing Time Size Query Time

[21] O(n3 log n) O(n3) O(k +min{h, k} log n)
[12] O(n2 log n) O(n2) O(k + h+min{h, k} log2 n)
[12] O(n2h3) O(n2h2) O(k log n)
[15] O(n2 log n) O(n2) O(k + log2 n+ h log(n/h))
Our Result 1 O(n2 log n) O(n2) O(k + log2 n+min{h, k} log n)
Our Result 2 O(n+ h2 log h) O(n+ h2) O(k log n)

second one, the extended version has the same performances as before except
that the preprocessing time becomes O(n+ h2poly(log h)).

Our Approaches. A corridor structure of polygonal domains has been used
for solving shortest path problems [7,11,13], and later some new concepts like
“bays”, “canals”, and “ocean” were introduced [8], which we refer to as the
“extended corridor structure”. In this paper, we also use the extended corridor
structure [8], which partitions the free space into an ocean M, bays, and canals.
Each bay or canal is a simple polygon. The ocean M is multiply connected and
its boundary consists of O(h) convex chains. The extended data structure was
used in [8] for computing the visibility polygon from a single line segment in
polygonal domains. Unfortunately, the algorithm in [8] does not work for visi-
bility queries. The techniques given in this paper focus on visibility queries. We
process each bay/canal using data structures for simple polygons, and process
M using data structures for convex obstacles. For example, for the visibility
query problem, we build the data structure [2] for each bay/canal; for M, we
utilize the visibility complex [19,20]. For any query point q, Vis(q) is obtained
by consulting the data structures for M and for bays/canals.

Note that the corridor structure [13] was also used by the visibility query
data structures in [12,15]; but, their approaches are quite different from ours.
For example, they do not use the extended corridor structure (i.e., they do not
use the ocean, bays, and canals). As shown later, our techniques not only yields
better results but also makes the solutions quite simple.

In Section 2, we review the geometric structures of P . We present our ray-
shooting data structure in Section 3. In Section 4, we give our data structures for
the visibility query problems. Due to the space limit, some proofs are omitted
and can be found in the full version of this paper. For ease of exposition, we
assume that no three obstacle vertices of P are collinear.

2 Preliminaries

For completeness of this paper, we briefly review the extended corridor structure
[8]. Further, the rest of this paper relies heavily on the notation related to the
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Fig. 1. Illustrating a triangulation of the
free space among two obstacles and the
corridors (with red solid curves). There
are two junction triangles indicated by
the large dots inside them, connected by
three solid (red) curves. Removing the
two junction triangles results in three
corridors.
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Fig. 2. Illustrating an open hourglass (left)
and a closed hourglass (right) with a corridor
path connecting the apices x and y of the two
funnels. The dashed segments are diagonals.
The paths π(a, b) and π(e, f) are marked by
thick solid curves. A bay bay(cd) with gate
cd (left) and a canal canal(x, y) with gates
xd and yz (right) are also shown.

structure. For simplicity, we assume all obstacles in P are contained in a rectangle
R (see Fig. 1), and we also view R as an obstacle in P .

Let F denote the free space in R, and Tri(F) denote a triangulation of F . Let
G(F) be the (planar) dual graph of Tri(F). The degree of each node in G(F)
is at most three. Using G(F), we compute a planar 3-regular graph, denoted
by G3 (the degree of each node in G3 is three), possibly with loops and multi-
edges, as follows. First, we remove every degree-one node from G(F) together
with its incident edge; repeat this process until no degree-one node remains in
the graph. Second, remove every degree-two node from G(F) and replace its
two incident edges by a single edge; repeat this process until no degree-two node
remains. The resulting graph is G3 (see Fig. 1), which has O(h) faces, nodes, and
edges [13]. Each node of G3 corresponds to a triangle in Tri(F), which is called
a junction triangle (see Fig. 1). The removal of all junction triangles results in
O(h) corridors (defined below), each of which corresponds to one edge of G3.

The boundary of a corridor C consists of four parts (see Fig. 2): (1) A bound-
ary portion of an obstacle Pi ∈ P , from a point a to a point b; (2) a diagonal of
a junction triangle from b to a boundary point e on an obstacle Pj ∈ P (Pi = Pj

is possible); (3) a boundary portion of the obstacle Pj from e to a point f ; (4)
a diagonal of a junction triangle from f to a. The corridor C is a simple poly-
gon. Let π(a, b) (resp., π(e, f)) be the shortest path from a to b (resp., e to f)
inside C. The region HC bounded by π(a, b), π(e, f), and the two diagonals be
and fa is called an hourglass, which is open if π(a, b) ∩ π(e, f) = ∅ and closed
otherwise (see Fig. 2). If HC is open, then both π(a, b) and π(e, f) are convex
chains and are called the sides of HC ; otherwise, HC consists of two “funnels”
[14] and a path πC = π(a, b) ∩ π(e, f) joining the two apices of the two funnels,
called the corridor path of C. Each funnel side is also a convex chain. We com-
pute the hourglass of each corridor. The triangulation Tri(F) can be computed
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in O(n log n) time or O(n + h log1+ε h) time for any constant ε > 0 [3]. After
Tri(F) is produced, computing all hourglasses takes O(n) time.

Let M be the union of all O(h) junction triangles, open hourglasses, and
funnels. We call the space M the ocean. Note that M ⊆ F . Since the sides of
open hourglasses and funnels are all convex, the boundary ∂M of M consists
of O(h) convex chains with totally O(n) vertices; further, ∂M has O(h) reflex
vertices (with respect to R \M). Thus, R\M can be partitioned into a set P ′

of O(h) pairwise interior-disjoint convex polygons of totally O(n) vertices [13]
(e.g., by extending an angle-bisecting segment inward from each reflex vertex).
If we view the convex polygons in P ′ as obstacles, then the ocean M is the free
space with respect to P ′. The set P ′ can be obtained easily in O(n + h log h)
time. It should be pointed out that our algorithms given later can be applied
to M directly without explicitly computing the convex polygons in P ′. But for
ease of exposition, we always discuss our algorithms on P ′ instead of on M.

2.1 Bays and Canals

Recall that M ⊆ F . We examine the free space of F not in M, i.e., F \ M,
which consists of two types of regions: bays and canals, as defined below.

Consider the hourglass HC of a corridor C. We first discuss the case when HC

is open (see Fig. 2). HC has two sides. Let S1(HC) be an arbitrary side of HC .
The obstacle vertices on S1(HC) all lie on the same obstacle, say P ∈ P . Let c
and d be any two consecutive vertices on S1(HC) such that the line segment cd
is not an edge of P (see the left figure in Fig. 2, with P = Pj). The free region
enclosed by cd and a boundary portion of P between c and d is called the bay
of cd and P , denoted by bay(cd), which is a simple polygon. We call cd the bay
gate of bay(cd), which is a common edge of bay(cd) and M.

If the hourglass HC is closed, then let x and y be the two apices of its two
funnels. Consider two consecutive vertices c and d on a side of a funnel such
that cd is not an obstacle edge. If neither c nor d is a funnel apex, then c and d
must lie on the same obstacle and the segment cd also defines a bay with that
obstacle. However, if c or d is a funnel apex, say, c = x, then c and d may lie
on different obstacles. If they lie on the same obstacle, then they also define a
bay; otherwise, we call xd the canal gate at x = c (see Fig. 2). Similarly, there
is also a canal gate at the other funnel apex y, say yz. Let Pi and Pj be the two
obstacles bounding the hourglass HC . The free region enclosed by Pi, Pj , and
the two canal gates xd and yz that contains the corridor path of HC is the canal
of HC , denoted by canal(x, y), which is also a simple polygon.

Clearly, all bays and canals together constitute the space F \M.
The fact that each bay has only one gate allows us to process a bay eas-

ily. Intuitively, an observer outside a bay cannot see any point outside the bay
“through” its gate. But, each canal has two gates, which could cause trouble.
The next lemma, proved in [8], gives an important property that an observer
outside a canal cannot see any point outside the canal through the canal (and
its two gates); we call it the opaque property of canals.
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Lemma 1. [8] (The Opaque Property) For any canal, suppose a line segment
pq is in F (i.e., p is visible to q) such that neither p nor q is in the canal. Then
pq cannot contain any point of the canal that is not on its two gates.

3 The Ray-shooting Queries

We present our ray-shooting data structure in this section. We assume that we
have already computed the ocean M, and all bays and canals. We also assume
the convex obstacle set P ′ is given. Recall that M is the free space among P ′.
The preprocessing for these takes O(n+ h log1+ε h) time.

Consider a ray σ(q) with its origin q ∈ F . Let q∗ be the outcome of the ray-
shooting query of σ(q), i.e., q∗ is the point on the input obstacles of P or on the
boundary of R (denoted by ∂R) that is hit first by σ(q). We first show how to
find q∗, and then discuss the preprocessing of our data structure. For simplicity
of discussion, we assume the line containing the ray σ(q) does not contain any
obstacle vertex. Note that the origin q can be in M, a bay, or a canal.

We first consider the case of q ∈ M. If σ(q) does not hit any obstacle of P ′

before it hits ∂R, then the portion of σ(q) inside R lies entirely in M and thus
q∗ is on ∂R. Below, we assume σ(q) hits an obstacle of P ′. Let p be the first
point on the obstacles of P ′ hit by σ(q). Based on our discussion in Section 2,
each edge of any obstacle of P ′ is either an edge of an input obstacle of P or
a bay/canal gate. If p is not on a gate of any bay/canal, then p is on an input
obstacle of P , and hence q∗ = p. Otherwise, p is on a gate of a bay or a canal. If
p is on the gate of a bay B, then since B has only one gate, q∗ must be on the
boundary of B (and thus on the boundary of an input obstacle of P). If p is on
a gate of a canal C, then although C has two gates, due to the opaque property
of Lemma 1, q∗ must be on the boundary of C that lies on an input obstacle.

If the origin q is in a bay/canal, then we find the first point p on the boundary
of the bay/canal hit by σ(q). If p is not on a gate, then q∗ = p; otherwise, the
ray σ(q) goes out of the bay/canal and enters M through that gate, and we use
a procedure as for the case of q ∈ M to compute q∗.

The discussion above shows that to compute q∗, we only need to conduct at
most three ray-shooting queries each of which is either on a bay/canal or on
the convex obstacle set P ′. We perform the preprocessing accordingly. For a
bay/canal, because it is a simple polygon, we build a data structure for simple
polygons [5,10] for it. Since the total number of vertices of all bays and canals
is O(n), preprocessing all bays and canals takes O(n) time and space, and each
query inside a bay/canal takes O(log n) time.

For the convex obstacle set P ′, Pocchiola and Vegter [18] showed that by
using the visibility complex, a data structure of O(n + k′) size can be built
in O(n + k′ · poly(log h)) time that allows to answer each ray-shooting query
in O(log n) time, where k′ = O(h2) is the number of common tangents of the
convex obstacles in P ′ that lie in the free space of P ′ (i.e., M).

In summary, we have the following result.
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Theorem 1. For an input polygonal domain P, we can build a data structure
of size O(n + h2) in O(n + h2 · poly(log h)) preprocessing time that allows to
answer each ray-shooting query in O(log n) time.

4 The Visibility Queries

In this section, we present our two visibility query data structures. We assume
that the ocean M, and all bays and canals have been computed, and the convex
obstacle set P ′ is given. The needed preprocessing takes O(n+ h log1+ε h) time.
We begin with the first data structure, described in Sections 4.1, 4.2, and 4.3.
The second data structure is shown in Section 4.4, which uses some ingredients
of the first data structure.

For a query point q, we seek to compute the visibility polygon Vis(q). For
simplicity of discussion, assume q is not collinear with any two obstacle vertices.

To provide some intuition, in Section 4.1, we sketch an algorithmic procedure
for computing Vis(q) without any preprocessing, and argue its correctness. Our
query algorithm (with preprocessing) given later will follow this procedure. In
Section 4.2, we present the preprocessing of our first data structure. Its query
algorithm and time analysis are shown in Section 4.3.

4.1 The Algorithm for Computing Vis(q)

The query point q may be in M, a bay, or a canal. We start with the case of
q ∈ M. For any subset S of the free space F , let Vis(q, S) denote the intersection
of Vis(q) and S. For example, Vis(q,M) is the subpolygon of Vis(q) in the ocean
M, and Vis(q,F) is Vis(q).

We first compute Vis(q,M). Because the space F \M consists of all bays and
canals, the region Vis(q) \ Vis(q,M) is the union of the visibility subpolygons of
Vis(q) in all bays and canals. Next, we show how to compute Vis(q) \ Vis(q,M).

Observation 1. For q ∈ M, if a bay/canal does not have any gate that inter-
sects with the boundary of Vis(q,M), then no point in that bay/canal is visible
to q.

Proof. Consider any point p in a bay bay(cd). Suppose p is visible to q. Since
q ∈ M, pq must intersect the gate cd, say at a point p′. Hence, p′ is visible to
q. Because cd is on ∂M, p′ is on the boundary of Vis(q,M). Thus cd intersects
the boundary of Vis(q,M). The case for canals can be proved similarly.

Suppose for a bay bay(cd) with gate cd, we want to compute Vis(q, bay(cd)). If
its gate cd does not intersect the boundary ∂Vis(q,M) of Vis(q,M), then by
Observation 1, Vis(q, bay(cd)) = ∅. If cd has a single sub-segment on ∂Vis(q,M),
then q can see part of bay(cd) through the cone delimited by this sub-segment and
with q as the apex, and we compute Vis(q, bay(cd)) “seeing through” this cone.
The general case is when multiple disjoint sub-segments of cd are on ∂Vis(q,M)
(e.g., see Fig. 3). In this case, some interior points of bay(cd) are visible to q
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Fig. 3. Three sub-segments (the thick ones) of cd are visible to the point q

through multiple cones. We compute the visible region of q in bay(cd) for each
such cone. It is easy to see that the visible regions for these cones are mutually
disjoint. Therefore, Vis(q, bay(cd)) is the union of them.

Next, suppose for a canal canal(x, y) with two gates xd and yz (as in Fig. 2),
we want to compute Vis(q, canal(x, y)). Similarly, if its two gates do not intersect
∂Vis(q,M), then Vis(q, canal(x, y)) = ∅. Otherwise, let Vis(xd) denote the region
of canal(x, y) visible to q through the gate xd and Vis(yz) denote the region
of canal(x, y) visible to q through the gate yz. Clearly, Vis(q, canal(x, y)) =
Vis(xd) ∪ Vis(yz). We compute Vis(xd) and Vis(yz) separately using our above
approach for the bay case. Note that x = y is possible, in which case the two
gates share a common vertex x but we view x as belonging only to xd (i.e., yz
is viewed as a half-open segment). In this way, the two gates never intersect.
Lemma 2 below shows that Vis(xd) and Vis(yz) are mutually disjoint. Thus,
once Vis(xd) and Vis(yz) are available, computing Vis(xd) ∪ Vis(yz) is trivial.
The proof of Lemma 2 is omitted.

Lemma 2. For q ∈ M, the visibility polygons Vis(xd) and Vis(yz) in canal(x, y)
do not intersect with each other.

Based on the above, after we obtain Vis(q,M), to compute Vis(q)\Vis(q,M), we
can simply check the boundary ∂Vis(q,M). For each sub-segment of a bay/canal
gate on ∂Vis(q,M), we compute the region in the bay/canal visible to q through
that sub-segment. All these regions are pairwise disjoint and Vis(q) \ Vis(q,M)
is a trivial union of them. We hence finish the discussion of our procedure for
computing Vis(q) in the case of q ∈ M.

Next, we consider the case when the query point q is in a bay, say bay(cd).
In this case, we first compute the visibility polygon of q in bay(cd), i.e., Vis
(q, bay(cd)). If the gate cd does not intersect the boundary of Vis(q, bay(cd)),
then Vis(q) = Vis(q, bay(cd)) because q is not visible to any point outside bay(cd).
Otherwise, there must be a single (maximal) sub-segment of cd on the boundary
of Vis(q, bay(cd)) through which q can see the outside of bay(cd) (in the cone
delimited by that sub-segment). In other words, Vis(q) \ Vis(q, bay(cd)) is the
visible region in the space F \ bay(cd) visible to q through the cone. To compute
Vis(q)\Vis(q, bay(cd)), we use a procedure similar to that for the case of q ∈ M.
The difference is that here the visibility is through a cone.
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The remaining case is when the query point q is in a canal. This case is very
similar to the bay case above. The difference is that we consider the two canal
gates separately, using the procedure for the bay case. We omit the details.

4.2 The Preprocessing

We discuss the preprocessing for our algorithm in Section 4.1, in which we need
to compute the visibility polygons of q in M or in a bay/canal.

We first discuss the preprocessing for computing Vis(q,M) when q ∈ M.
Recall that we have a set P ′ of O(h) convex obstacles of totally O(n) vertices
and its free space is the ocean M. By using the visibility complex [19,20], we
have the following lemma with proof omitted.

Lemma 3. We can build a data structure of size O(n+ h2) in O(n + h2 log h)
time that allows to compute Vis(q,M) in O(|Vis(q,M)|+ h′ logn) time for any
query point q ∈ M, where h′ is the number of obstacles in P ′ visible to q.

Further, recall that in our algorithm discussed in Section 4.1, when the query
point q is in a bay (or canal), Vis(q,M) is the visible region of q in M through
a cone (or a sub-segment of the bay gate). Therefore, we need to deal with the
cone visibility in M. For this, we extend the result in Lemma 3.

Corollary 1. We can build a data structure of size O(n+h2) in O(n+h2 log h)
time that allows to compute Vis(q,M) in O(|Vis(q,M)|+ h′ logn) time for any
query point q in a bay or canal within its visibility cone, where h′ is the number
of obstacles in P ′ visible to q.

Next, we discuss the preprocessing for bays and canals. Recall that there are
two types of query situations on a bay/canal. The first type is that the query
point q is inside a bay/canal and we need to compute the visibility polygon of q
in that bay/canal. The second type is that q is outside a bay/canal along with
a sub-segment of a gate of that bay/canal and we need to compute the visibility
polygon of q in the bay/canal through that sub-segment.

For the first type, we simply use the data structure by Aronov et al. [2] for
simple polygons. Since all bays and canals have totally at most n vertices, the
preprocessing time and space for all bays and canals are O(n2 logn) and O(n2),
respectively. After that, for any query point q in a bay/canal, the visibility
polygon P of q in the bay/canal can be computed in O(log2 n+ |P |) time.

For the second type, we do the following preprocessing. Consider a convex
obstacle P ∈ P ′. Let BayCanal(P ) (or BC(P )) denote the set of bays and
canals each of which has a gate lying on the boundary of P . For any query point
q �∈ P , let Cq be a cone with apex q. Denote by Vis(q, BC(P )) the union of
the visibility polygons of q in all bays and canals of BC(P ), and here all other
obstacles in P ′ are ignored (i.e., we assume they are transparent and do not block
the view of q). Let Vis(Cq, BC(P )) = Cq ∩ Vis(q, BC(P )), i.e., Vis(Cq, BC(P )) is
the union of the visibility polygons of q in all bays and canals of BC(P ) through
the cone Cq. Using the techniques in [2], we have Lemma 4, with proof omitted.
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Lemma 4. For a convex obstacle P , suppose the total number of vertices in all
bays and canals of BC(P ) is m. We can build a data structure of size O(m2)
in O(m2 logm) time such that for any query point q �∈ P , in O(logm) time, we
can obtain (a pointer to) a data structure storing Vis(q, BC(P )), and if needed,
report Vis(q, BC(P )) explicitly in additional O(|Vis(q, BC(P ))|) time. Further,
given any cone Cq with apex q, from the above data structure, we can obtain
Vis(Cq, BC(P )) in additional O(logm+ |Vis(Cq, BC(P ))|) time.

We compute the data structure for Lemma 4 for each convex obstacle in P ′.
Since all bays and canals have O(n) vertices, the total preprocessing time is
O(n2 logn) and the space is O(n2).

In summary, our preprocessing includes: (1) preprocessing M (or P ′) using
Lemma 3 and Corollary 1, (2) preprocessing all bays and canals for the first
type query situation using the data structure in [2], and (3) preprocessing all
bays and canals for the second type query situation using Lemma 4. The overall
preprocessing time is O(n2 logn) and the space is O(n2).

4.3 The Query Algorithm

Consider a query point q. Our query algorithm for computing Vis(q) follows the
same procedure as given in Section 4.1. We first discuss the case of q ∈ M.

In Step (1), we compute Vis(q,M) using the data structure for Lemma 3,
which takes O(|Vis(q,M)|+ h′ logn) time. In Step (2), for each obstacle P ∈ P ′

visible to q, by Lemma 4, we obtain the data structure for storing Vis(q, BC(P )),
in O(log n) time. In Step (3), we check the boundary of Vis(q,M); for every ob-
stacle P visible to q, if q’s view of P is blocked partially by some other obstacles
of P ′, i.e., there are some cones through which q is visible to one or more portions
of P , then for each such cone Cq, by Lemma 4, we compute Vis(Cq, BC(P )) in
additional O(log n+ |Vis(Cq, BC(P ))|) time. Then, Vis(q) is obtained and is rep-
resented as a cyclically ordered list of visible edges and vertices. The correctness
of the algorithm follows from our discussion in Section 4.1.

To analyze the query time, let k = |Vis(q)|. First, |Vis(q,M)| plus the sum of
all |Vis(Cq, BC(P ))|’s is O(k). Second, the number of cones in Step (3) is O(h′)
because only h′ obstacles of P ′ are visible to q. Therefore, the overall time of
the query algorithm is O(k + h′ logn). Clearly, h′ ≤ h and h′ ≤ k.

Next, we discuss the case when q is in a bay, say bay(cd). In Step (1), we
compute the visibility polygon Vis(q, bay(cd)) in bay(cd), in O(log2 n + |Vis(q,
bay(cd))|) time using the data structure in [2]. If cd has a sub-segment c′d′ on the
boundary of Vis(q, bay(cd)), then in Step (2), we compute the visibility polygon
of q outside bay(cd) seeing through the cone with apex q and delimited by c′d′.
This step and the rest of the algorithm are basically the same as the former
case of q ∈ M. One difference is that we use Corollary 1 instead of Lemma 3
to compute Vis(q,M). Similarly to the analysis above, the overall query time is
O(log2 n + k + min{k, h} logn). Note that we have an additive O(log2 n) time
due to using the data structure for simple polygons [2].
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The remaining case when q is in a canal is the same as the bay case except
that we process the two canal gates separately. The time of each query is also
O(log2 n+ k +min{k, h} logn). In summary, we have the following result.

Theorem 2. For a polygonal domain P, we can build a data structure of size
O(n2) in O(n2 logn) preprocessing time that can answer each visibility query in
O(log2 n+ k +min{k, h} logn) time.

4.4 The Second Data Structure

The main difference between our second data structure and the first one is that
for bays and canals, we do not preprocess them using the data structures in [2]
and Lemma 4. Instead, we build a ray-shooting data structure in simple polygons
[5,10] for each bay and canal, which takes totally O(n) preprocessing time and
space. But, we still keep the data structures for Lemma 3 and Corollary 1. The
overall preprocessing time and space then become O(n+h2 log h) and O(n+h2),
respectively. Below, we discuss the query algorithm.

Consider a query point q. We first discuss the case of q ∈ M. In the first
step, we still compute Vis(q,M) by Lemma 3. In the second step, we check
the boundary of Vis(q,M). If a sub-segment of a bay/canal gate appears on
∂Vis(q,M), then we use the ray-shooting approach [2] to compute the visibility
polygon of q in the bay/canal through that sub-segment, which takes O(k′ logn)
time, where k′ is the output size of this visibility polygon. For the query time,
the first step takes O(|Vis(q,M)| + h′ logn) time. Again, h′ = O(k). For the
second step, clearly, the sum of all such k′ terms is O(k). Therefore, the query
time is O(k logn). The other cases when q is in a bay or canal are very similar
and we omit the discussions of them. In summary, we have the following result.

Theorem 3. For a polygonal domain P, we can build a data structure of size
O(n + h2) in O(n + h2 log h) preprocessing time that can answer each visibility
query in O(k logn) time.

5 Conclusions

In this paper we propose new data structures for ray-shooting queries and com-
puting visibility polygons for query points in polygonal domains, which bene-
fit in a large part from the extended corridor structure [8]. It would be inter-
esting to see whether further improvements are possible. In addition, the cur-
rent best visibility query data structures on simply polygons have complexities
O(n3 logn, n3, k + logn) and O(n2 logn, n2, k + log2 n), respectively; improving
these results would also be interesting, and in particular, an open question is
whether O(n2 logn, n2, k + logn) complexity data structures exist.

Acknowledgments. The authors would like to thank Tiancong Chen for help-
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Visibility and Ray Shooting Queries in Polygonal Domains 255

References

1. Agarwal, P., Sharir, M.: Ray shooting amidst convex polygons in 2D. Journal of
Algorithms 21(3), 508–519 (1996)

2. Aronov, B., Guibas, L., Teichmann, M., Zhang, L.: Visibility queries and mainte-
nance in simple polygons. Discrete and Computational Geometry 27(4), 461–483
(2002)

3. Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. International
Journal of Computational Geometry and Applications 4(4), 475–481 (1994)

4. Bose, P., Lubiw, A., Munro, J.: Efficient visibility queries in simple polygons. Com-
putational Geometry: Theory and Applications 23(3), 313–335 (2002)

5. Chazelle, B., Edelsbrunner, H., Grigni, M., Gribas, L., Hershberger, J., Sharir, M.,
Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorith-
mica 12(1), 54–68 (1994)

6. Chazelle, B., Guibas, L.: Visibility and intersection problems in plane geometry.
Discrete and Computational Geometry 4, 551–589 (1989)

7. Chen, D.Z., Wang, H.: A nearly optimal algorithm for finding L1 shortest paths
among polygonal obstacles in the plane. In: Demetrescu, C., Halldórsson, M.M.
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